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Abstract

Optical singularities are points in complex scalar and vector fields
where a property of the field becomes undefined (singular). In com-
plex scalar fields these are phase singularities and in vector fields they
are polarisation singularities. In the former the phase of the field is
singular and in the latter it is the polarisation ellipse axes. In three
dimensions these singularities are lines and natural light fields are
threaded by these lines.

The interference between three, four and five waves is investigated
and inequalities are given which establish the topology of the singu-
larity lines in fields composed of four plane waves. Beyond several
waves, numerical simulations are used, supported by experiments, to
establish that optical singularties in speckle fields have the fractal
properties of a Brownian random walk. Approximately 73% of sin-
gularity lines percolate random optical fields, the remainder forming
closed loops. The statistical results are found to be similar to those
of vortices in random discrete lattice models of cosmic strings, imply-
ing that the statistics of singularities in random optical fields exhibit
universal behavior.

It is also established that a random superposition of plane-waves,
such as optical speckle, form singularities which not only map out
fractal lines, but create topological features within them. These topo-
logical features are rare and include vortex loops which are threaded
by infinitely long lines and pairs of loops that form links. Such struc-
tures should be not only limited to optical fields but will be present
in all systems that can be modeled as random wave superpositions
such as those found in cosmic strings and Bose-Einstein condensates.

Also reported are results from experiments that generated com-
pact vortex knots and links in real Gaussian beams. These results
were achieved through the use of algebraic knot theory and random
search optimisation algorithms.

Finally, polarisation singularity densities are measured experi-
mentally which confirm analytic predictions.
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CHAPTER 1
Introduction

“Singularity is almost invariably a clue”

— Arthur Conan Doyle

Adventures of Sherlock Holmes, 1892

1.1 A brief history

Singularities have always been of great importance to physicists. They point

the way towards new physics by highlighting the limitations of the current

theory. The diffraction catastrophes of ray optics [Nye99] were understood

through wave optics. Waves, however, come with their own brand of sin-

gularities. This thesis will cover two different types of optical singularities:

phase singularities in complex scalar waves and polarisation singularities in

vector waves. The former will be covered extensively, with the latter acting

as an epilogue showing how the properties of phase singularities are inherited

by their vector counterpart.

To open with a very old diagram, Fig. 1.1 shows what is possibly the first

ray caustic diagram. It illustrates how equally spaced parallel straight lines

can reflect from a surface such that they converge along a curved line. This

11
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Figure 1.1: A drawing of a caustic by Leonardo daVinci c. 1508. Possibly
the first caustic/ray diagram drawn (British Library: codex Arundel 263.
folio 87v).
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Figure 1.2: Thomas Young’s sketch of wavefronts emanating from two
slits, which he presented to the Royal Society in 1803.

line is called a caustic and in ray optics it is a line of infinite intensity (in

fact the density of rays rises inversely with the distance from the caustic

which is specifically known as a fold caustic). Caustics are the singularities

of ray optics and are ubiquitous: they can be observed on the surface of fluid

in a cup (caused by the reflection of natural light from the cup rim) or on

swimming pool walls, and they are the mechanism behind rainbows [Nye99].

Wave optics explains why the intensity along a caustic does not rise infinitely.

As Young demonstrated in 1803 (see Fig. 1.2) a feature of wave superposition

is that one plus one does not necessarily equal two. In general, when three

or more scalar waves interfere in space, complete destructive interference

occurs on lines. These lines go by various names in the literature: nodal

lines, phase singularities, wave dislocations and optical vortices. These terms

are all correct and in different scenarios each can be used appropriately.

The singular nature of these nodes arises from the argument of the complex

number describing the wave becoming undefined (singular), and nearby all

phases between 0 and 2π occur, increasing in either a clockwise or coun-

terclockwise sense [NB74]. The term vortex derives from the fact that the

Poynting vector rotates around the singularity — making it a vortex of op-

tical energy [CGR89].

Given that optical vortices arise when there are multiple wave components

present and that each of the infinitely many rays forming a caustic is locally
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Figure 1.3: First diagram showing an optical phase singularity. This
appeared in a paper by Wolter in 1950 [Wol50]. The lines convergent
on a point show phase contours and solid lines aligned with arrows show
current flow.

a plane wave it is not surprising that vortices are an important part of

real caustic structure. The ray-optically predicted infinite intensity from

convergent rays is turned into interference of converging wavefronts; the

more dense the rays, the more intricate the interference.

Generally, these types of singularities occur in any system that can be de-

scribed by a complex scalar field. Tidal waves may be a surprising example,

but there are indeed phase singularities in the oceans. The singularities here

are known as amphidronic points, where the surface of water remains at the

same height, seemingly unaffected by the tidal forces. The local, surround-

ing waters do have a tidal cycle and the oscillations will rotate around this

point of zero tide.

Although examples of phase singularities date as early as 1833 for tidal
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waves and 1931 for electromagnetic waves [Dir31], the first image showing

phase singularities in optics appeared in a paper by Wolter in 1951, which

mentions a few properties of ‘special null points’ in the optical field while

describing reflections from a half plane.

However, it was not until a paper by Nye and Berry in 1974 [NB74] that these

“Dislocations in wave-trains” were studied in their own right as a physical

phenomenon in waves, and more specifically in optics. The motivation to

develop this theory was to understand radiowave reflections from the bottom

of the Antarctic sheet. Experiments were conducted to replicate the phe-

nomenon in ultrasonic pulses reflected from a rough surface — ultrasound’s

relatively low frequency allowing phase observations to be made.

The following two decades saw various papers describing phase singularities

in diffraction catastrophes [BNW79] and their statistics in Gaussian random

waves [Ber78]. During this time polarisation singularities in electromagnetic

wave fields were also introduced in the literature [Nye83b, Nye83a]. Other

singularities of interest studied in the 1980s were singular filaments in chem-

ical waves (here the phase is that of a chemical excitation cycle), superfluid

vortices [Sch88] and cosmic strings [VV84]. A trilogy of papers by Winfree

and Strogatz [WS83a, WS83b, WS83c] discuses the topology of the singular-

ities (specifically in chemical waves) in three dimensions and the possibility

of having knotted lines.

This leads on to the most recent work in optical vortices which does in-

volve topology. In 2001 Berry and Dennis constructed a ‘recipe’ for creating

knotted or linked phase singularities in monochromatic, or more generally,

Helmholtz waves [BD01b, BD01a]. This was later confirmed by Leach et al.

[LDCP04a, LDCP05] who created these structures in real Gaussian beams.

Of course, to achieve this they needed to be able to create singular beams

in the lab.
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Figure 1.4: Illustration of a Gaussian beam incident on (a) a spiral
phase plate of height λθ/2π and (b) a hologram with phase modulation
mod2π|λθ/2π + αx| where the second term adds a blazed diffraction
grating, to preferentially diffract light into the positive first order.

1.2 Creating singularities

Alongside the theoretical work between 1980 and 2000 was an interest in

realising singular beams experimentally. The first example of this came in

1979 when Vaughan [VW79] studied the properties of light beams having a

helical phase structure, which (by inference) must contain an optical vortex

along the beam axis.

In 1989 Coullet et al. [CGR89] used the term “optical vortex” to describe a

possible laser mode that could occur in cavities with large Fresnel number.

The natural laser mode containing an optical vortex is a Laguerre-Gaussian

mode. Like the Hermite-Gaussian modes, the Laguerre-Gaussian modes are

orthogonal to each other and form a complete basis set from which any

arbitrary field distribution may be decomposed. The most iconic Laguerre-

Gaussian mode, LG1
0, often referred to affectionately as the ‘doughnut mode’,

comprises a single annular ring of intensity with a 2π phase singularity along

the beam axis. Chapter 3 contains examples of LGl
p modes of various l and
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p values.

In the early 90s, experimenters began to explore the use of diffractive optical

components to transform spatially coherent, planar-waved beams into beams

containing optical vortices. In 1990 Soskin and co-workers recognized that if

a diffraction grating was modified to include an edge dislocation at its centre,

then the first order diffracted beam contained an optical singularity [BVS90].

This classic “forked” hologram design is now virtually synonymous with

the generation of optical vortices. The forked design can be implemented

either as an amplitude or phase grating, both of which can be calculated

as the modulus 2π addition of a helical phase exp(i�φ) with a diffraction

grating. In parallel with the work of Soskin and colleagues, Heckenberg

and co-workers used a variation design where the azimuthal phase term was

added to a Fresnel lens such the the various diffraction orders were separated

axially [HMS+92].

In 1993, Woerdman and co-workers pursued a new approach to the genera-

tion of vortex carrying beams. They built optical components termed “spiral

phase plates”. These are discs of optical refractive index n with optical thick-

ness (∆t) that increases with azimuthal angle, i.e. ∆t = φ
2π
(n− 1)�λ. Upon

transmission, an incident plane wave will acquire an exp(i�φ) phase term and

consequently have an optical vortex along the beam axis. The motivation

behind this work was to produce a vortex beam, with its associated orbital

angular momentum, that was free from astigmatism. However, these spiral

phase plates require precise matching of the (n−1)�λ step height at the cen-

tre, which places extremely high demands on the engineering tolerance —

particularly for optical wavelengths. At radio or millimeter-wave frequencies

these tolerances are not so extreme [TRS+96]. In the original work, the plate

was immersed in a temperature-controlled fluid bath. Changing the temper-

ature of the bath ingeniously controlled the refractive index mismatch and

hence allowed the step height to be tuned to exactly the correct value. Since

then, a number of groups have employed precise micro-machining techniques

to make spiral phase plates directly [WFW+04, TSM07].
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Figure 1.5: A diagram showing a surface of constant phase around an
optical vortex with the Poynting vector indicated by a green line.

Despite the various methods which have been developed for generating vor-

tex carrying beams ranging from cylindrical lenses, specially modified lasers

and spiral phase plates, none match the ease and flexibility of computer

generated holograms. The popularity of diffractive optical components for

generating specific beams has been massively enhanced by the commercial

availability of spatial light modulators (SLMs). These devices contain an

array of pixels which can be addressed via a computer with an image that

defines the spatial variation of the phase or intensity of the reflected light.

Figure 1.4 shows how using a spiral phase plate and a diffractive optical

element can result in similar beams containing vortices.

The majority of experiments whose results are presented throughout the

following chapters were conducted using SLMs. The use of these devices

will be discussed in chapter 3.

1.3 Optical angular momentum

One reason for there being so much interest in optical vortices is their link

to optical angular momentum. A vortex line (in any plane other then the

transverse plane) gives rise to helical phasefronts (see Fig. 1.5). The recogni-
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tion in 1992 by Allen et al. [ABSW92] that a helically-phased beam carries

orbital angular momentum has since linked the two fields of vortices and

optical angular momentum. This orbital angular moment arises from the

azimuthal phase structure of the optical beam and hence it can be inde-

pendent of the spin angular momentum, which is linked to the polarisation

state. The link between singularities and angular momentum extends fur-

ther once it is recognised that polarisation singularities are lines of circular

polarisation and hence associated with the spin angular momentum of the

field.

It is worth clarifying the relationship between optical vortices and orbital

angular momentum, two terms that are often (incorrectly) used interchange-

ably. As detailed in chapter 2, an optical vortex is a position in space around

which the optical phase advances or retards by a multiple of 2π. However,

the intensity at the vortex centre is zero and therefore the vortex itself car-

ries no linear, nor angular, momentum. By contrast, it is in the immediate

vicinity of the vortex that the azimuthal phase term means that the phase-

fronts of the optical field are helical. The associated Poynting vector has an

azimuthal component and hence there is a net flow of both energy and mo-

mentum around the vortex line, which in turn gives an angular momentum

directed along the line. An optical beam can have an azimuthal phase gra-

dient without a nearby phase singularity meaning that light can still possess

an orbital angular momentum without an optical vortex [CDAP97].

Despite this distinction, it is the case that the vast majority of studies in-

volving orbital angular momentum have utilized beams containing optical

vortices aligned along the beam axis. For an intensity-symmetric light beam

with a helical phase structure described by exp(i�φ), where � is any integer

value, the orbital angular momentum is equivalent to �� per photon.
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1.4 Thesis format

Singular optics is a topic currently of great interest to researchers both the-

oretically and experimentally. This thesis makes original contributions to

both areas but with an emphasis on numerical and laboratory experiment.

The theoretical contributions are modest and rely on simple arguments but

do contain significant results. The following paragraphs briefly describe the

structure of the thesis.

Chapter 2 covers the basic properties of optical singularities, both scalar and

vector. This chapter is entirely didactic and contains no original material.

Chapter 3 gives a full description of experimental methods and apparatus.

During its course it will also cover some theory needed to understand the

demonstration/calibration runs. A full 3D complex optical data-acquisition

system and polarisation camera are the main features of this chapter.

Chapter 4 leads on from the basic properties of optical singularities and gives

examples of optical vortex lines in three dimensions. The main purpose

of this chapter is to phrase the language of singularities firmly in three

dimensions and illustrate their three-dimensional properties and as such does

not contain any original research. This chapter also contains a modern

experimental approach to the elliptic umbilic diffraction catastrophe.

Chapter 5 describes how plane-wave interference affects vortex structure and

topology. This chapter contains original insight into how fields are affected

by complex amplitudes and gives inequalities that determine vortex topology

in four-wave interference.

Chapters 6 and 7 establish a model for simulating Gaussian random fields

and study empirically the topology and structure of vortex lines in these

fields. It also includes newly developed methods for automating knot and

link finding for arbitrary curves. This was the most significant body of work

and is entirely the work of myself with guidance and assistance from Prof.

Miles J. Padgett and Dr Mark R. Dennis.
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Chapter 8 gives the first experimental results of campact knotted and linked

vortex lines in Gaussian beams. This work was made possible by the original

work and insight of Mark Dennis who provided me with Laguerre-Gauss de-

compositions for creating the beams reported here. There are three different

types of vortex structures realised: the Hopf link, the trefoil knot and the

cinquefoil knot. The experimental results and mode optimisations are the

contributions of the author.

Chapter 9 considers polarisation singularities and is concerned with experi-

ments conducted by Dr Florian Flossmann (who made the most significant

contributions). Working alongside him on this experiment I have included

the results here to complement the work on scalar phase singularities. Re-

sults are given for laboratory measurements of polarisation singularity type

ratios and densities predicted in Ref. [Den02].

Chapter 10 summarises and concludes the thesis.

The notation used in the following chapters follows common literature, such

as bold letters denoting vectors (notation will be clarified when necessary).



CHAPTER 2
Theory

“We expect to find a hole in the theory here ... a naked

singularity would be very messy. The mathematics is

inconsistent - like dividing zero by zero.’

— Larry Niven, Singularities Make Me Nervous, in

Convergent Series, 1980

In this chapter the basic properties of optical singularities will be covered.

The majority of the chapter will deal with optical vortices in complex scalar

fields followed by a brief overview of polarisation singularities in vector fields.

Not every element of theory that appears in this thesis will be explained here,

some will be covered when relevant during a chapter.

2.1 Phase singularities in scalar fields

2.1.1 Basic properties

An optical vortex is a point of zero intensity in an optical field at which the

phase is undefined [NB74]. It is a phase singularity in the complex scalar

22
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Figure 2.1: Cross-section of a field consisting of 25 plane waves showing
(a) normalised intensity of field and (b) phase of field with colour rep-
resenting phase. Vortices are marked here with their topological charge,
s = ±1, indicated by the red and green spots.

representation of light fields. Around such a point all phase values converge

(illustrated in Fig. 2.1). This type of phase structure results in a Poynting

vector that rotates around the point of zero intensity [AP00], hence the term

vortex.

Taking ψ to denote the complex scalar representation of an optical field. A

vortex in ψ, satisfies the following condition:

ψ = ρeiφ = ξ + iη = 0, (2.1)

where ρ, φ, ξ and η are the amplitude, phase, real part and imaginary part of

the field. Assuming that ψ is monochromatic (which will be the case for all

following chapters), the vortex lines are exactly the zeros of the Helmholtz

equation:

∇ψ2 + k2ψ = 0. (2.2)

The current density in such a field is:

j = Im ψ∗∇ψ = ρ2∇φ = ξ∇η − η∇ξ, (2.3)

and the current vorticity is:

ω =
1

2
∇× j = ∇ξ ×∇η. (2.4)
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Figure 2.2: Illustration of how the dimension of the vortex arises from
the field contours. In 2D the ξ = 0 (blue) and η = 0 (orange) contours
are lines and therefore intersect at points (s = −1 and s = 1 indicated in
red and green respectively). In 3D the contours are surfaces, intersecting
along lines. The intersections shown here illustrate how loops may arise.

Integrating the phase along a non self-intersecting closed path, C, around a

vortex results in a multiple of 2π,

�

C

dφ = s2π. (2.5)

This integer, s, is called the topological charge of a vortex. As s is generically

±1, it is usually taken to be the sign of the current vorticity of the field

projected onto the z-axis,

s = sign ω · ẑ, (2.6)

however any choice of projection may be made.

The vortices exist where φ is singular, which can only be true if both ξ and

η are zero. In terms of phase, the ξ = 0 contours correspond to joining

the φ = π/2 and φ = −π/2 contours. The η = 0 contours correspond to

joining the φ = 0 and φ = π contours. Put simply, the crossing of these zero

contours indicates the convergence of the phase values φ = −π/2, 0, π/2, π,

which only happens at a vortex.

These contours help visualise how vortex lines appear in different dimen-

sions as vortices are exactly the intersections of the real and imaginary zero
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Figure 2.3: Illustration of how the sign of the topological charge of
vortices arises from the underlying 3D structure of the vortex line. As the
line ‘pierces’ the plane the sign of the topological charge alternates with
each pass as a result of the topological current (indicated by arrowheads
along the vortex line) remaining in a fixed sense. The small black circles
indicate the direction of the line integral used to evaluate the charge.

contours. The imagery of two surfaces intersecting is very helpful in under-

standing the geometry and topology of vortex lines. For instance, if a peak

of one surface just passes through the other, the perimeter of this ‘island’

would be a vortex loop. This can be seen in Fig. 2.2.

Put more formally, phase singularities are said to have a codimension of

two as they depend on two separate conditions (ξ = 0 and η = 0). The

dimensional extent of the singularity is then the dimension of the space they

are embedded in minus their codimension. In a plane vortices are points and

in a volume they are lines. In a time dependent field, with time constituting

a fourth dimension, the vortices are surfaces (this can be imagined as the

vortex lines in a volume sweeping out surfaces in time).

The topological charge is a 2-dimensional property of a vortex as it is evalu-

ated over a closed line integral on a surface. The sign s in 2D is arbitrary and

depends on the projection being considered (s = 1 viewed from +z appears

as s = −1 from −z). However, the charge with respect to the direction of

ω is conserved along the entire length of the line. Due to this conservation

it is useful to associate the direction of ω with a topological current. Fig-

ures 2.2 and 2.3 illustrate the role of the sign of the topological charge of
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Figure 2.4: Illustration of reconnection changing topology of a vortex
line. a) shows the vortex line before, (b) shows line at, and (c) shows the
line after reconnection. Parts (d, e, f) show the zero contour surfaces of
the real and imaginary parts of the field near the reconnection location
with the reconnection occurring at (e).

vortex lines in 3D.

2.1.2 Reconnections

Reconnections are the process through which vortex lines can change topol-

ogy. At a reconnection, vortex lines are degenerate in the sense that two

possible line paths exist. Figure 2.4 illustrates a reconnection taking place

resulting in a change of topology, also shown are the zero contours of the

real and imaginary parts. Exactly at a reconnection the following condition

is met:

ω = ∇ξ ×∇η = 0. (2.7)

So when the gradient of zero contours of χ and η are parallel, two vortex

lines cross perfectly. Reconnections have codimension 4 as they are depen-

dent on phase singularities occurring where ω= 0 and as ω is a vector field,

its zeros also have codimension 2. Due to the dependency on two codimen-

sion 2 events, reconnections have codimension 4. The result of this is that
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reconnections are points in time dependent fields. A reconnection point can

be seen in Fig. 2.4 part (e).

In monochromatic fields, reconnections almost surely never happen (their

codimension being too high), but it is through these reconnections, as an

external parameter (providing an extra dimension) is changed, that vortex

lines change topology. This idea will be explored further in chapter 4.

2.1.3 Vortex point densities

One aspect of optical vortices which is very well understood is the statistics

of point singularities in a plane [BD00]. With the condition that the plane-

wave components of the field have Gaussian random real and imaginary

parts the transverse and axial vortex densities, Dxy and Dz, are [Ber78]:

Dxy =
K2

4π
(2.8)

Dz =
K

3

2

2

4
√
2πk

(2.9)

where K2 is the second moment of the power-spectrum of the field. For

a Gaussian spectrum the second moment is K2 = 2K2
σ. Putting this into

Eqn.s 2.8 and 2.9, the densities become:

Dxy = 2π/Λ2
xy (2.10)

Dxz = Dyz = 2π/(ΛzΛxy), (2.11)

where

Λxy = λ

�

k0

Kσ

�

and Λz = λ

�

k0

Kσ

�2

(2.12)

are the natural length scales in the xy and z axes (λ = 2π/k as usual).

These units allow any calculations to be scaled such that the vortex point

densities are isotropic and as such both lengthscales, Λxy and Λz, can be

referred to simply as Λ.
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Figure 2.5: The Poincaré sphere representing all possible polarisation
states. Four example polarisation ellipses are drawn on the S1 = S2 great
circle, giving an ellipse major axis angle of π/2. A circularly polarised
state is highlighted in red; this state is a polarisation singularity.

2.2 Polarisation singularities

A field describing polarisation is a complex vector field — each point can be

written as (Ex, Ey, Ez) with Ei taking complex scalar values. For the case

of transverse polarisation states let Ez = 0. As the phase of such a field is

varied, the real part of the vector traces out an ellipse — the polarisation

ellipse. All possibilities of polarisation ellipse exist on the Poincaré sphere

with cartesian coordinates (S1, S2, S3), see Fig. 2.5 for a diagram of this

sphere and example polarisation states on it. The poles of this sphere are

polarisation singularities, where the ellipse becomes a circle.

Polarisation singularities have similar properties to phase singularities. How-

ever, due to the π rotational symmetry of the headless vector describing

polarisation state there is considerably more variety. The topological index

of a polarisation singularity is sp = ±1/2 due to the π symmetry. Although

there are two topological indices there are three different types of polarisa-

tion singularities: star, lemon and monstar.

The differences between the singularities can be seen easily in Fig. 2.6. Stars
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Figure 2.6: Classification of polarisation singularities a) Star (sp = −1),
b) Monstar (sp = +1) and c) Lemon (sp = +1).
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Figure 2.7: Elliptic and hyperbolic configurations of polarisation singu-
larity.

have sp = −1/2 whilst lemons and monstars have sp = +1/2 corresponding

to anti-clockwise (−1/2) and clockwise rotation (+1/2) of the polarisation

ellipse major axis around the singularity. Each of these types of singularity

can also be left or right circularly polarised (opposite poles on the Poincaré

sphere). This would result in 6 different types of singularity — but there

are more!

Polarisation singularities can also be classified into elliptic or hyperbolic

types. The distinction can be seen visually in the contours of the polarisation

ellipse major axis lengths seen in Fig. 2.7.

Between singularities of opposite handedness there must points of complete

linear polarisation (where the ellipse has become flat). This state corre-
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sponds to the equator on the Poincare sphere and must be traversed to

smoothly move from a right circularly polarised singularity to left.

In 2 dimensions (transverse polarisation) the combination of singularity in-

dex with left and right handedness results in a picture of points in the

plane which are singular, of both left and right circular polarisation, with

lines, called L-lines, of linear polarisation separating them. Extended into

a volume of transverse polarisation states, the C-points become lines and

the L-lines become L-surfaces separating volumes of left and right handed

polarisation states.

The decomposition of polarisation fields into left and right circular polarisa-

tion is key in understanding how the statistics of singularities in scalar fields

are inherited by vector fields. As the left or right circular components can be

described by complex scalar fields, they themselves have phase singularities

of the type described earlier in this chapter. The orthogonal addition of the

left- handed and right-handed fields result in the network of zeros in each

component being ‘filled’ by circularly polarised light of the opposite hand-

edness. The network of scalar singularities becomes a netwok of C-lines.

The density of C-points/lines is simply double that of phase singularities.

However, this says nothing of the features in polarisation fields which occur

due to the π symmetry of the polarisation vector.

This concludes the theoretical description of optical singularities required

for the content of the thesis.



CHAPTER 3
Experimental apparatus

This chapter will detail the experimental apparatus used to obtain results

in following chapters. Also included will be detailed descriptions of methods

used to analyse data. A full 3D complex optical data-acquisition system

and polarisation camera are the main features of this chapter. Example

calibration results will be given, demonstrating the scope of the apparatus.

3.1 General apparatus

The experiments required to study optical singularities in monochromatic

beams are of a very general type. They involve measuring basic proper-

ties of light: intensity, phase and polarisation state. The first is the most

straightforward to measure. Placing a CCD array in the observation plane

allows the intensity to be measured to within the dynamic range of the de-

vice used. The phase of a linearly polarised beam can be measured by using

interferometric techniques. The polarisation can be obtained by measuring

different linear components and calculating Stoke’s parameters.

A generic setup for shaping a beam and measuring the intensity is shown in

Fig. 3.1. Here a source (a He-Ne laser with λ = 632nm) is expanded using a

31
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Figure 3.1: Experimental setup for intensity and phase acquisition.

telescope with lenses of focal length f1 and f2. The expanded beam is then

incident on a Spatial Light Modulator (SLM) controlled by a PC with custom

written LabVIEW software (the use of an SLM will be discussed later). The

reflected light is then filtered in the Fourier plane through use of a lens, f3,

and a spatial filter (essentially a pinhole) positioned in the focal plane of

this lens. A fourth lens, f4, can be used to image the plane of the SLM onto

a CCD array via a fifth lens, f5, which magnifies the image. A translation

stage, controlled again by LabVIEW software, mounted with relay mirrors

is placed between lenses f4 and f5. This allows the path difference between

the final two lenses to be increased by adjusting the translation stage. This

changes the plane being imaged onto the CCD, allowing a full 3D scan of

the beam. The camera can be scanned either through the SLM plane or the

Fourier plane. To this end, the apparatus depends somewhat on how the

SLM is being used.
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3.2 Spatial Light Modulator
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Figure 3.2: How an optically addressed SLM operates. Graphical input
is received from a PC and displayed on the LCD. The transmitted light
is then imaged onto the SLM. Light incident on the SLM now undergoes
an optical delay proportional to the light intensity imaged onto the SLM.

An SLM is a device which can manipulate the wavefront of incident light.

Most achieve this by using a nematic liquid crystal polymer which causes

an optical delay dependent upon the electric field across a depth of liquid

crystal. The device used in the following experiments was an optically ad-

dressed Hamamatsu SLM. This SLM has a resolution of 1024×768 with each

pixel capable of 0 − 2π phase modulation across 256 levels (8-bit device).

The SLM is treated as a second monitor on the controlling PC. Data to be

written to the SLM is simply displayed as grayscale on a second monitor

output from the appropriate graphics card.

The SLM operates by first displaying the phase values as a grayscale im-

age on a basic LCD. This LCD is illuminated by a uniform light source of

wavelength 632nm (coherence is not important). The transmitted light is

imaged onto one side of the SLM. The light incident on the SLM causes an

electric gradient across the liquid crystal. It is this gradient that is respon-

sible for the optical delay on reflected light incident on the opposite surface.

The brightest areas cause a 2π delay and the darkest cause none. A basic

schematic is shown in Fig. 3.2.

The reflected light now has the desired phase modulation. However, there

is still a strong surface reflection from the SLM which is unchanged. In

order for the modulation to be of any use, this zero-order reflection must be
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separated from the desired beam. The zero-order reflection can be removed,

but at a cost of efficiency. How this is achieved will be described in the

following section on Computer Generated Holograms (CHGs).

3.3 Computer Generated Holograms
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Figure 3.3: How the optical delay of a wedge is represented as a holo-
gram. a)1D slice showing how the optical delay of a wedge increases and
how the hologram is calculated. b) 2D hologram of a wedge of dielectric
(also called a blazed grating).

Holograms are planar devices that modulate light. Holograms are engineered

to have a particular transmissive function, T (r), desired for an experiment.

Traditionally, holograms were recorded using interferometry on very high

resolution photographic film (this is still how holograms for entertainment

are made). As computing power became readily available the form of a holo-

gram could be calculated, rather than recorded, and then printed directly to

photographic film. The combination of a desktop PC and an SLM allows the

ad-hoc calculation and display of holograms. In order to use Computer Gen-

erated Holograms (CGHs) effectively in experiments, the optical modulation

desired must be understood well.

The way in which simple objects interact with light can be represented by

a complex transmissive function, T (r) (reflective objects can be treated in

the same way). The effect of this function is to modulate incident light.

Basic geometric apertures (such as an iris) are the most simple forms of this
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function, being binary operators (an iris of radius R would have T (r ≤ R) =

1, 0 otherwise). Transparent dielectrics are represented with unit amplitude

and phase (optical delay) proportional to the width of the material. Prisms

increase in optical delay linearly and thin lenses parabolically. A hologram

of a thin prism is shown in Fig. 3.3
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Figure 3.4: Grayscale images (a) and (b) show holograms of a binary
phase grating and a blazed phase grating respectively. Intensity measure-
ments of diffraction orders −2,−1, 0, 1, 2 are shown in (c). The zeroth
order is overexposed in both sets of measurements (a value of 1 is assigned
to 4095, the maximum output of the 12-bit camera used)

The shaping of the wavefront is not limited to optical components. Arbitrary

phase profiles that may be difficult (or impossible) to engineer with ordinary

optics are possible. In particular, superpositions of more exotic base modes

(such as Laguerre-Gauss and Bessel modes) are now possible to generate.

However, to shape light beams in this way, both the intensity and phase

must be modulated. This can be achieved using a phase only SLM.

The first step to achieve the desired modulation of a beam is to add an
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additional modulation which is in effect a phase diffraction grating. The

effect of this is very apparent in the Fourier plane of the reflected beam. The

addition of the desired phase with a diffraction grating results in a series of

diffraction orders, each of which has the the desired phase (or conjugate). A

single order may now be allowed to pass through a pin-hole and the others

blocked. The modulated beam has now been removed from the reflected

zero order. However, a grating distributes the power in the beam amongst

orders either side of the central peak equally. This results in a relatively low

efficiency.

To overcome this, the phase grating can be replaced with the hologram of

a wedge, directing more power into the first order peak. There are still

diffraction orders as the transmissive function of the hologram is not per-

fectly smooth, there exist real finite jumps between the values of φ = 0 and

φ = 2π. These abrupt periodic changes cause the diffraction orders to re-

main, but now with a lower ratio of the total power. The effect of switching

a binary phase grating with a wedge can be seen in Fig. 3.4. This technique

is known as blazing.

If the SLM is now re-imaged, it will only contain the Fourier components

that have passed through the filter in the Fourier plane (see apparatus in

Fig. 3.1). The beam will now have the desired phase profile, but the intensity

remains, mostly, unchanged.

To modulate the intensity appropriately, a factor is applied at each pixel

mapping the range [−π, π] to sinc2(π− I(r)π)[−π, π], where I(r) is the nor-

malised desired intensity. The multiplicative factor used here is determined

from the diffractive efficiency of the SLM. In order to be effective this step

must be carried out after adding a blazed diffraction grating to the desired

phase profile. Essentially, the higher the contrast in the blazed grating’s

peaks and troughs, the more light is diffracted into the first order. The full

calculation for the phase values to be displayed on the SLM is

φ(r)h =
�

((φ(r)d + φ(r,Λ)b)mod 2π − π)
�

sinc2(π − I(r)π) + π. (3.1)

Here, φ(r)h is the phase pattern of the hologram, φ(r)d is the phase of the
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desired beam and φ(r,Λ)b is the phase of a blazed diffraction grating of

period Λ. The constants in the equation simply shift the phase ranges from

[−π, π] to [0, 2π]. Figures 3.5 and 3.6 show intensity measurements for two

different types of beam in the re-imaged plane of the SLM after filtering in

the Fourier plane, both figures show results with and without the intensity

modulation.
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Figure 3.5: Intensity measurements in the SLM image plane of at-
tempted beam shaping of HG11 after Fourier filtering, without (a) and
with (b) intensity modulation. The holograms displayed on the SLM to
generate beams (a) and (b) are shown in (c) and (d), grayscale represents
φh = [0, 2π].
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Figure 3.6: intensity measurements in the SLM image plane of at-
tempted beam shaping of LG0

1 after Fourier filtering, without (a) and
with (b) intensity modulation. The holograms displayed on the SLM to
generate beams (a) and (b) are shown in (c) and (d), grayscale represents
φh = [0, 2π].

This method is very successful in shaping a beam into the correct intensity

and phase profile.
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3.4 Phase measurements

Phase can be measured by use of the reference beam which is diverted before

the SLM and injected after the SLM modifies the object beam (see Fig. 3.1).

The mirror that reflects the reference beam is angled so that the beam

copropagates with the first-order diffracted beam from the SLM, allowing

it to pass through the filter in the Fourier plane. The shutter allows the

reference beam to be blocked, allowing simple intensity measurements to be

taken.

Simply interfering the shaped beam with the reference beam does not eas-

ily allow phase measurements to be made. The relative phase between the

beams must be shifted so that an intensity modulation at each pixel can be

observed. Figure 3.7 illustrates this method. Figure 3.7(a) shows the inten-

sity of the object beam, Bo, and Fig. 3.7(c) shows the resulting intensities,

U , after introducing a reference beam, Br with phase φr. Part (b) plots the

intensity of the four pixels highlighted in part (a) as a function of reference

beam phase, φr. The relative phase between Bo and Br can be measured

by taking N images of the resulting intensity, Un with the reference beam

having its phase shifted by φr = 2πn/N .

Un(r) = mod
�

Bo(r) + ei
2πn

N Br(r)
�2

(3.2)

The intensity measurements for each pixel form a discrete, equally spaced,

set of interference measurements spanning φr = [0 − 2π]. The argument of

the first non-d.c. component of the Fourier transform of this set yields the

relative phase between Bo and Br.

Φ(r) = arg
N

�

n=0

Un(r)e
−i 2πn

N (3.3)

Shannon’s sampling theorem tells us that the minimum number of measure-

ments required to retrieve the desired phase information is N = 3 (with

φr = 0, 2π/3, 4π/3). Typically in experiments performed in this thesis

N = 4, 8, 16 depending on constraints of image acquisition and process-

ing time. The greater N , the more accurate Φ(r) is. However, as it is the
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Figure 3.7: Illustration of how the phase of a beam cross-section is
measured experimentally. (a) shows the intensity of an object beam,
(b) shows the intensity modulation of pixels at the coloured spots in
(a) as a co-propagating reference beam is introduced and phase shifted.
(c) shows different intensity patterns created by the modulation of the
reference beam phase, φr

singular points of the phase that are of interest, the exact form of the phase

retrieved is not so important and N = 4 is sufficient for determining the

positions of the singularities within a few pixels.

3.5 Vortex finding

Finding positions of singularities in a phase map is not difficult. It is the

non-zero charge of a vortex that makes them easy to find. Any closed path

integral around a vortex yields a non-zero result (see Eqn. 2.5). Figure 3.8

illustrates this method on simulated data. Each 2D section of phase can be

searched pixel by pixel looking for vortices. However, if only the xy cross-
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Figure 3.8: Two example integration paths on computed phase values.
Path (a) encloses a vortex which can be identified by the overall change
in phase as the path returns to its starting point. Path (b) does not
enclose a vortex and the phase can be seen to return to its original value
with no discontinuity.

sections of the 3D phase data were searched, the points found would form

lines with sections missing. These missing sections are the line segments

that are parallel to the xy plane. This is overcome by performing several

integrations. The method outlined above for finding vortices is not restricted

to any particular plane, meaning that the xy, yz and zx planes can all

be searched. The result is a fully connected vortex pattern in 3D with

topological charge information for each point. By performing these three

closed integrals in three orthogonal planes the resulting topological charge

is a vector, s = (sxy, syz, szx), that can take on 27 possible forms (due to

each component being either 1,−1 or 0.) After every vortex location has

been located assigned a charge, they need to be connected into individual

vortex lines. This step will be described in chapter 6.
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Figure 3.9: Transverse cross-sections (a,b) of the intensity and phase in
the re-imaged plane of the SLM generated by the hologram shown in (c).
Longitudinal cross-sections are also shown (d,e) at x = 0, with a red line
showing the position of the cross-sections (a) and (b). The blue line in
(d) marks r = w(z) with w0 = 85µm and zr = 35.9mm. The scan range
shown is 189.2mm covering −1.2zr to 4zr.

3.6 Apparatus test and examples

3.6.1 Propagation of a Gaussian spot

A focussed Gaussian spot propagates without transversal intensity changes

— it is said to be stable on propagation. The transverse pattern scales as

w(z) = w0

�

1 +

�

z

zr

�2

, where zr =
πw2

0

λ
. (3.4)

Here w(z) is the beam waist size at axial position z, w0 is the beam waist at

z = 0, and zr is the Rayleigh range of the beam (where w(zr) =
√
2w0). Fig-

ure 3.9 shows an intensity scan of a Gaussian beam, alongside the hologram

used to create the focussed spot. This is a very basic test of the intensity
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capture process and illustrates the scanning range of the apparatus. The

beam waist size, w0, was known roughly but was measured accurately by

first measuring the distance by which w(z) of the transverse Gaussian profile

doubled from its minimum value, giving zr, and using Eqn. 3.4 to calculate

w0. A full scan range of approximately 5zr was deemed large enough for

most applications (the full extent of the translation stage allows 7zr with

this setup).

3.6.2 Laguerre-Gauss beams� �
��

���

��

���

Figure 3.10: intensity and phase of Laguerre-Gauss modes LG0
1, LG1

1,
LG0

2 and LG1
2. The colour scales are as usual. The effects of the indices

on phase and intensity structure are very clear — � is responsible for
the azimuthal variation in phase giving the distinctive ‘colour’ wheel
appearance and p causes radial phase discontinuities of π.

A Laguerre-Gauss beam in cylindrical coordinates (R, θ, z) has the nor-

malised form

LG�
p(R, θ, z;w) =

�

p!

π(|�|+ p)!

R|l| exp(i�θ)

(w2 + iz/k)|�|+1
exp

� −R2

2(w2 + iz/k)

�

×L|�|
p

�

R2

w2 + z2/k2w2

� �

w2 − iz/k

w2 + iz/k

�p

(3.5)
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Figure 3.11: Laguerre-Gauss beam with � = 1. a) Contours shows half
the maximum intensity, optical vortex as a red line. b) intensity at the
beam waist (z=0) and (c) measured phase at z = 0.

where k is the the wavenumber and w is the beam waist as described for the

Gaussian beam. The two indices � and p are integral to the nodal structure

of these beams. An on-axis optical vortex of charge s = � is present due

to the phase term ei�θ and p is the number of concentric ring nodes that

envelope the centre. To illustrate this some modes are plotted in Fig. 3.10.

� �

�

�� �� ��

����

Figure 3.12: Laguerre-Gauss beam with � = 2. a) Contours shows half
the maximum intensity, optical vortex as a red tube. b) intensity at the
beam waist (z=0) and (c) measured phase at z = 0.
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Figure 3.13: Unwrapped phase values around the beam axis for results
shown in (a) Fig. 3.11 and (b) Fig. 3.12. The straight lines in both plots
show φ = �θ.

The azimuthal variation in phase of these beams and isolated vortex makes

them ideal for testing the phase measuring and vortex finding algorithms.

Figures 3.11 and 3.12 show the results from scans of LG1
0 and LG2

0 beams

respectively. The LG1
0 looks very good and indeed the azimuthal variation

of phase is very clear with a vortex in the middle. Figure 3.13 shows the

measured phase around the axes of beams shown in Figs. 3.11 and 3.12 (at

a 10 pixel radius). The match between the expected linear dependency of

phase on azimuth is better for the � = 1 beam than the � = 2 beam. This is

due to the splitting of the high-charge vortex into two singles. The splitting

has created anisotropy of the phase contours close to the axis.

The 3D analysis of the data shows the vortex in the LG1
0 beam as a near

straight line following the axis (shown as a red line in Fig. 3.11). However,

although the intensity images show the LG2
0 to look very clean, analysis of

the phase reveals that the high charge vortex is split into two single charge

vortices. This is not so surprising considering the fragility of high charge

vortices — any level of perturbation will cause a split, the closer the single

charge vortices, the purer the LG mode. The separation of the vortices at

4zr is very visible but still only a small fraction of w. The spiralling of the

phase contours in Fig. 3.12 is also evidence that the curvature between the

object and reference beams is slightly mismatched. This mismatch will cause
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slight deformation to the phase fronts but will not change the positions of

the vortices. As it is the vortex lines that are of interest, this mismatch can

be tolerated.

3.7 Vortex structure as an indicator of

beam purity

Although vortices are stable features of wavefields, the exact curve which a

vortex line makes in real space can be very sensitive to perturbations (an

extreme example being the high charge vortices just described). This can be

useful if generating a beam to have very particular weightings of mode coeffi-

cients in that the vortex lines can act as a marker of beam purity, especially

if the desired beam has near loop nucleation/annihilation or reconnection

events.

In contributing to a paper on fractional orbital angular momen-

tum [GOP+08] the apparatus and methods described earlier in this chapter

were used to generate a beam composed of ten LG modes with an expecta-

tion of the orbital angular momentum per photon to be 6.5. The interference

between the ten modes, largely due to the differing Gouy phases between

them, caused transverse intensity variations and hence curved vortex lines.

The complex beam waist was calculated and propagated using a standard

Fourier transform technique. This allowed the generation of a complex vol-

ume which could be searched for vortex lines. The resulting 3D vortex

structure would then be used in comparison to experimentally acquired data.

Figure 3.14 shows the vortex structures from both simulated and experimen-

tal data. The match is not perfect but several important matches, such as

the opposing hairpin bends and similar deviations from straight line vortices

indicate that the beam is indeed composed of the required mode weightings.



CHAPTER 3. EXPERIMENTAL APPARATUS 46

z/z
R

y/w(z)
x/w(z)

y/w(z)

0 0

0

2.5

-3

-3

3

3

0
0

2.5

-3

-3

3

3

0

z/z
R

x/w(z)

a) b)����

Figure 3.14: Three dimensional view of the vortex structure for a su-
perposition of 10 modes and M = 6.5. (a) shows the numerical results
and (b) the experimental measurements. Both vortex structures exhibit
a number of topological features such as formation of a line of vortices
and the existence of ‘hairpins’, connected nodal lines which cumulate in
a turning point.

3.8 Polarisation measurements
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Figure 3.15: Apparatus for measuring Stokes parameters.

A different apparatus must be used to measure the polarisation state of a

beam. Figure 3.15 shows the setup for measuring polarisation states. The
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apparatus is much simpler than that in Fig. 3.1. Neither a reference beam

or an SLM are required for the polarisation experiments. However, the al-

gorithms used to acquire Stokes parameters (which uniquely define polarisa-

tion states) are very similar to those employed to extract phase information

through interferometry.

3.8.1 Measuring Stokes parameters

The polarisation state at each point of a light beam is completely described

by the Stokes parameters [BW59]:

S =













S0

S1

S2

S3













(3.6)

Traditionally there are six measurements required to calculate stokes pa-

rameters, four measuring intensity of different linear components and two

measuring the intensity of circular components. S0 is the overall intensity,

and the others are given by

S1 = I0◦ − I90◦ , S2 = I45◦ − I135◦ , S3 = Ileft − Iright, (3.7)

where Iθ is the intensity of the linear polarisation at angle θ, and Ileft/right

the intensity of the left/right circular polarisation.

These measurements can be laborious to complete manually, especially when

many planes of measurements are required. Once automated, the param-

eters can be measured in a different way by making use of more than six

measurements and using Fourier techniques similar to those used to measure

phase in the previous sections.

A 12-bit CCD camera and imaging lens, mounted on a motorised stage,

can be positioned to image any cross-section within the volume of inter-

est [OPD06]. The camera is preceded by a linear polariser, which is rotated
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continuously as measurements are taken [TGCS06]. For any specific cross-

section, the polarisation at each point is obtained by acquiring a series of

images corresponding to an advancing angular position of this polariser.

Every pixel in the series (typically 16) of resulting images undergoes a si-

nusoidal intensity modulation. The Stokes parameters for each pixel are

calculated from the Fourier components of this sinusoidal intensity (exactly

as phase was extracted from interference measurements earlier),

S0 =
�

2/π|F1|, S1 + iS2 = 2
�

2/πF2, (3.8)

where F1 and F2 are the complex first and second Fourier components. In-

serting a λ/4-waveplate before the polariser gives, after another full rotation

of the polariser, a different Fourier transform for each pixel from whose

second component F
λ/4
2 , S3 can be calculated:

S3 = 2
�

2/πIm(F
λ/4
2 ). (3.9)

Determining the polarisation in this way, based on many images, gives good

measurement precision and a high degree of noise immunity. The process is

automated and the Stokes parameters for every pixel in the cross-section of

1024× 768 pixels can be found in approximately 10 seconds.

Once S has been measured, the ellipticity and polarisation angle can be

calculated by converting to spherical coordinates on the Poincare sphere

(illustrated in chapter 2) using:

I = S0, (3.10)

p =

�

S2
1 + S2

2 + S2
3

S0

, (3.11)

2θ = arctan
S2

S1

and (3.12)

2φ = arctan
S3

�

S2
1 + S2

2

. (3.13)

The toplogical features of interest are the polarisation singularities, C-points,

and the lines of linear polarisation, L-lines. Extended into three-dimensions

these features become C-lines and L-surfaces.
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L surfaces are those on which S3 = 0 and C lines are defined as the intersec-

tions of S1 = 0 and S2 = 0 (just as phase singularities are the intersections

of ξ = 0 and η = 0). As described later, in chapter 9, the type of C line

singularity may be determined using the Stokes parameters and their spatial

derivatives.

3.8.2 Example polarisation measurements

Stress birefringence was used to create a light field with interesting yet sim-

ple enough properties to test measurement and data processing. A disc of

glass contained in an aperture, with symmetrically placed screws around

the perimeter, can be easily subject to enough stress to change the refrac-

tive properties across the disc without shattering it. Once stress has been

applied to the disk, incident light will emerge with a spatially varying po-

larisation. An example of stress birefringence altering light can be seen in

Fig. 3.16, where a Perspex ruler has been placed between crossed polarisers.

Any light emerging from the final polariser can only do so as its polarisation

state has been altered sufficiently to let it pass.

Figure 3.16: Perspex ruler between crossed polarisers. The stress bire-
fringence is visible due to the different phase shifts undergone by different
wavelengths .
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Figures 3.17 and 3.18 show the results of automated measurements of Stokes

parameters by drawing the polarisation ellipses and lines of linear polarisa-

tion described by S(r) over the intensity image I = S0. Figure 3.17 shows

the polarisation states of a beam (which was initially linearly polarised) after

passing through a glass disk under stress. Figure 3.18 shows a result from

the same setup but with the beam being initially circularly polarised. Both

examples show Lemons and Stars and lines of linear polarisation separating

regions of left- and right-handed polarisation.

Figure 3.17: Measurement of polarisation state of a beam after linearly
polarised light passed through a glass plate under stress. Lemon and
Star type singularities are green and red dots respectively. The L lines
are drawn in yellow.
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Figure 3.18: Measurement of polarisation state of a beam after circularly
polarised light passed through a glass plate under stress. Lemon and
Star type singularities are green and red dots respectively. The L lines
are drawn in yellow

3.9 Summary

This chapter has described the general experimental setup to obtain volu-

metric complex data of optical fields, both scalar and vector. The demonstra-

tions have shown how the vortex locating algorithms work and demonstrated

the use of the apparatus for various types of optical fields from carefully

created mode superpositions to arbitrary fields transmitted through glass

plates. Throughout the thesis experimental results will be given and unless

stated otherwise, they were obtained through use of the methods described

here.



CHAPTER 4
Illustrations of vortices in three

dimensions

“The soul can not think without a picture”

— Aristotle, 384–322 BC

Chapters 1 and 2 explored the origins of research into optical vortices and

described the basic properties of optical singularities. The purpose of this

chapter is to describe various three dimensional structures that have been

of interest to researchers and can be created in real Gaussian beams. It will

highlight the three dimensional properties of the vortex lines and demon-

strate changes in topology through changes in field parameters.

The first section will give a description of the elliptic umbilic diffraction

catastrophe, which is an illustration of a field with both vortex lines and

loops, experimental results will be given. The following sections will discuss

vortex topology in four wave interference, linked vortex lines and the vortex

structure resulting from a spiral phase plate. These three situations will be

re-examined through numerical simulation observing the vortex lines evolve

as an additional parameter is varied. The specific parameter changes are: the

addition of a fourth wave to a field composed of three waves; the increase in

52
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Figure 4.1: Experimental results of the elliptic umbilic diffraction catas-
trophe. Three different viewpoints are shown of the vortex structure with
loops in green and lines in red. Three cross sections of intensity are also
shown on the right.

height of a non-integer spiral phase step, and the perturbation that creates,

and then dissolves, a vortex link in a specific combination of Laguerre-Gauss

modes.

4.1 The elliptic umbilic diffraction

catastrophe

The elliptic umbilic diffraction catastrophe was the first of the three diffrac-

tion catastrophes to be studied. It was also the first study that emphasised
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the 3 dimensional nature of vortex lines. The easiest way to form an elliptic

umbilic is to create a triangular lens by cutting a small equilateral triangle

in a piece of cardboard and filling it with a drop of water. Light directed

through this lens will create an elliptic umbilic diffraction catastrophe. This

is how the experiment was carried out by Berry et. al. with the different

cross sections corresponding to different heights above the lens being taken

at the same plane as the drop evaporated, effectively scanning the focus

through the imaging plane.

The elliptic umbilic is formed by six cusps creating a caustic surface, or

focus (to aid this imagine two three sided pyramids one inverted on top of

the other with each pyramid side being a cusp instead of a triangle). The

vortex lines on the interior of this shape are hexagonal puckered loops in a

regular array. On the outside the vortex lines form hairpins — coming in

from infinity and turning around as they approach the caustic surface. The

difference between the two regions is that one is dominated by four wave

interference and the other by three. Why this would lead to the marked

difference in topology of these regions will be examined in chapter 5.

Figure 4.1 shows a modern version of the experiment described in

Ref. [BNW79]. These measurements were made by making a hologram

according to the height mapping described by Berry for a water droplet,

namely:

h(x, y) = H(1− 9(x2 + y2)/L2 + 6
√
3(x3 − 3xy2)/L3). (4.1)

Where h is the height of the droplet, H is the maximum height, and L is

the length of the triangle side. For use on an SLM this height function was

mapped to phase and added to a diffraction grating to diffract the elliptic

umbilic away from the reflected zero order.

It can seen from the results that space has been divided into two domains:

vortex loops and vortex lines. This explanation as to why there is a distinct

difference in topology on either side of the caustic surface is answered by

looking at the number of interfering components. The interior of the caustic

surface is dominated by four wave interference whilst the exterior is domi-
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nated by three and two wave interference (see Ref. [BNW79] for a complete

discussion). Four wave interference can result in vortex loops whereas three

waves cannot. The manner in which these different areas of competing wave

interference determine topology will be examined in chapter 5.

4.2 Vortex lines and a varying parameter

Optical vortex lines can evolve and undergo topological events. As a fourth

parameter is varied (beyond the three spatial coordinates), small loops may

nucleate or shrink to nothing, and lines may reconnect [BD01b, Nye04].

These topological events are analogous to the behaviour of quantized vortices

in other physical systems [RA01].

For the examples below, the interference pattern between the constituent

waves is calculated on a 256× 256 lateral grid for 256 different planes, pro-

ducing a cube of interference data. Examining the phase for each 2 × 2

grid of pixels allows the vortex locations to be identified by phase unwrap-

ping. Within any single cross section the positions of vortex hairpins can

be ambiguous and consequently the interference cube is examined along the

three cartesian directions (as described in chapter 3). Once the list of vor-

tex positions is generated, the vortex lines are plotted using the ray-tracing

software, POVray. Repeating the calculations as one or more parameters

are varied allows an animated sequence to be constructed. On a standard

desktop computer (Pentium 4 3.2GHz), calculation times for each of these

animated sequences amounts to a few hours.

The purpose of numerically calculating and illustrating the evolution of vor-

tex line geometry in 3D is to elucidate important attributes of optical vortex

behaviour which are difficult to understand in 2D.

The first situation considered is the addition of a fourth wave of varying

amplitude into a superposition of three plane waves. Secondly, the vortex

structure in a field propagating from a spiral phase plate is studied as the
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height of the step varies. Finally, the creation and destruction of a vortex

link in a specific superposition of Laguerre-Gauss beams as the amplitude

of the perturbing beam changes is investigated.

4.2.1 Four wave interference

For two interfering plane waves, complete destructive interference can only

occur when the two wave amplitudes are equal, resulting in interference

fringes which, in three dimensions, are planes of zero intensity. More gen-

erally, a pre-requisite for complete destructive interference is that none of

the interfering waves has an amplitude which exceeds the sum of the others.

With three plane waves, the vortex lines are always straight and parallel,

with a direction such that each wavevector has the same propagation com-

ponent.

If a fourth wave is added, with an amplitude increasing from zero, the

straight vortex lines become helices [Nye99]. As the amplitude increases,

the vortex helices approach, touch, and undergo a reconnection, so the infi-

nite vortex lines become closed vortex loops. The loops shrink to points and

vanish as the amplitude of the fourth wave continues to increase beyond the

sum of the other three [OPD06]. Thus, as a single parameter is varied in

the interference of four plane waves, both types of topological event [BD07]

occur.

Figure 4.2 is an animated sequence showing the four-wave interference pat-

tern with three wave amplitudes fixed at a1 = a2 = a3 = 1 while the fourth

wave amplitude, a4, increases from zero to equal the sum of the other three.

Although three amplitudes have been fixed, the adjustment of the fourth

amplitude provides all possible topological configurations of four wave inter-

ference.
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a) b)

c) d)

e) f)

Figure 4.2: Vortex structure arising from four plane wave interference.
The cube frame shows calculated volume extent. The (a – f) frames show
how the vortex topology changes from lines to loops to smaller loops.
Eventually as the amplitude is increased further (to a4 > a1 + a2 + a3),
the loops vanish entirely.
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a) b)

c) d)

e) f)

Figure 4.3: The vortex structure of a beam after passing through a spiral
phase plate of step height �λ. Frames (a – f) show how this 3D structure
changes as the step height is increased from � = 0 to � = 3. The greyscale
plot represents the intensity after propagation of a small fraction of the
Rayleigh range of the beam.
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4.2.2 Spiral phase plate

For studies of optical orbital angular momentum, it is common to create a

single optical vortex line along the beam axis. A common method is to use a

spiral phase plate, whose optical thickness increases with azimuthal angle, so

that a normally incident, phase flat wave of the correct wavelength acquires a

phase factor exp(i�φ) and an associated orbital angular momentum of �� per

photon. There are practical difficulties in matching the discontinuity height

exactly to the illumination wavelength, so that in experimental realizations,

the azimuthal phase change � is not an integer multiple of 2π.

It was shown theoretically in Ref. [Ber04] that when a plane wave illuminates

a spiral phase plate, the discontinuity from half-integer � leads to a radial

sequence of vortices of alternating handedness along the original discontinu-

ity. In the far field, this string of vortices is present whenever � is not an

integer. These predictions have been confirmed by experiment [LYP04], in

which plane wave illumination was approximated by a large-waist Gaussian

beam.

The far field of such a large Gaussian beam contains a sequence of

alternating-sign vortices. The 3D vortex structure that generates such a

sequence must be that of ‘hairpin’ vortex lines, where adjacent pairs of (op-

posite charge) vortex points in the far field are part of the same vortex line.

The turning point of each hairpin extends towards the near field of the phase

plate, and is closest to the phase plate for half integer values of �. The total

number of hairpins and their proximity to the phase plate depends upon the

size of the illuminating Gaussian beam.

Figure 4.3 is an animated sequence of the vortex structure as the step height

of the spiral phase plate is varied from � = 0 to � = 3.
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a) b)

c) d)

e) f)

Figure 4.4: Vortex configuration of Laguerre-Gauss beam superposition
giving a vortex link [LDCP05]. The figure depicts the vortex struc-
ture of the initial field which is perturbed to create a vortex link. The
frames (a –f) show the structure undergoing a topological transition as
the perturbation, ap is increased from 0 to 0.6 the link is created through
reconnection when ap = 0.3, and dissolves through further reconnections
when ap = 0.5. The vortex loops are linked in frames (c) and (d).
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4.2.3 Vortex links

In real beams of finite extent, the topology of optical vortices can be quite

intricate, but may still be controlled. It was proposed in Ref. [BD01b]

that certain combinations of four beams would have vortices that are

linked or knotted; in principle, any torus knot or link is possible with this

construction. The superposition in the knot construction involves three

coaxial, copropagating beams carrying equal, nonzero angular momentum

(e.g. Bessel beams [BD01b], polynomial beams [BD01a] or Laguerre-Gauss

beams [LDCP05]), with particular amplitudes. These are perturbed by a

further beam with no vortices (e.g. a J0 Bessel beam, plane wave, or Gaus-

sian beam).

In paraxial beams, the unperturbed vortex configuration consists of a sys-

tem of unlinked, axisymmetric rings, one of which has zero strength (the

phase does not change in a loop around it). As the amplitude of the per-

turbation increases, these rings deform, crescent-shaped loops nucleate from

the zero strength loop, and the central vortex line unfolds to an n-stranded

helix [BD01c]. At some lower critical value of the perturbation amplitude,

the vortex loops reconnect to give the appropriate torus knot or link. At an

upper critical value, there are further reconnections between the knot or link

and the axial helix, dissolving the knot. This controlled method of knot and

link creation was implemented experimentally in Refs. [LDCP04b, LDCP05],

in which a Hopf link ((2,2) torus link) and trefoil knot ((3,2) torus knot) were

synthesized.

The process in which the trefoil link forms and then dissolves via reconnec-

tions, as the amplitude of the perturbing beam is increased, is illustrated in

Figure 4.4.
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4.3 Discussion

The evolution of optical vortex points in a 2D observation plane can be

better understood as a pattern of lines embedded within the volume of a

light beam. For monochromatic fields, the vortex lines are stationary in

space, so possess no temporal dynamics.

The elliptic umbilic diffraction catastrophe serves as the simplest example

of a 3D vortex structure involving multiple topologies resulting from a basic

optical process. It also contains an example of how differing number of

waves can interfere to produce different vortex topologies, and indeed was

an inspiration to understand why this occurs (see chapter 5).

Simple examples of how the vortex lines evolve under the change of an addi-

tional parameter have been illustrated here. In the first and third examples,

this parameter was the amplitude of an additional wave in the superposition

whereas in the second it was the change of an initial field profile). Other

examples of vortex line evolution have been discussed elsewhere, such as

Refs. [Nye03, Nye06], in which vortices in diffraction patterns approach the

characteristic configuration of the canonical diffraction catastrophes, as the

dimension of the diffraction aperture approaches infinity.

Since the vortices are zeros in the complex scalar amplitude, the dependence

of their position with respect to the parameters in the situations illustrated

is highly nonlinear, just as the vortex lines are not straight upon propaga-

tion [RLS97]. The most significant events in the evolution of vortex lines

are loop nucleation/vanishing and reconnection; these events occur stably

as a parameter is varied [Nye04] (they are codimension 4); with dependence

on further parameters, more complicated topological interactions may oc-

cur [Nye03].



CHAPTER 5
Plane-wave interference

As optical vortices are zeroes of a complex scalar field it is helpful to examine

the interference between plane waves and examine how the nodal structure

is affected by amplitudes and phases of individual components. This chap-

ter details how vortex structure and topology is related to the plane-wave

components of the field, showing how for superpositions of four waves the

topology is defined solely by the real amplitudes of the plane-wave compo-

nents.

5.1 Phasors

The arguments that follow in this chapter rely on an understanding of the

phasor representation of waves [Goo85]. A point in a complex field can be

represented as an addition of vectors, called phasors, on the complex plane.

That is, the total field at a point is calculated in the Argand plane by the

vector addition of the individual phasors, ψn, for n = 1, . . . , N . Each of

these vectors corresponds to a wavevector, kn, and has amplitude an = |ψn|
and phase φn = arg ψn. The phasors are labeled in order of decreasing

magnitude a1 ≥ a2 ≥ . . . ≥ aN . A simple example of phasor addition is
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Figure 5.1: Two wave interference (equal-amplitude). a) Three possible
phasor arrangements of (ψ1+ψ2) corresponding to zero intensity (top),
intermediate intensity (middle) and maximum intensity (bottom). The
corresponding spatial locations marked on a phase and intensity cross-
section of the 3D field are shown in (b) and (c) respectively.

shown in Fig. 5.1 for two equal-amplitude plane waves.

If the point under study is now moved smoothly through the field, each

phasor will begin to rotate at a rate dependent on the path taken. The rate

of rotation along a path is related to the projection of the wavevector onto

the path taken, (k̂n · t̂), where t̂ is the unit tangent of the path and kn is

the wavevector of the phasor in question. If the path is a straight line then

the phasor will rotate at a constant rate.

Using this description, a point is on a vortex line if the sum of the phasors

is zero,
N

�

n=1

ψn = 0. (5.1)

This leads to the result that vortex structure and topology of three, four

and five wave interference is constrained by the geometrical properties of

triangles, quadrilaterals and pentagons respectively. These constraints will

be explored in the next few sections.
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Figure 5.2: Three-wave interference. a) The only possible phasor ar-
rangements that satisfy (ψ1+ψ2+ψ3) = 0. Two examples are marked
on a phase cross-section (b) of the 3D field and the intensity is shown
in (c). Each phasor arrangement (corresponding to s = ±1) appears in
a close-packed hexagonal lattice. The displacement of the two results in
the honeycomb lattice observed.

5.2 Interference between two and three

waves

Interference between two waves is relatively simple. Cancellation between

the waves can only occur if both waves have the same amplitude and opposite

phase, ψ1 = −ψ2. When both amplitudes are the same, a volume of the field

will contain equally spaced parallel planes of zero intensity (see Fig. 5.1 for

a cross-section of two-wave interference). This is a very special and unstable

case. In this field there are no vortices; however, the slightest perturbation

breaks these planes into an array of vortex lines — a structure governed by

three-wave interference.

Since labeling is in order of decreasing magnitude, for a superposition of

three waves, cancellation can occur only if a1 ≤ a2+a3, allowing a triangular

configuration of the phasors, i.e.

ψ1 + ψ2 + ψ3 = 0. (5.2)

Fig. 5.2 shows an illustration of this configuration alongside cross-sections

of phase and intensity of the corresponding field.
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Figure 5.3: Examples of vortex structure arising from three-wave in-
terference. the two frames show an intensity cross-section (bottom) and
vortex lines in a simulated field (a) and a different, experimentally cre-
ated and measured, field (b).

Depending on the ordering of the phasor addition, this triangle may be

reflected or rotated but its shape cannot be changed along a vortex line.

When moving along a vortex line, the phasor triangle rotates. The triangle

can only remain closed if the three phasors rotate with the same frequency.

This happens along a straight line, and the direction is [NN87]

k1 × k2 + k2 × k3 + k3 × k1. (5.3)

Therefore the vortex lines are straight and parallel to each other. Figure 5.3

shows the vortex lines from both simulated and experimentally measured

fields. The experimental figure was produced using the methods outlined in

chapter 3.

The honeycomb-lattice arrangement of these lines can be understood by

looking at the clockwise arrangement of the phasors. The two possibilities

of phase configurations that close the phasor triangle differ in that the vortex

lines corresponding to them have different topological charge. The positions

in a plane that satisfy Eqn. 5.1 are close-packed hexagonal for each charge.

Two hexagonal lattices displaced from each other result in the honeycomb

lattice observed in Fig. 5.2.
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5.3 Interference between four waves

Four wave interference allows more flexibility in the phasor configuration.

This flexibility extends to allowing different topologies. However, the limita-

tions are still very apparent. Firstly, the vortex lines must be curved as there

is no direction in space in which the phasors will all rotate with the same

frequency — the phasor addition may only remain closed if they rotate at

different, varying frequencies (there is one special case in which all kn have

the same kr i.e. in which they are distributed on a ring). The exact path

of a vortex line is a result of the particular kn in the superposition. How-

ever, due to the geometrical constraints of the quadrilateral configuration

of phasors, topological questions can be answered about general four-wave

superpositions.

For a superposition of four waves, cancellation can only occur if a1 ≤ a2+a3+

a4. With the magnitudes and wavevectors of the four waves fixed, the relative

phases constitute three additional degrees of freedom. All possible phase

relationships are explored throughout the three-dimensional field (i.e. all

possible shapes of quadrilateral with sides a1, a2, a3 and a4). Consequently,

a change to the initial phase of any of the superposed waves results only in

a spatial translation, and does not affect any aspect of the vortex geometry.

The result is that vortex topology in such fields is governed by the real am-

plitudes of the waves. In fact, two topologies are possible, with a transition

in between. The topology depends upon the following relations:

a1 + a4 < a2 + a3 (lines), (5.4)

a1 + a4 = a2 + a3 (reconnections), (5.5)

a1 + a4 > a2 + a3 (loops). (5.6)

When Eqn. 5.4 is satisfied, the phasor addition is similar to the three-wave

case but with the addition of a small fourth phasor that can execute full

2π revolutions around the other three. This allows the straight-line vortices

of the three-wave interference to deviate from their original path to form
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Figure 5.4: Four-wave interference. The amplitudes in (a) satisfy a1 +
a4 < a2 + a3, allowing one of the phasors to make full 2π revolutions
around the other three, resulting in an array of helical vortex lines. The
amplitudes in (b) satisfy a1 + a4 > a2 + a3, restricting the phasors to
make maximum angles less than 2π with each other, resulting in an array
of vortex loops.
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Figure 5.5: Possible vortex topologies resulting from four-wave interfer-
ence. The amplitudes in (a) satisfy a1+a4 < a2+a3, resulting in an array
of helical vortex lines. The amplitudes in (b) satisfy a1 + a4 > a2 + a3,
resulting in an array of vortex loops.

irregular helices which have an ‘axis’ in the direction of Eqn. 5.3.

Now consider the smallest amplitude wave, a4, growing in size relative to

a1. At some point the situation is reached where Eqn. 5.6 is satisfied. Now

the quadrilateral formed by the phasors can only deform to some maximum

angle between phasors. Constant clockwise or counter-clockwise movement

between phasors is equivalent to moving in some spatial direction in the

field. As phasors can only move to a maximum angle, vortex lines can exist
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Figure 5.6: Vortex structure resulting from four-wave interference with
a1 + a4 = a2 + a3. In (a), a1 = a2 = a3 = a4, resulting in three arrays
of straight vortex lines which intersect. In (b), a1 = 1, a2 = 0.7, a3 = 0.6
and a4 = 0.3, resulting in curved but intersecting vortex lines. Both have
ambiguous topologies.

within a maximum space — they are compact, existing within a certain

range (∆x,∆y,∆z). Therefore the vortex lines form loops. The phasor

additions are illustrated in Fig. 5.4 and examples of the two possible vortex

topologies are shown in Fig. 5.5.

It is helpful to imagine the helices of Eqn. 5.4 becoming more deformed,

with larger curves as the smallest amplitude, a4, increases. At some point

the increase in this amplitude causes the curves to extend far enough to

connect with adjacent lines. As this point is passed each pair of helices (one

of each s = ±1) ‘dissolves’ into a series of closely spaced, identical loops.

The transition between the two topologies is the point at which Eqn. 5.5 is

satisfied and it is now possible for the phasor quadrilateral to become flat.

The result of this flat phasor configuration is highlighted by looking at four

waves of equal amplitude.

When the four waves have the same magnitude, the closed loop of phasors

forms a rhombus, where ψ1 = −ψ3 and ψ2 = −ψ4. The vortex follows

the intersection of two planes, determined by the two-wave interference de-

scribed above (for waves 1 and 3, and 2 and 4), and is therefore again a

straight line. However, under different orderings, a rhombus is also possible
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if ψ1 = −ψ2 and ψ3 = −ψ4 or ψ1 = −ψ4 and ψ2 = −ψ3. Hence, there are

three characteristic straight line vortex directions, along which the rhombus

rotates and deforms. As the rhombus deforms, it may pass through a flat

configuration. At this point, the phasor pairs are identical, and the vor-

tex lines cross. So the vortex structure for four waves of equal amplitude

consists of three arrays of straight lines which intersect, making the vortex

topology degenerate. More generally when Eqn. 5.5 is satisfied the vortex

lines are curved, but still cross at reconnections when the phasor quadrilat-

eral becomes flat. Figure 5.6 shows two examples of vortex lines in four-wave

superpositions with reconnections.

5.4 Experimental results

The four-wave superpositions described here were synthesized experimen-

tally using a spatial light modulator (SLM) as a hologram. The SLM is

addressed to produce a k-space distribution of plane waves. The plane of

the SLM is imaged to a CCD array where the interference patterns are

recorded as described in chapter 3. The results for amplitudes correspond-

ing to lines and loops are plotted in Fig. 5.7. The transition between these

two topologies was not experimentally observed due to the unstable nature

of reconnections — very slight perturbations cause the field to be in either

a line or loop state.

The configurations of waves chosen for the experiment were those with a

rational relation between their kx and ky numbers. This causes the field to

be periodic across the overlapping region between waves. This periodicity

aids in observing the topology of the vortex lines. It can also be seen from

the Fourier-plane images in Fig. 5.7 that the waves have a Gaussian spread

around the four desired wave vectors. This spread in k-space does not affect

the topology of the field as each Gaussian spot is coherent and will not cause

additional destructive interference in the field. At most it could cause minor

perturbations in the magnitude of the phasors ψn on propagation, which is
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Figure 5.7: Measured vortex lines obtained by interfering four waves
and manipulating the amplitudes using an SLM to satisfy (a) Eqn. 5.4,
resulting in helical vortex lines and (c) Eqn. 5.6, resulting in vortex loops.
Parts (b) and (d) show intensity images captured in the Fourier plane
of (a) and (b) respectively, the red circles highlight the locations of the
waves. The waves are ordered in decreasing amplitude.

only important if the field is close to the reconnection state described by

Eqn 5.5.

5.5 Interference between more waves

For interference between five waves, cancellation requires the phasors to lie

on a pentagon (up to reordering), and the geometry of the curved vortex lines

cannot be simply described. Figure 5.8 shows superpositions with the same

configuration of waves but with different choices of relative phases. There
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Figure 5.8: Illustration of how vortex topology is sensitive to phase
values for 5 or more waves. In (a) the vortex lines are formed by a 5
wave superposition, there are two loops and two lines. In (b) the phase
of one wave is changed by π/2 resulting in four loops. In (c) the phase
of the same wave is now adjusted to π/3 resulting in two lines.

are four relative phases, so translation in three dimensions is insufficient to

account for all possible phase relationships — the pattern is not specified

uniquely by the magnitudes alone. This extends to arbitrary numbers of

interfering waves, where optical-vortex topology is generally complicated.

5.6 High-order vortices and plane waves

It is possible to create a high-charge vortex with just five plane waves. In

fact, to create a vortex of charge s the field must be composed of at least

N = (2s + 1) waves. Each of these waves must be equidistant from each

other on the ring in k-space of radius kr and have a complex amplitude of

exp(isθ). This is essentially a sampled Bessel ring. Figures 5.9 and 5.10 show

experimentally generated high-charge vortices from a few plane waves. Close

inspection reveals that the high-charge vortex is actually split into several

single-charge vortices. Again this is due to small perturbations in the system.

Integrating the phase azimuthally very close to the axis (around 20 pixels

away, corresponding to a few microns) encloses the single vortices and s can

be measured. Figures 5.9 and 5.10 show the expected result, s = (N − 1)/2.

Due to the waves composing these beams having the same kr the resulting



CHAPTER 5. PLANE-WAVE INTERFERENCE 73

field is propagation-invariant and the vortex lines are straight and parallel

to the z axis.

5.7 Conclusions

In this chapter the topology of optical vortex lines in three-dimensional

superpositions of small numbers of plane waves has been explained. Un-

like superpositions of many plane waves, the topology of vortices in three-

and four-wave superpositions is relatively restricted, and can be understood

completely using phasor geometry. The characteristic tangle of vortex lines

that is familiar for more general, many-wave superpositions begins for five

waves. Some of the features described here occur in diffraction catastro-

phes [BNW79], where certain domains can be asymptotically approximated

by superpositions of a few plane waves. In particular, four-wave interference

patterns occur in the hyperbolic umbilic diffraction catastrophe [Nye06],

which notably has a region in which phase singularities intersect and can

be asymptotically approximated by a superposition of four plane waves of

equal amplitude. It should be noted that, although the experimental and

numerical illustrations required periodicity, the theoretical justification of

these geometries using phasors does not, and applies for general superpo-

sitions of plane waves. The phasor methods we have employed here might

prove useful more generally in the analysis of optical vortices, for instance in

describing the anisotropy of optical vortex cores [BD00], as well as how the

curvature, phase structure and anisotropy changes along an optical vortex

line [Den04].
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Figure 5.9: Vortex of charge s = 2 created by the addition of 5 plane
waves. Shown are the intensity and phase of the simulated fields (a, b)
and experimental measurements (c, d). The black ring in (d) shows the
integration path for the unwrapped phase data in (e). The straight line
in the plot is the expected φ = 2θ near the axis.
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Figure 5.10: Vortex of charge s = 3 created by the addition of 7 plane
waves. Shown are the intensity and phase of the simulated fields (a, b)
and experimental measurements (c, d). The black ring in (d) shows the
integration path for the unwrapped phase data in (e). The straight line
in the plot is the expected φ = 3θ near the axis.



CHAPTER 6
Random wave-fields

“Nature uses only the longest threads to weave her

patterns, so that each small piece of her fabric reveals

the organization of the entire tapestry”

— Richard P. Feynman

As laser speckle is the interference pattern generated by the random scat-

tering of a coherent source, it can be described as a superposition of a large

number of random plane waves. For three and four plane waves, the possi-

ble vortex topologies are arrays of infinite straight or helical lines, or planar

loops (see Chapter 5). When more plane waves are added at random, the

three-dimensional topology becomes more complicated, and its statistics has

hitherto lacked any systematic study. Nevertheless, this statistical topology

is universal to random linear wave superpositions regardless of the physical

system that they describe [Kib07]. Superficially similar quantized vortex line

structures have been much studied in fields as diverse as BECs [SWNA07],

superfluid turbulence [Sch88] and cosmic strings [VV84, HK95].

This chapter will detail the model and algorithms used to generate and

analyse the random wave-field vortex data.

76
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6.1 Model

The results from simulation are derived from calculating the values of com-

plex scalar fields at discrete points on a 3D grid (representing real space)

and then searching the grid for vortices before sorting them into separate

vortex structures for analysis.

The field values are calculated by summing a discrete number of plane waves

with wavevectors, k:

Ψ(r) =
�

k

ψke
i(k·r), (6.1)

where the complex amplitudes of each wave is:

ψk = ake
φk (6.2)

As we are interested in random fields, the real and imaginary parts of the

complex amplitude are Gaussian randomly distributed. This results in a

uniform distribution of phases, φk, and a Rayleigh distribution [Pap84] of

real amplitudes, ak.

Any finite number of plane waves with random magnitude, phase and direc-

tion can be combined and the resulting interference pattern calculated over

a finite volume, the scale of the calculation being limited only by the com-

puter’s processing power and memory capacity. The next step is to search

element by element (voxel by voxel) for vortices. As singularities of the

phase, the vortices can be located with very small closed integral paths (see

chapter 3 for further details on vortex finding).

The end result is a 3D array with certain voxels being ‘flagged’ as containing

a vortex. These vortex positions form connected lines through the 3D array,

either connecting back onto themselves or terminating at the edge of the

modeled volume. Once such an array has been obtained, the vortex positions

can be sorted into individual structures. However, the topology of the vortex

lines that connect to the edge of the volume is ambiguous and cannot be

resolved for any finite calculation.
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Figure 6.1: Illustration of how a periodic cell can be used to determine
topology. In (a) the topology of the two vortex lines is ambiguous as the
edge of the calculated volume intersects them. In (b) the cell is periodic
and the topology of the vortex lines can be determined by wrapping the
faces onto each other.

6.1.1 Talbot cells

One approach to solving this ambiguity is to create a field which is both

laterally and axially periodic. In this case the lines can be ‘wrapped’ back

through the array and will always connect back to their respective origins.

Any vortex line can be traced out of the initial volume, if necessary, and

through the neighbouring (identical) cell and traced back to its starting

point, with a full path either (a) wholly within the initial cell, (b) enter-

ing neighbouring cells but then returning to the initial cell (illustrated in

Fig. 6.1), or (c) terminating at the corresponding initial position but in a

translated cell. a) and b) correspond to closed vortex loops and (c) is an

infinite vortex line, albeit one whose structure is periodically repeated.

To model such superpositions, sets of plane waves of wavelength λ = 2π/k0,

are generated on a k-space grid of spacing δk and extent ∆K (shown in

Fig. 6.2). The periodic cells that result from such superpositions are called

Talbot cells, in reference to the Talbot effect in which a grating is periodically

imaged along the propagation axis [Tal36]. Using the paraxial approxima-
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Figure 6.2: The construction of k-space to create a periodic 3D wavefield
using the paraxial approximation. The grid shown is a 5× 5 k-space (al-
lowing for fields composed of up to 25 waves) where ∆K is the full width
of the array and δk is the grid spacing which results in the Talbot effect.
The sites of this grid are the locations of the plane wave components of
the periodic field.

tion, the transverse, xT , yT , and axial, zT , periodicities are:

xT = yT =
2π

δk
(6.3)

zT =
4πk0

δk2
. (6.4)

The scaling between the periodicities mean that a light field of low numerical

aperture (δk/k0 ≈ 10−3) corresponds to a Talbot cell millimetres wide and

metres in length. This allows the paraxial approximation to be used in

propagating the waves in real space.

So far, a model has been constructed which uses gaussian random waves on

a square grid in k-space to create a periodic spatial 3D array.

6.1.2 Volume resolution

In order to calculate fields and identify the vortex structure, the volumetric

resolution must be set so as to fully resolve the vortex lines. One benefit of

the nature of these singularities is that it is impossible for the lines to simply

end in the calculated volume. No matter how horribly unresolved a field is,
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the vortex lines will be continuous, either spanning the volume or forming

loops. However, it is in the interest of analysis to generate fields which are

relatively smooth on the scale of a few voxels.

Using the Talbot periods xT , yT and zT with the definition of natural units

from Chapter 2 for a speckle field, the volume resolution (X, Y, Z) can be

set such that the vortex point densities are isotropic by:

X = Y =
Kσ

δk
× desired pixels/Λ (6.5)

Z =
2K2

σ

δk2
× desired pixels/Λ. (6.6)

For the field shown in Fig. 6.3, a possible resolution for the real space field

could be (X, Y, Z) = (498, 498, 3887). If the phase of the field (which allows

the vortex points to be found) is stored by mapping the range [−π, π] to

integers in the range [0, 255] then this resolution corresponds to roughly

1Gb of RAM. There are ways of reducing this by a factor eight but these

details will not be discussed.

6.1.3 Vortex Sorting

The result of calculating a volume of phase and searching for vortex points

is a sparse array of resolution (X, Y, Z) in which some elements are flagged

as being vortex points. At the most basic level this could be a boolean

array of TRUE and FALSE but as this occupies the same amount of RAM

as an array of single byte integers it is usefull to store information about

the topological charge of a vortex with the 27 possible vectors (sxy, syz, sxz)

(with sij = ±1, 0) mapped to 27 different scalar values in the range [0, 255]

with a look-up table stored to retrieve the vector information.

Once the 3D array of vortex data has been created it must be searched

and sorted into individual vortex structures. This is achieved using a sim-

ple method of searching the local surroundings of ‘flagged’ vortex elements.

Taking the first non-zero element as a seed, a sub-array of size 3× 3× 3 is

extracted with the seed at the centre. The seed is flipped to being zero and
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Figure 6.3: A typical 27 × 27 k-space power spectrum. a) Intensity, b)
phase, c) real part and d) imaginary part of the spectrum. A circular
aperture is applied to give a maximum kr which removes the corners of
the square array.

its information (position and charge vector) stored at the beginning of a list

which will eventually store the sorted positions of the vortex line of which

the seed was a part. The sub-array is now searched for another non-zero

element which will become the new seed. This process continues until a

seeding point is identified as being within one voxel of the original seed. At

this point the entire length of vortex line, of which the original seed was a

part, has been removed from the array and its information (a chronological

list of seeds) stored in a list.

The effect of this process is to continually empty the main array of vortex

positions and convert them into ordered lists. Once the array is empty

the lists of sorted vortex positions are saved and a new field as generated.

This allows many fields to be generated and the analysis done in one batch

operation on all the resulting data files.

The following section discusses the results from this model using a speckle

spectrum and vortex sorting.

6.2 Speckle fields

A good approximation for laser speckle spectrum is a k-space with gaussian

randomly distributed real and imaginary parts with an overall gaussian en-



CHAPTER 6. RANDOM WAVE-FIELDS 82

�� �� ��

x
T

y
T

x
T

y
T

x
T

y
T

�� ���� ��

Figure 6.4: Cross sections of intensity in Talbot cells resulting from
k-space grid sizes of (a) 21× 21, (b) 27× 27 and (c) 41 × 41.

velope of standard deviation Kσ centered around k0. From chapter 2 the 2D

vortex point density of such a field is 2π/Λ2 where Λ is the natural length

scale.

Figure 6.3 shows a typical speckle spectra used with the model described

in the previous section. In this example Kσ = 0.15∆K ≈ 4δk. Example

intensity cross-sections from various k-space sizes are displayed in Fig. 6.4.

Calculating the Talbot cell, on a 434 × 434 × 2609 grid, of a field like that

in Fig. 6.4(a) and sorting the vortex positions results in the flattened vortex

structure shown in Fig. 6.5. In this figure the vortex lines have been coloured

to show topology; white lines are vortex loops while red lines are periodic

vortex lines. The topology is resolved by unwrapping the positions of each

vortex line (as they are stored as modulus of the resolution of the Talbot

cell) and querying whether the start position and end position are the same.

A loop will return to the same spatial position while a periodic line ends in

a different spatial position, some integer multiple of Talbot cells away. This

simple check is carried out as each vortex line is found during the sorting

of each Talbot cell as it aids further analysis to know quickly if a given

structure is a loop or an infinite line.

Figure 6.5 was made using data from a k-space gird size of 21 — correspond-

ing to Kσ/δk ≈ 3 — as the aspect ratio of zT/xT allows the entire Talbot
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Figure 6.5: Vortex lines of an entire Talbot cell projected onto the xz
plane. The entire z period is displayed vertically. Left most shows both
loops (in white) and lines (in red) in the Talbot cell while the other
projections show only the lines (middle) and loops (right). The volume
of the cell is 162Λ3.
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Figure 6.6: Vortex lines of a Talbot cell generated from a 27×27 k-space
grid projected onto the xz plane, loops are shown in white and lines in
red. The aspect ratio gives a cell volume of 3.9Λ×3.9Λ×30.4Λ ≈ 462Λ3.
The cell is split along the z axis (vertical) to display the entire cell in
two section.
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Figure 6.7: Vortex lines of a Talbot cell generated from a 41×41 k-space
grid projected onto the xz plane, loops are shown in white and lines in
red. The aspect ratio of the cell xT /zT is 1/12 corresponding to a volume
6Λ × 6Λ × 72Λ = 2592Λ3. The cell is split along the z axis (vertical) to
display the entire cell in three sections.
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Figure 6.8: Vortex point density in the xy plane with increasing k-space
grid size. The horizontal black line shows the theoretical predication
for a continuous k-space distribution with gaussian random waves and a
gaussian profile.

cell to appear on an A4 page with reasonable detail. Vortex structures in

Talbot cells from a 27× 27 and a 41× 41 k-space grid are shown in Fig.s 6.6

and 6.7 for comparison.

6.2.1 Model validation

A potential concern is that the periodic interference patterns resulting from

a discrete and finite k-space may not be representative of those generated

from a continuous distribution. For k-space grids larger than 23 × 23 the

2D statistics of vortex points converge on the theoretical values predicted

for a continuous spectrum [Ber78] (see Fig. 6.8), furthermore the measured

3D statistics also converge to stable values (tables given in chapter 7). It

seems reasonable to assume therefore that the interference patterns created

from larger k-space grids are representative of the continuum. Consequently

27× 27 k-space grids and larger are used and calculated over Talbot cells of
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Figure 6.9: The ratio of total vortex loop length to total line length for
different k-space sizes. For smaller k-space grids data points are shown
(along blue line) for the mean which includes Talbot cells which were
composed entirely of loops. This does not happen very often even for
the small grid sizes, but does skew the mean considerably. This has not
been observed for k-spaces larger than 17 × 17.

resolution (500× 500× 4000) to (800× 800× 10000) voxels.

6.3 Speckle model results

6.3.1 Loop to line length ratio and percolation

A visually striking feature of the Talbot cells shown in Fig.s 6.5, 6.6 and

6.7 is the ratio of white to red. This ratio is the ratio of vortex loop length

to vortex line length and for all but a few rare speckle Talbot cells (which

have a low Kσ/δk) this number is quite low at 0.27 ± 0.03 for 27 × 27 k-

spaces, where the error is the standard deviation between Talbot cells. On

increasing k-space size, this number does not vary outside the error just

quoted. Figure 6.9 shows the vortex length loop/line ratio as a function of
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k-space size with error bars showing the standard deviation between Talbot

cells. For small k-space sizes the variance is greater as the corresponding

Talbot cells are of a smaller volume.

The ratio of 0.27 is similar to that numerically observed for random lattice

models of U(1) cosmic strings [VV84] in which the phase values on a 3D

lattice are randomly chosen from three values (the minimum required for

phase singularities to exist). The implication for real, non-periodic but fi-

nite extent fields, is that these lines would traverse the entire bright region

of the field. Outside the predominantly ‘bright’ regions of the field, in large

volumes of very low intensity, the field is dominated by background vacuum

fluctuations [Ber04]. The time dependent nature of these fluctuations means

that the field is not monochromatic in these regions and as such the vor-

tex lines are no longer stationary structures. Reconnections are now very

possible and the topology of the vortex lines becomes time dependent.

Every Talbot cell generated with k-space sizes larger than 17 contains an

infinitely repeating vortex line that spans real space. This fact draws a

connection with percolation on 3D lattices but into which of the many cat-

egories it fits is unclear. In percolation studies, sites or bonds on a lattice

are ‘occupied’ with some probability p and there exists a critical probability

pc beyond which the lattice will be percolated. Whatever the connection

between vortex lines in speckle fields and percolation, it is clear that the

chosen system and parameters to model it with put the generated Talbot

cells in a parameter space with p > pc. Although measures such as pc depend

upon the specifics of the system in question, there exist universal exponents

which appear in each system no matter the specific construction.

In the speckle model, the sites are occupied not directly randomly, but in-

directly through the random choice of waves which superpose at each site.

Another difference between percolation and what is being analysed here is

the connectedness of vortex lines. As vortex lines cannot end in space, each

‘occupied’ site must be adjacent to two other others. This will result in

correlations not present in most percolation studies. In any case, the pur-
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Figure 6.10: The Pythagorean distance between two points on three
different vortex lines (in red, green and blue) as a function of vortex line
length. The red, green and blue circles indicate the period of the corre-
spondingly coloured lines. Black line shows the mean which is described
more fully in Fig. 6.11.

pose here is not to phrase the results in the language of percolation but to

draw ideas from a field which has created many tools for analysing random

systems and their properties.

6.3.2 Fractality

Brownian behaviour of lines

An obvious measure to make when given a large sample of curves is the

fractal dimension of the curves over the whole sample. For this measure,

the infinite vortex lines were taken from 100 different Talbot cells generated

with k-space grids of 27×27, totalling an entire vortex length of ≈ 3×105Λ.

The fractal dimension was measured by plotting the log average straight line

displacement, R, against log arc length, L, of vortex line for a large range

of arc lengths.

Using this method and keeping one end of the arc fixed for an individual



CHAPTER 6. RANDOM WAVE-FIELDS 90

�

�
��
��
�
�

������

Figure 6.11: The Pythagorean distance between two points on an open
vortex line as a function of vortex line length. Data is obtained from
various speckle superpositions calculated using a k-space grid size of 27×
27 in size. Circles mark the mean from 100 lines from different speckle
superpositions and the straight line is the least square fit through the
mean values. The faint red lines are the average values for individual
lines. The gradient of ≈ 0.5, fitted over the marked range, suggests a
scale invariance over which the vortex lines have a Brownian random
walk.

vortex line would result in a very rough and random looking plot (three

examples can be seen in Fig. 6.10). To smooth the idiosyncrasies of individ-

ual lines, not only are the values averaged for 100 different lines, but each

line has hundreds of different arc sections for each L chosen at random and

averaged. Each mean point shown in Fig. 6.10 is the average over ≈ 104

measurements.

The average Pythagorean length �R between any two points on a line,

separated by an arc of length L, is given by

�R = A1−nLn, (6.7)

where A is a lengthscale below which the line is approximately straight. The

reciprocal of n is the fractal dimension of the line [SAM93]: for a straight

line, n = 1, and for a Brownian random walk, n = 1/2.



CHAPTER 6. RANDOM WAVE-FIELDS 91

The inverse of the gradient of log(R) vs. log(L) is the fractal dimension

of the curve, with a gradient of 1/2 indicating a Brownian random walk.

The straight line best fit shown in Fig. 6.11 has a gradient of 0.52 ± 0.01

which suggests that the vortex lines are indeed random walks over the two

decades which the plot is near linear. The y-intercept indicates that A =

0.5Λ, comparable to the coherence length of the optical field. As expected,

at lengthscales below A, the vortex lines are straight (the curve gradient

converges on 1). The upper limit to this is a result of the periodicity of the

constructed fields. On a large enough scale, periodic lines will approximate

to straight lines like the small scale the gradient will converge to 1 on log(R)

vs. log(L).

A gradient of 0.56 would have indicated a self-avoiding Brownian random

walk, which seemed a possibility before finishing the analysis. The result of

fully Brownian and not self-avoiding Brownian means that points (further

apart than A) on vortex lines in speckle fields can come infinitely close

to each other, there is no form of ‘repulsion’ between the lines caused by

constraints to wave components in k-space — which is the source of the

lengthscale A and limits small scales to straight line sections.

Figure 6.12 shows two sections of vortex lines from calculated speckle fields

and two random walks generated from using a random number generator to

walk 1000 steps on a 3D lattice.

Persistence length

When analysing curves and measuring fractality, a more specific indicator

of how straight the lines are at small scales is the persistence length, P , of

a curve. The persistence length of a curve of length, L, is defined as:

�cos θ = e−
L

P (6.8)

where θ is the angle between the tangent of the curve at the origin to the

tangent at a length L along the curve. The left hand side averages over all

possible starting positions. Figure 6.13 shows the results of calculating the
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Figure 6.12: (a) and (b) show examples of vortex line sections of length
≈ 1000Λ from simulations, (c) and (d) show brownian random walks of
1000 steps.

�cos θ by picking a vortex line and averaging the tangent correlations over

5000 different starting positions. This was repeated for nine other vortex

lines and then results for all ten lines were averaged. The ten curves used

were infinite periodic lines from simulations with Kσ/δk = 4. The resulting

fit gives P = 0.17Λ.

Radius of gyration

A parameter which allows similar statements to be made about the vortex

loops in speckle fields is the radius of gyration, Rg. This is the root mean

square of the distance of points on a vortex line from its centre of mass —
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Figure 6.13: The exponential decay in angle, θ, between tangents as a
function of length between points on a vortex line. Red lines show �cos θ
for 10 individual lines and the black line shows the fit exp(−L/P ) where
P is the persistence length. The fit gives P = 1.7.
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Figure 6.14: A loglog plot of the mean radius of gyration, Rg as a
function of loop length, L. Three example loops are shown at different
length scales for illustrative purposes. The red line shows a fit to the
straight line section (0.2 – 2.0) on the log L scale and has a gradient of
0.52
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Figure 6.15: The observed length distribution of vortex loops within
numerically calculated random speckle patterns. Data is obtained from
various speckle superpositions calculated using a k-space grid size of 27×
27 in size. Approximately 80,000 loops are included in this distribution.
The average number of loops contained within the natural speckle volume
is 3.9 and the most common loop length is readily contained within it.
The number density of large loops decreases, over the marked range, with
a gradient of ≈ −2.5, consistent with Brownian scale invariance.

which is the average position in each axis (�x, �y, �z). For, circular, planar
loops of length, L, the radius is simply Rg = L/2π. For more complicated

loops Rg grows more slowly with L. These larger loops tend to be isotropic

with no preferred plane. For these random Brownian loops Rg ∝ L1/2.

Figure 6.14 shows the radius of gyration as a function of loop length.

The gradient of 0.52± 0.01 (fitted for L > 1.5Λ) again indicates a Brownian

random walk, as would be expected from the fractal dimension analysis of

the open vortex lines. The intercept of the curve connecting the mean values

on this log log plot is at L = 1Λ and Rg = 0.16Λ, close to the measured

persistence length and is of a roughly circular loop.
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6.3.3 Scale invariance

A concept which is very closely linked to fractality is scale invariance. A

system which is scale invariant exhibits the same properties in the same

densities at all scales. A strong indicator of scale invariance is a power law

dependence. The universal exponents mentioned in the discussion of 3D

percolation are concerned with the density of closed clusters — that is, in a

3D array of randomly connected bonds or sites, clusters of bonds/sites that

are connected to each other but do not span the entire array.

Having discussed the infinite vortex lines in terms of percolation it is natural

to consider the implication of scale invariance — for lengthscales significantly

greater than P — on the size distribution of vortex loops (as studied for

random lattice models of cosmic strings [VV84]). If the loop distribution is

the same at all scales, then the number dN of closed loops per unit volume

with sizes between R and R+dR, from equation 6.7 with Brownian exponent

n = 1/2, is [VV84]

dN = CP− 3

2L− 5

2dL, (6.9)

where C is a dimensionless numerical constant.

Figure 6.15 shows the loop length distribution from the simulations. The

distribution has a peak in loop size of approximately 0.3Λ ≈ 2P , and sug-

gests 3.9 loops per natural volume, both of which are consistent with figure

6.18 which shows example sets of speckle volumes from experiment. For

larger loops, the gradient −2.46±0.02 is consistent with equation 6.9, again

supporting the observation that the vortex structures have a fractal self-

similarity of Brownian character.

6.4 Experimental results

To complement the numerical simulations, vortex line topology in volumes

of experimentally created laser speckle was measured. The speckle was gen-

erated by inserting a ground glass plate into a collimated HeNe (λ = 633nm)
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Figure 6.16: Experimental setup for intensity and phase acquisition
of a speckle pattern. This apparatus is very similar to Fig. 3.1. The
differences are that the first-order reflected beam from the SLM is now
used as the reference beam and that the object and reference beams do
not overlap until later in the apparatus. This last difference is due to
the need for one beam to pass through a ground glass plate but not the
other.

laser beam. The experiment apparatus was a modified version of that de-

scribed in chapter 3 and can be seen in Fig. 6.16. The main modification was

the insertion of the ground glass plate into one of the beam paths. In this

particular setup, it was best to use the first-order diffracted beam from the

SLM as a reference beam, the phase of which could be shifted by modifying

a blazed diffraction grating.

In order to insert the ground glass plate, the beams had to deviate from each

other by the radius of the plate so that the new reference beam (from the

SLM) could propagate unaltered. A beam splitter was used to recombine the

two beams. As the object beam was now a wide cone of speckle it was easy

to choose a small section that the reference beam could be easily aligned

with. Once a volume of speckle has been scanned a different speckle field

may be created by simply rotating the ground glass plate. Interferomet-

ric measurements of intensity and phase in successive cross sections in this
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Figure 6.17: Cross-sections from three different speckle fields, (a), (c)
and (e) show the intensity of the field normalised and mapped to grayscale
while (b), (d) and (f) show the corresponding phase values in the usual
colour-wheel mapping of the phase range [−π, π].
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Figure 6.18: Six different volumes from experimental scans of a beam
scattered from a ground glass plate. The open vortex lines are plotted in
red and the closed loops in dark green. All are plotted over one natural
volume of the speckle, Λ3.
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Figure 6.19: Vortex structure in speckle: (a) experimental vortex struc-
ture obtained through interferometric measurements of laser speckle from
a ground glass screen and (b) numerical simulation of the vortex struc-
ture from Gaussian random wave superposition. The open vortex lines
are plotted in red and the closed loops in dark green. Surfaces of 50%
maximum intensity are also shown. Both are plotted over one natural
volume of the speckle, Λ3. Although different in detail, the two patterns
have similar characteristics.

experimental arrangement allows the three-dimensional vortex structure to

be mapped using the techniques described in chapter 3. Figure 6.17 shows

example cross-sections of experimentally observed speckle fields and figure

6.18 shows the measured and sorted vortex lines in unit volumes, Λ3, of such

fields.

In order to locate the vortex positions precisely, the measured field is subject

to a small 3D Gaussian filter (of size 3 × 3 × 3 voxels). The phase alone

cannot be smoothed as it contains numerical discontinuities between −π

and π. The measured values of intensity, I = ρ2, and phase, φ are combined

to create the complex field, ψ = ρ exp iφ that will be filtered. The vortex

finding and sorting begins once the phase is extracted from the smoothed

complex data.

As the field of view of the experimental data is limited by the size of detector

array, the topology of vortex lines that terminate at the sides of the mea-

sured volume cannot be distinguished. Consequently, the possible statistical
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Figure 6.20: The correlation of the complex field with the conjugate of
itself over R = x. The black line shows the experimental result at z = 0
with the red line showing a Gaussian fit. The fit results in an estimation
of Λ ≈ 194 pixels (≈ 80µm). The blue line shows the corresponding fit
at z ≈ Λz, resulting in Λ ≈ 239 pixels. It is clear that the numerical
aperture varies slightly over the scan range.

comparisons between the experimental and numerical data are limited. Fig-

ure 6.19 shows a volume of experimentally measured vortex lines in speckle

alongside a numerically generated volume of similar size. Simple inspec-

tion of this figure and other sets of data suggests that the simulated vortex

structure is indeed similar to that of experimental observations.

Taking the large data sets that were used to conduct the fractal and topology

analysis and extracting hundreds of different unit Λ3 volumes, allows the

numerical data to be treated exactly as the experimental data, with only

fully contained loops being counted as loops. Figure 6.19 (b) shows one

such calculated volume. The number of loops wholly contained within one

Λ3 averaged over 600 extracted volumes is subject to Poissonian statistics

(as is the experimental data). The mean number of loops was found to be

2.6 ± 1.6Λ−3, as opposed to 3.9Λ−3 when the topology of all lines in the

entire field is known.

To make the same measurements for the experimentally measured volumes a
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method is required for measuring Λ. The most straightforward method, and

the method implemented, was the use of the autocorrelation of the speckle

field:

Cspeckle = exp(−K2
σR

2/2) = exp(−2πR2/Λ2). (6.10)

By acquiring a plane of full complex data and fitting a Gaussian distribu-

tion to Cspeckle, Λ can be estimated. Cspeckle is measured experimentally by

calculating the magnitude of the correlation of the field with the conjugate

of itself. Figure 6.20 shows a 1D slice through Cspeckle measured at two

different planes and shows two Gaussian fits, one for each plane.

It is clear from the two Gaussian fits, at z = 0 and z ≈ Λz, that Λ is

increasing across the scan-range of the camera. However, as the number

of independent experimental runs was limited, it is difficult to rescale each

plane independently as a function of z. Cspeckle was averaged over all planes

measured and the resulting value of Λ used for plotting all results (some

of which can be seen in Fig. 6.18). From the ten experiments run (each

containing ≈ 8Λ3), Λxy was measured to be 90± 11µm.

Separating the entire measured volume into unit of Λ3 and counting the

number of loops contained within the volumes resulted in the Poisson distri-

bution shown in Fig. 6.21. The average number of loops contained in a unit

volume was measured to be 2.0 ± 1.5 (averaged over 70 natural volumes).

The discrepancy in the values obtained from simulated speckle fields and

real speckle fields may lie in the measurement of Λ. An error in Λ of 10%

would result in a volumetric error of about 30%.

6.5 Discussion

The results for the large-scale structure of the vortex lines and the size dis-

tribution of vortex loops support the hypothesis that vortex lines in speckle

fields have scale invariant structure. The lines are approximately Brownian

with fractal dimension of about 2. This Brownian behaviour is also observed

in simulations of some types of cosmic string [AEVV86]. However, it is not
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Figure 6.21: Poisson distributions for the probability of a number of
loops, N , appearing in a box of size Λ3 (only counting loops fully con-
tained within box). Red line shows fit to numerical data collected from
600 different samples and the green line shows a fit to experimental data
from 70 samples (real experiment values shown as bars). For numerical
experiments �N = 2.6 and for real experiment �N = 2.0

shared by other vortex systems, particularly superfluids, for which the de-

tails, including the fractal dimension of the vortex tangle [KBS01] and the

distribution of the loop length [MT06] depend on nonlinear dynamics.

It is worth emphasising here that the optical fields considered in this chapter

are both linear and monochromatic, so there are no energetic considerations,

and the statistics depend only on the probability distribution of the super-

posed random waves. The findings may be compared with those of refer-

ence [BS02], in which nodal domains in random real two-dimensional wave

superpositions were empirically found to be in the class of two-dimensional

percolation. A closer analogy for these vortex systems may be optical inter-

ference in a nonlinear medium, which would give an energy cost associated

with vortex line curvature. Further investigation will reveal what other geo-

metric properties of tangled vortex lines in three-dimensional random fields

are universal, and whether any properties are system-specific.



CHAPTER 7
Vortex topology in random

fields

This chapter will explore the topology of vortex lines generated by the model

described in chapter 6. First, the methods used to extract topological infor-

mation will be described and then results given. The notation in the follow-

ing sections uses lowercase bold letters to denote continuous or discrete lists

of (x, y, z) vectors and capital bold letters to denote the projection of such

curves onto a plane.

7.1 Links and threadings

To find two closed curves a and b that are linked, the linking number must

be calculated. This is achieved by projecting the two curves onto a plane,

makingA and B, and then following one of the curves, noting the sign of the

‘over’ crossings as the line is traversed. The summation of these particular

signed crossings gives the linking number. The most simple link is the Hopf

link which has linking number ±1.

With regards to numerical and experimental data there are a few steps

103



CHAPTER 7. VORTEX TOPOLOGY IN RANDOM FIELDS 104

(b)(a)

s

p

1 -1 1 -1

1 -1 11
n

l
=1

����

���

�

�(i, j)

Figure 7.1: A vortex link is shown in (a) with the corresponding chord
plot of the xy projection of the link shown in (b). The calculation of the
linking number, nl is also illustrated.

required to get to the linking number. The first is to identify pairs of loops

which are close enough to each other to be regarded as potential links. This is

done by checking the extreme values of x, y and z of one loop and determining

whether or not they invade the bounding box of the other loop. The next

step is to identify the crossing points in the xy plane (other planes could be

used and would ultimately lead to the same answers).

7.1.1 Identifying crossing points

The method developed for finding crossing points is novel in that it uses

singularities of the chord angles between the two curves. Plots of chord

angles (such as Fig. 7.1) can be made by evaluating

θ(i, j) = arctan

�

(b(i)− a(j)) · ŷ
(b(i)− a(j)) · x̂

�

, (7.1)

over all possible combinations of i and j —which are points along the lengths

of the curves..

The singularities in the chord angle plot are clearly visible and are the dis-

tinctive markers of crossing points between the two curves. This is under-

stood by fixing one end of a chord at a crossing point A(X) and moving
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the other end of the chord along B(i). As the point on B approaches the

crossing point the chord shrinks and as it passes the crossing point the chord

flips by π. At the crossing point the chord length is zero and its angle is

undefined.

Using the same method for finding phase singularities (described in chap-

ter 3) the crossing points can be located. The sign of the chord singu-

larity is also useful. The multiplication of the topological charge of the

chord singularity with the sign of the z component of the full 3D chord,

p = sign [(b(i)− a(j)) · ẑ], gives the sign of the crossing. The sign is defined

with a right hand rule following the direction of the curve (increasing i or

j).

The linking number, nl, of two curves is given by [Rol03]:

nl =
1

2

N
�

n=1

snpn, (7.2)

where N is the total number of crossings, sn is the topological charge of the

nth crossing and pn (defined in the previous paragraph) is the over/under

sign of the nth crossing.

7.1.2 Links in speckle

As discussed in the introduction to this thesis optical singularities can ex-

ist in more complex topologies than just loops and lines — such as links

and knots. However, these vortex knots and links have only been con-

structed, theoretically and experimentally, with very particular weightings

of Laguerre-Gauss or Bessel modes. The question still stood as to whether

or not these types of topologies could exist in generic wavefields. This

question has been answered to some extent empirically by the observation

of linked vortex lines in the model described in the previous chapter. Several

data sets were generated using various sizes of k-space grids. These sets were

then searched for links using the method described in the previous section.
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Figure 7.2: Linked vortex lines found in random fields with k-space grid
size of 41× 41.
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Figure 7.3: One of the three-component ‘chain’ links found in the gen-
erated data.

Combining the number of linked loops of length L with the total number

of loops of length L allows the probability of a loop not being linked to

be estimated. As with the unknot probability observed in polymer litera-

ture [OW07] an exponential decay was fitted to the unlinking probability

and is given in the results section below.

7.1.3 Threadings in speckle

Threadings are identified in the same way as links are. The difference being

that one of the curves is not closed. This time when identifying candidates,

the long periodic lines (which account for ≈ 73% of the vortex line length in

speckle fields) are scanned along their length, flagging sections that invade

the bounding boxes of vortex loops. The sections of line that are identified

as approaching vortex loops are extracted from the full list of positions and

Eqn. 7.2 is evaluated for the line subsection and the full loop.
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Figure 7.4: The probability of a vortex loop being unthreaded. Orange
points show data points for probability of loops not being threaded by
other loops and the green points show the overall probability of being
unthreaded.

7.1.4 Results

Figure 7.4 shows the probability of loops of length L being unthreaded. This

measure includes both loops threaded by other loops (forming a link) and

loops threaded by lines. The probability of a loop being unthreaded was

found to be a decaying exponential of the form

Punthread ∼ e−L/T . (7.3)

where T ≈ 30 for total unthreading probability and T ≈ 185 when restricted

to loops threaded by other loops (links).

The collected data corresponds to various values of Kσ/δk from 3 to 6 gives

a total volume of simulated speckle field of ≈ 1.4 × 105Λ3. Generating

this data took approximately 3000 hours of CPU time on a cluster of P4

processors operating at 3GHz. Within this total volume, unthreaded loops,

loops threaded by periodic lines and loops linked to other loops have been

identified. Figure 7.4 was generated from approximately 350 links and 2800

threadings.
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These results appear to be stable with respect to Kσ/δk. This suggests a

limited effect of the periodic boundary conditions. The largest k-space grids

(41 × 41) corresponds to a Talbot distance of xT = 6Λx,y and zT = 72Λz,

meaning that the vast majority of loops are contained within a single Talbot

cell, again suggesting that the periodicity is unlikely to be a perturbing

factor in the statistical topology.

The number of candidate loop pairs that could be linked, and the number of

links actually identified are both comparatively small in number but again

show no sign of significant variation across the sizes of k-space. Only four

links more complex than the Hopf link have been found — three three-

component links (one of which which can be seen in Fig. 7.3) and one link of

linking number 2. However, the survey of overlapping loops does not search

for links whose net linking number is zero, such as the Whitehead link or

Borromean rings [Rol03].

7.2 Knots

The method used to search for knots extends that used to find links. The

chord angle plot defined by Eqn. 7.1 is replaced by:

θ(i, j) = arctan

�

(a(i)− a(j)) · ŷ
(a(i)− a(j)) · x̂

�

. (7.4)

This has the effect of identifying self crossings and introduces a diagonal

symmetry where i = j (here the end-points of the chords are the same

point) introducing a π jump in θ. The symmetry results in each crossing

being identified twice; once as the line being followed is the over-crossing

section and once as it becomes the undercrossing section. An example of a

chord plot using just one curve is shown in Fig. 7.6.
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7.2.1 Alexander polynomials

The method of identifying links is simpler than that required for knots. Link

identification requires the addition of signed crossings — knot identification

requires the calculation of a knot invariant, the simplest of which is the

Alexander polynomial.

The Alexander polynomial was identified as being a knot invariant in

1928 [Ale28]. Since this discovery the Alexander polynomial has been su-

perceded by various other polynomial invariants such as the Jones poly-

nomials [Jon85] and the more powerful HOMFLY polynomial [FYH+85].

Although it is not the most robust polynomial invariant it will uniquely dis-

tinguish knots with fewer than nine crossings. This is more than adequate

for the purposes of searching vortex data for knots.

The Alexander polynomial can be calculated by creating a N × N matrix,

where N is the number of crossings in a chosen projection. The rows corre-

spond to the crossings and the columns correspond to the arc sections which

the crossings divide the projection into (arcs begin and end at an under

crossing). In this matrix a positive crossing has entries (1 − t) for the over

crossing arc, −1 for the incoming arc and t for the outgoing arc. A negative

crossing has entries (1 − 1/t) for the over, −1 for the incoming and 1/t for

the outgoing arcs [OW07]. Taking any principle minor of this matrix and

calculating the determinant results in the Alexander polynomial of the curve

(up to a factor of ±t).

As chord plots for single curves have many more crossing points than those

for two curves, one needs to be careful in constructing the matrix described

above. A problem that is encountered frequently for curves sampled onto a

grid is that of multiple crossings — crossings who share the same values of

i or j. To construct the matrix described above, each crossing point must

exist with its own values of i and j, as degeneracy leads to a number of

arc-sections less than N making it impossible to calculate the Alexander

polynomial. This is clear from Fig. 7.5 where the projected curve, known
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as a planar diagram, with a multiple crossings only has 5 arc-sections has

fewer arc-sections than crossings

7.2.2 Multiple crossings

This problem is solved by identifying the multiple crossings and modifying

their position in (i, j) whilst respecting the topology of the curve. This

manipulation is performed by checking the z values of the crossing points

and moving the most extreme (i.e. the ‘highest’ or ‘lowest’ z value) onto

an adjacent unoccupied (i, j) position. For multiple crossings of more then

two this process is iterated until each crossing has its own unique (i, j)

coordinate. This process is illustrated in Fig. 7.5 where three arcs cross at

the same point, creating a multiple crossing; these are manipulated, resulting

in three individual crossing points. Note in the diagram that the number of

crossings in the chord angle plot is the same before and after, it is the number

of arc-sections that increases. Without resolving the multiple crossings it

would not be possible to construct the N×N matrix required for evaluation

of the Alexander polynomial.

7.3 Test curves

In order to test the algorithm, a trefoil knot was generated numerically from

the following parameterisation:

x = 3 sin(2u)− 2 cos(u) (7.5)

y = 2 sin(u)− 3 cos(2u)

z = 2 cos(3u).

Figure 7.6 shows this curve and the corresponding chord angle plot, θ(i, j).

Also shown are the resulting matrices for determining the Alexander poly-

nomial using the methods described above.
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Figure 7.5: a) Positions of crossings highlighted on θ(i, j) plane for the
curve shown in (b). The blue and green spots are p = +1 and p = −1
crossings. The red spots in (a) indicate the modified positions of crossings
which resolves the multiple crossing and results in the curve drawn in (c).
Note it is p = −1 crossings which divide the curve into arc-sections.
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Figure 7.6: a) A prime trefoil knot and (b) the corresponding chord
angle plot of the xy projection of the knot. The resulting matrix used
to calculated the Alexander polynomial is shown in (c). The Alexander
polynomial is the determinant of any principle minor of this matrix. One
such principle minor is shown in (d).

A figure eight knot was also generated. The points used were calculated

from the following parameterisation:

x = cos(3u)(2 + cos(2u)) (7.6)

y = sin(3u)(2 + cos(2u))

z = sin(4u).

Figure 7.7 shows the test figure eight curve and the corresponding chord

angle plot, θ(i, j). Also shown are the resulting matrices for determining the

Alexander polynomial using the methods described above

7.4 Absence of knots

Contrary to expectation, a full search of the data (≈ 500000 loops in cells

of various sizes) returned a null result for knots, either within the loops or
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Figure 7.7: a) A prime figure eight knot and (b) the corresponding chord
angle plot of the xy projection of the knot. The resulting matrix used
to calculated the Alexander polynomial is shown in (c). The Alexander
polynomial is the determinant of any principle minor of this matrix. One
such principle minor is shown in (d).

indeed on a period of the infinite lines. It is unclear whether this is due to ex-

treme rarity, or, less likely, some hidden prohibition of knots in the modeled

ensemble of random fields. It is tempting to conjecture that the probability

distribution of a vortex knot of a specific length occurring is similar that of

other systems of random tangled filaments, specifically polymers, which has

been much studied [OW07]. It is numerically observed, across a range of

physical models of random polymer loops, that the probability, P�, that a

loop of length L is the un-knot is

P� = e−L/CP , (7.7)

where P is the persistence length of the polymer (for vortex lines in speckle

P = 0.17Λ) and C is a dimensionless, large number that depends on the

details of the specific model. The value of C ranges from ∼ 300 for random

piecewise linear loops with segments of equal length, to ∼ 10000 for closed

random walks on cubic lattices [OW07].
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It follows that the probability, P�(N), of N loops all being un-knots is the

product of the individual probabilities and hence related to the sum of all

the loop lengths under consideration, i.e.

P�(N) = exp

�

−
N

�

i=1

Li/CP

�

. (7.8)

Considering only loops of a length within the range of which links have

been found (2Λ < L < 35Λ), and restricting the search to the data set

with highest number of plane wave components, results in ≈ 15000 loops.

These loops amount to a total length of ≈ 1.2× 105Λ and hence result in an

estimated lower bound for C > 1.2× 105.

7.5 Discussion

This chapter has established numerically that vortex lines that are formed

within random 3D speckle do exhibit complex topologies such as thread-

ing and linking. However, such random links are extremely rare, occur-

ring for approximately 2 in 5000 loops. Although all calculated volumes

have been searched for knots using the Alexander polynomial, none have

yet been found. As it is possible for beams to be designed with vortex

knots [BD01b, LDCP04a], it is assumed that knots in random fields do exist

but are rare. Comparing the exponential decay of unknotting probability

observed in other systems [OW07] with the loop length searched for knots, a

lower bound for C can be estimated at 1.2× 105. From the loop size density

scaling observed in chapter 6 a loop of length 105P occurs once in a volume

of ≈ 410Λ3 — some 105 times larger than the total volume generated and

searched.



CHAPTER 8
Knots and links in the lab

This chapter gives the first results of isolated knotted and linked vortex lines

in Gaussian beams. Results for three different topologies are shown here:

the Hopf link, the trefoil knot and the cinquefoil knot. In all three cases

there are no other singularities near the structure of interest — they are

compact. This is the feature which most distinguishes this work from that

of Leach et. al. [LDCP04a, LDCP05]. First the method of calculating the

mode coefficients will be described (which was the work of Mark Dennis) then

results given. The mode optimisation algorithm and experimental results are

the major contribution of the author.

8.1 Embedding algebraic knots in Gaussian

beams

The first methods developed for creating knotted vortex lines involved start-

ing with a high charge vortex line threading vortex loops [BD01b, BD01a].

This field would then be perturbed, causing the high charge vortices to split

and loops to be nucleated (see chapter 4 for a discussion of this process for

the Hopf link). The field would then be perturbed further in a controlled

116
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manner until the desired topology was reached. Due to the initial condition

of a high charge vortex line, these structures were always threaded by a

number of single charge vortex lines that were not part of the knot or link.

The singularities threading these structures makes experimental efforts diffi-

cult, as reconnections can happen if the modes created are not of the correct

weighting, or abberations are present in the optical alignment. From a math-

ematical viewpoint, these vortex lines made the structure less elegant, as it

was no longer compact, the threading lines reaching to infinity.

Creating complex fields with specific singularity structure is not diffi-

cult [Den08] if one is not confined to wave equations. For example, a vortex

loop can be generated by creating a field which has a ξ = 0 contour as a

plane and η = 0 contour as a cylinder or sphere intersecting the plane. This

type of field will indeed contain a vortex loop but will most likely not satisfy

the wave equation.

Disregarding the conditions that wave equation places on the construction

of a complex field, it is possible to engineer fields where the intersections

between ξ = 0 and η = 0 create links or knots. This type of mathematical

construction relies on the algebraic description of knots, and is easiest for

torus knots — curves which are knotted and can be made to lie on the

surface of a torus. As vortex lines are lines where all surfaces of constant

phase coincide, the phase contours emanating from the vortex line are said

to ‘fibre’ the line [Rol03]. Consequently only fibred knots may be candidates

for knots in vortex lines (whether restricted by wave equation or not).

8.1.1 Algabraic fibred knots

In the 1960s, Milnor described a method of constructing complex scalar

fields that contained knotted or linked vortex lines using polynomials in two

complex variables [Mil68],

K(u, v) = um − vn (8.1)
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where

u =
r2 − 1 + 2iz

r2 + 1
and v =

2(x+ iy)

r2 + 1
. (8.2)

Inspection of these polynomials reveals why they can be useful in creating

interesting fields. The u term contains a vortex ring perpendicular to the

z axis and the v term contains (x + iy), which is arguably the simplest

expression to contain a phase singularity. Taken separately, u and v contain

vortex lines which are perpendicular to each other.

The following realisations of K(u, v) create complex fields with vortex lines

forming a Hopf link, trefoil knot and cinquefoil knot respectively:

KH = u2 − v2 Hopf link (8.3)

KT = u3 − v2 trefoil knot (8.4)

KC = u5 − v2 cinquefoil knot. (8.5)

To understand why the hierarchy of powers of these polynomials in conjunc-

tion lead to a hierarchy of topology is beyond the scope of this chapter (and

indeed the author).

The next step in realising these knots in Gaussian beams was one made

in an effort of enquiry, to see what vortex structure did result from simply

embedding the ‘waist’ (z = 0 plane) of an algebraic knot, K0, in the waist

of a Gaussian beam and propagating the field

Ψ = K0(u, v)e
−r2/2w2

0 . (8.6)

The result, for a certain range of beam waist, w, was a vortex line of the

topology described by K(u, v)! This result is yet to be fully understood and

is a line of ongoing theoretical research.

Numerical experimentation has shown that there is a critical waist, wc, below

which the topology ceases to be that of K(u, v). At w > wc there exist

vortices at large distances from the waist, coming closer to the vortex lines in

the waist plane as w is decreased. In K(u, v) alone there are no such vortices.

It would seem at large (and even infinite) waist values, the propagation of
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the field does perturb the ‘ideal’ configuration of the structure, but not

enough to cause topology changing reconnections. Despite this lack of full

understanding, the results of experiments which successfully generated the

Hopf link, trefoil knot and cinquefoil knot are reported here, which is the

main contribution of the author.

8.2 Modal composition of structures

The following ‘recipes’ for creating links and knots are found by decomposing

Eqn. 8.6 into Laguerre-Gauss modes. These structures are experimentally

realised by using the following equations in conjunction with the hologram

generation methods described in chapter 3.

Hopf link

ΨH = KHe−r
2/2w2

= (1− 2w2 + 2w4)LG0
0

+ (2w2 − 4w4)LG0
1

+ (2w4(9w2 − 1))LG0
2

− 4
√
2w2LG2

0 (8.7)

Trefoil knot

ΨT = KT e
−r2/2w2

= (1− w2 − 2w4 + 6w6)LG0
0

+ (w2 + 4w4 − 18w6)LG0
1

+ (2w4(9w2 − 1))LG0
2

− 6w6LG0
3

− 8
√
6w3LG3

0 (8.8)
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Cinquefoil knot

ΨC = KCe
−r2/2w2

= (1 + w2 − 4w2 − 12w6 + 24w8 + 120w10)LG0
0

− w2(1− 8w2 − 36w4 + 96w6 + 600w8)LG0
1

− 4w4(1 + 9w2 − 36w4 − 300w6)LG0
2

− 64
√
30w5LG5

0

+ 12w6(1− 8w2 − 100w4)LG0
3

+ 24w8(1 + 25w2)LG0
4

− 120w10LG0
5 (8.9)

8.3 Optimisation for experiment

Although the modal compositions described above both satisfy the paraxial

equation and contain linked/knotted singularities (for w > wc), they may

not be easy to create or measure experimentally. In fact, the Hopf link was

the most straightforward structure of those reported here as it was comprised

of two planar loops, only coming close to each other where the topological

charge of each vortex line prohibited reconnections from occurring. However,

the trefoil and cinquefoil knots were both problematic, each failing in the first

attempts to create them due to reconnections in the very dark central region

of the beam. This was overcome through a numerical search optimisation.

8.3.1 Search parameters

The modal compositions described in the previous section give an excellent

starting point (i.e. a beam containing a knot) in a very large parameter

space (all possible LG mode combinations and weightings). It is a matter of

perturbing a set of parameters incrementally to explore the local parameter



CHAPTER 8. KNOTS AND LINKS IN THE LAB 121

x

y

x

y

a) b)

c) d)

�� � �� �

�� � �� ��� �

original coeff.

optimised coeff.

(l, p)

Figure 8.1: Shown are the intensities of (a) the beam waist calculated
using Eqn. 8.8 with w = 1.2 and (b) the beam after several hours of
randomly perturbing mode coefficients and accepting perturbations that
minimise the sum of inverse intensity in the volume. Both are shown
in grayscale with white corresponding to 1/4 maximum intensity in the
beam waist. The corresponding inverse intensities (also with a grayscale
threshold) are shown in (c) and (d) respectively. The relative LGl

p coef-
ficients are shown in the bar plot.
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Figure 8.2: Shown are the intensities of (a) the beam waist calculated
using Eqn. 8.9 with w = 0.93 and (b) the beam after several hours
of randomly perturbing mode coefficients and accepting perturbations
that minimise the sum of inverse intensity in the volume. Both are
shown in grayscale with white corresponding to 5% maximum intensity
in the beam waist. The corresponding inverse intensities (also with a
grayscale threshold) are shown in (c) and (d) respectively. The relative
LGl

p coefficients are shown in the bar plot.
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space. An obvious choice of parameters, which allow minor deformations of

the field, are the real amplitudes of the LG modes making the field.

Other parameters could be used, such as the random inclusion of modes

not present, or modification of w (which is set as a constant in the method

implemented here). However, in an initial optimisation attempt, without

much ‘feeling’ for the parameter space, or indeed the merit function land-

scape, it is best to keep the number of variables low. Following this guide,

the only parameters allowed to vary were the magnitudes of modes present

in the initial field and only by small amounts — a Gaussian spread around

the selected magnitude with a standard deviation of ≈ 3% of its value.

Once a mode was selected and modified, the field was propagated using a

standard Fourier transform technique. The propagation distance was set

such that the original structure was easily encompassed in all dimensions.

Using the methods described in chapters 3, 6 and 7 for finding, sorting

and identifying topology of vortex lines, the resulting field was analysed

and the return values for the iteration were a TRUE/FALSE value for the

topology of the vortex line (the topology must remain constant throughout

the optimisation), a TRUE/FALSE value on there being only one vortex line

in the calculated volume (as the purpose of the experiment is to produce a

compact structure) and finally, a TRUE/FALSE value evaluated on some

merit function which defines the optimisation.

At the end of each iteration, the modification to the mode amplitude is

made permanent if all of the return values are TRUE. The first two boolean

values are drawn from necessity, they are absolutely required to achieve the

field desired. The merit function can be defined arbitrarily and must be

considered carefully.

8.3.2 Merit function

Although a few different merit functions were tried, the most successful

(and most simple to implement) was the minimisation of inverse intensity
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(or maximising intensity). This merit function might seem contradictory

towards the goal — trying to achieve a better knotted line of zero intensity

by adding more light. However, as the initial field already contains a knotted

zero line and there is an absolute requirement to retain this line in its original

topology, the optimisation proceeds in a direction in parameter space that

fullfills both requirements — more light but still with a knotted zero.

Other, more complex, merit functions may have arrived at a solution quicker,

or better than the one used to generate the results given here, but these

optimisation routines are a means to an end. If a particular merit function

converges in minutes or hours then the details are not so important as long

as the converged set of parameters are successfull.

Figures 8.1 and 8.2 compare optimised fields with the forms given in

Eqn.s 8.8 and 8.9. In both figures, part (a) shows the beam waist of ΨT

and ΨC , with w = 1.2 and w = 0.93 respectively, while (b) shows the beam

waist after several hours (corresponding to several hundred iterations) of op-

timisation, using the merit function described above. The inverse intensities

are shown in parts (c) and (d) as it is clearly visible from these images that

the merit function has been successfully minimised.

8.4 Results

The results given here were obtained using the methods described in chap-

ter 3 and the Laguerre-Gauss recipes described above. With the exception

of the Hopf link, the beams were also optimised using the random search

algorithm described in the previous section, with the merit function being

the minisation of inverse intensity.

Figure 8.3 shows the measured vortex structure in a field generated using

the field, ΨH described in Eqn. 8.7 with w = 1.4. This value of w results in

a structure which spans z = −0.5zr to z = 0.5zr. The volume scanned was

a region approximately 50mm in length and 1mm2 transversely. The axial
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Figure 8.3: a) Two vortex loops forming a Hopf link. b) Phase hologram
used to generate the field. c) phase cross-sections (xy plane) at the z
values indicated in (a).

extent of the structure corresponds to a beam waist size of ∼ 120µm.

Figure 8.4 shows the measured vortex structure in a field generated using

the field, ΨT described in Eqn. 8.8 with w = 1.2 and optimising the field

using the minimisation of inverse intensity as a merit function. The volume

scanned was of the same length and proportions to that of the previous

experiment. Although it is clear from inspection that the vortex line is

a trefoil knot, the Alexander polynomial was calculated using the method

developed in chapter 7. As expected the result was a match for the trefoil:

(t− 1 + t−1).
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Figure 8.4: a) and (b) show two different viewpoints of the vortex line
forming a trefoil Knot. c) shows phase cross sections in the xy plane at
the z values indicated in (b). This knot was generated by first using the
ideal LG modal composition and then iterating a random search for a
composition which was easier to generate and measure in the lab.
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Figure 8.5: Four different viewpoints of the ξ = 0 surface which ‘fibres’
the trefoil knot, in the bottom two views it can be seen that this surface
is a two-holed torus.

As the field structure is not too complicated, the ξ = 0 surface, which ‘fibres’

the knot has also been plotted in Fig. 8.5. It the topology of the surface can

be seen as a two-holed tori, as expected.

Figure 8.6 shows the measured vortex structure in a field generated using

the field, ΨC described in Eqn. 8.9 with w = 0.93 and optimising the field

using the minimisation of inverse intensity as a merit function. The volume

scanned was of the same length and proportions to that of the previous

experiments.

If allowed to manipulate the viewpoint of the 3D plot in Fig. 8.6, it is clear

that the vortex line forms a cinquefoil. To confirm, the Alexander polynomial
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Figure 8.6: a) and (b) show two different viewpoints of the vortex line
forming a cinquefoil Knot. c) shows phase cross sections in the xy plane
at the z values indicated in (b). This knot was generated by first using
the ideal LG modal composition and then iterating a random search for
a composition which was easier to generate and measure in the lab.
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Figure 8.7: a) and (b) show two different viewpoints of two vortex
lines forming a 4-twist link, which has a linking number of two. This
was a failed attempt to generate a cinquefoil knot from the original un-
optimised mode coefficients

was calculated to be (t2 − t+ 1− t−1 + t−2), as expected.

Surprise in failure

In attempting to create the cinquefoil knot from ΨC with w = 0.93 with-

out optimising a 4-twist link was created. The measured vortex lines are

shown in Fig. 8.7. This was purely accidental, but highlights the interest-

ing topological region of parameter space that these polynomial/Gaussian

embeddings have found.

8.5 Discussion

This chapter saw the first reports of compact knotted vortices in real Gaus-

sian beams. The Hopf link, trefoil knot and cinquefoil were all successfully

generated and measured. Why the embedding of algebraic knots in Gaussian

beams works is still not clear, however it is clear that this implementation

is not perfect. Even with a large Gaussian waist size (relative to the knot)



CHAPTER 8. KNOTS AND LINKS IN THE LAB 130

there are other singularities in the far-field — the knot itself is compact

but the field does contain other singularities. This feature is highlighted

when the critical waist size is approached and the singularities which were

restricted to the far-field are now much closer to the knot and cause topology

changing reconnections.

During the optimisation, generation and measurement of these structures,

all methods discussed and developed in previous chapters for finding and

analysing vortex lines were used. These methods included: numerical beam

propagation; hologram design; phase retrieval through interferometry; vor-

tex locating in three dimensions; vortex sorting and topology identification.

As such it is fitting that this chapter concludes the phase singularity content

of the thesis.

The remaining chapter will give experimental results for the densities of

polarisation singularity types and again phrase the terminology in three

dimensions, showing visually how star, lemon and monstar singularity types

relate to each other in three dimensions.



CHAPTER 9
Polarisation Singularities

In the transverse plane of paraxial optical fields with position-dependent

elliptic polarisation, there are isolated points of circular polarisation (C-

points), around which the major axis of the polarisation ellipse (tangent

to the polarisation streamline), rotates by ±π, [Nye83b]. The positive in-

dex singularities occur in two forms: the lemon type, on which only one

streamline terminates, and the less common monstar, on which three straight

streamlines terminate. On negative-index singularities, termed stars, there

are always three streamlines that terminate [Ber77]. These singularities oc-

cur throughout polarisation optics, e.g. tightly-focused beams and near-field

optics [LPS+07], skylight [Ber04] and crystal optics [FSMD05, FSMD06].

As these fields propagate, the polarisation changes continuously and the

C-points sweep out C-lines.

9.1 Polarisation singularity statistics

As explained in chapter 2, certain statistics for polarisation singularities,

such as point densities, are simply double that of phase singularities in scalar

fields of the same type. For example, in speckle fields with spatially varying
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polarisation, the polarisation singularity density is double the phase singu-

larity density in scalar speckle, i.e. 4π/Λ2. This doubling is understood by

decomposing the vector field that describes polarisation into two orthogonal

components: left- and right-circularly polarised light. These two compo-

nents are described by complex scalar fields and as such are subject to all

of the results contained in previous chapters. By superposing the two fields

together, the network of zero intensity lines that existed in each become lines

of circular polarisation of the opposite.

The advantage of this realisation is the immediate knowledge of some prop-

erties of C-lines in random vector fields: C-lines will share the same frac-

tal/scale invariant properties of phase singularities and each left and right-

handed set of C-lines will share the topological densities investigated in

chapter 7. However, there are properties which do not exist in complex

scalar fields. These properties are predominately the result of the π symme-

try in the headless vector that describes the polarisation state of light and

are the subject of this chapter.

Firstly, methods will be described for distinguishing singularity type. Ex-

perimental and simulated results for densities of star, lemon and monstar

type singularities, as well as elliptic and hyperbolic type, will be given and

compared with predictions [Den02]. Other quantities measured which cur-

rently have no theoretical predictions are the length densities of different

singularity types.

9.2 Distinguishing singularity type

The singularity index is evaluated from the sign of DI , calculated from the

spatial derivatives of Stokes parameters,

DI = S1,xS2,y − S1,yS2,x, (9.1)

where x, y subscripts denote spatial derivatives. Having distinguished stars

from monstars and lemons, the sign of DL distinguishes between monstars
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and lemons [Den02]:

DL = ((2S1,y + S2,x)
2 − 3S2,y(2S1,x − S2,y)) (9.2)

×((2S1,x − S2,y)
2 + 3S2,x(2S1,y + S2,x))

−(2S1,xS1,y + S1,xS2,x − S1,yS2,y + 4S2,xS2,y)
2.

If three straight streamlines meet at the singularity then DL > 0 and the

singularity is a star or monstar, if DL < 0 then the singularity is a lemon.

Figure 9.2 shows the experimentally measured polarisation streamlines in

the vicinity of a number of C-points.

A third classification, the contour classification, divides C-points into hy-

perbolic or elliptic types [Nye99]. This classification relates to the shape of

contours of the polarisation ellipse axes which forms a double cone struc-

ture [Ber77, Nye99], and is an additional prediction against which observa-

tions can be compared. A C-point is elliptic or hyperbolic depending on the

sign of DC , given by [Den02],

DC = (S1,xS2,y − S1,yS2,x)
2 − (S1,xS0,y − S1,yS0,x)

2

−(S0,xS2,y − S0,yS2,x)
2, (9.3)

where DC is negative for hyperbolic C-points and positive for elliptic C-

points.

9.3 Experiment

The experimental apparatus used to obtain the results reported here was

that shown in chapter 3. For this experiment, the area highlighted in

Fig. 3.15 as ‘object which alters polarisation’ contained a polarising beam

splitter, relay mirrors and a ground glass plate. This component of the appa-

ratus is illustrated in Fig. 9.1. The polarising beam splitter splits the initially

linearly polarised beam into two orthogonal linearly polarised beams. The

two beams are then incident on a ground glass plate. After being scattered

by the ground glass plate, the beams are recombined. The resulting field is



CHAPTER 9. POLARISATION SINGULARITIES 134

������

��������	
� �����

������

������ �����

������

������


���	��


����

��	������

���������� ����

�	��

��������� �����	
�

����������	� �������� �����

����

Figure 9.1: The integral part of the apparatus shown in chapter 3
Fig. 3.15 that generates a spatially varying polarisation speckle field.
The incident linearly polarised light is oriented such that the polarised
beam splitter splits the beam into two beams of equal power and orthog-
onal linear polarisation. The two beams are incident on a ground glass
plate, resulting in two orthogonally polarised speckle fields. These two
fields are then recombined.

superposition of two linearly polarised orthogonal speckle fields. The meth-

ods used to measure Stokes parameters are described in chapter 3 and will

not be repeated here.

9.4 Numerical experiments

To accompany the experimental measurements, speckle fields were also nu-

merically simulated. These simulations were based on the superposition of

two random scalar wave fields with opposite signs of circular polarisation.

Each of these fields was a superposition of ≈ 3000 plane waves, randomly

distributed in direction and with Gaussian distributed complex amplitudes.

These amplitudes were then subject to a Gaussian envelope to simulate the

transverse power spectrum of laser light scattered from a rough surface (this

method is detailed in chapter 6). The resulting field was calculated over a

large number of cross-sections to obtain the statistical distribution of stars,

monstars and lemons. Calculating neighboring cross-sections creates a 3D

structure of C-lines and L-surfaces. As with the work on scalar fields (chap-
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Figure 9.2: Examples of four C points and nearby polarisation stream-
lines as measured in experiment. Part I is lemon type, part II star, part
III monstar, and part IV a cross-section near a star-monstar transforma-
tion.

ter 6), interference between a hundred plane waves, or more, repeatedly

calculated over one or two coherence lengths, gives stable statistics for the

singularities.

The data from the experiments and numerical simulation was a 3D grid of

voxels, each with numerical values for the four Stokes parameters. In every

cross-section, the singularity index is calculated at each pixel from a line

integral of the polarisation ellipse axis, 1
2
arg(S1 + iS2) (algorithmically the

same method used for finding phase singularities). Once singularities were

identified, the Stokes parameters S1, S2 were interpolated to quadratic order

and subjected to a root-finding algorithm to more precisely locate C-points.

This was a processing step not used in the studies of phase singularities but

was necessary here to measure derivatives accurately in order to determine

singularity type using Eqn.s 9.1 and 9.2.
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star

star

monstar

left-handed

right-handed

Figure 9.3: A volume of experimentally measured C-line structure.

Figure 9.4: A volume of experimentally measured L-surface structure.
This is the same volume shown in Fig. 9.3.
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Figure 9.5: Shown here are both the singularity type and L-surface in
the vicinity of C-line forming a loop. The colour coding is the same as
used in Fig. 9.3. The Roman numerals show the points for which the
streamlines are plotted in Fig. 9.2.

9.5 Results

Dennis [Den02], generalizing earlier work by Berry and Hannay on um-

bilic points on random surfaces [Ber77], calculated the density of C-points

and the ratios of their different types in an isotropic random wave model.

These predicted that the density of C-points per unit area is 4πΛ−2 (where

Λ is the transverse coherence length of the complex vector field) and the

star:lemon:monstar ratio is 50 : 44.72 : 5.28. Since C-points in random

vector speckle fields are the vortices in the independent, identically dis-

tributed left and right circular components, the C-point density is twice the

underlying vortex density of 2πΛ−2 [BD00, Ber78], which has been verified

experimentally [WHMT05]. Polarisation singularity densities have been in-

vestigated in experiments, but with data sets that were too small to give

average densities [DES04]. Table 9.1 shows the breakdown of observed and

simulated C-points into their singularity type, further specified by the corre-

sponding Stokes matrix into elliptic or hyperbolic singularities. The quoted
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Singularity type simulation experiment Dennis[Den02]
Star 0.501± 0.002 0.506± 0.003 0.5000
Lemon 0.450± 0.003 0.443± 0.002 0.447
Monstar 0.049± 0.002 0.050± 0.003 0.053
Star [E/H] 1.035± 0.054 1.073± 0.078 1.000
Lemon [E/H] 1.133± 0.078 1.086± 0.112 1.104
Monstar [E/H] 0.418± 0.056 0.487± 0.031 0.404

Table 9.1: Fraction of C-points of different types in transverse cross-
sections and ratio of elliptic to hyperbolic types (E/H). The simulations
average over > 90000 C points, the experiments over > 35000 C points.

Singularity type simulation experiment
Star 0.504± 0.008 0.496± 0.011
Lemon 0.420± 0.005 0.422± 0.010
Monstar 0.076± 0.005 0.082± 0.011
Star [E/H] 0.814± 0.039 0.727± 0.081
Lemon [E/H] 0.944± 0.058 0.787± 0.010
Monstar [E/H] 0.260± 0.028 0.274± 0.038

Table 9.2: Fraction of C lines of different type and ratio of elliptic to
hyperbolic (E/H) types, evaluated over numerically simulated (5 × Λ3)
and experimentally observed (2 × 1.25Λ3) volumes.

errors are a combination statistical uncertainty based on the finite num-

bers of singularities found and by varying the radius of the line integral

around the C-points. However, in all cases the agreement with the analytic

predictions [Den02] is excellent. Additionally, the density of numerically

simulated C points is 12.51Λ−2, which is close to the predicted value of

4πΛ−2 ≈ 12.57Λ−2.

Figures 9.3 and 9.4 show a typical experimental observation of a C-line

and the associated L-surface structure within a random vector speckle field.

They are plotted over one eighth of a natural volume Λ3 (Λ/2 in each axis).

Throughout the volume, the C-lines are colour-coded to denote stars, mon-

stars and lemons of both right- and left-handed circular polarisation. As

anticipated [Nye83b, Nye99], the C-line loops comprise mainly of stars and
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lemons, with short monstar sections at the maximum and minimum z-extent.

Monstars also frequently occur within the lemon section of the C-line, far

away from the turning points, and it is these monstars that appear most

commonly. Figure 9.5 shows a small section of the volume in Fig. 9.3, high-

lighting one C-line loop and the linearly polarised L-surface in its vicinity,

separating it from the C-lines of opposite handedness. Sections I-IV are

those for which the streamlines are plotted in Fig. 9.2.

By rescaling z, so the coherence lengths Λx,y,z = Λ, the tangent direction

of C-lines is expected to be uniformly distributed. From the solution to the

classical ‘Buffon needle problem’ [AZ01], generalized to lines in 3D [Den07],

the C-line density per unit volume ought to be twice the C-point density

in transverse section, i.e. 8πΛ−2 ≈ 25.133Λ−2, which again is double that

expected from phase singularities. The numerical simulations give this line

density as 25.76Λ−2.

In addition to the C-line density, the distribution of singularity type as a

fraction of C-line length is considered, given in Table 9.2. These are different

from the results of Table 9.1, where the density is weighted in proportion to

the z-component of the C-line tangent. In particular, since monstars occur

when C-lines are approximately perpendicular to the propagation direction,

their 3D weighting is higher (7.6%) than in transverse sections (5.3%). It

appears also that the elliptic weighting dominates over the hyperbolic. As

yet there are no analytic calculations for these numbers to match the results

of Table 9.2, although for fields where the polarisation ellipse plane orien-

tation is also random [BD01b], the 3D weightings are expected to match

Table 9.1.

9.6 Summary

Polarisation singularities – C-lines and L-surfaces – have been experimentally

visualised in random vector speckle fields. Given that polarisation fields can

be decomposed into orthogonal complex scalar fields, it is reasoned that
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the large scale structure is identical to that reported in chapter 6 for phase

singularities in scalar speckle fields. In addition to verifying the singularity

type distribution in 2D against theoretical predictions, new experimental

and simulated predictions for their three-dimensional counterparts have been

presented, including through the Buffon needle problem a link between their

2D and 3D statistics.



CHAPTER 10
Conclusions

This thesis has covered many properties of optical singularities, from the

vortex topology resulting from few plane-wave interference, to the vast net-

work of Brownian vortex lines in speckle fields and the subtle interplay be-

tween polarisation singularity types in three-dimensions. The thesis also

contained experimental reports of new, novel beams which contain compact

knots. During its course to develop and report these main results, peripheral

work, which at the time were a means to an end, have themselves become

worthy of note. Such examples are the development of a 3D complex optical

data acquisition system, a polarisation camera and the topology searching

algorithms described in chapter 7.

The thesis has consistently emphasised the ubiquitous nature of optical sin-

gularities, and although there are fields which do not contain singulari-

ties [Ber07], the vast majority do, generally occurring whenever three or

more plane wave components interfere. The generic nature of phase singu-

larities is not only apparent in diffraction catastrophes, but also in the ‘haze’

of speckle seen in any laser beam. The fractal and scale-invariant properties

investigated in chapter 6, namely fractal dimension and loop density scaling,

imply that vortex lines in three-dimensional random fields exhibit universal

properties.
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Further investigations, involving different random wave-distributions would

reveal what other geometric properties of tangled vortex lines in random

fields are universal, and which properties are system-specific. Distributions

other than Gaussian speckle which may be of interest to study include hard-

edged apertures and those with larger (or smaller) kurtosis than a Gaussian

distribution. The density of phase saddle points and scaling of vortex point

densities are related to the second and fourth moments of the distribution of

wave-vector magnitudes. This suggests that fields generated with differing

values of kurtosis may generate statistically different field topologies and

serve to highlight any universal properties of vortex structure.

The experimental reports of compact knots in Gaussian beams in the thesis

are very significant. Using polynomials for algebraic knots and embedding

them in Gaussian beams has found a region of beam parameter space which

contains lots of interesting vortex topologies. For instance, in attempting to

numerically optimise a figure eight knot, beams were generated (numerically)

which contained linked trefoil knots and three-component links. The figure

eight knot itself was not reported in this thesis as the dynamic range of the

spatial light modulator was not high enough to encode all Laguerre-Gauss

mode amplitudes (some being 103 times larger than others). The figure eight

knot would be the first non-torus knot to be created in a light beam and as

such is still a line of ongoing research, both theoretically and experimentally.

At a personal level, the results of greatest value reported in the thesis are

the inequalities which govern vortex topologies in four-wave interference and

the algorithms that identified curve topology.
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