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Abstract 

The aim of this study was to investigate the genetic basis of variation in 

gametocyte sex ratio in the human malaria parasite, Plasmodium falciparum.  The 

gametocyte sex ratio was measured in progeny clones from the 3D7 x HB3 

experimental genetic cross and found to be remarkably stable across replicates of 

different parasite clones.  Significant differences in the sex ratio were observed 

between the parents of the cross.  Progeny clones fell into two classes of sex ratio, 

one similar to that seen in parent 3D7 and the other like parent HB3, suggesting a 

single gene of major effect controlling sex ratio.  Using a genetic map of the 

progeny and parental clones, QTL analysis revealed two highly significant loci, the 

first on chromosome 10 (LOD score = 8.8), and the second on chromosome 14 

(LOD = 4.0), linked to gametocyte sex ratio.  The locus on chromosome 10, 

spanning approximately 35kb, contained ten genes.  This locus, named PfROS1 

(Plasmodium falciparum Ratio of Sex 1), explained 95% of the variation in sex 

ratio.  The second locus on chromosome 14, PfROS2 (Plasmodium falciparum 

Ratio of Sex 2), explained a small proportion of gametocyte sex ratio variation 

when combined with PfROS1, the two loci explained 99% of the variation in 

gametocyte sex ratio observed.  As PfROS1 explains such a high percentage of 

the variation observed in the gametocyte sex ratio it represents a single controlling 

locus to define the sex ratio of gametocytes produced.  This is the first report of a 

genomic locus influencing gametocyte sex ratio in any Plasmodium species. 

In addition, changes in the sex ratio of clones 3D7 and HB3, over the 

course of 16 days of gametocyte culture were investigated.  The number of 

gametocytes, and especially male gametocytes, was observed to fall markedly in 

the last few days of culture, when the majority of gametocytes were stage V 

(mature).  Fluctuations in temperature during the culture process were found to 

influence sex ratio, suggesting the loss of males was due to exflagellation of 

mature gametocytes.  Parasite clone and day of culture were also significant 

explanatory variables in influencing sex ratio. 

 



1 
 

1 Chapter 1: General Introduction 

 Malaria – Mortality and Morbidity  1.1

 In 2010, malaria killed an estimated 655,000 individuals, 86% of whom 

were children under the age of five years and a further 3 billion people were at risk 

of malarial infection (WHO, 2011).  In the same report, 106 malaria-endemic 

countries were reported to be collectively responsible for about 216 million cases 

of malarial disease (WHO, 2011).  The majority of these deaths were from 

infection by the human malaria parasite, Plasmodium falciparum, one of the five 

species of malaria that infects man.  The other four species are P. vivax, the 

second most prevalent (approximately 19.4 million cases reported in 2010) (WHO, 

2011), P. ovale, P. malariae, and P. knowlesi.  P. knowlesi is a simian parasite, 

which was more recently recognised as a new zoonotic infection (Ng et al. 2008; 

Cox-Singh et al. 2008).   

P. falciparum is responsible for the most virulent form of malaria, and infection 

leads to complications such as cerebral malaria, pulmonary oedema and death.  

The mortality rates associated with the disease have fallen by 25% over the past 

10 years, and in the past 5 years, 4 countries once classified as malaria endemic, 

Armenia, United Arab Emirates, Morocco, and Turkmenistan, have become 

malaria-free (WHO, 2011).  This encouraging progression is due, in no small way, 

to various improvements in malaria diagnosis, treatment, and prevention.  For 

example, the number of long-lasting insecticidal nets (LLINs – last approximately 

three years and cost $1.39(USD)) has increased in malaria endemic countries, 

particularly in sub-Saharan Africa where the number of LLINs delivered increased 

to 145 million in 2010 from 88.5 million the previous year (WHO, 2011).  Demand 

for rapid diagnostic tests has also increased.  Delivery from manufacturers rose 

from 45 million in 2008 to 88 million in 2010 (WHO, 2011).  Not only do the rapid 

diagnostic tests quickly identify the infecting Plasmodium parasite and enable the 

correct antimalarial treatment, thereby reducing drug resistance, the intervention is 

very cost effective at only 50 cents per test (USD) (WHO, 2011).  Malaria 

treatment is likewise becoming more cost-effective.  A course of artemisisin-based 

combination therapy (ACT), one of the best courses of treatment for malaria 

caused by P. falciparum, costs as little as $1.40 (USD) for an adult and less than 

40 cents (USD) for a child (WHO, 2011).  It is very important for ACT to be cost 
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effective now that use is on the rise (181 million courses of ACT treatment in 2010 

compared to 158 million in 2009 and only 11 million in 2005) (WHO, 2011).  The 

combination of better diagnosis, treatment, and prevention, and the reduction in 

cost for providing all three, has likely caused the number of people suffering or 

dying from malaria to drop significantly in most countries.  This gives credence to 

the possibility that malaria could eventually be controlled and eliminated in other 

endemic countries where the death toll is much higher. 

 However, optimism should be balanced by the fact that insecticide 

resistance is still a major concern, with 45 countries reporting vector resistance to 

at least 1 of the 4 types of insecticides currently used in controlling malaria 

transmission (WHO, 2011).  In addition, Plasmodium falciparum resistance to the 

newest class of available drugs, artemisinins, has spread from the Cambodia-

Thailand border (where it was prevalent in 2009) to parts of Vietnam and Myanmar 

(WHO, 2011). 

 

 Life Cycle of Plasmodium falciparum 1.2

Plasmodium parasites go through various complex and distinct life stages 

within a human host (Figure 1.1), which will be described in detail in the following 

sections. 

 

 The Mosquito Bite 1.2.1

When a Plasmodium-infected mosquito bites a human host, the saliva 

injected into the dermis contains 15-123 haploid sporozoites (Prudêncio et al. 

2006).  Not much is known regarding this specific stage in humans, but research 

using Plasmodium berghei, a rodent malaria parasite, and its vector, Anopheles 

stephensi, indicated that several fates befall inoculated sporozoites (Amino et al. 

2006).  Approximately half of all sporozoites injected into anaesthetised mice 

remained in the dermis, whilst the rest invaded vessels of the blood or lymphatic 

system (Amino et al. 2006).  Of the sporozoites that successfully invaded the 

vessels, approximately 70% invaded blood vessels, and the rest (30%) invaded 
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lymphatic vessels; ceasing passage at the proximal lymph node and eventually 

degrading (Amino et al. 2006). 

 

 Liver Stages 1.2.2

Parasites successfully entering the bloodstream travel into the parenchyma 

of the liver (Prudêncio et al. 2006).  The sporozoites glide over the surface of the 

liver endothelium, interacting with proteoglycans specific to the hepatocyte cells, 

and invade the cells through the sinusoidal layer via Kupffer cells (Prudêncio et al. 

2006).  In a hepatocyte, the parasite develops into a trophozoite; feeding on the 

cytoplasm of the host cell.  Over the next 2 to 16 days, the parasite grows, and 

divides mitotically by a process known as exo-erythrocytic schizogony.  The 

resultant schizont, containing about 10,000 merozoites, releases haploid 

merozoites through the formation of merosomes (merozoite-filled vesicles), which 

are liberated into the bloodstream by budding off the infected hepatocyte into the 

lumen of the liver sinusoids (Waters & Janse, 2004; Prudêncio et al. 2006). 

 

 Erythrocytic Schizogony 1.2.3

The small merozoites (~1.2µm long) initiate the erythrocytic (asexual) cycle 

by infecting red blood cells.  Inside the erythrocyte, the parasite is contained within 

a parasitophorous vacuole (PV), which forms around the parasite upon invasion 

(Bannister & Mitchell, 2003).  The parasite then starts to feed on haemoglobin, 

taken up into the parasite food vacuole, from the host cell cytoplasm, developing 

into a trophozoite, which is the stage where the majority of feeding, growing, and 

erythrocyte modification occurs.  The trophozoite stage also exports molecules to 

the surface of the infected erythrocyte, including P. falciparum erythrocyte 

membrane protein 1 (PfEMP1), which causes the infected cell to stick to the 

endothelium of blood vessels, thereby preventing circulatory passage through the 

spleen, where parasitized red blood cells are removed from the bloodstream and 

destroyed (Chotivanich et al. 2002; Bannister & Mitchell, 2003). 
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Figure 1.1: Life-Cycle of Plasmodium falciparum 
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A trophozoite eventually develops into a schizont, which is characterized by 

multiple nuclear divisions and elevated levels of protein synthesis and assembly, 

which are important for future host erythrocyte invasion (Bannister & Mitchell, 

2003).  The mature schizont contains about 16 to 24 merozoites still within the 

host erythrocyte (Bannister & Mitchell, 2003; Waters & Janse, 2004).  For 

Plasmodium falciparum, the process from invasion of the uninfected erythrocyte to 

mature schizont takes around 48 hours (Trager & Jensen, 1976).  The final step in 

this stage is the egress of merozoites from the infected erythrocyte.  From 

previous research, there is good evidence to suggest that proteases play a pivotal 

role in degrading the erythrocyte and PV membranes (reviewed by Blackman, 

2008).  Serine and cysteine protease inhibitors, as well as pepstatin (an aspartic 

protease inhibitor) used at this stage in P. falciparum cultures caused an 

accumulation of mature schizonts, unable to rupture and release merozoites 

(reviewed by Blackman, 2008).  More recent research indicates that modifications 

in the membrane of the infected erythrocyte are crucial for merozoite egress 

(Abkarian et al. 2011).  The membrane modifications consist of three distinct 

steps: 1) “osmotic release”, whereby one to two merozoites are initially released 

very quickly through a pore by the build-up of osmotic pressure; 2) “curling”, where 

the edge of the pore curls out forming a rim, on the cell surface, which grows over 

time; 3) “buckling”, which occurs when the rim (from step two) reaches a radius 

value that causes the erythrocyte membrane to change from a concave to a 

convex curvature and buckle.  This final step causes the rest of the merozoites in 

the infected red blood cell to be released (Abkarian et al. 2011).  These 

merozoites escape into the bloodstream and infect other erythrocytes (Salmon et 

al. 2001). 

 

 Gametocytes 1.2.4

A proportion of merozoites infecting red blood cells do not develop into 

further schizonts, but undergo gametocytogenesis, a pathway that leads to the 

development of gametocytes.  Gametocytes represent the sexual stage of the 

parasite life-cycle and are essential for transmission to a mosquito vector.  

Gametocytes exist as two morphologically distinct forms, microgametocytes (male) 

and macrogametocytes (female).  A detailed description of the stages of 

gametocytogenesis is given in section “1.3”. 
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 Fertilization and Development in the Mosquito Vector 1.2.5

 Gametogenesis 1.2.5.1

When the mature gametocytes are taken up in a blood meal, they 

experience profound environmental changes, particularly in temperature, which 

triggers them to round up and escape from their host erythrocytes.  

Microgametocytes go through three rounds of genome replication, followed by 

nuclear division and assembly of axonemes (Janse et al. 1986).  The cell then 

undergoes exflagellation, a process that produces up to eight haploid gametes, 

which escape from the erythrocyte via mechanical means using flagellar beats 

(Janse et al. 1986, Sinden, 1983).  The process of exflagellation appears to be 

linked to actin II function (axoneme assembly) as male egress from host 

erythrocytes is abolished when actin II function is disrupted (Deligianni et al. 

2011).  However, other experiments have shown that axoneme assembly is not 

essential for the male gametes to escape the host erythrocytes (Billker et al. 

2004).  Macrogametocytes escape from their host erythrocytes and emerge as a 

single, spherical gamete about 10-15 µm in diameter (Sinden, 1983; Aikawa et al. 

1984). For the macrogametes, escape from the erythrocyte is thought to be linked 

to the osmiophilic bodies, which release their contents as the erythrocyte 

membrane begins to disintegrate (de Koning-Ward et al. 2008).   

 

 Fertilization 1.2.5.2

Fertilization in malaria parasites involves the fusion of a male gamete and a 

female gamete, which leads to the formation of a zygote with the first round of 

meiosis occurring directly following zygote formation (Aikawa et al. 1984).   The 

second round of meiosis probably occurs within 10 to 30 hours after the first round 

when the zygote morphs into a mature ookinete (reviewed by Baton & Ranford-

Cartwright, 2005b).   

 

 Zygote to Sporozoites 1.2.5.3

The ookinete crosses the mosquito midgut epithelium by invading and 

traversing the midgut epithelia cells (Baton & Ranford-Cartwright, 2005b; Baton & 
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Ranford-Cartwright, 2005a).  Midgut epithelia cells which have been traversed by 

ookinetes can undergo changes resulting in cell death and extrusion of the dead 

cell into the lumen, occasionally doing so before the ookinete have emerged from 

the basal side (Han et al. 2000; Baton & Ranford-Cartwright, 2005b; Baton & 

Ranford-Cartwright, 2005a).  Ookinetes that successfully traverse the midgut cells 

then encyst under the basal lamina, becoming oocysts, which undergo multiple 

mitotic divisions to produce haploid sporozoites over the first 5 to 7 days (reviewed 

by Baton & Ranford-Cartwright, 2005b).  Sporogony (sporozoite budding) occurs 

in the final period of oocyst development; up to 10 days old (Baton & Ranford-

Cartwright, 2005b).  One oocyst can produce up to 1x104 sporozoites (Baton & 

Ranford-Cartwright, 2005b), although the number is variable.  Sporozoites are 

released from mature oocysts 12 to 14 days after the infectious bloodmeal, and 

they migrate through the mosquito haemolymph to the salivary glands, where they 

actively invade the glands and end up in the lumen (reviewed by Baton & Ranford-

Cartwright, 2005b).  Sporozoites can then be inoculated into another human host 

when the mosquito injects saliva during a bloodmeal. 

 

 Gametocytogenesis 1.3

As introduced in section “1.2.4”, a proportion of merozoites leave the 

asexual cycle and undergo gametocytogenesis i.e. the sexual stage of the parasite 

life-cycle, which is essential for the production of gametocytes crucial for parasite 

transmission.  This switch from asexual to sexual propagation is referred to as sex 

differentiation and requires that merozoites become committed to the sexual 

pathway.  Information gleaned from research regarding sexual commitment is 

discussed in more detail in section “1.4”.  For now, observational development of 

the gametocyte through this life-stage, gathered from various research papers, are 

presented. 

 A gametocyte of P. falciparum will undergo a profound transformation in 

morphology as it develops through stage I to V (Figure 1.2) (Field & Shute, 1956).  

A combination of cell size and shape (caused by the loss or assembly of the 

cytoskeleton (Sinden, 1982)) are used to determine gametocyte maturity (Schall, 

1989).  Stages I, II, III, IV, and V are those found in the mammalian host, and 

stage V is that taken up by a mosquito taking a bloodmeal (Carter & Miller, 1979).  
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Gametocyte stages I to IV are not observed in the peripheral blood of the 

mammalian host, unlike the mature stage V gametocytes, and tend to sequester in 

the bone marrow and spleen of the host (Thomson & Robertson, 1935; Smalley et 

al. 1980; (Joice, R., Montgomery, J., Milner, D. A., Morahan, B., Narasimhan, V., 

Seydel, K. B., Williamson, K. C., Huttenhower, C., Taylor, T. E., & Marti, M. 

Molecular Approaches to Malaria conference, February of 2012).  More 

information on gametocyte sequestration is discussed in section “1.3.5”. 

Figure 1.2: Stages of Gametocyte Development. 

Figure shows the distinct stages I to V recognised in gametocytogenesis in P. falciparum (sections 
1.3.1 to 1.3.7 below).  Images have been constructed from the author’s own observations on 
Giemsa-stained thin blood smears from in vitro cultures of P. falciparum as well as observations 
noted by Sinden, 1982 and Sinden, 1983. 

 

In P. falciparum, gametocytogenesis takes 9 to 12 days to produce mature 

gametocytes (Carter & Miller, 1979).  Gametocytes undergoing development do 

not circulate in the blood.  In order to avoid passage through the spleen, 

gametocytes sequester, or removed themselves from circulation, by lodging in vital 

organs, particularly the bone marrow (Smalley et al. 1980).  Stage V Plasmodium 

gametocytes, as well as some asexual erythrocytic parasite stages (ring stages), 
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circulate in the peripheral blood and are taken up in the bite of a mosquito during a 

blood meal. 

 

 Stage I Gametocytes 1.3.1

 Stage I gametocytes represent the earliest stage of a gametocyte (Figure 

1.2), but can be difficult to distinguish from young asexual trophozoites (Carter & 

Miller, 1979; Sinden, 1982; Sinden, 1983).  Like trophozoites, gametocytes in this 

stage feed, digesting haemoglobin from their host erythrocytes to obtain amino 

acids and iron necessary for development (reviewed by Talman et al., 2004). 

Stage I gametocytes reach maximum density in culture between days 1 to 2 (of 

gametocyte culturing), but are known to persist up to day 5 (Sinden & Smalley, 

1979).  At this stage, the parasite lies within a parasitophorous vacuole, is round, 

and approximately a third to half of the size of an erythrocyte (Carter & Miller, 

1979; Sinden, 1982).  The parasite has no vacuole and possesses a clear to 

slightly stained cytoplasm (Carter & Miller, 1979).  Small, elongated pigment 

granules are typically arranged in parallel, distributed over a substantial portion of 

the parasite (Carter & Miller, 1979; Jensen, 1979).   

 

 Stage II Gametocytes 1.3.2

Stage II gametocytes preside in culture from days 2 to 8, with maximal 

density occurring between days 2 to 4 (Sinden & Smalley, 1979).  At this stage, 

one side of the parasite extends, caused by an increase in microtubule length, to 

give the parasites a teardrop shape (Carter & Miller, 1979; Sinden, 1982) (Figure 

1.2).  The infected erythrocyte will appear normal in appearance until about day 4 

(Jensen, 1979).  The parasite will continue to extend on one side throughout this 

stage until the parasite takes on the form of a half-moon (one side is rounded; the 

other side is straight; both ends are pointed – see section “1.3.3”), occupying half 

the area available within the erythrocyte (Carter & Miller, 1979).  The cytoplasm 

and nucleus are both pale in colour, but the nucleus is more spread out than in 

stage I and the formation of pigment granules is nearing completion with them now 

spread out along and parallel to the axis of the parasite cell (Carter & Miller, 1979).  

Numerous small food vacuoles can also be seen (Sinden, 1982) as similar to 
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stage I, stage II gametocytes feed on host haemoglobin to obtain iron and amino 

acids (reviewed by Talman et al., 2004).  Distressed stage II parasites appear dark 

and narrow with pointed ends (Carter & Miller, 1979). 

 

 Stage III Gametocytes 1.3.3

Stage III gametocytes are present in culture between days 3 and 9, 

reaching maximum density from days 4 to 8 (Sinden & Smalley, 1979).  The 

beginning of stage III is marked by the pointed ends of the stage II parasite 

becoming rounded and blunt (Carter & Miller, 1979).  The erythrocyte may no 

longer be visible on Giemsa-stained samples, due to dehaemoglobinisation, or it 

may be visible and seen to be distorted along the axis of the parasite (Carter & 

Miller, 1979; Jensen, 1979).  The parasite typically has one straight side and one 

curved side (Sinden, 1982) giving it a half-moon appearance (Figure 1.2).  There 

is also a cessation in pigment formation, and the granules are dispersed along the 

length of the parasite cell (Carter & Miller, 1979).  Unlike stage I and II 

gametocytes, this stage does not appear to feed on host haemoglobin (reviewed 

by Talman et al., 2004). 

The female stage III gametocyte possesses more cytoplasmic structures 

such as ribosomes and a more extensive endoplasmic reticulum than the male 

gametocyte (Sinden, 1983).  Parasites that are unhealthy at this stage will exhibit 

the symptoms of a distressed stage II parasite (Carter & Miller, 1979). 

 

 Stage IV Gametocytes 1.3.4

Stage IV parasites can be seen after day 4, but do not peak until after day 9 

of culture (Sinden & Smalley, 1979).  Further growth of the parasite occurs along 

the direction of its axis and the ends of the parasite cell may become pointed as 

the sides of the cell take on a convex curve (Carter & Miller, 1979) (Figure 1.2).  

The cytoplasm and the nucleus of the parasite can stain darker than earlier 

gametocyte stages (Carter & Miller, 1979).  Pigment granules appear spread out 

over the length of the cell, but the pigment in the male cell is more scattered than 

that of the female gametocyte (Carter & Miller, 1979).  The osmiophilic bodies are 

evident at this stage using electron microscopy and are numerous in the 
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macrogametocyte (Sinden, 1982; Sinden, 1983).  Unhealthy stage IV parasites 

appear darkly-stained, narrow, and pointed (Carter & Miller, 1979). 

Similar to stage III, stage IV are also unlike stage I and II gametocytes and 

does not appear to feed on host haemoglobin (reviewed by Talman et al. 2004).  

However, the switch to an alternative energy producing pathway (pyruvate 

metabolism via PfPEPCK [Plasmodium falciparum phosphoenolpyruvate 

carboxykinase]) may represent an important transition for late stage gametocytes 

(IV-V) (Hayward, 2000).  PfPEPCK transcripts and protein are first upregulated 

around this stage of gametocytogenesis, which indicates preparation for 

transmission to an Anopheline host where glucose is rare and a switch from 

carbohydrate metabolism to a gluconeogenesis pathway may be crucial for 

survival (Hayward, 2000).  This is discussed further in the section that follows. 

 

 Stage V Gametocytes 1.3.5

Stage V gametocytes can been seen after 7 days in culture, but peak later 

(Sinden & Smalley, 1979).  Gametocytes achieve full morphological maturity and 

the sex of the parasite can be more easily distinguished (Carter & Miller, 1979).  

As the parasites achieve sexual maturity, the ends of the gametocyte become 

rounded, due to the loss of the subpellicular microtubules, and the body of the 

gametocyte is marked by an axial curve (Carter & Miller, 1979; Sinden, 1983) 

(Figure 1.2).  Chromatin and the pigment granules become centralised in the 

parasite cell in both sexes, but there is a degree of difference between the two 

sexes with regards to this factor (see sections “1.3.6” and “1.3.7”) (Carter & Miller, 

1979).  The cytoplasm can be stained more intensely with Giemsa than previous 

stages and the erythrocyte membrane persists around the mature gametocyte and 

can be seen by phase contrast or interference microscopy across the concave 

side of the parasite cell (Carter & Miller, 1979).  Stage V gametocytes commonly 

degenerate in culture and can appear dark and lumpy or broken with their pigment 

dispersed in clumps (Carter & Miller, 1979). 

As described previously, spleen passage is avoided by developing 

gametocytes via sequestration in vital organs, most notably the bone marrow 

(Smalley et al. 1980).  Mature stage V gametocytes, once released from the bone 

marrow, are found in the peripheral blood of the mammalian host and are ingested 
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by a feeding mosquito.  Inside the mosquito vector gametogenesis, or the 

emergence of the macrogametocytes (female) and microgametocytes (male) from 

the erythrocyte, occurs.  Changes in metabolism accompany the change in cellular 

form in order for the parasite to make the transition from mammalian host to 

mosquito vector.  These adjustments in parasite life style are numerous and will 

not be discussed in any great detail here, but it is thought that such changes are 

necessary for the parasite to cope with the loss of protection given by the 

erythrocyte cell, as well as changes in pH and temperature (reviewed by Talman 

et al. 2004).  For example, previous research indicates that the asexual stages 

present inside erythrocytes rely on anaerobic glycolytic ATP production for the 

procurement of energy necessary for growth and development inside the host 

(Geary et al. 1985).  However, there is no evidence that the parasites utilises the 

same methods of energy production inside the mosquito vector (Talman et al. 

2004).  As mentioned previously for stage IV gametocytes, PfPEPCK, which 

catalyses ATP and oxaloacetate from carbon dioxide and phosphoenolpyruvate 

activity, is upregulated in stage V gametocytes compared to asexual stages 

(Hayward, 2000).  This is suggested to be in preparation for uptake by a mosquito 

vector, where the lack of glucose in the haemolymph of the mosquito necessitates 

an alternative pathway to provide ATP i.e. via the gluconeogenesis pathway 

involving this enzyme (Hayward, 2000). 

 

 Mature Male Gametocytes 1.3.6

Male gametocytes (microgametocytes) are stumpy, in comparison to 

macrogametocytes, and possess a pink-staining cytoplasm with Giemsa (Carter & 

Miller, 1979), which contains far fewer ribosomes compared to the female 

gametocyte (Sinden, 1982).  The pigment granules and chromatin are more 

dispersed from the centre of the cell when compared to the female gametocyte 

(Carter & Miller, 1979) (Figure 1.2). 

 

 Mature Female Gametocytes 1.3.7

Female gametocytes (macrogametocytes) are characterised by the 

chromatin and pigment granules being condensed towards the centre of the cell 
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and a cytoplasm that stains blue with Giemsa (Carter & Miller, 1979) (Figure 1.2).  

The difference in Giemsa staining between the two sexes is likely to be due to the 

difference in ribosome density whereby the female gametocytes possess more 

than the male gametocytes and therefore stain more intensely (Sinden, 1982, 

Sinden, 1983).  The macrogametocyte is more elongated than the male 

gametocyte and can appear to fold in on itself especially in vivo (Carter & Miller, 

1979). 

 

 Sex Differentiation in Plasmodium 1.4

Here, sex differentiation is defined as the switch from asexual development 

to sexual development (gametocytes).  Exflagellating microgametocytes (leading 

to microgametes) of Plasmodium falciparum were first described by Laveran in 

1880, in the blood of a malaria patient (Laveran, 1880).  Despite the time that has 

since elapsed, information on the biology and signalling pathways that exist to 

bring about gametocytogenesis are limited compared to knowledge of the asexual 

cycle (reviewed by Dixon et al. 2008).  

Carter & Miller (1979) were the first to put forward the hypothesis that 

merozoites from a single schizont were predetermined to either continue the 

asexual cycle or differentiate into gametocytes.  It was later confirmed (Bruce et al. 

1990) that all the haploid merozoites from the same schizont either continue their 

asexual cycle by infecting erythrocytes, forming a schizont to release more 

merozoites, or all switch to the sexual cycle by infecting red blood cells, not 

dividing, and transforming into gametocytes.  Bruce et al. (1990) used erythrocyte 

monolayers and a “plaque assay” to determine schizont commitment, a technique 

developed by J. Williams and described by Inselburg (1983).  Suspension cultures 

do not allow the distinction between random gametocytogenesis by the merozoites 

and preferential gametocytogenesis by merozoites that have erupted from 

particular schizonts (Inselburg, 1983).  Erythrocyte monolayers contain a single 

layer of red blood cells fixed to a surface and thus when a single schizont rests on 

the monolayer and releases merozoites it forms a ‘plaque’ or group of daughter 

parasites.  Appropriate monoclonal antibodies can be used to distinguish schizonts 

that are sexually-committed from those that are not. 
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 P. falciparum is unique amongst the malaria parasites studied thus far with 

regards to the timing of gametocyte maturity.  It has been shown in various other 

species of malaria (e.g. P. berghei, P. chabaudi, P. knowlesi) that gametocytes 

develop from merozoites to maturity (able to infect a mosquito) in the time it takes 

the species to complete one asexual cycle plus 6 hours (e.g. P. knowlesi requires 

30 hours with an asexual cycle time of 24 hours) (reviewed by Hawking et al. 

1971).  The mature gametocytes retain the ability to infect mosquitoes for a limited 

time, usually between 6-10 hours (Hawking et al. 1968).  However, P. falciparum 

gametocytes take 9-12 days to develop, even though their asexual cycle takes 

only 48 hours (Hawking et al. 1971; Trager & Jensen, 1976), and a mature 

gametocyte is believed to have a mean circulation time in the host peripheral 

blood of 3.4 to 6.4 days (Smalley & Sinden, 1977; Eichner et al. 2001). 

The fraction of parasites that develop into gametocytes has been shown to 

vary greatly both in vivo and in vitro and the factors that influence this conversion 

are numerous.  Some of these factors are used in the culturing of Plasmodium 

parasites in order to encourage the switch to sexual reproduction.  These are 

discussed in the sections that follow. 

 

 Environmental Influences on Gametocytogenesis 1.4.1

 During sex differentiation of the malaria parasite, all the merozoites from a 

single, sexually-committed schizont will develop into gametocytes (Bruce et al. 

1990).  However, commitment to the sexual pathway appears to have a certain 

degree of plasticity as the numbers of parasites that actually develop into 

gametocytes can vary, both in vivo and in vitro, and even within the same isolate 

(Trager et al. 1981; Graves et al. 1984; Burkot et al. 1984).  This indicates that 

there are inherent differences in the ability of a parasite, with any given genotype, 

to produce gametocytes under a particular condition. 

Under the current presiding theory, conditions unsuitable for asexual growth 

trigger sex differentiation, or gametocytogenesis, in malaria parasites (reviewed by 

Talman et al. 2004).  Studying these environmental factors can be difficult under in 

vivo conditions as various interacting elements, beyond the control of the 
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research, can influence results, thus in vitro conditions can help to examine these 

environmental influences on gametocytogenesis.   

Here, a combination of in vivo and in vitro studies are presented to 

introduce how diverse and complex that environmental factors can be on 

gametocytogenesis in malaria parasites. 

 

 Effect of Parasite Density on Gametocytogenesis 1.4.1.1

Carter & Miller (1979) noted that when the parasitaemia of a culture was 

lowered, by diluting with fresh erythrocytes, the conversion rate to gametocytes fell 

drastically.  Conversely, when the culture was left to grow for several days without 

the addition of fresh uninfected erythrocytes, the conversion rate to gametocytes 

would rise (Carter & Miller, 1979).  From these observations, Carter & Miller (1979) 

proposed that changes in culture medium caused by a period of growth in the 

culture were directly responsible for the increased rate in gametocytogenesis.  

Similar results were reported by Bruce et al. (1990) using stressors such as high 

parasitaemia, which caused a shift in parasite development away from asexuals to 

gametocytes.  Conversely, a low parasite density, or the addition of erythrocytes to 

a culture led to a lower level of sexual commitment.  Environmental stimuli, such 

as those mentioned above, are likely to have a direct effect on Plasmodium 

parasites, which leads to modulation in the rate of gametocyte production (Carter 

& Miller, 1979).   

Stimulation of sexual conversion could be in part the responsibility of an 

autocrine factor (i.e. cell signals to itself).  This idea was first suggested and 

practically demonstrated by Williams (1999) by culturing monolayers of parasites 

in conditioned medium from asexual parasite cultures that were six days old.  

Parasites cultured in the parasite-conditioned medium showed a significant 

increase in gametocyte numbers compared to controls that were cultured in fresh 

medium (Williams, 1999).  Depletion of nutrients did not appear to be a 

contributing factor, as conditioned medium was diluted with equal volumes of fresh 

culture medium containing all the necessary growth supplements (Williams, 1999).  

However, Williams (1999) suggested that the observations could also be explained 

by a number of factors, the first of which was the lysis of erythrocytes.  

Haemoglobin was clearly visible in the parasite-conditioned medium and therefore 
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cell lysates, from ruptured infected erythrocytes, could have contributed to 

stimulation of gametocytogenesis, but this debris was also evident in uninfected 

erythrocyte-conditioned medium, which did not produce significant gametocyte 

growth (Williams, 1999).  Accumulation of waste products (e.g. lactic acid), 

macromolecules from degenerating parasites, and parasite hormones were all 

suggested by Williams (1999) to have been present in parasite-conditioned 

medium to induce gametocytogenesis, but the exact culprit remains unknown.  Co-

culturing experiments in which two populations of P. falciparum clone 3D7 were 

separated by a semi-permeable membrane, allowed the effects of diffusible factors 

to be investigated (Dyer & Day, 2003).  A three-fold decrease in the rate of sexual 

conversion was observed when the parasites were co-cultured with asexually 

replicating parasites, suggesting that a diffusible factor released by the asexually 

replicating culture suppressed conversion to sexual stages (Dyer & Day, 2003).  If 

the observations noted by Dyer & Day (2003) are the result of an endocrine factor, 

it could be released from infected erythrocytes when a schizont ruptures (Talman 

et al. 2004).  This suggestion was supported by the observation of 

gametocytogenesis stimulated following the addition of lysed schizont material, but 

this effect was also seen in the lysis of uninfected erythrocytes (Schneweis et al. 

1991).  Therefore it is possible that non-parasitic factors, released during schizont 

rupture may act as stimuli for gametocytogenesis (Schneweis et al. 1991).  This 

information contradicts the findings of Dyer & Day (2003) as the research by 

Schneweis et al. (1991) suggests that many asexual parasites would lead to the 

lysis of many blood cells, which would therefore lead to an increase in 

gametocytogenesis, whereas Dyer & Day (2003) suggest the opposite.  However, 

the majority of the data discussed here suggests that high parasitaemia is a trigger 

of gametocytogenesis, indicating that some other factor is at work in the Dyer & 

Day (2003) research. 

 

 Effect of Host Immunity on Gametocytogenesis 1.4.1.2

An early study into gametocytogenesis indicated that exposure to a 

combination of lymphocytes and homologous serum from naturally infected 

Gambian children increased the production of P. falciparum gametocytes in vitro 

(Smalley & Brown, 1981).  However, serum from naturally infected Gambian 

patients on its own had no impact on gametocytogenesis.  No hypothetical 
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reasons for this observation were given by the authors, but Sinden (1983) 

suggested that their results may indicate that the lymphocytes are secreting an 

inhibition factor (on asexual growth) that induced gametocytogenesis.   

The effect of immunity on gametocyte conversion rates has been studied in 

the rodent malaria, Plasmodium yoelii (Motard et al. 1995) and Plasmodium 

chabaudi (Buckling & Read, 2001).  In the earlier experiment carried out by Motard 

et al. (1995), mice where immunised with heat shock protein hsp70-1 (PfHSP70-

1), infected with P. yoelii, and then used to feed mosquitoes.  The mosquitoes 

subsequently developed more oocysts on their midguts, compared to controls 

(Motard et al. 1995).  This increase in number of oocysts was determined to be a 

result of immunised mice exhibiting significantly higher numbers of gametocytes 

on day 4 of infection compared to controls (Motard et al. 1995).  The authors 

hypothesised that cytokines may be responsible for the observed changes in 

gametocytogenesis (Motard et al. 1995). 

The experiment carried out later by Buckling & Read (2001) considered the 

effects of partial host immunity on gametocytogenesis.  Mice were initially partially 

immunized by infection with P. chabaudi (either clone CR or ER), drug treated to 

clear infection, and re-challenged with the same (homologous challenge) or 

different (heterologous challenge) parasite line.  The density of both asexuals and 

gametocytes was reduced (threefold and fourfold, respectively) in homologous and 

heterologous challenge mice relative to non-immune controls immunised with non-

infected mouse erythrocytes.  The reduction in asexual cells was strain-specific i.e. 

lower densities were observed after homologous challenge compared to 

heterologous challenge (Buckling & Read, 2001).  This was not observed for 

gametocyte densities, where reduction was similar in both the homologous 

challenge and heterologous challenge groups (Buckling & Read, 2001).  Of most 

interest was that the rate of gametocytogenesis was different between control and 

immunised groups, whereby upregulation in the immunised group occurred four 

days before the control group i.e. at 7 and 11 days post-infection, respectively 

(Buckling & Read, 2001).  The authors suggest that under conditions that were 

unfavourable for asexual growth (due to immunity), gametocytogenesis increased; 

as the infection progressed, there was an observed increase in 

gametocytogenesis as asexual growth decreased (Buckling & Read, 2001).  

However, this upregulation in gametocytogenesis, but reduction in gametocyte 
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density is proposed to be evidence that this action was insufficient to compensate 

for the effects of immunity (Buckling & Read, 2001). 

Returning to the human malaria parasite, Plasmodium falciparum, an earlier 

experiment into procuring gametocytes indicated that the supernatant of 

hybridoma cells, that produce antibodies to P. falciparum, induced 

gametocytogenesis in vitro (Ono et al. 1986).  These monoclonal antibodies were 

prepared in Balb/c mice and led to the appearance of gametocytes after 3 days of 

culturing in a medium prepared using supernatant from the hybridoma cell solution 

(Ono et al. 1986).  Antibodies to malaria are unlikely to be of any particular benefit 

to parasite asexual growth, a decrease in parasitaemia being noted in some 

cultures (Ono et al. 1986), therefore an environment unsuitable for asexual growth 

was created and potentially triggered the switch to sexual development in the P. 

falciparum parasites in this case. 

 

 Impact of Host Anaemia on Gametocytogenesis 1.4.1.3

 Anaemia is often associated with malaria, which could in part be due to 

erythrocyte-loss via schizogony during the intra-erythrocytic cycle when 

parasitized red blood cells rupture to release merozoites into the bloodstream 

(Figure 1.1), but could also be linked to the increased rigidity of P. falciparum 

infected erythrocytes, which has been linked to the impairment of microcirculatory 

flow (Suwanarusk et al. 2004). 

 There is evidence from field studies to suggest anaemia could be a trigger 

for gametocytogenesis as low haemoglobin concentrations have been associated 

with the presence of gametocytes (Price et al. 1999; Drakeley et al. 1999; Nacher 

et al. 2002; Stephniewska et al. 2008).  In addition, there is a negative correlation 

between haemoglobin concentrations and peak gametocytes counts and also the 

duration of gametocyte carriage (Nacher et al. 2002).  However, this is not 

definitive proof that anaemia causes malaria to switch to the sexual development 

pathway.  Anaemia, as a result of malaria infection, tends to persevere for the 

duration of infection, thus the previous field data could be a resultant of long and 

persistent infection representing a longer time period over which gametocytes can 

develop (Price et al. 1999). 
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 Research gathered from in vitro studies may provide answers to the link 

between gametocytogenesis and host anaemia.  In anaemic hosts, erythropoietin 

(EPO) is secreted from cells in the liver and kidneys, inducing erythropoiesis or the 

production of reticulocytes (young red blood cells) (Jelkmann & Hellwig-Burgel, 

2001).  Taking three to four days to become present in the bloodstream after EPO 

secretion (Jelkmann & Hellwig-Burgel, 2001), reticulocyte-rich blood gave rise to 

significantly more gametocytes compared to controls.  Blood that was particularly 

rich in reticulocytes (20% or more) contained up to seven-fold the number of 

gametocytes found in controls (Trager & Gill, 1992).  These results were mirrored 

in rodent models where EPO treatment significantly increased gametocyte density 

in P. chabaudi, but strangely not in P. vinckei (Reese et al. 2005). 

 Why reticulocytes generally induce gametocyte production is suggested to 

be linked to the structure of the young red blood cell itself.  Reticulocytes are less 

dense than older erythrocytes and still synthesize haemoglobin and also contain 

high amounts of RNA.  Thus, reticulocytes provide a different growth environment 

that could be preferred by malaria parasites, but it is also suggested that molecular 

properties of these particular cells are triggering gametocytogenesis (Trager, 

2005). 

 

 Drugs and Gametocytogenesis 1.4.1.4

Drug treatments are likely to represent significant stressors for the parasite 

and exposure to these compounds could stimulate the parasite to produce 

gametocytes to complete its mammalian life stages in order to escape the host.   

P. falciparium exposed to sublethal doses of the antimalarial chloroquine in 

vitro upregulated gametocyte production 5-fold (Bucking et al. 1999).  This effect 

was independent of drug-resistance (two of the clones used, 3D7 and HB3 were 

chloroquine sensitive; the other two clones SUD124/8 and 7G8 were chloroquine 

resistant).  There was no difference in gametocyte production between the 

chloroquine sensitive and resistant clones that were untreated (Buckling et al. 

1999).  Thus, stress from chloroquine exposure was responsible for modifications 

in gametocytogenesis in P. falciparum (Buckling et al. 1999).  The upregulation in 

gametocytogenesis was accompanied by inhibition of asexual proliferation and 
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therefore the results supported the theory that an increase in gametocyte 

production is associated with a decrease in asexual growth in unfavourable growth 

conditions (Buckling et al. 1999). 

Berenil, an inhibitor of nucleic acid, DNA and RNA, and polyamine 

synthesis, is a di-amidine drug shown to induce gametocytogenesis in P. 

falciparum cultures (Ono et al. 1993).  However, this effect was not seen in the P. 

falciparum clone, 3D7, in vitro (Ranford-Cartwright, personal correspondence).  

The authors could offer no logical explanation for the effect of Berenil in P. 

falciparum culture (Ono et al. 1993).  Berenil is thought to act on asexual 

parasites, which could be leading to a decrease in asexual growth, but whether 

this is due to its inhibitory effects on the synthesis of nucleic acids, RNA, DNA, and 

polyamine in unknown (Ono et al. 1993).  As shown by previous research, e.g. 

Buckling et al. (1999), a decrease in asexual growth in unfavourable growth 

conditions was associated with an increase in gametocyte production. 

 

 Effects of Kinases and Links to Signal Transduction Pathways 1.4.1.5

Cyclic AMP is a cyclic nucleotide responsible for the transportation of 

signals from the cell surface to internal receptors.  The addition of cAMP to “static 

cultures” at the time of natural conversion i.e. P. falciparum cultures that had 

passed through the rapid asexual proliferation stage and the density of parasites 

becomes constant, induced an almost 100% transition rate from ring stages to 

gametocytes (Kaushal et al. 1980).  An analogue of cAMP, Dibutyryl cyclic AMP, 

added to the same cultures exhibited similar results (Kaushal et al. 1980).  The 

authors linked the response to starvation, as it had been shown previously that 

ring stages experiencing starvation will respond by switching to sexual 

reproduction (Carter & Miller, 1979).  In this case, it was suggested that the 

parasites in “static cultures” were no longer growing asexually as all available food 

sources had been utilised and therefore no resources to continue growth, resulting 

in ring stages reaching a critical threshold, becoming highly sensitive and 

responsive to environmental stimuli that induced gametocytogenesis (Kaushal et 

al. 1980).  However, it must be noted that research carried out by Brockelman 

(1982) also involved the use of cAMP on cultures of P. falciparum that had been 

starved of glucose and it did not produce the same results as those reported by 
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Kaushal et al. (1980).  Brockelman found that whilst this treatment increased the 

number of gametocytes in some cultures, it had no effect in others, and was lethal 

in others, and thus was deemed to be an inconsistent method of inducing 

gametocytogenesis.   

As cAMP functions using a complex signalling cascade, the above research 

provided the first indications that similar signalling pathways were employed by P. 

falciparum to bring about the events of gametocytogenesis.  The cAMP-dependent 

pathway functions using G protein-coupled receptors.  The G protein signalling 

pathway transports signals from membrane-bound receptors to targets inside the 

cell.  It is initiated by environmental stimuli and can lead to the formation of a 

transcription factor (Gardiner et al. 2005; Dixon et al. 2008).   

G proteins can be found in two forms:  1) small G proteins that are single 

polypeptides and about 200 amino acids long, and 2) heterotrimeric G proteins 

that are composed of three subunits α, β, and γ (Simon et al. 1991).  The 

heterotrimeric G proteins are the most relevant here as they form a link between 

membrane-bound signal receptors and downstream effector mechanisms (Simon 

et al. 1991), which includes the activation of adenylate cyclase, phospholipase A2, 

cGMP phophodiesterase, phosphoinositidase C, and the control of iron and 

glucose channels (reviewed by Dyer & Day, 2000). 

 Cholera and pertussis toxins are known to interact specifically with 

heterotrimeric G proteins and the A subunit of cholera toxin catalyses transfer of 

ADP-ribose groups to the αs class of heterotrimeric G-protein α subunits (Dyer & 

Day, 2000).  Using a radioisotope, the expression of G proteins can be followed 

throughout the erythrocytic cell cycle of P. falciparum (Dyer & Day, 2000).  

Treatment of P. falciparum cultures with cholera toxin caused the parasite to 

increase production of gametocytes and this effect was more pronounced when 

parasites were exposed to the toxin around the time of merozoite invasion of an 

erythrocyte, one asexual cycle before gametocyte development (Dyer & Day, 

2000).  These results were suggested to indicate that G protein-dependent 

signalling pathways are responsible to controlling the switch to gametocyte 

development as a consequence of environmental cues (Dyer & Day, 2000; Baker, 

2010).  However, this hypothesis has one substantial complication, Plasmodium 

genomes possess no regions that obviously code for G protein-coupled receptors, 
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but do contain several homologues from the plant, Arabidopsis thaliana, for 

“hybrid” G protein-coupled receptors (reviewed by Baker, 2010). 

 

 Transcription States of Plasmodium falciparum and Links to 1.4.1.6

Gametocytogenesis 

There is evidence indicating that the environment in the mammalian host 

can alter transcriptional processes in the Plasmodium parasite.  Three possible 

transcriptional states of P. falciparum were identified by Daily et al. (2007) using in 

vivo gene expression research, where total parasite RNA was isolated from blood 

samples taken from infected patients in eastern Senegal.  The mRNA levels of 

these “steady-state” parasites were then measured by hybridisation of samples to 

custom-made Affymetrix chips.  The expression profiles obtained from the chips 

were clustered using NMF (Nonnegative Matrix Factorization) (Shahnaz et al. 

2006).  One such cluster (defined as “cluster 1”) was linked to gametocytogenesis.  

The transcriptional state of cluster 1 appeared to be that of a starvation response, 

which in eukaryotic microbes, particularly yeast, is a signal for the cessation of 

asexual growth and the trigger for meiosis (Daily et al. 2007).  Induction of genes 

associated with oxidative phosphorylation were associated to cluster 1 as well as 

induction of genes connected to respiration, fatty-acid metabolism, mitochondrial 

biogenesis, the apicoplast and genes responsible for the glycerol uptake and 

metabolism.  As such, cluster 1 parasites appeared to rely on alternative pathways 

for the production of energy, possibly through the use of substrates such as lactic 

acid, glycerol, and other carbon resources or lipids that are likely to be present in 

the host.  A starvation response in asexual P. falciparum is likely to lead to a 

metabolic shift crucial for the metabolism of alternative energy sources such as 

those mentioned above (Daily et al. 2007).  Cluster 1 also exhibited a higher 

expression of genes that have been linked to gametocytogenesis when compared 

to one of the other clusters.  The expression profiles in cluster 1 were like those 

seen in the later stages of in vitro gametocytogenesis (Daily et al. 2007).  

However, more research is needed to determine if this cluster is definitively linked 

to gametocytogenesis by studying the effects of starvation in vitro and also in vivo 

on various parasite stages (Daily et al. 2007). 
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From evidence presented in research papers (described above), it would 

seem that sexual development increases when unfavourable environmental 

conditions for asexual growth arise.  It is possible that all “stressors” such as 

drugs, immune factors and inter-parasite competition act through a signal 

transduction pathway in the Plasmodium parasite, which encourages an 

adaptation response leading to a maximisation of successful transmission 

(reviewed by Talman et al. 2004). 

 

 Genes Involved in Gametocytogenesis 1.4.2

The rate of gametocyte production can vary from isolate to isolate due to 

different environmental conditions (Graves et al. 1984).  By keeping all possible 

influencing factors constant for parasites in culture, it should be possible to limit 

the amount of interference from external stimuli and determine to what degree that 

gametocytogenesis is controlled by the genome.  However, some variability in the 

rate of gametocyte production is still likely to exist in cultures of the same clone 

even if the environmental conditions are the same (Graves et al. 1984).  

Procedures used to identify genes, essential for the production of 

gametocytes, have been assisted by the fact that some parasite lines naturally 

lose the ability to produce gametocytes following weeks, or months to years of 

continuous asexual growth.  Comparisons between these gametocyte-less lines 

and their isogenic parents, which do produce gametocytes, allow the identification 

of changes at the genomic level i.e. gene deletion, that can explain the loss of 

sexual stages.  Here, some of the genes that have been linked to gametocyte 

production or development are discussed. 

 

 Individual Genes Linked to Gametocytogenesis 1.4.2.1

 There are just under 300 genes linked to gametocyte development that 

have been identified using transcriptome analysis (Silvestrini et al. 2005, Young et 

al. 2005).  Clearly, this area of research is vast and complex and cannot be done 

justice in the space available here.  Therefore only a selection of genes linked to 

sexual development are discussed. 
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Starting with three genes that have been characterised as being 

upregulated in early gametocytes (Pfs16, Pfg27, and Pfpeg3 and Pfpeg4), then 

moving on to Rifs that are only expressed in the later stage of gametocyte, before 

ending with PfPuf2 and Neks, where expression and role are not so clearly 

defined.  The purpose of this is to give an overview of research into this field, 

starting with the most important, Pfs16, the earliest indicator of sexually-

commitment available, which was used in this research to identify gametocytes. 

 

 Pfs16 1.4.2.1.1

Pfs16 is a 16kDa protein, initially characterized as an integral membrane 

protein found in gametocytes (Moelans et al. 1991), predominantly associated with 

the parasitophorous vacuole membrane (Moelans et al. 1991; Baker et al. 1994).  

During gametocytogenesis, Pfs16 is located all over the parasitophorous vacuole 

with the strongest concentrations towards the cellular periphery, however, as the 

mature gametocyte begins to round up, Pfs16 concentrates at the ends of the 

gametocyte, aggregating within the erythrocyte as the gametocyte is released 

(Eksi & Williamson, 2011).   

The protein can be detected using monoclonal antibodies, in the P. 

falciparum gametocyte 30 to 40 hours after (sexually-committed) merozoite 

invasion, making it the earliest known indicator of gametocytogenesis (Bruce et al. 

1994).  Levels of Pfs16 protein increase through stage II of the developing 

gametocyte and the protein exists at high levels throughout the maturation of the 

cell up to stage V (reviewed by Eksi et al. 2008).  The exact function of the Pfs16 

protein remains elusive.  Pfs16 knock-out lines retained the ability to produce 

gametocytes and also to differentiate into either male or female gametocytes, but 

they displayed a four- to five-fold reduction in gametocyte production compared to 

wild-type and control parasites (Kongkasuriyachai et al. 2004).  Pfs16 knock-out 

lines displayed an inability, on the part of the male gametocytes, to exflagellate in 

vitro and subsequently showed no infectivity to mosquitoes (Kongkasuriyachai et 

al. 2004).  Pfs16 protein was concluded to have no involvement in either the 

switch to gametocytogenesis or development of the gametocyte, but was possibly 

necessary for optimal production of gametocytes (Kongkasuriyachai et al. 2004).   
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It was generally accepted that Pfs16 protein is expressed in early 

gametocytes, but not in schizonts.  However, recent data has indicated that a 

small population of schizonts express the Pfs16 protein, detectable using 

immunofluorescence assay; the authors suggested that these could be sexually-

committed schizonts (Eksi et al. 2008).  This suggestion is further supported by 

research using GFP reporter constructs generated for Pfs16, which illuminated 

small subpopulations of schizonts (<1%), and were suggested to contain 

merozoites committed to sexual differentiation (Eksi & Williamson, 2011).    

Transcription and translation of Pfs16 begins early in gametocytogenesis, but 

mRNA transcripts are detectable in asexual parasites, even in F12, a non-

gametocyte producing clone derived from 3D7 (Lanfrancotti et al. 2007).  

However, though the transcripts of Pfs16 were detectable in asexual parasites, 

anti-Pfs16 antisera failed to bind asexual stages in either the 3D7 or F12 clone, 

but successfully reacted with early stage gametocytes (Lanfrancotti et al. 2007).  

These experiments indicate that the exact timing and quantification of Pfs16 

mRNA and protein in a sexually-committed cell is difficult to determine. 

 

 Pfg27 1.4.2.1.2

Pfg27 codes for a gametocyte-specific antigen, 27kDa in size, which is 

expressed approximately 30 to 40 hours after invasion of the erythrocyte by a 

merozoite erupting from a sexually-committed schizont (Carter et al. 1989).  The 

protein product persists throughout gametocyte development, but is not detectable 

at the gamete stage and it is also absent from the asexual stages (Carter et al. 

1989). 

Located in the subtelomeric region of chromosome 13, Pfg27 was 

previously disrupted using a homologous recombination technique, which resulted 

in gametocytes aborting sexual development in the early stages, forming sexual 

stages that were vacuolated, disintegrating, and highly disorganised (Lobo et al. 

1999).  Indications that this gene was essential for gametocyte development led to 

the structure of the protein to be investigated, showing it to be a cytoplasmic RNA-

binding phosphoprotein, which was hypothesised to form a multi-protein complex 

that interpreted external signals resulting in the interaction of Pfg27 with specific 

RNA (Sharma et al. 2003). 
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However, recent research refutes the conclusion that Pfg27 is essential for 

gametocyte and gamete production.  Knockout lines with an interrupted Pfg27 

gene were able to produce gametocytes which were able to infect mosquito 

vectors, producing oocysts (Olivieri et al. 2009).  The authors suggest that Pfg27 is 

not essential for sexual differentiation, but is required for maintaining cell integrity; 

gametocytes that were produced by knock-out lines displayed abnormal 

morphology (Olivieri et al. 2009). 

 

 Pfgeg-3 & Pfgeg-4 1.4.2.1.3

Pfpeg-3 and Pfpeg-4 are two genes that are expressed in gametocytes 

starting in stages I and II, respectively.  The Pfpeg-4 protein, though detectable 

during the later phase of stage I gametocytes, is most predominantly expressed in 

stage II gametocytes and is localised to granules within the cell (Silvestrini et al. 

2005). 

The Pfpeg-3 protein was shown to be associated with a membrane 

surrounding the parasite and expressed initially during stage I, but persisted 

through-out sexual development.  However, subsequent to this research, Pfpeg3 

is now also known as Pfmdv1 (Miao et al. 2009), identified during investigations 

into a defect in the development of male gametocytes in the P. falciparum clone, 

Dd2, which exhibits a reduced capacity to create viable male gametocytes (Furuya 

et al. 2005).  The genomic region responsible was mapped to the candidate gene 

P. falciparum male development gene 1 (Pfmdv-1) on chromosome 12, which 

encodes a 25kDa male-specific protein (Furuya et al. 2005).  The 25kDa protein, 

Pfmdv-1, is expressed on the plasma membrane in both microgametocytes and 

macrogametocytes, at all five gametocyte stages of development (Furuya et al. 

2005).  Knock-out lines for the gene resulted in various abnormalities including an 

enlarged nucleus, development of multi-membrane structures and vesicles from 

the parasitophorous space into the erythrocyte cytoplasm, debris in the perinuclear 

space, and single membrane vacuoles near the nucleus (Furuya et al. 2005).  It 

was concluded that Pfmdv-1 codes for a protein crucial to the maintenance of 

membrane structures linked to gametocyte maturation (Furuya et al. 2005). 
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 Rif Genes 1.4.2.1.4

 RIFIN (repetitive interspaced family) are one of several multigene families 

that code for proteins commonly found on the surface of erythrocytes infected by 

Plasmodium falciparum in order to avoid immune recognition by the host 

(reviewed by Petter et al. 2007). 

 Stage V gametocytes, of the 3D7 clone, produce high levels of transcripts 

for the rif gene PF13_0006 (Wang et al. 2010).  Another rif gene, PFI0025c, is also 

produced at high levels during gametocyte stages, but the levels of transcription 

were not comparable to the high levels exhibited by PF13_0006.  PF13_0006 

transcript abundance was 100 times higher in stage V gametocytes compared to 

the asexual stages (Wang et al. 2010) and PF13_0006 appeared to dominate in 

the transcription profiles of the gametocyte stages.  Wang and colleagues (2010) 

suggested that the RIFIN encoded by this gene had an important function in the 

developing gametocyte, but taking into consideration that the timing of protein 

expression and localisation may be distinct from that of transcription, they also 

hypothesised that RIFINs play a role in the sequestration of gametocytes.  This 

has yet to be substantiated.  

 

 PfPuf2 1.4.2.1.5

Homologues of the PfPuf2 protein are known to act as translational 

repressors in other species such as Drosophila and Caenorhabditis elegans and, 

in P. falciparum the protein is suggested to influence gametocytogenesis (Miao et 

al. 2009).  The PfPuf2 protein is not found in asexual stages, but exists in all 

gametocyte stages, in both male and female gametocytes, distributed throughout 

the cytosol, and in rounded-up female gametes.  Disruption of the PfPuf2 gene 

resulted in an increase in the formation of gametocytes and the sex ratio was 

shifted to be more male abundant.  Over expression of the same gene caused a 

significant reduction in gametocytogenesis rate and sex ratios became more 

female-biased (Miao et al. 2009).  These results suggest that PfPuf2 is a regulator 

of gametocytogenesis in P. falciparum and the authors hypothesize that PfPuf2 

regulates the transcription of a subset of genes linked to sexual development 

(Miao et al. 2009). 
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 Neks  1.4.2.1.6

Neks are NIMA-related protein kinases that fulfil a variety of cell cycle 

related functions including those pertaining to centrosome separation, mitosis, 

meiosis, and checkpoint control (O’Regan et al. 2007).  Plasmodium falciparum 

has four NIMA-related serine/threonine kinases named pfnek-1 to -4.  Pfnek-1 is 

expressed in both asexual and sexual stages whereas the mRNA encoding the 

other three enzymes are expressed in the gametocytes only, indicating a possible 

role in sexual development (Reininger et al. 2009).  Disruption of Nek-4 in P. 

berghei, which is expressed only in the gametocytes, caused normal numbers of 

gametocytes to develop (when compared to wild-type parasites), but when fed to 

mosquitoes the gametocytes did not result in oocyst infection (Reininger et al. 

2005).  Gametocytes were shown to emerge normally from their host RBC and 

fertilise, but did not produce ookinetes.  This was not caused by any genetic defect 

in the males, which were able to fertilise wild-type female gametes, but the 

macrogametes appeared to be defective (Reininger et al. 2005).  The DNA nuclear 

content of Pbnek-4 KO zygotes was shown to be well below the tetraploid value 

usually observed at this stage, suggesting a developmental arrest before or early 

during the S-phase that precedes meiosis.  Thus P. berghei defective at Nek-4 are 

unable to complete their DNA replication to 4C (Reininger et al. 2005).  Further to 

this research, Nek-2 was disrupted in both P. falciparum and P. berghei and these 

genetically modified parasites were able to differentiate into mature gametocytes 

and undergo gametogenesis, but were unable to develop further into ookinetes.  

Further investigation revealed that parasites lacking Pbnek-2 were unable to 

control premeiotic DNA replication properly.  The kinase appeared to localise with 

microtubule-like structures in female gametocytes, which is consistent with the 

established role of Neks in regulating microtubule formation and function 

(Reininger et al. 2009).  The authors hypothesize that Nek-2 could be necessary 

for spindle function in premeiotic nuclear division: the centrioles are paternally 

inherited in most animals (including humans), and therefore the microtubule-

organising centres, inherited from males, are unable to bind to Nek-2 in the 

females in which it has been knocked-out and the meiotic spindle fails to form.  

Nek-2, therefore, functions as the molecular tool needed for the development of 

the microtubules into the meiotic spindle, and its absence causes the observed 

failure of DNA replication that precedes meiosis, and therefore leads to the 

observed reduction in DNA content in the zygote (Reininger et al. 2009). 
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 Gene Clusters Linked to Gametocytogenesis 1.4.2.2

 Gametocyte-Specific Genes on the Subtelomeric Right Arm of Chromosome 9 1.4.2.2.1

Plasmodium falciparum parasite lines that had been cultured in vitro for a 

long period of time, and that no longer produced gametocytes, were shown to 

have deleted a 300kb subtelomeric portion on the right arm of chromosome 9, 

which was accompanied by a reduced ability of the parasite to cytoadhere to C32 

melanoma cells (Shirley et al. 1990; Day et al. 1993; reviewed by Alano et al. 

1995b).  The size of chromosome 9 in P. falciparum can vary between clones by 

as much as 25% (500kb) suggesting that the amount of DNA deleted was variable 

(reviewed by Shirley et al. 1990).  Further studies revealed that parasites with the 

chromosome 9 deletion were blocked at a very early stage of gametocytogenesis, 

suggesting that the terminal end of chromosome 9 was responsible for the 

regulation of an early step of cell specialisation (Alano et al. 1995b).   

The defect on chromosome 9 was later confirmed to be a truncation that 

occurred about 150kb from the telomere and 90kb from the region where there are 

multiple copies of var and rif genes (Gardiner et al. 2005).  Chromosome 9 is 

about 1,700Kbp in length (Kelly et al. 2006), and the deleted region has 19 

annotated genes, including one identified as Pfgig (Plasmodium falciparum gene 

implicated in gametocytogenesis) (Gardiner et al. 2005).  When Pfgig was 

disrupted (via targeted gene disruption, TGD), gametocytogenesis was 

downregulated by a factor of six (Gardiner et al. 2005).  Conversely, when Pfgig 

was complemented via insertion of the gene into D10 parasites (which has a right 

arm chromosome 9 deletion), upregulation of gametocyte-specific gene 

transcription (Pfs16) occurred, but mature gametocytes were not observed 

(Gardiner et al. 2005).  In addition, Pfgig was shown to be upregulated in early 

stage gametocytes, which supports its role in gametocytogenesis (Young et al. 

2005).  However, the deletion does not always result in loss of gametocyte 

production; Chaiyaroj et al. (1994) demonstrated that two clones with a similar 

deletion on the right subtelomeric portion of chromosome 9 had retained their 

ability to produce gametocytes, indicating that this particular deletion may not be 

solely responsible for loss of gametocyte production in other clones.   
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 Gametocyte Genes Identified Through Cluster Analysis of Timing of Expression 1.4.2.2.2

 Microarray analysis of RNA samples taken from asexual and gametocyte 

stages (I-IV) of the P. falciparum clone, 3D7, and its gametocyteless derivative 

clone F12 (has an intact chromosome 9 (Alano et al. 1995b)), highlighted novel 

genes with gametocyte-specific expression (Silvestrini et al. 2005).  A cluster of 

117 genes were determined to have similar expression profiles to those of two 

early gametocyte-specific genes Pfs16 and Pfg27.  As explained previously, Pfs16 

codes for a membrane protein on the parasitophorous vacuole (Bruce et al. 1994), 

whilst Pfg27 encodes a dimeric cytosolic phosphoprotein that is essential for 

gametocyte formation (Lobo et al. 1999) and is expressed during the stage I 

gametocyte (Silvestrini et al. 2005).  Eighteen of the proteins from the cluster were 

known (from proteomic data) to be present exclusively in gametocytes (Silvestrini 

et al. 2005).  Northern Blot analysis of 8 of these 18 genes indicated that 

transcription occurred either specifically or predominantly in the sexual stages, for 

6 genes, whilst the other two also produced mRNA in asexual stages.  This 

indicated that for the group of six genes analysed, gametocyte-specific expression 

was controlled at the level of transcript (mRNA) abundance (Silvestrini et al. 2005).  

These data indicate that the Pfg27 and Pfs16 genes are upregulated in 

conjunction with a restricted subset of gametocyte-specific transcripts at the 

commencement of sexual differentiation (Silvestrini et al. 2005).  The authors 

suggest that in young gametocytes, there may be a subgroup of molecules with 

the specific function of modifying and regulating components of the cell in order to 

drive specialisation to that of a mature gametocyte (Silvestrini et al. 2005). 

 

 Genes Identified Via Transposon Mutagenesis 1.4.2.3

More recently, a forward genetic approach, using piggyBac transposon 

mutagenesis, was used to identify genes necessary for the formation of mature 

gametocytes in P. falciparum (Ikadai et al. 2013).  This approach used a 

transposon-mediated insertional mutagenesis across the whole genome of the 

parasite to generate mutants unable to produce mature gametocytes due to the 

insertion of the transposon into an essential gene.  These mutants, termed 

insertional gametocyte-deficient mutants (IGMs), were screened using a GFP 

gene driven by a promoter for a gene expressed in late stage gametocytes (Ikadai 
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et al. 2013).  Using this approach, 29 clones/IGMs were identified as being 

defective in their ability to produce gametocytes, after which the location of 

transposon insertion, identified using inverse PCR, was deduced in 16 genes; 

none of which had been previously as having links to gametocyte development 

(Ikadai et al. 2013).  Further to this, an immunofluorescence assay, using 

antibodies to Pfmdv-1/Pfpeg3, identified that nine of the IGMs did not progress in 

gametocyte development beyond the very early stages into stage I differentiation 

(Ikadai et al. 2013). 

The 16 genes identified varied in location (across 9 out of 14 chromosomes) 

and possessed a variety of functions, including ribosomal function (pfc0200w), 

regulation of transcription (pfd0800c, pfi1215w), and signal transduction 

(pfe1615c) (Ikadai et al. 2013).  However, genes related to the IGMs that failed to 

form viable stage I gametocytes are of more interest as these could be implicated 

in roles linked to sexual commitment of the parasite.  Those identified include 

pf07_0055, which is homologous to a human amylase protein, AAT-1, thought to 

have a role in spermatogenesis in humans, pf14_0097 a signal transduction factor, 

and various other genes putatively implicated in the manufacture and remodelling 

of the cell cytoskeleton (Ikadai et al. 2013). 

In summary, this research led to the identification of several new genes 

linked to gametocytogenesis, including a subset which could be essential for 

sexual commitment.  However, like previous experiments, none of the genes 

disrupted lead to a complete interruption in the formation of gametocytes, 

indicating that several loci are likely to be involved in this role and are able to 

compensate for the lack of activity in another gene. 

 

 Sex Determination in Eukaryotes 1.5

For reasons of brevity and relevance, only lower or unicellular eukaryotes will 

be discussed here.  Simpler eukaryotic organisms, such as yeasts and other fungi, 

can replicate both asexually and sexually (Madigan et al. 2003).  Yeasts possess 

two forms of haploid mating type cells, which can be considered analogous to 

female and male gametes (Madigan et al. 2003).  In Saccharomyces cerevisiae 

there are two genetically-determined, haploid, mating cell types, denoted α and a, 
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in which mating type α can only mate with mating type a and mating type a can 

only mate with mating type α i.e. self-incompatibility (Madigan et al. 2003).  The 

mating of these two opposite haploid mating types leads to a single diploid cell, 

which contains four gametes (two a mating types and two α mating types) 

(Madigan et al. 2003).  Some haploid yeast strains are able to switch mating types 

from one type to the other, which is caused by a gene insertion at the MAT (mating 

type) locus where the MAT promoter controls transcription of the mating type gene 

(gene a or gene α) thereby determining the mating type of the cell (Madigan et al. 

2003).  In other fungi, there can be three types of mating-type loci functioning 

(Lengeler et al. 2002): 1) the MAT loci found in ascomycetes such as S. cerevisiae 

described above; 2) the tetrapolar mating systems that exist in the basidiomycetes 

such as mushrooms, where the mating type of the organisms is governed by two 

distinct and unlinked loci that encode transcriptional regulators, pheromones and 

pheromone receptors; 3) a novel system found in Cryptococcus neoformans, 

where the mating type is controlled by a multigene locus, which codes for 

transcription factors, pheromones, pheromone receptors as well as what appears 

to be a “pheromone-activated MAP kinase cascade” (Lengeler et al. 2002).  C. 

neoformans is a yeast-like pathogen that possesses a bipolar mating system, 

which determines sexual development via a single locus that exists in two allelic 

forms, α and a (Lengeler et al. 2002).  However, the mating-type locus of C. 

neoformans is unique in the fungal world as it shares features with the self-

incompatibility system, but also with sex chromosomes in plants, algae, and 

animals (Lengeler et al. 2002).  As sex is thought to have originally evolved in 

lower eukaryotes, Lengeler et al. (2002) propose that the features in some of the 

sex-determining pathways in unicellular organisms such as C. neoformans 

represent an early step in the evolution of dimorphic sex chromosomes that now 

exist in many multicellular eukaryotes.  

 

 Sex Determination in Plasmodium 1.6

Sex determination refers to the delegation of a sex to either male or female 

forms.  Unlike sex determination in mammals, the development into a male or a 

female gametocyte in P. falciparum is not determined by sex chromosomes; 

haploid cloned lines from a single haploid P. falciparum parasite can generate both 
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microgametocytes (males) and macrogametocytes (females) (Downs, 1947; 

Trager et al. 1981).   Sex determination occurs at a specific stage in the parasite’s 

life-cycle.  All of the merozoites released from a single sexually-committed 

schizont develop into gametocytes of the same sex (Smith et al. 2000; Silvestrini 

et al. 2000).  Thus, sex in the parasite appears to be determined during either the 

ring-stage or trophozoite of the sexually-committed schizont (Smith et al. 2000).   

Dissimilarity between the sexes, including the difference in cell cycle and 

synthesis of RNA and protein, indicate that different mechanisms and processes 

exist between the two gametocyte sexes and these give rise to the different 

characteristics seen in mature gametocytes (Sinden, 1982).  Genes have been 

identified that encode proteins associated with cellular modification and protein 

trafficking in the premature gametocyte within an erythrocyte.  This suggests that 

the parasite requires alterations in the intracellular environment for progression 

through gametocytogenesis (reviewed by Dixon et al. 2008). 

 

 Sex-Specific Genes 1.6.1

Quantitative real time polymerase chain reaction (qRT-PCR) on mRNA, and 

microarrays and proteome analysis using mass spectrometry have been used to 

highlight various proteins and genes that are potentially linked to the events that 

lead to gametocytogenesis (Lasonder et al. 2002; Silvestrini et al. 2005; Moreira et 

al. 2004; Young et al. 2005).  In many studies, the gametocyte sexes have not 

been separated, because techniques for separating and purifying the distinct 

sexual cells were not available.  Using transgenic lines of the malaria parasite P. 

berghei, Khan et al. (2005) separated male and female gametocytes using flow 

cytometry according to sex-specific fluorescence of green fluorescence protein 

(GFP), which was driven by the promoter for the male-specific α-tubulin-II gene 

(transgenic line GFPtub) or the promoter for the female-specific elongation factor 1 

α (transgenic line PbGFPCON).  Female gametocytes from the PbGFPCON line 

display a GFP fluorescence four times that of male gametocytes of the same 

transgenic line, whilst male gametocytes of the GFPtub transgenic line fluoresce at 

a greater intensity compared to female gametocytes from the same transgenic line 

(6:1 ratio) (Khan et al. 2005).  The resulting male and female gametocyte samples 

were estimated to be about 99% pure (Khan et al. 2005).  LC-MS/MS (Liquid 
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Chromatography/Tandem Mass Spectrometry) was used to analyse the purified 

samples and identify sex-specific proteomes (Khan et al. 2005).  The male 

proteome was comprised of 650 proteins, of which 236 (36%) were male-specific.  

The female proteome of 541 proteins included 101 (19%) female-specific proteins 

(Khan et al. 2005).  Of these proteins, only 69 were shared between the sexes 

(Khan et al. 2005).   

Two sex-specific protein kinases, P. berghei MAP2, a male-specific putative 

mitogen-activated protein (MAP) kinase, and P. berghei Nek-4, a female-specific 

NIMA-related kinase, were investigated further using targeted disruption of gene 

function (Khan et al. 2005).  MAP kinases have been linked to various cellular 

activities that are important for cell formation and cell differentiation.  Various 

studies have shown MAP kinases to have in vitro targets like cytoskeletal proteins, 

nuclear transcription factors, metabolic enzymes, as well as other signalling 

machinery for the production of cells (reviewed by Lewis et al. 1998).  NIMA-

related kinases are thought to control entry to mitosis and there is also evidence 

linking them to crucial functions during mitosis such as the creation and function of 

the mitotic spindle (O’Connell et al. 2003).  Targeted disruption of these two kinase 

encoding genes verified that P. berghei gametocytes possess gender-specific 

signalling pathways (Khan et al. 2005).  Disruption of P. berghei MAP2 led to the 

production of male gametocytes with the ability to escape from the host cell and 

undergo genome replication, but the inability to develop further and thus neither 

genome division nor the formation of gametes occurred (Khan et al. 2005).  This 

same mutation had no effect on female development.  Disruption of P. berghei 

Nek-4 had no impact on gamete production in either sex, but disruption of P. 

berghei Nek-4 in female gametocytes led to an arrest at the zygote stage and a 

complete absence of mature ookinetes (Khan et al. 2005).  However, this research 

was carried out in a model organism, but in the context of this project it is human 

malaria parasites that are of interest thus, as mentioned previously (section 

“1.4.2.1.6”), Nek proteins have been investigated in P. falciparum previously and 

have been linked to gametocytogenesis. 

A defect in the development of male gametocytes was identified in P. 

falciparum clone Dd2.  All of the progeny from a cross between HB3 and Dd2 were 

found to have been created from fertilization events between a Dd2 female 

gamete and an HB3 male gamete (Furuya et al. 2005) suggesting a lack of viable 
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Dd2 male gametes.  This reduced capacity to create viable male gametocytes was 

suggested to have arisen during the extensive in vitro culturing, combined with 

experimental manipulations such as drug pressures and cloning from the ancestor 

of Dd2, W2 (Furuya et al. 2005).  The defective area of the genome responsible 

for this mutation was mapped to the candidate gene P. falciparum male 

development gene 1 (pfmdv-1) on chromosome 12, which encodes a 25kDa male-

specific protein (Furuya et al. 2005).  Pfmdv-1 translation was shown to be down-

regulated in the Dd2 clone (Furuya et al. 2005).  The 25kDa protein, Pfmdv-1, was 

expressed in all five gametocyte stages of development (in both microgametocytes 

and macrogametocytes) and was shown to be located on the plasma membrane 

of the gametocyte, on the surface of the parasitophorous vacuole, and on the 

membrane of cleft-like structures found in the erythrocyte (Furuya et al. 2005).  A 

large majority of sexually-committed parasites arrested at stage I of 

gametocytogenesis in Pfmdv-1 knock-out cell lines (Furuya et al. 2005).  Knock-

out lines displayed various abnormalities including an enlarged nucleus, debris in 

the perinuclear space, development of multi-membrane structures and vesicles 

from the parasitophorous space into the erythrocyte cytoplasm, as well as the 

single membrane vacuoles appearing near the nucleus (Furuya et al. 2005).  From 

these observed abnormalities, Furuya et al. (2005) concluded that pfmdv-1 codes 

for a protein that is essential for the maintenance of membrane structures that are 

important for gametocyte maturation in the red blood cell.  Parasites with a Pfmdv-

1 gene disruption also displayed reduced infectivity to mosquitoes (Furuya et al. 

2005). 

 Genes that are specifically linked to either the microgametocyte or the 

macrogametocyte in Plasmodium falciparum are few in number.  Occasionally, a 

gene previously thought to be exclusively expressed in one sex is found to be 

expressed in both.  This is a likely occurrence as the tools and techniques used in 

research continue to development and become more sophisticated.  Genes that 

have at some point been linked specifically to either gametocyte sex are discussed 

below as well as any further developments that have been made since their 

discovery. 
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 Female (Macrogametocyte)-Specific Genes 1.6.1.1

 Pfg377 1.6.1.1.1

Osmiophilic bodies are spherical organelles, bound by a single membrane, 

which are implicated in the disruption of host cell membranes during 

gametocytogenesis (reviewed by Aikawa et al. 1984).  The osmiophilic bodies, 

found in the stage IV gametocyte beneath the subpellicular membrane (reviewed 

by de Koning-Ward et al. 2008), are thought to contain a protein that may aid the 

parasite to escape from its red blood cell and the efficiency at which the parasite 

escapes may be related to the different number of osmiophilic bodies (reviewed by 

Baton & Ranford-Cartwright, 2005b).   

A greater number of osmiophilic bodies are present in the female 

gametocyte compared to the male gametocyte (Sinden, 1982) and therefore 

macrogametocytes display a more proficient ability to escape from erythrocytes 

compared to microgametocytes, which are often trapped in their host red blood 

cell (Sinden, 1983; Aikawa et al. 1984).  Pfg377, is a female gametocyte-specific 

protein, involved in the production of these osmiophilic bodies (de Koning-Ward et 

al. 2008) and can be detected in macrogametocytes from stage III onwards 

(Severini et al. 1999).  The Pfg377 gene is encoded on chromosome 12 and 

expresses a protein 3119 amino acids long with a predicted molecular weight of 

377.2 kDa (Alano et al. 1995a).  The first isolation and identification of Pfg377 

occurred by accident when Mabs (monoclonal antibodies) were used to identify 

Pfs230 antigen although Pfg377 is an unrelated protein (Alano et al. 1995a).   

From this research, it was first discovered that the Pfg377 antigen was localised to 

the osmiophilic bodies in gametocytes (Alano et al. 1995a). 

Disruption of the Pfg377 gene on chromosome 12 resulted in female 

gametocytes with frequently absent or markedly reduced numbers of osmiophilic 

bodies and gametocytes that were defective in their ability to escape from the host 

erythrocyte (de Koning-Ward et al. 2008).  However, there was no effect on either 

gametocyte numbers or on the sex ratio of the gametocytes (de Koning-Ward et 

al. 2008).  As the transgenic macrogametocytes had reduced ability to exit their 

host red blood cell, it is not surprising that they displayed a reduced ability to infect 

mosquitoes, because whilst the microgametes were unaffected, there were few 

macrogametes for them to fertilize (de Koning-Ward et al. 2008). 
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 Pfs47 1.6.1.1.2

The gene Pfs47 is a paralog of the male fertility factor Pfs48/45 genes (Eksi 

& Williamson, 2002; van Schaijk et al. 2006).  Pfs47 is one of the 10 genes that 

form a family containing two or more copies of 6-cysteine domains and may act as 

receptors or ligands (reviewed by van Schaijk et al. 2006).  Pfs47 is expressed 

exclusively in female gametocytes from stage II onwards, with the protein located 

on the surface of the macrogametes when they emerge from the host red blood 

cell (van Schaijk et al. 2006).  However, expression of Pfs47 is not essential for 

oocyst development (van Schaijk et al. 2006). 

 

 Pfs25 1.6.1.1.3

 This gene produces a 25kDa protein, initially thought to be primarily 

associated with the surface of zygotes and ookinetes (Vermeulen et al. 1986).  

However, it has more recently been linked to late stage gametocytes and used to 

detect and quantify these stages (Babiker et al. 1999a; Niederwieser et al. 2000; 

Schneider et al. 2004).   

The mRNA of Pfs25 is synthesised in the mature gametocyte, but not 

translated until the gametocyte is ingested by the mosquito vector (Niederwieser et 

al. 2000).  When first characterised, Pfs25 protein was also noted to be detected in 

macrogametocytes (Vermeulen et al. 1986), but was not investigated further at 

that time to determine if it was late stage, female gametocyte-specific.  The rodent 

malaria, P. berghei, homologue of this gene, Pbs21, is expressed solely in female 

gametocytes (and ookinetes), thus in a recent experiment to quantify P. falciparum 

macrogametocytes, a reverse transcriptase quantitative PCR (RT-qPCR) assay to 

detect Pfs25 mRNA in gametocyte cultures was set up and tested (Schneider et 

al. publication pending).  It confirmed that Pfs25 could be used to accurately 

quantify macrogametocytes of P. falciparum (Schneider, P., Reece, S., van 

Schaijk, B., Meaden, C., Ranford-Cartwright, L., Gadalla, A. and Babiker, H. 

Quantification of Male and Female Plasmodium falciparum Gametocytes by Real-

Time PCR. Manuscript in preparation). 
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 Male (Microgametocyte)-Specific Genes 1.6.1.2

 α-tubulin II 1.6.1.2.1

As well as female gametocyte-specific proteins, male gametocyte-specific 

proteins have also been reported.  The 50kDa protein, α-tubulin II, is expressed 

from stage III male gametocytes and located throughout the axonemes of male 

gametes (Rawlings et al. 1992).  The sex-specific expression of α-tubulin II to a 

defined location is indicative of it possessing a specialized role, not only for 

gamete motility, but also in the morphological changes that occur in the male 

gametocyte, as well as influence over nuclear segregation during exflagellation 

(reviewed by Rawlings et al. 1992).  However, contrary to this evidence, α-tubulin 

II has recently been shown to express in both male and female gametocytes 

(Schwank et al. 2010).  Using IFAT (Immuno Fluorescent Antibody Test) and 

antibodies specific for α-tubulin II and Pfg377 proteins, Schwank et al. (2010) 

showed that α-tubulin II was expressed in both male and female gametocytes up 

until about stage IV.  At this stage the protein became differentially expressed 

whereby females dropped their expression of α-tubulin II whilst still expressing 

Pfg377 and the males kept their α-tubulin II expression whilst never expressing 

Pfg377 (Schwank et al. 2010).  This evidence indicates that α-tubulin II is not male 

specific as previously thought, but is instead differentially expressed in the later 

stage gametocytes. 

 

 Pfs230p/PfsMR5 1.6.1.2.2

Another male gametocyte-specific protein is Pfs230 paralog, Pfs230p (also 

known as PfsMR5) (Eksi et al. 2008).  The open reading frame of Pfs230p 

(PfB0400w) encodes a predicted protein of 292kDa.  Pfs230p is expressed in 

stages IV-V only (Eksi & Williamson, 2002).  An immunofluorescence assay 

indicated that the protein is localised to the cytoplasm and may be confined to the 

cytoplasmic vesicles (Eksi & Williamson, 2002).  A complication arises in previous 

IFA assay, which show that only a small population of male gametocytes fluoresce 

when tagged antibody is used (Eksi et al. 2008).  Therefore, the particular protein 

could be unreliable as an indicator of male specification.  It was used in a recent 

reverse transcriptase quantitative PCR (RT-qPCR) assay, which intended to 

quantify numbers of microgametocytes.  However, the venture was ultimately 
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unsuccessful as the assay was deemed not sensitive enough to detect the low 

levels of Pfs230p mRNA though it was considered to be specific to male 

gametocytes (Schneider, P., Reece, S., van Schaijk, B., Meaden, C., Ranford-

Cartwright, L., Gadalla, A. and Babiker, H. Quantification of Male and Female 

Plasmodium falciparum Gametocytes by Real-Time PCR. Manuscript in 

preparation). 

The function of Pfs230p is not known, but Eksi & Williamson (2002) suggest 

that as this protein is expressed only in the later stages of the male gametocyte, it 

may have some preparatory role in the emergence of the male gametocyte from 

the erythrocyte or also possibly in exflagellation. 

 

 PfPuf2 1.6.1.2.3

PfPuf2 belongs to the family of translation repressors denoted Puf (Miao et 

al. 2010).  PfPuf2 is a protein that is expressed in both male and female 

gametocytes, but there is evidence that its primary role resides in the 

differentiation of male gametocytes, which is in addition to its more general role in 

the formation of gametocytes (Miao et al. 2010). 

 

 Pfs48/45 1.6.1.2.4

The protein from this gene, first characterised by Lobo & Kumar (1998), is a 

surface protein expressed on the surface of both male and female gametocytes 

from stage II/III to stage V of gametocytogenesis and continues to show 

associated expression with the surface of emerging gametes.  Despite the fact that 

it is expressed on the surface of both sexes of gametocyte, a gene disruption of 

the Pfs48/45 region resulted in a reduced capacity for the parasite to develop 

oocysts in the mosquito (van Dijk et al. 2001).  In addition, it was only the male 

gametes that were affected, causing a reduction in the ability to penetrate the 

female gametes (van Dijk et al. 2001).  Thus, whilst the protein of this particular 

gene is not exclusively localised to male gametocytes, its function appears to be. 
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 Sex Ratios in Plasmodium 1.7

The numerical sex ratio is defined as the proportion of gametocytes that are 

male.  Plasmodium gametocytes exhibit a female-biased sex ratio.  Each male 

gametocyte can produce up to eight individual microgametes, whereas a female 

gametocyte gives rise to only one female gamete (Schall 1989; Robert et al. 1996; 

Pickering et al. 2000; West et al. 2001; Talman et al. 2004).  Thus a female-biased 

sex ratio results in a similar number of male and female gametes to maximize 

fertilization success in the mosquito.  Smith et al (2000) suggested that, based on 

their calculated sex ratios, the optimum proportion of male gametocytes in the 

laboratory would be 0.11 (i.e. 11% of total gametocytes will be male).  This would 

provide the minimum number of male gametocytes for the fertilization of all the 

existing female gametocytes, providing that each male gametocyte exflagellation 

lead to eight gametes (Smith et al. 2000). 

 

 Observed Sex Ratios in Plasmodium – In the Laboratory 1.7.1

There is very little data available on the sex ratios for P. falciparum (only for 

two parasite clones in vitro).  Variations in gametocyte sex ratio have been 

observed in P. falciparum grown in vitro under similar conditions.  Sex ratios in 

mature (stage V) gametocytes have been determined using Giemsa-stained slides 

where male and female gametocytes are distinguished on the basis of morphology 

(Ranford-Cartwright et al. 1993). Using this method, these authors classified 8.3% 

of gametocytes of P. falciparum parasite clone 3D7 as male, and 17.9% of 

gametocytes of clone HB3 were classified as male.  With the discovery of male- 

and female-specific proteins, sex ratios have been determined using monoclonal 

antibodies and immunofluorescence assay on stage III to V gametocytes.  Using in 

situ hybridisation with an antisense RNA probe for Pf77, a gene transcribed in the 

female gametocytes from stage III onwards, the sex ratio of 3D7 was 

characterised as 27.4% males (Baker et al. 1995).  Sex ratios can be measured 

directly in early gametocytes using a modified plaque assay, which measures the 

proportion of schizonts that develop into male, or into female gametocytes (Smith 

et al. 2000); the method allows for assessment of sex ratio at an earlier stage of 

gametocyte development (usually stage III, depending on the timing of expression 

of the sex-specific protein detected).  Sex ratios for P. falciparum clone 3D7 were 
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measured as 26.5% male and 36.4% clone HB3.  Similar results were obtained by 

Silvestrini et al. (2000) using different antibodies; both measured a significantly 

higher proportion of male gametocytes at an earlier stage of development than 

those measured at full maturity (stage V).  These discrepancies in the sex ratio 

observed in P. falciparum under constant laboratory conditions could support the 

theory that male gametocytes are visually lost from gametocyte cultures due to 

their tendency to spontaneously produce gametes, which is likely to occur due to 

exflagellation of male gametocytes when temperatures drop below 36°C; a 

scenario that occurs often during culturing.  Alternatively, the Giemsa-based 

method could underestimate the proportion of male gametocytes; mature males 

are morphologically similar to immature stage III or stage IV gametocytes (Smith et 

al. 2000; Schall, 1989). 

The female-biased sex ratio observed in laboratory lines of P. falciparum is 

thought to arise from a preference for schizonts to produce female gametocytes 

i.e. 67-71% of schizonts produce female gametocytes (Smith et al. 2000; 

Silvestrini et al. 2000).  The number of gametocytes that are produced from each 

sexually-committed schizont is similar when both sexes are compared, which 

suggests an equal investment of parasite resources in both sexes (Smith et al. 

2000). 

 

 Observed Sex Ratios in Plasmodium – Natural Infections 1.7.2

Evolutionary theory predicts that female-biased sex ratios will predominate 

when mating take place between one or a small number of clones, i.e. inbreeding 

(Read et al. 1992). Hamilton’s theory of ‘local mate competition’ (LMC) (Hamilton 

1967) predicts that female-biased sex ratio will be optimal when genetically-related 

males compete for mates. LMC theory predicts that the optimal sex ratio for 

malaria parasites depends on rate of self-fertilisation (inbreeding rate), where sex 

ratio (ratio of males to females) = (1-f) / 2, and f is Wright’s inbreeding coefficient 

(Wright, 1922). In situations where individuals carry single or a low number of 

genotypically different gametocytes, inbreeding will be high, and female-biased 

sex ratios are predicted, whereas when individuals carry multiple genotypes, 

inbreeding is lower (f gets closer to 0), and the optimal sex ratio approaches 0.5.  

A more detailed introduction to sex ratio theory can be found in section “1.9”. 
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Sex ratios in natural infections of P. falciparum are difficult to measure, 

mainly because gametocyte numbers are usually very low, and estimates lack 

accuracy.  The numbers of male and female gametocytes in the blood of a patient 

deliberately infected with P. falciparum were determined by microscopy on blood 

films taken over thirteen consecutive days (James, 1931).  Early on in infection 

(approximately 26 days after initial inoculation), the sex ratio found in the blood of 

the patient was 0.32 (James, 1931), or about 3.2 female gametocytes for every 

male gametocyte, although the accuracy of this figure is difficult to ascertain as 

there is no record of the number of cell examined.  As infection proceeded, the sex 

ratio became less-female biased.  Just over one month after inoculation, the sex 

ratio increased to over 0.5 i.e. 2 female gametocytes for every male gametocyte 

(James, 1931).  Finally, on the 37th day postinoculation, the sex ratio reached 1:1 

(James, 1931).  By this time, the patient was likely to have been suffering 

complications from infection such as anaemia (i.e. a reduction in the number of 

potential erythrocytes to infect, which could then lead to a reduction in parasite 

numbers and therefore gametocytes), although this information is not available.  

Although mosquitoes were fed on this patient throughout the period of erythrocytic 

sex ratio measurement, it was not possible to correlate sex ratio with infection 

success as no mosquitoes developed oocysts (James, 1931). 

In a study of naturally-infected children in Yaoundé, Cameroon, the overall 

mean proportion of male gametocytes to female gametocytes was calculated as 

0.217 or, for every male gametocyte, there were 3.6 female gametocytes (Robert 

et al. 1996).  The range of gametocyte sex ratios in 90 gametocyte carriers was 

from 0.0 to 0.54.  However, the estimates of sex ratio were made in some cases 

from less than 15 gametocytes and therefore do not have a high degree of 

accuracy. 

 

 Why Study Gametocyte Sex Ratios in Plasmodium falciparum? 1.7.3

Gametocytes represent the crucial sexual stage of the malaria parasite life-

cycle and are essential for transmission as only these stages can progress 

through the mosquito vector and lead to new future infections via mosquito blood-

feeding.  In the mosquito midgut, each female gametocyte leads to a single female 

gamete (macrogamete), whilst each male gametocyte can form up to eight 
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individual microgametes (Schall 1989; Robert et al. 1996; Pickering et al. 2000; 

West et al. 2001; Talman et al. 2004).  The female-biased gametocyte sex ratio 

usually observed for P. falciparum in the human host is thought to arise in order to 

maximize fertilization success in the mosquito i.e. in order to produce similar 

numbers of male and female gametes, ensuring that all female gametes are 

fertilised without producing competition between microgametes (section “1.9.4”) 

and without wasting resources on producing surplus gametes of either sex. 

Malaria parasites are practically dependent on the sexual phases of their life-

cycle for transmission to a new host.  In addition, the ratio of male to female 

gametocytes appear to be crucial for fertilisation success in the mosquito vector 

with sex ratios that are less-female biased leading to a greater number of oocysts 

on the mosquito mid-gut (Roberts et al. 1996).  Investigating gametocyte sex ratio 

in P. falciparum would lead to a better understanding as to how this trait is 

controlled in the parasite and potentially lead to a method that could manipulate it.  

For example, if the sex ratio was skewed so that one sex became limiting, none to 

few matings would be successful, leading to less infective mosquitoes.  

 

 Sex Ratios in Other Apicomplexian Parasites 1.8

The life cycles vary greatly between different orders within the Apicomplexa 

and different factors are likely to control the sex ratio in various Apicomplexian 

species.  Within the Haemospororida, erythrocytic schizogony is a feature that is 

shared by all Plasmodium and some related species, which have possibly 

descended from a Haemoproteus-like ancestor (reviewed by Smith et al. 2002).  

Phylogenetic studies suggest that the production of gametocytes directly from 

exoerythrocytic schizonts is the ancestral state (Smith et al. 2002) and therefore 

sex ratios might also have evolved from an ancestral state. 

The sex ratios of haemosporoins and eimeriorins seem to be usually 

female-biased, possibly as a result of high inbreeding levels (West et al. 2000), 

although there are exceptions.  For example, the adeleorin Haemogregarina balli, 

has a 1:1 sex ratio, which is suggested to reflect the rigid genetic as opposed to 

environmental control that the sex ratio in this species (reviewed by Smith et al. 

2002). 
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The mating environment may also have some influence on sex ratios.  For 

example, the more female-biased sex ratios seen in eimeriorins, compared to 

haemospororins, may reflect their higher rate of inbreeding, as a result of mating 

within a very small area inside intestinal tissue, whereas haemospororins tend to 

mate within a vector blood meal, which encompasses a larger area than that of a 

single cell and therefore the sex cells are likely to be more dispersed (West et al. 

2001).  

Sex ratios appear to be unpredictable and available data on sex ratios in 

apicomplexans can be conflicting.  For example, in some Leucocytozoon and 

Plasmodium populations, the gametocyte sex ratio has been observed to become 

less female-biased as the gametocyte density increased (Read et al. 1995; 

Pickering et al. 2000), but in Haemoproteus (another Haemospororidian parasite) 

there is no evidence of this phenomenon (review by West et al. 2001).  The reason 

for this is unclear, but one explanation could lie with the parasite vector (Read et 

al. 1995).  Leucocytozoon are transmitted by blackflies, whilst for Haemoproteus 

the midge is the vector.  Blackflies have the ability to take up a blood meal that is 

equal to their own weight, whilst midges take up a smaller blood meal, which could 

contain fewer gametocytes (Read et al. 1995).  This difference in the volume of the 

blood meal is likely to impact on the likelihood that male and female gametocytes 

will interact for fertilization events (section “0”).  The sex ratio of haemospororin 

blood parasites could be correlated to the inbreeding rate (West et al. 2002) by the 

equation r* = (1 – F)/2 (section “1.9.2”) and that this could explain some of the 

discrepancies observed in apicomplexans (reviewed by West et al. 2001). 

 

 Sex Ratio Theory 1.9

The sex ratio theory attempts to explain why a particular sex ratio is being 

observed in sexually reproducing organisms.  In general, the sex ratio is 1:1 or the 

numbers of both sexes are approximately equal.  Fisher explained this using 

natural selection without the complication of mechanisms involved in sex 

determination (reviewed by Hamilton, 1967).  In a situation where females are 

more abundant in the population than males, any male that is born into that 

population would have an advantage with regards to mating compared to the 

female, as it would be more likely to mate, or mate more frequently, and therefore 
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would have more offspring.  Parents that were genetically predisposed to having 

male offspring would then, on average, have more grandchildren, which may also 

be genetically predisposed to having male offspring and therefore this trait spreads 

and males become more common.  However, on reaching the 1:1 sex ratio, the 

fitness advantage of being a male would reduce because males would now be as 

common as females.  Females would then have a selective advantage of choosing 

a mate.  The same situation would apply for those genetically predisposed to 

producing females until females become more common.  Thus, the sex ratio in a 

population fluctuates around an equilibrium known as the ESS (Evolutionary 

Stable Strategy).  This is referred to as “Fisher’s principle” (reviewed by Hamilton, 

1967).  However, there are various examples in the population where “Fisher’s 

principle” does not hold.  This is because “Fisher’s principle” relies on mating 

competition in the population (Hamilton, 1967).   

 

 Sex Allocation Theory 1.9.1

Where sex ratio theory tries to explain the observable sex ratio, sex 

allocation refers to the distribution of resources to male versus female reproductive 

function (Charnov, 1982).  Sex allocation theory can help to predict the effect that 

natural selection will have on the allotment of resources to male in comparison to 

female reproductive function (reviewed by Charnov et al. 1981) and incorporates 

factors such as inbreeding, fertility insurance and local mate competition to help 

explain the allocation of resources. 

One commonly quoted example to help explain sex allocation theory is the 

breeding behaviour of parasitic wasps.  The application of sex allocation theory is 

the change in sex ratio observed in parasitic wasps, which lay their eggs on an 

insect host.  If the host is small in size, then the offspring will have a limited 

amount of food and will become small adults.  The reverse will be true if a larger 

host is used (Charnov et al. 1981).  The size of the wasp is likely to have some 

impact on reproductive success; for example, a large female may be able to lay 

more eggs than a smaller female or a larger male may be able to mate with more 

females than a smaller male (Charnov et al. 1981).  The sex ratio (proportion of 

males) is believed to be controlled by the mother using haplodiploid sex 

determination (a system in many Hymenopterans that determines sex based on 
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the number of sets of chromosomes that the individual inherits i.e. males are 

haploid; females are diploid) and is a function of host size (Charnov et al. 1981).  

Research carried out using two species of parasitic wasp, Lariophagus 

distinguendus and Heterospilis prosopoidis, showed a sex ratio shift with the 

production of more daughters in hosts with a large body size (Charnov et al. 

1981).  Thus the female parasitic wasp maximises available resources to produce 

large females, which is likely to lay more eggs and receive more matings than 

smaller females.  The parasitic wasp is allocating resources into the sex of 

progeny that will maximise her genome’s progression into the next generation.   

Similar sex ratio adjustments are commonly observed in insect species 

such as wasps, bees, and ants that use a haplodiploid method of sex 

determination (reviewed by West & Sheldon, 2002).  Sex ratio adjustment is not 

often seen in vertebrates, probably because their sex determination is 

chromosomal.  However facultative sex ratio adjustment can occur in some 

mammal and bird species despite chromosomal sex determination (West & 

Sheldon, 2002).  The bird and mammal species are predicted to adjust their sex 

ratio in response to the attractiveness of the male mate.  More attractive sons will 

be produced from these matings, and these sons are likely to experience 

increased mating and more offspring (reviewed by West & Sheldon, 2002).  In 

those cooperative breeding species where one sex will help in the rearing of 

offspring, a group that is lacking the helping sex will adjust the sex ratio towards 

the helping sex (reviewed by West & Sheldon, 2002).  West & Sheldon (2002) 

concluded that facultative sex ratio variation will only be employed if the fitness 

benefits of this type of behaviour out-weigh the costs. 

Sex allocation theory provides a satisfactory explanation for the female-

biased sex ratios in taxa that are multicellular.  The theory proposed that there are 

two complementary cues that explain any variation in sex ratio that is observed: 1) 

the level of inbreeding i.e. between closely related individuals; and 2) the sex ratio 

will be optimized in relation to reproductive success (the passing of genes to the 

next generation i.e. transmission, mating success/fecundity, etc.) on a short term 

level (Charnov, 1982). 

 



47 
 

 Inbreeding 1.9.2

Inbreeding refers to breeding between close relatives e.g. brother and sister 

matings in domestic animals (Wright, 1922).  Wright’s coefficient of inbreeding (F) 

represents the standard measure of the degree of inbreeding of an individual 

(Wright, 1922).  In mammals, the effects of inbreeding can lead to observable 

traits such as loss of vigour (e.g. weight, fertility, etc.), as well as an increase in 

uniformity i.e. prepotency and the fixation of particular (desirable) characteristics 

(Wright, 1922). 

In parasites that produce both male and female gametes, fertilization can 

occur between gametes of the same genotype i.e. selfing or inbreeding, where no 

effective recombination or outcrossing occurs and between gametes of different 

genotypes i.e. crossing or outbreeding, where effective recombination occurs.  

High inbreeding rates caused by fertilization between male and female gametes 

from the same clone occurs when there are no co-infecting clones (Anderson et al. 

2000).   

With reference to total inbreeding (i.e. with regards to haploid Plasmodium, 

only one clone per host), the optimum sex ratio can be stated as a formula.  If c is 

taken as the mean number of viable gametes contributed by the male gametocyte, 

the optimum sex ratio can be written as 1/(1+c) (West et al. 2001) since this ratio 

will maximise the fertility success of female and male gametes.  However, if the 

opportunity for outcrossing exists, then natural selection would favour a less 

female-biased sex ratio.  This is because, as previously described as ‘Fisher’s 

Principle’, any mutant clones genetically predisposed to produce males would be 

at a great advantage amongst the other mating males and will therefore gain a 

greater share of the available females and thus contribute a greater number of 

their mutant genes to the next generation (West et al. 2001), but a male-biased 

sex ratio is unlikely to arise in this situation as then the female becomes the 

limiting sex.  A sex ratio of 0.5 (i.e. 50:50 males and females) is the evolutionary 

stable strategy in situations of no inbreeding due to the fact that any fitness gained 

through the males will balance that gained through the females (West et al. 2001). 
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The affect that inbreeding rates have on the sex ratio favoured by natural 

selection can be written as (West et al. 2001): 

 

 r* = (1 – F)/2 

 

Where: 

r* = the fittest sex ratio strategy. 

F = Wright’s coefficient of inbreeding, which depicts the probability that two 

homologous genes, in two mating gametes, will be identical by decent. 

 

 Thus, natural selection favours a sex ratio that declines from 0.5 (complete 

outcrossing; F = 0) to almost 0 (complete selfing; F = 1) (i.e. r* cannot be zero as 

this would describe a situation where the sex is either all male or all female), the 

latter of which indicates that a female should bring about the production of just 

enough sons to fertilize all her daughters (West et al. 2000).  This formula has 

been used to predict the sex ratio in Plasmodium models and is shown to be quite 

accurate (reviewed by West et al. 2001) (Figure 1.3).  For example, the sex ratios 

observed in haemospororin and eimeriorin parasites are usually female-biased as 

predicted by the local mate competition theory (section “1.9.4”) (West et al. 2000).  

There are a few cases where there is scientific knowledge of both the sex ratio 

and selfing rate and these are in quantitative agreement.  Such as the mean sex 

ratio of P. falciparum in Papua New Guinea, which was determined to be 0.18 

from blood films and isolates adapted to culture (Read & Day, 1992).  From this 

the expected selfing rate was calculated to be between 0.64 and 1.0.  The 

observed selfing rate was found to be 0.9, measured by amplification of three 

polymorphic loci from oocysts in naturally infected mosquitoes (Paul et al. 1995; 

reviewed by West et al. 2001). 
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Figure 1.3: Wright's Coefficient of Inbreeding and Sex Ratio. 

The figure demonstrates the relationship between F (Wright’s coefficient of Inbreeding) and r* (the 
sex ratio that provides the greatest fitness).  When inbreeding is occurring at a high frequency, the 
optimum sex ratio is female-biased, but has to remain at or below 0.5 by the necessity to generate 
sufficient males to fertilize the female gametes. 

 

 

 Fertility Insurance 1.9.3

Fertility insurance is used to explain a scenario where there is a possibility 

of insufficient male gametes to fertilise all female gametes.  In this situation, the 

sex ratio is predicted to shift away from female reproductive function toward male 

reproductive function (reviewed by West et al. 2002). 

The sex ratios observed in Plasmodium have been suggested to relate to 

the inbreeding coefficient.  However, less female-biased sex ratios can exist, and 

there can be variability in the sex ratio (section “1.7”), for example, in the lizard 

malaria studies carried out by Schall (1989), in P. falciparum during mixed 

infections (reviewed by Paul et al. 2002), and also in P. gallinaceum experiencing 

erythropoiesis (Paul et al. 2000).  West et al. (2002), put forward a theoretical 

model that they believe can account for this variation.  They suggested that at low 

densities of gametocytes, which could potentially result in female gametes being 

left unfertilized, natural selection would favour a less female-biased sex ratio 

(West et al. 2002).  This is a type of “fertility insurance” that would ensure the 

fertilization of female gametes by male gametes (West et al. 2002).  Three 

reasons why a female gametocyte is in danger of not being fertilized are: 1) low 

gametocyte densities, or the uptake of small blood meals by the vector, or both; 2) 
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lack of mobility of the gametes, leading to less likely interactions between male 

and female gametes; 3) a high rate of mortality in the male gametocytes or male 

gametes (reviewed by West et al. 2002).  Little is known of the extent (distance 

and time) of the movement of male gametes in the mosquito bloodmeal (female 

gametes do not move).  The fertility insurance model is based on the assumption 

that the bloodmeal is made up of l groups of q gametocytes, thus, in the bloodmeal 

there is a total of ql gametocytes (West et al. 2002).  Therefore, l = 1 if all the 

gametes that are taken up in a blood meal can interact and q is the total number of 

gametocytes that are present in the blood meal (West et al. 2002).  Combining this 

assumption with the inbreeding model gives: 

 

F =       (1 – 2r*)(r* - 1 + (1 – z*)q) 

        r* - 1 + (1 – r*)q (1 + 2r*(q – 1)) 

 

 This model suggests that the fittest sex ratio (r*) is connected to the 

inbreeding rate (F) and the average of gametocytes whose gametes can potential 

interact in a blood meal (q) (West et al. 2002).  Numerically solving the equation 

can help predict r*; as q increases towards infinity, this equation becomes r* = (1 – 

F)/2 and as q becomes 2, then r* = 0.5 (West et al. 2002). 

This model is distinct from that proposed by Read et al. (1992), which 

considered male gamete viability as the cause of unfertilized female gametes.  In 

this case, the evolutionary stable strategy (ESS) gametocyte sex ratio (r*) is a 

function of selfing (as shown in Figure 1.3), but also incorporates a new value, K.  

The factor K is the average number of viable male gametes exflagellating from 

male gametocytes and empirical estimates of this factor are variable (Read et al. 

1992).  Whereby, higher values of K are associated with a more female-biased sex 

ratio and a greater occurrence of selfing.  However, Read et al. (1992) admit that 

their model does not take into account other factors such as genetics i.e. whether 

the sex ratio is fixed genetically or determined by genes that react to cues from the 

environment. 
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 The LMC Theory 1.9.4

Local Mate Competition (LMC) predicts that as the selfing rate (inbreeding) 

increases, the allocation of resources to male function will decline (Charnov, 

1982).  The theory was first described in parasitoid wasps (Hamilton, 1967).  In 

this system, female wasps lay their eggs on a host that has been paralyzed or 

killed by a sting (Charnov et al. 1981).  These eggs are a mixture of both sexes 

(male and female) and when they hatch, offspring will mate on the host that they 

hatched on before moving to another host.  In the event that no other female 

parasitoid wasp has laid eggs on the host, the laying female wasp will maximize 

the number of daughters (female eggs) and deposit just enough sons (male eggs) 

to mate all females.  This method ensures that all females are mated, whilst also 

reducing competition amongst brothers for mates.  However, when two unrelated 

female parasitoid wasps lay on the same host, a less female-biased ratio is 

expected due to the fact that the chance of inbreeding decreases as brothers are 

able to mate with non-sisters.  LMC is thus considered an accurate model to 

explain biased sex ratios in parasitoid wasps (Hamilton, 1967), but other factors 

may be involved (Innocent et al. 2007; Reece et al. 2007).  LMC theory predicts 

that where there is LMC and sibling matings, a female-biased sex ratio is likely, 

but if there is random mating in a group of unrelated individuals then a 1:1 sex 

ratio is expected (Read et al. 1992; Talman et al. 2004).  LMC when applied to 

malaria, predicts that when an infection is the result of a single parasitic clone 

whose offspring will interbreed, a female-biased sex ratio will be favoured by 

natural selection due to the fact that it will reduce competition between brothers for 

sibling mates (Hamilton, 1967; Read et al. 1992; review by Paul et al. 2000; West 

et al. 2000).  If outcrossing is likely (i.e. mixed clone infection) then a female-

biased sex ratio is presumably selected against (Read et al. 1992; Talman et al. 

2004).   

In the case of Plasmodium falciparum, the population of breeding 

individuals are those taken up in the bloodmeal of a single anopheline vector 

(West et al. 2001).  Therefore, the gametes competing for fertilization, and subject 

to LMC, are isolated in the midgut of the mosquito (West et al. 2001).  

By combining both fertility insurance and LMC theories, single-clone 

malaria infections are predicted to result in a female-biased sex ratio, whereby the 

bias observed will relate to the fecundity of the male gametes (Neal and Schall 
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2010).  However, in vivo infections are likely to have several variables, potentially 

causing further complication, as when gametocyte numbers are low the female 

bias will either be absent or reduced and predicted to eventually disappear over 

the course of infection as antibodies, released by a host immune response, kill 

gametocytes (Neal and Schall 2010). 

The application of sex allocation theory to explain observed sex ratios in 

malaria allows certain predictions to be made (Reece et al. 2008): 1) The sex ratio 

should be important for successful transmission; 2) In mixed infections, a more 

equal sex ratio (e.g. 1:1) should be adopted, whereas a female-biased sex ratio 

should be favoured in single-genotype infections; 3) The number of matings 

should decrease at extremely biased sex ratios because one sex becomes 

limiting; 4) Competition, host anaemia, and host immune response should all 

decrease the female-biased sex ratio that has been determined by local mate 

competition, because all of these factors increase the likelihood of matings by 

increasing the number of male gametocytes produced; 5) Variation in the sex ratio 

should be induced by “stressors” such as parasite densities (i.e. competition is 

reduced between male gametes by increasing the number of females gametes) 

and anaemia (matings are ensured by making the sex ratio less female-biased).  

These five predictions come from the fertility insurance model, whereby the 

maximisation of transmission is achieved by the malaria parasite adjusting their 

reproductive strategy in response to inbreeding (Reece et al. 2008). 

 

 Project Aims 1.10

 The overall aim of the project was to identify the genetic determinants of 

gametocyte sex ratios in the human malaria parasite, Plasmodium falciparum, 

using linkage analysis of an experimental genetic cross in P. falciparum (Walliker 

et al. 1987).   

 The special objectives of the project were: 

(i) to determine the gametocyte sex ratios of the parent clones, HB3 

(derived from the H1 isolate from Honduras) (Bhasin & Trager, 1984) 

and 3D7 (derived from the NF54 isolate from the Netherlands) 

(Walliker et al. 1987) and that of progeny clones representing 
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independent recombination events from an experimental genetic 

cross between the two parent lines (information on this particular 

genetic cross can be found in Chapter 3, section 3.1.1); 

(ii) to determine if the gametocyte sex ratio is genetically inherited and 

the potential number of genes that may be involved in controlling this 

trait;  

(iii) to identify genetic loci containing genes linked to variation in sex 

ratio; 

(iv) to examine the influence of temperature stability on sex ratio in vitro. 
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2 Chapter 2: Investigating the Development of Gametocytes 

over Time in the Parental Clones 3D7 and HB3 

 Gametocytogenesis in Plasmodium falciparum 2.1

As introduced in Chapter 1, section “1.4”, it is theorised that conditions 

unsuitable for asexual growth trigger gametocytogenesis in malaria parasites 

(reviewed by Talman et al. 2004).  A combination of in vivo and in vitro studies 

introduced how diverse and complex that environmental factors can be on 

gametocytogenesis in malaria parasites, including parasite density, host immunity, 

host anaemia, drugs, and kinases (Chapter 1, section “1.4”). 

Therefore, different environmental conditions can vary the rate of gametocyte 

production from isolate to isolate (Graves et al. 1984).  By limiting the interference 

from external stimuli, but culturing parasites under constant conditions in vitro, it is 

possible to determine genetic controls linked to gametocytogenesis.  However, 

variability in the rate of gametocyte production still occurs in cultures of the same 

clone even if the environmental conditions are kept constant (Graves et al. 1984). 

 

 Variation in the Gametocyte Sex Ratio in Plasmodium falciparum in vitro 2.1.1

Variations in gametocyte sex ratio have been observed in P. falciparum 

grown in vitro under similar conditions, but very little data is available on the sex 

ratios for this parasite as only two parasite clones have been characterised for this 

trait in vitro.  Previously, sex ratios in mature (stage V) gametocytes have been 

determined using Giemsa-stained slides, which relies on distinguishing the 

difference between male and female gametocytes on the basis of their morphology 

(Ranford-Cartwright et al. 1993). This method previously characterised the 

gametocyte sex ratio of P. falciparum parasite clone 3D7 8.3% male, and the 

clone HB3 as 17.9% male.  Later, using male- and female-specific proteins, the 

sex ratio (of stage III to V gametocytes) of the 3D7 clone was determined using 

monoclonal antibodies and immunofluorescence assay and found to be 27.4% 

males (Baker et al. 1995).  Subsequent to this research, the sex ratios were 

measured again, this time in early gametocytes, using a modified plaque assay to 

measure the proportion of schizonts that develop into male, or into female 

gametocytes (Smith et al. 2000); sex ratios for P. falciparum clone 3D7 were 
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measured as 26.5% male and 36.4% clone HB3.  These results were similar to 

those obtained by Silvestrini et al. (2000) using different antibodies. 

The results of the above experiments show that the sex ratio is variable in 

P. falciparum, even under constant laboratory conditions, which could indicate a 

differential mortality of male gametocytes in culture.  This is theorised to occur 

when temperatures drop below 36°C, which often occurs during culturing, 

triggering male gametocytes to exflagellate. 

 

 Using Known Gametocyte- and Sex-Specific Markers to Characterise 2.1.2

Gametocyte Sex Ratio in Plasmodium falciparum 

As evident from the previous section, gametocyte-specific proteins can be 

used to determine the gametocyte sex ratio in Plasmodium falciparum.  

Antibodies, which target antigens on the surface of gametocytes, used in an 

immunofluorescence assay can enable the visual identification of gametocytes 

and, assuming the correct antigens are available, the sex of the gametocyte.   

Various gene products have been identified as being unique to 

gametocytes (Chapter 1, section “1.4.2”), and some gene products have been 

characterised further as being exclusive to a particular gametocyte sex (Chapter 1, 

section “1.6.1”).  Antibodies to these gene products can allow the gametocyte sex 

ratio to be determined visually using an immunofluorescence assay. 

The gametocyte-specific protein, Pfs16, is one such protein, localised to the 

parasitophorous vacuole membrane of the parasite (Moelans et al. 1991; Baker et 

al. 1994).  Pfs16 protein is the earliest known indicator of gametocytogenesis 

(Bruce et al. 1994), detected using monoclonal antibodies in the P. falciparum 

gametocyte 30 to 40 hours after (sexually-committed) merozoite invasion.  Pfs16 

protein levels increase through stage II gametocytes and persists throughout the 

maturation of the cell up to stage V (review by Eksi et al. 2008).  These 

characteristics of the protein made it an ideal target protein with which to identify 

gametocytes. 

The macrogametocyte-specific protein, Pfg377, is the other protein utilised 

in this research to determine the gametocyte sex ratio.  Pfg377 can be detected in 

macrogametocytes from stage III onwards (Severini et al. 1999), concentrating in 
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the osmiophilic bodies beneath the subpellicular membrane in stage IV 

gametocytes (reviewed by de Koning-Ward et al. 2008).  As antibodies to this 

antigen had already been manufactured and tested in P. falciparum (Alano et al. 

1995a) it was considered ideal for the characterisation of female gametocytes. 

 

 Summary 2.1.3

 Utilising existing knowledge of gametocyte-specific and sex-specific 

markers, an indirect Immunofluorescence Assay (IFA) was designed to determine 

the sex ratio in Plasmodium falciparum. 

Experiments were carried out to determine the best day of 

gametocytogenesis for comparing the sex ratio between the two Plasmodium 

falciparum clones, 3D7 and HB3.  Changes in the sex ratio of these two clones, 

over the course of culturing up to day 16 of gametocytogenesis, was also 

investigated.  Finally, the effect of temperature fluctuation during the culturing 

process on the observable sex ratio was also examined. 

 

 Materials & Methods 2.2

 Culturing Techniques for Asexual Cultures 2.2.1

 In Vitro Culturing of Asexual Form Plasmodium falciparum 2.2.1.1

Culture of P. falciparum asexual stages was performed using a modification 

of the standard published techniques (Trager & Jensen, 1976; Haynes et al. 

1976). 

Parasites were cultured in complete medium, consisting of RPMI1640 

medium supplemented with 25 mM HEPES, 50 mg/L  hypoxanthine, 0.74 μg/mL 

sodium hydrogen carbonate (VWR International Ltd, UK) and 10% (v/v) heat-

inactivated human serum of blood group AB (Sera Laboratories International, UK). 

Human blood was obtained from the Glasgow and West of Scotland Blood 

Transfusion Service as whole blood from donors of any blood group, provided in 

citrate-phosphate-dextrose-adenine (CPD-A) anti-coagulant/preservative. Prior to 

use, the blood was washed to remove white blood cells and anti-coagulant, and 
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was resuspended at 50% haematocrit in complete RPMI. Washed blood was 

stored at +4⁰C. Fresh blood was obtained on a weekly basis.   

Asexual parasite cultures were maintained at 5% haematocrit in RPMI 

medium.  Asexual cultures were kept in 25cm2 tissue culture flasks standing 

upright at 37°C in an atmosphere of 1% O2, 3% CO2, balance N2.  Parasitaemia 

was monitored by taking thin smears, staining with Giemsa’s stain and examining 

by microscopy (section “2.2.1.1”).  Cultures were diluted with uninfected blood and 

medium as required to maintain the parasitaemia between 1% and 6% (for the 

HB3 clone) – 1% and 8% (for the 3D7 clone). 

Thin blood smears were taken from the culture flasks and fixed in absolute 

methanol (VWR International Ltd, UK) for 10 seconds.  These samples were then 

stained in a 5% Giemsa’s stain solution in Giemsa buffer (0.0067M  Na2HPO4/ 

NaH2PO4H2O, pH 7.2)  for 30 minutes.  After staining, slides were gently rinsed 

with water and allowed to air dry before examination with a light microscope. 

 Asexual parasitaemia was determined using a compound microscope at 

x1000 magnification (100x oil immersion lens).  For determination of asexual 

parasitaemia, approximately 50 fields of view (equivalent to between 3000 and 

6000 red blood cells) were examined.  Asexual parasitaemia was calculated thus: 

 (total no. of asexuals counted / total no. of erythrocytes counted) x 100% 

 

 Culturing of Gametocytes of Plasmodium falciparum 2.2.2

 Standard Gametocyte Culture 2.2.2.1

Gametocytes of clones 3D7 and HB3 were grown according to standard 

procedures (Carter et al. 1993).  Cultures were set up at 0.5-0.7% parasitaemia 

with 6% haematocrit in complete RPMI medium in a total volume of 15mL.  These 

cultures were set up in replicates of three for each parental clone in 75cm2 tissue 

culture flasks, positioned lying down, and maintained at 37°C in an atmosphere of 

1% O2, 3% CO2, balance N2.  Medium was changed for each culture daily followed 

by gassing with the gas mixture specified above.  From day 4, thin blood smears 

were taken for staining with 5% Giemsa’s stain (VWR International Ltd, UK).  The 

asexual stage parasites were then examined under the light microscope (x1000 
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magnification) for signs for stress, such as triangular-shaped, ring-stage parasites.  

Cultures displaying such signs were “bulked up” to 25mL by adding 10mL of 

complete RPMI medium with no additional blood (this has the effect of reducing 

the haematocrit to approx 3.5%). The cultures were maintained on the higher 

volume from this stage onwards for up to day 16.   

Thin blood smears were prepared on slides on days 8, 10, 12, 14 and 16 of 

culture, for staining with Giemsa’s stain. Briefly, 5 thin blood smears were fixed in 

cold acetone for 10 seconds, allowed to air-dry, and then wrapped in tissue and tin 

foil, and stored at -20°C with 5g desiccant silica gel (Sigma-Aldrich Inc, UK). 

Asexual parasitaemia and gametocytaemia was determined using a 

compound microscope at x1000 magnification (100x oil immersion lens).  For 

determination of asexual parasitaemia, approximately 50 fields of view (equivalent 

to between 3000 and 6000 red blood cells) were examined.  Asexual parasitaemia 

was calculated thus: 

(total no. of asexuals counted / total no. of erythrocytes counted) x 100% 

For determination of gametocytaemia, a total of 100 gametocytes were 

counted over as many visual fields as was necessary, starting from one corner of a 

blood smear, and working across and down, to avoid counting any parasite twice.  

Gametocytaemia was calculated thus: 

 (100 gametocytes / total no. of erythrocytes counted) x 100% 

 

 Enhanced Temperature Control for Gametocyte Culture (“Experiment 2”) 2.2.2.2

Gametocyte cultures were set up and maintained as stated above, but three 

additional replicates of each clone were grown with greater care to maintain the 

temperature of the culture as close to 37ᵒC as possible.  This was achieved by 

removing culture flasks from the incubator for medium change, gassing, and 

sample extraction individually i.e. only one gametocyte flask was out at one time, 

manipulation cultures on an insulating layer of 2cm thick slab of Perspex (at 37ᵒC) 

during any time out of the incubator, and pre-warming all medium to 37ᵒC (using 

aliquots straight from the incubator). Thin blood smears were prepared as for the 

first experiment described above. 
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 Indirect Immunofluorescence Assay (IFA) to Determine Sex Ratio 2.2.3

Gametocyte sex ratios were determined using IFA by employing a double-

labelling technique.  Gametocytes of both sexes were labelled using monoclonal 

antibody 93a3 (a gift from David Baker, London School of Hygiene and Tropical 

Medicine), which binds to the gametocyte-specific antigen Pfs16 (Bruce et al. 

1994).  Female gametocytes were identified by their binding of a polyclonal 

antisera, which recognises the osmiophilic body protein Pfg377 in 

macrogametocytes (Alano et al. 1995a). 

Thin blood smears taken from the cultures (section “2.2.2.1”) were removed 

from the freezer and allowed to equilibrate to room temperature.  The IFA 

procedure began with a blocking step, 30 minute incubation in blocking buffer 

(1:10 Blocker™ BSA (Bovine Serum Albumin) 10x – Pierce, USA) at room 

temperature.  The blocking buffer was then removed and replace with primary 

antibodies, diluted in blocking buffer, and incubated at 37°C for 30 minutes in a 

light-excluding box.  Antibody 93a3 was used at a final dilution of 1:20 and anti-

377 at 1:1000.  The primary antibodies were then removed and replaced with the 

fluorescently-labelled secondary antibodies at 1:50 dilution in block buffer with 

100ng/μL 4',6-diamidino-2-phenylindole (DAPI; Invitrogen, UK).  The secondary 

antibodies (both Southern Biotech, UK) were anti-mouse IgG conjugated to 

tetramethylrhodamine isothiocyanate (TRITC), which binds to 93a3 so that all 

gametocytes will show red fluorescence, and anti-rabbit IgG conjugated to 

fluorescein isothiocyanate (FITC), which binds to the anti-377 antibody resulting in 

green fluorescence of female gametocytes (post-stage III).  The slide was 

incubated at room temperature in a light-excluding box for 30 minutes and then the 

secondary antibodies were removed, a few drops of glycerol containing the anti-

fade reagent 1,4-diazobicyclo-[2,2,2]-octane (DABCO) at 2% (Sigma-Aldrich Inc, 

UK) were added to the slide, and a coverslip was applied and sealed in place with 

nail varnish. 

 The slide was examined under UV epifluorescence using a Zeiss Axioplan 

2 microscope with a 100W mercury-arc lamp and filter sets for DAPI, FITC and 

rhodamine.  A total of 200 stage III to V gametocytes (determined using guidelines 

set out by Carter & Miller, 1979), per slide, (Pfs16 positive, red fluorescence) were 

identified and their sex determined according to Pfg377 positivity (green 

fluorescence) whereby red only = male; green + red = female. 
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The number of gametocytes to be counted in order to determine an 

accurate sex ratio was calculated from the means and standard deviations of the 

gametocyte sex ratio for P. falciparum clones 3D7 and HB3 obtained by Ranford-

Cartwright et al. (1993) and the power calculation (using statistical package, R).  

Using a power value of 0.9 (90%), this equates to 186.947 cells.  This was 

rounded up to 200 cells counted per IFA slide.   

 

 Data Analysis 2.2.4

 All data was analysed in either Microsoft Excel (Microsoft Office 2010 

edition) or R (2.15.2 edition) and graphics obtained were from either programme 

as stipulated.  The hypotheses tested are specified in the sections that follow. 

 

 Sex Ratios 2.2.4.1

 Proper analysis of the sex ratio in both parental clones, 3D7 and HB3, has 

several components to it that must be completed one stage at a time.  The order at 

which these analyses were carried out is laid out below.  

 

 Variation of Gametocyte Sex Ratios between Replicates 2.2.4.1.1

 To determine the stability of the sex ratio in each parental clone, the 

difference in sex ratios obtained between replicates (of the same clone at the 

same time point of gametocytogenesis e.g. day 8, day 10, etc.) were analysed 

using chi-squared tests, to test the null hypothesis that sex ratio in one parasite 

clone is stable over time. Where the null hypothesis H0 is that there is no 

significant difference between the populations sampled and the alternative 

hypothesis H1 is that there is a significant difference between the populations 

sampled. 

 

 Difference in Gametocyte Sex Ratios between Parasite Clones 2.2.4.1.2

 Analyses, using chi-squared tests, were carried out for each time point in 

gametocytogenesis in order to test the hypothesis that the sex ratio of 3D7 was 
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significantly different to that of HB3.  Bonferroni corrections for multiple 

comparisons (Grafen & Hails, 2002) were applied before testing for significance of 

the chi-squared values obtained. 

 

 Variation in Gametocyte Sex Ratios between Culture Conditions 2.2.4.1.3

 Chi-squared tests were used to determine whether the sex ratios obtained 

between treatments (standard and with enhanced temperature maintenance) were 

different within each parental clone.  This analysis was completed for each day of 

gametocytogenesis to determine where the greatest difference between sex ratio 

of the same clones under different conditions lay.  Bonferroni corrections for 

multiple comparisons (Grafen & Hails, 2002) were applied before testing for 

significance of the chi-squared values obtained. 

 

 Analysis of Multiple Variables Affecting Sex Ratio 2.2.4.2

 Analysis of multiple variables at the same time was carried out, for 

example, to assess  the hypothesis that the proportion of male gametocytes 

changed over time dependent on the extent of temperature control.  

A generalised linear mixed model (GLMM) analysis was performed with 

replicates. The response variable was percentage of gametocytes that were male, 

and there were three fixed explanatory variables of day of culture, parasite clone 

(3D7 or HB3), and culture condition (standard or enhanced temperature control). 

Replicate was set as a random effect. 

The best fit model was decided upon using forward selection. The null 

model included only the random effect of replicate. Single variables were added to 

the model or the next level of analysis, and the significance of their effect on the fit 

of model tested by ANOVA. Significant terms from the first level were taken 

through to examine in a model including two variables, and so on to the most 

complex model including all four variables (if all significant at earlier levels). Two-

way interactions between variables were then added to the model and best fit 

analysed by ANOVA as before.  
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After the selection of the best fit model, the data were exported into excel 

for back transformation for logistic regression, and graphs were prepared showing 

the percentage of the output variable (percentage of males) explained by each of 

the individual significant terms within the model. 

 

 Results 2.3

 Changes in Gametocyte Numbers during Standard Culture 2.3.1

Gametocyte numbers for the two clones in standard cultures from two 

experimental setups (with two and three replicates per set-up respectively, as one 

of the replicates in the first experiment was lost to contamination) are shown in 

Figure 2.1. For each clone taken separately, gametocyte numbers were similar 

between replicates set up at the same time but gametocyte numbers varied 

between setups on different occasions, most likely as a result of variation in the 

parasitaemia of the asexual flask used to set up the gametocyte flasks. The 

number of gametocytes in replicates of one setup were not significantly different 

for either clone (Scheirer-Ray-Hare extension of the Kruskal Wallis test; 3D7, 

p=0.45, or HB3, p=0.94). Generally higher gametocyte numbers were obtained for 

clone 3D7 than for clone HB3 (Scheirer-Ray-Hare extension of the Kruskal Wallis 

test, p=0.23 for experiment 1 and p= 0.001 for experiment 2). 

In experiment 1, the number of gametocytes drastically reduced in number 

on day 16 for clone HB3 in both replicates and the gametocytes took on a round 

form (Figure 2.2) when visualised with immunofluorescence assay.  The drop in 

gametocyte numbers was not observed in flasks of clone 3D7 that were set up at 

the same time, nor did this drop in gametocyte numbers occur in the second 

experiment.  There are a number of explanations for this observation: 1) 

contamination; 2) human error in the handling of the culture; 3) loss of resources 

(e.g. blood not of good quality) or similar event causing parasite death.  Possibility 

1 can be discarded as the cultures were checked thoroughly for any sources of 

contamination (e.g. bacteria, yeast, etc.) and none were found. 

It is unlikely that external factors (e.g. incubator door left open allowing the 

temperature to drop to critical levels) would have affected only the HB3 cultures 

and not the 3D7 cultures, subject to the same environmental and culture 
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conditions. Therefore, the third explanation appears to be the most plausible: 

some sort of limiting factor prevented further gametocytes from forming and 

resulted in the loss of gametocytes that were already present. 

Figure 2.1: Gametocyte Numbers during Standard Culture. 

The gametocytaemias in each culture were estimated from examination of at least 3000 
erythrocytes. Replicates 1.1 and 1.2 were set up at the same time, and replicates 2.1 to 2.3 
approximately 32 weeks later, but from a different batch of parasites. Replicates within an 
experiment are shown with solid (experiment 1) or dashed (experiment 2) lines, and individual 
flasks within an experiment are indicated with different symbols. 

 

 

 Determination of Gametocyte Sex Ratios 2.3.2

Indirect immunofluorescence assay (IFA) was used to determine the sex of 

stage III to stage V gametocytes of Plasmodium falciparum in vitro.  Male and 

female gametocytes could be clearly differentiated using this method (Figure 2.3), 

through the presence of Pfg377 protein only. 

It was noted that female gametocytes exhibited two distinct types of Pfg377 

labelling and fluorescence.  One type of fluorescence was denoted “strong” female 

as these cells displayed a strong, bright fluorescence of the Pfg377 protein.  The 

second type of fluorescence was denoted “weak” female whereby these cells 

showed a marked reduction in the degree of fluorescence compared to the 
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“strong” females, which was easily distinguish by eye.  It was therefore necessary 

to set rules by which the characterisation of “strong” and “weak” females could be 

carried out, to ensure consistency.  These guidelines can be found in Appendix A. 

Figure 2.2: Unusual Gametocyte Forms in HB3 Day 16 Culture - Experiment 1. 

Images obtained from HB3 culture at day 16 of gametocytogenesis with immunofluorescent 
labelling. Column A: DAPI staining of parasite nuclei. Column B: Gametocytes (labelled with anti-
Pfs16 monoclonal antibody 93a3); Column C: female gametocytes labelled with anti-Pfg377 
antisera; Column D: DIC image. 

 
 

 

 

Figure 2.3: Distinguishing Male and Female Gametocytes. 
 
Images obtained from IFA from a day 10 culture. Panel A: (Rhodamine filter) shows two stage III 
gametocytes labelled with anti-Pfs16, The same parasites are shown in Panel B (Fluorescein filter) 
with differential labelling with antisera to female-specific antigen Pfg377. The stage III gametocyte 
at the top of the image is a female, whilst the gametocyte at the bottom is male. 
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An analysis of the sex ratio was performed first to check for differences 

across replicates of the same clone (consistency).  If replicates were not 

significantly different then they were combined for later analyses, to determine 

whether parental clones 3D7 and HB3 have different sex ratios. 

 

 Analysis of Sex Ratios between Replicates within an Experiment 2.3.2.1

The changes in the numbers of male and female gametocytes observed 

over time in cultures of clone 3D7 in experiment 1 are shown in Figure 2.4.  

For both clones, the total number of female gametocytes tends to increase 

over time up to day 14 of gametocyte culture, whilst the number of male 

gametocytes decreases over time, as the gametocytes move towards full maturity 

(stage V) (Figure 2.4). The drop in gametocytaemia seen from day 12 onwards did 

not appear to be due to the loss of one sex of gametocyte over the other (sex-

specific mortality), which is explored in section “2.3.4”. 

A chi-squared analysis was carried out to test the hypothesis that the 

numbers of male and female gametocytes obtained between replicates (of the 

same clone) were similar on the same day of gametocyte culture i.e. replicates on 

day 8 of gametocyte culture were compared to each other, replicates obtained on 

day 10 of culturing were compared to each other, etc. The chi-squared analysis 

was carried out in two separate ways: 1) the numbers of “strong” and “weak” 

females were kept separate, and 2) the numbers of “strong” and “weak” females 

were combined into “total” females for chi-squared analysis.  The full details of 

each chi-squared value obtained, between each replicate, at each day of 

gametocyte culture is shown in Table 2.1. 

The results of the chi-squared analysis indicate that there was a significant 

difference between replicates of the same clone in experiment 1 if the females 

were classified as either “strong” or “weak” (p<0.05), on day 14 of culture for HB3 

and on day 16 of culture for 3D7.  This was not observed in experiment 2.  There 

was no significant difference if the females were combined into one group (p>0.05) 

over all days in both experiments. 

 



66 
 

Figure 2.4: Average Numbers of Gametocytes over Time in Experiment 1. 

Panel A: 3D7 cultures (n=2). Panel; B: HB3 cultures (n=2). The bars show the average (mean) 
number of gametocytes at the stipulated time points.  Error bars denote the standard deviation. 
Female gametocytes were classified as strongly fluorescent (red bars) or weakly fluorescent (pink 
bars). Male gametocytes are shown as blue bars. For each time point the sex of at least 200 
gametocytes was determined. Panels C (3D7) and D (HB3) show the same data but with all female 
gametocytes grouped together (red bars). 
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Table 2.1: Summary of Chi-Squared Analysis on Numbers of Male and Female Gametocytes 
Obtained in Replicates Within an Experiment. 

For each of the two experiments, and for each clone, the numbers of male and female gametocytes 
was compared on each day (days 8, 10, 12, 14, 16) separately. Experiment 2 refers to gametocyte 
culture grown under control conditions only. A Bonferroni correction for multiple comparisons was 
applied to assign the significance of the chi-squared values obtained; significant values are shown 
in bold text. The analysis was done grouping all female gametocytes (“Total females”) and 
separating the strong and weak females into two classes (“Classified females”). The table shows 
the range of X

2
 values obtained for each day of comparison between the replicates. 

Clone 
Female 

Grouping 
Day of 
Culture 

Exp 1 – X
2
 p-value Exp 2 – X

2
 p-value 

3D7 

Total 
females 

8 0.02 0.90 0.19 0.91 

10 0.74 0.39 0.14 0.93 

12 0.87 0.35 0.65 0.72 

14 0.10 0.76 0.52 0.77 

16 0.04 0.83 0 1 

Classified 
females 

8 0.27 0.87 7.89 0.10 

10 5.49 0.06 7.41 0.12 

12 2.01 0.37 3.93 0.42 

14 4.60 0.10 9.80 0.04 

16 7.23 0.03 8.40 0.08 

HB3 

Total 
females 

8 0.30 0.59 0.06 0.97 

10 0.13 0.71 0.10 0.95 

12 0.69 0.41 0.57 0.75 

14 1.34 0.25 0.15 0.93 

16 0.28 0.60 0.08 0.96 

Classified 
females 

8 0.44 0.80 2.43 0.66 

10 4.16 0.12 5.70 0.22 

12 3.65 0.16 0.63 0.96 

14 13.19 0.001 4.57 0.33 

16 0.91 0.63 0.20 1 

 

These results suggest that the time in culture could have some influence on 

the number of “strong” and “weak” females.  This is explored later in section 

“2.4.3”. For further analysis replicates were combined, but it was noted that 

possible differences could exist between replicates on and after day 14 of culture. 

 

 Analysis of Sex Ratios Differences between Clones 3D7 and HB3 2.3.2.2

 In order to determine if 3D7 and HB3 have different sex ratios, a chi-

squared analysis was carried out on the numbers of gametocytes obtained at each 

time point.  Numbers of male and female gametocytes on each day of the culture 

analysed were compared using a chi-squared analysis, in two separate ways as 
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mentioned previously (grouping the females into total females or keeping them 

under separate “strong” and “weak” categories).  The results of the chi-squared 

analysis can be seen in Table 2.2. 

Table 2.2: Summary of Chi-Squared Analysis of Gametocyte Sex Ratios (Numbers of Male 
and Female Gametocytes) between Clones 3D7 and HB3 Over Time of Culture. 

The significance level for the p-value was adjusted using Bonferroni correction. The analysis was 
performed with female gametocytes classified according to the strength of fluorescence (strong or 
weak) for the “Classified females” rows, and all females were analysed together in the “Total 
Females” rows. Significant p-values are in bold. 

Experiment 
Female 

Grouping 
Day of 

Gametocytaemia 
χ² p-value 

1 
 

Total females 

8 1.00 0.32 

10 5.04 0.02 

12 1.90 0.17 

14 4.29 0.04 

16 15.84 6.9 x 10
-5

 

Classified 
females 

8 32.49 8.8 x 10
-8

 

10 30.82 2.0 x 10
-7

 

12 17.24 0.0002 

14 25.72 2.6 x 10
-6

 

16 41.19 1.1 x 10
-9

 

2 
 

Total females 

8 2.11 0.15 

10 6.23 0.01 

12 1.75 0.19 

14 3.96 0.05 

16 22.07 2.6 x 10
-6

 

Classified 
females 

8 19.63 5.5 x10
-5

 

10 22.55 1.3 x 10
-5

 

12 28.25 7.3 x 10
-7

 

14 6.02 0.05 

16 18.52 7.5 x 10
-5

 

 

A significant difference was found in sex ratio between 3D7 and HB3 if the 

female gametocytes were grouped into “strong” and “weak” subclasses on all days 

of gametocyte culture analysed with the exception of day 14 of culture in 

experiment 2 (Table 2.2).  If female gametocytes were analysed as a single group, 

significant difference between the parasite clones were observed on days 10, 14, 

16 of gametocyte culture, but not on gametocyte culture days 8 or 12 in both 

experiments i.e. there was no significant difference between the sex ratios at day 

12 of gametocyte culture, but the sex ratio was significantly different on the days 

surrounding it (day 10 and day 14 of gametocyte culture).  Gametocytaemia was 
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observed to peak on day 12 of gametocyte culture (Figure 2.4) and decrease over 

the following days of culturing. 

 

 Effect of Temperature Variation on Gametocyte Numbers and Sex Ratio in 2.3.3

Culture 

 The observed decrease in the number of total gametocytes, and especially 

in male gametocytes, and the increase in weakly fluorescent females after day 12 

of the gametocyte culture seen with the HB3 clone (Figure 2.4) could be due to 

environmental effects, such as temperature fluctuations.  Mature male 

gametocytes of Plasmodium falciparum exflagellate when the temperature drops 

to about 36⁰C; this is likely to occur numerous times during normal culture 

practices and thus males are likely to be lost over time in culture as they reach 

stage V (full maturity) and are able to undergo exflagellation.  To determine if 

temperature was having any effect on the sex ratio, a second experiment was set 

up, whereby the temperature of the culture was maintained as close to 37⁰C 

throughout. 

 The numbers of gametocytes at the earliest point of gametocyte culture 

(day 8) were similar with and without enhanced temperature control (Figure 2.5), 

but as time progressed the numbers continued to increase, and reached a plateau 

around day 14 for cultures with enhanced temperature control, gametocyte 

numbers were lower for both clones under standard conditions, although the drop 

in gametocytaemia observed previously (Figure 2.4) was not seen in this 

experiment. 

As for the previous experiment to determine gametocyte sex ratios (section 

“2.3.2”), the sex ratio of the gametocytes cultured under an enhanced temperature 

control, to keep the culture temperature as close to 37⁰C as possible, was 

determined by Indirect Immunofluorescence Assay.  The results of the assay are 

shown in Figure 2.6. 
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Figure 2.5: Effect of Enhanced Temperature Control during Culture on Gametocytaemias for 
Clones 3D7 (Panel A) and HB3 (Panel B). 

Each graph point is indicative of the average gametocytaemia displayed by the clone at the 
specified day of gametocytogenesis.  Standard cultures are shown as dotted lines, those with 
enhanced temperature control as solid lines. Each point represents the mean of three replicates. 
The error bars denote the standard deviation. 

  

 

 

The effect of temperature control was analysed using a generalised linear 

mixed model, which allowed the effects of culture conditions, parasite clone and 

day of analysis to be examined at the same time. Interactions between culture 

conditions and parasite clone were also included to test any differential effect of 

temperature on the two parasite clones. 

 

The model is described in Appendix B and the full outputs of the model are 

listed there. The model of best-fit to explain the variance in sex ratio found culture 

conditions, day of culture, clone and replicate all to have significant effects on sex 

ratio.  
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Figure 2.6: Average Numbers of Gametocytes over Time. 

Panels A and C: 3D7 cultures (n=3). Panels B and D: HB3 cultures (n=3). Data in panels A and B 
are from cultures grown under standard conditions, whereas panels C and D were cultures grown 
with greater control of temperature fluctuations. The bars show the average (mean) number of 
gametocytes at the stipulated time points. Error bars denote the standard deviation. Female 
gametocytes were classified as strongly fluorescent (dark red bars) or weakly fluorescent (pink 
bars). Male gametocytes are shown as blue bars. For each time point the sex of at least 200 
gametocytes was determined. 

  

  

 

 

The effects of each explanatory variable on sex ratio were estimated from 

the model and are displayed in Figure 2.7.  Day of culture has the largest effect on 

sex ratio at the earliest time-point, and by the last time-point has little effect. 

Enhanced temperature control also influences sex ratio as did parasite clone. 
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Figure 2.7: Estimated Effects of Each Variable on Sex Ratio (from the GLMM). 

Panel A: Effect of day of culture; Panel B: Effect of culture conditions; Panel C: Effect of parasite 
clone. 
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 Sex-Dependent Temperature-Related Death in Plasmodium falciparum 2.3.4

The number of male gametocytes was observed to decrease over time in 

culture, whereas female gametocytes continued to increase in number over time 

from day 8 to day 16 of gametocytogenesis (Figure 2.4). Under enhanced 

temperature control (Figure 2.6) the number of male gametocytes was still seen to 

decrease over time in both parental clones, but to a lesser degree under 

temperature maintenance conditions. 

 

 Differential Sensitivity to Temperature Differences between Clones 2.3.5

There was no evidence to support a different effect of temperature control 

on sex ratio in the two parasite clones. The GLM model with an interaction term 

between clone and culture conditions was not significant (p=0.48). 

A chi-squared analysis was carried out to test the hypothesis that the 

numbers of male and female gametocytes obtained between replicates (of the 

same clone), under conditions of temperature maintenance at 37⁰C were similar 

on the same day of gametocyte culture i.e. day 8, day 10, etc..  The chi-squared 

analysis was carried out in two separate ways 1) The numbers of “strong” and 

“weak” females were kept separate, and 2) the numbers of “strong” and “weak” 

females were combined into “total” females for chi-squared analysis.  Full details 



73 
 

of each chi-squared value obtained between each replicate for both clones, 3D7 

and HB3, is shown in Table 2.3. 

Table 2.3: Summary of Chi-Squared Analysis of Gametocyte Sex Ratio (Numbers of Male 
and Female Gametocytes) between Replicates of Clones 3D7 and HB3 under Temperature 
Maintenance Conditions over Time in Culture. 

For each clone, the numbers of male and female gametocytes was compared on each day (days 8, 
10, 12, 14, 16) separately for cultures grown under conditions than maintained the temperature at 
37⁰C. A Bonferroni correction for multiple comparisons was applied to assign the significance of the 
chi-squared values obtained. The analysis was done grouping all female gametocytes (“Total 
females”) and separating the strong and weak females into two classes (“Classified females”). The 
table shows the range of X

2
 values obtained for each day of comparison between the replicates. 

Clone 
Female 

Grouping 

Day of 

Gametocytaemia 
χ² p-value 

3D7 

 

Total females 

8 0.36 0.83 

10 0.10 0.95 

12 1.23 0.54 

14 0.16 0.92 

16 0.06 0.97 

Classified 

females 

8 6.98 0.14 

10 4.34 0.36 

12 2.39 0.66 

14 2.40 0.66 

16 2.61 0.62 

HB3 

 

Total females 

8 0.08 0.96 

10 0.12 0.94 

12 0.38 0.83 

14 0.93 0.63 

16 0.13 0.94 

Classified 

females 

8 0.89 0.93 

10 6.06 0.19 

12 1.98 0.74 

14 3.26 0.52 

16 7.09 0.13 

 

 The results of the chi-squared analysis indicate that no significant 

differences exist between replicates of either 3D7 or HB3 in culture kept under 

temperature maintenance conditions.  Therefore, replicates were combined for 

further analysis. 

In order to determine if different sex ratios exist between cultures of the 

same clone kept under the two different conditions (control and maintenance at 
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37⁰C) a chi-squared analysis was carried out on the numbers of gametocytes 

obtained at each time point.  Numbers of male and female gametocytes on each 

day of the culture analysed were compared using a chi-squared analysis, in two 

separate ways as mentioned previously (grouping the females into total females or 

keeping them under separate “strong” and “weak” categories).  The results of the 

chi-squared analysis can be seen in Table 2.4. 

Table 2.4: Summary of Chi-Squared Analysis of Gametocyte Sex Ratios (Numbers of Male 
and Female Gametocytes) of Clones 3D7 and HB3 between Different Treatments over Time 
in Culture. 

For each clone, the numbers of male and female gametocytes was compared on each day (days 8, 
10, 12, 14, 16) separately between cultures grown under control conditions and those growth under 
conditions than maintained the temperature at 37⁰C. A Bonferroni correction for multiple 
comparisons was applied to assign the significance of the chi-squared values obtained; significant 
p-values are shown in bold.  The analysis was done grouping all female gametocytes (“Total 
females”) and separating the strong and weak females into two classes (“Classified females”). The 
table shows the range of X

2
 values obtained for each day of comparison between the replicates. 

Clone 
Female 
Grouping 

Day of 
Gametocytaemia 

χ² p-value 

3D7 
 

Total females 

8 1.52 0.22 

10 6.03 0.01 

12 6.20 0.01 

14 6.40 0.01 

16 8.35 0.004 

Classified 
females 

8 3.21 0.20 

10 6.81 0.03 

12 7.15 0.03 

14 6.10 0.05 

16 9.01 0.01 

HB3 
 

Total females 

8 0.005 0.94 

10 3.90 0.04 

12 3.52 0.06 

14 4.16 0.04 

16 16.76 4.23 x 10
-5

 

Classified 
females 

8 0.24 0.89 

10 24.48 4.8 x 10
-6

 

12 24.66 4.4 x 10
-6

 

14 4.42 0.11 

16 16.78 2.3 x 10
-4

 

 

A significant difference was found in the sex ratio of the same clone kept 

under different conditions (control and maintaining the temperature at 37⁰C) after 

day 8 of culture in both clones (Table 2.4).  If female gametocytes were analysed 

as a single group, significant difference between treatments were observed on 
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days 10 to 16 in the 3D7 clone, and days 10, 14, and 16 in the HB3 clone.  There 

was no significant difference between the sex ratios at day 12 of culture in the HB3 

clone under the different conditions, but the sex ratio was significantly different on 

the days surrounding it (day 10 and day 14 of culture).  Female gametocytes 

analysed as separate groups (“strong” and “weak” females), significant difference 

between treatments were observed on days 10, 14, and 16 in both clones.  No 

significant difference was noted between the sex ratios at day 12 of culture for 

both clone under the different conditions, but the sex ratio was significantly 

different on the days surrounding it (day 10 and day 14 of culture). 

 

 Discussion 2.4

The experiments presented in this chapter were performed to examine the 

following possible sources of variation in sex ratio: day of culture, extent of 

temperature variation during culture, and parasite clone. The first two analyses 

allowed the selection of the most appropriate day on which to compare 

gametocyte sex ratio, to minimise variation from culture conditions. 

 

 Effect of Day of Culture on Gametocyte Sex Ratio 2.4.1

Sex ratio values were seen to change within a single culture over time, with 

the number of male gametocytes falling from day 12 onwards.  There was a 

general decrease in gametocyte numbers towards the end of the culture period, 

especially from day 12 of culture (Figure 2.4), which was associated particularly 

with a decrease in male gametocytes.  The decrease in gametocyte numbers 

towards the end of culture most likely occurs due to premature maturation of 

mature male gametocytes into male gametes, and to a lesser extent 

macrogametogenesis, as a result of a drop in temperature during the culture 

procedure.  Closer control of temperature during culture was able to prevent 

extreme falls in the number of males (and the concomitant fall in sex ratio) 

although it was not possible to entirely prevent it (Figure 2.5 and Figure 2.6). 

Sex ratios appeared to be more stable earlier on in the culture, when few if 

any parasites would have reached maturity.  Because of this, day 10 was selected 

as the most appropriate day to measure sex ratio; most gametocytes had reached 
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at least stage III of maturity (and therefore would express Pfg377) and female and 

male gametocytes could be clearly distinguished at this time point.   Abnormal 

forms (discussed below) were also less frequent earlier in culture. 

 

 Differences in Strength of Fluorescence in Female Gametocytes 2.4.2

In all cultures, a proportion of females exhibited weaker fluorescence when 

labelled with antibody to Pfg377.  The proportion of females exhibiting weaker 

fluorescence varied between experimental replicates and between replicates 

within an experiment. 

For clone 3D7, approximately equal numbers of weakly and strongly 

fluorescent females were noted throughout the culture from day 8 onwards, with 

no clear change in proportion over time (Figure 2.4(a)), whereas numbers of weak 

females predominated on day 8, reached equality of day 10 and decreased after 

that, reaching around 10% of females by day 16, in the second experimental 

replicate (Figure 2.6(a)).  For clone HB3, females with weaker fluorescence 

seemed to be more common, and in one case decreased in number as for clone 

3D7 (Figure 2.6(b)) but stayed at the same proportion in a different experiment 

(Figure 2.4(b)).  The proportion of female gametocytes with weaker fluorescence, 

and the changes in fluorescence over time, appeared to be strongly influenced by 

the experimental replicate, suggesting that differences in blood, serum or other 

culture conditions were responsible. 

 

 What are “Weak” Females? – A Hypothesis 2.4.3

Pfg377 is a very large (377kDa) female gametocyte-specific protein 

uniquely associated with the osmiophilic bodies in P. falciparum (Alano et al. 

1995a; Alano et al. 1995b) and probably necessary for osmiophilic body formation 

(de Koning-Ward et al. 2008).  The protein can be detected in macrogametocytes 

from stage III onwards (Severini et al. 1999), and there is a characteristic granular 

pattern associated with the location and shape of osmiophilic bodies following 

detection by immunofluorescence assay (Severini et al. 1999). 
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 Osmiophilic bodies are small, oval-shaped organelles, emerging directly 

from the Golgi vesicles, which become more electron-dense and numerous as 

development progresses (Sinden, 1982).  They are most apparent at the periphery 

of macrogametocytes, but are observed in minute numbers in microgametocytes 

(Sinden, 1982; Ponnudurai et al. 1986).  Osmiophilic bodies are first observed in 

stage IV gametocytes by electron microscopy (Sinden, 1982). 

 When a mature gametocyte is taken up by the mosquito vector, the 

gametocyte will round-up and escape from the host erythrocyte.  Microgametes 

escape using flagellar beats (Janse et al. 1986, Sinden, 1983), whereas the 

macrogamete is thought to utilise the osmiophilic bodies due to the time of 

appearance and frequency throughout the gametocyte (Sinden, 1982).  In 

addition, disruption of the Pfg377 gene leads to severe impairments of the 

macrogametes ability to escape the host erythrocyte (de Koning-Ward et al. 2008). 

 If Pfg377 protein is involved in the production/formation of the osmiophilic 

bodies then detection of the protein would precede organelle formation.  Here, 

Pfg377 was detected in stage III gametocytes.  Weak females were most likely to 

be observed in stage III gametocytes (e.g. Figure 2.6), which may reflect that the 

Pfg377 protein has not yet localised to the osmiophilic bodies; the location of 

Pfg377 in the cell is not known, but the IFA images (Appendix A) suggests an 

initial localisation throughout the gametocyte, either in the cytoplasm, or in early 

stage osmiophilic bodies that cannot necessarily be distinguished on an electron 

microscope from other structures.  In one experiment the number of “weak” 

females decreased over time which corresponded with a rise in the numbers of 

“strong” females (Figure 2.6).  It is possible that “weak” females start to produce 

Pfg377 and develop osmiophilic bodies, which eventually become more abundant 

and dense over time in culture leading to their eventual progression to “strong” 

status.  For both parental clones, 3D7 and HB3, “weak” females were most 

prevalent early on in gametocytogenesis (day 8 and day 10) and in stage IIII 

gametocytes (Appendix C; Figure 2.6). 

 If this differential expression is linked to development of the female 

gametocyte, how can the weak females observed later in gametocyte culture (Day 

12 onwards), and at mature stage V, be explained?  It is possible that some 

gametocytes either fail to develop properly i.e. do not form osmiophilic bodies, or 

die during culture.   
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 It is also possible for osmiophilic bodies not to form or to incompletely form 

in P. falciparum parasites; disruption of the Pfg377 gene resulted in female 

gametocytes with no or rarely observed osmiophilic bodies and these females 

were impaired in gametogenesis (de Koning-Ward et al., 2008), but Pfg377-

disrupted parasite lines did not alter their sex ratio to compensate (de Koning-

Ward et al. 2008).  Therefore, the “weak” females observed later in 

gametocytogenesis here are unlikely to affect the sex ratio analysis. 

 It would be difficult to determine if the “weak” females seen later in culture 

are dead or dying.  The “weak” parasites still seem to develop (stage III to IV to V) 

(Appendix C), which would appear to refute this hypothesis. 

 In conclusion, the weaker fluorescence of Pfg377 noted in stage III-IV 

female gametocytes is likely a result of Pfg377 expression and the natural 

development and formation of the osmiophilic bodies.  “Weak” females are most 

notable early in gametocyte culture (day 8-10) and in stage III-IV gametocytes, 

which is the same time of Pfg377 protein detection (stage III) and its role in 

forming the osmiophilic bodies (by stage IV).  As culture progresses, the number 

of “weak” females decreases at a similar rate to the increase in the numbers of 

“strong” females, suggesting that “weak” females progress to “strong” females as 

Pfg377 protein causes osmiophilic bodies to develop and for the protein to 

become concentrated within them. 

 

 Gametocytes with Abnormal Morphology 2.4.4

Gametocytes with abnormal morphology were observed in clone HB3 after 

day 16 of culture (Figure 2.2). The morphologically abnormal gametocytes did bind 

antibodies to both Pfs16 and Pfg377, indicating that they are female. The round 

shape suggests that these may have prematurely rounded up, as a result of 

temperature drops during the culture process, although the abnormal forms were 

not observed in 3D7 cultures which were held in the same incubator and under the 

same conditions. The abnormal forms are similar in appearance to those noted in 

histological sections of bone marrow from a patient infected with P. falciparum and 

classified as “unknown” (Farfour et al. 2012).  However, this noted similarity in 

morphology is unlikely to be significant. 
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 Examination of Effect of Temperature Maintenance on Gametocytogenesis 2.4.5

Cultures grown with closer maintenance of a temperature of 37⁰C produced 

a higher number of gametocytes (Figure 2.5). Analysis of the effect using a 

generalised linear mixed model showed a significant effect of temperature 

maintenance on sex ratio, with temperature maintenance explaining around 20% 

of the variation in sex ratio compared to around 12% for standard culture 

conditions (Figure 2.7(b)). This supports the hypothesis that fluctuations in 

temperature are partly responsible for the changes in numbers of gametocytes, 

and especially males, towards the end of the culture period. 

 

 Influence of Day of Culture, Temperature Maintenance and parasite Clone on 2.4.6

Gametocyte Sex Ratio 

A generalised linear mixed model allowed the effects of time of culture, 

culture conditions, parasite clone and replicate, and their interactions, to be 

examined. The model of best fit showed a significant effect of all four variables, but 

not of any interaction. The most significant effect on sex ratio was seen with day of 

culture, which explained almost 30% of the variation in sex ratio on day 8, 

although this fell to around 5% by the end of the culture period (Figure 2.7(a)). 

Enhanced temperature control also explained a significant amount of variation in 

sex ratio (around 20%, Figure 2.7(b)), although under standard conditions less 

than 15% of the variation was explained by this variable. Finally parasite clone 

explained a significant amount of variation in sex ratio (Figure 2.7 (c)). 

 

 Conclusions 2.5

 The conclusion of the experiments described in this chapter was that day 

10 of culture was selected as the most appropriate day at which to characterise 

the sex ratio phenotype.  This is due to the fact that it is an early time point at 

which the female-specific protein, Pfg377, is expressed and thus the IFA used 

here can be carried out.  Also, chi-squared analysis proved that there was a 
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significant difference in sex ratio (p=0.02) between the parental clones at this 

stage. 

 Temperature fluctuations during culture, parasite clone, and day of 

gametocytogenesis were all found to have significant influences on the number of 

male gametocytes in culture. 
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3 Chapter 3: Using IFA to Determine the Sex Ratios of Progeny 

from the 3D7 x HB3 Cross 

 Introduction  3.1

Previous research has suggested that the rate of gametocyte production can 

vary from isolate to isolate, possibly as a consequence of inconsistent 

environmental conditions and genetic variability (Chin & Collins, 1980; 

Brockelman, 1982; Graves et al. 1984).  By keeping all possible influencing factors 

constant for parasites in culture, it should be possible to limit the amount of 

interference from external stimuli and determine the extent to which to 

gametocytogenesis is controlled by the genome.  However, some variability in the 

rate of gametocyte production is still likely to exist in cultures of the same clone 

even if the environmental conditions are the same (Chin & Collins, 1980; Graves 

et al. 1984).  This is probably due to uncontrollable variability in day-to-day culture 

techniques as well as the time that an isolate has been in culture.  The longer a 

clone has been in culture, the more mutations it is likely to have accumulated, 

some of which, like the deletion on chromosome 9 (see Chapter 1, section 

“1.4.2.2”), have shown to be detrimental to gametocyte production in P. 

falciparum. 

It is possible that similar conditions could affect the allocation of resources to 

produce a particular sex of gametocyte, thereby altering the sex ratio in the in vitro 

experiments carried out here.  Examples of how environmental stimuli can alter 

sex ratio is described in Chapter 1, section “1.7”.  Investigating this variability was 

not possible here due to time constraints, but using previous knowledge of 

culturing P. falciparum, as well as the information gathered in chapter 2, a fairly 

stable time-point from which gametocyte sex ratio can be ascertained, was 

selected for the rest of the project, in order to limit environmental influence on 

gametocyte sex ratio and determine the genetic components of this trait. 

 

 Experimental Laboratory Cross in Plasmodium falciparum – 3D7 x HB3 3.1.1

 The Plasmodium falciparum 3D7 x HB3 cross was used to carry out this 

research.  In order to determine the loci influencing a particular trait of interest 
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within the P. falciparum genome, individual progeny clones from an experimental 

cross are characterised phenotypically for the trait of interest, and the phenotype is 

then cross-referenced to inheritance of markers within the genome (see Chapter 5, 

section “5.1.2” for a detailed explanation).   

The crossing of parasite clones 3D7 x HB3 was the first genetic cross to be 

performed using P. falciparum and was executed in 1985 by Walliker and 

colleagues (Walliker et al. 1987). The parental clones, HB3 (derived from the H1 

isolate from Honduras) and 3D7 (derived from the NF54 isolate from the 

Netherlands), differ in many identifiable characteristics including drug-sensitivity 

and the enzymes and antigens they express (Table 3.1). 

Table 3.1: Characteristics of the Parental Clones used in the 3D7 x HB3 Experimental Cross 
(Walliker et al. 1985) 

* These are blood-form antigens. Parental variants of MSP1, a195kD antigen, are specifically and 
differentially recognised by two monoclonal antibodies (Mab), whilst the 3D7 variant of MSP2, a 
40kD protein, is recognized by one Mab that does not recognise the variant from HB3. 

Characters HB3 3D7 

Origin Honduras The Netherlands 

Pyrimethamine Response Resistant Sensitive 

ADA (adenosine deaminase) Form ADA-2 ADA-1 

*Antigen 
Type 

40kD 
(MSP2) 

Mab 12.3 Negative Positive 

195-kD 
(MSP1) 

Mab 7.3 Positive Negative 

Mab 9.2 Negative Positive 

 

The cross was carried out by culturing parasites of each clone separately in 

vitro, to produce gametocytes, then feeding a 1:1 mixture of 3D7 and HB3 mature 

gametocytes to Anopheles freeborni mosquitoes.  Sporozoites in the mosquito 

salivary glands were used to infect a splenectomised chimpanzee by allowing the 

mosquitoes to feed directly and by dissecting, homogenising the mosquito salivary 

glands, and injecting the sporozoite mixture intravenously.  After emergence from 

the chimpanzee liver, parasites in the chimpanzee blood were adapted to in vitro 

culture in human red blood cells and denoted X.  These uncloned progeny were 

treated with pyrimethamine to establish a surviving parasite culture denoted XP.  

Individual parasite clones were made from the X and XP cultures by limiting 

dilution (Rosário, 1981); these progeny clones were denoted X1, X2, XP1, XP2, 

etc.  Recombination in the cross progeny clones was detected by examination for 

parental line markers (for example, the phenotypic markers shown in Table 3.1).  

Subsequent to this research, the progeny were scrutinized to further characterise 
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recombination events and establish true genetic dissimilarity.  Further detail of 

these investigations can be found in Chapter 5 section “5.1.4”. 

 

 Meiosis and Recombination in Plasmodium 3.1.2

Malaria parasites are haploid for most of the lifecycle with the exception of a 

brief diploid phase after fertilisation of gametes in the mosquito gut to produce the 

zygote.  During meiosis in a diploid zygote, independent segregation of 

chromosomes leads to haploid progeny inheriting some chromosomes from one 

parent and the rest from the other parent.  Crossover between homologous 

chromosomes can generate new combinations of maternal and paternal genes, 

increasing genetic diversity (Hartwell et al. 2008).  Recombination reshuffles 

genetic information so that genomic diversity is created and encompasses all 

exchange events that take place in meiosis (Lichten & Goldman, 1995).  Two 

mechanisms are employed during meiosis to generate new combinations of 

already existing alleles: independent assortment and crossing-over (Hartwell et al. 

2008).  

 

 Independent Assortment 3.1.2.1

Independent assortment refers to an event in eukaryotic organisms where 

each pair of homologous chromosomes segregates randomly into the daughter 

cells without influence from other homologous pairs (Hartwell et al. 2008).  It is a 

matter of chance as to which pole the paternal and maternal homologues are 

pulled by the spindle fibres.  The variation created by random independent 

assortment depends on the number of chromosomes.  In the case of Plasmodium 

falciparum, which possesses 14 chromosomes, independent assortment alone can 

generate 214, or over 16 thousand genetically unique cells. 

 

 Crossing-Over 3.1.2.2

Crossing-over in eukaryotic organisms occurs during prophase of meiosis I 

and describes a process where genetic exchange occurs between homologous 

pairs of chromosomes.  The event leads to an increase in genetic diversity as new 
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combinations of maternally and paternally derived genes are generated on single 

chromosomes.  Then by independent assortment, these new combinations are 

segregated randomly into the daughter cells (Hartwell et al. 2008).   

 

 Recombination in Plasmodium falciparum 3.1.2.3

In Plasmodium falciparum “effective” recombination results from the fusion 

of gametes from different parental clones (Anderson et al. 2000).  The zygote 

(ookinete) represents the only diploid stage in the life-cycle of P. falciparum and 

can be the product of self-fertilization by genetically identical gametes i.e. gametes 

from the same parental clone, or the result of cross-fertilization by genetically non-

identical gametes i.e. gametes from different parental clones (Walliker et al. 1987; 

Ranford-Cartwright et al. 1991).  Laboratory based experiments, whereby 

mosquitoes were fed blood containing gametocytes from two genetically dissimilar 

clone lines, indicated that self- and cross- fertilisation occur randomly, thus 

Plasmodium falciparum displays no preference for selfing or out-crossing 

(Ranford-Cartwright et al., 1993).  

 

 Meiotic Crossover Activity in Plasmodium falciparum 3.1.2.4

 Plasmodium falciparum exercises a high rate of meiotic recombination 

activity per physical length of DNA.  The meiotic crossover activity indicates the 

ratio of base pairs to cM i.e. a meiotic crossover activity of 10kb/cM indicates that 

for every 10kb of DNA there is a 1% chance of crossover.  From recent research 

on the 3D7 x HB3 cross, it has been determined that there is an average meiotic 

crossover activity of ~11kb/cM or for every 11kb of DNA there is a 1% chance of 

crossover (Ranford-Cartwright & Mwangi, 2012). 

A “hotspot” of recombination is a region of the genome or a locus that 

exhibits a higher than average frequency of meiotic cross-over activity.  In P. 

falciparum “hotspots” of recombination are commonly found in the subtelomeric 

regions of the chromosome (Mu et al. 2005; Jiang et al. 2011), which could be a 

consequence of several genes, located in this region, that are likely to benefit from 

high crossover activities; e.g. var, rif and STEVOR gene families.  All of these 

gene families are believed to benefit from the “reshuffling” that crossing-over in the 
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subtelomeric region would bring, generating diversity in these antigenic variation 

gene families.   

 

 Mapping Recombination 3.1.2.5

 The distance between two genes can be mapped by measuring the amount 

of recombination between them.  The closer together two genes are on a 

chromosome, the smaller the likelihood that a recombination event will separate 

them.  Conversely, the further apart that two genes are on a chromosome, the 

more likely the genes will be separated by recombination events (Hartwell et al. 

2008). 

 

 Do the Genetic Map (cM) and Physical Map (bp) Correlate? 3.1.2.5.1

Various experiments have shown that genetic maps do tend to accurately 

display the position of markers on chromosomes (Hartwell et al. 2008).  However, 

there is no straightforward linear relationship between physical and genetic map 

distances (Petes, 2001), therefore physical distance between markers is not 

always accurately depicted on genetic maps due to the complex relationship that 

exists between the recombination frequency and physical distance (Hartwell et al. 

2008).  Confounding factors such as double, or triple, or more crossovers limit this 

accuracy. For example, consider two markers separated by 1 cM (0.01).  A double 

crossover is very unlikely (the likelihood is 0.01 x 0.01 = 0.0001) between such 

closely positioned markers.  However, if two markers are separated by 20cM (0.2) 

then the probability of a double crossover rises to 0.04 (or 4%).  As the distance 

between two markers increases, the probability of a double crossover is higher 

(Hartwell et al. 2008). 

Other confounding factors are the 50% limit on recombination frequency i.e. 

genes can only recombine 50% of the time irrespective of how far apart they are, 

which limits the recombination frequency as a measure of chromosomal distance.  

Most importantly, recombination is not uniform along the chromosome due to 

recombination hotspots and these hotspots can interfere with mapping 

calculations.   
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These problems can, however, be overcome.  The best and most accurate 

genetic maps were constructed using many markers separated by small intervals 

(Hartwell et al. 2008).  Therefore, using markers that occur often in the genome is 

one way to build accurate genetic maps. 

 

 Using Genetic Crosses to Locate Genomic Regions of Interest – Linkage 3.1.2.6

Analysis 

Linkage analysis is a powerful technique used to scrutinise genetic crosses 

in order to identify possible genomic regions responsible for an observed 

phenotype.  A more detailed introduction to linkage analysis can be found in 

chapter 5, section “5.1.5”.   

For this research, linkage analysis highlights particular areas of the genome 

that are commonly inherited by the progeny that correlate to the sex ratio inherited 

from the parents.  This technique has been used previously in P. falciparum to 

successfully locate loci responsible for traits such as chloroquine resistance 

(Wellems et al. 1991), quinine resistance (Ferdig et al. 2004), and mosquito 

infectivity (Mwangi & Ranford-Cartwright, unpublished data). 

Locating genomic regions linked to a phenotype of interest depends greatly 

on the number on informative recombination events that occur (Ranford-Cartwright 

& Mwangi, 2012).  Informative recombination events narrow down regions of 

interest to a manageable length to discover genes/Open Reading Frames (ORFs) 

that may be controlling the phenotype.  As P. falciparum exhibits a fairly high 

recombination frequency (section “3.1.2.4”), the number of progeny clones from a 

genetic cross that will need to be phenotyped and genotyped is reduced compared 

to species that have lower recombination activity (Ranford-Cartwright & Mwangi, 

2012).  Proof of this comes from previous linkage analysis experiments, such as 

the initial mapping of the Pfcrt gene linked to chloroquine resistance, which was 

done using 16 progeny clones from a cross between the chloroquine-resistant Dd2 

and the chloroquine-sensitive HB3 (Wellems et al. 1991).  Another example is the 

discovery of the Pfmdv-1 locus, responsible for a defect in the male gametocytes, 

which was located using only 11 progeny clones (Vaidya et al. 1995). 

 



87 
 

 How Many Progeny? 3.1.2.7

As evident from the information presented above in section “3.1.2.6”, the 

number of progeny required to locate the locus responsible for the sex ratio 

phenotype is likely to be a manageable experimental number.  To determine how 

many progeny clones from the 3D7 x HB3 cross are to map accurately the location 

of sex ratio determination loci in the genome, calculations recommended by Lynch 

& Walsh (1998) were used. 

The numbers of markers and progeny clones required to map a single gene 

linked to a trait have been estimated, based on the method of Lander & Botstein 

for mapping quantitative trait loci (Lander & Botstein, 1989).  Estimates have also 

been made of the numbers of progeny clones required to map the trait if two or 

three major genes are involved. These calculations have been made with the 

assumption of an all-or-nothing response, and also if the loci act as Quantitative 

trait loci (QTLs) (Table 3.2). 

Table 3.2: Estimates of Number of Progeny Clones Required 

Estimates of number of progeny clones required for association of 1 to 3 major loci underlying a 
clear-cut phenotype, with 90% power of detecting linkage between genes and specific markers 
when each gene and each marker lie within 10cM (100 markers) of each other. Between 70 and 
250 markers would be required to give this coverage of the genome (Bishop et al. 1983).  Multiple 
loci are assumed to act epistatically. The range given indicated the estimates allowing for a 
recombination rate between marker and locus of 0.001 and 0.1 respectively. 

No. of Major Genes No. of Progeny Clones 

(0/1 trait) 

No. of Progeny Clones (QTL) 

1 17-31 56-87 

2 17-28 297-462 

3 17-23 n.d. 

 

 Summary 3.1.3

 The overall aim of the work described in this thesis was to identify the 

genetic component of sex ratio in Plasmodium falciparum.  However, the sex ratio 

exhibited by each progeny clone needed to be determined and characterised first, 

which is described in this chapter.  The sex ratio of progeny clones from the 3D7 x 

HB3 cross was determined using an indirect immunofluorescence assay (IFA) 

technique used previously on the parental clones (Chapter 2, section “2.2.3”). 
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The sex ratio phenotype information was then used to carry out a linkage 

analysis to determine regions of the genome responsible for the trait, which will be 

described in Chapter 5. 

 

 Materials & Methods 3.2

 Culturing Techniques for Asexual and Gametocyte Cultures 3.2.1

The methodologies for culturing of asexual parasites and gametocytes 

were described in Chapter 2; sections “2.2.1.1” and section “2.2.2”. 

Gametocytes were grown for ten days in culture, at which point samples were 

taken for determination of gametocyte sex ratio. Parasite growth was 

monitored by thin smears stained with Giemsa’s stain, as described in section 

“2.2.2.1”. 

For each progeny clone, three replicates were set up, each on three 

separate occasions, to allow variation in gametocyte production and sex ratio 

both within and between experiments to be established. 

 

 Selection of Progeny Clones for Analysis of Gametocyte Sex Ratio 3.2.2

Over 150 progeny clones have been generated from the 3D7 x HB3 

experimental cross (Ranford-Cartwright, personal communication), but within this 

collection there are likely to be parasites with the same genotype.  All progeny 

have been typed with 8-10 genetic markers that were known to be polymorphic in 

the parent clones, revealing progeny clones exhibiting different combinations of 

these loci (unpublished, Ranford-Cartwright and Baton); these are known to be 

independent recombinants.  Sixteen progeny clones were selected for the initial 

sex ratio analyses presented in this thesis.  They were selected from a subset of 

progeny clones that were to be genotyped by microarray and by whole genome 

sequencing for other projects (Ranford-Cartwright, personal communication). 
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 Indirect Immunofluorescence Assay (IFA) to Determine Sex Ratio 3.2.3

The gametocyte sex ratio of each progeny clone was determined using the 

immunofluorescence assay described in section “2.2.3”. 

 

 Data Analysis 3.2.4

All data was analysed in either Microsoft Excel (Microsoft Office 2010 

edition) or R (2.15.2 edition) and graphics obtained were from either programme 

as stipulated in detail as specified below.  

 

 Correlation between Gametocytaemia and Sex Ratio 3.2.4.1

 To determine if there was any correlation between gametocytaemia and sex 

ratio in the progeny clones, a Spearman’s Rank Correlation Coefficient, a non-

parametric test, was carried out in R. 

 

 Sex Ratios of Progeny Clones 3.2.4.2

 As for the parental clones, proper analysis of the sex ratio has several 

components that were completed one stage at a time.  The order at which these 

analyses were carried out is laid out below.  

 

 Analysis of Progeny Clone Sex Ratios between Replicates 3.2.4.2.1

 To determine the stability of the sex ratio exhibited by each progeny clone, 

a chi-squared test was carried out on the sex ratios obtained between replicates 

(of the same clone at day 10).  Where the null hypothesis H0 is that there is no 

significant difference between the populations sampled and the alternative 

hypothesis H1 is that there is a significant difference between the populations 

sampled.  In the clones that exhibited no significant difference between replicates, 

the replicates were subsequently combined for further analysis. 
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 Comparison of Sex Ratios between Progeny Clones and Parental Clones 3.2.4.2.2

 In order to determine if the sex ratio displayed by the progeny clones was 

similar to that of a parent (either 3D7 or HB3), or significantly different from either 

parental clone, a chi-squared analysis was carried out.  The parental sex ratio 

results used to carry out this comparison are presented in chapter 2.  The 

materials and methods used to compile the parental sex ratio data are detailed in 

section “2.2.2.1”.  The sex ratios used for the comparison are displayed in section 

“2.3.2” and are those obtained at day 10 of gametocytogenesis, which were 

significantly different between the parental clones. 

 

 Results 3.3

 Gametocyte Production in Parental and Progeny Clones 3.3.1

Gametocyte production in the progeny clones varied between replicates set 

up on different occasions i.e. each replicate set up one week apart, which is likely 

to be environmental variation due to different batches of blood, culture medium 

and asexual parasite cultures, as well as small variations in experimental 

procedures. The gametocytaemias obtained from the sixteen progeny clones 

analysed is shown in Figure 3.1. Progeny clone X4 gave poor numbers of 

gametocytes and so was excluded from further analysis.  

 

 Sex Ratio of Parental and Progeny Clones 3.3.2

The sex ratio (percentage of gametocytes that were classified as male) was 

determined for fourteen progeny clones, on day 10 of culture as described in 

chapter 2. The sex ratio of the parent clones 3D7 and HB3 was described in that 

chapter. 

Some progeny clones were excluded from further analysis due to 1) 

gametocytaemia too low (<0.1%), 2) no genetic typing of the progeny had been 

carried out by either SNP chip or Next Generation Sequencing (NGS) (Chapter 5, 

section “5.1.4”), and 3) IFA samples were unsuitable for analysis (bloodsmears 

damaged or contain too much cellular debris).  The sex ratios of the fourteen 

progeny clones were determined and are shown Figure 3.2. 
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Figure 3.1: Gametocytaemias Exhibited by Progeny Clones in Culture 

The data show individual gametocytaemias obtained in each of three replicates (diamonds), except 
for X4 and X5 where there are six replicates. The mean gametocytaemia displayed by each 
progeny clone is shown as a horizontal bar, with the error bars denoting the standard error of the 
mean. To ensure similar accuracy over a wide range of gametocytaemias, at least 100 
gametocytes were counted and divided by the number of red cells observed within the same fields. 

 

 

 Variation in Gametocyte Sex Ratio between Replicates of the Same Clone 3.3.3

The numbers and proportions of male and female gametocytes obtained 

from replicates of the same clone were compared using chi-squared tests to 

determine the significance of variation between replicates. As in chapter 2, initial 

analyses grouped the female gametocytes into strongly and weakly fluorescent 

categories. The final analysis was performed using a single category of females. A 

summary of the results are shown in Table 3.3. 

When the females were split into two groups, there were significant 

differences between replicates of a progeny clone.  When all females were 

grouped together, there were no significant differences between replicates of any 

progeny clones. 
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Figure 3.2: Sex Ratio (percentage male gametocytes) of Fourteen Progeny Clones and 
Parent Clones 3D7 and HB3 

The data show individual sex ratios obtained in each of three replicates (triangles) set up one week 
apart. The mean sex ratio displayed by each progeny clone is shown as a horizontal bar, with the 
error bars denoting the standard error of the mean. To ensure similar accuracy over a wide range 
of gametocytaemias, the sex of at least 200 gametocytes was determined for each replicate. 

  

 

 Comparison of Parental and Progeny Sex Ratios 3.3.4

The sex ratio (percentage male gametocytes) obtained for each progeny 

clone was compared to each of the two parental clones using data on the number 

of male and female gametocytes observed (Table 3.4), and analysing the female 

gametocytes as one group (no division into weak and strong). All progeny clones 

fell into one of two groups (Figure 3.3). One group, consisting of progeny clones 

X33, X35, XP24, XP26, and XP55, had sex ratios significantly different to parent 

clone 3D7 but were not significantly different to HB3.  The other group, consisting 

of progeny clones X5, X12, X30 , X44, X48, XP3, XP5, XP25, and XP52, had sex 

ratios significantly different to parent clone HB3 but not to 3D7.  Therefore, the sex 

ratio, in the fourteen progeny clones shown here, directly inherit their sex ratio 

from either parent with no intermediates.  This could indicate that the sex ratio trait 

is controlled by a single or major gene.  This will be analysed further in Chapter 5, 

section “5.3.2”. 
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Table 3.3: Summary of Chi-Squared Analysis on Numbers of Male and Female Gametocytes 
Obtained in Replicates within an Experiment 

For each clone, the numbers of male and female gametocytes was compared at day 10 of 
gametocyte culture.  A Bonferroni correction for multiple comparisons was applied to assign the 
significance of the chi-squared values obtained; significant values are shown in bold text. The 
analysis was done grouping all female gametocytes (“Total females”) and separating the strong 
and weak females into two classes (“Classified females”). The table shows the range of X

2
 values 

obtained for each day of comparison between the replicates. 

Clone Female Grouping Χ
2
 p-value 

X5 
Total Females 1.28 0.53 

Classified Females 68.95 3.8 x 10
-14

 

X30 
Total Females 0.42 0.81 

Classified Females 3.11 0.54 

X33 
Total Females 0.12 0.95 

Classified Females 1.42 0.84 

X35 
Total Females 0.44 0.80 

Classified Females 1.18 0.88 

X44 
Total Females 0.28 0.87 

Classified Females 9.02 0.06 

X48 
Total Females 2.64 0.27 

Classified Females 7.94 0.09 

X12 
Total Females 0.06 0.97 

Classified Females 6.36 0.17 

XP24 
Total Females 0.26 0.88 

Classified Females 2.23 0.69 

XP25 
Total Females 0.42 0.81 

Classified Females 84.50 1.9 x 10
-17

 

XP26 
Total Females 0.22 0.89 

Classified Females 5.21 0.27 

XP52 
Total Females 0.64 0.73 

Classified Females 65.72 1.8 x 10
-13

 

XP55 
Total Females 0.81 0.66 

Classified Females 11.77 0.02 

XP3 
Total Females 1.97 0.37 

Classified Females 16.32 0.003 

XP5 
Total Females 1.70 0.43 

Classified Females 24.98 5.1 x 10
-5

 

 

 Relationship between Gametocytaemia and Sex Ratio 3.3.5

As previously stated in Chapter 1, section “1.7.2”, a possible link between 

gametocytaemia and sex ratio has been highlighted in previous research 

(Pickering et al. 2000; Reece et al. 2008), although this was not the case for P. 

mexicanum in the reptile host Sceloporus occidentalis (p = 0.402) (Neal and 

Schall, 2010).  For the sake of curiosity only, the possible link between these two 

quantifiable traits was investigated here.  Figure 3.4 shows the sex ratio and the 

corresponding gametocytaemia of each progeny clone (including replicates). 
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Table 3.4: Summary of Chi-Squared Analysis of Gametocyte Sex Ratios (Numbers of Male 
and Female Gametocytes) between Progeny Clones and Parental Clones, 3D7 and HB3 

The significance level for the p-value was adjusted using Bonferroni correction. The analysis was 
performed with all females analysed together in the “Total Females” at day 10 of gametocyte 
culture. Significant p-values are in bold. 

Clone 3D7 – X
2
 3D7 – p-value HB3 – X

2
 

 

HB3 – p-value 

 

X5 0.08 0.77 4.85 0.03 

X30 0.05 0.83 4.08 0.04 

X33 8.09 0.004 0.13 0.72 

X35 8.61 0.003 0.21 0.65 

X44 0.03 0.87 6.95 0.008 

X48 1.34 0.25 4.01 0.04 

X12 0.08 0.77 7.61 0.006 

XP24 6.57 0.01 0.006 0.94 

XP25 0.05 0.83 4.08 0.04 

XP26 5.63 0.02 1.50 0.22 

XP52 0.07 0.78 3.88 0.04 

XP55 4.03 0.04 0.06 0.81 

XP3 0.05 0.83 4.08 0.04 

XP5 0.08 0.77 4.85 0.02 

 

 

There is no obvious correlation between sex ratio and gametocytaemia.  As 

the data are not normally distributed, a Spearman’s Rank Correlation Coefficient, a 

non-parametric test, was performed and the result showed no significant 

correlation of gametocytaemia and sex ratio (p = 0.1076). 
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Figure 3.3: Sex Ratio (percentage male gametocytes) of Fourteen Progeny Clones and the 
Parent Clones 3D7 and HB3 

Comparison shown with progeny clone sex ratio in ascending order. The data are as shown in 
Figure 3.2. The graph shows the mean sex ratio displayed by each clone, with the error bars 
denoting the standard error of the mean. Bars shown in green are significantly different to 3D7 but 
not different to parent clone HB3, whereas those in blue are statistically dissimilar to HB3 bit similar 
to 3D7. 

 

 

Figure 3.4: Scatterplot of Gametocytaemia v Sex Ratio 
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 Discussion 3.4

 Gametocyte Production by Parental and Progeny Clones 3.4.1

Most of the progeny clones were able to produce gametocytes in culture, 

although the numbers for some clones were low e.g. clone X4, and in other clones 

highly variable between replicates, e.g. clone XP55 (Figure 3.1).  Most progeny 

clones generated a gametocytaemia of between 1% and 3%.  The reasons for the 

variation have not been investigated further but are likely to reflect differences in 

environmental and culture conditions.  

 

 Parental and Progeny Sex Ratios 3.4.2

Sex ratios of both parent clones and all progeny clones were strongly 

female-biased, ranging from 8.8% male (progeny clone X12) to 20% male 

(progeny clone X35) (Figure 3.2).  Statistical comparison of progeny and parent 

clones revealed the presence of two parental-like groups of progeny, with no 

intermediate or non-parental phenotypes.  There was also very little variation 

between replicates indicating that this trait is under strict control, with little 

environmental influence under the culture conditions used. 

The sex ratio exhibited by the progeny clones suggest that sex ratio may be 

inherited from either parent as a monogenic trait, as the parasite is haploid, 

inheritance of the 3D7 allele of a single gene would confer a 3D7-like sex ratio 

(very low males), and inheritance of the HB3 allele would confer a sex ratio similar 

to parent HB3, with a relatively higher number of males.  This is hypothesis is 

explored and discussed further in chapter 5. 

 

 Correlation of Gametocytaemia and Sex Ratio in Parental and Progeny 3.4.3

Clones 

 There was no correlation between the gametocytaemia and sex ratio in 

either the parental clones or the progeny clones (Figure 3.4).  This finding 

supports previous research into the lizard malaria parasite, Plasmodium 

mexicanum, where the sex ratio was not found to be correlated to gametocytaemia 

(Neal & Schall, 2010).  Other research using the same species has shown a 
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positive correlation i.e. as gametocytaemia increased, the sex ratio became less 

female-biased (Schall, 2000); however, research into the correlation between 

gametocytaemia and sex ratio using different species of lizard malaria often 

produced conflicting results.  In Plasmodium ‘tropiduri’, a positive correlation 

between sex ratio and gametocytaemia was noted, but these results were not 

mirrored in another lizard malaria species, P. balli (Pickering et al. 2000).  This 

discrepancy was hypothesised to result from small data sets with little variation 

between variables and sporadic gametocyte detection (Pickering et al. 2000). 

 However the lack of correlation between sex ratio and gametocytaemia in 

culture is not in agreement with previous data on P. falciparum in natural 

infections, nor with experimental infections in mice with the rodent malaria parasite 

P. chabaudi.  An epidemiological survey carried out in Dielmo, Senegal, 

demonstrated a negative correlation between sex ratio and gametocytaemia in P. 

falciparum i.e. at low gametocyte densities, the sex ratio was less female-biased 

(Robert et al. 2003).  This correlation was suggested to arise due to fertility 

insurance whereby low gametocyte densities can reduce the chance of successful 

meetings and matings in the mosquito gut.  Therefore, more males are produced 

to increase the likelihood of female fertilization.  A similar negative correlation of 

gametocyte sex ratio and gametocyte density was observed with the rodent 

malaria species, Plasmodium chabaudi (Reece et al. 2008). 

 There is clearly much variation in how, or if, sex ratio is related to 

gametocytaemia.  Sex ratio theory predicts that a gametocyte sex ratio will be 

female-biased in single clone infections i.e. reduce competition between brothers 

for mates (Hamilton, 1967; Read et al. 1992; reviewed by Paul et al. 2000; West et 

al. 2000), but this is further adjusted if there is a chance that the males will not be 

able to fertilise all the females (West et al. 2002). Fertility insurance predicts that 

as male fecundity, mobility, or density is compromised, the sex ratio will adjust to 

become less female-biased to increase the likelihood of successfully mating all of 

the females.  A practical example of this is low gametocyte densities where the 

males have a reduced chance of locating females.  Thus, it is expected that at 

lower gametocyte densities there will be a less-female biased sex ratio i.e. a 

negative correlation between sex ratio and gametocytaemia (Chapter 1, section 

“1.9.3”). 
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The correlation of sex ratio and gametocytaemia was not found in the work 

described in this chapter.  It is possible that the relationship is only seen at low 

gametocyte levels, whereas high gametocytaemias were observed in culture 

(much higher than commonly observed in natural infections (reviewed by Taylor & 

Read, 1997)).  As discrepancies have been shown to arise between experiments 

on the same species of Plasmodium, a species-specific sex ratio adjustment 

strategy can probably be ruled out.  Lizard malaria sex ratios tend to be far less 

female-biased compared to malaria parasites of other species e.g. mammals and 

birds (Schall, 2009), even when the infection is known to be caused by a single 

clone (Neal & Schall, 2010).  This reason for this could be explained by a low male 

fecundity in many reptilian malaria species (Neal, 2011).  Thus, the discrepancies 

in the published literature highlighted could be explained by species-specific 

idiosyncrasies, as the sex ratio is likely to vary between isolates of the same 

malaria species in different hosts, thus potentially causing facultative altering in 

gametocytaemia dependent on the relative viability of the gametocytes. 

 In conclusion, the relationship between gametocytaemia and sex ratio 

remains controversial.  Drawing on evidence from previous research, the 

correlation between these factors is not consistent between species, and 

occasionally within the same species.  Determining if the relationship predicted 

between these two factors by fertility insurance is correct, is confounded by 

impacting variables that are likely to differ between experiments due to different 

Plasmodium species, different host responses to the parasites, and varying 

experimental techniques.  It is possible that sex ratio theory cannot always predict 

how Plasmodium will behave under specific conditions. 

 

 Conclusions 3.5

The conclusions of this research are that the gametocyte sex ratio is a 

monogenic trait in Plasmodium falciparum.  Progeny clones inherited either a 

gametocyte sex ratio like that of the 3D7 parent or like that of the HB3 parent with 

no intermediate phenotypes.  Inheritance of the 3D7-like trait confers a sex ratio 

that is more female-biased (~90% females) compared to that exhibited by the HB3 

clone and progeny that inherited it’s trait (~80% females). 
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The relationship between gametocytaemia and sex ratio remains unclear as 

evidence from this research indicated that there was no correlation between this 

factors and previous research can be conflicting.  Due to the various interacting 

factors that are likely to impact on both gametocytaemia and sex ratio, sex ratio 

theory is not always able predict how Plasmodium will behave under specific 

conditions. 
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4 Chapter 4: Development of a Quantitative Reverse 

Transcriptase-PCR Assay to Determine Sex Ratio in 

Plasmodium falciparum 

 Introduction 4.1

The use of molecular methods to detect and quantify the various stages 

that are present in the life-cycle of Plasmodium parasites could potentially provide 

faster, more efficient and a more accurate representation of parasite biology than 

those methods employing typical microscopy. 

 The first incidence of the use of reverse transcriptase PCR (RT-PCR) to 

detect gametocytes of P. falciparum was described in 1999 (Babiker et al. 1999b).  

Previously, only conventional PCR had been used to detect and identify this 

human malaria parasite.  To identify the gametocytes of P. falciparum and not the 

asexual stages, the mRNA of the parasites was extracted and used to identify the 

mRNA of Pfs25, a surface protein expressed only in gametocytes (Chapter 1, 

section “1.6.1.1.3”).  Using nested primers, this method of RT-PCR was sensitive 

enough to detect 1-2 gametocytes per μL of blood (Babiker et al. 1999b). 

 Following this first use of RT-PCR to detect a specific stage of the P. 

falciparum lifecycle, RT-PCR was then use to characterise diversity within the 

gametocyte population (Menegon et al. 2000).  One region of the Pfg377 gene is 

polymorphic between isolates (Menegon et al. 2000); the gene is expressed only 

in later stage gametocytes (Chapter 1, section “1.6.1.1.1”).  The length 

polymorphism observed in PCR products of the variable region allowed mixed 

infections with different genotypes of the same species to be identified (Menegon 

et al. 2000).  Finally, quantitation of gametocyte numbers was accomplished using 

Pfs16 to detect and quantify all sexually-committed stages, and Pfs25 to 

determine the proportion of late stage gametocytes. (Schneider et al. 2004). 

However to date there is no PCR-based assay that would allow quantification of 

male and female gametocytes of P. falciparum. 
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 Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) 4.1.1

Quantitative PCR methods (sometimes and confusingly known as Real-time 

(RT) methods) employ the use of fluorescent labels, which allow the continuous 

monitoring and quantification of levels of the amplicon (the PCR product acquired 

during amplification) (reviewed by Bell & Ranford-Cartwright, 2002).  The 

LightCyclerTM instrument (Roche Applied Science, Germany) records real-time 

fluorescence at specific points during each amplification cycle yielding a 

fluorescence time course.  The level of fluorescence is proportional to the amount 

of amplicon present over time (Bell & Ranford-Cartwright, 2002). 

 

 The Development of qRT-PCR to Detect Gametocytes of Plasmodium 4.1.2

chabaudi 

A quantitative RT-PCR was developed to detect and quantify gametocytes 

of Plasmodium chabaudi (Wargo et al. 2006), but did not allow quantification of 

male and female gametocytes separately.  Drew & Reece (2007) developed a 

cross-genotype qRT-PCR assay to overcome the lack of sex-specific antisera for 

P. chabaudi.  The assay allowed the determination of asexual parasite density, 

gametocyte density and male gametocyte density throughout the infection of the 

rodent malaria, Plasmodium chabaudi.  Using knowledge obtained from a large 

proteome analysis of male and female gametocytes of the rodent malaria P. 

berghei (Khan et al. 2005), a P. chabaudi gametocyte-specific gene (common 

gametocyte gene 1/CG1 or PC302249.00.0) and a P. chabaudi male-specific 

gametocyte gene (male gametocyte gene 1/MG1 or PC000513.00) were 

employed.   The male gametocyte gene, PC000513.00, encodes a putative dynein 

heavy chain protein that may be linked to the production of the male gamete 

flagellum, of which there is a close homologue in P. falciparum (PFI0260c).  

Amplification and quantification (qRT-PCR) of mRNA was used to differentiate 

gametocytes in a blood sample taken from a mouse infected with P. chabaudi 

(Drew & Reece, 2007).  The study was then extended to be genotype-specific so 

that gametocyte density and sex ratios of genetically distinct clones in mixed-

genotype infections could be characterised (Drew and Reece, 2007).  The results 

of this study suggested that gametocyte densities indicated by qRT-PCR were 

highly correlated to those obtained by slide counting and that differential 
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expression of target genes i.e. for determining mixed-genotype gametocyte 

densities, was also claimed to be highly accurate (Drew & Reece, 2007). 

 

 Developing a qRT-PCR Assay to Detect and Quantify Macro- and Micro-4.1.3

Gametocytes of Plasmodium falciparum 

P. chabaudi is able to form mature gametocytes within 24-48 hours, 

whereas in P. falciparum this process takes 10 days and thus it is more important 

to consider the timing of expression of gametocyte-specific and sex-specific genes 

in P. falciparum.  Good candidates for qRT-PCR in P. falciparum have already 

been found and were described earlier; Pfs16 (Chapter 1, section “1.4.2.1.1”) and 

Pfg377 (Chapter 1, section “1.6.1.1.1”). 

A previous attempt to quantify male and female gametocytes in P. 

falciparum was not successful.  Research carried out by Schwank et al. (2010) 

endeavoured to utilise Pfg377 (expressed in a female gametocyte-specific manner 

(Alano et al. 1995a), α-tubulin II (a gene previously thought to be expressed 

specifically in male gametocytes (Chapter 1, section “1.6.1.2.1”), and Pfs16 

(expressed in all gametocytes (Bruce et al. 1994) to quantify the gametocyte sex 

ratios during all stages of in vitro development.  The study demonstrated that α-

tubII and Pfg377 could not be used to quantify gametocyte sex ratios (Schwank et 

al. 2010).  The authors suggested several explanations.  Firstly. α-tubII was found 

to be expressed in both sexes (thereby voiding its potential to quantify only male 

gametocytes).  Secondly, both α-tubII and Pfg377 expression was not constant 

during gametocyte development; Pfg377 was not expressed during stage I and II 

gametocytes whilst α-tubII expression waned after stage IV, which was predicted 

to interfere with conclusive quantification analysis (Schwank et al. 2010).  

However, this information was not known at the time that this project was being 

carried out. 

 

 Selection of Candidate Genes for qRT-PCR Assay– Pfs16 and Pfg377 4.1.3.1

Analysis of gene expression is relative and not absolute, therefore only the 

difference between the expression of Pfs16 and Pfg377 is needed for the purpose 

of this project.  It is known that both Pfs16 and Pfg377 are expressed in the 
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gametocyte stages analysed (at day 10 of culture, stages III-V are present), 

although the timing of expression is not identical.  Pfs16 protein can be detected in 

the P. falciparum gametocyte, using monoclonal antibodies, 30 to 40 hours after 

(sexually-committed) merozoite invasion, making it the earliest known indicator of 

gametocytogenesis (Bruce et al. 1994), whereas Pfg377 protein can be detected 

in macrogametocytes from stage III onwards (Severini et al. 1999).  Transcriptional 

analysis suggests that the pattern of RNA expression follows the same pattern, 

with Pfs16 mRNA detectable in early gametocytes (Young et al. 2005). 

 

 Summary 4.1.4

A molecular method based on qRT-PCR to determine the relative 

abundance of RNA transcripts, in order to quantify macro- and micro-gametocytes 

has been used previously with success in the rodent malaria parasite, Plasmodium 

chabaudi (Drew & Reese, 2007). 

For determining the sex ratio in P. falciparum, two assays were required to 

quantify the number of gametocytes (over asexual parasites present) and then to 

measure the numbers of gametocytes of a specific sex.  The gametocyte-specific 

gene, Pfs16 was chosen based on the fact that it is expressed in both 

macrogametocytes and microgametocytes and that it is the earliest known 

indicator of sex determination (Bruce et al. 1994).  The sex-specific gene chosen 

was Pfg377 and this was due to the fact that it is expressed only in female 

gametocytes (de Koning-Ward et al. 2008).  It is also the marker being used in the 

IFA assay (see Chapter 2) and thus the data from that work would provide a 

comparison for validity of results. 

The qRT-PCR detection system used here utilises SYBR® Green I, which 

non-specifically binds to any double-stranded DNA, including primer-dimers, as 

well as the amplicons for Pfs16 and Pfg377.  Determination of the relative 

abundance of Pfs16 and Pfg377 was proposed to be measured by using melting 

curve analysis in order to determine the sex ratio. 
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 Materials & Methods 4.2

 Isolation of Total RNA 4.2.1

The 5mL of gametocyte culture, grown as stipulated previously (Chapter 2, 

section “2.2.2”), were transferred to individual RNase-free 50mL centrifuge tubes, 

and centrifuged at 1,500 x g for 5 minutes to pellet the cells.  All, but an equal 

volume to the pellet, of the supernatant was removed and the pellet resuspended 

(approximately 500µL to 800µL).  A 1mL volume of Trizol reagent (Invitrogen, UK) 

was distributed into RNase-free microfuge tubes.  For each culture, volumes of 

20µL and 10µL of the resuspended pellet were removed and placed into separate 

microfuge tubes containing the Trizol reagent.  The tubes were incubated at room 

temperature for 5 minutes and then stored at -80°C until RNA extraction. 

 RNA extraction was carried out by adding 200µL of RNase-free chloroform 

(Acros Organics, USA) to each sample, capping the tube, and shaking vigorously 

for 15 seconds.  The samples were incubated at room temperature for 2-3 

minutes.  Samples were then centrifuged at 10,000xg for 15 minutes at 4°C.  The 

aqueous phase (top layer containing the RNA) was removed and put into a new 

RNase-free microfuge tube.  The RNA was precipitated by adding 500µL of 

RNase-free isopropyl alcohol (Acros Organics, USA) to each sample and 

incubated at room temperature for 10 minutes.  Samples were then centrifuged at 

10,000xg for 10 minutes at 4°C.  The RNA formed a pellet on the bottom of the 

tubes.  The supernatant was removed, but carefully to avoid disturbing the pellet.  

The pellet was washed once with 1mL of a 75% solution of RNase-free ethanol 

(Sigma-Aldrich, USA) by vortexing the tube and centrifuging at 7,500xg for 5 

minutes at 4°C.  The ethanol was removed and the RNA pellet allowed to air dry 

for 5-10 minutes.  A volume of 20µL of RNase-free water (MP Biomedicals, LLC, 

USA) was added to the pellet, incubated at 55°C for 10 minutes and the samples 

returned to -80°C until needed. 

 

 Development of qRT-PCR for Analysis of Sex Ratio of Gametocytes  4.2.2

 The qRT-PCR kit used was the Lightcycler® FastStart DNA Master SYBR 

Green I (Roche), chosen based on its successful use by a previous PhD student 

and its suitability for the two-step RT-PCR reaction used here. 
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 Design of Primers for qRT-PCR and Optimisation of Amplification Reaction 4.2.2.1

The genomic coding sequence for the proteins Pfs16 (PFD0310w) and 

Pfg377 (PFL2405c) were obtained from www.plasmodb.org.  Using this 

information, various forward and reverse primers were designed for both Pfs16 

and Pfg377 coding sequences (Table 4.1). 

Table 4.1: Primers Designed and Tested in Standard PCR 

Primer for 
Pfs16 or 
Pfg377 

Forward 
primer name 

Reverse 
primer name 

Forward 
primer 

sequence 

Reverse 
primer 

sequence 

Position 
on gene – 
Forward 
Primer 

Position 
on gene – 
Reverse 
Primer 

Expected 
product size 

Pfs16 Pfs16_For_1 Pfs16_Rev_1 5’ – 
TCTTCGTT
TTGCAAAC
CTGG – 3’ 

5’ – 
TCATCTCCTT
CGTCTCCT – 

3’ 

47 - 67 447 - 467 421bp 

Pfs16 Pfs16_For_2 Pfs16_Rev_1 5’ – 
TCTTCGCT
TTTGCAAA
CCTGG – 3’ 

5’ – 
TCATCTCCTT
CGTCTCCT – 

3’ 

47 – 67 447 – 467 421bp 

Pfg377 Pfg377_For_1 Pfg377_Rev_1 5’ – 
TCGTTGTG
GTCTTCGT
GCTC – 3’ 

5’ – 
ACAAGTTGG
ACGAGTACT
TTCAG – 3’  

2186 – 
2167 

1761 – 
1783 

426bp 

Pfg377 Pfg377_For_2 Pfg377_Rev_2 5’ – 
TGTGTTCC

GTCCTTGT
CTTT – 3’  

5’ – 
AGGGATCTT

CTGCCTGCT
CCT – 3’  

5288 – 
5269 

4882 – 
4902 

407bp 

Pfg377 Pfg377_For_3 Pfg377_Rev_3 5’ – 
ATGATTTA

ATTCACCA
CGCAGTAG 

– 3’  

5’ – 
TTCAATACTT

GATTTAATTT
ATCATCTCC 

– 3’  

1205 – 
1229 

1605 – 
1634  

370bp 

Pfg377 Pfg377_For_4 Pfg377_Rev_4
a 

5’ – 

ACTCCAGA
AGAAGAAG
AGCAAGC 

– 3’  

5’ – 

ATCAGTAAA
AAAAGAATC
GTCATCATA

C – 3’  

1828 – 
1850  

2205 – 
2232  

405bp 

Pfg377  Pfg377_For_4 Pfg377_Rev_4
b 

5’ – 
ACTCCAGA
AGAAGAAG

AGCAAGC 
– 3’ 

5’ – 
TTCATCAGT
AAAAAAAGA

ATCGTCATC 
– 3’ 

1828 – 
1850 

2202 – 
2228 

408bp 

Pfg377 Pfg377_For_5 Pfg377_Rev_5 5’ – 
TAAGGAAG

ATACAAGA
TTTAGGAG
AAGT – 3’  

5’ – 
ATAACGCTT

CAGTATAGT
TTTGTACCA

C – 3’ 

5180 – 
5207 

5583 – 
5610 

434bp 

 

Primer sequences were chosen based on several criteria: 1) the numbers of 

A and T nucleotides was similar to the numbers of G and C nucleotides, 2) the 

http://www.plasmodb.org/
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resulting amplified products would be of similar length, and 3) the melting 

temperatures of the primers were within 4°C of each other.  A GC clamp was used 

at the 3’ end of the primer where possible as this increases the probability that 

nucleotides will bind to the 3’ end prior to primer extension.  The programme NET 

primer (PREMIER Biosoft International, USA) was used to assess the likelihood of 

the primers forming dimers and/or hairpin.  Primers were manufactured by 

Eurofins MWG operon (Germany). 

Polymerase chain reactions were carried out using the following reaction 

mixture specified in Table 4.2, with each reaction set up to a final volume of 20µL. 

Table 4.2: Reagents for Standard PCR of Pfs16 and Pfg377 

Reagent Amount or Final Concentration 

Sterile PCR water (MP Biomedicals, 
USA) 

To make up total reaction volume to 
20µL 

PCR buffer (10x) (Roche, Basel) 1x 

dNTP mix (7.5mM) (Promega, USA) 75µM 

Forward primer (10µM) 100nM 

Reverse primer (10µM) 100nM 

Taq polymerase (5 units µL-1) (Roche, 
Basel) 

2 units 

Template: DNA (from various P. 
falciparum clones) or  

sterile PCR water in the case of a 
control 

2µL 

 

The primers in Table 4.1 were tested under various annealing conditions 

using gradient blocks and multiple PCR runs.  After each PCR, a 10µL sample of 

each reaction was mixed with 1µL of 10x Blue Juice (Invitrogen, USA) gel loading 

buffer and run on a 1.5% agarose gel by electrophoresis along with a 50bp DNA 

ladder (Promega, USA) to check product sizes.  The gel was visualized under UV 

light to ensure that bands were of the appropriate size and in the reactions 

expected. 

 

 Optimising qRT-PCR Reaction 4.2.2.2

 All quantitative reactions were carried out using the LightCycler® FastStart 

DNA Master SYBR Green I kit (Roche, Basel).  Optimisation of the qRT-PCR 

reaction was carried out using genomic DNA from various P. falciparum clones.  
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The MgCl2 concentration had to be re-optimised for the glass capillaries in the 

Lightcycler.  The recommended MgCl2 concentration is between 2mM and 5mM.  

A quantitative reaction was set up as follows (Table 4.3): 

Table 4.3: qRT-PCR Reagents 

Reagent Amount or Final Concentration 

Sterile PCR water To make up total reaction volume to 
18µL 

MgCl2 (25µM) 2mM to 4mM (2.4µL to 7.2µL) 

Primer mix (5µM of each primer) 0.5µM (6µL) 

SYBR Green Master mix 6µL 
 

The contents were then transferred to glass capillaries (Roche Applied 

Science, Basel) and either 2µL of sterile PCR water (control) or 2µL of DNA from 

various P. falciparum clones (DNA template) was added.  Capillaries were then 

centrifuged at 3,000 x g for five seconds in a bench centrifuge and then loaded 

into the Light Cycler 2.0 instrument (Roche Applied Science, Basel).  The samples 

using the following qRT-PCR programme: 

1. Primary Incubation = 95°C for 10:00 

2. Denature = 95°C for 0:30 

3. Annealing = 55°C for 0:20 

4. Extension = 65° for 0:30 

5. Go to step 2, 45 cycles. 

6. Melting Curve Step 1 = 95°C for 0:00 

7. Melting Curve Step 2 = 65°C for 1:00 

8. Melting Curve Step 3 = 95°C for 0:00 

9. Cooling = 40°C for 1:00 

10. end 

 

Using Light Cycler 3 software (Roche), the output from each PCR run was 

analysed to determine how the programme or reagents could be adjusted to 

improve the output.  An optimal quantification should produce a single product 

(represented by a single product peak), with a high level of fluorescence 

(indicating a good amplification), and no primer-dimer (a single product peak).  

Each of these can be assessed using the output of the Lightcycler 3 software. 
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 Preparation of cDNA 4.2.3

 DNase Treatment to Remove DNA 4.2.3.1

 Total RNA (section “4.2.1”) was removed from -80°C and thawed on ice.  

To ensure that only RNA was present for cDNA synthesis, recombinant RNase-

free DNase I, (Roche, Basel) was used to degrade any DNA that remained after 

total RNA extraction.  This was carried out by setting up the following in a sterile 

1.5mL microfuge tube (Table 4.4): 

The mixture was then incubated at 37°C for 20 minutes.  The reaction was 

stopped by adding 0.2 M EDTA (Sigma Aldrich, USA) to a final concentration of 

8mM and heating to 70°C.  Samples were then cooled on ice. 

Table 4.4: DNase I Recombinant Reaction Mixture 

Reagent Final concentration 

Total RNA Up to 50µg 

Incubation buffer (10x) (Roche, Basel) 1x 

DNase I recombinant (10units µL-1) 10 units 

RNasin Ribonuclease Inhibitor 
(Promega, UK) (40units µL-1) 

10 units 

RNase-free water Up to 50µL to 60µL 

  

To ensure that only RNA remained, and the DNAse treatment had removed 

all genomic DNA, a PCR was set up similar to that shown above (section 

“4.2.2.1”).  Four reactions, using Pfs16 primers, were set-up in which the only 

ingredient differing between each sample was the template.  The negative control 

reaction (C1) contained 2µL of sterile PCR water.  One reaction (C2) contained 

only 2µL of the total RNA that had undergone the DNase I step (to ensure that no 

DNA remained).  Another reaction (C3) contained 2µL of total RNA that had 

undergone the DNase I step as well as 2µL of DNA from a P. falciparum clone (to 

ensure degradation of DNase in the heat treatment step).  The final reaction (C4) 

contained 2µL of DNA from a P. falciparum clone only (to ensures that the PCR is 

working). 
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The PCR programme used was denoted SX*SP and contained the flowing 

steps: 

1. Primary Denature = 94°C for 2:00 

2. Denature = 94°C for 1:00 

3. Annealing = 55°C for 0:30 

4. Extension = 65° for 0:40 

5. Go to step 2, 34 cycles. 

6. Final Extension = 65°C for 8:00 

7. 4°C hold 

8. end 

 

After the reaction was complete, a 10µL sample of each reaction was mixed 

with 1µL of 10x Blue Juice (Invitrogen, USA) and run on a 1.5% agarose gel by 

electrophoresis along with a 50bp DNA ladder (Promega, USA) to check product 

sizes.  The gel was visualized under UV light to ensure that bands were of the 

appropriate size and in the reactions expected.  Products of ~400bp indicating 

successful amplification of DNA were expected in reactions C3 and C4, and no 

products were expected in reactions C1 and C2.  The absence of PCR product in 

reactions C2 indicates all DNA was successfully removed in the DNAse step.  The 

presence of a PCR product in reaction C3 indicates successful DNase inactivation. 

 

 First Strand Synthesis of cDNA 4.2.3.2

 First strand synthesis of cDNA step took place only after the absence of 

both DNA and DNase was confirmed in the total RNA.  First strand synthesis was 

carried out in replicates of two (Table 4.5), two for each reverse primer, incubating 

the reverse primer with total RNA that had successfully completed the DNase I 

step. Primers were used at a final concentration of 10µM in a final volume of 11µL. 
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Table 4.5: Initial Annealing of Reverse Primer to RNA 

Tube No. Primer Total RNA 

1 Pfs16 Rev 1 (1.1µL) 9.9µL 

2 (i.e replicate of 1) Pfs16 Rev 1 (1.1µL) 9.9µL 

3 Pfg377 Rev 4a (1.1µL) 9.9µL 

4 (i.e. replicate of 3) Pfg377 Rev 4a (1.1µL) 9.9µL 
 

The samples were heated to 70°C for five minutes then immediately chilled 

on ice for five minutes.  The sample was then centrifuged briefly to collect the 

contents on the bottom of tube. 

 The reagents shown in Table 4.6 were then added to the samples for the 

synthesis of the first strand of cDNA. 

Table 4.6: First-Strand Synthesis of cDNA 

Reagent Final Concentration 

AMV Reverse Transcriptase (Promega, 
USA) 5x Reaction Buffer 

1x 

dNTP mix (75µM) 7.5µM 

RNasin Ribonuclease Inhibitor 
(Promega, UK) (40units µL-1) 

40 units 

Sodium pyrophosphate, prewarmed to 
42°C (0.1M) 

40mM 

AMV Reverse Transcriptase (Promega, 
USA) (10units µL-1) (for a replicate, 
reverse transcriptase was omitted 
and replaced with nuclease-free 

water) 

30 units 

Nuclease-free water to  25µL 

 

The contents were mixed gently by flicking the tube and incubated at 42°C 

for one hour.  After incubation, samples were placed on ice for 10 minutes before 

using them in a PCR reaction to check for cDNA. 

To ensure that cDNA was present in samples, a PCR was set up similar to 

that shown above (section “4.2.2.1”).  A total of 8 reactions were set-up as 

specified in Table 4.7: 



111 
 

Table 4.7: Checking for cDNA Using PCR 

Tube No. Primers  Template 

1 Pfs16 For 1 

Pfs16 Rev 2 

Sterile water 

2 Pfs16 For 1 

Pfs16 Rev 2 

cDNA from tube 1 (see 
Table 4.5 above) 

3 Pfs16 For 1 

Pfs16 Rev 2 

cDNA from tube 2 (see 
Table 4.5 above) 

4 Pfs16 For 1 

Pfs16 Rev 2 

DNA from a P. falciparum 
clone 

5 Pfg377 For 4 

Pfg377 Rev 4a 

Sterile water 

6 Pfg377 For 4 

Pfg377 Rev 4a 

cDNA from tube 3 (see 
Table 4.5 above) 

7 Pfg377 For 4 

Pfg377 Rev 4a 

cDNA from tube 4 (see 
Table 4.5 above) 

8 Pfg377 For 4 

Pfg377 Rev 4a 

DNA from a P. falciparum 
clone 

 

The reaction was carried out using the SX*SP programme (section 

“4.2.3.1”).  After PCR was complete, a 10µL sample of each reaction was mixed 

with 1µL of 10x Blue Juice (Invitrogen, USA) and run on a 1.5% agarose gel by 

electrophoresis along with a 50bp DNA ladder (Promega, USA) to check product 

sizes.  The gel was visualized under UV light to ensure that bands were of the 

appropriate size and in the reactions expected.  The cDNA was stored at -80°C 

until needed. 
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 Results 4.3

 Development of qRT-PCR for Analysis of Sex Ratio of Gametocytes 4.3.1

 Design of Primers for qRT-PCR and Optimisation of Amplification 4.3.1.1

Primers were designed and PCR conditions were optimised to amplify both 

Pfs16 and Pfg377 from genomic DNA in standard (tube) PCR (Figure 4.1).  The 

most suitable primers were determined based on procurement of a product of the 

correct size, ample amount of product on the agarose gel, and whether the 

primers for the different genes were able to amplify the correct product under the 

same conditions.  Based on these criteria, the most suitable primers were 

determined to be: 

 

For Pfs16:  

Pfs16 For 2: 5’ – TCTTCGCTTTTGCAAACCTGG – 3’   

Pfs16 Rev 1: 5’ – TCATCTCCTTCGTCTCCTTCA – 3’  

Product size = 421bp 

 

For Pfg377: 

 Pfg377 For 4: 5’ – ACTCCAGAAGAAGAAGAGCAAGC – 3’  

 Pfg377 Rev 4a: 5’ – ATCAGTAAAAAAAGAATCGTCATCATAC – 3’ 

 Product size = 405bp 
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The programme best suited to amplify both primers was determined to be the 

following and was named SX*SP (section “4.2.3.1”): 

1. Primary Denature = 94°C for 2:00 

2. Denature = 94°C for 1:00 

3. Annealing = 55°C for 0:30 

4. Extension = 65° for 0:40 

5. Go to step 2, 34 cycles. 

6. Final Extension = 65°C for 8:00 

7. 4°C holding 

8. End 

 

Figure 4.1: Results of Amplification of Genomic DNA from P. falciparum Clone 3D7 with 

Primers for Pfs16 and Pfg377.  

Bands of the correct size (about 400bp) were obtained, indicating that the primers successfully 

amplified the desired products from 3D7 DNA. Loading order is displayed beneath the gel image. 

 

Lane 1 = 50bp DNA ladder 

Lane 2 = negative control Pfs16 

Lane 3 = Pfs16 amplification from 3D7 

Lane 4 = negative control Pfg377 

Lane 5 = Pfg377 amplification from 3D7 

 

 Preparation of cDNA 4.3.1.2

Using methods specified (section “4.2.3.1”), successful amplification of DNA 

was present in appropriate reactions (C3 - DNase was inactivated and C4) and no 

1 2 3 4 5 
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products were present in appropriate reactions (C1 and C2 - DNAse step 

successfully removed all DNA).  The cDNA was then made (section “4.2.3.2”) and 

checked with a standard PCR to shown the cDNA was present. 

Six different reactions were set up for PCR reaction and run on a 1.5% agarose 

gel to visualise PCR products (Figure 4.2). 

Figure 4.2: PCR Products Obtained from Gametocyte cDNA 

Amplification of fragments of Pfs16 and Pfg377 genes. The loading of the gel is shown below the 
photograph. Band sizes of the molecular marker are estimates only due to the poor quality of 
image. 

 

Top:      Bottom: 
Lane 1 = 50bp DNA ladder   Lane 8 = 50bp DNA ladder 
Lane 2 = Pfs16 cDNA control (no template) Lane 9 = Pfg377 cDNA control (no template) 
Lane 3 = Pfs16 cDNA template (3D7)  Lane 10 = Pfg377 cDNA template (3D7) 
Lane 4 = Pfs16 no RT control   Lane 11 = Pfg377 no RT control 
Lane 5 = Pfs16 no RT template   Lane 12 = Pfg377 no RT template 
Lane 6 = Pfs16 PCR control   Lane 13 = Pfg377 PCR control 
Lane 7 = Pfs16 3D7 DNA template  Lane 14 = Pfg377 3D7 DNA template 

 

1 2 3 4 5 6 7 

8 9 10 11 12 13 14 
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The first reaction (R1) was a negative control containing 2µL of sterile PCR 

water.  The second reaction (R2) contained 2µL of cDNA as template.  The third 

reaction (R3) contained 2µL of negative control (sterile PCR water) cDNA sample 

that had been made without reverse transcriptase (ensures that the reagents in 

the cDNA step were not creating false positives.  The fourth reaction (R4) 

contained 2µL of cDNA sample that had been made without RT (ensures that 

cDNA was a result of RT and not contamination).  The fifth reaction (R5) was a 

standard PCR control containing no template, but 2µL of sterile PCR water.  

Finally, the sixth reaction (R6) contained 2µL of 3D7 DNA.  Products were 

expected in R2 (indicating that cDNA exists) and R6 (indicating that the PCR is 

working), but no products were expected in any other reaction and this was 

observed (Figure 4.2). However, the PCR products obtained for Pfg377 were not 

as abundant as that obtained for Pfs16. These results indicate that cDNA was 

been successfully constructed using 3D7 total RNA extracted from gametocyte 

cultures. 

 

 Optimisation of qRT-PCR 4.3.1.3

The results obtained for Pfs16 showed that a reasonable product was 

obtained as indicated by the levels of fluorescence (Figure 4.3) and strong bands 

when the Lightcycler product was run on an agarose gel (Figure 4.5).  Melting 

curve analysis of the Pfs16 PCR product showed a single major peak (Tm ~84°C), 

but also a minor peak (Tm ~79°C).  In the negative controls (no DNA), the major 

peak was absent, but the minor peak remained (Figure 4.3).  The minor peak is 

therefore consistent with the formation of primer-dimer artefact, whereas the major 

peak is more likely to be the correct PCR product (Figure 4.3).  When the qPCR 

products were run on agarose gels, a band of the correct size (~400bp) was 

present, but there was also evidence of primer-dimer (Figure 4.5).  The MgCl2 

estimated to give the best results, determined from the Lightcycler output, was 

between 2mM and 3mM. 

Attempts to gradually narrow down this range to find the optimum 

concentration, in order to reduce the level of primer-dimer, indicated that all MgCl2 

concentrations between these values worked well and was unlikely to be 

responsible for primer-dimer.  The conditions of the Lightcycler programme were 
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adjusted (e.g. melting temperatures, pre-incubation temperatures, etc.) in an 

attempt to optimise the reaction, but this was unsuccessful.   

For qRT-PCR analyses, reactions must be optimised to ensure no primer-

dimer as they interfere in determining the relative abundance of each product, 

because SYBR® green binds to all double-stranded products, including primer-

dimer.  However, despite all attempts to optimise the reaction, it was evident that 

the primers needed to be redesigned.  Unfortunately, this was not a viable option 

within the confines of this project due to time constraints and the general difficultly 

in designing primers as a consequence of the high concentrations of A and T 

nucleotides persistence within the P. falciparum genome – or any that could be 

constructed would result in a very large product (>600bp), which would cause 

problems in analysis as longer products are more unstable and intolerant to 

reaction conditions. 

 

Figure 4.3: Melting Curve Analysis of Amplification Products from Pfs16 at MgCl2 

Concentration 2mM to 5mM.  

Image shows the melting temperatures for the Pfs16 product at MgCl2 concentrations from 2mM to 
5mM.  Each line represents amplification with different concentrations of MgCl2 from 2mM to 5mM.  
First peaks indicate dimer formation. Second peaks indicate product. 
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Figure 4.4: Melting Curve Analysis of Amplification Products from Pfg377at MgCl2 

Concentration 2mM to 5mM.  

Image shows the melting temperatures for the Pfg377 product at MgCl2 concentrations from 2mM 
to 5mM. Each line represents amplification with different concentrations of MgCl2 from 2mM to 
5mM. 

 

  

 

The results for amplification of Pfg377 in the LightCycler were more 

encouraging (Figure 4.4), with a consistent single peak on melting curve analysis. 

Analysis of the qPCR product on agarose gels revealed a single band of the 

correct size (Figure 4.5) and no primer-dimer.  Therefore, the amplification of 

Pfg377 was successful, yielding only a single major product peak and ready to use 

for determining transcript abundance. 

Unfortunately, it was not possible to carry out any analysis of sex-specific 

gametocyte numbers because of the failure to optimise Pfs16, which was needed 

in the context of this project to assess the total number of gametocytes with the 

intention of comparing a quantitative molecular method to the more labour 

intensive IFA technique (chapter 2 and chapter 3) in order to determine assay 

accuracy. 
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Figure 4.5: Results of Amplification on the Lightcycler 

Images shows the results of running amplicon products from the Lightcycler reaction above (Figure 
4.4) on a 1.5% agarose gel.  Loaded products are shown below. Band sizes of the molecular 
marker are estimates only due to the poor quality of image. 

 

Top:      Bottom: 
Lane 1 = 50bp DNA ladder   Lane 21 = 50bp DNA ladder 
Lane 2 = Pfs16 control (2mM)*   Lane 22 = Pfs16 control (5mM) 
Lane 3 = Pfs16 XP5^ (2mM)   Lane 23 = Pfs16 XP5 (5mM) 
Lane 4 = Pfs16 X4 (2mM)   Lane 24 = Pfs16 X4 (5mM) 
Lane 5 = Pfg377 control (2mM)   Lane 25 = Pfg377 control (5mM) 
Lane 6 = Pfg377 XP5 (2mM)   Lane 26 = Pfg377 XP5 (5mM) 
Lane 7 = Pfg377 X4 (2mM)   Lane 27 = Pfg377 X4 (5mM) 
Lane 8 = Pfs16 control (3mM)   Lane 28 = 50bp DNA ladder 
Lane 9 = Pfs16 XP5 (3mM) 
Lane 10 = Pfs16 X4 (3mM)   *Indicates concentration of MgCl2 

Lane 11 = Pfg377 control (3mM)   ^Indicates DNA template used 
Lane 12 = Pfg377 XP5 (3mM) 
Lane 13 = Pfg377 X4 (3mM) 
Lane 14 = Pfs16 control (4mM) 
Lane 15 = Pfs16 XP5 (4mM) 
Lane 16 = Pfs16 X4 (4mM) 
Lane 17 = Pfg377 control (4mM) 
Lane 18 = Pfg377 XP5 (4mM) 
Lane 19 = Pfg377 X4 (4mM) 
Lane 20 = 50bp DNA ladder 

 

 Discussion 4.4

The attempt to develop a qRT-PCR assay that could quantify the sex ratio 

in Plasmodium falciparum was unsuccessful.  Although amplification of the Pfg377 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 
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gene from cDNA was successful, it was not possible to optimise the qRT-PCR 

reaction to amplify Pfs16 without primer-dimer artefact.  Attempts to quantify the 

sex ratio in P. falciparum using this method were therefore abandoned.   

A similar method of qRT-PCR to determine the sex ratio of P. falciparum 

was attempted independently by other researchers, and was also unsuccessful 

(Schwank et al. 2010). 

QT-NASBA (quantitative nucleic-acid sequence-based amplification 

assays) have been used to quantify P. falciparum gametocytes (both sexes 

together) at different stages of development (Schneider et al. 2004).  Reverse 

transcriptase PCR has been used in P. chabaudi to successfully detect and 

quantify the total number of gametocytes and the total number of male 

gametocytes, thus, determining the sex ratio (Drew & Reece, 2007).  Therefore, 

applying qRT-PCR to determine the sex ratio in P. falciparum is plausible. 

At the time that the research described here was being carried out, the 

earliest known indicator of gametocyte-commitment was Pfs16, expressed 30 to 

40 hours after merozoite invasion (Bruce et al. 1994).  Another early indicator of 

commitment to gametocytogenesis has been discovered recently that could be 

used instead of Pfs16 to determine the relative numbers of gametocytes in a 

sample.  PF14_0748 codes for an export protein, PHISTa, and is expressed in 

stage I and stage II gametocytes of Plasmodium falciparum (Joice, R., 

Montgomery, J., Milner, D. A., Morahan, B., Narasimhan, V., Seydel, K. B., 

Williamson, K. C., Huttenhower, C., Taylor, T. E., & Marti, M. Molecular 

Approaches to Malaria conference, February of 2012).  The coding region of 

PF14_0748 (1087bp) is larger than that of Pfs16 (474bp) which offers more 

opportunity to find a pair of primers suitable for qRT-PCR analysis.  It may be 

possible to use other genes, since early expression is probably not required for an 

assay that cannot be used until stage III of gametocytogenesis (when Pfg377 

begins to be expressed). 

If time and expenses had permitted, this assay would have been repeated 

using hydrolysis probes or Taqman® probes, which allows the indirect 

quantification of target amplicon after each PCR cycle.  Taqman® probes are non-

extendible hydrolysis probes that bind to a specific target sequence.  Each probe 

possesses a fluorophore at both the 5’ (reporter dye) and 3’ (quencher dye) end, 
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which are released via the activity of DNA polymerase during PCR when the 

enzyme cleaves the probe, separating the reporter from the quencher allowing 

fluorescence of the reporter (Bell & Ranford-Cartwright, 2002).  Due to the specific 

binding activity of the Taqman® probes, and the fact that unbound probes are not 

hydrolysed, fluorescence is proportional to the quantity of the target sequence 

present (Bell & Ranford-Cartwright, 2002).  Using this system to quantify the 

transcripts of Pfs16 would not have been confounded by primer-dimer artefacts as 

Taqman® probes are extremely specific to their target sequence, thus potentially 

this method could have been used to overcome the difficulties confronted during 

primer optimisation. 

Very recently, Petra Schneider and colleagues, at The University of 

Edinburgh, developed a qRT-PCR assay to quantify male and female gametocytes 

of P. falciparum using the female-specific gene Pfs25 (Chapter 1, section 

“1.6.1.1.3”) and the male-specific gene Pfs230p (Chapter 1, section “1.6.1.2.2) 

(Schneider, P., Reece, S., van Schaijk, B., Meaden, C., Ranford-Cartwright, L., 

Gadalla, A. and Babiker, H. Quantification of male and female Plasmodium 

falciparum gametocytes by real-time PCR. Manuscript in preparation).  Assays 

developed to measure transcript levels of these genes were found to accurately 

quantify gametocyte densities as low as 0.3 macrogametocytes/µL and 15 

microgametocytes/µL of blood.  It is noted that the detection limit for male 

gametocytes is much higher than for female gametocytes, which is a consequence 

of low expression of the male-specific mRNA.  This caused a non-linear 

quantification (determines efficiency of reaction), which was calculated from the 

interaction between the log10 parasite density on the Cq (quantification 

cycles/threshold cycles) values, which overall determines that the reaction is not 

sensitive enough to accurate quantify male gametocytes. 

 

 Conclusions 4.5

Previous research suggests that a qRT-PCR based method would be able 

to quantify accurately male and female gametocytes, although there is likely to be 

a sensitivity issue with low levels of male-specific mRNA transcripts.  The 

methodology described in this chapter would have bypassed this problem as only 

quantification of gametocytes and macrogametocytes would have been carried 
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out.  It seems very likely that an assay that accurately quantified male and female 

gametocytes in P. falciparum will be developed in the near future.  However for 

reasons of time, further development of the assay was abandoned and the 

immunofluorescent assay method was used for the remainder of the work 

described in the thesis. 
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5 Chapter 5: QTL Analysis: Identification of Genomic Regions 

Linked to Sex Ratio - PfRos1 and PfRos2 

 Introduction 5.1

The gametocyte sex ratios of a number of progeny clones from the 3D7 x 

HB3 cross (Walliker et al. 1987), described in Chapter, was found to be similar to 

one parent or the other, with no intermediate phenotypes, suggesting that the trait 

could be controlled by a single major locus.  This chapter describes the use of 

phenotyping information, coupled with genetic maps of the progeny clones, to map 

the sex ratio trait to particular regions of the genome, using a linkage analysis 

technique known as quantitative trait locus (QTL) analysis. 

 

 Recombination in Malaria Parasites 5.1.1

 Genetic recombination in malaria parasites occurs during meiosis, similar to 

other eukaryotes.  Meiosis occurs in the only stage of the parasite that is diploid: 

the zygote stage, after fertilisation of a female gamete by a male gamete in the 

mosquito gut (Sinden & Hartley, 1985; Walliker et al. 1987; Ranford-Cartwright & 

Mwangi, 2012).  Cross-fertilisation events between male and female gametes with 

different genotypes results in haploid sporozoites that are recombinant i.e. they 

exhibit combinations of alleles not found in the parental gametes.   

 Experimental genetic crosses enable an easier identification of loci 

controlling a particular phenotype as the genotypes of the parasite clones in the 

cross are already known, and only two possible alleles could occur at any locus 

(i.e. one from either parent) in the haploid progeny.  The progeny that are 

recombinant can be typed for inheritance of genetic markers and a genetic map 

can be created and used for linkage analysis (Ranford-Cartwright & Mwangi, 

2012).  The first experimental laboratory cross of P. falciparum, between the 

genetically distinct clones 3D7 and HB3, resulted in progeny clones with different 

genotypes (and phenotypes) from either parent (Walliker et al. 1987).  To date, 

around 55 independent recombinant progeny clones have been isolated from this 

cross (Walliker et al. 1987; Ranford-Cartwright & Mwangi, 2012; Ranford-

Cartwright, unpublished). 
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 Linkage Analysis – Identifying Genomic Regions Responsible for 5.1.2

Observable Phenotypes 

 Linkage analysis is a powerful technique used to scrutinise genetic crosses 

in order to identify possible genomic regions responsible for an observed 

phenotype.  In the experiments described in this thesis, gametocyte sex ratio was 

characterised in independent recombinants from the laboratory cross between 

genetically distinct clones 3D7 and HB3.  Linkage analysis was then carried out to 

identify genomic regions potentially responsible for the gametocyte sex ratio 

phenotype (Walliker et al. 1987; Ranford-Cartwright & Mwangi, 2012).  The 

analysis highlighted particular areas of the genome commonly inherited by the 

progeny that correlate to the gametocyte sex ratio inherited from the parents.   

 The simplest type of inheritance is where the observed phenotype is 

controlled by a single gene, which is polymorphic between the two parents.  In this 

scenario the haploid progeny of the Plasmodium falciparum cross will inherit either 

the allele from one parent or the other with no intermediates.  Thus in the cross 

used for this project, the progeny will be either 3D7-like or HB3-like for the trait of 

interest with no observable combinations of the trait from both parents.  Any 

variation from parental phenotypes is usually a result of environmental conditions 

(experimental or otherwise) (Ranford-Cartwright & Mwangi, 2012), which can only 

be controlled for by submitting all clones to the exact same environmental 

conditions, as much as experimentally possible. 

 The gene influencing a phenotype of interest is located by scrutinising the 

genomes of the progeny clones to reveal regions that are differentially inherited 

between the two progeny phenotypes, but similarly inherited within the same 

phenotype, and which are inherited from the parent with the same phenotype.  Put 

simply, progeny clones exhibiting a 3D7-like phenotype will inherit a region of the 

genome from the 3D7 parent that is found in all progeny exhibiting the 3D7-like 

trait.  These can then be cross-referenced with the HB3-like progeny in order to 

identify if the region from the HB3 parent is also inherited in the same manner.  

This forms the basis for linkage analysis (Figure 5.1). 
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Figure 5.1: Example of Linkage Analysis – Matching the Phenotype to the Genotype 

X1, X2, X3, and X4 are four example progeny from the cross between parental clones, 3D7 and 
HB3.  Each box represents a marker in the genome; colour corresponds to whether it is 3D7-like 
(blue) or HB3-like (green).  The colour of the clone label represents the phenotype i.e. clone X1 is 
exhibiting phenotype “green” like the HB3 parent clone. Steps for Linkage Analysis: 1) progeny 
clones are allocated into two groups based on inheritance of one or two parental alleles (“blue” for 
3D7; “green” for HB3), 2) phenotype between the groups is scrutinised, 3) genetic markers showing 
a difference between groups indicates a locus controlling the phenotype is nearby or linked to the 
marker (red arrow). 

 

 

This mapping technique relies on the occurrence of informative 

recombination events in the progeny clones (Ranford-Cartwright & Mwangi, 2012).  

Informative recombination events narrow down regions of interest to a 

manageable length to discover genes/Open Reading Frames (ORFs) that may be 

controlling the phenotype.  As P. falciparum exhibits a fairly high recombination 

frequency (section “3.1.2.4”) the number of progeny clones from a genetic cross 

that require phenotyped and genotyped is reduced compared to species that have 

lower recombination activity (Ranford-Cartwright & Mwangi, 2012). 

 

Phenotype 

Genotype 
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 Quantitative Trait Locus (QTL) Analysis 5.1.3

 Not all traits are directly inherited from a single parent, as multiple genes 

could contribute to the variation observed in a phenotype.  In this case, parental as 

well as non-parental phenotypes would be observed, greater, less than, or within 

the range of phenotypic variation observed between the two parents.  In order to 

analyse this type of inheritance, a statistical mapping technique, known as 

Quantitative Trait Locus (QTL) analysis, is used (Geldermann, 1975).  Quantitative 

traits refer to heritable phenotypes that are determined by both genetic (more than 

one gene) and environmental factors (Lynch & Walsh, 1998).  Variations in these 

traits are qualitatively consistent with the Mendelian theory of genetics, but it is 

difficult to determine how much of the observable variation is due genetic factors 

and how much is due to environmental factors (Lynch & Walsh, 1998).  

Development of genomic maps (like those for P. falciparum) aid molecular-marker-

based procedures, which can be used in combination with available statistical 

methods for the mapping and characterisation of QTLs (Lynch & Walsh, 1998). 

 

 Genetic Maps for Linkage Analysis 5.1.4

Mapping a gene requires the phenotyping of parents and progeny clones and 

using this information along with linkage analysis techniques to identify genomic 

regions responsible for the phenotype of interest.  Previously, the genomes of 

3D7, HB3, and 32 of their progeny were typed using parental line markers 

(Walliker et al. 1987) (shown in Table 3.1).  Further progeny clones have since 

been isolated from the original uncloned material (Ranford-Cartwright & Baton, 

unpublished) and further genetic analysis has been carried out to determine which 

progeny clones are genetic recombinants.  Initial genotyping of the parental and 

progeny clones was performed using nine polymorphic markers on different 

chromosomes (microsatellites and polymorphic antigen genes) to identify 55 

independent recombinants, defined as having different combinations of these 

markers.  Twenty independent recombinant progeny clones were selected at 

random for genetic mapping.  The first set of progeny clones were mapped using 

Affymetrix molecular inversion probe SNP arrays developed for P. falciparum 

containing about 10,000 SNP markers (Takala-Harrison et al. 2013), of which 36% 

(2,870 markers) were found to be polymorphic between 3D7 and HB3 (Ranford-
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Cartwright  & Mwangi, 2012).  These chips were initially designed for typing the 

HB3 x Dd2 cross, but gave good coverage for mapping 3D7 x HB3 progeny, 

allowing the construction of a dense map for techniques such as linkage analysis 

(Ranford-Cartwright and Mwangi, manuscript in preparation).  Eighteen of the 3D7 

x HB3 progeny clones have also been sequenced using next-generation Illumina 

sequencing technology at the Wellcome Trust Sanger Institute in Hinxton 

(Ranford-Cartwright et al., manuscript in preparation).  The data from both 

analyses was combined to generate a genetic map of twenty-one progeny clones 

with nearly 8000 SNP markers (Ranford-Cartwright, unpublished). This map was 

used for the QTL analysis described in this chapter. 

 

 Use of Linkage Analysis to Locate Genes of Interest 5.1.5

 Linkage analysis has previously been used to locate regions of the genome 

and individual genes controlling traits of interest in Plasmodium.  One area of 

malaria research where genetic linkage analysis studies have been used often and 

with much success is to identify genes responsible for drug resistance.  The first of 

such studies was the investigation into genes controlling chloroquine resistance. 

 

 Linkage Analysis of Chloroquine Resistance 5.1.5.1

 A second experimental genetic cross to investigate chloroquine resistance 

was performed between parasite clones HB3 (chloroquine-sensitive) and Dd2 

(chloroquine-resistant), and 16 recombinant progeny clones were obtained and 

analysed (Wellems et al. 1991).  Half of the progeny clones exhibited chloroquine-

resistant characteristics identical to those present in the Dd2 parent.  The other 

half of the progeny clones displayed a level of chloroquine sensitivity that was 

consistent with that observed in the HB3 parent.  As no progeny possessed a 

phenotype that was non-parental or could be considered intermediate to that of 

both parents, a single-locus was presumed to govern the rapid-efflux mechanism 

that conveyed chloroquine-resistance (Wellems et al. 1991). 

 Linkage analysis was carried out using 85 markers for restriction fragment 

length polymorphisms (RFLP) to determine the inheritance patterns of the 14 

parasite chromosomes in the 16 recombinant progeny (Wellems et al. 1991).  
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Comparing the inheritance of each RFLP marker to that of chloroquine-resistance, 

Wellems et al. (1991) identified a 400kb region on chromosome 7 that could be 

responsible for the rapid-efflux, chloroquine-resistance. 

 The region on chromosome 7 linked to chloroquine-resistance contained 

approximately 80-100 genes (Su et al. 1997).  The authors were able to narrow 

down this region further by identifying additional chromosomal crossovers using 

microsatellite markers.  Using this method, five meiotic crossovers were classified 

at different locations in the initial 400kb segment on chromosome 7, further 

narrowing the gene(s) responsible for chloroquine-resistance to a 36kb region 

containing only eight potential genes (Su et al. 1997). 

 Initial examination of the eight genes implicated the cg2 gene: the gene was 

polymorphic between the two parents HB3 and Dd2, and the expression of the 

gene was evident in the relevant stages; late ring to early trophozoite stage (Su et 

al. 1997).  Localisation of the CG2 protein was also consistent with the site of 

chloroquine-uptake; primarily at the peripheral membrane and in the food vacuole 

linked to hemozoin where heme polymerisation inhibition via chloroquine occurs 

(Su et al. 1997).  However genetic  modification resulting in allelic exchange of the 

cg2 allele in a chloroquine resistant parasite line with the gene from a chloroquine 

sensitive parasite did not alter the parasites susceptibility to chloroquine (Fidock et 

al. 2000b).  However, further investigation drew attention to a highly-fragmented 

gene not detected in the previous studies, now named pfcrt, located about 10kb 

from cg2 (Fidock et al. 2000a).  Pfcrt is a 3.1kb coding region with variation in eight 

codon positions between parental clones HB3 and Dd2.  Sequence analysis 

showed that point mutations in pfcrt were directly associated with chloroquine 

resistance in Plasmodium isolates from Africa, South America, and Asia (Fidock et 

al. 2000a). 

 PfCRT is a transmembrane protein that localises to the digestive vacuole, 

previously stated to be regarded as the side of chloroquine activity (Fidock et al. 

2000a).  Chloroquine susceptible lines were successfully transfected with pfcrt 

alleles producing resistant parasites capable of exposure to levels of chloroquine 

normally sustained by chloroquine-resistant lines (Fidock et al. 2000a).  These 

experiments by Fidock et al. (2000a) also resulted in the observation that a single 

PfCRT mutation , a change at codon 76 from lysine to threonine (Pfcrt K76T), was 

responsible for the chloroquine-resistant phenotype. 
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 The final proof of the role of Pfcrt in chloroquine-resistance phenotype 

puzzle was allelic exchange, in which the pfcrt allele of a chloroquine-sensitive line 

was replaced with the allele from a chloroquine-resistant line, and the resultant 

parasites were shown to be resistant to the drugs (Sidhu et al. 2002). 

 The research into chloroquine resistance demonstrates the effectiveness of 

genetic linkage analysis.  The research illustrates step-by-step the identification of 

regions conveying the phenotype of interest, the narrowing down of these regions 

to possible ORFs, the use of expression profiles and polymorphic variation to 

confirm that the genes are expressed in the relevant parasite stages and match 

the patterns of inheritance, respectively, and the final proof that the gene(s) 

identified confer the expect phenotype using methods like allelic exchange. 

 

 Quinine Resistance 5.1.5.2

 A further QTL analysis of the inheritance of quinine resistance in progeny 

from the HB3 x Dd2 cross was carried out by Ferdig et al. (2004).  The Dd2 parent 

exhibited characteristics indicating it was resistant to quinine, one of the oldest 

antimalarial drugs, whereas the HB3 parent was quinine sensitive (Ferdig et al. 

2004).  Therefore, this cross was once again utilised to determine genetic loci 

responsible for a drug resistant trait.  A total of 35 progeny from the HB3 x Dd2 

cross were typed for quinine resistance and scanned for association between the 

drug resistance phenotype and genetic markers (Ferdig et al. 2004).  The result of 

the QTL analysis revealed that the majority of the phenotype was attributed to 

regions on chromosome 13 (explaining 35% of the variation observed in the 

phenotype), chromosome 7 (30% of the variation), and chromosome 5 (10.5% of 

the variation); the loci interacted in an additive fashion (Ferdig et al. 2004).  Two of 

these named regions contained genes previously identified as contributing to drug 

resistance: pfcrt (chromosome 7) and pfmdr1 (chromosome 5) (Ferdig et al. 2004).  

However the region identified on chromosome 13 had not previously been linked 

to a drug-resistant phenotype.  The gene of interest on chromosome 13 was 

eventually identified as pfnhe-1, a sodium-hydrogen exchanger , but its 

association with quinine resistance had not been investigated at that stage (Ferdig 

et al. 2004).  In addition to these regions, interactions between loci on 

chromosomes 6 and 9, and the regions previously mentioned on chromosomes 7 
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and 13 were identified (Ferdig et al. 2004).  Though various theories were 

suggested to result from these interacting loci, including parasite fitness and 

growth, no evidence yet exists to explain the effect that these interactions have on 

quinine resistance (Ferdig et al. 2004). 

 

 Summary 5.1.6

 The overall aim of the work described in this chapter was to identify the loci 

in the genome that influence of gametocyte sex ratio in Plasmodium falciparum.  

Previous research has demonstrated how genetic linkage analysis and QTL 

analysis can be a useful tool in identifying genomic regions likely to convey 

phenotypes of interest.   

The first step in the analysis was the characterisation of the gametocyte sex 

ratio exhibited by each progeny clone, which was described in Chapter 3. 

To allow for the possibility of multiple genes involved in determining the sex 

ratio, a quantitative trait locus (QTL) analysis was performed, using high density 

genetic maps of the progeny clones developed previously. Significant QTL were 

investigated further identify open reading frames/genes that could be contributing 

to this phenotype. 

 

 Materials & Methods 5.2

 Overview of QTL Analysis 5.2.1

 The methodology used for QTL mapping was as recommended and 

described by Broman & Sen (2009).  First the sex ratio data, obtained from the 

experiments laid out in Chapter 3, were compiled into an excel file together with 

the map data for the parental clones and the progeny clones, which had been 

generated from a combination of the Affymetrix SNP array data and the SNP data 

from whole genome sequencing.  Sex ratio data were obtained for 14 progeny 

clones in Chapter 3, but mapping data were not available for three clones (XP55, 

XP26, and X48) because the sequencing failed for these clones, and they could 

not be re-sequenced in the time available for this work. 
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The second step was to check the data for any errors.  Phenotyping was 

assumed to be accurate, reflecting an average of three independent replicates.  

Potential errors were more likely to be within the genetic map itself and therefore it 

was checked for genotyping errors and anomalies in marker order. 

The third, and final step used here, for QTL analysis was to perform a 

genome scan using a single-QTL model to detect regions of the genome that 

correspond to phenotype and the pattern of inheritance i.e. there are eight progeny 

clones with a 3D7-like sex ratio thus the programme cross-references inheritance 

of regions/loci that were common to all eight.  Using permutation tests, the 

statistical significance of each genomic region highlighted was obtained, as well as 

the intervals of the genomic region of interest. 

 

 Single QTL Analysis 5.2.1.1

 The analysis was performed using R/qtl package (Broman et al. 2003) 

running within R version 2.15.2 (R Core Team, 2013).  The map and phenotype 

data was imported into the R/qtl from the excel file saved in a comma-separated 

(csv) format.  The data were analysed as a backcross. 

 

 Data Checking and Genetic Map Construction 5.2.1.1.1

Markers with identical genotypes (duplicate markers) were identified and  

removed.  Such markers typically fall within a “recombination block” inherited as a 

single unit in all progeny, and so provide no additional information, and their 

presence slows down later analyses.  Although marker order was set according to 

the latest version of the 3D7 genome (Plasmodb v3/Genedb v9), there were still 

likely to be errors, and so the marker order was redefined based on the genetic 

data.  Marker order was checked by calculating recombination fractions for each 

pair of markers (r) and LOD score for the test of r=1/2.  The available genotype 

data was used to re-estimate the inter-marker distances of the genetic map 

assuming a genotyping error rate of 0.1%; expanded areas of the map indicate 

potential mis-positioning of markers, either on the wrong chromosome or in the 

wrong order on one chromosome. Marker order for problematic chromosomes was 
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checked using the ripple function with a window size of 7 and the marker order 

producing the lowest number of crossover events was selected. 

Genotyping errors were identified and removed by calculating the error LOD 

scores of Lincoln and Lander (1992), where a LOD score is calculated for each 

individual at each marker; large scores indicate likely genotyping errors, with a 

threshold LOD set at 4.0. 

 

 QTL Mapping Via a Single QTL Model 5.2.1.1.2

 QTLs were mapped using the single-QTL genome scan utilising the EM 

algorithm (expectation-maximization algorithm).  The conditional genotyping 

probabilities were calculated using a 2cM grid on which the probabilities will be 

calculated (density of the interval mapping), and a genotyping error rate of 0.1%. 

Interval mapping was performed using the EM algorithm.  LOD scores above 3 

were considered significant.  A secondary scan to search for additional QTL was 

carried out by controlling for the primary QTL using the function addqtl. 

 

 Interval Estimates of Location of QTL 5.2.1.1.3

 The estimated location of significant LOD was calculated using both LOD 

support intervals (1.5-LOD support) and Bayesian credible intervals (95%).  Both 

provide a maximum likelihood estimate of the QTL location, and if necessary this 

was expanded to the closest flanking markers to obtain an estimate of the size of 

the QTL region.  Improved estimates of the location of the QTL were obtained 

using the function refineqtl. 

 

 Location of QTL within the Genome Sequence 5.2.1.1.4

The location of the QTL in the genome was then identified by locating the 

position of the flanking markers within the sequence information for clone 3D7, to 

give a location (basepairs) of the start and end of the QTL. 
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 Estimation of QTL Effect 5.2.1.1.5

The effect of a QTL is the difference in phenotype averages among the QTL 

genotype groups.  QTL effects can also be characterised as the proportion of the 

phenotypic variance explained by the QTL.  Estimates of QTL effects were 

obtained using the function effectplot for the closest marker.  Estimates of the 

genotype-specific phenotype averages are obtained using the multiple imputation 

method, and the standard errors include the imputation error.  In the case of  

multiple QTLs, additive and interactive effects were investigated using the function 

fitqtl to obtain estimates of the effect of combinations of QTL on the 

phenotype. 

 

 Bioinformatic Analysis of Genes within the QTL 5.2.2

 The number and identify of the open reading frames (genes) within the 

region of identified QTL was taken from data on the Plasmodb database (version 

9.3) based on the genome of parasite clone 3D7 (www.plasmodb.org).  Data on 

the timing of expression during the lifecycle, collated on Plasmodb from various 

sources as used to identify genes expressed prior to gametocyte formation.  Data 

from proteomic (Florens et al 2002; Silvestrini et al. 2010) and transcriptomic 

including microarray and RNAseq (Le Roch et al. 2003; Bozdech et al. 2003; 

Llinás et al. 2006; Lopez-Barragán et al. 2011; Bártfai, et al. 2010; Otto et al. 

2010) was considered as evidence of expression.  As indicated by previous 

research, sexual commitment appears to be determined during the ring-stage or 

the trophozoite stage of the sexually committed schizont (Smith et al. 2000).  

Thus, stages of interest include the ring-stage, trophozoites and schizonts.  

However, early gametocyte stages were also included as development of 

gametocyte sex is not clearly visible until stage III of gametocytogenesis (Sinden, 

1982) and therefore genes potentially linked to sex ratio could still be active during 

these early development stages of the gametocyte. 

 

 Polymorphisms between Clones 5.2.3

All clones used for QTL mapping were sequenced using next-generation 

Illumina sequencing  (NGS) technology at the Wellcome Trust Sanger Institute in 

http://www.plasmodb.org/
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Hinxton (Ranford-Cartwright et al., manuscript in preparation) (with the exception 

of progeny clone XP25), which was used in combination with an Affymetrix 

molecular inversion probe SNP array (Takala-Harrison et al. 2013) to generate the 

genetic map with nearly 8000 SNP markers used in the QTL analysis (section 

“5.2.1”).   

The region highlighted by QTL analysis was scrutinised for synonymous and 

non-synonymous mutations between clones in the SNPs from the NGS map.  

These mutations were used to further narrow down the coding region linked to 

gametocyte sex ratio trait by indication of informative recombination events as well 

as the possibly of directly linking the mutations in the coding region to the 

observed phenotype. 

 

 Results 5.3

 Genetic Map Construction 5.3.1

The initial dataset had information from 7882 polymorphic SNPs throughout 

the genome in 13 parasite clones (11 progeny and two parent clones), with marker 

numbers evenly spread over the 14 chromosomes in proportion to chromosome 

length, ranging from 165 markers on chromosome 1 to 1148 markers on 

chromosome 14.  Following removal of duplicate markers, the number of useful 

markers reduced to 505 markers, ranging from 13 markers on chromosome 1 to 

59 on chromosome 14.  Five further markers were removed because of likely 

genotyping errors.  Marker order was revised using ripple on chromosomes 7, 8 

and 12.  The final map used for QTL analysis is shown in Figure 5.2. The 

recombination fractions for markers within this map did not indicate any further 

problems  with marker location (Figure 5.3). 
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Figure 5.2: Plasmodium falciparum Genetic Map 

Each horizontal line indicates a marker, which is characterised by the chromosome that it lies on 
and its genetic location in cM. The map contains 500 markers and is based on inheritance in 13 
clones. 

 

 

 QTL Mapping Via a Single-QTL Model 5.3.2

 QTLs were mapped using the scanone function, which performed a 

single-QTL genome scan using the EM algorithm (expectation-maximization 

algorithm).  The results of this scan revealed a number of QTLs shown in Table 

5.1and Figure 5.4. 

Table 5.1: Summary of LOD scores from QTL analysis above the significance threshold of 
LOD=3. 

Marker name Chromosome position (cM) LOD score 

SNP_10K_10_1100584 10 367.9 8.78 

c9.loc52 9 86.4 5.68 

c8.loc32 8 62.8 5.08 

c13.loc58 13 102.3 4.84 

c2.loc108 2 146.7 4.83 

c11.loc244 11 290.0 4.55 
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Figure 5.3: Pairwise Recombination Fractions and LOD Scores 

Plot of recombination fractions (upper left) and LOD scores (lower right) across the genetic map 
(chromosomes 1 to 14).  Here we ensure that the lower right portion of the graph contains no red, 
orange, or yellow, which would indicate that particular markers are linked.  Here the lower right of 
the graph is clean.  If linked markers were highlighted, this would indicate that portions of the map 
were wrong and sections were potentially swapped. 

 

 

 Single-QTL analysis implicates several regions of the region on 

chromosomes 2, 8, 9, 10, 11, and 13 involved in the sex ratio trait.  The largest 

with a LOD score of 8.8, was observed on chromosome 10 (Figure 5.4). 
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Figure 5.4: Single-QTL Analysis Results for Sex Ratio 

The LOD score for each marker is plotted against marker position. A LOD score above 3 is 
considered significant . 

 

 

 Chromosome 10 QTL: PfROS1 5.3.3

The QTL with the highest LOD core, on chromosome 10, was named 

PfROS1 (Plasmodium falciparum Ratio of Sex 1). 

 

 Phenotypic Effect of the PfROS1 Locus 5.3.3.1

 The locus was found to explain 95.5% of the total variation observed for the 

sex ratio trait (p=2.04e-10).  This indicates that, despite the significant LOD scores 

obtained for the other regions, PfROS1 is likely to contain a major contributor to 

the sex ratio phenotype.  The estimated effect of PfROS1 on the sex ratio is -8.58 

± 0.56.  An effect plot of this can be seen in Figure 5.5. 
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Figure 5.5: Effect Plot – PfROS1 

The effect plot estimating the effect of the two alleles of PfROS1 on gametocyte sex ratio, shown 
here as percentage females. Parasite clones with the 3D7 allele of PfROS1 have a more female-
biased sex ratio than those with the HB3 allele at this qtl. The estimated effect that PfROS1 has on 
sex ratio is -8.58 ± 0.56. 

 

 

 Location of the PfROS1 QTL 5.3.3.2

 The exact location of PfROS1 is shown in Figure 5.6. 

The location of PfROS1 was refined further and confidence intervals 

calculated using two methods, LOD intervals and Bayesian intervals.  The 

locations using both methods are shown in Table 5.2.  Using these genetic 

locations, the nearest markers and thus the kb location of PfROS1 were identified. 

The LOD interval estimates suggest the locus spans approximately 36kb. 
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Figure 5.6: Location of PfROS1 in Plasmodium falciparum Genetic Map 

The location of PfRos1 is shown as “Q1”. 

  

 

Table 5.2: Maximum likelihood estimates of the PfROS1 QTL location.  

The intervals were calculated using a 1.5-LOD support interval (LOD interval) or 95% Bayesian 
credible intervals (Bayesian intervals). The flanking and central markers for the QTL are shown, 
with their position in the genetic map in cM. 

Method Marker 
Position 

(cM) 
LOD score 

Closest physical 
marker 

Location in kb 
on chr 10 

LOD 
intervals 

c10.loc112 369.324 13.10973 
SNP_10K_10_11005

84 
1100.586 

c10.loc114 371.324 16.97771   

c10.loc116 373.324 14.07611 
SNP_10K_10_11357

13 
1135.715 

Bayesian 
intervals 

c10.loc114 371.324 16.97771 
SNP_10K_10_11005

84 
1100.586 

 

 Secondary Scan To Identify Additional QTL 5.3.4

A secondary scan was performed, controlling for PfROS1, in order to 

identify other regions of the genome that could be contributing to the sex ratio trait.  

The result of this step is show in Table 5.3 and Figure 5.7.  The map shows two 

potential QTLs, the first on chromosome 8 (LOD score = 2.3) and the second on 

chromosome 14 (LOD score = 4.0).  As a LOD score of 2 is only suggestive, whilst 



139 
 

a LOD score of 3 is indicative, only the QTL on chromosome 14 was considered to 

be significant. 

Table 5.3: Summary of LOD scores from the secondary scan QTL analysis above the 
significance threshold of LOD=2. 

Marker name Chromosome position (cM) LOD score 

c8.loc164 8 194.8 2.309 

c14.loc176 14 194.1 3.971 

 

Figure 5.7: Secondary Scan Controlling for PfROS1 – Sex Ratio 

The LOD score for each marker is plotted against marker position. A LOD score above 3 is 
considered significant . 

 

 

 After controlling for the effect of PfROS1 on chromosome 10, two significant 

observations can be made.  The first is that the other regions highlighted in the 

initial analysis (QTLs on chromosomes 2, 9, 11, and 13) are no longer significant.  

This could be explained by epistatic interactions between the region on 

chromosome 10 and the regions highlighted on chromosomes 2, 9, 11, and 13.  

The second observation is that QTLs on chromosomes 8 (LOD score = 2.3) and 

14 (LOD score = 4.0) are highlighted.  A LOD score of 2 is only suggestive of a 

QTL, whilst a LOD score of 3 or more is indicative, thus only the LOD on 

chromosome 14 is investigated here. 
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 Chromosome 14 QTL: PfROS2 5.3.4.1

 The identified region on chromosome 14 was denoted PfROS2 

(Plasmodium falciparum Ratio of Sex 2).  The location of PfROS2 was refined 

further, and confidence intervals calculated as in section for PfROS1 (section 

“5.3.3.2” and Table 5.2) 

Table 5.4: Maximum likelihood estimates of the PfROS2 QTL location.  

The intervals were calculated using a 1.5-LOD support interval (LOD interval) or 95% Bayesian 
credible intervals (Bayesian intervals). The flanking and central markers for the QTL are shown, 
with their position in the genetic map in cM. 

Method Marker 
Position 

(cM) 
LOD 
score 

Closest physical 
marker 

Locati
on in 
kb on 
chr 14 

LOD 
intervals 

c14.loc170 188.1230 11.34016 
SNP_10K_14_99

5302 
995.36 

SNP_10K_14_995302 190.2997 14.58635   

SNP_NGS_14_997101 190.2997 14.58635   

c14.loc174 192.1230 11.66082 
SNP_NGS_14_99

7101 
997.15

9 

Bayesian 
intervals 

c14.loc172 190.1230 14.28598 
SNP_10K_14_99

5302 
995.36 

SNP_10K_14_995302 190.2997 14.58635   

SNP_NGS_14_997101 190.2997 14.58635 
SNP_NGS_14_99

7101 
997.15

9 
 

Both Bayesian and LOD interval methods gave the same location for 

PfROS2 as a ~2kb locus lying between 995.36kb and 997.159kb on chromosome 

14. 

 

 Phenotypic Effect of the PfROS2 Locus 5.3.4.2

The genomic region, PfROS2, was found to explain 32.6% of the total 

variation observed for the sex ratio trait (p<0.05).  However, this percentage of 

control over the total variation was calculated without the effect of PfROS1, thus its 

actual contribution of the phenotype is likely to be much smaller when these QTL 

are combined into a single model (see below). The estimated effect of PfROS2 on 

the sex ratio is -4.65 ± 2.02. 
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 Combined Phenotypic Effect of the PfROS1 and PfROS2 Loci 5.3.4.3

 Bringing these two genomic regions together, the effect of both PfROS1 

and PfROS2 on the sex ratio trait is shown in Figure 5.8.  PfROS1 on 

chromosome 10 contributes significantly to the phenotype with an estimated effect 

on the phenotype of -8.58 ± 0.56.  PfROS2 on chromosome 14 contributes less to 

the phenotype with an estimated effect as -4.65 ± 2.02 (and a very large standard 

error). 

PfROS1 and PfROS2 have a combined effect of 99.9% on the observed 

sex ratio phenotype (p<0.05).  When both regions are considered in the model, the 

estimated effects of PfROS1 on sex ratio was -10.15 ± 0.49, whereas PfROS2 has 

an estimated effect of 2.14 ± 0.45.  However, PfROS1 has a greater contribution to 

the observed variation in the phenotype (95.5%), whilst PfROS2 probably plays a 

minor or modulatory role in the sex ratio trait. 

Figure 5.8: Effect Plot Estimating the Effect of PfROS1 and PfROS2 on Gametocyte Sex 
Ratio 

Gametocyte sex ratio shown here as percentage females. Circles represent the mean percentage 
of females 

 

 

PfROS2 

PfROS1 
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Parasites with the 3D7 allele of PfROS1 have a greater percentage of 

females gametocytes compared to parasites with the HB3 allele at this QTL 

(Figure 5.9).  In parasites where PfROS1 was inherited from the 3D7 parent and 

PfROS2 was inherited from the HB3 parent (two parasite clones, X44 and X12), 

there is a minor yet notable increase in the percentage of females i.e. slightly more 

female bias compared to parasites with 3D7 alleles at both loci (Figure 5.9). 

 

 Bioinformatic Analyses of Genes Within the QTL 5.3.5

The genomic regions identified in the QTL analysis, were examined for the 

number of open reading frames (genes) in the full genome sequence of clone 3D7 

available on www.plasmodb.org.  The expression profiles of the genes were then 

scrutinised to indicate likely candidates that would influence for sex ratio. 

 

 Criteria for Prioritization of Candidate Genes Within the QTLs 5.3.5.1

 QTL mapping of a locus usually identifies tens to hundreds of candidate 

genes, and the next step is to prioritise the genes for functional testing.  The first 

stipulation for narrowing down genes located in PfROS1 that are likely candidates 

for control of gametocyte sex ratio is expression during the correct stage.  The life-

cycle stages of P. falciparum considered appropriate were limited to those prior to 

gametocyte formation and also possibly those expressed in very early gametocyte 

stages.  The reasoning behind this stipulation is a result of previous research, 

which indicated that sex commitment is likely to be determined during the ring-

stage or the trophozoite stage of the sexually committed schizont (Smith et al. 

2000).  Therefore, likely stages of interest linked to gametocyte sex ratio include 

the ring-stage, trophozoites and schizonts.  Early gametocyte stages are also 

included due to the fact that the sex of a gametocyte is not clearly visible until 

stage III of gametocytogenesis (Sinden, 1982) and therefore there is a possibility 

that genes linked to gametocyte sex ratio are expressed during these early 

development stages of the gametocyte. 
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Figure 5.9: Phenotype Plot for PfROS1 and PfROS2 

The black circles represent the percentage female values exhibited by each clone.  The single red 
circle indicates an imputed genotype for XP25 (this clone has only been typed using SNP chip 
markers, not the NGS map, thus much of the genetic information is missing for this particular 
clone).  Bars represent the mean and ± 1 SE. 

 

 

The next step option is to analyse gene function, firstly, to see if the gene 

has a function that has already been linked to either gametocytogenesis or sex 

determination, and secondly to try and find a link between the known function and 

what role the gene is likely to play in controlling the gametocyte sex ratio 

phenotype. 

 

 Genes Within PfROS1 5.3.5.2

The 36kb locus falling between 1100.586 and 1135.715 kb on chromosome 

10 of the 3D7 genome contains 10 open reading frames, with gene IDs 1026100 

to 1027100 (Figure 5.10). A summary of genes located in the region of QTL 

PfROS1 is shown in Table 5.5. 

 

 

3D7 like PfROS1 
3D7 like PfROS2 

3D7 like PfROS1 
HB3 like PfROS2 

HB3 like PfROS1 
HB3 like PfROS2 
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Figure 5.10: Genes within the PfROS1 QTL on Chromosome 10.  

The gene IDs are as described in Plasmodb.org v3. The region included in the QTL locus (1.5 LOD 
support range) are shown by the grey bar below the figure. 

 

                           

 

 Genes Within PfROS2 5.3.5.3

 PfROS2 was a very small QTL (Figure 5.11) falling in a 2kb region on 

chromosome 14, between nucleotides 995360 and 997159 bp.  This region 

contains only a single gene, PF3D7_1425600, which codes for a zinc-finger 

protein.  The region of the chromosome immediately downstream of 

PF3D7_1425600 has no identified  genes for >6kb. 

 Gene transcripts of PF3D7_1425600 are evident in all asexual lifecycle 

stages. Protein expression profiles from microarray and RNA seq data 

(plasmodb.org) indicate that although the transcripts are found at all relevant 

stages, they are more predominant in stage V gametocytes. 

Figure 5.11: Genes Within the PfROS2 QTL on Chromosome 14.  

The gene IDs are as described in Plasmodb.org v3. The region included in the QTL locus (1.5 LOD 
support range) are shown by the grey bar below the figure. 
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Table 5.5: Genes of Interest Within the PfROS1 QTL on Chromosome 10 

The Gene IDs are numbered according to Plasmodb version 9.0. Expression data is from 
www.plasmodb.org and is based on proteomics and transcriptomic data. Candidate genes, based 
on criteria described in the text. R = Ring; T = Trophozoite; S = Schizont; G = Gametocyte 

Gene DB 
Genomic 

location (bp) 
Function 

Expression? 
Candidate? 

R T S G 

PF3D7_1026100 
1,101,818 – 
1,103,158 

unknown function Y N N Y Y 

PF3D7_1026200 
1,103,464 – 
1,105,230 

unknown function Y Y Y Y Y 

PF3D7_1026300 
1,106,086 – 
1,109,451 

unknown function Y Y Y Y 

N – expression 
levels very high 

in ookinetes 
stages 

PF3D7_1026400 
1,109,794 – 
1,111,605 

WD-repeat 
protein 

Y Y Y Y 

Y – but unlikely 
as high 

expression in 
ookinetes stages 

PF3D7_1026500 
1,112,423 – 
1,112,635 

unknown function N Y Y Y 

N – due to low 
levels of 

expression in 
relevant stages 

compared to 
ookinetes 

PF3D7_1026600 
1,113,495 – 
1,118,573 

unknown function Y Y Y Y 

N – expression 
predominately in 
late trophozoites 
and ookinetes 

PF3D7_1026800 
1,122,962 – 
1,124,037 

40S ribosomal 
protein S2B 

Y Y Y Y 

Y – expression is 
prevalent in ring 
and trophozoite 

stages 

PF3D7_1026900 
1,125,283 – 
1,126,167 

biotin-acetyl-
CoA-carboxylase 

Y Y Y Y 

N – predominate 
expression in 

stage V 
gametocytes 

PF3D7_1027000 
1,126,523 – 
1,131,958 

unknown function Y Y Y Y Y 

PF3D7_1027100 
1,133,838 – 
1,136,156 

SSU rRNA 
processing 

stabilising factor 
Y Y Y Y 

Y – though 
expression dips 

at schizont stage 

 

 Prioritisation of Candidate Genes 5.3.5.4

 To prioritise the genes within PfROS1 for future functional analysis, the 

criteria described in section 5.3.5.1 were applied. Since PfROS2 contains only one 

gene located in this region, it is not necessary to try and narrow down appropriate 

genes by expression or function. 

1. Stage of Expression 

a. The gene should be expressed during asexual stages: all 10 genes 

in PfROS1 are expressed at some point during asexual stages.  The 

single gene in PfROS2 is expressed throughout the asexual lifecycle. 
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b. The gene should be expressed during gametocyte stages: all 10 

genes within PfROS1 are also expressed at this stage.  The single 

gene within PfROS2 is also expressed throughout 

gametocytogenesis. 

 Therefore, the candidate genes cannot be narrowed down using 

expression during a particular stage. 

2. Link to Known Function 

a. Six out of the ten genes in the PfROS1 QTL have no known function 

in Plasmodium falciparum, whilst the other four do have a known 

function, none have any obvious links to gametocyte sex ratio. 

b. The single gene within PfROS2 is annotated in Plasmodb as a 

putative zinc-finger protein. 

 Therefore, it is not possible to prioritise any one candidate gene within 

PfROS1 based on expression profile or known function.  The genes identified 

(Table 5.5) were therefore analysed in detail for any further information that could 

provide a clue as to what, if any function, that they could play in controlling 

gametocyte sex ratio (section 5.3.5.5). 

3. Polymorphisms between Clones 

a. Only two of the highlighted genes in PfROS1 have SNPs containing 

either a synonymous or non-synonymous mutation between the 

parental clones 3D7 and HB3. 

b. Of these polymorphic SNPs only one gene contains a non-

synonymous mutation (section “5.3.5.7”). 

 

 PfROS1 Candidate Genes 5.3.5.5

 PF3D7_1026100 is expressed during ring and gametocyte stages.  This 

gene has no annotated function in P. falciparum, but its known orthologue 

Plasmodium berghei, PBANKA_051030, was found in the proteome of female 

gametocytes of P. berghei and not in male gametocytes (Khan et al. 2005) 

(section “1.6.1”).  The function of the protein in P. berghei is also unknown. 

 PF3D7_1026200 is expressed throughout the asexual cycle but with 

possibly higher levels of transcripts seen in late trophozoites, stage V gametocytes 
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and ookinete stages.  There is no annotated function and orthologues in P. 

berghei and P. chabaudi are also of unknown function.  It is not expected that 

control of sex ratio would extend through to late stage gametocytes or the 

ookinetes stage, thus it is possible that this gene could be removed from any 

further analysis, but without knowing the exact mechanism behind control of the 

sex ratio it cannot be ruled out. 

 PF3D7_1026300 has no known function in P. falciparum, but does have an 

orthologue in Plasmodium yoelii, PY07495, that codes for an arabinogalactan 

protein.  Arabinogalactan-proteins (AGPs) are a family of highly glycosylated 

hydroxyproline-rich glycoproteins (HRGPs) implicated in various roles linked to 

plant growth and development, analogous to animal proteoglycans (reviewed by 

Showalter, 2001).  AGPs have several functions including, but not limited to 

vegetative, reproductive, cellular growth and development, as well as programmed 

cell death and social control (reviewed by Showalter, 2001). Research has 

suggested that AGPs control molecular interactions and cellular signalling at the 

cell surface.  More interestingly, in relation to this project, AGPs have been 

implicated in plant reproduction, particularly control of plant embryogenesis 

(reviewed by Showalter, 2001).  Evidence for this assumption comes from 

research into embryogenic cell cultures, to which purified AGPs were added, some 

of which stimulated somatic embryogenesis, whilst others inhibited it (reviewed by 

Showalter, 2001).  Finally, AGPs also have some involvement in programmed cell 

death (PCD) in plants.  Particular AGPs were shown to inhibit growth of 

Arabidopsis suspension-cultured cells via induction to undergo PCD in a manner 

that was both time- and dose-dependent, implicating that AGPs are an important 

component of the signal transduction pathway for this process (reviewed by 

Showalter, 2001). 

 In P. yoelii, the orthologue to PF3D7_1026300, PY07495, was found to 

encode a protein product with 30% amino acid identity to AGPs found in 

Drosophila.  Although there is a great deal known about this protein and its role 

and function in plants, it is unclear as to what role, if any, that this protein plays in 

Plasmodium. 

Expression profiles show that this gene is predominantly expressed during 

the ookinetes stages, and to a lesser degree in asexual and gametocyte stages.  

Though the gene is expressed during the appropriate stages, it seems unlikely that 
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if this gene was responsible for sex ratio control it would be expressed at higher 

levels in the ookinete stages compared to asexual or early gametocyte stages.  

Therefore, based on these observations, this gene is not considered to be a strong 

candidate for control of the gametocyte sex ratio in P. falciparum. 

PF3D7_1026400, is expressed at all relevant stages, but expression is 

predominantly isolated in the ookinete stages, which would be too late in the cell 

cycle to influence gametocyte sex ratio.  Lower levels of expression are still 

evident in relevant asexual stages and slightly higher expression is evident during 

gametocyte stages and it is still considered a candidate.   

The gene codes for a WD (tryptophan-aspartic acid)-repeat protein.  Found 

in all eukaryotes, WD-repeat proteins have been linked to a wide variety of 

essential functions including progression through the cell cycle, gene regulation, 

signal transduction, and apoptosis (reviewed by Smith et al. 1999). A WD-repeat 

protein, typically 44-60 residues, contains a GH (glycine-histidine) dipeptide at the 

N-terminus and the WD dipeptide at the C-terminus, between which is a 

conserved core sequence (reviewed by Smith et al. 1999).  However, despite 

possessing this common sequence motif, which causes a common three-

dimensional folding structure, the known functions of proteins that possess WD 

repeats encompass a range of important eukaryotic functions, including RNA-

processing complexes, transcriptional regulators (including the subunit of the 

TATA-box-binding complex), cytoskeleton assembly and mitotic-spindle formation, 

regulation of vesicle formation and vesicular trafficking, possessing various roles in 

cell division, and regulation of sulphur metabolism in fungi (reviewed by Smith et 

al. 1999).  Therefore, WD-repeat proteins are highly functionally diverse, though 

the functions of most are poorly understood and, in many cases, it is not clear 

whether the function is attributed to the WD-repeat domain, itself, or to the N- or C-

terminal extension of a WD-repeat protein (reviewed by Smith et al. 1999). 

 With regards to these types of proteins and human malaria, there does not 

appear to be much information explicitly on the role and function of WD-repeat 

proteins, but a particular form of this protein, called RACK (Receptors for Activated 

C Kinases), has been found (Madeira et al. 2003).  RACKs have been described 

as the scaffolding that anchors a diverse range of signalling proteins that control 

the cell cycle and an orthologue, PfRACK, has been investigated and 

characterised in P. falciparum (Madeira et al. 2003).  Though the research carried 
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out by Madeira and colleagues (2003), shows that this particular WD-repeat 

protein, RACK protein, is expressed during the intraerythrocytic stages of P. 

falciparum only, however, it is believed to play a crucial role in regulating the cell 

cycle just as it does in other organisms.  This example shows that WD-repeat 

proteins could play a fundamental role in regulating cellular development and, due 

to the fact that these proteins are so diverse in function, it could play a role in 

control of sex ratio here. 

Overall, the timing of expression weakens the candidacy compared to other 

candidate genes. 

PF3D7_1026500 has no listed known function in P. falciparum.  All known 

orthologues (in P. knowlesi and the rodent species P. berghei, P. chabaudi and P. 

yoelii) also have no known function.  Expression profiles indicate that the gene is 

expressed in most of the relevant stages, but at very low levels compared to those 

in the ookinete stages.  This is similar situation to that encountered in the previous 

candidate gene, PF3D7_1026400, but the expression levels are much lower.  It is 

hypothesised, based on the fact that the expression of this gene is so low in 

relevant asexual and sexual stages, and that there is no known function in either 

this gene or its orthologues, that this gene is a weak candidate for control of 

gametocyte sex ratio trait in P. falciparum. 

PF3D7_1026600 has no known function in Plasmodium falciparum, and no 

known orthologues.    The gene is mainly expressed in late trophozoites and 

ookinete stages, and at a lower level in earlier asexual stages and in the 

gametocytes.  The lack of orthologues in other species, that could assist in 

deriving a function, and the expression profile in ookinetes and late trophozoites 

make this gene a weak candidate for sex ratio control. 

PF3D7_1026800 codes for a 40S ribosomal protein S2B, which are 

fundamental to the translation of mRNA into polypeptides in eukaryotes (reviewed 

by Gerbasi et al. 2004).  These ribosomal proteins have been studied extensively, 

particularly in yeast, but the function and regulation of these proteins is mostly 

unknown.  However, there is an interesting connection between the 40S ribosomal 

protein coded by this gene and another gene product discussed earlier, WD-

repeat protein (coded for by PF3D7_1026400).  In human cells, RACK1 is 

localised to the 40S components in ribosomes, and as such it is hypothesized that 
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this is intimately tied to translational control (reviewed by Gerbasi et al. 2004).  

Further to these investigations it is proposed that RACK1 is actually a core 40S 

ribosomal protein, at least in mammalian cells, and could play a fundamental role 

in gene repression (Gerbasi et al. 2004).  Theories as to how these genes could 

be functioning are explored further in the discussion. 

The expression of PF3D7_1026800 is very relevant as it is predominantly 

expressed during ring, and early and late trophozoite stages.  It is also expressed 

in early and late gametocyte stages, but to a smaller degree compared to the 

asexual stages.  Interestingly, the profiles indicate that expression, though high in 

ring stages, peaks during early trophozoite stages, then drops off towards late 

stage gametocytes.  This pattern of expression follows what would be expected of 

a gene that was controlling sex ratio, if the initial assumption that control of 

gametocyte sex ratio first occurs during the ring or trophozoite stage of the 

sexually-committed schizont.  Lower levels of gene expression at the schizont 

stage could be explained by the fact that, in any given sample, the majority of 

schizonts are not expected to be sexually-committed.  However, given the role that 

40S ribosomal proteins have in protein translation, it is likely that there will be 

higher expression in rapidly proliferation asexual parasites compared to those in 

the sexual stages.  However, given the expression profile during the lifecycle, this 

gene is a stronger candidate for control of gametocyte sex ratio. 

In addition, and perhaps not surprisingly, the function of this gene is 

conserved and also codes for a 40S ribosomal protein in several other malaria 

species, including another human malaria species, P. vivax, simian malaria 

species, P. knowlesi, and P. cynomolgi, and rodent malaria species, P. chabaudi, 

P. yoelii, and P. berghei.  The orthologue present in P. berghei, PBANKA_051090, 

was also flagged during the research carried out by Khan and colleagues into 

male- and female- specific proteomes in P. berghei (Khan et al. 2005) (section 

“1.6.1”).  In this case, PBANKA_051090 was shown to be expressed in both male 

and female gametocytes of P. berghei, with each exhibiting various combinations 

of peptides unique to that particular sex.  Therefore, it is considered a stronger 

candidate gene for gametocyte sex ratio control. 

PF3D7_1026900 codes for biotin-acetyl-CoA-carboxylase, an enzyme 

catalysing the irreversible carboxylation of acetyl-CoA to malonyl-CoA, during 

fatty-acid biosynthesis in the apicoplast of Plasmodium falciparum (reviewed by 
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Ralph et al. 2004).  The apicoplast of Plasmodium parasites is a relict plastid, 

remnant of the ancestral link that the parasite has to photosynthetic organisms 

(reviewed by Ralph et al. 2004).  Despite the apparent defunct nature of the 

organelle in Plasmodium, it is essential for parasite survival as treatment with 

drugs that disrupt replication, transcription, or translation of the apicoplast 

genome, lead parasite death after it leaves the current host cell to infect another; 

the “delayed-death effect” (reviewed by Ralph et al. 2004).  It known that the 

apicoplast genome codes for proteins involved in metabolic pathways, in 

particular, fatty-acid biosynthesis and isopentenyl diphosphate biosynthesis, and 

thus is likely functioning as an energy-generating organelle for the Plasmodium 

parasite (reviewed by Ralph et al. 2004).  Information from the expression profiles 

indicate that transcripts from this gene are most likely to be found in stage V 

gametocytes compared to any other stage.  This expression profile is not what 

would be expected of a candidate for gametocyte sex ratio control as the sex ratio 

is likely to be well established by this time point. 

 Combining all of the above information, and the knowledge that 

gametocytes use alternative energy pathways to asexual stages (Hayward, 2000; 

reviewed by Talman et al. 2004), it possible that the role of this gene is not related 

to control of gametocyte sex ratio, but of energy procurement in later gametocyte 

stages, thus it is no longer considered a candidate gene in this research.  

PF3D7_1027000 has no known function in Plasmodium falciparum 

according to Plasmodb.org.  The expression profile of this gene indicates that the 

transcripts are likely to be found at all stages and at similar levels, indicating that 

transcription of this gene is universal and not specific to any stage. 

 A single orthologue of PF3D7_1027000 is present in the rodent malaria 

parasite, P. yoelii.  This orthologue, PY06061, codes for a CCAAT-box DNA 

binding protein, subunit B.  A CCAAT-box, or “CAT-box” is a term used to describe 

a particular sequence of nucleotides; GGCCAATCT, which occur about 80bp 

upstream to a transcription initiation site and acts as a signal to RNA transcription 

factors (reviewed by Raymondjean et al. 1988; reviewed by Maity & de 

Crombrugghe, 1998; reviewed by Alberts et al. 2002).  There are several proteins 

that bind to and activate the CCAAT-box motif, called CCAAT-box DNA binding 

proteins, which ultimately regulate transcription of genes (Maity & de 

Crombrugghe, 1998).  There is very little information regarding these specific 
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proteins and their role and function in Plasmodium falciparum, except to suggest 

that they do exist and they are homologous to proteins found in yeast and 

mammalian cells (Coulson et al. 2004).  Therefore, it is possible to infer that these 

proteins will hold similar functions in both organisms and could regulate 

transcription of various genes in Plasmodium in a similar way to mammalian and 

yeast cells.   

 Despite the fact that this protein has no known function in P. falciparum and 

its expression is evident at all stages, it cannot be ruled out as a potential 

candidate for control of gametocyte sex ratio.  The CCAAT-box motif is known to 

bind several proteins (reviewed by Raymondjean et al. 1988) and it is possible that 

this gene has yet to be identified as encoding a CCAAT-box binding protein in P. 

falciparum.  If so, the protein could bind to various transcription regulation motifs, 

and thereby control the expression of various genes at different stages in parasite 

development, including a gene that controls gametocyte sex ratio.  However, at 

this point it is not known if PF3D7_1027000 does code for a protein that controls 

transcription, but it cannot be ruled out as a candidate. 

PF3D7_1027100 is characterised as coding for a small subunit rRNA 

processing stabilizing factor.  Small subunit ribosomal RNA, more commonly 

referred to as 18S, make up part of the ribosome that is essential for protein 

synthesis (reviewed by Alberts et al. 2002).  In the case of malaria parasites, 

genes that code for ribosomal genes are commonly found dispersed throughout 

the genome, unlike in most eukaryotic organisms where these genes tend to be 

located in tandem (reviewed by McCutchan et al. 1988).  In addition, the genes are 

generally expressed during the blood stages of P. falciparum (McCutchan et al. 

1988), which is confirmed by the expression profiles for PF3D7_1027100 

accessible on plasmodb.org.  Transcription of the gene is predominantly in the ring 

and early trophozoite stages of P. falciparum, after which expression drops off 

towards the schizont stage, before increasing again during gametocyte and 

ookinete stages, but not to the same levels has exhibited in the early asexual 

stages. 

 Based on the expression profiles and gene function, it is possible that this 

gene plays some role in control of the sex ratio.  However, its function appears to 

be limited to the processing and stabilizing of RNA and it is not really clear how 

much, if any, influence that this protein could have on altering transcription.  
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Therefore, it is suggested that though this gene is still a candidate, it is not a 

strong candidate for control of gametocyte sex ratio. 

 

 PfROS2 5.3.5.6

Investigation of PfROS2 indicated a single gene located in this region on 

chromosome 14, PF3D7_1425600, which codes for a zinc-finger protein gene.  

The expression of this gene predominantly occurs during stage V gametocytes, 

which is much later in the life-cycle than any gene contributing to gametocyte sex 

ratio control would expected to be active. 

Zinc-finger proteins are abundant in eukaryotic organisms and display a 

diverse range of functions including transcriptional activation, DNA recognition, 

regulatory roles in protein folding and assembly as well as apoptosis, packaging of 

RNA, and binding of lipids (reviewed by Laity et al. 2001).  Zinc-finger proteins 

contain conserved cysteine and histidine ligands, which are important for the zinc-

binding that stabilise their structure (reviewed by Laity et al. 2001). 

In P. falciparum, the CCCH-type zinc finger, which is common to proteins 

that control the translation and decay of mRNA, is the most abundant 

transcription-associated protein (TAP) found the genome (Coulson et al. 2004).  

However, the zinc-finger protein encoded by PF3D7_1425600 has not been 

characterised, and the type of zinc-finger protein the gene codes for, and its role in 

the parasite are unknown.  This makes deciphering how this particular gene 

relates to control of sex ratio much more difficult. 

The QTL analysis indicated that PfROS2 contributes in a minor, additive 

way to the sex ratio.  Progeny clones expressing an HB3-allele of this region 

exhibited a sex ratio that was slightly more female-biased compared those clones 

with a 3D7 allele, which would suggest that this gene enhances production of 

female gametocytes in some way.  This is analysed further in the general 

discussion found in Chapter 6. 
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 Synonymous and Non-synonymous Mutations – PfROS1 5.3.5.7

A summary of synonymous and non-synonymous mutations are shown in 

Table 5.6.  Only two of the genes, PF3D7_1026600 and PF3D7_1027000, 

highlighted in PfROS1 contain mutations.  Only one gene, PF3D7_1027000, 

contains a non-synonymous mutation, which could be informative and assist in the 

narrowing down of the region responsible for gametocyte sex ratio. 

Table 5.6: Polymorphic SNPs in PfROS1 

The Gene IDs are numbered according to Plasmodb version 9.0. SNPs data was determined from 
output of next-generation Illumina sequencing technology from the Wellcome Trust Sanger Institute 
in Hinxton (Ranford-Cartwright et al., manuscript in preparation). 

Gene ID 
Genomic location 

(bp) 
Function SNPS 

Polymorphic SNPs 

Syn Non-Syn 

PF3D7_1026100 1,101,818 – 1,103,158 unknown function 14 - - 
PF3D7_1026200 1,103,464 – 1,105,230 unknown function 41 - - 
PF3D7_1026300 1,106,086 – 1,109,451 unknown function 92 - - 
PF3D7_1026400 1,109,794 – 1,111,605 WD-repeat protein 58 - - 
PF3D7_1026500 1,112,423 – 1,112,635 unknown function 22 - - 
PF3D7_1026600 1,113,495 – 1,118,573 unknown function 158 1 - 

PF3D7_1026800 1,122,962 – 1,124,037 
40S ribosomal 

protein S2B 
13 - - 

PF3D7_1026900 1,125,283 – 1,126,167 
biotin-acetyl-CoA-

carboxylase 
19 - - 

PF3D7_1027000 1,126,523 – 1,131,958 unknown function 230 4 1 

PF3D7_1027100 1,133,838 – 1,136,156 
SSU rRNA 
processing 

stabilising factor 
51 - - 

 

 A closer look at the mutations in the genes highlighted above are displayed 

in Table 5.7, with the inherited genotype shown as differently shaded boxes, 

whereby light grey indicates a 3D7-like genotype and dark grey represents a HB3-

like genotype.  Using this information, a single recombination event in the X44 

progeny clone, before the SNP located at 1130553bp, was noted.  Downstream 

from this recombination event, the X44 progeny has inherited a HB3-like genotype 

and as this particular progeny is exhibiting a 3D7-like phenotype it is possible to 

deduce that the region responsible for gametocyte sex ratio is likely to be located 

upstream from this informative recombination event.  Therefore, in potential further 

analyses, open reading frames upstream in this region could be prioritised for 

methods like allelic exchange to find the gene responsible for gametocyte sex 

ratio. 
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Table 5.7: Inheritance of Specific Polymorphisms for Two Genes in PfROS1 

The Gene IDs are numbered according to Plasmodb version 9.0. SNPs data was determined from 
output of next-generation Illumina sequencing technology from the Wellcome Trust Sanger Institute 
in Hinxton (Ranford-Cartwright et al., manuscript in preparation).  Genotype is indicated by colour; 
light grey represents 3D7-like, dark grey represents HB3-like. 

Clone Phenotype 

PF3D7_1
026600 

PF3D7_1027000 

1117615 
bp 

1126674 
bp 

1127817 
bp 

1127826 
bp 

1130553 
bp 

1130779 
bp 

SYN SYN SYN SYN SYN NON-SYN 

3D7 3D7 T T A C T G 
HB3 HB3 C C G T C C 

XP3 3D7 T T A C T G 

XP5 3D7 T T A C T G 

XP24 HB3 C C G T C C 

XP52 3D7 T T A C T G 

X5 3D7 T T A C T G 

X12 3D7 T T A C T G 

X30 3D7 T T A C T G 

X33 HB3 C C G T C C 

X35 HB3 C C G T C C 

X44 3D7 T T A C C C 

 

 Discussion 5.4

 QTL Analysis 5.4.1

QTL analysis of the sex ratio phenotype variation, described in chapter 3, was 

performed using a genetic map based on 500 SNP markers and 13 parasite 

clones (11 progeny clones and 2 parental clones). The QTL analysis of sex ratio 

phenotype successfully identified two QTL with high LOD scores associated with 

gametocyte sex ratio phenotypes. 

The most significant QTL observed, with a LOD score of 8.8, was located close 

to the centromere of chromosome 10, and contained 10 open reading frames 

within a 35 kb region. This locus, named PfROS1, explained the majority of the 

variance seen in the sex ratio phenotype (95.5%), and therefore is the first genetic 

locus in Plasmodium linked to variation in sex ratio of gametocytes. An PfROS1 

locus like that in the 3D7 parent confers a significantly more female-biased 

gametocyte sex ratio in gametocytes than seen in parasites with the PfROS1 of 

HB3 type.  

A secondary scan controlling for the large effect of PfROS1 revealed a second 

significant QTL on chromosome 14, with a LOD score of 4. This locus was named  

and PfROS2. By itself the locus explained 33% of the variation in sex ratio. 
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Parasites with the HB3 version of PfROS2 had a higher percentage of female 

gametocytes than those with a 3D7 PfROS2, on the background of a PfROS1 

locus from 3D7 (Figure 5.11). The effect of an HB3-like PfROS2 with a 3D7-like 

PfROS1 could not be examined, because none of the 11 progeny clones 

examined had inherited this particular combination of loci.  The PfROS2 locus falls 

within a gene-sparse area of the chromosome and could be narrowed to a 2kb 

region containing a single gene. 

Several additional significant QTL with LOD scores above 4.0 were identified in 

the initial QTL scan that identified PfROS1. These loci were no longer significant in 

the secondary scan, controlling for the strong effects of PfROS1. 

This could be explained if these loci were only significant in the presence of a 

particular allele of PfROS1 i.e. epistatic interactions. Further analysis of such 

interactions could be performed using a two-way scan (scantwo in R/QTL), for 

example to define proteins that might interact with the relevant protein product in 

PfROS1. 

 

 Prioritising PfROS1 Genes by Function 5.4.2

 PfROS1 5.4.2.1

The PfROS1 genomic region contained a total of 10 genes, of which only 

four have a putative known function. There was no obvious candidate for the gene 

affecting sex ratio; the mechanism of determination of gametocyte sex is currently 

unknown, but probably involves differential gene expression or protein 

translation/post-translational modification, since male and female gametocytes are 

genetically identical. Therefore I hypothesised that genes that encode proteins 

involved in transcription or translational control, or those involved in cell cycle, 

would be stronger candidates for a role in sex ratio determination. 

The genes of known function encoded a WD-repeat protein, a ribosomal 

protein, an enzyme involved in fatty acid biosynthesis in the apicoplast, and an 

rRNA processing stabilizing factor.   WD proteins have a very wide range of 

functions including transcriptional regulation and cell cycle regulation, whereas 

ribosomal proteins play a role in translation, and stabilisation of rRNA may also 
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play a role in translation, so at least three of the genes with known function should 

be considered as good candidates based on function alone. 

Of the remaining genes of no known function in P. falciparum, several have 

orthologues in other Plasmodium species with potentially relevant function or 

expression. The orthologue of Pf3D7_1027000 in P. yoelii encodes a CCAAT-box 

DNA binding protein, which in other organisms like yeast interacts with 

transcription factors to regulate gene transcription. The orthologue of 

P3D7_1026300 in P. yoelii codes for an arabinogalactan protein, a family of 

proteins that have been linked to growth and development in plants. The protein 

product of the orthologue of Pf3D7_1026100 in P. berghei was found in the 

proteome of female gametocytes but not males (Khan et al. 2005), although its 

function is unknown. 

 

 Prioritising PfROS1 Candidate Genes By Timing Of Expression 5.4.3

The timing of expression of the candidate genes may also indicate their 

potential role in sex ratio determination.  Gametocyte sex is determined within the 

trophozoite or schizont preceding the development of gametocytes, since all 

merozoites within a sexually committed schizont develop as gametocytes of the 

same sex (Smith et al. 2000; Silverstrini et al. 2000).  Therefore genes involved in 

sex ratio determination would influence the proportion of schizonts that developed 

as male or females, and would be expected to be expressed in asexual stages, 

and may also continue expression into (at least early) gametocytes.  

All ten of the PfROS1 genes were expressed at some point during asexual 

and gametocytogenesis.  Five of the genes had their highest level of expression in 

the ookinete stages, or in late stage gametocytes which suggests a function later 

in the life cycle.  Of the remaining genes within PfROS1, all can be considered to 

be candidates based on their expression within the asexual and early gametocyte 

stages, although the usefulness of the available data is discussed further in 

chapter 6 
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 Prioritising PfROS1 Candidate Genes by Polymorphisms 5.4.4

Using SNP information obtained from next-generation Illumina sequencing 

technology from the Wellcome Trust Sanger Institute in Hinxton (Ranford-

Cartwright et al., manuscript in preparation), the occurrence of synonymous and 

non-synonymous mutations was classified.  From this, two of the genes 

highlighted in the PfROS1 region, PF3D7_1026600 and PF3D7_1027000, 

contained either a synonymous mutation, or a non-synonymous mutation, or both 

(Table 5.6).  Details of these mutations (Table 5.7) indicate that a single 

recombination event has occurred in the X44 clone (at a SNP located at 

1130553bp), which has given the clone a HB3-like genotype downstream.  Due to 

the fact that the X44 progeny is exhibiting a 3D7-like phenotype, it is possible to 

further narrow down the region of PfROS1 and suggest that the region responsible 

for gametocyte sex ratio is likely to be located upstream from this informative 

recombination event.  Any future analysis to determine the genomic region 

controlling gametocyte sex ratio e.g. using allelic exchange, could be limited to 

genes upstream of the informative recombination event thereby prioritising genes 

for potential lengthy experimental methods. 

 

 Conclusions 5.5

 In conclusion, all 10 of the genes located in PfROS1 could be considered 

as candidates for a role in sex ratio determination.  Expression profiles, gene 

function, and information regarding orthologues in other Plasmodium species, 

could be used to prioritise six candidate genes for further functional analysis, of 

the control of gametocyte sex ratio in Plasmodium falciparum.   

The additional, additive region identified, PfROS2, needed no prioritisation 

of genes via expression profiles, gene function, and known orthologues as the 

region contained only one gene that coded for a product with known function; a 

zinc-finger protein, which possesses many different roles in eukaryotes. 
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6 Chapter 6: Discussion 

 Introduction 6.1

 This chapter condenses and discusses the results obtained in all previous 

chapters in more detail.  The order of discussion will follow that laid out in the four 

previous research chapters as the sequence in which experiments were carried 

out delves deeper into gametocyte development, investigating if sex ratio was a 

genetically inherited trait, and where in the parasite genome control of this trait is 

located. 

 

 Characterising the Development of Gametocytes in Culture 6.2

 The Effect of Gametocytaemia on Sex Ratio 6.2.1

 The relationship between gametocytaemia and sex ratio in the Plasmodium 

parasite seems to vary between species and there is contradictory evidence in the 

literature.  The most recent research into the relationship between these factors, 

using the lizard malaria parasite Plasmodium mexicanum, found no correlation 

between gametocytaemia and sex ratio (Neal & Schall, 2010).  However, earlier 

research using the same species of Plasmodium found a positive correlation 

between gametocytaemia and sex ratio i.e. as the gametocytaemia increased, the 

sex ratio became less female-biased (Schall, 2000).  The use of lizard malaria to 

investigate the relationship between gametocytaemia and sex ratio has 

consistently produced conflicting information.  A positive correlation between 

gametocytaemia and sex ratio was found in Plasmodium “tropiduri”, but 

experiments carried out in the same research group found no relationship between 

the factors in another lizard malaria species, Plasmodium balli (Pickering et al. 

2000).  The authors suggested that the differences between the species were a 

result of small data sets and little variation in the variables, in combination with the 

difficulty in detecting gametocytes (Pickering et al. 2000). 

One explanation proposed for the observed differences in linking 

gametocytaemia and sex ratio is different species of lizard malaria is a species-

specific difference in male fecundity.  Fertility insurance is the theory that if male 

fecundity, density, or mobility is impaired i.e. leading to the chance of females 
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remaining unfertilised, then the sex ratio adjusts to become less female-biased to 

increase the chance of females being successfully fertilised (further information 

can be found in Chapter 1, section “1.9.3”).  Less female-biased sex ratios are 

especially common when the infection is known to be caused by a single parasite 

clone (Neal & Schall, 2010), because in this situation the only source of male 

partners is the infecting clone with no input possible from other, more male-biased 

clones.  Thus sex ratio is adjusted to ensure all female gametocytes are fertilised.  

Low gametocyte densities are commonly seen in natural infections, reducing the 

chance of male gametes finding and fertilising female gametes in the blood meal 

taken up by a mosquito vector.  Therefore, the sex ratio is expected to shift to a 

less female-bias at low gametocyte densities leading to a negative correlation 

between gametocytaemia and sex ratio. 

Overall, the relationship between gametocytaemia and gametocyte sex 

ratio in Plasmodium species is conflicting as positive correlation (Schall, 2000; 

Pickering et al. 2000), negative correlation (Robert et al. 2003; Reece et al. 2008), 

and no correlation (Neal & Schall, 2010; Pickering et al. 2000) between 

gametocytaemia and sex ratio have all been observed.  As the numbers of 

gametocytes in vitro tend to be very much higher than those observed in vivo, it is 

possible that the shifts in sex ratio seen in field studies may not occur at high 

gametocytaemias. 

 In the research, presented in this thesis, no correlation was found between 

gametocytaemia and sex ratio, in either the parental or the progeny clones.  This 

result is contrary to the negative correlation between gametocytaemia and sex 

ratio found in an epidemiological survey carried out in Dielmo, Senegal (Robert et 

al. 2003) i.e. a less female-biased sex ratio occurred at low densities of 

gametocytes.  The discrepancy is most likely due to differences in absolute 

numbers of gametocytes produced in vitro and in vivo. 

 The conflicting results found, even within the same species of Plasmodium, 

suggest that a single genus-specific sex ratio adjustment strategy can be ruled out 

i.e. a different relationship between gametocytaemia and sex ratio will be found in 

different Plasmodium species, as the parasites’ reaction to stimuli will be different 

compared to another Plasmodium species. 
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Another potential confounding factor is that most published quantifications 

of sex ratio and gametocytaemia have been carried out using Giemsa staining 

(Schall, 2000; Pickering et al. 2000; Robert et al. 2003; Neal & Schall, 2010), 

which requires skill and is somewhat subjective.  It is possible that human error 

could play a significant role if the sex ratio is determined using this method.  In 

addition, because of low gametocyte densities, sex ratios have been determined 

from few (<20) gametocytes, and therefore estimates have large potential errors.  

The experiments carried out here used a gametocyte-specific antibody and sex-

specific antibody to quantify the sex ratio in two clones of Plasmodium falciparum 

and is likely to be much more accurate than using Giemsa staining.  At least 200 

gametocytes were examined to determine the sex ratio and thus the estimates 

obtained are considered reliable. 

One final possible explanation of the discrepancy of results on 

gametocytaemia and sex ratio presented in this thesis and those from previous 

experiments is that here the results were gathered in vitro.  Previous published 

results were gathered from malaria parasites in vivo, where additional variables 

such as immunity and pathology may influence sex ratio and/or gametocytaemia.  

Such variables are of course absent in vitro. 

 In conclusion, there is much conflicting evidence of a relationship between 

gametocytaemia and sex ratio, and different variables may influence this 

relationship, such that simple predictions based on fertility insurance theory may 

not be appropriate. 

 

 The Effect of Stabilising Culture Temperature on Gametocytaemia and Sex 6.2.2

Ratio 

The numbers of male gametocytes were observed to decline over time in 

culture in both parental clones, 3D7 and HB3, whereas, typically, female 

gametocytes increased over time.  These changes were hypothesised to result 

from the sensitivity of male gametocytes to changes in temperature, with 

exflagellation occurring if the temperature drops to 36⁰C, which could frequently 

occur when cultures were subjected to standard culturing techniques.  Therefore, 

over time, male gametocytes are lost during gametocyte culturing. 
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The hypothesis was tested as described in Chapter 2, and analysed using a 

generalised linear mixed model.  The results supported the hypothesis that 

changes in sex ratio were correlated with temperature fluctuations, as well as day 

of culture, but there was no evidence for differential mortality of the two parasite 

clones associated with day, i.e. which could suggest a different time to maturation 

of female and male gametocytes in the two parasite clones, or an enhanced 

sensitivity to temperature fluctuations of one clone over the other. 

 

 Explanation of “Weak” Females Observed in Immunofluorescence Assay 6.2.3

Differential labelling was observed with the antibodies recognising the 

Pfg377 protein: some gametocytes fluoresced brightly, whereas others were only 

faintly fluorescent.  These observations were made for all stages (III-V) of 

gametocyte culture, in both parental clones and thus seem to represent the normal 

development of female gametocytes in vitro.  

 Female gametocyte-specific protein, Pfg377, is uniquely associated with the 

osmiophilic bodies in P. falciparum (Alano et al. 1995a) and involved in their 

development (de Koning-Ward et al. 2008).  The weak fluorescence with Pfg377 

noted in stage III-IV female gametocytes is hypothesized to be a consequence of 

Pfg377 expression and the natural development and formation of the osmiophilic 

bodies.  “Weak” females are most notable early in gametocyte culture (day 8-10) 

and in stage III-IV gametocytes, which is the same time that the Pfg377 protein is 

initially detected (stage III) and fulfilling its role in forming the osmiophilic bodies 

(by stage IV).  As culture progresses, the number of “weak” females decreases at 

a similar rate to the increase in the numbers of “strong” females, suggesting that 

“weak” females progress to “strong” females as Pfg377 protein becomes more 

abundant, osmiophilic bodies develop, and Pfg377 protein becomes concentrated 

within the organelles (Figure 2.6). 
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 Sex Ratio 6.3

 Inheritance of Gametocyte Sex Ratio 6.3.1

 The sex ratio of the Plasmodium parasites is thought to be under the 

influence of both genetic and environmental factors.  The research in this thesis 

focused on the genetic control of sex ratio in the human malaria parasite, 

Plasmodium falciparum. 

The sex ratios exhibited by the progeny clones at day 10 of culture 

indicated that this trait was directly inherited from either parent as no 

intermediates, i.e. non-parental phenotypes, were observed.  There was very little 

variation between replicates of the same parasite clone, suggesting that this trait is 

under strict genetic control with little environmental influence under the culture 

conditions used.  Thus the phenotype data suggested that the sex ratio could be a 

monogenic trait i.e. potentially under the control of a single gene. 

 

 QTL Analysis 6.3.2

QTL analysis of 11 progeny clones revealed two genomic regions linked to 

control of the gametocyte sex ratio phenotype: PfROS1 on chromosome 10 (LOD 

score = 8.8; explaining 95.5% of the observed variation in sex ratio), and PfROS2 

(LOD score = 4.0) on chromosome 14. 

PfROS1 is a highly significant locus controlling the sex ratio of gametocytes 

produced.  The locus spans approximately 35kb, containing ten genes.  Analysis 

of putative function and timing of expression, based of published work collated in 

plasmodb.org, allowed 6 genes to be prioritised for future functional analysis.  

 PfROS2 is a minor contributor to the gametocyte sex ratio variation 

(PfROS2 and PfROS1 together explain 99.9% of the variation observed in the 

gametocyte sex ratio, p<0.05).  The locus spans a very small genomic region of 

2kb containing a single gene coding for a zinc-finger protein. 
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 Future Work 6.3.3

 Identifying the Gene(s) Responsible for Gametocyte Sex Ratio in PfROS1 6.3.3.1

 All ten of the genes identified within the PfROS1 locus have the potential to 

be responsible for the observed difference in gametocyte sex ratio between the 

clones examined, but an informative recombination in the gene PF3D7-1027000, 

for the X44 clone, could narrow down the potential regions to those upstream from 

this event.  The proof would require allelic exchange experiments, where the 3D7 

parent clone was genetically modified to replace the relevant gene with the HB3 

allele (or vice versa).  Unfortunately this methodology is very inefficient in 

Plasmodium falciparum; such experiments have been performed a few times but 

are very slow and frequently unsuccessful due to the low rate of homologous 

recombination (Ranford-Cartwright & Mwangi, 2012).  Allelic exchange of every 

gene within the QTL is not currently feasible given the inefficiency of the current 

methodology.  Therefore it is not practical at this time to carry out a systematic 

allelic exchange of all genes within a QTL locus. 

 Potentially, a Plasmodium berghei model could be used to overcome the 

problems of allelic exchange common to P. falciparum as the rates of homologous 

recombination are higher in this species.  However, this is reliant on orthologues 

being present in the model organism, together with conserved function of the 

genes i.e. the genes would have to exert similar effects on gametocyte sex ratio.  

In addition, phenotyping methodologies, such as sex-specific antibodies to gene 

products with a conserved function in both P. falciparum and P. berghei, would be 

required in order to repeat this project exactly in the murine model, which may not 

be available for P. berghei. 

 

 Prioritising Genes for Functional Analysis 6.3.3.2

 In Chapter 5, genes in the PfROS1 locus were analysed for strength of 

candidacy for control of gametocyte sex ratio using expression profiles and gene 

function.  The major assumption for this analysis was that control of the 

gametocyte sex ratio began in the ring and/or trophozoite stage of the sexually-

committed schizont.  Ideally, the transcripts from pre-committed asexual stages 

should be analysed as the majority of asexual stages used for example in RNA-
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Seq analysis are likely to be asexual parasites that will continue to proliferate. i.e. 

only a very small proportion of the sample will be from asexual stages that are pre-

committed to produce gametocytes.  Unfortunately, no method exists that would 

allow the separation of these pre-committed asexuals from the rest of the 

parasites that are still multiplying asexually.  Therefore, the level of transcripts of 

genes specific to sexually-committed trophozoites or schizonts would be low or 

even undetectable by this methodology.  The absence of apparent expression in 

rings, trophozoites, or schizonts is therefore not reliable in identifying genes 

expressed in the minority sexually-committed trophozoites or schizonts.  Another 

requirement of a candidate gene is the existence of polymorphisms between the 

two parent clones.  The polymorphism could be at the level of non-synonymous 

change in the coding sequence, or in the 5’ or 3’ untranslated regions that might 

affect the level of gene expression, or mRNA stability, and therefore presumably 

the amount of protein produced.  Alternatively, there could be polymorphisms 

affecting post-translational modifications. 

 Differences in coding sequence could have been investigated using 

available sequence data.  The HB3 sequence available (www.broadinstitute.org) is 

currently incomplete, and the available sequence has a high error frequency 

(coding error every 300bp, Lesley Morrison, personal communication). 

It is also possible to scrutinise differences in mRNA expression between the 

two parents (Le Roch et al. 2003; Bozdech et al. 2003; Llinás et al. 2006; Lopez-

Barragán et al. 2011; Bártfai, et al. 2010; Otto et al. 2010).  The methodology of 

carrying out this analysis could be dependent on how the gene functions.  For 

example, the gene could be active in one clone and not the other and therefore 

expression of mRNA would be differentiated as being “on” or “off” in which case a 

simple RT-PCR would suffice.  Equally probable is that there are differences in 

expression levels between the two parents, which could require qRT-PCR or 

possibly RNA-Seq measurements.  For example, if gene transcription is higher in 

HB3 than for 3D7, then this differential expression could be linked to the number of 

males produced i.e. higher transcription leads to more males, but equally this gene 

could function via repression and therefore higher expression in HB3 could be 

suppressing female gametocyte development causing more males to be observed 

in culture. 
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It is also conceivable that the clone-specific gametocyte sex ratio between 

3D7 and HB3 is the result of a differences at the level of the protein, either in 

levels of protein or the result of post-translational modifications.  Protein levels 

could be examined between the two parents as well as clone-specific peptide 

dissimilarities to identify proteomic differences (Florens et al 2002; Silvestrini et al. 

2010). 

 

 Two-Way QTL Analysis 6.3.3.3

 The QTL analysis could be taken a step further by performing a two-way 

QTL, using the scantwo function in R/QTL (Broman & Sen 2009).  A two-

dimensional, two-QTL scan, will detect interactions between QTLs, even those 

with only marginal effects, which may only exist due to interactions with other 

genetic regions (epistasis).  This analysis will also consider the possibility of linked 

QTLs.  The two types of QTL analysis, single-QTL and two-way QTL, can be 

combined into an overall multiple-QTL model.  This step would allow the likelihood 

of all QTLs (additive or interactive) to be considered and either kept or omitted 

depending on statistical support (Broman & Sen 2009).  This analysis was not 

consider necessary in this case, because PfROS1 alone explained 95% of the 

variance in sex ratio. 

 

 Conclusions 6.4

This objective of this project was to characterise the extent of genetic 

control of gametocyte sex ratio in Plasmodium falciparum and to identify genomic 

loci that may be involved.  The analysis of progeny clones showed a strong 

genetic influence on gametocyte sex ratio where all progeny clones displayed 

parental phenotypes, with no non-parental sex ratios.  Individual clones exhibited 

very low variation in sex ratio between replicates.  This strongly suggests genetic 

control of the trait potentially by a single major gene with little environmental 

influence.  QTL analysis of the progeny clones revealed a single locus, denoted 

PfROS1, which explained 95% of the variance in sex ratio.  This, therefore, 

suggests that gametocyte sex is under strong genetic control, at least in vitro.  
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PfROS1 is the first genetic locus identified in any Plasmodium species that 

influences gametocyte sex ratio. 
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7 Appendix A 

IFA Rules for Grading Strong and Weak Macrogametocytes 

 

Strong: 

 

1) Cell brightly fluoresces blobs throughout 

 

2) Cell brightly fluoresces blobs in part 
of cell 

 

3) Overall, the cell “glows” above 
background with bright fluorescence at 

periphery 
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Weak: 

 

1) Cell fluorescence “glows” above 
background with lightly 

fluorescing osmiophilic bodies 
 

 

2) Cell fluorescence “glows” above 
background, but with a small cluster of 
slightly stronger fluorescing osmiophilic 

bodies 
 

 

3) Cell fluorescence “glows” above background, but possesses a single bright 
fluorescent dot 

 

  

Strong 

Weak 
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8 Appendix B 

Generalised linear mixed model to analyse effects of time in culture, parasite clone 
and enhanced temperature maintenance on sex ratio, analysed as proportion of 
gametocytes that are male. 

The programme was written in R version 2.15.3 (2013-03-01) using the Linear 
Mixed Effects (lme4) package designed to fit a linear mixed model or a 
generalized linear mixed model or a nonlinear mixed model. 

 

The data were read into the model from a comma-separated excel file called 
Maledeath2.csv. This contained data as shown in the table below. 

 Males = number of male gametocytes identified 

 Females= number of female gametocytes identified 

 Gametocytes = total number of  gametocytes identified 

 male ratio = (no. of males/ no. of gametocytes) 

 per.male = maleratio x 100 (percentage of males) 

 culture = replicate flask per experiment (replicates numbered 1,2 and 3) 

 Treatment = culture conditions. A= standard conditions; B= enhanced 
temperature control 

 Day = day of culture (8, 10, 12, 14, 16) 

 Clone= parasite clone (3D7 or HB3) 
 

 

Replicate was included as a random variable. All other explanatory variables were 
included as factors. 

 

The programme lines are headed with “>” symbol and appear in bold text. Outputs 
are in plain text. Explanations are in italics and within square brackets. 

> library(lme4) 

Loading required package: Matrix 

Loading required package: lattice 

Attaching package: ‘lme4’ 

The following object(s) are masked from ‘package:stats’: 

    AIC, BIC 

 

Males Females Gametocytes maleratio Per.male Culture Treatment Day Clone

29 171 200 0.1 14.5 1 A 8 3D7

31 169 200 0.2 15.5 2 A 8 3D7

28 172 200 0.1 14 3 A 8 3D7

21 180 201 0.1 10.4 1 A 10 3D7

21 179 200 0.1 10.5 2 A 10 3D7

19 181 200 0.1 9.5 3 A 10 3D7
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> library(Matrix) 

> library(lattice) 

> sexratio<-read.csv("C:\\coradata\\Male Death2rep.csv",header=T) 

> names(sexratio) 

[1] "Males"       "Females"     "Gametocytes" "maleratio"   "Per.male"    

[6] "Culture"     "Treatment"   "Day"         "Clone"       

 

> summary(sexratio) 

     Males         Females       Gametocytes      maleratio   

 Min.   : 5.0   Min.   :159.0   Min.   :199.0   Min.   :0.0000   

 1st Qu.:16.0   1st Qu.:169.8   1st Qu.:200.0   1st Qu.:0.1000   

 Median :24.5   Median :176.5   Median :200.0   Median :0.1000   

 Mean   :23.6   Mean   :176.8   Mean   :200.3   Mean   :0.1217   

 3rd Qu.:31.0   3rd Qu.:184.2   3rd Qu.:200.0   3rd Qu.:0.2000   

 Max.   :41.0   Max.   :195.0   Max.   :203.0   Max.   :0.2000   

 

    Per.male         Culture  Treatment      Day     Clone     

 Min.   : 2.500   Min.   :1   A:30      Min.   : 8   3D7:30   

 1st Qu.: 7.975   1st Qu.:1   B:30      1st Qu.:10   HB3:30   

 Median :12.200   Median :2             Median :12            

 Mean   :11.777   Mean   :2             Mean   :12            

 3rd Qu.:15.425   3rd Qu.:3             3rd Qu.:14            

 Max.   :20.500   Max.   :3             Max.   :16            

 

[set each variable as a factor] 

 

> sexratio$Clone<-as.factor(sexratio$Clone) 

> sexratio$Culture<-as.factor(sexratio$Culture) 

> sexratio$Day<-as.factor(sexratio$Day) 

> sexratio$Per.male<-as.factor(sexratio$Per.male) 

> sexratio$Treatment<-as.factor(sexratio$Treatment) 

 

[start with the null model with the only explanatory variable being culture (=replicate) as a random 
factor to explain the response variable per.male (percentage of male gametocytes). This is a 
generalised linear mixed model] 
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> model0<-lmer(Per.male~1+(1|Culture),data=sexratio) 

 

> summary(model0) 

Linear mixed model fit by REML  

Formula: Per.male ~ 1 + (1 | Culture)  

   Data: sexratio  

   AIC   BIC logLik deviance REMLdev 

 458.2 464.5 -226.1    454.7   452.2 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Culture  (Intercept)   0.00    0.000   

 Residual             116.46   10.792   

Number of obs: 60, groups: Culture, 3 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)   17.183      1.393   12.33 

 

[Next set up separate alternative models including one of the explanatory variables in addition to 
culture (=replicate) as a random factor. The first (model 1) includes treatment, the second (model 
2) includes Clone, and the third (model 3) includes day] 

 

> model1<-lmer(Per.male~Treatment+(1|Culture),data=sexratio) 

 

> summary(model1) 

Linear mixed model fit by REML  

Formula: Per.male ~ Treatment + (1 | Culture)  

   Data: sexratio  

   AIC   BIC logLik deviance REMLdev 

 449.4 457.8 -220.7    447.6   441.4 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Culture  (Intercept)   0.00    0.000   

 Residual             105.18   10.256   

Number of obs: 60, groups: Culture, 3 
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Fixed effects: 

            Estimate Std. Error t value 

(Intercept)   13.600      1.872   7.263 

TreatmentB     7.167      2.648   2.706 

Correlation of Fixed Effects: 

           (Intr) 

TreatmentB -0.707 

 

> model2<-lmer(Per.male~Clone+(1|Culture),data=sexratio) 

 

> summary(model2) 

Linear mixed model fit by REML  

Formula: Per.male ~ Clone + (1 | Culture)  

   Data: sexratio  

   AIC   BIC logLik deviance REMLdev 

 445.1 453.5 -218.6    443.1   437.1 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Culture  (Intercept)  0.000   0.0000   

 Residual             97.672   9.8829   

Number of obs: 60, groups: Culture, 3 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)   12.700      1.804   7.038 

CloneHB3       8.967      2.552   3.514 

Correlation of Fixed Effects: 

         (Intr) 

CloneHB3 -0.707 

 

> model3<-lmer(Per.male~Day+(1|Culture),data=sexratio) 

 

> summary(model3) 

Linear mixed model fit by REML  

Formula: Per.male ~ Day + (1 | Culture)  
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   Data: sexratio  

   AIC   BIC logLik deviance REMLdev 

 393.8 408.4 -189.9    395.5   379.8 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Culture  (Intercept)  0.000   0.0000   

 Residual             46.574   6.8245   

Number of obs: 60, groups: Culture, 3 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)   29.667      1.970  15.059 

Day10         -5.833      2.786  -2.094 

Day12        -14.750      2.786  -5.294 

Day14        -18.500      2.786  -6.640 

Day16        -23.333      2.786  -8.375 

Correlation of Fixed Effects: 

      (Intr) Day10  Day12  Day14  

Day10 -0.707                      

Day12 -0.707  0.500               

Day14 -0.707  0.500  0.500        

Day16 -0.707  0.500  0.500  0.500 

 

[The three alternative models are then compared in a pairwise fashion to the null model using 
ANOVA, to select any models that provide a better fit to the data than the null model.] 

 

> anova(model0,model1) 

Data: sexratio 

Models: 

model0: Per.male ~ 1 + (1 | Culture) 

model1: Per.male ~ Treatment + (1 | Culture) 

       Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)    

model0  3 460.72 467.00 -227.36                             

model1  4 455.58 463.96 -223.79 7.1355      1   0.007557 ** 

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

[In this case, model 1 (including treatment (=culture conditions) is a better explanation of 
percentage males than the null model including only culture (=replicate)] 

 

> anova(model0,model2) 

Data: sexratio 

Models: 

model0: Per.male ~ 1 + (1 | Culture) 

model2: Per.male ~ Clone + (1 | Culture) 

       Df    AIC    BIC  logLik Chisq Chi Df Pr(>Chisq)     

model0  3 460.72 467.00 -227.36                             

model2  4 451.14 459.51 -221.57 11.58      1  0.0006665 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

[In this case, model 2 (including clone is a better explanation of percentage males than the null 
model including only culture (=replicate)] 

 

> anova(model0,model3) 

Data: sexratio 

Models: 

model0: Per.male ~ 1 + (1 | Culture) 

model3: Per.male ~ Day + (1 | Culture) 

       Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)     

model0  3 460.72 467.00 -227.36                              

model3  7 409.51 424.18 -197.76 59.201      4   4.27e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

[In this case, model 3 (including day of culture) is a better explanation of %percentage males than 
the null model including only culture (=replicate). This model has the highest P value of the three 
single models.] 

[Thus all 3 variables are significant singly in explaining the variance in percentage of males] 
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[New models are now set up containing different combinations of day plus one other variable, to 
compare with the model containing only day, which was the most significant model. i.e. clone + 
day, treatment + day] 

 

> model4<-lmer(Per.male~Clone+Day+(1|Culture),data=sexratio) 

 

> summary(model4) 

Linear mixed model fit by REML  

Formula: Per.male ~ Clone + Day + (1 | Culture)  

   Data: sexratio  

   AIC   BIC logLik deviance REMLdev 

 358.4 375.2 -171.2    357.3   342.4 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Culture  (Intercept)  0.000   0.0000   

 Residual             25.103   5.0103   

Number of obs: 60, groups: Culture, 3 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)   25.183      1.584  15.895 

CloneHB3       8.967      1.294   6.931 

Day10         -5.833      2.045  -2.852 

Day12        -14.750      2.045  -7.211 

Day14        -18.500      2.045  -9.044 

Day16        -23.333      2.045 -11.407 

Correlation of Fixed Effects: 

         (Intr) ClnHB3 Day10  Day12  Day14  

CloneHB3 -0.408                             

Day10    -0.645  0.000                      

Day12    -0.645  0.000  0.500               

Day14    -0.645  0.000  0.500  0.500        

Day16    -0.645  0.000  0.500  0.500  0.500 

 

> model5<-lmer(Per.male~Treatment+Day+(1|Culture),data=sexratio) 
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> summary(model5) 

Linear mixed model fit by REML  

Formula: Per.male ~ Treatment + Day + (1 | Culture)  

   Data: sexratio  

   AIC   BIC logLik deviance REMLdev 

 373.5 390.2 -178.7      374   357.5 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Culture  (Intercept)  0.00    0.0000   

 Residual             33.17    5.7593   

Number of obs: 60, groups: Culture, 3 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)   26.083      1.821  14.322 

TreatmentB     7.167      1.487   4.819 

Day10         -5.833      2.351  -2.481 

Day12        -14.750      2.351  -6.273 

Day14        -18.500      2.351  -7.868 

Day16        -23.333      2.351  -9.924 

Correlation of Fixed Effects: 

           (Intr) TrtmnB Day10  Day12  Day14  

TreatmentB -0.408                             

Day10      -0.645  0.000                      

Day12      -0.645  0.000  0.500               

Day14      -0.645  0.000  0.500  0.500        

Day16      -0.645  0.000  0.500  0.500  0.500 

 

[The models are compared with one another to determine if the addition of a second variable to day 
improves the fit of the model to the data] 

 

> anova(model3,model4) 

Data: sexratio 

Models: 

model3: Per.male ~ Day + (1 | Culture) 
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model4: Per.male ~ Clone + Day + (1 | Culture) 

       Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)     

model3  7 409.51 424.18 -197.76                              

model4  8 373.33 390.09 -178.66 38.184      1  6.437e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

> anova(model3,model5) 

Data: sexratio 

Models: 

model3: Per.male ~ Day + (1 | Culture) 

model5: Per.male ~ Treatment + Day + (1 | Culture) 

       Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)     

model3  7 409.51 424.18 -197.76                              

model5  8 390.05 406.80 -187.03 21.465      1  3.603e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

[both two-variable models are better than the single model with only day as an explanatory 
variable]. 

 

[A final model is now tested against the best fit model in the previous step. The new model includes 
all three variables] 

> model6<-lmer(Per.male~Treatment+Day+Clone+(1|Culture),data=sexratio) 

 

> summary(model6) 

Linear mixed model fit by REML  

Formula: Per.male ~ Treatment + Day + Clone + (1 | Culture)  

   Data: sexratio  

   AIC   BIC logLik deviance REMLdev 

 313.5 332.4 -147.8    306.9   295.5 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Culture  (Intercept)  0.000   0.0000   

 Residual             11.041   3.3227   
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Number of obs: 60, groups: Culture, 3 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)  21.6000     1.1349  19.032 

TreatmentB    7.1667     0.8579   8.353 

Day10        -5.8333     1.3565  -4.300 

Day12       -14.7500     1.3565 -10.874 

Day14       -18.5000     1.3565 -13.638 

Day16       -23.3333     1.3565 -17.201 

CloneHB3      8.9667     0.8579  10.452 

Correlation of Fixed Effects: 

           (Intr) TrtmnB Day10  Day12  Day14  Day16  

TreatmentB -0.378                                    

Day10      -0.598  0.000                             

Day12      -0.598  0.000  0.500                      

Day14      -0.598  0.000  0.500  0.500               

Day16      -0.598  0.000  0.500  0.500  0.500        

CloneHB3   -0.378  0.000  0.000  0.000  0.000  0.000 

 

[Model 6 is compared by ANOVA with the best two-variable model to see if the inclusion of all three 
variables is significantly better in explaining sex ratio] 

 

> anova(model6,model5) 

Data: sexratio 

Models: 

model5: Per.male ~ Treatment + Day + (1 | Culture) 

model6: Per.male ~ Treatment + Day + Clone + (1 | Culture) 

       Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)     

model5  8 390.05 406.80 -187.03                              

model6  9 324.92 343.77 -153.46 67.125      1  2.548e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

[The model with all three variables is significantly better than the best two-variable model. 
Therefore all three variables contribute significantly to the outcome variable.] 



180 
 

 

[Finally a model is set up that includes an interaction between clone and treatment (to see if there 
is a significant difference in the behaviour of the two clones under different culture conditions] 

 

> model7<-lmer(Per.male~Treatment+Day+Clone+(Clone*Treatment)+(1|Culture), 
data=sexratio) 

 

> summary(model7) 

Linear mixed model fit by REML  

Formula: Per.male ~ Treatment + Day + Clone + (Clone * Treatment) + (1 |      Culture)  

   Data: sexratio  

   AIC   BIC logLik deviance REMLdev 

 312.2 333.1 -146.1    306.4   292.2 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Culture  (Intercept)  0.00    0.0000   

 Residual             11.16    3.3407   

Number of obs: 60, groups: Culture, 3 

Fixed effects: 

                    Estimate Std. Error t value 

(Intercept)           21.883      1.220  17.939 

TreatmentB             6.600      1.220   5.411 

Day10                 -5.833      1.364  -4.277 

Day12                -14.750      1.364 -10.815 

Day14                -18.500      1.364 -13.565 

Day16                -23.333      1.364 -17.109 

CloneHB3               8.400      1.220   6.886 

TreatmentB:CloneHB3    1.133      1.725   0.657 

Correlation of Fixed Effects: 

            (Intr) TrtmnB Day10  Day12  Day14  Day16  ClnHB3 

TreatmentB  -0.500                                           

Day10       -0.559  0.000                                    

Day12       -0.559  0.000  0.500                             

Day14       -0.559  0.000  0.500  0.500                      

Day16       -0.559  0.000  0.500  0.500  0.500               
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CloneHB3    -0.500  0.500  0.000  0.000  0.000  0.000        

TrtmnB:CHB3  0.354 -0.707  0.000  0.000  0.000  0.000 -0.707 

 

 

[The new model is then compared to the previous one by ANOVA] 

> anova(model6,model7) 

Data: sexratio 

Models: 

model6: Per.male ~ Treatment + Day + Clone + (1 | Culture) 

model7: Per.male ~ Treatment + Day + Clone + (Clone * Treatment) + (1 |  

model7:     Culture) 

       Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq) 

model6  9 324.92 343.77 -153.46                          

model7 10 326.43 347.37 -153.21 0.4959      1     0.4813 

 

[The inclusion of the interaction does not significantly improve the model (p=0.4813), and so there 
is no significant difference in the behaviour (variance in sex ratio) of the clones under different 
culture conditions.] 

 

[The best fit model therefore includes Treatment, Day and clone. Each factor has a significant role 
in the variation in sex ratio] 
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9 Appendix C 

Stage Charts of Parental Clones 3D7 & HB3 – Experiment 2 
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16 
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6.99% 
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Gametocyte Stage 

HB3 - Control - Day 12 

Strong Female

Weak Female
Male

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

III
IV

V

1.50% 15.50% 

56.66% 

2.00% 3.84% 10.66% 

0.34% 2.34% 7.16% 

Gametocyte Stage 

HB3 - Control - Day 14 

Strong Female

Weak Female
Male

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

III
IV

V

7.63% 19.57% 

35.66% 

9.12% 4.98% 
8.29% 

4.81% 4.14% 5.80% 

Gametocyte Stage 

HB3 - Temp. Maintenance - Day 
12 

Strong Female

Weak Female
Male

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

III
IV

V

1.50% 15.61% 

54.48% 

2.82% 2.82% 
9.13% 

0.66% 2.66% 10.30% 

Gametocyte Stage 

HB3 - Temp. Maintenance - Day 
14 



188 
 

  

  

Strong Female

Weak Female

Male

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

III
IV

V

0.33% 
1.66% 

74.87% 

0.33% 4.66% 
12.81% 

0.00% 0.50% 4.83% 

Gametocyte Stage 

HB3 - Control - Day 16 

Strong Female

Weak Female

Male

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

III
IV

V

0.00% 11.94% 

59.70% 

0.00% 6.30% 10.11% 

0.00% 3.48% 8.46% 

Gametocyte Stage 

HB3 - Temp. Maintenance - Day 16 



189 
 

10 References 
 
Abkarian, M., Massiera, G., Berry, L., Roques, M., & Braun-Breton, C. (2011). 

A Novel Mechanism for Egress of Malarial Parasites from Red Blood Cells. Blood 
117(15): 4118-4124. 

 
Aikawa, M., Carter, R., Ito, Y., & Nijhout, M. M. (1984). New Observations on 

Gametocytogenesis, Fertilization, and Zygote Transformation in Plasmodium 
gallinaceum. Journal of Protozoology 31(3): 403-413. 

 
Alano, P. (2007). Plasmodium falciparum Gametocytes: Still Many Secrets of a 
Hidden Life. Molecular Microbiology 66(2): 291-302. 
 
Alano, P., Read, D., Bruce, M., Aikawa, M., Kaido, T., Tegoshi, T., Bhatti, S., 
Smith, D. K., Luo, C., Hansra, S., Carter, R., & Elliott, J. F. (1995a). COS Cell 

Expression Cloning of Pfg377, a Plasmodium falciparum Gametocyte Antigen 
Associated with Osmiophilic Bodies. Molecular and Biochemical Parasitology 
74(2): 143-156. 
 
Alano, P., Roca, L., Smith, D., Read, D., Carter, R., & Day, K. (1995b). 
Plasmodium falciparum: Parasites Defective in Early Stages of 
Gametocytogenesis. Experimental Parasitology 81(2): 227-235. 
 
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). 
Molecular Biology of the Cell, 4th edition. Chapter 6: How Cells Read the Genome: 
From DNA to Protein. Garland Science, Taylor Francis Group, New York. p. 299-
374. 
 
Amino, R., Thiberge, S., Martin, B., Celli, S., Shorte, S., Frischknecht, F., & 
Ménard, R. (2006). Quantitative Imaging of Plasmodium Transmission From 
Mosquito to Mammal. Nature Medicine 12(2): 220-224. 

 
Anderson, T. J. C., Haubold, B., Williams, J. T., Estrada-Franco, J. G., 
Richardson, L., Mollinedo, R., Bockarie, M., Mokili, J., Mharakurwa, S., 
French, N., Whitworth, J., Velez, I. D., Brockman, A. H., Nosten, F., Ferreira, 
M. U., & Day, K. P. (2000). Microsatellite Markers Reveal a Spectrum of 
Population Structures in the Malaria Parasite Plasmodium falciparum. Molecular 
Biology and Evolution 17(10): 1467-1482. 
 
Babiker, H. A., Abdel-Wahab, A., Ahmed, S., Suleiman, S., Ranford-
Cartwright, L., Carter, R., & Walliker, D. (1999a). Detection of Low Level 

Plasmodium falciparum Gametocytes Using Reverse Transcriptase Polymerase 
Chain Reaction. Molecular and Biochemical Parasitology 99(1): 143-148. 
 
Babiker, H. A., Ranford-Cartwright, L. C., & Walliker, D. (1999b). The 

Epidemiology of Multiple Plasmodium falciparum Infections. 3. Genetic Structure 
and Dynamics of Plasmodium falciparum Infections in the Kilombero Region of 
Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene 
93(Suppl. 1): S1/11-S1/14. 
 



190 
 

Babiker, H. A. & Schneider, P. (2008). Application of Molecular Methods for 
Monitoring Transmission Stages of Malaria Parasites. Biomedical Materials 3(3): 

034007. 
 
Baker, D. A. (2010). Malaria Gametocytogenesis. Molecular Biochemical 
Parasitology 172(2): 57-65. 

 
Baker, D. A., Daramola, O., McCrossan, M. V., Harmer, J., & Targett, G. A. T. 

(1994). Subcelluar Localization of Pfs16, a Plasmodium falciparum Gametocyte 
Antigen. Parasitology 108(2): 129-137. 
 
Baker, D. A., Thompson, J., Daramola, O. O., Carlton, J. M. R., & Targett, G. 
A. T. (1995). Sexual-Stage-Specific RNA Expression of a New Plasmodium 
falciparum Gene Detected by in situ Hybridisation. Molecular and Biochemical 
Parasitology 72(1-2): 193-201. 
 
Bannister, L. & Mitchell, G. (2003). The Ins, Outs and Roundabouts of Malaria. 
Trends in Parasitology 19(5): 209-213.  
 
Bártfai, R., Hoeijmakers, W. A. M., Salcedo-Amaya, A. M., Smits, A. H., 
Janssen-Megens, E., Kaan, A., Treeck, M., Gilberger,T., Françoijs, K., & 
Stunnenberg, H. G. (2010). H2A.Z Demarcates Intergenic Regions of the 

Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac & 
H3K4me3. Public Library of Science Pathogens 6(12): e1001223. 

doi:10.1371/journal.ppat.1001223. 
 
Baton, L. A. & Ranford-Cartwright, L. C. (2005a). How do Malaria Ookinetes 
Cross the Mosquito Midgut Wall? Trends in Parasitology 21(1): 22-28. 
 
Baton, L.A. & Ranford-Cartwright, L. C. (2005b). Spreading the Seeds of a 

Million-Murdering Death: Metamorphoses of Malaria in the Mosquito. Trends in 
Parasitology 21(12): 573-580. 
 
Bell, A. S. & Ranford-Cartwright, L. C. (2002). Real-Time Quantitative PCR in 
Parasitology. Trends in Parasitology 18(8): 337-342. 
 
Bhasin, V. K. & Trager, W. (1984). Gametocyte-Forming and Non-Gametocyte-
Forming Clones of Plasmodium falciparum. American Journal of Tropical Medicine 
and Hygiene 33(4): 534-537. 
 
Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B., & 
Brinkmann, V. (2004). Calcium and a Calcium-dependent Protein Kinase 

Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite. 
Cell 117(4): 503-514. 
 
Bishop, D. T., Cannings, C., Skolnick, M., Williamson, J. A., & Weir, B. S: 
(1983). The number of polymorphic DNA clones required to map the human 
genome. Statical analysis of DNA sequence data. New York: Marcel-Dekker, 181-
200. 
 
Blackman, M. J. (2008). Malarial Proteases and Host Cell Egress: an ‘Emerging’ 
Cascade. Cellular Microbiology 10(10): 1925-1934. 



191 
 

 
Bozdech, Z., Llinás, M., Pulliam, B. L., Wong, E. D., Zhu, J., & DeRisi, J. L. 

(2003). The Transcriptome of the Intraerythrocytic Development Cycle of 
Plasmodium falciparum. Public Library of Science Pathogens 1(1): 085. 

 
Brockelman, C. R. (1982). Conditions Favouring Gametocytogenesis in the 
Continous Culture of Plasmodium falciparum. Journal of Protozoology 29(3): 454-
458. 
 
Broman, K. W. & Sen, S. (2009). A Guide to QTL Mapping with R/qtl. Springer, 

UK. 
 
Broman, K. W., Wu, H., Sen, S., & Churchill, G. A. (2003). R/qtl: QTL Mapping 
in Experimental Crosses. Bioinformatics 19(7): 889-890. 
 
Bruce, M. C., Alano, P., Duthie, S., & Carter, R. (1990). Commitment of the 

Malaria Parasite Plasmodium falciparum to Sexual and Asexual Development. 
Parasitology 100(2): 191-200. 
 
Bruce, M. C., Carter, R. N., Nakamura, K., Aikawa, M., & Carter, R. (1994). 

Cellular Location and Temporal Expression of the Plasmodium falciparum Sexual 
Stage Antigen Pfs16. Molecular and Biochemical Parasitology 65(1): 11-22. 
 
Buckling, A., Ranford-Cartwright, L. C., Miles, A., & Read, A. F. (1999). 

Chloroquine Increases Plasmodium falciparum Gametocytogenesis In Vitro. 
Parasitology 118(4): 339-346. 
 
Buckling, A. & Read, A. F. (2001). The Effect of Partial Host Immunity on the 

Transmission of Malaria Parasites. Proceedings of the Royal Society of London 
Series B 268(1483): 2325-2330. 
 
Burkot, T. R., Williams, J. L., & Schneider, I. (1984). Infectivity to Mosquitoes of 

Plasmodium falciparum Clones Grown in vitro from the Same Isolate. Transactions 
of the Royal Society of Tropical Medicine and Hygiene 78(3): 339-341. 

 
Carter, R., Graves, P. M., Creasey, A., Byrne, K., Read, D., Alano, P., & 
Fenton, B. (1989). Plasmodium falciparum: An Abundant Stage-Specific Protein 
Expressed During Early Gametocyte Development. Experimental Parasitology 
69(1): 140-149. 
 
Carter, R. & Miller, L. H. (1979). Evidence for Environmental Modulation of 
Gametocytogenesis in Plasmodium falciparum in Continuous Culture. Bulletin of 
the World Health Organisation 57 (Supplement 1): 37-52. 
 
Carter, R., Ranford-Cartwright, L., & Alano, P. (1993). The Culture and 

Preparation of Gametocytes of Plasmodium falciparum for Immunochemical, 
Molecular, and Mosquito Infectivity Studies. Methods in Molecular Biology 21: 67-

88. 
 
Chaiyaroj, S. C., Thompson, J. K., Coppel, R. L., & Brown, G. V. (1994). 
Gametocytogenesis Occurs in Plasmodium falciparum Isolates Carrying a 
Chromosome 9 Deletion. Molecular and Biochemical Parasitology 63(1): 163-165. 



192 
 

 
Charnov, E. L. (1982). The Theory of Sex Allocation. Princeton University Press, 

UK. 
 
Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T., & van den Assem, J. 
(1981). Sex Ratio Evolution in a Variable Environment. Nature 289(1): 27-32. 
 
Chin, W. & Collins, W. E. (1980). Comparative Studies of Three Strains of 

Plasmodium falciparum Isolated by the Culture Method of Trager and Jensen. 
American Journal of Tropical Medicine and Hygiene 29(6): 1143-1146. 
 
Chotivanich, K., Udomsangpetch, R., McGready, R., Proux, S., Newton, P., 
Pukrittayakamee, S., Looareesuwan, S. & White, N. J. (2002). Central Role of 
the Spleen in Malaria Parasite Clearance. The Journal of Infectious Diseases 
185(10): 1538-1541. 
 
Coulson, R. M. R., Hall, N., & Ouzounis, C. A. (2004). Comparative Genomics of 
Transcriptional Control in the Human Malaria Parasite Plasmodium falciparum. 
Genome Research 14(8): 1548-1554. 
 
Cox-Singh, J., Davis, T. M. E., Lee, K. S., Shamsul, S. S. G., Matusop, A., 
Ratnam, S., Rahman, S., Conway, D. J., & Singh, B. (2008). Plasmodium 

knowlesi Malaria in Humans is Widely Distributed and Potentially Life Threatening. 
Clinical Infectious Diseases 46(2): 165-171. 
 
Dailey, J. P., Scanfeld, D., Pochet, N., LeRoch, K., Plouffe, D., Karnal, M., 
Sarr, O., Mboup, S., Ndir, O., Wypij, D., Levasseur, K., Thomas, E., Tamayo, 
P., Dong, C., Zhou, Y., Lander, E. S., Ndiaye, D., Wirth, D., Winzeler, E. A., 
Mesirov, J. P., & Regev, A. (2007). Distinct Physiological States of Plasmodium 
falciparum in Malaria-Infected Patients. Nature 450(7172): 1091-1097. 
 
Day, K. P., Karamalis, F., Thompson, J., Barnes, D. A., Peterson, C., Brown, 
H., Brown, G. V., & Kemp, D. J. (1993). Genes Necessary for Expression of a 
Virulence Determinant and for Transmission of Plasmodium falciparum are 
Located on a 0.3-Megabase Region of Chromosome 9. Proceedings of the 
National Academy of Science USA 90(17): 8292-8296. 
 
de Koning-Ward, T. F., Olivieri, A., Bertuccini, L., Hood, A., Silvestrini, F., 
Charvalias, K., Diaz, P. B., Camarda, G., McElwain, T. F., Papenfuss, T., 
Healer, J., Baldassarri, L., Crabb, B. S., Alano, P., & Ranford-Cartwright, L. C. 

(2008). The Role of Osmiophilic Bodies and Pfg377 Expression in Female 
Gametocyte Emergence and Mosquito Infectivity in the Human Malaria Parasite 
Plasmodium falciparum. Molecular Microbiology 67(2): 278-290. 
 
Deligianni, E., Morgan, R. N., Bertuccini, L., Kooij, T. W. A., Laforge, A., 
Nahar, C., Poulakakis, N., Schüler, H., Louis, C., Matuschewski, K., & Siden-
Kiamos, I. (2011). Critical Role for a Stage-Specific Actin in Male Exflagellation of 
the Malaria Parasite. Cellular Microbiology 13(11): 1714-1730. 
 
Dixon, M. W. A., Thompson, J., Gardiner, D. L., & Trenholme, K. R. (2008). 
Sex in Plasmodium: a Sign of Commitment. Trends in Parasitology 24(4): 168-

175. 



193 
 

 
Downs, W. G. (1947). Infections of Chicks with Single Parasites of Plasmodium 
gallinaceum Brumpt. American Journal of Hygiene 46: 41-44. 
 
Drakeley, C. J., Secka, I., Correa, S., Greenwood, B. M., Targett, G. A. T. 
(1999). Host Haematological Factors Influencing the Transmission of Plasmodium 
falciparum Gametocytes to Anopheles gambiae s.s. Mosquitoes. Tropical 
Medicine and International Health 4(2): 131-138. 

 
Drew, D. R. & Reece, S. E. (2007). Development of Reverse-Transcription PCR 

Techniques to Analyse the Density and Sex Ratio of Gametocytes in Genetically 
Diverse Plasmodium chabaudi Infections. Molecular and Biochemical Parasitology 
156(2): 199-209. 
 
Dyer, M. & Day, K. (2000). Expression of Plasmodium falciparum Trimeric G 
Proteins and their Involvement in Switching to Sexual Development. Molecular and 
Biochemical Parasitology 110(2): 437-448. 
 
Dyer, M. & Day, K. P. (2003). Regulation of the Rate of Asexual Growth and 
Commitment to Sexual Development by Diffusible Factors From In Vitro Cultures 
of Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 
68(4): 403-409. 

 
Eichner, M., Diebner, H. H., Molineaux, L., Collins, W. E., Jeffery, G. M., & 
Dietz, K. (2001). Genesis, Sequestration, and Survival of Plasmodium falciparum 
Gametocytes: Parameter Estimates from Fitting a Model to Malaria Therapy Data. 
Transactions of the Royal Society of Tropical Medicine and Hygiene 95(5): 497-
501. 
 
Eksi, S., Suri, A., & Williamson, K. C. (2008). Sex- and Stage-Specific 

Expression in Plasmodium falciparum. Molecular and Biochemical Parasitology 
160: 148-151. 
 
Eksi, S. & Williamson, K. C. (2002). Male-Specific Expression of the Paralog of 

Malaria Transmission-Blocking Target Antigen Pfs230, PfB0400w. Molecular and 
Biochemical Parasitology 122(2): 127-130. 
 
Eksi, S. & Williamson, K. C. (2011). Protein Targeting to the Parasitophorous 
Vacuole Membrane of Plasmodium falciparum. Eukaryotic Cell 10(6): 744-752. 
 
Farfour, E., Charlotte, F., Settegrana, C., Miyara, M., & Buffet, P. (2012). The 
Extravascular Compartment of the Bone Marrow: A Niche for Plasmodium 
falciparum Gametocyte Maturation? Malaria Journal 11:285. 
 
Ferdig, M. T., Cooper, R. A., Mu, J., Deng, B., Joy, D. A., Su, X.-z., & Wellems, 
T. E. (2004). Dissecting the Loci of Low-Level Quinine Resistance in Malaria 
Parasites. Molecular Microbiology 52(4): 985-997. 
 
 
 
 



194 
 

Fidock, D. A., Nomura, T., Talley, A. K., Cooper, R. A., Dzekunov, S. M., 
Ferdig, M. T., Ursos, L. M. B., Sidhu, A. B., Naudé, B., Deitsch, K. W., Su, X.-
z., Wootton, J. C., Roepe, P. D., & Wellems, T. E. (2000a). Mutations in the P. 
falciparum Digestive Vacuole Transmembrane Protein PfCRT and Evidence of 
Their Role in Chloroquine Resistance. Molecular Cell 6(4): 861-871. 
 
Fidock, D. A., Takashi, N., Cooper, R. A., Su, X.-z., Talley, A. K., & Wellems, T. 
E. (2000b). Allelic Modifications of the cg2 and cg1 Genes Do Not Alter the 

Chloroquine Response of the Drug-Resistant Plasmodium falciparum. Molecular 
and Biochemical Parasitology 110(1): 1-10. 
 
Field, J. W. & Shute, P. G. (1956). The Microscopic Diagnostic of Human Malaria. 

In: A Morphological Study of the Erythrocytic Parasites. Kuala Lumpur: 
Government Press. p.142. Quoted from Hawking et al. 1971. 
 
Florens, L., Washburn, M. P., Raine, J.D., Anthony, R.M., Grainger, M., 
Haynes, J.D., Moch, J.K., Muster, N., Sacci, J.B., Tabb, D.L., Witney, A.A., 
Wolters, D., Wu, Y., Gardner, M.J., Holder, A.A., Sinden, R.E., Yates, J.R., & 
Carucci, D.J. (2002). A Proteomic View of the Plasmodium falciparum Life Cycle. 
Nature 419(6906): 520-526. 
 
Furuya, T., Mu, J., Hayton, K., Liu, A., Duan, J., Nkrumah, L., Joy, D. A., 
Fidock, D. A., Fujioka, H., Vaidya, A. B., Wellems, T. E., & Su, X.-z. (2005). 
Disruption of a Plasmodium falciparum Gene Linked to Male Sexual Development 
Causes Early Arrest in Gametocytogenesis. Proceedings of the National Academy 
of Science 102(46): 16813-16818. 

 
Gardiner, D. L., Dixon, M. W. A., Spielmann, T., Skinner-Adams, T. S., 
Hawthorne, P. L., Ortega, M. R., Kemp, D. J., & Trenholme, K. R. (2005). 
Implication of a Plasmodium Gene in the Switch between Asexual Reproduction 
and Gametocytogenesis. Molecular & Biochemical Parasitology 140(2): 153-160. 
 
Geldermann, H. (1975). Investigations on Inheritance of Quantitative Characters 
in Animals by Gene Markers. Theoretical and Applied Genetics 46(7): 319-330. 
 
Geary, T. G., Divo, A. A., Bonanni, L. C., & Jensen, J. B. (1985). Nutritional 

Requirements of Plasmodium falciparum in Culture. III. Further Observations on 
Essential Nutrients and Antimetabolites. Journal of Protozoology 32(4): 608-613. 
 
Gerbasi, V. R., Weaver,C. M., Hill, S., Friedman, D. B., & Link, A. J. (2004). 

Yeast Asc1p and Mammalian RACK1 Are Functionally Orthologous Core 40S 
Ribosomal Proteins That Repress Gene Expression. Molecular and Cellular 
Biology 24(18): 8276-8287. 
 
Grafen, A. & Hails, R. (2002). Modern Statistics for the Life Sciences. Chapter 11: 

Model Selection II: Data Sets with Several Explanatory Variables. Oxford 
University Press, UK. p. 209-231. 
 
Graves, P. M., Carter, R., & McNeill, K. M. (1984). Gametocyte Production in 

Cloned Lines of Plasmodium falciparum. American Journal of Tropical Medicine 
and Hygiene 33(6): 1045-1050. 
 



195 
 

Hamilton, W. D. (1967). Extraordinary Sex Ratios. Science 156(3774): 477-488. 
 
Han, Y. S., Thompson, J., Kafatos, F. C., & Barillas-Mury, C. (2000). Molecular 
Interactions Between Anopheles stephensi Midgut Cells and Plasmodium berghei: 
the Time Bomb Theory of Ookinete Invasion of Mosquitoes. The European 
Molecular Biology Organization Journal 19(22): 6030-6040. 

 
Hartwell, L., Hood, L., Goldberg, M. L., Reynolds, A. E., Silver, L. M., & Veres, 
R. C. (2008). Genetics: From Genes to Genomes, 3rd ed. Mcgraw-Hill, NY. p81. 
 
Hawking, F., Wilson, M. E., & Gammage, K. (1971). Evidence for Cyclic 
Development and Short-Lived Maturity in the Gametocytes of Plasmodium 
falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 
65(5): 549-559. 
 
Hawking, F., Worms, M. J., & Gammage, K. (1968). 24- and 48-Hour Cycles of 

Malaria Parasites in the Blood; Their Purpose, Production and Control. 
Transactions of the Royal Society of Tropical Medicine and Hygiene 62(5): 731- 

765. 
 
Haynes, J. D., Diggs, C. L., Hines, F. A., & Desjardins, R. E. (1976). Culture of 
Human Malaria Parasites Plasmodium falciparum. Nature 263(5580): 767-769. 
 
Hayward, R. E. (2000). Plasmodium falciparum Phosphoenolpyruvate 

Carboxykinase is Developmentally Regulated in Gametocytes. Molecular and 
Biochemical Parasitology 107(2): 227-240. 
 
Ikadai, H., Saliba, K. S., Kanzok, S. M., McLean, K. J., Tanaka, T. Q., Cao, J., 
Williamson, K. C., & Jacobs-Lorena, M. (2013). Transposon Mutagenesis 
Identifies Genes Essential for Plasmodium falciparum Gametocytogenesis. 
Proceedings of the National Academy of Science USA 110(18): E1676-E1684. 
 
Innocent, T. M., Savage, J., West, S. A., & Reece, S. E. (2007). Lethal Combat 
and Sex Ratio Evolution in a Parasitoid Wasp. Behavioural Ecology 18(4): 709-

715. 
 
Inselburg, J. (1983). Gametocyte Formation by the Progeny of Single 
Plasmodium falciparum Schizonts. Journal of Parasitology 69(3): 584-591. 
 
James, S. P. (1931). Some General Results of a Study of Induced Malaria in 

England. Transactions of the Royal Society of Tropical Medicine and Hygiene 
24(5): 477-525. 
 
Janse, C. J., van der Klooster, P. F. J., van der Kaay, H. J., van der Ploeg, M., 
Overdulve, J. P. (1986). DNA Synthesis in Plasmodium berghei During Asexual 
and Sexual Development. Molecular and Biochemical Parasitology 20(2): 173-182. 
 
Jelkmann, W. & Hellwig-Burgel, T. (2001). Biology of Erythropoietin. Advances 
in Experimental Medicine and Biology 502: 169-187. 

 
Jensen, J. B. (1979). Observations on Gametocytogenesis in Plasmodium 
falciparum from Continuous Culture. Journal of Protozology 26(1): 129-132. 



196 
 

 
Jiang, H., Li, N., Gopalan, V., Zilversmit, M. M., Varma, S., Nagarajan, V., Li, 
J., Mu, J., Hayton, K., Henschen, B., Yi, M., Stephens, R., McVean, G., 
Awadalla, P., Wellems, T. E., & Su, X.-z. (2011). High Recombination Rates and 
Hotspots in a Plasmodium falciparum Genetic Cross. Genome Biology 12:R33. 
 
Kaushal, D. C., Carter, R., Miller, L. H., & Krishna, G. (1980). 
Gametocytogenesis by Malaria Parasites in Continous Culture. Nature 286(5772): 

490-492. 
 
Kelly, J. M., McRobert, L., & Baker, D. A. (2006). Evidence on the Chromosomal 
Location of Centromeric DNA in Plasmodium falciparum from Etoposide-Mediated 
Topoisomerase-II Cleavage. Proceeds of the National Academy of Science USA 
103(17): 6706-6711.  
 
Khan, S. M., Franke-Fayard, B., Mair, G. R., Lasonder, E., Janse, C. J., Mann, 
M., Water, A. P. (2005). Proteome Analysis of Separated Male and Female 
Gametocytes Reveals Novel Sex-Specific Plasmodium Biology. Cell 121(5): 675-

687. 
 
Kongkasuriyachai, D., Fujioka, H., & Kumar, N. (2004). Functional Analysis of 
Plasmodium falciparum Parasitophorous Vacuole Membrane Protein (Pfs16) 
During Gametocytogenesis and Gametogenesis by Targeted Gene Disruption. 
Molecular and Biochemical Parasitology 133(2): 275-285. 
 
Laity, J. H., Lee, B. M., & Wright, P. E. (2001). Zinc Finger Proteins: New 

Insights into Structural and Functional Diversity. Current Opinion in Structural 
Biology 11(1): 39-46. 
 
Lander, E. S. & Botstein, D. (1989). Mapping Mendelian Factors Underlying 
Quantitative Traits Using RFLP Linkage Maps. Genetics 121(1): 185-199. 
 
Lanfrancotti, A., Bertuccini, L., Silverstrini, F., & Alano, P. (2007). Plasmodium 
falciparum: mRNA Co-Expression and Protein Co-Localisation of Two Gene 
Products Upregulated in Early Gametocytes. Experimental Parasitology 116(4): 
497-503. 
 
Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M. W., Pain, A., 
Sauerwein, R. W., Eling, W. M. C., Hall, N., Waters, A. P., Stunnenberg, H. G., 
& Mann, M. (2002). Analysis of the Plasmodium falciparum Proteome by High-
Accuracy Mass Spectrometry. Nature 419(6906): 537-542. 
 
Laveran, C.A. (1880). Un Nouveau Parasite Trouvé Dans le Sang des Malades 
Atteints de Fièvre Palustre. Origine Parasitaire des Accidents de l’Impaludisme. 
Bulletins et Mémoires de la Société Médicale des Hôpitaux de Paris 17: 158–164. 

Quoted from Dixon et al. 2008. 
 
Lengeler, K. B., Fox, D. S., Fraser, J. A., Allen, A., Forrester, K., Dietrich, F. 
S., & Heitman, J. (2002). Mating-Type Locus of Cryptococcus neoformans: A 
Step in the Evolution of Sex Chromosomes. Eukaryotic Cell 1(5): 704-718. 
 
 



197 
 

Le Roch, K. G., Zhou, y., Blair, P. L., Grainger, M., Moch, J. K., Haynes, J. D., 
De la Vega, P., Holder, A. A., Batalov, S., Carucci, D. J., & Winzeler, E., (2003). 

Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life 
Cycle. Science 301(5639): 1503-1508. 
 
Lewis, T. S., Shapiro, P. S., & Ahn, N. G. (1998). Signal Transduction through 
MAP Kinase Cascades. Advances in Cancer Research 74: 49-139. 
 
Lichten, M. & Goldman, A. S. H. (1995). Meiotic Recombination Hotspots. 
Annual Review of Genetics 29: 423-444. 
 
Lincoln, S. E. & Lander, E. S. (1992). Systematic Detection of Errors in Genetic 
Linkage Data. Genomics 14(3): 604-610. 
 
Llinás, M., Bozdech, Z., Wong, E. D., Adai, A. T., & DeRisi, J. L. (2006). 
Comparative Whole Genome Transcriptome Analysis of Three Plasmodium 
falciparum Strains. Nucleic Acids Research 34(4): 1166-1173. 
 
Lobo, C-A., Fujioka, H., Aikawa, M., & Kumar, N. (1999). Disruption of the Pfg27 
Locus by Homologous Recombination Leads to Loss of the Sexual Phenotype in 
P. falciparum. Molecular Cell 3(6): 793-798. 
 
López-Barragán, M. J., Lemieux, J., Quiñones, M., Williamson, K. C., Molina-
Cruz1, A., Cui, K., Barillas-Mury, C., Zhao, K., & Su, X.-z. (2011). Directional 

Gene Expression and Antisense Transcripts in Sexual and Asexual Stages of 
Plasmodium falciparum. BMC Genomics 12:587. 
 
Lynch, M. & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. 

Sinauer Associates, Inc. USA. 
 
Madeira. L., DeMarco, R., Gazarini, M. L., Verjovski-Almeida, S., & Garcia, C. 
R. S. (2003). Human Malaria Parasites Display a Receptor for Activated C Kinase 
Ortholog. Biochemical and Biophysical Research Communications 306(4): 995-
1001. 
 
Madigan, M. T., Martinko, J. M., & Parker, J. (2003). Chapter 14: Eukaryotic Cell 

Biology and Eukaryotic Microorganisms. In: Brock Biology of Microorganisms, 
Tenth Edition. Pearson Education, Inc., USA. p. 472-498. 
 
Maity, S. N. & de Crombrugghe, B. (1998). Role of the CCAAT-Binding Protein 
CBF/NF-Y in Transcription. Trends in Biochemical Sciences 23(5): 174-178. 
 
McCutchan, T. F., de la Cruz , V. F., Lal, A. A., Gunderson, J. H., Elwood, H. 
J., & Sogin, M. L. (1988). Primary Sequences of Two Small Subunit Ribosomal 
RNA Genes from Plasmodium falciparum. Molecular and Biochemical Parasitology 
28(1): 63-68. 
 
Menegon, M., Severini, C., Sannella, A., Paglia, M. G., Sangaré, D., Abdel-
Wahab, A., Abdel-Muhsin, A.-M. A., Babiker, H., Walliker, D., & Alano, P. 

(2000). Genotyping of Plasmodium falciparum Gametocytes by Reverse 
Transcriptase Polymerase Chain Reaction. Molecular and Biochemical 
Parasitology 111(1): 153-161. 



198 
 

 
Miao, J., Li, J., Fan, Q., Li, Xiaolian, Li. Xinyi, & Cui, L. (2009).  The Puf-Family 

RNA-Binding Protein PfPuf2 Regulates Sexual Development and Sex 
Differentiation in the Malaria Parasite Plasmodium falciparum. Journal of Cell 
Science 123(7): 1039-1049. 
 
Moelans, I. I. M. D., Meis, J. F. G. M., Kocken, C., Konings, R. N. H., & 
Schoenmakers, J. G. G. (1991). A Novel Protein Antigen of the Malaria Parasite 

Plasmodium falciparum, Located on the Surface of Gametes and Sporozoites. 
Molecular and Biochemical Parasitology 45(2): 193-204. 
 
Moreira, C. K., Marrelli, M. T., & Jacobs-Lorena, M. (2004). Gene Expression in 

Plasmodium: from Gametocyte to Sporozoites. International Journal for 
Parasitology 34 (13-14): 1431-1440. 
 
Motard, A., Marussig, M., Rénia, L., Baccam, D., Landau, I., Mattei, D., 
Targett, G., & Mazier, D. (1995). Immunization with the Malaria Heat Shock Like 
Protein Hsp70-1 Enhances Transmission to the Mosquito. International 
Immunology 7(1): 147-150. 
 
Mu, J., Awadalla, P., Duan, J., McGee, K. M., Joy, D. A., McVean, G. A. T., & 
Su, X.-z. (2005). Recombination Hotspots and Population Structure in 
Plasmodium falciparum. Public Library of Science Biology 3(10): 1734-1741. 
 
Nacher, M., Singhasivanon, P., Silachamroon, U., Treeprasertsuk, S., 
Tosukhowong, T., Vannaphan, S., Gay, F., Mazier, D., & Looareesuwan, S. 

(2002). Decreased Haemoglobin Concentrations, Hyperparasitaemia, and Severe 
Malaria are Associated with Increased Plasmodium falciparum Gametocyte 
Carriage. Journal of Parasitology 88(1): 97-101. 
 
Neal, A. T. (2011). Male Gametocyte Fecundity and Sex Ratio of a Malaria 
Parasite, Plasmodium mexicanum. Parasitology 138(10): 1203-1210. 
 
Neal, A. T. & Schall, J. J. (2010). Gametocyte Sex Ratio in Single-Clone 
Infections of the Malaria Parasite Plasmodium mexicanum. Parasitology 137(13): 
1851-1859. 
 
Niederwieser, I., Felger, I., & Beck, H-P. (2000). Plasmodium falciparum: 

Expression of Gametocyte-Specific Genes in Monolayer Cultures and Malaria-
Positive Blood Samples. Experimental Parasitology 95(3): 163-169. 
 
Ng, O. T., Ooi, E. E., Lee, C. C., Lee, P. J. Ng, L. C., Wong, P. S. Tu, T. M., Loh, 
J. P., Leo, Y. S. (2008). Naturally Acquired Human Plasmodium knowlesi 
Infection, Singapore. Emerging Infectious Diseases 14(5): 814-816. 
 
O’Connell, M. J., Krien, M. J. E., & Hunter, T. (2003). Never Say Never. The 
NIMA-Related Protein Kinases in Mitotic Control. Trends in Cell Biology 13(5): 

221-228. 
 
 
 



199 
 

Olivieri, A., Camarda, G., Bertuccini, L., van de Vegte-Bolmer, M., Luty, A. J. 
F., Sauerwein, R., & Alano, P. (2009). The Plasmodium falciparum Protein Pfg27 

is Dispensable for Gametocyte and Gamete Production, but Contributes to Cell 
Integrity during Gametocytogenesis. Molecular Microbiology 73(2): 180-193. 

 
Ono, T., Nakai, T., & Nakabayashi, T. (1986). Induction of Gametocytogenesis in 

Plasmodium falciparum by the Culture Supernatant of Hybridoma Cells Producing 
Anti-P. falciparum Antibody. Biken Journal 29(3-4): 77-81. 

 
Ono, T., Ohnishi, Y., Nagamune, K., & Kano, M. (1993). Gametocytogenesis 

Induction by Berenil in Cultured Plasmodium falciparum. Experimental 
Parasitology 77(1): 74-78. 

 
O’Regan, L., Blot, J., & Fry, A. M. (2007). Mitotic Regulation by NIMA-Related 
Kinases. Cell Division 2: 25. 
 
Otto, T. D., Wilinski, D., Assefa, S., Keane, T. M., Sarry, L. R., Böhme, U., 
Lemieux, J., Barrell, B., Pain, A., Berriman, M., Newbold, C., & Llinás, M. 

(2010). New Insights into the Blood-Stage Transcriptome of Plasmodium 
falciparum Using RNA-Seq. Molecular Microbiology 76(1): 12-24. 
 
Paul, R. E. L., Brey, P. T., & Robert, V. (2002). Plasmodium Sex Determination 
and Transmission to Mosquitoes. Trends in Parasitology 18(1): 32-38. 
 
Paul, R. E. L., Coulson, T. N., Raibaud, A., Brey, P. T. (2000). Sex 
Determination in Malaria Parasites. Science 287(5450): 128-131. 

 
Paul, R. E. L., Packer, M. J., Walmsley, M., Lagog, M., Ranford-Cartwright, L. 
C., Paru, R., & Day, K. P. (1995). Mating Patterns in Malaria Parasite Populations 
of Papua New Guinea. Science 269(5231): 1709-1711. 
 
Petes, T. D. (2001). Meiotic Recombination Hot Spots and Cold Spots. Nature 
Reviews: Genetics 2: 360-369. 
 
Petter, M., Haeggström, M., Khattab, A., Fernandez, V., Klinkert, M.-Q., & 
Wahlgren, M. (2007). Variant Proteins of the Plasmodium falciparum RIFIN 

Family Show Distinct Subcellular Localization and Developmental Expression 
Patterns. Molecular & Biochemical Parasitology 156(1): 51-61. 

 
Pickering, J., Read, A. F., Guerrero, S., & West, S. A. (2000). Sex Ratio and 

Virulence in Two Species of Lizard Malaria Parasites. Evolutionary Ecology 
Research 2: 171-184. 
 
Ponnudurai, T., Lensen, A. H. W., Meis, J. F. G. M., & Meuwissen, J. H. E. Th. 
(1986). Synchronization of Plasmodium falciparum Gametocytes Using an 
Automated Suspension Culture System. Parasitology 93(2): 263-274. 
 
Price, R., Nosten, F., Simpson, J. A., Luxemburger, C., Phaipun, L., Ter Kuile, 
F., Van Vugt, M., Chongsuphajaisiddhi, T., & White, N. J. (1999). Risk Factors 

for Gametocyte Carriage in Uncomplicated Malaria. American Journal of Tropical 
Medicine and Hygiene 60(6): 1019-1023. 

 



200 
 

Prudêncio, M., Rodriguez, A, & Mota, M. M. (2006). The Silent Path to 
Thousands of Merozoites: The Plasmodium Liver Stage. Nature Reviews 
Microbiology 4(11):849-856. 
 
Ralph, S. A., van Dooren, G. G., Waller, R. F., Crawford, M. J., Fraunholz, M. 
J., Foth, B. J., Tonkin, C. J., Roos, D. S., & McFadden, G. I. (2004). Metabolic 

Maps and Functions of the Plasmodium falciparum Apicoplast. Nature Reviews 
Microbiology 2(3): 203-216. 
 
R Core Team (2013). R: A Language and Environment for Statistical Computing., 

R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. 
 
Ranford-Cartwright, L. C., Balfe, P., Carter, R. & Walliker, D. (1991). Genetic 
Hybrids of Plasmodium falciparum Identified by Amplification of Genomic DNA 
from Single Oocysts. Molecular and Biochemical Parasitology 49(2): 239-244. 
 
Ranford-Cartwright, L. C., Balfe, P., Carter, R. & Walliker, D. (1993). Frequency 
of Cross-Fertilization in the Human Malaria Parasite Plasmodium falciparum. 
Parasitology 107(1): 11-18. 
 
Ranford-Cartwright, L. C. & Mwangi, J. M. (2012). Analysis of Malaria Parasite 
Phenotypes Using Experimental Genetic Crosses of Plasmodium falciparum. 
International Journal of Parasitology 42(6): 529-534. 
 
Rawlings, D. J., Fujioka, H., Fried, M., Keister, D. B., Aikawa, M., & Kaslow, D. 
C. (1992). Α-Tubulin II is a Male-Specific Protein in Plasmodium falciparum. 
Molecular and Biochemical Parasitology 56(2): 239-250. 
 
Raymondjean, M., Cereghini, S., & Yaniv, M. (1988). Several Distinct “CCAAT” 
Box Binding Proteins Coexist in Eukaryotic Cells. Proceedings of the National 
Academy of Science USA 85(3): 757-761. 
 
Read, A. F., Anwar, M., Shutler, D., & Nee, S. (1995). Sex Allocation and 
Population Structure in Malaria and Related Parasitic Protozoa. Proceedings of 
the Royal Society of London Series B 260(1359): 359-363. 
 
Read, A. F. & Day, K. P. (1992). The Genetic Structure of Malaria Parasite 
Populations. Parasitology Today 8(7): 239-242. 
 
Read, A. F., Narara, A., Nee, S., Keymer, A. E., & Day, K. P. (1992). 

Gametocyte Sex Ratios as Indirect Measures of Outcrossing Rates in Malaria. 
Parasitology 104(3): 387-395. 
 
Reece, S. E., Drew, D. R., & Gardner, A. (2008). Sex Ratio Adjustment and Kin 
Discrimination in Malaria Parasites. Nature 453(7195): 609-614. 
 
Reese, S. E., Duncan, A. B., West, S. A., & Read, A. F. (2005). Host Cell 

Preference and Variable Transmission Strategies in Malaria Parasites. 
Proceedings of the Royal Society B 272(1562): 511-517. 

 

http://www.r-project.org/


201 
 

Reece, S. E., Innocent, T. M., & West, S. A. (2007). Lethal Male-Male Combat in 
the Parasitoid Melittobia acasta: Are Size and Competitive Environment 
Important? Animal Behaviour 74(5): 1163-1169. 
 
Reininger, L., Tewari, R., Fennell, C., Holland, Z., Goldring, D., Ranford-
Cartwright, L., Billker, O., & Doerig, C. (2009). An Essential Role for the 

Plasmodium Nek-2 Nima-Related Protein Kinase in the Sexual Development of 
Malaria Parasites. The Journal of Biological Chemistry 284(31): 20858-20868. 

 
Robert, V., Read, A. F., Essong, J., Tchuinkam, T., Mulder, B., Verhave, J.-P., 
& Carnevale, P. (1996). Effect of Gametocyte Sex Ratio on Infectivity of 
Plasmodium falciparum to Anopheles gambiae. Transactions of the Royal Society 
of Tropical Medicine and Hygiene 90(6): 621-624. 
 
Robert, V., Sokhna, C. S., Rogier, C., Ariey, F., & Trape, J. F. (2003). Sex Ratio 
of Plasmodium falciparum Gametocytes in Inhabitants of Dielmo, Senegal. 
Parasitology 127(1): 1-8. 
 
Rosário, V. (1981). Cloning of Naturally Occurring Mixed Infections of Malaria 
Parasites. Science 212(4498): 1037-1038. 
 
Salmon, B. L., Oksman, A., & Goldberg, D. E. (2001). Malaria Parasite Exit from 

the Host Erythrocyte: A Two-Step Process Requiring Extraerythrocytic Proteolysis. 
Proceedings of the National Academy of Science USA 98(1): 271-276. 
 
Schall, J. J. (1989). The Sex Ratio of Plasmodium Gametocytes. Parasitology 
98(3): 343-350. 
 
Schall, J. J. (2000). Transmission Success of the Malaria Parasite Plasmodium 
mexicanum into its Vector: Role of Gametocyte Density and Sex Ratio. 
Parasitology 121(6): 575-580. 
 
Schall, J. J. (2009). Do Malaria Parasites Follow the Algebra of Sex Ratio 
Theory? Trends in Parasitology 25(3): 120-123. 
 
Schneider, P., Schoone, G., Schallig, H., Verhage, D., Telgt, D., Eling, W., & 
Sauerwein, R. (2004). Quantification of Plasmodium falciparum Gametocytes in 
Differential Stages of Development by Quantitative Nucleic Acid Sequence-Based 
Amplification. Molecular and Biochemical Parasitology 137(1): 35-41. 
 
Schneweis, S., Maier, W. A., & Seitz, H. M. (1991). Haemolysis of Infected 
Erythrocytes – A Trigger for Formation of Plasmodium falciparum Gametocytes? 
Parasitology Research 77(5): 458-460. 
 
Schwank, S., Sutherland, C. J., Drakeley, C. J. (2010). Promiscuous Expression 

of α-Tubulin II Maturing Male and Female Plasmodium falciparum Gametocytes. 
Public Library of Science One 5(12): e14470. doi:10.1371/journal.pone.0014470. 
 
Severini, C., Silvestrini, F., Sannella, A., Barca, S., Gradoni, L., & Alano, P. 

(1999). The Production of the Osmiophilic Body Protein Pfg377 is Associated with 
Stage of Maturation and Sex in Plasmodium falciparum Gametocytes. Molecular 
and Biochemical Parasitology 100(2): 247-252. 



202 
 

 
Shahnaz, F., Berry, M. W., Pauca, V. P., & Plemmons, R. J. (2006). Document 

Clustering Using Nonnegative Matrix Factorization. Information Processing and 
Management 42(2): 373-386. 

 
Sharma, A., Sharma, I., Kogkasuriyachai, D., Kumar, N. (2003). Structure of a 

Gametocyte Protein Essential for Sexual Development in Plasmodium falciparum. 
Nature Structural Biology 10(3): 197-203. 

 
Shirley, M. V., Biggs, B. A., Forsyth, K. P., Brown, H. J., Thompson, J. K., 
Brown, G. V., & Kemp, D. J. (1990). Chromosome 9 from Independent Clones 
and Isolates of Plasmodium falciparum Undergoes Subtelomeric Deletions with 
Similar Breakpoints In Vitro. Molecular and Biochemical Parasitology 40(1): 137-
146. 
 
Showalter, A. M. (2001). Arabinogalatan-Proteins: Structure, Expression, and 
Function. Cellular and Molecular Life Sciences 58(10): 1399-1417. 
 
Sidhu, A. B., Verdier-Pinard, D., & Fidock, D. A. (2002). Chloroquine Resistance 
in Plasmodium falciparum Malaria Parasites Conferred by pfcrt Mutations. Science 
298(5591): 210-213. 
 
Silvestrini, F., Alano, P., & Williams, J. L. (2000). Commitment to the Production 
of Male and Female Gametocytes in the Human Malaria Parasite Plasmodium 
falciparum. Parasitology 121(5): 465-471. 
 
Silvestrini, F., Bozdech, Z., Lanfrancotti, A., Di Giulio, E., Bultrini, E., Picci, 
L., deRisi, J. L., Pizzi, E., & Alano, P. (2005). Genome-Wide Identification of 

Genes Upregulated at the Onset of Gametocytogenesis in Plasmodium 
falciparum. Molecular and Bichemical Parasitology 143(1): 100-110. 
 
Silvestrini, F., Lasonder, E., Olivieri, A., Camarda, G., van Schaijk, B., 
Sanchez, M., Younis, S. Y., Sauerwein, R., & Alano, P. (2010). Protein Export 
Marks the Early Phase of Gametocytogenesis of the Human Malaria Parasite 
Plasmodium falciparum. Molecular and Cellular Proteomics 9(7): 1437-1448. 
 
Simon, M. I., Strathmann, M. P., & Gautam, N. (1991). Diversity of G Proteins in 
Signal Transduction. Science 252(5007): 802-808. 
 
Sinden, R. E. (1982). Gametocytogenesis of Plasmodium falciparum in vitro: An 
Electron Microscopic Study. Parasitology 84(1): 1-11. 
 
Sinden, R. E. (1983). Sexual Development of Malarial Parasites. Advances in 
Parasitology 22: 153-216. 
 
Sinden, R. E. & Hartley, R. H. (1985). Identification of the Meiotic Division of 
Malarial Parasites. Journal of Protozoology 32(4): 742-744. 
 
Sinden, R. E. & Smalley, M. E. (1979). Gametocytogenesis of Plasmodium 
falciparum in vitro: The Cell Cycle. Parasitology 79(2): 277-296. 
 



203 
 

Smalley, W. E., Abdalla, S., & Brown, J. (1980). The Distribution of Plasmodium 
falciparum in the Peripheral Blood and Bone Marrow of Gambian Children. 
Transactions of the Royal Society of Tropical Medicine and Hygiene 75(1): 103-
105. 
 
Smalley, W. E. & Brown, J. (1981). Plasmodium falciparum Gametocytogenesis 

Stimulated by Lymphocytes and Serum from Infected Gambian Children. 
Transactions of the Royal Society of Tropical Medicine and Hygiene 75(2): 316-

317. 
 
Smalley, W. E. & Sinden, R. E. (1977). Plasmodium falciparum Gametocytes: 
Their Longevity and Infectivity. Parasitology 74(1): 1-8. 
 
Smith, T. F., Gaitatzes, C., Saxena, K., & Neer, E. J. (1999). The WD Repeat: A 
Common Architecture for Diverse Functions. Trends in Biochemical Science 24(5): 
181-185. 
 
Smith, T. G., Lourenço, P., Carter, R., Walliker, D., & Randford-Cartwright, L. 

(2000). Commitment to Sexual Differentiation in the Human Malaria Parasite, 
Plasmodium falciparum. Parasitology 121: 127-133. 
 
Smith, T. G., Walliker, D., & Ranford-Cartwright, L. C. (2002). Sexual 

Differentiation and Sex Determination in the Apicomplexa. Trends in Parasitology 
18(7): 315-323. 
 
Stephniewska, K., Price, R. N., Sutherland, C. J., Drakeley, C. J., vos Seidlein, 
L., Nosten, F. & White, N. J. (2008). Plasmodium falciparum Gametocyte 
Dynamics in Areas of Different Malaria Endemicity. Malaria Journal 7: 249 
 
Su, X.-z., Kirkman, L. A., Fujioka, H., & Wellems, T. E. (1997). Complex 

Polymorphisms in an ~300kDa Protein are Linked to Chloroquine-Resistant P. 
falciparum in Southeast Asia and Africa. Cell 91(5): 593-603. 
 
Suwanarusk, R., Cooke, B. M., Dondorp, A. M., Silamut, K., Sattabongkot, J., 
White, N. J., & Udomsangpetch, R. (2004). The Deformability of Red Blood Cells 
Parasitized by Plasmodium falciparum and P. vivax. The Journal of Infectious 
Diseases 189(2): 190-194. 
 
Takala-Harrison, S., Clark, T. G., Jacob, C. G., Cummings, M. P., Miotto, O., 
Dondorp, A. M., Fukuda, M. M., Nosten, F., Noedl, H., Imwong, M., Bethell, D., 
Se, Y., Lon, C., Tyner, S. D., Saunders, D. L., Socheat, D., Ariey, F., Phyo, A. 
P., Starzengruber, P., Fuehrer, H. P., Swoboda, P., Stepniewska, K., Flegg, J., 
Arze, C., Cerqueira, G. C., Silva, J. C., Ricklefs, S. M,. Porcella, S. F., 
Stephens, R. M., Adams, M., Kenefic, L. J., Campino, S., Auburn, S., 
MacInnis, B., Kwiatkowski, D. P., Su, X.-z., White, N. J., Ringwald, P., & 
Plowe, C. V. (2013). Genetic Loci Associated with Delayed Clearance of 
Plasmodium falciparum Following Artemisinin Treatment in Southeast Asia. 
Proceedings of the National Academy of Science USA 110(1): 240-245. doi: 
10.1073/pnas.1211205110. Epub 2012 Dec 17. 
 



204 
 

Talman, A. M., Domarle, O., McKenzie, F. E., Ariey, F., & Robert, V. (2004). 
Gametocytogenesis: the Puberty of Plasmodium falciparum. Malaria Journal 3(14 

July): 24-37. 
 
Taylor, L. H. & Read, A. F. (1997). Why So Few Transmission Stages? 
Reproductive Restraint by Malaria Parasites. Parasitology Today 13(4): 135-140. 
 
Thomson, J. G. & Robertson, A. (1935).  The Structure and Development of the 

Plasmodium falciparum Gametocytes in the Internal Organs and Peripheral 
Circulation. Transactions of the Royal Society of Tropical Medicine and Hygiene 
29(1): 31-40. 
 
Trager, W. (2005). What Triggers the Gametocyte Pathway in Plasmodium 
falciparum? Trends in Parasitology 21(6): 262-264. 

 
Trager, W., & Gill, G. S. (1992). Enhanced Gametocyte Formation in Young 
Erythrocytes by Plasmodium falciparum In Vitro. Journal of Protozoology 39(3): 
429-432. 
 
Trager, W. & Jensen, J. B. (1976). Human Malaria Parasites in Continuous 
Culture. Science 193(4254): 673-675. 
 
Trager, W., Tershakovec, M., Lyandvert, L., Stanley, H., Lanners, N., & 
Gubert, E. (1981). Clones of the Malaria Parasite Plasmodium falciparum 

Obtained by Microscopic Selection: Their Characterization with Regard to Knobs, 
Chloroquine Sensitivity, and Formation of Gametocytes. Proceedings of the 
National Academy of Science USA 78(10): 6527-6530. 
 
Vaidya, A. B., Muratova, O., Guinet, F., Keister, D., Wellems, T. E., & Kaslow, 
D. C. (1995). A Genetic Locus on Plasmodium falciparum Chromosome 12 Linked 

to a Defect in Mosquito-Infectivity and Male Gametogenesis. Molecular and 
Biochemical Parasitology 69(1): 65-71. 
 
van Dijk, M. R., Janse, C. J., Thompson, J., Waters, A. P., Braks, J. A. M., 
Dodemont, H. J., Stunnenberg, H. G., van Gemert, G.-J., Sauenrwein, R. W., & 
Eling, W. (2001). A Central Role for P48/45 in Malaria Parasite Male Gamete 
Fertility. Cell 104(1): 153-164. 
 
van Schaijk, B. C. L., van Dijk, M. R., van de Vegte-Bolmer, M., van Gemert, 
G.-J., van Dooren, M. W., Eksi, S., Roeffen, W. F. G., Janse, C. J., Waters, A. 
P., Sauerwein, R. W. (2006). Pfs47, Paralog of the Male Fertility Factor Pfs48/45, 
is a Female Specific Surface Protein in Plasmodium falciparum. Molecular and 
Biochemical Parasitology 149(2): 216-222. 
 
Vermeulen, A. N., van Deursen, J., Brakenhoff, R. H., Lensen, T. H. W., 
Ponnudurai, T., & Meuwissen, J. H. E. Th. (1986). Characterisation of 
Plasmodium falciparum Sexual Stage Antigens and Their Biosynthesis in 
Synchronised Gametocyte Cultures. Molecular and Biochemical Parasitology 
20(2): 155-163. 
 
 



205 
 

Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchan, T. F., Szarfman, A., 
London, W. T., Corcoran, L. M., Burkot, T. R., & Carter, R. (1987). Genetic 

Analysis of the Human Malaria Parasite Plasmodium falciparum. Science 
236(4809): 1661-1666. 
 
Wang, C. W., Mwakalinga, S. B., Sutherland, C. J., Schwank, S., Sharp, S., 
Hermsen, C. C., Sauerwein, R. W., Theander, T. G., & Lavstsen, T. (2010).  
Identification of a Major rif Transcript Common to Gametocytes and Sporozoites of 
Plasmodium falciparum. Malaria Journal 9: 147. 
 
Wargo, A. R., Randle, N., Chan, B. H. K., Thompson, J., Read, A. F., & 
Babiker, H. A. (2006). Plasmodium chabaudi: Reverse Transcription PCR for the 

Detection and Quantification of Transmission Stage Malaria Parasites. 
Experimental Parasitology 112(1): 13-20. 
 
Waters, A. P. & Janse, C. J. (2004). Malaria Parasites, Genomes and Molecular 

Biology. Horizon Scientific Press, UK. 
 
Wellems, T. E., Walker-Jonah, A., & Panton, L. J. (1991). Genetic Mapping of 
the Chloroquine-Resistance Locus on Plasmodium falciparum Chromosome 7. 
Proceedings of the National Academy of Science USA 88(8): 3382-3386. 
 
West, S. A., Reece, S. E., & Read, A. F. (2001). Evolution of Gametocyte Sex 
Ratios in Malaria and Related Apicomplexan (Protozoan) Parasites. Trends in 
Parasitology 17(11): 525-531. 
 
West, S. A. & Sheldon, B. C. (2002). Constraints in the Evolution of Sex Ratio 
Adjustment. Science 295(5560): 1685-1688. 

 
West, S. A., Smith, T. G., Nee, S., & Read, A. F. (2002). Fertility Insurance and 

the Sex Ratios of Malaria and Related Haemospororin Blood Parasites. Journal of 
Parasitology 88(2): 258-263. 

 
West, S. A., Smith, T. G., & Read, A. F. (2000). Sex Allocation and Population 

Structure in Apicomplexan (Protozoa) Parasites. Proceedings of the Royal Society 
of London Series B 267(1440): 257-263. 
 
WHO (World Health Organisation) (2011). World Malaria Report 2011 from: 

WHO Global Malaria Programme. Available at: 
http://www.who.int/malaria/world_malaria_report_2011/en/[Accessed 02/10/2012]. 
 
Williams, J. L. (1999). Stimulation of Plasmodium falciparum Gametocytogenesis 

by Conditioned Medium from Parasite Cultures. American Journal of Tropical 
Medicine and Hygiene 60(1): 7-13. 
 
Wright, S. (1922). Coefficients of Inbreeding and Relationship. The American 
Naturalist 56(645): 330-338. 
 
Young, J. A., Fivelman, Q. L., Blair, P. L., de la Vega, P., Le Roch, K. G., Zhou, 
Y., Carucci, D. J., Baker, D. A., & Winzeler, E. A. (2005). The Plasmodium 
falciparum Sexual Transcriptome: A Microarray Analysis Using Ontology-Based 
Pattern Identification. Molecular and Biochemical Parasitology 143(1): 67-79. 


