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Abstract 

MicroRNAs (miRs) are a group of short non-coding RNAs, on average 22 

nucleotides in length, that form an important axis of post-transcriptional 

regulation of gene expression. They have been identified as major modulators of 

all biological processes including development, cell differentiation, growth and 

apoptosis as well as diseases such as cancer, diabetes and cardiovascular disease 

(CVD). In the developed world CVD remains the leading cause of morbidity and 

mortality, and a substantial burden on healthcare. Left ventricular hypertrophy 

(LVH) is defined as an increase in thickness of the myocardium and is an 

important risk factor in CVD. The stroke-prone spontaneously hypertensive rat 

(SHRSP) is an animal model of essential hypertension used in research of CVD 

together with a normotensive reference strain Wistar-Kyoto (WKY). The SHRSP 

animals exhibit an increase in the size of myocardium prior to the onset of 

hypertension and have established LVH at 16 weeks of age thus are a good model 

for investigating the genetics of this condition. The aim of this project was to 

identify signature expression patterns of novel and previously implicated 

microRNAs and to investigate their role in the development of LVH in the SHRSP. 

Furthermore, potential gene targets of candidate selected microRNAs were 

identified to investigate biological pathways involved in the disease process. 

MicroRNA microarray profiling was performed by Dr. McBride in the hearts of 5 

week old SHRSP and WKY male rats using the LC Sciences (LCS) multispecies chip 

based on Sanger miRBase 11.0. The data were analysed (Drs. McBride and 

McClure) using Rank Product (RP) analysis method and evaluated in combination 

with the statistical analysis provided by LC Sciences (LCS). LCS data indicated 

103 microRNAs differentially expressed at 5 weeks of age, 64 at 16 weeks of age, 

with 9 in common. The RP analysis identified 72 microRNAs differentially 

expressed between WKY and SHRSP at 5 weeks of age and 51 at 16 weeks of age, 

and 21 microRNAs were differentially regulated at both time points. Both 

methods identified a subset of 35 microRNAs in 5 week old hearts and 8 in 16 

week old samples. TaqMan® microRNA assays were used to confirm these 

expression patterns. Based on these data and published literature candidate 

microRNAs – miR-195, miR-329 and miR-451 were selected for further 

experimental investigation. 
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Expression of candidate microRNAs (miR-195, miR-329 and miR-451) in neonatal 

hearts of SHRSP and WKY rats was also investigated. It was found that all three 

candidate microRNAs were differentially expressed at this time point and there 

were significantly increased levels in the SHRSP compared to WKY. Cardiac cell 

line H9c2 AngII model of hypertrophy was used to investigate the effect of AngII 

on our candidate miRNA expression levels. A 96 hour stimulation of H9c2 cell 

with AngII resulted in a significant increase in cell size. Levels of miR-195 and 

miR-329 were not affected by addition of AngII; expression of miR-451 was 

significantly down-regulated immediately post stimulation, however levels were 

increased at the final assessment at 96 hours. Adenoviral vectors over-expressing 

miR-195, miR-329 and miR-451 were designed and generated. These vectors 

were used to investigate if overexpression of each individual miR could affect 

cell size in the selected in vitro model of cardiomyocyte hypertrophy. It was 

found that all candidate microRNAs reduced AngII mediated hypertrophic cell 

growth at higher doses. 

Identifying pathways and specific gene targets affected by changes in microRNA 

levels is of paramount importance. Availability of such data not only provides 

information about regulation of cardiac homeostasis, but also possible 

therapeutic approaches for treatment and prevention. Target prediction 

algorithms (DIANAmT, miRanda, miRDB, miRWalk, PICTAR5, PITA, RNA22, 

RNAhybrid and Targetscan) were used to identify potential gene targets for 

candidate microRNAs. To refine these lists to genes relevant to the experimental 

design Ingenuity Pathway analysis (IPA 9.0) software was used to overlay 

microRNA microarray data with results of heart mRNA gene expression data (M. 

McBride, personal communications) from the same cardiac tissue and to relate 

these to appropriate pathways and cellular functions. A list of 12 genes was 

generated: similar to CG4768-PA (RGD1309748), KN motif and ankyrin repeat 

domains 1 (Kank1), sterile alpha motif domain containing 4B (Samd4b), dual 

specificity phosphatase 10 (Dusp10), follistatin-like 3 (secreted glycoprotein) 

(Fstl3), jun D proto-oncogene (JunD), forkhead box M1 (Foxm1), SIN3 homolog A 

transcription regulator (yeast) (Sin3a), cyclin-dependent kinase 1 (Cdk1), kinesin 

family member 23 (Kif23), bone morphogenetic protein receptor type IA 

(Bmpr1a) and sestrin 1 (Sesn1). Expression of these candidate targets was 

assessed in heart tissues from neonates, 5 and 16 week old rats. Six out of ten of 
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these targets were differentially expressed at one or more time points. To 

further investigate the proposed targeting of these genes by candidate 

microRNAs, expression levels were measured in each of the predicted targets in 

H9c2 cell transduced with miR over-expressing viruses. The expression patterns 

of Cdk1, Kif23, Kank1 and Sin3a were consistent with overexpression of the 

targeting microRNA, i.e. expression of each gene was down-regulated. 

In summary, data presented in this thesis elucidate the role of miR-195, miR-329 

and miR-451 in the development of LVH in the SHRSP. Understanding the 

underlying cause for differential expression of these candidate microRNAs, 

confirming gene targets and identifying relevant pathways will improve the 

understanding of LVH at the molecular level.  It will also help explain the 

pathophysiology of cardiovascular disease development in this rat model of 

human hypertension providing a basis for the development of novel therapeutic 

approaches to treat or prevent LVH.
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 Introduction 

1.1 Cardiovascular disease 

1.1.1 Human cardiovascular disease 

Cardiovascular disease (CVD) is the biggest killer in developed countries and in 

the UK accounts for 38% of all deaths (American Heart Association 2009; BHF 

2012; NHS 2012). The term CVD covers a broad range of pathological conditions 

of the heart and blood vessels, including but not limited to coronary heart 

disease (CHD) - angina and myocardial infarction, and stroke. More than half of 

CVD deaths directly result from CHD, while a further 25% from stroke (American 

Heart Association 2009; BHF 2012; NHS 2012). Stroke is not only a major killer, 

the main cause of premature mortality (in people under 75 years of age), but 

also contributes significantly to the number of disability cases. CVD is not only a 

health problem, economically it requires major resources for prevention, 

treatment and rehabilitation (BHF 2012; NHS 2012). 

Changes in blood pressure (BP), especially increases, are a major risk factor 

contributing to development and progression of CVD. Importantly alongside 

genetic and secondary medical causes increase in BP, there are lifestyle choices, 

such as a high fat diet or smoking, lack of exercise, alcohol intake etc (BHF 

2012; NHS 2012). However these parameters will not be discussed as part of this 

project. Angiotensin II (Ang II) was used to investigate an in vitro model of 

hypertrophy in this study and will be discussed later in section 2.3.3. 

1.1.2 Blood pressure control 

Blood pressure is the mechanical force that allows blood to flow through blood 

vessels: the arteries, capillaries and veins. Fine regulation of BP is essential to 

maintain adequate oxygenation of every cell, delivery of nutrients and signalling 

molecules, removal of waste products and general maintenance of homeostasis 

in the body. Mean arterial blood pressure, widely referred to as blood pressure, 

is calculated using the formula CO x VR = BP, where CO is cardiac output, VR – 

vascular resistance. The resistance in blood vessels arises mostly in arterioles; it 

is known as the systemic vascular resistance (SVR) or the peripheral vascular 

resistance (PVR) giving rise to term ‘mean arterial pressure’. Although the heart 



20 
 

is essential to for cardiac output, the kidney is the major organ maintaining 

mean arterial pressure through regulation of blood volume via salt balance and 

water volume control. 

1.1.2.1 The renin angiotensin aldosterone system 

The renin angiotensin aldosterone system (RAAS) is the major mechanism 

responsible for BP control in the body (Figure 1.1). It employs a number of 

hormones; the elements of this system that have been studied the most are the 

angiotensin converting enzyme (ACE), and angiotensin II (Ang II) (Weir and Dzau 

1999). Recently other branches of the system have been investigated more 

giving us better understanding of the interactions of ACE2, angiotensin 1-7 

peptide (Ang-(1-7)) and angiotensin 1-9 peptide (Ang-(1-9)) and the roles these 

molecules play in vasodilation, cardioprotection and salt and water homeostasis 

(Donoghue et al. 2000; Tipnis et al. 2000). When BP falls, or serum sodium 

chloride (NaCl) decreases, the juxtaglomerular cells of the kidney receive a 

signal to secrete renin. The liver constantly produces angiotensinogen, an 

inactive α-2-globulin, which is released into plasma circulation. Angiotensinogen 

is converted to Angiotensin I (Ang I) by the cleavage of the peptide bond 

between the leucine and valine residue, a reaction mediated by the enzyme 

renin. ACE (predominantly located in the capillaries of the lung) then mediates 

conversion of Ang I to Ang II the active 8 amino acid peptide. Ang II is a 

vasoconstrictor and results in increased BP due to decreases in diameter of blood 

vessels thus leading to an increase in vascular resistance. It also stimulates the 

release of aldosterone from the adrenal gland, which leads to kidney tubular 

sodium and chloride re-absorption and retention of water. Direct stimulation of 

renal tubular receptors by AngII produces the same result. Furthermore it 

stimulates the release of anti-diuretic hormone (arginine vasopressin ADH), a 

vasoconstrictor, which leads to an increase in water retention in the collecting 

ducts. Ang II is also involved in other mechanisms, such as decreasing medullary 

flow which lowers the NaCl and urea washout, facilitating increased re-

absorption. It also stimulates renal hypertrophy, which leads to further sodium 

re-absorption. Finally, AngII stimulates sympathetic nerve activity causing 

increase in heart rate and directly stimulates arteriolar constriction. Both AngI 

and AngII are substrates for Ang-(1-7), which is produced directly or via Ang-(1-

9).  
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Figure 1.1 Schematic representation of the Renin-Angiotensin-Aldosterone System. This simplified diagram shows the main components of the system. 
The main arm of RAAS shows the relationship between renin, angiotensin peptides and the feedback loop, noting in particular, effects on the 
cardiovascular system. The alternative arm shown in blue, is not as well researched, but shows cardioprotective potential. In primary rat cardiac myocytes 
and H9c2 cell line, Ang II stimulation was used as a hypertrophy model (described in section 2.3.3, used in experiments in sections 4.3.3, 4.3.4 and 5.3.2) 
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Major modulators of these reactions are ACE2, ACE, neutral endopeptidase 24.11 

(NEP), prolylendopeptidase (PEP) and prolylcarboxypeptidase (PCP). Ang-(1-7) 

and the ACE2/Ang-(1-7) system overall, are now recognised as extremely 

important counter-regulator to ACE/AngII mechanism , however the principals of 

it are not completely understood with different groups reporting contradicting 

findings dependent on the system used (Mercure et al. 2008). 

1.1.2.2 Other mechanisms of blood pressure control 

The other major regulator of BP control is the autonomic nervous system. It 

benefits from a rapid response to signals from baroreceptors relayed to the 

vasomotor centre. The sympathetic nervous system is activated by a fall in BP 

and leads to vasoconstriction of major blood vessels as well as an increase in 

heart rate (Julius 1993). 

The exchange of fluid which occurs across the capillary membrane between the 

blood and the interstitial fluid is involved in BP control by regulating blood 

volume. Normally the movement of fluid is controlled by capillary BP, the 

interstitial fluid pressure and the osmotic pressure of the plasma. A drop in BP 

results in fluid moving from the interstitial space back into the circulation, 

resulting in restoration of blood volume and BP. 

Phenotypically BP is directly dependent on cardiac output and total peripheral 

resistance and these components in turn are affected by many intermediary 

physiological and biological phenotypes (hormone balance, structure and 

condition of the cardiovascular system, renal function and body fluid levels). To 

add another level of complexity, some of the intermediary phenotypes 

themselves are affected by BP, creating loops of positive and negative feedback. 

Studies of families including biological offspring as well as adopted children, 

identical and non-identical twins, show stronger correlation between biologically 

related individuals (parents and children) than within adoptive families (Feinleib 

et al. 1977; Havlik et al. 1979; Heiberg et al. 1981; McIlhany et al. 1975; NHS 

2012; Oberfield et al. 1982). Also identical twins have higher BP correlation 

compared to non-identical twins. This supports the assertion that there is a 

genetic element to BP. It is a linear trait which increases with aging in normal 
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individuals, and BP in the general population follows normal distribution 

patterns. 

1.1.3 Essential hypertension 

BP varies from one individual to the other, but it is widely accepted that normal 

BP is <120/80 mmHg (systolic/diastolic). Hypertension or high BP is diagnosed 

when the average of two or more measurements of systolic pressure are over 

140 mmHg and/or diastolic pressure over 90 mmHg (BHF 2012; Carretero and 

Oparil 2000; Delles et al. 2010; NHS 2012). Essential hypertension also referred 

to as primary or idiopathic hypertension is a condition where in many cases the 

increased BP has no identifiable cause. Even in populations exposed to the same 

or similar lifestyle it is not always possible to pin-point a single causative agent. 

It is a major risk factor for cerebral events such as stroke, cardiovascular events 

including myocardial infarction (MI), heart failure, atherosclerosis, and coronary 

heart disease and renal events (BHF 2012; Delles et al. 2008; Dominiczak et al. 

2004; Milewicz and Seidman 2000; NHS 2012). In developed countries essential 

hypertension is diagnosed in over 95% of hypertensive patients (Delles et al. 

2008; Dominiczak et al. 2004). A wide variety of environmental factors, such as 

metabolic syndrome, use of alcohol and tobacco as well as ageing, sedentary 

lifestyle, and genetics may influence development and progression of essential 

hypertension. It affects in excess of 25% of the adult population and is a complex 

polygenic disorder (Delles et al. 2008; Dominiczak et al. 2004; Milewicz and 

Seidman 2000). Complex interactions of genetic makeup and environmental 

factors have been illustrated by studies of native people moving from their 

natural habitat in rural sites to urban environment in cities. Subjected to change 

in the environment such people appear more prone to obesity, diabetes and 

cardiovascular symptoms (Stein et al. 2002; Torun et al. 2002). Early after onset, 

essential hypertension causes mild effects in target organs, for example 

microalbuminuria in the kidneys or left ventricular hypertrophy (LVH) in the 

heart (Kearney et al. 2005). If left untreated for a prolonged period of time, the 

effects get more severe and the likelihood of stroke, myocardial infarction or 

renal failure increase significantly (NHS 2012). Both BP and hypertension display 

a high degree of genetic heritability (Fagard et al. 1995; Fagard 2002; Rose et al. 

1979). Hypertension is a complex condition where the genetic element is not 

easy to identify. Often many interactions contribute to changes within relevant 
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systems in the body, resulting in the development of hypertension. In the past 

two decades the use of rodent models has resulted in mapping of a significant 

number of genomic regions involved in the development and progression of 

hypertension and LVH (Cusi et al. 1989; Kunes et al. 1994; Lazar et al. 2005; 

Pravenec et al. 1989; Pravenec et al. 1991). Although it is not the purpose of 

this thesis, analysis of equivalent areas in humans provides important insights 

into BP regulation and cardiac hypertrophy. 

1.1.4 Mendelian forms of inheritance 

Hypertension is a complex trait that has a multifactorial nature; in addition 

there is natural variation in BP. Together these factors make it very difficult to 

fully understand how many genes are involved, and to what extent they affect 

these trait loci and overall changes in BP. Mendelian inheritance is also known as 

a monogenic form of inheritance. In human essential hypertension, Mendelian 

inheritance accounts for less than 1% of cases. It is essential to investigate these 

single gene effects of the disease not only to elucidate causes behind the 

essential hypertension, but also to gain a better understanding of BP control and 

different pathways involved in the process eventually leading to novel 

therapeutic approaches (Dominiczak et al. 2004). There have been more than 20 

genes identified where mutations cause monogenic forms of hypertension. These 

are rare mutations mostly affecting gene products in the same pathway in the 

kidney disrupting water and salt handling. Monogenic disorders can also be 

caused by mutations in microRNAs. It can be achieved in one of three ways – 

mutation within the microRNA sequence, mutation in microRNA recognition 

sequence or mutation affecting microRNA processing elements. To date, there 

have not been such findings, however microRNAs have been implicated in 

numerous physiological and pathological processes as described in section 1.3. 

Mendelian forms of inheritance resulting in human hypertension are listed in 

Table 1.1. 
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Table 1.1 Mendelian forms of inheritance of human hypertension 

Condition Genetic cause Symptoms and features

Glucocorticoid-

remediable 

aldosteronism (GRA)

Gene duplication in 11β

hydroxilase (CYP11B1) and  

aldosterone synthase (CYP11B2)

Early onset hypertension, normal or elevated aldsterone levels, 

suppressed plasma renin activity, hypokalaemia, metabolic 

alkalosis, high plasma volume;

normotension restorable with ACTH suppressing glucocorticids

Non-glucocorticoid-

remediable 

aldosteronism, a familial 

form of GRA 

Unidentifed mutation

Bilateral adrenal hyperplasia or unilateral adenoma, adult onset 

hypertension;

Unresponsive to glucocorticoid dexamethasone treatment

Syndrome of apparent 

mineralocorticoid excess 

(AME) 

Mutations in the 11βHSD-2 (11 β 

- hydroxysteroid dehydrogenase)

Early onset hypertension, hypokalaemia, metabolic alkalosis,

suppressed renin activity, extremely low levels of circulating 

aldosterone, increases in cortisol in the kidney, decrease;

in BP in response to treatment with MR antagonists indicating 

an unknown mineralocorticoid involvement in MR activation

Hypertension 

exacerbated in 

pregnancy due to 

mutations in the 

mineralocorticoid

receptor

Mis-sense (S810L) mutation in 

the ligand binding domain of MR 

(MR-L810)

Development hypertension before the age of 20 with 

exacerbation during pregnancy, partial receptor activation when 

starved of steroids, but normal response to aldosterone;

strongly agonised by traditional antagonists.

Liddle syndrome 

Deletions or missense mutations 

of the β or γ subunits of the 

ENaC (epithelial sodium channel) 

cytoplasmic C-terminal PPPXY 

(proline, proline, proline, any 

amino acid, tyrosine) domain 

Early onset hypertension, hypokalaemic alkalosis, suppressed 

renin activity, low levels of plasma aldosterone, reduced 

clearing of ENaC , compensatory increase in numbers and 

activity and longer half-life of ENaC further causing salt 

retention, increased blood volume and hypertension 

Peroxisome proliferator-

activated receptor-γ 

mutations

Mutations in PPARG, the gene 

coding for the PPARγ

Early onset autosomal dominant insulin resistance, type II 

diabetes and hypertension 

Syndrome of 

hypertension, 

hypercholesterolaemia

and hypomagnesaemia

Mutation in a gene coding for 

transfer RNA (tRNA) for 

isoleucine

Hypomagnesia, hypertension and hypercholesterolaemia

Hypertension with 

brachydactyly (HTNB) 

Changes in chromosome 12p 

locus

Shortened digits and stature, fully functional RAAS, age 

progressive condition, leading to severe hypertension, defective 

baroreceptor reflex function, non-salt sensitive, closely 

resembles essential hypertension

Pseudohypoaldosteronis

m type II (PHA II) or 

Gordon’s Syndrome

Mutations in serine-threonine

kinase genes, WNK kinases (With 

No K (lysine)), mostly WNK1 and 

WNK4

Familial hypertension, hyperkalaemia, a small increase in 

hypercholaemic metabolic acidosis, and thiazide sensitivity, 

otherwise normal renal function.
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Glucocorticoid-remediable aldosteronism (GRA) is an autosomal dominant trait. 

Genetically it is caused by gene duplication as a result of unequal crossover 

(Lifton et al. 1992; Lifton and Dluhy 1993). The genes affected are highly 

homologous and closely linked genes involved in adrenal steroid biosynthesis, 

encoding 11 β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2)(Lifton 

and Dluhy 1993). The condition displays signs of early onset hypertension with 

normal or elevated aldosterone levels despite suppressed plasma renin activity 

(Dluhy et al. 2001; Dluhy and Lifton 1994; Dluhy and Williams 1996; Halperin and 

Dluhy 2011; Kamrath et al. 2011; Litchfield et al. 1995; McMahon and Dluhy 

2004). Non-glucocorticoid-remediable aldosteronism is a familial form of GRA 

(described above). The main difference is that this condition does not respond to 

glucocorticoid dexamethasone treatment. Mutations causing this disease have 

not yet been identified, although studies of large kindred suggest a link to 

chromosome 7p22 (Agarwal et al. 1995; Kitanaka et al. 1996; Li et al. 1998; 

White et al. 1997; Whorwood and Stewart 1996; Wilson et al. 1995). 

Syndrome of apparent mineralocorticoid excess (AME) is an autosomal recessive 

disease caused by mutations in the 11βHSD-2 (11 β - hydroxysteroid 

dehydrogenase) gene and leads to early onset hypertension, coupled with 

hypokalaemia and metabolic alkalosis (Cooper and Stewart 1998; Seckl 1995; 

Stewart et al. 1988). Other important clinical features of this disease are 

suppressed renin activity and extremely low levels of circulating aldosterone. 

Mineralocorticoid receptor mutations are an autosomal dominant form of 

hypertension identified in pregnancy (Geller et al. 2000). It is a result of a mis-

sense (S810L) mutation in the ligand binding domain of MR (MR-L810). Patients 

develop hypertension before the age of 20 with exacerbation during pregnancy. 

During pregnancy progesterone levels can raise up to 100 fold, significantly 

influencing individuals with a mutated receptor, leading to severe hypertension 

as a direct result of suppression of RAAS (Geller et al. 2000; Geller 2001). Liddle 

syndrome is another autosomal dominant disease exhibiting early onset 

hypertension, with hypokalaemic alkalosis, suppressed renin activity and low 

levels of plasma aldosterone (Hyman et al. 1979; Warnock 1998). The disease is 

caused by either deletions or mis-sense mutations of the β or γ subunits of the 

ENaC (epithelial sodium channel) cytoplasmic C-terminal PPPXY (proline, 
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proline, proline, any amino acid, tyrosine) domain (Ciechanowicz et al. 2005; 

Rotin 2008; Warnock 2001). 

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear hormone 

receptor, it has been identified as a key regulator of adipocyte differentiation 

and a promoter of insulin-induced glucose uptake (Barroso et al. 1999; Itoh et al. 

1999). Mutations in PPARG, the gene coding for the PPARγ, have been indicated 

in insulin resistance, diabetes mellitus (type II diabetes) and hypertension 

(Barroso et al. 1999; Itoh et al. 1999).  

Hypertension, hypercholesterolaemia and hypomagnesia are important risk 

factors for metabolic syndrome with a genetic component. Wilson et al 

published a study where they observed 100% of hypomagnesia, 87% of 

hypertension and 73% of hypercholesterolaemia to be on the maternal lineage. 

Complete sequencing of the mitochondrial genome identified a mutation in a 

gene coding for transfer RNA (tRNA) for isoleucine explaining maternal 

heritability. Approximate penetrance of all three traits was 50% in carriers 

indicating phenotype modifying effects by external factors including molecular 

and environmental factors (Wilson et al. 2004). 

Hypertension with brachydactyly (HTNB) is a severe autosomal dominant 

condition characterised by shortened digits (fingers and toes) and stature, and 

fully functional RAAS. The pathology develops with age, and progresses into 

severe hypertension. Although the direct cause of hypertension in this condition 

is not entirely understood, evidence from magnetic resonance imaging (MRI) 

suggests it might be caused by neurovascular compression of the ventrolateral 

medulla (a brain structure involved in setting basal sympathetic tone) (Jordan et 

al. 2000). HTNB closely resembles essential hypertension as the RAAS is intact 

and there is no salt sensitivity (Naraghi et al. 1997). Although the gene affected 

is not yet identified, genome-wide scans have mapped the locus to chromosome 

12p (Schuster et al. 1996a; Schuster et al. 1996b). 

Pseudohypoaldosteronism type II (PHA II) or Gordon’s Syndrome, is an autosomal 

dominant disease. Features of the disease include familial hypertension with 

hyperkalaemia, a small increase in hypercholaemic metabolic acidosis, and 

thiazide sensitivity, but otherwise normal renal function (Wilson et al. 2001). 
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PHA II is caused by mutations in serine-threonine kinase genes, WNK kinases 

(With No K (lysine)), mostly WNK1 and WNK4, kinases expressed in the distal 

nephrons of the kidney. 

1.1.5  Identifying genes associated with essential hypertension 

Apart from the conditions described in section 1.1.4, hypertension is a polygenic 

condition and genetic architecture of hypertension is a more complicated than 

previously thought. Largely unknown genetic components and complex 

interactions with environmental factors make it a perfect candidate for studies 

such as genome-wide association studies (GWAS) or candidate gene studies. The 

method used within individual studies depends on the hypothesis, the data 

already available and the technology utilised. While not all methods can identify 

genetic components in humans, animal models do provide an excellent platform 

for such investigations as they can be genetically manipulated and selectively 

bred to tease out the genetic links. Candidate gene analysis co-studies have 

focused on a number of different known regulatory and signalling pathways 

related to BP, such as REN, AGT, ACE and AGTR1 in the aldosterone signalling 

pathway; SLC12A3, KCNJ1, SCNN1B and CCNKB in renal ion channel regulation; 

EDN1, EDNRA, CYP2C8 and NOS3 in vasoconstriction (Basson et al. 2012). Genetic 

loci identified by GWAS are listed in Table 1.2. 

Linkage studies, focusing on much larger areas of the genome and more often 

identifying quantitative trait loci (QTLs) or large regions containing multiple 

genes including candidates for the investigated pathophysiology. To make best 

use of such data it requires further detailed analysis, such as follow-up fine 

mapping, a method where the search is restrained to a very specific region and 

can further narrow down the list of single-nucleotide polymorphisms (SNPs) that 

are most significantly associated with the condition. It is important to note, that 

as hypertension is not a quantifiable trait, there is no such thing as a 

hypertension QTL, only QTLs associated with the condition. To date over a 100 

hypertension associated QTLs have been identified. Although every chromosome 

contains a QTL relevant to hypertension, there is significant clustering of such 

QTLs on chromosomes 1, 2, 3, 17 and 18. This is an indication that a number of 

alleles can contribute to blood pressure, the quantifiable variable underlying 

hypertension. Still, more evidence is needed to confirm such a theory as a 
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significant part of these QTLs are treated as having ‘suggestive’ genome-wide 

significance, i.e. suggested rather than conclusively proven to be true (Cowley, 

Jr. 2006). It is essential to note that linkage analysis combined with 

environmental variants, such as sodium intake or smoking, can significantly 

enhance the power of such analysis, also making it more relevant for 

downstream applications of findings. Unfortunately to date there has been little 

replication of QTL identification between populations. Progress has been 

hampered by the underlying genetic complexity of large QTLs, relatively small 

overall contribution to phenotype by any given QTL and potential epistatic 

interactions. Overall this emphasises the genetic heterogeneity in human sample 

populations and indicates that rather than a few genes with large effects, it is 

more likely to be many genetic loci with small direct effects and interactions 

between such loci for indirect effects on BP. 

Possibly the best example of a linkage study for hypertension is the British 

Genetics of Hypertension (BRIGHT) study (Caulfield et al. 2003). For this study 

2010 pairs of affected siblings from 1599 families with history of severe 

hypertension, were genotyped. To increase chances of positive findings, the 

selected participants were of British ancestry at least two generations back. 

However neither genes nor functionally validated genetic variants underlying 

peaks of the genetic linkage were identified. The original study was limited by 

insufficient marker density and small sample size that did not provide enough 

power to find loci with small contributions to BP (Harrap et al 2003). However, 

these issues have been addressed in further studies in which probands from the 

BRIGHT study have been re-genotyped as part of a SNP-based GWAS in common 

diseases. Development of new methods of statistical analysis allows the 

revisiting of data collected for the BRIGHT. Biological samples from the BRIGHT 

were used to pin-point genetic loci linked to hypertension and its covariates 

through integration of BP measurements and associated phenotypic covariates. 

BP loci were identified on chromosome 20q and 5q which were associated with 

leaner body-mass index and renal function, respectively. At the same time 

hypertensive BRIGHT subjects were analysed for responsiveness to treatment 

and a region on chromosome 2p was found to be associated with non-response to 

antidiuretics and beta-blockers. 
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Table 1.2 Genetic loci associated with blood pressure, hypertension or both in two or more large-population GWASs. Table adapted from (Coffman 2011) 

Chromosome
Nearest 

gene
Function Studies

1p36

MTHFR

(NPPA, 

NPPB)*

Methylene-tetrahydrofolate reductase; has been associated with 

changes in plasma homocysteine levels and pre-ecclampsia, atrial 

natriuretic and brain natriuretic peptides.

CHARGE, Global BPGen, AGEN-

BP, ICBPGWAS

3q22 ULK4 Serine-threonine kinase of unknown function. CHARGE, ICBPGWAS

3q26
MECOM

(MDS1)

Little is known about the functions of MECOM, myelodysplasia 

syndrome protein 1.
Global BPGen, ICBPGWAS

4q21 FGF5
Fibroblast growth factor 5; stimulates cell growth and proliferation 

and is associated with angiogenesis.

Global BPGen, AGEN-BP, 

ICBPGWAS

5p13 NPR3* Natriuretic peptide clearance receptor. AGEN-BP, ICBPGWAS

10p12 CACNB2 Subunit of voltage-gated calcium channel expressed in heart. CHARGE, ICBPGWAS

10q24 CYP17A1*

Cytochrome p450 enzyme mediating the first step in 

mineralocorticoid and glucocorticoid synthesis. Also involved in sex 

steroid synthesis.

CHARGE, Global BPGen, AGEN-

BP, ICBPGWAS

11p15 PLEKHA7
Plextrin-homology domain containing family member A7; 

expressed in zona adherens of epithelial cells.
CHARGE, ICBPGWAS

12q21 ATP2B1
Encodes plasma membrane calcium- or calmodulin-dependent 

ATPase expressed in endothelium.

CHARGE, Global BPgen, AGEN-

BP, ICBPGWAS

12q24 SH2B3

Also known as lymphocyte-specific adaptor protein (LNK), may 

regulate hematopoietic progenitors and inflammatory signaling 

pathways in endothelium.

CHARGE, Global BPGen, 

ICBPGWAS

12q24 TBX5-TBX3 T box genes involved in regulation of developmental processes. CHARGE, ICBPGWAS

15q24 CSK
Cytoplasmic tyrosine kinase involved in angiotensin II-dependent 

vascular smooth muscle cell contraction.

CHARGE, Global BPGen, AGEN-

BP, ICBPGWAS

17q21 ZNF652 Zinc-finger protein 652.
Global BPGen, AGEN-BP, 

ICBPGWAS

20q13
GNAS-

EDN3*

GNAS encodes the α subunit of the G protein–mediating β-receptor 

signal transduction; EDN3 encodes endothelin 3, the precursor for 

the ligand of the endothelin B receptor.

Global BPGen, ICBPGWAS

 

* Genes with a previously identified function related to blood pressure. CHARGE - Cohorts for Heart and Aging Research in Genomic 

Epidemiology; AGEN-BP - Asian Genetic Epidemiology Network Consortium; ICBP-GWAS – International Consortium for Blood Pressure.
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A GWAS approach to investigate essential hypertension is now benefiting from 

significant advances in technology. New genotyping chips cover an estimated 

80% of common SNPs (up to 1 million genotyped SNPs), which has been enabled 

by dense genotyping and the price is relatively low. Global BPgen and CHARGE 

(Cohorts for Heart and Aging Research in Genomic Epidemiology), two large 

consortia gave rise to groundbreaking GWAS studies (Franceschini et al. 2011). 

As a result 14 loci related to BP were located nearby or within genes and protein 

products of which range from known enzymes to predicted genes (Franceschini 

et al. 2011; Kelly et al. 2010; Levy et al. 2009; Newton-Cheh et al. 2009). This 

brings the total of genes implicated by GWAS in BP regulation and development 

of hypertension to 50. Despite the big number of candidates, the overall effects 

are relatively small (usually <1mmHg for each implicated change) and 

population-wide they may only explain approximately 2.5% of deviation. 

The largest GWAS study on hypertension, the Wellcome Trust Case Control 

Consortium was a collaborative effort of over 50 research groups (The Wellcome 

Trust Case Control Consortium 2007 (Huang et al. 2012; Joo et al. 2009). As well 

as hypertension the study looked at other complex diseases: coronary artery 

disease, type 1 and type 2 diabetes, rheumatoid arthritis, Crohn’s disease and 

bipolar disorder in 2000 affected British individuals for each condition 

(hypertensive subjects were from BRIGHT cohort) compared to 3000 controls in 

common. Despite high numbers of cases and controls and after genotyping in 

excess of 500,000 SNPs per individual, no genome-wide statistically significant 

loci related to hypertension were reported in this study. The main reasons 

behind such seemingly poor performance of hypertension compared to other 

analysed diseases may be the flawed study design, notably the control 

population, and poor representations of certain regions where relevant loci may 

be found. The control group was limited because individuals selected for the 

study were only partly phenotyped for BP. Taking into account the high 

prevalence of hypertension in the general population, it is likely that presence 

of such controls significantly reduced the power of analysis to identify relevant 

loci for hypertension. Subsequent studies have made attempts to address some 

flaws in design, such as selection of hypertensive cases from the top 5% of BP 

distribution in the British population to avoid misclassifying controls having the 

same phenotype as the cases. Despite the improved design, there were no 
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significant findings directly related to hypertension. At the time, concerns were 

raised that in contrast to other common diseases, hypertension might rely on 

smaller effects of related genes. This is highlighted by two major studies, the 

Global BPgen consortium and CHARGE consortium – both studies tested 2.5 

million genotyped or imputed i.e. estimated to be unmeasured, SNPs for 

associations with systolic and diastolic BP in 34,433 and 29,136 individuals, 

respectively. Despite a number of loci reaching genome-wide statistical 

significance, confirmed by meta analysis, effects of even the most strongly 

associated SNPs in major alleles resulted in an increase in BP by just over 1 

mmHg (systolic BP SNP rs11191548, P=7x10-24). This confirms that susceptibility 

genes for BP exert measurable yet subtle effects, and although in a population 

these effects add up, for an individual, implications would be minor. 

A significant finding from GWAS studies is that many SNPs identified are not in 

genes obviously related to cardiovascular disease. This poses an interesting and 

exciting challenge and in time will help improve understanding of BP control. 

Heavily reliant on size of the study, GWAS would benefit from incorporating data 

from other methods to filter out the false positive and false positive results. This 

is at least partially addressed by another major area highlighted by GWAS – 

epigenetics, or investigation of changes in gene expression or cell phenotype, 

which are inherited but arise due to reasons other than changes in DNA 

sequence. Histone modifications, nucleic acid methylation, transcriptional and 

translational control all fall in the category of epigenetics. Increasingly, 

epigenetic factors play a very important role in how data from GWAS, GWLS and 

candidate gene analysis is analysed and interpreted. For example a case-control 

study linked microRNAs to elevated risk of developing essential hypertension. 

Patients with measurable human cytomegalovirus-encoded microRNA (HCMV-

miR-UL112) in plasma had a significantly higher risk of developing hypertension 

compared to control subjects (Li et al. 2011). A number of other microRNAs 

acting on the known modulators of BP control have been indicated by large 

studies on human subjects and as a result miRSNP was developed to help 

researchers identify potential links between the discovered SNP and investigated 

condition (Liu et al. 2012; Richardson et al. 2011). Data coming from animal 

models strongly link histone modifications and methylation to the same 

pathways. 
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Although GWAS are still the primary approach for identification of genes with 

common variants playing a part in complex diseases, common variations 

identified by this method make up only a small percentage of disease 

heritability. GWAS are also unlikely to have explanations for the majority of 

phenotypic variations of common diseases which could be attributed to rare 

variants. The next-generation sequencing (NGS) is used to detect millions of 

novel rare variants of lower frequency and higher penetrance; and is relatively 

low cost approach. The NSG is a group of high-throughput sequencing methods 

which produce large numbers of sequences, usually thousands or even millions, 

at the same time (reviewed by (ten Bosch and Grody 2008).The NSG 

complements linkage studies as rare variants do not produce obvious familial 

patterns utilised in this type of study. Eventually it should be feasible to 

sequence whole genomes for each patient and case and analyse it in an 

appropriate, efficient manner that would clarify genetic architecture of the 

investigated condition. Currently the major drawbacks for NGS are higher 

percentage of sequence errors and large proportions of missing data (Luo et al. 

2011; You et al. 2011). 

1.1.6 Left ventricular hypertrophy 

LVH is the thickening of the myocardium of the left ventricle of the heart. 

Although LVH accompanies hypertension in the vast majority of cases, it is not 

exclusively linked to changes in BP (pressure overload) as the amount of blood 

being pumped will also affect the muscle (volume overload). There are two main 

types of cardiac remodelling: physiological (adaptive) such as in response to 

exercise or pregnancy (Figure 1.2) and pathological (maladaptive) such as in 

hypertensive patients. Although in early stages morphologically all types of LVH 

can be very similar, the sporadic nature of stimulation in exercise and 

continuous stimulation in pregnancy, result in different progression and end 

results (Dorn 2007). Also, there is significant overlap in molecular pathways 

involved in both pathological and physiological types of LVH remodelling (Chung 

et al. 2012a; Chung et al. 2012b; Dorn 2007; Li et al. 2012). Prolonged pressure 

overload most often results in concentric hypertrophy where to counteract the 

effects of blood being pumped to the heart at increased pressure, the 

myocardium thickens but the overall size of the ventricle remains the same. 

Hemodynamic stress to the muscle caused by an increase in blood volume causes 
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eccentric hypertrophy or increases in both the muscle thickness and chamber 

size. If the stimulus causing pathological hypertrophy is persistent it will 

eventually lead to heart failure, when the heart is no longer able to contract 

with sufficient force to pump the blood at the rate that meets requirements of 

the organism. This is affected by many factors and initiates as a compensatory 

response but over time progresses to decompensatory phase and then at the 

final stage complete failure (Dorn 2007). Heart failure is associated with 

increases in overall morbidity and mortality among sufferers. Although 

physiological hypertrophy in humans is generally reversible and initially is a 

beneficial adaptation, combination of several events can result in transfer into 

pathological form and eventual heart failure. 
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Figure 1.2 Cardiac hypertrophic remodelling and contributing factors. In response to 
hemodynamic stress cardiac remodelling can be physiological or pathological in nature, 
depending on the origin of the stimulus. Changes in the size of the left ventricle can occur 
as a result of an increase in wall thickness, lumen of the chamber or a combination of both. 
In eccentric hypertrophy overall wall stress (c) does not change as both ventricular radius 
(r) and ventricular wall thickness (h) change in the same direction at the same pace thus 
maintaining constant wall stress. While in the concentric remodelling, c increases due to r 
increasing and h either increasing at a higher pace or at a larger magnitude. Over time these 
changes lead to more pronounced and permanent remodelling, increase of r, decrease of h 
and subsequent unbalanced ratio of the two, leading to markedly decreased c and 
observable cardiomyopathic dilation. 
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Physiological hypertrophy associated with exercise is adaptation to increased 

needs of the body while the type observed in pregnancy is heavily influenced not 

only by not only physical changes associated the development of the foetus, but 

also a shift in hormone profile (Chung et al. 2012a; Li et al. 2012). Physiological 

hypertrophy is usually reversible upon removal of the stimulus, it is not 

accompanied by fibrosis, decrease in cardiac function or long term negative 

effects on the cardiovascular system (Umar et al. 2012). The two types of 

physiological hypertrophy have distinct molecular profiles (Chung et al. 2012a; 

Chung et al. 2012b). From start of the pregnancy, hormone levels progressively 

change and result in initiation of signalling pathways that influence LVH as there 

is increased demand for higher stroke volume and CO (Chung et al. 2012b). 

Estrogen has well documented cardioprotective effect including effects on cells 

in culture and in vivo. Coupled with hypertrophic growth of the heart it is logical 

to conclude that the mentioned increase is a safety mechanism designed to 

protect the pregnant female from heart failure. Unfortunately involvement of 

most of other major signalling pathways known to play a part in pathological 

hypertrophy, such as Akt, ERK1/2, p38 MAP kinases, JNK and others are poorly 

researched in pregnancy (Eghbali et al. 2005; Stefani et al. 2004). Changes in the 

cardiovascular system are caused by increased metabolism. Cardiac output 

increases due to increased fluid volume, increased heart rate combined with 

reduced systemic vascular resistance. The RAAS pathway becomes activated and 

levels of AngII increase with the progress of pregnancy. 

Exercise induced changes in the heart include hypertrophy and remodelling, 

changed (enhanced) aerobic capacity, stroke volume and cardiac output (Chung 

et al. 2012a; Dorn 2007). Architectural changes differ in individuals partaking in 

endurance and physical conditioning. Various studies have been comparing 

signalling events in pathological hypertrophy to that induced by exercise. It was 

shown that exercise employs peptide growth factors and activates signalling 

through PI3K/Akt to induce hypertrophy. Growth hormone and its insulin-like 

growth factor (IGF) are known to play important roles in pathological 

hypertrophy, but they also are essential in developmental growth of the heart. 
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1.1.6.1 Pathological LVH 

An essential part of pathological remodelling in LVH and heart failure is 

reactivation of a specific set of foetal genes which in healthy adult individuals 

are switched-off in favour of adult isoforms (Durand et al., 1999). Key genes and 

their actions have been described in this phenomenon. Foetal forms of 

contractile proteins, skeletal α-actinin and β-myosin heavy chain (βMHC), atrial 

natriuretic peptide (ANP) and B-type natriuretic factor (BNP) are among the best 

know and often used as molecular markers of hypertrophy (Baldwin and Haddad 

2001) . Very important functional changes in balance between the fast acting 

ATPase – α-MHC expression of which is reduced and the alternative slow acting 

ATPase β-MHC isoform, expression of which is up-regulated, and this affects the 

ability of the heart to contract efficiently leading to diminishing cardiac 

function. This response to cardiac injury is preserved throughout the species. 

Evidence suggests that even minor changes in fast to slow ATPase balance can 

have major effects on contractility in human and mouse models. 

Pathological LVH arises as a result of cardiovascular disease affecting the heart 

muscle directly or indirectly. Systolic BP is one of the factors directly affecting 

LVH, however some other components such as age, race, sex, body composition 

or stimulation of the RAAS and the sympathetic arm of the nervous system, play 

a role in the pathology. AngII is a well known mediator in the development of 

LVH as it is involved in up regulation of expression of transforming growth factor 

β1 (TGF β1) and down-regulation of expression of wnt transmembrane receptor 

frizzled-2 (Fzd2) in smooth muscle cells, the processes important for β-catenin 

signalling and other intracellular signalling pathways (Berk BC et al 2007; 

Castoldi G et al 2005). AngII was used in this study to generate an in vitro model 

of hypertrophy, as described in section 2.3.3. Matrix metalloproteinase are a 

group of proteases involved in extracellular matrix breakdown and cleavage of 

surface receptors. MMP14 is another molecule indicated in LVH. Expression of 

gene coding for this protein was down regulated in the pathological setting, 

pointing at a role in small blood vessel formation and blood supply by capillaries 

(Ridinger H et al 2009). Matrix- metalloproteinase 2 (MMP2) plays an important 

role in vascular remodelling in hypertrophied hearts; it is co-expressed with 

MMP14 (Friehs I et al 2006; Seeland U et al 2007). Pathological LVH in response 

to hypertension, if untreated, is a risk factor for subsequent development of HF. 
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LVH is also an important predictor of cardiovascular complications such as 

congestive heart failure or myocardial infarction (MI). Both these conditions 

exhibit remodelling of the cardiac muscle, which includes a change in size 

(increase), shape and/or function (reduced contractile force) of the muscle 

following an injury. Taken together all these data confirm that if hypertension is 

not the cause then it is an important contributing factor in the development of 

LVH as like other factors it affects the rate and force at which the cardiac 

muscle has to contract. 

Heart muscle or myocardium has three distinct compartments: muscular 

(consisting of cardiomyocytes), interstitial (consisting of fibroblasts and 

collagen) and vascular (all cardiac blood vessels and consisting of endothelial 

and smooth muscle cells). Remodelling affects all the compartments as they are 

very closely interlinked with cell cross-talk that under normal conditions results 

in uniform work of the tissue. The two most important and numerous cells within 

the heart are cardiac myocytes (cardiomyocytes) and cardiac fibroblasts. 

Cardiomyocytes are the cells most affected by cardiac remodelling in terms of 

hypertrophy. However other cell types and the intracellular matrix also play 

important roles and may affect severity and progression of the condition. 

Initially pathological remodelling is of benefit as the heart is stabilised and there 

is improvement in ventricular function and cardiac output, the same as in 

physiological remodelling, where the changes happen to accommodate the 

increased cardiac demand arising from strenuous physical activity. However as 

remodelling progresses, the shape of the heart becomes more elliptical and 

further changes to mass and/or volume start to negatively affect cardiac 

function. Changes in the muscular compartment will affect contractility force in 

the interstitium which provides durability and flexibility of the organ; the 

vascular compartment plays an essential role as it is a source of nutrients and a 

way to remove waste from this highly metabolic organ. Cardiomyocytes in 

human adults have no proliferative capacity and thus when responding to stress, 

the most common adaptation is hypertrophy. It is a well established fact, that 

the coping mechanism of a stressed heart is reactivation of the foetal gene 

programme from gene expression to metabolism (Hu et al. 2012; Rajabi et al. 

2007; Thum et al. 2007) and extensive remodelling. Foetal hearts primarily 

metabolise carbohydrates as the environment is relatively hypoxic, however 
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adult hearts work in well oxygenated conditions thus the fuel of choice is fatty 

acids (Rajabi et al. 2007). Increased expression of atrial natriuretic factor (ANF), 

myosin heavy chain (βMHC), skeletal muscle actin and miR-208b as well as down-

regulation of myosin light chain-2 (MLC-2) and miR-208a are indicators of the 

foetal gene programme being activated (Hu et al. 2012; Thum et al. 2007). 

While these mechanisms are designed to help the heart to cope with stressors, 

under conditions of prolonged stress heart failure is inevitable. 

While extensive investigation into the human heart is not possible due to 

invasiveness of some procedures and other concerns such as the amount of tissue 

needed for analysis of morphology or the experimental manipulations, animal 

models in particular are an excellent way of gaining an insight into the working 

function of the heart. High conservation of cell membrane receptors and 

intracellular signalling proteins between mammals are encouraging features for 

use of animal models to investigate cellular hypertrophy in humans (Glennon et 

al. 1995; Martin et al. 1996). 

1.2 Animal models 

Experimental animal models of human diseases are invaluable tools to dissect 

the evolution of many conditions and diseases, essential in furthering 

understanding of the molecular and physiological basis of those diseases 

(Doggrell SA. & Brown L.1998). For example cardiovascular disease can be 

studied from the onset (and in some cases even events prior to onset can be 

observed and analysed) and progression where accompanying physiological and 

molecular changes can be monitored and most importantly novel treatments 

whether therapeutic or preventative can be tried and tested. Ideally, animal 

models would: exhibit a disease or condition identical or very similar to humans 

with symptoms that are predictable and manageable; the model disease in the 

animal should be chronic and stable; be viable economically and technically 

while meeting strict animal welfare and ethical requirements; allow all the 

relevant data (measurements and samples) to be collected and easily processed. 

Also in animals the introduction of an acute condition such as blood vessel 

occlusions is possible and although it can be seen as artificial in some cases as 

there is no disease progression, similar pathways may be involved and if data are 

analysed with the origin of the condition in mind, results will provide useful 



 

39 
 

insight into the analysed setting. A great advantage of all animal models 

compared to human subjects is total control of the environment including day-

night (or light-dark) cycles, diet (vitamin supplementation, sodium or glucose 

intake etc), medication and activity. Studies requiring continuous observation of 

the subject also benefit greatly from use of animal models as there are practical 

and ethical issues associated with human studies. However, there are arguments 

against using animal models for studying human conditions. The strongest 

argument being that despite similarities in the condition or system being 

investigated, the differences in other areas will influence the overall effects of 

phenotype as animals are complex organisms, where organ systems are 

intertwined and regulation of homeostasis will employ compensatory 

mechanisms to counteract any changes that may not be beneficial to the animal 

as a whole. 

1.2.1 Mouse model 

The mouse is a common mammalian model of human disease owing to the ease 

with which recombinant DNA technology can be used. The mouse model is widely 

used for genetic manipulations and analysis of mammalian genetics. Historically, 

extensive knowledge base has been generated in mouse biology and genetics and 

a wealth of resources devoted to this animal model. Surgical as well as genetic 

mouse models with various degrees of modifications (from cell-type-specific, to 

organ-specific or inducible knock-in/out models) are available for researchers. 

At the nucleotide level human and mouse genomes show 90% highly conserved 

regions of synteny, while 40% of human genome can be directly aligned to that 

of the mouse (Mouse Genome Sequencing Consortium. 2002). At the organ level, 

for example, structure and development of the heart are highly conserved 

between the two species. To generate a mouse model of pressure overload 

cardiac hypertrophy, transverse aortic constriction (TAC) is the most widely used 

technique (Hu P et al. 2003). During the procedure a suture is tied around the 

aorta using a needle or similar object, placed next to the aorta during 

constriction of the suture to prevent complete closure. Although it is a good 

model for evaluating LVH caused by hemodynamic stress, the changes observed 

have very different molecular basis to chronic stimuli of LVH. 



 

40 
 

The main drawbacks of using mice in cardiovascular disease research are the 

considerable expertise needed in animal handling, especially where surgery is 

involved, the size of the animal and high HR. Also, most models (with the 

exception of a few spontaneous models) require intervention to produce the 

desired phenotype which is of limited use when studying chronic conditions. The 

genetic models pose different challenges – different pathways might be involved, 

compensatory mechanisms may be activated or more effective in one species 

compared to the other, manipulations may produce unexpected phenotypes or 

no phenotype at all, several different mouse models may be needed to study 

different aspects of a single human condition. Another significant disadvantage 

of using mice in long term studies especially involving chronic or late onset 

conditions, is the short life span of mouse. Although the use of mice has led to 

discovery of important factors in cardiovascular disease, the identification of 

genes affecting function and structure in the system requires use of different 

models in order to discover new pathways. It can be advantageous to use both 

mice and another animal model, such as rat, for different parts of an 

investigation so that the researcher can make use of the advantages provided by 

each of the models. 

1.2.2 Rat model 

The rat has a long legacy of being used as an animal model to study physiology. 

Brown Norway Rat (BN; Rattus norvegicus) was the first strain adopted for 

laboratory use and now over 230 selectively inbred strains exist (Greenhouse DD 

et al. 1990). The Rat Genome Sequencing Consortium (RGSC), led by the Human 

Genome Sequencing Centre (HGSC) at Baylor College in collaboration with other 

academic institutions and industry, sequenced over 90% of the BN genome (Gibbs 

et al. 2004). These data help researchers using rat as a model of choice to 

better understand phenotypes exhibited by the animal, but also aids in 

comparing and contrasting genetics of the rat compared to that of other 

mammals, including humans. It is essential to note that direct translation from 

rat to human is not always possible. The most commonly discoveries made using 

animal models will help the understanding of which physiological aspects are the 

most important in development or progression of the pathology rather than 

giving like for like comparison and translation. Rats fit the requirements for a 

good animal model as costs of keeping them are relatively low, they are easy to 
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breed and take relatively short time to generate new strains or sub-strains but at 

the same time have a longer life span than smaller animals. In comparison to 

mice, that also have the same desirable features, rats are bigger in size which 

makes handling them easier especially where microsurgery is involved and also 

allows for multiple samples of blood to be drawn. Selective breeding of strains 

of known aetiology allows production of inbred genetically homogenous models. 

Twenty generations of brother-sister mating is required to produce a 

homozygous inbred strain. Manifestation of selective traits can be provoked by 

external stimuli such as high salt diet, stress or medication. At the same time 

two strains of opposing phenotypes can be generated. For example Dahl salt 

resistant and Dahl salt sensitive rat strains were simultaneously generated from 

Sprague-Dawley rats subjected to salt loading (Dahl et al. 1962a;Dahl et 

al.1962b) 

Recombinant inbred (RI) strains are an excellent resource for genetic mapping, 

allowing accumulation of a large volume of genetic and physiological data over 

relatively short periods of time. RI strains are generated from inbred strains. 

First generations of RI strains are produced by inter-crossing inbred strains, 

subsequently F2 pairs are mated to produce inbred strains. In RI generation, 

instead of a homogenous generation, a panel is produced, mimicking the 

segregation in human populations and allowing for investigation into genetic 

segregation. A panel of RI strains provides a selection of animals with distinct 

genetic differences in a common background. Based on requirements of the 

study, mating pairs can be selected from the panel to further breed and produce 

clones of a selected genotype. High levels of inbreeding in the strains, gives the 

opportunity to work with genetically identical biological replicates. This allows 

separation of the influence of environmental factors from the truly genetic basis 

of any given condition. However RI lines are not completely inbred, making them 

suitable for large scale genetic studies i.e. identification of positional candidates 

and regulatory pathways for previously mapped physiological QTLs. This 

approach has been successfully applied in dissecting the molecular background 

of human essential hypertension ( 2004; Hubner et al. 2005). And although there 

is no dedicated rat model of LVH, both SHRSP and SD rats are capable of 

developing LVH without additional interference (McAdams et al. 2010). Other 
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models, reliant on chemical or physiological stimulation are also useful, however 

care must be taken when designing experiments and interpreting the results. 

Despite all the similarities, genetic factors identified in the animal may not have 

the same significance in humans, nevertheless it will help narrow down the 

pathways and processes, cell types and general effects playing a role in 

developing the phenotype or conferring resistance to it. Therefore the results of 

studies in rats have to be treated with appropriate care.  

1.2.2.1 The stroke-prone spontaneously hypertensive rat 
(SHRSP) 

The spontaneously hypertensive rat (SHR) strain was developed by Okamoto and 

Aoki through selective inbreeding of the Wistar-Kyoto (WKY) rats with high BP,  

for use in hypertension research, as well as related complications (LVH, stroke 

and renal-failure) (Okamoto & Aoki, 1963). The stroke-prone spontaneously 

hypertensive rat (SHRSP) is a sub-strain of SHR produced by selective brother-

sister inbreeding of animals with exceptionally high BP, it was later discovered 

that the strain is also more prone to stroke than the other SHR sub-strains 

(Okamoto et al., 1974). SHRSP is an excellent model of human cardiovascular 

disease as it exhibits spontaneous onset hypertension between 8-12 weeks of 

age, a trait that also is sexually dimorphic (more prevalent in males than in 

females), accompanied by LVH, metabolic syndrome, endothelial dysfunction 

and other pathophysiological traits also observed in human subjects. High BP in 

the SHRSP is fully established at 12 weeks of age, at 180 mmHg in males and 150 

mmHg in females. Normotensive reference strain WKY, at the same age show a 

BP of 130 mmHg, in animals of both sexes (Davidson et al. 1995). It was 

hypothesised that the Y chromosome had genetic influence on the sexual 

dimorphism. The evidence came from the generation of reciprocal Y 

chromosome consomic strains (where rats are selectively bred to be of one 

genotype throughout the genome except for a single chromosome, which 

originates from a different strain) between the SHRSP and WKY. The hypothesis 

was proven, when transfer of the Y chromosome from the SHRSP onto the 

background of the WKY, resulted in BP increase in recipients, at the same time 

chromosome Y originating from the WKY reduced BP in the SHRSP recipients 

(Negrin et al. 2001). 
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SHRSP is the most widely used model for pathogenesis and prediction of the 

outcome of hypertension. The SHRSP gives great insight into the role of genetics 

of the hypertension as well as variables such as diet and stress on the onset and 

progression of the disease. Research into these variables is applicable to humans 

as connections between life style choices and certain conditions, including 

cardiovascular disease, are well established. For the purposes of this thesis, only 

genetic aspects of the development of LVH in the SHRSP are investigated. It has 

to be noted that high levels of inbreeding can also be a disadvantage as some 

conditions will be more extreme than equivalents in humans. Nevertheless, data 

obtained through experiments with SHRSP strains remain the most valuable tool 

available today. There is significant amount of data relating to the genetics of 

SHRSP generated by our lab and others, therefore this strain was chosen as a 

model for the research described in this thesis. 

The University of Glasgow British Heart Foundation Glasgow Cardiovascular 

Research Centre maintains colonies of SHRSP and normotensive reference strain 

WKY rats. These strains are officially recognised as SHRSP.Gla and WKY.Gla but 

for purposes of this thesis from here on will be referred to as SHRSP and WKY. 

Previous work by our group has shown that in SHRSP and WKY animals as young 

as 5 weeks there are significant differences in heart size and more importantly 

left ventricle (Figure 1.3), indicating that the LVH observed in older SHRSP 

animals is at least partially independent of the BP changes also present in later 

life.  
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Figure 1.3 Left ventricular mass index (LVMI) in SHRSP and WKY. LVMI is a ratio of the left 
ventricle mass in mg relative to body mass in g. There is significant difference in LVMI in 
animals as young as 5 weeks old in SHRSP compared to WKY. At 16 weeks of age the 
difference is even more pronounced. * p < 0.01, ** p < 0.001 
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1.3 MicroRNA 

MicroRNAs (miRNAs or miRs) are widely recognised as essential regulators of 

post-transcriptional regulation of gene expression. The first microRNA was 

discovered in 1993 in C. Elegans and it then took seven years to identify one in 

humans (Lee et al. 1993; Pasquinelli et al. 2000). After microRNAs have been 

recognized as a part of the regulatory network in mammals, interest in them 

grew significantly. Now there is not only substantial evidence placing microRNAs 

in numerous biological processes from embryonic development to homeostasis, 

and pathological conditions from cancer to cardiovascular disease, but also 

progress is being made to use these molecules in therapy either as targets or 

therapeutic agents. Yet for the large numbers of microRNAs that already have 

been identified, the understanding of their exact roles and different molecular 

mechanisms underlying their function are not well understood. With all this in 

mind, there is a requirement for better and more reliable tools to continue 

studies of the biogenesis and functions of microRNAs in health and disease as 

well as their potential as targets for therapy of powerful new therapeutics. 

1.3.1 MicroRNA biology: transcription and processing 

MicroRNAs are small 21-23 nucleotide long, evolutionarily conserved, single 

strand non-coding RNA (ncRNA) molecules involved in post-transcriptional 

regulation of gene expression. It is estimated that over 50% of all mRNAs are 

targeted by microRNAs in mammals. MicroRNA genes are most often found in and 

transcribed from the intergenic regions or introns of the genes they regulate 

(Monteys et al. 2010). The transcription takes place in the cell nucleus and the 

original transcript, called pri-miRNA, is either a group of stem-loop structures 

(when miRNA cluster is transcribed) or a single hairpin (individual miRNA 

transcription) of approximately 60 nucleotides in length, partially self-

complimentary sequence that allows formation of the stem-loop part and 

approximately 10 nucleotide overhang (Figure 1.4), the poly-A tail at 3` end and 

a cap at the 5` end (Kim et al. 2009; van Rooij et al. 2009). After processing by 

RNase III family nuclease Drosha and protein that binds double stranded RNA, 

Pasha (components of the microprocessor complex), the single stem-loop  
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Figure 1.4 A simplified diagram depicting transcription and processing of a single intronic 
microRNA. The main features of a protein-coding gene are indicated, such as start and stop 
codons, introns and exons. In the nucleus microRNA is transcribed as pri-miRNA from a 
microRNA coding gene located either in an intron of a protein-coding gene (as shown) or 
intergenic regions. Primary processing of pri-miRNA into pre-miRNA transcripts also takes 
place in the nucleus and is carried out by Drosha and Pasha protein complexes. Once the 
pre-miRNA molecule reaches the cytosol it is further processed and loses the double-
stranded structure. Finally a fully mature molecule, either leading strand (miRNA) or 
passenger strand (miRNA*) is incorporated into the RISC to interact with target RNA. 
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structure, now termed pre-miRNA, is approximately 70 nucleotide in size and has 

a 2 nucleotide overhang at 3` end (Winter et al. 2009). In vitro evidence 

suggests that the hairpin structure and single-strand extension without strong 

secondary structures, are essential for recognition and processing by Drosha, a 

unique feature not seen in other RNase III family enzymes (Han et al. 2004; Lee 

et al. 2003; Lee et al. 2006; Zeng et al. 2005). Cleavage sites are largely 

determined by the distance from the terminal loop, however variations in stem 

structure and more importantly sequence around the cleavage site, can 

influence which cleavage site is used (Zeng et al. 2005; Zeng and Cullen 2005; 

Zhang and Zeng 2010). As with other genes, transcription of microRNAs can be 

regulated by transcription factors and other proteins, for example p53 positively 

regulates transcription, while RE1-silencing transcription factor (REST) and the 

DNA methyltransferases (DNMT), DNMT1 and DNMT3b suppress it (Chekulaeva 

and Filipowicz 2009). Such control contributes to cell-specific or temporal 

expression of microRNAs. Also microRNAs are perfect candidates for positive or 

negative feed-back networks essentially controlling their own expression by 

targeting mRNA transcript containing microRNA coding sequences or direct 

repressors of these transcripts. As an example miR-133b and transcription factor 

Pitx3 form such a negative self-regulatory network that controls dopaminergic 

neuron differentiation (Kim et al, 2007).The pre-miRNA form is exported from 

the nucleus into the cytoplasm via a process mediated by nuclear export factor 

exportin 5 and the Ran-GTP cofactor (Bohnsack et al. 2004; Leisegang et al. 

2012). In the cytoplasm pre-miRNA interacts with another member of RNase III 

endonuclease family – Dicer, to produce an unstable RNA duplex with short 2 

nucleotide overhangs at both 3` ends (Zhang and Zeng 2010). One strand from 

this duplex is selected as a leader strand and incorporated into the RISC 

complex. It has been shown that the leader strand is selected based on the 

strength of hydrogen bonds at the 5` end of the molecule. However, there is 

also some evidence suggesting that the passenger strand, denoted miRNA*, is 

also used. In the case where both strands are used with similar frequency, the 

nomenclature changes so that 5p or 3p is added at the end to denote which arm 

of transcript the mature sequence comes from (Griffiths-Jones et al. 2006). This 

unusual behaviour is observed in RNA duplexes with very similar bond strength 

across the molecule so the active strand is selected seemingly at random. Now 

several studies have shown that in case of the strand equality, miRNA and 
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miRNA* are directed into different argonaute complexes (Ago). Ago are a group 

of catalytic proteins that form RISC complex. Their primary function is to induce 

silencing when interacting with microRNAs that target the complex to mRNA, 

and some Ago proteins are capable of cleaving mRNA that is highly 

complementary to microRNA (slicer activity). Some studies also show that the 

strand selection possibly determines separate target pools and the fate of 

targets: the dominant arm works with Ago1 and translation is repressed, on the 

other hand miRNA* is directed to Ago2 and the complimentary mRNA is targeted 

for degradation (Ebhardt et al. 2010; Nishi et al. 2012; O'Carroll et al. 2007). 

Such strand-switching might serve as an evolutionary mechanism that expands 

the function of a single miRNA transcript, but also functions in a spatiotemporal 

matter under normal conditions. 

Another layer of microRNA expression control is at the processing stage. 

microRNA transcripts have to be capped (m7g) and tailed (polyA) to maintain 

stability. The two major microRNA processing enzymes, Drosha and Dicer 

interact with dsRBPs, proteins capable of binding double-stranded RNA, such as 

microprocessor complex subunit DGCR8 and TRPB (Han et al. 2004; Lee et al. 

2003;  2006; Nishi et al. 2012). Availability of any of the proteins involved in 

microRNA processing can be a limiting step leading to accumulation of microRNA 

precursors. Deletions of Dicer in mice have led to embryonic lethality and total 

depletion of stem cells in Dicer-null embryos (Bernstein et al 2003). This 

emphasises the importance of Dicer in development and by proxy importance of 

the microRNA regulatory system in this process. Further supporting evidence 

comes from selective Dicer deletions from specific organs such as heart both 

prenatally and postnatally (Chen et al. 2008; da Costa Martins et al. 2008; 

Saxena and Tabin 2010; Singh et al. 2011). 

More recently an alternative, Dicer independent method of miRNA biogenesis has 

been identified in maturation of miR-144/miR-451 (Yang et al. 2010; Yang et al. 

2012; Yang and Lai 2010). Mutants homozygous for an inactive form of Ago2 were 

not viable which led to the discovery of loss of miR-451 and subsequently 

involvement of Ago2 in maturation of the miR-144/miR-451 cluster. As with 

other miRNAs, this cluster is transcribed in the nucleus by Drosha and Pasha 

however the resulting 42 nucleotide pre-miRNA-451 hairpin does not fit the size 

requirements for a Dicer substrate so instead of being further processed by 



 

49 
 

Dicer, it is loaded onto Ago2 to be cleaved and its 3` terminus is cleaved by an 

unidentified ribonuclease (Yang et al. 2010; Yang et al. 2012; Yang and Lai 

2010). 

1.3.2 MicroRNA modes of action 

MicroRNAs are negative regulators of gene expression. They exert their function 

on target mRNA in three ways – perfect base pairing resulting in Argonaute-

catalyzed mRNA cleavage, or imperfect base pairing that leads to inhibition of 

translation or deadenylation of target mRNA resulting in destabilisation of the 

molecule and its degradation (Figure 1.5). Translational repression is the most 

commonly observed of the three modes of action. In microRNA to mRNA pairing, 

microRNA nucleotides 2 to 8 of the 5` end are especially important and are 

called the seed sequence. It is this part of the molecule that through interaction 

with target mRNA decides the end result. In microRNA families the seed 

sequence is identical, while the 3` portion of the molecules can differ 

significantly. Such similarities would allow different microRNAs to regulate 

overlapping targets. 

The short sequence of mature microRNA means that it is compatible to more 

than one mRNA and indeed it has been shown that a single molecule of microRNA 

can target and suppress the expression of multiple mRNAs. Often the targets are 

mRNAs whose products are involved in the same pathway adding even more 

power to the microRNA regulatory mechanism.  

Another way microRNAs can control expression of many genes is not through 

direct targeting of multiple mRNAs, but via the use of specific mediators, such 

as transcription factors or other co-factors. For example miR-208a targets a co-

factor of the thyroid hormone nuclear receptor, the thyroid hormone receptor 

associated protein 1 (THRAP1) as the means to control hypertrophy in the 

cardiac tissue (van Rooij et al. 2009).
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Figure 1.5 Mode of microRNA direct action. Argonaute (Ago) proteins are a central part of 
the RNA-induced silencing complex (RISC). When microRNA is incorporated into the RISC 
and perfect base matching is achieved between microRNA and target mRNA the complex is 
targeted for degradation. If there are mismatches between microRNA and target mRNA two 
options are available – blocking of ribosome and translation inhibition or initiation of mRNA 
deadenylation followed by mRNA degradation. 
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1.4 MicroRNA in cardiovascular health and disease 

As microRNAs are important regulators of many biological processes and general 

homeostasis in the body it is logical to conclude that these molecules or changes 

in their expression patterns would lead to pathologies. It has been demonstrated 

by many groups how microRNAs regulate disease pathways. Cardiovascular 

disease, as one of the biggest killers world-wide, is one of the most widely 

studied diseases in the microRNA field of research. The involvement of 

microRNAs in cardiovascular disease and relevant biological processes is 

summarised in Table 1.3. MicroRNAs play a central role in cardiovascular biology, 

from development to healthy function to disease, and so highlight the delicate 

balance of gene expression needed for a functioning system. 

There are several well established and widely used methods for investigating 

microRNA presence and expression levels. These include in situ hybridisation, 

Northern blotting, microarrays and PCR methods. In situ hybridisation is a 

variation of immunohistochemical staining where a labelled DNA or in the case 

of microRNA, an RNA strand, is used to hybridise with a complimentary strand 

within suitably prepared tissue. This method is not highly quantitative but is an 

excellent tool to localise expression to specific parts of the tissue or specific 

cells. Northern blotting also uses labelled RNA strands to hybridise with 

complementary sequences, however this is done on a RNA sample rather than 

tissue, and thus the number of probes used is limited. RNA strands are separated 

on a gel during electrophoresis and then probed. This method is of relatively low 

sensitivity but high specificity. 

Microarrays are powerful tools for microRNA expression analysis. They provide 

the opportunity to test large numbers of microRNAs in a short space of time (a 

single microarray chip can contain thousands of probes) with small amounts of 

sample. However it is still considered more qualitative and most often validation 

is needed by one of the other methods. Arguably the most popular way of 

measuring microRNA in a sample is through PCR methods. The principle remains 

the same as described before - a labelled strand hybridises with a 

complimentary strand in the sample and produces a visible, measurable output. 

A qRT-PCR is a quantitative, highly sensitive and specific method. Platforms such 

as TaqMan® provide a wide scale of measuring microRNAs – from several pairs,  



52 
 

Table 1.3 Summary of microRNAs involved in cardiac phenotypes  

Positive (+) or negative (-) indicate regulatory effects of cardiovascular disease. 

 

microRNA

+ 

or 

-

Cardiac target(s) if known Affected cardiac processes Species References

miR-1-1/

miR-1-2
-

Hand2, Twf1, IGF-1,

Cam1, CAm2, Mef2a

Morphogenesis, conduction, cell cycle, regulation 

of cardiac cytoskeleton, calcium signalling

Mouse, Human, 

Fly, Zebrafish

Care et al. 2007; Ikeda et al. 2007; Ikeda et al. 2009; 

Ikeda and Pu 2010; Zhao et al. 2005; Zhao et al. 2007

miR-9 - Myocardin Cardiac hypertrophy, signalling cascades Mouse, Rat Wang et al. 2001; Wang et al. 2010; Xing et al. 2006

miR-15/

miR-16
- Bcl2, Arl2 Proliferation, apoptosis Mouse, Rat

Nishi et al. 2010; Porrello et al. 2011;

Hullinger et al. 2012

miR-18b +
ANF,

skeletal muscle α-actin
Cardiac hypertrophy, signalling cascades Mouse, Rat

da Costa Martins and De Windt 2012;

Tatsuguchi et al. 2007

miR-21 + Spry1

Cardiac hypertrophy and fibrosis, cardiac

fibroblast remodelling,  cell size, cell survival 

pathways, inter-cellular communication

Mouse, Rat, 

Human

Thum et al. 2007; Thum et al. 2008;

Thum et al. 2011; Patrick et al. 2010

miR-23a + Foxo3a, MuRF1
Cell differentiation and proliferation, signalling

cascades
Mouse, Rat

Lin et al. 2009; Wang et al. 2012b;

Wang et al. 2012c; Yang et al. 2013

miR-26 + ET-1 Cell size, cardiomyocyte survival, Mouse, Rat Luo et al. 2013; Zhang et al. 2013; Suh et al. 2012

miR-29 - ELN, FBN, Col1, Col3 Fibrotic response, inter-cellular communication
Mouse, Rat,

Human

He et al. 2013; Khanna et al. 2013;

Kriegel et al. 2012; van Rooij et al. 2008a;

van Rooij et al. 2008b; Winbanks et al. 2011;

Ye et al. 2010; Zhu and Fan 2012

miR-133a-1/

miR-133a-2
-

SRF, Cdc42, Rho-A,Nelf-

A/Whsc2, CnAβ, NFATc4,

Cardiac growth, signalling cascades, sarcomere

organisation

Mouse, Rat,

Human

Care et al. 2007; Ikeda et al. 2007;

Ikeda and Pu 2010

miR-181b - N/A Cardiomyocyte size Mouse, Rat van Rooij et al. 2006

miR-195 + Sirt1 Apoptosis, signalling cascades
Mouse, Rat, 

Human
Kukreja et al. 2011; van Rooij et al. 2006

miR-199a + Hif-1α, Ube2i, Ube2g1 Hypoxia, ubiquitination, cell size Mouse, Rat
Cheng et al. 2009; Rane et al. 2009;

Rane et al. 2010; van Rooij et al. 2006

miR-199b + Dyrk1a Hypertrophy, signalling cascades Mouse, Rat
da Costa Martins et al. 2010;

Ikeda et al. 2007; Ikeda and Pu 2010

miR208a +
Myosin heavy chain (MYH7, 

MYH7B), THRAP, MED13

Hypertrophy,  fibrosis, sarcomere organisation, 

systemic energy homeostasis

Mouse, Rat, 

Human

Ikeda et al. 2007, van Rooij et al. 2006, van Rooij et 

al. 2009: Montgomery, et al. 2011;

miR-214 + N/A Sarcomereorganisation Mouse, Human Ikeda et al. 2007

miR-451 + MO25
Cardiac hypertrophy and  dysfunction,

signalling cascades

Mouse, Rat, 

Human, 

Zebrafish

Zhang et al. 2010; Cheng et al. 2007;
Cheng et al. 2012

miR-499 + CnA, SK3
Protein phosphorylation, sarcomereorganisation, 

atrial fibrillation
Mouse

Hosoda et al. 2011; Adachi et al. 2010b; 
Matkovich et al. 2012; Ling et al. 2013
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to hundreds or thousands of copies. The amount of sample needed is relatively 

small and the process itself is highly automated, the number of samples analysed 

at one time can be up to 384 (standard multiwell plate). Another major 

advantage of qRT-PCR is that a reference point is used, in the form of a house 

keeper gene, to allow for correction of discrepancies such as variable loading 

from well to well. It is a wide spread practice to combine several methods of 

analysing miRs to provide higher levels of confidence and highly accurate 

measurements. 

The small size of mature microRNAs limits design options of the hybridisation 

probes and makes it difficult to optimise conditions to suit all microRNAs on the 

chip as hybridisation temperatures depend on GC content which in a short 

sequence can vary significantly, for example GC% content can be as little as 24% 

(miR-369) or as high as 73% (miR-324-3p) (van Rooij 2011; Zhan et al. 2007). This 

limits possibilities of discriminating between mature sequences that differ by a 

single nucleotide. However, use of LNA technology in the backbone of the 

hybridisation probe increases the base pairing energy and as a result specificity 

increases while allowing for shorter probes (Zhan et al. 2007). Nevertheless the 

shortness of the sequence can make it difficult to label probes with high 

efficiency. Design of specific probes is further complicated by the high sequence 

homology displayed by microRNAs. Furthermore, the process of sample 

preparation does not remove larger RNA molecules, that contain highly 

homologous sequences, and if present in the sample at the time of the 

microarray being performed, it may affect the signal strength (Hurd and Nelson 

2009; Loewe and Nelson 2011; Nelson et al. 2004; Okaty et al. 2011). Dynamic 

expression patterns including extremes of high and low expression may lead to 

data being compressed (Ball et al. 2002; Brazma et al. 2001). One of the 

features of microarrays is in itself both an advantage and a disadvantage – the 

constant growth and changes in the database on which many chips are based. As 

a consequence of all the potential limitations of using a microarray, there are 

suggestions that microarrays should not be used in quantitative judgement of the 

analysed microRNAs, but as a way to compare levels in two distinct conditions or 

to confirm the presence of specific microRNAs in the sample. At the same time 

advances in technology allow the modification of the probes in such a way that 

all probes on the chip require very similar thermal conditions while preserving 
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high sensitivity and specificity. Thus the use of microarrays for profiling of 

microRNA expression in different samples is now a common practice. There are 

several microRNA microarray platforms available, for example Agilent, Exiqon, 

Illumina, Miltenyi, and LC Sciences. Two main features that distinguish LC 

Sciences (LCS) microRNA microarray from the competitors are in situ 

synthesizing microarrays onto a microchip using their µParaflo® chip technology, 

and designing probes with unique proprietary chemical modifications to enhance 

sensitivity and specificity. One of the first microRNA microarray platforms made 

available by LC Sciences was the multispecies chip containing probes for human, 

mouse and rat microRNAs. The motivation behind a multi-species chip was to 

make use of the high levels of microRNA conservation across the species as total 

numbers of known microRNAs overall were low. This would allow the assessment 

of known microRNAs as well as help to predict novel microRNAs in samples from 

different species. MicroRNA microarray was used to screen for differences in the 

microRNA expression in hearts of SHRSP and WKY rats. Historically most arrays 

were performed on adult animal tissues but such an approach poses the risk of 

any observed changes being secondary to the pathological changes sine 

microRNA profiles are dynamic and respond to physiological changes. For 

example fibrosis restricts cardiomyocyte contractility and in turn affects 

microRNA expression in cardiomyocytes (Dispersyn et al. 2001; LaFramboise et 

al. 2007; Ottaviano and Yee 2011). 

Under normal conditions microRNAs may appear to be ‘fine-tuners’ of gene 

expression, however under stress their actions become exaggerated. This can be 

illustrated by distinct signature patterns of microRNAs for conditions such as 

cardiac hypertrophy and heart failure, post-MI remodelling, and vascular 

remodelling in humans (Ikeda et al. 2007; Ji et al. 2007; Thum et al. 2007; van 

Rooij et al. 2006). Animal studies have revealed microRNAs to mediate both 

protective and causative actions. Several studies have demonstrated that in line 

with the notion that cardiac stress results in reactivation of the foetal gene 

program, expression profiles of microRNAs are very similar if not identical in 

foetal, hypertrophied and failing hearts in experimental animals and humans 

(Thum et al. 2007). Under cardiac hypertrophy provoking conditions such as 

thoracic aortic-banding (TAB) or stimulation with AngII or other biological 

agents, the profile of microRNA expression is significantly altered. Van Rooij et 
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al described a “signature pattern of stress-responsive microRNAs that can evoke 

cardiac hypertrophy and heart failure”, using a microarray comparison to 

demonstrate that in response to physical hypertrophic stimulus (TAB) and 

biological hypertrophic stimulus (calcineurin A; activated form expressed in 

transgenic mice), there were specific microRNAs up and down-regulated 

compared to appropriate controls . Comparison between the two hypertrophic 

conditions revealed an overlap in up-regulated expression of 21 microRNAs (miR-

10b, miR-19a, miR-21, miR-23a, miR-23b, miR-24, miR-25, miR-27a, miR-27b, 

miR-125, miR-126, miR-154, miR-195, miR-199a, miR-199a*, miR-210, miR-214, 

miR-217, miR-2218, miR-330 and miR-351) and reduced expression of 7 miRNAs 

(miR-29c, miR-30e, miR-93, miR-133a, miR-150 and miR-181b), strongly 

suggesting that microRNAs play an active role in different pathways leading to 

cardiac remodelling. These data were followed up and differentially expressed 

miRNAs were transduced into primary cardiomyocytes in vitro via adenoviral-

mediated gene transfer for overexpression studies and consequently some of 

these “signature expression pattern” microRNAs were shown to cause phenotypic 

changes. For example overexpression of miR-23a, miR-23b, miR 24, miR-195 and 

miR-214 causes hypertrophy of cardiomyocytes. At the other end of the scale, 

reduced expression of microRNAs down-regulated in the microarray, miR-93, 

miR-150 and miR-181b, resulted in reduction in cardiomyocyte size. Modifying 

levels of miR-125b or miR-133a had no observable phenotypic effect. Arguably 

the most important finding by the group was that heart-specific overexpression 

of a single microRNA – miR-195 is sufficient to drive hypertrophy in vivo (Kukreja 

et al. 2011; van Rooij et al. 2006). While the levels of overexpression were 

supraphysiological, it still proves a point: microRNAs can drive the disease, not 

only change in response to it, as in the case of anti-hypertrophic microRNAs up-

regulated in hypertrophy. In this study some of the miRs identified by these 

groups were investigated, namely miR-23a, miR-21 and miR195, data shown in 

section 4.3. In a more physiological setting, the development of pathology is 

more likely to be a result of changes in several microRNAs as opposed to a single 

microRNA. These data are just a snapshot of years of research looking into 

changing profiles and the effects that individual microRNAs have in different 

settings. Other groups have also employed the screening by microarray approach 

and compared microRNA profiles in animal models as well as primary cells with 

induced hypertrophy, all reporting similar “signature patterns”. 
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For example the aforementioned miR-23a has been indicated as a regulator of 

Foxo3a, a member of forkhead family of transcription factors, and by doing so 

mediates the hypertrophic signal in mice (Wang et al. 2012a). It has been shown 

that miR-23a controls levels of manganese superoxide dismutase (MnSOD) and 

reactive oxygen species (ROS) in the same pathway, through Foxo3a. Damage to 

the heart by ROS leads to hypertrophy. Another target of miR-23a in rats is 

muscle specific ring finger protein 1 (MuRF1), another important regulator of 

hypertrophy (Lin et al. 2009; Wang et al. 2012a). The relationship, if any, 

between miR-23a and the two targets is not yet described. 

Porello et al have shown, that hearts of neonatal mammals have intrinsic 

capacity for regeneration post-injury (Porrello et al. 2011). This remarkable 

feature however, is short lived and within a seven day period mouse heart looses 

the capacity to regenerate after injury. The group investigate microRNA 

involvement in the heart development taking place during the seven days after 

birth, when cardiac myocytes in mammalian hearts enter cell cycle arrest, 

binucleation takes place and regeneration is no longer possible. MiR-15 family 

were identified as the most up-regulated group of microRNAs in this setting. The 

miR-15 family have also been shown to be differentially regulated in myocardial 

infarction (MI) in mice and pigs in areas affected by ischemia-reperfusion 

(Hullinger et al. 2012). The family consists of miR-15a, miR-15b, miR-16-1, miR-

16-2, miR-195, and miR-497. These microRNAs are up-regulated in cardiac tissue 

post-ischemia, conditions where tissue is deprived of oxygen and as a result 

viable tissue is lost having a negative impact on contractility of the heart. In 

addition to changes in ischemic tissue, healthy tissue in close proximity to the 

affected area can undergo secondary remodelling including interstitial fibrosis 

and cardiomyocyte hypertrophy, driving the pathology further and leading to 

electrophysiological instability (Hullinger et al. 2012; Nishi et al. 2010). MiR-195 

is a candidate miR investigated in this thesis. 

Numerous studies have identified single molecules essential in signalling 

pathways, such as miR-1, miR-133, miR-199b, miR-9 (Care et al. 2007; da Costa 

Martins et al. 2010; Ikeda et al. 2007; Ikeda et al. 2009; Ikeda and Pu 2010; 

Wang et al. 2001; Wang et al. 2010b; Zhao et al. 2005; Zhao et al. 2007), 

sarcomere organisation and electrical conductivity in case of miR 208a, miR-

208b and miR-499 (Grueter et al. 2012; Montgomery et al. 2011; Oliveira-
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Carvalho et al. 2013; Shieh et al. 2011; van Rooij et al. 2009). The latter 

microRNAs are members of the muscle-specific microRNA family (myo-miR) and 

are a perfect example of tight self-regulation through positive and negative 

feedback loops (van Rooij et al. 2009). The myo-miRs are encoded in the introns 

of the MYH6 gene (miR-208 or miR-208a), MYH7 gene (miR-208b) and MYH7b 

gene (miR-499) (Montgomery et al. 2011; Oliveira-Carvalho et al. 2013; van Rooij 

et al. 2009). They have found that this microRNA family not only plays important 

role in regulating gene expression, but also, levels of each respective member of 

the family: miR-208a regulates MYH7 and MYH7b with their respective intronic 

miRs, thus has control of muscle myosin content, myofiber identity and 

ultimately muscle performance, while miR-208b and mi-499 do not have such 

regulatory power therefore their roles are redundant in this respect (van Rooij 

et al. 2009). Later studies indicated miR-208a as important regulator of 

expression of alpha myosin heavy chain (Grueter et al. 2012; Oliveira-Carvalho 

et al. 2013; van Rooij et al. 2009). In a healthy heart there are low levels of 

myocardin expression, however this transcription factor is responsive to 

hypertrophic stimuli and as a result mediates hypertrophic signals. It is also a 

target of action by miR-9 (Wang et al. 2011; Wang et al. 2001; Wang et al. 2002; 

Wang et al. 2010c; Wang et al. 2012d; Xing et al. 2006). Plasma levels of miR-

208 have been found indicative of myocardial injury (Adachi et al. 2010a; Ji et 

al. 2009). 

MiR-1 is a muscle specific microRNA that is expressed in high levels in adult 

heart and evidence suggests it acts as an inhibitor of cardiac growth through 

suppression of heart and neural crest derivatives-expressed protein 2 (hand2). 

Hand2 is a member of HAMD transcription factor family that is essential in 

cardiac morphogenesis . Targeted deletion of miRNA-1-2 in the heart muscle 

revealed its involvement not only in morphogenesis, but also in electrical 

conduction and the cell cycle. This microRNA is in a cluster with miR-133 which 

also has been indicated as suppressor of cardiac growth but acts through serum 

response factor (SRF), cell division control protein 42 (Cdc42), Ras homolog gene 

family member A (Rho-A) and negative elongation factor A (Nelf-A/WHSC2). In 

human patients with cardiac hypertrophy, levels of miR-133 in the heart have 

been found to be reduced in the left ventricle. Manipulating levels of miR-133 in 

vitro or animal models in vivo, results in predicted phenotypes – when it is over-
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expressed there is a significant decrease in cardiac growth, while knocking down 

results in enhanced hypertrophic response. 

Expressed in healthy hearts at low levels, miR-21 has been shown to be 

significantly up-regulated through cardiac remodelling of fibroblasts and end-

stage failing human hearts (Thum et al. 2007; Thum et al. 2008). It is thought to 

regulate the ERK-MAP kinase signalling pathway in cardiac fibroblasts by 

targeting sprout homologue 1 (Spry1). This inhibition of Spry1 unbalances growth 

factor secretion and survival in fibroblasts in response to pressure overload, 

affecting extent of interstitial fibrosis and cardiac hypertrophy and downstream 

negatively impacting on overall cardiac structure and function (Thum et al. 

2008; Thum et al. 2011). However, further work on miR-21 has suggested that it 

does not have a role in cardiac remodelling, as miR-21-null mice have been 

identified as having similar traits of cardiac stress, hypertrophy, fibrosis, up-

regulation of stress-response genes, and loss of cardiac contractility, when 

compared to wild-type mice (Patrick et al. 2010; Thum et al. 2008; Thum et al. 

2011). MiR-21 has been linked with antiapoptotic mechanisms. In hypertrophy in 

vivo it is selectively up-regulated in cardiac fibroblasts in the failing heart and 

regulates survival of these cells. In vitro overexpression of miR-21 leads to 

reduction in cell size and can result in PE-induced hypertrophy, while inhibition 

with an antagomiR leads to hypertrophic growth and increased expression of 

hypertrophic markers. Increase in number of cardiac fibroblasts results in 

increases levels of growth factors, released by fibroblasts, thus leading to the 

development of fibrosis and cardiac hypertrophy. Also involved in cardiac 

fibrosis is mir-29 family (He et al. 2013; Khanna et al. 2013; Kriegel et al. 2012; 

van Rooij et al. 2008b; van Rooij et al. 2008c; Winbanks et al. 2011; Ye et al. 

2010; Zhu and Fan 2012). MiR-26 regulates the expression of gata4 by inhibiting 

expression of ET-1, a protein that normally up-regulates gata4 and as expected 

knocking down miR-26 results in enlarged cells in mice and rats(Luo et al. 2013; 

Zhang et al. 2013). Levels of miR-26 effect not only hypertrophic growth, but 

also survival decisions in cardiomyocytes in rats (Suh et al. 2012). 

MiR-23a and 125b play essential roles in cell differentiation and proliferation 

with possible involvement in cell division and growth. Both of these microRNAs 

have been show to be up-regulated in hypertrophy in vitro and in vivo in rats, 

mice and human embryonic stem cells (Lin et al. 2009; Wang et al. 2012b; Wang 
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et al. 2012c; Wong et al. 2012; Yang et al. 2013). Both miR-199a and miR-199b 

are positive regulators of cardiovascular disease, overexpression of miR-199b 

increases hypertrophy, the effect completely obliterated by the use of miR-199b 

antagomiR in pharmacologically induced cardiac hypertrophy in mice and 

humans (da Costa Martins et al. 2010; Gladka et al. 2012; Song et al. 2010; van 

Rooij et al. 2006). Nuclear NFAT kinase dual-specificity tyrosine-(Y)-

phosphorylation is regulated by kinase 1a (Dyrk1a) and negatively regulates 

cardiac hypertrophy, but as it is a target of miR-199b, increase in levels of this 

microRNA results in decrease of the protein and subsequently increase in 

hypertrophy (da Costa Martins et al. 2010). On the other hand miR-199a is a 

regulator of hypoxic pathway in cardiac myocytes (Cheng et al. 2009; Rane et al. 

2009; Rane et al. 2010; van Rooij et al. 2006). Under hypoxic conditions levels of 

miR-199a are markedly reduced resulting in up-regulation of hypoxia-inducible 

factor - 1α (Hif-1α) and Sirtuin 1 (Sirt1), both targets of miR-199a (Rane et al. 

2009). Apoptosis in cells is reduced upon replenishing miR-199a during hypoxia 

through decreased amounts of Hif-1α which in turn cannot stabilize p53 (Cheng 

et al. 2009; Rane et al. 2009; Rane et al. 2010). 

Down-regulation of miR-181b is observed in hypertrophy, this microRNA causes 

reduction in cardiomyocyte size (van Rooij et al. 2006). MiR-18b is another 

suppressor of hypertrophy in the heart. Inhibition of miR-18b leads to a 

hypertrophic response in cardiomyocytes including increase in size and 

expression of hypertrophic markers – ANF α-actinin and skeletal muscle α-actin 

(da Costa Martins and De Windt 2012; Tatsuguchi et al. 2007). MiR-144/451 

cluster is essential in precondition heart against ischemia-reperfusion (Zhang et 

al. 2010). MiR-451 was also found to be down-regulated in aortic banding LVH 

model in mouse (Cheng et al. 2007). Another group used a mouse model for 

familial hypertrophic cardiomyopathy and found early elevation of miR-195 and 

miR-451 (Chen et al. 2012). This group also demonstrated functional targeting of 

MO25 by both miRs and the effects on the adenosine monophosphate-activated 

kinase (AMPK) pathway during pathological cardiac stress (Chen et al. 2012). 

Hosoda et al report the role of miR-499 in commitment of human cardiac stem 

cells to the myocyte lineage as well as generation of mature working 

cardiomyocytes (Hosoda et al. 2011). These actions are reportedly achieved 

through targeting of Sox6 and Rod1 and take place both under experimental 
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conditions in vitro as well as in vivo after infarction (Hosoda et al. 2011). 

Together with another myo-miR, miR-208, plasma levels of miR-499 were used as 

a marker of myocardial injury in humans (Adachi et al. 2010a; Adachi et al. 

2010b). Expression of miR-499 was reported to be increased in failing and 

hypertrophied human hearts as well as Gq-mediated cardiomyopathy in mouse 

model (Matkovich et al. 2012). As expected, forced expression of miR-499 in 

murine cardiomyocytes in vivo, to levels comparable to those seen in human 

pathology, resulted in heart failure and exacerbated remodelling of the heart 

when it was subjected to pressure overload (Matkovich et al. 2012). In atria 

significant up-regulation of miR-499 was observed in atrial fibrillation and was 

accompanied by reduction in SK3 expression, which was up-regulated when miR-

499 inhibitor was used (Ling et al. 2013). 

Most of information about microRNA involvement in cardiovascular homeostasis 

comes from in vitro experiments, work with mice and rats. The novelty of the 

research described in this thesis is in the use of the SHRSP as a model for LVH. 

Inevitably some of the microRNAs highlighted as important in other studies will 

not show significance in the experiments described here, as a result of 

differences through which LVH is developed in the model or even genetic 

differences between the strains used. Despite that the SHRSP strain was chosen 

to investigate involvement of microRNAs in the development of LVH in this 

model. This thesis presents data indicating that microRNAs investigated 

contribute to the phenotypes observed in the SHRSP and WKY. 

1.5 MicroRNA in therapy 

As involvement of microRNAs in health and disease is well documented, it 

becomes an attractive therapeutic target. Two approaches are possible: miR 

inhibition or miRNA mimicry.  

AntagomiRs are modified microRNAs designed with full or partial 

complementarity to the target microRNA, which it binds, thus inhibiting miRNA-

mRNA pairing between the miR and target sequence and suppress endogenous 

levels of mature miRNA through active competition. To date, the use of 

antagomiRs has been very successful in vivo and has reached the stage of clinical 

trials in human subjects (ClinicalTrials.gov 2013; SantarisPharma 2013) and is 
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summarised in Table 1.4. AntagomiRs alleviate the repression of gene expression 

and/or pathways by “inhibiting the inhibitor”. To be able to carry out their 

primary function, antagomiRs, as any other therapeutic agents, have to comprise 

certain qualities that would allow stability under the in vivo conditions, 

effective delivery to the point of action, long half-life, low toxicity, high 

efficiency and specificity. The antagomiR approach is used wherever there is a 

need to increase expression of a gene targeted by microRNA (Krutzfeldt et al. 

2005; Krutzfeldt et al. 2007). The oldest and most simple modification of 

oligonucleotides is the 2’-O-methyl group (2’-OMe). Compared to native 

sequences, 2’-OMe modified sequences have improved binding affinity to RNA 

with limited amount of nuclease resistance. Antisense molecules with such 

modifications have been successfully used to down-regulate microRNAs in 

primary cells and cell lines followed by in vivo validation. However this method 

has several limitations. The main drawback of using this method of antisense 

sequence modifications is the difficulty of direct measurement of depletion of 

target microRNA as mode of action of 2’-OMe oligonucleotide is sequestering the 

targeting microRNA from its target mRNA, not induction of its degradation. As a 

result the assessment is through expression of a reporter gene. The main reason 

making this method unsuitable for therapeutic approach is the possibility of off-

target effects. Importantly, the phenotype cannot be rescued by adding back 

the microRNA into the cell while the of 2’OMe antisense oligonucleotides are 

present. A twist on the 2’-OMe, the 2’-O-methoxyethyl (2’-MOE) modification to 

oligonucleotides provide not only higher affinity target miRNA, but also are more 

specific. Locked nucleic acid (LNA) or inaccessible RNA is a modified 

oligonucleotide containing coformationally locked nucleotides, where 2`oxygen 

and 4` carbon are bound by a methylene bridge to form a ribose ring and thus 

give the molecule more rigidity. The prepared LNA nucleotides can be 

introduced into DNA or RNA residues in the oligonucleotide. These chemical 

modifications encourages backbone reorganisation and base stacking (Liu et al. 

2008; Sall et al. 2008) resulting in enhanced properties of hybridisation. To allow 

for better entry to the cell, these molecules are connected to cholesterol. 
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Table 1.4 Summary of microRNA therapeutics for human conditions. 

microRNA Indication Approach Progress Developing company

miR-122 Hepatitis C Inhibition Clinical trial phase II Santaris Pharma A/S

miR-208/miR-499 Chronic Heart Failure Inhibition Pre-clinical miRagen Therapeutics

miR-15/miR-195 Post-MI Remodelling Inhibition Pre-clinical miRagen Therapeutics

miR-451 Polycythemia Vera Inhibition Pre-clinical miRagen Therapeutics

miR-29 Cardiac Fibrosis Mimicry Lead optimisation miRagen Therapeutics

miR-92 Peripheral Arterial disease Target validation Lead optimisation miRagen Therapeutics

miR-378 Cardiometabolic Disease Target validation Lead optimisation miRagen Therapeutics

miR-143/miR-145 Vascular Disease Target validation Lead optimisation miRagen Therapeutics

miR-206
Amyotrophic Lateral 
Sclerosis

Target validation Lead optimisation miRagen Therapeutics

Let-7 Cancer Mimicry Delivery & Chemistry optimisation Mirna Therapeutics

miR-34 Cancer Mimicry Delivery & Chemistry optimisation Mirna Therapeutics

miR-16 Cancer Mimicry Delivery & Chemistry optimisation Mirna Therapeutics

miR-Rx01 Cancer Mimicry Efficacy Mirna Therapeutics

miR-Rx02 Cancer Mimicry Delivery & Chemistry optimisation Mirna Therapeutics

miR-Rx03 Cancer Mimicry Efficacy Mirna Therapeutics

miR-Rx06 Cancer Mimicry Efficacy Mirna Therapeutics

miR-Rx07
Cancer

Mimicry Efficacy Mirna Therapeutics
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First mammalian in vivo use of antagomiRs was reported in 2005 by Krutzfeld et 

al. The group used the antagomiR technology to inhibit miR-122. During the 

treatment it was found that IV injection results in efficient reduction of the 

target miRNA for significant amount of time and elevated repression of genes 

targeted by miR-122. Despite the requirement for high dose treatment there was 

no readily observable toxicity and the expression was sustained for several 

weeks (Wilson et al. 2011). In non-human primates unconjungated antagomiR 

against miR-122 has just as strong an effect in comparatively small doses. The 

antagomiRs are efficiently taken-up by targeted cells and effectively and stably 

bind target miR. This inhibition delivered measurable results in study subjects.  

Following the promising data in these trials, a clinical trial with human subjects 

is underway. The field leader is Santaris Pharma A/S who use LNA technology in 

their therapeutics and have registered Miravirsen, a drug targeting a liver 

specific miR-122 for treatment of Hepatitis C virus (HCV) infection, and currently 

are testing it in phase II clinical trials. It has been shown that miR-122 is 

abundant in healthy individuals and plays a role in lipid and cholesterol 

metabolism. It is essential for replication of HCV in the liver as the virus co-opts 

the molecules to its genome to enable viral replication. Clinical trial data show 

good tolerance of the drug with a dose dependent response. There are 

indications that treatment with Miravirsen may improve responsiveness to other 

therapies for HCV infections. More importantly use of Miravirsen lasted longer 

than the initial time allowed for the trial. Also four out of nine patients achieved 

undetectable HCV RNA levels after four weeks of dosing at the highest tested 

dose (7 mg/kg). Santaris Pharma A/S collaborates with Miragen Therapeutics on 

developing drug candidates against a small number of microRNA targets for the 

treatment of cardiovascular disease. Miragen Therapeutics currently have 11 

microRNAs in the pipeline. In their AntimiR programme the company are looking 

at miR-208 and miR-499 as targets for chronic heart failure, miR-15 and miR-195 

in post-MI remodelling and miR-451 in Polycythemia Vera, all in preclinical trials. 

MiR-29 is listed in Miragen’s PromiR programme for cardiac fibrosis and is 

currently at lead optimisation stage. Target validation programme lists miR-92 

for peripheral arterial disease, miR-378 for cardiometabolic disease, miR-143 

and miR-145 for vascular disease and miR-206 for amyotrophic lateral sclerosis, 

all at lead optimisation stages. Another company with the focus on oncology has 
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eight lead candidates in the pipeline: let-7, miR-34, miR-Rx01, miR-Rx02, miR-

Rx03, miR-16, miR-Rx06, miR-Rx07 (miRNA Therapeutics Inc 2012). These 

candidates are at various stages of efficacy and delivery & chemistry testing. 

According to preliminary data antagomiR technology is possible to use in the 

cardiovascular system. 

Another approach to inhibiting endogenous miRNAs is through microRNA decoy 

(sponge, eraser). This method employs the use of several target sites for the 

microRNA introduced into the cell by a vector, to interact with the endogenous 

microRNA and prevent it from targeting its natural target within that cell. For 

the introduction of the decoy, plasmids or viral based platforms are used. 

Although this approach is limited by all the drawbacks of the delivery system, it 

can also benefit from some features of it. Notably if a viral based system is used, 

the construct can be maintained for prolonged periods of time without the need 

for repeat administration. 

Another therapeutic approach harnessing the power of microRNAs is mimicry. 

This method involves employing or restoring regulation of gene expression by 

administering synthetic miR sequences in a duplex form. As with the inhibition, 

the molecules have to be modified so that to improve stability and uptake by 

targeted cells. The most basic approach to microRNA mimicry is administration 

of individual oligonucleotides. Drawbacks for this approach are the increased 

possibility of the effects being of transient nature, due to low stability, and 

repeat administrations required to maintain the effects. This can partially be 

resolved by modifications of the molecules, such as introduction of LNA. Vector 

based systems are more reliable, however suffer from limitations imposed by 

vector selection. Commercially available kits provide a straight-forward way of 

cloning selected pre-miR sequence and transfecting the vectors into cells. 

Although in vitro these limitations are less noticeable, for clinical translation 

they can be the limiting factor depending on targeting, toxicity and general 

safety of use. In clinical application, microRNA mimicry is lagging behind 

inhibition but as shown in Table 1.4 there are a number of microRNAs that are 

being taken forward especially in cancer therapy. The principals behind mimicry 

are that the molecule reintroduced to the cell is virtually indistinguishable from 

endogenous miRNA, thus is unlikely to cause toxicity, have minimal if any side 
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effects in healthy cells and therefore is less likely to need targeting to tumour 

cells.  

Given the importance of microRNAs in the cardiovascular setting and the 

promising therapeutic aspects related to these molecules, they present 

themselves as an attractive target for research in the context of LVH. Using 

SHRSP and WKY a variety of molecular techniques and data analysis tools were 

utilised to demonstrate that these two strains have differing microRNA profiles 

at several time points in their development. This thesis also explores role of 

selected microRNAs in the development of hypertrophy in vivo and in vitro. 

Finally using gene expression data (M. W. McBride, personal communications) 

and overexpression of microRNAs in cell model, potential gene targets were 

identified to begin to establish how microRNAs act through their targets leading 

to the development of LVH. 

1.6 Aims of the study 

Work presented in this thesis is based on hypothesis that microRNAs are involved 

in the early events in the hearts of SHRSP and WKY rats eventually leading to the 

LVH being present (SHRSP) or not (WKY) in older animals. 

The project had aimed to select novel microRNAs and microRNAs previously 

linked to cardiovascular disease, differentially expressed between the two 

strains. These microRNAs were characterised and analysed in the available in 

vitro models. Another aim was to produce adenoviruses carrying the coding 

sequences for selected microRNAs in order to over-express these molecules in 

cardiac lineage cell lines and analyse any changes. The final aim was to 

investigate possible pathways through which candidate microRNAs could exert 

their effects on the development of LVH. This was achieved by using target 

prediction resources and gene expression profiles (Dr. McBride, personal 

communications) from rat hearts as well as analysing target expression in cells 

where microRNAs are over-expressed.
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 General materials and methods 

2.1 General laboratory practice 

This Chapter outlines the general laboratory practices, materials and methods 

relevant to this thesis. Strict laboratory rules were adhered to at all times. A 

laboratory coat was worn in designated areas; latex gloves were worn, 

disinfected and disposed of as appropriate. Equipment was calibrated and 

operated in line with manufacturer’s recommendations and maintained in clean 

working order. Reagents and consumables were of the highest possible 

commercially available grade. For RNA work nuclease-free reagents and 

consumables were used including RNase-free microcentrifuge tubes (Ambion); 

nuclease-free filtered pipette tips (RAININ) and nuclease free water (Ambion); 

work surfaces and instruments were treated with RNaseZap (Ambion) before 

initiating experiments. Hazardous materials were handled and disposed of in 

accordance with Control of Substances Hazardous to Health regulations (COSHH). 

General use glassware was steeped in Decon 75 detergent diluted in warm tap 

water to 10% (v/v) for at least 2 hours, rinsed with distilled water, dried in a 

37oC cabinet and stored as appropriate. Sterile use glassware and other 

instruments capable of withstanding high temperatures, were packaged and 

autoclaved in Priorclave Tactrol2 autoclave, otherwise disposable sterile or non-

sterile plastic ware was used, including microcentrifuge tubes 0.5 mL, 1.5 mL 

and 2 mL (Greiner Bioone), 15 mL and 50 mL Corning centrifuge tubes, 

“universal” containers (Sterilin). To weigh reagents Ohaus Portable Advanced 

balance (sensitive to 0.01 g) and Mettler HK160 balance (sensitive to 0.0001 g) 

were used as appropriate. To determine pH of solutions, a Mettler Toledo digital 

pH meter was used. For calibration of the pH meter 4.0, 7.0 and 10.0 standards 

(Sigma) were used. To dispense volumes from 0.1 µL to 1 mL Gilson Medical 

Instruments or Finnpippetes pipettors were used with suitable disposable plastic 

tips. Volumes between 1 mL and 25 mL were measured and dispensed with 

graduated sterile disposable pipettes (Corning) fitted into a powered Gilson 

pipetting aid. Aqueous solutions were prepared in autoclaved distilled water 

unless stated otherwise. Where needed, Jenway 1000 hotplate and magnetic 

stirrer were used to aid dissolving and mixing. For vortexing a table top 

WhirliMixer (FSA Laboratory supplies) was used. Samples up to 2 mL were 
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centrifuged in bench-top microcentrifuge (Eppendorf 4515), volumes up to 50 mL 

were centrifuged in Sigma 4k15 centrifuge. For incubation at temperatures 

between 37oC and 90oC a Julabo TW8 water bath was used, while a Grant SBB14 

boiling water bath was used for temperatures up to 100oC. 

2.2 General techniques 

2.2.1 Nucleic acid extraction 

DNA and total RNA from cells and tissues was extracted using commercially 

available Qiagen column based kits. More detailed protocols are outlined in 

relevant materials and methods sections. 

2.2.2 Measuring nucleic acid concentration 

Nucleic acid concentrations in solution were determined using a Nanodrop ND-

1000 spectrophotometer (ThermoScientific). For each set of samples the 

equipment was blanked with water to initialise and with the solution in which 

nucleic acids were re-suspended to obtain most accurate measurements. 

Wherever possible samples were measured in duplicate or triplicate and 

averages of these were used in calculations. Ratios of absorbance at 260 nm and 

280 nm were used as an indicator of samples being sufficiently free from protein 

contamination. Values of 1.8 for DNA and 2.0 for RNA, were recommended by 

the manufacturer as standard. 

2.2.3 Agarose gel electrophoresis 

UltraPure agarose (Invitrogen) was used for agarose gel electrophoresis at 

concentrations of 1-1.5% (w/v) made up in Tris-borate EDTA (TBE) buffer (Fisher 

Bioreagents,) with addition of ethidium bromide (0.5mg/mL) to allow 

visualisation of nucleic acids under UV light. Prior to loading onto the gel 

samples were mixed with loading dye (Promega). For reference 1kb, 1kb 

extended and 100bp DNA ladders (New England Biolabs or Invitrogen) were used. 

Gels were placed into an electrophoresis tank filled with running buffer (1x TBE) 

and the voltage was set at 6 V per 1cm of gel length. Progress of DNA migration 

through the gel was monitored by migration of the loading dye and visualising 
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DNA under UV. Both electrophoresis and UV exposure were kept to a minimum in 

order to prevent adverse effects of mutagens on the DNA. 

2.2.4 DNA extraction from agarose gel 

Agarose gel extraction of DNA was performed using Wizard® SV Gel and PCR 

clean-up system (Promega). After running a gel, the required DNA fragment was 

identified on transiluminator block, cut out using a clean scalpel blade and 

placed into a 1.5 mL microcentrifuge tube. Each tube with the slice was weighed 

(taking into account the weight of the tube) and weight recorded. Membrane 

Binding Solution at a ratio of 10 µL solution to 10 mg of gel was added to each 

sample and tubes placed in water bath set to 50oC – 65oC for 10 minutes (or until 

gel is dissolved) occasionally vortexing to increase the rate of gel melting. The 

resulting gel solution was applied to the column and incubated on the bench for 

1 minute and then centrifuged for 1 minute at 16,000g. The flow through was 

discarded. The column was washed with 700 µl Membrane Wash solution (volume 

adjusted with the appropriate amount of 95% EtOH) and subjected to 

centrifugation for 1 minute at 16,000g. The flow through was discarded and 

wash repeated with 500 µL of Membrane Wash Solution and centrifugation for 5 

minutes at 16,000g. Empty column was centrifuged for 1 minute at 16,000g and 

carefully transferred to a fresh 1.5 mL microcentrifuge tube. DNA was eluted by 

adding 50 µL nuclease-free water, incubating for 1 minute on the bench and 

then centrifuging for 1 minute at 16,000g. The column was discarded and DNA 

was stored at – 20oC. 

2.3 Tissue culture 

Eukaryotic cell lines were handled under sterile conditions in class II biological 

safety cabinets (Holten safe 2010). Before and after use cabinets were cleaned 

with 1% (w/v) Virkon solution followed by ddH2O and 70% (v/v) EtOH. Before 

prolonged periods of unuse, cabinets were closed, air flow turned off and UV 

light turned on (20 min cycle) for maintaining the sterility of the cabinet and 

pippetors. All waste was steeped in Chloros solution for up to 24 hours and then 

discarded, plastics were placed for incineration and liquids poured down into 

domestic waste drains. Plastics used for genetically modified organisms were 

placed in specified bags for autoclaving. Cells were maintained in tissue culture 
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flasks with vented caps (Corning) under standard tissue culture conditions of 

37°C, 5% CO2 in inCusafe incubators. Tissue culture experiments involving viruses 

were performed in a dedicated tissue culture laboratory. 

2.3.1 Cell passage and cryopreservation 

Details of specific cell culture requirements, such as media composition, for 

individual experiments are provided in relevant chapters. 

Cells were passaged on a regular basis as deemed appropriate by visual 

assessment. Cells were always maintained and passaged according to the 

recommendations of the supplier and never used beyond recommended passage. 

After receiving of cell aliquot, cells were placed in culture to expand and create 

stocks of low passage cells. Lowest possible passage cells were used for 

experiments. New stocks were recovered from storage in liquid nitrogen 

containers as needed. Unless stated otherwise, cells were passaged as follows: 

culture media was removed by aspiration, cells were twice rinsed with pre-

warmed sterile phosphate buffered saline (PBS; Invitrogen) and detached from 

flask by addition of 2 mL 2.5% (1X) Trypsin EDTA (TE) and placing in the 

incubator for 2-5 minutes. Culture media containing serum was added to 

inactivate TE and collected in Falcon tubes. The solution was centrifuged for 5 

minutes at 1500 rpm in standard centrifuge. Supernatant was decanted and the 

cell pellet resuspended in a 1 mL of culture media. Fresh flasks were prepared 

by adding pre-warmed culture media. Cells were seeded in an appropriate 

volume at a density representative of 1/3-1/10 of previous passage depending on 

the cell type. 

Cells were cryopreserved in filter-sterilised culture media supplemented with 

10% (v/v) dimethylsulfoxide (DMSO) and aliquoted into 2 mL cryoviles, stored 

overnight in Mr. Frosty Freezing Container (Nalgene) in a -80°C freezer, followed 

by transfer to liquid nitrogen for long-term storage. Recovery of cells from liquid 

nitrogen was performed by thawing at room temperature and transferring into 

an appropriate cell culture media in a standard flask. 

H9c2 (2-1) cell line, in this thesis is referred to as H9c2 cell line, is an adherent 

cardiac myoblast line derived from embryonic heart of a BD1X rat (Harary and 
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Farley 1960; Harary and Farley 1963a; Harary and Farley 1963b). It exhibits 

skeletal muscle properties and to be split at sub-confluence, when cells reach 

70-80% density. For experiment described in this thesis, H9c2 cells of passage 

numbers 4-12 were used. 

2.3.2 -Cell counting 

Some experiments were performed using set numbers of cells. These numbers 

were determined prior to cell seeding by performing a cell count using a 

haemocytometer (Hausser Scientific). Tryptan Blue (Gibco) stain was used to aid 

determination of viable cells by mixing 10 µL of cell suspension with the stain at 

1/2 to 1/20 ratios; using capillary action 10 µL of this suspension was added onto 

the grid under a coverslip. Viable cells (those that did not stain positive with 

Tryptan Blue) were counted in five 0.25 mm squares. Cell number was 

calculated by first determining average cell number in a 1 mm square then 

multiplying by dilution ratio and 1x104 to give number of viable cells in 1 mL of 

cell suspension. 

2.3.3 Induction of hypertrophy using AngII 

Hypertrophic growth in H9c2 cells was induced with angiotensin II (AngII). Cells 

were seeded in 6 well plates at 3x104 cells per well density in normal media. The 

next day cells were washed with sterile PBS, placed in serum free media and 

AngII added in a range of concentrations from 50 nM to 200 nM. Plates were 

returned to the incubator for 96 hours. After the incubation media was removed, 

cells washed twice with sterile PBS and fixed in 2% (w/v) paraformaldehyde 

(PFA) on ice for 20 min. The fixing solution was removed and safely discarded as 

appropriate. Cells were washed twice with PBS and 1 mL of 2% (v/v) crystal 

violet stain added to each well making sure the whole surface is covered. Plates 

were wrapped in tin foil and incubated overnight on flat surface. The following 

day stain was removed, cells rinsed with PBS. All liquid was removed and plates 

left to air-dry. 

2.4 DNA sequencing 

Unless stated otherwise, all DNA Sanger sequencing was performed on purified 

PCR products subjected to dideoxy sequencing reactions and a second 
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purification step prior to capillary electrophoresis sequencing to separate 

sequencing products based on size. More detailed protocols are outlined below. 

2.4.1 PCR reaction clean-up 

PCR reactions to generate sequencing templates were set-up in 96 well plates 

and purified for subsequent steps using Agencourt AMPure kit. The kit is based 

on DNA products larger than 100 bp binding paramagnetic beads in the solution 

provided with the kit. The beads are attracted to magnets, but do not exhibit 

magnetism themselves. To each 20 µL PCR reaction 36 µL of AMPure was added, 

the plate was sealed, briefly vortexed and centrifuged for 1 second to 1,000 rpm 

to collect the liquid at the bottom of the wells. Plate was incubated on the 

bench for 5 minutes and then transferred onto a SPRIPlate (Solid Phase 

Reversible Immobilisation Plate) a magnetic plate holder (Agencourt) for 10 

minutes. The SPRIPlate has an individual ring magnet for each well in a 96 well 

plate format; the magnets attract AMPure bead-DNA complexes and hold them in 

the well while the PCR plate is on the SPRIPlate. Constituents of the PCR 

reaction were removed from wells by inverting plates and shaking forcefully 

upside-down onto a paper towel. The beads were washed with 200 µL of freshly 

prepared 70% ethanol for 30 seconds before shaking forcefully upside-down onto 

a paper towel and centrifuging upside-down for 1 second to 600 rpm to remove 

as much ethanol as possible. The PCR plates were then removed from the 

SPRIPlate and left to air-dry for 20 minutes, before adding 40 µL water per well. 

The PCR plates were sealed and briefly vortexed to resuspend the beads, then 

returned to SPRIPlates. An 8 µL aliquot was carefully taken out of each well for 

each sequencing reaction. 

2.4.2 Dideoxy sequencing 

All sequencing reactions in the project were performed using Applied Biosystems 

BigDye Terminator n3.1 Cycle Sequencing kits and set up in 96 well plates. 

Unless stated otherwise each sequencing reaction contained 3.5 µL 5x 

sequencing buffer; 0.5 µL Ready Reaction; 8 µL template (purified PCR product); 

3.2 µL primer (1 pmol/µL) and 4.8 µL water. The thermal cycling program was: 
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1. 96°C – 45 sec 

2. 50°C – 25 sec 

3. 60°C – 4 min 

 

2.4.3 Purification of sequencing reactions 

Agencourt CleanSEQ reagent was used to purify sequencing reactions from 

reaction constituents, unincorporated nucleotides and primers prior to 

electrophoresis. To each well 10 µL of CleanSEQ reagent was added, followed by 

62 µL of freshly prepared 85% ethanol. Plates were sealed and briefly vortexed 

and centrifuged for 1 second to 1,000 rpm to collect the liquid at the bottom of 

the wells, then transferred onto the SPRIPlate for 3 minutes. Wells were 

emptied by forcefully shaking the plates upside-down onto a paper towel. The 

CleanSEQ beads were washed twice with 100 µL 85% ethanol for 30 seconds each 

time, wells emptied between washes. The plates were then centrifuged upside-

down for 1 second to 600 rpm to remove as much ethanol as possible. The PCR 

plates were removed from the SPRIPlates and allowed to air-dry for 20 minutes. 

CleanSEQ beads in each well were resuspended in 40 µL of water by vortexing 

followed by a centrifugation for 1 second to 1,000 rpm and returned to 

SPRIPlates. For electrophoresis 20 µL of sequencing products were transferred to 

an optically clear bar-coded 96 well plates. Empty wells were filled with 20 µL 

water to prevent the drying of capillaries. Plates were sealed with Septa Seals 

(Applied Biosystems) which prevent sample evaporation while allowing 

capillaries to enter the well. 

2.4.4 Capillary electrophoresis 

Sequencing capillary electrophoresis was performed on a 48-capillary Applied 

Biosystems 3730 Genetic Analyser fitted with 36 cm capillaries. Capillary filling 

with fresh POP-7 polymer (Applied Biosystems) and warming capillaries to 60oC 

preceded electrophoresis. Sequencing products were separated based on size by 

electrophoresis at 8,500 volts for 50 minutes. 

2.4.5 Sequencing analysis 

Sequencing data were analysed using SeqScape software version 2.1 (Applied 

Biosystems). Experimental sequences were aligned to known sequences obtained 

x 25 
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from bioinformatics databases such as ENSEMBL genome browser or product 

information provided by the manufacturer in case of plasmid sequences. 

2.5 miRNA profiling in the SHRSP and WKY strains 

2.5.1 RNA isolation from whole hearts or cells 

Total RNA was isolated using miRNEasy kit (Qiagen) following manufacturer’s 

instructions. Tissues or cells were disrupted with Qiazol at 700μl/50 mg tissue or 

1x107 cells. Tissues were homogenised (in Qiazol) using Polytron 2100 rotor 

homogeniser at 30,000rpm. All samples were DNase treated using either Turbo 

DNase kit (Ambion) or RNase free on column DNase kit (Qiagen). All samples 

were stored at - 80 ºC. 

For nucleic acid purification and extraction Qiagen column and filter-based Mini 

or Maxi kits were used as per manufacturer’s instructions. MiRNeasy kit (217004) 

was used for RNA extraction. Cultured cells were lysed by adding Qiazol (700µl 

per 1x107 cells) and pipetting up and down followed by incubation at room 

temperature for 5 minutes. Homogenates were then either transferred to 

storage at - 80oC for up to 6 months or extraction continued. To each 700 µL 

aliquot of the sample, 140 µL chloroform was added and the tube vigorously 

shaken for 15 seconds. The homogenate was incubated at room temperature for 

5 minutes and the centrifuged at 4oC for 15 minutes at 12,000g. All subsequent 

centrifugations were carried out at room temperature. The upper aqueous phase 

was transferred to a clean 1.5 mL centrifuge tube by pipetting and immediately 

mixed with 1.5 volumes of 100% EtOH (Sigma, 200 proof) by pipetting up and 

down. A 700 µL aliquot of the sample was applied to the RNeasy mini spin 

column and centrifuged for 15 seconds at 8,000g. Flow through was discarded 

and the procedure repeated with the remaining mixture if any. The column was 

washed with 350 µL RWT buffer (adjusted to volume with 100% EtOH (Sigma, 200 

proof)) and centrifuged for 15 seconds at 8,000g. The flow through was 

discarded and on column DNase digestion was performed. RNase-free DNase set 

(Qiagen, 79254) was used. For each sample 10 µL DNase I stock solution was 

mixed with 70 µL RDD buffer and added to the column for 15 minute incubation 

at room temperature. 350 µL RWT buffer was applied and the column 

centrifuged for 15 seconds at 8,000g, the flow through was discarded and the 
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column washed with 500 µL RPE buffer [adjusted to volume with 100% EtOH 

(Sigma, 200 proof)], centrifuged for 15 seconds at 8,000g. The flow through was 

discarded and the wash repeated, but the column centrifuged for 2 minutes at 

8,000g. The column was transferred to a fresh 2 mL collection tube and 

centrifuged for 1 minute at full speed. The column was transferred to a fresh 1.5 

mL microcentrifuge tube and 40 µL of RNase-free water applied directly onto the 

column without touching the filter surface then centrifuged for 1 minute at 

8,000g. The column was discarded and the RNA concentration in the eluate 

measured prior to storage at – 80oC freezer. 

2.5.2 Quantitative real-time polymerase chain reaction 

For all quantitative real-time polymerase chain reactions (PCRs) an Applied 

Biosystems 7900HT Sequence Detection System (TaqMan) was used. The system 

encompasses a heating block for thermal cycling and detectors to measure 

fluorescence in wells of 96 or 384 well optical plates. Fluorescence is measured 

and recorded after each amplification cycle in order to quantify the 

accumulation of the PCR product. This accumulation is proportional to template 

concentration at the exponential phase of PCR cycling therefore relative 

template abundance can be quantified by measuring changes in fluorescence for 

each analysed sample during the thermal cycling. Unless stated otherwise, all 

samples were set up and measured in triplicate (technical triplicate) with at 

least three treatment replicates (biological triplicate) in each experiment. 

During the analysis, the mean value of technical repeats was used to represent 

each biological sample. More information is given with specific protocols below. 

2.5.3 Preparation of complimentary DNA (gene expression 
assays) 

Complimentary DNA (cDNA) for quantitative real-time PCR was prepared by 

reverse transcription from RNA templates using “TaqMan Reverse Transcription” 

reagents (Applied Biosystems). Up to 1µg of RNA template was used per reaction 

whenever possible (same amount through the experiment) with either random 

hexamers or oligo dT primers. 96 well plates were used for PCR reactions. The 

reaction setup was as follows: 
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        Vol µL per 1 rxn 

 10 x Reverse transcription buffer  2.0 µL 

 MgCl2 (25 mM)     4.4 µL 

 10mM dNTPs (2.5 mM each)   4.0 µL 

 Oligo DT (random hexamers; 50 µM)  1.0 µL 

 RNase inhibitor (20 U/µL)    0.4 µL 

 Multiscribe reverse transcriptase (50 U/µL)  0.5 µL 
 
RNA was added and the final reaction volume adjusted to 20 µL per well with 

nuclease-free water. The plate was briefly centrifuged and transferred to a PCR 

block for the following thermal programme: 

 25ºC – 10 min 

 48ºC – 30 min 

 95ºC –   5 min 

 12ºC –   hold. 
 
Samples were stored at –20oC until ready to use. 

2.5.4 Real-time PCR (gene expression assays) 

Gene expression assays (Applied Biosystems) were used for all qRT-PCR 

experiments through the project. The assays consist of a 20x reaction mix 

containing template-specific forward and reverse primers (18 µM each) and a 

probe that anneals between the two primers (5 µM). The assay uses a non-

fluorescent quencher system, thus the measured fluorescence is proportional to 

the amount of PCR product. Probe DNA is fluorescently tagged at the 3' end, but 

under normal conditions a quencher molecule bound to its 5' end prevents the 

fluorescence. During PCR amplification, the quencher is cleaved from the probe 

by the DNA polymerase containing 5'-3' nucleolytic activity and the fluorescence 

can be measured. 

Although every effort was made to ensure equal amounts of template cDNA were 

used in each reaction of every experiment, sensitivity of qRT-PCR might result in 

variable results. Therefore expression of gene of interest (6-carboxyfluorescein, 

FAM fluorescent dye) was always measured relative to a housekeeping control 

gene (VIC fluorescent dye) in a duplex reaction. For qRT-PCR reactions were set 

up in optical 384 well plates. The constituents and thermal conditions for 

reactions were: 
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       Vol (µL) per 1 rxn 
 

 2 x Master Mix    2.5   µL 

 Housekeeper control (VIC)  0.25 µL 

 Probe of interest (FAM)   0.25 µL 

 cDNA from 1st strand reaction  2.0   µL 
 
Final reaction volume was adjusted to 5 µL per well with Nuclease-free water. 

Thermal cycling conditions on Applied Biosystems 7900HT Sequence Detection 
System were: 
 

 2 min at 50ºC 

 10 min at 95ºC 
 

o 15 sec at 95ºC 
o 1 min at 60ºC 

 
Fluorescence of FAM and VIC dyes was measured and recorded for all reactions 

during temperature cycling, data were analysed using a combination of Applied 

Biosystems SDS (Sequence Detection Software) and Microsoft Excel software. 

Replicates of non-template controls were included with each probe set. 

Fluorescence of the two dyes (FAM and VIC) was analysed as separate data sets 

with individual thresholds set automatically by the software (where 

amplification curves were in their exponential phase). The point where the 

curve crosses the threshold, the 'cycle threshold value' (Ct value), was 

interpolated by finding the precise fractional cycle number (to 5 decimal 

places). Ct values for each probe (FAM and VIC labelled) were exported from SDS 

as text files and copied to Excel spreadsheets for analysis. Delta-CT (dCT) is 

calculated to determine the cycle difference between the housekeeper and gene 

of interest crossing the threshold, it is the difference between the two values, 

i.e. Ct (housekeeper) – Ct (gene). Relative levels of gene expression were 

calculated by the ΔΔCt method (Livak KJ et al. 2001). The method allows 

calculating gene expression levels normalised to the endogenous control 

(housekeeper gene) relative to a calibrator from within the experiment (i.e. a 

sample or sample group designated to have relative gene expression level of 

1.0). The biggest advantage of this method is that there is no need to include a 

standard curve from serial dilutions of template in each experiment. The ΔΔCt 

method is derived from rate of product accumulation during PCR equation which 

dictates: For Gene Expression Assays designed by Applied Biosystems the 

efficiency is close to 1, thus the amount of target can be calculated as: Relative 

x 35 
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quantification (RQ) = 2-ΔΔCt. To ensure the ΔΔCt is appropriate to use, it was 

essential to experimentally confirm that the target and control gene PCRs had 

the same amplification efficiencies (i.e. EX = ER). This was achieved by assaying 

serial dilutions of template in duplex PCR reactions with the housekeeper. All 

gene expression assays and Custom Gene Expression assays for each individual 

cDNA template (e.g. cDNA from heart and each cultured cell lines) were assayed 

in this manner. A series of cDNA dilutions was prepared from neat template to 

1/1,000 dilution, typical dilutions included were 1/5, 1/10, 1/50, 1/100, 1/500 

and 1/1,000. Graphs of log (dilution) versus Ct for the target template and 

housekeeper gene were plotted. The gradients of each line on the plot were 

compared following the Applied Biosystems guidelines, thus had to be within ± 

0.1 of each other to be deemed suitable for use with the sample. Each assay 

tested for the use in this project has passed this test. 

2.5.5 Preparation of cDNA (microRNA assay) 

The TaqMan® microRNA assays are designed to detect and accurately quantify 

mature microRNA. The assays are guaranteed to discriminate against microRNA 

precursors and allow detection of the target in total RNA as low as 1-10 ng with 

single-base accuracy. Single-stranded cDNA was prepared from total RNA (2.5 µL 

at 2 ng/µL) using TaqMan MicroRNA Reverse Transcription Kit (Applied 

biosciences) in a 96 well plate. The remaining constituents were: 

        Vol (µL) per 1 rxn 
 

 100mM dNTPs      0.075 µL 

 Multiscribe reverse transcriptase (50 U/µL)  0.50   µL 

 10 x Reaction buffer     0.75   µL 

 RNase inhibitor (20 U/µL)     0.095 µL 

 microRNA probe  (x5)     1.50   µL 

 Nuclease-free water     2.08   µL 
 
Final reaction volume was 7.5 µL. The plate was briefly centrifuged and 

transferred to a PCR block to perform reverse transcription with the following 

parameters: 

 16ºC – 30 min 

 42ºC – 30 min 

 85ºC –   5 min 

 12ºC –   hold. 
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After the program was complete, samples were stored at – 20oC until ready to 

use. 

2.5.6 Real-time PCR (microRNA assays) 

MicroRNA assays (Applied Biosystems) were used for all qRT-PCR experiments 

through the project. The assays consist of a RT primer and TaqMan Assay (pre-

formulated forward/reverse primer and a quencher probe for 

dihydrocyclopyrroloindole tripeptide minor groove binder (MGB) that anneals 

between the two primers). The assay uses the same non-fluorescent quencher 

system as gene expression assays described earlier in this chapter. Only FAM 

labelled probes were used. U87 was used as a housekeeper reference for rat 

tissue samples and cell lines and RNU48 for human cell lines. The group have 

previously identified these genes as consistent in their levels in the relevant 

species and these are used with established cell lines in the laboratory. 

The PCR reaction was set up in triplicate for each sample analysed (technical 

triplicate) in a 384 well plate as simplex reactions. The product from RT reaction 

was diluted (minimal dilution 1:15, consistent throughout the experiment) prior 

to use. Each reaction contained the following reagents: 

        Vol (µL) per 1 rxn 
 

 TaqMan 2x Universal PCR Master Mix, 
no AmpErase UNG       5.00 µL 

 TaqMan MicroRNA Assay (x20)     0.50 µL 

 Product from RT reaction (min 1:15 dilution)    0.70 µL 

 Nuclease-free water      3.80 µL 
 
Final reaction volume was 10 µL per well (non-template controls were topped up 

with nuclease-free water). The plate was immediately transferred to the Applied 

Biosystems 7900HT Fast Real-Time PCR System with the following protocol: 

 10 min at 95ºC 
o 15 sec at 95ºC 
o 1 min at 60ºC 

 

x 40 
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Fluorescence of FAM dye was measured and recorded during the temperature 

cycling. Data extraction and processing was identical to that of Gene Expression 

Assay data handling with one exception. As microRNA assays were set up as 

simplex reactions, levels of the housekeeper were measured in the same 

template cDNA in a different well. One set of housekeeper reactions was used 

per plate thus was the same for all the probes on that same plate. 

2.5.7 Statistical analysis 

Statistical analysis was used to determine the statistical significance of 

experimental findings. Unless stated otherwise, parametric statistical tests were 

used. All comparisons were made on data collected from individual assays thus 

eliminating error from inter-assay variability. Wherever possible three biological 

samples were obtained for each analysed condition and then applied as three 

technical repeats for the assay. When comparisons were made between two 

experimental groups with continuous variable, 2 sample t-tests were used (Bland 

2000). For the same type of comparison with more than 2 groups, analysis of 

variance (ANOVA) was performed with an appropriate post-test. Dunnet’s post-

test was used when a control group was designated and other groups were 

compared against it, where all groups were compared, the Tukey post-test was 

applied (Bailer and Piegorsch 1997). In all the analyses threshold for significance 

was set at 0.05. 

Unless stated otherwise the error bars are standard error of the mean (SEM). In 

gene and microRNA expression analysis, where values are expressed as RQ, the 

error bars are asymmetrical due to the nature of calculating the SEM from a log 

data and then anti-logging it. 
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 MicroRNA profiling in vivo 

3.1 Introduction 

MicroRNA expression is dynamic through time and development, more 

importantly it is affected by pathology, i.e. microRNA expression in healthy 

heart is different from that in failing heart. Thus comparing microRNA 

expression profile of two samples of known disease state would allow an insight 

into which microRNAs are differentially expressed in healthy versus the diseased 

state. Microarray screening is a cost-effective method of analysing large 

numbers of samples simultaneously and generating high-throughput data and 

recently has been applied to microRNA analysis. Examples include Sucharov et al 

study where a microRNA microarray was used to investigate expression profiles 

in human failing and non-failing hearts (Sucharov et al. 2008a). RNA from hearts 

which were either non-failing, or from patients with either idiopathic dilated 

cardiomyopathy, or ischemic dilated cardiomyopathy was applied to LC Sciences 

(LCS; Houston, Texas) chip based on the Sanger miRBase 9 database. The group 

then used LCS’s own data analysis methods to identify subsets of microRNAs up- 

and down-regulated in non-failing versus failing hearts, a further six microRNAs 

(miR-150, miR-133a, miR-133b, miR-195, miR-100 and miR-92) were analysed for 

their involvement in development of the pathology based both on microarray 

results and previous implications of these microRNAs in the literature. Validation 

of selected microRNAs by qRT-PCR was performed and four out of six microRNAs 

were validated as both microarray and RT-PCR indicated the same direction of 

expression, the other two microRNAs (miR-150 and miR-133a) were not validated 

(Sucharov et al. 2008a). The following chapter describes similar experimental 

setup – microRNA microarray was used to identify variation between healthy 

(WKY) and disease (SHRSP) states, data analysed by LC method and further 

analysed by qRT-PCR. From the microRNA list generated by Sucharev et al, only 

miR-195 is investigated in this thesis in the context of LVH. Wilson et al went 

one step further in investigation of dynamics of microRNA expression in cell 

differentiation in embryonic (hESC) and cardiac cells. After literature screening 

and qRT-PCR validation, Wilson et al have analysed the predicted targets for 

their selected cardiac specific candidate microRNAs (miR-1, miR-133, miR-208 

and miR-499). The group have also looked at relevant pathways to build a 

systems level picture leading from microRNA, to target, to outcome(Wilson et al. 
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2010a). MiR-499-5p was found to be significantly differentially regulated 

between cardiac phenotype cells and control cells (undifferentiated cells and 

cardiac fibroblasts) it was further investigated by comparing TargetScan 

predicted targets for this microRNA. Complimentary canonical pathway analysis 

indicated that miR-499 and the predicted targets are involved in early events 

such as early cardiogenesis, embryogenesis and cell cycle regulation, suggesting 

that miR-499 regulates cardiomyocyte maturation by inhibiting embryogenesis 

and cardiogenesis pathways (Wilson et al. 2010a). Using available to the authors 

gene expression data they were able to enrich the TargetScan generated lists for 

predicted targets and analyse expression relative to the targeting microRNA. It 

was found that during differentiation as microRNA expression increased, pools of 

predicted targets decreased. This data led them to use stably transformed hESC 

cells in investigation of the effects of miR-1 and miR-499 over-expression on 

cardiac gene profile. Expression patterns of myocyte-specific enhancing factor 

2c (MEF2c) and GATA4, important mediators of cardiac development, indicated 

positive roles for miR-1 and miR-499 in cardiomyocyte biology (Wilson et al. 

2010a). 

Microarray validation by qRT-PCR and attempts to build a comprehensive picture 

including microRNAs, their targets and phenotype and then linking animal data 

with data from human subjects, are common features in the field of microRNA 

research. For example comparison of microRNA expression profile of induced 

pulmonary hypertension (PAH) in rats to that in human patients suffering with 

idiopathic PAH revealed miR-21 as a common denominator (Caruso et al. 2012). 

However not all of the microRNAs highlighted by microarray, are validated by 

qRT-PCR (Caruso et al. 2012; Sucharov et al. 2008b; Wilson et al. 2010b). Thus 

technological challenges of microRNA profiling should not be overlooked. To 

address various issues the study described in this chapter was designed to 

include samples from two distinct time points - 5 and 16 weeks of age. As the 

molecular basis of LVH is investigated, animals were chosen at time points 

before the increase in blood pressure but with evidence of increased LVMI and a 

second time point after the hypertension and LVH are established (M. McBride, 

personal communications). 

The standard analysis pipeline of microarray output analysis, employed by LC 

Science is t-test analysis. However the nature of microarray is that it aims to 
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identify differentially expressed microRNAs (or other entities such as genes, 

proteins) under two experimental conditions, while being subjected to read out 

noise and simultaneously analysing multiple microRNAs. For this reason 

microarray data were also analysed with Rank product analysis (RP) as it may be 

more appropriate (Breitling et al. 2004; Breitling and Herzyk 2005a). The 

standard t-test statistical analysis does not allow for multiple testing and does 

not take into account the dynamic nature of biological sample analysis. Rank 

Product analysis is relatively new method of analysing microarray data. 

Described in 2004 by Breitling et al as a method that “originates from an analysis 

of biological reasoning“ and shown to perform well with three to nine samples, 

it was at first used to analyse DNA microarrays, now it is commonly used in 

microRNA microarray analysis as well as RNAi analysis and proteomics, and 

metabolomics (Breitling et al. 2004). For RP analysis only four assumptions are 

made: only a minority of microRNAs are affected by relevant expression 

changes, each replicate array is an independent measurement, most changes 

observed are independent of each other and all microRNAs have relatively equal 

measurement variance. Ranks for microRNAs are calculated based on 

performance of each replicate and this is used to determine whether the 

microRNA is statistically significantly differentially expressed. Importantly this 

method of analysis is based on the fact that each sample is tested multiple times 

i.e. compared to each of the other samples on the chip; it is said to be more 

robust and have higher sensitivity and specificity compared to more common t-

test. 

All these data indicate that microRNA analysis cannot be done by one approach 

only - it has to explore different aspects of microRNA biology and action, such as 

tissue and cell specificity, dynamic expression during the development and 

target prediction and validation tied in with phenotype. 

3.2 Materials and methods 

3.2.1 MicroRNA microarray 

Microarray was designed by Drs M.W. McBride and J. McClure and carried out 

under their supervision for in-house parts of the assay. MiRNA microarray 

profiling was performed on hearts of 5 and 16 week old SHRSP and WKY animals 
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using LCS HumanMouseRat miRNA Array (miRHumanMouseRat_11.0_080411; part 

no MRA-1030) chips based on Sanger miRBase Release 11.0 (Figure 3.1 and Figure 

3.2). Microarrays used μParaflo microfluidic chip technology (Atactic 

Technologies, Houston, TX, USA). Total RNA with preserved small RNA fraction 

from whole hearts of rats at 5 and 16 weeks of age were extracted using the 

Illumina® TotalPrep RNA Amplification Kit analysed for quality and applied to 

the chip in no particular order. QC analysis was performed to ensure that sample 

were sufficiently pure from protein contamination, DNA, phenol ethanol and 

salts that are present in solutions used for RNA extraction. For RNA of 

appropriate purity the ratio of A260 to A280 is expected to fall in the range of 

1.7 – 2.1. The integrity of samples was analysed using the Agilent® 2100 

bioanalyzer (University Service; Error! Reference source not found.3). RNA 

integrity number (RIN) was used as an indication of good quality sample. Values 

of 8 and above were accepted as sufficient to continue working with the sample. 

RIN is calculated taking into account both the bands and peaks of RNA 

(indicating potential degradation) and provides a better indication of sample 

condition. Each probe on the chip is designed with a coding segment and a long 

spacer. The signal intensity of the microarray probes on the chip was used as a 

surrogate measure for expression of the transcript. Each sample was exposed to 

tag conjugated Cy3 or Cy5 fluorescent dyes circulated through the chip. 

Hybridization images were collected using a laser scanner, and digitized using 

Array-Pro image analysis software. The chip contained 3 repeats of each of the 

following standard mature miRNAs: 837 human (hsa), 599 mouse (mmu) and 350 

rat (rno). As a quality control (QC) step for the whole assay, a specified amount 

of several 20-mer RNA oligos is spiked into each of the samples to act as external 

controls. As experimental controls 27 sequences were included, each repeated 

from 4 to 16 times. Where mature sequences were identical between species, 

annotation followed a hierarchy of hsa-mmu-rno, i.e. if sequences are identical 

in all three species, probes are annotated as hsa, if human sequence is identical 

to rat only, and annotation hsa and mmu probe included elsewhere on the chip. 

The array was laid out in 31 columns containing 128 rows each. 
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Figure 3.1 Simplified overview of microRNA microarray workflow. Each experiment involves 
isolation of total RNA from tissue, enrichment for small RNA part labelling and applying to 
the chip. On the chip sample RNA is hybridised with the probes, signal amplified and data 
collected in a form of images. Expression data are extracted from each image and analysed 
to complete the experiment. Quality control checks are carried out wherever possible 

 

5 Week 16 Week

Array SP WKY SP WKY

1 Cy3 C5720

2 Cy5 C5719

3 Cy3 C5639 Cy5 A4481

4 Cy5 C5638 Cy3 C5478

5

6 Cy3 A4480

7

8 Cy5 A4479

9

10 Cy3 A4478 Cy5 A4297

11 Cy5 C5472

12 Cy3 C5471

13 Cy5 C5470 Cy3 A4280

14

15 Cy5 A4279

16 Cy3 A4278  
 

Figure 3.2 Sample layout in microarray. Heart tissue RNA from four animals of SHRSP (SP 
column; C denotes the strain, followed by animal number) and WKY (A denotes the strain, 
followed by animal number) at 5 and 16 week time points was analysed, two samples from 
each strain at each time point were labelled with Cy3 (green) dye and two with Cy5 (red) dye. 
Array – chip number. Data from LCS results package. 

 



 

85 
 

 

Figure 3.3 RNA quality analysis. Samples of total RNA from tissues and cells were assessed 
for quality using the Agilent® 2100 bioanalyzer. Top panel is electrophoresis file run 
summary showing RNA bands for 12 analysed samples (sample name at the top, number on 
the chip at the bottom; L – ladder). Bottom panel is electropherogram summary showing 
peaks at 18s (smaller peak) and 28 s (larger peak). Samples shown achieved the required 
RNA Integrity Number (RIN) and peak profile. RIN values above 9 are deemed to show good 
quality RNA.  
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3.2.2 Validation by qRT-PCR 

Expression of a selection of microRNAs was assessed using qRT-PCR in an attempt 

to validate microarray results. For protocol used see section 2.5.6. 

3.2.3 Data analysis by LCS and RP 

Microarray data were analyzed by first subtracting the background and then 

normalizing the signals using a LOWESS filter (locally-weighted regression). A 

miRNA was treated as detectable when it met at least three criteria: signal 

intensity higher than 3× (back-ground SD); spot coefficient of variation <0.5 

(coefficient of variation=SD/signal intensity); and signals from at least 50% of 

the repeating probes above detection level. The data were normalised by LC 

Sciences, who also performed statistical analysis (t-test). Those with P≤0.01 

were analyzed using 1-way, paired t-test of the log2 value of each WKY/SHRSP 

pair of signals were calculated in every chip. Results were provided in Excel 

spreadsheets sorted according to p values and signal intensity. The array was 

optimized for RNA hybridization probes with a dynamic range of >3.5 logs, 

detection limit of <10 attomole, and a signal intensity detection limit of 32 

intensity units with 500 and above being optimal readings. 

The second method of data analysis used Rank Product and was performed by 

Dr. John McClure, who used R software to analyse normalised data provided by 

LC sciences First ranks for each probe were calculated and then using the False 

Discovery Rate (FDR) multiple testing correction method statistical significance 

of each rank was determined. The use of FDR controls the number of incorrectly 

rejected null hypotheses (or Type I errors) and the cut-off point was set at 5%. 

Venn diagrams were used to visualise consistent differences between the groups 

analysed. 
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3.3 Results 

3.3.1 MicroRNA microarray 

The microRNA microarray met all the requirements set out in section 3.2.1. An 

example of data as run is shown (Figure 1.1Error! Reference source not 

found.). The three images are shown in pseudo colours and depict sections of 

the chip labelled in turn – Cy3 and Cy5. On this chip, samples from 5 week old 

rats were used, SHRSP was used with Cy3 dye and WKY with Cy5 dyes. Each dye 

allows visual interpretation of expression of microRNAs in the sample based on 

intensity of the colour. The ratio image is an overlay of Cy3 and Cy5 images. This 

allows visual interpretation of differential expression between the two samples. 

Sample BSample A

Cy3/Cy5  

Figure 3.4 Representative regions of microarray chips images. Chip 3 of the microRNA 
microarray representing tissue samples from 5 week old animals; sample A – SHRSP 
labelled with Cy3 dye, sample B – WKY labelled with Cy5 dye, Cy3/Cy5 – overlay (ratio) of 
samples A and B. Cy3 and Cy5 images allow reading expression of microRNAs in each 
sample, ratio image gives a differential expression of microRNAs in each of the two 
corresponding samples (SHRSP and WKY). Chip includes microRNA probes and control 
probes. Sample and probe layout at discretion of LCS. Images are displayed in pseudo 
colours to expand visual dynamic range; blue colour represents low expression (from 1 
intensity unit) green, yellow - medium expression and red – high expression (up to 65 535 
intensity units). In ratio image when Cy3 > Cy5 the colour is green, when Cy3 = Cy5 – 
yellow, Cy3 < Cy5 – red. Images from LCS results package. 
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3.3.2 Microarray analysis by LCS 

In LCS analysis it was found that at 5 weeks of age microRNA expression profile 

in WKY rats compared to that of SHRSP rats of the same age, expression of 103 

microRNAs were different. This included both leading strands (miR) and 

passanger strands (miR*). Out of those, 94 microRNAs were exclusive to 5 week 

comparison, 55 to 16 week comparison and 9 in common for both (Figure 3.5 5). 

The WKY and SHRSP profile comparison at 16 weeks of age showed differences 

(p<0.05) in expression of 64 microRNAs (Figure 3.5 5 and Table 3.1). At 16 weeks 

of age out of 64 miRNAs, 27 showed an increase, and 37 decrease in expression 

in WKY compared to SHRSP. Comparison of the differentially regulated miRNAs 

at 16 weeks versus 5 weeks of age in the WKY and SHRSP (Figure 3.5 6) showed 

that 9 microRNAs, were in common: hsa-miR-1249, hsa-miR-128, hsa-miR-148a, 

hsa-miR-451, hsa-miR-1513-5p, hsa-miR-584, hsa-miR-588, mmu-miR145* and 

mmu-miR199b*. When comparison across time was made (5 weeks old versus 16 

weeks old), expression of 206 microRNAs were found to be differentially 

expressed in the WKY in 5 weeks old animals compared to 16 weeks old animals. 

The same comparison in SHRSP showed there were 198 microRNAs in common 

between the two time points (Figure 3.66). 
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94         9 55

5 wk (103) 16 wk (64)

 

Figure 3.5 Cross-time comparison of microRNA expression profile. Analysed by LCS own 
method of analysis. In this Venn diagram each circle represents WKY versus SHRSP 
comparison at the time point indicated above circles; 5 week data comparison is in blue 
circle and 16 week data comparison in green circle. The numbers in the circles represent 
miRs exclusive to each comparison (94 microRNAs differentially expressed at 5 weeks and 
55 at 16 weeks), while the intersect shows those that are in common between the two 
comparisons (9 microRNAs differentially expressed at both time points).  

 

128       70 136

5v16 wk SHRSP (198)    5v16 wk WKY (206)

 
 

Figure 3.6 MicroRNA expression profile comparison within strain and across time. Analysed 
by LCS. In this Venn diagram each circle represents 5 versus 16 week data comparison 
within SHRSP (grey circle) and WKY (orange circle). Numbers in the circles represent miRs 
exclusive to each comparison (128 microRNAs differentially expressed in SHRSP at 5 weeks 
compared to 16 weeks and 136 in WKY in the same comparison), while the intersect shows 
those that are in common (70 microRNAs differentially expressed in both SHRSP and WKY 
between 5 and 16 weeks). 
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Table 3.1 Differentially expressed microRNAs in WKY compared to SHRSP at 16 weeks 
(LCS). 

PROBE ID p-value WKY Mean SHRSP Mean 

hsa-miR-1257 0.004 27 38 

mmu-miR-690 0.005 4456 1310 

hsa-miR-143 0.006 7220 4903 

hsa-miR-365 0.006 166 59 

hsa-let-7c* 0.007 29 43 

mmu-miR-199b* 0.008 59 114 

hsa-miR-1308 0.010 10742 1081 

hsa-miR-204 0.010 68 39 

rno-miR-143 0.011 5526 3842 

hsa-miR-519b-3p 0.012 16 27 

hsa-miR-451 0.014 491 811 

hsa-miR-184 0.014 36 52 

hsa-miR-1262 0.015 27 43 

mmu-miR-376c 0.015 19 32 

hsa-miR-587 0.021 15 35 

rno-miR-350 0.022 70 29 

hsa-miR-526b 0.025 15 26 

hsa-miR-24 0.026 10345 7048 

mmu-miR-689 0.028 154 26 

hsa-miR-532-3p 0.029 46 70 

hsa-miR-128 0.033 1155 837 

hsa-miR-122 0.035 15 39 

hsa-miR-219-1-3p 0.035 25 40 

hsa-miR-30c 0.039 20555 14537 

hsa-miR-485-5p 0.042 29 38 

hsa-miR-1288 0.043 23 36 

hsa-miR-585 0.046 13 28 
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3.3.3 Analysis by RP 

Analysing microarray data by an alternative analysis strategy RP, it was found 

that at 5 weeks of age 34 microRNAs were up-regulated in WKY compared to 

SHRSP and 38 were down-regulated (Table 3.2) while at 16 weeks 25 were up-

regulated and 26 down-regulated (Table 3.3). When the microRNA expression 

profile in 5 week old WKY rats was compared to that of SHRSP of the same age 

72 microRNAs were found to be differentially expressed (Table 3.2). The WKY 

and SHRSP profile comparison at 16 weeks of age showed differential expression 

of 51 microRNAs (Table 3.3 ). Comparison of the differentially regulated miRNAs 

at the two time points between the WKY and SHRSP showed that 21 microRNAs 

were in common (Figure 3.7). Comparison within the strain showed 106 

microRNAs differentially expressed in the WKY in 5 weeks of age animals 

compared to 16 weeks old animals, in the SHRSP comparison with the same 

parameters, there were 104 microRNAs in common (Figure 3.8). 
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Table 3.2 microRNAs differentially expressed in WKY compared to SHRSP in RP analysis of 
5 week data (all FDR<0.05). Median is calculated mean of the two middle values. 

PROBE ID 
FDR 

SHRSP – WKY 
FC median 

SHRSP – WKY 
Median 
SHRSP 

Median 
WKY 

mmu-miR-329 0 -10.647 453 6062 

hsa-miR-498 3.03E-05 -3.604 56 536 

mmu-miR-1195 3.03E-05 2.800 896 238 

hsa-miR-923 9.09E-05 2.572 5708 2141 

hsa-miR-548h 3.79E-04 -2.847 36 340 

hsa-miR-548m 3.79E-04 -2.784 44 350 

rno-miR-543 0.001 -2.516 55 332 

hsa-miR-98 0.001 2.314 9612 4081 

hsa-miR-92b 0.001 1.918 1916 938 

hsa-miR-1826 0.001 1.846 20573 11084 

hsa-miR-101 0.002 -2.113 94 342 

hsa-miR-148a 0.003 -1.871 466 983 

mmu-miR-720 0.003 -2.014 821 1785 

hsa-miR-30e 0.003 -1.944 2711 5391 

hsa-miR-1277 0.003 -2.000 25 178 

hsa-miR-374b 0.005 1.508 794 484 

hsa-miR-19b 0.006 -1.782 98 275 

hsa-let-7d* 0.006 1.508 604 357 

hsa-miR-1289 0.007 -1.812 29 157 

Ctr06-3P 0.008 -1.715 314 630 

hsa-miR-1259 0.008 -1.676 36 147 

hsa-miR-206 0.008 1.392 206 112 

hsa-miR-150 0.008 1.446 9610 6607 

hsa-miR-140-3p 0.008 -1.761 222 489 

hsa-5S-b1 0.008 -1.588 2856 4610 

mmu-miR-1196 0.008 1.468 184 84 

mmu-miR-709 0.008 1.521 31807 20862 

hsa-miR-29b 0.009 -1.575 53 158 

hsa-miR-29c 0.009 -1.698 1610 2824 

hsa-miR-720 0.009 -1.630 592 1047 

mmu-miR-690 0.01 -1.519 2762 4262 

Ctr01-3P 0.01 -1.650 2436 4103 

mmu-miR-199b* 0.01 -1.582 123 269 

Ctr10-3P 0.01 -1.553 233 432 

mmu-miR-92a 0.012 1.387 3935 2802 

Continued overleaf 
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Table 3.2 continued 

PROBE ID 
FDR 

SHRSP – WKY 
FC median 

SHRSP – WKY 
Median 
SHRSP 

Median 
WKY 

hsa-miR-30a 0.013 -1.538 5750 8912 

hsa-miR-451 0.014 -1.489 1743 2658 

hsa-miR-30d 0.016 -1.419 5442 7775 

hsa-let-7e 0.016 1.353 24416 18011 

hsa-miR-548f 0.018 -1.587 20 107 

hsa-miR-92a 0.019 1.298 4864 3718 

hsa-miR-328 0.019 1.299 331 225 

hsa-miR-1268 0.019 1.414 391 239 

hsa-miR-34a 0.019 1.227 290 212 

Ctr07-3P 0.021 -1.449 19519 28346 

hsa-miR-1275 0.022 1.222 149 98 

rno-miR-664 0.022 1.329 148 80 

hsa-miR-574-5p 0.022 1.393 332 202 

hsa-miR-361-5p 0.022 1.319 2981 2228 

hsa-miR-486-3p 0.023 1.412 895 596 

a-PUC2PM 0.024 -1.393 12458 17399 

mmu-miR-155 0.024 1.376 312 192 

hsa-miR-24 0.024 -1.340 7892 10620 

hsa-miR-423-5p 0.024 1.474 1912 1255 

hsa-miR-378* 0.024 1.266 239 162 

rno-miR-352 0.025 1.337 12418 9255 

hsa-miR-29a 0.025 -1.410 5782 8206 

mmu-miR-497 0.025 -1.335 69 134 

hsa-miR-148b 0.027 -1.403 125 227 

hsa-miR-10b 0.033 1.298 340 233 

mmu-miR-145* 0.036 -1.324 53 112 

hsa-miR-27a 0.036 -1.275 7843 10033 

hsa-miR-1300 0.036 1.131 133 103 

hsa-miR-139-5p 0.036 1.151 894 760 

rno-miR-322* 0.036 1.346 476 321 

hsa-miR-486-5p 0.039 1.250 7272 5791 

hsa-miR-505* 0.04 1.200 199 144 

mmu-miR-382* 0.043 -1.411 13 71 

hsa-miR-335 0.043 1.272 725 543 

hsa-5S-b2 0.043 1.433 22107 15386 

mmu-miR-101b 0.044 -1.270 114 180 

hsa-miR-181b 0.045 -1.367 517 753 
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Table 3.3 microRNAs differentially expressed in WKY compared to SHRSP in RP analysis of 
16 week data (all FDR<0.05). Median is calculated mean of the middle two values. 

PROBE_ID 
FDR 

SHRSP-WKY 
FC med 

SHRSP-WKY 
Median 
SHRSP 

Median 
WKY 

hsa-miR-1308 0 -9.119 1227 12226 

Ctr09-3P 0 268.521 47935 51 

Ctr07-3P 3.03E-05 163.398 22176 8 

Ctr01-3P 1.14E-04 18.222 2386 10 

hsa-miR-638 3.27E-04 -4.045 911 4073 

mmu-miR-690 0.001 -3.221 1337 4590 

Ctr06-3P 0.001 3.873 412 11 

Ctr10-3P 0.001 3.261 302 4 

hsa-miR-499-5p 0.002 -2.598 4277 11315 

mmu-miR-720 0.002 2.507 2721 1008 

mmu-miR-1187 0.002 7.247 1263 64 

hsa-miR-720 0.003 2.309 1534 591 

hsa-miR-574-5p 0.003 4.933 1515 205 

mmu-miR-762 0.003 -2.683 389 1260 

hsa-miR-149* 0.003 -3.114 140 705 

PUC2MM 0.004 3.093 24138 7717 

Ctr03-3P 0.006 1.969 133 4 

PUC2PM 0.007 2.433 29434 12022 

a-PUC2PM 0.007 2.220 36261 16260 

hsa-miR-378 0.009 1.643 3848 2292 

mmu-miR-680 0.009 -2.236 35 237 

hsa-miR-29c 0.013 -2.256 2517 5840 

hsa-miR-98 0.016 1.620 7314 4465 

hsa-miR-148a 0.018 -1.801 247 548 

hsa-miR-1280 0.024 1.542 2543 1603 

hsa-miR-222 0.026 -1.431 173 303 

mmu-miR-689 0.026 -1.732 25 138 

mmu-miR-466f 0.026 2.117 208 30 

mmu-miR-322 0.027 -1.561 951 1556 

rno-miR-543 0.027 -1.418 181 310 

hsa-miR-365 0.028 -1.617 61 178 

hsa-miR-671-5p 0.028 -1.651 43 154 

hsa-miR-422a 0.028 1.558 236 106 

hsa-let-7e 0.028 1.285 22319 17335 

hsa-miR-27a 0.029 -1.656 5516 9217 

hsa-miR-30e* 0.029 -1.696 973 1739 

hsa-miR-548m 0.029 -1.345 226 348 

mmu-miR-672 0.029 1.688 145 33 

Continued overleaf 
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Table 3.3 continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROBE_ID 
FDR 

SHRSP-WKY 
FC med 

SHRSP-WKY 
Median 
SHRSP 

Median 
WKY 

hsa-miR-548h 0.030 -1.395 180 302 

hsa-miR-206 0.030 1.517 400 220 

hsa-miR-10a 0.032 -1.493 360 600 

hsa-miR-30b 0.032 -1.712 9715 16722 

hsa-miR-451 0.032 1.469 785 494 

hsa-miR-145 0.033 1.440 9117 6293 

hsa-miR-29a 0.033 -1.700 7343 12576 

hsa-miR-574-3p 0.037 -1.430 119 226 

mmu-miR-1196 0.041 1.344 204 119 

hsa-miR-143 0.042 -1.423 4813 6905 

hsa-miR-320d 0.043 1.541 1816 1133 

PUC2PM-20B 0.044 -1.286 22931 29517 

Ctr05-3P 0.049 1.290 57 15 
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51         21 30

5 wk (72) 16 wk (51)

 

Figure 3.7 MicroRNA profile comparison across time as analysed by RP. In this Venn 
diagram each circle represents WKY versus SHRSP comparison at the time point indicated 
above the circles; 5 week data comparison is in blue circle and 16 week data comparison in 
green circle. The numbers in the circles represent miRs exclusive to each comparison (51 
and 30), while the intersect shows microRNAs in common (21). 

 

47         57 49

5v16 wk SHRSP (104)     5v16 wk WKY (106)

 

Figure 3.8. MicroRNA profile comparison within strain and across time of data from RP 
analysis. In this Venn diagram each circle represents comparisons made within the strain at 
5 week versus 16 week data; grey circle contains SHRSP data and orange – WKY data. The 
numbers in the circles represent miRs exclusive to each comparison (47 and 49), while the 
intersect shows number of microRNAs that are in common (57). 
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3.3.4 Comparing LCS and RP results 

Venn diagrams are presented to illustrate comparison of the output data from 

LCS to that of RP and to investigate if these two methods of analysis detect 

similar changes in the given set of data. Lists of microRNAs differentially 

expressed at 5 weeks in the WKY compared to SHRSP as generated by analysis by 

LCS and RP were compared (Table 3.4). 
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Table 3.4. MicroRNA differentially expressed in 5 week animals. Data from analysis by LCS 
and RP (both exclusive sets) and list of microRNAs in common (identified by both analyses)  

WKY compared to SHRSP (LCS)
WKY compared to 

SHRSP (RP)
In common

hsa-miR-100

hsa-miR-106a

hsa-miR-106b*

hsa-miR-1224-5p

hsa-miR-1249

hsa-miR-125b

hsa-miR-125b-1*

hsa-miR-128

hsa-miR-1294

hsa-miR-130b

hsa-miR-148b*

hsa-miR-152

hsa-miR-16

hsa-miR-18a

hsa-miR-18b*

hsa-miR-190

hsa-miR-190b

hsa-miR-195

hsa-miR-212

hsa-miR-23a

hsa-miR-23b

hsa-miR-24-1*

hsa-miR-24-2*

hsa-miR-27b

hsa-miR-27b*

hsa-miR-320d

hsa-miR-323-3p

hsa-miR-33a

hsa-miR-411

hsa-miR-493*

hsa-miR-499-5p

hsa-miR-501-5p

hsa-miR-513a-5p

hsa-miR-513b

hsa-miR-518b

hsa-miR-532-5p

hsa-miR-542-3p

hsa-miR-564

hsa-miR-581

hsa-miR-584

hsa-miR-588

hsa-miR-590-3p

hsa-miR-601

hsa-miR-744

hsa-miR-766

hsa-miR-937

hsa-miR-943

hsa-miR-95

mmu-miR-1190

mmu-miR-16*

mmu-miR-193b

mmu-miR-202-3p

mmu-miR-20b*

mmu-miR-21*

mmu-miR-24-1*

mmu-miR-346

mmu-miR-34b-3p

mmu-miR-483*

mmu-miR-679

mmu-miR-682

mmu-miR-683

mmu-miR-692

mmu-miR-702

mmu-miR-770-5p

rno-miR-17-3p

rno-miR-200b

rno-miR-24-1*

rno-miR-421

Ctr01-3P

Ctr06-3P

Ctr07-3P

Ctr10-3P

a-PUC2PM

hsa-5S-b1

hsa-5S-b2

hsa-let-7e

hsa-miR-10b

hsa-miR-1259

hsa-miR-1275

hsa-miR-1277

hsa-miR-1300

hsa-miR-140-3p

hsa-miR-181b

hsa-miR-206

hsa-miR-24

hsa-miR-328

hsa-miR-335

hsa-miR-34a

hsa-miR-374b

hsa-miR-378*

hsa-miR-486-3p

hsa-miR-498

hsa-miR-548f

hsa-miR-548m

hsa-miR-574-5p

hsa-miR-98

mmu-miR-101b

mmu-miR-155

mmu-miR-382*

mmu-miR-497

mmu-miR-690

rno-miR-322*

rno-miR-352

rno-miR-543

rno-miR-664

hsa-let-7d*

hsa-miR-101

hsa-miR-1268

hsa-miR-1289

hsa-miR-139-5p

hsa-miR-148a

hsa-miR-148b

hsa-miR-150

hsa-miR-1826

hsa-miR-19b

hsa-miR-27a

hsa-miR-29a 

hsa-miR-29b

hsa-miR-29c

hsa-miR-30a

hsa-miR-30d

hsa-miR-30e

hsa-miR-361-5p

hsa-miR-423-5p

hsa-miR-451

hsa-miR-486-5p

hsa-miR-505*

hsa-miR-548h

hsa-miR-720

hsa-miR-923

hsa-miR-92a

hsa-miR-92b

mmu-miR-1195

mmu-miR-1196

mmu-miR-145*

mmu-miR-199b*

mmu-miR-329

mmu-miR-709

mmu-miR-720

mmu-miR-92a
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Table 3.5. MicroRNAs differentially expressed in 16 week old animals. Data from analysis by 
LCS, RP (both exclusive data sets) and list of microRNAs in common.  

16 weeks LCS 16 weeks RP In common 

hsa-let-7b 
hsa-let-7c* 
hsa-miR-122 
hsa-miR-1249 
hsa-miR-1257 
hsa-miR-1258 
hsa-miR-1261 
hsa-miR-1262 
hsa-miR-1265 
hsa-miR-128 
hsa-miR-1288 
hsa-miR-140-3p 
hsa-miR-184 
hsa-miR-196b 
hsa-miR-19a 
hsa-miR-200b* 
hsa-miR-204 
hsa-miR-20b* 
hsa-miR-210 
hsa-miR-219-1-3p 
hsa-miR-223 
hsa-miR-24 
hsa-miR-30c 
hsa-miR-342-5p 
hsa-miR-362-5p 
hsa-miR-485-5p 
hsa-miR-497 
hsa-miR-513a-5p 
hsa-miR-518f 
hsa-miR-519b-3p 
hsa-miR-526b 
hsa-miR-532-3p 
hsa-miR-580 
hsa-miR-584 
hsa-miR-585 
hsa-miR-587 
hsa-miR-588 
hsa-miR-599 
hsa-miR-650 
hsa-miR-659 
hsa-miR-675 
hsa-miR-921 
mmu-let-7a* 
mmu-miR-133a* 
mmu-miR-145* 
 

mmu-miR-199b* 
mmu-miR-300 
mmu-miR-31 
mmu-miR-376c 
mmu-miR-449c 
mmu-miR-466b-3-
3p 
mmu-miR-669i 
mmu-miR-674* 
rno-miR-143 
rno-miR-339-3p 
rno-miR-350 

Ctr01-3P 
Ctr03-3P 
Ctr05-3P 
Ctr06-3P 
Ctr07-3P 
Ctr09-3P 
Ctr10-3P 
PUC2MM 
PUC2PM 
PUC2PM-20B 
a-PUC2PM 
hsa-let-7e 
hsa-miR-10a 
hsa-miR-1280 
hsa-miR-145 
hsa-miR-149* 
hsa-miR-206 
hsa-miR-222 
hsa-miR-27a 
hsa-miR-29a 
hsa-miR-29c 
hsa-miR-30b 
hsa-miR-30e* 
hsa-miR-320d 
hsa-miR-378 
hsa-miR-422a 
hsa-miR-499-5p 
hsa-miR-548h 
hsa-miR-548m 
hsa-miR-574-3p 
hsa-miR-574-5p 
hsa-miR-638 
hsa-miR-720 
hsa-miR-98 
mmu-miR-1187 
mmu-miR-1196 
mmu-miR-322 
mmu-miR-466f 
mmu-miR-672 
mmu-miR-680 
mmu-miR-720 
mmu-miR-762 
rno-miR-543 
 

hsa-miR-1308 
hsa-miR-143 
hsa-miR-148a 
hsa-miR-365 
hsa-miR-451 
hsa-miR-671-5p 
mmu-miR-689 
mmu-miR-690 
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Table 3.6. Differentially expressed microRNAs in WKY compared to SHRSP at 5 weeks 
(LCS). This table shows the microRNAs that are significantly different (p<0.05) in the WKY 
compared to SHRSP. p values and means (Log2 (G1/G2)) for each strain are provided. 

PROBE ID p-value WKY Mean SHRSP Mean 

hsa-miR-27b   2.26E-04 12100 9607 

hsa-miR-101 3.21E-04 348 99 

hsa-miR-148a 0.001 973 468 

hsa-miR-451 0.001 2745 1691 

hsa-miR-23b 0.004 24954 20176 

hsa-miR-1826 0.004 11296 20445 

mmu-miR-1196 0.004 82 221 

hsa-miR-130b 0.005 80 46 

hsa-miR-30a 0.005 8632 5721 

hsa-miR-23a 0.007 23898 19455 

hsa-miR-152 0.009 3299 2555 

hsa-miR-513b 0.010 8 26 

hsa-miR-923 0.010 2163 5329 

hsa-miR-19b 0.011 270 109 

mmu-miR-1190 0.012 19 36 

hsa-miR-518b 0.013 15 30 

mmu-miR-1195 0.013 229 865 

mmu-miR-92a 0.014 2810 3907 

hsa-miR-92b 0.015 1040 1840 

hsa-miR-30e 0.016 5070 2812 

hsa-miR-24-2* 0.019 93 50 

mmu-miR-199b* 0.019 277 132 

mmu-miR-24-1* 0.021 31 21 

hsa-miR-125b-1* 0.024 22 34 

hsa-miR-361-5p 0.024 2322 3023 

hsa-miR-542-3p 0.027 46 25 

hsa-miR-501-5p 0.028 13 24 

hsa-miR-128 0.030 939 1151 

hsa-miR-190 0.030 16 36 

hsa-miR-513a-5p 0.030 18 42 

hsa-miR-590-3p 0.030 8 21 

hsa-miR-584 0.033 21 33 

hsa-miR-937 0.033 20 38 

mmu-miR-709 0.034 20946 33726 

mmu-miR-145* 0.034 114 62 

hsa-miR-148b 0.035 236 126 

hsa-miR-323-3p 0.035 21 35 

Continued overleaf 
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Table 3.6. continued 

PROBE ID p-value WKY Mean SHRSP Mean 

hsa-miR-30d 0.036 7674 5778 

mmu-miR-683 0.038 13 30 

mmu-miR-202-3p 0.039 29 14 

mmu-miR-346 0.039 30 61 

hsa-miR-943 0.039 16 33 

hsa-miR-33a 0.040 11 28 

hsa-miR-29b 0.040 199 58 

hsa-miR-29a 0.042 7819 5616 

hsa-miR-16 0.043 12610 9889 

hsa-miR-148b* 0.046 16 26 

hsa-miR-1224-5p 0.046 51 25 

hsa-miR-720 0.047 1012 598 

hsa-miR-18b* 0.047 21 38 

hsa-miR-505* 0.047 141 214 

rno-miR-200b 0.048 53 30 
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3.3.5 Analysis by qRT-PCR 

A group of microRNAs selected were a combination of microRNAs implicated in 

cardiac phenotypes as well as candidate microRNAs: miR-21, miR-208a, miR-

208b miR-195, miR-329 and miR-451, and analysed their expression by TaqMan – 

qRT-PCR. MiR-21 although implicated in cardiac pathologies, was not 

differentially expressed in the hearts of rats at 5 weeks and 16 weeks of age 

(Figure 3.10). MiR-23a (Figure 3.9) also was not validated as is it not 

differentially regulated between SHRSP and WKY in either time point. MiR-208a 

(Figure 3.11) did not validate as expression of this microRNA at 16 weeks was not 

differential, and at 5 weeks there was significantly higher levels in the SHRSP 

hearts. Another cardiac specific microRNA, miR-208b was not different the WKY 

compared to the SHRSP. MiR-195 (Figure 3.13) was validated at 5 week time 

point; it was approximately 50% higher in the SHRSP compared to WKY. MiR-329 

(Figure 3.14) was not validated by the qRT-PCR as there was a lack of 

differential expression at either time point. In the hearts of 5 and 16 week old 

rats, miR-451 was not differentially expressed (Figure 3.13). 
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Figure 3.9 Quantitative assessment of miR-23a in 5 week old (left panel) and 16 week old 
(right panel) animal hearts; n=3. TaqMan assay was performed on whole heart tissues using 
standard protocol. 
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Figure 3.10 Quantitative assessment of miR-21 in 5 week old (left panel) and 16 week old 
(right panel) animal hearts; n=3. TaqMan assay was performed on whole heart tissues using 
standard protocol. 
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Figure 3.11 Quantitative assessment of miR-208a in 5 week old (left panel) and 16 week old 
(right panel) animal hearts; n=3. TaqMan assay was performed on whole heart tissues using 
standard protocol. * p=0.03 by ttest . 
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Figure 3.12 Quantitative assessment of miR-208b in 5 week old (left panel) and 16 week old 
(right panel) animal hearts n=3. TaqMan assay was performed on whole heart tissues using 
standard protocol. 
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Figure 3.13 Quantitative assessment of miR-195. 5 week old (left panel) and 16 week old 
(right panel) animal hearts; n=3. TaqMan assay was performed on whole heart tissues using 
standard protocol. *p=0.005 by ttest 
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Figure 3.14 Quantitative assessment of miR-329 in 5 week old (left panel) and 16 week old 
(right panel) animal hearts; n=3. TaqMan assay was performed on whole heart tissues using 
standard protocol. 
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Figure 3.15 Quantitative assessment of miR-451 in 5 week old (left panel) and 16 week old 
(right panel) animal hearts n=3. TaqMan assay was performed on whole heart tissues using 
standard protocol. 
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3.4 Discussion 

This chapter describes the qRT-PCR analysis of microRNAs that were 

differentially expressed in microarray screen in the hearts of the SHRSP and WKY 

at 5 or 16 weeks. MicroRNAs analysed were previously demonstrated to play a 

role in cardiac physiology, such as miR-21, miR-23a, miR-208 family (described in 

section 1.4 MicroRNA in cardiovascular health and disease) and others as well as 

novel microRNAs such as miR-329. The microRNAs that were indicated in 

cardiovascular pathophysiology were mostly identified in different species and 

even when rat was used, none of the studies used the SHRSP strain. This might 

be one of the reasons why not all of them were highlighted by the microarray 

and analyses performed for this study. Also each study would have to be 

critically analysed to include comparison of microarray platforms, qRT-PCR kits 

and other technical aspects, all of which influence the output. Not all assayed 

microRNAs were validated by qRT-PCR, only miR-195 at 5 week time point was 

validated; all other microRNAs showed either no differential regulation of went 

in the opposite direction to the microarray, like miR-208a (Figure 3.11). 

Use of microarray lends itself well to investigating profiles of a large number of 

microRNAs under distinct conditions. It is a highly sensitive method used for 

screening purposes however it relies heavily on the interpretation of the 

readouts by the statistical analysis used. Although companies providing 

microarray services include statistical analysis of the experiment using t-test, 

there is increased use of Rank Product analysis which is offered as a better way 

of handling biological data (Breitling and Herzyk 2005a; Breitling and Herzyk 

2005b). Even using RP analysis validation by quantitative RT-PCR analysis is 

recommended and widely used to compliment qualitative results of the array. 

Using two methods of data analysis was beneficial in the way that microRNAs 

could be prioritised for qRT-PCR analysis and then investigated for their 

potential role in the development of LVH in our animal model. To improve 

chances of identifying important differentially expressed microRNAs statistical 

analysis resulting from both LCS and RP analyses was carefully analysed. It was 

found that there were significant differences by both methods of analysis in 

microRNA expression in the hearts of WKY compared to SHRSP animals at 5 and 

16 weeks. MicroRNAs indicated by LCS analysis both above and below the 

threshold of 500 Intensity Units were considered. This was done based on notion 
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that even low levels of microRNA or minor changes in expression can lead to 

significant changes downstream. This approach allowed for a selection of 

broader set of miRNAs that potentially could have biologically significant 

changes by not excluding microRNAs that were expressed at low levels in the 

heart. At this stage probes that were statistically insignificant were not excluded 

if there was a reason to suspect involvement of such microRNA in cardiovascular 

pathology, for example those indicated in the literature such as miR-451. A great 

advantage of our approach is that microRNA expression profiles at two distinct 

time points were compared. Animals at 5 weeks of age are free of cardiovascular 

disease while at 16 weeks there the difference in the LVMI is quantifiable 

between the SHRSP and WKY (M. McBride, personal communications). The use of 

Ingenuity pathway analysis and identifying potential molecular changes and 

pathways in the heart between these two time points allowed to narrow down a 

list of candidate microRNAs that were putatively involved or affected by the 

development of LVH. Dynamic expression of microRNA in the development of 

LVH was investigated by Busk and Cirera (Busk and Cirera 2010). This group, in 

contrast to our setup, used an acute model and induced LVH by banding the 

ascending aorta of male rats. The group also performed literature search and 

indications of microRNA involved in late-stage pressure-overload induced 

hypertrophy and heart failure formed the basis for microRNA selection and 

resulted in validation of four miRNAs (miR-23a, miR-27b, miR-125b and miR-195) 

out of the13 that were selected, thus leading to the conclusion that microRNAs 

differentially regulated during the development of LVH are different from those 

at later stages, with some overlap between the two. In this chapter it was shown 

that in both strains more microRNAs had differing expression patterns at an 

earlier time point. This might be indicative of different microRNA expression 

patterns during the development in the SHRSP compared to WKY, early 

expression of microRNAs involved in pathophysiology or a mixture of both. It is 

possible that depending on which microRNAs are disregulated LVH is either 

reversible or not following the cause-result pattern, i.e. whether changes in 

microRNA are the cause of LVH development or a result of it. Such information 

would also help identify protective microRNAs as increase in their expression 

would be expected as conditions arise for development of the pathology. 

Findings of the project described in this thesis might follow the same pattern as 

time element is evaluated. Although our model is chronic as opposed to acute, 
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there should be similarities in the groups of microRNAs involved in development 

of the LVH as some signalling pathways would be shared by the two distinct 

models. At later stages of the pathology, there almost certainly will be 

microRNA affected by the physiological changes rather than be causing those 

changes ac adaptive mechanisms are activated. Similarly as in patients fitted 

with left ventricular assist devices (LVADs) where after fitting of the 

biomechanical support, a change in microRNA and mRNA profiles was observed, 

termed reverse remodelling (Matkovich et al. 2009; Schipper et al. 2008). At the 

same time, expression profile at 5 weeks of age is likely to include microRNAs 

that are differentially expressed due to the ongoing development of the young 

animal compared to an adult animal of 16 weeks of age. This issue should be 

addressed by comparison of the two strains as developmental changes are more 

likely to be similar in contrast to pathological changes. This inclusive approach 

increases the probability of detecting microRNAs that are directly involved in the 

pathology rather than affected by it. It will also be essential to determine 

whether dynamic expression of the analysed microRNAs is protective or 

causative. For example the ability of miR-195 to override all other mechanism 

and induce hypertrophy when it s over-expressed, may suggest it as a causative 

microRNA in cardiovascular disease. In agreement with the literature 

significantly higher levels of this miR in SHRSP at 5 weeks of age were observed. 

On the other hand, when LVH is established at 16 weeks of age there is no 

difference in expression of miR-195 between the SHRSP and WKY hearts. This 

could be due to a compensatory or inhibitory mechanism being activated in the 

SHRSP that will reduce the expression of miR-195. However it is possible that in 

mature WKY animals expression of this miR is increased yet not reaching a 

threshold to cause pathology. To find a definitive answer it would require 

analysis of the transcription unit of miR-195 as well as analysis of target genes to 

investigate if the levels of this miR are at a level that could affect the 

phenotype of the cell and tissue. The complexity of microRNA interactions with 

targets and dependency on the upstream regulators of expression was 

acknowledged and as a result microRNAs were further analysed based on criteria 

such as performance in each or either of the statistical tests used and reports of 

involvement in relevant pathologies. For example in the lists of differentially 

expressed microRNAs molecules previously indicated in cardiac hypertrophy, 

heart failure, MI and other cardiovascular pathologies such as miR-140-3p, miR-
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29 family, miR-30 family, miR-451 and others were identified. On the other 

hand, in the microarray screen miR-329 has by far the highest fold-change (ten-

fold higher expression) of all significantly differently expressed microRNAs 

indicated by RP in 5 week old WKY compared to SHRSP, yet to date it has not 

been implicated in cardiovascular pathology, but also cardiovascular system. 

Interestingly miR-329 has only been cited by a group investigating neuronal 

responses. Khudayberdiev et al report Mef2 mediated transcription of a ‘cluster 

of brain-specific microRNAs’ that includes miR-329. The group identified miR-

329, miR-234 and miR-381 as essential for the outgrowth of neurons in the 

hippocampus (Khudayberdiev et al. 2009). The lack of evidence of this miR in 

cardiac tissue makes it a novel potential regulator of cardiac phenotypes. It is 

also very interesting as it was only identified through the alternative method of 

analysis RP. However it was not validated by qRT-PCR. Nevertheless, attempts 

were made to characterise expression of this novel microRNA in our animal 

model and in vitro to establish the basis for such extreme differences in 

expression. Alongside miR-329, miR-195 is also investigated as it has strong 

literature backing as hypertrophy regulator, miR-451 as it has both literature 

implications and was statistically significant in microarray analysis. These three 

candidate microRNAs are the focus of our further work. 

. 
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 Characterising candidate microRNAs in vitro and 
in silico 

4.1 Introduction 

The neonatal rat heart mainly consists of cardiomyocytes and cardiac fibroblasts 

with much smaller numbers of endothelial cells, smooth muscle cells and 

neurones (Banerjee et al. 2007). From birth to maturity the number and 

composition of cells changes rapidly and cardiomyocytes make up a smaller 

proportion of total cell numbers, cardiac fibroblast become the dominant cell 

type and due to growth of blood vessels, numbers of endothelial and smooth 

muscle cells also increase (Banerjee et al. 2007). Hormonal signalling, early 

events occurring in the heart as it matures and functional demands increase 

within the first few days after birth change the transcriptome significantly. For 

example there is a switch from βMHC to αMHC i.e. from slow twitch myosin to 

fast twitch, this improves heart function as after birth the heart is required to 

pump blood harder and demands for cardiac output grow together with the 

growing body of the animal (van Rooij et al. 2009). The microRNA expression 

profile also changes at this point. Analysing any expression profile at this early 

age poses the risk of high background noise and increases the chance of 

identifying genes involved in growth and development rather than pathology. 

However such risk should be reduced if the transcription profile of the animal 

with the pathology is compared to a healthy/wild type animal of the same age. 

This chapter describes how such approach is utilised by performing comparative 

a between the SHRSP and WKY strains. The hypothesis being that such a 

comparison would minimise the chances of artificially selecting changing miRNAs 

that are modulated temporally during the healthy development of the animal, 

leaving only those that fall outside of the normal expression patterns. In 

parallel, development of LVH in an adult animal involves a switch to foetal gene 

expression. This gives an added advantage of investigating the microRNA 

transcription profile in neonates, as it is possible that prolonged expression of 

developmental genes will influence development of LVH in later life. There are 

studies reporting differing microRNA expression profiles in different cell types 

from the same tissue (Bagnall et al. 2012; Busk and Cirera 2010; Cordes et al. 

2010; Cordes and Srivastava 2009). This is logical as some microRNAs are cell 

type-specific, such as myomiRs, including miR208a, miR-208b and miR-499; and 
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the myomiRs are integrally involved in regulation of myogenesis, regeneration, 

hypertrophy and muscular dystrophy by modulating Sox6, Thrap1, Purβ and SP3 

(Adachi et al. 2010a; Corsten et al. 2010; Ji et al. 2009; Ling et al. 2013; 

Matkovich et al. 2012; Montgomery et al. 2011; Oliveira-Carvalho et al. 2013; 

Shieh et al. 2011; Yeung et al. 2012). Also a number of microRNAs are reported 

to be differentially regulated in the development of specific cell types, such as 

fibroblasts, cardiac progenitor cells or brain cells (Bolte et al. 2011; Cordes et 

al. 2010; Cordes and Srivastava 2009; Kalsotra et al. 2010; Morton et al. 2008; 

Wang et al. 2002; Williams et al. 2009). In the progress of LVH the biggest 

change is in the cardiomyocytes, where the phenotype (increase in cell size) is 

the first stage of the remodelling process. Primary cells (cardiomyocytes and 

fibroblasts) from the neonatal heart can be an extremely valuable tool as it 

brings together all the aforementioned factors: the development, cell type 

specificity and ability to use different species for comparison. Use of primary 

cells enables carrying out experiments in carefully controlled conditions with the 

aim to identify one variable of interest and observe any changes it exerts onto 

cellular phenotype that can be measured. To model a pathology in vitro, cells 

used have to be manipulated either genetically, by stably transducing with a 

known gene causing the pathology or with external stimuli such as hypoxic 

chamber mimicking ischaemia/reperfusion injury (Cheng et al. 2010; Ye et al. 

2010; Zhang et al. 2010). Genetic manipulation has drawbacks as not all cells 

and cell lines can be successfully transduced for stable expression of the 

required gene, primary cells do not always take to culturing required for such 

procedures, for example cardiomyocytes change morphologically if kept in 

culture for prolonged periods of time (Piper et al. 1988). Expression of an 

individual candidate gene can be beneficial to modulate a specific pathway and 

if both the gene and the pathway are well investigated it provides better 

understanding of the events leading to the changes (Baldwin and Haddad 2001; 

Ikeda et al. 2009; Suh et al. 2012; van Rooij et al. 2009; Wang et al. 2001). 

Pharmacological intervention can be specific, affecting one specific pathway or 

broad, affecting several pathways (Bogoyevitch et al. 1994; Lijnen and Petrov 

1999). Also it is possible to stimulate cells with different doses of the active 

element and vary time of stimulation, and thus analyse dose and time dependant 

changes in the transcriptome or microRNA expression profile. AngII is an 

important regulator of blood pressure in vivo, and in vitro it has been shown to 
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stimulate hypertrophic growth in cardiac cell line (Flores-Munoz et al. 2011; 

Flores-Munoz et al. 2012; Lijnen and Petrov 1999) thus is used in this project as 

a model of hypertrophy.  

The genomic context of a microRNA can provide vital information about what 

genetic elements do or may affect the transcription (nearby genes, SNPs, InDels) 

or processing (clustering microRNAs). As the rat (BN) genome sequence is 90% 

complete and knowledge of microRNA transcription is growing, it is essential to 

consider differences between the SHRSP and WKY. As these two strains are 

closely related, any genetic differences identified would be potentially 

indicative of the different phenotypes, especially in relation to CVD. 

The aims of work presented in this chapter are to investigate candidate 

microRNA expression in primary cells from the SHRSP and WKY, to compare 

expression under normal and hypertrophy inducing conditions in vitro and to 

establish genomic context of each of these microRNAs. Primary cells isolated 

from neonatal SHRSP and WKY rat hearts were used to complement microRNA 

expression data in cardiac tissue from SHRSP and WKY rats at 5 and 16 weeks of 

age. Cardiomyocyte cell line was used as a model of hypertrophy to analyse 

candidate microRNA involvement in early events of pathological cell growth. 

Finally Ensembl and miRBase public databases were used to characterise the 

genomic context of the selected microRNAs. Such analysis allows a better 

understanding of how expression profiles of candidate microRNAs may be 

affected by the surrounding genes or being part of a microRNA cluster.  
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4.2 Materials and methods 

4.2.1 Primary cardiomyocyte and cardiac fibroblast isolation 
from neonatal hearts 

Primary cells were used in some experiments. To obtain primary cardiomyocytes 

and cardiac fibroblasts an isolation protocol was adapted from Dr. S. Cook’s 

laboratory. Briefly: at 3-5 days of age SHRSP or WKY pups were weighed and 

sacrificed by decapitation, hearts were excised, weighed and immediately 

placed into ADS buffer on ice. In sterile tissue culture hood hearts were cleaned 

of connective tissue, blood vessels and clots visible on the surface, rinsed and 

transferred into a dish with fresh 1x ADS buffer where they were chopped into 

small pieces using “spring bow” scissors. The resulting solution was transferred 

into a glass bottle and allowed to settle. The bulk of the supernatant was 

removed and 10 mL of enzyme mix (0.03 g collagenase Type 2 ( Worthington 

Biochemical Corporation) and 0.03 g pancreatin from porcine pancreas (Sigma) 

in 1x ADS buffer; filter-sterilised) was added then the bottle was closed and 

placed into a shaking water bath at 37oC, 160 strokes/min for 5 minutes. The 

solution was allowed to settle and the supernatant was removed and discarded. 

The tissue was then digested as follows: 2nd incubation – 10 mL enzyme mix for 

20 minutes at 140 strokes/min, 3rd incubation – 8 mL for 25 minutes at 130 

strokes/min, 4th incubation the same as 3rd, 5th incubation – 6 mL for 15 minutes 

at 140 strokes/min and 6th incubation – 6 mL for 10 minutes at 130 strokes/min. 

After each of these incubations supernatant containing cells was transferred to a 

sterile Falcon tube containing 2 mL of foetal calf/bovine serum (FCS/FBS), 

subjected to centrifugation for 5 minutes at 1000 rpm, supernatant discarded 

and the pellet resuspended in 4 mL FCS/FBS. The tube was incubated under 

standard conditions until digestion was completed and all the cells were pooled 

into one falcon and centrifuged for 6 minutes at 1000 rpm. Supernatant was 

discarded and the pellet was resuspended in plating media (4 mL media per 10 

hearts) and added to 60 mm Primaria dishes (4 mL suspension/10 hearts per 

dish). Cells were incubated for at least one hour under standard conditions to 

allow non-cardiomyocytes to adhere to the plate. A Pasteur pipette was used to 

gently wash the plate and remove media containing cardiomyocytes from the 

plate into a fresh Falcon tube. Each plate was washed 3 times by adding 4 mL of 

fresh plating media to the first plate and then moving it to the next plate until 
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all plates are washed and media moved to the tube. The plates containing 

adherent cells (mostly cardiac fibroblasts) were incubated in plating media 

under standard conditions. Cardiomyocytes were counted and seeded as 

appropriate in plating media, incubated overnight. The next day plating media 

was replaced with serum free maintenance media to reduce growth of cardiac 

fibroblasts. To assess purity of the fibroblast culture, vimentin antibody was 

used (secondary antibody labelled with FITC) as shown in figure 4.1. Fibroblasts 

express vimentin while other cardiac cells do not (LaFramboise et al. 2007). 

On the day of isolation cardiomyocytes were re-suspended in QIAzol lysis reagent 

and incubated overnight at -80oC for next-day RNA isolation. Cardiac fibroblasts 

were expanded in culture until sufficient cell numbers for RNA extraction were 

reached, but for no more than 3 passages. 

1x ADS Buffer: NaCl 6.8g, HEPES 4.76g, NaH2PO4 0.12g, Glucose 1.0g, KCl 0.4g, 

MgSO4 0.1g. Made up to 1 litre with MilliQ water, pH to 7.35 with NaOH, 

sterilised and stored at 4oC. 

Plating media: DMEM 340 mL (Invitrogen), M199 85 mL (Invitrogen), Horse serum 

50 mL (Autogen Bioclear), Foetal calf serum 25 mL (Autogen Bioclear), Pen Strep 

(10,000 U/ml Penicillin; 10,000 µg/ml Streptomycin) 5 mL (Invitrogen) 

Maintenance media: DMEM 400 mL, M199 100 mL, Pen Strep (10,000 U/ml 

Penicillin; 10,000 µg/ml Streptomycin) 5 mL. Manufacturers as above. 

Serum Free media: DMEM 485 mL, Pen Strep (10,000 U/ml Penicillin; 10,000 

µg/ml Streptomycin) 5 mL, L-Glutamate (200 mM) 5 mL, Sodium pyruvate (100 

mM) 5 mL. Manufacturers as above. 

All media was stored at 4oC. 

4.2.2 Characterisation of candidate microRNAs 

MiRBase (www.mirbase.org) was used to retrieve candidate microRNA sequences 

(stem-loop and mature) from human, rat and mouse. The search was performed 

using microRNA ID, for example rno-miR-195. This redirects to a new window 

where all information on the searched miR is provided, including accession 
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number, family and cluster information, and sequences for pre-miR and mature 

microRNA both 5p (miR*) and 3p strands. The retrieved sequences were aligned 

to assess similarity of the sequence between these three species. 

4.2.3 Analysis of genome context of individual candidate 
miRNAs 

To investigate the genomic context of candidate microRNAs Ensembl genome 

browser releases 60 to 66 were used to identify genetic elements such as genes 

or QTLs in close proximity to miR-195, miR-329 and miR-451 in rat (rattus 

norvegicus) (Flicek et al. 2011; Flicek et al. 2012). 

Integrative genomics viewer (IGV), a high performance dedicated genomic 

viewer was used to align the genome sequences of the SHRSP and WKY to Brown 

Norway (BN) rat (reference sequence) and visually identify any differences 

between the strains with a focus on SHRSP to WKY comparison (Robinson et al. 

2011; Thorvaldsdottir et al. 2012). Data courtesy of Mr. M. Dashti and Dr. M. 

McBride. 
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4.3 Results 

4.3.1 Neonatal heart microRNA expression patterns 

Candidate microRNA expression patterns in neonates (animals younger than 5 

weeks) were investigated, as at this age there already is a small but significant 

difference in the LVMI between the SHRSP and WKY. Any changes identified in 

neonates would be informative of early events that may lead to the altered 

LVMI. Expression of all three candidate microRNAs, miR-195, miR-329 and miR-

451 was significantly higher in the SHRSP with an average of two-fold increase in 

expression (Figure 4.1). 

4.3.2 MicroRNA expression in primary cells from the heart 

In order to investigate microRNA expression patterns of candidate microRNAs in 

neonatal hearts primary cell cultures of cardiac fibroblasts and cardiomyocytes 

were established. Use of vimentin antibody in fibroblast fraction of the cell 

preparation revealed homogenous population of cells (Figure 4.2). Expression of 

each of the selected microRNAs in these primary cells was assessed. It was found 

that cardiomyocytes contain significantly higher amounts of all candidate 

microRNAs compared to cardiac fibroblasts (Figure 4.3 – 4.5). To enable visual 

comparison between the data of SHRSP to WKY, dCT graphs are provided. This is 

because RQ graphs have logarithmic scales and therefore differences in 

expression levels are exaggerated. On the other hand in dCT graphs for primary 

cells allow for better visualisation expression levels between the two strains as 

the differences are on a linear scale. This expression pattern was observed in 

primary cells from both rat strains. The observed expression pattern may 

indicate that there is higher abundance of candidate microRNAs in the 

cardiomyocyte fraction which would be advantageous in investigating LVH. 

4.3.3 Primary cardio myocytes respond to hypertrophic 
stimulus 

Primary cardiac myocytes isolated from neonatal SHRSP and WKY rat hearts were 

subjected to stimulation with AngII to induce hypertrophic cell growth. The cells 

exhibited increases in cell size in a dose dependent manner, at the lowest dose 
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(50nM) an increase of 20% was observed while at 200 nM cells were 80% larger 

than those that were untreated (Figure 4.6). 
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Figure 4.1 Expression of candidate miRs in neonatal hearts. Total RNA was extracted from 
whole hearts of SHRSP and WKY pups (2 days old) and analysed by TaqMan microRNA 
assays. RQ – relative quantitation, * p < 0.04 by ANOVA. 

 

IgGVimentin

Vimentin
DAPI

 

Figure 4.2 Primary rat cardiac fibroblasts. Primary antibody – vimentin (fibroblast marker), 
secondary antibody labelled with FITC, nuclear staining DAPI. Image x20, Control non-
specific IgG antibody.
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Figure 4.3 miR-195 in primary cells. Cardiomyocytes and fibroblasts were isolated from 
pools of SHRSP (A) and WKY (B) hearts (heart n=3) and tested for miR-195 expression using 
TaqMan microRNA assays. dCt - delta cycle threshold. * p<0.05 

A

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Myocytes Fibroblasts

d
C

t

B

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Myocytes Fibroblasts

d
C

t

*

 

Figure 4.4. miR-329 in primary cells. Cardiomyocytes and fibroblasts were isolated from 
pools of SHRSP (A) and WKY (B) hearts (heart n=3) and tested for miR-329 expression using 
TaqMan microRNA assays. dCt - delta cycle threshold. * p<0.02 
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Figure 4.5. miR-451 in primary cells. Cardiomyocytes and fibroblasts were isolated from 
pools of SHRSP (A) and WKY (B) hearts (heart n=3) and tested for miR-451 expression using 
TaqMan microRNA assays. dCt - delta cycle threshold. * p<0.02 
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Figure 4.6 Primary cardiomyocyte stimulation with AngII. Primary cardiomyocytes from 
SHRSP (top panel) and WKY (bottom panel) hearts were stimulated with increasing doses of 
AngII for 48 hours. An increase in cell size was observed in dose dependent manner. 
*p<0.05 compared to untreated cells (ctrl).
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4.3.4 AngII induces hypertrophy in H9c2 cells 

For in vitro investigations and proof-of-concept experiments, H9c2 cell line was 

used. H9c2 cells are of cardiac myocyte background and were subjected to 

stimulation with AngII to induce hypertrophy (described in chapter 2.3.4) to 

some extent recreating hypertrophic setting observed in vivo. At a dose of 100 

nM significant increases in cell size is observed after 96 h of stimulation which 

agreed with previous reports (Flores-Munoz et al. 2011; Flores-Munoz et al. 

2012) (Figure.4.7). Cells were measured by drawing a line at the widest point 

randomly selecting at least 100 cells from all areas of the well. 

4.3.5 Expression of candidate microRNAs in H9c2 cells 

TaqMan® microRNA assays were performed on total RNA extracted from H9c2 

cells and this demonstrated that in normal H9c2 cells miR-195 and miR-451 are 

expressed, while miR-329 was not detectable. Expression of these selected 

microRNAs in H9c2cells were assessed over time (time 0 =untreated), 0.5, 1, 2, 

6, 24 and 96 hours post stimulation with 100 nM of AngII. Levels of miR-195 were 

not affected by the addition of AngII (Figure 4.8). Within half an hour of adding 

AngII, levels of miR-451 were significantly reduced to less than half of that 

observed in non-treated cells, and remained low at 24 hours, at the next time 

point measured (96 hours post stimulation) it was expressed at levels similar to 

untreated cells (Figure.4.9). 
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Figure.4.7 hypertrophy in H9c2 cells. H9c2 cells in 6 well plates (3 x 104 cells per well) were 
stimulated with 100nM AngII for 96 hours then fixed, stained with Crystal Violet and 
measured. Crystal violet stained H9c2 cells (x100 magnification) A in standard culture 
(control), B – treated with AngII. Cells (n≥100). Scale bar = 50 µm. Cells were measured 
using ImagePro software measuring cell at the widest point as illustrated in diagram C. Cell 
outlines and nuclei are shown, the dashed line represent the axis where cells are measured. 
D. Graph representing size difference between the control (Ctrl; green bar) and AngII treated 
cells (AngII; red bar). *p<0.05 by t-test 
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Figure 4.8 miR-195 in H9c2 cells stimulated with AngII. H9c2 cells in 6 well plates (3 x 10
4
 

cells per well) were stimulated with 100nM AngII for up to 96 hours then total RNA extracted 
at indicated time points (time point 0 – untreated cells) and subjected to TaqMan microRNA 
assay to assess levels of miR-195. There was no statistically significant difference across 
the analysed time points (ANOVA, Dunnet’s post-test), but a trend towards increase at 96 
hours was observed.  
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Figure.4.9 miR-451 in H9c2 cells stimulated with AngII. H9c2 cells in 6 well plates (3 x 10
4
 

cells per well) were stimulated with 100nM AngII for up to 96 hours then total RNA extracted 
at indicated time points (time point 0 – untreated cells) and subjected to TaqMan microRNA 
assay to assess levels of miR-451. * p<0.05 compared to untreated cells (time point 0) by 
ANOVA, Dunnet’s post test. 
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4.3.5.1 miR-195 

MiR-195 in rat is located on chromosome 10 in a cluster with miR-497. This 

region has a number of QTLs including two for cardiac mass (Figure.4.10) Mature 

sequence of this miR is conserved between rat, mouse and human (Figure 4.11). 

No sequence differences were identified between the SHRSP and WKY in the 

immediate region of miR-195 (Figure 4.12) or in the broader region (Figure 

4.13). Within 16 kb region surrounding the transcript there were 21 SNPs found, 

12 upstream and 9 downstream. 
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Figure.4.10 Genomic context of miR-195 in rat. miR-195 is in a cluster with miR-497. Ensembl genome browser screen shot. 
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Pre-miR-195 
Hsa  AGCUUCCCUG GCUCUAGCAG CACAGAAAUA UUGGCACAGG GAAGCGAGUC UGCCAAUAUU GGCUGUGCUG CUCCAGGCAG GGUGGUG 

Mmu ACACCC AACUCUCCUG GCUCUAGCAG CACAGAAAUA UUGGCAUGGG GAAGUGAGUC UGCCAAUAUU GGCUGUGCUG CUCCAGGCAG GGUGGUGA 

Rno  AACUCUCCUG GCUCUAGCAG CACAGAAAUA UUGGCACGGG UAAGUGAGUC UGCCAAUAUU GGCUGUGCUG CUCCAGGCAG GGUGGUG 

 
Mature sequence: 
hsa-miR-195 MIMAT0000461 UAGCAGCACA GAAAUAUUGG C 

mmu-miR-195 MIMAT0000225 UAGCAGCACA GAAAUAUUGG C 

rno-miR-195 MIMAT0000870 UAGCAGCACA GAAAUAUUGG C 

 

Figure 4.11 MiR-195 sequence conservation. Sequences of pre-miR and mature miR-195 in human (homo sapiens, hsa), mouse (mus musculus, mmu) and 
rat (rattus norvegicus, rno), underlined is the mature sequence. In red are nucleotides that differ from the ones in the other two species. MIMA microRNA 
accession number. 
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Figure 4.12 Genomic region of miR-195 in the HRSP, WKY and BN (region in detail). Alignment of genomic sequences of the SHRSP, WKY and BN rats in 
the miR-195 region. Top panel SHRSP sequence, bottom panel WKY sequence, multi-coloured bar at the bottom – BN sequence;  grey bars short reads that 
are next generation sequences aligned to the assembled 3.4 genome , narrow coloured lines indicate change in sequence relative to reference sequence; 
blue bar at the bottom – pre-miR-195. IGV screen shot.
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Figure 4.13 Genomic region of miR-195 in the HRSP, WKY and BN (region zoomed out). Alignment of genomic sequences of the SHRSP, WKY and BN rats 
in the miR-195 region. Top panel SHRSP sequence, bottom panel WKY sequence, multi-coloured bar at the bottom – BN sequence;  grey bars short reads 
that are identical to reference sequence, narrow coloured lines indicate change in sequence relative to reference, alignments displayed with light gray 
borders and white fill – alignments with zero (0) mapping quality (cold be mapped to another location); bars in other colours – insertions; top of each panel 
– visual representation of coverage within  the region;  blue bar at the bottom – pre-miR-195. IGV screen shot. 
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4.3.5.2 miR-329 

The coding sequence for miR-329 is located on chromosome 6 in rat. The area is 

very rich in small nucleolar RNAs (snoRNAs or SNORDS) known regulators of other 

RNAs and microRNAs (Figure 4.15 – 17). There is a GeneScan predicted gene in 

the same location as the transcript for miR-329. Moreover, miR-329 is located in 

the exon of this predicted gene. Mature sequences in rat and mouse are 

identical, however in human sequence four nucleotides ( at positions 9, 10, 12 

and 19) differ from both mouse and rat (Figure 4.14). Also mature miR-329 is 

transcribed from two different stem-loops – miR-329-1 and miR-329-2. No 

genomic sequence differences were found between the SHRSP, WKY and BN in 

close proximity or in the wider region (Figure 4.16) of miR-329. Within 13 kb of 

the microRNA 1 SNP upstream and 4 downstream were identified. There were 

also 1 InDel located upstream and one downstream of miR-329. 
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miR-329 
Hsa(1)          GGUACCUGA AGAGAGGUUU UCUGGGUUUC UGUUUCUUUA AUGAGGACGA AACACACCUG GUUAACCUCU UUUCCAGUAU C 

Hsa(2)       G UGGUACCUGA AGAGAGGUUU UCUGGGUUUC UGUUUCUUUA UUGAGGACGA AACACACCUG GUUAACCUCU UUUCCAGUAU CAA 

Rno UGUUCGCUUC UGGUACCGGA AGAGAGGUUU UCUGGGUCUC UGUUUCUUUG AUGAGAAUGA AACACACCCA GCUAACCUUU UUUUCAGUAU CAAAUCC 

Mmu UGUUCGCUUC UGGUACCGGA AGAGAGGUUU UCUGGGUCUC UGUUUCUUUG AUGAGAAUGA AACACACCCA GCUAACCUUU UUUUCAGUAU CAAAUCC 

 
Mature 
hsa-miR-329 MIMAT0001629 AACACACCUG GUUAACCUCU UU (1) 

hsa-miR-329 MIMAT0001629 AACACACCUG GUUAACCUCU UU (2) 

rno-miR-329 MIMAT0000566 AACACACCCA GCUAACCUUU UU 

mmu-miR-329 MIMAT0000567 AACACACCCA GCUAACCUUU UU 

 

Figure 4.14 miR-329 conservation. Sequences of pre-miR and mature miR-329 human (homo sapiens, hsa), mouse (mus musculus, mmu) and rat (rattus 
norvegicus, rno), underlined is the mature sequence. In red are nucleotides that differ from those  in the other two species. MIMA – microRNA accession 
number. 
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Figure 4.15 Transcripts in close proximity to miR-329. The region is rich in transcripts for regulatory elements such as microRNAs. miR-329 appears to be 
located in the exon of GeneScan predicted gene, shown in turquoise. Ensembl genome browser screenshot. 
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Figure 4.16 Genomic region of miR-329 in the HRSP, WKY and BN (region in detail). Alignment of genomic sequences of the SHRSP, WKY and BN rats in 
the miR-329 region. Top panel SHRSP sequence, bottom panel WKY sequence, multi-coloured bar at the bottom – BN sequence; grey bars short reads, 
next generation sequences aligned to the assembled 3.4 genome , narrow coloured lines indicate change in sequence relative to reference sequence; blue 
bar at the bottom – pro-miR-329. IGV screen shot. 
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Figure 4.17 Genomic context of miR-329. The region contains three blood pressure QTLs, 
tens of microRNAs and SNORDs are transcribed from this region. MiR-329 is in cluster with 
miR323, miR-758, miR-376c and miR-381. Ensembl screen shot. 
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4.3.5.3 miR-451 

In rat, miR-451 is located on chromosome 10, a region containing a cardiac mass 

QTL and it is transcribed in a cluster with miR-144 (Figure 4.18). The mature 

sequence of miR-451 is conserved between rat, mouse and human, but the stem-

loop sequence in human differs by four nucleotides (at positions 64-66 and 71) 

from the other two species (Figure 4.19 ), while mouse only by one (position 51). 

When comparing the genomic sequence of SHRSP, WKY and BN there are no 

differences in the 500 bp region containing pre-miR sequence (Figure 4.20-23). 

Within a larger, 18 kb region, there are 14 SNPs, 9 upstream and 5 downstream 

of the miR-451 coding sequence. 
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Figure 4.18 Genomic context of miR-451. miR-451 is transcribed in a cluster with miR-144. Ensembl genome browser screen shot 
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miR-451 
Hsa CUUGGGAAUG GCAAGGAAAC CGUUACCAUU ACUGAGUUUA GUAAUGGUAA UGGUUCUCUU GCUAUACCCA GA 

Mmu CUUGGGAAUG GCGAGGAAAC CGUUACCAUU ACUGAGUUUA GUAAUGGUAA CGGUUCUCUU GCUGCUCCCA CA 

Rno UUUGGGAAUG GCGAGGAAAC CGUUACCAUU ACUGAGUUUA GUAAUGGUAA UGGUUCUCUU GCUGCUCCCA CA 

 
Mature 
hsa-miR-451 MIMAT0001631 AAACCGUUAC CAUUACUGAG UU 

mmu-miR-451 MIMAT0001632 AAACCGUUAC CAUUACUGAG UU 

rno-miR-451 MIMAT0001633 AAACCGUUAC CAUUACUGAG UU 

 

Figure 4.19 miR-451 conservation. Sequences of pre-miR and mature miR-451 in human (homo sapiens, hsa), mouse (mus musculus, mmu) and rat (rattus 
norvegicus, rno), underlined is the mature sequence. Highlighted in red are nucleotides that differ between species. MIMA microRNA accession number.  
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Figure 4.20 Genomic region of miR-451 in the HRSP, WKY and BN (region in detail). Alignment of genomic sequences of the SHRSP, WKY and BN rats in 
the miR-451 region. Top panel SHRSP sequence, bottom panel WKY sequence, grey bars short next generation sequencing reads, blue bar at the bottom – 
pro-miR-451. IGV screen shot.
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Figure 4.21 Genomic region of miR-451 in the HRSP, WKY and BN (broad view of the region). Alignment of genomic sequences of the SHRSP, WKY and BN 
rats in the miR-451 region. Top panel SHRSP sequence, bottom panel WKY sequence, grey bars short next generation reads aligned to genome 3.4; 
coloured lines throughout – changes in sequence relative to reference; blue bar at the bottom – pro-miR-451. IGV screen shot.
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4.4 Discussion 

It was shown that candidate microRNAs, miR-195, miR-329 and miR-451 are 

differentially regulated in the SHRSP and WKY as early as neonatal day 2. Here 

microRNA involvement in the development of LVH is investigated, but currently 

there is no information available to indicate the minimum or maximum time 

between the changes in microRNA profile (initiation) and the development of 

LVH. The changes observed in neonatal hearts might have both short and long-

term effects on cardiac physiology and transcriptome. Such early changes also 

support the hypothesis, that there is a genetic component in the development of 

LVH in the SHRSP rather than it being a response to increase in blood pressure 

later in life. A primary cell protocol was successfully established and was used to 

investigate inherent differences and similarities in SHRSP and WKY genetics. As 

the two strains are very closely related, they share identical genetics in some 

parts, however the differences may account for the phenotypic differences. 

Primary cardiomyocytes and fibroblasts were used to identify the main cellular 

source of the candidate microRNAs and the changes in expression. These data 

suggest that all selected microRNAs are significantly higher in cardiomyocytes 

compared to fibroblasts in both strains. These findings are encouraging as LVH is 

a cardiomyocyte based phenotype. Primary cell culture also presented some 

challenges. Although initial comparison indicated that there are no significant 

differences between expression in SHRSP cardiomyocytes to WKY 

cardiomyocytes, it was noted that there is significant variation in levels of 

microRNA depending on cell preparation with similar expression pattern, but 

varied gross levels. Also it was not possible to quantify the exact proportions of 

each cell type in preparations. Although vimentin staining was performed and 

showed fibroblast samples to be free from cardiomyocytes, there was no 

successful staining for any of the available to us cardiac markers. Through visual 

assessment and detection of muscle striations and spontaneous beating, 

cardiomyocyte cultures were deemed pure in excess of 95%. These technical 

issues prevented direct comparison of expression between the SHRSP and WKY, 

however in all cases expression pattern was the same and candidate microRNA 

levels were higher in cardiomyocytes compared to fibroblasts. In vivo cell to cell 

interactions play significant role in all aspects of cell life. It has been shown that 

changes in fibroblast behaviour affect the surrounding cardiomyocytes 
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(Bogoyevitch et al. 1994; Dispersyn et al. 2001; Kakkar and Lee 2010; 

LaFramboise et al. 2007; Ottaviano and Yee 2011). Notably the biggest changes 

occur when fibroblasts start producing excessive amounts of collagen and 

signalling molecules (Bogoyevitch et al. 1994; Kakkar and Lee 2010; Ottaviano 

and Yee 2011). Recently it has been suggested that microRNAs can play a role in 

signalling as well (Thum et al. 2008). Although extracellular microRNAs for the 

bigger part are from damaged cells and are investigated as potential disease 

markers, there is some evidence of microRNAs being used for signalling (Ajit 

2012a; McDonald et al. 2013). In general cell to cell interactions in a controlled 

setting, such as mixed cell cultures or use of conditioned media, would help 

build a picture more representative of the in vivo setting. For example, 

exposure of cardiomyocytes to conditioned media from fibroblasts has been used 

by other groups to investigate signalling interactions between the two cell types 

(LaFramboise et al. 2007). H9c2 cardiac cell line was favoured for in vitro 

experiments as primary cells posed some difficulty in maintaining consistent 

results and also it was not possible to obtain sufficient numbers of hearts to 

allow use of uncultured fibroblasts. H9c2 cell line has long been established as 

an excellent in vitro model of hypertrophic cell growth following AngII 

stimulation. AngII stimulation was successfully used to induce hypertrophic 

growth in h9c2 and investigate microRNA expression in this setting. The only 

drawback was that endogenous levels of miR-329 in these cells are very low and 

could not be detected by use of TaqMan microRNA assays. By activating 

hypertrophy pathways through AngII stimulation in cells and monitoring changes 

in microRNA expression levels changes throughout the hypertrophic growth of 

the cells were identified. It was shown that miR-451 in particular was 

differentially expressed in the acute of AngII stimulation, supporting hypothesis 

that it is involved in the development of LVH. Levels of this microRNA initially 

fell, yet at the time when the cell phenotype is measurable (96 hours post-

stimulation) had returned to untreated cell levels. These data also reflect 

changes of miR-451 levels in animal hearts at different time points, where 

neonatal SHRSP hearts have significantly increased expression, there is no 

difference at 16 weeks of age, when hypertrophy is well established. This would 

suggest that miR-451 is involved in early stages of hypertrophic growth and once 

hypertrophy is well established it is switched off. To investigate whether the 

role of miR-451 in the development of hypertrophy is causative or protective, 
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modulation of microRNA levels is essential. Over expressing or inhibiting miR-451 

in presence or absence of hypertrophic stimulus and observing cell phenotype 

will shed light on what role this microRNA plays in the development of 

hypertrophy. It will also provide information on predicted targets and relevant 

pathways. The cell model of hypertrophic growth is not reflective of the changes 

observed in neonatal animals, where all candidate microRNAs are consistently 

higher expressed in the SHRSP, but more of the older animals where no 

consistent differences in expression are observed. Also the experimental set up 

where cells were stimulated for 96 hours and microRNA expression changes were 

monitored throughout this time reflects the dynamics in the animal where during 

development and maturation demand for cardiac output changes and different 

stimuli come into play. Also the time-span is relatively long and adaptive 

changes may occur almost immediately after pathological stimulus is introduced. 

This is one of the main characteristics of microRNA regulatory networks – they 

are tightly regulated. Furthermore there is a possibility that negative stimulus or 

increase in pro-hypertrophic microRNA causes rapid activation of compensatory 

pathway, the effects will be minimal. However bearing in mind, that microRNAs 

usually modulate several members of the same pathway, early changes, such as 

those observed in neonates can have dramatic and irreversible effects on 

cardiovascular homeostasis. As described in section 1.1.6 different pathways are 

activated in physiological LVH compared to pathological LVH and time-frame of 

activation affects reversibility of the phenotype. 

Our investigation of the genomic context of the candidate microRNAs showed no 

differences between the SHRSP and WKY strains in the regions in close proximity 

to microRNA coding sequences. However SNPs and InDels were identified within 

13 to 18 kb regions surrounding the microRNAs. There is evidence in the 

literature suggesting that regulatory elements can be found in remote locations 

relative to the transcript (Chavali et al. 2011; Kuchen et al. 2010). Our findings 

may suggest that differential expression of our candidate microRNAs is due to 

such interactions, however this would have to be experimentally tested. Another 

possibility resulting in differential expression, especially of polycistronic 

microRNAs, is epigenetic changes. Several groups have showed that methylation, 

pseudouridylation or histone modification can alter expression of the gene where 

these events occur .The processing complex that consists of several enzymes 
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might be causing differential processing of specific microRNAs. The genomic 

context of miR-329 in the rat indicates the importance of this particular region 

in regulatory pathways. The similarities of microRNAs and snoRNAs suggest there 

might be an evolutionary relationship between the two non-coding RNA species. 

SnoRNAs are known guides for chemical modifications of other RNAs and the 

main areas of snoRNA involvement are methylation and pseudouridylation 

(Maden and Hughes 1997). Interestingly miR-329 itself appears to be located in 

the exon of a predicted gene. This is highly unusual as most microRNAs lay in 

intergenic regions or introns of genes. It is possible that this is a dead gene that 

was partially conserved due to evolutionary pressure exerted on the region 

resulting from important regulatory elements (microRNAs and SnoRNAs) being 

located there. As with other candidate microRNAs there were no sequence 

changes in the immediate region of the transcript, but SNPs and InDels up and 

down-stream of miR-329 were identified. MiR-195 is clustered with miR-497 and 

located in a region containing a QTL for cardiac mass. The sequence for miR-195 

is conserved between human, mouse and rat, and no sequence changes were 

identified between our three strains of rat. The wider region contained several 

SNPs. With further investigation these SNPs might be identified as playing a role 

in regulating microRNA expression through changes in binding sites for 

transcription co-factors.  

As the differential expression of candidate microRNAs in neonatal animals and in 

vitro hypertrophy model is confirmed, it is now essential to identify the 

pathways that are affected by these changes. This will be achieved by 

identifying targets of the candidate microRNAs, modulating microRNA levels in 

the established models, assessing expression levels of target genes, recording 

phenotypes and linking all these data the phenotype - development of LVH. 
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 In vitro modulation of target microRNA 
expression and target prediction 

5.1 Introduction 

MicroRNAs form important an axis of gene expression regulation, a function 

relying on interactions with target mRNA. Laboratory based methods for 

identifying those targets were not available until a few years ago. To investigate 

the part of the chain in between microRNA and phenotype, computational 

predictions were used. Next with available molecular techniques candidate 

genes can be investigated and a case for specific microRNA: target mRNA 

interactions built using indirect evidence. Often microRNA levels are 

manipulated to reveal changes in the amounts of candidate mRNA. Finally, both 

molecules have to fit into a biological pathway linking them with the observed 

phenotype, either directly or through another element of the cascade. 

5.1.1 Gene delivery 

Dysregulation of microRNA(s) can have significant downstream effects in any 

given setting, thus modulating the levels of these molecules is an attractive 

target for research and therapeutic use. Gene transfer or gene therapy is 

delivery of genes (protein coding or RNA coding) into the cell for therapeutic 

purposes. The genetic material delivered can replace a mutated copy or inhibit 

the activity of specific genes. The usual targets for gene therapy are conditions 

lacking in effective treatment such as cancer and monogenic disorders such as 

cystic fibrosis, Duchenne’s muscular dystrophy or ADA-SCID (Severe Combined 

Immune Deficiency resulting from lack of adenosine deaminase activity). In their 

1972 paper “Gene therapy for human disease?” authors Friedmann and Roblin 

discuss the genetic causes of many diseases and argue that the scientific 

advances allowing to isolate and manipulate DNA in a test-tube should be used 

for treatment of genetic disorders in humans (Friedmann and Roblin, 1972). 

These scientific advantages are the development of gene delivery methods, 

which did not only serve to drive forward gene therapy to treat and cure 

disease, but also development and use of various methods of gene delivery as 

tools in research. There are two main groups of gene delivery methods – via viral 

vector or non-viral methods. The non-viral methods include injection of naked 
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DNA, gene guns, electroporation, sonoporation, magnetofection, delivery by 

inorganic nanoparticles, oligonucleotides, lipoplexes, or dendrimers. Historically 

non-viral methods have lagged behind in terms of efficiency, and targeting of 

specific cells if they are difficult to access without surgical intervention exposing 

the tissue in vivo. Also non-viral methods tend to be safer than viral vectors as 

they are less immunogenic. On the other hand viral vectors offer greater 

potential for specific targeting and long-term expression of the gene. In nature, 

virus is essentially a parasite that cannot reproduce by itself therefore it infects 

cells and through hijacking the cellular machinery directs the cell to produce 

more viruses (Lodish et al. 2000). These are the qualities that make viruses 

perfect tools for the delivery of genetic material to the cell. First to be studied 

were plant viruses and these served as an inspiration to first molecular biology 

experiments in the early 1930s. Later experiments with animal and bacterial 

viruses provided vital information about the viruses themselves and their 

behaviour but more importantly they showed off infected cells as models for 

studying basic cell biology (Lodish et al. 2000). Viruses are capable of infecting a 

wide spectrum of cells therefore genetically modifying them turns a pathogen 

into a tool for delivering genes to target cells. The types of viruses used for gene 

delivery include retrovirus, lentivirus, adenovirus, adeno-associated virus, 

herpes simplex virus and vaccinia virus. According to Gene Therapy Clinical 

Trials Worldwide database (Gene Therapy Clinical Trials Worldwide database 

2013; van Rooij and Olson 2007), over two thirds of all gene therapy vectors in 

clinical trials are viral vectors, with adenovirus alone accounting for just under a 

quarter (23.3%) of all vectors. Adenoviral vectors are widely used for in vitro and 

in vivo delivery of genes and RNA sequences. Recombinant adenoviruses based 

on serotype 5 (Ad5) are the most popular vectors as they are capable of 

infecting a broad range of dividing and non-dividing cells, both primary and cell 

lines, with an efficiency of up to 100% and high levels of transgene expression. 

Recombinant adenoviruses lack E1 region which makes them replication 

deficient and thus safer. The main drawback of using these viruses, especially in 

vivo, is the high hepatic tropism that makes it challenging to target other organs 

(Alba et al. 2010; Bradshaw et al. 2012; Coughlan et al. 2010). The adenoviral 

capsid consists of three main structural proteins – hexon, penton base and fiber. 

Tropism of the virus is mainly determined by the fiber which is composed of an 

N-terminal tail, a central shaft and a C-terminal knob domain. The mechanism 
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by which Ad binds and infects cells in vitro is well characterised. It is mediated 

through the knob domain interactions with the coxsackie virus and adenovirus 

receptor (CAR) which acts as a primary attachment receptor. This interaction 

engages αvβ3/5 integrins with the RGD motif in the penton base and results in the 

vector being internalised (Alba et al. 2009; Bradshaw et al. 2012; Kritz et al. 

2007; Waddington et al. 2008).  

The wealth of knowledge in the area of gene therapy resulted in rapid 

development of tools for microRNA modulation in both research and clinical 

settings. Standard gene delivery transfection reagents based on lipid or amine-

group delivery systems have been used for decades and with advances in the 

RNA interference field, were adapted to deliver smaller molecules to cells. 

Delivery of microRNA (pre-miR and antago-miR technologies) for therapeutic 

purposes was described in chapter 1.5. All the methods mentioned are also 

widely used in vitro. Adenoviral vectors were chosen to over-express candidate 

microRNAs in cells of cardiac lineage. 

5.1.2 microRNA target prediction and analysis 

With molecular tools for identifying microRNA: mRNA interactions unavailable 

and urgent need for such information, a series of mathematical algorithms were 

created to predict microRNA targets. The main focus for all of them is the seed 

region as this is the sequence that determines which mRNA will be targeted and 

the outcome of such interactions as described in chapter 1.6. However different 

algorithms give other factors playing a role in these interactions, different 

weight. Research suggests that microRNAs determine their targets through 

binding in 3’, 5’ and the coding sequence of the target gene. This is a relatively 

new discovery and not all algorithms will take it into account. Another factor is 

the presence of multiple seed regions within the target sequence. The distance 

between such sites can make it physically impossible for the RISC complex to 

bind both of them at the same time; on the other hand, as in the case with miR-

122, microRNA binding to multiple sites can be cooperative or even essential for 

function (Wilson et al. 2011). There are several target prediction programmes 

either focusing on different species or simply based on different predictive 

algorithms and they all enjoy different levels of success in the field. A major 

drawback is that certain microRNAs result in extensive lists of possible targets 
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making it impossible to test out each of them in a biological setting. To 

overcome this recent publications employ several methods, from using more 

than one program to generate the lists and looking and the predictions in 

common, or using the model system together with published data on known 

components of essential pathways as a criteria to narrow down the list of 

candidate genes. 

This chapter aims to investigate the effects of overexpression of candidate 

microRNAs on cell phenotype under normal conditions and stimulation with AngII 

(hypertrophic conditions). RAd viruses that carry the DNA sequence for each of 

the candidate microRNA, were produced. These viruses were used as tools to 

investigate hypertrophy in vitro in cell models. Any effects on cell size of over-

expression of any of the selected microRNAs were determined. Predicted gene 

targets were identified, selected and analysed by qRT-PCR. In addition the gene 

expression with or without targeting microRNA was assessed to determine if 

there is any relationship between the microRNA and the mRNA. 
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5.2 Materials and methods 

5.2.1 Cloning 

Commercially available eukaryotic expression and shuttle plasmids were used for 

phenotypic studies and generation of recombinant adenoviruses. Several cloning 

steps were required to produce adenoviruses expressing pre-miRs using the 

AdEasy™ Adenoviral vector system (Stratagene). Methods used for DNA cloning 

are described below. Maps of plasmids were produced by Vector NTI software 

(Invitrogen) unless stated otherwise.  

5.2.2 pre-miR sequence cloning 

To produce plasmids expressing selected candidate microRNAs the sequence of 

each pre-miR was obtained from miRBase converted to DNA sequence by 

replacing uracil residues (U) with thiamine (T) and the resulting sequences were 

used to design a construct as follows: HindIII-BamHI-Start/Kozak sequence-pre-

miR-STOP/PolyA-XhoI-EcoRV (Table 5.1). A combination of HindIII and EcoRV was 

used for cloning into all plasmids. Kozak sequence and stop codon were 

incorporated as previous tests in the lab showed that constructs lacking these 

were not functional i.e. no expression of microRNA was detected by TaqMan 

microRNA assays (Drs. Alba, Spencer, Denby and Howard; personal 

communication). These sequences were purchased from GeneArt where they 

were synthesised and inserted into pMA plasmid (Figure 5.1). For insertion into 

pShuttle-CMV (Stratagene) ( Figure 5.2) and pcDNA3.1/Zeo(+) (Invitrogen) 

(Figure 5.3) constructs were excised from the original plasmid using HindIII (six 

base cutter, recognition sequence 5`→3` A-AGCTT, where `–` is a position of 

cutting, produces 3` overhang,) and EcoRV (six base cutter, recognition 

sequence 5`→3` GAT_ATC, where – is the place of cutting, produces blunt ends) 

restriction endonucleases, electrophoresed on 1% ultrapure agarose gel, 

extracted and purified and ligated into the destination plasmid as described in 

the relevant materials and methods sections of this chapter.  



 

149 
 

 

Table 5.1 Sequences for microRNA expression constructs. 

 

rno-

miR 

5` end Pre-miR sequence 3`end 

195 (A_AGCTT)(G_GA

TCC)ACCATGG* 

aactctcctg gctctagcag 

cacagaaata ttggcacggg 

taagtgagtc tgccaatatt 

ggctgtgctg ctccaggcag 

ggtggtg 

TAG**TTTTTT(C_T

CGAG)(GAT_ATC) 

329 AAGCTTGGATCCAC

CATGG* 

tgttcgcttc tggtaccgga 

agagaggttt tctgggtctc 

tgtttctttg atgagaatga 

aacacaccca gctaaccttt 

ttttcagtat caaatcc 

TAG**TTTTTTCTCG

AGGATATC 

 

451 AAGCTTGGATCCAC

CATGG* 

Tttgggaatg gcgaggaaac 

cgttaccatt actgagttta 

gtaatggtaa tggttctctt 

gctgctccca ca 

TAG**TTTTTTCTCG

AGGATATC 

 

*Kozak sequence, **Stop codon. 
Brackets ( ) indicate recognition sequences for restriction endonucleases in the 
following order: HindIII – BamHI – XhoI – EcoRV; underscore‘_’ indicates the site 
of cleavage. 
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pMA GeneArt
2501bp

Col E1 region

AmpR

 

Figure 5.1 A map of plasmid pMA. A plasmid used by GeneArt as a carrier vector for pre-
miR sequences. AmpR – ampicillin resistance gene open reading frame. Plasmid map 
provided by GeneArt. 

 

 

Figure 5.2 A map of plasmid pShuttle-CMV. This plasmid was used for homologous 
recombination. The construct was inserted in-between the highlighted restriction sites – 
HindIII (969) and EcoRV (985). L-ITR – left inverted terminal repeat (bases 1-103), ES – 
encapsidation signal (183-331), P CMV – Cytomegalovirus promoter (341-933), MCS – 
multiple cloning site (940-987), restriction site for Hind III restriction endonuclease (912), 
restriction site for EcoRV restriction endonuclease (965), SV40 pA – polyadenilation signal 
(1011-1238), Ad5 right arm homology (1243-3497), Ad5 left arm homology (3545-4428), R-ITR 
– right inverted terminal repeat (4429-4531), pBR322 origin (4735-5402), kanamycin 
resistance open reading frame (6211 – gene for kanamycin resistance7002). Map generated 
using Vector NTI® software.
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Figure 5.3 A map of plasmid pcDNA3.1/Zeo(+). This plasmid was used to assess expression 
of the pre-miR construct. CMV promoter (bases 209-863), T7 promoter priming site (863-
882), MCS – multiple cloning site (895-1010), BGH polyadenylation signal (1021-1235), f1 
origin (1298-1711), SV40 promoter and origin (1776-2101), EM7 promoter (2117-2183), 
Zeocin™/Kanamycin resistance open reading frame (2184-2558), SV40 polyadenylation 
signal (2688-2817), pUC origin (3201-3874, complimentary strand), bla promoter (4880-4978, 
complimentary strand), Ampicillin (bla) resistance gene open reading frame (4019-4879, 
complimentary strand). Map generated using Vector NTI® software
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5.2.3 Restriction endonuclease digestions 

To enable targeted ligation of insert sequences into the target vector, 

restriction endonucleases were used to produce compatible ends for ligation. 

Wherever possible restriction enzyme kits from Roche or New England Biolabs 

were used in line with the manufacturer’s instructions. Reactions were set up 

with buffers indicated for 100% enzyme activity for single enzyme digestions. 

Where two restriction endonucleases had to be used in the same reaction, 

buffers were selected based on manufacturer’s recommendations so that both 

enzymes have the same activity even if it is below 100%. Typical digest included 

100–200 ng template DNA in a final volume of 25 µl, including 2.5 µl 10x reaction 

buffer, 0.25 µl 100x bovine serum albumin (BSA) and 10-20 units of the enzyme 

(10-fold overdigestion) and nuclease free water to make up the volume. 

Reactions were set up in 0.5 ml microcentrifuge tubes, gently mixed by pipetting 

and pulsed in a bench microcentrifuge, then transferred to a water bath for 1-12 

hours incubation at 37oC. Samples were electrophoresed for diagnostic purposes 

and also gel-extracted for use in ligations. 

5.2.4 Ligation 

Digested and purified DNA fragments were ligated using T4 DNA ligase (New 

England Biolabs). Reactions were set up with 50-100 ng backbone, so that the 

insert: backbone molar ratios were between 1:3 and 3:1. Molar ratios were 

calculated using the following formula: (molar ratio insert: backbone) x 

(backbone, ng) x (insert length, bp) / (backbone length, bp) = insert DNA ng. 

Typical reaction included 2 µl 10x ligation buffer, 10 units of T4 DNA ligase and 

nuclease-free water to make up to 20 µl final volume. Reactions were set up in 

0.5 ml microcentrifuge tubes, gently mixed by pipetting and pulsed in a bench 

microcentrifuge, then transferred to a thermal cycler set at 16oC to incubate 

over-night. Ligations were immediately used for transformations or stored at -

20oC for short periods. 

5.2.5 Transformation of chemocompetent bacteria 

Chemocompetent TOP10 E. Coli bacteria were used for amplification of 

eukaryotic expression and shuttle plasmids. A standard heat-shock protocol was 

used to facilitate plasmid uptake by the competent bacteria. In preparation for 
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the transformation, competent bacteria were removed from storage at -80°C, 

thawed on ice for up to 10 minutes and if needed aliquoted into sterile 

eppendorf tubes (chilled) allowing 50 µl per transformation. Up to 50 ng (ligation 

reaction) or 2 ng (intact plasmid) DNA was added to each aliquot and mixed by 

gentle tapping. The tubes were incubated on ice for 30min followed by heat-

shock in 42°C water bath for 30 seconds and 2 minute recovery on ice. Super 

optimal media (S.O.C.) (Invitrogen) was added to each sample prior to placing 

samples in shaking incubator (New Brunswick Scientific Inova 44) set to 37°C, 

200 RPM for a minimum period of one hour. After the incubation period 

transformed bacteria were plated on Luria agar (Sigma) containing selective 

antibiotic (either ampicillin or kanamycin (Sigma) at 100 µg/ml), inverted and 

incubated overnight at 37°C. The next morning plates were checked for 

bacterial colonies and either discarded or stored in refrigerator at 4°C for short 

periods of time (up to 2 weeks). 

5.2.6 Colony screening by PCR 

Following transformation, colonies were screened by PCR. Briefly: using a sterile 

pipette tip a small amount of bacterial colony was transferred into 5 μL ddH2O. 

Freshly made master mix containing deoxyribonucleotide triphosphates (dNTPs), 

forward and reverse primers depending on the plasmid being analysed, Crimson 

Taq polymerase and polymerase buffer was added to each sample to final 

volume of 20 µl. Samples were briefly centrifuged and transferred to a thermal 

cycler. The PCR conditions used were as follows: 1. initialization, 2. 

denaturation and annealing (repeated x 35), 3. extension, 4. Incubation. 

1. 5 min at 95°C 
2. 30 sec at 95°C 

60 sec at 68°C 
3. 5 min at 68°C 
4. Hold at 12°C 

 

These conditions were adjusted for each primer set. PCR products were 

subjected to electrophoresis on an agarose gel and positive colonies additionally 

screened by sequencing.

X35 
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Table 5.2 Primer sequences. 

Plasmid Forward primer (FWD) 5`→3` Reverse primer (REV) 

pCDNA3.1
/Zeo(+) 

 
TAATACGACTCACTATAGGG* 

 

 
TAGAAGGCACAGTCGAGG** 

 

pShuttle-
CMV 
and 

pAdEasy-1 

GGTCTATATAAGCAGAGCTG GTGGTATGGCTGATTATGATCAG 

* Commercially known as T7 forward primer 

** Commercially known as BGH reverse primer 

 

5.2.7 Glycerol stocks 

Bacteria that contained the required gene were prepared for long term storage 

in glycerol. Overnight broth cultures were mixed with sterile 40% glycerol at 

ratio of 2:1 (1 ml culture: 0.5 ml glycerol) and transferred to a -80°C freezer. 

5.2.8 Plasmid DNA preparation 

Plasmid DNA was extracted from competent bacteria by using filter column 

based kits from Qiagen (mini-prep kit for small scale extractions and Plasmid 

Maxi kit for large scale plasmid preparations). Unless stated otherwise all 

centrifugation steps were carried out at room temperature. A single bacterial 

colony was picked from a fresh Luria agar (Sigma) plate (grown overnight) 

containing the appropriate selective antibiotic and used to initiate a starter 

culture in 3 ml of Luria broth (Sigma) containing the same selective antibiotic 

(ampicillin at 100 µg/ml or kanamycin at 100 µg/ml) and placed in a shaking 

incubator at 200 RPM, 37oC for 8 hours. For Maxi preparations 1 ml of this 

culture was transferred to a 2 L conical flask with 500 mL fresh Luria broth 

containing the appropriate antibiotic and incubated overnight in a shaking 

incubator at 37oC, 200 RPM. For mini preparations up to 2 ml of the culture was 

used to extract plasmid DNA. First bacterial culture was transferred to fresh 2 

ml microcentrifuge tubes (Mini kit) or 200 ml universal pots (Maxi kits; Beckman 

Coulter) and centrifuged [3 minutes at 6,000g for Mini kit, 15 minutes at 6,000g, 

4oC (Beckman Coulter Avanti J-26XP) for Maxi kit]. The supernatants were 

collected and decontaminated with Chloros. Bacterial pellets were resuspended 

in P1 buffer (250 µl Mini kit, 10 mL Maxi kit) by pipetting and vortexing. P2 

buffer was added to lyse the cells (250 µL Mini kit, 10 mL Maxi kit) and tubes 
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were inverted 4-6 times. To neutralise the reaction chilled buffer N3 (P3 in Maxi 

kit) was added (350 µL Mini kit, 10 mL Maxi kit) and tubes inverted 4-6 times to 

mix. The precipitates were incubated on ice for 5 minutes (Maxi kit only) and 

then centrifuged (10 minutes at 13,000rpm for Mini kit, 30 minutes at 20,000g, 

4oC for Maxi kit). Plasmid containing supernatant was applied to the columns 

(pre-washed with 15 mL of QBT buffer in Maxi kit). In Mini kits, columns were 

centrifuged for 1 minute, flow through discarded and column washed with 500 

µL buffer PB followed by centrifugation for 1 minute. Flow through was 

discarded and the column washed with 750 µL of buffer PE and centrifuged for 1 

minute, flow through discarded and the column again subjected to 

centrifugation to remove any residual wash. The column was then moved to a 

fresh microcentrifuge tube. DNA was eluted by adding 50 µL EB buffer, 

incubating on the bench for 1 minute and centrifuging for 1 minute. In Maxi kits 

the supernatant was allowed to enter the column by gravity flow followed by 

two washes with 30 mL of QC buffer. The DNA was eluted into a clean 50 mL 

tube by adding 15 mL of QF buffer. DNA was precipitated from the solution by 

adding 0.7 volumes (10.5 mL) room-temperature isopropanol and centrifuged for 

30 minutes at 4oC, 15,000g. The supernatant was carefully removed and the 

pellet washed with 5 mL 70% EtOH at room temperature. The samples were 

centrifuged for 10 minutes at 15,000g and supernatant discarded. Pellets were 

air-dried for up to 10 minutes and resuspended in nuclease-free water. All 

plasmid DNA preparations were store at – 20oC. 

5.2.9 Lipofectamine™ 2000 transfection  

Plasmids were transfected into HeLa (cervical cancer cell cased cell line, 

(Graham et al. 1977; SCHERER et al. 1953)) and HEK293 cells (human embryonic 

kidney cell line (Graham et al. 1977)) using Lipofectamine ™ 2000 transfection 

reagent (Invitrogen) following manufacturer’s instructions. For transfections 

cells were grow under normal conditions in 24 well plates (HeLa cells) or 6 well 

plates (HEK293 cells) until 80-90% confluent, usually overnight. Optimal 

transfection conditions were optimised for each cell line as required using an 

enhanced green fluorescent protein (eGFP) expressing plasmid and assessed by 

visual inspection with a fluorescence microscope. DNA- Lipofectamine ™ 2000 

complexes for transfections were prepared at ratios of 1:1, 1:2, 1:3 and 1:4 (µg 

plasmid DNA : µL Lipofectamine ™ 2000) in Opti-MEM® reduced serum media. 
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Master mixes were prepared to maintain consistent amounts of reagents 

between replicates. For each transfection two separate tubes were prepared: in 

the first tube DNA was diluted in media and mixed by gently pipetting, in the 

second tube Lipofectamine 2000 was added to and mixed by gently pipetting. 

The tubes were incubated at room temperature for 5 minutes then the contents 

combined, mixed by pipetting and incubated at room temperature for further 20 

minutes. Untreated cells, DNA only (biggest amount in the experiment) and 

Lipofectamine 2000 only (highest volume in the experiment) containing wells 

were set up as controls. Media from the cells was removed, cells washed with 

sterile PBS and transfection mix added drop-wise onto the cells. Plates were 

gently rocked to aid dispersion of transfection media. Cells were returned to the 

incubator for 4 hours and media topped up to normal levels. The following day 

transfection media was aspirated and replaced by normal media. Cells were 

returned to incubator until the end of the experiment, adding extra media as 

required. 

5.2.10 Cloning and plasmid preparation for Ad production 

Plasmids for virus production were produced in electroporation competent 

BJ5183-AD-1 bacteria via homologous recombination between the left and right 

arms of the shuttle plasmid and pAdEasy-1 plasmid (linearised form in the 

bacteria) (Figure 5.4 and Figure 5.5). During this process the gene of interest is 

transferred from the shuttle plasmid into the target plasmid containing viral 

DNA. This results in a plasmid consisting of an intact adenoviral genome deleted 

of E1 and E3 and encoding the transgene that when transfected into helper cells 

expressing the adenovirus serotype 5 E1 gene (HEK293 cells), will produce a 

replication deficient adenovirus serotype 5 vector expressing the desired 

transgene. 

PShuttle-CMV plasmids were used to clone in stem-loop sequences for each of 

the miRs (miR-195, miR-329 and miR-451). Maxi-prepped plasmids (1.5-2 µg) 

were digested with PmeI restriction endonuclease under standard conditions 

over night. All digests were subjected to electrophoresis on 1% agarose gel, 

bands excised and gel-purified as described before in chapter 2.2.4. 

Electrocompetent bacteria carrying pAdEasy-1 DNA (BJ5183-AD-1; Stratagene) 

were thawed on ice for up to 10 minutes while other reagents were prepared – 
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electroporation cuvettes and chamber were placed in the refrigerator to chill. 

To each 50 µl aliquot of bacteria 100 ng linearised and purified shuttle plasmid 

was added. After gently tapping the tube to mix, bacteria were transferred to 

chilled cuvettes and incubated on ice for 5 minutes; electroporator was set to 

200 Ω, 2.5 kV and 25 μF. The electroporation chamber was connected to the 

electroporator, cuvettes were put in the chamber and pulsed once and removed 

immediately. To each sample 1 ml of SOC media was added and mixed gently 

before transferring it to Eppendorf tubes. Bacteria were incubated in a shaking 

incubator at 37°C, 200 RPM for 1 hour, then centrifuged in bench-top centrifuge 

for 2 minutes at 800g (3000 rpm). Supernatant was discarded, pellet 

resuspended in 100 µL SOC media and plated on agar plates containing 

kanamycin. Plates were incubated overnight at 37°C or until colonies were 

observed. Colonies were picked and screened as described in section 5.2.6. 

Positive clones were transformed into TOP10 bacteria to achieve higher yields of 

DNA 

An overnight restriction enzyme digestion was set up to prepare plasmid for 

transfection into virus-producing cells. Maxi-prepped pAdEasy plasmid (100 µg) 

was mixed with 3µL PacI enzyme, 20 µL 10x reaction buffer, 2 µL 100x BSA and 

nuclease free water in final reaction volume of 200 µL. The following day the 

reaction was terminated by heat inactivation of the enzyme at for 20 minutes at 

65oC before adding 400 µL of 100% ethanol. The tube was transferred to the -

80oC freezer for 30 minutes to precipitate the DNA. After incubation the tube 

was centrifuged for 15 minutes at 15,000 rpm, 4°C. Ethanol was carefully 

removed and pellet allowed to air-dry for 5-10 minutes at 37°C then 100 μL of 

nuclease-free water was added and the tube incubated on the bench for 15-30 

minutes before gently mixing to resuspend the DNA. For transfections 3 μg of 

this DNA was used. 
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Figure 5.4 A map of plasmid pAdEasy. This plasmid was used to transfect HEK293 cells for 
adenovirus production. pBR322 origin (bases 1845-2521), ampicillin resistance gene open 
reading frame (2669-3529), Ad3 right arm homology (3716-5721), Ad5 left arm homology 
(32483-33471). Map provided by Stratagene 
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Figure 5.5 A schematic representation of cloning and recombination events using AdEasy 
system (Adapted from Stratagene user manual). 
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5.2.11 Adenovirus production 

Recombinant adenoviruses (RAd) encoding stem-loop sequences for each of the 

miRs (miR-195, miR-329 and miR-451) under control of the cytomegalovirus 

(CMVIEP) promoter, were produced in human embryonic kidney cells HEK293 

using the AdEasy™ Adenoviral vector system (Stratagene) (Figure 5.5). HEK293 

cells express the adenovirus E1A gene necessary for viral replication. RAd-60 

virus that does not contain a transgene was used as a transduction control. Cells 

were maintained under normal conditions (37oC, 5% CO2) in Eagle’s Modified 

Essential Medium (EMEM) supplemented with 10% (v/v) FBS, 2 mM L-Glutamine, 1 

mM sodium pyruvate, 100 U/ml penicillin and 0.1 mg/ml streptomycin. Citric 

saline solution was used to passage cells. For reconstitution of the viral genome 

and production of virus, HEK293 cells were seeded in 6 well plates at 2x105 cells 

per well density and transfected with linearised pAdEasy-miR plasmid using 

Lipofectamine 2000 transfection reagent as described above. Cells were 

maintained under normal conditions until cytopathic effect (plaque formation), 

indicative of virus production, was observed. Cells were then harvested and 

subjected to three freeze-thaw cycles before centrifugation for 10 minutes at 

850g. Up to 1 mL of this media was stored at -80oC as crude virus stock. The 

adenovirus containing supernatant was added to 70% confluent HEK293 cells 

(usually in two T150 flasks, depending on the number of plaques observed) and 

incubated under normal conditions until the cytopathic effect spread through 

the cells (majority of cells detached from the flask). The freeze-thaw and 

centrifugation was repeated and supernatant was added to normal cell culture 

media sufficient for 24 T150 tissue culture flasks of HEK293 cells (70% 

confluent). When the majority of the cells were detached from the flasks, media 

and cells were collected in Falcon tubes, centrifuged for 10 minutes at 2,000 

rpm and supernatant safely discarded. The pellets were resuspended in a small 

amount of sterile PBS and pooled together in a final volume not exceeding 7 mL.  

5.2.11.1 Arklone P virus extraction 

Arklone-P (trichlorotrifluoroethane) is an industrial solvent used in virus 

preparation to lyse cells and release virus particles. An equal amount of Arklone-

P was added to the virus suspension (1:1 ratio) and the tube carefully inverted 
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several times to mix. The tube was subjected to centrifugation for 10 minutes at 

2,000 rpm and the top layer transferred to a fresh Falcon tube and stored at -

80oC until ready to purify. 

5.2.11.2 Purification of adenovirus by double CsCl gradient 
ultracentrifugation 

To prepare adenovirus for experimental use it was purified by double cesium 

chloride (CsCl) ultracentrifugation. The adenovirus containing solution from 

arklone P extraction (as described in section 5.2.11.1 above) was applied to 

sterilised centrifuge tubes containing in the following order: 2.5 ml CsCl at 1.40 

g/mL and 2.5 mL CsCl at 1.25 g/mL. Sterilised PBS was added where needed to 

fill the tube thus preventing it from collapse during ultracentrifugation. The 

tubes were centrifuged for 1.5 hrs at 35 000 rpm, 18°C. Using a syringe, a 

distinct white band containing adenovirus was removed and applied to a tube 

containing 5 mL CsCl at 1.34 g/mL topping-up with sterile PBS as before. The 

tubes were centrifuged for 18 hrs at 35000 rpm at 18°C. Virus was removed using 

a needle and syringe as before. The solution was injected into a slide-A-lyzer 

dialysis cassette (10 000 MWCO; Thermo Scientific). The dialysis consisted of 

three stages, the first and second were for 2 hrs in 1xTE buffer, the third was 

overnight in 1xTE with 10% sterile glycerol. After dialysis virus was ready for 

aliquoting and titering. Aliquotes stored at -80°C. 

5.2.11.3 Pure virus stock preparation 

Virus ‘seed’ stock were prepared by infecting one T150 flask 90% confluent with 

HEK293 cells with 50 µL of crude stock. Within 3 days cytopathic effect was 

observed and media removed, centrifuged at 2000 rpm for 10 minutes, 

supernatant discarded and pellet resuspended in 2 mL sterile PBS. Seed stocks 

were prepared by Arklone-P extraction, aliquoted into 100 µl aliquots and stored 

at -80°C. 

5.2.12 Calculating virus titers 

Viral particle (VP) and plaque forming unit (pfu) titers of each preparation were 

determined. The ratio between the two titres was used to estimate the overall 

quality of the preparation.  
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5.2.12.1 Viral particle titer 

The VP concentration was determined using MicroBCA Assay (Pierce). Volumes of 

1 µL, 3 µL and 5 µL of virus preparations were diluted with PBS in duplicate in 96 

well plate wells to a volume of 150 µL. Serial dilutions (0.5 µg/mL – 200 µg/mL) 

of BSA at 150 µL in duplicate were assayed to produce a standard curve. PBS 

served as a blank reading. The same amount of “working reagent” (25 parts 

solution A, 24 parts solution B, 1 part solution C) was added to each well and 

plate incubated at 37°C in the dark for 2 hours. A Wallace spectrophotometer 

was used to read absorbance at 560 nm for each well. Readings for duplicates 

were averaged and blank readings subtracted. Standard curve was used to 

determine total protein concentration in each sample (1 µL, 3 µL and 5 µL). 

These values were then averaged and multiplied by 4 x 109 to determine the 

particle titter of the virus preparation in particles per mL (Nicklin and Baker 

1999). 

5.2.12.2 Plaque forming unit titer 

The plaque forming unit (pfu) titers were determined using end-point dilution 

protocol (Nicklin and Baker 1999; Wilson et al. 2011). This method quantifies the 

amount of virus needed to kill 50% (TCID50 or median tissue culture infectivity 

dose) of infected cells or produce a cytopathic effect in 50% of samples (wells). 

HEK293 cells were seeded in 8 rows of a 96 well plate (Figure 5.6) so that the 

following day confluence would reach 60%, the remaining columns (1 and 12 as 

marked on the plate) were filled with 200 µL PBS to prevent evaporation of 

media. Cells were incubated at normal conditions. On day two media in the 

wells was replaced with 100 µL of serial dilutions of stock virus (made in 

complete media) from 10-2 to 10-11. On day three, the media in each well was 

replaced with 200 µL fresh complete media. Thereafter media was changed 

every 2-3 days and only in the wells that did not show signs of cytopathic effect 

i.e. viral plaque formation. On day eight, every well was inspected for 

appearance of plaques, the number of wells containing plaques per dilution was 

noted and used to calculate pfu titer as shown in Figure 5.6. The following 

formulae were used in calculations (Nicklin and Baker 1999): 
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The proportional distance  

Where “positive above 50%” refers to number of wells (expressed as percentage) 

in a group (same dilution) where more than 50% of all wells exhibit cytopathic 

effect. “Positive below 50%” refers to the number of wells in a group where less 

than 50% of wells have cytopathic effect present. For example in Figure 5.6 

%positive above 50% is 70% (7 wells exhibit cytopathic effect at 10-7 dilution) and 

%positive below 50% is 40% (4 wells exhibit cytopathic effect at 10-8 dilution). 

log ID50 (infectivity dose) = log dilution above 50% + (proportional distance x 

dilution factor) 

TCID50 (tissue culture infectivity dose 50) = 1 / ID50 

TCID50 / mL = TCID50 x dilution factor (multiply by 10 to account for initial 

dilution of viral stock) 

1TCID50 ≈ 0.7 pfu therefore pfu / mL = 0.7 x TCID50 / mL
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Figure 5.6 A schematic representation of pfu titre plate. Top is the plate at the beginning of 
the experiment, bottom is illustration of the plate at the end of experiment. The shading of 
the circles represents the number of cells, darker colours indicate a confluent layer of cells 
while the lighter shades indicate cell death or plaques (as a result of virus production). 
Serial dilutions of virus stock were made in a 96 well plate ranging from the highest 
concentrations at the top of the plate (-2 and -4) to lowest concentration (-11) and virus-free 
media at the bottom. Side columns are filled with PBS to maintain the moisture levels while 
the plate is in the incubator.
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Table 5.3 preparation of serial dilutions of Adenovirus for pfu tittering by end-point dilution 

 

Final dilution of virus Volume of virus (µL) Volume of media (µL) 

10-2 50 stock 4950 

10-4 50 of 10-2 4950 

10-6 50 of 10-4 4950 

10-7 500 of 10-6 4500 

10-8 500 of 10-7 4500 

10-9 500 of 10-8 4500 

10-10 500 of 10-9 4500 

10-11 500 of 10-10 4500 
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5.2.13 β-Galactosidase reporter gene expression assay 

A Galacto-Light Plus Assay kit (Applied biosystems) was used to determine 

expression of β-galactosidase in transduced cells. Culture media was removed by 

aspiration and cells were washed in PBS before adding lysis buffer and scraping 

the cells. Up to 20 µL of each sample was loaded per well onto a white 96 well 

plate, if needed volume was adjusted with lysis buffer to give final volume of 20 

µL. Next 70 µL of 1/100 Galacton Plus: Diluent was added to each well, and the 

plate incubated at room temperature for 1 hr. The incubation was followed by 

addition of 100 µl Accelerator and measurements were taken using luminometer 

Wallac Victor machine (Wallac). 

5.2.14 β-Galactosidase staining 

Viruses expressing the LacZ gene, which encodes for β-galactosidase, were used 

to optimize transduction experiments. Assay for the expression of β-

galactosidase was performed as follows: culture media was removed by 

aspiration, cells were washed with PBS and fixed using 2% PFA in 0.1 M sodium 

phosphate (NaPO4) (72 mM Na2HPO4; 23 mM NaH2PO4) at room temperature for 

10 minutes. The paraformaldehyde was removed and cells were washed with PBS 

twice. X-gal (5-bromo-4-chloro-3-iodolyl β-D-galactopyronoside) stain solution 

was added and the container incubated in the 37°C incubator under standard 

conditions overnight. Transduction efficiency/gene expression was assessed 

visually by the amount of blue precipitate, which results from cleavage of X-gal 

substrate by β-galactosidase, in cells. 

5.2.15 BCA assay 

For bicinconinic acid (BCA) assay (Promega) cells were seeded in 96 well plates 

at appropriate densities, grown under standard conditions and lysed prior to 

performing the assay. Reporter lysis buffer (RLB) was diluted from stock with 

sterile water. On the day media was taken off and cells washed with sterile PBS. 

Then 50µLof RLB was added to each well and the cells rubbed with a tip. The 

plate was incubated at room temperature for 5 min and then transferred to -

20oC freezer until frozen throughout.  
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5.2.16 MTT Cell Viability Assay 

To determine cell viability a tetrazolium dye (MTT) assay (Promega) was used. 

H9c2 cells were plated in 96 well plates at 1x104 cells per well. Either AngII 

stimulation or transduction with adenovirus was carried out as outlined in 

appropriate sections. At the end of the experiment, cells were washed twice 

with sterile PBS and MTT assay performed as per the manufacturer’s protocol. 

To each well containing 100 µL culture medium, 15 µL dye was added and plate 

placed in the incubator for 4 hours. Then 100 µL of Stop solution was added and 

plate returned to the incubator for one hour. The mixture in each well was 

carefully mixed prior to reading absorbance at 570 nm. 

5.2.17 Phalloidin staining (to visualise f-actin) 

Primary cardiac myocytes were washed twice with sterile PBS (Lonza) and excess 

liquid aspirated. The cells were fixed with 100 µL of 4% PFA for 20 minutes at 

room temperature. The fixative was removed and safely discarded; cells were 

washed twice with PBS and excess liquid aspirated. Permeabilisation of the cell 

membrane was performed by adding 100 µl 0.1% (v/v) Triton-X 100 (Sigma) and 

incubating for 20 minutes at room temperature. The cells were then washed 

twice with PBS and excess liquid was aspirated. Phalloidin solution in 1% (w/v) 

BSA was prepared at 5 µg/mL concentration and 100 µL of the solution added 

per well. The plates were wrapped in tin foil to protect from light and incubated 

at room temperature for 1 hour. The cells were again washed twice with PBS 

and excess liquid aspirated. 

5.2.18 Target prediction and analysis 

To generate lists of predicted targets for rno-miR-195, rno-miR-329 and rno-miR-

451 miRWalk (http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/) was used. 

To select best candidates the options selected were: longest transcript, 3’UTR 

with minimum seed length of 7 nucleotides at p-value of 0.05, search in DIANA-

mT, miRanda, miRDB, miRWalk, PICTAR5, PITA, RNA22, RNAhybrid and 

TargetScan/TargetScanS prediction programs. Results were ranked according to 

the number of algorithms predicting the gene to be a target. Ingenuity Pathway 

Analysis (IPA 9.0) software was used to overlay gene expression data (Dr. M. W. 

McBride, personal communications) from microRNA microarray (5 and 16 weeks) 

http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/
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with top ranked predicted target lists generated by miRWalk. To select targets 

for further analysis relevant pathways (cardiovascular involvement as well as cell 

growth and signalling) were analysed and those genes that were significantly 

different in at least one data set were chosen. Further filtering was based on IPA 

9.0 inbuilt target prediction function setting direction of microRNA and relevant 

genes (up- or down-regulated). Predicted targets that met all these criteria 

were subjected to further analysis.
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5.3 Results 

5.3.1 Cloning and adenovirus generation 

Pre-miR sequences for miR-95, miR-329 and miR-451 were successfully 

synthesised by Gene Art. These sequences were then excised from the carrier 

plasmid and ligated into pShuttle-CMV and pcDNA3.2/Zeo(+) plasmids (Figure 

5.6). After transformation bacteria were plated on antibiotic containing agar 

plates at 10 µL, 50 µL and 100 µL. The colony formation after incubation was 

proportional to the volume of culture plated. Colonies were picked from 10 µL 

and 50 µL plates as there was a better distinction between colonies. On average 

the 10 µL plates contained 10 colonies, 50 µL plates between 10 and 100, and a 

100 µL plates in excess of a 100 colonies. Five colonies per plate were picked 

favouring small individual colonies over large colonies or satellite colonies. Out 

of the picked colonies 90-100% expanded in LB broth and were available for 

further analysis and expansion. Positive clones were identified by colony PCR 

and the correct inserts confirmed by sequencing. 

Recombinant adenoviral vectors (RAd) encoding stem-loop sequences for each of 

the candidate microRNAs (miR-195, miR-329 and miR-451) under control of the 

CMV promoter were successfully produced (Figure 5.9). In HeLa cells 

transduction with these viruses at 10, 50 and 100 pfu/cell results in dose-

dependent expression of respective microRNAs (Figure 5.10 - Figure 5.12). MiR-

195 was over-expressed at levels 2 – 3 times higher than in untransduced cells, 

however the 10 pfu/cell dose did not show any measurable change in microRNA 

levels for the control cells (Figure 5.10). It was observed that endogenous levels 

of miR-329 in HeLa cells are very low (Figure 5.11); however significant 

overexpression of this miR (up to 200 fold increase compared to control cells) 

was possible without obvious side effects on cell morphology. MiR-451 was 

expressed at approximately 30 times higher levels than untransduced cells, 

however there was high variation within the sample (Figure 5.12). The Y axes in 

all experiments directly reflect endogenous levels of expression of each 

microRNA, the higher it is the smaller the difference between treated and 

untreated conditions and also the axis. Extremely low endogenous expression as 

is the case with miR-329, the difference between transduced cells and controls 

is profound and therefore the axis is on a higher scale. 
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Lane    Sample

1. 1kb ladder (NEB)

2. pShuttleCMV 20/1 EcoRV+EcoRI

3. pShuttleCMV 20/2 EcoRV+EcoRI

4. pShuttleCMV 20/3 EcoRV+EcoRI

5. pShuttleCMV 20/3 uncut

6. pShuttleCMV 50/1 EcoRV+EcoRI

7. pShuttleCMV 50/2 EcoRV+EcoRI

8. pShuttleCMV 50/3 EcoRV+EcoRI

9. pShuttleCMV 50/3 uncut

10. GeneArt_miR329 20/1 HindII+EcoRV

11. GeneArt_miR329 20/2 HindII+EcoRV

12. GeneArt_miR329 20/3 HindII+EcoRV

13. GeneArt_miR329 20/3 uncut

14. 100 bp ladder (NEB)

1     2    3     4     5  6   7     8    9    10   11   12  13  14
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Figure 5.7. Adenovirus production strategy – cloning. pSuttleCMV plasmids were digested 
with a combination of EcoRV and EcoRI endonucleases (lanes 2-4 and 6-8) to linearise the 
plasmid ready to receive the insert. GeneArt plasmid containing miR329 was digested with 
HindIII and EcoRV to release pre-miR (lanes 10 – 12). Faint bands in between 100 and 200 bp 
markers are pre-miR-329. NEB DNA ladders were used for band size reference (lanes 1 and 
14). The box frames the pre-miR sequence successfully cut out. 

 

Lane    Sample

1. 1kb ladder (NEB)

2. 100 bp ladder (NEB)

3. pCDNA+miR-195 _1 HindII+EcoRV

4. pCDNA+miR-195_1 uncut

5. pCDNA+miR-195 _2 HindII+EcoRV

6. pCDNA+miR-195 _2 uncut

7. pcDNA HindII+EcoRV

8. pcDNAuncut

9. pcDNAPvuII+KpnI

10. pCDNA+miR-329 HindII+EcoRV

11. pCDNA+miR-329 uncut
 

Figure 5.8 Identification of positive clones. PcDNA3.1/Zeo(+) plasmids containing miR 195 
and miR-329 sequences were digested with HindIII and EcoRV restriction endonucleases to 
release the insert. Bands (highlighted in boxes) in between 100 and 200 bp markers are pre-
miR-195 and pre-miR-329. NEB DNA ladders were used for band size reference (lanes 1 and 
2).  
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Figure 5.9 HEK293 cells producing Ad virus. A day 1 of transfection, B day 4 post 
transfection. When the virus is actively multiplying cytopathic effect on host cells is visible. 
X100 magnification. 
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Figure 5.10 Over-expression of miR-195 delivered via adenoviral vector. The ability of RAd-
miR to transduce cells and express microRNA was assessed by transducing HeLa cells and 
performing TaqMan assays on extracted total RNA 24 hours post-transduction. Control – 
untransduced cells, RAd60 – virus without a transgene, dosing pfu per cell. RAd60 
transduced cells were used to elucidate any changes induced by viral entry into the cell. 
*p<0.05 compared to untransduced cells. 
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Figure 5.11 Over-expression of miR-329 delivered via adenoviral vector. The ability of RAd-
miR to transduce cells and express microRNA was assessed by transducing HeLa cells and 
performing TaqMan assays on extracted total RNA 24 hours post-transduction. Control – 
untransduced cells, RAd60 – virus without a transgene, dosing pfu per cell. RAd60 
transduced cells were used to elucidate any changes induced by viral entry into the cell. 
*p<0.01 compared to untransduced cells. 
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Figure 5.12 Over-expression of miR-451 delivered via adenoviral vector. The ability of RAd-
miR to transduce cells and express microRNA was assessed by transducing HeLa cells and 
performing TaqMan assays on extracted total RNA 24 hours post-transduction. Control – 
untransduced cells, RAd60 – virus without a transgene, dosing pfu per cell. RAd60 
transduced cells were used to elucidate any changes induced by viral entry into the cell. 
*p<0.05 compared to untransduced cells. 
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5.3.2 Cell hypertrophy in presence of RAd-miRs 

To assess what effect over-expression of each candidate microRNA had on cell 

size, H9c2 cells were used to set up a hypertrophy assay (stimulation with AngII 

at 100 nM) with the addition of groups where cells were transduced with RAd-

miRs at 300 and 1,000 pfu/cell in presence or absence of the hypertrophic 

stimulus. As illustrated in Figure 5.13, addition of control virus (RAd60) did not 

affect cell size or response to ANGII stimulation. Use of viruses over-expressing 

miR-195 or miR-329 did not change cell size at baseline, but reduced increase in 

cell size when cells were stimulated with AngII. 
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Figure 5.13 Hypertrophy in adenovirus transduced H9c2 cells. Cells stimulated with AngII to induce hypertrophy were transduced with adenovirus carrying 
pre-miR sequences. Cell size under normal conditions (green bar), when stimulated with 100nM of AngII (A; red bar) and after transduction with each RAd-
miR (50, 100 and 300 pfu/ cell) in the presence (+A) or absence of 100 nM AngII. Statistical analysis by ANOVA with Bonferroni’s post test comparing all 
columns. * p<0.05; § p<0.05 compared to RAd60 at the same dose and AngII condition (+ or – ).
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5.3.3 MicroRNA target prediction and selection 

To determine a list of genes that are potentially targeted by candidate 

microRNAs miRWalk was used. Lists of targets for rno-miR-195, rno-miR-329 and 

rno-miR-451 were generated listing microRNA, target gene, target prediction 

algorithms (DIANA-mT, miRanda, miRDB, miRWalk, PICTAR5, PITA, RNA22, 

RNAhybrid and TargetScan/TargetScanS), each gene was given a score of either 

1 (in green background) to indicate that it is predicted by the algorithm named 

at the top of the column or 0 (red background) to indicate that it is not 

predicted to be a target of the candidate microRNA by that particular algorithm. 

The best achieved score was 5 (out of 9) as noted in column SUM and it was 

selected as a cut-off point for selecting targets for further analysis. Table 5.4, - 

5.6 list predicted targets that have achieved the highest scores. Rno-miR-195 has 

the longest possible target list with 60 genes (Table 5.4), rno-miR-329 – 35 

(Table 5.5), and rno-miR-451 – 7 (Table 5.6). 
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Table 5.4 miRWalk predicted targets for rno-miR-195 
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rno-miR-195 Usp14 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 RGD1310326 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 LOC291823 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Ppp1r11 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Tgfbr3 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Dmtf1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Tmem55a 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Cask 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Nuak2 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Dync1i1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Nxph1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Tcte1l 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Capza2 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Wipi2 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Dek 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Srpr 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Ywhaq 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Esam 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Myt1l 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Yt521 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Capn6 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Scoc 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Tbp 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Ppp6c 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Zfp622 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Lypla3 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Tmem33 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Adrb2 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Clcn4-2 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Hibadh 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 RGD621352 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Prei3 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 RGD1308059 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Smad7 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Mlycd 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Nsg1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Tacstd2 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Ccdc19 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Map1lc3b 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Eif2b2 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Rbm34 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Inhbc 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Sar1a 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Pom210 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Kcnv1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Zhx1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Rnf10 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Irak2 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Raf1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Cdc25a 0 1 1 1 0 1 0 1 0 5 

http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=291796&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=361454&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=291823&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=0&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29610&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=681224&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=362490&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29647&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=289419&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29564&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=25501&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=363448&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=493810&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=288498&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=306817&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=315548&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=25577&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=300519&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=116668&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=170956&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=83685&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=364981&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=117526&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=171121&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=294846&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=361401&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=59303&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=24176&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=60586&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=63938&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=192229&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=171050&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=362535&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=81516&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=85239&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=25247&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=494343&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=304984&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=64862&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=84005&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=307956&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=64549&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=361842&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=58958&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=60326&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=171159&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=288710&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=362418&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=24703&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=171102&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
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Table 5.4 continued 
continued 

          

rno-miR-195 Zfp105 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 RGD1311739 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Wbp11 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Serinc3 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Wee1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Umod 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Spnb3 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Cdc37l1 0 1 1 1 0 1 0 1 0 5 

rno-miR-195 Btrc 0 1 1 1 0 1 0 1 0 5 

 

Table 5.5 miRWalk predicted targets for rno-miR-329 
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rno-miR-329 MGC105560 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Fut7 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Adamts1 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 RGD1305486 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Panx1 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Insr 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Tmed9 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Creb3l3 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Cldnd1 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Btnl7 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Rai14 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Dnajb9 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Tpp2 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Slc17a8 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 RGD1304879 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Slc6a15 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Sbds 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 MGC93920 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Psip1 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Rraga 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Tacr1 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Phgdhl1 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Tpbg 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Cdca4 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Rbp2 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 LOC500378 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Gga1 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Capzb 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Cltc 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Tnfrsf1b 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 LOC497978 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Nbr1 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Cog7 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 H3f3b 0 1 1 1 0 1 0 1 0 5 

rno-miR-329 Ttc9c 0 1 1 1 0 1 0 1 0 5 

 

http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=316096&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=311428&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=297695&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=296350&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=308937&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=25128&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29211&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=293886&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000939
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=361765&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=500941&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=296564&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=79252&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=313873&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=315435&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=24954&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=361207&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=314638&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=288182&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=406159&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=294804&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=24908&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=81815&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=266767&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=312301&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=282712&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=288615&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=295663&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=313323&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=117044&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=24807&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=361094&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=83684&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=0&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=24710&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=361990&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=300066&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=298584&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=54241&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=156767&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=497978&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=303554&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=293456&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=0&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000604
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=309196&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
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Table 5.6 miRwalk predicted targets for rno-miR-451. 

MicroRNA Gene 
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rno-miR-451 Raver1h 0 1 1 1 0 1 0 1 0 5 

 rno-miR-451 Parg 0 1 1 1 0 1 0 1 0 5 

rno-miR-451 Gap43 0 1 1 1 0 1 0 1 0 5 

rno-miR-451 Prps2 0 1 1 1 0 1 0 1 0 5 

rno-miR-451 Dlgap1 0 1 1 1 0 1 0 1 0 5 

rno-miR-451 Pla2g6 0 1 1 1 0 1 0 1 0 5 

rno-miR-451 Ybx1 0 1 1 1 0 1 0 1 0 5 

 

http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0001731
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=298705&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0001731
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=83507&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0001731
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29423&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0001731
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=24689&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0001731
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=65040&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0001731
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=360426&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0001731
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=500538&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
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IPA 9.0 was used to find overlap the restricted target list with gene expression 

data as well as determine connections between the predicted targets and 

relevant phenotypes and/or cellular functions (Figures 5.14-5.16). This list was 

used to further narrow down the most likely targets that are relevant in our 

model. The final list of predicted targets that were selected for further analysis 

was: similar to CG4768-PA (RGD1309748), KN motif and ankyrin repeat domains 1 

(Kank1), sterile alpha motif domain containing 4B (Samd4b), dual specificity 

phosphatase 10 (Dusp10), follistatin-like 3 (secreted glycoprotein) (Fstl3), jun D 

proto-oncogene (JunD), forkhead box M1 (Foxm1), SIN3 homolog A transcription 

regulator (yeast) (Sin3a), cyclin-dependent kinase 1 (Cdk1), kinesin family 

member 23 (Kif23), bone morphogenetic protein receptor type IA (Bmpr1a) and 

sestrin 1 (Sesn1) (Table 5.7). 

Once potential targets for microRNAs of interest were selected, their expression 

was assessed by TaqMan in whole hearts from neonatal pups (1-3 days old), 5 

week and 16 week animals. Also to look at the relationship between microRNAs 

and their respective targets, levels of gene expression were assessed in cells 

over-expressing each individual microRNA. 
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Figure 5.14 miR-195 predicted targets are associated with hypertrophy, systolic dysfunction 
and dysfunction of the heart. Arrows indicate interactions between the proteins. NUP210 is 
up-regulated in WKY compared to SHRSP at mRNA level. Other predicted targets do not 
reach statistical significance in the analysed set. Fold change, p-value and signal intensity 
are indicated. Image from IPA. 
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Figure 5.15 Predicted targets of miR-195 are involved in SDF1 (CXCL12/CXCR4) signalling pathway. Increased expression of genes (in WKY compared to 
SHRSP, at mRNA level) is indicated by red colouring; half-red colouring indicates a group of genes, one of which is differentially up-regulated. SDF1 – 
CXCR4 signalling is cardioprotective through myocardial STAT3. Fold change, p-value and signal intensity are indicated. Image from IPA. 
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Figure 5.16 Predicted targets of miR-329 and their functions. Cell proliferation, morphology, 
apoptosis as well as dilation of heart ventricle, dilated cardiomyopathy in mice and vascular 
formation and disease are biological functions and pathologies in which miR-329 predicted 
targets have been implicated.  In red genes that are up-regulated in WKY compared to 
SHRSP at mRNA level. Fold change, p-value and signal intensity are indicated. Image from 
IPA. 
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Table 5.7 Candidate microRNAs and their predicted targets for further analysis 

 

microRNA Targets 

rno-miR-195 Cdk1, Kif23, Sesn1, Bmpr1a, Kank1 

rno-miR-329 Dusp10, JunD, Fstl3, Foxm1, Sin3a 

rno-miR-451 RGD1309748, Samd4b 
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Predicted target of rno-miR-195 – Cdk1 is significantly down-regulated when 

miR-195 is over-expressed (Figure 5.17) in cell line and levels of this gene are 

not affected by hypertrophic stimulus in the form of AngII. In heart tissue 

expression of Cdk1 is significantly different between SHRSP and WKY only at 5 

weeks of age when levels are low corresponding to increased expression of miR-

195 at this time. Expression patterns of the miR and its predicted target also 

correlate at 16 weeks of age, however in neonatal hearts although miR-195 is 

significantly up-regulated in SHRSP, levels of Cdk1 are similar in both strains. 

Another predicted target, kank1 is expressed at similar levels in both strains at 5 

and 16 weeks of age and increases in the SHRSP at 16 weeks. This does not 

correspond with miR-195 expression in vivo, however in the cell model 

overexpression of miR-195 reduces levels of kank1 (Figure 5.18), however 

addition of control virus also significantly affected expression of kank1. Kif23 is 

not differentially expressed in the heart at any time point thus there is no 

correlation with miR-195 expression (Figure 5.19). Interestingly over-expression 

of miR-195 in hypertrophic model significantly reduces levels of kif23, while 

control virus or hypertrophic stimulus has no effect (Figure 5.19). Expression of 

sesn1 goes in the opposite direction to that of miR-195 in neonatal hearts and is 

up-regulated in SHRSP by 1.6 fold, however at 5 weeks there is small, but 

significant reduction in the same strain (Figure 5.20). In vitro expression of sesn1 

is up-regulated by AngII stimulation alone, but not with control virus, while over-

expression of miR-195 further increases expression to 1.5 fold compared to 

untreated cells irrespective of AngII addition (Figure 5.20). 

JunD, a predicted target of miR-329 is dynamically regulated in the hearts of 

SHRSP and WKY rats at all ages (Figure 5.21). Significantly lower in neonatal 

SHRSP hearts its levels increase at 5 weeks and at 16 weeks remain significantly 

higher compared to WKY. In H9c2 cells it does not appear to be regulated by 

hypertrophic stimulus or adenoviral delivery (Figure 5.21). Bmpr1a also shows no 

significant changes in vitro while in vivo it is expressed at 1.6-fold higher in the 

SHRSP than in WKY (Figure 5.22). Dusp10 is expressed at a higher level in the 

SHRSP compared to WKY at 5 weeks (Figure 5.23), miR-329 predicted to target 

this gene is not differentially regulated at this time point. There is a trend 

towards lover expression in H9c2 cells upon addition of RAd-miR-329, however 

this does not reach significance and indicates that in our in vitro hypertrophy 
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model this gene is not differentially regulated. Sin3a is not significantly different 

between the SHRSP and WKY at any time point, however in cells it responds to 

addition of both control and miR over-expressing virus while not being affected 

by AngII stimulation (Figure 5.24). In the hearts of SHRSP and WKY rats at no 

point is Fstl3 differentially expressed, although predicted target of miR-329 it is 

significantly up-regulated in the presence of RAd-miR-329 (Figure 5.25). It is not 

affected by RAd60 or AngII. Foxm1, predicted target of miR-329 and 

RDG1309748, predicted target of miR-451 are not regulated in tissue, and Foxm1 

does not chance in hypertrophy model (Figure 5.26), while RDG1309748 is up-

regulated by control virus yet not significantly regulated by RAd-miR-451 ( 5.27). 

Another predicted target of miR-451, Samd4b is not regulated in in vitro model, 

and in hearts is two-fold higher in the SHRSP compared to WKY (Figure 5.28) 
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Figure 5.17 Levels of Cdk1, predicted target of miR-195, in vivo and in vitro. Top graph 
Endogenous levels of Cdk1 in SHRSP and WKY rat hearts in neonates, 5 week and 16 week 
old animals. Bottom, Levels of Cdk1 in H9c2 cell line in the presence of AngII (100nM) and 
high dose of RAd-miR-195 96 hours post-stimulation. Ctrl untreated cells; RAd60 control 
virus. p<0.05 compared to ctrl. 
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Figure 5.18 Levels of Kank1, a predicted target of miR-195, in vivo and in vitro. Top - 
endogenous levels of Kank1 in SHRSP and WKY rat hearts in neonates, 5 week and 16 week 
old animals. Bottom - Levels of Kank1 in H9c2 cell line in the presence of AngII (100nM) and 
high dose of RAd-miR-195, 96 hours post-stimulation. Ctrl untreated cells; RAd60 control 
virus. p<0.05 compared to ctrl. 
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Figure 5.19 Levels of Kif23, a predicted target of miR-195, in vivo and in vitro. Top 
Endogenous levels of Kif23 in SHRSP and WKY rat hearts in neonates, 5 week and 16 week 
old animals. Bottom Levels of Kif23 in H9c2 cell line in the presence of AngII (100nM) and 
high dose of RAd-miR-195, 96 hours post-stimulation. Ctrl untreated cells; RAd60 control 
virus. p<0.05 compared to ctrl. 
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Figure 5.20 Levels of Sesn1, a predicted target of miR-195, in vivo and in vitro. Top - 
Endogenous levels of Sesn1 in SHRSP and WKY rat hearts in neonates, 5 week and 16 week 
old animals. Bottom - Levels of Sesn1 in H9c2 cell line in the presence of AngII (100nM) and 
high dose of RAd-miR-195, 96 hours post-stimulation. Ctrl untreated cells; RAd60 control 
virus. p<0.05 compared to ctrl. 
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Figure 5.21 Levels of JunD, a predicted target of miR-329, in vivo and in vitro. Top, 
Endogenous levels of JunD in SHRSP and WKY rat hearts in neonates, 5 week and 16 week 
old animals. Bottom, Levels of JunD in H9c2 cell line in the presence of AngII (100nM) and 
high dose of RAd-miR-329, 96 hours post-stimulation. Ctrl untreated cells; RAd60 control 
virus. p<0.05 compared to ctrl. 
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Figure 5.22 Levels of Bmpr1a, a predicted target of miR-195, in vivo and in vitro. Top, 
Endogenous levels of Bmpr1a in SHRSP and WKY rat hearts in neonates, 5 week and 16 
week old animals. Bottom, Levels of Bmpr1a in H9c2 cell line in the presence of AngII 
(100nM) and high dose of RAd-miR-195, 96 hours post-stimulation. Ctrl untreated cells; 
RAd60 control virus. p<0.05 compared to ctrl. 
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Figure 5.23 Levels of Dusp10, a predicted target of miR-329, in vivo and in vitro. Top, 
Endogenous levels of Dusp10 in SHRSP and WKY rat hearts in neonates, 5 week and 16 
week old animals. Bottom, Levels of Dusp10 in H9c2 cell line in the presence of AngII 
(100nM) and high dose of RAd-miR-329, 96 hours post-stimulation. Ctrl untreated cells; 
RAd60 control virus. p<0.05 compared to ctrl. 
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Figure 5.24 Levels of Sin3a, a predicted target of miR-329, in vivo and in vitro. Top. 
Endogenous levels of Sin3a in SHRSP and WKY rat hearts in neonates, 5 week and 16 week 
old animals. Bottom, Levels of Sin3a in H9c2 cell line in the presence of AngII (100nM) and 
high dose of RAd-miR-329, 96 hours post-stimulation. Ctrl untreated cells; RAd60 control 
virus. p<0.05 compared to ctrl. 
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Figure 5.25 Levels of Fstl3, a predicted target of miR-329, in vivo and in vitro. Top, 
Endogenous levels of Fstl3 in SHRSP and WKY rat hearts in neonates, 5 week and 16 week 
old animals. Bottom, Levels of Fstl3 in H9c2 cell line in the presence of AngII (100nM) and 
high dose of RAd-miR-329, 96 hours post-stimulation. Ctrl untreated cells; RAd60 control 
virus. p<0.05 compared to ctrl. 
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Figure 5.26 Levels of Foxm1, a predicted target of miR-329, in vivo and in vitro. Top, 
Endogenous levels of Foxm1 in SHRSP and WKY rat hearts in neonates, 5 week and 16 
week old animals. Bottom, Levels of Foxm1 in H9c2 cell line in the presence of AngII 
(100nM) and high dose of RAd-miR-329, 96 hours post-stimulation. Ctrl untreated cells; 
RAd60 control virus. p<0.05 compared to ctrl. 
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Figure 5.27 Levels of RDG1309748, a predicted target of miR-451, in vivo and in vitro. Top, 
Endogenous levels of RDG1309748 in SHRSP and WKY rat hearts in neonates, 5 week and 
16 week old animals. Bottom, Levels of RDG1309748 in H9c2 cell line in the presence of 
AngII (100nM) and high dose of RAd-miR-451, 96 hours post-stimulation. Ctrl untreated 
cells; RAd60 control virus. p<0.05 compared to ctrl. 
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Figure 5.28 Levels of Samd4b, a predicted target of miR-451, in vivo and in vitro. Top, 
Endogenous levels of Samd4b in SHRSP and WKY rat hearts in neonates, 5 week and 16 
week old animals. Bottom, Levels of Samd4b in H9c2 cell line in the presence of AngII 
(100nM) and high dose of RAd-miR-451, 96 hours post-stimulation. Ctrl untreated cells; 
RAd60 control virus. p<0.05 compared to ctrl. 
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5.4 Discussion 

Because of the in vivo phenotype and the predominant expression of miR-195, 

miR-329 and miR-451 in cardiomyocytes, recombinant adenoviruses encoding 

stem-loop sequences for these candidate miRNAs were designed, produced and 

used in the rat neonatal cardiomyocyte cell line H9c2 to analyse the functional 

role of each of these miRs in an in vitro model of hypertrophy. Viruses were 

produced to high titres with no apparent cell toxicity. 

Hypertrophy in H9c2 cells is inducible by AngII stimulation. RAd-miR-195, RAd-

miR-329, RAd-451 at 300 and 1000 pfu per cell were used to transduce H9c2 cells 

in serum free media, RAd-60 acted as transduction control. Cell size was 

assessed by microscope and using dedicated software random selection of at 

least 100 cells was measured. This ensured that differences in cell sizes are not 

random events, but directly related to the conditions to which the cells were 

exposed. The results showed that cells transduced with the control virus, RAd60 

did not change in size and their response to hypertrophic stimulus was not 

altered at any dose used. Cells that were transduced with RAd-miR-195 did not 

increase in size however AngII stimulation did not produce hypertrophy even 

with the lowest dose of virus. These results are in contradiction with van Rooij 

et al data showing that miR-195 induces hypertrophy in vitro (van Rooij et al. 

2006). However the virus doses used were different and in their experiments 

primary cells were used. Finally, cells transduced with RAd-miR-329 were 

reduced in size compared to control cells. Also specific overexpression of miR-

329 lead to significant inhibition of AngII induced hypertrophy. It is a finding that 

needs to be investigated further as there are no published data elucidating the 

possible role of miR-329 in cardiac cell growth of AngII signalling. 

In order to dissect networks of miRNA action and to evaluate potential 

therapeutic benefits of modulation of miRNA levels it is essential to identify 

which mRNAs are targeted by which miRNAs. Our goal was to analyse what genes 

are significantly different between the two strains and implicate them in the 

relevant pathology. For in silico prediction of targets for rno-miR-195, rno-miR-

329 and rno-miR-451, miRWalk was used as it offers broad coverage of predictive 

algorithms (10 databases and a scoring system that enables ranking of predicted 
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targets based on positive outcome in each database with the outlook that the 

target is more likely to be a true target if predicted by numerous algorithms. 

Thus it was decided to analyse only those predicted targets that received the 

highest score and imported these lists into IPA software to be able to further 

narrow down the list taking into account which predicted targets are 

differentially regulated in the neonatal hearts of SHRSP and WKY and relevant 

cardiovascular pathways implicated. Although a number of predicted targets are 

involved in cardiovascular development and pathology, only NUP210 (Pom210) 

was expressed at lower levels in the SHRSP. Ten of rno-miR-329 predicted 

targets are expressed at a lower level in SHRSP compared to WKY and five of 

these are implicated in cardiovascular biology such as cell proliferation, 

cardiomyocyte morphology, apoptosis as well as dilation of heart ventricle, 

dilated cardiomyopathy in mice and vascular formation. Rno-miR-451 had one 

predicted target differentially regulated between the two strains, GAP43 was 

down-regulated in WKY. Although the proportion of predicted targets 

significantly down-regulated between the two strains at the level of mRNA is low 

compared to genes with minor changes, it is possible that the change is more 

pronounced at protein level. 

Cyclin-dependent kinase 1 is encoded by a gene located on chromosome 20, also 

known as cdc2 and cdc2a. It is a predicted target of miR195. In whole hearts 

levels of Cdk1 are significantly different between SHRSP and WKY only at 5 

weeks of age. This corresponds with the miR-195 levels, which are higher in 

SHRSP than WKY at this time point. In cells transduction with control virus does 

not affect levels of Cdk1 in H9c2 cell line irrespective of the presence or 

absence of AngII. However when cells are transduced with RAd-miR-195, levels 

of Cdk1 mRNA significantly decrease and are not restored by AngII stimulation. 

Kinesin family member 23 (Kif23) is a predicted target of miR-195. In SHRSP 

hearts at 5 weeks of age, levels of Kif23 are significantly higher than in WKY, 

going in the opposite direction than expected if it was targeted by miR-195 

which at this time point is increased in SHRSP. In H9c2 cell line, transduction 

with control virus does not affect levels of Kif23 nor does presence of AngII. 

However RAd-miR-195 transduction of H9c2 cells produced levels of Cdk1 

significantly lower than in control cells and are not improved by AngII 

stimulation. 
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Sestrin 1 (Sesn1) is a predicted target of miR-195. It is expressed at high levels in 

neonatal SHRSPs in whole hearts. At 5 weeks levels of Sesn1 mRNA are 

significantly higher in WKY. This partly fits in with the expression pattern of 

miR-195 as at both time points it is higher in SHRSP. In cells transduction with 

control virus does not affect levels of Sesn1 in H9c2 cell line, however 

stimulation with AngII seems to lead to increase of gene expression. The same is 

true for rAd-miR-195 transduction, levels of Sesn1 mRNA significantly increase 

compared to untreated cells. This suggests that rather than being a direct target 

of miR-195, Sesn1 is a member of the same pathway and is potentially repressed 

by a target of miR-195. 

Bone morphogenic protein receptor type 1A (Bmpr1a) is predicted to be a target 

of miR-195. In both SHRSP and WKY levels of Bmpr1a are similar until 16 weeks 

of age when a significant increase is seen in whole hearts of SHRSP. However 

miR-195 is not differentially regulated between the two strains at this time 

point. In H9c2 cell line levels of Bmpr1a mRNA cells are not changed by any of 

the treatments. Taken together this indicates that Bmpr1a is not a target of 

miR-195 in our chosen setting. 

KN motif and ankyrin repeat domain 1 (Kank1), aliases Ankrd15, MGC1251169, is 

predicted to be targeted by miR-195.in whole hearts of SHRSP and WKY, levels 

of Kank1 are significantly different only at 16 weeks of age. This corresponds 

with a decrease seen in miR-195 levels at this point. In cells stimulation with 

AngII on its own does not produce any measurable change, however levels of 

Kank1 are significantly decreased in the presence of both control virus and miR 

over-expressing virus. This indicates that kank1 may be involved in a pathway 

relevant to viral entry into the cell. These findings will affect interpretation of 

the data as true effects of miR over-expression are masked by those of viral 

infection. 

Dual specificity phosphatise 10 (Dusp 10) is predicted target of miR-329. In the 

hearts of 5 week old animals Dusp10 is significantly higher in SHRSP compared to 

WKY. MiR-195 is not differentially regulated at this time point. In H9c2 cells, 

there are no significant differences in any experimental conditions. 
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Jun D proto-oncogene (JunD), Mgc 72300 is predicted to be targeted by miR-329. 

Expression of JunD is differentially regulated at all analysed time points in whole 

hearts. In neonates there is significantly more JunD in WKY animals, however by 

5 weeks the difference is in the other direction and at this time point as well as 

at 16 weeks expression is significantly higher in the SHRSP. This might be 

indicative of junD being responsive to changes in physiology or other microRNAs 

and genes, rather than being modulator of the changes observed. On the other 

hand it also can be protective and thus up-regulated when pathology develops in 

an attempt to normalise the cell growth and reduce or stall the progression of 

the LVH. High levels of miR-329 in SHRSP neonates would explain low levels of 

this predicted target at the same time point. Lack of differential regulation of 

mir-329 at later time points limit the conclusions that can be drawn from 

expression levels of JunD in the same experimental setting. H9c2 cells showed 

no change in expression of JunD under any experimental conditions. This would 

suggest that JunD is not a target for miR-329. 

Follistatin-like 3 a secreted glycoprotein (Fstl3), alias Flrg is predicted to be a 

target of miR-329. Fstl3 is not differentially expressed in whole hearts at any of 

the analysed time points. However in H9c2 cells there was a significant increase 

in Fstl3 in cells that were transduced with RAd-miR-329 and stimulated with 

AngII at the same time. It is likely that miR-329 is involved in the same pathway 

as Fstl3, but rather than targeting Fstl3 it binds its inhibitor thus resulting in the 

increase expression of Fstl3. 

Forehead box M1 (Foxm1) is a predicted target of miR-329. No differential 

expression of Foxm1 was observed in either whole hearts or following 

overexpression of miR-329 in H9c2 cells. However endogenous expression of mir-

329 in H9c2 cells is undetectable by TaqMan (Figure 5.11) therefore in this 

specific model interactions between miR-329 and Foxm1 are not likely. The lack 

of differential expression of Foxm1 in H9c2 cells indicates that is not involved in 

AngII induced hypertrophy in. 

SIN3 homolog A (Sin3a) is transcriptional regulator and predicted target of miR-

329. Sin3a is not differentially expressed in whole SHRSP or WKY hearts. 

However there was a significant decrease in expression in the presence of virus, 

including control virus. This was not affected by addition of AngII. It is a 
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potential target of miR-329 but the true effect of miR over-expression are 

masked by the effects that viral transduction has on the expression of this gene.  

RGD1309748 is a molecule similar to CG4768-PA and predicted to be a target of 

miR-451. There were no significant differences in levels of RGD1309748 in whole 

hearts. In H9c2 cells there was an increase in RGD1309748 in the presence of 

control virus. Although a trend towards increase is seen in cells transduced with 

RAd-miR-451 there was no significant difference. It is possible that adenoviral 

infection causes such expression patterns. 

Sterile alpha motif domain containing 4b (Samd4b) is predicted to be targeted 

by miR-451. Only at 16 weeks there is significantly more Samd4b in the SHRSP 

whole hearts compared to WKY. However, miR-451 is not differentially regulated 

at this time point. There was no effect of AngII treatment and/or virus 

transduction on the mRNA levels of Samd4b in H9c2 cells. 

Overall modulation of microRNA expression is a useful tool to analyse the effects 

of significant changes in miR profiles at both the phenotypic and molecular 

level. Target prediction algorithms are still lacking in accuracy of predictions, 

are useful for approaches like the one used in this project. Ideally a biological 

approach would be taken, such as HITS-CLIP or PAR-CLIP. This would allow 

identification, rather than prediction of microRNA – mRNA interactions specific 

for the model used. However it is less easily accessible and more expensive that 

use of prediction algorithms. A group of ten of predicted gene targets were 

selected, by use of widely available databases, integrated the data with 

available expression data from our own experiments and taking into account the 

role of the predicted target. It was also shown that levels of some of these 

targets change when cells are subjected to forced overexpression of the 

targeting microRNA. The next step would be to conclusively prove direct 

interactions between our microRNAs and their targets. 
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 General discussion 

This thesis covered a range of experiments designed to identify signature 

patterns of altered miRNA profiles and to investigate the role of selected 

microRNAs in the development of LVH in the SHRSP. After performing microRNA 

microarray three candidate microRNAs – miR-195, miR-329 and miR451 were 

selected and validated by qRT-PCR. The selected candidates were assessed in 

vitro (including hypertrophy model) and characterised in the SHRSP and WKY 

strains focusing on sequence changes. Over-expression of candidate microRNAs 

in vitro was achieved by method of adenoviral delivery. Finally, target 

prediction was performed and several genes were analysed in the setting of 

targeting microRNA over-expression. Taken together our findings provide an 

insight into a complex network of LVH in the SHRSP. 

MicroRNAs are a relatively new group of regulatory non-coding RNA molecules 

that form an essential part of the gene-expression regulatory post-transcription 

network. Widely reported involvement of microRNAs in development (Cordes et 

al. 2010; Cordes and Srivastava 2009; Stefani and Slack 2008), cell 

differentiation (Cordes et al. 2009; Hosoda et al. 2011; Ivey and Srivastava 

2010), stem cell biology (Hosoda et al. 2011; Wilson et al. 2010b; Wong et al. 

2012), cancer development (Paranjape et al. 2009; Winter and Diederichs 2011), 

drug resistance (Kovalchuk et al. 2008; Ma et al. 2010; Zheng et al. 2010), 

diagnostics (Adachi et al. 2010a; Ajit 2012b; Creemers et al. 2012; Engelhardt 

2012; Paranjape et al. 2009; Wang et al. 2010a),cardiovascular disease (Corsten 

et al. 2010; Creemers et al. 2012; van Rooij and Olson 2012) and many other 

physiological and pathological processes has made microRNAs a popular target 

for research into these fundamental processes as well as therapy. As a single 

microRNA is capable of regulating multiple genes, often from the same or 

complimentary pathways, they are considered important modulators of complex 

traits. A number of studies have revealed signature patterns of microRNA 

expression depending on disease state, ischaemic cardiomyopathy, dilated 

cardiomyopathy, aortic stenosis and cardiac hypertrophy (Ikeda et al. 2007; Ji et 

al. 2007; van Rooij et al. 2006). Cardiovascular disease is a result of complex 

life-long relationship between nature and nurture. It is still among the leading 

causes of morbidity and mortality in the developed world and is a significant 

burden on health care systems (BHF 2012; NHS 2012). For every condition under 
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the broad umbrella of cardiovascular disease, there is an associated microRNA, 

from the powerful miR-208 in electric conductivity, arrhythmia and remodelling, 

to the controversial role of miR-21 (Corsten et al. 2010; Montgomery et al. 2011; 

Oliveira-Carvalho et al. 2013; Patrick et al. 2010; Thum et al. 2008; Ucar et al. 

2012). LVH is an important cardiac phenotype, not usually referred to as a 

disease in itself LVH can be a marker of disease and determinant in the 

progression and outcome of the disease (Arnett et al. 2009; Perkins et al. 2005; 

Reddy et al. 2012). In a normal heart physiological LVH can occur in response to 

exercise or pregnancy in females and is reversible (Fernandes et al. 2011; Li et 

al. 2012; Mone et al. 1996). In disease setting, LVH also originates as an adaptive 

mechanism, however in contrast to physiological LVH it is not reversible and 

over time with persistent stimuli, such as hypertension, aortic stenosis or aortic 

insufficiency, will progress into heart failure (deAlmeida et al. 2010; Dominiczak 

et al. 2000; Reddy et al. 2012). Genetics of a complex trait such as LVH is 

difficult to study directly thus the use of animal models offers a much simpler 

paradigm that retain a lot of similarities with the human condition. There are 

two types of LVH – chronic and acute. The acute model represents sudden 

change in physiology, for example restriction of blood flow to a specific chamber 

of the heart through blood vessel blockage. The chronic model better represents 

the gradual development of the condition in humans. Our model, the SHRSP rat 

is an example of chronic development of cardiovascular disease and reflects 

some aspects of the progression of this condition in humans (Graham et al. 

2005). Investigation of chronic LVH with the help of animal models allows 

dissecting genetic causes. Expression of microRNAs in the SHRSP and reference 

strain WKY was profiled at two time points distinctly different in relation to 

LVH. At 5 weeks of age there is small but significant, measureable increase in 

the size of the heart of the SHRSP compared to WKY prior to onset of 

hypertension, while at 16 weeks SHRSP exhibits established LVH as well as adult 

BP which is significantly higher in the SHRSP. Notably, the significantly increased 

LVMI is observed before the onset of hypertension thus indicating blood pressure 

independent development of LVH. Significant differences were in the microRNA 

expression profiles in the two strains. Chapter 3 describes in detail how RP and 

LCS analyses were used to identify candidate microRNAs. RP analysis is a non-

parametric statistical test developed for microarray analysis and has been shown 

to outperform other similar methods with low of biological replicates (n<9) 
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(Breitling et al. 2004; Breitling and Herzyk 2005b; Jeffery et al. 2006). The main 

difference between the RP analysis and other common test handling large sets of 

data is that RP allows for multiple corrections using FDR (Deng et al. 2009; Hong 

and Breitling 2008; Koziol 2010). The standard ttest receives a lot of criticism in 

the literature mainly due to variance estimates and issues in handling small 

samples (Breitling and Herzyk 2005b). There are several new modelling methods 

of microarray analysis which take into account the biological nature of the 

sample and perform better in false-positive handling within dataset when 

compared to ttest side by side. Considering the characteristics of both tests it 

was decided to use both for the analysis of the microRNA microarray. Different 

combinations of changes in expression have been looked at – between strains, 

across time, intersects of various comparisons, most importantly data from both 

types of analysis were used to find microRNAs that consistently showed 

significant change. Such approach was successful as it allowed us to identify 

miR-329 as novel candidate microRNA significantly differentially expressed by 

both methods of microarray analysis. Interestingly many of the microRNAs 

previously implicated in cardiovascular disease were not differentially expressed 

between the SHRSP and WKY. At five weeks miR-29 was different along with 

miR-30 family. At the 16 week time point, miR-143 and miR-145 were 

consistently different between the SHRSP and WKY. However, further 

investigation miR-195 was favoured based on the robust evidence for its 

involvement in cardiac hypertrophy; miR-329 based on the performance of this 

microRNA in the statistical analysis of our microarray and novelty; and miR-451 

based on combination of good performance in statistical analysis and reported 

involvement in cardiovascular disease. Although microarray was not fully 

validated by qRT-PCR some interesting expression patterns of analysed 

microRNAs were identified. Our candidate microRNAs were not significantly 

regulated in the SHRSP and WKY at 5 and 16 weeks, except for miR-195 that was 

up-regulated in the SHRSP at 5 weeks. However discovery of differing LVMIs 

between the two strains at this age lead us to turn our attention to an earlier 

time point. When microRNA expression in neonatal hearts was analysed it was 

discovered that all three candidate microRNAs were differentially regulated. 

This comprehensive approach to identifying microRNAs involved in the 

development of LVH in the SHRSP gives our research an advantage over other 

similar studies. It is more common to look at a single time point comparing it to 
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healthy state, compare different pathologies to identify microRNA modulators 

for the specific disease or use acute models. In this thesis however, microRNA 

expression at three distinct time points is investigated. Neonatal hearts will 

provide us with information on early changes, before there are measurable 

differences in LVMI. Although it can be argued that this time point is potentially 

very ‘noisy’ due to ongoing development, it is not unreasonable to propose that 

microRNAs have small yet sufficient effects from an early age, potentially 

predisposing the SHRSP to a larger heart or giving WKY rats certain degree of 

resistance. These possibilities could be exploited using transgenic animals over-

expressing candidate microRNAs. Five week animals represent the time point 

when phenotype is starting to become clearer and other factors usually having a 

central role in the development in LVH, such as hypertension, are limited. The 

16 week old animals are the latest time point to have been analysed, however 

there is a potential to investigate events in even older animals, however interest 

of this research project is in early events and the development of LVH, not the 

processes associated with established CVD. Ideally to investigate the role of miR-

195, miR-329 and miR-451 in the development of LVH in the SHRSP transgenic 

animals would be used with a conditional switch. Alternatively a delivery 

method targeted for the heart can be used. Animals younger than 5 weeks could 

be used to investigate early events and the extent to which these changes have 

influence on later cardiovascular homeostasis. If animals between 5 and 16 

weeks were used in the study it would be a more challenging task of stalling the 

pathology from developing further and potentially reversing any changes to 

norm. 

To investigate pathways affected by differential regulation of specific 

microRNAs, in vitro model systems prove an invaluable tool. Primary cells and 

cell lines are relatively simple systems and are easy to manipulate and assess 

levels of investigated molecules without the additional signalling and complexity 

of interactions present in vivo. Primary cell isolation protocol was successfully 

used to isolate primary cardiac myocytes and fibroblasts from pools of 3-5 day 

old rats of both strains. And although use of primary cardiac myocytes gave 

promising results in experiments with hypertrophic stimulus, it was found that 

microRNA profiles varied significantly between different cell preparations. In all 

cases candidate microRNAs were more highly expressed in cardiac myocytes that 
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fibroblasts, but the inconsistence between heart batches lead us to use 

cardiomyocyte cell line H9c2 for further experiments. Exogenous levels of our 

candidate microRNAs miR-195 and miR-451 were detectable in this cell line; 

however miR-329 was expressed at such low levels that standard methods could 

not detect it consistently. It would be preferable to use in situ hybridisation 

with specific cell markers to assess if any cell type dominates in terms of 

amounts of miR per cell. A regulation pattern of miR-451 upon induction of 

hypertrophy by AngII stimulation was also identified. H9c2 cell line has been 

used by other groups to screen microRNAs involved in hypertrophy and in vitro 

manipulation as a model for cardiac disease. Engelhardt et al have used a 

phenotypic screen to investigate microRNAs involved in regulating cell size in the 

H9c2 model and they have reported pro-hypertrophic potential of miR-22, miR-

30c, miR-30d, miR-212 and miR-365, while miR-27a, miR-27b and miR-133a were 

reported as anti-hypertrophic. This context supports hypothesis that the 

identified candidate microRNAs are involved in the development of LVH. 

With increasing evidence of microRNA involvement in cardiovascular disease, 

there is a growing need to manipulate levels of the changing microRNAs to 

restore healthy phenotype. Depending on the condition, up-regulation or down-

regulation of specific microRNA may be required (Kasinski and Slack 2010; 

Montgomery and van 2011; van Rooij et al. 2008a; van Rooij et al. 2012; van 

Rooij and Olson 2007; van Rooij and Olson 2012). LNA modified pre-miR delivery 

is regarded as safe and effective delivery method both in vitro and in vivo 

(Hullinger et al. 2012). So far injecting LNA modified microRNA into patients has 

not been associated with significant of target effects or toxicity (SantarisPharma 

2013). However targeting delivery to specific organs and tissues can be 

problematic, therefore using delivery vectors such as viral vectors for targeted 

delivery is researched. Complexity of some conditions often requires long-term 

expression of transgene and it remains a challenge to develop or modify existing 

vectors to achieve the goal of efficient targeting, long term expression, safety 

and convenient delivery. Viral vectors are still regarded as efficient vectors of 

gene therapy due to their potential for specific targeting, mediation of higher 

expression levels and long-term expression, and their large capacity for 

transgene (Baker et al. 2005; Nicklin et al. 2003). Significant efforts have been 

put to re-target adenoviral vectors from liver to for example cardiovascular 
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system (Coughlan et al. 2010; Nicklin and Baker 2002). To date, the use of 

adenoviral vectors has been more successful in vitro. Several groups have 

employed adenoviruses to modulate levels of microRNAs in cell models (Care et 

al. 2007; van Rooij et al. 2007). Adenoviruses over-expressing candidate 

microRNAs were produced in an attempt to force phenotypic change in the cells. 

This thesis reports no increase in cell size in the H9c2 cell model upon delivery 

of viruses and subsequent significant increase in microRNA levels. However over-

expression of candidate microRNAs in hypertrophic setting has revealed dose 

dependent effects of these microRNAs. Interestingly, high expression of miR-329 

resulted in reduction in cell size which did not change upon stimulation with 

AngII. Although the initial aim was to investigate a selection of pro and anti-

hypertrophic microRNAs, our data indicate that all our candidates are protective 

in our in vitro model. 

One of the most important aspects of microRNA research is identification of 

targets and pathways affected. Computational algorithms are employed for 

prediction of potential targets. These are based on the notion that microRNAs 

bind their target mRNAs through complementary base pairing and either 

represses translation or targets the mRNA for degradation (Chi et al. 2012; 

Forman and Coller 2010; Grimson et al. 2007). As understanding of microRNA 

targeting has improved and it is now known that binding can occur in any part of 

the mRNA, rather than being restricted to the UTR regions (Chi et al. 2012; 

Forman and Coller 2010; Grimson et al. 2007). Braun et al have reported 

microRNA binding to intronic regions in pre-mRNA to affect elongation speed of 

polymerase II. The algorithms take into account the base pairing, energy 

required for binding and secondary structures of involved molecules. There are 

several open access programs available to generate lists of predicted targets or, 

lists of microRNAs predicted to interact with a specific transcript (target), such 

as TargetScan, miRWalk, miRDB and others. However, historically these 

predictions suffer from poor rates of validation (German et al. 2008; Madden et 

al. 2010). Possibly because of the biological context that cannot currently be 

accounted for such as turnaround rates of both microRNA and the target, and 

both being at the same place at the same time (accounting for temporal and 

special expression of both). Arvey et al report improvement to target prediction 

when turnover of mRNA is taken into account (Arvey et al 2010). Also there is 
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evidence suggesting a cooperative binding of microRNAs to regulate gene 

expression. Essentially, successful target prediction requires more systemic 

approach. This should not discourage the use of target prediction as it is useful 

to filter the results with the help of gene expression data and reported roles for 

predicted gene in the condition that is studied. This approach will help to 

achieve a list of genes that are more likely to be relevant. Multiple prediction 

algorithms (DIANAmT, miRanda, miRDB, miRWalk, PICTAR5, PITA, RNA22, 

RNAhybrid and TargetScan) were used to generate the lists of predicted gene 

targets for each candidate, then gene expression data in the SHRSP and WKY at 

the appropriate time points was used to select the predicted targets that were 

differentially expressed in vivo. The use of IPA software proved invaluable in 

identifying pathways relevant to cardiovascular disease, hypertrophy and cell 

cycle that contained predicted targets. Eventually the list of predicted gene 

targets, relevant to cardiovascular function, was narrowed down to ten (Cdk1, 

Kif23, Sesn1, Bmpr1a, Kank1, Dusp10, JunD, Fstl3, Foxm1, Sin3a, RGD1309748 

and Samd4b) representing targets of all candidate microRNAs. Use of qRT-PCR to 

investigate expression of these genes in the heart tissue of neonatal, 5 and 16 

week old animals revealed dynamic expression profiles at different time points, 

however it was not always in correlation to the expression of candidate 

microRNAs or hypertrophic state of the heart. MiR over-expressing adenoviruses 

in H9c2 cells were used to investigate how the levels of the selected predicted 

targets are affected when the targeting microRNA is over-expressed. Three out 

of ten genes appeared down-regulated by the over-expression of candidate 

microRNA. This might be reflective of true relationship between the microRNAs 

and their predicted targets, however it is possible that these effects are diluted 

by the presence of other targets for the same microRNA. Arvey et al have 

reported the effects of target mRNA abundance on the activity of microRNAs. 

For example there is a significant difference between the number of genes 

predicted as targets of miR-195 and miR-451. If this is reflective of biology, 

over-expression of miR-195 will have a significantly lesser effect on each of the 

targets in the cell, compared to the effects that over-expressing miR-451 will 

have on each of its targets. However, prediction algorithms do not account for 

the abundance of each of the target in the analysed tissue or cells. This could 

mean that only a fraction of predicted targets are relevant to the investigated 

condition depending on tissue specific expression of the gene or targeting 
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microRNA. This can be overcome by use of HITS-CLIP of Argonaute proteins or 

PAR-CLIP, methods that generate biological data based on microRNA-mRNA-

protein complex interactions so that specific pairings can be identified in the 

required setting (Chi et al. 2009; Porrello et al. 2011). It can be used on cells or 

simple organisms such as C. Elegans with resolution of a single nucleotide. 

Porrello et al have used global gene profiling and argonaute-2 

immunoprecipitation methods to identify a number of cell cycle genes as targets 

for miR-195 (Porrello et al. 2011). These methods are also employed in studies 

focusing on viral microRNAs and identifying their targets. Luciferase assay can be 

used as an alternative to HITS-CLIP. It is only useful for small-scale analysis and 

requires cloning of the predicted target or parts of it into a reporter plasmid. 

This would provide important information about microRNA binding sites present 

in the cloned parts of the target gene. 

Overall this thesis provides significant evidence for involvement of microRNAs in 

the development of LVH in the SHRSP. To conclusively prove the importance of 

miR-1995, miR-329 and miR-451 in our model, modulation of levels of these 

candidates in vivo will be beneficial. Over-expression of microRNAs with the help 

of viral vector or possibly LNA modified oligos in the hearts of SHRSP prior and 

post-establishment of LVH will truly test the importance of the miR in complex 

biological system. It would be helpful to profile the expression of our candidate 

microRNAs in human hearts. If in vivo modulation of candidate microRNAs was 

found to have positive outcome in terms of stopping the progress or even 

reversing of the phenotype, and it correlated with expression profiles in human 

health/pathology, the use of these microRNAs for therapy would be substantial. 

As individual microRNAs can regulate expression of multiple genes with related 

functions, modulating levels of that single microRNA can have profound effects 

on the entire gene network and thus modify complex disease phenotypes. 

MicroRNAs have been conclusively proven to be essential players in 

cardiovascular disease. Current record of microRNA based therapies is promising 

and prevention and treatment of cardiovascular disease is set to be achieved in 

near future. 
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