
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Neisius, Ulf (2013) Proteomic, circulating and functional biomarkers of 
cardiovascular disease. PhD thesis. 
 
 
http://theses.gla.ac.uk/4740/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4740/


 

Proteomic, circulating and functional 
biomarkers of cardiovascular disease 

 

 

                               Ulf Neisius 

 

Submitted in fulfilment of the requirements for the        

Degree of Doctor of Philosophy 

 
 

Institute of Cardiovascular and Medical Sciences 

College of Medical, Veterinary and Life Science 

University of Glasgow 

 

November 2013



2 

 

Abstract 

Cardiovascular disease is the leading cause of morbidity and mortality in the 

Western world, mainly through cerebrovascular and coronary artery related 

events. Cardiovascular disease is a chronic progressive disease with different 

stages. These stages can be assessed by a variety of biomarkers. Biomarker 

quantification can be used for different purposes: screening, prediction of 

disease recurrence, therapeutic monitoring, diagnosis and prognostication. Non-

invasive, inexpensive diagnostic tests currently applied in clinical practice have 

a relative high rate of false positive and false negative results. Therefore further 

refinement of the diagnostic process could improve clinical care. Regarding 

prognostication the need for improvement also remains as current risk models 

only predict a small quantity of occurring cardiovascular events. 

The concept of the cardiovascular continuum postulates that cardiovascular 

disease consists of a chain of events, is initiated by numerous cardiovascular risk 

factors and subsequently progresses through pathophysiological processes, 

ultimately leading to end-stage heart failure. For that reason cardiovascular 

diseases are chronic progressive conditions and can be divided into different 

stages, such as early tissue dysfunction or subclinical atherosclerosis prior to 

development of clinically overt disease. Biomarkers suitable for prognostication 

and diagnosis can differ at each stage. The general aim of this thesis was 

therefore the investigation of a variety of biomarkers in diagnosis and prediction 

of cardiovascular disease at different stages of the cardiovascular continuum, as 

covered by three different study cohorts contributing to this thesis. This 

included several approaches: the comparison of central and peripheral pulse 

pressure in middle aged hypertensive patients in regards of their prognostic 

potential; the application of established circulating, functional and structural 

biomarkers to the diagnostic process of coronary artery disease in stable angina 

patients; the development/refinement of a urinary proteomic biomarker for 

coronary artery disease and the examination of its diagnostic potential in stable 

angina patients. Biomarkers successful in the diagnosis of coronary artery 

disease were included in multiple biomarker models. 
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Aside from biomarker development for the general population, investigations of 

specific cohorts, such as patients with certain diseases and belonging to certain 

age groups or sharing specific biochemical features provided advances in the 

past. To estimate the potential of a biomarker in risk prediction association 

studies with surrogate biomarkers are applicable. We collected a cohort of 

middle-aged hypertensive patients to assess if central pulse pressure, derived 

from non-invasive assessment of arterial stiffness, could improve risk prediction. 

Central pulse pressure has been previously shown to have prognostic value in 

populations with end-stage renal failure, coronary artery disease and high 

prevalence of diabetes mellitus. Considering the prognostic information of 

peripheral pulse pressure in the elderly, the hypothesis that central pulse 

pressure could improve risk prediction is comprehensive and was investigated as 

part of this thesis. This was accomplished by comparing the strength of 

correlation between central or peripheral pulse pressure and these surrogate 

biomarkers. When compared to peripheral pulse pressure, central pulse pressure 

had stronger associations with aortic pulse wave velocity, carotid intima-media 

thickness, and left ventricular mass index, but equal association with the 

albumin:creatinine ratio. In contrast, after adjustment for age, mean arterial 

pressure, heart rate and hypertension status there was no significant difference 

between central and peripheral pulse pressure for prediction of listed surrogate 

biomarkers in multivariate analysis. These results suggested that central pulse 

pressure is unlikely to provide more prognostic information than peripheral pulse 

pressure in middle-aged hypertensive patients.  

The diagnosis of coronary artery disease is clinically relevant in symptomatic 

patients, either acute or stable. The diagnosis of stable flow limiting coronary 

artery disease is especially challenging as non-cardiac as well as other cardiac 

conditions can mimic symptoms. Non-invasive diagnostic tools have either 

moderate sensitivities or specificities, or are not widely available. Therefore 

new biomarkers for the diagnosis of flow limiting coronary artery disease have 

the potential to improve current diagnostic strategies. This could be 

accomplished adjacent to existing biomarkers or by replacement of such, due to 

cost effectiveness, better discriminatory etc. As part of this thesis, a biomarker 

identification and validation study was conducted into urinary proteomics of 

coronary artery disease. First we tried to replicate a study conducted by our 
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research group in the past. Therein, an established coronary artery disease 

specific polypeptide pattern was unable to differentiate between patients with 

severe coronary artery disease and healthy controls despite strong cohort 

similarities to the original study. We therefore recalibrated the urinary 

polypeptide pattern using an enlarged biomarker discovery cohort and adjusted 

the pattern for lipid lowering and angiotensin converting enzyme inhibitor 

treatment effects. We calculated a score from the resulting polypeptide 

pattern, which identified coronary artery disease patients with a sensitivity of 

79% and a specificity of 88% in a biomarker validation cohort. As the next step of 

biomarker development we performed a diagnostic validation study. The 

investigated clinical cohort consisted of stable angina patients with or without 

coronary artery disease. The new polypeptide pattern score was unable to 

differentiate between these two groups. The score however correlated strongly 

with coronary artery disease extent as measured by the Gensini score, implying 

that urinary proteomics in the diagnosis of coronary artery disease is promising, 

yet requires further effort before clinical employment.  

In addition to the urinary proteomic biomarker development, a second 

diagnostic approach was selected. As coronary artery disease is a complex 

chronic disease, the combination of different biomarkers should result in a 

better discrimination between stable angina patients with or without coronary 

artery disease. This approach attempts to position the individual as precisely as 

possible on the cardiovascular continuum including serologic, functional vascular 

and imaging biomarkers of subclinical atherosclerosis. Serologic markers thereby 

present a plasma proteomic approach covering pathophysiological processes with 

known correlation or causative for coronary artery disease. Functional and 

structural changes of the peripheral vasculature resemble the coronary artery 

system. We investigated circulating biomarkers and vascular biomarkers 

separately. A variety of circulating biomarkers differentiated patients with 

severe coronary artery disease from healthy control subjects. When patients 

with stable angina and with or without coronary artery disease as diagnosed by 

coronary angiography were investigated no statistically significant differences 

could be detected for circulating biomarkers. In the same study a microvascular 

biomarker, the reactive hyperaemia index, and a macrovascular biomarker, the 

carotide plaque score, were able to differentiated between cases and controls. 
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Both markers either added separately or together improved the risk 

classification of exercise treadmill test results. This suggests that a multiple 

biomarker approach in the diagnosis of coronary artery disease in stable angina 

patients could be successful. 

Different aspects of the cardiovascular continuum can be applied to diagnosis 

and prognostication of cardiovascular disease. In this regard we were able to 

show, that early processes such as endothelial dysfunction or later processes 

such as plaque formation can support the diagnostic process. However, randomly 

collected circulating biomarkers might be unable to do this. Our finding that 

central pulse pressure is unlikely to have more prognostic value in middle aged 

hypertensive patients underlines that biomarkers can be useful in specific 

patient collectives but not necessarily in all cohorts. Instead of applying 

established biomarkers, also new biomarkers can be developed. Urine 

proteomics showed great promise in this regard, as specific polypeptide patterns 

reflect coronary artery disease and are strongly correlated to its extent.  
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Chapter 1 Introduction 

The major aim of this thesis is the application of established and new biomarkers 

in disease diagnosis or prediction at different stages of the cardiovascular 

continuum. The introduction of the thesis will therefore recapitulate several 

relevant topics: biomarkers, cardiovascular disease (CVD), the cardiovascular 

continuum and biomarker development. Such an approach provides sufficient 

information to understand the hypotheses of the thesis and helps to explain the 

link between its parts. 

At first, epidemiological, pathophysiological and clinical aspects of CVD will be 

summarized. Then biomarkers and the historic development of cardiovascular 

biomarkers will be described. As the latter was predominantly driven by risk 

prediction and because a specific biomarker is investigated for its potential in 

CVD prognostication as part of the thesis, the current clinical role of biomarkers 

in cardiovascular risk prediction is discussed. A more abstract description of 

biomarker development follows to provide the basics for chapter 6 which focuses 

on this topic. To explore the aspects of CVD chronicity the concept of the 

cardiovascular disease continuum is subsequently introduced and connects the 

two major parts of the thesis. The concept is then expanded to the CVD 

biomarkers continuum to emphasise the importance of certain biomarkers for its 

different stages. To complement this a short description of these biomarkers in 

the context of CVD diagnosis or prognostication follows.  

The development of a new CVD biomarkers is an important part of this thesis. 

This is accomplished with protoemic methodologies, in particular with the help 

of discovery proteomics in urine. Therefore the principles of proteomics will be 

introduced in more detail at the end of the thesis. 

1.1 Cardiovascular disease 

The term cardiovascular disease (CVD) refers to a class of diseases that involves 

the heart or the blood vessels. In an epidemiological context CVD is the leading 

cause of morbidity and mortality in the Western world, mainly through 

cerebrovascular and coronary artery related events. In the United States and the 

United Kingdom, every third death was secondary to CVD in 2006 and 2009, 
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respectively [1, 2]. In the European Union it is the foremost cause of premature 

mortality and morbidity [3]. The overall financial cost of CVD in the European 

Union represents almost 192 billion Euro in indirect and direct healthcare costs 

[3]. Whilst cardiovascular mortality is decreasing in the Western world, CVD is 

increasing in many developing countries. In east or south-east Asia the risk of 

developing CVD appears even greater than in the developed world [4] and CVD is 

expected to become the dominant cause of death in those countries by 2020 [5]. 

Atherosclerosis represents a hardening of the arteries, which involves in 

particular atheromatous plaque formation, an asymmetric focal thickening of 

the intima as illustrated in Figure 1.1. These plaques are characterised by a 

deposition of lipids and fibrous elements in the inner layer of the artery wall. 

Atheromas are initiated by the retention of low-density lipoprotein (LDL) and 

other lipoproteins in the subendothelial matrix. This is supported by 

permeability changes of the endothelium triggered by haemodynamic forces 

acting on the endothelial cell surface. Trapped LDL becomes oxidised as a result 

of interactions with reactive oxygen species. As a consequence of this 

endothelial cells in close proximity to oxidised LDL produce pro-inflammatory 

molecules and anti-atherogenic substances such as nitric oxide are 

downregulated. Following this, monocytes invade the vessel wall where they 

develop into foam cells through uptake of oxidised LDL. Collections of such cells 

can be seen in autopsy specimens as ‘fatty streaks’. Further disease progression 

leads to an intermediate lesion consisting of layers of macrophages and smooth 

muscle cells. Infiltrating T-cells are also present in atherosclerotic lesions. A 

fibrous plaque develops when extracellular lipid deposits increase and smooth 

muscle cells and extracellular matrix accumulates in the intima resulting in a 

fibrous cap. This pathological structure is defined as a plaque, which can be 

stable or unstable. Stable plaques are rich in extracellular matrix and smooth 

muscle cells which usually overlay a core of lipid and necrotic debris. An 

unstable plaque [6] however has a very thin fibrous cap as a result of matrix 

degradation by various proteinases and an inhibition of de novo matrix secretion. 

As a result unstable plaques are prone to rupture and thrombus formation. Other 

features of an unstable plaque are a necrotic and sometimes calcified core, and 

an increased number of inflammatory cells with an accumulation of foam and 

mast cells [7] at the margin of the plaque, also called the shoulder area. 
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Figure 1.1 Stages of plaque development. Depicted is the stepwise development of unstable 
plaque. The artery structure, consisting of intima (inner layer), media (middle layer) and 
adventitia (outer layer), is illustrated with atheroma progression associated with intima 
thickening, positive remodeling and lumen obstruction. The different stages merging into 
each other are listed with their histological features below the illustration. The image was 
adapted from Apple et al. [8].  

Atherosclerosis can affect the vessel lumen in different ways.  Continuing growth 

of smooth muscle cells can lead to extensive coronary artery stenosis. In 

contrast, unstable plaques can cause myocardial infarction without obstruction 

of the coronary lumen prior to rupture [9]. “Positive remodeling”, a process by 

which the vessel diameter increases, allows a vessel wall plaque load of 40% to 

evolve before it affects the cross-sectional luminal area [10]. Therefore smaller 

plaques are not detectable by coronary angiography. Similar processes can even 

lead to coronary ectasia, a dilatation of the artery lumen [11]. 

Atherosclerosis is a chronic disease that remains silent for decades. The early 

onset of atherosclerotic changes was first reported in 1953 by Enos et al., who 

investigated coronary artery atherosclerosis in young US soldiers who died in the 

Korean war [12]. The atherosclerotic process therefore starts early in life. Fatty 

streaks, for instance, can already be present in fetuses, as shown by Napoli et 

al. [13]. In 10-14 year old adolescences, investigated by HC Stray [14], 50% had 

foam cells or fatty streaks in histological studies. Depending on the risk profile, 

15-19 year old teenagers already had up to 25% of their arteries covered with 

fatty streaks or raised lesions in the Pathobiological Determinants of 

Atherosclerosis Study [15]. The same study showed in 657 individuals with an age 

of 30-34 years that the right coronary artery surface was covered with fibrous 

plaques in 5.5% of cases [16]. This is a 5.14% increase in prevalence when 

compared to the group aged 15-19 years. In 25% of individuals with an average 
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age of 40 years and dying of non-cardiac causes significant coronary artery 

disease (CAD) could be detected [17]. In an autopsy study investigating a cohort 

without CVD and an average age of 60 years, coronary artery plaque could be 

recorded in 25 % of cadavers [18]. The inter-experimental variation in study 

cohorts and different study designs explain the discrepancy between these two 

data sets. As shown by Zhdanov et al. [19] such findings are also influenced by 

ethnicities and the time of sample collection. Nevertheless atherosclerosis is 

characterised by an early onset and continuous progression. 

Considering the chronic nature of disease progression, a clinical differentiation 

into subclinical non-symptomatic and clinical symptomatic disease can be made. 

Subclinical disease is characterised by existing atherosclerosis without any 

related symptoms. Symptoms of overt clinical disease include for instance chest 

pain, shortness of breath, neurological deficits, cognitive impairment or exercise 

related leg pain, depending on the affected vascular bed. Clinically relevant CVD 

can be further divided into acute syndromes and chronic disease states. Acute 

syndromes include acute coronary syndromes such as unstable angina and 

myocardial infarction or acute cerebral perfusion defects such as transitory 

ischaemic attacks and strokes. Stable disease forms are characterised by 

symptoms unchanged in quantity and quality over a longer time period. 

Acute coronary syndromes represent the clinical manifestation of the critical 

phase of CAD. The most common underlying pathology is a plaque rupture or 

erosion leading to intra-arterial thrombus formation and the potential occlusion 

of the arterial lumen [20]. This causes insufficient blood supply to parts of the 

heart muscle and further complications like cardiac failure due to loss of 

myocardial contractility, valve dysfunction or changed hemodynamics; for 

example as a consequence of a ventricular septum defect. Acute 

cerebrovascular diseases, such as transitory ischaemic attacks or stroke, are 

usually caused by cerebral artery embolisation by a floating thrombus originating 

frequently in the carotid arteries. Other pathologies leading to strokes include 

local vasculopathies such as aneurysms and related complications like vessel wall 

rupture or thrombus formation. The subsequent hypoperfusion of cerebral tissue 

leads to a variety of symptoms depending on the supply area of the affected 

artery. 
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Stable clinical overt disease is characterised by persisting symptoms over a 

period of months, years or sometimes even decades. The dominant symptom of 

stable ischaemic heart disease is angina caused by transient myocardial 

ischaemia. This may represent the first presentation of ischaemic heart disease 

or it might manifest after an acute coronary syndrome. Angina can be divided 

into three different subtypes depending on their pathophysiology: stable angina, 

microvascular angina and vasospastic angina. In stable angina myocardial 

hypoperfusion occurs secondarily to obstructive coronary stenoses, affecting the 

coronary flow reserve and therefore leading to a mismatch of myocardial oxygen 

demand and supply when the subendocardial coronary flow reserve is completely 

utilised. The extent of symptoms is influenced by either dynamic vasomotion in 

the area of the stenosis or by microvascular coronary artery dysfunction [21]. 

Microvascular angina is exclusively caused by dysfunction of the coronary 

microcirculation. Patients with microvascular angina are characterised by 

angiographically normal or not flow limiting diseased epicardial coronary 

arteries, in the absence of other cardiac disease that could cause chest pain. 

Vasospastic angina is a consequence of coronary artery spasms. The difference 

between vasospastic and the other two angina forms is its typical occurrence at 

rest as opposed to the predominance of exercise or stress related onset in the 

other angina forms. 

1.2 Cardiovascular biomarker development in risk 
prediction 

Cardiovascular disease, especially its pathophysiological processes, can be 

quantified with the help of biomarkers. Considering the importance of the 

biomarker concept for this thesis and to provide a general overview, in the next 

subchapter its definition is explained and set into context of the historic 

development of cardiovascular biomarkers and risk prediction. 

1.2.1 Biomarker definition 

The term biomarker, biological marker, was established in 1989 as a Medical 

Subject Heading term meaning “measurable and quantifiable biological 

parameter (e.g. specific enzyme concentration, specific hormone concentration, 

specific gene phenotype distribution in a population, presence of biological 
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substance) which serves as index for health- and physiology-related assessments, 

such as disease risk, psychiatric disorders, environmental exposure and its 

effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, 

cell line development, epidemiologic studies, etc.” More recently, referencing a 

National Institutes of Health working group statement from 2001, a biomarker is 

defined as “a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or 

pharmacological responses to a therapeutic intervention” [22]. This includes not 

only circulating molecules in the blood, for which the term is often used in the 

literature. Also genetic and cellular markers as well as measurements by a 

variety of imaging modalities or even physical examination abnormalities are 

therefore by definition biomarkers.  

1.2.2 History of biomarkers in cardiovascular disease 

William Kannel [23] made the concept of cardiovascular risk factors popular in 

the 1960’s. In his initial broad definition, risk factors were utilised as predictors 

of cardiovascular disease. Factors such as hypertension and 

hypercholesterolaemia also cause cardiovascular disease, as proven later. 

According to Kannel’s definition, however, a causal connection with the disease 

is not mandatory. For instance due to the shared pathophysiologic process 

peripheral artery disease is correlated with CAD, yet does not directly cause 

CAD. To prove that a risk factor is not only correlated with but also causative of 

a disease, extensive experimental studies and clinical interventional trials are 

necessary. As such it is a requisite to link a reduction of the risk factor with the 

attenuation of disease development or clinical prognosis. And of course, 

identification of causal factors will provide the greatest chances of improved 

prevention. Clinically, risk factors therefore help in the identification of patients 

benefitting from preventive measurements. The purpose of prevention strategies 

in patient management will be elucidated in the following subchapter.   

1.2.3 Cardiovascular risk assessment and prevention 

Medical prevention is defined as actions directed to avoid illness and promoting 

health to reduce the need for secondary and tertiary health care. Therefore it is 

different from intervention and treatment in that it is aimed at general 
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population groups with various levels of risk for a specific disease. The goal of 

prevention is to reduce risk factors and to enhance protective factors. 

Depending on the relation to disease onset, prevention can be divided into three 

classes; primary, secondary and tertiary prevention. Primary prevention deals 

with delaying or preventing the onset of disease. Secondary prevention relies on 

early detection of the disease process and application of intervention to prevent 

progression of disease. Tertiary prevention provides appropriate supportive and 

rehabilitative services to minimise morbidity and maximise quality of life during 

long-term disease or injury. These definitions are taken from medical subject 

headings of the U.S. National Library of Medicine. In CVD, primary prevention 

assessment [24] of cardiovascular risk is used to guide therapy with the intention 

of preventing a first episode of CAD or stroke as well as the development of 

peripheral artery disease or an aortic aneurysm. To do so, those with increased 

risk of clinical CVD manifestation have to be identified. Historically the focus in 

risk assessment has been unifactorial. Therefore clinical risk assessment was 

based on single risk factors instead of overall risk, based on a combination of 

such single factors. Traditional risk factors are smoking, blood pressure, sex, 

age, diabetes mellitus and hyperlipidaemia. 

Over the last 20 years the concept of total risk has been developed. This 

recognises the multifactorial aetiology of CVD, as opposed to the risk derived 

from a single traditional risk factor. Additionally the overall CVD risk also 

incorporates the mal-synergistic effects of multiple risk factors. For example in 

the INTERHEART study [25], a standardised case-control study of acute 

myocardial infarction in 52 countries, smoking (single OR 2,87), diabetes 

mellitus (single OR 2.37) and hypertension (single OR 1.91), when presenting 

simultaneously predicted a myocardial infarction with an odds ratio 

approximately 100% larger than the added single odds ratios. 

To facilitate risk assessment with traditional risk factors the Framingham risk 

score [26] was developed. The score is based on the Framingham and 

Framingham Offspring study and therefore represents only a small population in 

the Northeast of the United States of America. The accuracy of the Framingham 

risk equations is dependent on the background risk of the population to which 

they are being applied. The better the agreement between the local and the 

Framingham population, the more reliable is the score in the clinical practice. 
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To establish if the Framingham risk score accurately estimates cardiovascular 

risk in a European population, the risk algorithm was applied to the Second 

Northwick Park Heart Study for example [27]. The authors monitored a cohort of 

50-64 year old individuals over a mean of 10.8 years for CAD events. 

Interestingly, the Framingham risk algorithm in this cohort was only able to 

predict approximately 11% of the occurring events. This demonstrates that 

despite similarities in living standards of American and European populations 

other factors not represented in the risk score account for its poor prognostic 

accuracy. Therefore a risk estimation system based on a large pool of 

representative European data was developed, the SCORE risk charts (Systematic 

COronary Risk Evaluation) [28]. In contrast to the Framingham cohort the SCORE 

risk charts were based on data from 12 European countries comprising 205,178 

subjects with 2.7 million years of follow-up and 7934 cardiovascular deaths as 

end points. Specific risk charts for high and low risk areas of Europe 

incorporated differences between European regions. The fact that SCORE is only 

based on cardiovascular events as endpoints is a limitation. In contrast the Joint 

British Societies published risk charts to estimate risk to develop a first time 

atherosclerotic CVD event over a 10 year period [29]. Those charts estimate risk 

based on the risk factors: age, sex, smoking habit, systolic blood pressure (SBP) 

and the ratio of total cholesterol to HDL cholesterol. A regional approach was 

also chosen in Scotland with the ASSIGN score in 2006, aiming to better 

represent the specifics of the local population [30]. In contrast to previously 

mentioned scoring systems the ASSIGN score incorporates social deprivation as a 

cardiovascular risk factor. Social deprivation contributes independently to 

cardiovascular risk [31]. Hence the ASSIGN score reflects better on the Scottish 

disparity in socio-economic status and helps to avoid insufficient treatment 

provision to the socially deprived. This however illustrates the limitations of 

epidemiologic risk profiling. Risk can differ between regions, countries and 

continents due to different life styles, life expectancy and genetic 

predisposition. Furthermore populations differ regarding the time point of 

assessment. For instance a risk profile developed in 1970 will not remain 

accurate 40 years later due to advancement in medicine, changes in life style 

and socio-economic flux in the western world. Factors, which are not 

incorporated in the risk prediction system but still contribute such as nutrition, 

environmental pollution, co-morbidities and activity levels will have changed 
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during this time period as well. Therefore over- or underestimation of 

cardiovascular morbidity and mortality by an outdated risk estimation system 

depends on the specific population. 

Risk prediction is usually established on the basis of hard endpoints. The 

Framingham score was based on fatal and non-fatal cardiovascular heart disease. 

This approach ignored the risk of other manifestations of atherosclerosis, such as 

stroke or aortic aneurysms. Additionally the definition of non-fatal 

cardiovascular heart disease was incongruous with most other published studies, 

and made comparisons difficult. The SCORE system on the other hand used fatal 

CVD events only, including all international classification of disease codes that 

could be reasonably assumed to be of atherosclerotic aetiology. This approach 

allows recalibration with the help of up-to-date mortality and risk factor 

prevalence data. For non-fatal events however the data quality does not allow 

this. Recalibration of the SCORE system was undertaken for countries like 

Germany and Belgium with a higher than average cardiovascular mortality. 

Primary prevention however not only aims at the prevention of fatal or non-fatal 

events but also at morbidity. In this context morbidity refers to a health 

condition that affects an individual. Therefore the aim of primary prevention 

refers also to the avoidance of clinical symptomatic cardiovascular disease. This 

coincides with prevention of cardiovascular events, yet is not inclusive. 

Another problem with risk factors in CVD is the fact that clinicians treat 

individuals. As only 50% of individuals developing CAD have one or more 

traditional risk factors [32], a large number of patients will be missed in 

preventative screening. Attempts to overcome this dilemma by addition of 

further factors only improved marginally the prediction of cardiovascular 

endpoints. More than 100 risk factors have been proposed to improve risk 

assessment [33]. In the absence of strong supportive data for the majority of 

those 100 risk factors, only a few markers, specifically C-reactive protein (CRP), 

ankle-brachial index (ABI), leukocyte count, fasting blood glucose level, 

periodontal disease, carotid intima-media thickness (C-IMT), coronary artery 

calcium score as measured by electron-beam computed tomography, serum 

homocysteine level and lipoprotein(a) level have prognostic potential [34]. 

Especially for CRP evidence suggesting an added value to the Framingham risk 

score exists [35, 36]. 
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Interestingly, several of these additional risk markers such as ABI, C-IMT and the 

coronary artery calcium score represent a direct or indirect assessment of 

progressed CVD and have therefore no causative link to the disease 

pathophysiology themselves. A term frequently used to describe these 

biomarkers is target organ damage, as they reflect on the functional impairment 

or structural damage of the vasculature. Another more accurate description for 

these risk markers is the term intermediate cardiovascular phenotype, as the 

combination of them reflects actual disease progress prior to clinically overt 

disease or end organ damage. The use of the term phenotype reflects the 

composite of observable characteristics in the cardiovascular system in line with 

the developmental biology definition of phenotype. Imitating the overall risk 

concept of prediction models such as Framingham, SCORE or ASSIGN the 

cardiovascular phenotype represents an overall assessment of target organ 

damage. Therefore it importantly reflects the state of the cardiovascular 

system, measured in a single individual at a specific time point. 

The importance of assessing the intermediate cardiovascular phenotype can be 

explained by the individual responses to causative risk factors. For example, due 

to genetic predisposition an individual might be more prone to develop 

atherosclerosis in their coronary arteries compared with the average 

Framingham study participant although both individuals have an identical 

Framingham risk score. For instance a high coronary artery calcium score would 

indicate that, despite a low Framingham risk score, risk factor modification 

could be beneficial. Single target organ damage has therefore been established 

for instance in hypertension guidelines [37]. This could also solve an additional 

problem of risk prediction based on single cross-sectional profiles. Although 

atherosclerosis progresses with age, periods of quiescence and episodic 

augmentation in plaque inflammation and growth exist throughout disease. 

Periodic risk assessment, targeting such changes in plaque behaviour, could 

detect temporary deterioration in plaque stability and therefore improve risk 

prediction. 

In summary, risk factor assessment covering either single or overall 

cardiovascular risk is a good tool to identify patients who would benefit from 

primary prevention. However several aspects of currently available strategies 

are amenable to improvement. Such enhancements would improve therapy 
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guidance and considering the global epidemic of CVD lead to a major impact on 

morbidity and mortality. Assessment of the intermediate cardiovascular 

phenotype has potential to contribute to such an effort, especially as it 

represents a more individualised approach in contrast to the population based 

risk factor assessment tools currently employed. Other options for improvement 

would be the development of totally novel biomarkers covering new aspects of 

CVD or through replacing older biomarkers with more efficient ones. 

1.3 Biomarker Development 

There is a wide range of cardiovascular disease biomarkers. Despite differeneces 

between biomarkers they share several features or rules, such as clinical tasks, 

test qualities, the definition of abnormal values, analysis variability or common 

development strategies. These will be explained in more detail in the following 

subchapter.  

1.3.1 Clinical tasks of biomarkers 

Biomarkers are established for different clinical tasks. Those cover mainly the 

areas of screening, prediction of disease recurrence, therapeutic monitoring, 

diagnosis and prognostication. A single biomarker can be used for different 

clinical tasks. Before employing a biomarker for certain tasks evidence from 

clinical research is required. For troponin for example this led to several fold 

higher cut-off levels for diagnosis of myocardial infarction in comparison to 

troponin levels useful in cardiovascular risk prediction [38]. For diagnostic 

purposes qualitative research studies of new biomarkers require an independent 

masked comparison of the new biomarker with an established standard 

biomarker in a suitable cohort of consecutive patients covering an appropriate 

disease spectrum [39]. As biomarkers are often less accurate in a second cohort 

in comparison to the cohort of initial assessment, it is necessary to replicate 

study results in an independent cohort. Standards for design and reporting of 

diagnostic [39] and prognostic [40] biomarker studies have been published. 

1.3.2 Biomarker qualities 

In general the accuracy of a biomarker is assessed by four test characteristics: 

sensitivity, the ability to detect disease when it is present; specificity, the 
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ability to rule out disease when it is absent; the positive predictive value, the 

proportion of subjects with positive test results and a correct diagnosis; the 

negative predictive value, the proportion of subjects with a negative test result 

and a correct diagnosis. This is illustrated in Figure 1.2. 

  Condition 
(as defined by gold standard) 

 

  
Positive Negative 

 

Po
si

ti
v

e 

True Positive (A) False Positive 
(Type I Error) (C) 

Positive  

Predictive Value 
= A/(A+C) 

T
e
s
t
 o

u
t
c
o
m

e
 

N
eg

at
iv

e 

False Negative 
(Type II Error) (B) True Negative (D) 

Negative  

Predictive Value 
= D/(B+D) 

  Sensitivity 
= A/(A+B) 

Specificity 
= D/(C+D) 

 

  
Figure 1.2 Diagram of biomarker test statistics for accuracy. Illustrated are the definitions of 
sensitivity, specificity, positive and negative predictive value.  

 
Most biomarkers in CVD are continuously distributed quantitative variables. 

Therefore it is important to assess the information content of a biomarker over 

the scale of its biological measurements. This can be achieved with the use of 

receiver operating characteristic (ROC) curves [41]. ROC curves are a graphic 

realization of the relationship between sensitivity and specificity when 

biomarker levels are used to identify disease in a clinical setting. Therefore the 

sensitivity is plotted against the false positive rate, or one minus the specificity, 

for a binary classifier system. The points on the graph reflect on variations in the 

discrimination threshold. Therefore each threshold has a different chance to 

identify a diseased individual and to simultaneously categorise a healthy 

individual as such. An alternative statistic tool to evaluate test accuracy are the 

likelihood ratios [42]. These are clinically relevant as they represent the 

likelihood to obtain a positive test result in a diseased person, likelihood ratio 

for a positive test (LR+ = sensitivity/(1-specificity)), or to get a negative test 

result in a patient with disease, likelihood ratio for a negative test (LR- = (1-

sensitivity)/specificity). According to these equations a likelihood ratio for a 

positive test with a value greater than one is linked to test results associated 
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with the presence of disease. In this calculation a likelihood ratio for a positive 

test, with a value smaller than 1 on the other hand implies that the test result is 

associated with the absence of disease. The more the likelihood ratio deviates 

from 1 the more likely it is that the test will detect presence or absence of 

disease. Therefore likelihood ratios above 10 and below 0.1 are considered to 

provide strong evidence to accept or exclude a diagnosis, respectively. An 

additional advantage of the likelihood ratios is their simple use in the Bayesian 

approach. The pre-test probability can easily be multiplied with the likelihood 

ratio to receive the post-test probability. Such an approach is necessary to 

adjust for disease prevalence. Even with a simultaneous high sensitivity and 

specificity, false positive tests will occur more frequently than true positive 

results if the disease prevalence is very low.  

For biomarkers the term discrimination means the capacity to differentiate 

controls from cases in cross-sectional studies or to distinguish those who will 

develop a disease from those who will not in longitudinal studies. A frequently 

used measurement for discrimination is the c statistic, also known as the 

concordance index. It is equal to the area under the ROC curve. The c statistic 

stands for the probability that in two random individuals, one the control and 

the other the case; the biomarker precisely identifies the one without disease. 

However, as the c statistic is the metric of overall performance, two tests can 

have the same value, but at a specific threshold one biomarker might be 

superior. Another frequently used term in biomarker statistics is calibration. It 

defines the capacity of a biomarker to predict risk in comparison to the observed 

risk in subgroups of the population. If the difference between the predicted and 

the observed risk is too significant a biomarker can be deemed inappropriate, 

whereas a risk model can be recalibrated when it uniformly under- or 

overestimates the level of risk. A good example for the latter is the Framingham 

risk score in a Chinese population. It overestimates the risk and recalibration 

improves cardiovascular risk prediction substantially in this population [43]. 

1.3.3 Abnormal biomarker values 

Another critical point in biomarker development is the definition of abnormal 

values. This is an important step prior to the introduction of a novel biomarker 

into the clinic. Attributing factors such as age, sex, ethnicity and prevalence of 
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disease require consideration if abnormal values are defined. Three strategies 

exist to characterise such values as illustrated in Figure 1.3.  

 

Figure 1.3 Definition of an abnormal biomarker. Depicted are three different approaches for 
definition of an abnormal biomarker value. Reference limits are based on statistical 
intercept points based on the distribution of reference sample values. Discrimination limits 
separate the distribution of patients with and without the disease (FN, false negative; FP, 
false positive; TN, true negative; TP, true positive). A risk threshold identifies the level after 
which the disease risk augments on follow-up. The illustration is modified from Vasan RS 
[44].  

 
Reference limits are chosen arbitrarily by selecting for instance the 95th or 97.5th 

percentile in a sample without the disease of interest. The corresponding 

reference range is equal to the interval between the minimum and maximum 

reference values. The 2.5th and the 97.5th percentile are usually chosen as cut-

off points resulting in a 95% reference interval for definition of normality. The 

reference interval can be altered to incorporate additionally consequences of 

false-negative or false–positive results. It might be for instance not acceptable 

to miss a diseased patient and therefore a lower reference limit than the 97.5th 

percentile is required. Other reasons to modify the reference range might be 

ethical, social, psychological and economic in nature. Problems which are 

derived from employing arbitrary reference limits include false positive 

individuals in the healthy population, the difference between a healthy 

individual and the average population in highly prevalent diseases such as 

hypertension or obesity, the fact that due to the definition unhealthy individuals 

can remain within the reference range and finally the error that a value change 

within the reference range is considered normal whilst it can represent disease. 

Discrimination limits are defined differently and instead of investigating the 

general population two specific cohorts are used to define limits. Of particular 

interest is the overlap between patients with and without disease examined in 
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cross-sectional studies. The strength of this approach is the ability to predict a 

diseased patient in an otherwise normal population. An example is the diagnosis 

of a non-ST segment elevation myocardial infarction with the help of troponin. 

Threshold biomarkers are a third strategy to characterise abnormal biomarker 

levels in disease. This approach is for instance used to predict adverse medical 

events in a selected cohort. Threshold levels are defined as values beyond which 

the incidence of an adverse event increases significantly. An example is the 

Framingham cardiovascular risk score. It triggers treatment in primary 

prevention when a certain level of risk is reached.  

As mentioned above diagnostic and prognostic biomarker development differs 

substantially depending on the requirement of these indicators. Risk prediction 

biomarker development requires a firm study design and a representative 

population of subjects. Also the outcome must be characterised thoroughly, 

quantified accurately and detected completely to allow proper assessment of a 

biomarker. The discriminatory power of a biomarker can be assessed by 

statistical procedures such as logistic regression, Cox proportional hazard or 

parametric survival models. The first requirement for a biomarker in risk 

prediction is a statistically significant association with the outcome. 

Incorporation of a new biomarker in clinical practice also requires improvement 

to the predictive result of established risk models. Similarly to diagnostic 

biomarkers, cost, safety and acceptability need to be considered. For 

generalised usage a new biomarker needs to be easily measurable in a cost-

effective manner. This usually involves a standardised and inexpensive 

commercial assay with low test variability and simple probe collection or 

analysis techniques. 

1.3.4 Biomarker measurements 

Biomarker requirements assume a perfect laboratory process and limited 

biological variability in bodily fluid related biomarkers or consistency and 

reproducibility for imaging biomarkers. The performance of bodily fluid related 

biomarkers depends on pre-analytical, analytical and post-analytical factors. 

Pre-analytical variability is based on factors such as the lack of standardised 

procedures for sample collection. Other contributing factors when assaying novel 

biomarkers are biological variability such as circadian rhythms or technical 
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problems such as inconsistency in patient preparation, specimen acquisition, 

probe handling and storage. Strategies against pre-analytical variability include 

phlebotomy protocols with standardised fasting state, body posture and 

collection time. Analytical variability on the other hand depends on the 

performance of the laboratory test, where its variability might derive from inter- 

or intra-laboratory variation. The former can occur due to different analytical 

platforms or differences in reagents used. The latter can derive from human 

error, usage of point-of-care testing devices such as bedside troponin tests 

instead of automated platforms, quality of control materials or number and 

types of control materials. The reasons for analytical variability are diverse and 

only a small collection is mentioned in this thesis. Due to internal quality control 

strategies in laboratories pre-analytical and post-analytical factors contribute 

most significantly to the total error when testing for biomarkers. According to 

Plebani [45] pre- and post-analytical errors contribute to the total error with 46-

68.2% and 18.5-47%, accordingly. Furthermore, accuracy and precision are 

required to guarantee internal quality control. Guidelines have been recommend 

for this purpose [46]. The term accuracy refers to the agreement between the 

known amount of a standardised analyte and its measurement result on site. The 

term precision refers to the reproducibility of results. Post-analytic variability 

depends on transmission as well as the display of test results within a laboratory 

or hospital. Imaging related biomarkers such as ultrasonography or magnetic 

resonance imaging based markers are variable for different reasons. Those are 

influenced by inter- and intraobserver variability, biological variability and 

changes in measurement strategies. To overcome these problems quality control 

protocols have been proposed [47]. 

The development of new biomarkers holds several challenges. The vulnerable 

patient, destined to develop adverse cardiovascular events, can suffer from 

three abnormalities. These abnormalities are the vulnerable plaque, vulnerable 

myocardium and vulnerable blood [48]. As outcome is not only decided by 

plaque, but also by factors such as blood coagulabitliy and myocardial 

susceptiblity to develop fatal arrhythmia, the factors “vulnerable blood” and 

“myocardium” have to be considered when characterising the vulnerable 

patient. For instance the systemic thrombotic propensity influences the 

thrombotic response to vessel wall injury. In particular the activation status of 
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platelets, coagulation, and fibrinolysis is critical for the outcome of plaque 

rupture, documented by the protective effect of antiplatelet agents and 

anticoagulants in patients with high cardiovascular risk. Also the factor V Leiden, 

a variant of the coagulation factor V leading to hypercoagulability, is associated 

with an increased risk of myocardial infarction [49]. 

As the arterial wall and the myocardium is not easily accessible, biomarker 

development for those sites of disease posses as special challenge. Obstacles 

such as the blood-brain barrier in cerebrovascular disease can also restrict 

spatial access for sample acquisition. Furthermore the spatial resolution of blood 

related biomarkers is suboptimal as biomarkers originating in the vasculature can 

reflect on processes in the cardiac or peripheral artery system. It is therefore 

difficult to differentiate between processes which occur in the peripheral 

circulation versus the cardiac circulation. These limitations support the notion 

that biomarkers chosen to relate to a specific phenotype can be confounded by 

inaccuracies in the assessment of the disease phenotype. Furthermore, the 

complexity of CVD in itself may lead to a poor correlation between a biomarker 

and the clinical phenotype, as it reflects only a part of the whole disease 

process.  

1.3.5 Development of new biomarkers 

Technically, the development of new biomarkers utilises two possible 

approaches. A deductive, knowledge-based method relies on the understanding 

of pathophysiological processes of atherosclerosis. The inductive, unbiased 

strategy is based on investigation of large numbers of molecules with the use of 

newer high volume technologies and aims to identify patterns of molecules 

within a disease or indeed disease stage. Similar to the development of a new 

drug the evaluation of a novel biomarker should involve several stages of 

escalating stringency. Accordingly Hlatky et al. suggested six phases [50] as 

shown in Table 1.1.  
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Table 1.1 Phases of evaluation of novel biomarkers.  

 

Stage  Summary 

0) Biomarker discovery Identification of a new biomarker, e.g. basic research 
or ‘omics’. 

1) Proof of concept Difference between patients with or without outcome 
or disease 

2a) Prospective validation 
(risk factor)  

Prediction of future adverse events in a prospective 
cohort 

2b) Diagnostic validation 
(diagnostic factor) 

Investigation of biomarker distribution in large 
reference group and disease group 

3) Incremental value Additional predictive information to established, 
standard risk factors 

4) Clinical utility Extent of change in risk prediction sufficient to justify 
change in recommended therapy 

5) Clinical outcomes Improvement of clinical outcome when biomarker is 
considered 

6) Cost effectiveness Clinical outcome improved to such extent that 
additional treatment and testing is justified 

 
The table was adapted from Hlatky et al. [50]. 

 
Initially the new biomarker needs to be identified, for instance with the use of 

standardised technology platforms such as a proteomics platform. Next follows 

the validation of the new biomarker. In this context validation represents the 

investigation of whether a new biomarker is able to identify the outcome or 

phenotype of interest, otherwise known as a proof-of-principle study. At this 

point a replication of the study in an independent cohort is recommended. In 

diagnostic biomarker development this can be followed by statistical evaluation 

of the marker distribution within a reference sample and a cohort with disease. 

This can be achieved with epidemiological case control studies. At this stage the 

correlation between the biomarker levels and clinically assessed disease stages 

should be investigated. For the development of prognostic markers a prospective 

study to test the biomarker’s predictive ability of hard outcomes such as 
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cardiovascular events should follow. Furthermore, the additional value and 

clinical merit of the marker over established markers needs verification. Then its 

clinical utility requires assessment. For instance it needs to be established if the 

novel marker changes contemporary therapeutic strategies. Lastly, it needs to 

be established that the impact of the risk marker on clinical practice changes 

outcome. Considering finite resources in the public health sector cost-

effectiveness requires assessment as well. A biomarker without impact on 

clinical outcome thereby is unlikely to be cost-effective. 

The usefulness of new biomarkers has been evaluated with different approaches. 

Taking for example cardiovascular risk prediction, most studies use a hazard 

ratio to measure the predictive ability of a new risk factor whilst controlling for 

Framingham risk factors. This strategy however gives no information about the 

biomarker’s ability to improve classification of the group identified as 

intermediate risk by the Framingham or other risk scores. As such discrimination 

is insufficient to evaluate the clinical implications of a new risk factor. Even a 

risk factor with low discriminatory power may reclassify the intermediate risk 

group [51, 52]. Reclassification can be assessed by comparison of the proportion 

of individuals in the high-risk category identified by different models. This can 

be followed by the evaluation of the agreement between the predicted and the 

actual event rates, a process called calibration. Another approach is to calculate 

the Framingham or other risk scores and then to measure how well the new risk 

factor reclassifies the intermediate risk individuals, also called its classification 

accuracy. This is similar to the stratification capacity of a single biomarker 

assessing the part of a population categorised into risk groups. These approaches 

can be transferred to other clinical applications, for instance diagnostics, which 

include an intermediate category.  

1.3.6 Surrogate biomarkers 

A surrogate is someone or something that takes the place of another person or 

entity, a substitute. As diagnostic advances allow the identification or the 

monitoring of arterial wall or end-organ disease, the corresponding biomarkers 

have the potential to substitute end-point events in medical trials. This provides 

a different approach to assess the changes in cardiovascular risk [53]. A 

surrogate biomarker must fulfil several requirements to be a suitable substitute 
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for a morbid event end-point. Its extent should coincide with the incidence of 

the end point, not only as an epidemiological marker but also as a responder to 

therapy. Some surrogate biomarkers however might be sensitive for disease odds 

but not useful as a therapeutic target or vice versa. Furthermore direct 

measurements of CAD such as coronary angiography or coronary intravascular 

ultrasound cannot be considered surrogates for the presence of disease. The use 

of surrogate biomarkers in clinical trials can be limited when mortality or 

morbidity end points are not linked to disease progression as represented by the 

biomarker. For instance, cardiomyopathies, valvular heart disease or genetic 

arrhythmic disorders might contribute to morbid events, but lack a direct 

connection to atherosclerotic or atherothromobotic diseases. Therapy might 

decelerate, stop or reverse disease progression as assessed by the surrogate 

marker. However intervention might also cause simultaneously adverse effects 

like electrolyte disturbances. Therefore therapeutic efficacy in surrogate marker 

trials does not a priori include therapeutic safety and denote positive outcome.  

1.4 The cardiovascular disease continuum 

As pointed out in chapter 1.1 CVD is a chronic disease, commencing in 

childhood/adolescence and progressing throughout the whole life span of an 

individual. The velocity of this process will affect the CVD morbidity and 

mortality. Considering the long disease progression and plaque development 

summarized in Figure 1.1 the assumption can be made that the disease process 

occurs in different stages. Dzau and Braunwald [54] have postulated this 

progression in phases by introduceing the concept of the cardiovascular disease 

continuum in 1991. It was proposed that CVD consists of a chain of events, is 

initiated by numerous cardiovascular risk factors and subsequently progresses 

through pathophysiological pathways and processes with the final end-stage 

heart failure. In this context the authors assume that interventions at any stage 

of the continuum could alter its course and provide cardiovascular protection. At 

the time of publication clinical trials data was limited and the cardiovascular 

continuum needed further experimental confirmation to become validated. To 

summarise progress in this matter Dzau et al. published two additional papers in 

2006 [55, 56]. And although the cardiovascular continuum was at first restricted 

to CAD, the concept was expanded to include related areas such as 
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cerebrovascular disease, peripheral vascular disease and renal disease to value 

the interdependence of those diseases (Figure 1.4). 

 

Figure 1.4 Cardiovascular disease continuum. The inner circle illustrates the cardiovascular 
and renal pathophysiological continuum, whereas the outer circle summarises Dzau’s 
original cardiovascular continuum [53]. LVH; left ventricular hypertrophy; CV, 
cardiovascular; ESRD, end-stage renal disease; CHF, congestive heart failure; TOD, target 
organ damage. 

 
The cardiovascular continuum concept implies the existence of early stages of 

target organ damage prior to development of clinically overt cardiovascular 

disease. Although several stages of the cardiovascular continuum such as 

myocardial infarction depend on single events, several processes relate to 

continuous, slow deterioration of the cardiovascular system occuring in the 

subsequent disease stages. Biomarkers detecting these stages have frequently 

had a role in traditional risk prediction, however many of these biomarkers do 

not provide additional information when added to established risk prediction 

models like Framingham [26], SCORE [28] and ASSIGN [30]. This is due to direct 

link between traditional risk factors and early stages of the cardiovascular 

continuum. For instance diabetes mellitus leads to endothelial dysfunction. 
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Having diabetes therefore implies a degree of endothelial dysfunction. On the 

other hand, an individualised risk assessment approach such as the intermediate 

cardiovascular phenotype allows for the placement of a patient on the 

cardiovascular continuum, independent of causative risk factors. The resulting 

position on the cardiovascular continuum could imply a need for therapeutic 

interventions. 

In the cardiovascular continuum a more simplistic approach is therefore to 

consider a biomarker as an indicator of a trait predisposing to disease 

development, also called risk factor, at a certain time-point in disease 

progression or as an indicator of the velocity of disease progression. 

Consequently biomarkers can be grouped according to their function as 

antecedent biomarkers identifying a disease development risk, as screening 

biomarkers for subclinical disease detection, as diagnostic biomarkers for 

disease identification, as staging biomarkers for disease quantification or as 

prognostic biomarkers.  

An example for a biomarker indicating the need for therapeutic intervention 

during an early disease stage is microalbuminuria, one of the most sensitive 

measures of kidney disease. Consequently, the European Society of Hypertension 

included microalbuminuria in the assessment of subclinical organ damage guiding 

hypertension treatment [37]. Microalbuminuria is therefore a good example of 

treatment guidance by individual intermediate phenotyping. 

Whilst clinical events, like non-fatal or fatal myocardial infarctions, undoubtedly 

represent the best end points for clinical research, assessment of early disease 

stages might offer an alternative research tool. For instance pharmaceutical 

research using clinical outcomes as endpoints involves large-scale, expensive 

clinical trials lasting several years. Those trials have the ability to measure 

clinically relevant differences on the beneficial effect of drugs. Subclinical organ 

damage, the intermediate phenotype, however occurs much earlier in the 

continuum of cardiovascular disease, therefore it may be a more sensitive 

measure of the specific, differential actions of therapeutic agents [57]. Also 

alternative end-points have the potential to reduce the time frame or sample 

size of a clinical cohort, as effects can be detected much earlier in appropriate 

numbers when compared to traditional clinical endpoints. Whether intermediate 
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phenotypes offer an alternative to the traditional approach is currently under 

debate, however evidence supporting this alternative outcome measure exists. 

For instance regression of left ventricular hypertrophy [58] or decelerated 

progression of intima media thickness [59] is linked to improved outcome. 

Therefore intermediate phenotype assessment can play a role in clinical 

research. Examples for its usage are in small scale preliminary trials or in 

addition to clinical outcomes in traditional clinical trials. The latter could 

improve the understanding of drug effects on the cardiovascular system, whilst 

generating salient clinical data. 

The different stages of the cardiovascular continuum can be detected with a 

variety of biomarkers. A selection along to the different stages is depicted in 

Figure 1.5 and will be discussed in subchapters, 1.5, 1.6 and 1.7. For the 

purpose of simplification, biomarkers will be divided into causative risk factors 

(antecedent biomarkers), biomarkers of the intermediated phenotype (screening 

biomarkers) and biomarkers of clinical overt cardiovascular disease (diagnostic 

biomarkers). This summary does not claim completeness, but will give a 

comprehensive overview of the most relevant CVD biomarkers in the context of 

the cardiovascular continuum. Biomarkers with special importance for the result 

chapters will be discussed in more detail.  

Considering the variety of different stages and organs involved in the 

cardiovascular continuum, a characterisation of an individual with multiple 

biomarkers covering these different aspects of the continuum is a promising 

strategy in prognostication and diagnostics. This is supported by the hypothesis 

that phenotyping and disease staging on the cardiovascular continuum can be 

more precise if more information is available, especially in the context of a 

complex disease such as CAD. The relevance of such an approach is for instance 

confirmed by the finding that combined risk factor assessment is better than 

single evaluation of its components and that a combination of multiple 

serological markers improves cardiovascular risk stratification in some [60, 61], 

although not in all, studies [62]. Considering these benefits in prognostication a 

multiple biomarker strategy will be applied to the diagnosis of CAD as part of 

this thesis in chapters 4 to 6. Therefore many of the listed biomarkers are 

relevant for this thesis and are explained in detail. The multiple biomarker 

strategy will be applied to clinically overt CVD. Consequently all biomarkers 
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detecting earlier disease stages, as illustrated in Figure 1.5, are also potential 

diagnostic candidates. We subsequently aimed to include a large number of 

biomarkers in the investigation. The overview of CVD biomarkers will therefore 

not only represent biomarkers used for multiple biomarker assessment in the 

context of diagnosis but also for prognostication.   

 

Figure 1.5 Biomarkers in the cardiovascular continuum. The inner circle states the stage of 
the cardiovascular continuum. The middle circle states the different pathophysiological 
process or categorises the cardiovascular continuum stage. The outer circle summarises a 
range of biomarkers quantifying the pathophysiological process. SNP, single nucleotide 
polymorphism; CRP, C-reactive protein; IL-6, interleukin 6; TNF! , tumour necrosis factor !; 
ICAM-1, intercellular adhesion molecule-1; LDL, low density lipoprotein; RH-PAT, reactive 
hyperaemia pulse amplitude tonometry; EPCs, endothelial progenitor cells; IMT, intima 
media thickness; ABI, ankle brachial index; LVH, left ventricular hypertrophy; ECG, 
electrocardiography; ACS, acute coronary syndrome; CAD, coronary artery disease; TIA, 
transitory ischaemic attack; CT, computer tomography; MRI, magnet resonance imaging; 
GFR, glomerular filtration rate; BNP, brain natriuretic peptide. 

 
1.5 Risk factors in cardiovascular disease 

The current concept of CVD implies that its process is initiated by risk factors 

such as dyslipidaemia, hypertension, diabetes, smoking and obesity. These 
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factors lead to oxidative and mechanical stress, endothelial dysfunction, 

inflammatory processes and ultimately vascular remodelling. The occurrence of 

these factors marks the beginning of the atherosclerotic process, and continues 

to be present throughout the cardiovascular continuum. Palinski et al. for 

example demonstrated oxidised LDL in fetal aorta walls of 

hypercholesterolaemic mothers; suggesting atherosclerosis represents a lifelong 

process [63].  

Cardiovascular risk prediction estimates the onset of both non-fatal and fatal 

cardiovascular events normally in a 5-10 year time frame. Markers included in 

traditional risk factor models like the Framingham risk score, the SCORE tables, 

the Joint British Societies risk charts and the ASSIGN score are age, gender, total 

cholesterol, HDL cholesterol, blood pressure, diabetes, smoking and social 

deprivation. These elements are predominately causative risk factors for CVD. 

Age is not linked to the pathophysiology of cardiovascular disease, however 

epidemiologically aged individuals are more likely to develop cardiovascular 

events during a time period of 10 years. Other pathophysiological processes 

which sustain the development of atherosclerosis are inflammation, oxidative 

and mechanical stresses. For the purpose of simplicity markers supporting 

atherosclerosis will be designated as causative risk factors whereas markers of 

subclinical organ damage will be summarised as intermediate phenotypes. 

Considering the continuous progression of cardiovascular disease, as outlined in 

Figure 1.4, the dedication of biomarkers to stages of the cardiovascular 

continuum is rather arbitrary. 

With the exception of oxidative stress risk factors of CVD listed below are 

investigated in each study cohort contributing to this thesis. This data allows for 

instance adjustment for contributing factors or comparison of groups such as 

cases and controls. For instance contributions of established factors to diagnosis 

or outcome have to be excluded to prove the value of an additional biomarker. 

The  information about causative risk factors has therefore an important role in 

the analyses conducted as part of this thesis. 
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1.5.1 Hypertension 

Pathologically raised blood pressure, also known as hypertension, is an 

established risk factor for all clinical manifestations of atherosclerosis. 

Hypertension is defined as persistent blood pressure equal or above 140 mmHg in 

systole and/or 90 mmHg in diastole. In Western societies particularly, more than 

25% of the adult population are affected by hypertension. The risk of developing 

hypertension in these countries during a lifetime is in excess of 90% and is a 

common, independent predisposing factor for the development of CAD, stroke, 

peripheral artery disease and heart failure. In the Framingham cohort 

hypertension leads to a two to four fold increase in cardiovascular events in 

comparison to a normotensive person of the same age group. An elevated blood 

pressure is associated with the development of CAD in a continuously graded 

manner, without a critical threshold. Mortality in CVD doubles with each 20 

mmHg systolic or 10 mmHg diastolic blood pressure (DBP) rise and this extends in 

the normal blood pressure range. For instance, in comparison to values below 

130/85 mmHg, the combination of SBP 130-139 mmHg and DBP 85-89 mmHg are 

associated with a 1.6 and 2.5 fold hazard of CVD in men and women 

respectively.  

Blood pressure can be altered by life-style factors like salt intake, physical 

activity, alcohol consumption and body weight. The modification of these life-

style factors has however, a limited capacity to reduce blood pressure. As a 

concequence drug treatment is often necessary to reduce the overall 

cardiovascular risk in hypertensive patients. Treatment normally aims at blood 

pressures below 140/90 mmHg and for diabetic patients and those with 

established CVD below 130/80. The latter shows that the hypertension 

classification is highly dependent on the total cardiovascular risk of each 

individual, meaning that the hypertensive risk in CVD varies extensively 

depending on the burden of associated risk factors.  

Essential hypertension, by definition hypertension of unknown cause, accounts 

for more than 90% of hypertension. It is influenced by several pathophysiological 

factors. Some examples for those are: increased sympathetic nervous system 

activity, persisting high sodium intake, abnormal function of resistant vessels 

including defects in the renal microvasculature, diabetes mellitus or insulin 
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resistance and obesity. Other hormon related examples are: overproduction of 

vasoconstricting and sodium-retaining hormones, inappropriate increase of renin 

secretion resulting in high levels of angiotensin II and aldosterone, insufficient 

amounts of vasodilators such as prostacycline or natriuretic peptides, up-

regulated activity of vascular growth factors, alterations in adrenergic receptors 

with a positive ino- and chornotrophic effect on the heart and other 

pathophysiologic processes [64]. These factors underline the multifactorial origin 

of essential hypertension and the complex causes of cardiovascular disease, as 

most causative factors interact with each other. These interactions lead to a risk 

factor clustering, meaning that hypertension tends to occur in association with 

other atherogenic factors. In particular hypertension is metabolically linked to 

dyslipidaemia, glucose intolerance, abdominal obesity, hyperinsulinaemia, 

hyperuricaemia and others. In the Framingham study hypertension occured in 

less than 20% of study participants in isolation.  

1.5.2 Diabetes 

Type 1 and type 2 diabetes mellitus are characterised by hyperglycaemia. Other 

features of diabetes mellitus type 2 are hyperinsulinaemia and an excess of free 

fatty acids resulting from genetic and environmental factors. Type 1 diabetes 

mellitus is an autoimmune disease and comprises <10% of all diabetic patients. It 

is characterised by a loss of the pancreatic insulin-producing beta cells in the 

islets of Langerhans, which leads to a deficiency in insulin production. Insulin 

resistance characterises type 2 diabetes mellitus. It can occur simultaneously 

with reduced insulin secretion secondary to beta-cell dysfunction. Type 2 

diabetes patients represent >90% of those with diabetes and atherosclerosis.  

The link between elevated blood glucose levels and increased mortality and 

morbidity from vascular disease is well established. Coutinho et al. showed in a 

metaregression analysis covering a total of almost 100,000 individuals, that a 

fasting glucose level of 6.1 mmol/l in comparison to 4.2 mmol/l was associated 

with an relative cardiovascular event risk of 1.33 (95% CI, 1.06-1.67) [65]. The 

direct effect of hyperglycaemia on the vasculature is only partially understood, 

however hyperglycaemia directly impairs endothelial function [66]. Interestingly, 

high glucose levels augment protein kinase C dependent [67] endothelial nitric 

oxide synthase gene and protein expression [68]. Yet this upregulation also leads 
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to an increase in superoxide anions, which react with nitric oxide [68], 

suggesting an inactivation of nitric oxide by superoxide anions, which then leads 

to a production of further reactive oxygen species. Furthermore, protein kinase 

C activation by hyperglycaemia leads to cyclooxygenase 2 production. This is 

associated with an increase in thromboxane A2 and a reduction of prostacycline 

[67]. In summary, hyperglycaemia induces endothelial dysfunction and oxidative 

stress. 

Epidemiologically diabetes has a high prevalence worldwide. Amos et al. 

estimated the global diabetes burden as 124 million people and projected a rise 

to 221 million people by the year 2010 [69]. The growing level of obesity and 

sedentary lifestyle, both major underlying risk factors for type 2 diabetes, is the 

main reason in developed and especially developing countries. Unfortunately, 

the process is continuing. This emphasises the growing worldwide importance of 

diabetes for cardiovascular mortality and morbidity, especially as diabetes 

mellitus amplifies cardiovascular risk [70]. Next to well established 

microvascular complications of diabetes such as diabetic nephropathy or 

retinopathy macrovascular complications such as CAD, peripheral artery disease 

and carotid vessel disease cause cardiovascular events.  

Diabetic patients with either unstable angina or non-Q-wave infarction have a 

relative mortality risk of 1.57 in comparison to non-diabetic patients [71]. In 

patients with thrombolysed myocardial infarction diabetes portends a 

substantially worse 30-day and 1-year prognosis [72]. Approximately 30% of 

patients with an acute coronary syndrome have diabetes and as many as 40% 

have impaired glucose tolerance [73, 74]. On a population scale the 7 year 

incidence of first myocardial infarctions or death was 20% in diabetic patients in 

comparison to 3.5% in non-diabetic patients [75]. In the same study patients with 

previous myocardial infarction had a second event in 45% of the diabetic 

subgroup and in 18.8% of the non-diabetics subgroup. Therefore patients with 

diabetes and no cardiac history have the same total risk as non-diabetic patients 

with a history of myocardial infarction. As a consequence current guidelines 

consider diabetes equal to established CAD, mandating aggressive preventive 

treatment.  
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1.5.3 Dyslipidaemia 

Lipid metabolism can be perturbed in different ways. In general dyslipidaemia is 

caused by an alteration in lipid function or increased levels compared to the 

physiologic state. These can be of genetic origin such as in familial 

hypercholesterolaemia, diet related, part of disease complexes such as the 

metabolic syndrome, secondary to other disease like end stage renal failure or a 

mixture of these causes. As it is possible to modify cholesterol levels with life 

style changes or with drug therapies hypercholesterolaemia has been thoroughly 

investigated by randomised trials [76]. Besides the most common forms of 

dyslipidaemia, the elevation of total cholesterol and LDL cholesterol, several 

other forms predispose to premature cardiovascular disease. An example is the 

so-called atherogenic lipid triad. It consists of the combined increase of very low 

density lipoproteins, triglycerides and small dense low density lipoprotein 

particles in association with reduced high density lipoprotein particles [77]. 

Elevated plasma cholesterol levels fulfil all criteria of a causative risk factor. In 

a meta-analysis involving 61 prospective observational studies consisting of 

almost 900,000 adults without previous CVD and with a baseline total cholesterol 

measurement a reduction of 1 mmol/L was associated with approximately a 56%, 

a 34% and a 17% reduction in ischaemic heart disease mortality at the age 40-49, 

50-69 and 70-89 years, respectively [78]; interestingly the investigators were 

unable to establish a threshold of this effect. Consequently the cardiovascular 

risk increases continuously the higher the cholesterol level becomes. A total 

cholesterol of 8 mmol/L and an LDL cholesterol of 6 mmol/L for instance places 

a patient at a high total risk of CVD in the absence of other risk factors [77]. On 

the other hand, a 10% reduction in total cholesterol levels leads to a 25% 

reduction of CAD events over a 5 year period [76]. Similarly an LDL cholesterol 

reduction of 1 mmol/L is followed by a 20% decrease of CAD [76], and similar 

observations were made in primary prevention studies. In a meta-analysis, 

including 20 randomised trials and a total of 63899 individuals the relative risk 

for statin treatment in primary prevention was 0.93 (95% CI: 0.87 to 0.99, 

p=0.03) [79]. Therefore dyslipidaemia is not only correlated with cardiovascular 

risk but also causally linked as indicated by these intervention studies. 
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1.5.4 Smoking 

Worldwide tobacco use is one of the most important causes of CVD. Any form of 

tobacco consumption including chewing tobacco and second hand smoke is 

associated with a higher cardiovascular risk [80]. In the INTERHEART study, 

current smoking in comparison to no smoking history was associated with a 

higher risk of non-fatal myocardial infarction, the corresponding odds ratio was 

2.95. Three years after smoking cessation, the odds ratio decreases to 1.87 [80]. 

Even 20 years after smoking cessation an elevated risk remained with an odds 

ratio of 1.22 [80]. More than 1 million men and 200,000 women die as a 

consequence of smoking in Europe each year, of which approximately one third 

die from CVD [81]. In this context it is not surprising that the INTERHEART study 

identified smoking as the traditional risk factor with the highest odds ratio for 

incidence of myocardial infarction, with an estimated 30% of all CVD cases 

secondary to smoking [25]. Therefore smoking is the most preventable CVD 

cause.  

The adverse effect of tobacco consumption is related to the number of 

cigarettes smoked per day [80]. For instance a person smoking more than 20 

cigarettes per day has a 6 fold higher risk for an acute coronary syndrome in 

comparison to someone consuming 2 cigarettes per day [80]. Especially if 

smoking is started at young age the total mortality risk is higher [82], which 

suggests a cumulative effect. In the atherosclerosis risk in the community study 

an increased carotid intima media thickening was associated with active and 

passive smoking over a three year period [83]. This finding underlines the direct 

effect of smoking on atherosclerotic processes. Smoking cessation is the most 

effective preventive measurement. It is associated with a 36% reduction of all 

cause mortality among patients with established CAD [84]. Even reduction of 

passive smoking leads to reduction of CAD incidence. As a result of the Scottish 

smoking ban in enclosed public places the admission rate for non smokers to 

hospitals with acute coronary syndromes was reduced by 21% during a 10 months 

period following the implementation of the legislation in comparison to the 

preceding 10 months [85]. 
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1.5.5 Inflammation 

A large number of circulating biomarkers representing inflammatory processes 

have been described. In chapter 4 of this thesis several of these markers are 

evaluated for their diagnostic capacity in symptomatic CVD. The following 

subchapter will therefore provide a detailed summary of the most relevant 

markers. 

In general, inflammation is a complex biological response of vascularised tissues 

to harmful stimuli such as pathogens and chemicals or other irritants as well as 

mechanical injury. It constitutes the physiological attempt to remove harmful 

stimuli and to initiate healing processes. A chronic inflammatory state has been 

associated with atherosclerosis. For example, chronic inflammatory conditions of 

autoimmune origin such as rheumatoid arthritis, systemic lupus erythematosus 

and psoriasis are associated with a higher cardiovascular risk [77]. 

Pathophysiological processes of inflammation characterise all stages of the CVD 

progression and represent a link between plaque formation, acute plaque 

rupture and myocardial infarction with the consecutive arterial occlusion. A 

range of inflammation biomarkers such as CRP, interleukin-6 (IL-6) and 

lipoprotein-associated phospholipase A2 [86] have been investigated in 

atherosclerosis. In this regard the largest body of evidence is available for CRP. 

CRP is a circulating pentraxin composed of 5 23-kDa subunits and an acute phase 

reactant of hepatic origin. However, CRP is also synthesised in smooth muscle 

cells within diseased atherosclerotic arteries and is associated with multiple 

aspects of atherosclerosis such as adhesion molecule expression, effects on 

fibrinolysis and alteration of endothelial function [87]. Ridker et al. published 

one of the first studies reporting an association between baseline CRP and future 

myocardial infarctions in form of a nested case-control study [88]. A multitude 

of studies have been published since, all in general supporting the link between 

CRP and future cardiovascular events. A meta-analysis of 22 studies, all 

excluding baseline CAD, was published in 2009 [89]. It showed that CRP levels > 

3.0 mg/dl in comparison to levels < 1.0 mg/dl have a 58% added risk for CAD 

incidence. Despite this association between CRP and cardiovascular events, the 

improvement of predictive accuracy of standard risk factors seems only modest. 

Several studies have shown that the addition of CRP to traditional risk factors 

only raises the c statistic modestly by 0.003 [90], 0.011 [91] or 0.015 [92]. In the 
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Women’s Health Study adding CRP to the Framingham risk model reclassified 20% 

of intermediate-risk individuals [93]. Of those only 4% were reclassified upward 

from intermediate to high risk. Therefore CRP assessment would only have a 

small effect on treatment decisions. Moreover, during acute coronary ischaemia, 

raised CRP levels are predictive of longterm cardiovascular risk even if troponin 

levels are not raised [94]. This suggests an association between plaque 

vulnerability and inflammation in the absence of overt myocardial ischaemia. In 

the clinical setting CRP can be investigated with several validated, standardised 

and inexpensive, high-sensitivity assays. Regarding treatment guidance CRP 

might have a role in specific populations. The Jupiter Trial for instance assessed 

patients with normal lipid levels [95], here the authors were able to show that 

CRP identified patients benefiting from statin therapy. The Jupiter trail  

however did not address reclassification and was not reproducible in the ASCOT 

population [96].  

Several other markers of inflammation are established. Only a number of them 

have shown clinical potential. Amongst those are the inflammatory cytokines IL-

6 [97] and tumour necrosis factor ! (TNF!), the inter-cellular adhesion molecule 

1 (ICAM-1) [98, 99], vascular cell adhesion molecule 1 (VCAM-1) and P-selectin 

[100]. Although the evidence for risk prediction with these markers exists, 

investigations into clinical applications are not yet as advanced as research into 

CRP.  

IL-6 is a pleiotrophic cytokine released by T-cells and macrophages with diverse 

humoral and cellular immunomodulatory effects. It possesses pro- and anti-

inflammatory properties, is the main trigger for hepatic CRP secretion and is 

associated with CAD, especially in form of fatal events [101-103]. The link with 

fatal events might be related to the association of IL-6 and left ventricular 

impairment [104]. In prospective studies the odds ratio of IL-6 was quite variable  

ranging from 1.0 [105] to 3.0 [102]. However in a meta-analysis published in 

2008 and incorporating 17 different prospective studies with clinical coronary 

outcomes the combined odds ratio was 1.61 per two standard deviation increase 

in baseline IL-6 [106]. Longterm elevation of IL-6 predicts therefore 

cardiovascular events in population screening [106]. IL-6 is also useful for 

outcome prediction in specific cohorts like patients with unstable CAD [107]. 
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Furthermore, evidence exists for a diagnostic quality of IL-6 as Noto et al. 

observed a relation to the level of coronary stenosis in patients with CAD [108].  

TNF! is a pro-inflammatory cytokine, important in the initiation of an 

inflammatory response. The cytokine is expressed by a variety of cells, including 

macrophages, foam cells, monocytes, T-cells, smooth muscle cells, adipocytes, 

and fibroblasts. TNF! contributes to the pathogenesis of atherosclerosis by 

enhancing arterial wall chemokine and adhesion molecule expression as well as 

by augmenting medial smooth muscle cell proliferation and migration [109]. 

TNF! also promotes infiltration of arterial plaque by inflammatory cells and 

stimulates additional cytokine production, which increase plaque instability and 

consecutively lead to thrombus formation [110]. Epidemiological evidence for an 

association between TNF! and CVD is inconsistent; some prospective case-cohort 

studies [111, 112] have reported a positive association, whilst others do not 

[113, 114]. Raised TNF! levels were related to recurrent coronary events in a 

cohort with previous myocardial infarction [115]. 

Soluble ICAM-1 is part of a glycoprotein receptor super-family that also includes 

VCAM-1 and platelet endothelial cellular adhesion molecules. These molecules 

function as mediators of leukocyte adhesion and migration to the vascular 

endothelium. They bind circulating leukocytes to the vascular endothelium and 

trigger leukocyte migration into the subendothelial space. Their expression and 

consecutively their concentrations are influenced by other inflammatory 

cytokines. These cytokines include interleukin-1, interleukin-4, TNF!, 

interferon-gamma, lipopolysaccharide and oxidised LDL. Increased levels of 

ICAM-1 have been found in atherosclerotic diseases including CAD [116], and 

ICAM-1 levels correlate with the extent of atherosclerotic lesions [117]. Soluble 

ICAM-1 is a predictor of myocardial infarction in prospective population based 

studies [118]. Adjustment for standard cardiovascular risk factors however 

abrogates the risk effect in other studies [99]. This might be due to an 

association of soluble ICAM-1 with coronary atherosclerosis progression leading 

to luminal narrowing. Yet soluble ICAM-1 is not associated with events of acute 

thrombosis or vessel occlusion [119]. In other cohorts such as patients with 

established CAD raised ICAM-1 concentration are linked to a higher risk of future 

coronary events, independent of established risk factors [120].  
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Soluble VCAM-1 is part of the immunoglobin superfamily. It can be detected on 

endothelial cells, lymphoid dendritic cells, tissue macrophages and renal tubular 

epithelial cells. It mediates leukocyte binding and trans-endothelial migration. 

Similar to ICAM-1,VCAM-1 is also associated with the extent of atherosclerosis 

[121]. For soluble VCAM-1 exists however no convincing evidence regarding the 

prediction of adverse cardiovascular events within a population [99, 122]. Yet 

VCAM-1 was associated with cardiovascular events in a cohort with documented 

CAD [123]. 

P-selectin is an adhesion receptor expressed on activated endothelial cells, 

which mediates the so called ‘rolling’ of leukocyte along the endothelium. The 

evidence supporting a role of P-selectin in prediction of cardiovascular events is 

sparse. Ridker et al. were able to show that raised P-selectin levels are 

associated with a higher incidence of cardiovascular events in a nested case-

control study in women independent from traditional cardiovascular risk factors 

[100]. 

1.5.6 Oxidative stress 

Oxidative stress biomarkers will not be investigated as part of this thesis. They 

are briefly summarised to cover the full spectrum of the CVD biomarker 

continuum, as illustrated in Figure 1.5.  

The term oxidative stress describes the systemic disproportion between reactive 

oxygen species and the body’s natural ability to counter them or the damage 

they cause. The imbalance leading to oxidative stress usually derives from an 

excessive production of reactive oxygen species, a group of molecules produced 

in aerobic cells including oxygen and its derivates such as superoxide and 

hydrogen peroxide. Despite their potential harm on cellular structures like 

proteins, lipids and DNA, reactive oxygen species also act as secondary 

messengers in intracellular signalling cascades important in other processes such 

as senescence and apoptosis. The more deleterious effects of reactive oxygen 

species are linked to hypertension and atherosclerosis. In situations like 

ischaemia or postischaemic reperfusion phagocytic cells release reactive oxygen 

species leading to further tissue damage. In the vasculature the predominant 

source of reactive oxygen species is a family of NADPH oxidases. These NADPH 
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oxidase enzymes produce constantly low levels of reactive oxygen species and 

their activity can be increased by stimuli such as inflammatory cytokines, 

mechanic stress and hormones such as angiotensin-II. Low levels of reactive 

oxygen species contribute to the development of atherosclerosis in different 

ways. Reactive oxygen species for instance react with nitric oxide. Consequently 

they decrease nitric oxides quantity and beneficial effects and simultaneously 

lead to the formation of highly reactive substances such as peroxynitrite. 

Furthermore reactive oxygen species can lead to lipid oxidation. Oxidative 

modified LDL has a more proatherosclerotic effect than its native form. 

Oxidation of LDL occurs predominantly in the vessel wall where it leads to an 

activation of many inflammatory and atherogenic pathways. Oxidated LDL has 

several deleterious effects including endothelial apoptosis, activation of 

inflammatory cells, decrease of endothelial nitric oxide synthase, vascular 

smooth muscle cell proliferation and augmentation of reactive oxygen species 

generation in endothelial cells. Therefore oxidative stress, either as the direct 

effect of reactive oxygen species or as oxidative modified LDL, plays a pivotal 

role in the early stages of atherosclerosis. Efforts to counter oxidative stress 

with vitamin supplements [124] as well as epidemiologic investigations [125] 

have shown no benefit on cardiovascular mortality. Considering the existing 

evidence for the connection between oxidative stress and atherosclerosis, the 

lack of benefit might for example be due to inefficient vascular wall penetration 

by antioxidants in these studies.  

Several biomarkers for oxidative stress have been proposed. Especially oxidised 

LDL and antibodies raised against it were investigated in more detail. Oxidised 

LDL is produced during lipid peroxidation whilst free oxygen radicals extract a 

hydrogen atom from a carbon-hydrogen bond, a constituent part of a 

polyunsaturated fatty acid. This leads to generation of reactive species altering 

lipid and protein components of LDL. As the protein and lipid modifications are 

random, oxidised LDL is not a homogeneous entity, it rather represents a 

collection of chemical modifications of both lipids and apoB-100 proteins. 

Therefore it has been recommended that differentially oxidised LDL versions can 

be detected by oxidation specific antibodies, for instance the murine 

monoclonal antibodies DLH3, 4E6 and E06. Oxidised LDL levels are elevated in 

patients subsequently developing myocardial infarctions [126]. The quoted study 
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by Meisinger et al. examined only 88 cases and 258 controls. However in the 

combined Health Professionals Follow-up Study and the Nurses’ Health Study, 

two prospective studies including 50,966 subjects with a follow-up of six to eight 

years, oxidised LDL did not predict cardiovascular events after adjustment for 

triglycerides, LDL and HDL cholesterol as published by Wu et al. [127]. Yet, 

oxidised LDL levels have been shown to predict the incidence of re-infarctions in 

secondary prevention cohorts [128]. Oxidised LDL might therefore have a role in 

prognostication in such cohorts. This is supported by the finding that the 

concentration of oxidised LDL is linked with a high Framingham cardiovascular 

risk score, as Holvet et al. observed [129]. Oxidised LDL is associated with other 

markers of CVD such as C-IMT [130] and coronary endothelial dysfunction [131]. 

Other markers of oxidative stress are F-2 isoprostane, plasma levels of oxidative 

modified tyrosins, glutathione and the ratio of reduced to oxidised glutathione.  

1.5.7 Uric acid 

Uric acid represents the final product of nucleic acid metabolism, in particular 

purine metabolism. Chemically it is a heterocyclic organic compound with the 

correct name 7,9-dihydro-1H-purine-2,6,8(3H)-trione and a molecular weight of 

168 Daltons. In individuals with normal renal function uric acid is excreted in the 

urine.  

Elevated uric acid levels are correlated with a higher CAD risk independent of 

traditional risk factors. In a meta-analysis covering 26 eligible studies and a total 

of 402,997 individuals by Kim et al. [132], after adjustment for confounding 

factors the pooled risk ratio for incidence of CAD was 1.09 (95% CI: 1.03-1.16) 

and for mortality 1.16 (95% CI: 1.01-1.30). In the same analysis an increase of 1 

mg/dL in blood uric acid concentration led to a 12% higher CAD mortality. The 

presence of hyperuricaemia is especially deleterious in women. Another meta-

analysis published by Wheeler et al. [133] showed a higher risk ratio of 1.12 in 

men and of 1.22 in women comparing hyperuricaemic with normal individuals.  

Being a byproduct of hydrogen peroxide generation, uric acid is established as an 

anti-oxidant reagent [134]. It may therefore protect against vascular 

inflammation and dysfunction. Yet uric acid has also antioxidant properties in 

the presence of LDL cholesterol, as shown in human plasma by Patterson et al. 
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[135]. Uric acid also supports vascular smooth muscle cell proliferation where it 

has a mitogenic effect [136]. Furthermore, uric acid augments the up-regulation 

of CRP in endothelial and vascular smooth muscle cells [137]. 

1.6 Biomarkers of the intermediate phenotype  

As discussed in chapter 1.3, the intermediate cardiovascular phenotype is a 

collective term for subclinical organ damage quantified by a multitude of 

biomarkers. Such are correlated with developing atherosclerosis and 

cardiovascular disease.  

 

Figure 1.6 Biomarker types in the cardiovascular continuum. Depicted are stages at which 
genetic, circulating, functional and imaging biomarkers are most informative.  

 
Subclinical CVD in particular is defined as detectable target organ damage either 

within the vasculature or the heart without previous or ongoing symptoms. 

Established markers of target organ damage are left ventricular hypertrophy, 

microalbuminuria, increase C-IMT and an elevated ankle brachial index. More 

recently the coronary calcium score has been developed as a biomarker of CAD. 

This list is not exclusive as every maker measuring CVD progression can be 

considered as a biomarker of the intermediate phenotype. Functional and 

circulating biomarkers can detect early stages of the cardiovascular continuum. 

Imaging modalities cannot detect the very early stages of subclinical CVD, as 

depicted in Figure 1.6. 

Biomarkers of the intermediate phenotype are examined in all study cohorts 

contributing to this thesis. This includes all mentioned below biomarkers with 
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the exception of endothelial progenitor cells, ankle-brachial index and 

assessment of asymptomatic CAD. The three biomarkers are briefly summarised 

to explain the full spectrum of the CVD biomarker continuum, as illustrated in 

Figure 1.5. 

1.6.1 Vascular function and structure 

Exposure to causative risk factors is quite similar in different vascular beds. 

Therefore peripheral vascular function and structure resembles that of the 

coronary arteries. As a consequence, assessment of wall structure or endothelial 

function in the non-cardiac arteries allows an estimation of the state of global 

cardiac circulation. Peripheral vascular function and structure assessment is 

therefore a cardinal component of intermediate phenotyping.  

1.6.1.1 Endothelial function 

The endothelium provides a variety of physiological functions accomplished via 

secretion of a multitude of bioactive substances. These effect vasomotion, 

inhibition of platelet aggregation, thrombus generation and maintenance of 

endothelial permeability in the physiologic state. Endothelial function is linked 

to cardiovascular risk factors via pro-oxidative genes in the vascular wall. Their 

activation leads to a production of reactive oxygen species, which stimulate the 

endothelium to release transcriptional and growth factors, proinflammatory 

cytokines, adhesion molecules and chemoattractant substances [138]. Thereby 

the endothelium regulates platelet activity, vascular tone, angiogenesis and 

leukocyte adhesion. All of these components are involved in the transition from 

normal endothelial function to endothelial dysfunction. Endothelial dysfunction 

presents a systemic disorder and is a key variable in the pathogenesis of 

atherosclerosis and its complications. It is not only determined by the individual 

risk factor burden, but also represents an integrated index of atherogenic and 

atheroprotective factors in a single individual. One of the first factors which 

contributes to endothelial dysfunction is a reduced nitric oxide bioavailability. 

This is a result of inhibition and uncoupling of endothelial nitric oxide synthase 

and an augmented consumption of nitric oxide secondary to increased levels of 

reactive oxygen species. As a consequence all aspects of endothelial function 

become deranged. Examples are an abnormal vasomotor activity, an increasingly 
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pro-coagulant endothelial surface, a pro-inflammatory environment and 

ultimately plaque formation and atherosclerosis. Most of the established risk 

factors like hypertension, dyslipidaemia, diabetes, insulin resistance, smoking 

and aging are associated with endothelial dysfunction [139, 140]. Furthermore 

the number of risk factors present is linked to the extent of endothelial 

dysfunction, suggesting an additive effect. Endothelial function also predicts 

disease progression [141]. Therefore endothelial dysfunction is linked to CVD by 

strong clinical evidence. In cohorts with peripheral vascular disease [142] 

endothelial function as measured by brachial flow-mediated dilatation (FMD) is 

an independent predictor of cardiovascular events. However in patients with 

significant cardiovascular risk [143] or in elderly patients [144] brachial FMD had 

either no or only minimal contribution to prognostication after adjustment for 

traditional risk factors. In the Multi-Ethic Study of Artherosclerosis, a population-

based cohort study of adults free of clinical CVD at baseline, brachial FMD was 

an independent contributor to cardiovascular event prediction [145]. However 

the relevance of endothelial function measured by flow mediated dilatation for 

discrimination and reclassification remains unclear in this study, as the the C 

statistic of the Framingham risk score was not improved by addition of brachial 

FMD and the biomarker even inappropriately reclassified 23% of individuals who 

experienced events whilst correctly reclassifying 29% of individuals [145]. More 

studies with either no or incremental prognostic information from measurements 

of FMD are summarized in a recent review by Charakida et al. [146]. 

Endothelial function can be assessed with invasive measurements. Intra-arterial 

infusions of specific endothelium-dependent vasodilators such as acetylcholine, 

methacholine, bradykinin, substance P or inhibitors of NO synthase can alter 

endothelial function in experimental settings. Acetylcholine for instance induces 

endothelium-dependent dilatation by stimulating the nitric oxide synthase and 

consecutively nitric oxide release. Therefore intracoronary acetylcholine 

infusion dilates epicardial arteries in healthy individuals. This is measured by 

comparing the coronary artery diameter before and after infusion of 

acetylcholine by quantitative angiography. Endothelial dysfunction on the other 

hand is diagnosed when epicardial constriction is observed. This is explained by 

a balance shift favouring the acetylcholine effect on direct smooth muscle cell 

contraction in opposition to its effect on the endothelium. In other vascular beds 
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such as the brachial or femoral circulation, only a diminished vasodilator effect 

is observed in endothelial dysfunction. Endothelium-independent vasodilatory 

agents such as nitroglycerine or sodium nitroprusside characterise the dilatory 

capacity, as they donate NO directly to the smooth muscle cells. Therefore they 

are used as a control stimulus in invasive experimental settings.  

Non-invasive measurements of endothelial function have been developed to 

avoid arterial cannulation and procedural adverse effects. Imaging techniques 

applied include ultrasound, positron emission tomography and magnetic 

resonance imaging for peripheral or coronary artery assessment. The best-

validated technique is the ultrasound based endothelium dependent flow 

mediated vasodilatation of the brachial artery [147] illustrated in Figure 1.7., 

which is also the most widely used non-invasive ultrasound technique to examine 

endothelial function [146].  

 

Figure 1.7 Flow-mediated dilatation (FMD). Depicted is the experimental set-up for a brachial 
FMD measurement including the recommended positioning of the sphygmomanometer cuff 
and the use of an ultrasound probe holder (A). A B-mode ultrasound image of the far and 
near wall of the brachial artery is depicted with additional placement of the region of interest 
box using an edge detection analysis software for flow-mediated dilatation analysis (B). The 
consecutive measurement of the brachial artery diameter, as generated by edge detection 
software, allows assessment of the vasodilatory response (C). From the difference between 
maximum and baseline diameters (!D) %FMD can be calculated (D). The figure was adapted 
from Charakida et al. [146]. 
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The reactive hyperaemia response to a temporary arterial occlusion is used to 

create a flow increase related shear stress to the endothelium. The stress 

activates endothelial nitric oxide synthase and leads to a vasodilator response. 

Flow mediated dilatation is measured as the difference in diameter of the 

brachial artery before and after the shear stress, as depicted in Figure 1.7. The 

extent of this response is representative of endothelial function.  

Anderson et al. [148] established a significant correlation between invasively 

measured endothelial function in the coronary artery tree and non-invasive 

peripheral brachial flow mediated dilatation. The technique has several pitfalls, 

such as its high operator dependency, its transient variability leading to a poor 

reproducibility and incongruence to published techniques and protocols. 

Therefore other techniques such as reactive hyperaemia pulse amplitude 

tonometry [149] were developed. The latter was used as part of this thesis due 

to an uncomplicated measurement process requiring only a short learning curve, 

the relative good independency of test results from the performing operator and 

the well standarized investigation technique. The technique is explained in more 

detail in chapter 2.6.7 and illustrated in figures 2.11, 2.12 and 2.13.   

Whilst flow mediated dilatation measures a mixture of macro- and microvascular 

endothelial function other techniques have been developed to measure 

exclusively microvascular endothelial function. For instance reactive hyperaemia 

peripheral arterial tonometry described in subchapter 2.6.7 and important for 

chapter 5 measures predominantely microvascular function. A completely 

isolated microvascular function measurement technique is laser Doppler imaging 

in combination with iontophoresis. This method will be explained in more detail 

to complete the overview of common endothelial function measurement 

techniques.  

Laser Doppler flowmetry is a technique enabling the monitoring of skin 

microvascular blood flow. The qualities of a laser beam change after contact 

with red blood cells in the cutaneous microvasculature and the emerging beam 

can be detected by a photodiode. The fraction of shifted light depends on the 

concentration of moving erythrocytes, whilst the shift in frequency depends on 

their average flow velocity, according to the Doppler principle [150]. Several 

techniques can be utilised in laser Doppler flowmetry to estimate endothelial 
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function, such as direct delivery of acetylcholine through iontophoresis or micro-

dialysis [151]. Other available techniques are post-occlusive hyperaemia or local 

skin heating.   

Due to its frequent use in research iontophoresis will be explained in more 

detail. Iontophoresis, also called electromotive drug administration, is a method 

where small quantities of drugs are delivered into or through the skin by 

application of small electric charges. A substance is propelled into the skin by a 

charge identical to its own created in an iontophoretic chamber. The most 

common agonists for microvascular endothelial function testing in the skin are 

the endothelium-dependent and –independent vasodilators acetylcholine and 

sodium nitroprusside, respectively. After drug delivery the skin surface is 

scanned by a laser beam and moving red blood cells back-scatter light including 

a shift in frequency by an amount proportional to their velocity. These Doppler 

shifts are recorded and processed. This data can be reproduced with a colour-

coded image representing two dimensional skin perfusion, as shown in Figure 

1.8. This relative blood flow measurement is called the laser Doppler flux. 

Baseline images are obtained and compared with images taken in prespecified 

time intervalls after drug administration. The median laser Doppler flux in the 

area enclosed by the iontophretic chamber is calculated for each image. The 

ratio between the highest flux values after drug administration in comparison to 

the baseline measurement represents the flow change [152]. 

 

Figure 1.8 Laser Doppler imaging in combination with iontophoresis. Iontophoresis 
chambers are positioned on a proband’s forearm (A). Microvascular response to sodium 
nitroprusside (upper images) and acetylcholine (lower images) as measured by laser 
Doppler imaging are depicted at baseline and in with increasing electric currents applied to 
the iontophoresis chamber (B). The figure was adapted from Khan [153]. 

The flow increase secondary to acetylcholine iontophoresis is reduced in 

different disease states such as diabetes [146, 154], hypercholesterolaemia and 

A    B   Baseline    10 !A    20 !A  50 !A 
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hypertension [155]. Also an impaired response improves after treatment with 

nebivolol [156] and therefore represents a biomarker capable to display 

treatment effects. Microvascular endothelial function assesment by cutaneous 

laser doppler flowmetry coupled to iontophoresis is also related to the cardiac 

microvascular function, as the magnitude of the cuteanous flow increase by 

acetylcholine and sodium nitroprusside is strongly correlated with the coronary 

flow reserve during adenosin infusion as published by Khan et al. [157]. 

1.6.1.2 Endothelial progenitor cells 

Endothelial progenitor cells (EPCs) were originally described by Asahara et al. in 

1997 as bone marrow-derived cells capable of neovascularization [158]. 

Nowadays EPCs can be subdivided into two groups, cells that can differentiate 

into endothelial cells which probably derive from differentiated endothelial cells 

with clonal proliferation potential and cells of hematopoetic origin supporting 

new vessel formation with their angiogenic properties [159].  

 

Figure 1.9 Endothelial progenitor cell isolation and characterisation strategy from peripheral 
circulating blood. Schematic illustration of standard techniques as cell culture and flow 
cytometry. MNC, mononuclear cell. The figure was adapted from Moebius-Winkler et al. 
[167]. 

 
EPCs are collected in the peripheral circulation and measured either by 

cytometry or cell culture, as illustrated in Figure 1.9. EPC quantification and 

functional assessment has potential as a biomarker in cardiovascular disease 

severity, prognosis and therapy response. In cohorts with increased 
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cardiovascular risk, such as patients with diabetes mellitus [160] or hypertension 

[161], the EPC number in the peripheral circulation is reduced whilst EPC 

function is often impaired. Hill et al. were also able to show that a lower 

number of circulating EPCs is associated with a higher Framingham risk score 

[162]. In established CVD, such as symptomatic CAD [163] or stroke [164] EPC 

numbers are likewise reduced. The EPC quantity however has been found to be 

increased in acute coronary syndromes such as myocardial infarction [165] or 

unstable angina [166] suggesting a mobilisation of EPCs during acute ischaemic 

events.  

Furthermore, EPCs are related to cardiovascular outcome. Werner et al. [163] 

observed after adjustment for age, sex and cardiovascular risk factors that 

increased EPC levels are associated with a reduced risk for death from 

cardiovascular causes, as well as a reduced number of first major cardiovascular 

events, revascularization or hospitalization. The authors only investigated 

individuals with angiographically diagnosed CAD. In a more heterogenous cohort 

including healthy control subjects this finding is reproducible [168]. Thus, the 

EPC number measured in the peripheral circulation is a biomarker for diagnosis 

and prognostication in CAD.  

1.6.1.3 Vascular Remodelling 

Chronic alterations of hemodynamic conditions in the vasculature such as high 

blood pressure or increased shear stress [169] precipitate structural changes in 

the vessel wall. Vascular remodelling represents an active structural 

modification of the arteries; this includes changes of at least four different 

cellular processes – production or degradation of extracellular matrix, cell 

growth, cell death and cell migration. Those processes are controlled by 

dynamic interactions between vasoactive substances, hemodynamic stimuli and 

locally generated growth factors. Effects of this vascular remodelling are for 

instance structural changes, neointima formation, an increased ratio of wall to 

lumen width or changes in luminal dimension and functional changes such as 

reduced arterial compliance or increased stiffness [170]. Inward remodelling is 

usually caused by reduced blood flow and results in a reduced vessel diameter. 

Outward remodelling typically occurs in response to increased blood flow and 

leads to increased vessel diameter. Physiological examples for these remodelling 
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types are, for instance, the outward remodelling of conduit arteries in the limbs 

and the heart caused by repetitive increases in blood flow during exercise or the 

inward remodelling of the femoral arteries secondary to chronic disuse of the 

lower extremities as a result of spinal cord injury. Vascular remodelling is highly 

relevant to the atherosclerotic process, and its alterations contribute to the 

pathophysiology of vascular disease. By 1987 Glagov et al. [10] described 

outward remodelling as a compensatory mechanism to maintain coronary lumen 

diameter. Additionally histological studies observed a positive relationship 

between coronary artery dilatation and lipid core size or macrophage quantity in 

the plaque. This suggests a higher vulnerability of plaque in expansively 

remodelled vessels [171]. In small resistance vessels vascular remodelling may 

be the trigger for development of hypertensive target organ damage. Small 

resistance arteries with hyperplasia are more responsive to vasoconstrictor 

substances leading to reduction in vascular reserve. This contributes to tissue 

ischaemia, especially if surrounding arteries are narrowed. Also small artery 

remodelling is more common in hypertensive individuals providing a link to left 

ventricular hypertrophy.  

Vascular remodelling leads to changes in vascular function, which may precede 

anatomic evidence of atherosclerosis. Therefore non-invasive assessment of 

vascular function is a potential early disease biomarker. Markers such as arterial 

compliance, elasticity or stiffness are related to the relative proportion of 

elastin to collagen fibres in the vessel walls. As aging produces arterial wall 

changes similar to those in atherosclerosis, all methods need correction for age. 

When considering different methods, it is important to distinct between large 

conduit arteries and arterioles causing flow resistance as well as small distal 

arteries and branch points which are the source of pulse wave reflection. In 

large arteries reduced compliance is a response to elevated pressure, aging or 

atherosclerotic disease. Large artery walls contain varying amounts of elastin 

and collagen, which determine their functional behaviour. The collagen renders 

the vessel wall pressure-dependent. This leads to a stiffening of the arterial wall 

when transmural pressures increase. Chronic stiffening is caused by alteration of 

the arterial wall structure with an increased collagen to elastin ratio. Stiffening 

of large conduit arteries and the aorta accelerates pulse wave velocity and 

increases pulse pressure. In smaller arteries compliance changes and calibre size 
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reflect altered vascular smooth muscle cell function. Smooth muscle concentric 

remodelling and cellular or collagen infiltration can contribute to this process.  

Arterial stiffening at the wave reflection sites leads to an alteration of the 

pressure wave curve by augmentation of the reflected wave. Non-invasive 

measurement techniques focus on either the large arteries or the reflection sites 

and some on a mixture of both.  

From the available assessment tools, aortic pulse wave velocity is the best 

established marker of large artery stiffness. In general, arterial stiffness 

assessed by pulse wave velocity is associated with traditional CV risk factors and 

atherosclerotic disease. Recently Vlachopoulos et al. published a meta-analysis 

on the basis of 17 independent studies, here they documented that an increase 

in pulse wave velocity by 1 m/s leads to a 15% higher all-cause mortality [172]. 

Data is also available suggesting that pulse wave velocity improves prognostic 

discrimination and allows reclassification [173, 174]. Other markers of large 

artery function such as carotid distensibility [173] or pulse wave reflection 

parameters [174] do not relate to CVD outcomes in general populations. 

Augmentation index (AIx) and central pulse pressure (cPP) however are 

predictive of cardiovascular events in selected cohorts such as end-stage renal 

failure patients [175] and patients with established CAD [176].  

1.6.1.4 Carotid intima-media thickness and plaque 

Several modalities are available to image atherosclerosis. The most commonly 

applied in the peripheral vasculature is ultrasonography. Especially assessment 

of the carotid artery by ultrasound is well established. Carotid ultrasound is 

routinely used to evaluate ischaemic cerebrovascular signs like bruit and related 

symptoms. However in clinical studies C-IMT is most frequently used for risk 

stratification and to identify subclinical atherosclerosis. C-IMT represents the 

combined thickness of the intimal and medial layers of the artery wall. Pignoli et 

al. [177] demonstrated that C-IMT measurement by B-mode ultrasound is in line 

with in vitro or in situ findings. Measures at autopsy and by direct measurement 

were comparable to those acquired in living subjects by ultrasound. Although 

the carotid artery consists of several segments most frequently the common 

carotid artery is assessed at the far wall. Increased C-IMT is probably the 

predecessor of an atherosclerotic plaque. Therefore it predates changes such as 
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plaque calcification and in comparison to coronary calcium, can be seen as a 

biomarker of early atherosclerosis [178]. As a result Adams et al. [179] were able 

to show a correlation (R2<0.10) between the extent and severity of CAD and C-

IMT. The association of C-IMT with cardiovascular risk factors such as cholesterol 

[180], blood pressure or smoking [181] is well established. As recently reviewed 

by Simon et al. [178] C-IMT is also an independent predictor of CAD and stroke; 

accordingly, the absolute risk for a myocardial infarction, stroke or CVD in total 

ranged from 0.7% to 2.2%, 0.4% to 2.2% or 1.8% to 3.2%, respectively. A meta-

analysis by Lorenz et al. [182] involving eight large, prospective studies and 

including 37,197 asymptomatic subjects suggested after adjustment for age and 

sex a relative risk of 1.26 or 1.32 per standard deviation for myocardial 

infarction or stroke, respectively. Also C-IMT progression is a predictor of 

cardiovascular events [59]. The relative risk for coronary events was 3.1 for each 

0.03 mm increase per year of the C-IMT. As investigated by Folsom et al. [183] 

C-IMT has potential to improve predictive accuracy. In the MESA cohort its 

addition to traditional risk factors increased the c statistic for predicting 

cardiovascular or coronary events.  

At the moment the use of C-IMT is limited to research. Therein it is the most 

common non-invasive measurement in cardiovascular epidemiology studies. As a 

surrogate end point it has become popular in randomised trials of new 

cardiovascular therapies [184]. Whilst C-IMT has been proven useful in a variety 

of studies, it is necessary to recognise that comparison between different study 

sites is difficult due to lack of sufficient standards. Such would be required for 

widespread clinical screening, especially as sub-millimetre differences 

differentiate low- from high-risk groups. 

Carotid plaque rather than C-IMT might be the more important feature for risk 

prediction [185]. The presence of carotid plaque is more closely related to the 

prevalence of CAD and to cardiovascular risk factors compared to C-IMT [186]. In 

a general population without established CAD carotid plaque area in comparison 

to C-IMT was a better predictor of myocardial infarctions [187]. Also the plaque 

area progression in a longitudinal study by Spence et al. [188] was a good 

predictor of cardiovascular events. Furthermore, in patients with established 
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CAD both carotid plaque thickness and plaque area are better predictors of 

cardiovascular events in comparison to C-IMT [189, 190]. 

Plaque volume can be quantified with computed tomography [191], magnet 

resonance imaging [192] or three dimensional ultrasonography. These 

technologies are however time consuming and expensive. Other assessment 

strategies of plaque size or extent are plaque thickness or area quantification, 

defined as the sum of the maximal thickness or the sum of the total area of all 

plaques on two dimensional ultrasound images, respectively [189, 190]. Both 

were successfully used in a prognostic study [187]. Plaque thickness or area 

investigations depending on two dimensional ultrasonography are however only 

estimating the plaque extent. Therefore other semiquantitative measurements 

such as the Rotterdam plaque score [193] are also applicable as biomarkers for 

carotid plaque extent. The Rotterdam plaque score has several advantages such 

as its relative independence from picture quality and a small interobserver 

variability. The score was therefore used in this thesis as summarized in chapter 

2.6.2 and illustrated in Figure 2.7.  

1.6.1.5 Ankle-brachial index 

ABI is a non-invasive, functional biomarker that indirectly provides information 

on the presence of peripheral arterial disease. The ABI is the ratio of the SBP in 

the lower legs, ideally at the ankle, compared to the SBP in the arm. An 

increased ratio is an indirect indicator of peripheral vascular disease. As 

individuals with peripheral arterial disease frequently suffer from atherosclerosis 

in other arterial beds, an abnormal ABI can serve as a biomarker for overall 

cardiovascular risk. A meta-analysis of 16 cohort studies demonstrated that an 

ABI greater than 0.90 in comparison to an ABI equal or smaller than 0.90 is 

associated with an almost two-fold higher risk of cardiovascular mortality and 

major coronary events independently from traditional risk factors [194]. The 

authors also suggested that the addition of the ABI to the Framingham risk score 

enabled a reclassification of 4% in men and of 10% in women with intermediate 

risk. 
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1.6.1.6 Asymptomatic coronary artery disease 

On the basis of radiological advances during the past two decades, techniques 

have been developed which are able to assess the coronary system non-

invasively. In contrast to carotid ultrasound these modalities detect existing CAD 

and not atherosclerosis of the peripheral vasculature. Due to their superior 

image quality cardiac computed tomography and magnetic resonance imaging 

are preferred. According to a meta-analysis by Schuetz et al. [195] computed 

tomography is more accurate than magnetic resonance imaging with a higher 

sensitivity and specificity, 97.2 vs. 87.1% and 87.4 vs 70.3%, respectively. 

Cardiac computer tomography results also have prognostic value [196].  

Individuals with normal findings rarely develop adverse cardiovascular events. 

Greater CAD severity detected by cardiac computed tomography is related to an 

higher incidence of adverse CVD events. The quantity of coronary artery 

calcification can also be assed by computed tomography. Coronary artery 

calcification is correlated with plaque burden of the coronary arteries and is 

therefore a specific marker of later stages of CAD. Coronary calcium scores have 

a strong association with incidence of cardiovascular events in a number of 

observational studies [197, 198]. The coronary calcium score also improves risk 

prediction. In the Multi-Ethnic Study of Atherosclerosis [183] the c-statistic of 

0.77 of the Framingham score was improved to 0.81 by addition of the coronary 

calcium score. A similar result was reported in the Rotterdam study [199] where 

the coronary calcium score improved the c-statistic of the Framingham score 

from 0.72 to 0.76. The coronary calcium score also improves risk classification, 

in particular for intermediate Framingham risk individuals. In the Multi-Ethnic 

Study of Atherosclerosis the net reclassification index was 25%. In the Rotterdam 

Study it was 14% and in a third population-based cohort study, the Heinz Nixdorf 

Recall Study, it was 22% [200]. Despite these findings the coronary calcium score 

is not currently recommended as a screening tool because of the related 

radiation exposure [201]. Should the magnitude of radiation exposure decrease 

in the future as a result of technologic advances in computed tomography, this 

policy might change.  
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1.6.2 Left ventricular hypertrophy 

Left ventricular hypertrophy is the thickening of the myocardium of the left 

ventricle. Left ventricular hypertrophy detected by ECG [202], echocardiography 

[203, 204] or magnetic resonance imaging [205] is a strong predictor of 

cardiovascular morbidity and mortality. Good evidence exists that left 

ventricular hypertrophy is an independent cardiovascular risk predictor [203, 

206]. Moreover improvement of outcome is correlated with its reversal on 

medical treatment [58]. Left ventricular hypertrophy is therefore an established 

surrogate end point biomarker. Hypertension is the most common cause of left 

ventricular hypertrophy and despite the association with hypertension [207], left 

ventricular hypertrophy is also a good predictor of cardiovascular outcome in 

general population cohorts like Framingham [203, 206]. The prognostic value of 

left ventricular hypertrophy is maintained in patients with established CAD [206] 

or hypertension [208]. In a meta analysis of 20 studies covering 48,545 

participants left ventricular hypertrophy predicted cardiovascular morbidity or 

mortality, and the associated risk ratios were 2.3 or 2.5, respectively [209].  

A variety of antihypertensive drugs interfere with the progression of left 

ventricular hypertrophy. Left ventricular mass (LVM) reduction by such 

pharmaceutical interventions predicts an improved prognosis independent from 

blood pressure and the agents used, as shown in the LIFE echocardiography sub-

study [58]. Furthermore, the study showed that development or maintenance of 

left ventricular hypertrophy during antihypertensive therapy is related with an 

higher incidence of major cardiovascular events. According to a meta-analysis of 

80 double-blinded clinical trials, angiotensin receptor blockers cause the biggest 

reduction of left ventricular hypertrophy with similar blood pressure control 

[210].  

1.6.3 Microalbuminuria 

Microalbuminuria is defined as albumin concentration of 30 to 300 mg/l in a spot 

urine sample. Respectively macroalbuminuria stands for albumin amounts bigger 

than 300 mg/l. Larger amounts with more than 1 g/l protein in the urine 

represent proteinuria. All are associated with a higher risk for onset of CAD in 

population based cohort studies [211, 212], with overall mortality in heart 
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failure [213] and diabetes [214, 215]. The direct link between proteinuria and 

cardiovascular risk is not completely understood. One possible explanation is an 

adverse effect of urinary protein excretion on traditional risk factors in that 

subjects with albuminuria are more likely to be smokers, to be hypertensive, to 

be diabetic and to have dyslipidaemia [211, 215]. Furthermore renal function 

decline is associated with increased renal production of deleterious vasoactive 

substances like angiotensin II [216] contributing to atherosclerosis of the general 

vasculature. 

1.6.4 Markers of myocardial damage 

Some serological biomarkers with diagnostic or prognostic value in CVD are not 

directly linked to the atherosclerotic process. CVD can cause cardiovascular 

injury or stress, which can induce the production of related biomarkers such as 

troponin or B-type natriuretic peptide, respectively. B-type natriuretic peptide, 

a 32 amino acid polypeptide, is predominantly released by the ventricle of the 

heart in response to excessive stretching of cardiomyocytes. Similar to other 

natriuretic peptides, it has vasodilatory, natriuretic and antihypertrophic 

effects. The name B-type natriuretic peptide was chosen because it was first 

extracted from porcine brain tissue. It is secreted in parallel with a 76 amino 

acid, biologically inactive N-terminal fragment. Both peptides are the product of 

the cleavage of pro-brain natriuretic protein into the mature natriuretic peptide 

and the N terminus mentioned above. Levels of both peptides are elevated in 

individuals with heart failure and established CVD [217, 218]. Levels in healthy 

individuals are lower, but even variations in the levels of brain natriuretic 

peptide within the reference range can hold clinical information. In the 

Framingham Offspring Study brain natriuretic peptic plasma concentrations 

above the 80th percentile, in men 20.0 pg per millilitre and in women 23.3 pg 

per millilitre, were associated with a 76 percent higher cardiovascular risk [219]. 

A recent meta-analysis summarising 40 long-term prospective studies and 

analyzing a total of 87,474 participants demonstrated a combined risk ratio of 

2.82 for the upper third of natriuretic peptide concentrations compared with the 

bottom third, after adjustment for standard risk factors [220]. In secondary 

prevention populations N-terminal pro-brain natriuretic peptide improves 

discrimination, and different authors have shown that it raises the c statistic for 

traditional cardiovascular risk factors from 0.65 [62] or 0.66 [221] to 0.69. Yet, 
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in primary prevention cohorts the c statistic improvement is either minimal or 

insignificant in large prospective cohort investigations [61, 91, 222]. Similar 

reclassification in the context of secondary prevention with N-terminal pro brain 

natriuretic peptide (NT-proBNP) provides a net reclassification improvement of 

0.11 (p=0.03) [221], whereas in primary prevention it does not significantly 

improve reclassification [91]. 

Troponin can be found in skeletal and cardiac muscle, but not in smooth muscle. 

It consists of three regulatory proteins: troponin C, I and T. Cardiac versions of 

troponin I and T are the gold standard biomarker for diagnosing myocardial 

infarction in clinical scenarios suggestive of an acute coronary syndrome. 

However, cardiac troponins are also markers for any kind of heart muscle 

damage. Therefore, levels are raised in myocarditis or trauma as troponin is 

released in response to cardiomyocyte necrosis. Small elevations in cardiac 

troponin are not associated with the risk for myocardial infarction in 

asymptomatic individuals with stable CAD and normal heart function [223], 

suggesting a mechanism other than atherothrombosis-mediated myocardial 

troponin release. Possible processes are coronary microvascular dysfunction, 

cardiomyocyte apoptosis, or subclinical structural or functional cardiac 

abnormalities.   

Troponin levels measured by standard assays with a lower detection limit of 

0.010 ng/ml are, however, associated with cardiovascular mortality, in primary 

prevention studies [61, 224]. The number of patients with troponin levels above 

the detection limit was small in these studies; in the Rancho Bernardo Study 

[224] only 4.1% of participants had a concentration above the lower detection 

limit. The improvement of predictive accuracy with these assays was non-

significant [61]. The use of more sensitive troponin assays with a lower detection 

limit of 0.003 ng/ml leads to a higher percentage of study participants with valid 

measurements. In the Atherosclerosis Risk in Communities Study, 66.5% of the 

9698 participants had concentration above the detection limit [225]. When high 

sensitivity troponin assays were used, levels were not only correlated with 

cardiovascular mortality but also improved the predictive accuracy significantly. 

In the Dallas Heart Study [226], a general population study, troponin T was 

associated with all-cause mortality after adjustment for traditional risk factors, 

including CRP, N-terminal pro-brain-type natriuretic peptide level and chronic 
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kidney disease (CKD). In addition, the c-statistic of traditional risk factors was 

improved significantly, from 0.832 to 0.868 for the end point cardiovascular 

mortality [226]. Similar results were detected in the Atherosclerosis Risk in 

Communities Study, where the addition of troponin T to traditional risk factors 

improved risk prediction with a significant c-statistic increase from 0.710 to 

0.724 for cardiovascular mortality and incidence of myocardial infarction [225]. 

Cardiac troponin is also independently associated with adverse outcomes in 

other clinical scenarios, such as patients after acute coronary syndromes [227], 

patients with stable asymptomatic CAD [223] and patients with chronic heart 

failure [228].  

1.7 Clinically relevant cardiovascular disease 

The appearance of symptoms divides subclinical from clinically relevant 

cardiovascular disease. Symptom onset can be gradual, as in stable angina 

pectoris, or sudden, as in acute coronary syndromes. Furthermore, cardiac end-

organ failure in the form of acute or chronic heart failure can cause symptoms. 

These disease stages are part of the cardiovascular continuum and can be 

assessed by a variety of diagnostic or prognostic biomarkers.  

A patient cohort with stable angina is investigated in several chapters of this 

thesis. The clinical definition, epidemiology, diagnosis and prognostic relevance 

of angina are therefore discussed in more detail. Acute coronary syndromes and 

end organ failure are briefly summarised to complement the CVD biomarker 

continuum, as illustrated in Figure 1.5.  

1.7.1 Stable angina 

Stable angina is the term used to describe a clinical syndrome characterised by 

discomfort or pain in the chest, jaw, shoulder, back, arm or, less frequently, in 

the epigastric area. It is typically described as tightness or pressure, and it is 

elicited by exertion or emotional stress. The syndrome is confined to processes 

involving myocardial ischaemia. This differentiates it from other pathological 

processes such as gastric oesophageal reflux disease, structural lung diseases or 

musculo-skeletal chest wall problems, which can present with similar symptoms. 

Although frequently related to atherosclerotic flow limiting CAD, myocardial 
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ischaemia can also be induced by hypertrophic or dilated cardiomyopathies, 

aortic stenosis or microvascular dysfunction. The prevalence of angina is strongly 

associated with age. It rises from 0.1"1% in women aged 45"54 years to 10"15% 

in women aged 65"74 years. In men, it rises from 2"5% at the age of 45"54 years 

to 10"20% at age 65"74 years. In the Framingham Heart Study, the onset of 

angina symptoms was associated with a 33.4% and 17.8% 10-year risk for 

myocardial infarction in men and women, respectively [229]. 

A thorough medical history is the cornerstone of the diagnosis of angina pectoris. 

Although a physical examination and objective tests are necessary to confirm 

angina pectoris, a diagnosis can be made with high probability on the basis of 

the history alone [230]. Although a normal ECG is common, it may show an 

abnormal repolarisation pattern or abnormalities due to previous myocardial 

infarctions. Other tests are necessary to confirm myocardial ischaemia in 

suspected stable angina. An exercise ECG is cost-effective and frequently 

available. Numerous publications, including several meta-analyses, exist on the 

performance of exercise ECG for the diagnosis of CAD. According to Gianrossi et 

al. [231] the usage of exercise induced ST segment depression to define a 

positive exercise test produces a mean sensitivity of 68% and a mean specificity 

of 77%. As a consequence of this suboptimal result, exercise ECG testing was 

excluded from the diagnostic CAD pathway in the United Kingdom, as 

documented by the updated NICE guidelines for chest pain with recent onset 

[232].  

Nevertheless, the diagnosis of hemodynamically significant CAD with an exercise 

ECG requires a Bayesian approach in which pre-test estimates in addition to the 

results of the exercise ECG are used to calculate a post-test probability. Pre-test 

probabilities in relation to age, gender and clinical presentation are depicted in 

Table 1.2, a modification of the literature review by Diamond and Forrester 

[230]. The authors classified chest pain as typical, atypical and non-cardiac to 

introduce a qualitative grading [233]. Accordingly, typical chest pain is defined 

as substernal pain that is triggered by exertion or emotional stress and relieved 

by rest and/or nitroglycerin. As listed in Table 1.2, atypical chest pain meets 

two of the mentioned three criteria, and non-cardiac chest pain meets one. 
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Based on this information, the Canadian Cardiovascular Society established a 

severity classification grading systems (Table 1.3) [234].  

Table 1.2 Coronary artery disease probability in patients presenting with chest pain.  

 
Age, 

years 

Gender Typical 

Angina 

Pectoris 

Atypical 

Angina 

Pectoris 

Nonanginal 

Chest Pain 

Asymptomatic 

30-39 Male Intermediate Intermediate Low Very Low 

 Female Intermediate Very Low Very Low Very Low 

40-49 Male High Intermediate Low Very Low 

 Female Intermediate Low Very Low Very Low 

50-59 Male High Intermediate Intermediate Low 

 Female Intermediate Intermediate Very Low Very Low 

60-69 Male High Intermediate Intermediate Low 

 Female High Intermediate Intermediate Low 

      

Clinical Chest Pain Classification 

Typical (definite) Meets three of the following characteristics 

 1) Substernal chest discomfort of characteristic quality 

and duration 

 2) Provoked by exertion or emotional stress 

 3) Relieved by rest and/or GTN 

Atypical (probable) Meets two of the above characteristics 

Non cardiac chest 

pain 

Meets one of the above characterstics 

 
Clinical chest pain characteristics and the corresponding definitions are listed. The ordinary 
pre-test risk quantification translates into a probability of having coronary artery disease: 
High 90%; intermediate, 10–90%; low, 10%; and very low, 5%.  

 
The use of pre-test probabilities has the advantage of combining the actual 

diagnostic test with additional information, especially regarding disease 

prevalence and symptom severity. 
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Table 1.3 The Canadian Cardiovascular Society grading scale for angina severity. 

 
Grade Definition 

Class I Angina only during strenuous or prolonged physical activity 

Class II Slight limitation, with angina only during vigorous physical activity 

Class III Symptoms with everyday living activities 

Class IV Inability to perform any activity without angina or angina at rest 

 
The results of exercise ECG testing are greatly dependent on the patient’s 

physical capacity. It can be inconclusive in situations where the heart rate 

during exercise remains <85% of the calculated maximum rate in the absence of 

ischaemia or angina symptoms. This can be due to unfitness or limitation 

secondary to non-cardiac diseases, such as osteoarthritis, or to equivocal ECG 

changes. According to current guidelines [235] an inconclusive test should be 

followed by a further non-invasive diagnostic test unless a very low pre-test 

probability is given. A list of possible test modalities with corresponding 

sensitivities and specificities is presented in Table 1.4.  

The long-term prognosis of patients with stable angina depends on treatment, 

traditional cardiovascular risk factors and other comorbidities. In the PEACE 

study [236], for instance, the rate of cardiovascular death was <1% per annum. 

In stable angina cohorts with a high cardiovascular risk, such as the diabetic 

population in the MICRO-HOPE trial [237], the cardiovascular mortality can be 

>2%. Correspondingly, an annual cardiovascular mortality of >2% is often 

considered high, 1"2% as intermediate and <1% as low. To set these values into 

context, a 10-year cardiovascular mortality of >5% is considered appropriate to 

start primary prevention drug treatment according to contemporary guidelines 

[238].  
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Table 1.4 Test characteristics for investigations used in the diagnosis of stable angina.  

 
 Diagnosis of Coronary Artery 

Disease 

 Sensitivity, % Specificity, % 

Exercise ECG 68 77 

Exercise Echo 80-85 84-86 

Exercise Myocardial Perfusion 85-90 70-75 

Dobutamin Stress Echo 40-100 62-100 

Vasodilator Stress Echo 56-96 87-100 

Vasodilatro Stress Myocardial Perfusion 83-94 64-90 

CT angiogram 97.2 87.4 

MRI angiogram 87.1 70.3 

 
Data provided corresponds to publications by Schuetz et al. [195] for structural imaging and 
by Fox et al. [235] for stress related test modalities.  

 
Risk stratification by clinical assessment can be improved by stress testing. 

Exercise ECGs not only allow the diagnosis of transient myocardial ischaemia as a 

simple binary response but also provide prognostic information. In patients with 

known or suspected CAD, different features of the exercise ECG testing have 

proven to be prognostic markers. Examples are the maximum exercise capacity 

and clinical or electrocardiographic ischaemia during exercise. Given that no 

randomised trials of exercise ECG testing have been published, the available 

evidence is based on observational studies. Using standardised exercise 

protocols, exercise capacity has been measured by exercise duration, maximum 

heart rate, maximum achieved workload (in Watts), among others. The 5-year 

survival is higher in patients with a better exercise tolerance for expected [239] 

or established [240] CAD and no more than mildly impaired left ventricular 

function. Combinations of several variables derived from an exercise ECG 

provide more information than a single marker. Examples for such variables are 

exercise time, extent of ST-segment depression or elevation and symptom 

occurrence during exercise. A well-validated score including these variables is 

the Duke treadmill score (DTS) [239]. A high DTS risk score (#5) was associated 

with a 99% 4-year survival rate in patients with suspected CAD. The group with a 

low DTS risk score ($-11) had a 4-year survival rate of only 79%. Therefore, an 
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exercise ECG " and, in particular, the DTS " provides prognostic information in 

addition to its diagnostic capacity. Interestingly, the DTS is also useful for the 

diagnosis of haemodynamically-relevant CAD and provides information regarding 

the extent of the disease [241]. In detail, 60% of low-risk patients had no 

significant stenosis, in comparison with 33% and <1% of moderate and high risk 

patients, respectively. In summary, the combination of exercise tests and 

clinical parameters is an effective method for differentiating high and low risk 

groups within a population presenting with symptoms suggestive of CAD.  

1.7.2 Acute coronary syndromes 

The term acute coronary syndrome refers to a clinical situation induced by 

coronary artery obstruction and incorporates a spectrum of events ranging from 

unstable angina to non-ST-segment elevation myocardial infarction and ST-

segment elevation myocardial infarction. These subtypes share a widely common 

pathophysiological process, atherosclerotic plaque rupture or erosion with 

different degrees of superimposed thrombosis and distal embolisations. As such, 

an event might be life threatening and a patient presenting with an acute 

coronary syndrome requires immediate treatment to interrupt disease 

progression, cardiac muscle death and ischaemic complications such as 

ventricular arrhythmias. The main trigger for the diagnostic cascade is chest 

pain. An electrocardiogram can classify the subtypes of acute coronary 

syndromes and thereby has a major influence on therapy. In patients with acute 

chest pain and persistent ST-segment elevation, the main objective is immediate 

removal of the coronary artery occlusion by fibrinolytic therapy or primary 

angioplasty. In patients with acute chest pain but without persistent ST-segment 

elevation, the initial therapeutic strategy aims to reduce ischaemia and improve 

symptoms in parallel with patient monitoring using serial electrocardiograms and 

measurement of markers of myocardial necrosis. Traditional markers of 

myocardial necrosis are cardiac enzymes such as creatine kinase, its isoenzyme 

MB and myoglobin. Troponin is currently the gold standard for detecting acute 

myocardial necrosis. Initial troponin levels rise within approximately 4 hours in 

patients with myocardial ischaemia, and troponin levels remain elevated after 

an ischaemic event for up to two weeks due to proteolysis of the contractile 

apparatus. On the other hand, small increases in troponin levels can resolve 

within three days in non ST-segment elevation myocardial necrosis, and thus the 
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diagnosis of unstable angina is indicated if serial troponin measurements remain 

in the normal range. Unstable angina can also present as a rapid symptom 

deterioration in patients with previously stable angina or a new onset of severe 

angina leading to marked limitations of ordinary activity within 2 months of the 

initial presentation [235] 

Non-invasive, and especially invasive, imaging is important in the assessment of 

acute coronary syndromes. Relevant non-invasive imaging techniques are 

echocardiography, which allows assessment of wall motion abnormalities and 

differential diagnoses of acute chest pain, stress imaging in patients with normal 

electrocardiograms and troponin levels to assist with the diagnosis of CAD, or 

modalities such as cardiac computer tomography that can directly visualise 

coronary artery stenoses. Invasive imaging in the form of coronary angiography 

remains the gold standard for assessing the presence and severity of CAD.    

1.7.3 End-organ failure in cardiovascular disease 

Heart failure can be understood “as an abnormality of cardiac structure or 

function leading to failure of the heart to deliver oxygen at a rate 

commensurate with the requirements of the metabolizing tissues, despite 

normal filling pressure” [242]. Clinically, heart failure can be defined as a 

syndrome in which patients develop symptoms and signs resulting from abnormal 

cardiac structure or function, including breathlessness, ankle swelling and 

fatigue. Typical signs on physical examination are an elevated jugular venous 

pressure, pulmonary crackles and a displaced apex beat. As these symptoms and 

signs can occur in other disease than heart failure, the demonstration of an 

impaired heart function by echocardiography or other imaging modalities is 

essential for the diagnosis of heart failure. Also electrocardiographic features 

with evidence of left ventricular hypertrophy or Q waves suggesting loss of 

viable myocardium can be helpful. An alternative approach to echocardiography 

for examining ventricular function is the measurement of natriuretic peptides in 

the peripheral blood stream.   
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1.8 Proteomics 

As described in subchapters 1.2.3 and 1.7.1 contemporary prognosis and 

diagnosis algorithms are identifying only a portion of individuals who develop or 

have clinical significant CAD. The clinical process of risk stratification and CAD 

diagnosis requires therefore further refinement. In addition to the application of 

existing biomarkers to new diagnostic or prognostic hypotheses, the 

development of novel biomarkers is a rational approach to this clinical 

requirement. Two different strategies are available for the development of new 

CVD biomarkers. The first strategy is based on existing knowledge, a deductive 

method, whilst the second strategy is more unbiased and inductive. These two 

strategies are rather complementary than mutually exclusive. The deductive 

approach uses knowledge emerged from single gene, metabolite or pathway 

investigations to identify new biomarkers. This implies a direct understanding of 

the biological processes and the evolution of their sequelae. In contrast, the 

unbiased approach relies on evaluation of large quantities of molecules with the 

help of recent technological advances with the goal to characterize a biomarker 

profile specific for a disease or a particular disease stage. Such an assessment 

can be carried out with different molecules, such as proteins. The research field 

related to the latter is known as proteomics.  

Proteomics has several advantages over the other ‘omics’ strategies. Assuming 

an individual is progressing through the cardiovascular continuum, the genome 

remains largely unchanged whereas the protein structure of tissues and organs 

alters considerably. As a consequence, the status of the proteome representing 

structural and physiologic changes in the cardiovascular system are more 

appropriate to estimate the situation of an individual.  

Especially the application of discovery proteomics represents an unbiased 

approach. Discovery proteomics, capable of assessing large numbers of proteins 

simultaneously, is an innovative approach to biomarker development. In light of 

the importance for this thesis the concept of proteomics in general as well as 

discovery proteomics and urine proteomics in particular will be explained in 

more detail in the following sub-chapter. At the end of the sub-chapter several 

proteomic studies will be summarized to emphasise the value of proteomic 

research in CVD.  
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1.8.1 The proteome 

The term proteome represents the collection of all proteins in a cell, organ or 

organism. Proteins are biochemical compounds consisting of one or more 

polypeptides. The understanding of protein structure and interaction is 

therefore crucial in physiology and pathology. One gene can produce different 

proteins as a result of alternative splicing, the use of multiple transcription start 

sites, polyadenylation and editing of pre-mRNA, or posttranslational protein 

modification. On average, 5"7 protein isoforms exist for each open reading 

frame in the human genome, representing a total of 100 to 200 thousand 

proteins. If one considers the enormous range of 600,000 immunoglobulins that 

exist with only small differences in their epitope binding domain, this totals 

approximately 1,000,000 proteins encoded by only 30,000 known human genes 

[243]. Considering this large number of different proteins, proteomic research 

will provide new inside into physiological and pathological processes. Proteomic 

approaches can be applied across a range of data set sizes, from the assessment 

of single proteins or protein complexes to the assessment of entire patient 

populations. 

1.8.2 Basic principles of proteomics 

The goal of proteomics is a “comprehensive, quantitative description of protein 

expression and its changes under the influence of biological perturbations such 

as disease or drug treatment” [244]. Proteins can be investigated by a multitude 

of techniques including physical separation and array technology. It is possible to 

immobilise specific proteins, small molecular compounds, antibodies and 

peptides on solid surfaces by a range of methods [245]. The methodology used 

depends mainly on the research objective. Two objectives of proteomic research 

are for instance protein identification and quantification. An example for a 

methodology useful in identification of known proteins is Western blotting [246]. 

To this goal tissue homogenate or extract is separated by gel electrophoresis 

depending on its three dimensional structure or, in the case of denatured 

proteins, on the length of the polypeptide. In a consecutive step proteins are 

transferred to a membrane followed by detection of target proteins with specific 

antibodies. This allows the positive identification of proteins of interest in a 

semi-quantitative manner. A similar approach for identification of known 



79 

proteins is the enzyme-linked immunosorbent assay (ELISA) [247]. The quantity 

and presence of an antigen in a sample is measured with a three-step approach. 

First, antigens from a sample are attached to a specific surface. Then, an 

antibody against an antigen of interest, which is also linked to an enzyme whose 

presence can be detected in the final stage of the technique, is applied to the 

surface. If the antigen of interest is present amongst the antigens bound to the 

surface, this will interact with the enzyme-linked antibody. Subsequently, all 

unbound antibodies are removed in a washing step. Finally, to confirm the 

presence of the antigen of interest, the substrate for the enzyme linked to the 

antibody is added. This produces a detectable signal, such as a colour change, in 

the presence of the enzyme, resulting in the positive identification of the target 

protein.  

Identification of unknown proteins is, however, more elaborate and usually 

requires several methods connected with each other. Such techniques are high-

resolution 2-dimensional gel electrophoresis, high performance liquid 

chromatography, surface chromatography by protein adsorption to activated 

surfaces, or, with the help of peptide ionization procedures, mass spectroscopy. 

Sodium dodecyl sulfate polyacrylaminde gel electrophoresis and, later, two-

dimensional gel electrophoresis laid the foundation of today’s proteomics. Two-

dimensional gel electrophoresis separates proteins on the basis of two intrinsic 

protein characteristics such as the isoelectric point and the molecular mass. 

First, molecules are fractionated one-dimensionally by electrofocusing where 

proteins migrate to their isoelectric point in a pH gradient. In the second 

dimension proteins are separated by sodium dodecyl sulfate polyacrylaminde gel 

electrophoresis in a dimension that is perpendicular to that of the 

electrofocusing. Thereby, proteins migrate on the basis of their molecular mass. 

In the last step of 2-dimensional gel electrophoresis proteins can be stained, 

semi-quantified and mechanically isolated for further processing. This, in 

comparison to one-dimensional gel electrophoresis, provides the advantage of a 

more effective separation, as it is improbable to find molecules that are similar 

in both their isoelectric point and molecular mass. Another separation technique 

of samples containing protein mixtures is chromatography. It represents a 

collective term for several laboratory techniques utilising a so-called mobile and 

stationary phase. Depending on various constituents, the components of the 
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mixture travel at different speed through the stationary phase. The technique 

can be used to prepare samples for further analysis, e.g. prior to mass 

spectrometry, or as an analytic tool. An example is liquid chromatography, 

which uses a liquid as the mobile phase. The widely used high performance 

liquid chromatography, for instance, packs the stationary phase on very small 

particles and uses high pressures to press the mobile phase through the 

stationary phase.  

Usually protein mixture separation is followed by content assessment for which 

most proteomic studies use mass spectrometry as this enables detection and 

identification of proteins. Its main feature is the measurement of the mass-to-

charge ratio of charged particles. Samples first undergo vaporization followed by 

ionization, before they can be further separated in an electromagnetic field. 

Last, proteins or peptides get quantitatively and qualitatively analysed by a 

detection unit. Mass spectrometry can be used in multiple research settings such 

as the identification of unknown compounds, structure evaluation of a compound 

or quantification.  

1.8.3 Complexity of proteomic analyses 

The results of proteomic studies are often difficult to interpret and appear at a 

first glance to be inconsistent between studies. Primarily, this is due to the large 

number of available proteomic platforms. These have recently been reviewed by 

Tuñòn et al. [248]. Different proteomic platforms are characterised by different 

sensitivities. Also platforms differ regarding the molecular weight range, which 

they are capable to detect. Therefore results can diverge depending on the 

method used even if the same samples were processed. Consequently, 

knowledge about the performance of each platform is important for the 

interpretation of results. Simplified, most platforms use three consecutive steps: 

protein digestion, protein separation and identification, usually accomplished 

using a combination of two methods such as the previously described liquid 

chromatography and mass spectrometry.  

The common principle of most proteomic platforms is consistent with so-called 

bottom-up analyses, requiring a conversion of proteins into peptides. This is in 

contrast to top-down proteomics where intact protein ions are introduced into 
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the mass analyser. For the former, proteins of a sample are digested into smaller 

peptides. Features simplifying the analyses are peptide length, optimally 7-35 

residues long, protonation of proteins, a low charge state and a high mass-to-

charge ratio [249]. In the majority of cases proteins are fragmented with the 

enzyme trypsin [250]. Trypsin exclusively cleaves polypeptides C-terminal to 

arginine and lysine residues. The resulting peptide mixture is then separated, 

e.g. by liquid chromatography. The peptides are then identified and sequenced 

allowing to identify the original protein they came from [251]. Top-down 

proteomics, on the other hand, provides access to complete protein sequences 

and has the ability to localise and characterise a protein’s post-translational 

modifications [249]. It is also time saving as a protein digestion is no longer 

required.  

Proteomic methodologies are challenging for a variety of reasons. 2-dimensional 

gel electrophoresis, for instance, under-represents high or low mass proteins 

[252]. More importantly, 2-dimensional gel electrophoresis is very time-

consuming due to the consecutive processing of each identified protein. To 

exemplify this, Thelen et al. [249] estimated the time required to identify 200 

protein spots excised from two-dimensional gels by liquid chromatography 

coupled to mass spectroscopy as 14 days. Therefore attempts were made to 

improve existing techniques by increasing the flow rates in the liquid 

chromatography phase [253] or by establishing new techniques such as the one-

step direct transfer technique [254]. The latter uses a novel target plate to 

transfer analytes from one-dimensional gel electrophoresis onto the plates in 

one step. This allows direct analyses by matrix assisted laser 

desorption/ionization coupled to mass spectrometry. Therefore steps like 

staining, protein extraction and liquid chromatography become unnecessary and 

as a result the proteomic analysis is dramatically accelerated.  

Another good example for the limitations of proteomic methodologies is the 

widespread use of the enzyme trypsin for bottom-up analyses. This leads to 

several enzyme related disadvantages. The enzyme’s thermostability is not good 

and it is susceptible to autolysis at alkaline pH values. Furthermore, lysine and 

arginine residues, the cleavage points of the enzyme, are randomly distributed 

throughout the proteome. Therefore, peptides can be either too short or too 

long for further analysis by mass spectrometry. This highlights the problem of 
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insufficient protein sequence coverage [249]. Attempts to overcome this issue 

are the use of chymotrypsin with cleaveage points C-terminal to phenylalanine, 

tyrosin, tryptophane and leucine. Also, so-called sequencing endoproteases 

exist, which cleave only C-terminal to specific residues such as lysine, arginine, 

glutamic acid or aspartic acid. Chymotrypsin [255] or sequencing endoproteases 

[256] yield improved sequence coverage when used in combination with trypsin.  

Further complexity is added by the fact that proteomic studies can be 

performed on a wide range of biological specimens including whole tissue 

samples but also cells and biofluids [248]. Although they are unlikely to fully 

represent the proteome of certain organs such as the heart or the vasculature, 

samples that can be obtained noninvasively or minimally invasively, such as 

urine and blood, appear ideal for clinical purposes. This situation is in contrast 

to genetic studies where DNA is the same or at least very similar between 

different cell types.  Therefore genomic studies can be performed on DNA 

extracted from a wide range of specimens with very similar results. The results 

of proteomic studies on the other hand depend heavily on the specimen used. 

The dynamic nature of the proteome has direct implications on sample handling 

and processing. Post-translational modifications can occur ex vivo, for example 

due to hypoxia if a sample is not immediately snap frozen or otherwise 

processed. The abundance of proteases in tissue and biofluids, such as blood, 

will also change the proteomic make-up of specimens from the time of sampling. 

For clinical purposes, very strict criteria for sample processing are necessary so 

that proteomic studies can be interpreted with confidence [257]. 

Finally, proteins undergo complex post-translational modifications, with 

phosphorylation, acetylation and glycosylation being the most common ones 

[251]. These modifications can change protein function dramatically but are not 

easy to detect comprehensively with existing proteomic platforms. A 

combination of methods can be employed to detect a larger range of post-

translational modifications, but interpretation of the results remains 

challenging. Combinations of different post-translational modifications and more 

rare modifications, such as prenylation or S-nitrosylation, remain analytically 

demanding.  
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Similar to other omics data or large biomarkers quantities in system medicine it 

is important to highlight problems with standard statistical methods in 

proteomics. Most univariate statistical methods (e.g. Student’s t-test) are not 

well suited for large datasets. For instance, repetitive testing of significance of 

different variables leads to an accumulation of the error in repeated testing and 

ultimately to high false positive rates. 

1.8.4 Proteome quantification 

In addition to qualitative protein identification, methodologies for quantitative 

protein analyses are available. For these, gel based and gel free sample 

preparation is possible. Considering the time constrains of gel based proteomics, 

gel free quantitative proteomics is more suitable. It can be divided into 

subcategories based on metabolic or chemical labelling and label-free 

preparation [258]. Especially the latter preparation has great potential for use in 

medical diagnostics, as it is a straight forward and inexpensive quantification 

strategy. This proteomic technology can be divided into two methods. One uses 

the peptide’s mass spectroscopy signal as a direct quantitative measure whereas 

the other infers quantity indirectly from so-called spectrum counts; the number 

of peptide-to-spectrum matches obtained for each protein. The peptide-to-

spectrum matches, in comparison to peptide count and sequence coverage, 

offers the higher dynamic range of quantification and is more reproducible 

[259]. An advantages of relative quantification with spectrum counts is its 

simplicity since it only requires comparison of spectrum counts for each protein, 

easily generated during database searches for protein identification [260]. In 

bottom-up experiments, label free quantification is usually accomplished by 

integrating the ion intensities of each detected peptide over its chromatographic 

elution profile. Such peak areas from liquid chromatography mass spectrometry 

correlated (R2 = 0.991) linearly with the concentration of the measured peptide 

[261]. This correlation was proven over a wide range from 10 fmol to 100 pmol. 

The integrated signal response of individual peptides can therefore be easily 

used to compare peptide quantity in different samples. Variation in protein 

abundance can then be estimated by aggregation of differences measured for all 

peptides. This can be accomplished by averaging peptide fold changes or 

summation of peptide responses. Similar to spectrum counting this allows 

comparison of large data sets.  
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1.8.5 Discovery proteomics 

Mass spectrometry based proteomics in “discovery” mode can identify thousands 

of proteins in tissues, cells and biofluids [248]. The aim of discovery proteomics 

is the identification of new biomarkers and pathways, for instance, in 

cardiovascular disease. Next to mentioned complexities of proteomic research, 

further problems arise with proteomic biomarkers. With extremely complex 

samples, such as human plasma, certain analytical barriers exist. For instance, a 

large number of proteins identified with proteomic methods occur due to inter-

individual variations in protein abundance and not as a result of the disease 

investigated. Hence, robust methods are necessary to clearly identify proteins 

that are disease related.  

Other problems related to the use of the plasma proteome include three factors. 

First, few high-abundance proteins dominate the blood. Albumin, for instance, 

constitutes over 50% of the total plasma protein, with a concentration of 35 to 

60 mg/mL in humans [262]. The 22 most abundant proteins constitute almost 

99% of the whole plasma protein mass [263]. Secondly, an enormous number of 

different protein exist in the blood stream. Estimates vary from 10 000 to 1 000 

000 unique proteins contained in the blood. The higher number takes into 

account that many proteins will only vary slightly due to proteolytic processing, 

posttranslational modifications, single-nucleotide polymorphisms and splice 

variants. Third, the dynamic range in concentrations of these proteins makes 

analysis difficult. This range can span from femtomoles per liter of blood to 

concentrations >600 µmol/L [262]. A large number of biologically interesting 

molecules that are relevant to a disease process, such as cardiovascular disease, 

are low-abundance proteins. For example, troponin, usually found in the 

nanomolar range, and TNF!, usually found in the femtomolar range even when 

elevated in pathologic states.  

Liquid-chromatography coupled to tandem mass spectrometry, especially when 

merged with an antecedent peptide or protein fractioning step, is currently 

thought to be the only technology capable of detecting and identifying 

thousands of peptides and proteins in tissue and plasma samples [264, 265]. In 

biomarker discovery studies, high sensitivity and completeness of 

peptide/protein identification are central requirements as disease process 
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related proteins are only detectable at low levels. In comparison to proteomic 

assessment of tissues affected by the disease, e.g. atherosclerotic carotid 

arteries, this is more prominent in samples indirectly in contact with the disease 

processes, e.g. body fluids or peripheral blood. In “discovery” proteomics, 

electrospray ionization is the standard ionization procedure, which is ideally 

matched to online liquid chromatography tandem mass spectrometry [251]. 

Matrix-assisted laser desorption/ionization mass spectrometry can also be 

integrated into multidimensional separation procedures, however only with 

significant reduction in process speed and assessment accuracy for high complex 

peptide mixtures [266]. As both are crucial in biomarker discovery, electrospray 

ionization is the preferred method. Also, robustness and reproducibility of liquid 

chromatography tandem mass spectrometry methods have been investigated 

extensively. This led to the development and publication of reference data sets 

as well as system performance metrics for monitoring of the different process 

steps [267, 268]. Two-dimensional gel electrophoresis followed by mass 

spectrometry is also established in biomarker discovery [269], but as previously 

discussed the method is time consuming and only able to identify a few hundred 

proteins in biologic samples.  

The sample type selection, e.g. plasma, tissue or biofluids, as well as the 

experimental design, have substantial influence on the achievable result. For 

instance different proteomic platforms are characterised by different 

sensitivities, allowing identification of peptides and proteins only in a certain 

range of molecular weight. Therefore, the chosen methodology has considerable 

influence on the result and makes comparison of results between platforms 

difficult. Furthermore, the presence of high abundance proteins in plasma is a 

major complicating issue for proteomic analysis. Related peptides are 

detectable in every fraction independent of the separation method and their 

peptide ion intensities usually dominate the mass spectra. To diminish the 

impact of these proteins on the detected plasma proteome, abundant plasma 

proteins can be remove by immunoaffinity depletion columns, which are able to 

extract up to 14 or more proteins [270-272]. Unfortunately the protein removal 

also involves proteins or peptides of interest, as albumin binds lower-molecular-

weight proteins and thereby protects them from kidney clearance. It has 

therefore been shown that non-specific losses occur with the use of 
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immunaffinity depletion columns [273]. This leads to a reduction in sample 

complexity by 10 to 20-fold [274]. 

A standard proteomic biomarker discovery experiment compares peptide/protein 

abundance of case samples against control samples. First, proteins are reduced 

and alkylated to cut off disulfide bonds and to obstruct cysteine residues. Then, 

proteins are usually cleaved into peptides with the enzyme trypsin. Next, the 

resulting peptide solution is applied to, for instance, a reversed-phase 

chromatographic column with direct connection to a mass spectrometer. Prior to 

entering the mass spectrometer, peptides are ionised by electrospray. The mass 

and charge of the intact peptides will be detected by a high-performance mass 

spectrometry system. Intact peptide ions fragment further in the mass 

spectrometry system through the mechanic interaction with gas. This produces 

ionised fragments which can be used to obtain information on the peptide 

sequence [251]. The volume of data obtained during a single measurement is 

enormous; for example 4000 single scans in mass spectrometry and 30 000 single 

scans in tandem mass spectrometry scans. Therefore, data processing is 

facilitated by the widespread availability of robust software packages and 

application of modern information technologies is critical to mass spectrometry 

in biomarker discovery. A standard instrument mass spectrometry scanning cycle 

starts with the acquirement of a full-scan mass spectrum over a period of 

approximately 1 second. The mass spectrum constitutes the mass-to-charge ratio 

and intensities of the ions detected during the mentioned time interval of the 

chromatographic separation. This process is repeated over the entire course of 

the liquid chromatography tandem mass spectrometry analysis, which lasts, on 

average, between 60 to 180 minutes. The time required to achieve this depends 

on the complexity of the sample analysed. The more complex the sample, the 

longer the time required. Furthermore, modern mass spectrometry instruments 

automatically select ions for fragmentation and sequencing during a scan. This is 

called a “data dependent” experiment [251]. An integrated data processor 

identifies peptide mass and charge in the mass spectrum. A predefined number 

of these proteins is then selected for further fragmentation. However, a modern 

mass spectrometer is only capable of sequencing up to 20 ions, depending on the 

data acquisition speed and the sensitivity of the particular instrument. This 

limits the quantity of sequenced ions, especially as the number of ions of 
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complex biological samples exceeds the capacity of a modern mass 

spectrometer. Also, not all mass spectrometry spectra provide an interpretable 

sequence. To improve the yield, additional separation stages can be deployed 

before the online reverse phase liquid chromatography. These techniques are 

usually carried out at peptide level with strong cation exchange [275], high pH 

reverse phase [276] or off-gel electrophoresis [277]. Also protein separation 

techniques can be used like 1-dimensional gel separation. Although these 

multidimensional separation techniques decrease the sample complexity they 

have a clear disadvantage; they are time consuming.  

Instead of identifying a single disease biomarker and unfolding its peptide 

sequence data, analysis of mass spectra can be used differently. With 

quantification of protein expression patterns liquid chromatography mass 

spectrometry can produce a “peptide finger print” of certain diseases. This also 

requires the comparison of protein expression between normal and diseased 

tissues. However, there is no longer the need to extensively separate complex 

bio samples for protein identification and therefore, the time requirement is 

drastically diminished. Additionally, comparative data processing allows the 

elimination of high abundance proteins. Therefore extraction of such proteins is 

no longer necessary prior to sample separation. This protein signature approach 

follows a multiple biomarker strategy. Therefore experiments, if such markers 

have discriminatory power or offer incremental predictive value, are 

fundamentally different to the search of an unknown single biomarker. For 

instance, some of the markers will be correlated to the outcome due to random 

chance. Therefore, a replication of the result is necessary. A simple approach is 

to test the marker in an independent sample of individuals. This can be a split 

sample from the original cohort or an entirely independent cohort of subjects.  

1.8.6 Urine proteomics 

Urine is the result of plasma ultrafiltration in the kidneys with the purpose of 

waste product elimination, for example urea and metabolites. Despite the 

kidney’s small size, accounting only for 0.5% of the total body mass, about 350-

400 ml of plasma is filtrated per 100 g kidney tissue every minute [278]. 

Thereby, 150 to 180 litres of ultrafiltrate are generated daily under normal 

physiologic conditions. Most components of the ultrafiltrate, such as water, 
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glucose, amino acid and inorganic salts, are selectively reabsorbed leaving less 

than 1% of the ultrafiltrate for excretion with the urine. The selection of serum 

proteins filtrated at the glomeruli depends on their size and charge [279]. At the 

end of the passage through the glomeruli, abundant serum proteins, such as 

albumin, transferrin, immunoglobulin light chain, vitamin D binding protein and 

others, are reabsorbed predominantly by endocytic receptors like megalin and 

cubilin in the proximal renal tubules [280, 281]. This leads, despite additional 

tubular protein secretion, to a very low urine protein concentration in healthy 

individuals; on average less then 100 mg/l per day.  

1.8.6.1 History 

Despite this, urine still contains a substantial quantity of different peptides and 

proteins. In 2001 Spahr et al. published one of the earlier attempts to 

characterise the urinary proteome [282]. They used trypsin digested urine of 

healthy male subjects and performed liquid chromatography tandem mass 

spectrometry for data-dependent ion selection and fragmentation to identify 124 

different proteins. While the study was not intended for biomarker discovery it 

demonstrated that urine contains a wide range of different proteins and 

associated information. The authors also showed a possible analysis approach. 

Three years later, the number of peptides identified in the urine increased 

approximately three fold. After immunoaffinity subtraction of highly abundant 

proteins, 1400 spots were detected on two-dimensional gel electrophoresis 

[283]. Of those, only 30% were identified, revealing 150 unique protein 

annotations. Hence, an estimate of 500 proteins in addition to the previously 

subtracted proteins, were present in the samples. Then, in 2006, Adachi et al. 

[284] were able to increase this number to 1543 by combination of one-

dimensional gel electrophoresis and reverse phase liquid chromatography 

coupled to mass spectrometry. More recently, a total of 116 689 peptides and 

proteins were identified in 3687 different urine samples with the help of 

capillary electrophoresis coupled to mass spectrometry (CE-MS) [285].  

1.8.6.2 Advantages and disadvantages  

For clinical proteomic studies, the use of urine has several advantages over 

blood or other biofluids. First, urine is non-invasively available in large amounts. 
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Despite the mentioned low protein concentration, sufficient protein quantity can 

be collected from a single sample. Also, repeated sampling of the same patient 

for disease surveillance is possible when urine samples are used. Furthermore, 

urinary peptides and proteins are, in general, soluble. As a result, the step of 

solubilization and its influence on the proteomics analysis is omitted. Due to the 

bias for lower molecular mass compounds generated by the kidney, usually 

below 30 kDa, no further digestion step is necessary for mass spectrometry 

analysis [286].  Also, the urinary protein content is stable due to its “stagnation” 

for several hours in the bladder. Therefore, proteolytic degradation by 

endogenous proteases is completed by the time of urination. This is in contrast 

to the situation in blood, in which protease activity will lead to protein 

degradation [287]. The urine proteome content appears to be stable when 

stored for up to 6 hours at room temperature or up to 3 days at 4°C [288, 289]. 

Additionally, the urine proteome remains stable, when stored at -20°C, for 

several years [286]. Finally, the glomerular barrier only restricts passage of large 

proteins. Therefore almost 30% of all urine protein in healthy kidneys derives 

from plasma [290]. As the consequence urine contains polypeptides originating 

from a large number of biochemical pathways within the body. These are not 

only plasma proteins but also kidney or genitourinary tract proteins [283]. As a 

consequence urinary proteomics has been successfully piloted in the diagnosis of 

renal disease [291], kidney transplant rejection [292], CKD [293] and urothelial 

cancer [289]. In contrast to blood, protease activity in urine is low, leading to a 

more stable sample. The urinary proteome or peptidome is less complex, and 

analyses are technically less demanding and thereby more reproducible in urine 

compared to plasma [290]. There are also disadvantages of urine as the source 

for proteome analysis. Urine differs widely in protein and peptide concentration 

due to differences in fluid intake. This, however, can be overcome by 

standardization based on creatinine concentration [294] or based on peptides 

generally present in the urine [295]. Also, the definition of disease-specific 

biomarkers in the urine is complicated by circadian fluctuations in the urinary 

proteome due to variations in diet, metabolic or catabolic processes, or exercise 

[296]. This reduces the reproducibility of the urine proteome analysis even if the 

method itself is highly reproducible. Fortunately, these variations are limited to 

a fraction of the urinary proteome and a large portion remains unaffected [297]. 



90 

1.8.6.3 Techniques 

Most established mass spectrometry techniques have been applied to urinary 

proteome analysis in the past, including two-dimensional gel electrophoresis 

mass spectrometry, liquid chromatography mass spectrometry, surface enhanced 

laser desorption/ionization (SELDI) time of flight (TOF) mass spectrometry 

(Figure 1.10) and capillary electrophoresis mass spectrometry [298].  

 

Figure 1.10 Surface-enhanced laser desorption ionization mass spectrometry (SELDI-MS). A 
sample is placed on a chip surface (A). After several washing steps (B), only a few proteins 
(red) stay bound to the surface; these are subsequently analysed using low-resolution MS. 
The laser application to the chip is illustrated in B. In C a typical SELDI-MS spectrum from 
urine is depicted. The figure is adapted from Fliser et al. [299].   
 

The optimal approach to analyse the urine proteome would be a mass-

spectrometry based platform with consecutive validation by ELISA and clinical 

application. The closest approaches for biomarker discovery to this optimal 

platform are SELDI-TOF and CE-MS, as they can be applied in biomarker 

discovery and validation as well as in clinical studies. Advantages and 

disadvantages of these techniques are summarised in Table 1.5, which also 
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includes liquid chromatography and 2-dimensional gel electrophoresis coupled to 

mass spectrometry. 

Table 1.5 Advantages and disadvantages of different mass spectrometry-based proteomics 
methodologies for use in clinical proteomics applications.  

 
Platform Advantages Disadvantages 

SELDI-TOF - Easy usage 
- High throughput 
- Automation 
- Small sample volume 

- Restriction to selected  
  proteins 
- Low resolution mass  
  spectrometry 
- No comparability 
- Sensitive towards  
  interfering compounds 

Capillary 
electrophoresis mass 
spectrometry 

- Automation 
- High sensitivity 
- High throughput 
- Small sample volume 
- Multidimensional 

- Unsuitable for large 
  molecules (>20 kDa) 
 

Liquid chromatography 
mass spectrometry 

- Automation 
- Multidimensional 
- High sensitivity 
- Large molecule (>20  
  kDa) detection 
- Biomarker sequencing 

- Tryptic digestion  
- Time-consuming 
- Sensitive towards  
  interfering compounds 
- Medium throughput 

2-dimensional gel 
electrophoresis mass 
spectrometry 

- Large molecule  
  detection 
- Estimation of real  
  molecular weight 
- Biomarker sequencing 

- Unsuitable for small  
  molecules (<10 kDa) 
- No automation 
- Time-consuming 
- Medium throughput 
- Moderate  
  comparability 

 
The table was adjusted from Decramer et al. [286]. SELDI-TOF, surface enhanced laser 
desorption/ionization time of flight.  

 
The SELDI platform condenses the proteome complexity selectively. Proteins are 

adsorbed to different active surfaces: a hydrophilic matrix, a reverse-phase 

material or antibodies with a particular protein affinity. Then, the unbound 

proteome is removed by a washing step and a matrix, capable of energy 

absorption or sample laser vaporization and ionization, is added [299]. 

Subsequently, a urine sample undergoes mass spectrometry analyses, including 

time of flight analysis leading to SELDI-TOF, as illustrated in Figure 1.10. The 
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advantage of SELDI-TOF includes its ability to investigate a variety of samples in 

a short time and its simple usage [286]. Consequently, SELDI-TOF was applied in 

a variety of biomarker definition studies [300]. A disadvantage of the technique 

is its susceptibility to artifact generation [301]. The reasons for this are manifold 

and contributing factors and difficulties with calibration and lack of precision to 

determine the analytes’ molecular masses. Also, only a tiny proteome fraction 

binds to the absorbing surface, diminishing the information content of the 

biological sample even if several chip surfaces are used. Furthermore, the 

extent of surface binding varies depending on sample concentration, pH, salt 

content and the presence of interfering compounds such as lipids. Another 

disadvantage of the SELDI-TOF technique is its lack of direct interfacing with 

mass spectrometry instruments for sequencing [286]. 

In capillary electrophoresis coupled to tandem mass spectrometry the proteome 

of a sample is separated in a single step. The corresponding apparatus is 

illustrated in Figure 1.11. The separation is based on the rate of protein 

migration through a gel matrix in an electric field. In comparison to other 

platforms its advantages are predominantly its fast separation step, of 

approximately one hour, and its high resolution [302]. It is also quite robust and 

uses inexpensive capillaries as opposed to expensive liquid chromatography 

columns [303]. Furthermore, most buffers and analytes are compatible with the 

method [253] and it establishes a constant flow avoiding elution gradients. 

Therefore elution gradients are no longer interfering with mass spectrometry 

[304]. Due to its speed, reliability and reproducibility, as well as its cost 

efficiency, capillary electrophoresis mass spectrometry is best suited for high 

throughput analysis of clinical samples [305]. 

The method is characterised by its high resolution and is therefore an ideal 

platform for analysis of complex biofluids that contain several thousands of 

different peptides and proteins. There is a degree of intra-individual variability 

of the urinary proteome, for example, depending on fluid intake and time of 

collection, so that the complex polypeptide patterns can only be interpreted 

when compared with data on the normal urinary proteome in healthy subjects. 

Hence, data become normalised in comparison to levels of polypeptide markers 

that are commonly found in urine based on the experience from analysis of 

thousands of samples in previous and ongoing studies. 
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Figure 1.11 Illustration of the on-line coupling of capillary electrophoresis to the mass 
spectrometer (CE-MS). Urine polypeptides are elecrophoretically separated, ionized on-line 
by high voltage application and analysed in the mass spectrometer. This apparatus yields a 
mass spectrogram of mass per charge plotted against migration time. The acquired data is 
then interpreted automatically and allows detection of disease specific polypeptide 
patterns. The illustration is adapted from Fliser et al. [299]. 

 
A disadvantage of capillary electrophoresis, although not as extensive as in 

liquid chromatography, is that high molecular weight proteins cannot be easily 

analysed, as large proteins tend to precipitate at low pH levels that are 

generally present in running buffers. However, after digestion, protein 

fragments can be analyzed instead of the full-length protein. As mentioned 

before, the urinary proteome of individuals with normal renal physiology 

contains mostly low molecular weight proteins [285]. A further limitation of 

capillary electrophoresis is the relatively small sample volume that can be 

loaded onto a capillary, resulting in decreased detection sensitivity. 

Improvement of the electrophoresis to mass spectrometry, coupled to better 

ionization and protein delivery from the capillary end to the mass spectrometry 

instrument through nano-ion spray, makes this issue less relevant. Also, 

augmentation of the detection limit of mass spectrometers, enabling detection 

in the molar range, renders the issue of sensitivity less important [306]. 

Sequencing of potential biomarkers defined by this platform can be 

accomplished by interfacing capillary electrophoresis with tandem mass 
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spectrometry [307] or by subsequent targeted sequencing using liquid 

chromatography [308]. The latter approach is preferred as the low amount of 

sample volume loaded on a capillary limits the success rate of other methods.  

Two-dimensional gel electrophoresis has been successfully applied to protein 

separation for more that thirty years and still remains popular. Historically, the 

development of mass spectrometry implied a major innovation in protein 

identification of gel spots. The first step is the proteolytic in-gel digestions by, 

for instance, exposure of an excised gel fragment to trypsin [309] with 

consecutive extraction of proteolytic fragments form the gel. At least three 

fragments are necessary to identify a protein from a protein database. If a 

match is found, it can later be verified by tandem mass spectrometry sequencing 

or by other techniques such as Western blotting. The major limitations of the 

two-dimensional gel electrophoresis are low reproducibility, extensive time 

requirements and difficulties to automate the process. A further feature of the 

technique is its limitation to proteins between 10 and 200 kD, leaving it the 

method of choice for analysis of medium-sized or large proteins in the discovery 

phase of biomarker definition.  

Liquid chromatography is a very effective fractionation method and it is 

compatible with all versions of mass spectrometers. It is capable to process large 

amounts of analytes on a liquid chromatography column [310] and provides high 

sensitivity. The use of different media in two independent sequential separation 

steps enables multidimensional fractionation. Examples for this are the 

multidimensional protein identification technology [311] or two-dimensional 

liquid chromatography separation [312]. Limitations of the technique include its 

difficulty with comparative analysis, partially due to the variability in 

multidimensional separations, and the duration of a single samples analysis, 

which takes several days. Also, proteins larger than 10 kDa cannot be analyzed. 

To avoid this problem, analytes can be cleaved by a protease such as trypsin. 

The digestion step, however, increases the complexity of the resulting mixture 

and leads to an undersampling of tandem mass spectrometry and therefore an 

incomplete analytic coverage [313]. Another disadvantage is the interference of 

compounds like lipids and detergents with the separation process affecting the 

sensitivity of liquid chromatography. For instance, a comparison of two-

dimensional liquid chromatography with fluorescence two-dimensional 
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difference gel electrophoresis by Komatsu et al. [314] showed that each 

technique identified predominately different proteins. Therefore, many 

techniques individually or in combination are useful in biomarker detection, 

however only a few seem suitable for comparative analysis of hundreds of 

samples and therefore in clinical diagnostics. As a consequence, capillary 

electrophoresis online coupled with mass spectrometry was used for this thesis.  

Urinary proteomics, a multiple marker approach measuring a range of peptides 

and peptide fragments, has the potential to assess a multitude of pathways 

involved in the pathogenesis of complex diseases such as cardiovascular 

diseases. However, limitations of multiple marker strategies also apply to 

proteomics. If more than one protein/peptide is used to define a disease specific 

proteome pattern, there is a risk of overfeeding models with too many 

biomarkers relative to the sample size. As a consequence, a diagnostic model 

will not be translatable to other cohorts or the general population. Therefore, 

strict criteria for the use of proteomics as a clinical diagnostic tool should be 

observed [257]. A good characterization of the technical platform and precise 

measurements with the platform are mandatory. To reduce biological variability, 

urine collection and preparation requires standardization [298]. Furthermore, it 

is necessary to use suitable statistical methods in combination with a defined 

clinical hypothesis [290]. Although methods correcting for large false positive 

rates have been developed, univariate analyses are only a compromise for 

network or omics statistics. Multivariate analyses are better suited to data sets 

with a high quantity of variables and few observations. In multivariate analysis 

those variables reflecting on the major data set variance replace most of the 

others. Typical pitfalls for multivariate analyses are overfitting of the resulting 

model to the data and inclusion of strong outliers. The former can be avoided by 

using variables, which improve the prediction in an independent cohort. The 

latter has a strong influence on the whole model and therefore leads to a loss of 

transferability to other cohorts. Also, as a variety of the underlying hypotheses 

for statistical evaluation, such as even data distribution or data set 

comparability, are not granted, proteomic findings require validation using 

independent blinded sample set. This replication in clinical diagnostics should be 

carried out in at least one independent cohort with blinding of the investigator 

to the diagnosis of study participants.  
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1.8.7 Proteomics in cardiovascular disease 

Proteomics of atherosclerosis can be performed on a wide range of biological 

specimens including whole tissue samples but also cells and biofluids [248]. For 

clinical purposes, easily accessible samples like urine or blood appear ideal, 

although they are only indirectly presenting the proteome of certain organs like 

the vasculature or myocardium. Furthermore, unlike genomic studies in which 

the extracted DNA is similar in a wide range of specimens, results of proteomic 

studies depend heavily on the specimen used.  

Proteomic analyses of whole tissue samples have been carried out in the past.  

Examples for such tissues are carotid atheroma obtained from endarterectomy 

or coronary plaque from post mortem investigations. For instance, You et al. 

[315], collected human tissue from explanted hearts or from autopsies. By 

comparing affected with non-affected arteries they were able to identify ferritin 

light chain as a protein enriched in diseased coronaries. Messenger RNA levels 

were decreased in the pathologic tissue. Leppeda et al. [316] used 

endarterectomy tissue to examine protein differences in unstable and stable 

plaque. The authors used minced endarterectomy specimens to compare protein 

content of stable and unstable plaque by 2-dimensional gel electrophoresis. 

Protein content was extracted and analysed by matrix assisted laser 

desorption/ionization coupled to mass spectrometry. Unstable plaque contained 

smaller quantities of proteins, such as heat shock protein 20 and 27. On the 

other hand, proteins like fibrinogen fragment D was found in greater abundance 

in unstable plaque. Heat shock protein 27 is also strongly diminished in the 

supernatant of carotid atherosclerotic plaque when compared with normal 

carotid arteries, as shown by Martin-Ventura et al. by 2-dimensional 

electrophoresis [317]. 

Instead of directly assessing atherosclerotic tissues with the help of proteomics, 

it is also possible to investigate circulating inflammatory cells. This approach 

allows the researcher to inquire about processes involved in immune cell 

activation that contribute to atherosclerosis development. To this end, Barderas 

et al. [318] conducted a two-dimensional gel electrophoresis on the protein 

content of circulating monocytes in patients with acute coronary syndrome and 

compared them with stable CAD patients. The inflammatory cells of patients 
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with acute CAD contained higher levels of cathepsin D, heat shock protein 60 

and 70 and protein S100A8. A further indirect approach to assess processes 

involved in CAD on proteome level was performed by Salgado-Somoza et al. 

[319]. The authors compared the proteome of epicardial adipose tissue with 

subcutaneous tissue in patients with CVD by two-dimensional gel 

electrophoresis. Samples were acquired in 55 patients either during cardiac 

artery bypass or valvular replacement surgery. Seven protein differences were 

identified and further investigated using matrix-assisted laser 

desorption/ionization coupled to mass spectrometry. The identified proteins 

were predominantly related to oxidative stress. For instance, antioxidant 

enzymes like catalase were less abundant in epicardial adipose tissue. A reduced 

ability to neutralise reactive oxygen species in the epicardium augments 

oxidative stress levels in close proximity to the coronary arteries and might 

therefore contribute to the development of CAD.  

Expanding the idea of proteomic analysis of atherosclerosis supernatant as 

performed by Martin-Ventura et al. [317], the next logical step is assessment of 

plasma samples in patients with CAD. This was performed by Donahue et al. 

[320]. Using liquid chromatography coupled to electrospray ionization tandem 

mass spectrometry, they compared plasma samples of patients with 

angiographically confirmed CAD with disease free control subjects. The authors 

pooled samples obtained from 53 patients in each group for analysis, to allow 

detection of CAD relevant protein signals. Although this approach increases the 

risk for error, the authors were able to identify disease markers similar to the 

findings of other groups [321]. Examples of such proteins include: collagens, 

fibrinogen, !-2-antiplasmin, apo-lipoproteins, and complement factors. Dardé et 

al. [321] chose a different approach to analyse plasma samples in CAD. They 

compared patients with acute coronary syndrome with stable CAD patients and 

healthy controls using two-dimensional gel electrophoresis. This allowed 

identification of 33 proteins differentially expressed in acute coronary 

syndrome. These proteins could be classified into coagulation proteins, proteins 

participating in metabolism and/or lipid transport, inflammation and immune 

response and other proteins. Additionally, the authors performed longitudinal 

assessment of plasma proteins in the two diseased groups on the day of 

admission and days 4, 60 and 180 following admission. This showed significant 
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changes in plasma protein content in plasma samples obtained on follow-up 

appointments. This underlines the dynamic nature of the plasma proteome. The 

dynamics, in relation to CAD progression, was also investigated by Jing et al. 

[322]. The authors compared plasma samples taken at week six and twelve after 

birth of wild type and apolipoprotein E knock-out mice fed with a high fat diet. 

These samples were investigated with quantitative proteomics using liquid 

chromatography coupled to matrix-assisted laser desorption/ionization or 

electron spray ionization mass spectrometry. Similar to previously mentioned 

studies [320, 321], they identified fibrinogen fragments and apolipoproteins in 

the knock out model.  

Although the listed research is mainly descriptive, the congruence with current 

pathophysiologic knowledge and the repeatability of its results shows the value 

of proteomics in atherosclerosis research. 

1.8.8 Urine proteomics in cardiovascular disease 

Urine proteomics analysis has been applied to the diagnosis of CAD. Zimmerli et 

al. [323] developed a urinary polypeptide pattern capable to differentiate 

between patients with severe CAD requiring coronary artery bypass surgery and 

healthy controls. At total of 88 patients with CAD and 32 subjects with no history 

of angina, CAD, or peripheral artery disease were recruited. To rule out centre 

specific bias and medication effects further healthy controls from another 

population (Hannover, Germany) and patients before and after treatment with 

ramipril (Nuernberg, Germany) were used to refine the proteome pattern. A 

total of 370 urine samples from 88 patients and 282 controls were analyzed. 

Eleven patients with CAD were excluded due to missing (n=2) and insufficient 

(n=9) urine samples. The urinary polypeptide content was measured with 

capillary electrophoresis coupled to mass spectrometry. A multiple biomarker 

pattern identifying CAD patients was defined. This consisted of 15 different 

peptides and for the purpose of this thesis is therefore named CAD15 score. The 

score was calculated by using a linear classifier algorithm to sum the product of 

a classification coefficient and the signal for each of the 15 peptides. By defining 

the classification threshold as a CAD score = 13, sensitivity and specificity for 

discrimination between presence and absence of disease was 98% and 83% in the 

training set, respectively. The 15 peptides were sequenced with the help of 
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capillary electrophoresis coupled to tandem mass spectrometry. In a second step 

the CAD score was evaluated in a different patient subgroup in a blinded 

manner. The CAD score had a sensitivity of 98% and a specificity of 83% for 

differentiation between CAD patients and healthy individuals in this cohort. This 

study was a successful application of urine proteomics to the development of 

CAD specific biomarkers.  

1.9 Aims and objectives 

A multitude of biomarkers exist and reflect CVD. These can be circulating, 

functional and derived from different imaging modalities. The aim of this PhD 

was the assessment of a biomarker variety in CVD. Such biomarkers can be used 

for screening, prediction of disease recurrence, therapeutic monitoring, 

diagnosis and prognostication. Whilst time constrains and limited resources 

excluded the former three in a PhD thesis, especially diagnosis and to some 

extent prognostication are approachable. Considering the phases of biomarker 

development the thesis covers biomarker discovery, proof of concept studies and 

a diagnostic validation study.  

- One of the major CVD risk factors is hypertension. Hypertensive patients are 

therefore a good cohort to investigate early stages of the cardiovascular 

continuum. Hypertension affects especially the structure of the vasculature. 

Therefore functional vascular markers such as peripheral pulse pressure (pPP) 

play a prognostic role in hypertensive patients. pPP has however only prognostic 

value in the elderly. Central pulse pressure (cPP) on the other hand was shown 

to be superior to pPP in several studies. We therefore investigated if cPP could 

improve outcome prediction for CVD in younger patients, as recruited for the 

InGenious HyperCare study. As we were unable to do this in a prospective study, 

a different approach was selected. To decide if cPP might be a better CVD 

outcome predictor in comparison with peripheral pulse pressure, both were 

correlated with surrogate biomarker related to hypertension: left ventricular 

hypertrophy, carotid intima-media thickness, aortic pulse wave analysis and 

microalbuminuria.  

- Processes like inflammation or myocardial tissue injury play a major role in the 

cardiovascular continuum. Both processes are represented by circulating 
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biomarkers. As these markers aid CVD prognosis we hypothesised that circulating 

biomarkers could support the diagnosis of CAD in patients with angina like 

symptoms. We therefore examined the discriminating capacity of several 

markers in two setting: comparison of extensive CAD with healthy controls and 

comparison of stable angina patients having either flow limiting CAD or normal 

coronary arteries as represented in the VASCAB and DiCADu study, respectively. 

As inflammation or myocardial injury is more prominent in severe CAD we first 

tested circulating biomarkers in the VASCAB cohort and adjusted the biomarker 

selection accordingly for the DiCADu study. This represents a proof of concept 

study for the diagnosis of CAD.  

- Later stages of the cardiovascular continuum are represented by structural and 

functional changes of the vasculature. We therefore hypothesised that patients 

with flow limiting CAD can be characterised by such markers. To establish if non-

invasive vascular phenotyping could aid the diagnosis in a clinical relevant 

setting the DiCADu study participants were investigated. The study compared 

patients with angina like symptoms and either flow limiting CAD or normal 

coronary arteries. Several micro- and macrovascular biomarkers were 

investigated, and we assessed if those markers could add diagnostic information 

to the results of exercise treadmill testing. This represents a proof of concept 

study for the diagnosis of CAD.  

- Instead of investigating established CVD biomarkers in new diagnostic or 

prognostic settings, novel biomarkers can be developed. For this purpose we 

used an inductive, unbiased approach: discovery proteomics. In particular we 

conducted several steps of the development of a urinary polypeptide pattern for 

the diagnosis of CAD. Urine was the biofluid of choice as it has several 

advantages over other biofluids. First we tried to replicate results of a study 

previously conducted by our group in an independent cohort consisting of 

patients with established severe CAD in the VASCAB study. We then recalibrated 

the urine proteome pattern within a training set and tested its diagnostic value 

in a validation set. Finally, we assessed the diagnostic capacity of the resulting 

polypeptide pattern in patients with stable angina collected for the DiCADu 

study representing less extensive CAD. This represents a biomarker identification 

and diagnostic validation study.  
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Chapter 2 Material and Methods 

2.1 Study cohorts 

2.1.1 The VASCAB study 

The VAScular function in Coronary Artery Bypass patients (VASCAB) study was a 

cross-sectional cohort study. The study aimed for the assessment of biomarkers 

derived from the peripheral vasculature and the collection of biologic samples in 

stable patients with severe CAD prior to a first bypass surgery.  Furthermore, a 

healthy control cohort without evidence of CAD was collected for comparison 

with patients. Recruitment took place from October 2006 until October 2009. 

The study was approved by the West of Scotland Research Ethics Committee.  

Patients with severe CAD were recruited from pre-operative cardiothoracic 

clinics in the Western Infirmary Glasgow. Patients were approached after their 

surgical assessment when inclusion criteria identified from medical records were 

fulfilled. These criteria are summarised in Table 2.1. If the patient was 

interested in study participation a questionnaire and an information sheet were 

provided, and a study visit in the clinical research facility of the British Heart 

Foundation (BHF) Glasgow Cardiovascular Research Centre was arranged on the 

day of admission prior to bypass surgery. Details of the questionnaire are 

provided in section 2.2. In total 126 patients were recruited.  

Part of the control cohort consisted of patients undergoing varicose vein surgery. 

Patients on the vascular surgical ward in Garnavel General Hospital, Glasgow 

were checked for inclusion and exclusion criteria, as stated in Table 2.1, and 

approached on the day before surgery. Patients who were willing to participate 

were provided with a questionnaire and the possibility of a study visit at the BHF 

Glasgow Cardiovascular Research Centre was discussed. The visits were 

scheduled 1 to 4 weeks after the operation. In total 15 patients were recruited.  
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Table 2.1 In- and exclusion criteria of the VASCAB study.  

 
Inclusion Criteria 
 

• Written informed consent 
• Adulthood 
• Chronic stable chest pain (Cases) 
• Referral for coronary artery bypass grafting (Cases) 

 
Exclusion Criteria 
 

• Unstable angina, acute coronary syndrome or myocardial infarction 
• Kidney or other organ transplantation 
• Heart failure stage D (AHA/ACC criteria) 
• Any malignant concomitant disease or history of malignant disease 

within the last five years 
• Systemic inflammatory disease, such as autoimmune disease, 

connective tissue diseases, collagenosis, Crohn’s disease. 
• Treatment with oral steroids or any other immunosuppressive drug 
• Severe known liver disease (ALT or gamma-GT above three-fold of 

upper normal limit) 
• Proteomic analysis will not be possible in patients with clinical or 

laboratory signs of acute infection, especially urinary tract infection, 
at the time of the study visit. 

 

 
The second part of the control cohort consisted of healthy volunteers either 

approached in local fitness clubs or via advertisement on the University of 

Glasgow website. Information sheets and questionnaires were provided and 

study visits in the BHF Glasgow Cardiovascular Research Centre were arranged. 

In total 64 participants were recruited.  

For the purpose of this thesis, the VASCAB cohort was used for two tasks. 

Considering the severity and extent of CAD in the VASCAB study blood samples 

were used to screen for circulating biomarkers capable to differentiate between 

cases and controls in chapter 4. Considering the chronic progressive nature of 

the cardiovascular continuum we hypothesised that circulating biomarkers would 

be more deranged in patients with severe three vessel CAD in comparison to 

earlier disease stages. With the same rationale VASCAB study urine samples were 

used to first revalidated and then recalibrate a urine proteome pattern specific 

for CAD in chapter 6.  
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2.1.2 The InGenious HyperCare family cohort 

The Integrated Genomics, Clinical Research and Care in Hypertension (InGenious 

HyperCare) study is an European multicentre family-based genome wide 

association study investigating families with high prevalence of hypertension. 

The study is part of a Network of Excellence funded by the European Union. 

Participating centres, as relevant for this thesis, are depicted and listed in 

Figure 2.1. The study centre Glasgow was one of 19 centres who recruited 

families into the study.  Cardiovascular phenotyping and sample collections, as 

relevant for this thesis, are summarised in Table 2.2. Local research ethics 

committees approved the study. The West of Scotland Research Ethics 

Committee was responsible in Glasgow. The complete data set as available in 

the centralised database in august 2010 was used for this thesis. Access to the 

data was granted by the coordinator of the InGenious HyperCare Network of 

Excellence, Prof Alberto Zanchetti.  

In Glasgow recruitment of families started with the identification of index 

patients. Index patients were approached in hypertension clinics at the Western 

Infirmary Glasgow from February 2008 to February 2010 and at Stobhill Hospital, 

Glasgow from August 2009 to February 2010. Index patients were identified by 

assessment of medical records and according to in- and exclusion criteria (Table 

2.2). Appropriate patients were approached and interviewed in regards of in- 

and exclusion criteria as well as family structure and availability of family 

members for study enrolment. As summarised in Table 2.2, inclusion criteria for 

index patients were diagnosis of hypertension before the age of 50 years and 

current blood pressure " 160/95 mmHg on two occasions or treatment with at 

least two antihypertensive drugs. To qualify a family for study inclusion a further 

family member with blood pressure " 140/90 mmHg on two occasions or 

treatment with at least one antihypertensive drug and identical age criteria was 

required. The minimum family size was four, and normotension was defined as 

blood pressure < 140/90 mmHg. Study participants on treatment for 

hypertension were graded as hypertensive. Members of at least two generations 

had to participate per family. Examples of eligible family structures are 

depicted in Figure 2.2. The primary aim of the InGenious HyperCare study was a 

genome wide association study in hypertension.  
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No Participating Centre Country 
4 Universita degli Studi di Brescia I 
8 Institut National de la Sante et de la Recherche Medical, 

Paris 
F 

9 Centre Hospitalier Universitaire de Nancy F 
10 University of Glasgow UK 
13 Katholieke Universiteit Leuven B 
18 Fundacion para la Investigacion Biomedica L Docencia La 

Cooperation Int., Valencia 
E 

22 Lunds Universitet SE 
25 Jagiellonian University Med. College, Kraków  PL 

Figure 2.1 InGenious HyperCare Study Centres in Europe. Numbers represent study centres 
as listed in the table section. Visualised are only study centres relevant for this thesis. 
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Figure 2.2 Family structures for the InGenious HyperCare study. Examples of possible 
family size and structure for involvement in the InGenious HyperCare study are depicted. 
Five or four members over three generations (A and D) and five or four members in two 
generations (B, C and E) are possible.  

 
Information material for index patients and family members was provided to 

index patients during the first encounter. Individuals were asked to discuss study 

participation with relatives, and contact details of relatives were collected. 

After a minimum of seven days index patients were phoned, and if a sufficient 

number of family members agreed to participate individual or paired study 

appointments were arranged. Study visits were either carried out in the BHF 

Glasgow Cardiovascular Research Centre or the Glasgow Clinical Research 

Facility in the Tennent Institute. In Glasgow 42 families, including 195 

participants were recruited. Two families did not complete their study visits. All 

participants gave informed consent. Biomarkers assessed in the InGenious 
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HyperCare study are summarised in Table 2.2. I recruited all study participants 

and performed all clinical investigations. 

Table 2.2 In- and exclusion criteria of the InGenious HyperCare study.  

 
 Index 

patient 
Affected 
family 
member 

Unaffected 
family 
member 

Inclusion Criteria    
! 18 years X X X 
" 60 year at study enrollment X   
Diagnosis of essential hypertension 
  < 50 years 

X   

SBP ! 160 or DBP ! 95 mmHg if  
  untreated or ! 2 antihypertensive 
  drugs 

X   

SBP ! 140 or DBP ! 90 mmHg if  
  untreated or ! 1 antihypertensive  
  drugs 

 X  

! 3 participating first degree 
  relatives with ! 1 affected before 
  age of 50 years and ! 1 from a 
  different generation 

X   

written informed consent X X X 
    
Exclusion Criteria    

Secondary Hypertension X X  
Previous clinical complications of 
  hypertension as angina, MI, 
  stroke, TIA, peripheral artery 
  disease 

X   

Renal disease X   
Kidney or other organ 
  transplantation 

X X X 

Type 1 diabetes mellitus X   
Heart failure stage D  
  (AHA/ACC criteria) 

X   

Malignant concomitant diseases or 
  history of malignant diseases 
  within the last five years 

X X X 

Clinical or laboratory signs of acute 
  infection 

X X X 

Systemic inflammatory diseases X X X 
Steroids or any other 
  immunosuppressive drug 

X   

Severe liver disease X X X 
Known pregnancy X X X 
Current alcohol consume of more 
  than 21 drinks/week 

X X X 

 
The terms affected and unaffected family members refer to the diagnosis of essential 
hypertension. 
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For the purpose of this thesis, the InGenious HyperCare cohort was used to 

investigate central pulse pressure for its prognostic value, as described in 

chapter 4. In line with in- and exclusion criteria the study cohort covered earlier 

stages of the cardiovascular continuum as illustrated in Figure 2.4.  

2.1.3 The DiCADu study 

The Diagnosis of Coronary Artery Disease with Urine proteomics (DiCADu) study 

was a cohort study in patients who underwent elective coronary angiography in 

the Golden Jubilee National Hospital (GJNH) in Clydebank.  

The primary aim was to validate a urinary proteome pattern for diagnosis of CAD 

in patients with stable chest pain with and without significant CAD. The 

secondary aim was the testing of other emerging biomarkers in the same clinical 

setting. Study visits were carried out in the BHF Glasgow Cardiovascular 

Research Centre or the Glasgow Clinical Research Facility. The study was 

approved by the West of Scotland research ethics committee and conducted as 

summarised in Figure 2.3. 

Patients who were admitted to the GJNH for assessment of angina like chest 

pain by elective coronary angiography between January 2009 and June 2010 

were screened for eligibility to participate in the study. Patients were eligible to 

participate if either normal coronary arteries or significant CAD was diagnosed 

on coronary angiography. Normal arteries were defined as the absence of artery 

narrowing whereas significant CAD was present if at least one stenosis was >75%. 

Patients were in- or excluded based on criteria displayed in Table 2.3.  
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Figure 2.3 Flowchart of the DiCADu study. CAD, coronary artery disease; BHF GCRC, British 
Heart Foundation Glasgow Cardiovascular Research Centre; GCRF, Glasgow Clinical 
Research Facility; PWA, pulse wave analysis; PWV, pulse wave velocity; IMT, intima-media 
thickness; BP, blood pressure.  
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Table 2.3 In- and exclusion criteria for the DiCADu study.  

 
Inclusion Criteria 
 

• Written informed consent 
• Adulthood 
• Chronic stable chest pain prior to angiography (!6 weeks) 
• Referral for elective coronary angiography 

 
Exclusion Criteria 
 

• History of established CAD 
• Unstable angina, acute coronary syndrome or myocardial infarction 
• Kidney or other organ transplantation 
• Heart failure stage D (AHA/ACC criteria) 
• Any malignant concomitant disease or history of malignant disease 

within the last five years 
• Systemic inflammatory disease, such as autoimmune disease, 

connective tissue diseases, collagenosis, Crohn’s disease. 
• Treatment with oral steroids or any other immunosuppressive drug 
• Severe known liver disease (ALT or gamma-GT above three-fold of 

upper normal limit) 
• Proteomic analysis will not be possible in patients with clinical or 

laboratory signs of acute infection, especially urinary tract infection, 
at the time of the study visit. 

 

 
Patients were invited to the DiCADu study by letter if three factors were given: 

medical records did not disclose any of the exclusion criteria listed in Table 2.3, 

a contact telephone number was available, and the distance between the home 

address and research centre was acceptable. Study information material was 

provided with the invitation letter.  After a minimum of 7 days patients were 

called and an appointment was scheduled in case of interest. Then participants 

received a formal confirmation, a questionnaire and a consent form by mail. 

Questionnaires were either completed before or at the beginning of the study 

visit. Study visits took place between February 2010 and January 2011. Patients 

undergoing angiography in 2010 were selected in smaller number to improve age 

and sex matching of participants admitted to the GJNH between January 2009 

and December 2009. The average age of recruited cases and controls and their 

gender distribution was assessed. Patients, admitted to the GJNH between 

January 2010 and June 2010, were selected to balance existing discrepancies. 

Especially older and female cases as well as younger and male controls were 

required. In total 93 out of 260 invited patients participated.  
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Participants underwent a standardised assessment during study visits including 

the biomarkers summarised in Table 2.5. Exercise tolerance test and myocardial 

perfusion scan results prior to coronary angiography were extracted from 

medical records. 

For the purpose of this thesis, the DiCADu cohort was used for two different 

tasks. The first task was to test a urine polypeptide patterns established with 

the help of the VASCAB cohort. The study cohort was recruited for this purpose. 

A clinical scenario was chosen which would benefit from additional diagnostic 

biomarkers, as discussed in detail in chapter 6. The second task was to test a 

multiple biomarker approach for the diagnosis of CAD. For this purpose vascular 

phenotyping, as described in chapter 5, and measurement of circulating 

biomarkers, as described in chapter 4, were carried out. In addition to test each 

biomarker group individually this also allowed multiple biomarker analysis is 

described in chapter 5 and 6. To avoid the risk of overfeeding models with too 

many biomarkers relative to the sample size only biomarkers capable of 

differentiating between cases and controls were considered.  

2.1.4 Connection between different study cohorts 

The three studies InGenious HyperCare, DiCADu and VASCAB cover populations at 

different stages of the cardiovascular continuum as depicted in Figure 2.4. The 

cases of the three studies cover almost the whole spectrum of the cardiovascular 

continuum preceeding the onset of severe tissue injury, such as myocardial 

infarction or heart failure, especially as tissue injuries are exclusion criteria in 

all three studies. Although the study populations overlap and the study 

recruitment criteria are focusing on specific criteria, such as familiar 

hypertension, angina like chest pain or CAD requiring coronary artery bypass 

grafting, the studies provide the unique opportunity to compare biomakers 

between the different stages of the cardiovascular continuum or to correlate 

biomakers with CAD extent. This is possible as several biomarkers were 

investigated in all three studies, allowing analysis of pooled data. Such 

investigations will be carried out in particular in chapter 4 and 6.  
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Figure 2.4 The relation of study populations to the cardiovascular continuum. Illustrated are 
the different stages of the cardiovascular continuum in relation to vascular function, 
atherosclerosis extent and associated symptoms. The studies InGenious HyperCare, 
DiCADu (cases) and VASCAB (cases) contributing to the thesis are linked to these process 
and the different stages of the cardiovascular continuum.  

 
2.1.5 Recruitment and biomarker assessment 

I contributed to the three studies to different extent. To clarify this further, 

each study will be discussed subsequently and is summarized in Table 2.4.  

Table 2.4 The author’s contribution to studies covered in the PhD thesis. 

 
 VASCAB InGenious 

HyperCARE 
DiCADu 

Study design - - 100% 
Ethics Application - - 100% 
Study participant 
recruitment 

15% 100%* 100% 

Study participant 
screening/investigations 

15%‡ 100%* 100%‡ 

Data analysis presented 
in thesis 

100%‡ 100% 100%‡ 

 
The table provides a summary of the authors contribution to the VASCAB, InGenious 
HyperCare and DiCADu thesis. *For InGenious HyperCare this represents only patients 
recruited in Glasgow. ‡ Urine proteome analysis and calculation of related biomarker were 
carried out by collaborators at mosaiques diagnostics GmbH, Hannover, Germany.  
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The VASCAB study was initiated before the start of this PhD thesis. The main 

part of the VASCAB study recruitment was carried out by Dr Jane Dymott as part 

of her MD thesis. Approximately 15% of the overall study recruitment and patient 

screening were carried out by myself. This involved predominantely healthy 

controls. Biomarkers investigated for the thesis are summarized in Table 2.5. All 

listed biomarkers were investigated by myself in 15% of the whole study cohort 

with the exception of standard routine biochemistry measurements and urine 

proteomics. Additionally I performed several analyses in the whole VASCAB study 

cohort for this thesis: batch analysis of serum samples and offline analysis of 

carotid ultrasound pictures. I organized casenote access to analyse CAD extent in 

VASCAB cases. Data analysis in this thesis involving the VASCAB cohort with the 

exception of urine polypeptide pattern calculations were performed by myself.  

Ethics approval for the InGenious HyperCare study was already obtained when 

my PhD started. Consequently study design and protocol were already in place. 

However the complete recruitment of study participants for the Glasgow study 

site was carried out by myself. This required screening of approximately 2000 

hypertension clinic appointments. Study visits including investigations listed in 

Table 2.5 were carried out by myself with the exception of standard laboratory 

urine and blood sample assessment. Data analysis as reported in this thesis was 

also performed by myself. At first I defined a hypothesis which could be 

investigated with the InGenious HyperCare cohort and analysed the Glasgow 

study centre data in this regard. On the basis of these pilot data access to the 

whole study cohort was granted by the coordinator of the InGenious HyperCare 

Network of Excellence, Professor Alberto Zanchetti. In the whole InGenious 

HyperCare study cohort results were consistent with pilot data and are 

presented in chapter 3.  
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Table 2.5 Overview of phenotypes that were measured in the VASCAB, InGenious 
HyperCare and DiCADu study.  

 

Studies VASCAB InGenious 
HyperCare 

DiCADu 

History x x x 

Physical examination   x   

Body mass index and Waist-hip 
ratio 

x x x 

Resting blood pressure  x x x 

Electrocardiogram x x x 

Echocardiography  x  

Pulse wave analysis and velocity x x x 

Carotid Intima-Media Thickness x x x 

Carotid distensibility   x 

Endothelial function assessment   x 

Standard haematology and 
biochemistry 

x x x 

Urinary albumin excretion x x x 

Urine samples for proteomics x  x 

Circulating biomarkers of 
inflammation, and heart function 

x  x 

 
The DiCADu study, constituting the largest part of this thesis with result chapter 

4, 5 and 6, was designed by myself. I wrote the ethics application and obtained 

ethics approval. The complete patient recruitment and investigations as 

summarized in Table 2.5 with the exception of urine proteomic analysis and 

serum sample analyses were carried out by myself. I organized database access 
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to quantify CAD extent and casenote access to analyse exercise treatmill tests. I 

carried out data analysis as presented in this thesis with the exception of urine 

polypeptid pattern calculations.  

2.2 Questionnaires 

The VASCAB and InGenious HyperCare study questionnaires are identical. They 

covered a variety of clinical and demographic information: family status, family 

history of CVD, nutrition, smoking, alcohol consumption, cardiovascular risk 

factors, past medical history, menopausal status, history of hormone 

replacement therapy in women, diabetic organ damage and current medication. 

In addition, the DiCADu study questionnaire contained a chest pain section 

adapted from the Seattle Angina Questionnaire [324] as well as an extended 

menstrual status and hormone replacement therapy section. All three 

questionnaires are available in the appendix of this thesis.  

2.3 Anthropometric data 

Weight was measured on a standard electric scale. Height was measured in 

subjects standing without shoes. Body surface area (BSA) was calculated from 

height and weight according to the Dubois & Dubois formula [325]. 

BSA Dubois & Dubois [m2] = 0.007184 * weight [kg]0.425 * height [cm]0.725  

Body mass index (BMI) was calculated according to BMI [kg/m#] = weight [kg] / 

(height [m])#. Waist and hip measurements were taken with subjects wearing 

light clothes. Waist circumference was defined as the smallest circumference 

around the abdomen in a relaxed participant, usually at the level of the 

umbilicus. Hip circumference was defined as the largest measured 

circumference at the levels of the buttocks. Waist to hip ratio was defined as 

the quotient of these measurements. For the DiCADu study bioimpedance was 

measured in parallel to measuring body weight with the Tanita Body Composition 

Analyser BC-418 MA (Tanita Corporation, Arlington Heights, USA).   
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2.4 Blood pressure 

Participants had refrained from smoking, eating and drinking alcohol or 

caffeinated beverages for at least 2 hours prior to the examinations and rested 

in a sitting position for 5 minutes in a quiet room before measurements were 

obtained. Brachial blood pressure and heart rate were measured in 1-minute 

intervals with an automated digital oscillometric sphygmomanometer (Omron, 

Model 705IT; Omron Corporation, Shimogyo-ku, Kyoto, Japan). For each arm the 

mean of the 2nd and 3rd reading was calculated and the higher value of both arms 

was used for further analysis. For measurement of blood pressure in supine 

position participants rested for at least 15 minutes, and the arm with higher 

sitting blood pressure was selected.  

2.5 Electrocardiogram 

In all studies 12-lead electrocardiograms (ECG) were acquired with participants 

being in supine position. Measurements were performed with a Burdick® Atria® 

6100 ECG (Cardiac Science, Bothell, USA) and recordings were standardised at 25 

mm/sec and 1 mV/cm. Tracings covered 2.5 seconds in each chest and limb lead 

and a rhythm strip was recorded for 10 seconds in the 2nd limb lead. 

Electrocardiograms were analysed for criteria of left ventricular hypertrophy 

after exclusion of cardiac conduction abnormalities. The Sokolow-Lyon, Lewis 

and Cornell Voltage indices were calculated as illustrated in Figure 2.5. 
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Figure 2.5 Standardised ECG and left ventricular hypertrophy indices. The formulas for the 
Sokolow-Lyon index, the Lewis index and the Cornell Voltage index are linked to the 
corresponding ECG waves by colour coding. The term ‘positive’ is used to highlight the cut-
off-points for left ventricular hypertrophy. The original recording is from the male InGenious 
HyperCare participant A2100473204.  

 



117 

2.6 Biomarkers of vasculature function and structure 

2.6.1 Carotid Intima-Media Thickness 

Measurement of C-IMT was performed by ultrasonography (Acuson Sequoia C512, 

Siemens, Erlangen, Germany) with an 8 MHz linear-array transducer. Left and 

right common carotid arteries were examined in anterolateral (AL), posterlateral 

(PL) and mediolateral (ML) directions. C-IMT was measured in the far wall, 1 cm 

proximal of the carotid bulb in a plaque free region in accordance with the 

Mannheim consensus [326]. ECG signals were stored simultaneously to define the 

systolic and diastolic phase of the cardiac cycle. Offline measurements were 

performed semi-automatically at end diastole on B-mode images using Image-Pro 

Plus software, version 3.0 (Media Cybernetics, Bethesda, USA). Depending on 

image quality up to six different measurements corresponding to the AL, ML and 

PL recording directions on both common carotid arteries were used to average 

the C-IMT, as illustrated in Figure 2.6.  

2.6.2 Assessment of carotid plaque 

Offline B-mode common carotid artery images in AL, ML and PL direction were 

assessed for plaque presence and extent. Corresponding to the Mannheim 

carotid IMT consensus [326] plaque was defined as a “focal structure that 

encroaches into the arterial lumen of at least 0.5 mm or 50% of the surrounding 

C-IMT value or demonstrates a thickness > 1.5 mm as measured from the media-

adventitia interface to the intima-lumen interface”.  As published by Hollander 

et al. [193] and van der Meer et al. [327] the plaque score had values from 0 to 

6. The number of sites with a detected plaque (left- and right-sided common 

carotid artery, bifurcation and internal carotid artery) is divided by the total 

number of sites with an available ultrasonographic image and then multiplied by 

six. Participants of the DiCADu study were not assessed when less then two sites 

were available. The corresponding carotid plaque score is illustrated in Figure 

2.7.  
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Figure 2.6 B-mode pictures of the carotid artery. Pictures were taken in anterolateral (AL), 
mediolateral (ML) and posterlateral (PL) direction at either the right (R) or the left (L) carotid 
artery. The original recording is from the InGenious HyperCare participant A2100483102. 
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Figure 2.7 Illustration of the carotid plaque score. Areas with plaque burden are highlighted 
with arrows in B-mode common carotid artery images (A). The carotid plaque definition 
according to the Mannheim carotid IMT consensus is listed (B).  The carotid plaque score 
equation is shown in C. Regarding the carotid pictures in panel A this leads to a carotid 
plaque score of 4.8 (number of affected vessel segments: 4, number of visualised vessel 
segments: 5). Depicted ultrasound images derive from DiCADU participant 1-0016-B.  
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2.6.3 Pulse wave analysis 

For pulse wave analysis (PWA) participants were rested for 20 minutes in supine 

position at a temperature 23-24 °C. Radial arterial pressure waveforms were 

recorded with a Millar piezo-resistive pressure transducer (Millar SPT 301, Millar 

Instruments, Houston, US) coupled to a SphygmoCor device (AtCor Medical, 

Sydney, Australia). The corresponding central (ascending aortic) waveform was 

generated by the SphygmoCor software (version 7.0) using a generalised and 

validated [328] transfer function. Supine peripheral blood pressure 

measurements were used for calibration.  

 

Figure 2.8 Pulse wave analysis. Depicted are an aortic pressure curve as calculated by the 
SphygmoCor device and relevant parameters for calculation of the augmentation index 
(AIx). ESp, endsystolic pressure; ED, ejection duration; PP, pulse pressure; AG, 
augmentation; SBP, systolic blood pressure. The original tracing is from the InGenious 
HyperCare participant A2100211004. 
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The central AIx was calculated from the aortic pressure waveforms, as shown in 

Figure 2.8. The AIx was always adjusted for the heart rate, as the heart rate has 

a strong effect on the index [329]. Aortic SBP and DBP were derived from the 

aortic pressure waveform under the assumption of a constant mean arterial 

pressure. The mean arterial pressure was calculated with the integration of the 

radial waveform. Only measurements of good quality, defined as an operator 

index #80 determined by the software of the SphygmoCor device were used for 

PWA. cPP was defined as the difference between aortic SBP and DBP. Peripheral 

pulse pressure (pPP) was defined as the difference between brachial SBP and 

DBP in supine position. The pulse pressure ratio was calculated as cPP/pPP. 

Pulse pressure amplification was defined as pPP/cPP.  

2.6.4 Pulse wave reflection 

To quantify the maximum of the forward and backward pressure waves in the 

aortic root the triangulation method as reported by Westerhof et al. [330] was 

used. The parameters shown in Figure 2.9 were used to calculate the forward 

and backward pressure waves based on central pressure curve measured by the 

Sphygmocor device. The formula [331] for the forward and backward pressure 

amplitudes is depicted in Figure 2.9. In this context the aortic flow wave is 

assumed to be triangular. The shape of the triangle can be reconstructed with 

pressure/time ratios extracted from the central pulse wave. To adjust for the 

magnitude of the pressure wave the reflection magnitude (RM) was calculated as 

the ratio of the backward and forward pressure amplitudes.  
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Figure 2.9 Calculation of aortic forward and backward pressure waves. The central pulse 
wave and a corresponding triangular aortic flow wave [330] are shown in A. Equations for 
calculation of forward and backward pressure waves are given (A). B illustrates an aortic 
flow wave with corresponding forward and backward pressure waves. cPP, central pulse 
pressure; ESp, end-systolic pressure; P1, pressure at T1; Pf, forward pressure wave; Pb, 
backward pressure wave; Zc, aortic characteristic impedance; F, flow; T1, time at first 
inflection point; ED, time point marking the start of diastole (early diastole). The original 
tracing was taken from the DiCADu participant 1-0001-B.  
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2.6.5 Pulse wave velocity 

Aortic pulse wave velocity (PWV) was measured using the SphygmoCor device 

according to the manufacturers’ protocol. Three surface electrodes were 

positioned on both arms and the abdomen for continuous ECG tracing. The 

distances “common carotid artery to suprasternal notch” (dster-car) and “femoral 

artery to suprasternal notch” (dster-fem) were measured with a measuring tape. To 

avoid measurement errors the linear distance instead of the body surface 

distance was used. The travel distance was estimated by the subtracted distance 

method [332], as shown in the following equation: 

Travel Distance subtracted distance = dster-fem - dster-car. 

Femoral and carotid pulse wave tracings were obtained consecutively with the 

Millar pressure transducer in parallel to ECG recordings for 10 seconds. PWV was 

determined from time delay differences between the QRS complex onset on an 

ECG and the upstroke of the pressure tracing measured at the femoral and 

carotid arteries. PWV was determined from the foot-to-foot time interval of 

waveforms [333]. Measurements were rejected if the standard deviation of 

single heart beat intervals was bigger than 10% during the recording period. The 

measurement and definition of PWV are illustrated in Figure 2.10. Instead of the 

SphygmoCor device centres in Brescia and Paris used the Complior (Colson, 

Garges les Genosse, France), and the centre in Nancy used the PulsePen device 

(DiaTecne s.r.l., Milan, Italy) in the InGenious HyperCare study. For these 

centres PWV based on direct carotid femoral distance was converted to PWV 

based on subtracted distance with the rule of proportion. 
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Figure 2.10 Pulse wave velocity measurement. Depicted are pulse wave tracings at the 
common carotid artery and the femoral artery (white tracing) in comparison to the R-wave 
(spike of the yellow tracing) as provided by the SphygmoCor device (A). The pulse wave 
velocity equation (B) and an explanation of corresponding parameters (C), as published by 
Laurent et al. [334], are illustrated. The drawing (C) sketches the aorta and its main 
continuation arteries. The original tracing is from the DiCADu participant 1-0043-B. 
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2.6.6 Carotid distensibility 

Diameter changes in the common carotid arteries were recorded during the 

cardiac cycle to assess carotid distensibility. Perpendicular to the common 

carotid artery wall, as visualised on ultrasonographic B-mode, an M-mode line 

was recorded over several heart cycles. To avoid an artificial distensibility 

reduction, no pressure was applied exceeding the weight of the 8 MHz linear-

array transducer. Minimal and maximal carotid diameters were measured offline 

on the right and left common carotid artery at a plaque-free site, 1 cm below 

the bulb with Image-Pro Plus software, version 3.0 (Media Cybernetics, 

Bethesda, USA). The minimum and maximum diameters during a heart cycle 

were defined as diastolic and systolic diameters, respectively. Depending on 

picture quality, M-mode pictures from AL, PL and ML directions were evaluated. 

The measurements of the left and right common carotid artery were averaged 

and subsequently the average of both sides was used for calculation of the 

distensibility coefficient. The distensibility coefficient was calculated according 

to the following equation [335]: 

Distensibility coefficient [10-3/kPa] = (2$D/D) / $P  

In this equation $D represents the diameter change of common carotid artery 

during systole, D represents the end-diastolic diameter and $P stands for the 

pulse pressure. The distensibility coefficient is illustrated in Figure 2.11. Due to 

anatomical proximity the central blood pressure measurements as provided by 

PWA were used in the calculation. As a further index of artery stiffness the 

cross-sectional compliance [336] was calculated by the following equation: 

Cross-sectional Compliance [m2 * kPa-1 * 10-7] = % * (Dsystolic
 2-D2)/(4$P)  

In this equation Dsystolic represents the maximum systolic diameter, % is 

approximately 3.14159 and further abbreviations are identical to the  

distensibility coefficient equation. 



126 

 

Figure 2.11 The distensibility coefficient. Depicted are relevant measurements on M-mode 
images of the common carotid artery (A) and the distensibility coefficient equation (B) as 
well as Cross-sectional B-mode image of the common carotid artery (C) in systole (left side) 
and diastole (right side). DC, distensibility coefficient; Dd, diastolic diameter; Ds, systolic 
diameter; SBP, systolic blood pressure; DBP, diastolic blood pressure.   

 
2.6.7 Peripheral arterial tonometry 

Peripheral arterial tonometry (PAT) was performed with the Endo-PAT2000 

device (Itamar Medical Ltd., Caesarea, Israel). Beat-to-beat finger volume 

changes were captured by plethysmographic finger cuffs on the index fingers of 

both hands. The features of the device are illustrated in Figure 2.12. After an 

equilibration period of at least 5 minutes to assess the baseline PAT signal a 

blood pressure cuff (Hokanson SC12, Bellevue, USA) was inflated to at least 200 

mmHg or pressures 60 mmHg above the SBP for exactly five minutes on the 

upper right arm. To ascertain that the brachial artery was completely occluded, 
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the on screen scale of the PAT signal was increased to maximum amplitude. The 

cuff pressure was then released and the hyperaemia PAT signal was recorded, as 

shown in Figure 2.13. The ratio between the PAT signal after hyperaemia and at 

baseline adjusted for the control finger was defined as the reactive hyperaemia 

index (RHI). The corresponding equation is illustrated in Figure 2.14. Due to the 

experimental setup the test can be described as reactive hyperaemia PAT (RH-

PAT). To avoid interference of factors such as outside temperature, physical 

activity, drug intake and smoking, recordings were performed in a temperature 

controlled room at 23-24 °C, after 20 minutes of rest in supine. Participants 

were fasted and refrained from smoking for at least 2 hours.  

 

Figure 2.12 Illustration of the EndoPAT 2000 device. Shown are finger probes (A) and the 
device setup (B). The green inflatable volume reservoirs fitted to the index finger enable to 
exert a uniform pressure field around the entire finger surface. This allows measurement of 
pulsatile volume changes and the application of counter pressure for avoidance of venous 
distension.  
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Figure 2.13 Examples of EndoPAT 2000 measurements. Comparison of a pathologic (A) and 
a normal (B) hyperaemia responses as recorded by fingertip plethysmography. Original 
tracings are from DiCADu study participant 1-0007-B (A) and 2-0071-B (B). 

 

 

Figure 2.14 Calculation of the reactive hyperaemia index. Time intervals corresponding to 
PAT signals in the equation are colour coded. The interval 60-120 seconds post cuff release 
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is best linked to coronary microvasculature dysfunction as published by Bonnetti et al. 
[337]. RHI, reactive hyperaemia index. The original tracing is from participant 1-0007-B of 
the DiCADu study.  

 
2.7 Echocardiography 

Disposable ECG electrodes were attached to the abdomen, left and right 

shoulder. Participants were placed in partial left decubitus position with a 

mildly elevated examining table head. For the multicentre InGenious HyperCare 

study recordings were made with an echocardiograph equipped with 2.5 to 3.5 

MHz transducer with M-mode, two dimensional, and Doppler capabilities 

according to current guidelines [338]. In Glasgow images for offline analysis 

were recorded with a 1-4 MHz linear-array transducer (Siemens 4V1c Sector 

Array, Siemens, Erlangen, Germany) on an Acuson Sequoia C512 ultrasound 

device (Siemens, Erlangen, Germany). Offline analysis was conducted on a 

KinetDX CWS 3000 workstation (Siemens, Erlangen, Germany).  

Echocardiography followed a standardised procedure. The examination protocol 

consisted of the feature covered in the minimal standard digital acquisition 

protocol for transthoracic echocardiography [339], and additional colour Doppler 

myocardial imaging and mitral annulus Doppler tissue imaging were performed in 

4 different wall segments of the left ventricle. Each recording covered at least 5 

heartbeats.  

In accordance with current guidelines for chamber quantification [340] left 

ventricular mass was calculated with the formula recommended by the American 

Society of Echocardiography (Figure 2.15). Required parameters were measured 

at the level of the left ventricular minor axis close to the mitral valve leaflet 

tips either from M-mode pictures in the long or short parasternal acoustic 

window or directly from two dimensional images if no perpendicular placement 

of the M-mode beam was possible. To adjust for body size, left ventricular mass 

index (LVMI) was calculated by dividing LVM by height2.7 [341]. 
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Figure 2.15 Calculation of left ventricular mass. Depicted are measurements of left 
ventricular (LV) end-diastolic diameter (EDD) and end-systolic diameter (ESD) on M-mode 
and B-mode pictures either guided by a parasternal short axis (PSX) or a long axis (PLX) 
image. In all pictures septal wall thickness (SWT) and posterior wall thickness (PWT) 
present end-diastolic extension. The original tracing is from the InGenious HyperCare 
participant A2100453103.  
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2.8 Exercise treadmill testing 

Results from exercise treadmill tests prior to coronary angiography were 

extracted from medical records. Recordings were performed on locally available 

treadmills at different hospitals in Glasgow. All test followed the standard 

Bruce-protocol [342]. In this context, patients were asked to exercise until 85% 

of their age related target heart rate (220 – patient age [bpm]) were 

accomplished. Exercise was continued until onset of limiting symptoms, 

abnormalities of rhythm or marked and progressive ST-segment deviation. In line 

with current guidelines [343], a positive exercise test result was defined as a 

horizontal or down-sloping ST-segment depression or elevation for at least 60 to 

80 ms after the end of the QRS complex, greater than or equal to 1 mm in leads 

without pathologic Q-waves (excluding lead aVR). The spatial resolution on the 

ECG y-axis was 1 mV/cm. The extent of the ST-segment deviation was measured 

by locally available exercise electrocardiogram software, manually revised 

during assessment of medical records and recorded to the nearest 0.1 mV. The 

largest value for ST-segment deviation in any lead, except aVR, during exercise 

or in recovery was used in the analysis. Pre-test probability of CAD was assessed 

based on age, gender and symptoms [230] as summarised in Table 1.2. Missing 

data were complemented with questionnaire and interview information. 

The Duke treadmill score (DTS) was used to estimate the prognostic value of the 

exercise treadmill testing. The score was calculated by the following formula:  

DTS = texercise [min] – (5 * $STmax [mm]) – (4 * TAI) 

In this equation texercise represents the exercise duration in minutes on the full 

Bruce protocol, $STmax stands for the maximum ST-segment deviation in 

millimetres during or after exercise and the TAI is an abbreviation of the 

treadmill angina index. The TAI equals 0 if exercise angina was absent, 1 if 

exercise angina occurred and 2 if angina caused exercise termination. The 

relation of the DTS to cardiovascular risk published by Mark et al. [239] is shown 

in Table 2.6.   
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Table 2.6 The Duke treadmill score in relation to cardiovascular risk.  

 
Risk of Death Duke treadmill score Annual cardiovascular 

mortality* 

Low !5 0.5% 

Moderate -10 to +4 ~2% 

High <-10 !5% 

 
The source of the presented data is a publication by Mark et al. [239]. 

 
2.9 Coronary Angiography 

Patients in the DiCADu study had coronary angiography via the right radial artery 

in the GJNH Clydebank. Angiograms were carried out and graded by single 

operators. Based on local standards patients were categorised in reference to 

the coronary artery with the biggest stenosis. Six categories were applied: 

normal coronary arteries (no vessel wall irregularity), plaque disease with vessel 

wall irregularities only, narrowing <25% of the artery lumen, mild CAD (25-50% 

stenosis), moderate CAD (50-75% stenosis) and severe CAD (>75% stenosis). For 

the DiCADu study patients with severe CAD were recruited as cases and those 

with normal coronary arteries or vessel wall irregularities served as controls.  

For the VASCAB study coronary angiograms were performed in referring hospitals 

of the Greater Glasgow and Clyde area. The decision for bypass surgery was 

based on severity and extent of CAD as well as co-morbidities. Each patient was 

discussed in the local multiple disciplinary team meeting and treated according 

to current guidelines [344-347]. 

To quantify the overall CAD extent in DiCADu and VASCAB study patients the 

scoring system suggested by Gensini [348] was used. The corresponding Gensini 

score is illustrated in Figure 2.16. Diagnostic angiographic reports in medical 

records were used to evaluate location and severity of stenoses in the coronary 

arteries. Stenoses of less than 25%, 25-49%, 50-74%, 75-94%, 95-99% and 100% 

were equated with 1, 2, 4, 8 and 16 accordingly. Depending on the artery 
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segment and dominance of the left or right coronary artery those were 

multiplied with factors from 0.5 to 5 [348] to implement the functional 

significance of the area supplied by that segment. The artery segment scores 

were finally added to obtain the Gensini-score.  

 

Figure 2.16 Illustration of the Gensini Score. Normal coronary angiogram in RAO caudal 
projection (A). Roentgenogaphic appearance of concentric and eccentric lesions resulting 
in 25, 50, 75, 90, 99 or 100% obstructions (B). The right column in B indicates the relative 
severity of the according lesions (e.g. 4 for 75%). Panel C depicts sketches of the three main 
coronary arteries and their adjacent branches (MLCA, main left coronary artery; LAD, left 
anterior descending artery; Cx, circumflex artery; RCA, right coronary artery; PD, posterior 
descending artery; PL, posterolateral artery; OM, obtuse marginal artery; 1°D, first diagonal 
artery; 2°D, second diagonal artery; Prox, proximal segment; Mid, middle segment; Dist, 
distal segment). Abbreviations are followed by multiplying factors to underline the 
functional significance of the areas supplied by the particular segment. The Gensini score 
derives from the multiplication of the severity scores with significant factors and the 
summation of all coronary artery lesions. Panel B and C are modified from Gensini [348].  
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2.10 Serological biomarkers 

Blood samples were collected after at least three hours of fasting. For local 

laboratory use serum and whole blood (EDTA) was sampled with the Vacutainer® 

system (BD, Franklin Lakes, USA). The same collection system was used in the 

VASCAB and DiCADu study for analysis of additional biomarkers. In the InGenious 

HyperCare study Sarstedt Monovettes (Sarstedt, Nuembrecht, Germany) were 

use for this purpose. Serum and EDTA plasma samples were spun immediately 

after collection at 3000 G for 10 minutes and the supernatant was kept at -80 

°C. For storage CryoPure tubes (Sarstedt, Nuembrecht, Germany) were used in 

the InGenious HyperCare study and the 1.5 ml Screwcap MCT tube 

(Alphalaboratories, Eastleigh, UK) in the DiCADu and VASCAB study.  

2.10.1 Local laboratory 

For all studies blood samples for routine parameters, such as full blood count, C-

reactive protein, urea and electrolytes, uric acid, liver enzymes, cholesterol 

levels and fasting glucose were collected according to local standards and 

analysed in laboratories at Gartnavel General Hospital, Glasgow. Estimated 

glomerular filtration rate (eGFR) was calculated with the MDRD formula [349]: 

eGFR [mL/min/l.73 m#] = 175 & (Serum creatinine [mg/dL])-1.154 & (Age [y])-0.203 

(& 0.742 if female). 

2.10.2 ELISA 

For the DiCADu study IL-6 and NT-proBNP were quantified in a subgroup. NT-

proBNP was measured with the Roche Elecsys electrochemiluminescence 

immunoassay (Roche Diagnostics, Indianapolis, USA) and IL-6 was measured with 

the R&D System Quantikine HS (R & D Systems Inc., Minneapolis, USA).  

For NT-proBNP measurements 15 'l of sample antigen containing biofluid, a 

biotinylated monoclonal NT-proBNP-specific antibody, a monoclonal NT-proBNP-

specific antibody labeled with a ruthenium complex and streptavidin-coated 

microparticles were mixed and incubated for 9 minutes. The reaction mixture 

was aspirated into a measuring cell where the microparticles are magnetically 

captured onto the surface of an electrode. Unbound substances are removed in a 



135 

washing step. Then chemiluminscent emission is induced by voltage application 

to the electrode. The brightness of the emission is measured by a 

photomultiplier. Results are determined via a calibration curve, which was 

previously generated.  

For IL-6 measurements reagents and working standards were prepared. 100 'l of 

assay diluents were added to each well of a microplate pre-coated with capture 

antibodies for IL-6. Then 100 'l of Standard solution, sample fluid or control 

fluid were added to each well. Wells were covered with an adhesive strip and 

incubated for 2 hours at room temperature. Afterwards each well was washed 

four times by addition of 400 'l wash buffer and removal of liquid at each step. 

Then 200 'l of horseradish peroxidase labeled antibody is added. The plates are 

again incubated for 2 hours at room temperature. Unbound detection antibody is 

washed away with four washing steps as described above. 200 'l of substrate 

solution are added to each well and incubated under light protection for 20 

minutes at room temperature. Finally 50 'l of stop solution is added to each well 

and the optical density of each well was determined using a microplate reader. 

The use of standard solutions allowed the estimation of IL-6 concentrations.  

2.10.3 Luminex 

For the VASCAB study batch analysis of additional biomarkers was performed in 

an age and sex matched subgroup of 40 patients with severe CAD and 40 healthy 

control subjects. To enlarge the investigated cohort four additional CAD patients 

with similar age distribution were added. Using WideScreen® BeadPlex™ 

Multiplex Assays (Merck, Darmstadt, Germany) and the Luminex® xMAP® 

Technology platform (Luminex Corporation, Austin, USA) the following serum 

biomarkers were measured with the Luminex® 100™ analyser (Luminex 

Corporation, Austin, USA) according to the manufacturer’s protocol: IL-6, 

interleukin 8 (IL-8), monocyte chemotactic protein-1 (MCP-1), macrophage 

inflammatory protein-1 beta (MIP-1%), TNF!, E-selectin, ICAM-1, leptin, 

osteopontin, P-selectin, soluble receptor for advanced glycation end products 

(sRAGE), adiponectin, cystatin C, ligand for the receptor for advanced glycation 

end products (en-RAGE), plasminogen activator inhibitor 1 (PAI-1) and VCAM-1.  
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The technique is based on 5.6 micron-sized polystyrene microspheres and a flow 

cytometry-like measuring process. The microspheres can be coated with varying 

capturing reagents, contain different intensities of two fluorochroms and 

thereby have distinguishable spectral addresses. A third fluorochome coupled to 

a reporter molecule is used for quantification of the protein binding at the 

microsphere surface. Individual microsphere assessment occurs in a rapid flowing 

fluid stream by two separate lasers as depicted in Figure 2.17.  

 

Figure 2.17 The Luminex xMAP system and its key components. Depicted are the Luminex 
100 analyzer (A) in the centre and clockwise from top-right: DNA and antibody coated 
proteins as examples for possible biomolecular reactants (B), microspheres (C), a sketch of 
the rapid flowing fluid stream and two detection lasers (one for the microsphere 
fluorochromes and one for the reporter fluorochrome) (D) and the high-speed digital signal 
processing unit (E). Modified from Dunbar [350].  

 
Standard reagents in the WideScreen Human CVD Panel 2, 3 and 6 kit (Merck, 

Whitehouse Station, USA) were prepared according to the manufactures 

instruction. Assay buffer was added to Pre-wet Filter Plates and liquids were 

removed by vacuum. Eight different standard dilutions for each assessed 

biomarker were prepared after the manufactures instruction. Corresponding 

concentrations for generation of standard curves are listed in Table 2.7.  
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Table 2.7 Biomarker dilutions for standard curve calculation with the Luminex xMAP 
system.  

 
Panel 2       
Standard IL-6 

(pg/ml) 
IL-8 
(pg/ml) 

MCP-1 
(pg/ml) 

TNF-! 
(pg/ml) 

MIP-1% 
(pg/ml) 

 

8 472 470 2080 251 1328  
7 157 157 693 84 443  
6 52 52 231 28 148  
5 17 17 77 9.3 49  
4 5.8 5.8 26 3.1 16  
3 1.9 1.9 8.6 1.0 5.5  
2 0.64 0.64 2.9 0.33 1.8  
1 0.21 0.21 0.95 0.11 0.60  
       
Panel 3       
Standard E-selectin 

(ng/ml) 
ICAM-1 
(ng/ml) 

Leptin 
(ng/ml) 

Osteopontin 
(ng/ml) 

P-
selectin 
(ng/ml) 

sRAGE 
(ng/ml) 

8 750 200 32 500 400 100 
7 250 67 11 167 133 33 
6 83 22 3.6 56 44 11 
5 28 7.4 1.2 19 15 3.7 
4 9.3 2.5 0.40 6.2 4.9 1.2 
3 3.1 0.82 0.13 2.1 1.6 0.41 
2 1.0 0.27 0.044 0.69 0.55 0.14 
1 0.34 0.091 0.015 0.23 0.18 0.046 
       
Panel 6       
Standard PAI-1 

(ng/ml) 
Cystatin 
C 
(ng/ml) 

EN-
RAGE 
(ng/ml) 

Adiponectin 
(ng/ml) 

VCAM-1 
(ng/ml) 

 

8 21 200 6.1 300 48  
7 7.0 67 2.0 100 16  
6 2.3 22 0.68 33 5.3  
5 0.78 7.4 0.23 11 1.8  
4 0.26 2.5 0.075 3.7 0.59  
3 0.086 0.82 0.025 1.2 0.20  
2 0.029 0.27 0.0084 0.41 0.066  
1 0.010 0.091 0.0028 0.14 0.022  
 
Shown are standard dilutions of listed biomarkers as provided by the manufacturer.  

 
Test samples for panel 2 and 3 were 5-fold diluted or for panel 6 300-fold 

diluted. After 10 µl of blocking buffer, 30 µl of test sample or standards were 

added to the filter plates in duplicates together with 70 µl of beads. The plates 

were covered with tin foil and shacked at 750 rpm for 60 minutes at room 

temperature. The plates were washed with 100 µl assay buffer. Supernatant was 

removed by vacuum. These two steps were repeated once. Then 40 µl of 

detection antibodies were mixed to each well followed by 60 minutes of 

incubation under the above conditions. Next 20 µl of streptavidin phycoerytherin 

was added to each well and each plate was shacked for another 30 minutes 
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under the above conditions. Each plate was washed and vacuumed twice before 

the beads were resuspended in 100 µl assay buffer. For analysis 50 µl from each 

well were run on a Luminex 100 machine. In each inserted probe 50 beads were 

measured and the resulting median fluorescence intensity was compared to the 

standard curve generated with the standard dilutions. Last the results were 

multiplied by the dilution factor. 

2.10.4 Randox 

Stored serum samples were used to measure cardiac Troponin 1, myoglobin, 

creatine kinase isoenzym MB (CK-MB), carbonic anhydrase III (CA III), glycogen 

phosphorylase BB (GPBB) and heart fatty acid binding protein (hFABP) with the 

Randox Evidence Investigator and a complementing cardiac array (Randox 

Laboratories Ltd., Crumlin, United Kingdom) which consist of a sandwich 

chemiluminescent immunoassay. Each of the specific antibodies was immobilised 

in an ordered array arrangement on one of the 9 mm2 biochips supplied by the 

manufacturer.  

In a first step, samples were diluted with assay buffer and applied to a single 

biochip. Arranged on a carrier, biochips were incubated at 37 °C at 370 rpm in a 

thermoshaker for 60 min.  The diluent was removed with a washing step, the 

horse radish peroxidase labelled antibodies were added and incubated as 

described. Following a further washing step, 250 mL of a 1:1 mix of luminol and 

peroxide was added and incubated for 2 min.  After this the carrier tray was 

read using digital imaging technology. As antibodies are labelled with horse-

radish peroxidase light signals generated from each Biochip test region were 

detected with a super cooled charge coupled device camera. Signal strength was 

consecutively compared to calibration data. Each single biochip on the carrier 

contained an array of discrete test regions covered with immobilised antibodies 

specific to the biomarkers of interest. The biochips were provided in carriers 

containing 3 & 3 biochips. Each carrier was arranged in a handling tray that 

allowed simultaneous handling of 6 carriers.  
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2.11 Urinary biomarkers 

2.11.1 Urine dipstick 

Standard dip stick analysis was carried out using Multistix 10 SG reagent strips 

for urinalysis (Siemens Healthcare Diagnostics Inc., Tarrytown, USA) according to 

the manufacturer’s protocol. Dip stick analysis was used as a basic screening tool 

for proteinuria, leucocyturia, haematuria and nitrite in the urine.  

2.11.2 Urinary albumin excretion 

For all studies urine samples for urinary albumin, urinary creatinine and urinary 

protein were collected according to local standards and analysed in certified 

biochemistry laboratories at the General Gartnavel Hospital, Glasgow. The 

urinary albumin:creatinine ratio was calculated as ACR [mg/mmol] = urinary 

albumine [mg/L] : urinary creatinine [mmol/L].  

2.11.3 Urinary Proteomics 

Each study participant had 3 x 1000 µl aliquots of urine stored at -80°C at the 

BHF Glasgow Cardiovascular Research Centre. For storage the CryoPure tube 

(Sarstedt, Nuembrecht, Germany) was used in the InGenious HyperCare study 

and Screwcap MCT (Alphalaboratories, Eastleight, UK) in the DiCADu and VASCAB 

study. Proteome analysis was carried out as batch analysis at Mosaiques 

Diagnostics, Hannover, Germany. Samples were sent frozen on dry ice with 

commercial couriers. This procedure was possible as no significant sample 

degradation is caused by long-term storage [351]. 

2.11.3.1 Sample preparation  

For sample preparation 0.7 mL aliquots were thawed and 0.7 mL of a 2M urea, 

10 mM NH4OH and 0.02% sodium dodecyl sulfate were added. For removal of high 

molecular mass proteins the resulting solution was filtered using a Centrisart 

ultracentrifugation filter device and a 20 kDa molecular weight cut-off 

(Sartorious, Goettingen, Germany) at 3000 g for 45 minutes at 4 °C. To remove 

urea, electrolytes, salts and other interfering agents from the specimens, 1.1 ml 

of filtrate were applied onto a PD-10 desalting column (GE Healthcare, Uppsala, 
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Sweden) pre-equilibrated in 0.01% NH4OH high performance liquid 

chromatography grade water (Roth, Karlsruhe, Germany). This decreased the 

matrix effect during mass spectrometry and enriches the polypeptides present. 

Samples were lyophilised in a Christ Speed-Vac RVC 2-18/Alpha 1-2 (Christ, 

Osterode a.H, Germany) and later resuspended with high performance liquid 

chromatography grade grade water to yield 0.8 g/L protein concentration as 

measured by bicinchoninic acid assay (Interchim, Montlucon, France).  

2.11.3.2 Capillary electrophoresis mass spectrometry 

The proteome was assessed by CE-MS. First a urine sample was separated 

according to the charge and frictional forces and hydrodynamic radius of its 

contents by capillary zone electrophoresis with a Beckman Coulter PAC/E system 

(Beckman Coulter Inc., Brae, USA). Fused-silica capillaries were provided by 

Beckman with an inner diameter/outer diameter of 75/360 µm and a length of 

90 cm. The mobile phase contained 30% methanol and 0.5% formic acid in water. 

After a rinsing step with the mobile phase for 3 minutes, samples were injected 

for 20 seconds with a pressure of 1 pound per square inch (psi) allowing 

assessment of approximately 700 nL of sample. The separation was then 

performed by applying a charge of +30kV at the inlet of the capillary, resulting 

in a current of approximately 13µA. The capillary temperature was constantly 35 

°C. After each sample the CE capillary was rinsed for 5 minutes with 0.1 mol/L 

sodium hydroxide followed by 5 minutes of water and 5 minutes of running 

buffer. The capillary electrophoresis was coupled to a electrospray ionization 

time of flight mass spectrometer (ESI-TOF-MS) which allowed to identify 

peptides and proteins by their mass/charge ratio with an electroionisation 

sprayer (Agilent Technologies Inc., Santa Clara, USA) and a micro TOF mass 

spectrometer (Bruker Daltonics, Bremen, Germany). Both techniques were 

coupled via a grounded sheath-liquid interface, which used the same composites 

as the mobile phase of the CE applied at 5 µL/min. The flow was coaxial to the 

capillary. The ion-spray interface potential range was between -4.0 and -4.5 kV. 

A CE-MS run was executed for 30 minutes at 30 kV with 0.2 psi positive pressure. 

Mass spectrometry data was accumulated every 3 seconds over a range of 

mass/charge ratio (m/z) of 350-3000 and the mean was then calculated. In 

summary, samples were separated by migration time and mass/charge ratio as 

shown in Figure 2.18.  
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Figure 2.18 Example of CE-ESI-TOF-MS. Capillary electrophoresis coupled to electrospray 
ionization time of flight mass spectrometry (CE-ESI-TOF-MS) run of crude urine. The 
mass/charge ratio is shown on the y-axis and the migration time (min) is shown on the x-
axis. Signal intensity is depicted by colour saturation. The illustration is taken from Kolch et 
al. [303].  

 
2.11.3.3 Accuracy of CE-MS 

Kolch et al. [303] extensively described characteristics of the CE-MS system. In 

brief, the average recovery of the sample preparation as described in 2.11.3.1 

was approximately 85%. The detection limit was approximately 1 fmol. 

Monoisotopic mass signals were resolved for a charge (z) <6. Mass accuracy of 

the CE-ESI-TOF-MS method was determined to be less than 25 parts-per-million 

(ppm) for monoisotopic resolution and less than 100 ppm for unresolved peaks 

(z>6). Repeated measurements of the same aliquot and with different 

preparations of identical speciment were previously performed, to evaluate the 

method’s precision [352]. Data sets were only acceptable if a minimum of 950 

peptides or proteins were detectable with an MS resolution of at least 8000 and 

a minimum migration time interval of 10 minutes. Furthermore, the mean 

deviation of migration time had to be <0.35 minutes.  

2.11.3.4 Data processing 

Each CE-MS run provides a large amount of information, with over 1000 

individual spectra for each sample. A number of steps are therefore required in 

order to accurately process the data. For this purpose the software 

MosaiquesVisu (mosaiques diagnostics and therapeutics AG, Hannover, Germany) 
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was employed. First it summarises mass spectral ion peaks representing identical 

molecules at different charges into single masses. Signals had to be observed on 

at least three consecutive spectra with a signal-to-noise-ratio of #4. Calculated 

charges of +1 were excluded to minimise interference with matrix compounds or 

drugs. The charge of each peak was then calculated, based on isotopic 

distributions and conjugated masses. The Mosaiques-Visu software deconvolutes 

the data afterwards. This results in a recording of mass spectral ion peaks from 

the same molecule at different charge states as a single mass. CE-migration time 

and ion signal intensity show a high variability. This is due to different 

concentrations of peptides and ions in the samples corresponding to the time of 

urine collection, hydration status of the patient etc. Therefore the data were 

normalised based on reference signals from 29 abundant “housekeeping” 

peptides generally present in urine [297]. These peptides are the result of 

normal biological processes, and do not appear to be affected by age, sex or 

disease state. Each of these peptides was present in more than 90% of all urine 

samples present. The individual sample data were calibrated with a local 

regression algorithm and the internal standard peptides as reference. The 

resulting peak list characterises each peptide by its molecular mass (in daltons), 

CE migration time, and signal intensity, providing a unique identification mark. 

After normalisation signal intensity was employed as a marker for relative 

quantity.  

2.11.3.5 Cluster analysis 

Data were then entered into a Microsoft SQL database, which allowed further 

analysis and comparison with individual samples. For identification of 

peptide/protein clusters, peaks in multiple samples were estimated as equal if 

the corresponding deviation was lower than ±50 ppm for 800 Da peptides, 

gradually increasing to ±75 ppm for 15 kDa peptides. Similarly, deviation of 

migration time was controlled to be below 0.35 minutes. Also cluster widths 

were increased by 2-5%, to adjust for analyte diffusion effects resulting in CE-

peak widening with time. To eliminate peptides with sporadic appearance only 

peptides detected in more than 20% of the urine samples in a clinicaly defined 

cohort were further investigated. The last step reduces the quantity of peptides 

significantly to approximately 5% of the original number.  
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2.11.3.6 Sequencing of peptides 

Peptides from urine were sequenced using capillary electrophoresis coupled to 

tandem mass spectrometry or liquid chromatography coupled to tandem mass 

spectrometry as published by Zurbig et al. [308]. MS/MS experiments were 

carried out on an Ultimate 3000 nano-flow system (Dionex/LC Packings, 

Bannockburn, USA) attached to an LTQ Orbitrap hyprid mass spectometer 

(Thermo Fisher Scientific, Germany) equipped with a nano-electrospray ion 

source. The mass spectrometer was operated in a data-dependent mode to 

automatically switch between MS and MS/MS acquisition. Survey full-scan MS 

spectra (from m/z 300-2000) were acquired in the Orbitrap. Ions were 

sequentially isolated from fragmentation in the linear ion trap using collision 

induced dissociation. General mass spectrometric conditions were: electrospray 

voltage, 1.6 kV; no sheat and auxiliary gas flow; ion transfer tube temperature, 

225°C; collision gas pressure, 1.3 mTor; normalised collision energy, 32% for MS2. 

Ion selection threshold was 500 counts for MS/MS. In addition samples were 

analyzed using electron transfer dissociation. Peptides were separated by nRP-

HPLC (Agilent 1100; flow split by tee to &60 nL/min) and introduced into an ETD-

capable LTQ quadrupole linear ion trap (Thermo Fisher Scientific, San Jose, USA) 

via nESI, using previously described instrumental parameters [353]. All resultant 

MS/MS data were submitted to MASCOT (www.matrixscience.com) for a search 

against human entries (20413 sequences) in the Swiss-Prot database (Swiss-Prot 

Number 56.6) without any enzyme specificity. No fixed modification was 

selected, and oxidation of methionine and proline were set as variable 

modifications. Accepted parent ion mass deviation was 50 ppm; accepted 

fragment ion mass deviation was 500 ppm, accepted fragment ion mass deviation 

was 500 ppm. Only search results with a MASCOT peptide score of 20 or higher, 

which also met ion coverage stipulations as related to the main spectal features, 

were included. Data files from experiments performed on the ETD-enabled LTQ 

were searched against the IPI human non-redundant database using the Open 

Mass Spectrometry Search Algorithm (OMSSA, 

http://pubchem.ncbi.nlm.nih.gov/omssa), with an e-value cut-off of 0.01. For 

further validation of obtained peptide identifications, the strict correlation 

between peptide charge at the working pH of 2 and CE-migration time was 

utilised to minimise false-positive identification rates: Calculated CE-migration 

time of the sequence candidate based on its peptide sequence (number of basic 



144 

amino acids) was compared to the experimental migration time. Peptides were 

only accepted with a mass deviation below ± 25 ppm and a CE-migration time 

deviation below ± 2 min.  

2.12 Statistics 

Data were analysed using SPSS software, versions 15.0 and 19.0 (SPSS Inc., 

Chicago, USA). Normality of data distribution for all experiments was tested 

using the Kolmogorov-Smirnov test and visual inspection of Q-Q plots.  Baseline 

data are expressed as mean ± standard deviation (SD) if normally distributed or 

median with 25-75% interquartile range if not normally distributed. Correlations 

were assessed by calculating Pearson’s or Spearman’s correlation coefficient for 

parametric and non-parametric data, respectively. Steiger’s Z-test was used to 

compare bivariate correlations within a single population. Fisher’s Z-test was 

used to compare bivariate correlations between populations. The two sample 

Student’s t test or the Mann Whitney test were conducted as appropriate for the 

comparison of two groups of paired observations for continuous data. For 

comparison of categorical data of independent groups the Chi-squared test was 

employed. To compare two groups of paired categorical data the Wilcoxon test 

was performed. In general, a P-value of less than 0.05 was considered 

significant. Additional statistical tests will be discussed in relevant chapters.  
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Chapter 3 Association of central and peripheral 
pulse pressure with biomarkers of the 
intermediate cardiovascular phenotype 

3.1 Introduction 

The concept of the cardiovascular continuum implies the existence of early 

stages of target organ damage prior to the development of clinically overt 

cardiovascular disease. Such are expected in patients with higher CVD risk in 

early age groups. Young or middle aged hypertensive patients represent such a 

cohort. The prognostic value of CVD biomarkers in early stages of the 

cardiovascular continuum could therefore be conducted in such a population.  

Treatment decisions in patients with hypertension are based on blood pressure 

levels, presence of other cardiovascular risk factors and evidence of end organ 

damage. Pulse pressure is an important predictor of cardiovascular risk in the 

elderly [354-356]. This has been recognised in the ESH/ESC guidelines on 

diagnosis and treatment of hypertension where pulse pressure features as one of 

the factors influencing prognosis in the elderly [357]. In contrast, in those 

younger than 55 years pulse pressure contributes only to small extent to risk 

prediction, as the contribution of pulse pressure to risk prediction in this age 

group is minimal, as shown in Table 3.1 [358].  

Table 3.1 Different blood pressure indices as predictor of ischaemic heart disease mortality. 

  
BP Index Age (years) at risk 

! "#$"%! &#$&%! '#$'%! (#$(%! )#$)%!
!"#$ %&'$ ()'$ (*'$ (&'$ (+'$
,"#$ %-'$ .%'$ ./'$ *%'$ *('$
0##$ )('$ 1&'$ -('$ &)'$ -.'$
23#$ )//'$ (%'$ (*'$ (*'$ (.'$
 
Depicted '2

1-values (%) represent the contribution of the specific BP indexes to risk 
prediction in certain age groups. The table was adapted from Lewington et al. [358]. SBP, 
systolic blood pressure; DBP, diastolic blood pressure; pPP, peripheral pulse pressure; 
MAP, mean arterial pressure.  

Due to the increase of systolic pressure along the arterial system, aortic 

(central) pulse pressure is different from brachial (peripheral) pulse pressure 

[359]. The relationship between cPP and pPP, which can be expressed as pulse 
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pressure ratio [360] or pulse pressure amplification [361], is not only determined 

by blood pressure levels but depends on stiffness of conduit arteries and on 

pressure wave reflections [334, 362]. Antihypertensive therapy alters pulse 

pressure [363], and in hypertensive patients treated with an angiotensin 

receptor blocker based regimen the ratio between cPP and pPP was found to be 

lower than in patients on a beta blocker based regimen [364]. In longitudinal 

studies cPP readings derived from radial artery tonometry were reported to 

improve risk prediction in comparison to pPP in various cohorts [365-367]. We 

therefore investigated whether cPP in contrast to pPP could refine 

cardiovascular risk assessment also in a younger cohort. 

Pulse pressure is strongly associated with end organ damage including carotid C-

IMT and LVM [366, 368]. In a cross-sectional study we therefore investigated the 

relationship between cPP and pPP with intermediate cardiovascular phenotypes 

including LVMI, C-IMT, urinary albumin excretion and aortic PWV. 

3.2 Material and Methods 

3.2.1 Patients 

All participants of this study were originally recruited into the InGenious 

HyperCare study, a family-based study into genetics and genomics of 

hypertension associated with microinflammation, oxidative stress and 

microalbuminuria. The recruitment criteria and process are described in chapter 

2.1.3.  

For this study we explored data from 1,589 participants recruited between 2008 

and 2010 in 19 study centres. Measurement of central haemodynamics was 

optional. Analysis was restricted to patients with SBP (180 mmHg and DBP (110 

mmHg, equivalent to 94% of the cohort. A total of 535 participants from 145 

families fulfilled these criteria and had their cPP assessed. These patients were 

recruited in Brescia, Italy (n=45); Glasgow, United Kingdom (n=148); Krakow, 

Poland (n=127); Hechtel-Eksel, Noordenkempen, Belgium (n=78); Lund, Sweden 

(n=37); Nancy, France (n=25); Paris, France (n=12); and Valencia, Spain (n=63). 

Anthropometric data were collected according to local standards, and BSA was 

calculated using the Dubois & Dubois formula. All participants gave written 
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informed consent. The study was approved by local research ethics committees 

at each participating centre. 

3.2.2 Blood pressure measurements 

Standard blood pressure measurements in supine position are described in 

chapter 2.4. In the Belgian study centre blood pressure was measured with a 

standard mercury sphygmomanometer in both arms.  

For measurement of blood pressure in supine position participants rested for at 

least 15 minutes, and the arm with higher sitting blood pressure was selected. 

After at least five additional minutes in supine position radial arterial pressure 

waveforms were recorded with a Millar piezo-resistive pressure transducer 

(Millar SPT 301, Millar Instruments, Houston, USA) coupled to a SphygmoCor 

device (AtCor Medical, Sydney, Australia). Supine blood pressure recorded with 

an automated digital oscillometric sphygmomanometer was employed for 

calibration, and with the obtained waveform the corresponding central 

(ascending aortic) waveform was generated using a generalised and validated 

[328] transfer function. Pulse pressure was defined as the difference between 

SBP and DBP. cPP and pPP were calculated based on aortic SBP and DBP and 

corresponding brachial readings in supine position, respectively. Mean arterial 

pressure in supine position was calculated with the integration of the radial 

waveform. The pulse pressure ratio was defined as cPP/pPP. 

3.2.3 Biomarkers of the intermediate cardiovascular phenotype 

Measurement of C-IMT was performed as described in chapter 2.6.1. 

Echocardiography followed a standardised procedure in all centres as described 

in chapter 2.7. According to ECG criteria LVH was present in 9% of study 

participants recruited in Glasgow. Data from other study centres were 

unavailable.  

Aortic PWV was measured as described in chapter 2.6.5. Exceptions are the 

centres in Brescia and Paris who used the Complior (Colson, Garges-les-Gonesse, 

France), and the centre in Nancy who used the PulsePen device (DiaTecne s.r.l., 

Milan, Italy). The SphygmoCor and PulsePen devices used the subtracted 

distance approach to estimate travel distance, whereas the Complior device 
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used the direct carotid-femoral distance. PWV was determined from the foot-to-

foot time interval of waveforms. PWV based on direct carotid femoral distance 

was converted to PWV based on subtracted distance. 

Urinary albumin:creatinine ratio (ACR) was measured in local laboratories 

according to local practice. Measurements below the local detection limits were 

not further evaluated (n=85). Subjects with macroalbuminuria (ACR"25 

mg/mmol in men and "35 mg/mmol in women, n=2) were excluded from 

analysis. The eGFR was calculated with the MDRD formula. 

3.2.3.1 Statistical analyses 

Data were analysed using SPSS software (version 15.0). Correlations were 

assessed by calculating Pearson’s correlation coefficient. We used Steiger’s Z-

test to compare bivariate correlations within a single population. To explore the 

effects of several influencing factors on the correlations between pulse pressure 

and intermediate phenotypes a two-step approach was used. First, multivariable 

regression models containing either cPP or pPP and other possible determinants 

of target organ damage were designed. Secondly, the independent variables 

were excluded if not significantly contributing to a regression model containing 

the pulse pressures. The corresponding models containing either cPP or pPP 

were compared using a one sample t-test on the differences between the 

residuals (|REScPP|-|RESpPP|) of the respective regression models. 

3.3 Results 

3.3.1 Demographics 

Clinical characteristics of the study cohort are shown in Table 3.2. Study centre 

distribution is illustrated in Figure 2.1. Clinical characteristics stratified by study 

centre are listed in Table 3.3, and chapter relevant biomarkers values (age, cPP, 

pPP, PWV and C-IMT) are illustrated for each study centre in Figure 3.1. Also the 

gender distribution is illustrated in Figure 3.2. There were no statically 

significant differences between the gender for age and the biomarkers cPP, PWV 

and C-IMT. Peripheral pulse pressure and LVMI were higher in men (P<0.001).   
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Table 3.2 Clinical characteristics. 

 
 Hypertensive 

n=331 
Normotensive 
n=204 

P-
value 

Age, years 51±15 39±16 <0.001 
Sex, male/female 156/175 85/119 0.026 
Height, cm 168±9 168±9 ns 
Weight, kg 79.6 [70.0;91.0] 70.9 [61.5;82.2] <0.001 
BMI, kg/m# 27.7 [25.0;31.4] 24.9 [22.0;28.4] <0.001 
Sitting pSBP, mmHg 141±16 128±14 <0.001 
Sitting pDBP, mmHg 85±10 78±9 <0.001 
Sitting Heart rate, /min 69±12 71±10 ns 
Coronary heart disease, 
% 

4.4 2.0 0.02 

Creatinine, µmol/L 78 [64;87] 72 [62; 83] 0.01 
eGFR, ml/min 89±21 99±25 <0.001 
Diabetes mellitus, % 10.0 3.0 <0.001 
Supine pSBP, mmHg 135 [125;146] 126 [117;135] <0.001 
Supine pDBP, mmHg 81±11 76±9 <0.001 
Supine mean arterial 
pressure, mmHg 

100±12 93±11 <0.001 

Supine cSBP, mmHg 123 [114;135] 113 [102;124] <0.001 
Supine cDBP, mmHg 82±11 77±10 <0.001 
Supine pPP, mmHg 54 [46;63] 49 [43;57] <0.001 
Supine cPP, mmHg 42 [35;50] 34 [29;43] <0.001 
C-IMT, mm  0.62 [0.52;0.75] 0.55 [0.48;0.65] <0.001 
LVMI, g/m2.7  41.6 [35.4;49.0] 35.4 [30.5;41.5] <0.001 
PWV, m/s 8.12 [7.08;9.70] 7.00 [6.10;7.88] <0.001 
ACR, mg/mmol 0.74 [0.48;1.28] 0.69 [0.39;1.17] ns 
 

All data are presented as mean ± standard deviation or median [interquartile range]. SBP, 
DBP and PP denote systolic blood pressure, diastolic blood pressure and pulse pressure, 
respectively, with “p” and “c” indicating peripheral (brachial) and central (aortic) readings. 
BMI, body mass index (weight/height2); C-IMT, carotid intima-media thickness; LVMI, left 
ventricular mass index; PWV, aortic pulse wave velocity, ACR (n=338), albumin:creatinine 
ratio. Diabetes status was assessed by interview/questionnaire and random glucose where 
required
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Table 3.3 Clinical characteristics stratified by study centre. 

 
Centre Brescia, 

Italy 

Paris, 

France 

Nancy, 

France 

Glasgow, 

UK 

Leuven, 

Belgium 

Valencia, 

Spain 

Lund, 

Sweden 

Krakow, 

Poland 

ANOVA,  

P-value  

N 45 12 25 148 78 63 37 127 - 

Hypertension, yes/no 28/17 12/0 18/7 85/63 37/41 42/21 21/16 88/39 0.004 

Gender, male/female 21/24 5/7 9/16 60/88 37/41 34/29 19/18 54/73 ns 

Age, years 49±16 59±14 47±19 44±16 50±14 45±15 56±15 41±15 <0.001 

Sitting SBP, mmHg 130±16 135±16 146±18 138±16 133±15 134±18 142±17 136±15 <0.001 

Sitting DBP, mmHg 82±9 82±7 85±9 82±10 84±9 79±12 83±10 82±10 ns 

HR, /min 68±8 65±16 67±8 72±12 64±9 72±4 68±10 72±10 <0.001 

Supine pSBP, mmHg 129±17 126±9 126±15 133±17 134±15 131±18 129±15 136±17 0.021 

Supine pDBP, mmHg 77±4 70±7 68±8 79±9 83±9 78±12 77±9 81±11 <0.001 

Supine cSBP, mmHg 119±18 117±12 112±15 121±18 125±16 120±17 118±15 123±19 0.023 

Supine cDBP, mmHg 78±11 71±7 69±8 80±9 84±9 79±12 78±9 82±4 <0.001 

Height, cm 167±10 166±9 170±9 169±9 169±10 165±11 172±10 169±9 ns 

Weight, kg 73±14 74±13 75±15 79±19 80±18 82±18 78±16 76±16 ns 

BMI, kg/m2 26±4 27±5 26±5 28±6 28±5 30±6 27±5 27±5 0.001 

Creatinine, !mol/l 70±22 82±23 95±16 76±15 88±29 78±19 75±14 67±12 <0.001 

eGFR, ml/min 100±22 80±17 68±12 91±19 78±18 92±19 89±18 108±25 <0.001 
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Figure 3.1 Comparison of surrogate biomarkers between study centres. Centres are 
depicted by their study identification number (4=Brescia, Italy; 8=Paris, France; 9=Nancy, 
France; 10=Glasgow, UK; 13=Leuven, Belgium; 18=Valencia, Spain; 22=Lund, Sweden; 
25=Krakow, Poland). 
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Figure 3.2 Surrogate biomarkers stratified by gender. From left to right are depicted age in 
years (red), cPP in mmHg (yellow), pPP in mmHg (dark blue), PWV in dm/s (light blue), C-IMT 
in 10-2 mm (dark green) and LVMI in g/m2.7. Except higher pPP and LVMI in men (P<0.001), no 
significant differences between the genders were observed (P=ns).  
 

 

Figure 3.3 Pulse pressure ratios. Comparison of pulse pressure ratio (cPP/pPP) in 
hypertensive (grey) and normotensive (black) groups by decade. Error bars represent 
standard errors. 

 
Hypertension was diagnosed in 79% (n=261) of study participants before the age 

of 50 years. In the hypertensive group 84% (n=273) were treated, of those 83% 

(n=227) were at least on two different drugs (70% with angiotensin-converting 

enzyme inhibitor or angiotensin receptor blocker, 46% with !-blocker, 38% with 
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calcium channel blocker, 52% with diuretics and 5% with other antihypertensive 

agents). Of the hypertensive subjects 52% had a SBP higher than 140 mmHg and 

31% a DBP higher than 90 mmHg. Normotensive subjects in our study were 

characterised by higher PWV compared to reference values (Table 3.4). Pulse 

pressure ratio progressively increased through the first six decades of life, with 

no difference between normotensive and hypertensive subjects across all 

decades of age (Figure 3.3). Therefore the cohort was investigated as a whole. 

Table 3.4 PWV according to age category in normotensive subjects. 

 
Age 

category 

(years) 

N 
PWVsphygmocor 

Median (10-90 pc) 

PWVdirect_distance*0.8 

Median (10-90 pc) 

PWVReference  

Median (10-90 pc) 

Numerical 

comparison  

      

<30 37 6.1 (4.8-7.0) 6.8 (5.6-7.7) 6.1 (5.3-7.1) > 

30-39 24 7.0 (5.8-7.8) 7.8 (6.3-8.7) 6.4 (5.2-8.0) > 

40-49 21 6.4 (5.3-7.1) 7.1 (5.9-7.8) 6.9 (5.9-8.6) ! 

50-59 8 7.5 (6.0-7.6) 7.9 (6.5-7.9) 8.1 (6.3-10.0) ! 

For comparison with PWVReference values of a normal population with supine optimal or 
normal BP [369], PWV as measured by the Sphygmocor device was transformed according 
to the papers specifications (PWVdirect distance*0.8) and displayed in m/s. Only data from 
subjects with blood pressure <130/85 mmHg are displayed in this table as normal values 
were restricted to this BP range [369]. 

 
3.3.2 Univariate analysis 

cPP, pPP, C-IMT, PWV, LVMI and ACR were not normally distributed and were log 

transformed to obtain normally distributed residuals for all regression models. 

Unless otherwise stated data on these phenotypes refer to log transformed 

values. cPP and pPP were strongly correlated (r=0.845; P<0.001). There were 

strong correlations between age and cPP (r=0.559; P<0.001) and pPP (r=0.277; 

P<0.001), PWV (r=0.563; P<0.001), C-IMT (r=0.652; P<0.001), LVMI (r=0.563; 

P<0.001) and eGFR (r=-0.517, P<0.001); the correlation between age and ACR 

was not statistically significant (r=0.101, P=0.063). The association between cPP 

and age was significantly stronger (Z=13.1, P<0.01) than that between pPP and 

age. Scatterplots of intermediate phenotypes vs age are depicted in Figure 3.4. 
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Figure 3.4 Relationship of age to CVD biomarkers. Shown are the relation of age to C-IMT 
(A), arterial PWV (B), LVMI (C), eGFR (D), cPP (E) and pPP (F). Depicted are 95% confidence 
intervals around linear fitting line as well as Spearman correlation coefficients. Only the 
association age to eGFR is represented with a Pearson correlation coefficient.  

 
We then compared the correlations between cPP or pPP and intermediate 

cardiovascular phenotypes including PWV, C-IMT, LVMI and ACR (Figure 3.5). 

Correlations between pPP and eGFR were not statistically significant, and were 

not investigated further. With exception of ACR, correlations between cPP and 

intermediate phenotypes were stronger than those with pPP in these univariate 

analyses (Table 3.5). The findings were similar for the association of central or 

peripheral SBP with intermediate phenotypes (Table 3.5). 
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Figure 3.5 Relationship between pulse pressure and surrogate biomarkers. Scatterplots 
between log(pulse wave velocity) and either log(central pulse pressure) (A) or log(peripheral 
pulse pressure) (B). Scatterplots between log(carotid intima-media thickness) and either 
log(central pulse pressure) (C) or log(peripheral pulse pressure) (D). Scatterplots between 
log(LVMI) and either log(central pulse pressure) (E) or log(peripheral pulse pressure) (F). 
Scatterplots between log(albumin creatinine ratio) and either log(central pulse pressure) (G) 
or log(peripheral pulse pressure) (H). 
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Table 3.5 Correlations between pulse pressure and surrogate biomarkers. 

 
 Pearson’s correlation coefficient Steiger’s Z P-value 

 cPP pPP cSBP pSBP   

0.426 0.235 - - 7.789 < 0.01 
C-IMT 

- - 0.478 0.417 3.112 < 0.01 

0.471 0.372 - - 4.142 < 0.01 
PWV 

- - 0.326 0.193 5.868 < 0.01 

0.385 0.189 - - 6.015 < 0.01 
LVMI 

- - 0.391 0.297 4.445 < 0.01 

0.236 0.226 - - 0.3393 ns 
ACR 

- - 0.197 0.199 -0.0673 ns 

 
Pearson’s correlation coefficients are displayed in the table and were calculated on log 
transformed variables. All correlations were significant (P < 0.01). Z and P-values refer to 
the comparison between central (cPP) and peripheral pulse pressure (pPP) or central 
(cSBP) and peripheral systolic blood pressure (pSBP). C-IMT, carotid intima-media 
thickness; PWV, pulse wave velocity; LVMI, left ventricular mass index; ACR, albumin 
creatinine ratio. 

 
3.3.3 Multivariate analysis 

We accounted for other potential determinants in linear regression analysis 

(Table 3.7). Models contained hypertension status, mean arterial pressure, heart 

rate, gender, diabetes status and BSA and were reduced to those variables in 

addition to cPP or pPP that contributed significantly (P<0.05) to the model 

(Table 3.6). A regression model for pPP was developed using a stepwise 

approach to include and exclude potential determinants. The significant 

determinants were then forced into a regression model for cPP in order to 

directly compare the two models. 

In these analyses the coefficients of variation were similar between models 

containing cPP or pPP, indicating similar predictive value of cPP and pPP when 

adjusted for relevant cofactors. To evaluate this formally, variability of the 
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residuals was compared between the models. The difference between the 

models containing cPP or pPP was borderline significant for prediction of PWV 

(P=0.066) with pPP having numerically the higher adjusted coefficient of 

determination (Table 3.6). Similarly, there was no difference between models to 

predict C-IMT (P=0.487) and LVMI (P=0.094) that contained cPP or pPP. We have 

further studied these models separately in individuals without !-blocker therapy 

(n=394; PWV, P=0.050; C-IMT, P=0.844; LVMI, P=0.867), in normotensive subjects 

(n=204; PWV, P=0.139; C-IMT, P=0.795; LVMI, P=0.917) and in hypertensive 

subjects (n=331; PWV, P=0.242; C-IMT, P=0.575; LVMI, P=0.989); and again no 

significant difference in the adjusted coefficients of determination between 

models with cPP and those with pPP was detected. 

Table 3.6 Best fitting regression models containing either cPP or pPP for prediction of 
intermediate cardiovascular phenotypes. 

 
 Central Peripheral 

 ! P-value ! P-value 
 log(PWV) 
R2adj 0.399 0.413 
Hypertension, (yes/no) 0.112 0.003 0.086 0.020 
Heart Rate, bpm 0.128 0.001 0.098 0.009 
Age, yrs 0.460 <0.001 0.515 <0.001 
MAP, mmHg 0.089 0.044 0.111 0.006 
log(PP) 0.226 <0.001 0.220 <0.001 
 log(C-IMT) 
R2adj 0.429 0.428 
Age, yrs 0.598 <0.001 0.633 <0.001 
log(PP) 0.097 0.020 0.076 0.037 
 log(LVMI) 
R2adj 0.181 0.170 
Age, yrs 0.318 <0.001 0.386 <0.001 
log(PP) 0.160 0.002 0.085 0.051 

 
Regression models containing either log(cPP) or log(pPP) and determining log(PWV), log(C-
IMT) and log(LVMI) are summarised. Adjusted coefficients of variation (R2adj), !-coefficients 
and p-values corresponding to the independent variables of the regression models are 
listed. Full models are shown in Table 3.7. 
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Table 3.7 Linear regression models incorporating either cPP or pPP 

 
 log(C-IMT) log(PWV) log(LVMI) 
Variables B SE ! p-value B SE ! p-value B SE ! p-value 
R2adj (log cPP) 0.443 0.410 0.245 
Constant -0.562 0.088 ! <0.001 2.346 0.094 ! <0.001 1.481 0.100 ! <0.001 
log cPP 0.088 0.038 0.108 0.021 0.189 0.040 0.226 <0.001 0.043 0.052 0.045 0.402 
BSA, m" 0.067 0.022 0.144 0.002 0.025 0.022 0.054 0.265 - - - - 
Hypertension, yes/no -0.013 0.009 -0.060 0.140 0.022 0.009 0.106 0.009 0.019 0.012 0.075 0.106 
MAP, mmHg 0.001 0.001 -0.049 0.256 0.001 0.001 0.034 0.431 0.002 0.001 0.156 0.001 
Heart Rate, bpm 0.001 0.001 -0.053 0.165 0.001 0.001 0.139 <0.001 -0.001 0.001 -0.094 0.033 
Age, years 0.004 0.001 0.619 <0.001 0.003 0.001 0.426 <0.001 0.002 0.001 0.266 <0.001 
Gender, m/f -0.003 0.009 -0.015 0.733 -0.010 0.010 -0.051 0.281 -0.034 0.010 -0.139 0.001 
Diabetes mellitus, 
yes/no -0.005 0.015 -0.012 0.737 -0.030 0.016 -0.069 0.070 -0.057 0.021 -0116 0.007 

              
R2adj (log pPP) 0.440 0.418 0.244 
Constant -0.557 0.097 ! <0.001 2.233 0.102 ! <0.001 1.600 0.114 ! <0.001 
log pPP 0.074 0.041 0.070 0.075 0.229 0.042 0.218 <0.001 -0.040 0.056 -0.032 0.480 
BSA, m" 0.064 0.022 0.138 0.003 0.025 0.022 0.054 0.267 - - - - 
Hypertension, yes/no -0.012 0.009 -0.057 0.159 0.023 0.008 0.109 0.007 0.019 0.012 0.075 0.106 
MAP, mmHg 0.001 0.001 -0.034 0.411 0.001 0.001 0.041 0.330 0.002 0.001 0.181 <0.001 
Heart Rate, bpm -0.001 0.001 -0.071 0.057 0.001 0.001 0.109 0.004 -0.001 0.001 -0.104 0.015 
Age, years 0.004 0.001 0.650 <0.001 0.003 0.001 0.487 <0.001 0.002 0.001 0.289 <0.001 
Gender, m/f -0.001 0.009 -0.006 0.895 -0.003 0.010 -0.014 0.771 -0.034 0.010 -0.141 0.001 
Diabetes mellitus, 
yes/no -0.006 0.016 -0.013 0.713 -0.026 0.016 -0.061 0.107 -0.062 0.021 -0.125 0.003 

 

Regression analysis containing either log(cPP) or log(pPP) and determining log(PWV), log(C-IMT) and log(LVMI) with all variables forced into the models 
are summarised. Adjusted coefficients of variation (R2adj), !-coefficients and p-values corresponding to the independent variables of the regression 
models are listed. Reduced models are shown in Table 3.6. 
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3.4 Discussion 

3.4.1 Pulse pressures and intermediate phenotypes 

Intermediate cardiovascular phenotypes reflect progression of cardiovascular 

disease and help to assess response to therapeutic intervention. Therefore, 

assessment of subclinical organ damage by measuring C-IMT, left ventricular 

hypertrophy and PWV contributes to cardiovascular risk stratification [172, 174, 

370, 371]. 

PP is a strong determinant of subclinical and overt organ damage [368, 372, 

373]. In univariate analysis we have demonstrated for the majority of 

intermediate cardiovascular phenotypes a stronger correlation with cPP than 

with pPP. For C-IMT, for example, the univariate models translate into an 

increase in C-IMT by 0.035 mm per 10 mmHg of cPP and 0.025 mm by 10 mmHg 

of pPP. This finding is in line with previous studies on C-IMT [366, 372] and LVMI 

[368] where local PP was found to be more strongly associated compared to 

peripheral PP. In our study, similar results were obtained for the relationships 

between central or peripheral SBP and subclinical organ damage. The equally 

strong association of cPP and pPP with ACR can be explained with the changes of 

PP along the arterial tree. It has been reported that the increase of PP from the 

central aorta to the aorta at the level of renal arteries [374] is similar to the 

difference between cPP and pPP [375].  

Despite the apparently stronger association of cPP with end organ damage, 

multivariate models containing either cPP or pPP were equally strong in 

predicting intermediate cardiovascular phenotypes. As indicated by the !-

coefficients, age is the major contributor to these models, and in line with 

previously reported data [375] we confirmed that cPP is stronger associated with 

age than pPP. Consequently, multivariate models containing pPP and age had 

similar coefficients of determination as those containing cPP. Similar 

observations were made previously for models predicting C-IMT from local and 

peripheral PP [372], and we have now extended these findings to other 

intermediate phenotypes in a relatively large cohort. 
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3.4.2 Specific characteristics of the study cohort 

A large number of our study participants had early-onset hypertension and were 

treated for several years. Furthermore the majority of subjects had ! grade 2 

hypertension and despite treatment only 48% of hypertensives had a normalised 

blood pressure owing to recruitment of the majority of index patients from 

clinics in tertiary referral centres. As the cohort mostly represents mixed systolic 

and diastolic hypertension the results do not cover rarer forms as isolated 

systolic hypertension in the young. The study design favoured inclusion of 

patients with a strong genetic component to their blood pressure.  

This might explain why the PP ratio in our normotensive subjects was greater 

than that in a previous study [360]. These findings in our normotensive study 

participants could indicate early vascular ageing [376] and support a role of 

genetic factors in the development of vascular stiffness [377, 378]. Despite its 

cross-sectional nature the cohort displays different stages of the hypertension 

continuum. 

Antihypertensive therapy leads to reduction of left ventricular hypertrophy 

[207], PWV [364] and C-IMT [379] which may affect some of our findings. It 

should further be noted that antihypertensive therapy exerts different effects on 

cPP and pPP. In particular !-blockers have been found to reduce cPP less 

substantially than calcium channel blockers in association with angiotensin-

converting enzyme inhibitors or angiotensin receptor [363, 364]. We are, 

however, confident that the primary finding of our study is not affected by 

treatment as after exclusion of all subjects treated with !-blockers the 

variability of the residuals was not statistically significant between the 

regression models containing cPP or pPP.  

3.4.3 Limitations 

Our present study analysed data from several European centres that were 

generated according to predefined protocols but not read centrally in a core lab. 

We have therefore compared data and the spread of data between the centres. 

Although on formal testing there were differences between centres for some of 

the phenotypes the spread of data appeared acceptable; cPP and pPP were in 
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fact similar across all study centres. Moreover, the tight relationships between 

age and markers of organ damage and the lack of significant gender effects are 

reassuring of the quality of data. We do, however, acknowledge that this cross-

sectional study does not prove causality and that the regression models only 

contain some of the potential determinants of target organ damage. For 

example, the etiology of left ventricular hypertrophy is complex and includes 

factors other than blood pressure. 

3.4.4 Summary 

Increased arterial stiffness and accelerated age-associated vascular changes are 

typical features in patients with diabetes mellitus [380], cardiovascular risk 

factors [381] and chronic renal failure [382]. Relationships between central 

haemodynamic parameters and intermediate phenotypes have been reported 

previously in cross-sectional studies [366, 368, 373]. Longitudinal studies 

focusing on populations with high prevalence of diabetes mellitus [366], CAD 

[383] and end-stage renal disease [367] showed that cPP is a better predictor of 

outcome than pPP. Furthermore, augmentation pressure and index, other 

central haemodynamic parameters, were found to improve prediction of major 

cardiovascular events in a cohort with high prevalence of CAD independently of 

pPP [176]. In contrast, a recent meta-analysis showed no significant advantage 

of central over peripheral PP in longitudinal studies [384]. Evidence for cPP 

being more predictive in elderly hypertensive patients [365, 385] is 

controversial. 

In our middle aged cohort with high prevalence of hypertension cPP is more 

closely related to cardiovascular phenotypes than pPP. When adjusted for 

relevant cofactors, however, cPP does not provide additional information 

beyond pPP. Approximately 50% of hypertensive patients in this cohort were not 

treated to target. We therefore speculate that our findings may extend to 

untreated patients with hypertension. In these patients non-invasive assessment 

of cPP may therefore not provide additional information to brachial pulse 

pressure. 

Considering the chronic progressive character of the cardiovascular continuum 

these findings imply that biomarkers with prognostic value in later stages of the 
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CVD process are not necessarily predictive in the earlier disease stages. 

Regarding the investigated biomarker cPP it remains uncertain at which point of 

the cardiovascular continuum the biomarker becomes predictive. Early onset 

hypertension and being of middle age however position the individual or study 

cohort on the cardiovascular continuum prior to this point.  
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Chapter 4 Plasma biomarkers in coronary artery 
disease 

4.1 Introduction 

Cardiovascular disease (CVD) is a chronic progressive condition. This includes 

early arterial dysfunction, different degrees of atherosclerosis and myocardial 

damage or stroke. Considering this wide range of disease stages Dzau and 

Braunwald [54] introduced the concept of the cardiovascular continuum implying 

more disease burden at later stages. This includes higher quantities of serologic 

circulating biomarkers. In this context a number of circulating biomarkers were 

shown to indicate a high risk for CAD in patients with stable angina like 

symptoms. Examples of such circulating biomarkers are troponin I [217], NT-pro 

BNP [218], CRP, IL-6 and ICAM-1 [108]. The accurate diagnosis of stable angina is 

clinically important as patients have an increased cardiovascular risk and benefit 

from secondary preventative measures.  

These circulating biomarkers cover different pathophysiological aspects of 

atherosclerosis. We therefore hypothesised that assessment of multiple 

circulating biomarker could improve the diagnosis of CAD in stable angina 

patients, especially as the simultaneous assessment of multiple circulating 

biomarkers has been shown to improve cardiovascular risk prediction. For 

instance the combination of troponin I, NT-pro BNP, cystatin C and CRP can 

improve cardiovascular risk stratification by traditional risk factors in elderly 

men [61]. Also an approach with 9 circulating biomarkers in addition to the 

urinary albumin-to-creatinine ratio contributed to risk prediction in the 

Framingham study [60]. In contrast, in the HOPE study only NT-pro BNP out of 11 

biomarkers improved risk prediction by traditional risk factors [62]. We 

therefore evaluated the usefulness of different circulating biomarkers for 

diagnosing CAD in two different cohorts in the following chapter. Both cohorts 

represent populations at different stages of the cardiovascular continuum. The 

cohort with the greater disease burden was investigated first to screen for 

potential markers.  
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4.2 Material and Methods 

4.2.1 Study cohort 

A number of circulating biomarkers were tested in a convenience sample of 

patients with established CAD and age and sex matched controls of the VASCAB 

study and a convenience sample of patients with angiographically confirmed CAD 

and age matched patients with angiographically excluded CAD of the DiCADu 

study. The VASCAB study was a cross-sectional cohort study described in detail in 

chapter 2.1.1. Cases in the study had either severe three vessels or left main 

stem CAD in accordance with contemporary guidelines [344-347]. The DiCADu  

study cohort was described in chapter 2.1.3. The West of Scotland Research 

Ethics Committee approved both studies. Details on both studies are provided in 

Chapter 2.  

4.2.2 Plasma Biomarker Studies 

Blood samples were collected after at least three hours of fasting. Blood was 

sampled with the Vacutainer® system (BD, Franklin Lakes, USA). Serum and 

EDTA plasma samples were centrifuged immediately after collection at 3000 G 

for 10 minutes and the supernatant was kept at -80 °C using 1.5 ml Screwcap 

MCT tubes (Alpha Laboratories, Eastleigh, UK). For both studies CRP and 

cholesterol levels, as well as uric acid for the DiCADU study, were analysed in 

the clinical biochemistry laboratories at Gartnavel General Hospital, Glasgow. 

For the VASCAB study additional biomarkers were analysed using  WideScreen® 

BeadPlex™ multiplex assays (Merck, Darmstadt, Germany) on a Luminex® xMAP® 

Technology platform (Luminex Corporation, Austin, USA) as detailed in chapter 

2. Biomarkers were measured in serum and included IL-8, MCP-1, MIP-1!, TNF", 

E-selectin, ICAM-1, leptin, P-selectin, sRAGE, adiponectin, cystatin C, en-RAGE, 

PAI-1 and VCAM-1.  

In DiCADu study plasma samples a number of cardiac biomarkers were measured 

using a Randox Evidence Investigator and the producers Cardiac Array (Northern 

Ireland, United Kingdom).  A sandwich chemiluminescent immuno - assay used a 

Randox Biochip containing an array of discrete test regions of immobilised 

antibodies specific to Troponin I, myoglobin, CK-MB, CA III, GPBB and hFABP. In 
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the DiCADu study IL-6 and NT-proBNP were also quantified as described in 

chapter 2.  

All biomarkers are briefly summarised in Table 4.1.   

Table 4.1 Plasma related biomarkers quantified in the VASCAB and DiCADu study.  

 
Biomarker Definition Brief summary 

1. Inflammation 

- CRP C-reactive protein Acute phase protein, synthesised in the liver 

- IL-6 Interleukin-6 Interleukin amongst others secreted by 
vascular smooth muscle cells with pro-
inflammatory properties  

- IL-8 Interleukin-8 Chemokine inducing chemotaxis in 
granulocytes and macrophages, also a potent 
promoter of angiogenesis 

- TNF" Tumour necrosis factor 
alpha 

Cytokine involved in systemic inflammation, 
stimulant of the acute phase reaction 

- ICAM-1 Intercellular Adhesion 
Molecule 1 

Endothelium and leukocyte associated 
transmembrane protein stabilizing cell-cell 
interaction and important in leukocyte 
endothelial transmigration 

- VCAM-1 Vascular cell adhesion 
molecule 1 

Expressed after cytokine stimulation of 
vascular endothelial cells, mediates the 
adhesion of lymphocytes, monocytes, 
eosinophils and basophils 

- MCP-1 Monocyte chemotactic 
protein 1 

Involved in recruitment of monocytes, memory 
T cells and dendritic cells to inflamed tissue 
caused by injury or infection  

- MIP-1! Macrophage 
inflammatory protein 
1! 

Chemoattractant for natural killer cells and 
monocytes 

- E-selectin aka. Endothelial-
leukocyte adhesion 
molecule 1 

Cell adhesion molecule expressed exclusively 
on endothelial cells after cytokine activation 

- P-selectin aka. Platelet activation 
dependent granule to 
external membrane 
protein  

Essential component of the initial leukocyte 
recruitment to tissue inflammation, as well as 
for the recruitment and aggregation of platelets 
to sites of vascular injury  

- sRAGE Soluble receptor for 
advanced glycation 
end products 

Involved in chronic inflammation with positive 
feed back loop 

- enRAGE Extracellular receptor 
for advanced glycation 
end product – binding 
protein 

Secreted by neutrophils either in inflamed 
tissue or in the blood stream, transducing pro-
inflammatory signals and functioning as a 
chemoattractant 

2. Decreased fibrinolysis 

- PAI-1 Plasminogen Activator 
Inhibitor-1 

Principal inhibitor of tissue plasminogen 
activator and urokinase produced by 
endothelial cells 
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3. Metabolic Hormones 

- Leptin - Appetite inhibitor predominantly secreted from 
white adipose tissue 

- Adiponectin - Modulator of several metabolic processes 
including glucose regulation and fatty acid 
oxidation, exclusively secreted from adipose 
tissue 

4. Kidney Function 

- Cystatin C - Ubiquitous protein, functions as an inhibitor of 
lysosomal proteinases and extracellular 
inhibitor of cysteine proteases. More precise 
marker for kidney function than creatinine.  

5. Myocardial vulnerability 

- NT-proBNP N-terminal 
prohormone of Brain 
Natriuretic Peptide 

The 76 amino acid N-terminal fragment of 
BNP. Together with BNP secreted by 
ventricles in response to extensive stretching 
of heart muscle cells 

- CK-MB Creatine kinase 
isoenzyme MB 

Enzyme catalyzing the conversion of creatinine 
and ATP to phospho-creatine and ADP, 
predominantly expressed in heart muscle 

- Myoglobin - Iron and oxygen binding protein found in all 
muscle tissues, released from damaged 
muscle tissue  

- GPBB Glycogen 
phosphorylase 
isoenzyme B 

Expressed in heart and brain tissue only, very 
early release after myocardial damage 

- hFABP Heart type fatty acid 
binding protein 

Intracellular fatty acid transporter, released 
from myocytes following ischaemia 

- Troponin I -  Part of the troponin complex, released after 
myocardial damage 

- CA III Carbonic anhydrase 3 Metalloenzyme catalysing the hydration of 
CO2, exclusive for muscle cells 

 
Listed are abbreviations, full names and brief explanations for each marker. Markers are 
grouped according to their involvement in cardiovascular disease. ATP, adenosine 
triphosphate; ADP, adenosine diphosphate, CO2, carbon dioxide; aka, also known as. 

4.2.3 Statistics 

As suggested by Lubin et al. [386], measurements below the detection limit were 

imputed with half of the detection limit when the quantity of such 

measurements was less than 10% of the total. In case 10-30% of biomarker levels 

were below the detection limit a random fill-in was chosen. If more than 30% of 

measurements were below the detection limit multiple imputation was used. In 

case of troponin I, values below the detection limit of <0.18 ng/ml were 

imputed using other markers of myocardial ischaemia as predictors. 
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We adjusted biomarkers for the contributing factors sex, BMI and diabetes in the 

DiCADu study. Biomarkers which were not normally distributed were log 

transformed to the base 10. In case the resulting data were normally distributed 

they were entered into a linear regression model with the additional 

independent variables sex, BMI and diabetes. Normally distributed data were 

directly entered in the regression model. Finally the residuals of the regression 

models of CAD and NCA patients were compared.  

The two sample Student’s t test or the Mann Whitney test were conducted as 

appropriate for the comparison of two groups of paired observations for 

continuous data. For comparison of categorical data of independent groups the 

Chi-squared test was employed. A stepwise binary logistic regression model was 

used to test the value of different biomarkers for prediction of CAD. The 

probability of CAD was calculated as 1/(1+e-x) where x=a1*x1+a2*x2+….+B where a 

is the logistic regression coefficient corresponding the different phenotypes and 

B is the intercept term. Using corresponding probabilities a ROC-curve was 

drawn. In general, a P-value of less than 0.05 was considered significant. Data 

were analysed using SPSS software, version 19.0 (SPSS Inc., Chicago, USA). 

4.3 Results 

4.3.1 Study cohorts 

In the VASCAB study 40 patients with severe CAD were age and if possible sex 

matched with 40 healthy control subjects. To enlarge the investigated cohort 

four additional CAD subjects with similar age distribution were added. In the 

DiCADu study 29 patients with significant CAD were age matched with 29 

patients with normal coronary arteries. The age distribution of the remaining 

control subjects allowed to add ten further subjects to the control group. 

Clinical and demographic data of study participants are shown in Table 4.2.  
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Table 4.2 Demographic and clinical characteristics of VASCAB and DiCADu patients selected for circulating biomarker investigation.  

 
 DiCADu VASCAB 
 CAD, n=29 NCA, n=39 P-value CAD, n=44 Control, n=40 P-value 
Age, years 54±6 56±7 ns 62±10 62±9 ns 
Sex, m/f 15/14 12/27 ns 42/2 32/8 0.03 
BMI, kg/m2 28±4 28±7 ns 29±5 26±3 0.008 
SBP, mmHg 134±18 138±17 ns 136±20 136±19 ns 
DBP, mmHg 80±10 81±9 ns 79±12 81±11 ns 
Heart rate, /min 57±10 62±10 ns 65±12 67±11 ns 
Total cholesterol, mmol/l 4.3 [3.6;5.6] 5.0 [4.3;5.7] 0.029 4.0 [3.5;4.9] 5.6 [4.8;6.2] <0.001 
LDL-cholesterol, mmol/l 2.4±1.1 2.9±1.3 ns 2.1±0.8 3.3±0.8 <0.001 
HDL-cholesterol, mmol/l 1.2 [0.9;2.1] 1.2 [1.1;1.7] ns 1.1±0.3 1.4±0.4 0.001 
Triglycerides, mmol/l 1.4 [0.9;2.1] 1.6 [1.0;2.5] ns 2.0 [1.3;2.7] 1.4 [1.0;2.3] 0.029 
Hypertension History, % 68 57 ns 60 23 <0.001 
Positive Family History, % 79 86 ns 34 48 ns 
Diabetes History, % 17 13 ns 27 0 <0.001 
Active smoking, % 30 47 ns 7 5 ns 
Statin, % 90 49 <0.001 88 10 <0.001 
Aspirin, % 93 36 <0.001 86 15 <0.001 
Beta-blocker, % 86 21 <0.001 84 3 <0.001 
ACEI/ARB, % 41 28 ns 60 8 <0.001 

 
Data is displayed as means±SD and medians [IQR]. SD, standard deviation; IQR, interquartile range; CAD, coronary artery disease; NCA, normal coronary 
arteries; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-cholesterol, low density cholesterol; HDL-cholesterol, 
high density cholesterol. 



169 

          

169 

4.3.2 Biomarker assessment 

Circulating biomarkers in cases and controls of the VASCAB study are shown in 

Table 4.3. Levels of IL-8, TNF!, en-RAGE, VCAM-1, CRP, cystatin C and PAI-1 

were significantly higher in patients with CAD compared to controls. There was 

no statistically significant difference in levels of MCP-1, MIP-1ß, E-selectin, 

ICAM-1, leptin, P-selectin, sRAGE and adiponectin. As several inflammatory 

biomarkers were highly significantly different between patients and controls 

(P!0.001) in the VASCAB cohort measurement of only one or two inflammatory 

markers was considered reasonable in the DiCADu study to avoid redundancy. 

Considering costs and availability in local laboratories CRP was selected. IL-6 

was previously measured in VASCAB samples, as shown in Table 2.7. Due to a 

very high number of samples with values below the detection limit multiple 

imputation appeared not reasonable and results are therefore not provided in 

Table 4.3. Considering the good evidence for IL-6 in prognosis of CVD, as 

described in subchapter 1.5.5, the biomarker measured with a different assay 

was selected for the DiCADu cohort.  

Table 4.3 Circulating biomarker levels in the VASCAB cohort.  

 
 CAD 

(n=44) 
Controls 
(n=40) 

p-value 

Interleukin-8, pg/ml 3.3 [1.4;5.1] 1.9 [0.4;3.4] 0.009 
MCP-1, pg/ml 96 [61;119] 99 [61;15- ns 
MIP-1ß, pg/ml 100 [58;149] 88 [70;128] ns 
TNF!, pg/ml 0.45 [0.03;0.79] 0.15 [0;0.49] 0.03 
E-selectin, ng/ml 2.2 [1.3;3.4] 1.9 [1.2;2.4] ns 
ICAM-1, ng/ml 14 [13;18] 13 [11;14] ns 
Leptin, ng/ml 1.5 [0.9;2.4] 0.8 [0.4;1.7] ns 
P-selectin, ng/ml 32±12 32±12 ns 
sRAGE, ng/ml 0.8 [0.5;1.6] 1.2 [0.8;1.5] ns 
Adiponectin, ng/ml 558 [175;1418] 322 [91;1015] ns 
Cystatin C, ng/ml 2090 [1088;3215] 760 [406;1607] <0.001 
en-RAGE, ng/ml 18 [5;35] 5 [0;14] <0.001 
PAI-1, ng/ml 60 [26; 143] 15 [10; 45] <0.001 
VCAM-1, ng/ml 422 [145;703] 107 [36;245] <0.001 
CRP, mmol/l 2.6 [1.4;5.9] 1.1 [0.8;2.6] 0.001 

 
Compared are patients with coronary artery disease (CAD) to control subjects. Data is 
displayed as means±SD and medians [IQR]. SD, standard deviation; IQR, interquartile 
range; MCP-1, monocyte chemotactic protein 1; MIP-1ß, macrophage inflammatory protein 
1ß; TNF! , tumour necrosis factor alpha; ICAM-1, intercellular adhesion molecule 1; VCAM-1, 
vascular cell adhesion molecule 1; sRAGE, soluble receptor for advanced glycation end 
products; en-RAGE, extracellular receptor for advanced glycation end product; PAI-1, 
plasminogen activator inhibitor 1; CRP, C-reactive protein; ns, non-significant. 
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Table 4.4 Circulating biomarker levels in the DiCADu cohort.  

 
 CAD 

(n=29) 
NCA 

(n=39) p-value 

Uric acid, mmol/l 0.30±0.08 0.31±0.09 ns 
NT-proBNP, pg/ml 116 [56;159] 69 [41;139] ns 
CK-MB, ng/ml 128 [1;297] 146 [1;282] ns 
Myoglobin, ng/ml 616 [15;3501] 817 [17;2537] ns 
GPBB, ng/ml 49 [2;187] 108 [2;246] ns 
hFABP, ng/ml 66 [1;136] 74 [1;151] ns 
CA3, ng/ml 1070 [11;2252] 1418 [12;2191] ns 
Troponin I, ng/ml 0.025 [0.012;24] 22 [0.014;25] ns 
IL-6, pg/ml 0.7 [0.5;1.8] 0.9 [0.5;1.4] ns 
CRP, mmol/l 1.9 [1.0;4.3] 4.0 [2.0;7.4] ns 

 
Compared are patients with coronary artery disease (CAD) to those with normal coronary 
arteries (NCA). Data is displayed as means±SD and medians [IQR]. SD, standard deviation; 
IQR, interquartile range; BNP, brain natriuretic peptide; CK-MB, creatine kinase isoenzyme 
MB; GPBB, glycogen phosphorylase isoenzyme BB; hFABP, heart type fatty acid binding 
protein; CA3, carbonic anhydrase 3. 

To adjust the circulating biomarkers in the DiCADu study for contributing factors 

data was log transformed. The corresponding data was only normally distributed 

for NT-proBNP (CAD vs. NCA; 2.0±0.4 vs. 1.9±0.4, P=ns), IL-6 (CAD vs. NCA; -

0.06±0.42 vs. -0.05±0.32, P=ns) and CRP (CAD vs. NCA; 0.34±0.51 vs. 0.53±0.45, 

P=ns). The residuals of the linear regression models with log transformed NT-

proBNP, IL-6 or CRP or the original urate levels as dependent variables and 

independent variables sex, BMI and diabetes are shown in Table 4.5.  

Table 4.5 Circulating biomarker levels in the DiCADu cohort after adjustment for sex, BMI 
and diabetes.  

 
 CAD NCA p-value 
RESUric acid -0.15±0.92 0.16±1.03 ns 
RESNT-proBNP 0.06±0.78 -0.04±1.09 ns 
RESIL-6 -0.02±1.15 0.01±0.86 ns 
RESCRP -0.17±1.01 0.17±0.93 ns 

 
Compared are patients with coronary artery disease (CAD) to those with normal coronary 
arteries (NCA). Listed are the residuals of linear regression models containing the named 
biomarker and sex, diabetes and body mass index. Data is displayed as means±SD and 
medians [IQR]. SD, standard deviation; IQR, interquartile range; BNP, brain natriuretic 
peptide; CRP, C-reactive protein; IL-6, interleukin 6.  
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4.3.3 Multiple marker approach 

All biomarkers with a significant difference between CAD patients and controls 

in the VASCAB study, listed in Table 4.3, were entered into a stepwise regression 

model. The strongest model with the highest R-value (R2 = 0.229) contained 

VCAM-1 and IL-8. The corresponding regression model parameters are listed in 

Table 4.5 as model 1. The ROC curves illustrating model 1 and its contributing 

biomarkers are depicted in Figure 4.1. The same figure also contains a list of 

related c-statistics values. The two biomarker model has an AUC of 0.770. The 

single markers have an AUC of 0.753 and 0.654 for VCAM-1 and IL-8, 

respectively.  

Table 4.6 Regression models to predict CAD in the VASCAB study.  

 

Biomarker !-coefficient p-value 

Model 1 

Constant - <0.001 

VCAM-1 0.402 <0.001 

IL-8 0.233 0.027 

Model 2 

Constant - <0.001 

VCAM-1 0.342 0.001 

BMI 0.306 0.004 

IL-8 0.257 0.013 

 
For model 1 IL-8, TNF! , cystatin C, en-RAGE, PAI-1, VCAM-1 and CRP were entered into a 
linear stepwise regression model. For model 2 sex, age, diabetes history, BMI and systolic 
blood pressure were added to the biomarkers in model 1 for a linear stepwise regression. 
IL-8, interleukin-8; TNF! , tumour necrosis factor alpha; VCAM-1, vascular cell adhesion 
molecule 1; en-RAGE, extracellular receptor for advanced glycation end product; PAI-1, 
plasminogen activator inhibitor 1; CRP, C-reactive protein; BMI, body mass index.  
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In a second step sex, age, history of diabetes, BMI and SBP were added to the 

circulating biomarkers with significant difference between VASCAB CAD patients 

and controls in a stepwise regression model. The strongest model (R2 = 0.325) 

contained VCAM-1, BMI and IL-8. The corresponding regression model parameters 

are listed in Table 4.6 as model 2.   

 

 

Figure 4.1 ROC curves for multiple biomarker regression model 1 and its components. C-
statistic values are listed for the regression model as well as for its single components. 
ROC, receiver operating characteristic; VCAM-1, vascular cell adhesion molecule 1; IL-8, 
interleukin 8.  

 
4.4 Discussion 

4.4.1 The VASCAB and DiCADu studies 

In the VASCAB study patient with symptomatic severe three vessel or left main 

stem CAD were compared with healthy control subjects lacking cardiac 

symptoms. The statistically significant differences of several circulating 
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biomarkers between cases and controls were measured despite clinical and 

demographic cohort similarities. Additionally circulating biomarkers contributed 

in stepwise regression models with or without addition of other contributing 

factors like sex, age, BMI, diabetes history and blood pressure. Although the 

experimental setting is artificial, this shows that an approach with multiple 

circulating biomarkers can be successful to differentiate between patients with 

CAD and healthy controls. The finding that regression model 2 contained 

circulating biomarkers shows their potential to contribute to CAD prediction 

models with traditional risk factors.  

Patients in the DiCADu study had less severe CAD and controls were symptomatic 

suggesting functional alterations or microvascular disease. This might be due to 

the prevalence of traditional risk factors like diabetes, hypertension and 

smoking in the DiCADu control cohort. The DiCADu study was unable to provide 

evidence that circulating biomarker assessment differentiates stable angina 

patients with CAD from those with normal coronary arteries. Adjustment for 

covariables including sex, BMI and diabetes did not alter this finding. These 

covariables were chosen as they particulary effect BNP levels. BNP is decreased 

in the obese [387], in males [388] and in patients with insulin resistance [389]. 

Therefore, markers of inflammation and myocardial vulnerability were not 

significantly different between cases and controls in the DiCADu study. A 

multiple marker approach as conducted in the VASCAB cohort was therefore not 

reasonable.  

In both studies patient were already on antianginal and secondary preventative 

therapy at the time of recruitment into the study. In the VASCAB study patients 

were medically treated and in the DiCADu study patient had percutaneous 

coronary interventions prior to recruitment in addition to medical treatment. 

Therefore both study cohorts are not suited to discover biomarkers that can be 

used in treatment naïve patients. In clinical practice however patients referred 

for chest pain assessment often receive antianginal and other therapies before 

further non-invasive test are carried out. The DiCADu study recruited therefore a 

clinically relevant cohort. The original hypothesis that a difference in circulating 

biomarker levels, as detected in the VASCAB study, would be reproducible in the 

DiCADu study on the basis of CAD or the absence of such could not be verified.  
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4.4.2 The origin of circulating biomarkers levels 

CAD arises from atherosclerosis. Therefore its underlying pathogenesis involves 

an imbalance between lipid metabolism and a maladaptive immune response 

leading to a chronic inflammation of the artery wall. In both studies patients 

with CAD as part of their guideline conform secondary prevention [390] were 

more frequently treated with statins. This likely contributed to lower cholesterol 

levels in CAD patients in comparison to the control groups. Although no 

significant differences were detected for smoking, and blood pressure readings 

between cases and controls in the VASCAB study higher levels of inflammatory 

markers were detected in the CAD group. This suggests an ongoing inflammatory 

process despite secondary prevention therapy. The origin of these raised 

inflammatory markers could be a persisting local inflammatory unstable plaque, 

a reflection of the atherosclerotic burden with reduced marker quantity under 

treatment or a simple epi-phenomenon secondary to for instance immobility, 

forced sedentary lifestyle or caused by ischaemic episodes themselves. In 

regards of the latter it was previously shown that experimental induced 

ischaemia in the absence of atherosclerosis results in elevation of IL-6 and TNF" 

levels [391]. In patients with flow limiting CAD IL-6 also increases after 

dobutamin stress echocardiography [392] suggesting a direct link of transient 

myocardial ischaemia to inflammation. Patients in the VASCAB study had stable 

angina symptoms, therefore the observed difference in inflammatory markers 

between healthy subjects and angina patients is in line with previous reports 

[393, 394]. This finding was not reproducible in the DiCADu study. There was no 

significant difference in CRP and IL-6 levels between angina patients with or 

without CAD. The similarity in traditional risk factor distribution in the DiCADu 

cohort might be contributing. For instance the control group might have an 

atherosclerotic disease processes despite absence of CAD. The importance of 

angina in this context was investigated by Sels et al. [394]. The authors showed 

that angina patients in comparison to controls have higher levels of such 

biomarkers. The presence or absence of haemodynamic significance of CAD in 

these angina patients had however no effect on inflammatory biomarkers. This 

was reproducible when comparing the VASCAB controls with either DiCADu cases 

or controls.  
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Plasminogen Activator Inhibitor-1 is the dominant inhibitor of plasminogen 

activation. As a consequence it has a pro-thrombotic effect. In normal conditions 

only a small number of cells, such as smooth muscle cells, hepatocytes, 

adipocytes and platelets, release the protein into the circulation. The resulting 

plasma levels of 5-20 ng/ml are sufficient to control fibrinolysis. In pathologic 

conditions however tumour cells or the endothelium can secrete large quantities 

of PAI-1 after inflammatory cytokine stimulation. Therefore PAI-1 can be 

regarded as an indirect marker of inflammatory processes as for instance in 

atherosclerosis [395]. 

Cystatin C, an endogenous marker of kidney function, is more sensitive to detect 

mild to moderate decreases in glomerular filtration rate than creatinine [396]. It 

further is not affected by age, sex or muscle mass [397]. As a consequence 

cystatin C predicts all cause mortality better than creatinine or creatinine-based 

estimation equations [397]. The finding that cystatin C levels were increased in 

VASCAB patients in comparison to controls reflects therefore on the association 

of CAD with renal disease. CKD is an independent risk factor for the 

development of CAD, also underlined by the high prevalence of atherosclerosis in 

CKD [398]. As a renal function decline is associated with increased renal 

production of deleterious vasoactive substances like angiotensin II [216] CKD 

might indirectly contribute to atherosclerosis processes. Furthermore, 

traditional cardiovascular risk factors, such as diabetes mellitus, systolic 

hypertension, reduced high-density lipoprotein cholesterol or old age, are highly 

prevalent in CKD. Hypertension and diabetes are not only major risk factors for 

the development of CVD but also for CKD. For instance in the USA more than 35% 

of diabetic patients aged 20 or older as well as more than 20% of persons with 

hypertension have CKD [399]. Considering the risk factor distribution in the 

VASCAB cohort the increase in cystatin C in patients with severe CAD is therefore 

expected.   

4.4.3 Limitations 

The absence of haemodynamic significant flow limitation in the coronary artery 

system does not exclude atherosclerotic processes elsewhere. Aiming therefore 

at more specific cardiac makers, we hypothesised that biomarkers of myocardial 

vulnerability are elevated in angina patients with CAD in the DiCADu study. A 
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well-established marker for myocardial vulnerability is NT-pro BNP. Its largest 

body of evidence links the marker to heart failure, where it is usually released 

by the ventricular myocardium as a response to excessive stretching of the heart 

muscle. An elevation of NT-pro BNP can also be triggered by transient ischaemia. 

For instance percutaneous transluminal coronary balloon angioplasty can cause 

transient brain natriuretic peptide elevation [400]. If this is directly caused by 

myocardial ischaemia or secondary to transient ventricular dysfunction is 

controversial. Nevertheless, it suggests that angina patients with flow limiting 

CAD have transient fluctuations of NT-pro BNP levels. In this context, Weber et 

al. were able to show in patients with stable angina that NT-pro BNP level 

correlated with inducible myocardial ischaemia as assessed by single-photon 

emission computed tomography and the extent of CAD [218]. The finding that 

measured NT-pro BNP levels in the DiCADu study were predominately below 180 

pg/mL, the 95th percentile in healthy individuals of the same age group, 

excludes co-morbidities like congestive cardiac failure. The statistically non-

significant difference on the other hand makes a diagnostic value in the chosen 

experimental setting unlikely.  

In the DiCADu study the investigated markers of myocardial ischaemia troponin I, 

CK-MB, myoglobin, GPBB, hFABP and CA3 have all in common that they are 

released into the blood stream due to myocardial injury. The largest body of 

evidence for such markers in stable angina exists for troponin. Additionally it is 

established that subclinical artherosclerosis as for instance in hyperglycaemic 

patients leads to higher troponin levels [401]. In stable angina patients Schulz et 

al. measured a statistical significant troponin I levels differences comparing 

patients with a !70 % stenosis with patients having a <50% stenosis [217]. Similar 

Sabatine et al. [402] showed a statistical significant difference of troponin I 

levels in stable angina patients who manifested with severe ischaemia on a 

nuclear myocardial perfusion scan in comparison to those with normal scans. The 

authors also demonstrated a significant and positive correlation of the extent of 

myocardial ischaemia and the duration of ischaemia with changes in troponin I 

levels. Considering the normalization of troponin levels 7 to 10 days after an 

ischaemic event increased baseline troponin levels of patients with 

haemodynamic significant CAD therefore likely reflect on transient ischaemic 

episodes. The DiCADu study was therefore unable to reproduce this finding as 
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patients were successfully treated with percutaneous coronary intervention prior 

to recruitment. This made ischaemia secondary to macrovascular flow limiting 

stenoses improbable.  

4.4.4 Summary 

We were able to verify the hypothesis that circulating biomarkers are able to 

differentiate angina patients with CAD and normal coronary arteries in the 

VASCAB study. Regression modelling suggested that circulating biomarkers 

contribute to traditional risk factors in the diagnosis of CAD. These results were 

however not reproducible in the DiCADu study. Biomarkers can therefore be 

diagnostic at more advanced stages of the cardiovascular continuum whilst the 

finding can not be reproduced at the next “lower” stage. 

The DiCADu study result was probably influenced by the similarities in 

cardiovascular risk profiles between cases and controls and the successful 

treatment of CAD patients prior to recruitment. This might be different in 

treatment naïve patients. Existing literature for instance suggests that 

measuring biomarkers of myocardial injury [402] and wall stress [218] in patients 

undergoing stress testing could potentially aid in the diagnosis of haemodynamic 

significant CAD.  
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Chapter 5 Micro- and macrovascular biomarkers 
for the prediction of coronary artery disease  

5.1 Introduction 

The diagnosis of CAD in chest pain patients is a complicated process. Current 

guidelines [235, 343] suggest a diagnostic algorithm involving pre-test probability 

evaluation as well as non-invasive test modalities such as an exercise tolerance 

test. Especially in exercise tolerance tests risk stratification is essential for 

clinical guidance. Patients categorised as high or low cardiovascular risk are 

recommended to proceed to coronary angiography or medical management, 

respectively. Guidance for patients with intermediate risk is however 

inconclusive. Therefore restratification of these patients by non-invasive imaging 

or functional biomarkers could help in the decision process.  

The cardiovascular continuum concept, as introduced by Dzau and Braunwald 

[54], highlights the progression of CVD through non-confined events. Later Dzau 

et al. [56] expanded the continuum to cardiovascular und renal 

pathophysiological processes. As illustrated in Figure 5.1 and 1.5 biomarkers of 

macro- and microvascular origin relate to intermediate steps of disease 

progression. As a consequence the peripheral vascular phenotype in CAD patients 

is worse than in the healthy population. Therefore biomarkers of the peripheral 

vasculature might provide additional diagnostic information.  

Risk stratification used in the diagnosis of CAD was developed in prognostic 

studies. The DTS, for example, is an index developed from features of exercise 

treadmill testing. At first it was designed for outcome prediction [239], before 

Shaw et al. established that patients in the high-risk category had a high 

prevalence of flow limiting CAD [241]. This implies that risk stratification tools 

can support diagnosis. Macrovascular biomarkers as C-IMT [403], PWV 

measurement [174] and carotid distensibility [404] provide additional prognostic 

information in relation to classic cardiovascular risk factors. Similar invasive 

[405-407] and non-invasive assessment of endothelial function [189] improves 

outcome prediction. Considering this correlation and the diagnostic algorithm of 
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CAD we hypothesised that measurement of these biomarkers improves the 

diagnostic precision of the DTS.  

 

 

Figure 5.1 Cardiovascular continuum related to pathophysiological processes. Depicted is 
its link to non-invasive macro- and microvascular measurements. PWV, pulse wave velocity; 
DC; distensibility coefficient; cIMT, carotid intima-media thickness; RHI, reactive 
hyperaemia index.  

 
5.2 Material and Methods 

5.2.1 Medical history 

The reported medical history was based on the DiCADu questionnaire, evaluation 

of casenotes and recordings on the study visit day when appropriate.  

The DiCADu questionnaire section covering current limitations of every day 

activity was used to calculate an activity limitation index. For this purpose the 

limitation categories (“extremely limited” to “not at all limited”) per activity 

level (“dressing yourself” to “participating in strenuous sports”) were combined. 
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The category “limited for other reasons …” was set equal to “not at all limited” 

to cover chest pain only. Missing data was imputed by duplication of the next 

activity level grading. Data covering the gynaecologic history and angina history 

was also taken from the DiCADu questionnaire.  

To calculate the probability of significant CAD according to Pryor et al. [408] the 

following criteria were used. Pathologic Q-waves were defined according to 

current guidelines [409] and as shown in Table 5.1. Hyperlipidaemia was defined 

as either fasting cholesterol of !6.5 mmol/l or a history of hyperlipidemia. 

Otherwise fasting cholesterol of !5.5 mmol/l was used as cut-off for the 

definition of hyperlipidaemia. For probability calculation smoking status was 

considered positive if currently or during the last 12 months a minimum of 10 

cigarettes per day were consumed. This definition deviated slightly from the 

definition used by Pryor et al. [410]. Otherwise smoking status was positive 

when the participants had been smoking during the last week prior to the study 

visit. The diagnoses of diabetes mellitus, hypertension, cerebral vascular events 

and positive family history were based on questionnaires or medical records.  

Table 5.1 Definition of pathologic Q waves according to current guidelines [409].   

 
Q-wave in leads V2-3 !0.02 seconds or a QS-complex 

Q-wave of QS-complex !0.03 seconds and >0.1 mV depths in leads I, II, aVL, aVF 

or V4-6 in two consecutive leads (e.g. I, aVL, V6; V4-6; II, III, aVF) 

R-waves !0.04 seconds in V1-2 and a quotient of R- and S-wave !1 

complemented by a positive T-wave and without a conduction defect 

 
5.2.2 Cohort phenotyping 

Characterization of the study cohort, including peripheral and coronary artery 

assessment, is described in detail in chapter 2. This includes measurement of 

anthropometric data, PWA, RM, PWV, C-IMT, carotid distensibility, RH-PAT, 

exercise treadmill testing and the Gensini score. PWA, RM, and PWV 

measurements were available on the basis of applanation tonometry with the 

Sphygmocor device. These markers of arterial stiffness were selected to 

evaluate the different aspects of arterial stiffness in the DiCADu cohort.  
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5.2.3 Statistics 

A stepwise binary logistic regression model was used to test the value of diffeent 

biomarkers for prediction of CAD in the DiCADu cohort. The probability of CAD in 

the DiCADu cohort was calculated as 1/(1+e-x) where x=a1*x1+a2*x2+….+B where a 

is the logistic regression coefficient corresponding to different biomarkers and B 

is the intercept term. ROC-curves were drawn using the resulting probabilities. 

The Net Reclassification Improvement [52] was calculated with the formula 

shown in Figure 5.2. Data were analysed using SPSS software, version 15.0 (SPSS 

Inc., Chicago, USA). 

 

Figure 5.2 Net reclassification improvement (NRI) formula. Pnew, probability to identify event 
of new biomarker combination; Pold, probability to identify event of established/old 
biomarker combination; #nonevents; total number of nonevents. i, events (coronary artery 
disease); j, nonevents (normal coronary arteries). The first term quantifies the improvement 
in sensitivity. The second term quantifies the improvement in specificity.  

 
5.3 Results 

5.3.1 Study population 

A total of 93 participants (46:47, CAD:normal coronary arteries) were recruited 

into the DiCADu study. Study visits took place 2 to 15 months (average of 9 

months) after coronary angiography. Due to lack of chest pain history, acute 

infection or systemic inflammatory disease nine participants had to be excluded. 

Detailed analyses of anthropometric data and clinical history are summarised in 

Table 5.2. The CAD cohort contained more men and consecutively had a lower 

fat body mass percentage (each P<0.05). Drug treatment differed between both 

groups, although the percentage of vasoactive substance used, combining 

nicorandil, oral nitrate and calcium channel blockers together, was not 

significantly different, as shown in Table 5.3.  

As shown in Table 5.4, there was no significant difference in angina type or 

cardiovascular risk factor frequency. Pre-test probability [343] and probability of 

significant CAD [408] were different between the CAD and the normal coronary 

artery group (P<0.05). Table 5.4 also contains questionnaire data covering a 

�� � � � � ��non 
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relevant gynecologic history. In this regard a total of 82% of participants with 

normal coronary arteries compared to 94% in patients with CAD had either more 

than 3 symptoms suggestive of transition to menopause or reported being 

menopausal. The difference between both groups in this regard was not 

statistical significant (P>0.05).  

Table 5.2 Anthropometric data.   

 
 CAD (n=43) NCA (n=41) P-Value 
Gender, m/f 26/17 13/28 0.008 
Age, y 55.7±7.0 57.2±7.1 ns 
Height, cm 167±8 167±12 ns 
Weight, kg 78±14 78±23 ns 
BMI, kg/m! 28.1±4.1 27.8±6.6 ns 
WHR 0.91±0.08 0.92±0.07 ns 
Body fat percentage, 
% 30.5±8.2 36.3±8.7 0.006 

 
CAD, coronary artery disease; NCA, normal coronary arteries; m, male; f, female; ns, non-
significant.  

 
Table 5.3 Drug treatment on DiCADu study visit.  

 
 CAD (n=43) NCA (n=41) P-value 
ACEI, % 44 29 ns 
CCB, % 28 26 ns 
BB, % 91 22 <0.001 
Statin, % 91 49 <0.001 
Fibrates, % 2 0 ns 
Oral Nitrat, % 9 7 ns 
Nicorandil, % 28 7 0.014 
Vasoactive Substances, % 43 34 ns 

 
CAD, coronary artery disease; NCA, normal coronary arteries; ACEI, Angiontensin 
converting enzyme inhibitor; CCB, calcium channel blocker; BB, beta blocker; vasoactive 
substance, summary of nicorandil, oral nitrate and CCB therapy; ns, non-significant. 
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Table 5.4 Comparison of cardiovascular risk factors, gynaecologic and chest pain history. 

 
  CAD (n=43) NCA (n=41) P-Value 
Gynaecologic 
History 

    

 Menopausal, % 68 82 ns 
 > 3 menopausal 

symptoms, % 
23 21 ns 

 Hysterectomy, 
% 

35 39 ns 

 Hormone 
replacement 
therapy, % 

12 18 ns 

Risk factors     
 Diabetes, % 23 17 ns 
 Hypertension, % 65 59 ns 
 Hyperlipidaemia, 

% 
46 54 ns 

 Positive family 
history, % 

74 68 ns 

 Current Smoker, 
% 

28 17 ns 

 Stroke/TIA, % 0 0 - 
Symptoms     
 Typical angina, 

% 
70 59 ns 

 Atypical angina, 
% 

26 29 ns 

 Nonanginal 
chest pain, % 

4 12 ns 

 Activity 
limitation index  

3.6 [2.7;4.7] 4.0 [3.3;5.0] ns 

Clinical 
Probability 

    

 Pre-test 
Probability [343] 

  <0.001 

 >90%, n 22 15  
 10-90%, n 19 22  
 <10%, n 2 3  
 <5%, n 0 1  
 Significant CAD 

Probability [408] 
0.68±0.24 0.50±0.25 0.001 

 
CAD, coronary artery disease; NCA, normal coronary arteries; TIA, transitory ischaemic 
attack; ns, non-significant.  
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5.3.2 Exercise treadmill test data 

Exercise treadmill test results were analyzed in 75 participants. 46 participants 

had positive results (27:19, CAD:normal coronary arteries) according to current 

guidelines [343]. Myocardial perfusion scans showed inducible ischaemia in five 

additional patients with normal coronary arteries. There was no significant 

difference for inducible ischaemia between the two groups (P=0.5). The DTS and 

the maximum ST depression during the exercise treadmill test were significantly 

different between the groups (P<0.05). Details of the exercise treadmill 

measurements are listed in Table 5.5.   

Table 5.5 Exercise treadmill test differences between chest pain patients with CAD and 
normal coronary arteries prior to coronary angiography.  

 
 CAD (n=38) NCA (n=37) P-Value 

Exercise duration, seconds 408±130 420±144 ns 

Peak Heart Rate, bpm 140±19 146±28 ns 

Maximal ST-deviation, mm 1.7±1.1 1.1±0.9 0.013 

Exercise chest pain, %  70.3 50.0 0.03 

Duke treadmill score -6.2±5.3 -1.2±5.9 <0.001 

DTS risk of death 
(low/moderate/high) 

0/28/10 6/29/2 0.01 

Angina frequency per week 
prior to ETT (>4 per day/1-3 
per day/!3 per week/1-2 per 
week/ <1 per week), % 

32/26/26/13/3 9/25/22/22/22 ns 

 
CAD, coronary artery disease; NCA, normal coronary arteries; DTS, Duke treadmill score; 
ETT, exercise treadmill test; ns, non-significant.  

 
5.3.3 Vascular phenotypes and their correlations 

As summarised in Table 5.6, there was no significant difference between the 

CAD and normal coronary artery group regarding blood pressure, PWA, PWV and 

arterial stiffness. For PAT due to inappropriate measurements only 79 
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participants (CAD:normal coronary arteries; 40:39) could be evaluated. There 

was a significant difference between both groups for RHI and its related 

parameters, as shown in Table 5.6.  

Table 5.6 Blood pressure and peripheral vascular biomarkers in groups with CAD and 
normal coronary arteries.  
  

CAD (n=43) NCA (n=41) P-Value 

Blood Pressure 
 Sitting pSBP, mmHg 136±19 137±18 ns 
 Sitting pDBP, mmHg 78±10 81±9 ns 
 Supine pSBP, mmHg 130±15 134±14 ns 
 Supine pDBP, mmHg 75±9 78±8 ns 
 Supine mean arterial 

pressure, mmHg 95±12 99±9 ns 

PWA/PWV     
 Supine pPP, mmHg 54 [48; 63] 56 [47; 64] ns 
 AIx, % 26±8 28±10 ns 
 Reflection magnitude, % 1.7 [1.5; 1.8] 1.7 [1.5; 1.9] ns 
 Supine cSBP, mmHg 124±16 126±13 ns 
 Supine cDBP, mmHg 76±10 79±8 ns 
 Supine cPP, mmHg 47 [41; 52] 44 [38; 56] ns 
 PWV, m/sec 7.8±1.7 8.4±1.4 ns 
PAT     
 RHI 1.9 [1.5; 2.3] 2.1 [1.8; 2.4] 0.03 
 Average PATb Amplitude 781±456 570±365 0.03 
 PATh

occluded 1.6 [1.1; 1.7] 1.8 [1.3; 2.2] 0.02 
 PATh

control 1.0±0.3 1.0±0.3 ns 
 Ratio PATh

occluded: 
PATh

control 
1.6 [1.1; 2.0] 1.9 [1.4; 2.3] ns 

Carotid Ultrasound 
 C-IMT, mm 0.73±0.10 0.75±0.10 ns 
 Distensibility Coefficient, 

10-3/kPa 3.8±1.2 3.4±0.9 ns 

 Cross-sectional 
compliance, m2 " kPa-1 " 
10-7 

9.5 [7.0; 
12.7] 

8.5 [6.4; 
11.6] ns 

 
CAD, coronary artery disease; NCA, normal coronary arteries; pSBP, peripheral systolic 
blood pressure; pDBP, peripheral diastolic blood pressure; cSBP, central systolic blood 
pressure; cDBP, central diastolic blood pressure; pPP, peripheral pulse pressure; cPP, 
central pulse pressure; AIx, augmentation index; C-IMT, carotid intima-media thickness; 
PAT, peripheral arterial tonometry; PATb, PAT signal at baseline; PATh, PAT signal during 
hyperaemia; ns, non-significant.  

 
Focusing on participants with positive exercise treadmill test or positive 

myocardial perfusion scan results the RHI difference remained statistically 



186 

          

186 

significant (CAD, 1.88 [1.54; 2.24]; normal coronary arteries, 2.15 [2.00; 2.45]; 

P=0.011). Correlations between RHI and macrovascular biomarkers, as well as 

amongst each other, are depicted in Figure 5.3.  

 

Figure 5.3 Correlations between micro- and macrovascular biomarkers. AIx (augmentation 
index), %; RM (reflection magnitude), %; IMT (intima-media thickness), mm; DC 
(distensibility coefficient), 10-3kPa; CC (cross sectional compliance), m2 kPa-1 10-7; blue 
circles, normal coronary arteries; green circles, coronary artery disease. With a 7x7 
distribution, squares are mirrored on the intercept axis. R- and P-values correspond to the 
mirrored scatter plot. R-values represent either Pearson’s correlation coefficient (PWV to 
AIx, DC to AIx, IMT to DC) or Spearman’s rho. Correlations coefficients with a P>0.150 are 
not listed.  

 
There were no significant correlations (for all, P>0.05) between DTS and the 

macrovascular biomarkers listed in Table 5.6. However age was significantly 

correlated with most macrovascular biomarkers, as shown in Table 5.7. Also the 

additionally investigated carotid plaque score was not correlated to any of the 

listed vascular phenotypes or age. However a borderline significant correlation 

between the carotid plaque score and the Gensini score (r=0.284, P=0.084) was 
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detected. When CAD patients were investigated exclusively, the Gensini score 

was not correlated to all mentioned peripheral vascular biomarkers or the DTS 

(for all, P>0.05). As illustrated in Figure 5.4, there was a significant correlation 

between RHI and the DTS, whereas the calculated probability for significant CAD 

did not related to either of them.  

Table 5.7 Correlation of age and vascular phenotypes. 

 
 Correlation 

coefficient (age) 
P-value 

RHI 0.213 0.060 
C-IMT, mm 0.203 0.081 
AIx, % 0.406 <0.001 
RM, % -0.222 0.051 
PWV, cm/s 0.390 0.001 
Distensibility 
Coefficient, 10-3/kPa 

-0.457 <0.001 

Cross-sectional 
compliance, m2 " kPa-1 " 
10-7 

-0.446 <0.001 

cPP, mmHg 0.319 0.004 

 
RHI, reactive hyperaemia index; C-IMT, carotid intima-media thickness; AIx, augmentation 
index; RM, reflection magnitude; PWV, pulse wave velocity; cPP, central pulse pressure. 
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Figure 5.4 Correlations between reactive hyperaemia index (RHI), Duke treadmill score 
(Duke score) and significant coronary artery disease probability (probability) [408]. Green 
circles represent participants with significant coronary artery disease whereas blue circles 
represent participants with normal coronary arteries.  

 
5.3.4 Analysis of parameters contributing to RHI 

Baseline and hyperaemia PAT signals in both arms were assessed to calculate the 

RHI, the average baseline PAT amplitude and the ratio between hyperaemia PAT 

signals of the occluded and control arm. There was no significant difference 

between the baseline PAT amplitude of the right and left arm (696±417 

vs.656±421, P=ns), as listed in Table 5.6. RHI and ratio between the hyperemia 

signals was significantly different between the CAD and normal coronary artery 

cohort (1.86 [1.53; 2.30] vs. 2.12 [1.76; 2.45], P=0.027 for RHI; 1.32 [1.08; 2.01] 

vs. 1.75 [1.39; 2.29], P=0.019 for ratio between hyperaemia PAT signal 

occluded:control arm). The average baseline PAT signal was higher (767±451 vs. 

578±371, P=0.034) in the CAD group, whereas the difference in isolated post 



189 

          

189 

hyperaemia signals was not significant (1370 [1183; 1718] vs. 1530 [1282; 2249], 

P=0.104). Consequently the baseline PWA was inversely correlated with the RHI 

(r=-0.509, P<0.001). A scatterplot of log transformed RHI vs. log transformed 

baseline PAT signal is shown in Figure 5.5. As the baseline PAT signal is gender 

dependent [411], a binary regression analysis was performed. Gender (P=0.017) 

and baseline PAT signal (P=0.026) remained significantly correlated to CAD 

status (overall, R2=0.112, P=0.012).  

 

 

 

 

 

 

 

 

 

Figure 5.5 Correlation between log transformed RHI and average baseline PAT signal 
strength. PAT, peripheral arterial tonometry. 

 
5.3.5 PAT in diagnosis of CAD 

Addition of RHI to the components of the Pryor score [408] for diagnosis of 

significant CAD showed that RHI (P=0.049) next to gender (P=0.017) contributed 

significantly in a linear binary regression model. This finding persisted when 

gender and RHI were used alone in a linear regression model (Gender, P=0.023; 

RHI, P=0.071; overall, P=0.011). DTS and RHI contributed significantly (DTS, 

P=0.007; RHI, P=0.019; Overall, P=0.05) in a liner regression model for the 
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prediction of CAD. ROC-curve analyses were performed for DTS, RHI and 

DTS+RHI, as shown in Figure 5.6.  

 

 

Figure 5.6 ROC curves for RHI (-----), DTS (- - -) and the combination of RHI and DTS (— —). 
Listed are AUC values. RHI, reactive hyperaemia index; DTS, Duke treadmill score.  

 
Addition of macrovascular biomarkers to the DTS did not improve the AUC as 

shown in Table 5.8. The combination of RHI and DTS resulted in the highest AUC 

(c=0.776), as illustrated in Figure 5.6. Using the criteria of a positive exercise 

treadmill test and proven exercise induced ischaemia resulted in c=0.553 and 

c=0.508, respectively. The ROC curves of the combination RHI with DTS had a 

more convex shape compared to DTS alone. Consequently, sensitivity and 

specificity of RHI and DTS together, as shown in Table 5.9, were numerically 

higher compared to RHI or DTS alone. The related NRI was 7.6% comparing DTS 

alone with the combination of DTS and RHI. The NRI comparing exercise 

treadmill test results alone with the combination of an exercise treadmill test 

and RHI was 6.9%.  

------- AUC (RHI) = 0.712 
- - - -   AUC (DTS) = 0.740 
— —  AUC (DTS + RHI) = 0.776 
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Table 5.8 AUC for macrovascular biomarkers.  

 

 AUC (alone) AUC (in addition to DTS) 

DTS (n=75) 0.776 - 

C-IMT, mm 0.610 0.683 

AIx, % 0.545 0.714 

RM, % 0.549 0.677 

PWV, cm/s 0.566 0.687 

Distensibility Coefficient, 

10-3/kPa 

0.636 0.722 

Carotid Cross sectional 

compliance, m2 " kPa-1 " 10-7 

0.585 0.713 

cPP, mmHg 0.545 0.682 

 
Listed are c-values for carotid intima-media thickness (C-IMT), augmentation index (AIx), 
reflection magnitude (RM), pulse wave velocity (PWV), distensibility coefficient, carotid 
cross sectional compliance and central pulse pressure (cPP) for prediction of CAD alone 
and in addition to DTS. 
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Table 5.9 Test performances of CAD identification with RHI, DTS and RHI + DTS.  

 

 Cut-off Sensitivity Specificity PPV NPV 

RHI      

 1.85 0.48 0.69 0.61 0.44 

 1.73 0.43 0.82 0.71 0.58 

 1.58 0.28 0.90 0.73 0.45 

DTS      

 -3.8 0.61 0.69 0.67 0.63 

 -6.0 0.47 0.77 0.68 0.59 

 -7.5 0.42 0.88 0.79 0.60 

DTS+RHI      

 0.50 0.75 0.71 0.73 0.74 

 0.64 0.55 0.80 0.74 0.64 

 0.68 0.42 0.91 0.83 0.60 

 
Listed are sensitivity, specificity, PPV (positive predictive value) and NPV (negative 
predictive value) with their corresponding cut-off points. RHI, reactive hyperaemia index; 
DTS, Duke treadmill score.  

 
5.3.6 Carotid plaque score in diagnosis of CAD 

The carotid plaque score was significantly different between participants with 

and without CAD (CAD vs. normal coronary arteries; 3.0 [1.5; 4.5] vs. 1.2 [0; 

2.55], P<0.001). The c-statistic of the carotid plaque score in ROC analysis for 

the diagnosis of CAD was 0.716. As shown in Figure 5.7, addition of the carotid 

plaque score to a multiple biomarker model consisting of DTS and RHI improved 

the models c-statistic from 0.791 to 0.836. An NRI of 10.0 % reflects this 

improvement.  
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Figure 5.7 ROC curves for plaque score (----), the combination of DTS & plaque score (- - -) 
and the combination of DTS & RHI & plaque score (— —). Listed are AUC values. RHI, 
reactive hyperaemia index; DTS, Duke treadmill score. 

 
5.4 Discussion 

5.4.1 Study population 

Based on the study inclusion criteria both subgroups were well matched for 

anthropometric features and cardiovascular risk profile. Gender differences can 

be explained with disease prevalence and therefore reduced availability of 

middle age women with CAD and men with exercise related chest pain despite 

normal coronary arteries. This gender mismatch contributed significantly to the 

CAD prediction by the Pryor score and questions therefore the potential of 

normal clinical features to improve prediction of significant CAD independent 

from gender in the DiCADu study. Evaluation of the pre-test probability showed 

that most patients were in the high risk or intermediate risk categories and 

therefore underwent exercise testing in accordance with current guidelines. 

------- AUC (carotid plaque score) = 0.716 
- - - -   AUC (carotid plaque score + DTS) = 0.791 
— —  AUC (carotid plaque score + DTS + RHI) = 0.836 
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Considering the similarity of angina types between the CAD and normal coronary 

artery subgroup the difference in pre-test probability is due to gender.  

No differences between female study participants with or without CAD could be 

detected regarding the gynaecological history. Typical chest pain with normal 

coronaries has a high prevalence in peri- or postmenopausal women [412]. In the 

DiCADu study female participants of the CAD and normal coronary artery 

subgroup were not different in this matter, possibly due to study inclusion 

criteria. Therefore consideration of the gynaecological history for further 

analysis or even measurements of oestrogen levels appeared pointless.  

Differences in medication were caused by the retrospective study character and 

the indication of combined ACE-inhibitor, beta-blocker, aspirin and statin 

therapy in diagnosed CAD patients [235]. Therefore patients with CAD were more 

frequently treated with statins and anti-anginal medication including beta-

blockers and nicorandil.  

5.4.2 Micro- but not macrovascular features differentiate between 
CAD and normal coronary arteries 

Micro- and macrovasculature differ in various aspects. Both are part of the 

cardiovascular system, but their anatomic structure, physiologic function and 

size are different. The microvasculature is composed of arterioles and 

capillaries. Arterioles are muscular and the primary side of vascular resistance. 

Their main purpose is the reduction of blood pressure and flow velocity to 

enable gas and nutrient exchange within the capillaries, succeeding the 

arterioles. Capillaries consist only of endothelial cells and have an average total 

surface area of 800 to 1000 m2 per individual. Although the diameter of these 

vessels is in average only 7.5 #m, there is a large discrepancy between the total 

cross-sectional area between arterioles and capillaries favoring the latter. The 

blood pressure in the capillaries is therefore reduced. Considering their lack of 

muscular cells, capillaries however lack the capacity to alter blood flow and 

pressure directly. Therefore dynamic changes in the microvasculature are 

dependent to arteriolar function.  
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The macrovasculature on the other hand has a smaller total cross-sectional area 

and consists of arteries equipped with a large muscular layer. Although the 

elastic component of the aorta is important for the diastolic blood pressure the 

major arterial blood pressure regulation takes place in the resistance vessels, 

i.e. in the arterioles. Both, micro- and macrovasculature are lined with 

endothelial cells whose function can be assessed as discussed in chapter 1.6.1.1. 

Endothelial dysfunction in both leads to an alteration of smooth muscle cell tone 

and artery diameter. The functional implications of an impaired arterial 

dilatation capacity due to endothelial dysfunction however differ considering 

above mentioned range of physiological tasks.  

In the investigated cohort cardiovascular risk factors were evenly distributed in 

participants with and without CAD. Especially blood pressure has a 

pathophysiological link to most macrovascular biomarkers. Also coronary 

perfusion takes place during diastole whereas mentioned macrovascular changes 

are predominant responses to SBP. Biomarkers such as PWV, PWA, C-IMT and 

carotid distensibility were therefore unable to differentiate between patients 

with CAD and normal coronary arteries in the DiCADu study. However RHI, a 

microvascular biomarker assessing endothelial function especially in the 

arterioles, was significantly different between both subgroups. Endothelial 

function measured by flow-mediated dilatation is influenced by gender until the 

age of 70 as shown by Benjamin et al. [413]. We therefore adjusted for gender 

differences in the study cohort and the RHI differences remained borderline 

significant. As flow mediated dilatation and RH-PAT measure the reactive 

hyperaemia response differently and in different locations, their indexes are not 

directly comparable, suggesting that the finding of Benjamin et al. does not 

excluded our result. Furthermore, Matsuzawa et al. [414] showed that RHI 

measured by EndoPAT is able to distinguish between CAD and normal coronary 

artery patients with typical chest pain. As the authors used an exclusive female 

population, the result was gender independent. Consequently, endothelial 

function measured by EndoPAT has the ability to differentiate between CAD and 

normal coronary artery patients in a gender independent manner.   
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5.4.3 Univariate correlations of vascular phenotypes  

Macrovascular biomarkers such as carotid distensibility, PWA parameters and 

PWV were correlated with each other, underlining their shared aetiology arterial 

stiffening. As shown in chapter 3, the macrovascular biomarkers assessed in this 

study are highly age dependent. This finding could be reproduced in the DiCADu 

study with a strong correlation between age and all macrovascular biomarkers. 

The exception was the positive correlation of RHI and age. A high RHI value 

represents a normal endothelial function and therefore a negative correlation of 

RHI with age was anticipated, as aging is usually associated with endothelial 

dysfunction. The study selection criteria and the intention to age match cases 

with controls might have contributed to this finding. On an epidemiologic scale 

prevalence of symptomatic CAD is higher in older people. Increased 

cardiovascular risk profiles associated with endothelial dysfunction [139, 140] 

led however to CAD in younger age groups. Also several of the control subjects 

potentially suffered from microvascular angina [412] which is strongly correlated 

to endothelial dysfunction in the peripheral vasculature [148]. Therefore it is 

possible that above all younger DiCADu participants had an impaired endothelial 

function.  

The Gensini score, a measurement of CAD extent and not of significant flow 

limiting CAD, was not correlated with any of the investigated macrovascular 

biomarkers with the exception of a borderline significant association with the 

carotid plaque score. This correlation however was not reproducible when CAD 

patients were investigated exclusively suggesting that the observation in the 

whole cohort only reflects on the significant carotid plaque score difference 

between patients with CAD and normal coronary arteries (Gensini score = 0). 

Furthermore the Gensini score was not correlated with the DTS underlining the 

association of the DTS with CAD severity [241] but not with CAD extent. The lack 

of a connection between the Gensini score and the macrovascular biomarkers 

suggests a dissociation of macrovascular and coronary pathophysiological 

processes and specific anatomical features, such as turbulent flow in the carotid 

arteries, supporting plaque development.   

In RH-PAT measurements the baseline pulse wave amplitude is an important 

feature. Its inverse correlation with RHI suggests a limitation of the RH-PAT to 
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detect a post hyperaemia response. Considering the equal number of 

participants with and without CAD taking vasodilating medication this finding 

may be related to atherosclerotic arterial enlargement allowing increased blood 

flow at baseline.  

DTS can be interpreted as a biomarker quantifying myocardial hypoperfusion 

under exercise conditions. Therefore myocardial dysfunction, microvascular or 

macrovascular CAD can reflect on a pathologic response. The finding that DTS 

and RHI are correlated underlines the connection of microvascular CAD with RHI 

[414] and the prevalence of microvascular dysfunction in CAD patients as 

suggested by the cardiovascular continuum. The RHI difference between CAD 

and normal coronary artery patients remained significant if patients with 

positive exercise tolerance tests were investigated exclusively. Therefore the 

mixture of patients with assumed cardiac microvascular angina and chest pain 

for other reasons had no effect on the finding.  

5.4.4 Improvement of CAD diagnosis with non-invasive 
biomarkers 

The diagnosis of CAD in patients with stable chest pain will become more reliant 

on imaging modalities such as magnet resonance imaging and computer 

tomography coronary angiography in the future [232]. Nevertheless less 

expensive and easy accessible test such as exercise treadmill tests still remain 

valuable, despite their suboptimal specificity and sensitivity [231]. We provided 

evidence that RH-PAT and carotid plaque score improves the diagnostic capacity 

of exercise treadmill tests. Although the investigated study cohort does not 

represent the average chest pain patient as documented by the relative high 

number of false positive exercise treadmill tests, especially this cohort 

characteristic is important, as successful reclassification of such test results 

would improve clinical care.  

The cases and controls in the DiCADu study had a similar cardiovascular risk 

profile. Therefore differences in pretest probability [343] and probability of 

significant CAD [408] were gender dependent. Using the DTS for standardised 

evaluation of test results dispatches the test from this factor. The participants in 

the DiCADu study were randomly recruited from different hospitals of the 
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Greater Glasgow and Clyde area, and therefore the indication of exercise tests 

was based on standard clinical proceedings. Hence, improvement of the 

diagnostic algorithm can only derive from improvement of the test stratification. 

In this context we were able to show that an approach combining the DTS with 

RHI improved diagnosis with an NRI of 7.6%. As shown by the ROC-curves and 

corresponding tables this is due to reclassification of the intermediate risk 

category. Furthermore, addition of the carotid plaque score to both biomarkers 

provides an additional NRI of 10%. As RHI is an independent predictor of outcome 

[415] our finding supports the general strategy to use test results calibrated with 

outcome prediction for clinical guidance in CAD diagnosis [235, 343].   

5.4.5 Study limitations 

The retrospective character of the study and its consequences of treatment 

alteration post angiography and the delay between study visits and angiography 

limit the study. Especially the clinical situation at study visit was different from 

the situation when the decision was made to proceed to coronary angiography. 

However guideline conform treatment of risk factors in the CAD subgroup will 

lead to an irrelevant progression of atherosclerosis over an average of 9 months. 

Also, percutaneous coronary and drug interventions will favour clinical 

improvement in the CAD group and therefore remaining differences were 

attenuated by therapy, leading to an underestimation of the difference by 

current results. Another limitation of the current analysis is its focus on vascular 

phenotypes. For a study into multiple biomarkers a larger number of different 

biomarkers could have been assessed. Attempting a diagnostic approach with 

multiple biomarkers their quantity could be enlarged. Therefore adjustment for 

other risk factors or measurements of additional components of the 

cardiovascular continuum could have altered the results. It also remains unclear 

if the RH-PAT or carotid plaque score in this setting is superior to other non-

invasive test modalities examining endothelial function or carotid plaque, 

respectively.  

5.4.6 Summary 

RHI and carotid plaque score contributed to diagnostic models with multiple 

biomarkers. This suggests that markers of different pathophysiological origin 
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might be additive in the diagnosis of CAD, similar to the additive effect of 

biomarkers in CAD prognostication. This proves that a limited system oriented 

approach could be valid for the diagnosis of CAD.  

Within the cardiovascular continuum endothelial function represents a biomarker 

of early disease stages, as shown in Figure 1.5, wherease carotide plaque extent 

belongs to biomarkers quantifying subclinical atherosclerosis, an intermediate 

disease stage. This emphasises the value of early disease stage CVD biomarkers 

in cohorts covering later stages of the cardiovascular continuum.   
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Chapter 6 Urinary proteomics in the diagnosis of 
coronary artery disease  

6.1 Introduction 

Improvement of clinical care can be accomplished with the development of new 

biomarkers considering the limitations of existing CVD biomarkers. These can 

cover existing or new pathophysiological pathways of the cardiovascular 

continuum. Technological advances nowadays allow measurements of large 

numbersof molecules in biosamples. The resulting data sets make an unbiased 

inductive strategy for the development of new biomarkers possible. Such an 

approach can be carried out on different levels, such as the metabolite or 

protein level. The research field related to the latter is know as proteomics. 

Proteomics, the analysis of a large number of proteins and polypeptides in body 

fluid or tissue, is useful for identification of unknown biomarkers [416]. Its goal 

is the comprehensive, quantitative description of protein expression. Modern 

proteomics platforms allow simultaneous assessment of large numbers of 

proteins and peptides. This allows the recognition of protein expression 

patterns, which can be used in disease diagnostics.  

Urine has several advantages over blood in protein analysis, such as non-invasive 

sample collection, water soluble proteins, renal pre-selection of small size 

proteins, completed proteolysis at the time of sample collection and sample 

stability in storage. More importantly, urine contains polypeptides originating 

from all tissues with direct contact to the blood circulation since the glomerular 

barrier only restricts passage of large proteins. In healthy kidneys almost 30% of 

all urine protein derives from plasma [290]. The urine proteome represents 

therefore a variety of processes within the entire body. Our group therefore 

hypothesised that urine proteomics is capable to diagnose atherosclerotic 

vascular disease, in particular as a novel biomarker for the diagnosis of CAD. We 

demonstrated previously in a proof-of-concept study, further referenced as the 

Zimmerli study, that urine proteomics is able to differentiate between patients 

with severe CAD and healthy controls [323]. Additionally, the resulting proteome 

pattern was able to identify patients with an increased risk of adverse 

cardiovascular events [417].  
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In this chapter several steps in the development of novel biomarkers derived 

from urine proteomics for the diagnosis of CAD are presented. We tested the 

reproducibility of the Zimmerli study proteome pattern, recalibrated the urinary 

proteome pattern and analyzed the value of the resulting urine proteome 

pattern for the assessment of patients with chronic angina. 

6.2 Material and Methods 

Several study cohorts were investigated for the development of a CAD-specific 

urine proteome pattern. These included data or samples from three different 

studies: the Zimmerli study [323], the VASCAB study and the DiCADu study. For 

the Zimmerli study a total of 88 patients with CAD were enrolled from the pre-

operative assessment clinic at the Western Infirmary, Glasgow. Thirty-two 

subjects with no history of angina, CAD, or peripheral artery disease were 

recruited as controls from a local health club and from surgical wards at 

Gartnavel General Hospital, Glasgow. Demographic and clinical data of the main 

study cohort is depicted in Table 6.2. Eleven patients with CAD were excluded 

due to missing (n=2) and insufficient (n=9) urine samples.  

Furthermore, the VASCAB study contributed urine samples. The study compares 

patients with severe CAD prior to coronary artery bypass surgery with healthy 

volunteers. Healthy volunteers, both without any evidence of CAD according to 

history, ECG recording or other information, served as controls. The patients 

recruited into the study, who had elective surgery for removal of varicose veins, 

did not contribute. More study detail is described in chapter 2.1.1. 

Samples from the DiCADu study were also investigated. Patients with or without 

CAD on coronary angiography were recruited. Control patients had normal 

coronary arteries whereas cases had at least one stenosis with >75% coronary 

artery lumen narrowing. The study is described in more detail in section 2.1.3.  

Anthropometric data acquisition, study questionnaires, biochemistry, vascular 

phenotyping, assessment of exercise treadmill tests and CAD extent (Gensini 

score) are described in chapter 2.  



202 

          

202 

We used CE-MS to measure the urinary polypeptide content, as described in 

chapter 2. Measurements were carried out at Mosaiques Diagnostics, Hannover, 

Germany. In the Zimmerli study [323] a CAD specific polypeptide pattern 

consisting of 15 different peptides was defined. For the purpose of this thesis 

the panel will be termed CAD15 score. As shown in Table 6.1, five of the 

polypeptides constituting the CAD specific panel were identified as fragments of 

collagen type !-1 (I) or (III).  

Table 6.1 Peptide sequences in the CAD15 score. The list is adapted from Zimmerli et al. 
[323].  

 
Peptide 
ID 

Experimental 
Mass, Da 

Migration 
time, min 

Sequence Protein 
name 

16954 1435.72 28.86 SPhGSPGPDGKTGPPhGP Collagen #-
1 (I) chain 

21244 1623.80 24.15 DGAPhGKNGERGGPhGGPhGP Collagen #-
1 (III) 
chain 

25791 1834.90 31.15 GLPhGTGGPPhGENGKPhGEPGPh Collagen #-
1 (III) 
chain 

27916 1933.95 21.63 GDDGEAGKPGRPhGERGPPhGP Collagen #-
1 (I) chain 

53293 3158.60 29.69 GERGSPhGGPhGAAGFPhGARGLP- 
hGPhPGSNGNPGPPhGPh 

Collagen #-
1 (III) 
chain 

 
Analysis of clinical parameters and CAD-specific urinary polypeptide scores were 

performed using SPSS software, version 15 (SPSS Inc., Chicago, Illinois, USA) as 

described in chapter 2.  

6.3 Replication of the Zimmerli study 

New biomarkers are often less accurate in an independent cohort as compared 

to the cohort of initial assessment. In a first step we therefore aimed to 

replicate the Zimmerli study [323]. Both studies had similar recruitment 

procedures and inclusion and exclusion criteria, thereby leading to a comparable 

cohort composition. The replication of the Zimmerli study appeared therefore 

possible.  
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6.3.1 Material and Methods 

The Zimmerli study (section 6.2) and the VASCAB study (section 2.1.1) are 

described elsewhere. Corresponding demographic and clinical characteristics of 

both studies with available CE-MS data are depicted in Table 6.2. For both 

studies cases were recruited before coronary artery bypass surgery. Controls 

were individuals without history of CAD predominantly recruited in local fitness 

clubs (Zimmerli study) or via advert (VASCAB study). 

A convenience sample of the VASCAB study was compiled with age and sex 

matched cases and controls (n=20/20) for the replication of the Zimmerli study. 

Only male subjects were selected to exclude gender specific differences. In the 

VASCAB study there were more male cases than male controls (CAD/healthy 

controls; 100/41). Therefore controls (all, 65.4±9.9 years) were matched 

manually with cases (all, 61.0±8.4 years) aiming for the best possible individual 

control to case agreement. 

The polypeptide content of urine samples was measured with CE-MS and the 

CAD15 score was calculated as described in chapter 2 and in the Zimmerli study 

[323]. The classification threshold was defined as a CAD15 score = 13. 

6.3.2 Results 

The Zimmerli study and VASCAB study cohorts had similar characteristics (BMI, 

total and HDL cholesterol levels and CRP). Especially the cases were comparable 

with regard to age and medication. The control groups were however different 

for age, SBP and LDL cholesterol. Regarding the CAD15 score no significant 

difference was detected in the VASCAB study (CAD vs. control; 15.5±3.3 vs. 

13.7±2.2, P=ns) in opposite to the Zimmerli study (CAD vs. control; 16.6±2.0 vs. 

9.0±4.8, P<0.001). An apparent difference between the studies was therefore 

the “healthier” CAD15 score in Zimmerli study controls, in line with the younger 

age and generally more favorable risk profile of the controls in the Zimmerli 

study. The AUC of the CAD15 score was 0.940 in the Zimmerli study and 0.704 in 

the VASCAB sample. Sensitivity and specificity were 98% and 83% in the Zimmerli 

study and 54% and 58% in the VASCAB subgroup, respectively. 
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Table 6.2 Comparison of the Zimmerli study cohort with the VASCAB study cohort  

 
 Zimmerli Study [323] VASCAB Study  

 CAD, n=77 Control, n=32 P-value CAD, n=20 Controls, n=20 P-value 

Age, years 61±11 54±13 - 64±9 65±9 ns 

Sex, m/f 56/21 21/9 ns 20/0 20//0 ns 

BMI, kg/m2 26.2±4.8 25.3±3.1 ns 27.3±5.3 25.7±2.2 0.016 

SBP, mmHg 132±20 123±12 <0.01 142±15 143±18 ns 

DBP, mmHg 76±9 76±7 ns 81±12 82±10 ns 

Heart rate, /min - - - 66±15 66±11 ns 

Total cholesterol, mmol/l 3.9±0.8 5.4±0.9 <0.001 3.7 [3.3; 5.0] 5.5 [4.7; 6.5] <0.001 

LDL-cholesterol, mmol/l 1.9±0.7 3.2±0.7 <0.001 1.9±0.8 3.4±1.0 <0.001 

HDL-cholesterol, mmol/l 1.2±0.3 1.5±0.4 <0.01 1.0±0.2 1.4±0.4 0.001 

Trilycerides, mmol/l 1.5 [1.8: 2.2] 1.3 [1.0; 2.7] ns 2.2±1.1 1.7±0.8 ns 

CRP, mg/l 2.6 [1.0; 6.3] 1.3 [0.3; 2.4] <0.001 2.6 [1.6; 5.0] 1.1 [0.8; 2.5] 0.018 

Active smoking, yes/no 14/63 3/29 <0.05 0/20 1/19 ns 

Statin, yes/no 75/2 0/32 <0.001 15/5 3/17 <0.001 

Aspirin, yes/no - - - 18/2 5/15 <0.001 

Beta-blocker, yes/no - - - 17/3 0/20 <0.001 

ACEI/ARB, yes/no - - - 12/8 1/19 <0.001 

eGFR (MDRD formula) 75±9 75±10 ns - -  

CAD15 score 16.55±2.0 9.04±4.8 <0.001 15.5±3.3 13.7±2.2 0.054 

 
Listed is demographic data of both cohorts. Data from the Zimmerli study was adapted from Zimmerli et al. [323]. BMI, body mass index; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; LDL, low density lipoprotein; HDL, high density lipoprotein; CRP, C-reactive protein; ACEI, angiotensin-
converting enzyme inhibitor; ARB, angiotensin receptor blocker; CAD, coronary artery disease; eGFR, estimated glomerular filtration rate. 
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6.3.3 Discussion 

The results of the Zimmerli study were not reproducible in an independent, yet 

similar cohort. Several factors might have influenced this finding. First of all, 

the CAD15 score may not represent CAD. Instead it could reflect on 

cardiovascular risk, as the VASCAB study controls were older and had more 

cardiovascular risk factors. Secondly the score could be altered by exercise 

levels. Zimmerli et al. [323] observed that high physical activity contributes to a 

“healthier” CAD15 score. As the majority of the study’s control subjects were 

recruited in a fitness club, their CAD15 score might represent their better 

physical fitness compared to the average population. The third factor is the 

possible presence of asymptomatic CAD in control subjects, which cannot be 

excluded especially in VASCAB controls due to their greater cardiovascular risk. 

The problem of presence of asymptomatic CAD was addressed by Snell-Bergeon 

et al. in the Coronary Artery Calcification in Type I Diabetes study (CACTI) [417]. 

The study is a prospective cohort study including 1,416 individuals asymptomatic 

for CAD at baseline. Six hundred fifty-two participants had type 1 diabetes 

mellitus. Participants developing clinical CAD (myocardial infarction, n=4; 

coronary artery bypass grafting, n=6; coronary angioplasty, n=9) occurring 

1.4±1.3 years after study enrolment were matched for age, gender, diabetes 

status (n=4) and duration with patients with the lowest possible coronary 

calcium score as measured by computed tomography (score = 0, n=16; score 0-

10, n=2; score = 51.7, n=1). According to the American Heart Association writing 

group [418] the presence of any atherosclerotic plaque is highly unlikely if the 

coronary calcium score is 0. Therefore control subjects had probably normal 

coronary arteries. Urine samples of the 38 participants were measured with CE-

MS and the CAD15 score was calculated. The score difference was statistically 

significant (clinical CAD vs. control; 14.6±2.0 vs. 12.7±2.7, P=0.002) despite a 

similar cardiovascular risk and the lack of symptoms at baseline. This finding 

suggests that asymptomatic CAD instead of cardiovascular risk factor distribution 

contributed to the results in the VASCAB convenience sample.  

6.4 Recalibration of Urine proteome pattern 

As discussed results of urine proteomics are capable to differentiate CAD 

patients from “healthy” controls, suggesting detection of CAD processes. As the 
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CAD15 score was however not replicable in an independent cohort of similar 

origin refinement of polypeptide panel appeared necessary. We also enlarged 

and diversified the biomarker discovery cohort to minimise cohort specific bias. 

Therefore an increased number of cases and controls originating from several 

cohorts were used to recalibrate the CAD-specific polypeptide pattern [323, 417, 

419-422]. 

6.4.1 Material and Methods 

6.4.1.1 Biomarker discovery cohort 

In the biomarker discovery cohort existing CE-MS data were compiled: the 

Zimmerli study [323], a study by von zu Muhlen et al. [419] (unstable angina 

pectoris (UAP) study), the CACTI study [417], an angiotensin converting enzyme 

inhibitor study [420], a fenofibrate treatment study [422] and additional healthy 

controls [323, 421]. This led to a total of 586 urine samples from existing cohorts 

comprising 408 patients and control subjects. The cohorts are summarised in 

Table 6.3 and described subsequently. Urine samples in all cohorts were 

investigated with CE-MS as described in chapter 2.  

In the Zimmerli study [323] 151 CE-MS data sets from CAD patients were 

available: 77 urine samples collected prior to coronary artery bypass surgery and 

74 urine samples collected on follow-up 14 months post surgery. Also 32 urine 

samples of control subjects were successfully assessed.  

The unstable angina pectoris study included patients older than 18 years with 

typical angina symptoms combined with traditional cardiovascular risk factors 

[419] . Patients with renal disease, acute coronary syndromes with positive 

troponin I/T or significant CK/CK-MB elevation, acute inflammatory diseases, 

cardiogenic shock, congestive heart failure, significant calcific valve disease, 

atherosclerotic aneurysms, previous history of peripheral artery disease and 

known cerebrovascular disease were excluded. The CAD group (n=35) consisted 

of patients with at least two-vessel disease with lesions !75% on coronary 

angiography whereas controls had normal coronary arteries on coronary 

angiography (n=24).   
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Table 6.3 Cohort for urinary biomarker discovery.  

 
Study cohort Sample CAD Control Primary 

Usage 
Secondary 
Usage 

Biomarker 
discovery 

586 204 382   

Zimmerli study 
[323] 

183 151 32 CAD 
markers 

SVM 
modelling 

UAP  59 35 24 SVM 
modelling 

n.a. 

CACTI 33 18 15 SVM 
modelling 

n.a. 

Additional 
controls  

229 0 229 SVM 
modelling 

n.a. 

Ramipril, 
baseline 

14 0 14 Medication 
markers 

SVM 
modelling 

Ramipril, follow-
up 

16 0 16 Medication 
markers 

SVM 
modelling 

Fenofibrate, 
baseline 

26 0 26 Medication 
markers 

SVM 
modelling 

Fenofibrate, 
follow-up 

26 0 26 Medication 
markers 

SVM 
modelling 

Blinded cohort, 
VASCAB 

138 71 67 Validation n.a. 

 
UAP, unstable angina pectoris study (Study by von zur Muhlen et al. [419]); CACTI, 
Coronary Artery Calcification in Type I Diabetes [417]; VASCAB, vascular function in 
coronary artery disease study; SVM, support vector machine.   

The CACTI study was already described in section 6.2.1.3.  

The additional controls mentioned in Table 6.3 were collected at two sites. 

Forty men and 40 women, 18-55 years old were recruited at the University of 

North Dakota, USA, by newspaper, radio, TV and Internet advertisement [421]. 

Study volunteers were screened for eligibility including a general health 

assessment and standard clinical biochemistry. To rule out centre specific bias, 

samples from 73 new appointees at the University of Hannover, Germany with 

age older than 40 years who were free of self-reported illness were also 

analyzed. 

To account for possible effects of angiotensin-converting enzyme inhibitors and 

lipid-lowering drug treatment two additional study cohorts were included.  
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Seventeen paired urine samples from age and sex-matched patients with 

hypertension, type 2 diabetes and lack of albuminuria were evaluated, before 

and 12 weeks after commencing treatment with the angiotensin-converting 

enzyme inhibitor Rampiril [420]. Also urine samples were acquired from 26 

healthy individuals before and after 6 weeks of fenofibrate treatment [422].  

6.4.1.2 Biomarker validation cohort 

One hundred thirty-eight individuals recruited into the VASCAB study (section 

2.1.1.) were used as a validation cohort. The cohort included 71 patients with 

severe CAD and 67 controls. Medical history, measurement of demographic and 

clinical parameters as well as blood and urine processing are described in 

chapter 2.  

6.4.1.3 Treatment effect on the urine proteome 

To test if short-term treatment with the angiotensin-2 receptor blocker 

irbesartan effects the CAD-specific urinary polypeptide pattern, urine samples of 

a study by Rossing et al. [423] were investigated. The authors collected urine 

samples from 55 patients with type 2 diabetes mellitus. All patients had 

microalbuminuria. After an 8 week washout period patients were treated with 

300 mg irbesartan once daily for 2 weeks followed by 8 weeks of either 300 mgs, 

600 mg or 900 mg once daily in a randomised, double blinded cross-over design. 

Urine samples were collected before and after 10 weeks of irbesartan 

treatment.  

To assess the effect of long-term treatment with the angiotensin-2 receptor 

blocker irbesartan on the CAD-specific urinary polypeptide pattern, urine 

samples collected for the Irbesartan Microalbuminuria Type 2 Diabetes in 

Hypertensive Patients study (IRMA-2) [424] were assessed. All patients had type 

2 diabetes mellitus. Urine samples were collected at baseline and after 2 years 

of treatment either with 300 mg irbesartan (n=11) or placebo (n=11) taken on a 

daily basis.  

All studies mentioned in this chapter were approved by local ethics committees 

and are in accordance with the Declaration of Helsinki. All patients gave written 

informed consent.  
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6.4.2 Results 

6.4.2.1 Biomarker discovery 

In order to identify CAD specific urinary polypeptides, we compared the urine 

proteome measured with CE-MS of patients with CAD and controls in the 

biomarker discovery cohort. Polypeptides that were present in less than 50% of 

CAD and control samples were excluded. We found 398 potential candidates in 

the remaining panel of polypeptides. To ascertain significance of each 

polypeptide we repeated the statistical analysis (10 times) with random 

exclusion of 30% of the samples. Only the 265 polypeptides with significance in 

at least 7/10 permutations were investigated further.  

As patients with CAD were usually treated with lipid lowering or angiotensin 

converting enzyme inhibitor agents, we adjusted for medication-specific 

polypeptide changes among the 265 candidates. Polypeptides were excluded 

from further analysis if the angiotensin converting enzyme inhibitor ramipril 

[420] or the lipid lowering drug fenofibrate [422] altered them significantly 

(P<0.05). Rampiril intake was indicated by 24 peptides and fenofibrate intake by 

88. Among the medication specific polypeptides were 27 of the 265 CAD-specific 

candidates. Therefore the final set contained 238 CAD-specific biomarker 

candidates. A visualization of the polypeptide panel comparing the compiled 

data sets of cases and controls is depicted in Figure 6.1.  

The 238 polypeptides were used in support vector machine (SVM) modelling. The 

final model (C=3.79555, "=0.004174, and #=0.001) was based on a total of 586 

urine proteome profiles comprising 204 CAD and 382 control profiles in the 

biomarker discovery cohort. The final model is called CAD238 score in this thesis. 

The score classified the training set with an AUC of 0.95 in total cross validation. 

Using the classification threshold CAD238 score = -0.140, the pattern correctly 

identified CAD patients with a sensitivity of 88% and a specificity of 89%.  
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Figure 6.1 Urinary polypeptide panel specific for coronary artery disease (CAD). Capillary 
electrophoresis coupled to mass spectrometry measurement of urine (Panel A) resulted in 
the definition of 238 polypeptides constituting a CAD-specific polypeptide panel (Panel B). 
Normalised molecular weight of the peptides (800-20000 Da) (y-axis) in logarithmic scale is 
plotted against normalised capillary electrophoresis migration time (18-45 min) (x-axis). The 
mean signal intensity equivalent of the polypeptide peak is depicted 3-dimensionally (z-
axis). The CAD-specific polypeptide pattern is magnified with a zoom factor of 4.5 (Panel B). 
Compiled data sets of patients with CAD and controls are shown.  

 
6.4.2.2 Biomarker Validation 

The model was then applied to the 138 urine samples of the VASCAB study in a 

blinded analysis (CAD vs. control; n=71 vs. n=67). This included urine samples of 

the age and sex matched VASCAB participants discussed in section 6.3. Receiver 

operating characteristics analysis of the score revealed an AUC of 0.87. The 

CAD238 score, using a classification threshold of CAD238 score equal to -0.140, 

correctly identified patients with CAD with a sensitivity of 79% and a specificity 

of 88%, corresponding to a positive and negative predictive value of 87% and 

80%, respectively. The test performance of the panel was significantly improved 

in comparison to the CAD15 score (P<0.0001 in Fisher’s exact test). Analysis of 

the 15-peptide panel in this enlarged cohort revealed an AUC of 0.68. The CAD15 

score identified correctly patients with CAD with a sensitivity of 81.4% and a 

specificity of 48.5%.  
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Table 6.4 Cohort characteristics for the VASCAB study investigated for urine proteomics. 

 

 CAD, n=71 Control, n=67 P-value 

Gensini-Score 77 [56; 109] -  

ACR (all > detection limit) 1.1 [0.7; 2.0] 0.9 [0.7; 1.6] ns 

Microalbuminuria, yes/no 6/49 5/57 ns 

CAD238 score 0.1±0.4 -0.5±0.3 <0.001 

Age, years 64.3±8.8 61.9±8.4 ns 

Sex, m/f 56/15 41/26 0.023 

BMI, kg/m2 29.5±5.0 26.0±3.5 <0.001 

SBP, mmHg 139±25 138±19 ns 

DBP, mmHg 78±12 82±11 ns 

Heart rate, /min 64±12 68±13 0.039 

Total cholesterol, mmol/l 4.1±0.8 5.7±1.2 <0.001 

LDL-cholesterol, mmol/l 2.0±0.7 3.5±1.0 <0.001 

HDL-cholesterol, mmol/l 1.2±0.3 1.5±0.4 <0.001 

Trilycerides, mmol/l 1.8 [1.3; 2.6] 1.3 [1.0; 2.0] <0.001 

Hypertension History, yes/no 41/29 19/46 0.001 

Positive Family History, 

yes/no 

18/50 22/43 ns 

Diabetes History, yes/no 17/53 0/67 ns 

Active smoking, yes/no 7/64 5/62 ns 

Statin, yes/no 63/8 8/59 <0.001 

Aspirin, yes/no 61/10 9/58 <0.001 

Beta-blocker, yes/no 59/12 5/62 <0.001 

ACEI/ARB, yes/no 42/29 6/61 <0.001 

 
Data was given as mean±SD or median± ICR as appropriate. P-values are from Student’s t-
test, Mann-Whitney U-test, Chi-square test or Fisher’s exact test where appropriate. ACEI, 
angiotensin-converting enzyme inhibitor; ARB, angiotensin-2 receptor blocker; CAD, 
coronary artery disease; NCA, normal coronary arteries; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein. 

 
6.4.2.3 Short and long-term treatment effects 

To test if the adjustment of the CAD238 score for a short-term ramipril effect 

made the score independent of treatment with agents interfering with the renin-

angiotensin-aldosteron system, urine samples of a study by Rossing et al. [423] 



  212 

          

212 

were assessed. For all doses, the CAD238 score at baseline was compared with the 

respective value after a 10-week irbesartan administration. No significant effect 

was seen in any dose group (300 mgs, P=0.149; 600 mgs, P=0.709; 900 mgs, 

P=0.587).  

Although the CAD238 score was adjusted for short-term treatment with agents 

interfering with the rennin-angiotensin-aldosteron system, the effect of long-

term therapy on the score was unknown. Therefore 44 urine samples of the 

IRMA-2 study [424] were assessed. Urine samples at baseline and after 2 years of 

treatment with either irbesartan 300 mgs once daily (n=11) or placebo once daily 

(n=11) were analysed. Patients treated with irbesartan therapy for 2 years had a 

significant decrease (P=0.007) of the the CAD238 score towards a “healthier” 

biomarker panel compared with the placebo group.   

6.4.2.4 CAD prediction with the CAD238 score 

When the CAD238 score was applied to the 19 individuals developing clinical overt 

CAD and 19 individuals with almost no coronary artery calcium score in the 

CACTI study [417], the score significantly predicted the development of overt 

CAD (OR 2.2 [95% CI 1.3-.52] p=0.0016].  

6.4.2.5 Peptide sequencing 

Twenty-one percent of the 238 discriminatory peptides were sequenced (Table 

6.5). In summary these included: fragments of !-1-antitrypsin, collagen type 1 

and 3, granin-like neuroendocrine peptide precursor, membrane-associated 

progesterone receptor component 1, sodium/potassium-transporting ATPase 

gamma chain and fibrinogen-! chain. Polypeptides in the CAD238 score were not 

overlapping with polypeptides in the CAD15 score. 

6.4.3 Discussion 

6.4.3.1 The CAD-specific polypeptide panel 

Although the CAD15 score was significantly associated with the presence of CAD, 

its test characteristics as seen in the VASCAB convenience sample (n=40) as well 

as a larger part of the VASCAB cohort (n=138) suggested room for further 

improvement. Consequently a new CAD-specific polypeptide panel was 
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established, using a greater number of patients and controls from several 

cohorts. We identified a urinary polypeptide panel based on 238 biomarkers, 

which was highly predictive of CAD. It does not reflect cholesterol-lowering 

therapy and is only influenced by longer-term treatment as opposed to short-

term treatment with angiotensin-2 receptor blockers. This suggests that the 

CAD-specific polypeptide pattern is not influenced by drug therapy per se but is 

influenced by the long-term beneficial effects of medication. The panel is 

subject to changes over longer treatment periods and, therefore, not only 

reflects changes in the disease process but may also be a suitable surrogate 

marker to monitor treatment effects.  

The CAD238 score is not yet ready of clinical application, yet it represents a first 

step in the development of a CAD-specific biomarker panel. To take the test a 

step further and to test if the score is suited for the diagnosis of CAD in patients 

with stable angina we designed the DiCADu study (section 2.1.3).  

6.4.3.2 Peptide sequences 

The identified polypeptides relate to atherosclerotic processes. For instance, an 

increased quantity of one particular !-1-antitrypsin fragment was found 

predominantly in the urine of CAD patients. Alpha-1-antitrypsin is a major acute 

phase protein with various anti-inflammatory and anti-apoptotic effects. As an 

acute phase protein its levels are raised several fold in inflammation [425]. 

Therefore the urine polypeptide might represent chronic inflammation in CAD. 

Also reduced levels of fibrinogen !-chain fragments in CAD were observed in the 

urine of patients with CAD. This may indicate fibrin formation with consecutive 

loss of free fibrinogen-! chains possibly caused by interaction between 

atherosclerotic plaque and the haemostasis system.  

We also observed an up-regulation of specific collagen type 1 and 3 ! chain 

fragments with a C-terminal GxPGP-motif. A database search 

(http://merops.sanger.ac.uk/) with cleavage sites at the C-terminal side of the 

proline residues specified matrix metalloprotease 2 (MMP-2), the A disintegrin 

and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), the membrane 

Pro-x carboxypeptidase, and the prolyl oligopeptidase. Decreased activity or 
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levels of these proteases would explain the observed accumulation of C-terminal 

GxPGP-motif containing collagen fragments.  

MMP-2 and ADAMTS5 are members of the metalloprotease family. For both 

proteins reduced circulating levels have been reported in unstable CAD or other 

forms of arteriosclerosis [426]. However in stable CAD Membrane Pro-x 

carboxypeptidase is a negative regulator of the vasopressor actions of renin-

angiotensin system and provides a measure of endothelium relaxation due to its 

ability to set off nitric oxide and prostaglandin generation through Mas receptor 

activation [427]. 

Prolyl oligopeptidase, sometimes called post-proline cleaving enzyme, belongs to 

the serine peptidase family. Its activity to generate PGP tripeptide is confined to 

action on oligopeptides of less than 10 kD and it has an absolute requirement for 

the trans-configuration of the peptide bond preceding proline residues and is a 

two-step process involving MMP-9 as well [428]. The PGP tripeptide derived from 

collagen is reported to promote CXCR1/2 neutrophilic chemotactic migration 

[429]. 

The granin-like neuroendocrine peptide precursor possibly contributes to the 

neuroendocrine secretory pathway as a specific endogenous inhitor of proprotein 

convertase subtilisin/kexin type 1 inhibitor. It decreases the activity of the 84 

kDa form but not the auto-catalytically derived 66 kDa form of the proprotein 

convertase subtilisin/kexin type 1 inhibitor. The latter is directly involved in the 

processing of hormones and other protein precursors including renin, enkephalin, 

somatostatin and insulin. Its link and the links of the remaining identified 

polypeptides to CAD are unclear. 
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Table 6.5 Sequences of polypeptides constituting the CAD238 score . Peptide ID are unique identifiers of CE-MS results.  

 
Peptide 
ID 

Experimental 
Mass, Da 

Migration 
time, min 

Sequence Protein name 

11413 981.59  24.8 VLNLGPITR Uromodulin  
13342 1,016.45  25.8 ApGDKGESGPS Collagen !-1 (I) chain  
21365 1,154.51  25.7 PpGEAGKpGEQG Collagen !-1 (I) chain  
22885 1,174.54  38.1 ADIAPSTDDLAS Microfibrillar-associated protein 5  
24117 1,194.55  26.7 SpGPDGKTGPPGp Collagen !-1 (I) chain  
27350 1,247.52  22.0 DKGETGEQGDRG Collagen !-1 (I) chain  
28561 1,265.59  27.1 SpGPDGKTGPpGPA Collagen !-1 (I) chain  
30575 1,297.58  27.4 SpGSpGPDGKTGPp Collagen !-1 (I) chain  
35339 1,378.61  28.8 ApGEDGRpGPpGPQ Collagen !-1 (II) chain  
36345 1,396.62  28.1 SpGERGETGPpGPAG Collagen !-1 (III) chain   
36988 1,408.66  39.1 GPPGppGPpGPPGPPS Collagen !-1 (I) chain   
38605 1,435.66  28.8 SpGSPGPDGKTGPpGP Collagen !-1 (I) chain  
38780 1,438.66  30.2 GLpGTGGPpGENGKpG Collagen !-1 (III) chain 
38879 1,439.66  29.8 TIDEKGTEAAGAMF Alpha-1-antitrypsin   
38910 1,440.56  24.3 DEAGSEADHEGTHS Fibrinogen ! chain  
42304 1,485.67  23.8 DGQpGAKGEpGDAGAK Collagen !-1 (I) chain  

42404 1,487.65  29.6 GLSMDGGGSPKGDVDP Sodium/potassium-transporting ATPase 
gamma chain   

44464 1,521.69  30.5 GDSDDDEPPPLPRL Membrane associated progesterone receptor 
component 1  

48580 1,588.71  30.2 TGLSMDGGGSPKGDVDP Sodium/potassium-transporting ATPase 
gamma chain  

49958 1,608.73  30.9 SGDSDDDEPPPLPRL Membrane associated progesterone receptor 
component 1  

50008 1,609.75  30.2 TGSpGSpGPDGKTGPPGp Collagen !-1 (I) chain  
50840 1,623.73  24.1 DGApGKNGERGGpGGpGP Collagen !-1 (III) chain 
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Peptide 
ID 

Experimental 
Mass, Da 

Migration 
time, min 

Sequence Protein name 

51875 1,635.79  40.4 VGPpGPpGPpGPPGPPSAG Collagen !-1 (I) chain  
52100 1,638.73  20.2 AGSEADHEGTHSTKRG Fibrinogen ! chain  
53744 1,666.78  30.7 KpGEQGVpGDLGApGPSG Collagen !-1 (I) chain  
53957 1,669.69  21.5 DEAGSEADHEGTHSTK Fibrinogen ! chain  
55582 1,697.74  30.9 NGAPGNDGAKGDAGAPGAPG Collagen !-1 (I) chain  
55917 1,703.84  33.6 DHDVGSELPPEGVLGAL granin-like neuroendocrine peptide precursor  
57531 1,737.78  31.0 TGSpGSpGPDGKTGPPGpAG Collagen !-1 (I) chain  
58941 1,765.81  31.0 GPpGEAGKpGEQGVpGDLG Collagen !-1 (I) chain  
61573 1,825.79  20.1 DEAGSEADHEGTHSTKR Fibrinogen ! chain  
63910 1,876.87  22.2 DDGEAGKPGRPGERGppGP Collagen !-1 (I) chain  
64256 1,882.80  20.2 DEAGSEADHEGTHSTKRG Fibrinogen ! chain  
67097 1,931.90  31.5 APEAQVSVQPNFQQDKF Prostaglandin-H2 D-isomerase; N-term.  
67217 1,933.88  21.6 GDDGEAGKPGRpGERGPpGP Collagen !-1 (I) chain  
67386 1,936.88  32.2 GEKGPSGEAGTAGPpGTpGPQG Collagen !-2 (I) chain  
72868 2,055.14  33.4 VVVKLFDSDPITVTVPVEV Clusterin  
77018 2,133.96  27.8 DGQPGAKGEpGDAGAKGDAGPPGp Collagen !-1 (I) chain  
77763 2,149.96  27.8 DGQpGAKGEpGDAGAKGDAGPPGp Collagen !-1 (I) chain  
82026 2,226.99  26.3 GNSGEpGApGSKGDTGAKGEpGPVG Collagen !-1 (I) chain  
82509 2,233.04  20.5 GKNGDDGEAGKPGRpGERGPpGP Collagen !-1 (I) chain  
83577 2,249.04  20.5 GKNGDDGEAGKpGRpGERGpPGP Collagen !-1 (I) chain  
96875 2,529.14  28.3 GPPGADGQpGAKGEpGDAGAKGDAGpPGP Collagen !-1 (I) chain  
98089 2,559.18  19.4 DEAGSEADHEGTHSTKRGHAKSRP Fibrinogen ! chain   
99746 2,583.20  28.3 AGPpGApGApGAPGPVGPAGKSGDRGETGP Collagen !-1 (I) chain  
100344 2,599.19  28.3 AGPpGApGApGApGPVGPAGKSGDRGETGP Collagen !-1 (I) chain  
104195 2,663.20  23.5 NRGERGSEGSPGHPGQPGPpGppGApGP Collagen !-1 (III) chain 
104786 2,679.20  23.5 NRGERGSEGSPGHpGQpGppGpPGAPGP Collagen !-1 (III) chain 
105352 2,695.20  23.5 NRGERGSEGSpGHpGQpGppGPPGAPGp Collagen !-1 (III) chain 
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6.5 The CAD238 score in patients with stable angina 

Considering the good discriminatory capacity of the CAD238 score we 

hypothesised that the score would differentiate CAD patients from patients with 

normal coronary arteries and angina like chest pain. To this goal the Diagnosis of 

Coronary Artery Disease with Urine proteomics (DiCADu) study was designed. 

6.5.1 Material and Methods 

Patients who underwent elective coronary angiography in the Golden Jubilee 

National Hospital (GJNH) in Clydebank were selected retrospectively on the basis 

of presence of severe CAD or complete absence of CAD as confirmed by 

angiography. Local cardiologists had referred the patients for further 

investigation of of typical symptom complexes and/or non-invasive test results. 

Study details are provided in chapter 2. The West of Scotland research ethics 

committee approved the study. In total 260 eligible patients were identified of 

whom 93 patients agreed to take part in the study.  

CE-MS was performed in urine samples of 30 CAD patients and 30 individuals with 

normal coronary arteries, as described in chapter 2. The remaining urine 

samples were excluded due to insufficient sample quality or lack of age matches 

in the remaining participants. Assessment of DiCADu study participants including 

anthropometric and demographic data, standard laboratory measurements, 

Gensini score and vascular phenotypes were described in chapter 2. 

As discussed in chapter 1, even a risk factor with low discriminatory power may 

reclassify the intermediate risk group [51, 52]. We therefore investigated if the 

CAD238 score improves classification by calculating the NRI as discussed in 

chapter 5. The NRI is a simple intuitive way of quantifying improvement offered 

by new biomarkers. We performed further statistical analysis of the CAD238 score 

with correlation assessment to a variety of potential contributing factors. 
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6.5.2 Results 

6.5.2.1 DiCADu study  

Characteristics of DiCADu participants in whom CE-MS analysis was performed 

are depicted in Table 6.6. Traditional cardiovascular risk factors were not 

significantly different between cases and controls.  

Table 6.6 Cohort characteristics for the DiCADu study subgroup investigated for urine 
proteomics. 

 

 CAD, n=30 NCA, n=30 P-value 

Gensini-Score 40 [25; 61] 0 - 

ACR (all > detection limit) 0.9 [0.6; 2.0] 1.6 [1.0; 3.4] 0.036 

Microalbuminuria, yes/no 1/13 3/10 ns 

CAD238 score -0.5±0.3 -0.6±0.3 ns 

Age, years 55.1±6.0 56.1±7.0; ns 

Sex, m/f 16/14 10/20 ns 

BMI, kg/m2 27.9±4.2 28.8±7.5 ns 

SBP, mmHg 138±17 138±19 ns 

DBP, mmHg 78±10 81±9 ns 

Heart rate, /min 57±9 59±9 ns 

Total cholesterol, mmol/l 4.3 [3.8; 5.6] 4.8 [4.3; 5.7] ns 

LDL-cholesterol, mmol/l 2.1 [1.8; 3.3] 2.4 [2.0; 3.4] ns 

HDL-cholesterol, mmol/l 1.2 [0.9; 1.4] 1.3 [1.0; 1.6] ns 

Trilycerides, mmol/l 1.6 [1.1; 2.1] 1.7 [1.1; 2.5] ns 

Hypertension History, yes/no 22/7 16/12 ns 

CAD Family History, yes/no 22/8 21/9 ns 

Diabetes History, yes/no 6/24 4/26 ns 

Active smoking, yes/no 7/23 5/25 ns 

Statin, yes/no 26/4 17/13 0.02 

Aspirin, yes/no 28/2 10/20 <0.001 

Beta-blocker, yes/no 25/5 8/22 <0.001 

ACEI/ARB, yes/no 12/18 10/20 ns 

 
Data was given as mean±SD or median± ICR as appropriate. P-values are from Student’s t-
test, Mann-Whitney U-test, Chi-square test or Fisher’s exact test where appropriate. ACEI, 
angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CAD, 
coronary artery disease; NCA, normal coronary arteries; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein. 
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Due to the confirmed diagnosis of CAD, cases were more frequently on secondary 

preventative therapy. In the DiCADu study CAD238 scores were not significantly 

different between cases and controls (CAD vs. normal coronary arteries; -0.5±0.3 

vs. -0.6±0.3; P=ns). ROC curve statistical analysis revealed an AUC of 0.614 for 

the score. Using the previously defined CAD238 score threshold of -0.140, 

sensitivity was 20% and specificity was 93%. 

6.5.2.2 Multiple biomarker model reclassification with the CAD238 score 

As shown in Table 6.7 the CAD238 score added information to the approaches with 

multiple biomarkers discussed in chapter 5. The NRI was 1.2 % for the 

comparison of DTS and CAD238 score with DTS alone and 2.9% for the comparison 

DTS, carotid plaque score and CAD238 score with DTS and carotid plaque score 

alone. Also the CAD238 score added to the model consisting of DTS, RHI and 

carotid plaque score with a NRI of 2.0 %.  

Table 6.7 Test qualities of different models with multiple biomarkers +/- CAD238 score.  

 

Biomarker Panel n (CAD/NCA) AUC 
(Alone) 

AUC (with 
CAD238 score) 

NRI, % 

DTS 51 (24/27) 0.663 0.680 1.2 
DTS + carotid 
plaque score 48 (24/24) 0.765 0.795 2.9 

DTS + carotid 
plaque score + 
RHI 

47 (24/22) 0.786 0.813 2.0 

 
DTS, Duke treadmill score; RHI, reactive hyperaemia index; CAD, coronary artery disease; 
NCA, normal coronary arteries; AUC, area under the curve; NRI, net reclassification index. 

 
6.5.2.3 Comparison of the DiCADu and VASCAB cohorts 

One purpose of the DiCADu study was evaluation of the CAD238 score in a cohort 

with less CAD extent in comparison to VASCAB cases. As represented by the 

Gensini score (DiCADu vs. VASCAB; 40 [25; 61] vs. 77 [56; 109]; P<0.001) this was 

the case. Also the CAD238 score in patients with CAD was different between both 

studies (DiCADu vs. VASCAB; -0.5±0.3 vs. 0.1±0.4; P<0.001) with the “healthier” 

value in the DiCADu study. Further differences between the cases of both studies 

were seen regarding age (DiCADu vs. VASCAB; 55.1±6.0 years vs. 64.3±8.8 years, 
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P<0.001), heart rate (DiCADu vs. VASCAB; 57±9 /min vs. 64±12 /min, P=0.006) 

and a positive family history for CAD (DiCADu vs. VASCAB; 73% vs. 27%; P<0.001).   

The differences between control subjects of the DiCADu and the VASCAB study 

were more prominent. These involved age (DiCADu vs. VASCAB; 56.1±7.0 years 

vs. 61.9±8.4 years; P=0.002), BMI (DiCADu vs. VASCAB; 28.8±7.5 kg/m
2
 vs. 

26.0±3.5 kg/m
2
; P=0.001), heart rate (DiCADu vs. VASCAB; 59±9 /min vs. 68±13 

/min; P=0.01), total cholesterol (DiCADu vs. VASCAB; 4.8 [4.3; 5.7] mmol/l vs. 

5.2 [4.3; 6.2] mmol/l; P=0.011), LDL cholesterol (DiCADu vs. VASCAB; 2.4 [2.0; 

3.4] mmol/l vs. 2.9 [2.2; 3.6] mmol/l; P=0.001), history of hypertension (DiCADu 

vs. VASCAB; 53% vs. 29%; P=0.038), positive family history for CAD (DiCADu vs. 

VASCAB; 70% vs. 34%; P=0.001), statin intake (DiCADu vs. VASCAB; 57% vs. 12%; 

P<0.001), betablocker intake (DiCADu vs. VASCAB; 27% vs. 7%; P=0.011) and 

intake of an angiotensin converting enzyme inhibitor or angiotensin-2 receptor 

blocker (DiCADu vs. VASCAB; 33% vs. 9%; P=0.003). The CAD238 score was however 

not significantly different between the controls in both studies (DiCADu vs. 

VASCAB; -0.6±0.3 vs. -0.5±0.3; P=ns).  

6.5.2.4 Correlations with the CAD238 score  

When the DiCADu and VASCAB studies were combined the CAD238 score in 

patients with CAD (n=96) was correlated with the Gensini score (r=0.465, 

P<0.001), as shown in Figure 6.2.  

To evaluate which covariates influence the score, the combined VASCAB and 

DiCADu control cohort was investigated. Due to differences in CAD severity and 

to avoid bias in this regard only controls were taken into account. Medication as 

beta-blocker, statin, calcium channel blocker or aspirin treatment did not 

impact on the CAD238 score, as none of the measured differences between 

treated and non-treated individuals was statistically significant (Figure 6.3). This 

was not the case for angiotensin converting enzyme inhibitor or angiotensin-2 

receptor blocker treatment. Individuals on treatment had a higher CAD238 score, 

although the differences was only borderline statistically significant (therapy, 

yes/no (16/77); -0.4±0.3 vs. -0.6±0.3; P=0.053).  
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Figure 6.2 Correlation between CAD238 score (CAD score 238) and the Gensini score. The 
Gensini score (y-axis) is plotted against the CAD238 score (x-axis) for 96 patients. 

 
The difference of the CAD238 score between the genders (male/female, n=50/47, 

-0.48±0.31 vs. -0.57±0.34, P=0.178) was not statistically significant. There was a 

significant correlation between the CAD238 score and age (r=0.253, P=0.013), as 

shown in Figure 6.4. BMI and urinary albumin:creatinine ratio were not 

correlated with the score. In patients with microalbuminuria the score was 

numerically lower (Microalbuminuria, yes/no (8/67): -0.58±0.26 vs. -0.49±0.34, 

P=0.494), yet the difference was not statistically significant.  

When assessing the combined DiCADu and VASCAB control subjects the 

correlation between the CAD238 score and the macrovascular phenotypes C-IMT 

(n=70), PWV (n=68), AIx (n=87) and carotid plaque score was not statistically 

significant (P=ns). The carotid plaque score was only available in the DiCADu 

study. Investigating VASCAB and DiCADu participants with and without CAD 

together, the finding persisted with the exception of the borderline significant 

correlation of PWV with the CAD238 score (n=107, 8.3 [7.3; 9.7] m/s; r=0.184, 

P=0.058). 
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Figure 6.3 Treatment effect on the CAD238 score. For comparison the student t-test was 
used. ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotension receptor blocker; 
CCB, calcium channel blocker; BB, beta-blocker; CAD score 238, CAD238 score.  
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Figure 6.4 Correlation between age and CAD238 score (CAD score 238). Depicted are only 
control patients. Shown are the Pearson correlation coefficient and the corresponding P-
value. 

 
Regression models were calculated to evaluate if rather the CAD238 score than 

age, PWV and medication reflect on CAD extent. Age, PWV, angiotensin 

converting enzyme inhibitor or angiotensin-2 receptor blocker treatment and the 

CAD238 score were entered into the model to predict the CAD extent as assessed 

by the Gensini score. Due to lack of coronary angiography in VASCAB controls the 

modelling was restricted to cases of both studies and DiCADu controls 

(CAD/normal coronary arteries; n=93/30). Only the CAD238 score was a significant 

determinant of the Gensini score in a linear regression model containing the four 

factors (R2adj=0.238, P<0.001; CAD238 score, ß=0.481, P<0.001; Age, ß=0.041, 

P=0.761; treatment, ß=0.036, P=0.764; PWV, ß=0.056, P=0.703). In stepwise 

regression modelling only the CAD238 score remained a determinant when all 

participants with known angiography results were taken into account 

(R2adj=0.266, ß=0.526, P<0.001) or when only patients with CAD were 

investigated (R2adj=0.187, ß=0.456, P=0.004).  
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6.5.3 Discussion 

There was no statistically significant difference of the CAD238 score between the 

CAD and control group. The attempt to employ the CAD238 score in a setting with 

diagnostic uncertainty was therefore unsuccessful. As the score related to CAD in 

a variety of cohorts with different clinical situations it is probable that the 

factor connecting these studies is CAD. The CAD238 score therefore reflects on 

the disease. However several factors could contribute to the findings in the 

DiCADu study. To understand these better additional analyses were performed.  

The clinical characteristics of cases in the Zimmerli and VASCAB studies were 

similar (section 6.3). In contrast there were significant differences between 

cases of the DiCADu and VASCAB studies cases. The Gensini score in DiCADu 

cases was smaller suggesting less coronary atherosclerosis. Additionally 60% of  

DiCADu cases had a percutaneous coronary intervention including a stent 

implantation. Therefore the blood contact with atherosclerotic plaque was 

greater in VASCAB study cases. This was likely the cause of the “healthier” 

CAD238 score in DiCADu study cases. There was no statistically significant 

difference between DiCADu and VASCAB controls for the CAD238 score. However 

several cohort characteristics were different. The prevalence of a positive 

family history for CAD, hypertension, diabetes and overweight was higher in 

DiCADu controls. This suggests that the CAD238 score reflects on CAD extent but is 

not sensitive enough to detect smaller differences of CAD extent. 

A further argument supporting this hypothesis is the strong correlation between 

the Gensini score and the CAD238 score in the combined DiCADu and VASCAB CAD 

cohort independent of other factors. The Gensini score was designed to reflect 

on the number of diseased coronary arteries, their importance regarding 

dependent myocardial mass and the extent of arterial narrowing. It therefore 

indirectly relates to the extent of CAD. In extensive CAD the surface area of 

plaque will be larger. Therefore more arthrosclerosis related peptides enter the 

blood stream by for example diffusion. This will happen in each part of the 

artery system. The carotid plaque score was however not correlated with the 

CAD238 score suggesting that the identified proteome pattern is specific for 

cardiac atherosclerosis.  
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Another finding suggesting a connection between the CAD238 score and CAD 

extent is the positive NRI of the CAD238 score contributing to multiple biomarker 

models (section 5.4.4). This suggests that the CAD238 score represents 

pathophysiological CAD processes that are not covered by the other biomarkers 

in the model. As discussed in chapter 5, the small study cohort size does 

however no permit generalised conclusions.  

The finding in the combined VASCAB and DiCADu controls that angiotensin 

converting enzyme inhibitor or angiontensin-2 receptor blocker therapy 

correlates to an “unhealthier” CAD238 score is in opposition to the previously 

mentioned long-term effect of such treatment. All DiCADu and VASCAB study 

controls on such therapy however had hypertension. The higher score might 

therefore reflect their increased cardiovascular risk. 

6.6 Discussion 

6.6.1 Collagen fragments and plaque 

Most polypeptides in the panel of the CAD238 score were collagen fragments. As 

the collagen in artery walls increase with age [430], this might explain the 

score’s correlation with age. An increased degradation of Type 1 and 3 collagens 

in atheromatous plaque [431] might also explain the predominance of collagen 

fragments, especially as atheromatous plaque burden increases with age [432]. 

In older subjects the collagen concentration in atheromatous plaque increases in 

areas close to the arterial lumen [14] and is therefore more frequently in 

contact with the blood stream. 

Collagen type 1 and 3 are important constitutes of the arterial wall. Their 

highest concentration in the artery wall is in the intima (type 1 vs 3; 222 vs. 109 

!g/mg dry weight) and in plaque (type 1 vs 3; 234 vs. 94 !g/mg dry weight) 

[433]. In the intima both collagen types occur mostly in the subendothelium 

where they are localised mainly in the deep layers in the younger population. In 

older subjects an increased amount of interstitial collagen can be found in 

surface intima regions [434]. Synthesis or degradation of collagens is slow in a 

healthy artery system [435]. This implies decreased levels of collagen fragments 

in the blood stream of healthy individuals. In atherosclerotic plaque the main 
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component of the fibrous cap, the region in contact with the circulating blood, 

consists of collagenes types 1 and 3 [434]. Also atherosclerosis causes an 

increased synthesis and degradation of many matrix components [436]. The 

majority of identified polypeptides in the urine were collagen type 1 and 3 ! 1 

chain fragments. This suggests that CAD-specific information is available in urine 

in form of degradation products of collagen linked to atherosclerotic plaque. As 

mentioned before the sequences identified by mass spectrometry and frequently 

occurring in CAD patients belonged to a C-terminal geranyl 6-O-xylopyranosyl-

glucopyranoside motif amongst others specific for MMP-2. An increase in the 

identified collagen fragments suggests a higher activity or level of this 

metalloproteinase. A link between CAD and MMP-2 has been previously shown as 

the protease contributes to the development of atherosclerosis [437]. Also the 

CAD-specific polypeptide pattern changes induced by longer-term angiotensin-2 

receptor blocker treatment in the IRMA-2 study [438] can be explained by the 

induction of MMP-2 through angiotensin 2 [439]. Arterial stiffening, as measured 

by aortic PWV, has been found to be associated with higher levels of MMP-2 

[440]. Although this could explain the correlation between age and the CAD238 

score, there was no significant correlation between the score and PWV. It 

remains therefore uncertain if arteries influencing PWV values, such as the aorta 

or carotids, contribute to the CAD238 score in addition to the coronary arteries. 

Further investigations to establish the exact origin of the collagen fragments in 

the urine are therefore required.  

As recruitment criteria in the VASCAB and DiCADu study favour inclusion of 

patients with stable plaque, the dominance of MMP-2’s cleavage products in CAD 

patients can be explained by the association of MMP-2 with such plaque [441]. 

The finding that exercise activity attenuates MMP-2 activity in pre-existing 

atherosclerotic plaque [442] might have contributed to “healthier” CAD15 score 

in the physical activity subgroup of the Zimmerli study [323]. 

6.6.2 Study limitations 

The main limitation of urine proteomics in the diagnosis of CAD is its dependency 

on CAD extent and overall cardiovascular risk. Considering the results of the 

CACTI study [417] an increased overall cardiovascular risk might reflect on 

asymptomatic CAD (section 6.3.3). Therefore healthy controls of the VASCAB 
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study might have asymptomatic undetected CAD. This might explain why the 

Zimmerli pattern was unable to differentiate between cases and controls in the 

VASCAB study. Our findings also suggest that the CAD-specific urinary 

polypeptide pattern is related to CAD extent and not to the percentage of artery 

narrowing. It is therefore possible that a polypeptide pattern identifies coronary 

arthrosclerosis instead of flow limiting CAD. Also the exclusion of coronary 

arthrosclerosis by coronary angiography is incorrect. As discussed in section 1.1 

“positive remodelling” of the artery wall can lead to a vessel wall plaque load of 

40% before the cross-sectional luminal area is affected and CAD becomes 

detectable by coronary angiography.  

In a prospective study investigating unstable angina patients [419] a CAD-specific 

polypeptide pattern was able to discriminate between patients with and without 

CAD. As urine samples in the DiCADu study were collected after coronary 

angiography including percutaneous coronary intervention in 60% of the cases 

the cohort was collected retrospectively. The design of the DiCADu study might 

have therefore contributed to the negative finding. Additionally study visits took 

place in average 9 months after the procedure. Therefore reendothialisation of 

stent surfaces were completed leading to a smaller contact area between plaque 

and blood and the CAD238 score could possibly differentiate between stable 

angina patients with and without CAD in a prospective study. However the 

DiCADu study results suggest a limitation of the CAD238 score in the diagnosis of 

significant coronary artery disease as opposed to severe three vessel or left main 

stem disease and to unstable angina [419]. The diagnostic success of the score in 

those clinical settings underlines the value of collagen turn over assessment in 

CAD diagnosis.  

6.6.3 Summary 

The observed sensitivity and specificity of the panel established in the Zimmerli 

study were not reproducible in a cohort of similar origin. A reason for this 

observation may be differences in cohort characteristics, especially in regards of 

the control group as Zimmerli and the VASCAB convenience sample cases had a 

similar CAD15 score. Consequently the CAD15 score was unable to differentiate 

between cases and controls of the VASCAB convenience sample, possibly due to 

asymptomatic CAD in controls subjects.  
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The CACTI study [417] and the study by von zur Muhlen et al. [419] supported 

urine proteomics in prognostication or diagnosis of CAD. We therefore aimed to 

refine the CAD-specific polypeptide pattern by enlarging the biomarker discovery 

cohort. Additionally the number of polypeptides in the proteome pattern was 

increased from 15 to 238. This allowed coverage of more pathophysiological 

processes involved in cardiovascular disease. The CAD15 score consisted 

predominantly of collagen 1 and 3 ! chain 1 fragments whereas the CAD238 score 

contained for example fragments of !-1-antitrypsin, ProSAAS, Fibrinogen ! chain 

and others (Table 6.1). The test performance of the CAD238 score in the 

validation cohort was significantly improved in comparison to the CAD15 score.  

We then designed the DiCADu study to establish whether the CAD238 score could 

diagnose CAD in patients with stable angina. Probably due to smaller CAD extent 

in DiCADu cases this was not possible. In summary urine proteomics is a novel 

biomarker for CAD and has potential to add to risk stratification. The CAD-

specific panel for the diagnosis of CAD requires further refinement in cohorts 

representing stable angina patients.  

Considering the role of collagen fragments for the CAD238 score, the biomarker is 

probably related to atherosclerotic processes. Referring to the cardiovascular 

continuum the score therefore reflect on subclinical or clinical disease.  
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Chapter 7 Discussion 

7.1 Summary of findings 

The stages of the cardiovascular continuum can be investigated with a multitude 

of biomarkers. These can be circulating, functional and derived from different 

imaging modalities. Different biomarkers are appropriate for diagnosis and 

prognosis in the various stages of the cardiovascular continuum. The aim of this 

PhD was the assessment of CVD biomarkers at two stages, subclinical disease and 

clinical disease. Time constraints and limited resources allowed biomarker 

assessment in CVD diagnosis and to some extent in CVD prognostication as part 

of the PhD thesis. A marker of vascular stiffness, central pulse pressure, was 

investigated for prognostication in subclinical disease and a multiple biomarker 

approach was chosen for the the diagnosis of clinical disease. The latter 

included the development of a new biomarker. In summary the thesis covers 

biomarker discovery, proof of concept studies and prospective as well as 

diagnostic validation.  

7.1.1 Central vs. peripheral pulse pressure  

As current risk models are only predicting a small quantity of occurring 

cardiovascular events [27], the need for improvement remains. Aside from 

biomarker development for the general population, investigations of specific 

cohorts, such as patients with certain diseases and belonging to certain age 

groups or sharing specific biochemical features provided advances in the past.  

As CVD is a slowly progressing disease, risk assessment requires several years of 

follow up in studies with longitudinal design. We were however unable to 

measure risk prospectively. Consequently we had to choose a different 

approach. We correlated established risk prediction biomarkers with a standard 

and a new biomarker. To estimate which biomarker better predicts outcome the 

correlation strengths were compared. This strategy extends the concept of 

surrogate biomarkers into biomarker comparison for prognostication. It does not 

replace longitudinal studies but provides inside if such a study is likely to 

succeed or not. This is therefore comparable to a proof of concept study for CVD 

risk prediction.  
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The investigated biomarker was central pulse pressure (cPP) in comparison to 

peripheral pulse pressure (pPP). Considering the prognostic information of pPP in 

the elderly [354-356, 358], the hypothesis that central pulse pressure could 

improve risk prediction is comprehensible and was investigated as part of this 

thesis. Longitudinal studies focusing on populations with high prevalence of 

diabetes mellitus [366], CAD [383] and end-stage renal disease [367] had shown 

that cPP is a better predictor of outcome than pPP. These studies however 

covered disease processes with increased arterial stiffening and are therefore 

not transferable to other populations. Also a recent meta-analysis showed no 

significant advantage of central over peripheral pulse pressure [384] and data in 

elderly hypertensive patients is controversial [365, 385]. It is therefore uncertain 

if cPP is the better predictor of outcome in middle-aged hypertensive patients. 

We therefore compared cPP with pPP, the current gold standard in pulse 

pressure readings, by correlation with surrogate biomarker related to 

hypertension: left ventricular hypertrophy, carotid intima-media thickness, 

aortic pulse wave analysis and microalbuminuria. Especially as hypertension, one 

of the traditional risk factors, is strongly related to end organ damage 

represented by these biomarkers. Therefore, mentioned features of the 

cardiovascular system represent reasonable surrogate biomarkers for our 

analysis. 

In univariate analysis the majority of these biomarkers were stronger correlated 

with cPP than with pPP. As soon as age was added to these biomarkers in 

multivariate analysis, it became apparent that age is the major contributor to 

these models. In univariate analysis cPP was also stronger associated with age 

than pPP. Consequently multivariate models containing pPP and age had similar 

coefficients of determination as those containing cPP. In our middle-aged cohort 

with high prevalence of hypertension cPP does not provide additional 

information beyond pPP when adjusted for relevant cofactors. As 50% percent of 

hypertensive patients in this cohort were not treated to target the finding might 

extend to untreated hypertensive patients, a group where risk stratification 

directly impacts on treatment. In these patients non-invasive assessment of cPP 

may therefore not provide additional information to brachial pulse pressure.   

This shows that new biomarkers can have advantages over established 

biomarkers in certain cohorts, such as cPP over pPP in diabetic patients. Such 
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findings are however not extendable to other populations. Also our study 

underlined the importance of cofactor adjustment. Factors, such as age, are 

strongly associated with CAD. In case a new biomarker incorporates these factors 

better than the current gold standard its better biomarker characteristics might 

depend on these correlations.   

7.1.2 Circulating biomarkers in the diagnosis of CAD   

In addition to prognostication biomarkers can be used in diagnosis. As CAD is a 

multifactor disease we hypothesised that simultaneous assessment of several 

components of the CAD process could support its diagnosis. A variety of 

circulating biomarkers covers different CAD aspects. To some extend the 

diagnostic value of serologic biomarkers like troponin [217], N-terminal B-type 

natriuretic peptid [218, 443], CRP [108, 444] or oxidised LDL [445, 446], which 

all cover different aspects of atherosclerosis, were shown to identify patients 

with CAD.  As a proof of concept study we therefore examined the discriminating 

capacity of several markers in the VASCAB cohort. This showed that the 

circulating biomarkers IL-8, TNF!, en-RAGE, VCAM-1, CRP, cystatin C and PAI-

1 are capable to differentiate between patients with extensive CAD in 

comparison to healthy controls. Additionally we were able to show that these 

markers were superior to standard cohort characteristics in stepwise regression 

modelling. The VASCAB cohort however does not reflect a clinical relevant 

situation. We therefore tested the discriminating capacity of circulating 

biomarkers in the DiCADu study. There were however no statistical significant 

differences between angina patients with and without significant CAD for the 

investigated markers: urate, NT-proBNP, IL-6, Troponin I, CK-MB, myoglobin, 

GPBB, hFABP, CA3 and CRP. This suggests that these circulating biomarker do 

not provided additional diagnostic information in stable angina patients. 

However the number of investigated biomarkers was small and markers 

differentiating between CAD patients and healthy controls in the VASCAB cohort 

were, with the exception of CRP, different to the DiCADu study. The majority of 

CAD patients in the DiCADu cohort were successfully treated with percutaneous 

coronary interventions, leaving them without flow limiting coronary artery 

narrowing. The literature however suggest that higher levels of IL-6 [392], NT-

proBNP [400] and troponin I [402] are related to myocardial ischaemia. The lack 

of flow limiting CAD or recently induced myocardial ischaemia at the timepoint 
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of blood collection might therefore prohibit the differentiation. This suggests 

that the success of circulating biomarkers in the diagnosis of CAD depends on the 

circumstances at blood collection; resting CAD patients might have lower levels 

than a patient finishing for instance an exercise treadmill test. Therefore the 

DiCADu study design likely contributed to the negative result. This implies that 

biomarker assessment covering CAD processes needs a specific study design 

when level fluctuations are expected.  

7.1.3 Micro- and macrovascular biomarkers 

Vascular biomarkers can reflect both functional and structural aspects of the 

micro-and macrovasculature. In contrast to larger arteries the microvasculature 

is limited to functional assessment due to restricted spatial resolution of non-

invasive imaging. Furthermore, functional and structural changes of the 

peripheral vasculature resemble the coronary artery system. Amongst others, 

this has previously been shown for endothelial function [148] and arterial wall 

thickness [447]. In the DiCADu study one micro- and one macrovascular 

biomarker were able to distinguish between cases and controls: endothelial 

function as assessed by the RHI and a carotid plaque score.  

Similar to our results, RHI measured by EndoPAT was able to distinguish between 

patients with CAD and normal coronary arteries in a study by Matsuzawa et al. 

[414]. Also RHI is an independent predictor of CAD morbidity and mortality 

[415]. RHI reflects on the endothelial function of the microvasculature. 

Endothelial function of the macrovasculature as measured by flow mediated 

dilatation also predicts cardiovascular outcome [145]. Endothelial function 

assessment might be therefore in general beneficial in the diagnosis of CAD.  

Subclinical atherosclerosis, as assessed by the C-IMT and a carotid plaque score, 

is correlated with CAD extent as measured by the Synthax score [448]. In the 

study by Ikeda et al. the carotid plaque load was the better predictor of CAD 

extent also suggesting a role rather for carotid plaque than for C-IMT assessment 

in the diagnosis of CAD. This might account for the lack of C-IMT differences in 

the DiCADu study between cases and controls.  
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RHI and carotid plaque score contributed to diagnostic models with multiple 

biomarkers. This suggests that markers of different pathophysiological origin 

might be additive in the diagnosis of CAD, similar to the additive effect of 

biomarkers in CAD prognostication. This proves that a limited system oriented 

approach could be valid for the diagnosis of CAD. Such an approach attempts to 

position the individual as precisely as possible on the cardiovascular continuum. 

The number of biomarkers suitable for such modelling will however be limited. 

For instance the majority of macrovascular biomarkers related to arteriosclerosis 

were not significantly different in the DiCADu study. This underlines the 

differences between atherosclerosis and arteriosclerosis, suggesting that 

biomarkers are more likely to be diagnostic if they are specific for a disease 

process and not shared with others.  

7.1.4 Urinary proteomics 

We conducted several steps of the development of urinary polypeptide patterns 

for the diagnosis of CAD including biomarker identification and a diagnostic 

validation study. In the first step we tried to replicate results of a study [323] 

previously conducted by our group in an independent cohort. Despite strong 

similarities between this study and the replication cohort, the diagnostic 

precision of the CAD15 score was not reproducible. This underlines biomarkers 

are often less accurate in a second cohort in comparison to the cohort of initial 

assessment. Study replication in an independent cohort is therefore required 

before further steps of biomarker development, as described by Hlatky [50], are 

conducted.   

Considering urine proteomic results in CAD of other studies [417, 419], we 

concluded that the CAD15 score was not specific enough and a new attempt to 

define a CAD-specific urinary polypeptide pattern was necessary. The biomarker 

discovery cohort was enlarged to 204 urine samples of CAD patient and 382 urine 

samples of controls, including samples from different locations and covering 

different clinical CAD presentations. This strategy was chosen to reduce the 

influence of local cohort characteristics and of specific CAD presentations. As 

CAD patients are often treated with lipid-lowering agents and angiontensin 

converting enzyme inhibitors, the CAD specific urinary polypeptide pattern was 

adjusted for treatment effects. The resulting CAD238 score correctly identified 
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patients with CAD with a sensitivity of 79% and a specificity of 88% in the 

validation set. These test characteristics are comparable with other established 

non-invasive tests (Table 1.4). In case similar results would be reproducible in a 

diagnostic validation study (Table 1.1) urine proteomics could compete with test 

as stress-echocardiography and myocardial perfusion scans in clinical practice. 

We therefore identified a clinical situation where the CAD diagnosis is relevant, 

patients with stable angina. The DiCADu study was designed to test the CAD238 

score in such patients. The score was unable to differentiate between patients 

with significant flow limiting CAD and patients with normal coronary arteries on 

angiography. The biomarker characteristics in the validation cohort were 

therefore not reproducible in one clinical relevant scenario. This however does 

not exclude its relevance in other situations such as an acute coronary 

syndrome.   

The CAD238 score was strongly correlated with the extent of CAD, suggesting that 

the score is unable to detect smaller differences in CAD extent in stable 

patients. In our study the CAD238 score was only able to differentiate extensive 

CAD from control subjects.  This shows that biomarker can be specific for a 

disease process; yet their diagnostic capacity is limited to the extremer end of 

the disease spectrum.  

7.2 Limitations 

The described research had several limitations. The number of study participants 

in the VASCAB and DiCADu study was small and does not permit generalized 

conclusions. Also the cohort composition of the studies was disparate prohibiting 

reproduction of results. For instance the definition of control subjects in chapter 

6 was quite divergent complicating the design of biomarker for a specific clinical 

scenario. Also the cases in the biomarker development panel derived from 

different CAD cohorts: patients with unstable angina [417], asymptomatic 

patients who were developing clinically overt CAD on follow-up [419] and 

patients with stable symptoms and severe CAD [323]. This allowed to isolate the 

shared CAD-specific urinary polypeptide pattern, however the resulting CAD 

score was not diagnostic in stable angina patients.  
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Especially the DiCADu study had a small number of cases and controls. Amongst 

others this might lead to greater influence of outliers on analysis results. 

Furthermore the DiCADu study had a retrospective design. This possibly 

impacted on circulating biomarker or urine proteomics results. CAD specific 

circulating biomarkers were likely reduced in cases as flow limiting CAD was no 

longer present after successful therapy and the CAD238 score was likely 

“healthier” as the blood to plaque surface contact area was diminished after 

percutaneous coronary intervention.  

Also some of the test procedures could be improved. For instance non-

standardised test were used such as the Luminex platform (section 2.10.3) or the 

Randox investigator (section 2.10.4). Furthermore, none of the imaging 

biomarkers were assessed for inter- or intraobserver variability. Also not all of 

the functional biomarkers have been as well standardised as the EndoPAT 

measurements (section 2.6.7). Especially data collected via medical records, 

such as angiography results and exercise treadmill test results, fall into this 

category. 

7.3 General conclusions 

All aspects of the cardiovascular continuum can play a role in CAD screening, 

prediction of disease recurrence, therapeutic monitoring, CAD diagnosis and 

prognostication. This is independent from the stage of the cardiovascular 

continuum. As we were able to show, early processes such as endothelial 

dysfunction or later processes such as plaque formation can support the 

diagnostic process. However, biomarkers assessing processes related to several 

diseases, such as arterial stiffness in arteriosclerosis and arthrosclerosis, might 

not be helpful in diagnosis. In this regard markers of arterial stiffness were 

unable to differentiate between patients with and without CAD in the DiCADu 

study. This implies that biomarkers exclusively covering the CAD pathophysiology 

are more useful in its diagnosis. Also biomarkers can be useful in some specific 

patient collectives but not necessarily in all cohorts. In end-stage renal disease 

cPP is the better cardiovascular outcome predictor [367] whereas in middle aged 

hypertensive patients it appears not to be.  



236 

          

236 

Instead of applying established biomarkers, also new biomarkers can be 

developed. Urine proteomics showed great promise in this regard, as 

polypeptide patterns have been developed for several diseases: the diagnosis of 

renal disease [291], kidney transplant rejection [292], CKD [293] and urothelial 

cancer [289]. Urinary polypeptide patterns can also reflect CAD as we were able 

to show. Although the CAD15 and the CAD238 score were unable to reproducibly 

differentiate between patients with severe CAD and healthy controls or with and 

without CAD, respectively, our data suggests a strong link of the urinary 

polypeptide with CAD. These peptides are predominantly composed of collagen 

fragments. CAD specific collagen breakup processes have not been considered as 

biomarkers so far. Therefore urine proteomics discovered an atherosclerotic 

disease process not yet established in CAD diagnosis or prognostication. The 

CAD-specific urinary polypeptide pattern will require further refinement before 

a CAD score can be established in clinic. Yet the findings described in this thesis 

are already promising.   

7.4 Future directions 

Two positive findings of this PhD thesis merit further investigations: the 

improvement of the discriminatory capacity of ETTs by endothelial function and 

carotid plaque assessment; the correlation between the CAD238 score and CAD 

extent.  

The finding that endothelial function measurement with Endo-PAT and 

semiquantitative carotid plaque assessment with carotid ultrasound differentiate 

between angina patients with and without CAD has the potential to improve 

standard established care protocols in a time and cost effective manner. 

Especially the C-statistic and net reclassification improvement of exercise 

treadmill tests with both biomarkers is promising. Further studies should, 

however, be carried out prospectively. This would have several advantages 

compared to the strategy employed in this thesis. Prospective patient 

recruitment for instance conducted in rapid access chest pain or cardiology 

clinics would allow selection of patients with positive ETTs prior to coronary 

angiography. Such a study design would allow the direct translation of findings 

into clinical practice. Investigations prior to coronary angiography would also 

exclude the influence of percutaneous coronary interventions and the 
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consequential improvement in exercise capacity. This could have beneficial 

effects, as endothelial function is expected to be worse in inactive individuals. 

Additionally a prospective design would lead to homogeneous medical treatment 

as angina patient prior to coronary angiography receive a standardized 

treatment. In the DiCADu study the similarities in medical management were on 

the other hand conincidental. A prospective study could be powered utilizing the 

cohort differences of the DiCADu study and the standard deviations of mentioned 

biomarkers. This would allow to determine an appropriate sample size for a 

prospective study.  

Also the question which biomarker of endothelial function and carotid plaque 

load assessment has the greatest capacity to differentiate between angina 

patients with and without CAD could be addressed. As discussed in the 

introduction several markers for assessment of endothelial function are 

available. Furthermore direct quantification of carotid plaque load such as 3-

dimensional ultrasonography or magnet resonance imaging could be tested.  

In the DiCADu study the CAD238 score was not able to differentiate between 

angina patients with and without CAD. Taking into account previously discussed 

contributing factors to urinary polypeptide patterns, such as CAD extent, 

exercise levels and medication a prospective study as drafted above might 

however show different results. On the other hand, as the CAD238 score is 

associated with CAD extent, instead of or in addition to differentiating between 

angina patients with and without CAD it could have prognostic value.  
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BHF Glasgow Cardiovascular Research Centre,  University of Glasgow 
126 University Place,  Glasgow G12 8TA,  Scotland,  UK 

Telephone: +44 (141) 330-2738  Fax: +44 (141) 330-6997  Email: ad7e@clinmed.gla.ac.uk 

5 5

3 2 

8 

I don't want to 

answer this 

 

Dear Study Participant, 
 
 
VAScular function in Coronary Artery Bypass patients – 
VASCAB Study 
 
 
We would like you to answer a few questions. Ideally you might do this at home 
before your appointment visit. However, if you need assistance we will go through 
the list together at your appointment visit. 
 
Please read the questions, then look at the options and tick the most appropriate 
answer in the answer box. If you are unsure of anything, put a mark beside it and 
discuss it with us at your appointment visit. If there is a question you prefer not to 
answer, please simply put a mark beside it so that we know. 
 
 
 
For example: 
 

No. Question   

1 Sex Male 
Female 

!1 
"2 

2 Date of Birth ______/______/______ 
  Day     Month    Year 

4 How many children have you 
ever had? 

(insert number of children)  
______ 

12 Which of the following best 
describes your main work status 
over the last 12 months? 

Full-time employee 
Part-time 
Retired / at home 

"1 
"2 
"3 

 
 
Remember your name is not recorded on any of the pages of the main 
questionnaire to help maintain your privacy. 
 
 
 
VASCAB Study Team 
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7.4.1 Participant Main Questionnaire 
 
7.4.2 Section 1 - Demographics and Family  

 
The background of a person has a substantial effect on an individual’s risk of heart 
disease. In this first section we would like to find out a bit about you, your living 
circumstances and your family. 
 
 

No. Question   

1 Sex Male 
Female 

!1 
!2 

2 Date of Birth ______/______/______ 
  Day     Month     Year 

3 Marital status Single (never married)  
 Married 

Living with partner 
Divorced or separated 
Widowed 

!1 
!2 
!3 
!4 
!5 

4 How many children have you 
ever had? 

(insert number of children)  
______ 

5 How many children are alive 
now? 

(insert number)  
______ 

6 Are you one of a twin? No 
Yes, identical 
Yes, non-identical 

!1 
!2 
!3 

7 How many brothers do you 
have (all live births)? 

(insert number of brothers)  
______ 

8 How many brothers are alive 
now? 

  
______ 

9 How many sisters do you have? 
(all live births) 

(insert number of sisters)  
______ 

10 How many sisters are alive 
now? 

  
______ 
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No. Question   

11 What is the highest level of 
education you have 
completed? 
 

Primary school completed 
Secondary school completed 
Technical college completed 
University completed 
Post graduate degree 

!1 
!2 
!3 
!4 
!5 

12 Which of the following best 
describes your main work 
status over the last 12 
months? 

Full-time employee 
Part-time 
Retired / at home / unemployed 

!1 
!2 
!3 

13 Which of the following best 
describes your racial 
background? 

European or Caucasian 
Other: Please specify: 
 
___________________________ 

!1 
!2 

14 Would you say that in general 
your quality of life is -  

Excellent 
Very Good 
Good 
Fair 
Poor 

!1 
!2 
!3 
!4 
!5 

15 Would you say that in general 
your health is -  

Excellent 
Very Good 
Good 
Fair 
Poor 

!1 
!2 
!3 
!4 
!5 
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The next questions are about your family. 
 
 

No. Question   

F1 Have any of your relatives had 
a heart attack? 

Yes 
No (skip the next question and 
go to question F3) 

!1 
!2 

F2 If yes in question F1, who has 
had a heart attack and how 
old were they at heart attack? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

F3 Have any of your relatives had 
a stroke? 

Yes 
No (skip the next question and 
go to question F5) 

!1 
!2 

F4 If yes in question F3, who has 
had a stroke and how old 
were they at stroke? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

F5 Is there any relative in your 
family who has or had high 
blood pressure? 
 

Yes 
No (skip the next question and 
go to question F7) 

!1 
!2 

F6 If yes in question F5, who has 
or had high blood pressure 
and how old were they when 
high blood pressure was 
diagnosed? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
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No. Question   

F7 Is there any relative in your 
family who has or had 
diabetes (high blood sugar)? 

Yes 
No (skip the next question and 
go to the next section) 

!1 
!2 

F8 If yes in question F5, who has 
or had diabetes and how old 
were they when diabetes was 
diagnosed? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not 
exact ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

 
 
7.4.3 Section 2 - Life Style Factors 

In this section, there are questions about your lifestyle. A person’s lifestyle can 
give us important clues as to the cause of their heart disease. 
 
The first questions are about how much alcohol you drink. 
 

No. Question   

A1 Have you ever consumed a 
drink that contains alcohol? 

Yes 
No (skip this section and go to 
the next section) 

!1 
!2 

A2 Have you consumed alcohol in 
the past 12 months? 

Yes 
No (skip this section and go to 
the next section) 

!1 
!2 

A3 In the past 12 months, how 
frequently have you had at 
least one drink? 

Daily 
3 to 4 days per week 
Weekly 
Fortnightly 
Monthly or on special 
occasions only 

!1 
!2 
!3 
!4 
!5 

A4 When you drink alcohol, on 
average, how many drinks do 
you have during one day? 

Number of drinks per day: 
(A drink is equal to 1 small 
glass of wine, a half pint of 
beer, 1 shot of spirits or 
liqueur.) 

 
 
______ 
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These questions are about smoking and use of tobacco. 
 

No. Question   

S1 Have you ever smoked any 
tobacco products? 

Yes, currently smoke 
Yes, but stopped within past 
12 months 
Yes, but stopped more than 12 
months ago 
No (skip this question and go 
to the next section) 

!1 
!2 
 
!3 
 
!4 

S2 How old were you when you 
first started smoking daily? 

(Give age in years)  
______ 

S3 What is the maximum number 
you have smoked per day for as 
long as a year 

(insert number of cigarettes / 
cigars / hand made cigarettes 
per week / oz. of tobacco) 

 
 
______ 

S4 PAST SMOKERS – only 
Why did you give up smoking? 

On doctor's advice 
Other reason 

!1 
!2 

S5 PAST SMOKERS – only 
For roughly how many years did 
you smoke?  

Less than 5 years 
5 to 10 years 
10 to 20 years 
More than 20 years 

!1 
!2 
!3 

!4 

 
These questions are about your diet. 
 

No. Question   

D1 In a typical week, on how many 
days do you eat fruit? 

(Insert number of days)  
______ 

D2 Approximately how many 
pieces/ servings of fruit do you 
eat on one of those days? 

(Insert number of servings/ 
pieces) 

 
 
______ 

D3 In a typical week, on how many 
days do you eat green leafy 
vegetables? (e.g. spinach, 
salad leaves) 

(Insert number of days)  
 
 
______ 

D4 Approximately how many 
servings/ meals would you 
have green leafy vegetables 
on one of those days? 

(Insert number of servings/ 
meals) 

 
 
 
______ 



Study Number _____________________M / F  271 
 
 

VASCAB Version MQ.2.2 – 9 November 2007 

These questions are about your regular exercise and physical activity. 
 

No. Question   

P1 On average, how much physical 
activity do you do each day 
during working hours? 
(if retired or at home, this refers 
to during the day) 

Lots (e.g. heavy lifting, digging, 
going up & down stairs) 
Medium (e.g. light lifting, 
walking, light house-work, 
shopping, painting) 
Light activity (e.g. standing, 
occasional working) 
Almost none (e.g. desk job, 
sitting, driving) 

!1 
 
!2 
 
 
!3 
 
!4 
 

P2 On average, how much physical 
activity do you do each day 
after working hours? 
(if retired, this refers to evenings 
and weekends) 

Lots (e.g. competitive sports, 
aerobics, multiple times a 
week) 
Medium (e.g. Casual sports, 
going to gym, regular walks 1-2 
times per week) 
Light activity (e.g. occasional 
working or bowls) 
Almost none (e.g. Watching 
TV, listening to music, cooking, 
driving) 

!1 
 
!2 
 
 
!3 
 
!4 
 

 
 
7.4.4 Section 3 - Current Medical conditions and risk factors  

This final section is about your medical conditions and treatments. 
 

No. Question   

M1 Have you ever been told by a 
doctor or other health worker 
that you have high blood 
pressure or hypertension? 

Yes 
No, my blood pressure was 
always normal (skip the next 
question and go to question M3) 
No, I have never had my blood 
pressure taken (skip the next 
question and go to question M3) 

!1 
!2 
 
 
!3 
 

M2 If yes, about how long ago 
were you first told by a doctor 
that you had high blood 
pressure? 

(insert number of years)  
 
_____ 
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No. Question   

M3 Have you ever been told by a 
doctor or other health worker 
that you have diabetes (high 
blood sugar)? 

Yes 
No, my blood sugar was 
always normal (skip the next 
question and go to question 
M5) 
No, I have never had my 
blood sugar taken (skip the 
next question and go to 
question M5) 

!1 
!2 
 
 
!3 
 

M4 If yes, about how long ago 
were you first told by a doctor 
that you had diabetes (a high 
blood sugar)? 

(insert number of years)  
 
______ 

M5 Have you had a medical diagnosis of a heart 
attack/ myocardial infarction? 

Yes 
No  

!1 
!2 

M6 Have you had a medical diagnosis of a Stroke/ 
transient ischaemic attack 

Yes 
No  

!1 
!2 

M7 Have you had a medical diagnosis of blood 
vessel disease in your legs/ peripheral 
vascular disease 

Yes 
No  

!1 
!2 

M8 Have you had a medical diagnosis  of a weak 
heart/ heart failure 

Yes 
No  

!1 
!2 

M9 Have you had a medical diagnosis of kidney 
disease/ renal failure 

Yes 
No  

!1 
!2 

M10 Have you had a medical diagnosis of 
lung/chest problems? e.g. 
bronchitis/emphysema/COPD/Asthma 

Yes 
No 

!1 
!2 

M11 Do you have or have you ever been given a 
diagnosis of cancer? 
If yes what type:________________ 

Yes 
No 

!1 
!2 

M12 Do you have rheumatoid arthritis? 
(inflammation of joints)  

Yes 
No 

!1 
!2 

M13 Do you have osteoarthritis ?(wear and tear 
arthritis) 

Yes 
No 

!1 
!2 
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No. Question   

M14 Do you have any other long standing medical 
conditions that are not already listed? 

Yes 
No 

!1 
!2 

 If yes what are these conditions? 
(you may leave blank if you prefer not to answer) 

 
 
 
 
 

 

 
 
The next 2 questions are for women only 
 

No. Question   

W1 Have you gone through the 
menopause? i.e. have your 
periods stopped 

Yes 
No 

!1 
!2 

W2 Have you ever taken the oral 
contraceptive pill (OCP) or 
hormone replacement therapy 
(HRT)? 

Yes currently 
Yes previously but now 
stopped 
(Number of years stopped 
____) 
No never  

!1 
!2 

 

!3 

 
 
The next 3 questions are for patients with diabetes only.  
 

No. Question   

CD1 Have you ever been told you have damage to your 
eyes (retinopathy) from having diabetes? 

Yes 
No  

!1 
!2 

CD2 Do you have any foot problems due to diabetes 
(neuropathy)? e.g. ulcers, numbness, have missing 
/lost toes due to diabetes 

Yes 
No  

!1 
!2 

CD3 Have you ever been told that your kidneys have 
been damaged from having diabetes 
(nephropathy)?  

Yes 
No  

!1 
!2 
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Please write the name of your current medications as they are labelled from the 
medicine box, or your script. 
It may be easier for you just to bring a current medication list issued by your doctor 
or by your chemist with you. If you have such a list please leave the following box 
blank. 
 
 

 Name of medication Dose of 
medication 

How many 
times 
medication 
is taken 
per day? 

How long have you 
been taking 
this medication? 

T1  
___________________ 

   
(please insert 
years/months) 

 
____ 

T2  
___________________ 

   
(please insert 
years/months) 

 
____ 

T3  
___________________ 

   
(please insert 
years/months) 

 
____ 

T4  
___________________ 

   
(please insert 
years/months) 

 
____ 

T5  
___________________ 

   
(please insert 
years/months) 

 
____ 

T6  
___________________ 

   
(please insert 
years/months) 

 
____ 

T7  
___________________ 

   
(please insert 
years/months) 

 
____ 

T8  
___________________ 

   
(please insert 
years/months) 

 
____ 

T9  
___________________ 

   
(please insert 
years/months) 

 
____ 

T10  
___________________ 

   
(please insert 
years/months) 

 
____ 
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5 5

3 2 

8 

I don't want to 

answer this 

 
Dear Study Participant, 
 
 
InGenious HyperCare Study   Study-Nr.: P10 ____ ___ 1A 
 
 
We would like you to answer a few questions. Ideally you might do this at home 
before your appointment visit. However, if you need assistance we will go through 
the list together at your appointment visit. 
 
Please read the questions, then look at the options and tick the most appropriate 
answer in the answer box. If you are unsure of anything, put a mark beside it and 
discuss it with us at your appointment visit. If there is a question you prefer not to 
answer, please simply put a mark beside it so that we know. 
 
 
 
For example: 
 

No. Question   

1 Sex Male 
Female 

!1 
"2 

2 Date of Birth ______/______/______ 
  Day     Month    Year 

4 How many children have you 
ever had? 

(insert number of children)  
______ 

12 Which of the following best 
describes your main work status 
over the last 12 months? 

Full-time employee 
Part-time 
Retired / at home 

"1 
"2 
"3 

 
 
Remember your name is not recorded on any of the pages of the main 
questionnaire to help maintain your privacy. 
 
 
 
InGenious HyperCare Team
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7.4.5 Questionnaire 
 
7.4.6 Section 1 - Demographics and Family  

 
The background of a person has a substantial effect on an individual’s risk of heart 
disease. In this first section we would like to find out a bit about you, your living 
circumstances and your family. 
 
 

No. Question   

1 Sex Male 
Female 

!1 
!2 

2 Date of Birth ______/______/______ 
  Day     Month     Year 

3 Marital status Single (never married)  
 Married 

Living with partner 
Divorced or separated 
Widowed 

!1 
!2 
!3 
!4 
!5 

4 How many children have you 
ever had? 

(insert number of children)  
______ 

5 How many children are alive 
now? 

(insert number)  
______ 

6 Are you one of a twin? No 
Yes, identical 
Yes, non-identical 

!1 
!2 
!3 

7 How many brothers do you 
have (all live births)? 

(insert number of brothers)  
______ 

8 How many brothers are alive 
now? 

  
______ 

9 How many sisters do you have? 
(all live births) 

(insert number of sisters)  
______ 

10 How many sisters are alive 
now? 

  
______ 
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No. Question   

11 What is the highest level of 
education you have 
completed? 
 

Primary school completed 
Secondary school completed 
Technical college completed 
University completed 
Post graduate degree 

!1 
!2 
!3 
!4 
!5 

12 Which of the following best 
describes your main work 
status over the last 12 
months? 

Full-time employee 
Part-time 
Retired / at home / unemployed 

!1 
!2 
!3 

13 Which of the following best 
describes your racial 
background? 

European or Caucasian 
Other: Please specify: 
 
___________________________ 

!1 
!2 

14 Would you say that in general 
your quality of life is -  

Excellent 
Very Good 
Good 
Fair 
Poor 

!1 
!2 
!3 
!4 
!5 

15 Would you say that in general 
your health is -  

Excellent 
Very Good 
Good 
Fair 
Poor 

!1 
!2 
!3 
!4 
!5 
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The next questions are about your family. 
 
 

No. Question   

F1 Have any of your relatives had 
a heart attack? 

Yes 
No (skip the next question and 
go to question F3) 

!1 
!2 

F2 If yes in question F1, who has 
had a heart attack and how 
old were they at heart attack? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

F3 Have any of your relatives had 
a stroke? 

Yes 
No (skip the next question and 
go to question F5) 

!1 
!2 

F4 If yes in question F3, who has 
had a stroke and how old 
were they at stroke? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

F5 Is there any relative in your 
family who has or had high 
blood pressure? 
 

Yes 
No (skip the next question and 
go to question F7) 

!1 
!2 

F6 If yes in question F5, who has 
or had high blood pressure 
and how old were they when 
high blood pressure was 
diagnosed? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
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No. Question   

F7 Is there any relative in your 
family who has or had 
diabetes (high blood sugar)? 

Yes 
No (skip the next question and 
go to the next section) 

!1 
!2 

F8 If yes in question F5, who has 
or had diabetes and how old 
were they when diabetes was 
diagnosed? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not 
exact ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

 
 
7.4.7 Section 2 - Life Style Factors 

In this section, there are questions about your lifestyle. A person’s lifestyle can 
give us important clues as to the cause of their heart disease. 
 
The first questions are about how much alcohol you drink. 
 

No. Question   

A1 Have you ever consumed a 
drink that contains alcohol? 

Yes 
No (skip this section and go to 
the next section) 

!1 
!2 

A2 Have you consumed alcohol in 
the past 12 months? 

Yes 
No (skip this section and go to 
the next section) 

!1 
!2 

A3 In the past 12 months, how 
frequently have you had at 
least one drink? 

Daily 
3 to 4 days per week 
Weekly 
Fortnightly 
Monthly or on special 
occasions only 

!1 
!2 
!3 
!4 
!5 

A4 When you drink alcohol, on 
average, how many drinks do 
you have during one day? 

Number of drinks per day: 
(A drink is equal to 1 small 
glass of wine, a half pint of 
beer, 1 shot of spirits or 
liqueur.) 

 
 
______ 
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These questions are about smoking and use of tobacco. 
 

No. Question   

S1 Have you ever smoked any 
tobacco products? 

Yes, currently smoke 
Yes, but stopped within past 
12 months 
Yes, but stopped more than 12 
months ago 
No (skip this question and go 
to the next section) 

!1 
!2 
 
!3 
 
!4 

S2 How old were you when you 
first started smoking daily? 

(Give age in years)  
______ 

S3 What is the maximum number 
you have smoked per day for as 
long as a year 

(insert number of cigarettes / 
cigars / hand made cigarettes 
per week / oz. of tobacco) 

 
 
______ 

S4 PAST SMOKERS – only 
Why did you give up smoking? 

On doctor's advice 
Other reason 

!1 
!2 

S5 PAST SMOKERS – only 
For roughly how many years did 
you smoke?  

(Give number of years)  
 
______ 

 
These questions are about your diet. 
 

No. Question   

D1 In a typical week, on how many 
days do you eat fruit? 

(Insert number of days)  
______ 

D2 Approximately how many 
pieces/ servings of fruit do you 
eat on one of those days? 

(Insert number of servings/ 
pieces) 

 
 
______ 

D3 In a typical week, on how many 
days do you eat green leafy 
vegetables? (e.g. spinach, 
salad leaves) 

(Insert number of days)  
 
 
______ 

D4 Approximately how many 
servings/ meals would you 
have green leafy vegetables 
on one of those days? 

(Insert number of servings/ 
meals) 

 
 
 
______ 
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These questions are about your regular exercise and physical activity. 
 

No. Question   

P1 On average, how much physical 
activity do you do each day 
during working hours? 
(if retired or at home, this refers 
to during the day) 

Lots (e.g. heavy lifting, digging, 
going up & down stairs) 
Medium (e.g. light lifting, 
walking, light house-work, 
shopping, painting) 
Light activity (e.g. standing, 
occasional working) 
Almost none (e.g. desk job, 
sitting, driving) 

!1 
 
!2 
 
 
!3 
 
!4 
 

P2 On average, how much physical 
activity do you do each day 
after working hours? 
(if retired, this refers to evenings 
and weekends) 

Lots (e.g. competitive sports, 
aerobics, multiple times a 
week) 
Medium (e.g. Casual sports, 
going to gym, regular walks 1-2 
times per week) 
Light activity (e.g. occasional 
working or bowls) 
Almost none (e.g. Watching 
TV, listening to music, cooking, 
driving) 

!1 
 
!2 
 
 
!3 
 
!4 
 

 
7.4.8 Section 3 - Current Medical conditions and risk factors  

This final section is about your medical conditions and treatments. 
 

No. Question   

M1 Have you ever been told by a 
doctor or other health worker 
that you have high blood 
pressure or hypertension? 

Yes 
No, my blood pressure was 
always normal (skip the next 
question and go to question 
M3) 
No, I have never had my blood 
pressure taken (skip the next 
question and go to question 
M3) 

!1 
!2 
 
 
!3 
 

M2 If yes, about how long ago 
were you first told by a doctor 
that you had high blood 
pressure? 

(insert number of years)  
 
______ 
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No. Question   

M3 Have you ever been told by a 
doctor or other health worker 
that you have diabetes (high 
blood sugar)? 

Yes 
No, my blood sugar was 
always normal (skip the next 
question and go to question 
M5) 
No, I have never had my 
blood sugar taken (skip the 
next question and go to 
question M5) 

!1 
!2 
 
 
!3 
 

M4 If yes, about how long ago 
were you first told by a doctor 
that you had diabetes (a high 
blood sugar)? 

(insert number of years)  
 
______ 

M5 Have you had a medical diagnosis of a heart 
attack/ myocardial infarction? 

Yes 
No  

!1 
!2 

M6 Have you had a medical diagnosis of a Stroke/ 
transient ischaemic attack 

Yes 
No  

!1 
!2 

M7 Have you had a medical diagnosis of blood 
vessel disease in your legs/ peripheral 
vascular disease 

Yes 
No  

!1 
!2 

M8 Have you had a medical diagnosis  of a weak 
heart/ heart failure 

Yes 
No  

!1 
!2 

M9 Have you had a medical diagnosis of kidney 
disease/ renal failure 

Yes 
No  

!1 
!2 

M10 Have you had a medical diagnosis of 
lung/chest problems? e.g. 
bronchitis/emphysema/COPD/Asthma 

Yes 
No 

!1 
!2 

M11 Do you have or have you ever been given a 
diagnosis of cancer? 
If yes what type:________________ 

Yes 
No 

!1 
!2 

M12 Do you have rheumatoid arthritis? 
(inflammation of joints)  

Yes 
No 

!1 
!2 

M13 Do you have osteoarthritis ?(wear and tear 
arthritis) 

Yes 
No 

!1 
!2 
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No. Question   

M14 Do you have any other long standing medical 
conditions that are not already listed? 

Yes 
No 

!1 
!2 

 If yes what are these conditions? 
(you may leave blank if you prefer not to answer) 

 
 
 
 
 

 

 
 
The next 2 questions are for women only 
 

No. Question   

W1 Have you gone through the 
menopause? i.e. have your 
periods stopped 

Yes 
No 

!1 
!2 

W2 Have you ever taken the oral 
contraceptive pill (OCP) or 
hormone replacement therapy 
(HRT)? 

Yes currently 
Yes previously but now 
stopped 
(Number of years stopped 
____) 
No never  

!1 
!2 

 

!3 

 
 
The next 3 questions are for patients with diabetes only.  
 

No. Question   

CD1 Have you ever been told you have damage to your 
eyes (retinopathy) from having diabetes? 

Yes 
No  

!1 
!2 

CD2 Do you have any foot problems due to diabetes 
(neuropathy)? e.g. ulcers, numbness, have missing 
/lost toes due to diabetes 

Yes 
No  

!1 
!2 

CD3 Have you ever been told that your kidneys have 
been damaged from having diabetes 
(nephropathy)?  

Yes 
No  

!1 
!2 
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Please write the name of your current medications as they are labelled from the 
medicine box, or your script. 
It may be easier for you just to bring a current medication list issued by your doctor 
or by your chemist with you. If you have such a list please leave the following box 
blank. 
 

 Name of medication Dose of 
medication 

How many 
times 
medication 
is taken 
per day? 

How long have you 
been taking 
this medication? 

T1  
___________________ 

   
(please insert 
years/months) 

 
____ 

T2  
___________________ 

   
(please insert 
years/months) 

 
____ 

T3  
___________________ 

   
(please insert 
years/months) 

 
____ 

T4  
___________________ 

   
(please insert 
years/months) 

 
____ 

T5  
___________________ 

   
(please insert 
years/months) 

 
____ 

T6  
___________________ 

   
(please insert 
years/months) 

 
____ 

T7  
___________________ 

   
(please insert 
years/months) 

 
____ 

T8  
___________________ 

   
(please insert 
years/months) 

 
____ 

T9  
___________________ 

   
(please insert 
years/months) 

 
____ 

T10  
___________________ 

   
(please insert 
years/months) 

 
____ 
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5 5

3 2 

8 

I don't want to 

answer this 

 
Study-Nr.: ___-________-___ 
 
Dear Sir or Madam, 
 
 
DiCADU Study 
Diagnosis of coronary artery disease with urinary proteomics 
 
 
We would like you to answer a few questions. Ideally you might do this at home 
before your appointment visit. However, if you need assistance we will go through 
the list together at your appointment visit. 
 
Please read the questions, then look at the options and tick the most appropriate 
answer in the answer box. If you are unsure of anything, put a mark beside it and 
discuss it with us at your appointment visit. If there is a question you prefer not to 
answer, please simply put a mark beside it so that we know. 
 
For example: 
 

No. Question   

1 Sex Male 
Female 

!1 
"2 

2 Date of Birth ______/______/______ 
  Day     Month    Year 

4 How many children have you 
ever had? 

(insert number of children)  
______ 

12 Which of the following best 
describes your main work status 
over the last 12 months? 

Full-time employee 
Part-time 
Retired / at home 

"1 
"2 
"3 

 
 
Remember your name is not recorded on any of the pages of the main 
questionnaire to help maintain your privacy. 
 
 
The DiCADu Team
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7.4.9 Questionnaire 
 
7.4.10 Section 1 - Demographics and Family  

 
The background of a person has a substantial effect on an individual’s risk of heart 
disease. In this first section we would like to find out a bit about you, your living 
circumstances and your family. 
 
 

No. Question   

1 Sex Male 
Female 

!1 
!2 

2 Date of Birth ______/______/______ 
  Day     Month     Year 

3 Marital status Single (never married)  
 Married 

Living with partner 
Divorced or separated 
Widowed 

!1 
!2 
!3 
!4 
!5 

4 How many children have you 
ever had? 

(insert number of children)  
______ 

5 How many children are alive 
now? 

(insert number)  
______ 

6 Are you one of a twin? No 
Yes, identical 
Yes, non-identical 

!1 
!2 
!3 

7 How many brothers do you 
have (all live births)? 

(insert number of brothers)  
______ 

8 How many brothers are alive 
now? 

  
______ 

9 How many sisters do you have? 
(all live births) 

(insert number of sisters)  
______ 

10 How many sisters are alive 
now? 

  
______ 
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No. Question   

11 What is the highest level of 
education you have 
completed? 
 

Primary school completed 
Secondary school completed 
Technical college completed 
University completed 
Post graduate degree 

!1 
!2 
!3 
!4 
!5 

12 Which of the following best 
describes your main work 
status over the last 12 
months? 

Full-time employee 
Part-time 
Retired / at home / unemployed 

!1 
!2 
!3 

13 Which of the following best 
describes your racial 
background? 

European or Caucasian 
Other: Please specify: 
 
___________________________ 

!1 
!2 

14 Would you say that in general 
your quality of life is -  

Excellent 
Very Good 
Good 
Fair 
Poor 

!1 
!2 
!3 
!4 
!5 

15 Would you say that in general 
your health is -  

Excellent 
Very Good 
Good 
Fair 
Poor 

!1 
!2 
!3 
!4 
!5 
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The next questions are about your family. 
 
 

No. Question   

F1 Have any of your relatives had 
a heart attack? 

Yes 
No (skip the next question and 
go to question F3) 

!1 
!2 

F2 If yes in question F1, who has 
had a heart attack and how 
old were they at heart attack? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

F3 Have any of your relatives had 
a stroke? 

Yes 
No (skip the next question and 
go to question F5) 

!1 
!2 

F4 If yes in question F3, who has 
had a stroke and how old 
were they at stroke? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

F5 Is there any relative in your 
family who has or had high 
blood pressure? 
 

Yes 
No (skip the next question and 
go to question F7) 

!1 
!2 

F6 If yes in question F5, who has 
or had high blood pressure 
and how old were they when 
high blood pressure was 
diagnosed? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not exact 
ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11  No !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
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No. Question   

F7 Is there any relative in your 
family who has or had 
diabetes (high blood sugar)? 

Yes 
No (skip the next question and 
go to the next section) 

!1 
!2 

F8 If yes in question F5, who has 
or had diabetes and how old 
were they when diabetes was 
diagnosed? 
(Please enter "not known" if 
you are not sure. Please 
indicate if you know 
approximate ages but not 
exact ages.) 

Mother 
Father 
Sister 
Brother 
Son/Daughter 
Other 

Yes !1   No !2 
Yes !3   No !4 
Yes !5   No !6 
Yes !7   No !8 
Yes !9   No !10 
Yes !11 No  !12 

Age __ 
Age __ 
Age __ 
Age __ 
Age __ 
Age __ 

 
 
7.4.11 Section 2 – Chest pain, chest tightness or angina 

In this section, there are questions about your chest pain symptoms. The quality 
and quantity of chest pain helps us better to understand the cause of your heart 
disease. 
 

No. Question   

C1 Over the past 4 weeks, on 
average, how many times 
have you had chest pain, 
chest tightness or angina? 

4 or more per day 
1-3 times per day 
3 or more times per week, but not 
every day 
1-2 times per week 
Less than once a week 
None over the past 4 weeks 

!1 
!2 

!3 

 

!4 

!5 
!6 

C2 If you had no chest pain, 
chest tightness or angina 
during the past 4 weeks, what 
caused it to disappear? 

Medical treatment (pills) 
Angiography with Stent 
Other: Please specify: 
 
___________________________ 

!1 
!2 

!3 

 

C3 Did any of the following 
treatments improve your chest 
pain, chest tightness or 
angina in the past? 

Medical treatment (pills) 
Angiography with Stent 
Other: Please specify: 
 
___________________________ 

!1 
!2 

!3 
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C4 Over the past 4 weeks, if you 
had chest pain, chest 
tightness or angina, how 
long, on average, did an 
episode last?  

Less than 5 minutes 
5 to 10 minutes 
10 to 15 minutes 
More than 15 minutes 

!1 
!2 

!3 

!4 

C5 Over the past 4 weeks, on 
average, how may times have 
you had to take nitroglycerin 
(nitroglycerin tablets or spray) 
for you chest pain, chest 
tightness or angina?  

4 or more per day 
1-3 times per day 
3 or more times per week, but not 
every day 
1-2 times per week 
Less than once a week 
None over the past 4 weeks 

!1 
!2 

!3 

 

!4 

!5 
!6 

C6 If you had to use nitroglycerin 
spray or tablets over the past 4 
weeks, in average, how long 
did it take until you noticed a 
change? 

Less than 1 minutes 
1 to 5 minutes 
5 to 10 minutes 
More than 10 minutes 
No effect 

!1 
!2 

!3 

!4 

!5 

C7 Under which circumstances 
did you suffer from chest pain, 
chest tightness or angina? 
(If more than one option, 
please circle the dominant) 

Rest 
Emotional stress 
On physical exertion 

!1 
!2 

!3 

C8 How would you describe the 
onset of your chest pain, 
chest tightness or angina? 

Gradual 
Rapid 

!1 
!2 

C9 Where did your chest pain, 
chest tightness or angina 
mainly appear in relation to 
your body?  

Centre of chest 
Upper part of stomach 
Left shoulder 
Other: Please specify: 
 
___________________________ 

!1 
!2 

!3 

!4 
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The following is a list of activities that people often do during the week. Although 
for some people with several medical problems it is difficult to determine what it is 
that limits them, please go over the activities listed below and indicate how much 
limitation you have had due to chest pain, chest tightness or angina. If you 
suffered from chest pain over the past 4 weeks please refer to this period. 
 
 

No. 

 
 
 
Activity 
 
 
 E

xt
re

m
el

y 
lim

ite
d 

Q
ui

te
 a

 b
it 

lim
ite

d 

M
od

er
at

el
y 

lim
ite

d 

S
lig

ht
ly

 li
m

ite
d 

N
ot

 a
t a

ll 
lim

ite
d 

Li
m

ite
d 

fo
r 

ot
he

r 
re

as
on

s 
or

 d
id

 n
ot

 
do

 th
e 

ac
tiv

ity
 

Y1 Dressing yourself !1 !2 !3 !4 !5 !6 

Y2 Walking indoors on 
level ground !1 !2 !3 !4 !5 !6 

Y3 Showering !1 !2 !3 !4 !5 !6 

Y4 
Climbing a hill or a 
flight of stairs without 
stopping 

!1 !2 !3 !4 !5 !6 

Y5 
Gardening, 
vacuuming or 
carrying groceries 

!1 !2 !3 !4 !5 !6 

Y6 Walking more than a 
block at a brisk pace !1 !2 !3 !4 !5 !6 

Y7 Running or jogging !1 !2 !3 !4 !5 !6 

Y8 
Lifting or moving 
heavy objects (e.g. 
furniture, children) 

!1 !2 !3 !4 !5 !6 

Y9 

Participating in 
strenuous sports 
(e.g. swimming, 
tennis) 

!1 !2 !3 !4 !5 !6 
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Section 3 - Life Style Factors 
 
In this section, there are questions about your lifestyle. A person’s lifestyle can 
give us important clues as to the cause of their heart disease. 
 
The first questions are about how much alcohol you drink. 
 

No. Question   

A1 Have you ever consumed a 
drink that contains alcohol? 

Yes 
No (skip this section and go to 
the next section) 

!1 
!2 

A2 Have you consumed alcohol in 
the past 12 months? 

Yes 
No (skip this section and go to 
the next section) 

!1 
!2 

A3 In the past 12 months, how 
frequently have you had at 
least one drink? 

Daily 
3 to 4 days per week 
Weekly 
Fortnightly 
Monthly or on special 
occasions only 

!1 
!2 
!3 
!4 
!5 

A4 When you drink alcohol, on 
average, how many drinks do 
you have during one day? 

Number of drinks per day: 
(A drink is equal to 1 small 
glass of wine, a half pint of 
beer, 1 shot of spirits or 
liqueur.) 

 
 
______ 

 
 
These questions are about smoking and use of tobacco. 
 

No. Question   

S1 Have you ever smoked any 
tobacco products? 

Yes, currently smoke 
Yes, but stopped within past 
12 months 
Yes, but stopped more than 12 
months ago 
No (skip this question and go 
to the next section) 

!1 
!2 
 
!3 
 
!4 

S2 How old were you when you 
first started smoking daily? 

(Give age in years)  
______ 
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S3 What is the maximum number 
you have smoked per day for as 
long as a year 

(insert number of cigarettes / 
cigars / hand made cigarettes 
per week / oz. of tobacco) 

 
 
______ 

S4 PAST SMOKERS – only 
Why did you give up smoking? 

On doctor’s advice 
Other reason 

!1 
!2 

S5 PAST SMOKERS – only 
For roughly how many years did 
you smoke?  

(Give number of years)  
 
______ 

 
 
These questions are about your diet. 
 

No. Question   

D1 In a typical week, on how many 
days do you eat fruit? 

(Insert number of days)  
______ 

D2 Approximately how many 
pieces/ servings of fruit do you 
eat on one of those days? 

(Insert number of servings/ 
pieces) 

 
 
______ 

D3 In a typical week, on how many 
days do you eat green leafy 
vegetables? (e.g. spinach, 
salad leaves) 

(Insert number of days)  
 
 
______ 

D4 Approximately how many 
servings/ meals would you 
have green leafy vegetables 
on one of those days? 

(Insert number of servings/ 
meals) 

 
 
 
______ 

 
These questions are about your regular exercise and physical activity. 
 

No. Question   

P1 On average, how much physical 
activity do you do each day 
during working hours? 
(if retired or at home, this refers 
to during the day) 

Lots (e.g. heavy lifting, digging, 
going up & down stairs) 
Medium (e.g. light lifting, 
walking, light house-work, 
shopping, painting) 
Light activity (e.g. standing, 
occasional working) 
Almost none (e.g. desk job, 
sitting, driving) 

!1 
 
!2 
 
 
!3 
 
!4 
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P2 On average, how much physical 
activity do you do each day 
after working hours? 
(if retired, this refers to evenings 
and weekends) 

Lots (e.g. competitive sports, 
aerobics, multiple times a 
week) 
Medium (e.g. Casual sports, 
going to gym, regular walks 1-2 
times per week) 
Light activity (e.g. occasional 
working or bowls) 
Almost none (e.g. Watching 
TV, listening to music, cooking, 
driving) 

!1 
 
!2 
 
 
!3 
 
!4 
 

 
 
 
7.4.12 Section 4 – Current Medical conditions and risk factors  

 
This final section is about your medical conditions and treatments. 
 

No. Question   

M1 Have you ever been told by a 
doctor or other health worker 
that you have high blood 
pressure or hypertension? 

Yes 
No, my blood pressure was 
always normal (skip the next 
question and go to question 
M3) 
No, I have never had my blood 
pressure taken (skip the next 
question and go to question 
M3) 

!1 
!2 
 
 
!3 
 

M2 If yes, about how long ago 
were you first told by a doctor 
that you had high blood 
pressure? 

(insert number of years)  
 
______ 
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No. Question   

M3 Have you ever been told by a 
doctor or other health worker 
that you have diabetes (high 
blood sugar)? 

Yes 
No, my blood sugar was 
always normal (skip the next 
question and go to question 
M5) 
No, I have never had my 
blood sugar taken (skip the 
next question and go to 
question M5) 

!1 
!2 
 
 
!3 
 

M4 If yes, about how long ago 
were you first told by a doctor 
that you had diabetes (a high 
blood sugar)? 

(insert number of years)  
 
______ 

M5 Have you had a medical diagnosis of a heart 
attack/ myocardial infarction? 

Yes 
No  

!1 
!2 

M6 Have you had a medical diagnosis of a 
Stroke/ transient ischaemic attack 

Yes 
No  

!1 
!2 

M7 Have you had a medical diagnosis of blood 
vessel disease in your legs/ peripheral 
vascular disease 

Yes 
No  

!1 
!2 

M8 Have you had a medical diagnosis  of a weak 
heart/ heart failure 

Yes 
No  

!1 
!2 

M9 Have you had a medical diagnosis of kidney 
disease/ renal failure 

Yes 
No  

!1 
!2 

M10 Have you had a medical diagnosis of 
lung/chest problems? E.g. bronchitis, 
emphysema, asthma 

Yes 
No 

!1 
!2 

M11 Do you have or have you ever been given a 
diagnosis of cancer? 
If yes what type:________________ 

Yes 
No 

!1 
!2 

M12 Do you have rheumatoid arthritis? 
(inflammation of joints)  

Yes 
No 

!1 
!2 

M13 Do you have osteoarthritis ?(wear and tear 
arthritis) 

Yes 
No 

!1 
!2 
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No. Question   

M14 Do you have any other long-standing medical 
conditions that are not already listed? 

Yes 
No 

!1 
!2 

 If yes what are these conditions? 
(you may leave blank if you prefer not to answer) 

 
 
 
 
 

 

 
 
The next 2 questions are for women only 
 

No. Question   

W1 Have you gone through the 
menopause? i.e. have your 
periods stopped 

Yes (skip the next question 
and go to question W3) 
No 

!1 

 

!2 

W2 Have you recently noticed any of 
the following symptoms?  

Hot flushes 
Breast tenderness 
Fatigue 
Irregular periods 
Vaginal dryness (e.g. 
discomfort during intercourse) 
Urinary urgency (a pressing 
need to urinate more 
frequently) 
Mood swings 
Difficulty sleeping 

!1 
!2 

!3 

!4 

!5 
 

!6 

 

!7 

!8 

W3 Have you ever taken the oral 
contraceptive pill (OCP) or 
hormone replacement therapy 
(HRT)? 

Yes currently 
Yes previously but now 
stopped 
(Number of years stopped 
____) 
No never  

!1 
!2 

 

!3 

W4 Did you ever undergo an operation 
on your reproductive organs (e.g. 
hysterectomy)? 

Yes, please specify: 
 

No 

!1 

 
!2 
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The next 3 questions are for patients with diabetes only.  
 

No. Question   

CD1 Have you ever been told you have damage to your 
eyes (retinopathy) from having diabetes? 

Yes 
No  

!1 
!2 

CD2 Do you have any foot problems due to diabetes 
(neuropathy)? e.g. ulcers, numbness, have missing 
/lost toes due to diabetes 

Yes 
No  

!1 
!2 

CD3 Have you ever been told that your kidneys have 
been damaged from having diabetes 
(nephropathy)?  

Yes 
No  

!1 
!2 
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Please write the name of your current medications as they are labelled from the 
medicine box, or your script. 
It may be easier for you just to bring a current medication list issued by your doctor 
or by your chemist with you. If you have such a list please leave the following box 
blank. 
 

 Name of medication Dose of 
medication 

How many 
times 
medication 
is taken 
per day? 

How long have you 
been taking 
this medication? 

T1  
___________________ 

   
(please insert 
years/months) 

 
____ 

T2  
___________________ 

   
(please insert 
years/months) 

 
____ 

T3  
___________________ 

   
(please insert 
years/months) 

 
____ 

T4  
___________________ 

   
(please insert 
years/months) 

 
____ 

T5  
___________________ 

   
(please insert 
years/months) 

 
____ 

T6  
___________________ 

   
(please insert 
years/months) 

 
____ 

T7  
___________________ 

   
(please insert 
years/months) 

 
____ 

T8  
___________________ 

   
(please insert 
years/months) 

 
____ 

T9  
___________________ 

   
(please insert 
years/months) 

 
____ 

T10  
___________________ 

   
(please insert 
years/months) 

 
____ 
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