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Abstract 

Model predictive control (MPC) is an advanced control that has found widespread use 

in industries, particularly in process industries like oil refining and petrochemicals. 

Although the basic premise behind MPC is easy to comprehend, its inner workings are 

still generally viewed or regarded as too advanced for actual plant operator 

understanding. This lack of understanding is exposed when MPC performance 

deteriorates sometime after commissioning, as is often the case in some commercially 

operated process plants. Currently operators might have difficulty over reasoning about 

MPC performance degradation and formulating steps to investigate the cause. 

A tool is described that aims to make MPC more transparent to the operators. 

Commonly reported causes of MPC performance degradation are discussed and ways in 

which the operator can recognise them when they occur are outlined. Issues that are 

addressed include: making the set of controlled variables to be used for a given set of 

manipulated variables simpler and clearer; ways to recognise when a MPC controller is 

performing poorly and to identify the source of performance deterioration. An aim is to 

determine under what instances the operator can return the MPC performance to 

previous levels or request for specialist support or simply switch the MPC off. A goal is 

to avoid the kind of often reported situation where the operator gets worried that the 

controller is deteriorating and ends up taking knee jerk actions that cause further 

problems in MPC. 

At the top of the maintenance tool hierarchy is the trends comparison group, where 

MPC reference graphical performance trends are compared with actual graphical 

performance trends counterpart. If any abnormality is observed in these trends, the 
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operator is encouraged to choose an option from a list of preliminary diagnostic 

questions contained in a group below trends comparison group, which best describes 

the observed abnormality. Each abnormality is associated with a list of suspected 

causes. When a suspected cause is chosen from the associated list, the operator is led to 

the symptoms investigation window, which contains scripts detailing steps for 

systematic examination of each symptom, with a view to either rejecting or confirming 

the suspicion. Assisted in the investigation are four background information windows: 

the virtual plant without MPC window, the virtual plant with MPC window, the transfer 

function matrix window and steady state gain, relative gain array (RGA) and relative 

weight array (RWA) window. The windows contain information and guidance that the 

operator might refer to from time to time during symptom investigation. 

Development of the maintenance tool is still at the design stage. The key components 

described have been research implementing MPC on three nonlinear process models, a 

continuous stirred tank reactor (CSTR), an evaporator process and a fluid catalytic 

cracking unit (FCCU). Case studies representing different MPC degradation scenarios 

are simulated, followed by a systematic procedure for diagnosing, isolating and 

recovering from such degradation, based on assumed operator’s perspective and 

expert’s technical reasoning. The knowledge gained from the case studies is used to 

develop an outline of a vision for a data-driven model predictive maintenance tool to 

help the operator make sensible judgements about performance degradation, the form 

and direction of diagnosis and fault isolation, and possibly, the recovery procedure.  
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Chapter One  

Introduction 

1.1 Background 

Industries now operate in an environment where competition for scarce resources is stiff 

and where efficiency of operation and production of high quality competitive products 

can make the difference between economic viability and bankruptcy. This need to 

improve efficiency of operation has led many industries to adopt advanced control 

strategies in their operations. Model predictive control (MPC) is one of the advanced 

controls that has found widespread use in industries, particularly in process industries 

like oil refining and petrochemicals, from where the MPC technology originated in the 

1970s (Qin and Badgwell, 2003). Other industries like chemicals, food processing, pulp 

and paper, mining and metallurgy, aerospace, defence and automotive have also 

embraced the technology (Charos et al., 1991, Qin and Badgwell, 2003, Zanovello and 

Budman, 1999). The MPC is particularly popular because of the ease with which it can 

be applied to multivariable systems, and its ability to handle constraints almost 

effortlessly. 

Unlike traditional control methods like PID control, MPC might still be viewed or 

regarded as too advanced for actual plant operator understanding. This is why, 

unfortunately, industries that have achieved considerable success in the application of 

MPC technology have been the ones that are usually supported by a large group of 

specialised MPC control engineers. These groups of engineers are responsible for issues 

such as the identification of hardware problems that are contributing to poor MPC 

performance, the detection of significant drift in plant dynamics, and the analysis of 
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control systems performance. MPC operation might be opaque to the average desk 

operator, maintenance engineer or even technical operations support. The maintenance 

tool in this thesis offers a partial solution to those industries that do not have the luxury 

of large group of support engineers, who are versed in MPC, and for which control 

actions require attention.  

There is anecdotal evidence to suggest that MPC controller performance sometimes 

deteriorates in commercially operated process plants sometime after commissioning. 

The MPC is commissioned by specialist engineers who visit the plant to set-up the 

MPC. Sometime later, the operators start to observe deterioration in performance. In a 

study by Harris et al. (1999) it was found that as many as 60% of all industrial 

controllers have some kind of performance problem. This is particularly important for 

MPC, which relies on the support of experts in control engineering to help assess, detect 

and diagnose the causes of performance deterioration. 

Further evidence suggests that, even where there are significant levels of MPC expertise 

and experience available, the complexity of the combined process and control system 

can lead to engineers and operators misdiagnosing control problems. Confusing the 

effects of an unmeasured disturbance or a hardware problem with issues relating to the 

MPC system itself can cause operators to interfere with MPC systems in such a way 

that the performance of the controller is actually reduced further (Huang et al., 2000). In 

some extreme situations misdiagnosis might even lead to the termination of MPC. 

Hence, even where high levels of resources and expertise are available, the full 

potential of MPC might never be realised. 

While researchers have devoted considerable attention to the development of robust 

algorithms, in most cases industry is generally more interested in the “control” of the 
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MPC, not its algorithm (Darby and Nikolaou, 2012, Huang et al., 2000). So for 

operators a key question is likely to be “how can MPC be made more transparent to 

them?” Can the answers to questions like: “which set of manipulated variables (MVs) 

should be used for a given set of controlled variables (CVs)” be made simpler and 

clearer to them? How can they realise when a MPC controller is performing poorly and 

how can they identify the source of performance deterioration? So when performance 

deterioration occurs, a key decision for operators might be to decide whether they 

themselves can return the MPC performance to previous levels, whether they require 

specialist support or whether they should simply switch the MPC off. 

MPCs are most commonly employed in a supervisory capacity over lower level 

regulatory control. Here critical issues include the consideration of how the 

configuration of lower level regulatory controllers might affect the performance of the 

MPC, in terms of meeting its control objectives, satisfying constraints and robustness. 

The issues of variable selection (pairings of CVs and MVs) and the use of cascade 

control can have a far reaching impact on the performance of a MPC. As Darby and 

Nikolaou (2012) observed about the configuration of regulatory control: “design 

decisions have a far bigger impact on the success of an MPC project than the 

performance of the MPC algorithm itself”.  

1.2 Spirit behind the maintenance tool 

Over the years there have been many studies on control performance assessment 

methods covering univariate, multivariate and model based systems (Harris and 

Seppala, 2002, Harris et al., 1999, Jelali, 2006, Qin, 1998, Qin and Yu, 2007). The 

studies have led to the development of methods and metrics, which are mainly 

statistically based, for evaluating control performance. These include the minimum 

variance benchmark (comprising autocorrelation test, cross correlation test, closed loop 
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potential, performance index etc.), power spectrum analysis, sensitivity and 

complimentary sensitivity (frequency domain method) and principal component 

analysis. Other methods and metrics which were developed to specifically address 

multivariate systems like the MPC include the historical benchmark, the linear 

quadratic Gaussian (LQG). 

Few actual industrial applications of these methods in monitoring, assessing and 

isolating faults in MPC have however been reported. Patwardhan et al. (1998) applied 

multivariate performance measures to isolate the causes of poor controller performance 

in an industrial plant (propylene splitter DMC MPC) and suggested remedial actions. 

Gao et al. (2003) used minimum variance benchmark to evaluate the performance of 

two industrial MPCs. Jiang et al. (2011) used a variety of methods, including model fit 

index, to analyse the performance of two industrial MPCs. 

Huang et al. (2000) investigated the poor performance of MPC on an industrial plant 

without using any of the assessment methods and metrics mentioned earlier. Their 

approach was completely data-driven. They went through a process of systematic 

diagnosis: studying process input and output trends as well as their spectrum plots, and 

also checking and eliminating suspected causes of poor performance in turn until the 

root cause of the poor performance of the MPC was identified. Their approach is devoid 

of complex statistical analysis and might appear more appealing to an average operator. 

The fact that MPC is based on time-varying objectives and that the output trends during 

normal operations are usually affected by operating conditions have made generalizing 

most of the assessment methods and metrics for MPC difficult. For this reason 

Patwardhan and Jay (1997) suggest an assessment framework which “allow the user to 
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combine the operating data and experience (as they are gathered) with the model in a 

synergistic manner for gradual improvement in the efficiency”. 

MPC is normally configured and optimised for a specific plant. This configuration 

might include an internal model, cost function, constraints, tuning parameters, set-

points, manipulated variables, controlled variables, measured and unmeasured 

disturbances, valves and regulator settings. Over a period of time however the 

conditions for which the MPC was initially configured might be no longer valid, 

leading to deterioration in the performance of the MPC. 

Anecdotal evidence suggests that when faced with perceived MPC performance 

degradation, the operator usually takes knee-jerk actions which may further compound 

the problems. It is easy to understand why this is usually the case: MPC design is often 

opaque to the operator. Apart from the approach of Jiang et al. (2011) and that of Huang 

et al. (2000) before it, other works on controller performance assessment, though 

contributing immensely to the understanding of the issues involved might have 

alienated a large number of operators who are involved in the day to day operation of 

MPC implementations. How does the operator avoid the kind of often reported situation 

where he gets worried that the controller is deteriorating and ends up taking knee jerk 

actions that cause further problems in MPC? In what ways can the operator be provided 

with a tool which simplifies the basic MPC principles to him and enables him to make 

informed interventions for minor cases and be aware of when to seek expert advice? 

What are the commonly reported causes of MPC performance degradation and how 

does the operator recognise them when they occur? What steps may be taken by the 

operator to recover from such degradations? 
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The above are the more pertinent questions that bother an operator. This thesis seeks to 

provide answers to the above questions. Using models of nonlinear plants as case 

studies, the thesis outlines tools to enable the operator to have more informed 

interactions with the controllers and to facilitate detection of common MPC problems 

like improper controller configuration and model plant mismatch. The focus of the 

thesis is on the vision, rather than on the implementation. There has been insufficient 

time to produce a software tool, so the main contribution here is in the procedures that 

will be outlined in Chapters 4 and 5. These procedures have been developed by 

studying MPC performance on a number of process simulations that were found to 

exhibit particularly problematic behaviour. Chapter 3 describes these simulations before 

they are used in Chapters 4 and 5. 

1.3 MPC in the Process Industries 

Model predictive control (MPC) belongs to the class of controllers that use explicit, 

internal (linear or non-linear) models of a plant to decide how to drive its output 

variables to their set points. Though it may be desirable to use theoretical models based 

on the chemistry and physics of a plant, in most applications this is impracticable 

because of the complexities of the real life processes involved. For most practical 

purposes internal models are usually obtained empirically through the process of system 

identification. System identification involves adding special excitation signals to the 

inputs of a plant at steady state. The resulting deviations of the plant outputs, from their 

steady state values, are recorded and then relevant model plant models are estimated 

using direct methods or statistical packages. The excitation signals are of different 

types, the commonest are step signals and pseudorandom binary signals (PRBS). There 

are currently many statistical methods for estimating plant models from excitations. 

They include prediction-error minimisation (PEM) and subspace state space system 
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identification (n4sid). The MATLAB system identification toolbox contains these 

packages; it can be used to estimate low order transfer function (TF) models, state space 

(SS) models, and many types of input-output difference models (AR, ARX, ARMAX, 

Box–Jenkins etc.). 

MPC is basically formulated as an optimisation problem. It uses current plant 

measurements, the current dynamic state of the process, models, and process variable 

targets and limits to calculate future changes in the dependent variables, while it 

simultaneously strives to ensure that constraints on its inputs and outputs are not 

violated. The calculations are done in a moving or receding horizon manner. The 

optimum control moves necessary to drive a plant to a reference point within a given 

prediction horizon are calculated at specific time intervals. Only the first of the resulting 

control moves, which spans a control horizon, are actually sent to the plant. This 

process is repeated at every time interval. By far the most convincing analogy for MPC 

is that given by Wang (2009) where it was stated that “The day begins at 9 o’clock in 

the morning. We are, as a team, going to complete the tasks of design and 

implementation of a model predictive control system for a liquid vessel. The rule of the 

game is that we always plan our activities for the next 8 hours work; however, we only 

implement the plan for the first hour. This planning activity is repeated for every fresh 

hour until the tasks are completed.” 

The optimisation problem usually incorporates constraints on both inputs and outputs. 

Usually, plants run more profitably and efficiently when they are operated at or near 

constraints. Constraints can arise due to the need for profit optimisation (increase in 

throughput or decrease in inventory and/or operating expense), requirement for high 

quality products, limits in equipment operation range (valves and other actuators 
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saturation or slew rates), legislative and regulatory requirements (e.g. pollution control) 

and safety requirements (e.g. the need not to exceed surge compressors, etc.). 

1.4 Role of Control Performance Assessment and Faults Detection 

and Diagnosis 

Model based controllers like the MPC are characterised by many assumptions and 

approximations in the specification of the model, the measured and unmeasured 

disturbance dynamics, the choice of input and output variables, and the choice of input 

and output constraints, that make it almost an impossibility to have perfect MPC. These 

are the factors that most often lead to performance deterioration or complete 

breakdown. 

When MPC performance deterioration occurs, one of the major tasks is to establish if 

the deterioration is due to regulatory control, supervisory control or whether it is 

associated with another cause (Schäfer and Cinar, 2004). Simply observing the trends of 

controller inputs and outputs may be sufficient to detect degradation and even diagnose 

the cause of poor performance in some cases. Many control performance assessment 

methods have been approached from the point of view that the control systems are 

complex and that the trends of the raw data from the plant often show complicated 

response patterns resulting from the presence of disturbances, noise, time variant 

response phenomena and nonlinearities (Schäfer and Cinar, 2004) and as such complex 

assessment methods are required to handle such situations. The fact remains that MPCs 

often degrade and some of the diagnostic steps contained in the assessment methods are 

beyond the comprehension of most operators. 

Although extensive research has been carried out into MPC issues such as robustness, 

improved prediction algorithms, and closed loop stability, very little has been done on 
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issues that directly address the operator’s biggest concern: how do I know what is 

responsible for a deterioration in my MPC performance, and how do I possibly recover 

from this situation? The causes of deterioration in industrial applications are many and 

have been widely reported in literature. Common causes of poor performance reported 

in industrial contexts include: 

a) controller design (e.g. wrongly specified measured disturbances, improper 

controlled variable and manipulated variable selection, tuning parameters etc.) 

b) excessive process drift (leading to model/plant mismatch) 

c) large and unmanageable measured and unmeasured disturbances 

d) hardware problems involving regulatory controllers and valve degradation 

Chapters 4 and 5 describe procedures that the operator might follow to detect and 

isolate each of these causes.  

1.5 Outline of the Maintenance Tool 

This maintenance tool is intended to reduce this opaqueness and improve the operator’s 

confidence and understanding in his interaction with the installed MPC. The MPC 

envisioned here enables the operator to reason about key features of their MPC and 

more importantly, about its degradation in performance. The tool allows the operator to 

interact with offline data, and to carry out what-if simulations of scenarios of possible 

MPC problems. 

The tool includes features that enable the operator to compare actual performance 

trends with previously defined reference trends. From offline plant data obtained during 

commissioning or during a period of good performance, the tool plots reference 
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graphical performance (RGP) trends. Actual performance data are obtained periodically 

from the plant and are used to generate actual graphical performance (AGP) trends. 

This comparison is used in conjunction with a set of diagnostic simulations that relate to 

possible MPC problems, to isolate causes of poor MPC performance. The diagnostic 

procedure uses what if simulations performed on the linear model, combined with 

carefully structured questions, based on knowledge of the behaviour of MPC for some 

performance issues, to lead the operator to the cause of a problem. From the comparison 

the operator is expected to select from a structured list of diagnostic questions. When a 

question is selected, the operator is led to a list containing underlying symptoms 

associated with the selected question. Again by making a choice from this list of 

suspected symptoms, the operator is guided through a script containing the procedure 

for investing the symptom, with a view to either confirming or rejecting the suspicion. 

If the suspicion is confirmed, hopefully the recovery procedure should be obvious to the 

operator. 

In carrying out the investigations, the operator is assisted by a number of background 

information tools which help as refreshers, guides and tutors when there is a need to 

embark on a certain diagnostic procedure or to explain some observed trends. Foremost 

among the background information tools is a virtual plant of the real plant on which 

MPC, similar to the one on the real plant, is implemented. The assumption is that a 

linear model of the plant under consideration exists, and that this model is accessible to 

the operator. Assuming that a linear model of the plant exists, the maintenance tool uses 

this model together with data on the actual MPC settings (prediction horizon, control 

horizon, constraints etc.) to mirror MPC performance on the assumption that the plant 

itself is linear.  



11 
 

Other components of the background information tool include steady state gains, 

relative gain arrays and relative weight arrays. It also includes the transfer function 

matrix of the linear model, and the step response plots of the linear model and/or of the 

real plant at commissioning. In cases where the transfer function matrix of the linear 

model does not exist, Appendix A describes how an approximate transfer function 

matrix model may be obtained by the operator. 

1.6 Methodology 

The research work centres round simple benchmark models of nonlinear process plants, 

which serve as a virtual world to mimic the real world of plant operations. The various 

internal models of the various MPCs used to control the various nonlinear plants are 

based on first order and second order transfer functions obtained from the identification 

of the plant simulations. These linear representations are adopted because they are 

defined primarily by terms like time constant, damping coefficient and natural 

frequency; terms to which most plant operators may find it easier to relate, as compared 

to e.g. terms that relate to state space or input-output representations. 

The research accommodates the common industrial practice of employing MPC in a 

supervisory capacity over regulatory control. This practise is advantageous in that the 

regulatory controllers can be relied upon to perform in a “fall back” position if the MPC 

is switched off due to degradation. In so doing, issues surrounding the effect of lower 

level regulatory controllers on MPC performance can be studied. The MPCs 

implemented on the plant simulations are based on best performing algorithms sourced 

and obtained from literature; all implementations are written by the author. One of the 

reasons for adopting this approach is to avoid opaqueness associated with available 

implementations of MPC. The other reason is the appreciation of the fact that if one 
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must diagnose and isolate problems related to MPC, one must understand very well 

MPC algorithms developments. 

The program codes for the three different forms of MPC have been written. The first is 

the one based on the finite impulse/step response format (dynamic matrix control), the 

second is the one based on the transfer function format (generalised predictive control) 

and the last is based on the now very popular state space format. 

The MPC in the maintenance tool is unlikely to have all the sophistication of that 

supplied by a vendor and installed in the real plant: the aim is to provide something that 

is adequate as a diagnostic tool, i.e. exhibits the correct symptoms when it degrades. 

The assumption is that this requirement is likely to be independent of the sophistication 

of the actual MPC implementation. 

1.7 Novel Aspects of this Thesis  

The original contributions in this thesis are listed below. 

1) A vision for an operator friendly MPC maintenance tool. The maintenance tool 

proposed is interactive and flexible: many windows guide and inform.  

2) The use of process plant nonlinear models in the maintenance tool. Maintenance 

tool development traversed many stages; an earlier stage resulted in the 

presentation of a paper entitled “Recovering from a gradual degradation in MPC 

performance”, at the ADCHEM 2012, in Singapore, in July, 2012 

3) A transfer function matrix for a FCCU, a complex nonlinear model involving 

many input-output pairs that exhibit inverse relationships. 

4) A simple method for obtaining approximate first and second order transfer 

functions, including those exhibiting inverse relations, for an input-output pair. 

This simple method was used to obtain the transfer function matrix for the FCCU. 
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5) The notion of a relative weight array, which might assist operators in MPC 

diagnosis. 

1.8 Summary 

This chapter presents a case for the necessity and significance of the research as well as 

presenting an outline of the whole thesis. Brief background of model predictive control, 

its relevance in process control as well as its peculiarities in terms of performance 

maintenance, and the challenges this poses to MPC operators were discussed. The 

methodology for the research involved adoption and simulation of three nonlinear plant 

models, writing MPC program codes in MATLAB, implementing MPC on the 

nonlinear models, inducing MPC faults into the MPC implementations, and making the 

faults isolation procedure very transparent. 
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Chapter Two  

Review of Linear MPC  

2.1 MPC Principles and Fundamentals 

MPC has been particularly popular (Maciejowski, 2002) because unlike conventional 

controllers, it can: 

a) handle multivariable control problems naturally, 

b) account for actuator limitations 

c) allow operation close to constraints 

MPC however has certain drawbacks that are not widely reported. Some of these 

limitations include (Hugo, 2000): 

a) operational difficulty; 

b) high installation and maintenance cost; 

c) lack of flexibility (plant specific); 

d) sluggish disturbance rejection 

MPC uses an internal model to predict future process behaviour and in particular a 

prediction equation for a given prediction horizon is constructed from it. The prediction 

equation is combined with set-point information to formulate the necessary objective 

function, or cost function, for a given control horizon. This cost function is then solved 

to obtain an optimal control law. If the objective function does not include constraints, 

an explicit solution for the optimal control moves can be obtained using the least 

squares methods. If constraints are incorporated however, the optimal control moves are 

obtained as a solution to the resulting quadratic programming (QP) problem. There are 
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a number of methods available for solving QP problems like the gradient projection 

method, the interior point method and the active set method. The algorithms for 

obtaining a numerical solution are also varied. For example Hildreth’s quadratic 

programming procedure (Luenberger, 1984, Wismer and Chattergy, 1978) in Wang 

(2009) offers a simple algorithm for the solution of the QP problem when it is 

expressed as a dual problem to the original primal problem. 

Internal models may be linear or non-linear. When a linear internal model is used, the 

MPC is referred to as linear MPC. The form of the internal model determines the nature 

of the prediction equation, and hence the objective function and the control law. The 

basic cornerstone of MPC control calculations is to determine, at a sampling instant k, 

(at regular sampling period Ts) a sequence of M optimal control moves 

([                       ]) that ensures that P predicted outputs 

([ ̂        ̂         ̂     ]) tracks a set-point trajectory ([                       ]) 

optimally (figure 2.1). P is the prediction horizon and M is the control horizon. 

 
Figure 2.1: Basic Concept of Model Predictive Control (Seborg et al., 2010) 
 



16 
 

The MPC uses information about measured outputs (y), measured disturbances (v), set-

points (s) and possibly constraints at instant k (figure 2.2) to make the decision about 

the optimal set of control moves. Though M control moves are calculated at every 

sampling time, only the first control move (u) is sent to the plant as the manipulated 

variable. It should be noted that the unmeasured disturbance d is not known directly, 

although it might be inferred from plant outputs. For this reason some model-

predictive-controllers incorporate explicit unmeasured disturbance models to account 

for the effect of the unmeasured disturbances and/or to account for model plant 

mismatch. In this way the controller is designed to provide feedback compensation for 

such unmeasured disturbances. In contrast, the measured disturbance (if it exists) is 

known to the MPC. The MPC can then provide feed-forward compensation for such 

disturbances to minimize their impact on the outputs. 

 
Figure 2.2: Signal Flow of a MPC (adapted from Bemporad et al. (2013)) 

2.2 Development of MPC 

MPC has undergone a great deal of transformation and re-development to arrive at how 

it is currently perceived in terms of terminology and scope (algorithms formulation, 

constraints handling, robustness, applications etc.). Earlier model based control 

methods such as LQR (linear quadratic regulator), MVC (minimum variance control), 

MAC (model algorithmic control), IMC (internal model control), MOCCA 

(multivariable, optimal constrained control) and MPHC (model predictive heuristic 
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control) have features of what is now generally defined as MPC (Li et al., 1989). Most 

authors who have reviewed the history of MPC (Froisy, 1994, Froisy, 2006, 

Maciejowski, 2002, Qin and Badgwell, 1997, Qin and Badgwell, 2003) seem to agree 

that the first publications on the application of MPC can be attributed to (Richalet et al., 

1976, Richalet et al., 1978). The reviewers however mostly concede that the idea of 

MPC was not completely new at that time. For example Qin and Badgwell (2003) cite 

previous works of Propoi (1963) and Lee and Markus (1967). The same paper (Qin and 

Badgwell, 2003) reported that Shell Oil applied a form of MPC in 1973. 

Richalet et al. (1976, 1978) referred to their predictive controller as Model Predictive 

Heuristic Control (MPHC). It is heuristic in the sense that the MPHC techniques were 

based on the developers’ experience and intuition, and the solutions were not always 

guaranteed to be optimal. Input and output constraints were not defined explicitly. It did 

have some of the features of the current MPC like a quadratic performance objective, 

the use of a reference trajectory and a finite prediction horizon. The MPHC algorithm 

was implemented solution software referred to as Identification and Command 

(IDCOM). IDCOM used a discrete-time finite response (FIR) model as the MPC 

internal model. 

The work of Cutler and Ramaker (1980) was reported soon after. Cutler and Ramaker 

(1980) proposed an unconstrained MPC algorithm referred to as Dynamic Matrix 

Control (DMC) in which the internal model was based on the step response model of 

the plant. Like in IDCOM, the DMC algorithm used a quadratic performance objective 

over a finite prediction horizon. DMC incorporated improved algorithms for computing 

the optimal control signal through the solution of a linear programming (LP) problem, 

especially for unconstrained problems. Input and output constraints were not explicitly 
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included in the algorithm, but were still handled on an ad hoc basis. To address this 

shortcoming, Cutler et al. (1983) published an improved version of DMC, which they 

termed Quadratic Dynamic Matrix Control (QDMC). Unlike DMC, QDMC had an 

explicit input and output constraint formulation in its algorithm, which was presented in 

the form of a quadratic program (QP). The optimum control inputs were computed as 

the solution of the QP problem. Output constraints were formulated in terms of soft 

constraints. Disadvantages of the QDMC includes the fact that it did not provide for a 

means of handling an infeasible solution, lack of robustness, (fault intolerance); neither 

did it provide a means of ranking the soft constraints in order of importance. 

Infeasibility might also occur when there were more controlled variables than 

manipulated variables in a set-point tracking MPC. 

The development of MPC, with improved algorithms to overcome practical issues 

(infeasibility, robustness, soft constraints handling etc.), then surfaced in industrial 

applications of MPC. MPC applications included IDCOM-M (multivariable IDCOM), 

HIECON (Hierarchical Constraint Control Technology), SMOC (Shell Multivariable 

Optimizing Controller), RMPCT (Robust Multivariable Predictive Control) and 

Connoisseur. IDCOM-M (Froisy and Matsko, 1990, Grosdidier et al., 1988) has a 

means of handling infeasibility by incorporating a controllability supervisor which 

screens out ill-conditioned plant subsets. It also incorporates multiple quadratic 

objective functions: a quadratic output objective function followed by a quadratic input 

objective function. It explicitly specifies hard and soft constraints in its objective 

functions, with hard constraints ranked in order of priority. It also employs a new 

concept that of the use of coincidence points, which are chosen from a subset of the 

reference trajectory. The SMCA (set-point multivariable control architecture) is the 
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results of combining the identification, simulation, configuration and control of 

IDCOM-M related products into a single package (Qin and Badgwell, 2003). 

HEICON is a predictive control product, developed about the same time as IDCOM-M, 

with many of the IDCOM-M features. The HEICON algorithm however has a 

distinctive feature: it uses a predictive control method called Functional Predictive 

Control (PFC), where the future input is assumed to be a linear combination of a few 

basis functions (Maciejowski, 2002). The basis function is usually a polynomial of 

order c, where c is a tuning parameter. 

Different types of MPC use different types of internal model: the transfer function or 

input-output difference equation was reported in the 1980s (Clarke et al., 1987, Peterka, 

1984). This class of MPC is referred to broadly as Generalised Predictive Control 

(GPC). The two popular products in this category are RMPCT and Connoisseur. 

RMPCT used the auto regressive with exogenous input (ARX) model as internal model, 

while Connoisseur used the auto regressive moving average with exogenous input 

(ARMAX). RMPCT implements zone or funnel control, instead of set-point tracking. 

Like IDCOM-M, it uses the QP objective function to calculate future inputs, and has 

two levels of control: one for set-point optimization, and the other for optimum input 

calculation. It allows blocking of predicted moves, and incorporates strategies to handle 

ill-conditioning. One distinctive feature is that it could adjust the internal model by 

evaluating ISE (Integrated square error) values of alternatives. Connoisseur also uses 

quadratic cost function, with an explicit definition of input and output constraints in the 

objective function. It has a feature for input blocking too. 

MPC algorithms incorporating linear state space internal models were introduced by the 

late 1980s. The first account and description of this form of MPC (Qin and Badgwell, 
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2003) were contained in Marquis and Broustail (1988) and Yousfi and Tournier (1991). 

Their publications described a form of MPC they referred to as the Shell Multivariable 

Optimizing Controller (SMOC). The state space internal model could accommodate 

problem dynamics easily: integrating, stable and unstable. SMOC incorporated many of 

the now standard features of MPC: an explicit disturbance model to describe the effect 

of unmeasured disturbance, a Kalman filter to estimate the states of the plant, an 

explicit specification of input and output constraints, soft constraints ranking, 

infeasibility handling, the solution of optimum control moves via solution of QP 

problem and the ability to handle a wide range of processes (stable, unstable, 

integrating). Further publications and improvements to the state space MPC algorithms 

followed as shown in Ricker (1991), Rawlings and Muske (1993), Rawlings (2000), 

Maciejowski (2002), Wang (2009) and many others. 

Over the last decade or thereabouts, there has been a great deal of transformation in the 

MPC landscape: many MPC product vendors have merged and MPC products have 

been developed to incorporate many more of the now standard MPC features and 

terminologies. The trend has been towards the development of a product comprising 

identification, control, assessment, monitoring and diagnosis as well as robustness. The 

MPC products now incorporate advanced graphical user interfaces. Some of the current 

leading developers and vendors of MPC technology are Aspen Technology 

(Aspentech), Honeywell, Shell and ABB. 

Aspentech markets DMCplus® (Aspentech, 2013). As currently marketed the MPC 

product has many additional capabilities . It can automatically identify and detects 

performance issues with models and pinpoints the areas of the model needing attention. 

It can also maintain robust controller behaviour during background step testing, through 
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the use of adaptive process control. It can collect suitable data for modelling using 

small amplitude testing while still maintaining optimizing control. It has the capacity to 

monitor issues like valve saturation, PID mode changes; process upset detection, and 

bad measurement readings, and can detect and repair co-linearity. 

3dMPC is a software suite developed and marketed by ABB Automation (ABB, no 

date). The latest version boasts of improvements  which include on-line components for 

control and operator interaction as well as off-line components for controller 

specification, modeling, tuning and analysis. It has the ability to independently design 

set-points and feedback/ feed-forward parts of the controller, thus giving great design 

flexibility and robust process handling more accurate controller commands. It 

incorporates the use of performance variable methodology to enable the controller to 

sense changes in process conditions that cannot be measured directly, and initiates 

countermeasures long before normal MPC technology can detect the variations. An on-

demand adaptation which permits automatic adaptation of the controller to suit changed 

process conditions, while still maintaining overall control of the production is part of its 

improvements. 

The MPC suite developed and currently marketed by the Shell Group is called Pro 

Technology. Pro Technology comprises of AIDA
Pro 

(Advanced Identification and Data 

Analysis), for process identification, MD
Pro

 (monitoring and diagnosis), for MPC 

performance monitoring and diagnosis, SMOC
Pro

 (Shell Multivariable Optimizing 

Control), for optimum control calculations, and RQE
Pro

 (Robust quality Control) to 

handle issues of robustness, fault intolerance etc (Shell, 2004). 

Honeywell’s markets the integrated control suite is called Profit Controller (Honeywell, 

no date). Profit Controller comprises of the Honeywell Range Control Algorithm 
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(RCA) and the Robust Multivariable Predictive Control Technology (RMPCT). The 

RCA minimizes the effects of model changes or uncertainty while determining the 

smallest process moves required to simultaneously meet advanced process control and 

optimization objectives. The RMPCT helps to stabilize complex processes to reduce 

operating upsets and drives processes to their optimal operating level. Its increased 

robustness enables the controller to stay on-line over a wider range of operating 

conditions, resulting in higher and more profitable operations. 

Table 2.1 below gives a summary of the popular types of MPC that have been 

developed or are currently being marketed. The summary highlights key features of 

each MPC in terms of the type of internal model used, the constraints handling 

capabilities, the types of objective functions and their robustness. 

2.3 MPC Internal Models 

All the currently available MPC designs are based on one of three general approaches, 

each of which is determined by the type of internal model used in its formulation. The 

type of internal model affects the specification of the prediction model, and by 

extension the objective functions as well as the algorithm for obtaining the optimum 

control law. The three types of internal model are the finite impulse response/step 

response model, the transfer function (also called difference equation or input-output) 

model, and the state space model. The following sub-sections give brief descriptions of 

the three MPC approaches, and summarises the strength and weaknesses of each 

formulation. 
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Table 2.1: Summary of major MPC products (adapted mainly from (Maciejowski, 2002, Qin and Badgwell, 2003) 

S/N Product Model Features 

1 IDCOM 

Identification and 

Command 

(1976) 

Impulse 

response 

 Quadratic objective function over a finite prediction horizon 

 Input and output constraints included in the formulation 

 Optimal inputs computed using heuristic iterative algorithm 

 Use of reference trajectory  

2 IDCOM-M 

(1988) 

Impulse 

response 

Offshoot of IDCOM, with the following improvements: 

 Controllability supervisor to screen out ii-conditioned plant subsets 

 Multiple objective function (quadratic output objective function followed by quadratic input 

objective function) 

 Provides for hard and soft constraints explicitly in the objective function 

 Rank outputs in order of priority 

 Calculates one single move for each input 

 Use of coincidence points to control subsets of future points in time 

 Optimal solution computed as quadratic problem. 

 Provides move suppression 

3 DMC 

Dynamic Matrix Control 

(1980) 

Step 

response 

 Developed by Shell Oil 

 Quadratic performance objective function over a finite prediction horizon 

 Set-point tracking 

 Constraints not explicitly specified in the objective function, but done ad hoc 

 Optimal solution computed as least squares problem. 

 For stable systems only 

3 QDMC 

Quadratic Dynamic Matrix 

Control (1983) 

Step 

response 

Offshoot of DMC, with the following improvements: 

 Input and output constraints explicitly specified in the objective function 

 Optimal inputs computed as solution to a quadratic problem. 

4 DMC-plus Step 

response 

 

Offshoot of DMC and QDMC, with the following improvements 

 Can be extended to accommodate integrators 

 Control law computed in two steps, both as solutions to LP problems 

 Constraints are imposed through variable penalty weights approach 

 Infeasible solution handled ad hoc through the use of “equal concern error” concept  

 Improved identification technology 
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S/N Product Model Features 

5 RMPCT 

Robust Multivariable 

Predictive Control 

Technology 

ARX   Developed by Honeywell 

 Implements the zone or funnel control, instead of set-point tracking 

 QP objective function to calculate future inputs 

 Two levels of control – one for optimization, and the other for control 

 Allows blocking of predicted moves 

 Incorporates strategies to handle ill-conditioning 

 Can adjust the internal model by evaluating ISE values of alternatives 

6 Connoisseur ARMAX  Developed by simulation sciences 

 Uses a quadratic cost function 

 Explicit definition of input and output constraints in the objective function 

 Incorporates input blocking 

 Optimization of set-points via linear programming 

7 HIECON 

Hierarchical Constraint 

Control 

  Based on the principles as PFC (treats future inputs as a linear combination  of a few simple basis 

function, usually polynomial 

 Incorporates fully constraint optimization 

 Multivariable control 

8 SMOC 

Shell Multivariable 

Optimizing Controller 

State space  Developed by shell 

 Can handle stable, unstable and integrating processes 

 Use of Kalman filter to estimate plant states  

 Input and output constraints defined explicitly, and optimal inputs obtained through solution to QP 

problem 

 Use of an explicit unmeasured disturbance model 

9 3dMPC State space  Developed by ABB 

 Quadratic cost function 

 Hard and soft constraints 

 Can prioritize output constraints 

 Incorporated direct identification using subspace method 
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2.3.1 Finite Impulse/Step Response MPC 

Finite Impulse/Step Response MPC use linear discrete time empirical finite 

impulse/step response models in its formulation. The step response model is given as: 

           ∑            
   
               …(2.1) 

where        is the output variable at the (k+1)-th sampling instant;    is the initial 

value;           denotes the change in the manipulated input from one sampling 

instant to the next;    are the step response coefficients for the sampling instants 

between 1 and N. N is the number of step response coefficients used for the model. For 

the purpose of MPC application, the numbers of step response coefficients required are 

chosen large enough to cover at least 99% of the open-loop settling time of the plant. 

The normal value of N lies between 30 and 120 sampling instants. This consideration 

logically affects the choice of sampling time (Ts) for the system. Recent discussions on 

the development of algorithms for step response MPC formulation are given in 

Hokanson and Gerstle (1993), Huang and Kadali (2008) and Seborg et al. (2010). 

Step response MPC formulation is appealing because the step response based internal 

model is noted to give transparent descriptions of process time delays, response times 

and gains in a manner that cannot be accurately described by either of the other 

approaches. The approach is intuitive and clearly reflects the effects of each 

manipulated variable. Its major disadvantage is that it is limited to stable processes and 

processes without integrators. 

2.3.1 Transfer Function MPC 

The transfer function MPC formulation is based on the transfer function model. The 

transfer function models used in MPC are the linear polynomial input-output parametric 

difference equations of the form: 
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    (   )

      
   

 (   )

      
   …(2.2) 

where 

   is the white noise sequence (the stochastic disturbance input).  

d is the pulled out input-output delay. 

      ,       ,       ,        and        are polynomials with the back shift 

operator     defined as follows: 

            
      

         
    

             
      

         
    

            
      

         
    

            
      

         
    

            
      

         
    

In equation 2.2, if       ,        and        are each equal to unity, the resulting 

difference equation is referred to as the autoregressive with exogenous input (ARX) 

model. When both        and        are each equal to unity and all the other terms 

are present, the resulting different equation is called autoregressive moving average 

with exogenous input (ARMAX) model. An autoregressive (AR) model is obtained 

when       ,        and        are each equal to one and        is equal to zero. 

MPC based on a transfer function formulation is suitable for stable and unstable 

processes, and typically requires fewer past inputs as compared to step response MPC. 

Transfer function MPC requires n past output data and (n+d) past input data (where n is 

the order of the model, and d is the input delay) for its prediction. Clearly the choice of 

n will influence model fidelity, so some thought needs to be applied when choosing the 

order. For algorithms for MPC based on transfer functions Camacho (1993), 

Maciejowski (2002) and Camacho and Bordons (2004) give derivations. 
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2.3.2 State-Space MPC 

The state space MPC formulation is based on a state-space model, usually in the 

discrete time format. Discrete time state space models are of the form: 

             …(2.3) 

           …(2.4) 

where x is a column vector of dimension n (number of states), u is a column vector of 

dimension q (number of inputs), and y is a column vector of dimension m (number of 

measured outputs). A is referred to as the state (or system) matrix, B as the input matrix, 

C as the output matrix, and D as the feed-through (or feed-forward) matrix. 

Using state space models, multivariable processes can be represented in a straight 

forward manner and a large collection of modern control theory and analysis method 

can be applied easily to state space MPC algorithm development. Despite its 

widespread use, state space MPC has attracted some criticisms: one obvious criticism is 

that certain processes may require very large state, input or output matrices to fully 

describe them, and that this may lead to numerical problems during computations. 

Another criticism is that a state space model is not very transparent: it is most times 

difficult to see what the figures are saying, except for very experienced engineers. 

Another criticism is that the state space MPC require more complicated prediction and 

optimal control calculations, with the additional necessity of including an observer 

when the states are not accessible (Huang and Kadali, 2008). Some researchers are now 

showing that some of these criticisms are not completely justified. For example 

Maciejowski (2002) showed that complicated multivariable step response model with 

input delays can be converted to equivalent state space model. 
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State space MPC formulations are well documented. See for instance Garcia et al. 

(1989), Muske and Rawlings (1993), Kothare et al. (1996), Camacho and Bordons 

(2004) and Borrelli et al. (2005). 

2.4 MPC Input Objective function 
Fundamental to MPC is the calculation of a set of optimum control moves at every 

sampling interval. This set of optimum control moves is the solution of an appropriately 

formulated quadratic objective function. The quadratic objective function, when written 

in the vector-matrix notation, is of the form: 

        
  (        ̂     )

 
 (        ̂     )  (     )

 
 (     ) ...(2.5) 

where: 

       is a vector of set points for all outputs within prediction horizon 

 ̂      is a vector of all predicted outputs within the prediction horizon 

  and   are diagonal matrices containing the output and input weights respectively. 

The solution of the quadratic objective function   is the set of       (within a given 

control horizon) which ensures that the error between the set-point        and predicted 

outputs  ̂      is a minimum. 

In the quadratic objective function of equation 2.5, a reference trajectory vector        

is commonly used in place of the set-point trajectory        vector. This ensures that the 

predictions make a gradual transition from the current output      to the set-point 

      . The path of the reference trajectory can be defined as an exponential approach 

(Maciejowski, 2002), though there are many other possible definitions (Qin and 

Badgwell, 2003, Seborg et al., 2010). 
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Using the exponential approach, the reference trajectory for multiple input, multiple 

output (MIMO) system with m outputs and q inputs, and prediction horizon P is defined 

as: 

           
 
       (    

 
)                      ;               …(2.6) 

where    is a filter term for each output and it gives a measure of the speed of response 

of the reference trajectory towards the set-point. Generally,       . 

The reference trajectory equation 2.6 can be compactly written in vector-matrix 

notation as: 

                   …(2.7) 

where 
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];  and     

[
 
 
 
  

    

   
   

    
     

 ]
 
 
 

;           

  [

  

  

 
  

];  and     

[
 
 
 
    

    

     
   

   
       

 ]
 
 
 

;            

For the general case of a MIMO system with m outputs and q inputs and with individual 

output and input weights                 and                 respectively, the 

output and input weight diagonal matrices of equation 2.5 are defined as: 
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  [

    
    
    
    

]

⏞          
       

;     [
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  [

    
    
    
    

]

⏞          
       

;    [
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Matrix   is a weighing matrix used to create preferential tracking of the outputs 

according to their relative importance. Relatively high     values imply that the 

controller should be very concerned about the deviation of the predicted output    from 

its set-points, and should try as much as possible to make the output track its set-point. 

Matrix   is a weighting matrix that is used to preferentially suppress aggressive 

behaviours of manipulated inputs. The higher the     value, the more input    is 

suppressed. 

All the three types of MPC (step response, transfer function and state space) use the 

quadratic objective function of equation 2.5. The major difference between the MPCs is 

in the derivation of the algorithm to calculate the predicted outputs  ̂      over a given 

prediction horizon P and a control horizon M. Brief discussions on the derivation of the 

algorithms for calculating the predicted output vector for each type of MPC is given in 

Section 2.5. 

2.5: Algorithms for MPC Predicted outputs 

The MPC prediction equation uses parameters M and P, with known reference 

trajectory set                        ), input and output weight matrices   and  , to 

predict a set of future outputs   ̂       ̂         ̂     ).  
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The predicted output sequence consists of two terms: the free (or unforced) response 

(   ), and the forced response (   ). The free response depends only on the effects of 

past control actions (inputs and/or outputs). It corresponds to the response prediction of 

the output variable if the inputs are kept at their current values. The forced response 

accounts for the effect of current and future control actions. The predicted output 

  ̂       is generally written as: 

 ̂              …(2.8) 

Both the prediction horizon (P) and control horizon (M) are also very important MPC 

tuning parameters. In cases where constraints are imposed, a high value of P enables the 

controller to see the activation of any of these constraints far ahead, so that early action 

can be taken to minimise their impacts, or avoid them completely. The selection of 

values for P and M are significant in situations where plants have time delays. If a plant 

has a time delay d, the controller’s current move      has no effect until         . So it 

is essential that     and       as this forces the controller to consider the full 

effect of each move (Bemporad et al., 2013). 

2.5.1 Prediction Algorithm for Step Response MPC 

Consider a finite step response model with N step response coefficients as given in 

equation (2.1), the set of predicted outputs over the prediction horizon P for a SISO 

system is given as: 

 ̂          ∑          
   
                                  

 ̂                  ∑          
   
            

  
 ̂    ∑          

 
   ⏟          

                 

 ∑          
   
              ⏟                    

               

 …(2.9) 

This can be written in vector-matrix notation for a general case (MIMO system with m 

outputs and q inputs) as: 
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 ̂      (        )          …(2.10) 

where 
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Bias Correction: 

If the prediction equation 2.10 is used as is, cumulative effects of model inaccuracy and 

unmeasured disturbances can lead to inaccurate predictions. The prediction accuracy of 

the equation is improved by utilizing the latest measurement in the predictions in a 

strategy, called output feedback (Qin and Badgwell, 2003). 

For a SISO system, a residual signal      can be defined as the difference between the 

latest measurement      and the predicted output  ̂   . That is: 

           ̂    …(2.11) 

The corrected free prediction  ̃  is then given as: 

 ̃          …(2.12) 

In vector-matrix notation, eqn. (2.12) is written as: 

 ̃             …(2.13) 

where  

    [       ]⏟            
       

 
, and    is an identity matrix of size m 

The corrected predicted output equation now becomes: 

 ̃       ̃   …(2.14) 

2.5.2 Prediction Algorithm for Transfer Function MPC 

The derivation of the prediction algorithm for Transfer function MPC depends on a 

variant of the difference equation 2.2. The auto regressive with exogenous input (ARX) 

variant of equation 2.2 without the white noise (    term for SISO system results in a 

simple difference equation as: 

                       …(2.15) 
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For a MIMO system, each input-output channel may have a different input delay and 

different poles and zeros. This makes it slightly complicated. The difference equation of 

a typical MIMO system of m outputs and q inputs can be written as: 

[

       

       

 
       

]  
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] …(2.16) 

where 

     
            

         
            

       ,            ;           

     
                

         
            

      ,            ;           

    are the factored out delays in the concerned input-output channel 

The compact vector-matrix form of difference equation 2.16 can be written as: 

          …(2.17) 

where 

  [
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  [       ]  

   [              ] 

   [              ] 

    [                                                                 ] 

    [                                                   ] 

               ,          ,           

                ,          ,           
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                    ) 

       [       ]⏞      

           

 

       [       ]⏞      

           

 

       [       ]⏞      

           

 

The difference equation 2.17 can be used to calculate the free response, the step 

response and the model response over a given horizon. The difference in the calculation 

(and the results) is the nature of past inputs that are used in the equation. In calculating 

the free response vector     for example, all future inputs remain constant at the most 

previous value within the prediction horizon. That is              for   

              . Using equation 2.17 to calculate unit step response simply 

requires that all future inputs remain constant at the most previous value, which is 1. 

That is                for                  

The prediction equation for Transfer function MPC within a prediction horizon P and 

control horizon M can therefore be written as: 

 ̂        ⏟
   

 …(2.18) 

The terms   and    are as defined in the case of the step response MPC in equation 

2.10 above. 
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After the predicted output vector  ̂ is calculated from equation 2.18, the calculation of 

the corrected output prediction  ̃ is based on similar equations as those described for 

step response MPC. 

2.5.3 Prediction Algorithm for State Space MPC 

The derivation of the output prediction algorithm is much easier for state space MPC. 

Performing a difference operation on both sides of the state space equations above 

(equation 2.3) with D = 0 gives: 

                      ...(2.19) 

where 

                    ...(2.20) 

                  ...(2.21) 

Similarly, equation (2.4) can be written as: 

                 ...(2.22) 

Combining equations (2.20), (2.21) and (2.22) and rearranging, we have: 

                            ...(2.23) 

For a generalised system of m outputs, q inputs and for which the dimension of the state 

vector x is n, equations 2.23 can be compactly written in state-space form as (Wang, 

2009): 
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      …(2.24) 

     [      ]⏞      
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] ...(2.25)  
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where: 

mn,0  is an all zero elements matrix of n rows and m columns.    is an identity matrix of 

dimension m. 

The three matrices (          ) combine to form the augmented model which is used in 

the design of state-space MPC. The augmented model is used with a new state matrix 

       . 

Using the augmented model, the future state variables for all sampling intervals within a 

prediction horizon can be obtained as: 

                        

          
                           

  

          
         

            
                

              

Using the predicted state variables, the predicted output is given as: 

                           

           
                               

  

           
           

               
              

     
               

 

The prediction equation for state space MPC can therefore be written in vector-matrix 

form as: 

 ̂         ⏟
   

 …(2.26) 
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where  
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 ...(2.27) 
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 ...(2.28) 

As can be seen from equation 2.26 the predicted free response vector  ̂
  

 can be 

calculated very easily compared to the other two MPC formulations. 

State Space MPC and State Estimation: Observer Design 

MPC State Space formulation usually includes an observer to estimate the unknown 

states from process measurements. This is because not all the state variables are 

measurable in reality due to the fact that the states may be inaccessible or that the 

measured outputs consist of some linear combinations of states. A state observer can 

also act like a noise filter to reduce the effect of noise on the measurement. 

In the augmented state space MPC design, the observer estimates of state vector  ̂       

is used instead of        . The estimated state vector is obtained by using an observer 

gain matrix,  , and output variable feedback as (Wang, 2009) 

 ̂        ̂            
⏞            

     

  (      ̂    )
⏞          

              

 …(2.29) 

The error state  ̃       is given as: 

 ̃        ̃         ̃     …(2.30) 
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The observer gain matrix   that makes  ̃       as     in equation 2.30 is used in 

the state estimation equation 2.29. Apart from ensuring that  ̃      ,   must be 

chosen such that the observer dynamics is much faster than the system. The observer 

can be designed independently and offline. There are a few methods for designing the 

observer. A common one is the pole placement method. In the pole placement method 

the Eigenvalues (poles_a) of the augmented state matrix    are found. Then a new set 

of poles (poles_b) is derived such that the poles are located father to the left of the 

system dominant pole(s), to ensure an observer with very fast dynamics.  

The corrected predicted outputs equation for state space MPC then becomes: 

 ̃        ̂  …(2.31) 

2.6 Solution of Unconstrained MPC 

If there are no input and output constraints, the set of optimal control actions that 

minimises the MPC objective function of equation 2.5 can be obtained by finding the 

least squares solution of the objective function. 

By using the reference trajectory in equation 2.5 instead of a set-point, the new 

quadratic objective function becomes: 

       (   ̃)
 
 (   ̃)             ...(2.32) 

By substituting the corrected predicted outputs equation 2.14 (for step response MPC, 

or its equivalent for transfer function MPC, or its state space equivalent, which is 

equation 2.31), into the objective function of equation 2.32, we have: 

                                   …(2.33) 

where   (   ̃  ) 
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The first derivative of the cost function   (equation 2.33) gives: 

  

   
                      …(2.34) 

Then the optimum control sequence for unconstrained MPC then becomes: 

                       …(2.35) 

where 

           

       

The matrix     is called the Hessian matrix. 

2.7 MPC and Constraints 

When the MPC is constrained, the optimum control moves can no longer be obtained as 

a least squares solution. Instead the optimum control moves are obtained by quadratic 

programming (QP). Constraints can be imposed on the amplitude of the input signal 

    , on the rate of change of input signal       or on the output     . Input signal 

constraints are most common (Wang, 2009), because they represent the saturation 

characteristics of actuators (valve opening, flowrate, voltage etc.), and hence are usually 

hard constraints. Apart from restricting the rate at which an input signal can vary, a 

constraint on the rate of change of input signal can also be used to limit the direction of 

movement. Again they are usually specified as hard constraints. Output constraints, are 

usually softened, to allow for violation if and when necessary, because un-softened 

(hard) output constraints can result in stability issues. One way of implementing soft 

constraints is to add slack variables to convert constraints inequalities into equalities. 

Inequality constraints can be written generally as: 

      ...(2.36) 

 



41 
 

where 

  is a matrix which, when multiplied by rate of change of input   , gives the 

rate of change for every input and output element within the prediction and 

control horizons. 

  is the vector containing the upper and lower boundaries (constraints) of the rate 

of change of input, input and output. 

Matrix   and vector   have three terms each: 

  [

   

  

  

] ...(2.37) 

  [

   

  

  

] ...(2.38) 

The terms in equations 2.37 are defined as: 

    [
   

    
] ...(2.39) 

   [
   

    
] ...(2.40) 

   [
 
  

] ...(2.41) 

where 

    is the multiplying matrix for rate of change of input.  

   is the multiplying matrix for input 

  is the multiplying matrix for each output defined in the prediction equations 

above (  =   as in step response and transfer function MPC, and   =   as in 

state space MPC). 

     is identity matrix of dimension Mq 
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   is identity matrix of dimension q 

The terms in equations 2.38 are defined as: 

           ...(2.42) 

             ...(2.43) 

             ...(2.44) 

where: 

    is the vector containing the upper and lower bounds of rate of change of input 

   is the vector containing the upper and lower bounds of input 

   is the vector containing the upper and lower bounds of output 
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    [                                                 ]
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    [         ⏞      ] 
       

 

   is identity matrix of dimension m 

      is all elements zero matrix of dimension Mq x q 

      is all elements zero matrix of dimension Pm x m 

2.8 Numeric Solution of MPC QP Problem: Hildreth’s QP 

Procedure 
The objective function (equation 2.33), ignoring the last term on the right hand side of 

the equation, is generally written as: 

  
 

 
            ...(2.45) 

which is subject to the inequality constraint equation 2.37 

Equations (2.45) can be written in Lagrangian form (Wang, 2009) as: 

  
 

 
                      ...(2.46) 

The elements of the vector   are called Lagrange multipliers. The optimal   and    are 

defined by: 

                       ...(2.47) 

                            ...(2.48) 
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The global solution that gives the optimal    without constraints is the first term of 

equation (2.48), i.e. 

               ...(2.49) 

The correction term for the optimal    due to the equality constraints is the second 

term of equation (2.48) and is given by: 

                    ...(2.50) 

Using the Primal-Dual method, it was also shown that the equivalent dual quadratic 

programming problem of the original objective function is given as (Wang, 2009): 

      (
 

 
         

 

 
      ) ...(2.51) 

where: 

         ...(2.52) 

          ...(2.53) 

The set of optimal Lagrange multipliers that minimize the Dual objective function 

subject to     are denoted as     , and the corresponding constraints are described by 

    . With the values of      and      the primal variable vector is: 

                
      ...(2.54) 

Hildreth’s quadratic programming method (Luenberger, 1984, Wismer and Chattergy, 

1978) for solving the dual problem (2.51) is expressed explicitly as: 

  
             

     ...(2.55) 

with 

  
     

 

   
[   ∑      

      
    ∑      

  
     ] ...(2.56) 

where the scalar     is the ij-th element in the matrix          and ki is the i-th 

element in the vector          . Also note that in (2.56) there are two sets of   

values in the computation: one involves    and the other involves the updated       
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Because the converged    vector contains either zero or positive values of Lagrange 

multipliers, we have  

    
         

      
               

     ...(2.57) 

Hence, 

                
     

  ...(2.58) 

2.9 MPC and Economic Optimisation 

A unique steady state unconstrained solution exists when MPC is implemented on a 

square system (number of manipulated variables is equal to the number of controlled 

variables). Such a unique steady state solution does not exist when there are more 

manipulated variables than controlled variables (non-square systems), because it results 

in a system with extra degrees of freedom. An economic optimisation problem is used 

in the presence of extra degrees of freedom to specify the economic compromises 

among the process variables The economic optimisation calculates the ideal resting 

values of the MVs, or alternatively forces the system to be square by defining “pseudo 

CVs that are identical to MVs”  For the case where there are too few degrees of 

freedom, the economic optimisation either allows only some CVs (equal to the number 

of available MVs) to be controlled to set points or for all CVs to be “out of control” 

(that is with offsets) (Froisy, 1994). 

2.10 The MPC and the operators in a Process Plant 

Though MPC may be used to directly manipulate process valve position (Darby and 

Nikolaou, 2012), the standard practice in modern processing plants is to employ MPC 

as a supervisory controller, as a part of multilayer hierarchy of process control (Darby 

and Nikolaou, 2012, Qin and Badgwell, 2003, Tatjewski, 2010). A simple version of 

this hierarchical arrangement is shown in figure 2.3 below. The MPC computes the set-

points for lower level regulatory control. The MPC requires information about the 
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optimal steady state settings for the processes, which is supplied by an optimizer that 

performs linear programming. The plant operators interact with the MPC (and the 

process, DCS, optimizer) through a station in the control room. Communications 

between layers are channelled through input/output devices, which can be integral with 

the controllers, or located remotely. 

The human interface station provides windows for operation and monitoring of 

processes. It has pre-programmed process plan and process flow diagrams (PFD) to 

ensure easy visualisation of the configurations and operations occurring in the process. 

Through the interfaces, which have systems of alarms, trends, messages, faceplates and 

tuning windows, the operators can tune and monitor MPC performance.  

2.11: The trends of a control system 

The MPC variables shown in figure 2.2 are still used in the MPC prediction algorithm, 

since the prediction neither discriminates between direct or supervisory MPC nor 

accounts for the variables between regulatory controllers and valves. However in a real 

industrial situation, where MPC is used as supervisory controller like figure 2.3, where 

many process trends have to be monitored, a more expanded definition to figure 2.2 is 

preferred. Figure 2.4 below shows the important variables in MPC as supervisory 

control. 

In figure 2.4, rv is the MPC reference signal, while sv is the set-point to the regulatory 

controller (the output from the MPC). The signal pv is the process controlled output 

which is fed back to the regulatory controller. The valve is actuated by signal ov, while 

mv is the actual output of the valve. In set-point control, the process output variable cv 

is designed to be controlled to the reference signal rv. 
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Figure 2.3: Typical process plant control hierarchy 

 

 

Figure 2.4: Main variables of MPC as supervisory control 
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2.12 Developments in MPC Performance Assessment and 

Maintenance 

The pioneering works of Harris (1989) and Desborough and Harris (1992) in the 

development of methods and metrics for univariate control systems performance 

assessment and the extension of the methods to multivariate systems by Ender (1993), 

(Kozub and Garcia, 1993), Harris et al. (1996), Huang et al. (1996), Tyler and Morari 

(1996), Huang et al. (1997), Huang and Shah (1999), Yu and Qin (2008a), Yu and Qin 

(2008b) and Ko and Edgar (2000), have contributed immensely to understanding of 

control assessment generally, and have also aroused the interests of many more 

researchers employing various additional approaches to control assessment. Some of 

the performance assessment metrics resulting from these studies include: Harris index, 

historical benchmark, extended horizon performance index, minimum variance 

benchmark, generalised minimum variance, and linear quadratic Gaussian (LQG). 

All of the above methods use real process data and one or more statistical methods to 

obtain indices thorough which performance of controllers are assessed. Statistical 

methods like principal component analysis (PCA), partial least squares (PLS), 

independent component analysis (ICA), Fisher discriminant analysis (FDA) are 

commonly used. The use of subspace identification approach in control performance 

analysis by Bezergianni and Georgakis (2003) and Ding et al. (2009) have also been 

reported. Yin et al. (2012) employed the above statistics, in addition to dynamic 

principal component analysis (DPCA), modified partial least squares (MPLS), modified 

independent component analysis (MICA) and total projection to latent structure 

(TPLS), to obtain two indices each: the false alarm rate (FAR) and the fault detection 

rate (FDR) which were used to assess the performance the Tennessee Eastman process. 
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A number of publications have emerged which are devoted specifically to MPC 

systems. These include the works of Patwardhan and Jay (1997), Ko and Edgar (2001), 

Patwardhan et al. (2002), Patwardhan et al. (2002), Loquasto III and Seborg (2003), 

Julien et al. (2004), Lennox (2005), Zhang and Li (2006), Agarwal et al. (2007a), , 

Agarwal et al. (2007b), Xu et al. (2007), and AlGhazzawi and Lennox (2009). As with 

the previous assessment methods these also employ statistical methods in the analysis 

of process data to obtain performance measures. 

The diagnostic tool by Patwardhan and Jay (1997) requires information about the 

dynamic model of the MPC, in addition to process data (past and present), to estimate 

statistical measure for detecting degradation in MPC. In Patwardhan et al. (2002), the 

proposed performance measure is a ratio of the achieved objective function to that of 

the design value of the MPC. The proposed method was demonstrated on an industrial 

QDMC application on a recycle surge drum level control. This method also requires the 

knowledge of the internal model of the MPC. Loquasto III and Seborg (2003) use 

principal component analysis (PCA) and distance similarity factors to monitor MPC 

performance, where several PCA pattern classifiers were developed to monitor the 

control system, and to identify abnormal behaviour. An MPC controlled Wood–Berry 

distillation column model was employed to demonstrate the application of the 

developed technique. 

Xu et al. (2007) employed variance based performance assessment method, and using 

process data and steady state gains and linear matrix inequalities, to develop indices for 

evaluating the economic performance of MPC. The performance assessment of MPC 

through the study of the relationship among process variability, constraints, and 

probabilistic economic performance of MPC was the focus of the work of Agarwal 
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(2007a, 2007b). They used both probabilistic and Bayesian calculations to evaluate the 

economic performance of MPC. 

Lennox (2005) showed that by using partial least square (PLS) to identify the dynamic 

model of a process, the T2 and SPE statistics obtained from such model can be used as 

fault detection and isolation tool for MPC. The use of multivariate statistical process 

control (MSPC) techniques as MPC condition monitoring tool was demonstrated in 

AlGhazzawi and Lennox (2009). The PCA and PLS models obtained from the study 

were used to identify abnormalities and their causes in an application on condensate 

fractionation process. 

The use of the MPC assessment and monitoring methods cited above and the 

computation of their assessment metrics involve heavy statistical analysis. The works of 

Harrison and Qin (2009), Lee et al. (2008) and Gabriele et al. (2013) are further 

examples of the huge computational and statistical involvement of these methods. 

Interpretations of the statistics from many of these methods require considerable 

knowledge of process and MPC, which mainly senior process or control engineers with 

considerable experience in MPC applications possess. It may be argued that the average 

operator may be more interested in practical issues like what does a trend suggest 

without the heavy statistics. Arguably, many MPC operators (the front-line users such 

as control room operators and junior engineers) would prefer that can explain 

abnormalities and possible recovery methods being bothered with heavy statistics. 

One of the earliest reported cases of the application of some of the methods and metrics 

cited above to the performance analysis and troubleshooting of an industrial model 

predictive control system is by Kadali et al. (1999). In the work, by analysing the 

variance of routine process operating data, problems of model mismatch and 
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identification of disturbances having significant effects on process variability were 

identified. Huang et al. (2000) adopted a completely data-driven approach in 

successfully trouble shooting an industrial MPC system. By adopting simple methods of 

process trends comparison devoid of complex statistics, and using none of the above 

metrics, the source of poor performance of the MPC system was identified. The study 

reflects very well how operators might prefer to address diagnosis of degradation in 

their control systems. 

Another practical paper is that by Gao et al. (2003). Process data from two industrial 

MPCs (before and after the MPC implementation) were analysed to obtain and compare 

several different measures of multivariate controller performance. The comparison was 

used to diagnose model-plant-mismatch as source of poor performance in one of the 

controllers. Apart from the minimal multivariate controller performance metrics used in 

this study, the need for careful observation of actual process trends was emphasised. 

The work of Schäfer and Cinar (2004) was not based on actual industrial process data. 

They proposed two simple performance assessment indices, the ratio of historical and 

achieved performance, for monitoring, and the ratio of design and achieved 

performance, for diagnosis. They used these indices to diagnose poor performances in 

simulated case studies. The diagnoses at best could only point to a group of possible 

causes of poor performance, and not the actual cause isolation. The work of Badwe et 

al. (2009) focused solely on detection of model-plant mismatch in MPC applications. 

The significance of this study here is that it was demonstrated on data from an industrial 

process. 

Jiang et al. (2011) used a combination of models quality evaluation and actual process 

data trends comparison to diagnose and identify the root causes of sub-optimal 
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performance industrial model predictive controllers. The work, which is devoid of 

complex statistics, has certain similarities to the methods of Huang et al. (2000) and 

Gao et al. (2003) 

2.13 Process Model Identification 

The existence of an accurate process model can be critical to the successful design and 

implementation of MPC. For real processes the mathematical models that describe their 

dynamics are usually obtained empirically, rather than through mathematical modelling 

that make use of physical and chemical laws. This is so because the processes involved 

are usually too complex for such mathematical modelling. Also system parameters may 

not remain constant throughout the lifetime of a plant. So the need to model can arise, 

not only at the design stage of the MPC but sometimes later, especially when the MPC 

begins to degrade and significant model-plant mismatch is suspected. 

Many analytical and statistical techniques have been developed to identify process 

models from experimental data. Many methods are described in Eykhoff (1974), 

Goodwin and Payne (1977), Söderström and Stoica (1988) and Ljung (1999). A new 

form of process identification referred to as subspace identification has become popular 

more recently (Van Overschee and De Moor, 1997), (Katayama, 2005) and (Favoreel et 

al., 2000). 

Plant identification begins by superimposing an appropriate excitation signal onto the 

input of a process that is currently running steadily, and then subjecting the resulting 

process output to appropriate analysis to obtain the process model. In the simplest form, 

plant identification is as described in figure 2.5 below. The excitation signal ue is 

superimposed on the steady state input signal us to the plant running at its nominal 

operating point. For linear model identification, the plant nominal output ys is 
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subtracted from the recorded experimental output y to obtain a deviation signal yd that is 

processed to obtain the appropriate model. Then the transfer function of the plant is 

given as: 

       
     

     
 …(2.59) 

 

Figure 2.5: Excitation signal on open loop plant for identification 

Common excitation signals are the step response signal and the pseudo-random binary 

sequence (PRBS) signal. PRBS is a periodic, deterministic signal with white noise like 

properties. Random signals are preferred as input sequences in many cases, because of 

their superb noise reduction properties when compared with a standard step response 

signal. Also some processes are better described by parametric models and responses 

generated from PRBS are more suitable for such analysis. More importantly using 

PRBS multiple excitation signals can be applied to a MIMO system simultaneously, 

instead of one input at a time. This can help to reduce significantly the total time 

required for the identification process. 

The excitation signal must meet certain requirements, for the input-output signal 

obtained to be useful for identification purposes, because the excitation signal is subject 

to various constraints: the physical limits of the signal generator, the physical 

constraints of the process equipment and the dynamic range of the sensors. Guidelines 

like those given below need to be followed (Annus et al., 2012, Söderström and Stoica, 

1988): 
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1) For a PRBS excitation signal, at least one of the pulses must be larger than the 

rising time of the plant to be identified. Physically this is realised by providing the 

estimates of the fastest (lowest rise time trL or time constant tcL) and the slowest 

(highest rise time trH or time constant tcH) of the process. These values are used to 

define the bandwidth for the input signal excitation as: 

   [         ]  

where 

     
 

     
   

  

   
      …(2.60) 

Typical values of   and    are 2 and 3 respectively. 

2) For a PRBS, the magnitude should not exceed a few percentage of the steady state 

control signal amplitude. If the amplitude is so large as to make the output perturb 

too far from equilibrium, it may result in nonlinearities, detrimental to the process 

and to the integrity of the resulting model. 

3) For multivariable PRBS, there should be adequate lack of correlation between the 

signals applied at each channel.  

4) The input signal should be selected such that the valve does not become saturated. 

Though this should be done bearing in mind that the larger the input magnitude, 

the smaller the asymptotic variance of the output signal, which also helps to 

reduce the signal to noise ratio. 

Step response excitation is simple to apply. The resulting output deviation variable yd 

can be fitted to appropriate and approximate first order or second order transfer 

functions by using a direct method. First order transfer function model (      ) are 

defined by their delay time (Td), time constant (T) and steady state gain (Kp); second 
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order transfer function models (      ) can be described in terms of their delay time 

(Td), steady state gain (Kp), damping coefficient (), and natural frequency (n): 

        
   

    

    
 …(2.61) 

        
         

 

           
  …(2.62) 

It is often easy to observe the nature of response from step response test and estimate 

the approximate parameters that satisfy either a first or second order system. As Luyben 

(1989) pointed out, “probably 80 percent of all chemical engineering open loop 

processes can be model by a gain, dead time (delay time), and one lag”. A tutorial is 

given in Appendix A on how an approximate first order or second order transfer 

function model of a process may be obtained by applying a direct method to step 

response data. 

Process model identification using input output data obtained when an excitation signal 

is applied to a plant is more appropriate when the plant is in open loop. Such data 

represents the plant’s true dynamics, because there is no correlation between the 

excitation and the output signals. However not all systems can be operated in open 

loop: some plants are unstable, contain integrators, or are just unsafe to be operated in 

open loop. In such situations the plant must be operated in closed loop. But input output 

data obtained when the plant is in closed loop is usually less informative, because the 

feedback signal causes a correlation between the excitation and the output signals, 

which tends to ‘mask’ the plant’s dynamics. There are at least three ways to identify a 

process model from closed loop data, depending on the information about the feedback 

signal and the controller dynamics. The three methods are described below. 
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1) Direct identification: in the direct method the excitation signal ue is 

superimposed on the controller output (figure 2.6). Then the input u into the 

process and the output y from the process are measured, ignoring the effect of the 

feedback signal. Effectively the closed loop system is treated as an open loop 

system, which removes the need to know anything about the controller dynamics.  

 
Figure 2.6: Excitation signal on closed loop plant for identification 

Therefore the transfer function of the plant has the same expression as that of 

equation 2.59 above. Models obtained using this method are only approximate, 

although accuracy can be high if the signal to noise ratio is high, and the feedback 

contribution to the input spectrum is small. 

2) Indirect identification: this method can only be used if the structure of the 

controller is known. The excitation signal ue is applied to the controller output as 

before. The closed loop model is then obtained from measurements of the plant 

input u and the plant output y (figure 2.6). If the closed loop model transfer 

function obtained from identification is     (using y and rf), and the controller 

transfer function is known as   , the plant (open loop) transfer function    can be 

retrieved by using the expression:  

    
   

       
 …(2.63) 
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where 

     
    

     
 

3) Joint input output identification: in this method three measurements are 

required, the reference input rf, the plant input u and the plant output y (figure 

2.6). By using rf and y to obtain the overall closed loop transfer function     and 

then estimating the transfer function model     relating rf to u, the model of the 

plant can be estimated from: 

    
   

   
 …(2.64) 

where 

     
    

     
 

Process model identification from closed loop data can be very demanding, especially 

for multivariable process. There are a number of publications which describe how  

process models can be estimated directly from closed loop data even when the 

information about the dynamics of the controllers used are not available. This is 

particularly attractive in the cases of plants under MPC. Most of those available are 

based on the subspace identification method and are most suited to identifying state 

space models in innovation form (Ljung and McKelvey, 1996) and (Van den Hof, 

1998). 

2.14 Conversion of Step Responses to State Space Models 

Almost all current publications and training software are based entirely on state space 

MPC. Yet some practioners still contend that MPC based on step response design is 

indispensable, as far as process industries are concerned. The major reason for this 

assertion is the belief that plants in process industries have dead times (delays), and that 
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although response patterns can be complicated, step response models can capture 

underlying behaviours. While it is obvious that step response models represent process 

time delay, response time and gain transparently (Wang, 2009), it is also true that 

equivalent state space model can be derived for step responses which replicate the 

complicated patterns of the step responses, including time delays (Maciejowski, 2002). 

This is so if the step responses have finite settling time (that is the step responses are 

bounded). The algorithm described below shows how this can be done. 

Consider a multivariable system of m outputs, q inputs and represented by N step 

response coefficients. The step response coefficients matrix can be represented as: 

  [       ]
  …(2.65) 

where  

   

[
 
 
 
                

                

    
                ]

 
 
 

               

      is the step response coefficient k of output i due to input j. The corresponding 

pulse response coefficients are represented as: 

  [       ]
  …(2.66) 

 

where  
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Using the pulse response coefficients, the block-Hankel matrix M is obtained as: 

  [

       

      
    

     

] …(2.67) 

The dimension of M is mN by qN. Using singular value decomposition (SVD), M can 

be decomposed into three matrices          such that: 

       …(2.68) 

Both U and V are unitary (orthogonal) matrices. The matrix   is a diagonal matrix, the 

same dimension as M, and with nonnegative and nonzero leading diagonal elements 

             in decreasing order. These elements are the singular values of the matrix 

 . The total number of the singular values (r) is the rank of the matrix M. The rank r is 

equal to            .  

The A, B and C matrices of the state space model that match the original step responses 

exactly are obtained as: 

                                     ⁄     

                                      ⁄   

                                      ⁄        ⁄  

where    is the matrix   shifted upwards by m rows. 

The dimension of the state matrix A is r by r 

Once the matrices A,   and   are obtained, a state space model of smaller dimension n 

(   ) can be obtained by truncating the matrices  ,   and   into   ,   , and    as 

(Maciejowski, 2002): 
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An idea of how small n might be so that the resulting state space model still 

approximates the exact state space model of order r can be deduced from the following 

analysis. The diagonal matrix   can be replaced with a matrix    in which the singular 

values                    are set to zero. The new block Hankel matrix is given by: 

       
  …(2.69) 

The rank of the matrix    is n. 

The matrix    is the closest as possible to   “in both operator and Frobenius norms” 

(Patwardhan and Shah, 2002) . The Frobenius norm of the error between   and    is 

defined as: 

‖    ‖  ‖ ‖  √                 …(2.70) 

Therefore a good approximation is to choose n for which      is as small as possible. 

Using the above equation, it is obvious that an appropriate state space of low order n is 

obtained when         approaches zero. 

2.15 Relative gain array 

The relative gain array (RGA) provides a measure of interaction for multivariable 

control systems, and a recommendation of the most effective pairing of controlled and 

manipulated variables for the system. The measure, which is based on a system’s steady 

gain matrix, was originally developed by Bristol (1966) for square systems. (Chang and 
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Yu, 1990) extended the RGA to non-square systems, in particular systems having more 

outputs than input. 

The RGA for a square system is given as (Bristol, 1966): 

             …(2.71) 

where  

  = steady gain array of the system 

  = element –by – element multiplication 

The subscript T denotes transpose 

The non-square array (NRGA) is given as (Chang and Yu, 1990): 

             …(2.72) 

where  

   is the Moore-Penrose pseudo-inverse of  , defined as              

For square, both RGA and NRGA give the same answer. This means that they both 

have consistent definition under this condition. The sum of elements in each column of 

RGA or NGRA is equal to unity. While the sum of elements in each row of RGA is 

unity, that of NRGA falls between zero and unity. The RGA or NRGA value for an 

input-output pair indicates the degree of interaction between the pair. A value of unity 

indicates that the output depends entirely on the input, while a value of zero indicates 

that there is no interaction at all between the pair. A negative value indicates that the 

input has adverse effect on the output. In general the closer to unity a positive RGA (or 

NRGA) value is the greater the influence of the input on the output. 

2.16 Summary 

This chapter reviews literature relevant to the research. The review includes the history 

and principles of MPC (the transformations it has undergone from the time it was first 
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reported in the 1970s, to the present time, the development of its prediction algorithms, 

and the solution of its quadratic objective function Hildreth’s QP procedure). The 

contributions of many researchers to control performance assessment in general and 

MPC in particular are also reviewed. Both the model based approach and the data 

driven approach to MPC performance assessment are found to have made significant 

contributions. The data driven approach employing little statistics is considered in this 

research to be more relevant to the needs of an average MPC operator. The chapter also 

includes a review of literature relevant to process identification, conversion of step 

response models to state space models, and presentation of algorithm for relative gain 

array, which may assist in MPC performance assessment. 
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Chapter Three  

MPC Models and MPC Control of Selected 

Nonlinear Processes  

Chapter 3 describes a number of process control simulations, which act as vehicles for 

case studies in Chapter 4. Each simulation was chosen, because it was relatively 

difficult to control. 

3.1 MPC Model Representations 

Each MPC simulation utilises an internal model that is based on low order (maximum 

order of two) transfer function matrix format, to reveal the dynamics of the plant 

transparently. With this format it is easier to reason about dynamic behaviour for 

instance before the application of MPC, or to assist in diagnosis. This choice of format 

also emphasizes that approximate low order transfer function models are in many cases 

adequate for MPC applications in very complex and high order processes. During MPC 

design however, the transfer function matrix is converted to state space format and used 

in state space MPC. 

The three widely used formulations of MPC differ in the type of internal algorithms that 

they use 

(i) for predictions within specified prediction horizon and 

(ii) for the calculation of optimum control moves for a given control horizon. 

State space MPC has prediction algorithms based on the state space formulation. 

Transfer function MPC has prediction algorithm based on the input-output difference 
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equations. Step response MPC has internal prediction algorithms based on step response 

input-output equations using step response coefficients. 

Once the MPC algorithms have been formulated however, the actual internal model can 

be in any acceptable format, because models can be converted. For example although it 

is expected that a state space MPC internal model would be presented in state space 

format, the available internal model might have been identified in a different format, for 

example as step responses or as transfer function models. The model can still be used 

for prediction in the state space MPC provided a means is available for converting it to 

state space format. The reason for preferring one form of MPC over the other should 

therefore be about transparency and performance, and not about the format in which the 

internal model is presented. 

Computer programs that implement MPC in each of the three formulations (state space, 

step response and transfer function) were developed to compare the ease with which an 

MPC can be constructed and control performance evaluated. The state space MPC 

algorithm was easier to program, even for multivariable systems, and the MPC could 

handle both stable and unstable plants. One of its major components, the observer, used 

for process states prediction, can be designed offline for a specific plant. The state space 

representation of an internal model has the advantage of being able to represent the 

dynamics of processes (especially multivariable processes, even with delays) more 

compactly. 

The coding for transfer function MPC would be most difficult, if it had to accommodate 

wide range of input-output difference equation formats (AR, ARX, ARMAX etc.). It 

would be challenging to have one program for all. In this thesis transfer function MPC 

was implemented using the ARX format difference equation. Transfer function MPC 
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can work on both stable and unstable systems. Unstable plant implementations that 

ensure offset-free tracking require modifications to the basic formulation which 

introduce additional complications to program development (e.g. model realignment, 

the incorporation of integral action into the controller (Maciejowski, 2002)  

Step response MPC is moderately easy to program. Its major drawback is that it cannot 

be used for unstable plants, since the step response model on which it is based is 

predicated on the fact that the rate of change of the process must be bounded. Despite 

this shortcoming, step response MPC might be adopted, because its internal model 

structure gives a transparent description of plant dynamics (gains, time constants), and 

more importantly easily handle plants with internal delays. This is advantageous to the 

average person who is unlikely to relate too well to a state space formats. 

The programming and implementation of the three different MPC formulations 

demonstrate that state space MPC has a clear advantage in terms of its wide range of 

application (stable and unstable plants), and the ease of design. For these reasons state 

space MPC is the choice here in the case studies. The implementations demonstrate that 

transparency is not a good enough reason to adopt step response MPC. The case studies 

demonstrated that systems defined by step responses with time delays can be converted 

to equivalent low order state space representations without really compromising model 

transparency. 

A number of the case studies involve nonlinear processes: here state space models are 

created at specified operating points. A discussion is given for each case study on the 

derivation of appropriate low order transfer function matrices for the processes. 

Transfer function matrices are obtained in one of two ways: (i) by applying steps to the 

appropriate manipulated inputs and measured disturbances in turn, recording the step 
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responses, and then using simple techniques to identify appropriate low order transfer 

function models; (ii) by linearizing the process about a specified operating point, 

applying steps to the linearized model and then obtaining appropriate low order transfer 

function models for each input-output model using simple techniques. In all cases the 

step response plot obtained directly from the plant is compared with the step response 

of the linearized model and the identified low order transfer function model to ensure 

that an acceptable low order model has been identified. The exception to this is when an 

unstable plant is involved: the only model used is that obtained from linearization about 

the operating point, since it is impossible to obtain bounded step response. 

3.2 The Nonlinear Processes Selected for the Case Studies 

Three nonlinear process models were selected: a non-isothermal Continuously Stirred 

Thermal Reactor (CSTR), an evaporator process and a Fluid Catalytic Cracking Unit 

(FCCU). The particular CSTR model was chosen because of its properties: it is 

integrating; it is open loop unstable and thus normally requires regulatory controllers 

for stabilisation. With this the effect of degeneration of regulatory controllers and even 

comparison of direct MPC versus MPC as supervisory control could be studied. The 

evaporator is open loop stable, but has inputs which can be used as measured or 

unmeasured disturbances. It also has integrating loops. This process is used to study 

MPC configurations and measured disturbances that can shift the operating point to a 

zone that exhibits very different dynamics. The FCCU was chosen because of its 

complexity: many inputs and outputs, and incorporating many regulatory controllers. Its 

control also requires that many of the outputs have output constraints. Its outputs are 

also very highly coupled, and this facilitated a study into zone control as compared to 

set-point control. The complexity of the FCCU model lends itself to a study into effects 

caused by hardware problems, and by disturbance caused constraints violation. 
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The following sections introduce the processes and their model predictive control under 

normal operating conditions. 

3.3 Simulation and control of the CSTR 
The non-isothermal CSTR model published in Luyben (1989) is widely used by many 

authors in the study of process control. In this CSTR, the feed is introduced to the 

reaction tank at a flowrate F0, with temperature T0 and concentration CA0. An impeller 

continuously stirs the reactants in the tank to ensure perfect mixing (figure 3.1). 

Through chemical reaction, the reactants are transformed to another substance at 

temperature T with final concentration CA, irreversibly and exothermally. The volume V 

of reactant in the tank is affected by the flowrate F of the product from the tank. The 

heat of reaction is removed with the aid of a cooling jacket that surrounds the reactor. 

Cooling water is added to the jacket at a volumetric flowrate Fj and with inlet 

temperature of Tj0. The volume of water in the jacket is held constant at Vj. This 

multivariable plant model consists of four non-linear ordinary differential equations 

(equations 3.1 to 3.4) 

 

Figure 3.1: Flow diagram of the CSTR unit (open loop) 
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Nominal steady-state values and parameter values are shown in table 3.1 to table 3.3. 

The equations and the values are taken from Luyben (1989) 
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                    ⁄  ...(3.2) 

     

  
         

          ⁄
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Table 3.1: CSTR Input variables 

Variable  Description and units  Nominal values  Units 

F Reaction Product flowrate  40.0  ft
3
/h 

Fj Cooling water flow rate  49.9  ft
3
/hr 

F0 Feed flow rate  40.0  ft
3
/hr 

CA0 Feed concentration  0.5 ib.mol A/ft
3
 

T0 Feed Temperature  530.0  
o
R 

 

Table 3.2: CSTR Output Variables 

Variable  Description and units  Nominal values  Units 

V Reactor holdup volume  48.0  ft
3
 

CA Reaction product concentration  0.245  ib.mol A/ft
3
 

T Reactor absolute Temperature  600.0  
o
R 

Tj Cooling water temperature  594.6 
o
R 

 

Table 3.3: CSTR Parameters 

Variable  Description  Nominal values  Units 

Tjo Cooling water temperature in 530.00  
o
R 

Vj Cooling water volume  3.85  ft
3
 

E Activation Energy  30,000.00  Btu/ib.mol 

U Overall heat transfer coefficient  150.00  Btu/h ft
2
 
o
R 

Cp Heat capacity of process liquid  0.75  Btu/ibm 
o
R 

ρ Density of process liquid  50.00  ibm/ft
3
 

Α Frequency factor  7.08x10
10

  h
-1

 

R Universal gas constant  1.99  Btu/ib mol 

Ah Heat transfer area  250.00  ft
2
 

λ Heat of reaction - 30,000.00  Btu/ib mol 

Cj Heat capacity of cooling liquid  1.00  Btu/ibm 
o
R 

ρj Density of cooling water  62.30  ib/ft
3
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Of the five inputs variables (F, Fj, F0, CA0 and T0), two of them (CA0 and T0) can be 

measured but cannot be manipulated, so they can only be used as disturbance variables. 

The feed flowrate F0 usually depends on an upstream process and would normally not 

be manipulated. Therefore only two input variables (F and Fj) may be used as 

manipulated variables. There are four possible controlled variables in V, CA, T and Tj. 

The model of the nonlinear CSTR is simulated with MALAB and Simulink around the 

steady state operating point of table 3.1. The open-loop trends of the outputs are shown 

in figure 3.2 below for the situation where the simulation is initialized at values given in 

tables 3.1, 3.2 and 3.3. 

The plots of figure 3.2 suggest that the open loop CSTR is unstable without control, and 

is also nonlinear, like the case of an inverted pendulum. Different perturbations of the 

inputs give the same outputs always. The exothermic reaction stops causing the reactor 

outlet temperature to tend towards the feed temperature of 530
0
R. The operating point 

shown in tables 3.1 to 3 can only be achieved with the use of controllers. 

 

Figure 3.2: Open loop simulation of the CSTR 
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Open loop instability means that it is not appropriate to perform a step test on it for 

purposes of obtaining the open loop dynamic model. Fortunately the nonlinear model of 

the CSTR is available, so that a linear approximation can be obtained about the 

operating point specified in tables 3.1 to 3.3 by using the first-order Taylor series 

expansion:  

if  
  

  
        …(3.5) 

then,  

   

  
 

  

  
|
 ̅  ̅

    ̅  
  

  
|
 ̅  ̅

    ̅  …(3.6) 

The variable x represents the states of the differential equation while the variable u 

represents the input variables. The terms     ̅  and     ̅  serve as deviation 

variables. 

The state space linear model obtained by linearizing the nonlinear model about the 

values of table 3.1 to 3.3 is shown in equation 3.7. Step response plots obtained from 

this linear model are shown in figure 3.3 below. The plots show that the loop between F 

and V is an integrating one (liquid level control). It shows that V is unaffected by 

changes in Fj; that the response of CA, T and Tj due to unit step changes in F and Fj are 

unbounded. This confirms that the open loop nonlinear plant is unstable. 

A =  [0      0    0     0  

  -0.004427  -1.701  -0.008897  0  

1.215  693.7   -14.55   20.83 

17.59   0   156.3   -169.3] 

B =  [-1   0 

   0   0 

   0   0 

  0  -16.78] 

C =  [1 0  0  0 

 0  1  0  0 

 0  0  1  0 

 0  0  0 1] 

 …(3.7) 
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Figure 3.3: Step response plots of the open loop model of the CSTR 

Since the open loop step response of the CSTR is unbounded, it is impossible to obtain 

a finite number of step response coefficients to represent the true dynamics of the 

system. Therefore, MPC based on the step response formulation of equation 2.1, cannot 

be used to control the plant directly. To use MPC based on the step response 

formulation, the plant must be stabilised first using regulatory controllers, and the step 

response MPC can then be implemented as a supervisory controller to the lower level 

regulatory controllers. State space equation 3.7 represents the dynamics of the CSTR 

completely about the operating point, so MPC based on this formulation can be used to 

control the plant directly. A main requirement is that the model must be observable, 

because state space MPC incorporates an observer to estimate the state of the plant. 

3.3.1 Direct MPC on the CSTR 

State space MPC is applied directly using two MVs (F and Fj) and two CVs (V and T), 

that is as a square system. The MPC parameters used are given in table 3.4. Figures 3.4 

and 3.5 show the trends obtained when the controller is asked to keep the two CVs at 
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their nominal operating points for the first 40 hrs when steps are applied to the set-

points of the two controlled variables simultaneously. The MPC is well able to ensure 

set-point tracking of the controlled variables before and after steps are applied to the 

set-points. The control variable V exhibits a nonminimum-phase phenomenon when the 

steps are applied: Fj and F increase (momentarily) to compensate for the demanded 

change in temperature T; V responds because it is solely dependent on F. After a while 

equilibrium is reached where Fj attains a value sufficient to maintain T at the desired 

set-point; F reverts to its initial value, and hence V levels off. The two MVs (F and Fj) 

did not saturate nor were they too aggressive in their control actions. 

Table 3.4: MPC parameters for control of open loop CSTR 

Parameter Symbol Value 

Sampling Interval Ts 0.1 

Prediction Horizon P 30 

Control Horizon M 3 

Input weights iw [0.1, 0.1] 

Output weights ow [1, 1] 

Constraint on F         

Constraint on Fj           
 

 
Figure 3.4: Trends of the controlled variables for direct MPC on unstable CSTR (sp = 

set point. cv = control variable) 
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Figure 3.5: Trends of the manipulated variables for direct MPC on unstable CSTR 

 

3.3.2 MPC as Supervisory Controller for the CSTR 

This case study reflects many industrial applications where MPC is used in a 

supervisory capacity with to lower level regulatory controllers. Luyben (1989) already 

showed that the plant can be stabilised using two proportional controllers. One for loop 

F-V and the other for loop Fj-T. From the open loop step response plots of figure 3.3, it 

is seen that Fj has a similar effect on Tj as on T. Therefore closing loop Fj-Tj has an 

identical effect as closing loop Fj-T. The loop Fj-Tj is chosen for regulatory control and 

T is used as a controlled variable in the supervisory controller (see figure 3.6). Such a 

scheme would be sensible from a commissioning perspective because the two 

regulatory control loops could be tuned before any reaction took place. For the purpose 
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Figure 3.6: CSTR with two PI controllers 
 

Table 3.5: PI settings for the stabilizing controller 

Loop Proportional Gain 

P 

Integral Time Constant 

Ti 

F-V -10 2 

Fj-Tj -5 2 
 

Figure 3.7 shows step response plots obtained for this scheme. The associated steady 

state gain values are given in table 3.6. The two closed loops have unit steady gain 

values each, as expected. The zero steady state gain values in the table indicate that any 

change in Vset and Tjset has no effect on the corresponding outputs at steady state. 

Table 3.6: Actual steady state gain values of closed loop CSTR  

 Vset Tjset 

V 1.0000 0.000 

CA -0.0024 -0.006 

T -0.0325 1.146 

Tj 0.0000 1.000 
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Figure 3.7: Step response plot of the closed loop CSTR 

The linear state space model of the system incorporating regulatory control is shown in 

equation 3.8 below. The linear state space model of the closed loop CSTR can be 

obtained by linearizing at the operating point specified in tables 3.1 and 3.2. The linear 

state space model is of order six, which includes the states of the PI controllers.  

A = [-10         0       0         0      -1      0     

     -0.004427  -1.701  -0.008897  0       0      0     

      1.215      693.7  -14.55     20.83   0      0 

      17.59      0       156.3    -240.3   0    -16.78 

      5          0       0         0       0      0 

      0          0       0         2.5     0      0]; 

 

B = [10   0 

      0    0 

     -0    0 

      0    83.9 

      -5    0 

      0   -2.5];   

C = [1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0]; 

 

 …(3.8) 

Appropriate low order transfer function models for each input-output pair can be 

identified from the step response data obtained from the closed loop plant. Using low 
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order model better represents real industrial practice. The transfer function models are 

given in table 3.7 below. 

Table 3.7: Transfer function matrix for CSTR 

 Vset Tjset 

V 
      

              
 0 

CA 
                  

               
 

                

                   
 

T 
              

                   
 

               

                     
 

Tj                  

                     
 

         

                      
 

 

Actual step response plots (sa), linear state space model step response plots (sl), and the 

reduced order model step response plots (sm) are all shown in figure 3.8 below. The 

trends of the step response plots are very similar so any of these models could be used 

as the internal model of the MPC. Note that changes in Tjset has no effect on V. The 

absence of the sl plot for loop Vset-Tj indicate that the linear state space model could not 

capture the very insignificant dynamics, thus reinforcing our understanding from the 

very small steady state gain as shown in table 3.7. 

For comparison, two different MPCs (MPCTF and MPCSS) are implemented as 

supervisory controllers to the plant. The low order transfer function matrix shown in 

table 3.7 above is used as the internal model to MPCTF. MPCTF manipulates the PI 

regulatory controllers set point variables Vset and Tjset . The PI regulatory controllers 

manipulate the variables F and Fj to the plant; the controlled variables (CVs) are V and 

T; the MPC parameters values are given in table 3.8 below. The constraints on Vset and 

Tjset are hard and for safety reasons are not allowed to drift far from their nominal 

values. 
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Figure 3.8: Step response plots of the close loop CSTR models (sa = actual. sl = linear. 

sm = reduced order) 

Table 3.8: MPC simulation parameters for CSTR control 

Name Symbol Value 

Sampling Interval Ts 0.1 hr 

Prediction Horizon P 30 

Control Horizon M 3 

Input weights iw [0.1, 0.1] 

Output weights ow [1, 1] 

Constraint on Vset             

Constraint on Tjset                

 

The same MPC settings of table 3.8 are used for the second MPC, MPCSS. The internal 

model of this MPC is the linear state space of equation 3.8. 
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The two MPCs are each simulated for an equivalent of 100 hrs: the plant is operated at 

the nominal values of tables 3.1 to 3.3 for the first 40 hrs; at the 40 hr mark, 

simultaneous steps are applied to the set points of the two controlled variables; the 

magnitudes of the two steps are 2 ft
3
 and 20 

0
R respectively. The first part is to show 

that the two MPCs can keep the plant running at the nominal operating point. The 

second part is to demonstrate the set point tracking capabilities of the two MPCs when 

the plant is operated at points slightly away from the nominal operating. The results are 

shown in the plots of figures 3.9 to 3.11. For the two MPCs, the two controlled 

variables V and T (figure 3.9) track their set-points during normal operation and when 

the set-points are stepped from their normal operating point. The figure also shows that 

both the linear state space model and the derived low order transfer function matrix give 

largely very adequate performance. Both have almost the same settling time, though 

their transient characteristics for the control of reactor volume V are different. The 

trends of the manipulated variables from the MPCs (Vset and Tjset in figure 3.9) and the 

manipulated variables from the PI controllers (F and Fj in figure 3.10) show that the 

control action for the MPC using low order transfer function matrix is less aggressive 

compared to the one using linear state space model. A noticeable effect of the MPC as 

supervisory control is that the non-minimum-phase phenomenon observed when a step 

is increases in the control variable T, is no longer present, having been absolved by the 

PI controller (see figure 3.11). 
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Figure 3.9: Controlled variable trends MPC as supervisory control on the CSTR (sp = 

set point. Subscripts ss = state space. Subscripts tf = transfer function) 

 

Figure 3.10: Manipulated variable (MPC output) trends MPC as supervisory control on 

the CSTR (Subscripts ss = state space. Subscripts tf = transfer function) 
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Figure 3.11: Manipulated variable (PI output) trends MPC as supervisory control on the 

CSTR Subscripts ss = state space. Subscripts tf = transfer function) 

If the reactor temperature T is to be stepped up (as in figure 3.9), the cooling water 

flowrate (Fj) must also increase to compensate for increased cooling load demand 

(figure 3.10). Thus the new steady state cooling water flowrate is higher than that 

before the step. The reaction concentration CA is tightly coupled to reactor temperature 

T (figures 3.7 and 3.8), and by extension to the coolant temperature Tj. Therefore any 

change in T has an immediate effect on CA and Tj. It indicates that for the purpose of set 

point tracking, only one of the three (T, CA, and Tj) may be chosen as a controlled 

variable at any one time. When the tank volume is stepped up (figure 3.9), the controller 

takes immediate action by reducing the outflow from the tank (figure 3.10). As soon as 

the tank reaches the new volume however, the flowrate from the tank returns to the 

initial resting value. This is typical of integrating systems. 
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3.3.3 Comparison of direct and supervisory MPC control of the CSTR 

The low order transfer function model for the CSTR in open loop could not be obtained, 

because it is open loop unstable. This comparison could only be performed with linear 

state space models. Comparison plots of MPC as direct and MPC as supervisory control 

are shown in figures 3.12 and 3.13. Direct MPC exhibits a non-minimum-phase 

phenomena while supervisory MPC does not (figure 3.12). The settling time for MPC 

as supervisory control is shorter than for direct MPC. The trends of the controlled 

outputs for the MPC as supervisory control also show better transient dynamics in terms 

of overshoot when compared with direct MPC action (figure 3.12). The tight control 

action is also accompanied by very tight manipulation of inputs (F and Fj) to the CSTR 

process (figure 3.13). Here flow rates F and Fj are outputs from the PI controllers. 

 

Figure 3.12: Controlled variable comparison: direct vs supervisory (Subscript dir = 

direct. Subscript sup = supervisory) 
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Figure 3.13: Manipulated variable comparison: direct vs supervisory (Subscript dir = 

direct. Subscript sup = supervisory) 
 

3.4 The Evaporator Process 
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exits the separator and enters the condenser at flow rate F4 and temperature T3, where it 

is cooled using cooling water flowing through the condenser at flowrate F200 and entry 

temperature of T200 and exit temperature of T201. The condensed liquid exits the 

condenser at a flowrate of F5. The liquid from the separator becomes the recirculating 

liquor. The product stream, with concentration X2 is drawn off at a flow rate F2 and 

temperature T2 from the recirculating liquor. In this description the controlled variables 

are specified as L2, X2 and P2, while the manipulated variables are F2, P100 and F200. 

The governing equations for the process are given in equations 3.7 to 3.18. The input 

and output variables, their nominal operating values, and parameter values are given in 

tables 3.9 to 3.11 below. 

 
Figure 3.14: The Evaporator 
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       …(3.9) 

                               …(3.10) 

                  …(3.11) 
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     (       )⁄
 …(3.13) 

     
    

      
      …(3.14) 

        ⁄  …(3.15) 

                     …(3.16) 

                            …(3.17) 

           ⁄  …(3.18) 

 

Table 3.9: Input variables of the evaporator and the equilibrium values 

Variable  Symbol Nominal 

value 

Unit 

Product flow rate  

Manipulated 

F2 2.0 kg/min 

Cooling water flow rate F200 208 kg/min 

Steam pressure P100 194.7 kPa 

Circulating flow rate Measured 

disturbance 

F3 50.0 kg/min 

Feed flow rate 

Unmeasured 

disturbance 

F1 10.0 kg/min 

Feed concentration X1 5.0 % 

Feed temperature T1 40.0 
o
C 

Cooling water inlet temperature T200 25.0 
o
C 
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Table 3.10: Output variables of the evaporator and the equilibrium values 

Variable  Symbol Nominal 

value 

Unit 

Separator level 

Controlled 

L2 1 m 

Product composition X2 25 % 

Operating pressure P2 50.5 kPa 

Separated vapour flowrate 

Uncontrolled 

F4 8.0 kg/min 

Condensate flowrate F5 8.0 kg/min 

Steam flowrate F100 9.3 kg/min 

Product temperature T2 84.6 
o
C

 

Separated vapour exit temperature T3 80.6 
o
C

 

Steam temperature T100 119.9 
o
C

 

Cooling water exit temperature T201 25.0 
o
C 

Heat duty  Q100 339.2 kW 

Condenser duty  Q200 308.0 kW 

 
 

Table 3.11 Evaporator parameters 

Parameters Symbol value unit 

Liquid hold up in the tank M 20 kg/m 

Coefficient UA2 6.84 kW/K 

Coefficient C 4.0 Kg/kPa 

Heat capacity of water Cp 0.07 kW/kg.min 

Latent heat of evaporated water  38.5 kW/kg.min 

Latent heat of step at saturation s 36.6 kW/kg.min 

 

3.4.1: Open Loop Simulation of the Evaporator 

Maciejowski (2002) suggests a scheme (figure 3.15) in which three manipulated 

variables F2, F200 and P100, together with the measured disturbance F3, are controlled 

by local servos actuated valves with time constant T. Figure 3.16 shows the responses 

to unit step increases in these three manipulated variables. The open loop steady state 
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gains between the manipulated variable and the controlled variables are shown in table 

3.12. 

 
Figure 3.15 Plant input controlled by a local servo actuated valve 

 

 
Figure 3.16: Step response of nonlinear plant to unit step changes in MVs in open loop 
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Table 3.12: Steady state MV-CV gains of the evaporator in open loop 

 F2 F200 P100 

L2 -ve ramp -ve ramp -ve ramp 

P2 3.3 -0.027 0.177 

X2 -8.33 0.00 0.00 

 

From figure 3.16, it can be seen that loop F2-L2 is an integrating loop. This means than 

the separator level L2 ramps if any change is made to the product flow rate F2. A 

regulator with proportional action only would suffice in removing the integrator, but the 

regulator must be used with an integral action to ensure a zero steady state offset. The 

steady gains of loops F200-X2 and P100-X2 are zeros. They also do not exhibit any 

transient dynamics at all. These mean that changes in the manipulated variables F200 

and P100 do not affect the controlled variables P2 and X2 respectively in any 

significant way. The loops F200-L2 and P100-L2 are also integrating loops, though the 

values of their slopes are very small. In a control sense, F200 and P100 have very little 

effect on L2. Input variable F2 has a significant effect on all the outputs. 

Using the step response data obtained directly from the plant, the plots of which are 

shown in figure 3.15 above, the identified low order transfer function matrix for the 

open loop evaporator is obtained as shown in table 3.13 below. Also, the linear state 

space model of the open loop plant (obtained by linearizing about the operating point 

specified in table 3.9 and 3.10), is shown in equation 3.19 below. The plots of figure 

3.17 compare the actual step response data from the plant with the step response plots 

of the two linear models (the state space model and the transfer function model). 
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Table 3.13: Approximate transfer function matrix for open loop evaporator 

 F2 F200 P100 F3 

L2       

 
 

        

 
 

        

 
 

       

 
 

P2     

       
 

      

       
 

     

       
 

    

       
 

X2     

      
 

      

 

 

A = [-0.08333     0                 0               0                  0         0         -1.042 
        -0.0182      -0.05027     0              -0.002037   0.00688         0.02628    0 
         0.00364     0.00654     0   0         -0.001376  -0.005255      -0.04167  
         0                 0        0      -0.8333     0                  0                       0 
         0                 0        0       0              -0.8333        0                       0 
         0                 0        0       0                0                 -0.8333             0 
         0                 0        0       0                0                  0                       -0.8333]; 
 

B = [0     0     0     0   
        0     0     0     0    
        0     0     0     0    
        0     1     0     0   
        0     0     1     0  
        0     0     0     1   
        1     0     0     0]; 

C = [0    0    1    0    0    0    0 
        0    1    0    0    0    0    0 
        1    0    0    0    0    0    0]; 
 

 …(3.19) 
 

The open loop steady state gain values are shown in table 3.6.  

Table 3.14: Steady state MV-CV gains of the linear model of the evaporator open loop 

 F2set F200 P100 

L2 -ve ramp -ve ramp -ve ramp 

P2 4.69 -0.033 0.172 

X2 -12.5 0.000 0.000 

 

For the transfer function matrix, each input-output model is of order one. Compared 

with the spate space model, the transient dynamics are similar (rise time, settling time, 

time constant), except for some difference in steady state gains as shown in tables 3.12 

and 3.14. 
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Figure 3.17: Step response plots of the models of the closed loop evaporator (actual 

(blue), reduced order (green) and full linear (red)) 
 

As explained by Maciejowski (2002), this particular plant requires adaptive MPC 

(periodic re-linearization of the internal model), if it has to be used at an operating point 

far removed from the nominal values given in tables 3. 9 and 3.10. Most real industrial 

applications do not operate this way however, because they usually have a fixed model 

which they expect to work for some acceptable range of operating conditions. Again 

MPC is implemented both directly on the open loop plant and as supervisory control 

when at least one of the loops is closed.  
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3.4.2 Direct MPC 

Two MPCs, one using the linear state space model (MPCSS), and the other using the 

reduced transfer function model (MPCTF), were implemented in turn on the evaporator. 

The MPCs manipulate the set-points to the local servo actuated valves. MPC settings 

for the two implementations are given in table 3.15 below: 

Table 3.15: MPC parameters for direct MPC control of evaporator 

Parameters Values 

Prediction horizon 30 

Control horizon 3 

Sampling interval 1 

MV weights [F2 F200 P100] [0.1 0.1 0.1] 

CV weights [L2 P2 X2] [1000 100 100] 

MV Constraints [F2 F200 P100] 

 

Max = [4 400 400] 

Min = [0 0 0] 

 

Trends obtained are shown in figures 3.18 and 3.19 below. Once again two stages are 

simulated: operation at an equilibrium point from zero to 500 minutes, after which time 

small steps are applied simultaneously to the set-points of the controlled variables at the 

500 minute mark. The two MPCs exhibit good set-point tracking capabilities for the 

small step changes in the controlled variables (figure 3.18). Although the steps applied 

are positive, not all the manipulated variables increase positively from their equilibrium 

positions. The step on L2 causes F2 to change momentarily, before returning to its pre-

step value. This is typical of an integrating loop. The MPCs decrease F200 after the 

steps were applied, indicating that there is an inverse relationship between it and at least 

one of the controlled variables. The non-minimum-phase phenomenon observed in the 

P2 responses also shows that its dynamics are affected by at least two of the 

manipulated variables. The manipulated variables are well within their constraint values 

and there is no input saturation (figure 3.19) 
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Figure 3.18: CV trends of direct MPC controlled nonlinear evaporator step with 

changes in set points (sp = set point, subscripts ss = state space, subscripts tf = 

transfer function) 

 

Figure 3.19 MV trends of direct MPC controlled nonlinear evaporator with step 

changes in set points (subscripts ss = state space, subscripts tf = transfer function) 
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3.4.3 MPC in a supervisory capacity 

In any industrial application, it is practical to expect that the integrating loop F2-L2 of 

the evaporator would be closed first with the aid of a proportional (P) or proportional 

plus integral (PI) controller before implementing MPC as supervisory control. In 

closing the loop F2-L2, the local feedback loop around the valve was removed and a PI 

regulator is placed between the plant and the MPC. The MPC then manipulates the set-

point to the PI controller. The other three local servo operating valves are maintained as 

before. The response plots to unit step increases in the three manipulated variables are 

shown in figure 3.20 when only regulatory control is present. The associated closed 

loop steady state gains for the manipulated variable versus controlled variables loops 

are shown in Table 3.16. 

 
Figure 3.20: Step response under regulatory control 
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Table 3.16 Steady state gains of the evaporator MV-CV loops for closed loop 

 L2set F200 P100 

L2 1.0000 -0.0000 0.0000 

P2 0.0053 -0.0445 0.1332 

X2 0.0000 0.0458 0.1172 

 

All the loops have finite steady state gain values, which indicate that the plant no longer 

has any integrating loops. The equivalent low order transfer function matrix identified 

from the step response data is shown in table 3.17. The linear state space model 

obtained by linearizing about the operating point of tables 3.9 to 3.11 is given in 

equation 3.20. The steady state gain for the linear state space model is given in table 

3.18. Figure 3.21 compares plots of the step responses of the two linear models (the 

state space and the transfer function matrix) with the direct step response from the 

plant. 

A = [-0.1           0      -          0.625    -1.25      0                 0                  0 
        -0.02091    -0.0558       0             0          -0.001829   0.009588   0.03672 
         0.004182   0.007512  -0.025    -0.05     0                -0.001918  -0.007343 
         0                 0                  0.05        0          0                  0                  0 
         0                 0                  0              0        -0.8333        0                  0 
         0                 0                  0              0         0                 -0.8333        0 
         0                 0                  0              0         0                  0        -         0.8333]; 

B = [0.625    0                0 
       0             0                0 
       0.025     0                0 
     -0.05        0                0 
      0             0.8333       0 
      0             0                 0.8333 
      0            0                  0]; 

C = [0   0  1  0  0  0  0 
        0   1  0  0  0  0   0 
        1   0  0  0  0  0   0]; 

 

 …(3.20) 
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Figure 3.21: Step response plots for the models for the closed loop evaporator (sa = 

actual. sm = reduced model. sl = linearised state space) 
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The transient dynamic responses of all the models are very similar, suggesting that the 

two derived linear models (the state space model and the transfer function matrix) are 

fair representations of the closed loop dynamics of the evaporator. 

The two linear models (state space and transfer function matrix) are implemented in 

two MPCs that act as supervisory controllers. The output and input trends for the two 

supervisory MPC implementations are shown in figures 3.22, 3.23 and 3.24 below. 

The trends of the controlled variables (figure 3.22), the manipulated variable from the 

MPC (figure 3.23) and the manipulated variables from the PI controllers and the local 

servo controllers (figure 3.24) show that  using either the low order transfer function 

model or the state space model give good set point tracking for operation close to the 

nominal point. 

 

Figure 3.22: Trends of the controlled variables under supervisory MPC (s= = set point, 

subscripts ss = state space, subscripts tf = transfer function) 
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Figure 3.23: Trends of the manipulated variables (MPC outputs) under supervisory 

MPC (subscripts ss = state space, subscripts tf = transfer function) 
 

 
Figure 3.24 PI outputs under supervisory MPC control (subscripts ss = state space, 

subscripts tf = transfer function) 
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Figures 3.25 and 3.26 compare the output and input trends of direct and supervisory 

MPC using the low order transfer function implementation. In both situations, the 

implementation achieved the objective of driving the outputs to their set points (figure 

3.25) though the performance is less oscillatory for direct MPC (L2O, P2O, and X2O) 

compared with supervisory MPC (L2cl, P2cl, and X2cl). The input trends (figure 3.26) 

even show more oscillations for supervisory MPC (F2cl, F200cl, and P100cl) compared 

with direct MPC (F2O, F200O, and P100O).  

 

 

Figure 3.25: Controlled variables trends under direct control and supervisory MPC 

(subsripts o and cl for open loop and closed loop respectively. sp = set point) 
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Figure 3.26 Manipulated variables trends under direct control and supervisory MPC 

(subsripts o and cl for open loop and closed loop respectively) 
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Figure 3.27: Flow diagram of the FCCU model (adapted from McFarlane et al. (1993)) 
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The fresh feed is injected into the reactor riser, where it mixes with a hot regenerated 

catalyst and totally vaporizes. The hot catalyst provides the sensible heat, heat of 

vaporization and heat of reaction necessary for the endothermic cracking reactions. As a 

result of the cracking reactions, a carbonaceous material (coke) is deposited on the 

surface of the catalyst. Coke on spent catalyst is usually 5-10% hydrogen, depending on 

the coking characteristics of the feedstock. Since coke poisons the catalyst, continuous 

regeneration is required. 

Separation of catalyst and gas occurs in the disengaging zone of the reactor. The 

entrained catalyst is removed in cyclones. Catalyst is returned to the stripping section of 

the reactor where steam is injected to remove entrained hydrocarbons. Reactor product 

gas is passed to the main fractionator for heat recovery and separation into various 

product streams. Wet gas from the overheads of the main fractionator (C, and lighter) is 

compressed for further separation in downstream fractionators. Spent catalyst is 

transported from the reactor to the regenerator through the spent catalyst U-bend. 

Air is injected into the bottom of the regenerator lift pipe to assist the circulation of the 

catalyst. The catalyst in the regenerator is fluidized with air flow provided by the lift 

and combustion air blowers. Carbon and hydrogen on the catalyst react with oxygen to 

produce carbon monoxide, carbon dioxide and water. While most of the reactions occur 

in the fluidized bed some reaction does occur in the disengaging section above the bed, 

where some catalyst is still present. Gas travels up the regenerator into the cyclones 

where the entrained catalyst is removed and returned to the bed. 

The regenerator is run at conditions of temperature and excess oxygen to ensure that 

virtually all carbon monoxide produced in the bed is converted to carbon dioxide before 

entering the cyclones (referred to as total CO burn). Since little catalyst is present in the 
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cyclones to absorb generated heat, a significant quantity of carbon monoxide in the 

cyclones, in the presence of oxygen, can result in sufficient heat generation to produce 

potentially destructive temperatures. 

Regenerated catalyst flows over a weir into the regenerator standpipe. The head 

produced by catalyst in the standpipe provides the driving force for catalyst flow 

through the regenerated catalyst U-bend to the reactor riser. 

3.3.1 FCCU Simulation 

This non-linear model of the FCCU has twenty one governing differential equations and 

over forty associated algebraic equations. In McFarlane et al. (1993), a total of twelve 

regulatory controllers were suggested as necessary for lower level regulatory control. 

They include five regulatory flow controllers (for: the wash oil flowrate F1, the diesel 

flowrate F2, the fresh feed flowrate F3, the slurry recycle flowrate F4 and the fuel gas 

flow rate F5), two pressure controllers (for: the reactor pressure P4 and the differential 

pressure between the reactor and the regenerator P), three air blower controllers (for: 

the combustion air flow to the regenerator F7, the lift air flow to the regenerator F9, and 

the spill air flow to the regenerator F10) and two air blower antisurge controllers (for 

the lift and combustion air blowers). This simulation incorporated all the flow, pressure 

and air blowers suggested. The antisurge controllers were not included. Table 3.19 

below shows the PI regulatory controllers included in this simulation. The dynamics of 

the regulatory flow controllers were not provided in this model; first-order lags local 

were implemented with the same time constant of 1.2 seconds each to relate flow set-

points to flow. All the other regulatory controllers were implemented as PI controllers. 

To prevent algebraic loop issues during simulation, lag filters with time constants of 1.2 

seconds each were placed in series with the proportional gains of the pressure and air 

blower PI controllers. 
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Table 3.19: Parameters of the regulatory controllers 

S/N Loop Regulatory 

Controllers 

Controller 

MV 

Proportional 

Gain (P) 

Integral/Servo 

Time Constant (Ti)  

(Sec) 

1 F1S-F1 Flow 

Controllers 

F1  1.2 

2 F2S-F2 F2  1.2 

3 F3S-F3 F3  1.2 

4 F4S-F4 F4  1.2 

5 F5S-F5 F5  1.2 

6 F7S-F7 Air Blower 

Controllers 

V6 0.002 5 

7 F9S-F9 Vlift 0.02 5 

8 F10S-F10 V9 2.0 5 

9 P4S-P4 Pressure 

Controllers 

V11 -0.01 10 

10 PS-P V14 -0.001 5 

 

The input (manipulated and disturbance) and output variables, as well as their nominal 

values, as used or obtained from the simulations, are given in tables 3.20, 3.21 and 3.22 

below. 

Table 3.20: Manipulated input variables 

S/N Variables Symbol Nominal 

Values 

Units 

1 Wash oil flow set point F1S 13.80 Ib/s 

2 Diesel flow set point F2S 0.00 Ib/s 

3 Fresh feed flow set point F3S 126.00 Ib/s 

4 Slurry recycle flow set point F4S 5.25 Ib/s 

5 fuel gas flow set point F5S 34.00 Scf/s 

6 Combustion air blower flowrate F7S 61.0 Ib/s 

7 Lift air flow to the regenerator set point F9S 14.5 Ib/s 

8 Spill air flowrate F10S 0.0 Ib/s 

9 Reactor/regenerator diff pressure set point PS -3.38 psia 

10 Reactor pressure set point P4S 33.00 psia 

 
 

Table 3.21: Disturbance input variables 

S/N Variables Symbol Nominal 

Value 

Unit 

1 Ambient air Temperature 

(unmeasured disturbance) 

Tatm 75.0 
0
F 

2 Effective coking factor (unmeasured 

disturbance) 
f 1.0  

3 Preheat outlet temperature (measured 

disturbance) 

T1 460.9 
0
F 
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Table 3.22: Output variables 

S/N Variables Symbols Nominal 

Values 

1 Riser temperature Tr 995.4 

2 Furnace firebox temperature T3 1608 

3 Regenerator cyclone Temperature Tcyc 1283 

4 Cyclone/Regenerator temperature difference Tdiff 10.27 

5 Regenerator Temperature  Treg 1272 

6 Concentration of oxygen in the regenerator stack gas CO2,sg 1.479 

7 Concentration of carbon monoxide in the stack gas CCO,sg 78.08 

8 Regenerator standpipe level Lsp 11.37 

9 Lift air blower suction and surge flow difference Flab 2134 

10 Combustion air blower suction and surge flow 

difference 

Fcab 4451 

11 Wet gas compressor suction and surge flow difference Fwgc 7308 

12 Total air flowrate to the regenerator Ft 75.5 

13 Reactor Pressure P4 33.0 

14 Reactor/regenerator differential pressure P -3.38 

15 Combustion air blower suction pressure P1  
16 Combustion air blower discharge pressure P2  
17 Lift air blower discharge pressure P3  
18 Main fractionator pressure P5  
19 Regenerator pressure P6  
20 Wet gas compressor suction pressure P7  
21 Temperature of fresh feed entering the reactor riser T2  
22 Combustion air blower throughput F6  
23 Combustion air flow to the regenerator F7  
24 Lift air blower throughput F8  
25 Lift air flow to the regenerator F9  
26 Spill air flow to the regenerator F10  
27 Wet gas flow to the vapour recovery unit F11  
28 Air flowrate into the regenerator Fair  
29 Speed of the lift air blower sa  

 

The FCCU process was simulated with regulatory controllers only, using the nominal 

input variables specified in tables 3.20 and 3.21, and with the initial values of the state 

variables specified in table 3.23 below. The trends of the process outputs and inputs 

(regulatory controller outputs) obtained from the simulation are shown in figures 3.28 

and 3.29 respectively. The trends indicate that the process is stable under regulatory 

control. The simulation confirmed that the equilibrium values are as given in table 3.22 

above. The equilibrium values for the valves opening are as given in table 3.24 below. 
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Table 3.23: Initial values of state variables 

S/N  Output Variables Initial Values 

1 Treg Regenerator Temperature  1271.96 

2 T3 Furnace firebox temperature 1607.55 

3 Tr Riser temperature 995.13 

4 Wreg Regenerator catalyst inventory 273,742.7 

5 Wc Regenerator carbon inventory 1297.62 

6 Crgc Carbon concentration on regenerated catalyst 8.7296E-4 

7 Wsp Regenerator standpipe catalyst inventory 3566.80 

8 P6 Regenerator pressure 29.64 

9 n Moles of gas in regenerator 245.92 

10 Ρlift Catalyst density in lift pipe 3.251 

11 P2 Combustion air blower discharge pressure 35.19 

12 P3 Lift air blower discharge pressure 40.50 

13 Csc Concentration of coke on spent catalyst 1283 

14 Wr Reactor catalyst inventory 10.27 

15 P5 Main fractionator pressure 1272 

16 P7 Wet gas compressor suction pressure 1.479 

17 T2 Fresh feed temperature 78.08 

18 P1 Combustion air blower suction pressure 14.63 

 

 
Figure 3.28: Output trends of the FCCU under regulatory control 
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Figure 3.29: Input trends of the FCCU under regulatory control 
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linearization about the equilibrium values. Then by applying unit steps to the state space 

model, the equivalent low order transfer function models were obtained for all input 

output pairs by applying the simple direct procedure described in Appendix A. Steady 

state gain values for the FCCU are shown in table 3.25 below. 

Table 3.25: Steady gain values for the FCCU (from the identified transfer function models) 

 F1S F2S F3S F4S F5S F7S F9S F10S P4S PS 

Tr 2.50 -1.00 -0.24 2.45 1.08 1.61 2.31 1.61 -5.68 -16.68 

T3 0 0 -0.71 0 27.32 0 0 0 0 0 

Treg 6.44 -2.58 
1.78 

8.38 0.93 1.29 2.32 1.29 -7.98 -24.10 

Tdiff -0.41 0.16 
-0.02 

-0.45 -0.13 -0.37 -0.35 -0.37 0.11 -0.27 

Tcyc 6.85 -2.74 
1.80 

8.83 1.06 1.67 2.67 1.67 -8.09 -23.84 

CO2,Sg -0.30 0.12 
-0.13 

-0.43 -0.01 0.01 -0.08 0.01 0.70 2.07 

CCO,Sg 32.75 -13.10 
19.08 

51.33 -2.86 -4.88 9.64 -4.88 -147.52 -375.70 

Lsp 0.10 -0.04 
-0.002 

0.11 0.02 0.37 0.50 0.37 -1.05 -6.27 

Flab 0.05 -0.02 
-0.05 

0.01 0.05 -0.26 682.05 806.11 -114.31 -108.71 

Fcab 5.39 -2.15 
1.40 

6.94 0.83 637.49 19.43 19.37 -1283.9 -1284.8 

Fwgc 63.48 -25.39 35.97 104.30 27.42 40.96 58.72 40.96 -144.16 -423.35 

 

Table 3.26 below shows the identified transfer function matrix for the FCCU. Figure 

3.30 shows the step response plots of the linear state space model (bold line) and the 

step response of the transfer function model (dotted line). 

Both the step response plots and the transfer function matrix show that the settling time 

for the FCCU system varies from as low as 41 seconds (0.7 minute), between F5S and 

T3, to 17472 seconds (291 minutes), between P4S and Treg. The steady state gain 

values (shown in table 3.26) range from 0 to 1285 (absolute). It shows that the furnace 

temperature’s dynamics is dependent almost solely on the furnace fuel flowrate F5; the 

total fresh feed flowrate F3 s contributes little. 
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3.3.3 MPC Control of the FCCU 

The approach adopted in the control of the FCCU process is to make the MPC hold the 

riser temperature    at set-point while implementing all the outputs as zone control, and 

maximizing the total feedrates to the system, subject to the input and constraints given 

in tables 3.27 and 3.28 below. This strategy is necessary because of the very complex, 

mildly nonlinear and highly coupled nature of the process. In the zone control, the 

output weights on all the output variables except    are set to zero. The MPC 

implemented here has no way of output constraint ranking. As long as the other ten 

output variables are within specified boundaries, their exact values are of less 

importance. 

The manipulated and disturbance inputs are the ones given in tables 3.21 and 3.22 

respectively. The controlled output variables, with their nominal values, are the first 

eleven variables of table 3.20.  

The FCCU control problem in some way supports the decision to use state space MPC 

instead of step response MPC, despite the transparency of the identified step response 

model. From the transfer function matrix (table 3.26) and the step response plot (figure 

3.30), the dominant setting time for the system is about 17500 seconds (291 minutes). 

This means that given a sampling time (Ts) of 60 seconds (1 minute) for example, the 

step response model requires at least 291 step response coefficients (N) for the step 

response MPC algorithm. 
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Table 3.26: Identified Transfer Function Matrix for the FCCU 
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Figure 3.30: Step response plots for the FCCU 
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Table 3.27: Constraints on outputs (soft, operating constraints) 

S/N  Output Variables Constraints 

1      Lift air blower surge limit                          

2      Combustion air blower surge limit                          

3      Wet gas compressor surge limit                      

4        Concentration of oxygen in the 

regenerator stack gas 
            

5        Concentration of carbon monoxide in 

the stack gas 
               

6      Regenerator Temperature              

7       Cyclone/Regenerator temperature 

difference 
                     

8      Regenerator cyclone Temperature             

9    Reactor/regenerator differential 

pressure 
                

10     Regenerator standpipe level             

11    Riser temperature          

12    Furnace firebox temperature           
 

 

Table 3.28: Constraints on inputs (hard, equipment constraints) 

S/N  Input Variables Constraints 

1 F1 Wash oil flow rate          

2 F2 diesel flow rate          

3 F3 fresh feed flow rate           

4 F4 slurry recycle flow rate          

5 F5 fuel gas flow rate          

6 F7 combustion air flow to the regenerator             

7 F9 lift air flow to the regenerator           

8 F10 spill air flow to the regenerator           

9 P4 Reactor maximum pressure         

10 P5 Main Fractionator maximum pressure         

11 P6 Regenerator maximum Pressure         
 

 

For this multivariable system with 11 outputs and 10 inputs, the memory requirement 

for storing the step response MPC algorithm was huge, and the huge matrices caused 

the computations to progress very slowly. Also the number of step response coefficients 

is well outside the range          recommended by Seborg et al. (2010). Of 

course the memory requirement could be reduced by using a sampling time as high as 

540 seconds (9 minutes), resulting in 30 step response coefficients, which greatly 
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reduces the memory space requirement, thereby speeding up computations. The 

downside is that a high value of Ts is not advisable, given that there are input-output 

channels with very fast dynamics. Again when the transfer function matrix is converted 

directly to state space, the size of the state becomes huge (263). It is observed that this 

is not even a good choice especially if the transfer function matrix includes input 

delays. 

Without losing much of the transparency offered by the identified transfer function 

matrix, the transfer function matrix is converted to an appropriate low order state space 

by using the algorithm described in chapter two. First the unit step is applied to the 

transfer function matrix model to obtain step response coefficients at intervals of 60 

seconds (1 minute). Then the step response coefficients are converted to a 

corresponding pulse response matrix. The matrix of pulse response is then assembled 

into a block Hankel matrix. Then the Hankel matrix is used to obtain the appropriate 

matrices A, B and C of a state space model of order r (r = 3500) which most 

approximates the transfer function matrix. The singular values (            of the 

Hankel matrix (of rank r) are obtained through singular value decomposition. Figure 

3.31 shows the plot of the first 30 singular values of the Hankel matrix. On the figure, 

the number of singular values at the point where the plot becomes asymptotic to zero 

corresponds to the least order to which the original state space model of order r may be 

reduced to. The plot indicates that a state space model having 12 states may be derived. 

Following the procedure outline in the algorithm of Section 2.14, the matrices A, B, and 

C are truncated appropriately. In this case the state space equation is truncated to an 

order of 20. 
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The plots of the step responses of the approximated 20 order state space equation and 

the identified step response are compared in figure 3.32 below. It is noted that for most 

cases the approximate state space equation response follows the intricate patterns of the 

step response of the original transfer function matrix. 

 

Figure 3.31: Plot of the first 30 singular values of the Hankel matrix for the FCCU step 

response model 
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The plots of figures 3.33 show that after the unit step was applied to the set-point of Tr, 

it took about 10 minutes for the transient dynamics of Tr to die out and for it to track its 

new set-point. Figure 3.34 shows that all the manipulated variables respond to the step 

change in the set point of Tr, but almost all of them, except P return to their pre-step 

values after the transients have died down. Pressure differential P settled to a higher 

value over its pre-step one. This is as predicted in the step response matrix of table 3.26 

and figure 3.30 and 3.32. All the manipulated variables were well within their 

constraints. The entire zone controlled output variables were also within their constraint 

values. 

3.4 Summary 

This chapter describes the simulation of the three nonlinear plants (CSTR, evaporator 

and the FCCU), their control using PI regulators, and their identifications using two 

approaches: direct linearization about their operating points to obtain their state space 

models, and the derivation of low order transfer function approximations of the state 

space models. Comparison of the step response plots of the two models with direct step 

response trends of the plants showed that they are adequate. The models were used as 

internal model to design the MPC implemented on the plants. The trends obtained from 

the simulations show that all the plant exhibit good performance when operated close to 

their specified operating points. 
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Figure 3.32: Comparison of reduced model response (green) with the original response (blue) 
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Figure 3.33: Trends of the controlled variables (green lines) and their nominal values 

(blue lines) under MPC 

 
Figure 3.34: Trends of the manipulated variables (MPC outputs) under MPC 
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Chapter Four  

Common MPC Faults and their Isolation 

4.1 What-if Simulations of Common MPC Faults: An Overview 

In the previous chapter, it was shown how MPCs might be implemented on certain 

nonlinear processes, to give good performance under normal operating conditions. 

More importantly it was shown that for very complex multivariable plants represented 

by high order nonlinear models, equivalent linear low order transfer function input-

output models can be used as internal models for MPC implementation. These case 

studies are now carried forward into this chapter to provide vehicles on which to study 

how various causes of MPC performance degradation might be isolated. The approach 

is to induce symptoms into these simulations, and then, in each case, to ask the question 

“how might the operator detect and reason about what is observed?” The aim is to 

construct a set of rules and procedures, which might then form the basis of a general 

tool that the operator could use if these symptoms were ever to be observed on the 

operator’s real plant. It is assumed that the plant operator would have access to a simple 

linear model of the plant on which the MPC is implemented. By applying MPC similar 

to the one implemented on the ‘real plant’ (nonlinear model) to the linear model, the 

operator might be able to identify the source of a malfunction and possibly recover from 

the degradation. 

Using the linear model, the operator could make changes to the MPC parameters, model 

configurations and operating conditions, based on informed guidance, and see what 

steps or actions might be taken to return the MPC to good performance. Or the operator 

might replicate the trend observed on the real plant to gain insight into what variables or 
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parameters are responsible for the degradation. The recovery procedure suggested could 

be as simple as simply retuning the MPC parameters, or as complex as outright redesign 

or reconfiguration of the MPC and/or of the plant. The tool helps to improve the 

confidence of the operator in his interaction with the MPC by improving his 

understanding of the processes involved. 

State space MPC is used throughout in the what-if-simulations. MPC internal models 

are based on the transfer function matrices derived by applying steps directly to the 

plants (CSTR and Evaporator) and those obtained by applying steps on the linearized 

state space model of the plant (the FCCU). The transfer function models are used 

mainly for the transparency that they offer. They are actually converted to state space 

format before they are used in the state space MPC. Where the resulting state space 

dimension is large, an appropriate low order state space is estimated through the 

algorithm described in section 2.14. 

Common situations that might give rise to poor controller performance, and in 

particular to MPC degradation, as reported by experiences from industrial applications 

(Darby and Nikolaou, 2012, Huang et al., 2000, Jelali, 2006, Jiang et al., 2011, Lee et 

al., 2004, Schäfer and Cinar, 2004), are summarised as follows: 

 controller design (inadequate configuration, wrongly specified measured 

disturbances, improper controlled variable and manipulated variable selection); 

 changes in operational conditions leading to changes in system dynamics 

(operation far from equilibrium points, excessive process drift due to plant aging, 

large and unmanageable changes in measured and unmeasured disturbances); 

 tuning parameters specifications (output weights, prediction and control horizons, 

input and output constraints); 
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 equipment and hardware problems (regulatory controllers, valve stiction, deadband 

etc. 

4.2 The Relative Weight Array  

When analysing various situations, it was found that a simple, but new and novel 

measure, called the Relative Weight Array (RWA) might help the operator when 

thinking about MPC output weights. In selecting the output weights for set-point 

tracking MPC, it is usually stated that the relative sizes of these weights depend on 

“numerical values” of the variables involved. The steady gain array can be used to 

calculate a relative weight array, which can be used to obtain insight into the measure of 

these numerical values. 

For a multivariable system with m outputs and q inputs, and with the steady gain matrix 

K (dimension m x q), the RWA is a matrix of the same dimension as K. The elements of 

the RWA are obtained from: 

         
             

       
                          …(4.1) 

where 

   is the absolute value of matrix   

        is all rows of column j of matrix    

Consider a system with steady state gain given below: 

K = [1.5   0.5  

     2.0   1.7  

     3.4   2.9] 

 

the relative weight array is given as: 

RWA = [2.27    5.80 

       1.70    1.71 

       1.00    1.00] 
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The values in a column (an input) of the RWA give an indication of the relative 

numerical values or impact of that input on the associated outputs. The lowest value in a 

column (unity) points the output that is most affected by the associated input. The 

output with the highest RWA value for an input is the least affected by that input. When 

two or more outputs are to be set-point tracked, an indication of their baseline relative 

weights can be obtained by looking up the RWA values of the outputs against the 

associated manipulated inputs. For example if the first and the third outputs of the 

system with RWA given above are to be set-point tracked, the first output’s weight can 

be from 2.27 to 5.80, while the second output’s weight can be 1.00. These values are 

meant to be as starting guides only. The eventual output weights may be very different, 

as they might depend on other factors, including the order of importance of the output 

to be tracked. The RWA is used together with the relative gain array (RGA) to suggest 

acceptable baselines for output weights. 

The case studies chosen for the what-if simulations are carefully selected to address 

most of the common situations, as listed in Section 4.1 above that might give rise to 

MPC degradation. They include cases involving MPC parameter tuning, MPC design, 

actuator and PID degradation, variable selection, MPC constraints and model plant 

mismatch. The method adopted in this research was to simulate these degradations 

based on MPC simulation in chapter 3, to describe the resulting degradation and to give 

a typical operator’s perspective about the degradation observed. This was followed by 

an expert’s reasoning about the degradation and proffering solution to recover from the 

degradation. 



120 
 

The following sections examine how the operators might seek to address situations that 

lead to MPC degradation and in doing so we draw out pertinent features that might 

form the basis for a maintenance tool design. 

4.3 Case 1: Example Relating to MPC Parameter Tuning 

This case study is based on the CSTR example, in which MPC is implemented as a 

supervisory controller (Section 3.3.2) with two PI regulatory controllers. The PI settings 

for the regulatory controllers are as given in table 3.5, and the MPC settings are the 

same as in table 3.8. The MPC internal model is that given in table 3.7. The case relates 

to a situation where the output weight of a control variable (CA) is set much lower than 

the minimum that would result in good performance. 

4.3.1 The Scene 

In Section 3.3.2, the controlled variables were specified as V (volume of reactants in the 

reactor) and T (the reactor temperature). A situation is now envisioned where the 

operators feel that they need to change the configuration so as to closely monitor the 

product concentration CA. In other words they use both V and CA as controlled variables 

instead of V and T so as to better adhere to strict requirements on the product quality. 

They may not see any issues with this because CA is measured already and is accounted 

for by the MPC model internal (similar to that given in figure 3.6, equation 3.8 and 

table 3.7). They also need to change the product concentration from 0.245 ib. mol A/ft
3
 

to 0.2 ib. mol A/ft
3
. 

Having made the change on the plant, the operators run the plant for 20 hrs before 

stepping down the set-point for the product concentration from 0.245 to 0.2 Ib. mol 

A/ft
3
. Figure 4.1 shows trends obtained when the set-point was changed at the 20 hour 

mark. The figure shows that the variable CA does not track its new set-point, while 
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variable V exhibits very small offset from the set-point. The operators have seen these 

trends, but they are not sure why they occur. Next the operators’ possible perceptions of 

the degradation is discussed. 

 
Figure 4.1: Controlled variables of the CSTR showing degradation 
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Figure 4.2: CSTR manipulated variables: MPC outputs 

 
Figure 4.3: CSTR manipulated variables: PI outputs 
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The operators might now implement similar MPC on the linear model of the plant to 

create a virtual plant. In their simulations the trends of the controlled variables should 

be the same as those shown in figure 4.4 below. They might observe that the trends 

from the plant are very similar to those from their simulations. Observation like this 

should rule out causes due to process drift (contamination of feed streams, equipment 

aging or even a change in operating conditions). Linear MPC on linear models are not 

affected by changed operating condition except when constraints on the manipulated 

variables become active. 

The operators might now narrow the possible cause(s) of the MPC degradation to either 

MPC design issues (overall configuration) or to poor parameter (input and output 

weights, variables selections etc.) specification. 

 
Figure 4.4 Controlled variables of the virtual plant showing degradation 
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4.3.3 Reasoning about the scene 

The operators might now go back to see what worked successfully in the past. Thus 

they might look at the step response plots of the linear model shown in figure 3.6. They 

might observe similarities in the dynamics of the responses of three variables (the 

product concentration CA, the product temperature T and the cooling water temperature 

Tj) when either a unit step is applied to the first manipulated variable Vset or to the 

second manipulated variable, Tjset. The fourth variable (the reactor volume V) has 

different dynamics. The trends of the variables CA, T, and Tj suggest that they are 

highly coupled, and that a change in one of the variables has an effect on the other two 

variables. Any one of these three variables should suffice as a control variable (but not 

two). The operators might now examine the relative gain array (RGA) of the system, 

obtained from the steady state gain of table 3.6, which is given below. 

Table 4.1 Relative gain array of the CSTR 

 Vset Tjset 

V 0.9972 0.0 

CA 4.8E-6 -1.5E-5 

T 0.0028 0.5454 

Tj -3.9E-5 0.4546 

 

In the RGA, the number in a cell gives an indication of the degree of effect the 

manipulated variable has over the corresponding controlled variable. A positive unity 

value indicates the greatest effect between the two. The RGA suggests that if Vset and 

Tjset are used as manipulated variables, V and T, or V and Tj may be used as controlled 

variables, because their RGA values are high. This simple approach does not 

completely rule out other pairings, such as V with CA, however. They might now 

examine the relative weight array (RWA), which is a measure of the relative sizes of the 

steady state gains, shown in table 4.2. 
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Table 4.2 Relative weight array of the CSTR 

 Vset Tjset 

V 1.0 inf 

CA 476.2 192.8 

T 12.6 1.0 

Tj 1000 1.1 

 

RWA values give two indications: firstly a higher value suggests that the manipulated 

variable for that cell has a lower effect on the corresponding controlled variable. 

Secondly, the value gives an indication of what the output weight should be if the 

manipulated variable and the controlled variable are used in MPC design. Table 4.2 

data suggests that if V is paired with T for example, the output weight can be as low as 

unity. On the other hand, if V and CA are used as controlled variables, the weight of CA 

should at least be as high as 193, possibly up to 476 or more. 

The operators might now examine the effect of reversing the CA output weight to 200, 

say, on the virtual plant (i.e MPC on linear model), all other MPC settings remaining as 

before. The operators should now observe satisfactory performance. If they were now to 

apply the same MPC setting (revised output weight) to the real plant, the outputs and 

inputs trends should be as shown in the following figures 4.5, 4.6 and 4.7. In figure 4.5, 

the two controlled variables now track their set-points. The manipulated variable from 

the MPC (the PI controller set points) shown in figure 4.6, and the plant inputs (PI 

controllers outputs) shown in figure 4.7 also exhibit satisfactory performance. The 

manipulated variables drive the outputs to their set-points without saturation. 
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Figure 4.5 Controlled variables of the CSTR after recovery 
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Figure 4.7 Manipulated variables of the CSTR (PI outputs) after recovery 
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4.3.4. Case 1 Conclusion  

The following table summarises the path described above to reach the wrong ouput 

weight conclusion. 

 Questions Answer Suspicions 

Observations 

Observed CV Trends Oscillations? NO  

Partial set-points 

tracking? 

NO  

Zero set-points 

tracking? 

YES Tuning parameters 

Unmeasured disturbance 

Process drift/model-plant 

mismatch 

Variable selection 

Unbounded outputs? NO  

Observed MV Trends Oscillations? NO  

MV saturates? NO  

Aggressive MV 

behaviour? 

NO  

Actions 

Examine linear Model 

dynamics (step response 

plots and transfer 

function matrix 

Reasonable CV 

selections? 

YES Good variable selection 

Examine CV and MV 

selection using RGA 

Reasonable for given 

MV? 

YES Good variable selection 

Examine CV and MV 

pairings using RWA 

Reasonable output 

weights for CVs 

NO Wrong output weights 

suspected.  

Similar MPC on virtual 

Plant 

MV and CV Trends 

similar to those of 

real plant? 

YES No process drift suspected 

Tuning improved 

performance? 

YES Wrong output weights 

confirmed 

Result: Retuning of MPC outputs weight restored MPC performance 

 

 

4.4 Case 2: Example relating to MPC design 

This case study is based on the evaporator example, in which MPC is implemented 

directly on the process (Section 3.4.2). The MPC settings are the same as in table 3.15. 

The case relates to a situation where the plant is operated very far from its nominal 

operating point, leading to a change in dynamics, and therefore, degradation. The goal 

is to see how a different MPC design might prevent the degradation. 
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4.4.1 The Scene 

In Section 3.4.1, direct linear MPC was used for set-point control of the three output 

variables L2, P2 and X2. Under this operation within the vicinity of the equilibrium 

point, MPC performance was satisfactory. All controlled variables tracked their set-

points very reasonably. A situation is now envisioned where, due to operational 

requirements, the operators have to run the plant at a point far from this equilibrium 

point. In this imagined scenario, the operators ramp up the pressure P2 from 50.5 kPa to 

70 kPa in 20 minutes, starting at the 20 minute mark. Simultaneously from the same 

point and within the same time frame, they ramp down the product concentration X2 

from 25% to 15%. They keep the MPC tuning parameters as specified in table 3.14. 

Figures 4.8 and figure 4.9 below show the plots of the output and input trends they 

observe. Of the three controlled variables, only P2 tracks its new set point, after the 

ramp (figure 4.8). The separator level L2 tracks its set point about halfway through the 

ramp, but deviates drastically from the set point thereafter, with a large steady value 

offset in the new operation condition. The product concentration X2 does not track the 

set-point during the ramp, and ends up with a small steady value offset in the new 

operating condition. In figure 4.9, all the manipulated variables (F2, F200 and P100) 

attain steady values different from the initial equilibrium values. The operators have 

seen these trends. What can they do? 

4.4.2 The operator perspective 

The operators might observe that the manipulated inputs (figure 4.9) do not exhibit any 

aggressive behaviour, which rules out poor input weight specification. There are also no 

input saturations or oscillations, ruling out causes associated with constraints and 

equipment degradation. Also there is no recorded change in the trend of the measured 

disturbance. 
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Figure 4.8: Controlled variables of the evaporator showing degradation (sp = set pint. 

cv = controlled variable) 

 
Figure 4.9: Manipulated variables of the evaporator (mv = manipulated variable. umax 

= upper constrain value of manipulated input) 
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The operator might make reference to the RWA of the linear model (table 4.3) and 

observe that the MPC output weight vector ([100 10 10]) is reasonable, ruling out poor 

output weight specification.  

Table 4.3: RWA for open loop evaporator 

 F2 F200 P100 

L2 134.0 111.0 281 

P2 2.7 1.0 1 

X2 1.0 inf inf 

 

4.4.3 Reasoning about the scene 

The operators might now implement similar MPC on the linear model of the plant to 

obtain a virtual plant. They would find that they could not change the MPC parameters 

to make their linear model exhibit good performance. For instance they might obtain 

trends like those shown in figures 4.10 and 4.11. 

 
Figure 4.10 Controlled variables of the virtual plant showing degradation (sp = set pint. 

cv = controlled variable) 
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Figure 4.11 Manipulated variables of the virtual plant (mv = manipulated variable. 

umax = upper constrain value of manipulated input) 
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changes in all the manipulated variables lead to a ramp-like response in L2. With this 

situation, it might be difficult to control L2 directly. On the other hand, all the 

manipulated variables moved to suitable equilibrium values without constraints. This 

might not be possible with the change of operating point, because of physical 

limitations placed on all the manipulated variables, especially F200. Changes required 

by P2 and X2 in F2, F200 and P100 for offset free tracking all also affect L2 

simultaneously. Also the integrating loop F2-L2 is the fastest loop, compared to the 

other integrating loops F200-L2 and P100-L2, because it has the highest slope (-0.062) 

compared to the others (-0.004 and -0.0063 respectively. The operator might also note 

that the relative gain array shown in table 4.4 indicates that influence F2→X2 is 

stronger than influence F2→L2. That means that under direct MPC, L2 would always 

struggle for control because X2 would always be of greater importance to F2. A change 

in output weight may help change this situation slightly. The operator might conclude 

that based on these observations, the current MPC design or configuration is not ideal 

for implementation at this new operating point. They now believe they have reached the 

point where expert intervention is required. 

Table 4.4 RGA for open loop evaporator 

 F2 F200 P100 

L2 -0.0000 0.7166 0.2834 

P2 -0.0000 0.2834 0.7166 

X2 1.0000 0.0000 0.0000 

 

4.4.4 Possible outcomes: experts perspective 

One possible outcome for this particular plant is to implement adaptive MPC. This is a 

continuous re-linearization of the linear internal model at specific points. The approach 

is one of the methods suggested by Maciejowski (2002). This approach is unlikely to be 

implemented in general on real plants. 
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An alternative approach is to implement the MPC as a supervisory controller. The 

strong integrating loop F2-L2 is closed with the aid of a proportional plus integral (PI) 

controller. Then MPC is implemented as supervisory control. The procedure for doing 

this has been described in section 3.4.3. Closing the loop F2-L2 would ensure that the 

MPC is concerned with manipulating the set-point to the PI controller that in turn 

manipulates the flow rate F2 to the desired value. In essence closing the loop F2-L2 

ensures that the plant could be operated over a range of operating points. The step 

response plots for the closed loop plant of figure 3.19 as well as the relative gain array 

(RGA) for the closed plant shown in table 4.5 show that the set-point to the PI 

controller is now virtually solely responsible for controlling L2. F200 and P100 now 

have very little impact on L2. Both F200 and P100 are now virtually devoted primarily 

to controlling P2 and X2. The conflicting control situation described earlier is no longer 

present. 

Table 4.5 RGA for closed loop evaporator 

 L2set F200 P100 

L2 1.000 0.00 0.00 

P2 -0.0000 0.4608 0.5392 

X2 0.0000 0.5392 0.4608 

 

Plant simulation results for this supervisory controller are shown in figures 4.12, 4.13 

and 4.14 below. Plots umax refer to upper constraint trends of the inputs. All the 

controlled variables attain their settling time about 5 minutes after the ramps on the set-

points of P2 and X2 are completed. 
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Figure 4.12: Closed loop evaporator showing improved MPC performance (sp = set 

pint. cv = controlled variable) 

 
Figure 4.13: Controlled variables of evaporator showing improved MPC performance in 

closed loop (mv = manipulated variable. umax = upper constrain value of 

manipulated input) 
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Figure 4.14 Manipulated variables of evaporator showing improved MPC performance 

in closed loop (mv = manipulated variable. umax = upper constrain value of 

manipulated input) 
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4.4.5 Case 2 Conclusion  

The following table summarises the steps taken to reach the regulatory control 

conclusion. 

 Questions Answer Suspicions 

Observations 

Observed CV Trends Oscillations? NO  

Partial set-points 

tracking? 

YES  Unmeasured disturbance 

 Process drift/model-plant 

mismatch 

Zero set-points 

tracking? 

NO  

Unbounded outputs? NO  

Observed MV Trends Oscillations? NO  

MV saturates? NO  

Aggressive MV 

behaviour? 

NO  

Actions 

Examine linear Model 

dynamics (step response plots 

and transfer function matrix 

Reasonable CV 

selections? 

YES  Good variable selection 

 Presence of unclosed 

integrating loops noted 

Examine CV and MV 

selection using RGA 

Reasonable for given 

MV? 

YES Good variable selection 

Examine CV and MV pairings 

using RWA 

Reasonable output 

weights for CVs 

YES Good output weights 

Similar MPC on virtual Plant MV and CV trends 

similar to those of real 

plant? 

YES  The new operating point 

not suitable for the model 

 Too large process drift 

 Design issue suspected 

 A configuration that 

permits wider range of 

operating points is 

considered 

MPC Tunings 

improved 

performance? 

NO 

 Reversion to pre-ramp 

set-point improved 

performance? 

YES 

Result: Re-design of the MPC allowed for operations from the old operating point to the new one 

 

 

4.5 Case 3: Example relating to sensor/actuator degradation 

This case study is based on the direct implementation of MPC on the evaporator as 

described in section 3.4.2. The MPC settings are the same as in table 3.15. The case 

relates to a situation where there is equipment degradation in the form of an increased 

deadband in one of the actuators. This leads to degradation of the MPC. 
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4.5.1 The Scene 

In Section 3.4.2, the evaporator process is operated at the equilibrium point by the 

MPC. A situation is now envisaged where the operators begin to observe performance 

degradation of the MPC from the 20 minute mark. The controlled variables begin to 

oscillate about their set-points as shown in the trends of figure 4.15 below. The 

oscillations are sustained, periodic and have definite patterns. 

4.5.2 The operators Perspective 

The operators might immediately examine the trends of the MPC outputs, which are the 

manipulated inputs to the plant. The trends, as shown in figure 4.16, exhibit patterns of 

oscillations in the three manipulated variables, though the oscillations appear more 

pronounced in F2. Oscillations are usually associated with equipment degradation or 

bad control tuning. Because the constraints on the manipulated variables have not at any 

point become active, the operators might reason that it is better to investigate a possible 

equipment degradation first before delving into MPC. 

 

Figure 4.15: Controlled variables of the evaporator showing oscillations (sp = set pint. 

cv = controlled variable) 
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Figure 4.16 Manipulated variables of the evaporator showing oscillations (mv = 

manipulated variable. umax = upper constrain value of manipulated input) 
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Figure 4.17: Limit cycle plots for valve on F2  

 

 

Figure 4.18: Limit cycle plots for valve on F200 
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Figure 4.19: Limit cycle plots for valve on P100 
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4.5.4 Case 3 Conclusion 

The path taken to arrive at equipment degradation is summarised in the table below. 

 Questions Answer Suspicions 

Observations 

Observed CV Trends Oscillations? YES Equipment failure  

PID degradation 

Partial set-points 

tracking? 

  

Zero set-points 

tracking? 

  

Unbounded outputs? NO  

Observed MV Trends Oscillations? YES Equipment failure  

PID degradation 

MV saturates? NO  

Aggressive MV 

behaviour? 

NO  

Actions 

Examine linear Model 

dynamics (step response 

plots and transfer 

function matrix 

Reasonable CV 

selections? 

YES Good variable selection 

Examine CV and MV 

selections using RGA 

Reasonable for given 

MV? 

YES Good variable selection 

Examine CV and MV 

pairings using RWA 

Reasonable output 

weights for CVs 

YES Good output weights 

Similar MPC on virtual 

Plant (virtual plant does 

not include effect of PID 

or equipment) 

MV and CV trends 

similar to those of 

real plant? 

NO  Good MPC performance 

 Investigate equipment 

failure 
MPC Tunings 

improved 

performance? 

 

Run the plant in open 

loop (No MPC)  

Performance 

improved 

NO Valve failure suspected 

Plot and study the valve 

limit cycles 

Fit any known 

pattern of failure? 

YES 

Result: Limit cycle plot reveal deadband problem in one of the valves 

 

4.6 Case 4: Example relating to MPC constraints 

This case study is based on the evaporator example where MPC is implemented directly 

(described in Section 3.4.2) The MPC settings are the same as in table 3.15. The case 

relates to a situation where a hard constraint on one of the manipulated variables (F200) 

is set too tightly, leading to degradation of the MPC. 
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4.6.1 The Scene 

In Section 3.4.2, the evaporator is operated at the equilibrium point specified in section 

3.4. The equilibrium value of the product flowrate, F200, is 208 kg/min. A different 

scenario is now imagined, where as a result of the original plant specification, it was 

decided that the valve on this flow line should not be allowed to fluctuate more than 

50% above or below the equilibrium opening. That is the hard constraints on F200 was 

set as 208 ± 104 kg/min. All other MPC settings were as in section 3.42. The plant 

operated sensibly for some time. Then one day they observe changes like those shown 

in figure 4.20. The MPC begins to degrade at the 50 minute mark. Two of the 

controlled variables (P2 and X2) deviate sharply from their set-points, while P2 exhibits 

a large overshoot and X2 shows large undershoot, with both ending up with large 

steady value offsets. 

 
Figure 4.20: Trends of evaporator controlled variables showing degradation (sp = 

setpoint. cv = controlled variable) 
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4.6.2 The operators Perspective 

The operators might be surprised at the sudden degradation of the MPC, because the 

parameters of the MPC had not been changed prior to the sudden appearance of 

degradation. For them, issues relating to tuning parameters could be eliminated initially 

at least. They might observe that the trends of the controlled variables do not show any 

oscillations so they might also eliminate issues relating to equipment degradation. The 

operators might now study the trends of the manipulated shown in figure 4.21 below. 

 
Figure 4.21: Trends of evaporator manipulated variables 
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support F200 flow up to 400 kg/min and it is assumed that the operators are aware of 

this. Based on this observation, the operator might deduce that the constraint on F200 is 

too tight, and decide to relax it. The upper bound of the constraint on F200 was made 

400 kg/min. The trends of the MPC implementation on the plant after the constraint is 

relaxed is shown in figure 4.22. Now all the controlled variables tracked their set-

points. 

 

Figure 4.22: Trends of evaporator manipulated variables after constraint is relaxed 

To the operators, the relaxation of the constraint on F200 has solved one problem: that 

is the elimination of offsets on P2 and X2. But it has not revealed the source of the 
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 sudden appearance of unmeasured disturbance  

The linear model available to the operators is assumed to include models for 

unmeasured disturbances F1, T1, T200 and X1. The operators might choose to 

experiment with these measured disturbances which are not included in the controller 

by examining their effects on the virtual plant. They might observe that trends similar to 

those that occurred on the real plant can be replicated when the unmeasured disturbance 

F1 is increased from 10.0 kg/min to 11.0 kg/min, with the constraints on F200 kept at 

208 ± 104 kg/min. They might now trace the unmeasured disturbance back to a point in 

the plant where the effects caused by such a disturbance might be observed. 

4.6.4 Case 4 Conclusion 

The path taken is summarised for a case where a constraint is set inappropriately: 

 Questions Answer Suspicions 

Observations 

Observed CV Trends Oscillations? NO  

Partial set-points 

tracking? 

YES Unmeasured disturbance 

Zero set-points 

tracking? 

  

Unbounded outputs? NO  

Observed MV Trends Oscillations? NO  

MV saturates? YES Constraints on MV 

Aggressive MV 

behaviour? 

NO  

Actions 

Examine linear Model 

dynamics (step response 

plots and transfer 

function matrix 

Reasonable CV 

selections? 

YES Good variable selection 

Examine CV and MV 

selections using RGA 

Reasonable for given 

MV? 

YES Good variable selection 

Examine CV and MV 

pairings using RWA 

Reasonable output 

weights for CVs 

YES Good output weights 

Similar MPC on virtual 

Plant  

MV and CV trends 

similar to those of real 

plant? 

YES Too strict constraint 

confirmed 

Constraint relaxation 

improved 

performance? 

YES 

Result: relaxation of constraint on an MV improved performance 
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4.7 Case 5: Example Relating to Variables Selection 

This case study is based on the FCCU example, where MPC is implemented as a 

supervisory, largely zone control problem as described in section 3.3.3. The hard 

constraints for the MPC are given in table 3.28. The soft constraints are given in table 

3.27, except that there is now no constraint on CO2,sg, which is now implanted as set 

point control. The other MPC parameters are given in table 4.6 below. The case relates 

to a situation where two highly coupled variables (Tr and CO2,sg) are used for set point 

control at the same time, leading to MPC degradation  

Table 4.6: MPC parameters for Case 5 

Parameter Symbol Value 

Sampling Time Ts 120 

Prediction horizon P 30 

Control horizon M 3 

Output weights ow [10,0,0,0,0,10,0,0,0,0,0]; 

Input weights iw [0.1,0.1, 0.1,0.1,0.1, 0.1,0.1,0.1, 0.1,0.1] 

 

4.7.1 The Scene 

A situation is envisaged where for operational reasons, the operators decide that the 

FCCU should be controlled with both the riser temperature    and the oxygen 

concentration in the regenerator stack gas        at their set-points. They test these 

requirements by applying unit step down to    at the 60 minute mark, and a unit step up 

to        at the 120 minute mark. The output and input trends for this envisaged 

scenario are shown in the figures 4.23 and 4.24 below. The trends show that both    and 

       track their set-points. 
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Figure 4.23: Controlled output trends with set-points on Tr and CO2,sg no degradation 

(black: trend; blue: set-point; green: nominal; red: upper constraint; magenta: 

lower constraint) 
 

 
Figure 4.24: Manipulated inputs trends with set-points on Tr and CO2,sg, no degradation 
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But later they begin to observe the degradation, as shown from the 60 minute mark in 

figures 4.25 and 4.26. Both Tr and CO2,sg begin to deviate from their set-points, and 

       in particular never track its set-point.  

 

Figure 4.25: Controlled outputs trends with set-points on Tr and CO2,sg, with degradation 

(black: trend; blue: set-point; green: nominal; red: upper constraint; magenta: 

lower constraint) 

 
Figure 4.26: Inputs trends with set-points on Tr and CO2,sg with degradation (T1 is a 

measure disturbance) 
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4.7.2 The Operator’s Perspective 

The operators supposedly go through the checklist of possible causes and confirm that 

virtually all MPC settings (MPC tuning parameters, constraints, PID settings) remain as 

before. They then note a change in T1, which is a measured disturbance. There was a 

ramp increase of 39.1
0
F in T1 over a ten minute period from the 10 minute mark. They 

might turn to the virtual plant, to see that this increase partly explains the MPC 

degradation. The trends of the virtual plant outputs are shown in figure 4.27 below. 

 
Figure 4.27: Controlled outputs trends from virtual plant with set-points on Tr and 

CO2,sg, and with ramp increase in T1 (black: trend; blue: set-point; green: nominal; 

red: upper constraint; magenta: lower constraint) 
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transfer matrix model of the FCCU as shown in table 3.26 or the step response plots of 

the model shown in figure 3.30. From the table and the figure, the response of Tr due to 

step changes in each of the manipulated inputs is opposite to that of CO2,sg. In particular 

both Tr and CO2,sg are both most strongly affected by the same input: P. This clearly 

shows that both Tr and CO2,sg should not have been paired for set-point control as both 

would always be in conflict. One option is to drop set-point control of CO2,sg. The 

virtual plant outputs then obtained are shown in figure 4.28. 

 
Figure 4.28: Controlled outputs from the virtual plant when set-point on Tr only, and 

with ramp increase in T1 (black: trend; blue: set-point; green: nominal; red: upper 

constraint; magenta: lower constraint) 
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other outputs (changes in the manipulated inputs that affect Tr also affect other outputs, 

either completely opposite to Tr or in the same direction), with the exception of T3. T3 

is almost solely controlled by F5 and with very fast dynamics. 

So an alternative control strategy may be to consider having set-point tracking of T3 

together with Tr, or to use a more advanced MPC control where the output constraints 

can be ranked. 

4.7.4. Case 5 Conclusion 

 Questions Answer Suspicions 

Observations 

Observed CV Trends Oscillations? NO  

Partial set-points 

tracking? 

YES Unmeasured disturbance 

Measured disturbance 

Zero set-points 

tracking? 

  

Unbounded outputs? YES Variable selection 

Observed MV Trends Oscillations? NO  

MVs saturates? NO  

Aggressive MVs 

behaviour? 

NO  

Actions 

Examine linear Model 

dynamics (step response 

plots and transfer 

function matrix 

Reasonable CVs 

selections? 

NO Bad variable selection 

Examine CV and MV 

selections using RGA 

Reasonable CVs for 

given MVs? 

NO Bad variable selection 

Examine CV and MV 

pairings using RWA 

Reasonable output 

weights for CVs 

YES Good output weights 

Similar MPC on virtual 

Plant  

MVs and CVs trends 

similar to those of real 

plant? 

YES Bad design or variable 

selection 

MPC tuning improved 

performance? 

NO 

Result: Virtual plant dynamics reveal that two of the controlled variables should not have 

been used together. Dropping one of them improved performance. 
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4.8 Case 6: Example relating to absence of output constraints in 

zone control 

This case study is based on the FCCU example, where MPC is implemented as a 

supervisory, largely zone control problem as described in section 3.3.3. The hard 

constraints for the MPC are given in table 3.28. The soft constraints are given in table 

3.27, except that there is now no constraint on T3, which is now implanted as set point 

control. The other MPC parameters are given in table 4.13 above, except that the output 

weight of CO2,sg is zero and that of T3 is 10. The case relates to a situation where though 

zone control is intended, the output constraints are not specified. 

4.8.1 The Scene 

A situation is envisaged where the control of the FCCU using MPC is implemented 

largely as a zone control problem, but with set-point control of Tr and T3. No 

constraints are specified for the outputs, and the operating conditions are assumed to be 

perfect, meaning that there are no disturbances. The thinking behind this scenario is that 

as long as Tr and T3 are kept at their set-points, all the other outputs that are noted to be 

highly coupled with Tr would either increase or decrease sensibly as Tr changes 

(depending on whether the correlation is positive or negative) that is these deviations 

would be acceptable. The trends of the outputs and inputs for this envisaged scenario 

are shown in figures 4.29 and 4.30 below.  

These plots support the assumption: virtually all the other outputs decrease or increase 

sensibly in the direction suggested in the step response plots of figure 3.30. However if 

an unmeasured disturbance (the effective coking factor, f) is increased, the operators 

might observe controlled output trends shown in figure 4.31 below.  
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Figure 4.29: Controlled output trends with set-points on Tr and T3, no output 

constraints, no disturbances (black: trend; blue: set-point; green: nominal; red: 

upper constraint; magenta: lower constraint) 

 
Figure 4.30: Manipulated input trends with set-points on Tr and T3 , no output 

constraints, no disturbances 
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Figure 4.31: Controlled outputs trends with set-points on Tr and T3 , no output 

constraints, but with input disturbance 
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The output constraints are now included in the simulation of the ‘real’ plant, in the 

presence of the input disturbance. The output trends for this implementation are shown 

in figure 4.32 below. 

 

Figure 4.32: Controlled output trends with set-points on Tr and T3 , with output 

constraints and input disturbance (black: trend; blue: set-point; green: nominal; 

red: upper constraint; magenta: lower constraint) 
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4.8.4. Case 6 Conclusion 

 Questions Answer Suspicions 

Observations 

    

    

Observed CV Trends Oscillations? NO  

Partial set-points 

tracking? 

YES Disturbance 

Output constraints 

violation? 

N/A  

Constraint on output 

specified? 

NO  

Observed MV Trends Oscillations? NO  

MV saturates? NO  

Aggressive MV 

behaviour? 

NO  

Actions 

Similar MPC on virtual 

Plant (this does not 

include effect of 

disturbances 

MV and CV trends 

similar to those of real 

plant? 

NO Include Output constraint on 

real MPC 

Investigate source possible 

disturbance Output constraints 

improved performance? 

YES 

Result: Examine the properties of the unmeasured disturbance and the extent to which the 

operator can affect its value. Return to design value if possible. 

Check reveals that an unmeasured disturbance has deviated from its nominal value. Operation 

at this new design condition would require re-evaluation of the MPC. Otherwise return to 

previous design value. 

 

4.9 Case 7: Example relating to model plant mismatch 

This case study is based on the CSTR example, in which MPC is implemented as a 

supervisory controller with V and CA as the controlled variables (Section 4.3.1). The PI 

settings for the regulatory controllers are as given in table 3.5, and the MPC settings are 

the same as in table 3.8, except for the outputs weights which are 1 and 200 respectively 

for V and CA. The case relates to a situation where the steady state gain for the model 

representing the Tjet-CA input output channel (table 3.7) is changed from -0.006 to 0.6 to 

study the effect of model plant mismatch. 

4.9.1 The Scene 

A situation is imagined where the operators observe deterioration in the tracking of 

variable CA, with its offset greatest at the beginning and reducing gradually over time, 
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as shown in figure 4.33 below. The settling time of CA has increased significantly even 

when it is operated at its nominal value of 0.245 Btu/hr ft
2
 
0
R. 

4.9.2 The Operators’ Perspective 

Having noted the CV trends, the operators are likely to study the trends of the 

manipulated variables: the MPC outputs, which are the set-points to the two PI 

controllers (figure 4.34). 

 

Figure 4.33: Case 7 CV trends 
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disturbance, since the two controlled variables have been shown to be an acceptable 

selection (Section 4.3.1), and other possible causes have been eliminated. Since there is 

no aggressive behaviour in the MVs, the operators might see no reason to alter the input 

weight settings. The operators might also realise that changes to the output weights 

would not improve the performance. The three disturbances of the system (T0, CA0, Tj0) 

are not modelled so the operators are unable to experiment with their effect on the 

linear model of the process. The operators might now at the last resort decide to check 

for model-plant mismatch. 

 

Figure 4.34: Case 7 MVs 
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The operator might, as described above, apply simultaneous unit step signals to the 

inputs of the plant and the model, and obtain a comparison plot of the responses, as 

shown in figure 4.35. From the figure, it should be obvious to the operators that there is 

model-plant mismatch, especially with regards to variable CA. This suggests that only 

input-output transfer function models related to CA (similar to the one in table 3.7) may 

require more detailed attention.  

The operators might now apply unit steps in turn (step on an input one at a time) so as 

to gain further insight into whether one or more input-output pairs give rise to the 

model-plant mismatch.  

 
Figure 4.35: Responses of plant and model due to simultaneous application of step 

signals showing model-plant mismatch 
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and see what happens. They might indeed discover that appropriate gain specification 

for the model for the Tjset-CA input-output channel would restore the MPC to good 

performance. 

 
Figure 4.36 Responses of plant and model due to application of step signal to Vset only 

 

 
Figure 4.37 Responses of plant and model due to application of step signal to Tjset only 
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4.9.4. Case 7 Conclusion 

The following table summarises the path that might be taken to conclude and isolate a 

case of model/plant mismatch. 

 Questions Answer Suspicions 

Observations 

Observed CV Trends Oscillations? NO  

Partial set-points 

tracking? 

NO  

Zero set-points 

tracking? 

NO  

Increased settling time YES Model Mismatch  

Unmeasured disturbance 

Variable selection 

MPC parameters 

Unbounded outputs? NO  

Observed MV Trends Oscillations? NO  

MV saturates? NO  

Aggressive MV 

behaviour? 

NO  

Actions 

Examine linear Model 

dynamics (step response 

plots and transfer 

function matrix 

Reasonable CV 

selections? 

YES Good variable selection 

Examine CV and MV 

selections using RGA 

Reasonable for given 

MV? 

YES Good variable selection 

Examine CV and MV 

pairings using RWA 

Reasonable output 

weights for CVs 

YES Good output weights 

Similar MPC on virtual 

Plant  

MV and CV trends 

similar to those of real 

plant? 

NO Model mismatch 

Switch off MPC. Apply 

excitation signals to the 

inputs. Plot the step 

responses 

Do the step responses 

match those of the 

model? 

NO Comparison of the step 

responses reveal 

model/plant mismatch 

Result: Model/plant mismatch diagnosed. Adjustment to the model improved performance 

 

 

4.10 Case 8: Example relating to PID degradation 

This case study is based on the evaporator example, in which MPC is implemented as a 

supervisory controller (Section 3.4.3). The MPC settings are given in table 4.7. The 

proportional gain and integral time constant for the regulatory controller used are -10 
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and 10 seconds respectively. The case relates to a situation where the MPC degrades 

due to improper tuning of the lower level regulatory controller. 

Table 4.7: MPC parameters for case 8 

Parameter Symbol Value 

Sampling Time Ts 1 

Prediction horizon P 30 

Control horizon M 3 

Output weights ow [100,10 10] 

Input weights iw  [0 0 0] 

 

4.10.1 The Scene 

A situation is imagined where the operators observe oscillations in the controlled and 

manipulated variables even as the evaporator is at close to designed equilibrium point. 

The trends of the controlled and manipulated variables as observed by the operators are 

shown in figures 4.38 and 4.39 below. 

 
Figure 4.38: Trends of the evaporator controlled variables due to MPC degradation 
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Figure 4.39: Trends of the evaporator manipulated variables due to MPC degradation  
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Figure 4.40: Controlled variable trends of evaporator with regulatory control only 
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assumption that the same set of set-point values are used in both cases. Such a 

comparison plot is shown in figure 4.42 below. 

s/1

 

 
 

Figure 4.41: sp and pv for regulatory controllers (a) local servo controller, (b) PI 

controller 

 

 
Figure 4.42: sp and pv plots for the regulatory controllers 
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The trends of figure 4.42 should reveal that pvm for loop L2-L2S differ substantially 

from pvbm, while there are no discrepancies in the pvm and pvbm for the other two loops. 

The pvm for L2-L2S loop has higher settling time and overshoot valued compared its 

pvbm which can be due to low PI gain value or high integral time constant. 

The operators might then discover that retuning this loop to conform with the 

benchmark trend (pvbm) in figure 4.42 would restore the MPC to good performance. 

4.10.4. Case 8 Conclusion 

The diagnosis of the root cause of the MPC degradation is given in the following table 

 Questions Answer Suspicions 

Observations 

Observed CV Trends Oscillations? YES Equipment failure  

PID degradation 

Partial set-points 

tracking? 

  

Zero set-points 

tracking? 

  

Unbounded outputs? NO  

Observed MV Trends Oscillations? YES Equipment failure  

PID degradation 

MV saturates? NO  

Aggressive MV 

behaviour? 

NO  

Actions 

Examine linear Model 

dynamics (step response 

plots and transfer 

function matrix 

Reasonable CV 

selections? 

YES Good variable selection 

Examine CV and MV 

selections using RGA 

Reasonable for given 

MV? 

YES Good variable selection 

Examine CV and MV 

pairings using RWA 

Reasonable output 

weights for CVs 

YES Good output weights 

Similar MPC on virtual 

Plant (virtual plant does 

not include effect of PID 

or equipment) 

MV and CV trends 

similar to those of real 

plant? 

NO  Good MPC performance 

 Investigate equipment 

failure 
MPC Tunings improved 

performance? 

 

Run the plant in open 

loop (No MPC)  

Performance improved NO Poor PID control 

PID loop degradation 

suspected 
Retuning the PID 

improved performance? 

YES 

Result: PID loop degradation diagnosed. Retuning improved performance 
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4.11 Summary 

This Chapter simulated eight different cases of degradation in MPC performance. The 

CSTR and the evaporator were used for three cases each while the FCCU was used for 

the other two. Descriptions of how an average operator might reason if the degradations 

were to manifest on real plant were given, followed by assumed perspectives of 

technically minded operators about the symptoms and the suggested appropriate 

diagnostic procedure, taking cognisance of the dynamics of the systems. By observing 

the trends and making use of various forms of information (the process dynamics, 

process step response plots, the transfer function matrix, steady state gains, the relative 

gain array and a novel measure derived from the steady gains, the relative weight array) 

the reason for the degradations, the diagnoses and faults isolation, as well as the 

recovery procedures were explained transparently. Each case study was concluded by 

outlining the diagnostic steps that were taken towards investigating, isolating and 

recovering from the MPC degradation simulated.  
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Chapter Five  

The Maintenance Tool Development 

5.1 Perceptions of the Maintenance Tool and the operators 

This chapter outlines a vision of what a maintenance tool might look like. In practice 

any package that would be suitable for operator use, would have to be produced by 

systems developers who would need to have graphical user interface (GUI) and perhaps 

ergonomics expertise. The outline described here should be viewed as a mechanism for 

engaging with other researchers, end-users and vendors, and little else. 

The MPC operators that are envisioned here are not the high end advanced automatic 

control process engineers (who are not prevalent anyway), but the non-specialist 

engineers tasked with keeping most process plants running. The maintenance tool 

envisioned here is founded, in part, on a brief industrial visit that was made to Warri 

Refining and Petrochemical Company (WRPC), located in the southern part of Nigeria. 

At the time of this industrial visit, the company did not have MPC installed (there are 

plans to install one in the near future). A Yokogawa Electric Corporation Centum XL 

series distributed control system (DCS) was installed instead. This control system was 

installed in the early 1990s. The same operators will be around when MPC is eventually 

installed on the plant. So the understanding obtained during the visit, of how an 

engineer ‘thinks’ will carry-forward including their perceptions and limitations into this 

new approach. A DCS would still be installed as a regulatory control system, because 

this is still an integral part of most processes with MPC installations. 

At WRPC the operators had a very good understanding of their plant, but were not well 

supported when it came to assessing performance in terms of plant efficiency. Although 
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they had access to current DCS input and output variables, they had no way of 

converting the data to historical graphical plots or benchmark plots, to see whether 

performance was improving or degrading. On a more positive note, DCSs are founded 

on individual PID loops making is easier to isolate a faulty loop. 

5.2 Proposed Scope and Components of the Maintenance tool 

The maintenance tool envisioned in this thesis is completely data-driven. Based not on 

complex statistical analysis of process data, but on observing process data and their 

trends, the tool seeks to help the operator make sensible judgements about performance 

degradation, the form and direction of diagnosis and fault isolation, and possibly, the 

recovery procedure. A particular feature of the tool is the ability to compare the actual 

performance trends for a given length of time with historical trends for approximately 

the same length of time. Operators might observe the following types of abnormalities 

in actual performance trends as evidence of MPC degradation: 

a) offsets in controlled variables; 

b) an unresponsive controlled variable or manipulated variable; 

c) saturation of manipulated variables; 

d) oscillations in controlled and/or manipulated variables; 

e) an over aggressive manipulated variable; 

f) output and/or input constraint violation; 

g) increased settling times of controlled variables; 

 

Issues which might lead to these observed abnormalities in performance trends include 

the following: 

(i) inappropriate variable selection 

(ii) model/plant mismatch 
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(iii) improper constraint specification 

(iv) PID degradation (PID tuning) 

(v) sensor/actuator failure 

(vi) poor MPC tuning 

(vii) poor MPC design 

The maintenance tool is envisaged to have many assessment windows through which 

the operator might progress to detect MPC degradation, and carry out certain activities 

to confirm or dispel suspicions about the cause of the abnormality. The assessment 

windows are in five major groups, as shown figure 5.1 below. The first is the trends 

comparison group, after which comes the diagnostic questions group. After the 

diagnostic questions group are the suspected symptoms, the symptoms investigation 

and the MPC recovery groups. Central to the choice of and arrangement of the 

assessment windows is the role of the operator, who is expected to have the basic 

understanding needed to take appropriate actions at every stage of the assessment. The 

roles contained in the windows are outlined below. 

5.3 Trends Comparison Assessment Group 

The trends comparison group consists of two spilt windows (figure 5.2): the reference 

graphical performance (RGP) window, and the actual graphical performance (AGP) 

window. The RGP window remains static most of the time. It displays trends of data 

obtained well before degradation is suspected, perhaps at commissioning and during 

periods of excellent performance. The window would be generated and updated by 

technical operations personnel, who would re-evaluate its status regularly. The AGP 

window displays similar trends to the RGP, but now the trends are periodically updated 

during actual plant operation. 
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The rationale behind the trends comparison group is that the operator would become 

familiar with trends associated with normal operation. If unusual features were to 

appear in one or more of the actual trends, the operator would be encouraged to move to 

the diagnostic questions windows (figure 5.1). Sections 5.3.1 and 5.3.2 describe the 

type of trends that the RGP and AGP windows might display. 

 
Figure 5.1: Structure of the Maintenance tool 
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Figure 5.2 Arrangement of windows in the trends comparison assessment group 

5.3.1 Reference Graphical Performance Window 

The reference graphical performance window displays trends associated with good 

performance. The underlying data for the trends may be updated, for example if there is 

a change of operating condition. With reference to figure 2.4, the reference graphical 

performance window might display the following trends: 

Plot 1) rv against time and cv vs time (on the same plot); 

Plot 2) sv against time (sv are the outputs of the model predictive controller, which are 

the set-points for regulatory control); 

Plot 3) mv against ov. This is to benchmark the performance of valve actuation. For a 

perfectly functioning valve the plots should have constant positive slopes at a 

steady state operating point. 

Taking the CSTR case of Section 3.3.2 as an example, plot 1 would be as shown in 

figure 5.3, plot 2 would be as shown in figure 5.4, and plot 3 would be as shown in 

figure 5.5.  
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Figure 5.3: Sample rv and cv trends 

 
Figure 5.4: Sample sv (MPC manipulated variable) trends 
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Figure 5.5: Sample mv against ov plot 

During commissioning but also during periods of normal operation in which regular 

maintenance is carried out, it is possible that open loop tests would be performed on 

regulatory control loops. Plots 4 and 5 (explained below) exploit information generated 

during these activities. 
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obtained by applying a step to the input of a loop while the input to the other 
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the controller is of the type shown in the lower loop in figure 2.4. The plot is 

obtained by applying a step to the input of a loop while the input to the other 

loops remains at equilibrium. Like plot 4, this plot serves as a performance 

reference for that particular PID loop. 

Plot 6) mvo against ovo. The subscript o indicates the values obtained when the plant is 

in open loop. This will essentially be similar to that of figure 5.5 for perfectly 

working valves as shown in figure 5.7 below. 

 

 
Figure 5.6: Sample rvo and cvo trends (open loop) 

 

0 10 20 30 40 50 60 70 80 90 100
47.5

48

48.5

49

49.5

ft
3

PID loop 1

 

 

rv
o

cv
o

0 10 20 30 40 50 60 70 80 90 100
594.5

595

595.5

596

R
0

PID loop 2

time

 

 

rv
o

cv
o



177 
 

 
Figure 5.7: Sample mvo against ovo plot (open loop) 

5.3.2 Actual Graphical Performance Window 

This window displays performance trends similar to those described in Section 5.3.1 
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5.4 Preliminary diagnostic questions window 

The window displays a list of diagnostic questions, each of which relates to a different 

type of abnormality that might manifest itself in a real MPC situation. The diagnostic 

questions displayed relate to the types of abnormality listed in Section 5.2. The 

questions are arranged in a form similar to table 5.1, where graphical sketches of the 

type of abnormality that the questions refer to are arranged in a column next to the 

questions. The operator is expected to select that type which best describes the observed 

abnormality in the performance trends. The type chosen by the operator then opens a 

different suspected faults window.  

Note that table 5.1 below is split into six parts for ease of presentation 

Table 5.1 Preliminary diagnostic questions 

S/N Option Questions  Sample trend displayed 

1 Offsets in controlled 

variables (see e.g. 

figure 4.8) 
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2 Unresponsive 

controlled variable or 

manipulated variable 

(see e.g. figure 4.1) 

 

 

 

3 Saturation of 

manipulated 

variables (see e.g. 

figure 4.21) 

 

 

4 Oscillations in 

controlled and/or 

manipulated variables 

(see e.g. figures 4.15 

and 4.16) 
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5 Too aggressive 

manipulated variable 

 

 

6 Increased settling time 

of controlled variables 

 

 

5.5 Suspected Faults Window 

This window displays a list of causes that are likely to be responsible for the type of 

abnormality chosen by the operator in the diagnostic questions window in table 5.1. The 

list is arranged in order of diagnostic complexity; beginning with the one that might 

require the most basic diagnostic procedure, to the one that is likely to require the most 

engaging diagnostic procedure. The operators might choose to investigate in the order 

specified, or might jump around the list if new information leads them to do so. The list 

for each type of observed comparison trend is shown in table 5.2. 
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Table 5.2:Lists of causes associated with each underlying abnormality 

S/N Type  List displayed 

1 Unresponsive controlled 

variable 

 Inappropriate MPC tuning 

 Inappropriate variables selection 

 Model/plant mismatch 

 MPC design 

 Sensor/Actuator degradation 

2 Non-oscillatory offsets in 

controlled variables 

 Inappropriate MPC tuning 

 Process drift due to unmeasured disturbance 

 Model/plant mismatch 

 Inappropriate variables selection 

 MPC design 

3 Unresponsive 

manipulated variable 

 Inappropriate MPC tuning 

 Inappropriate variables selection 

 Model/plant mismatch 

 MPC design 

4 Saturation of manipulated 

variables 

 Inappropriate MPC tuning 

 Improper constraints specifications 

 Presence of unmeasured disturbance 

5 Oscillations in controlled 

and/or manipulated 

variables 

 MPC tuning 

 PID degradation 

 Sensor/actuator degradation 

 Model/plant mismatch 

6 Too aggressive 

manipulated variable 

 MPC tuning 

 Inappropriate variables selection 

7 Output and/or input 

constraints violation 

 MPC tuning 

 Improper constraints specifications 

 Inappropriate variables selection 

8 Increased settling time of 

controlled variables 

 MPC tuning 

 Presence of unmeasured disturbance 

 Model/plant mismatch 
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5.6 The Background Information Group 

When a cause associated with an abnormality is chosen (table 5.2), the operator is lead 

to the symptoms investigation window (fig.5.1), where a systematic examination of the 

symptom is carried out. In carrying out the investigation of an underlying symptom, the 

operator might be guided by information contained in a number of windows collectively 

referred to as background information windows. These windows include the transfer 

function matrix window, the virtual plant without MPC window, the virtual plant with 

MPC window and the RGA and RWA window. The operator is expected to be able to 

navigate to and from any of these windows in search of information and guidance.  The 

descriptions of the roles of each of the background information windows are given 

below.  

5.6.1 Virtual plant Without MPC Window 

This window houses the linear model of the plant (which may be in state space, 

difference equation or transfer function form). It should include provisions to apply 

different input sources (especially step deviation signals) to the virtual plant, and to 

display the step responses from such signals (figure 5.8). The step responses are of the 

type shown in many instances in Chapter Three. A sample of step response plots that 

may be displayed in this window is shown in figure 5.9. With good understanding of 

system dynamics as portrayed in the step responses, the operator may be guided in 

making appropriate selection of the variables used in the MPC, especially when 

operator wishes to consider alternatives. A simple example to illustrate the type of 

information that may be derived from system dynamics is given below. 
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Figure 5.8: Virtual plant without MPC setup 

 

 

Figure 5.9: Sample step response plots from Virtual plant without MPC 
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set-point control on any two of the output variables in process A may be used with the 

two input variables. But in process B, y2 should advisedly not be used with y3 or y4. 

Also y3 should not be used with y4. In process A, all the outputs dynamics due to step 

in one input are not all similar to the outputs dynamics due to step in the other input. 

But in process B the dynamics of outputs y2, y3 and y4 due to step in the first input is 

very similar to the dynamics of the same outputs due to step on the second input. This 

indicates a strong degree of coupling among the three outputs which may make 

independent set-point control difficult. 

 
Figure 5.10: Step response plots of Process B 
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the method described in Appendix A, was used to obtain the transfer function matrix 

with the linear model used to obtain step response plots of figure 5.9. Information like 

steady state gains and settling times would be transparent to the operator. 

Table 5.3: Approximate transfer function matrix for process A 

 u1 u2 

y1     

              
 

    

              
 

y2     

      
 

     

      
 

y3     

              
 

         

              
 

 

5.6.3 Steady state gain, RGA and RWA Window 

The RGA and RWA calculations window displays the RGA and RWA for different 

combinations of inputs and outputs based on data of linear model steady state gains. 

The RGA can be used by the operators, in conjunction with the step response plots and 

the transfer function matrix, to make informed choices about merits and demerits of 

alternative MPC configurations that may be considered. The RWA is used to assist the 

operator in deciding the sensible starting point for controlled variable weight gain 

selection when tuning for a different configuration is required. The steady state gain, 

RGA and RWA for the virtual plant whose step response is given in figure 5.11 are 

shown below. 

 

Figure 5.11: Display for steady state gains, RGA and RWA 
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In figure 5.11 for example, the operator may observe that for best set-point control, the 

RGA values suggest that outputs y1 and y3 are the pair more appropriate as controlled 

variables because their RGA values have highest numerical values, and are positive, 

indicating that the two outputs are together more affected by the two inputs than any 

other pair. With y1 and y3 chosen as controlled variables, their output weights should 

be closely equal, because according to the RWA values, the weight of y1 can be from 

1.6902 to 3.6209 and that for y1 can be from 1.0000 to 1.2133, indicating that the 

numerical difference between the two output variables is not very high. This is unless 

the operators require preferential set-point tracking. This idea if RWA was used in the 

diagnosis of case 1 in Section 4.3. 

5.6.4 Virtual plant With MPC Window 

Here installed the virtual plant is a linear model of the real process under MPC. Both 

the linear model and MPC are similar to the one on the real plant (figure 5.12). The idea 

is that within the context of MPC, the virtual plant with MPC is normally expected to 

give better performance compared with the real plant with the same MPC. With this the 

operators can simulate different scenarios to see what is possible. This is particularly 

important in cases where the plant may be required to be operated at a new operating 

point, because certain MPC degradations can be ameliorated by retuning the MPC. The 

virtual plant with MPC provides a means of experimenting with proposed tuning 

strategies prior to implementation on the real plant. The virtual plant may also be used 

to experiment with different MPC configurations. 
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Figure 5.12: Virtual Plant with MPC setup 

For example the virtual plant with MPC might be used to test the extent to which a 

current MPC might cope, if plant operation was to be transferred to a new operating 

point far removed from the current one. The idea is that if the MPC cannot cope with a 

required control action on the virtual plant, then it would be even more difficult on the 

real plant, since the virtual plant has no nonlinearities associated with the real plant, and 

the setup is devoid of any model/plant mismatch. This was demonstrated in the case 

study of Section 4.3.2 before. 

5.7 MPC Investigation 

The form of this window would depend on the outcome from the suspected faults 

window and hence from table 5.2. This window directs the operator to a number of 

investigative windows, each devoted to suggesting a number of actions, which may lead 

the operator to confirm or reject a particular reason for degradation. If a suspicion is 

confirmed then the remedial action that is required is likely to be obvious to the 

operator. 

The procedures for investigating each suspected fault are given below. Some of the 

diagnostic procedures require an understanding of the system dynamics revealed by 
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RGA, RWA, transfer function matrix and step response plots, so it is assumed that the 

operators would have had prior access to these perhaps as part of a training programme. 

5.7.1 Investigating inappropriate variables selection 

If inappropriate variable selection is part of the list of causes associated with an 

abnormality (table 5.2) and the operator selects it, the Inappropriate Variables Selection 

window would then open. In it the operator would be asked to investigate along the 

lines of the following script. An example of this process was described in section 4.5 

previously. 

1) Simulate the virtual plant with similar MPC parameters, same variables and same 

operating conditions as in the real plant 

2) Compare the trends from the virtual simulation with the real one. If the trends are 

similar, it is an indication that the initial assumption may be correct, and you 

should proceed to the next step. 

3) Briefly navigate to the steady state gain, RGA and RWA window and the transfer 

function window. Using knowledge of the linear model dynamics (step response 

plots and transfer function matrix and RGA), examine if you can find more 

appropriate CVs for the given MV (or vice versa).  

4) If other appropriate variables are discovered in step (3), experiment with these in 

the virtual plant with MPC window. 

5) If the performance of the virtual plant in (4) improves as a result of the new 

variables, consider implementing the same on the real plant 

6) If implementing the new variable combination in (5) on the real plant improves 

the performance of the MPC, then the source of the MPC degradation has been 

confirmed. 
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5.7.2 Investigating model/plant mismatch 

If model/plant mismatch is part of the list of causes associated with an abnormality 

(table 5.2) and the operator selects it, the Model/plant Mismatch window would the 

open. In it the operator would be asked to investigate along the lines of the following 

script. 

1) Run the plant in open loop (without MPC) 

2) Apply step signals to each of the inputs in turn and record the controlled variables 

step responses. 

3) Compare the trends of the step responses from (2) for each input-output pair with 

its counterpart in the virtual plant without MPC window. 

4) If there are any remarkable differences in terms of the steady state gains, settling 

time or nature of response (e.g. whether inverse or non-inverse response), then 

model/plant mismatch is a suspect. 

5) Contact the experts about this finding and request for further investigation. 

5.7.3 Investigating improper constraints specifications 

If improper constraints specification is part of the list of causes associated with an 

abnormality (table 5.2) and the operator selects it, the Improper Constraints 

Specifications window would then open. In it the operator would be asked to investigate 

along the lines of the following script. 

1) Simulate the virtual plant with similar MPC parameters, same variables and same 

operating conditions as in the real plant. 

2) Compare the trends from the virtual simulation with the real one. If the trends are 

similar, it is an indication that the initial assumption may be correct, and you 

should proceed with the next step. 
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3) While running the virtual plant with MPC, adjust the manipulated variables and 

the controlled variables constraints, and observe if there is an improvement in 

performance of the virtual plant. 

4) If performance improvement is observed in (3), then check to ensure that the 

concerned valve can operate within the range (in the case of inputs) or that safety 

guidelines are not violated (in case of outputs). 

5) Adjust the constraints of the real plant to reflect the settings for the virtual plant. 

6) If the adjustment improves performance then the source of the MPC degradation 

has been confirmed. 

5.7.4 Investigating PID degradation  

Investigation of the performance of PID controllers has been covered extensively in 

Desborough and Harris (1992), Harris et al. (1996) and Thornhill et al. (1999), among 

many other publications. The procedure described here serves only to complement. 

If PID degradation is part of the list of causes associated with an abnormality (table 5.2) 

and the operator selects it, PID Degradation window would then open. In it the operator 

would be asked to investigate along the lines of the following script. 

1) Obtain the plots of actual svo and cvo against time and mvo against ovo (open 

loop). (figure 2.4). While in open loop the data for mvo and ovo may be obtained 

by applying excitation signals to the inputs (step, PRBS). 

2) See if cvo does not track svo and exhibits an oscillatory trend for each of the plots 

of svo and cvo against time. Also see if each mvo against ovo has not deviated from 

its counterpart in the reference graphical window. Proceed to step 3. 
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3) If cvo is oscillatory in the plots of svo and cvo against time and the plot of mvo 

against ovo has not deviated from its counterpart in the reference graphical 

performance window, then the suspicion is confirmed. 

4) Embark on a recovery procedure involving the retuning of PID controllers. 

5.7.5 Investigating actuator degradation 

If actuator degradation is part of the list of causes associated with an abnormality (table 

5.2) and the operator selects it, the Sensor/actuator Degradation window would then 

open. In it the operator would be asked to investigate along the lines of the following 

script.  

1) Obtain the plots of actual mv against ov (under MPC operation) and mvo against 

ovo (open loop). (figure 2.4). While in open loop, the data for generating the plot 

of mvo against ovo may be obtained by applying excitation signals to the inputs 

(step, PRBS)  

2) If any of the above plots are different from their counterparts in the reference 

graphical performance window, proceed to step 3. 

3) See if any of the plots in (1) are similar to any of the common valve problems 

shown in figure 5.14 below. 

4) If there is any match then the suspicion is confirmed.  

5) Embark on a recovery procedure by repairing or replacing the faulty valve. 

5.7.6 Investigating Poor MPC tuning 

If poor MPC tuning is part of the list of causes associated with an abnormality (table 

5.2) and the operator selects it, the poor MPC Tuning window would then open. In it 

the operator would be asked to investigate along the lines of the following script. 

1. Simulate the virtual plant with similar MPC parameters, same variables and same 

operating conditions as in the real plant. 
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2. Compare the trends from the virtual simulation with the real one. If the trends are 

similar, it is an indication that the initial assumption may be correct, and you 

should proceed to the next step. 

3. Adjust the MPC parameters (output and input weights, prediction and control 

horizon, sampling interval) of the virtual plant, noting that increasing the input 

weight increases the process settling time, and increasing the output weight reduces 

the process settling time. Also a smaller sampling interval leads to a smaller 

settling time. You may briefly navigate to the background information window and 

examine the RWA values as a guide to output weight selection. 

4. If the performance of the virtual plant improves as a result of the tuning, consider 

implementing the same on the real plant. 

5. If implementing the new MPC tuning on the real plant improves the performance 

of the MPC, then the source of the MPC degradation has been confirmed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

(a) (b) (a) 

(d) (e) 

Figure 5.13: plot of mv against ov for common valve problems: (a) hysteris, (b) 

deadzone, (c) hysterisis + deadband, (d) deadband (e) stiction. Adapted from 

(Shoukat Choudhury et al., 2005) 
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5.7.7 Investigating Poor MPC design 

Investigation for poor MPC design is meant to be the last resort; after all other options 

have been exhausted. It involves using the guide contained in the background 

information windows to determine if an alternative design for the MPC may be 

recommended. It involves the following 

1. Refer to the RGA, transfer function matrix and step response plots to ensure that 

the correct variables have been used; 

2. Refer to the step response plots to see if there are input – output pairs that may 

require special attention like the presence of an integrating loop that may cause 

stability problems. 

5.8 Summary 

Chapter 5 discussed the development of the completely data-driven MPC maintenance 

tool. The maintenance tool described comprises of many assessment windows, grouped 

into five stages: trends comparison, diagnostic questions, suspected symptoms 

generation, symptoms investigation and MPC recovery. The chapter gave a description 

of the functions of the assessment windows in each group. It described the 

abnormalities that might occur when PMC degrade and provided detailed procedures of 

how the operator might use the maintenance tool to investigate the symptoms and 

recover the MPC to good performance. 
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Chapter Six  

Conclusions and Recommendations 

6.1 Progress to date 

Model predictive control has found widespread use in the industries. Like traditional 

control systems, MPC performance must be regularly reviewed if it is to fulfil its 

potential. The need to maintain good performance has elicited control assessment 

research interests in many academicians and process control practitioners. While the 

studies have produced many methods and metrics by which poor performance may be 

detected, little has been written about how these methods and metrics are interpreted 

when MPC has actually degraded. Unlike traditional controllers where, when 

degradation occurs, the operator is usually able to understand why and initiate recovery 

procedures, the often reported situation in the case of MPC is for the operator to turn it 

off (Huang et al., 2000, Jiang et al., 2011). The main reason for this is that MPC 

technology and its performance assessment is still opaque to many operators.  

The major reasons why many model predictive controller’ performance deteriorate are 

also widely reported. These include process drift, unmeasured disturbances, poor tuning 

of lower level regulatory controllers, inappropriate constraints settings and poor design. 

A means of identifying tell-tale signs (i.e. symptoms) of what factors cause these 

symptoms to appear and how to recover from performance degradation related to them, 

without resulting to complex statistical analysis, will be invaluable to most operators, 

whose needs are more practical than theoretical.  

This thesis contributes to this vision. Beginning with the notion that to proffer solution 

you must understand, Chapter 2 is devoted to reviewing the principles and algorithms of 
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MPC and its development and industrial applications over the years. The chapter also 

reviewed many of the control performance assessment methods, especially the ones 

pertaining to MPC, with an emphasis on those employing data-driven approaches in 

their analyses. The chapter discussed the role of the different internal model formats in 

the development of MPC algorithms, and why one format, the transfer function, offers a 

level of transparency to the operator. A brief discussion was given of how a linear 

internal model of a plant may be identified. The discussions on algorithms and model 

identification were especially important because the computer programs for 

implementing MPC in this thesis were written from scratch using MATLAB and 

SIMULINK. 

Chapter 3 describes the results obtained when various MPC formulations were applied 

to three nonlinear process models. These then act as vehicles for case studies in Chapter 

4. The three nonlinear process models are a non-isothermal Continuously Stirred 

Thermal Reactor (CSTR), an evaporator process and a Fluid Catalytic Cracking Unit 

(FCCU). Each model was selected because of its properties: the CSTR is integrating 

and is open loop unstable. The evaporator is marginally open loop stable, with 

integrating loops. The FCCU is very complex with many inputs and outputs, and is 

highly coupled. All the nonlinear models were simulated at or near their defined 

nominal operating points. Their individual properties were used to determine whether 

MPC was implemented directly or in a supervisory capacity. State space MPC was used 

throughout. Linear state space models, obtained by linearizing the nonlinear models 

about their operating points, were used as internal MPC models in the implementations. 

Approximate low order models in transfer function matrix format were also obtained 

from state space models, and used as internal models on the CSTR and the evaporator 

MPC implementations. The trends obtained from these implementations showed that 
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the low order models were good approximations of their full state space counterparts. 

The various simulations reveal details of systems dynamics, which might be useful for 

diagnosis if degradation occurs. 

Eight cases studies that focus on various ways of degrading MPC performance are 

discussed in Chapter 4. Three used the CSTR, three the evaporator and two the FCCU. 

Each case study is preceded with a simulation, followed by a description of how an 

average operator might reason if the degradation were to manifest itself on a real plant. 

The assumed operator’s perspective is followed by how an informed and technically 

minded operator might reason about the symptoms and the appropriate diagnostic 

procedure, taking cognisance of the dynamics of the system. Various forms of 

information about the dynamics assist in the investigation: process step response plots, 

the transfer function matrix, steady state gains and the relative gain array derived from 

it. A simple novel measure derived from the steady gains, called the relative weight 

array might also sometimes assist the operator in the investigations. In some instances 

virtual plants, which are linear replica of the nonlinear plant with similar MPC, are used 

in the investigations. Each case study ends by outlining the diagnostic steps that were 

taken towards investigating, isolating and recovering from the MPC degradation.  

The knowledge gained from the MPC simulations in Chapter 3 and the case studies in 

Chapter 4 were used to develop an outline of a vision for the maintenance tool (Chapter 

5). The tool is completely data-driven, aimed at helping the operator make sensible 

judgements about performance degradation, the form and direction of diagnosis and 

fault isolation, and possibly, the recovery procedure.  

The maintenance tool comprises of many assessment windows, grouped into five stages 

as follows: 
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 trends comparison, 

 diagnostic questions, 

 suspected symptoms generation,  

 symptoms investigation,  

 MPC recovery. 

The reference graphical performance (RGP) and the actual graphical performance 

(AGP) are the two windows in trends comparison. The RGP window, which remains 

static most of the time, displays trends of data obtained well before degradation is 

suspected, the underlying data would be generated and updated by technical operations 

personnel, who would re-evaluate its status regularly. The AGP window displays 

similar trends to the RGP, but now the trends are periodically updated during actual 

plant operation. If operators observe unusual features in the AGP, they are encouraged 

to move to the preliminary diagnostic questions window. 

Preliminary diagnostic questions are displayed in one window. The window displays a 

list of diagnostic questions, each of which relates to a different type of abnormality that 

might manifest itself in a real a MPC situation. Here, the operator is expected to select 

that type of abnormality which best describes what is observed. The choice leads the 

operator to the suspected symptoms window. 

This window displays a list of causes that are likely to be responsible for the type of 

abnormality chosen by the operator in the diagnostic questions. The operator chooses a 

cause, which leads to scripts that detail the systematic examination of each symptom 

listed. The symptoms that can be investigated in the symptoms investigation window 

are: 

 inappropriate variables selection 
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 model/plant mismatch 

 improper constraints specifications 

 PID degradation  

 sensor/actuator degradation 

 poor MPC tuning 

 poor MPC design 

At this stage the operator can access windows collectively referred to as background 

information windows: 

 virtual plant without MPC window 

 virtual plant with MPC window 

 transfer function matrix window 

 steady state gain, RGA and RWA window 

The operator may use the step response plots generated from the virtual plant without 

MPC window as a guide to the appropriateness of controlled and manipulated variables, 

especially when an operator wishes to consider alternatives. Step response plot 

information can also be used to check suspected cases involving model/plant mismatch 

due to process drift. The transfer function matrix, is used in conjunction with the step 

response plots to gain a deeper insight into the dynamics of the model and of the plant, 

which might help the operators to be more confident in their interactions with the plant 

and the MPC.  

Steady state gain, RGA and RWA information may be used by the operator, in 

conjunction with the step response plots and the transfer function matrix, to make 

informed choices about the merits and demerits of alternative MPC configurations. The 

RWA is used to assist the operator in deciding the sensible starting point for controlled 
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variable weight gain selection when tuning for a different configuration is required. The 

RGA values help to guide the operator in associating controlled variables with 

manipulated variables, when alternatives exist. Both RWA and RGA are derived from 

steady state gain values. 

The virtual plant with MPC window is a linear model of the real process under MPC 

similar to the one on the real plant. The operator may use this to simulate different 

scenarios; including experimenting with proposed tuning strategies prior 

implementation on the real plant, to see what is possible.  

6.2. Critique 

The maintenance tool development is meant to serve two purposes: to educate and to 

help to recover from degradation. Even if for some experts, some of the case studies 

used here may look simple or contrived, it cannot detract from its main purpose. 

Hopefully also, this tool will encourage new approaches to MPC maintenance: in 

particular an opportunity to inform and educate operators. Obviously this would benefit 

from keeping records of the symptoms, the degradation type and the diagnostic 

procedures, although issues of commercial confidentiality might limit this possibility. 

As presented the maintenance tool is aimed at the operator who may not be expert in 

MPC. Some of the diagnosis required and the knowledge to diagnose problems may be 

viewed as being too advanced. The truth is that most plant operators now have sound 

technical education. Some of the operators at WRPC have degrees in engineering. The 

tool is presented as part of the learning required to become conversant with MPC. 

Purposely great efforts have been made to avoid employing heavy statistical analysis in 

MPC diagnosis. This approach is supported by the fact that the reported MPC recovery 

procedures in industrial plants have been mainly about using knowledge revealed by 
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process trends and system dynamics. What was probably missing was the presentation 

of the diagnostic procedures in a way that the operators can relate the symptoms with 

the plant dynamics. This is partly what this study has been about. 

6.3 Suggestions for further work 

The development of the MPC maintenance tool still requires further research in order to 

address the wide range of scenarios that the operator may be faced with. Important 

outstanding issues are elaborated on below: 

1) Not all MPC implementations in industries are set-point control. Many are instead 

designed to keep controlled variables within defined zone or region only, and they 

also include provision for ranking the controlled variables. For these the MPC 

designs usually include an additional objective function explicitly. The MPC 

programs used in this research do not have this provision, and as such could not 

adequately exploit the complexities of nonlinear plant like the FCCU. Future 

MPC programs should provide for this. 

2) The case studies in chapter 4 did not address the simulation and manifestations 

relating to inappropriate feedforward control (measured disturbance) 

specification, which was reported by Huang et al. (2000) to be a source of 

degradation on an industrial MPC. The main difficulty was in obtaining or 

simulating a nonlinear process model in which a measured disturbance responds 

to changes in the manipulated variable, as opposed to the manipulated variable 

responding to changes in the measured disturbance variable. Future work should 

address this. 

3) Dead times (time delays) are common features of most process industries. The 

nonlinear examples used in this research have no time delays. Improper 

specification of dead times of a process for the MPC application are believed to 
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cause oscillations and instabilities in the process. Future examples should 

demonstrate if and how input delays affect MPC performance. 

4) The development of the application package and graphical user interface for the 

maintenance tool. The user interface should make the maintenance tool interactive 

and user friendly. Users should be able to induce defined degradations into the 

virtual world, observe the degradation trends, be given descriptions of the nature 

of degradation, and be guided through recovery procedures automatically. 
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Appendix A 

Low Order Approximation of Processes by Direct Method  

The dynamic relationship between the input and output of many processes are usually 

defined in terms of measurable transient characteristics such as steady state gain, 

natural frequency, damping coefficients, time constant etc. For a multiple input multiple 

output system, a matrix of low order transfer functions can be used to present and 

explain these dynamics characteristics. This method of representing linear model of 

processes is still very popular in process industries because of the transparency that it 

offers. 

The transfer function matrix describing a process is commonly identified from data 

obtained through excitation of the plant with step inputs. Advances in process 

identification have given rise to many identification methods that use different 

excitation signals (e.g. PRBS) and that present linear models in different compact 

formats (state space, difference equations). The approximate transfer function matrix of 

such models can be obtained, using simple techniques, as described in the following 

sections. 

A1: The Direct Method 

This method describes a simple, direct way of obtaining an approximate, strictly proper, 

first or second order transfer function for each input-output pair of a process. The 

method assumes that the step response data of the process exits (obtained either from 

the plant directly through step test, or from steps applied to an identified linear state 

space or difference equation of the process). 
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A1-1: First order transfer function approximation 

The equation for the strictly proper, transfer function of a first order system is given as: 

     
      

    
 …(A1) 

where 

  is the steady state gain of the system (calculated as the ratio of steady state 

deviation from equilibrium of the system response to the size of the step 

input) 

   is the input delay of the system (deadtime, or time elapsed before system 

response after application of step input) 

  is the time constant of the system (a measure of how fast the system approaches 

the steady state value 

The general shapes of a first order system are shown in figure A1 below 

 

Figure A 1: general shape of a first order system 
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For a system that is subjected to step input, it is normally easy to read out the values of 

  and    from the resulting curve.   is much difficult to read, though it can be obtained 

as 62.3% of    

The simple direct method process for identifying first order system from step data is as 

follows: 

1) Obtain a plot of the step response data. This serves as the original model    

(figure A.2) 

2) Measure both   and    from the step response data 

3) Substitute the values of   and    obtained in (2) into equation A.1 and with any 

arbitrary value of  . Superimpose the step response plot of this model on the one 

obtained in (1). 

4) If the plot of the model from (3) is above   , (that is    in figure A.2), it 

indicates that the value of   used is smaller than that for the real model   , so 

increase it. If the plot is below    (that is    in figure A.2), it indicates that the 

value if   used is bigger than that of the real model   , so reduce it 

5) Continue with the process of increasing and reducing   until the two plots 

coincide. The value of   at the point is the desired value, and the resulting model 

describes the dynamics of the system. 
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Figure A 2: First order systems with the same steady state gain, but different time 

constants 

 

A1-2 Second order transfer function approximation 

The equation for the transfer function of a non-minimum phase second order system is 

given as: 

     
   

      

           
  

      

           
 …(A.2) 

Where 

   is the natural frequency of the system 

  is the damping coefficient of the system 

      
 ⁄ , 

Both   and    are as defined before. 

Depending on the numerical value of the damping coefficient  , second order system 

can exhibit different types of responses. The general shapes of a second order system 

are shown in figure A.3 below 

 m
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 m
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Figure A 3: Shapes of response of second order systems 

 

The figure above shows that a second order system may exhibit dynamic responses 

similar to that of a first order system, as shown in the plots of figure A.3b and A.3c. 

Closed loop systems are usually underdamped, and the following figure shows how 

important parameters of such system such as settling time (  ), response at maximum 

overshoot (    ), and time maximum overshot (  ) may be calculated given    and  . 

For an underdamped second order system’s response (shown in figure A4), the values at 

key points of the response can be obtained from the equations below. 

      (
    

√    
  ) …(A3) 

   
 

  √    
 …(A4) 

   
 

   
 …(A5) 

where 

    = maximum overshoot 

(a) Underdamped: 0 <  < 1 

K

t = 0 t = tp t = ts

(b) Overdamped:  > 1 

K

(c) Critically damped:  = 1 

K

(d) Undamped:  = 0 
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   = time at maximum overshoot 

   = settling time 

 

Figure A 4: Response of underdamped second order system showing key points 

 

It can be seen from equation A.3 that the maximum overshoot depends on the damping 

coefficient   only. This is illustrated further in figure A5 below using three different 

systems. Underdamped second order systems with different natural frequencies    

(  ⁄   but with the same damping coefficient have the same peak overshoot. Their 

settling times differ. 
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Figure A 5: Second order systems with the same damping coefficient but different 

natural frequencies 

 

From the foregoing, given that the values   and    are known, the simple direct method 

process for identifying second order system from step data is as follows: 

1) Obtain a plot of the step response data. This serves as the original model with    

(figure A5) 

2) Substitute the values of   and    obtained in (2) into equation A.2, using 

arbitrary values of   and    (  ⁄  . 

3) Superimpose the step response plot of the model from (2) on the one obtained in 

(1). 

4) Adjust the value of   in (2) until the peak overshoot of the plot from (3) matches 

that of the plot in (1). If the plot of the model from (3) is above   , (that is    in 

figure A6 below), it indicates that the value of   used is smaller than that for the 

real model   , so increase it. If the plot is below    (that is    in figure A5), it 

indicates that the value if   used is bigger than that of the real model   , so reduce 

it. 
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5) Continue with the process of increasing and reducing   until the two plots (real 

and model) have the same peak overshoot. 

6) While maintaining this value of  , adjust    (  ⁄   until the two plots coincide. 

High value of    gives more oscillations before settling time (figure A5). The 

resulting value of    is the desired value. 

 

Figure A 6: Second order systems with the different damping coefficients but the same 

natural frequency 
 

A1-3 Second order with inverse response transfer function approximation 

A system exhibiting inverse response can be represented by a second order system with 

a zero, as given in equation A6 below. 

     
         

      

           
  

            

           
 …(A6) 

The shape of the response depends on the location of the zero (left (negative) or right 

(positive) side of the s-plane), and on the sign of the steady state value, as shown in 

figures A7 and A8 below. 
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Figure A 7: Effect of zero location on second order system with positive steady state 

values 
 

 

Figure A 8: Effect of zero location on second order system with negative steady state 

values 
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Also, the effect of damping coefficients and natural frequencies on second order system 

with inverse relations are shown in figure A9 below 

 

Figure A 9: Effects of damping coefficient and natural frequency differences on second 

order system with inverse response. (a) same , different ; (b) same , different . 
 

From figure A7, A8 and A9, it can be summarised that: 

1) Zeros affects the magnitude of the inverse responses (and by extension the 

overshoots and undershoots), but does not affect settling time (figures A7 and 

A8).  

2) As before, damping coefficients affects overshoots and undershoots, but not the 

settling time 

Natural frequency affects the settling time, and both the overshoots and undershoots 
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