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Abstract 

 

The first research project described in this thesis is the development of new SPECT and 

PET imaging agents for group II metabotropic glutamate receptors (mGluR2/3).  

Investigation of these receptors is of great interest as they have been implicated in many 

psychiatric disorders.  A small library of 1,5-benzodiazepinones were synthesised with 

potential radiolabelling sites incorporated in the 7- and 8-positions around the 

benzodiazepinone core.  Once synthesised the binding affinity of the compounds with 

mGluR2 was determined using the [
35

S]GTPγS binding assay, which revealed them to be 

highly potent.  Physicochemical properties were also investigated to determine whether 

compounds were likely to be brain penetrant.  The 8-trifluoromethyl-7-methoxy and 8-iodo 

substituted compounds were found to have the required properties to be progressed.  Work 

then focused on the synthesis of radiolabelling precursors of the hit compounds. 

 

                       

 

The second research project outlined in thesis involves the synthesis of novel heterocycle 

containing α-amino acids.  Previous work in the Sutherland group achieved the synthesis 

of enone containing amino acids from L-aspartic acid.  Building upon this, such enones 

were employed to form a small library of phenylpyrazole containing amino acids.  The 

fluorescence properties of these compounds were then investigated which revealed the 

naphthalene and nitrophenyl substituted analogues to be fluorescent and thus have 

potential to be used as peptide labels for fluorescence imaging. 
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1 Introduction 

 

1.1 Schizophrenia 

 

Schizophrenia is a chronic and severe mental disorder that is thought to effect up to 1% of 

the population of developed countries.
1
  Sufferers of this condition will usually experience 

a combination of symptoms, characterised as: positive (hallucinations, delusions), negative 

(lack of emotion, social and occupational dysfunction) and cognitive (disorganised thought 

patterns, difficulty concentrating and following instructions, memory problems).
2-4

  

Although schizophrenia has been recognised for over 100 years, the underlying 

neurochemical mechanism of the disease is not yet known. 

  

1.1.1 Treatment of Schizophrenia 

 

Currently schizophrenia is treated using antipsychotic drugs that target dopamine receptors 

(particularly D2) to reduce dopamine transmission in the brain.  The use of 

antidopaminergic drugs in schizophrenia was discovered quite by accident in the 1950s 

when it was observed that chlorpromazine (Figure 1.1), originally developed as an 

antihistamine, could treat psychosis.
5,6

  Chlorpromazine is a potent antagonist of the D2 

dopamine receptor, but also acts as an agonist at other dopamine receptors, as well as 

serotonin, histamine, adrenergic, and muscarinic acetylcholine receptors.
7
  The discovery 

of chlorpromazine launched the first generation of antipsychotic drugs, known as typical 

antipsychotics, which are primarily blockers of D2.  Although these drugs are effective in 

treating the positive symptoms of schizophrenia they have a number of undesirable side 

effects such as sedation, amnesic symptoms, withdrawal upon discontinuation of the drug, 

prolactin elevation, extrapyramidal symptoms and weight gain.
8
   

 

 

 

Figure 1.1 Structure of chlorpromazine 



 11 
 

Atypical antipsychotics such as clozapine and olanzapine were then developed as the 

second generation of antipsychotic drugs (Figure 1.2).  These compounds tend to be active 

at the same groups of receptors as typical antipsychotics, and are associated with the same 

side effects as typical antipsychotics but to a lesser extent.
9
  However, a 2009 meta-

analysis comparing typical and atypical antipsychotic drugs demonstrated that due the 

variability of the pharmacology, efficacy and side effects of typical and atypical 

antipsychotics, neither class represents a homogenous group and such drugs should be 

considered on an individual basis.
10

 

 

                                    

 

Figure 1.2 Structures of clozapine and olanzapine  

 

The ability of these drugs to treat psychosis led to the dopamine hypothesis of 

schizophrenia, which proposes that psychosis is related to excessive dopaminergic activity 

in the brain.
11

  More recent research has given rise to the glutamate hypothesis of 

schizophrenia, which suggests that schizophrenia is caused by irregularities in 

glutamatergic synaptic function.
12-14

 

 

1.2 Glutamate Receptors 

 

Glutamate receptors are a class of excitatory amino acid receptors activated by synaptically 

released L-glutamate (Figure 1.3), the most abundant neurotransmitter in the central 

nervous system (CNS) of vertebrates.  These receptors can be divided into two subtypes, 

ionotropic glutamate receptor and metabotropic glutamate receptors.  Ionotropic glutamate 

receptors are ligand gated ion channels, whereas metabotropic glutamate receptors are a 

form of G-protein coupled receptor.
15
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Figure 1.3 Structure of L-glutamic acid 

 

1.2.1 Ionotropic Glutamate Receptors 

 

Ionotropic glutamate receptors are tetrameric assemblies with each subunit containing an 

extracellular N-terminal domain connected to a transmembrane region (M1) connected to a  

re-entrant loop (M2), followed by two more membrane spanning regions (M3 and M4) and 

ending with an intracellular C-terminal domain (Figure 1.4).
15

 

 

 

 

Figure 1.4 Structure of an ionotropic glutamate receptor
15

 

(Reprinted from Psychopharmacology, 2005, 179, 4−29 with kind permission from 

Springer Science and Business Media) 

 

There are three distinct classes of ionotropic glutamate receptors termed NMDA, AMPA 

and kainate receptors, named after the synthetic agonists used to selectively activate them 

(Figure 1.5).
16,17

   

                                         

 

Figure 1.5 Structures of ionotropic glutamate receptor agonists 
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NMDA receptor activation requires the binding of two agonists, glutamate and glycine.  In 

addition to ligand gating NMDA receptors are also voltage dependent as the ion channel 

can be blocked by the binding of magnesium ions at normal resting potentials or when the 

cell is hyperpolarised.
18

  When the cell is depolarised the channel becomes unblocked 

allowing sodium and calcium ions to enter and potassium ions to leave the cell.  Binding to 

the AMPA or kainate receptors results in the opening of an ion channel, allowing the influx 

of sodium ions and efflux of potassium ions.  Ionotropic glutamate receptors play a critical 

role in many cerebral functions such as synaptic plasticity, and learning and memory 

processes.
19

  

  

1.2.2 Metabotropic Glutamate Receptors 

 

Structurally, metabotropic glutamate receptors are proteins embedded within the cell 

membrane containing regions both outside and inside the cell.  The extracellular bi-lobed 

N-terminal domain, which binds glutamate, is connected to the intracellular C-terminal 

domain by a peptide chain consisting of seven transmembrane helices (Figure 1.6).
15

 

 

 

 

Figure 1.6 Structure of a metabotropic glutamate receptor
15

 

(Reprinted from Psychopharmacology, 2005, 179, 4−29 with kind permission from 

Springer Science and Business Media) 

 

Unlike ionotropic glutamate receptors, metabotropic glutamate receptors do not affect ion 

channels or enzymes directly.  Instead, binding of glutamate causes a conformational 

change which activates a G-protein, starting a signalling cascade.  Evidence for the 

existence of metabotropic glutamate receptors was not discovered until the late 1980s, 

when glutamate was found to take part in biological processes via a receptor that did not 
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belong to the ionotropic glutamate receptors.
20,21

  Their existence was confirmed in 1991 

when the cloning and characterization of the first metabotropic glutamate receptor was 

reported.
22,23

  To date eight members of the family of metabotropic glutamate receptors 

have been cloned, termed mGluR1 to mGluR8, which are separated into three groups 

based on their signal transduction pathway and sequence homology.  Group I receptors 

(mGluR1 and mGluR5) are positively coupled to the activity of phospholipase C, whereas 

group II (mGluR2 and 3) and group III (mGluR4, 6, 7, and 8) receptors are both negatively 

coupled to the activity of adenyl cyclase but have different pharmacology.  An important 

function of metabotropic glutamate receptors is their modulatory effect on both pre and 

post-synaptic glutamatergic neurotransmission.  Group I receptors increase presynaptic 

glutamate release whereas group II and group III receptors limit glutamate release, 

particularly during conditions of spillover from the synaptic cleft.
24,25

 

 

1.2.3 Glutamate Receptors as Pharmaceutical Targets 

 

Compounds which bind to glutamate receptors are widely considered to be among the most 

important new targets in CNS drug discovery.  Their widespread expression causes 

glutamate receptors to participate in a variety of functions of the central nervous system, 

and irregularities in glutamatergic neurotransmission have been observed in many 

psychological disorders such as schizophrenia, attention deficit hyperactivity disorder, 

bipolar disorder, major depressive disorder, general anxiety disorder and obsessive-

compulsive disorder.
26-28

   

 

The glutamate hypothesis of schizophrenia in particular has sparked great interest in the 

investigation of glutamate receptor targeting pharmaceuticals.  The origins of this theory 

can be traced back to the late 1950s, when phencyclidine (PCP) was shown to induce the 

psychotic symptoms associated with schizophrenia in humans.
29,30

  It has since been 

discovered that PCP exerts this effect by acting as an antagonist at a binding site located 

within the NMDA receptor ion channel, leading to NMDA receptor hypofunction.
31

  

Another consequence of PCP binding is glutamate efflux, and hence increased levels of 

extracellular glutamate, potentially caused by increased activity of non-NMDA glutamate 

receptors.
14,32

  In 1998, work by Moghaddam and Adams showed that the mGluR2/3 

agonist LY345470 (Figure 1.7, discussed further in Section 1.3.1) was able to reverse the 

effects of PCP on working memory, stereotypy, locomotion, and cortical glutamate efflux 
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in rats.
12

  This has led to much research into the use of compounds targeting metabotropic 

glutamate receptors to regulate glutamatergic neurotransmission. 

 

1.3 mGluR2/3 Ligands 

 

Since the discovery in 1998 that a mGluR2/3 agonist could potentially be used to 

normalise excess glutamatergic activity, many mGluR2/3 targeting compounds have been 

developed as potential drugs for various psychological disorders. The compounds 

discovered to date cover various structural and binding classes. 

 

1.3.1 Agonists 

 

The mGluR2/3 agonist LY345470 (developed by Eli Lily) was the compound first used to 

reverse the effect of PCP in rats.  Although it was this compound that initially stimulated 

research into the link between mGluR2/3 and schizophrenia, most studies using LY354740 

have investigated its anxiolytic properties, which have been demonstrated in various 

animal models and in human studies.
33-36

  Structurally LY354740 is an amino acid 

containing fused three and five-membered rings (Figure 1.7).   

 

LY354740

HO2C

H

H NH2

CO2H

 

 

Figure 1.7 Structure of mGluR2/3 agonist LY354740 

 

A synthesis of LY354740 is illustrated in Schemes 1.1 and 1.2.  The first part of the 

synthetic route utilised the procedure of Borcherding and co-workers to form protected 

dihydroxycyclopentenone 4 in four steps from D-(+)-ribonic acid γ-lactone 1 (Scheme 

1.1).
37

  The 1,2-diol moiety was first protected, then base mediated lactone opening 

allowed periodate cleavage of the resulting 1,2-diol before reforming the lactone to give 

compound 2.  Transacetalisation of the non-protected alcohol with isopropylalcohol 

afforded compound 3.  Finally, treatment with dimethyl methylphosphonate and butyl 
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lithium resulted in opening of the lactone with elimation of the propoxy group to form a 

phosphonate ester which then underwent an intramolecular Horner-Wadsworth-Emmons 

reaction to produce cyclopentenone 4. 

 

1. cyclohexanone
FeCl3

O

O

O

O

O

O

O Oi-Pr

1 3

4

MePO(OMe)2,
n-BuLi, 

THF, 78°C
80%

2. H2O, NaOH, 
NaIO4

i-PrOH, PPTS, 

85%

95%
O

O

HO

HO OH

2

O

O

O

O OH

 

Scheme 1.1 Synthesis of cyclopentenone 4 

 

The second part of synthesis was carried out by Dominguez and co-workers (Scheme 

1.2).
38

  Cyclopropanation using a sulfur ylide produced fused bicyclic compound 5, after 

which removal of the protected hydroxyl groups gave ketone 9.  The Bucherer-Bergs 

reaction using potassium cyanide and ammonium carbonate was then employed to form 

hydantoin 10, the hydrolysis of which afforded the target compound, amino acid 

LY354740. 
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Scheme 1.2 Synthesis of mGluR2/3 agonist LY354740 

 

During human trials LY354740 was found to have poor oral bioavailability of 3−5%, 

which led to the investigation of a prodrug approach.
39

  A prodrug is a derivative of a drug 

compound, designed to undergo either an enzymatic or chemical transformation in vivo to 

release the active parent drug.
40

  In the case of LY354740, the amine and carboxylic acid 

groups are highly polar, causing the compound to have difficulty in crossing the cell 

membrane.  To overcome this LY354740 was acylated with L-alanine to form LY544344 

(Scheme 1.3).   

 

LY544344 was synthesised from LY354740 by first protecting both carboxylic acid groups 

as trimethylsilyl esters giving diester 11, followed by acylation by treatment with the 

anhydride produced from Boc-L-alanine and isobutyl chloroformate to afford amide 12.  

Hydrolysis of the trimethylsilyl groups and Boc deprotection then gave prodrug LY544344 

as a hydrochloride salt (Scheme 1.3).
39
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Scheme 1.3 Synthesis of prodrug LY544344 

 

The dipeptide moiety present in LY544344 was incorporated in order to aid crossing the 

cell membrane through active transport by targeting the peptide transporter PepT1.  Using 

this strategy the oral bioavailability in rats was increased to 84% (compared to 10% for 

LY354740) with no prodrug circulating after thirty minutes.
41

  When trialled in humans for 

the treatment of general anxiety disorder LY544344 produced a greater improvement in 

anxiety levels than placebo, however, the trial was discontinued early due to observation of 

convulsions in pre-clinical species (rat and dog).
42

 

 

Another highly potent mGluR2/3 agonist that has drug potential is LY404039, in this case 

for the treatment of Schizophrenia.  Structurally, LY404039 is very similar to previously 

discussed LY354740, with the only difference between them being the incorporation of a 

sulfone in the five membered ring (Figure 1.8). 

 

LY404039

S

NH2

CO2HHO2C

H

H

O O

  

 

Figure 1.8 Structure of mGluR2/3 agonist LY404039 
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A synthesis of LY404039 is provided in Scheme 1.4.
43,44

  Starting from thiophene 13 

cyclopropanation was achieved via a rhodium(II)-catalysed reaction with ethyl 

diazoacetate to form bicyclic compound 14.  Hydroboration followed by in situ oxidation 

gave alcohol 15, which was converted to ketone 16 by a Swern oxidation.  The Bucherer-

Bergs reaction and subsequent ester hydrolysis produced hydantoin 17 as a racemic 

mixture.  The enantiomers were resolved at this stage by crystallisation of the (R)-

phenylglycinol salt, followed by treatment with acid to form the desired single enantiomer 

18.  Hydrolysis of the hydantoin moiety, followed by protection of the resulting amino acid 

gave compound 20.  Finally, oxidation of the sulfide to the corresponding sulfone 21 and 

removal of the protecting groups afforded LY404039.  

 

 

Scheme 1.4 Synthesis of LY404039 

 

Like the previously discussed mGluR2/3 agonist (LY354740), a prodrug was used for 

human testing.  The prodrug named LY2140023 was synthesised from LY404039 by ester 

formation and amide coupling, followed by ester hydrolysis and Boc deprotection (Scheme 

1.5).
45
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Scheme 1.5 Synthesis of prodrug LY2140023  

 

In 2007, LY2140023 underwent a phase II clinical trial with schizophrenia patients in 

which it was found to produce similar results to the standard olanzapine treatment without 

many of the previously described side-effects.
46

  Unfortunately further trials produced 

inconclusive results and a press release in 2012 announced the termination of an on-going 

phase III study.
47

 

 

1.3.2. Positive Allosteric Modulators 

 

With mGluR2/3 agonists not providing the desired results clinically, attention was turned 

to the development of positive allosteric modulators (PAMs) as potential drug compounds.  

A positive allosteric modulator provokes a biological response upon binding to an 

allosteric (rather than the orthosteric) site on a receptor.  The mGluR2 PAMs developed to 

date tend to be less complex to produce synthetically and more lipophilic than the 

previously described mGluR2/3 agonists, and so do not require a prodrug strategy. 

 

Eli Lilly developed the first mGluR2 PAMs, which were published in 2003.
48

  This work 

initially identified LY181837 as a mGluR2 PAM, and the synthesis of further analogues in 

an attempt to improve potency produced LY487379 (Scheme 1.6).  The synthesis of these 

compounds is illustrated in Scheme 1.6.  LY181837 was formed in two steps by the 

reductive amination of phenoxy-substituted aniline 23 to give secondary amine 27, 

followed by sulfonamide formation.  LY487379 was formed via a similar synthetic route, 

employing the analogous starting material, 4-bromoaniline 24.  Reductive animation 

followed by Ullmann reaction formed diaryl ether 26, and subsequent treatment with a 

trifluoroethyl substituted sulfonyl chloride afforded LY487379.
48
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Animal studies showed that like the previously described orthosteric agonists, LY487379 

is able to reverse amphetamine or PCP induced hyperlocomotion in mice (animal model 

for psychosis).
49

  LY487379 has also demonstrated potent activity in an animal behaviour 

test for anxiety.
50

 

 

 

 

Scheme 1.6 Synthesis of mGluR2 positive allosteric modulators LY181837 and LY487379 

 

Currently the most advanced mGluR2/3 PAM for the treatment of Schizophrenia is 

ADX71149, produced from a collaboration between Addex Therapeutics and Janssen 

Research and Development.  Unfortunately the structure of ADX71149 has not been 

disclosed, but insight can be gained into the likely structure based upon the fact that Addex 

and Janssen have previously published papers and patents for mGluR2 PAMs based around 

two structural classes, substituted pyridones such as compound 28 and triazolopyridines 

such as compound 29 (Figure 1.9).
51-54
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N

OMe

O F

Cl

28                                

N

N

NN

F3C

29  

 

Figure 1.9 Structures of known mGluR2 PAMs 

 

ADX71149 has been progressed into phase II trials and a press release in late 2012 

revealed that ADX71149 had met safety and tolerability objectives, as well as 

demonstrating an effect in patients with residual negative symptoms when taken as an 

adjunctive therapy to their currently prescribed antipsychotics.
55

  This represents a very 

encouraging result and in-patient trials of ADX71149 are continuing.    

 

1.3.3 Antagonists 

 

A number of potent antagonists of mGluR2/3 have also been developed, such as MGS0039 

(discovered by Taisho Pharmaceutical), which has exhibited both antidepressant and 

anxiolytic effects in various animal behaviour models (Figure 1.10).
56-58

   

 

OH

H

F

HO2C
NH2

CO2H

MGS0039

Cl

Cl

 

 

Figure 1.10 Structures mGluR2/3 antagonist MGS0039 

 

A synthesis of MGS0039 is shown in Schemes 1.7 and 1.8.  Starting from sulfoxide 30, Z- 

alkene 31 was formed by alkylation and sulfoxide elimination.  Treatment with the Jones 

reagent hydrolysed the THP protecting group and oxidised the resulting alcohol to 

carboxylic acid 32.  Diazotisation and copper-mediated cyclopropanation were performed 

to give bicyclic compound 33 as a racemic mixture.
59
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Scheme 1.7 Synthesis of bicyclic compound 33 

 

As this stage, the two enantiomers were separated by chiral HPLC to give enantiopure 34.  

The enol triflate of ketone 34 was formed, followed by a palladium-catalysed 

carbonylation reaction to afford ester 35 (Scheme 1.8).
60

    Dihydroxylation was then 

performed in which osmium(VIII) tetroxide reacted selectively at the face opposite to the 

fused cyclopropane ring, and the hydroxyl groups were then protected to produce cyclic 

sulfate 37. Nucleophilic attack by azide followed by sulfate hydrolysis produced azide 38.  

The dichlorobenzyl ether side chain was attached by reaction of trichloroacetimidate 39 

with the remaining hydroxyl to form compound 40.  Finally, Staudinger reduction and 

ester hydrolysis gave access to MGS0039.  
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Scheme 1.8 Synthesis of mGluR2/3 antagonist MGS0039 

 

A series of papers published between 2007 and 2010 by Woltering and co-workers from 

Hoffmann-La Roche identified a series of compounds that are non-competitive antagonists 

of mGluR2/3.
61-64

  The initial hit compound discovered through random screening was 1,5-

benzodiazepin-2-one 42 (Figure 1.11).  Its binding affinity was assessed by displacement 

of [
3
H]-LY354740 (mGluR2/3 agonist) from recombinant rat mGluR2 expressed in CHO 

cells.  As benzodiazepinone 42 is a non-competitive antagonist it was found to partially 

inhibit [
3
H]-LY354740 (10 nM) binding to mGluR2 (leaving a residual of 25% specific 

bound) with an IC50 of 6.4 μM. 

 

N

H
N

O

42  

Figure 1.11 Structure of benzodiazepinone 42 
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Based on this initial hit, a library of compounds were synthesised to investigate the 

structure activity relationship and attempt to improve potency.  These compounds were 

prepared using the general strategy of the condensation of mono-Boc protected 1,2-

diaminobenzene fragments with the general structure 43, with β-keto esters 44, followed 

by treatment with acid to form target 1,5-benzodiazepinones 46 (Scheme 1.9 – See tables 

1.1 and 1.2 for R groups).  This is a particularly advantageous method for forming highly 

substituted 1,5-benzodiazepinones as many other procedures utilise non-protected 1,2-

diaminobenzenes, which limits the scope of substituents in the 7- (R
2
) and 8- (R

1
) positions 

due to regioselectivity issues (further discussed in Section 1.4). 
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O
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Scheme 1.9 Synthesis of benzodiazepinones 

 

Binding was evaluated using the assay described previously for benzodiazepinone 42.  By 

investigating the effect of different substituents around the aromatic rings, it was quickly 

established that substitution in the R
3
-position resulted in increased activity, with N-linked 

imidazoles and triazoles allowing access to particularly potent compounds.  Various groups 

were also investigated in the R
1
- and R

2
-positions, which revealed two particularly potent 

classes of compound.   

 

The first is those with either a halide or phenyl halide in the R
1
-position and hydrogen in 

the R
2
-position.  Table 1.1 details the binding data for selected compounds from this series.  

From these results it can be seen that the presence of a halogen substituent offers increased 

activity over the non-substituted phenyl ring in the R
1
-position.   The two ortho fluorinated 
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compounds (48 and 50) were evaluated in vivo which revealed them to be brain penetrant.  

Their antagonistic activity was also demonstrated in vivo by complete reversal of 

LY354740 induced hypolocomotion in mice when neither compound caused a significant 

increase in locomotor activity when administered alone. 

 

Compound R
1
 R

2
 R

3
 

Rat mGluR2 [
3
H]-

LY354740 (10 nM) 

binding, IC50 (nM) 

47 Ph H 1-imidazolyl 39 

48 2-F-C6H4- H 1-imidazolyl 12 

49 4-F-C6H4- H 1-imidazolyl 17 

50 2-F-C6H4- H 1,2,3-triazolyl 16 

51 Br H 1-imidazolyl 72 

52 Br H 1,2,3-triazolyl 130 

53 Cl H 1,2,3-triazolyl 60 

 

Table 1.1 Biological screening results of a series of mGluR2/3 antagonists. 

 

The second class of highly potent compounds identified were those with a trifluoromethyl 

group in the R
1
-position and either an alkyl, alkoxy and amine substituent in the R

2
-

position.  Selected binding data obtained from this series are described in Table 1.2.  From 

these results it can be seen that alkyl, alkoxy, and amine substituents (compounds 55−59) 

in the R
2
-position all give increased potency over a hydrogen atom (compound 54). 
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Compound R
1
 R

2
 R

3
 

Rat mGluR2 [
3
H]-

LY354740 (10 nM) 

binding, IC50 (nM) 

54 CF3 H 1-imidazolyl 43 

55 CF3 NMe2 1-imidazolyl 9 

56 CF3 NHi-Bu 1-imidazolyl 19 

57 CF3 Me 1-imidazolyl 12 

58 CF3 OMe 1,2,3-triazolyl 29 

59 CF3 OEt 1,2,3-triazolyl 7 

 

Table 1.2 Biological screening results of a series of mGluR2/3 antagonists. 

 

1.4 Synthesis of 1,5-Benzodiazepinones 

 

Benzodiazepine derivatives are heterocyclic systems that are commonly found in 

biologically active compounds.  1,5-Benzodiazepinones in particular have shown activity 

as mGluR2/3 antagonists (discussed in Section 1.3.3), Chk-1 inhibitors and CCK1 receptor 

agonists, to name a few.
65,66

  Due to the potential applications of 1,5-benzodiazepinones 

there has been much research into the development of synthetic methodology to produce 

such compounds. 

 

Probably the simplest method of 1,5-benzodiazepinone synthesis is the treatment of a 1,2-

diaminobenzene with a β-keto ester.  The synthesis of 1,5-benzodiazepinones 63 and 64 by 

Achour and co-workers using this procedure is illustrated in Scheme 1.10.
67

  When 

utilising this method the 1,2-aminobenzenes employed tend to be either unsubstituted or 

have the same substituent in the R
1
- and R

2
-positions to ensure that there is only one 

possible product regioisomer.  
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Scheme 1.10 Synthesis of 1,5-benzodiazepinones 63 and 64 

 

An early synthesis of a 1,5-benzodiazepinone using the treatment of diaminonaphthalene 

65 with diketene 66 was published in 1959 by Ried and co-workers.
68

  In this reaction, one 

of the amine groups of diaminonaphthalene 65 attacks the carbonyl moiety of diketene 66, 

which opens to form β-keto ester 67.  This can then undergo imine condensation with the 

remaining free amine to produce benzodiazepinone 68 (Scheme 1.11).    

 

N
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O
NH2

NH2

H
N
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65 67 68

O
O

benzene, 

70%66

 

 

Scheme 1.11 Synthesis of 1,5-benzodiazepionone 68 

 

In 2010, Shaabani and co-workers reported a procedure applying the diketene methodology 

to the synthesis of more complex 1,5-benzodiazepinone derivatives.
69

  In this reaction, the 

1,5-benzodiazepinone intermediates 63, 64 and 72−74 were formed in the same way as the 

previous example, but isocyanide 75 and p-tosic acid were then added to incorporate an 

amide substituent in the 4-position of the benzodiazepinone products 76−80 (Scheme 

1.12).   

 

This reaction displays a high degree of regiocontrol.  When employing benzoyl substituted 

70 as the starting material, the single regioisomer product 79 was formed in a high yield of 

90%.  The electron-withdrawing effect of the ketone in the R
1
-position of 1,2-

diaminobenzene 70 results in the amine meta to it being the most nucleophilic, and hence 

carrying out the initial attack on diketene.  Therefore, the benzoyl substituent appears in 

the 8-position of benzodiazepinone 79.  In the case of methyl substituted starting material 

71, donation of electrons from this substituent results in the amine para to it being the most 
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nucleophilic, resulting in the methyl substituent appearing in the 7-position of 

benzodiazepinone product 80. 
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Scheme 1.12 Synthesis of substituted benzodiazepinones 76−80 

 

1,5-Benzodiazepinones can also be produced from the reaction between an oxazolone and 

a 1,2-diaminobenzene.
70

  In 1992, Rao and co-workers published the synthesis of 

benzodiazepinones 88−91 using this method (Scheme 1.13).  This reaction proceeds by 

amide coupling to give oxime intermediates 84−87, followed by imine formation with the 

loss of hydroxylamine.   

 

The regiocontrol displayed in this process is the same as in the diketene reaction, 

producing single regioisomers with electron donating methyl substituent on the 7-position, 

and electron withdrawing nitro on the 8-position of benzodiazepinones 89 and 90, 

respectively.  Chloro substituted benzodiazepinone 91 was also produced by this method.  

Although halide substituents on a benzene ring can be considered to be electron 

withdrawing by induction due to the fact that halogens are more electronegative than 

carbon, they are also electron donating through one of the lone pairs being conjugated into 

the benzene ring.  The resulting resonance forms make halogen substituents ortho and para 

directing, and so the most reactive amine of 1,2-diaminobenzene 82 will be the one para to 

the chloro substituent.  Therefore the initial attack of oxazolone 83 will occur from that 

amine, resulting in the chloro substituent occupying the 7-position in the final product. 
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Scheme 1.13 Synthesis of 1,5-benzodiazepinones 88−91 

 

Another 1,5-benzodiazepinone forming reaction which employs a heterocyclic starting 

material is the reaction between a hydroxycoumarin and a 1,2-diaminobenzene, first 

published by Hamdi and co-workers in 1994 (Scheme 1.14).
71

  This reaction proceeds with 

the opposite regioselectivity to the previous two examples.  Starting from 1,2-

diaminobenzenes 60, 71, 82 and 92, treatment with hydroxycoumarin 93, produced 

enamine intermediates 94−97, rather than the β-keto amide intermediates formed in the 

previous examples.  The enamine substituents are the result of the most reactive amine 

reacting with the enol moiety of hydroxycoumarin 93.  Intramolecular amide formation 

then produced the 1,5-benzodiazepinone products 98−101 with the substituents in the 8-

position of the benzodiazepine ring.   
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Scheme 1.14 Synthesis of 1,5-benzodiazepinones 98−101 

 

A 1,5-benzodiazepinone synthesis carried out by Capuano and co-workers as part of the 

synthesis of a series of compounds with affinity for dopamine and serotonin receptors is 

shown in Scheme 1.15.
72

  Like the previous example, an enamine is first formed, followed 

by amide coupling.  However, unlike the previous example this occurs over two steps.  1,2-
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Diaminobenzene 82 was treated with β-keto ester 62 under acidic conditions to favor imine 

formation at the most reactive amine.  The imine then isomerised to give enamine 102 

which was isolated and then underwent amide formation under basic conditions to give 

1,5-benzodiazepinone 103. 
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Scheme 1.15 Synthesis of 1,5-benzodiazepinone 103 

 

A synthesis of 1,5-benzodiazepinones by a microwave mediated reaction between a cyclic 

2-diazo-1,3-diketone (104−107) and 1,2-diaminobenzene 60 was reported by Castilo and 

co-workers in 2012.
73

  Using this method 1,5-benzodiazepines 108−111 were produced, 

containing a fused carbocycle in the 3,4-position (Scheme 1.16). 

  

 

 

Scheme 1.16 Synthesis of 1,5-benzodiazepinones 108−111 

 

The mechanism for the transformation of 2-diazo-1,3-diketone 104 to 1,5-

benzodiazepinone 108 is demonstrated in Scheme 1.17.  Initially, a Wolff rearrangement 

takes place to form α-oxo ketene 113.  It has previously been shown that thermal Wolff 

rearrangements of 2-diazo-1,3-diketone proceed by a concerted process rather than via a 

carbene intermediate.
74

  Nucleophilic trapping of α-oxo ketene 113 with 1,2-diamino 

benzene 60 then occurs to form β-keto amide 114, followed by intramolecular imine 

condensation to give 1,5-benzodiazepinone 108. 
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Scheme 1.17 Mechanism of the formation of 1,5-benzodiazepinone 108 

 

All of the methods for the synthesis of 1,5-benzodiazepinones described in this section are 

limited by the relative lack of substituents around the benzodiazepinone core due to the 

issue of regioselectivity.  The procedure employed by Woltering and co-workers 

(discussed in Section 1.3.3) in which one of the amine groups of the 1,2-diaminobenzene 

starting material is protected allows complete control of the position of the substituents in 

the final product, and so allows for the greatest amount of versatility in terms of 

substitution. 

 

The ability of the method used by Woltering and co-workers to allow many different 

substituents around the benzodiazepinone core makes such compounds ideal candidates for 

the incorporation of radiolabels for use in nuclear imaging. 

 

1.5 Nuclear Imaging 

 

Nuclear imaging is a widely used technique in which a biologically active compound is 

labelled with a radionuclide that emits radiation allowing its position to be traced.  Images 

of tumours, and organs such as the brain, heart and lungs can be produced using this 

method.
75

  The compounds used in this procedure are known as radiotracers and there are 

various properties required of a successful radiotracer.  An ideal radiotracer should have 

both a decay half-life and a biological half-life similar to the length of the test (a few 

hours).  Alpha and beta particles have a short range and so will only deliver a high 
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radiation dose to the patient and not contribute to the image, so choice of radioisotope is 

limited to gamma and positron emitters.  The radiotracer should also ideally only localise 

in the area of interest.  The specific techniques used in nuclear imaging are single photon 

emission computed tomography (SPECT) and positron emission tomography (PET). 

 

1.5.1 Single Photon Emission Computed Tomography (SPECT) 

 

SPECT is a medical imaging technique that makes use of radioisotopes which decay with 

the emission of single photons.  The most commonly used are iodine-123, technetium-99m 

and indium-111 (Table 1.3).
76

 

 

Radioisotope Decay 
Photon energy  

(keV) 
Half-life 

 

99m
Tc 

electron 

capture 
140 6.03 hours 

 

111
In 

electron 

capture 
173, 247 2.81 days 

 

123
I 

electron 

capture 
160 13.0 hours 

 

Table 1.3 Radioisotopes commonly used in SPECT 

 

Once the radiopharmaceutical has been injected, a gamma camera is rotated 360º around 

the patient, detecting photon emission at a range of angles.  A lead collimator is used to 

reduce the number of photons that strike the detector, allowing only those travelling 

perpendicular to the detector to travel through (Figure 1.12).  This process allows 

positional information to be obtained, as without it there would be no relationship between 

where photons are coming from and where they strike the detector.  As a typical collimator 

only accepts 0.01% of gamma rays, this decreases the sensitivity of the technique, making 

collimator design a compromise between sensitivity and positional resolution.
77

  Gamma 

rays can then strike the scintillation crystal which produces signals that can be processed to 

form an image. 
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Figure 1.12 (a) emitted radiation striking detector with no collimator, (b) emitted radiation 

striking detector with collimator
75

 

(Reprinted from Practical Nuclear Medicine, Springler-Verlag, London, 2005 with kind 

permission from Springer Science and Business Media) 

 

1.5.2 Positron Emission Tomography (PET)  

 

PET imaging employs low molecular mass radioisotopes such as carbon-11, nitrogen-13, 

oxygen-15 and fluorine-18 that decay by positron emission (Table 1.4).
78

  These are 

radioisotopes of elements more commonly found in biologically active compounds than 

those used in SPECT. 

 

Radioisotope Decay 
Photon Energy  

(keV) 
Half-Life 

11
C 

positron 

emission 
511 20.3 min 

13
N 

positron 

emission 
511 10.0 min 

15
O 

positron 

emission 
511 2.07 min 

18
F 

positron 

emission 
511 110 min 

 

Table 1.4 Radioisotopes commonly used in PET 

 

Positron emission originates from a proton in the nucleus being converted to a neutron with 

the emission of a positron and a neutrino.  The positron then undergoes annihilation with 

an electron to create two photons with an energy of 511 keV, emitted in opposite 

directions, at 180º to each other (Figure 1.13).  Simultaneous detection of these photons 

allows their emission point to be determined.  As this removes the need for a lead 



 35 
 

collimator, PET is a more sensitive technique than SPECT.  It also provides better spatial 

resolution than SPECT of around 5 mm due to the distance covered by the positron before 

annihilation.
75

  However, there are disadvantages.  The radioisotopes used in PET have a 

short half-life.   As a consequence of this for a facility to carry out PET, they must produce 

these radioisotopes on site using a cyclotron.  The expense of requiring a cyclotron causes 

PET to be significantly more costly than SPECT. 

 

 

 

Figure 1.13 Positron annihilation in PET imaging
78

 

(Reprinted with permission from Angew. Chem. Int. Ed., 2008, 47, 8998−9033. Copyright 

2008 John Wiley and Sons) 

 

1.5.3 Synthesis and Use of Imaging Agents 

 

In the synthesis of imaging agents it is essential to incorporate the radionuclide in the final 

stages of the synthetic route to avoid the chemist having to work with a radioactive 

substance in subsequent steps, and to ensure the labelled compound decays as little as 

possible before use.  The result of radiosynthesis is measured in terms of radiochemical 

yield (RCY), in which the yield is expressed as the percentage of the initial radioactivity 

incorporated in to the reaction product.  Therefore, it is the reagent containing the 

radionuclide that is the limiting compound, with the imaging agent precursor in excess.  

Radiochemical yield can be expressed as either corrected to take account of the decay that 

occurred during the reaction or as an uncorrected value.  The corrected value only takes 

into account the efficiency of the incorporation of the radionuclide into the target 

compound, whereas the uncorrected value also incorporates the speed of the process.  To 
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be used in radiolabelling, a reaction must be high yielding in terms of the transformation to 

the target compound, but also must proceed quickly. 

 

A commonly used SPECT imaging agent is [
123

I]-FP-CIT, which has high affinity for 

presynaptic dopamine transporters.  This compound is produced from trimethylstannane 

precursor 116, which is transformed to the iodine-123 labelled imaging agent by oxidative 

iododestannylation using iodine-123 labelled sodium iodide.  A preparation published in 

1994 by Neumeyer and co-workers achieved this transformation in a 64% radiochemical 

yield (Scheme 1.18).
79

 

 

 

 

Scheme 1.18 Radiosynthesis of SPECT imaging agent [
123

I]-FP-CIT 

 

Once labelled [
123

I]-FP-CIT can be used in the diagnosis and monitoring of Parkinson’s 

disease.  A feature of Parkinson’s disease is the reduction in dopaminergic neurones in the 

striatal region of the brain.  This can be observed by SPECT imaging as a scan of a patient 

with Parkinson’s disease clearly shows reduced binding of [
123

I]-FP-CIT when compared 

to a patient without Parkinson’s disease (Figure 1.14). 

 

 

 

Figure 1.14 SPECT images in a (a) normal and (b) Parkinson's disease patient
76

 

(Reproduced from Ref. 76 with permission from The Royal Society of Chemistry) 
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PET has been used to image β-amyloid plaques and tangles (twisted fibres mainly 

composed of hyperphosphorylated tau protein) which accumulate in the brain of 

Alzheimer's sufferers using [
18

F]-BAY-94-9172, a fluorine-18 labelled PET radiotracer.  

Starting from mesylate precursor 117, nucleophilic radiofluorination and Boc deprotection 

produced [
18

F]-BAY-94-9172 in a decay corrected radiochemical yield of 30%, with a total 

preparation time of 90 minutes (Scheme 1.19).
80

 

 

 

 

Scheme 1.19 Radiosynthesis of [
18

F]-BAY-94-9172 

 

By comparing the images obtained from a 75-year old subject with Alzheimer’s disease 

(top picture) and a 76-year old healthy control (bottom picture) the presence of β-amyloid 

plaques and/or tangles can be clearly observed, making PET imaging an important tool in 

diagnosing and monitoring the progression of Alzheimer's disease (Figure 1.15). 
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Figure 1.15 PET images showing binding of [
18

F]-BAY-94-9172 in an Alzheimer’s 

disease patient (top picture) and a healthy control (bottom picture)
81

  

(Reprinted with permission from Chem. Rev., 2008, 108, 1501−1516. Copyright 2008 

American Chemical Society) 

 

These examples illustrate the effectiveness of nuclear imaging using SPECT and PET in 

the diagnosis and monitoring of various conditions.  

 

1.5.4 Imaging of mGluR2/3 

 

Currently there are no approved radiotracers for use in imaging mGluR2/3.  However a 

small amount of work has been published on the development of potential mGluR2/3 

radiotracers for use in PET imaging.  In 2012, Wang and co-workers reported the 

radiosynthesis and micro-PET imaging of potential mGluR2/3 imaging agents [
11

C]CMG 

and [
11

C]CMGDE.
82

   

 

The synthesis of these compounds is provided in Scheme 1.20.  Dicarboxylic acid 

[
11

C]CMG was formed by alkylation of phenol precursor 118 using carbon-11 labelled 

iodomethane, followed by Boc deprotection and ester hydrolysis.  A prodrug version of 

this compound ([
11

C]CMGDE) in which the methyl esters were kept intact was also 

synthesised, as it was thought that this would provide a more suitable physicochemical 

profile for brain penetration.  In order to prevent ester hydrolysis during the radiosynthesis 

of [
11

C]CMGDE, alkylation was carried out using potassium carbonate rather than sodium 
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hydroxide to form compound 119, and milder Boc deprotection was employed.  No yields 

were included in the publication. 
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ii. 6 N HCl 100 °C

 

 

Scheme 1.20 Radiosynthesis of [
11

C]CMG and [
11

C]CMGDE 

 

μPET imaging studies using rats showed no brain penetration upon injection with 

[
11

C]CMG.  However, prodrug [
11

C]CMGDE was found to be incorporated into the brain 

and the resulting radiotracer (not identified, presumed to be [
11

C]CMG or a monoester 

formed by in vivo hydrolysis) was found to bind to several brain areas known to express 

mGluR2/3.  They were also able to demonstrate some binding specificity by observing a 

reduction in binding of 20−30% when LY341495 was also injected as a blocking agent. 

 

Andrés and co-workers also published the radiosynthesis of potential mGluR2 radiotracers 

and μPET imaging results in 2012.
83

  The compounds were derived from a series of 

mGluR2 positive allosteric modulators developed by Janssen Research and Development 

containing a triazolopyridine core.  A library of compounds containing a methoxy group as 

potential carbon-11 labelling site were found to have low nanomolar affinity for mGluR2, 

and so radiolabelled versions were synthesised by alkylation of phenol precursors 120−125 

(Scheme 1.21).  This produced six carbon-11 labelled compounds in nondecay corrected 

radiochemical yields of from 35% to 74%.  
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Scheme 1.21 Radiosynthesis of a library of potential mGlur2 radiotracers 

 

Compounds 126−131 were then subjected to studies of biodistribution and metabolism 

both of which identified 128 as the lead.  Triazolopyridine 128 was then used in rat μPET 

imaging, where it showed uptake in the brain.  The specificity and reversibility of this 

binding was demonstrated by the fact that injection of known mGluR2 PAM at 30 mins 

displaced radioactivity in all brain regions. 

 

This represents a promising start in the development of imaging agents for mGluR2/3, 

however, the fact that these two studies represent the only work published to date shows 

that the imaging of mGluR2/3 is at a very early stage and further research is needed.  

 

1.6 Proposed Research 

 

The primary aim of this research was to develop new radiotracers to be used in SPECT and 

PET imaging of mGluR2/3.  Non-competitive antagonists of mGluR2/3 described by 

Woltering and co-workers containing a 1,5-benzodiazepinone core were chosen as a 

starting point for the development of radiotracers.
61-64

   

 

Compounds with the general structure of 1,5-benzodiazepinone 132 containing a 

phenylimidazole substituent in the 4-position were proposed as synthetic targets (Figure 

1.16).  It was planned to use the 7- (R
2
) and 8- (R

1
) positions to incorporate groups 

containing either iodine, carbon or fluorine which could eventually be labeled with iodine-

123 for SPECT, and carbon-11 or fluorine-18 for PET imaging.   
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Figure 1.16 Structure of potential imaging agents 

 

Following the synthesis of a small library of non-radiolabelled compounds it was intended 

to determine their binding affinity with mGluR2/3, and investigate their physicochemical 

properties to determine whether they are likely to be brain penetrant.  Once the most 

suitable analogues have been identified they could be radiolabelled and evaluated in vivo 

as potential radiotracers to be used in SPECT and PET imaging of mGluR2/3.   
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2 Development of Imaging Agents for mGluR2/3 

 

2.1 Synthesis of Potential SPECT imaging agents 

 

The first stage of work in this project was the synthesis of compounds that could be of use 

for SPECT imaging.  Initial targets were designed based on the compounds previously 

published by Woltering and co-workers containing a benzodiazepinone core and 

phenylimidazole group.
63

  Iodine was introduced in the ortho, meta and para positions 

around a benzene ring to give compounds 133, 134 and 135 as the first synthetic targets 

(Figure 2.1).  These compounds could eventually be radiolabelled with iodine-123 to 

provide compounds for SPECT imaging. 

 

 

Figure 2.1 SPECT target compounds 

 

Firstly, non-radiolabelled versions of the compounds were synthesised in order to 

investigate their physicochemical properties and biological activity. 

 

2.1.1 Retrosynthetic Analysis 

 

A retrosynthetic analysis of these initial targets is shown in Scheme 2.1.  It was proposed 

that aryl iodides 133, 134, and 135 could be prepared by halogen exchange from the 

corresponding aryl bromides 136, 137 and 138.  Disconnecting the imine then opens the 

benzodiazepinone core to reveal a β-keto amide and a protected amine.  Disconnection of 

the amide linkage then provides amine fragments 142, 143 and 144, and β-keto ester 

fragment 145.  From the amine fragments, functional group interconversion leads to nitro 

benzenes 146, 147 and 148, which then can be disconnected between the benzene rings to 

give iodobenzene 149.  Removal of the protecting group on the amine followed by 
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functional group interconversion and disconnection of the iodide bond, leads to 

commercially available 2-nitroaniline 151.  On the β-keto ester path, removal of the tert-

butyl acetate side chain gives ester 152, in which the imidazole heterocycle could be 

formed from commercially available methyl 3-aminobenzoate 153.  As this strategy 

involves forming the iodide in the final step it could also be used to produce radiolabelled 

compounds.   

 

 

Scheme 2.1 Retrosynthetic analysis of SPECT targets 
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2.1.2 Synthesis of the Amine Fragments 

 

The first step in the synthesis of the aminobenzene fragments was the selective iodination 

of 2-nitroaniline 151 to give aniline 150 by electrophilic aromatic substitution, which 

proceeded in an excellent yield of 88% (Scheme 2.2).
84

  Iodine monochloride acts as a 

source of electrophilic iodine in this reaction due to the difference in electronegativity 

between iodine (2.66) and chlorine (3.16).  The regioselectivity of this reaction can be 

explained by the combination of the strongly activating amino group which favours ortho 

and para substitution, and the strongly deactivating nitro group which favours meta 

substitution.  As a result of this, the 4- and 6-positions are strongly favoured electronically 

for electrophilic substitution.  However, the 6-position has an ortho amino group which 

results in it being disfavoured sterically.  Therefore substitution occurs at the 4-position. 

 

 
 

Scheme 2.2 Iodination of nitroaniline 151 

 

Protection of the amine with a Boc group was then required.  Various reaction conditions 

were investigated as outlined in Scheme 2.3 and Table 2.1.  The first method was the 

treatment of aniline 150 with di-tert-butyl dicarbonate, DMAP and triethylamine in 

dichloromethane.  After stirring overnight there was still amine present so a further 

equivalent of di-tert-butyl dicarbonate was added.  Once complete consumption of the 

amine was observed the reaction was purified to give the desired compound 149 in 35% 

yield, which could not be separated from an unidentified close running impurity, along 

with the bis-protected compound 154 as the major product in 65% yield (entry 1).  In an 

attempt to reduce the amount of bis-Boc compound being formed, the reaction was 

repeated with a total of one equivalent of di-tert-butyl dicarbonate, which was added in 

batches.  This did lead to an increased yield of the desired compound 149 of 59%, but 

compound 154 was still formed and the close running impurity was still present (entry 2).   

 

At this point it became clear that an alternate approach would be necessary for this 

transformation.  Mono-Boc protection was attempted by treating amine 150 with di-tert-
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butyl dicarbonate under reflux in THF.
85

  However, after stirring for two days only starting 

material was observed (entry 3).  The most successful method for forming compound 149  

used the conditions of Kelly and co-workers.
86

  Treating amine 150 with lithium 

hexamethyldisilazide at 0 ºC followed by the dropwise addition of a solution of di-tert-

butyl dicarbonate produced mono-protected amine 149 in a moderate yield of 60% and the 

bis-protected compound 154 in 15% yield.  Although compound 154 was still produced it 

was a cleaner reaction than that described previously, with only starting material, desired 

product and bis-protected product being observed. 

 

 

 

Scheme 2.3 Boc protection of aniline 150 

 

Entry Reagent(s) Conditions 149 (Yield) 154 (Yield) 

1 Boc2O, DMAP, Et3N DCM 35%* 65% 

2 
Boc2O (1 eq. added in 

batches), DMAP, Et3N 
DCM 59%* not recorded 

3 Boc2O THF, Δ 0% 0% 

4 Boc2O, LiHMDS 0 °C to rt 60% 15% 

 

*with unknown impurity 
 

Table 2.1 Conditions attempted for Boc protection of aniline 150 

 

The NH protons of aniline 150 are more acidic than those of an unsubstituted aniline, due 

to the presence of the strongly electron withdrawing ortho nitro group.  Once aniline 150 

has been mono-Boc protected to form compound 149 the remaining NH proton will have 

further increased acidity.  This allows the formation of bis-protected aniline 154 by 

deprotonation of mono-protected compound 149 and reaction with di-tert-butyl 

dicarbonate. 
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As bis-protected compound 154 was being produced in significant amounts, the mono-

deprotection of this compound was attempted to investigate whether this material could be 

used to form mono-Boc protected amine 149.  It was found that bis-protected amine 154 

underwent conversion to mono-protected amine 149 in high yield upon treatment with two 

equivalents of trifluoroacetic acid in dilute dichloromethane (Scheme 2.4).
87

  The various 

attempts at forming compound 149 gave enough material to carry forward to subsequent 

steps.  However, if this reaction were to be repeated alternative conditions would be 

employed using sufficient equivalents of di-tert-butyl dicarbonate to achieve complete 

conversion of aniline 150 to bis-protected 154, followed by mono-deprotection.  This 

would remove the need for separation of the Boc and bis-Boc protected compounds and 

should result in a significantly higher yield. 

 

 

 

Scheme 2.4 Mono-deprotection of bis-Boc protected amine 154 

 

At this point, the route diverged with iodobenzene 149 being employed in a palladium(0)-

catalysed Suzuki cross coupling reaction with either 2-, 3- or 4-bromophenylboronic acid 

(Scheme 2.5).  Using these conditions, compounds 146, 147 and 148 were produced in 

moderate to good yields of 62%, 72% and 78% respectively.    

 

 
 

Scheme 2.5 Formation of biaryl compounds 146, 147 and 148 by the Suzuki reaction 

 

The Suzuki cross-coupling reaction proceeds via a palladium(0) to palladium(II)-catalytic 

cycle (Scheme 2.6).  Oxidative addition of palladium(0) into the aryl halide bond of 149 

first occurs to give palladium(II) species 155, followed by exchange of the halide attached 

to palladium with hydroxide (formed from reaction between carbonate and water) to give 
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palladium(II) species 156.  Transmetalation then occurs with boronic acid 157 to form 

intermediate 159.  Finally, a carbon-carbon bond is formed by the reductive elimination of 

biaryl compound 146 and the palladium(0) species is regenerated, allowing the cycle to 

begin over again.
88

  

 

 

 

Scheme 2.6 Suzuki reaction mechanism 

 

The Suzuki reaction was followed by nitro reduction to complete the synthesis of the 

amine fragments.  Para-substituted compound 148 was used to optimise this step as 

detailed in Scheme 2.7 and Table 2.2.  Reduction of nitrobenzene 148 to amine 144 was 

first attempted using palladium-catalysed hydrogenation with ammonium formate as a 

hydrogen transfer agent,
89

 as literature precedent had been found for performing a selective 

nitro reduction in the presence of an aryl bromide under these conditions (entries 1 and 

2).
90

  The reaction was first performed at room temperature but only starting material was 

observed.  As no reaction occurred at room temperature, the reaction was repeated at 55 

ºC, which resulted in the formation of debrominated compound 160 in 77% yield.  To 

determine whether it was possible to reduce the nitro group in the presence of the aryl 

bromide using ammonium formate the reaction was repeated, starting at room temperature 
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and slowly increasing the temperature whilst monitoring the reaction by TLC.  No reaction 

was observed until the temperature reached 40 ºC, which produced a mixture of starting 

material 148 and de-brominated product 160.   

 

An alternate method was then investigated using tin(II) chloride dihydrate following the 

conditions reported by Bellamy and Ou,
 
 in which nitro compounds are reduced to anilines 

in a non-acidic medium (entry 3).
91

  Under these conditions the reaction is thought to 

proceed by a sequence of electron and proton transfers with tin acting as the electron 

source.
92

  Using this procedure, the desired amine 144 was isolated but in a low yield of 

11%, most likely due to loss of the Boc group. 

 

Returning to the literature revealed a number of examples where pyridine was present in 

the reaction when the desired compound contained a Boc group.
93,94

  Replacing methanol 

used in the previous reaction with ethyl acetate and pyridine, and reducing the temperature 

to room temperature resulted in the reaction proceeding in a yield of 63% (entry 4).   

 

 

Scheme 2.7 Nitro Reduction of nitrobenzene 148 

 

Entry Reagent(s) Solvent(s) Temperature 
144 

(Yield) 

160 

(Yield) 

1 
NH4HCO2, 10% 

Pd/C 
MeOH, rt - - 

2 
NH4HCO2, 10% 

Pd/C 
MeOH, 55 °C - 77% 

3 SnCl2.H2O MeOH, 70 °C 11% - 

4 SnCl2.H2O 
EtOAc, 

pyridine 
rt 63% - 

 

Table 2.2 Optimisation of nitro reduction 

 

With the reaction optimised, nitrobenzenes 146 and 147 were exposed to the same 

conditions to give amines 142 and 143 (Scheme 2.8).  
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Scheme 2.8 Nitro reduction of nitrobenzenes 146 and 147 

 

2.1.3 Synthesis of the β-Keto Ester Fragment 

 

To synthesise β-keto ester fragment 145, commercially available methyl 3-aminobenzoate 

153 first underwent an imidazole forming reaction using the conditions described by Zhang 

and co-workers,
95

 which proceeded in a yield of 58%.  In this reaction phenylimidazole 

152 is formed by a two stage process in which glyoxal and methyl 3-aminobenzoate 

condense to form imine intermediate 161, followed by the addition of formaldehyde, 

ammonium chloride and phosphoric acid to complete the reaction (Scheme 2.9). 

 

 

 

Scheme 2.9 Synthesis of imidazole 152 

 

A Claisen condensation was then employed to complete the synthesis of the β-keto ester 

fragment (Scheme 2.10).
96

  In this reaction, tert-butyl acetate was first treated with lithium 

hexamethyldisilazide at –78 ºC to form a lithium enolate, which then reacted with 

imidazolylbenzoic ester 152 to give β-keto ester 145 in a high yield of 80%. 
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Scheme 2.10 Claisen condensation to form β-keto ester 145 

 

2.1.4 Completion of Synthetic Route 

 

The two fragments were then brought together in a condensation reaction performed by 

heating amines 142, 143 and 144 with β-keto ester 145 under reflux in toluene, forming β-

keto amides 139, 140 and 141 in good yields.  Although the β-keto amides were isolated, 

full analysis was not performed on these compounds as their NMR spectra appeared as a 

mixture of keto-enol tautomers.  The benzodiazepinone core was accessed through the 

reaction of the β-keto amides with trifluoroacetic acid giving benzodiazepinones 136, 137, 

and 138 in excellent yields of 90%, 88% and 91% respectively (Scheme 2.11).  Under the 

acidic conditions the Boc group is removed to form an amine which immediately performs 

an intramolecular amine condensation reaction with the ketone to form the 

benzodiazepinone core.  

 

 
 

Scheme 2.11 β-Keto amide formation and cyclisation to form benzodiazepinone core 
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The final step in the proposed route was a copper catalysed halogen exchange reaction with 

a diamine chelating ligand using conditions described by Klapars and Buchwald.
97

  This 

reaction was first attempted with benzodiazepinone 138 by heating to 140 ºC for six days.  

Upon inspection of the 
1
H NMR spectrum, the product recovered from this reaction did 

appear to contain iodine but the original benzodiazepinone core did not appear to be intact.  

The reaction was repeated using milder conditions of heating to 120 ºC for 20 hours but 

again no desired product was isolated (Scheme 2.12). 

  

 
 

Scheme 2.12 Attempted halogen exchange reaction. 

 

The major product of the reaction showed the correct mass by mass spectrometry but the 

1
H NMR spectra did not include the expected benzodiazepinone methylene signal.  A 

possible explanation for this is that the iodination could have occurred but the 

benzodiazepinone core was isomerised to give compound 162 (Figure 2.2).  Unfortunately 

the product could not be isolated sufficiently cleanly to perform full analysis to confirm 

this. 

 

 
 

Figure 2.2 Structure of proposed isomerised compound 162 

 

As the direct halogen exchange reaction had proved unsuccessful an alternate approach 

was devised using stannylation of the bromide followed by iododestannylation.  

Palladium(0)-catalysed stannane formation was attempted on ortho-bromo substituted 

compound 136 but no reaction occurred (Scheme 2.13).  Consulting the literature revealed 
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that examples of stannylation in the ortho position of a biaryl system used the conditions of 

n-butyllithium or t-butyllithium and a trimethyltin halogen species.
98,99

  The harsh 

conditions required to overcome the steric hindrance in the ortho-bromo analogue would 

not be compatible with the more sensitive functionality found elsewhere in the compound.  

Therefore the synthesis of the ortho-substituted compound was not pursued any further 

using this synthetic route. 

   

 
 

Scheme 2.13 Attempted iodination of compound 136 

 

However, the milder stannylation method was suitable for use on the meta and para-bromo 

substituted analogues.  Palladium(0)-catalysed stannylation using hexamethylditin was 

employed, followed by iododestannylation under oxidative conditions to access target 

compounds 134 and 135 (Scheme 2.14).
100

  As the iodide was inserted in the final step this 

synthetic route could be used to form radiolabelled compounds.  

 

 

 

Scheme 2.14 Pd(0)-catalysed stannylation followed by oxidative iododestannylation 
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The mechanism of the iododestannylation reaction is provided in Scheme 2.15.  Under 

acidic conditions sodium iodide and chloramine-T can form iodine monochloride in situ, 

which acts as a source of electrophilic iodine.
101

  Demetallation then occurs to form the 

desired aryl iodide (Scheme 2.15). 

 

 

 

 

Scheme 2.15 Iododestannylation mechanism 

 

This sequence of reactions could raise some safety concerns due to the high toxicity of 

organotin compounds.  However, it is very commonly used in radioiodination to form 

SPECT imaging agents, followed by purification by HPLC to ensure any organotin 

impurities are removed.
102

  It is so popular because the iododestannylation reaction is 

extremely fast and can be performed under very mild conditions compared to analogous 

iododesilylation and iododeborylation procedures.
103,104

  The increased reactivity arises 

from the fact the carbon-tin bond has a bond dissociation energy (DBE) of 217 kJ/mol, 

compared to 311 kJ/mol for carbon-silicon and 365 kJ/mol for carbon-boron.
105

  Therefore, 

the more labile carbon-tin bond more readily undergoes electrophilic aromatic substitution.   
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2.1.5 Synthesis of an Additional SPECT Target 

 

An additional SPECT target was synthesised to investigate what effect the removal of the 

benzene ring at position-8 of the benzodiazepinone would have on the physicochemical 

properties of these compounds.  Benzodiazepinone 169 was synthesised in three steps from 

nitrobenzene 149 by nitro reduction, β-keto amide formation and cyclisation (Scheme 

2.16).   

 

 

Scheme 2.16 Synthesis of benzodiazepinone 169 

 

2.2 Synthesis of Potential PET Imaging Agents 

 

Another aim of this project was to design and synthesise compounds for PET imaging.  

Two target compounds were initially proposed, 170 containing a methoxy group and 171 

incorporating a 3-fluoropropoxy chain (Figure 2.3).  These compounds could be 

radiolabelled with carbon-11 and fluorine-18 respectively to provide compounds for PET 

imaging.  

 

 
 

Figure 2.3 Target compounds for PET imaging 
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2.2.1 Retrosynthetic Analysis 

 

The proposed route to synthesise the non-labelled compounds employed the same strategy 

as for the SPECT compounds.  It was planned to form the benzodiazepinone core by 

cyclisation of β-keto amides 172 and 173, which would be formed from amines 174 and 

175, and β-keto ester 145.  Commercially available 5-chloro-2-nitroaniline 183 was 

proposed as the starting material for the synthesis of amine fragments 174 and 175, with 

the alkoxy and trifluoromethyl groups being inserted by nucleophilic aromatic substitution 

and copper catalysed trifluoromethylation, respectively (Scheme 2.17).  
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Scheme 2.17 Retrosynthetic analysis of target compounds 170 and 171 

 

2.2.2 Synthesis of Target Compounds 

 

Commercially available 5-chloro-2-nitroaniline 183 was treated with iodine monochloride 

to give aniline 182 in 92% yield.  To optimise the synthetic route, the planned sequence of 

reactions was first performed on the methoxy substituted analogue.  Nucleophilic aromatic 
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substitution was employed to insert the methoxy group and gave compound 180 in an 

excellent 94% yield (Scheme 2.18).
61

 

 

 
 

Scheme 2.18 Iodination of aniline 183 followed by SNAr to insert a methoxy group 

 

Although there are two halides present in compound 182, the aromatic nucleophilic 

substitution reaction is completely selective for the chloride position.  In nucleophilic 

aromatic substitution the rate determining step is the initial attack by the nucleophile on a 

carbon attached to a halide because this step breaks the aromaticity of the ring.  Removal 

of the halide leaving group is fast as this step restores aromaticity.  Attack at the chloride 

position is favoured as it has a strongly electron withdrawing nitro group para to it, which 

activates the ring towards nucleophilic attack and stabilises the Meisenheimer complex 

through resonance (Scheme 2.19).
106

  Aryl chlorides are in fact more reactive than aryl 

iodides in nucleophilic aromatic substitution, as the increased electronegativity of chlorine 

over iodine results in greater polarisation of the carbon halide bond, making the carbon a 

better electrophile. 

 

 

Scheme 2.19 Nucleophilic aromatic substitution mechanism 
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At this point, mono-Boc protection of amine 180 was attempted.  However, significant 

amounts of the bis-protected compound were observed when monitoring the reaction.  A 

further equivalent of di-tert-butyl dicarbonate was added to give complete conversion to 

bis-protected aniline 188 in a yield of 96%.  Treatment of this material with trifluoroacetic 

acid allowed quantitative mono-deprotection to give protected amine 178 (Scheme 2.20).   

 

The next step in the planned route was a copper-catalysed trifluoromethylation reaction 

using methyl chlorodifluoroacetate to give trifluoromethylbenzene 176 (Scheme 2.20).  In 

this reaction, a trifluoromethyl copper complex is produced which reacts with the aryl 

iodide.
107,108

  Unfortunately, the reaction was unsuccessful with only deprotected amine 

180 being observed.  When the reaction was carried out using amine 180, again, 

trifluoromethylation did not occur.  However, compound 178 was still of use as it was 

employed in the synthesis of compounds with multiple labelling sites which are discussed 

in Section 2.3.   

 

 

 

Scheme 2.20 Boc protection of amine 180 and attempted trifluoromethylation 

 

As the trifluoromethylation reaction was unsuccessful, an alternate synthetic route was 

devised using a starting material already containing the trifluoromethyl group.  Starting 

from commercially available dichlorobenzene 189, a selective amination was performed to 

give amine 190 (Scheme 2.21).
109
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Scheme 2.21 Amination of dichlorobenzene 189 

 

This reaction is completely selective for the ortho-nitro position even though both halides 

have strongly electron withdrawing groups in the ortho and para positions.  When 

searching the literature it was found that when an aromatic system contains a nitro group 

with a halide in both the ortho and para positions there is a bias towards a nucleophilic 

aromatic substitution with primary amines occurring at the ortho position.
110,111

  This effect 

does not appear with other strongly electron withdrawing groups such as 

trifluoromethyl.
112,113

  One example which illustrates this well is the amination of 2,4-

difluoronitrobenzene 191, performed by Ji and co-workers.
114

  Performing this reaction in 

ammonia at 25 °C produced the ortho-aminated product 192 in a 98% yield, and para-

aminated product 193 in a yield of only 2% (Scheme 2.22). 

 

 

 

Scheme 2.22 Amination of 2,4-difluoronitrobenzene 191 

 

Kinetic studies of the amination of 2-fluoronitrobenzene and 4-fluoronitrobenzene 

separately found that the reaction with 2-fluoronitrobenzene was twenty seven times faster.  

To explain this, intermediate 194 was proposed, in which hydrogen bonding between 

oxygen of the nitro group and hydrogen of the amine stabilises the Meisenheimer complex 

(Figure 2.4).  The same Meisenheimer complex stabilisation explains the selectivity 

observed in the amination of dichlorobenzene 189. 
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Figure 2.4 Stabilised Meisenheimer Complex 194 

 

With aniline 190 in hand, the synthetic route became divergent, with aromatic nucleophilic 

substitution reactions used to insert the alkoxy substituents.  Reaction at the remaining 

chloride position afforded methoxy substituted aniline 195 in a 97% yield (Scheme 2.23).   

 

 

 

Scheme 2.23 SNAr to insert methoxy group 

 

To synthesise the 3-fluoropropoxy substituted compound 196, chlorobenzene 190 

underwent a nucleophilic aromatic substitution reaction with 3-fluoropropanol (Scheme 

2.24 and Table 2.3).  This was first attempted following a literature procedure for a similar 

compound, employing potassium carbonate as the base and performing the reaction in 

DMF.
115

  However, a disappointing yield of 34% was obtained (entry 1).  This low yield 

was due to material being lost during purification, as a result of a close running impurity 

which was particularly difficult to remove.  A small amount of this impurity was isolated 

and 
1
H NMR spectroscopy revealed it to be dimethylamine 197.  Referring to the 

1
H NMR 

spectrum of the crude material from this reaction showed that the ratio of desired 

compound 196 to dimethylamine 197 to be 2:1.  Under the basic reaction conditions, some 

of the DMF solvent was being hydrolysed to produce dimethylamine, which could then 

undergo an aromatic nucleophilic substitution with chlorobenzene 190.
116

   

 

To overcome this problem, the reaction was repeated without any dimethylformamide, 

performing the reaction neat in 3-fluoropropanol (entry 2).  However, after two days only 

starting material was observed.  DMSO was then used as the solvent and under these 

conditions, the desired reaction proceeded in a 71% yield (entry 3). 
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Scheme 2.24 SNAr to insert 3-fluoropropoxy group 

 

Entry Reagent(s) Solvent(s) Temperature 196 (Yield) 

1 
3-fluoropropanol, 

K2CO3 
DMF 120 °C 34% 

2 
3-fluoropropanol, 

K2CO3 
- 120 °C - 

3 
3-fluoropropanol, 

K2CO3 
DMSO 120 °C 71% 

 

Table 2.3 SNAr conditions 

 

Bis-Boc protection followed by mono-deprotection allowed the amine to be protected to 

successfully form Boc-protected anilines 176 and 177.  Nitro reduction with tin(II) 

chloride dihydrate completed the synthesis of amine fragments 174 and 175 (Scheme 

2.25).  

 

 

 

Scheme 2.25 Synthesis of amine fragments 174 and 175 

 

Treatment of the amine fragments with β-keto ester 145 gave β-keto amides 172 and 173 in 

good yields of 69% and 79%.  Finally, treatment with trifluoroacetic acid deprotected the 



 61 
 

amine and allowed cyclisation to occur to give benzodiazepinones 170 and 171 (Scheme 

2.26).  This completed the synthesis of the target compounds for PET imaging. 

 

 

 

Scheme 2.26 Synthesis of final target compounds 170 and 171 

 

2.3 Synthesis of Potential SPECT or PET Imaging Agents 

 

The final class of compound this project aims to develop are compounds with multiple 

labelling sites, which could be used for either SPECT or PET imaging.  The first stage in 

the development of this series was the synthesis of non-labelled compounds for initial 

biological testing.  Compounds 200 and 201 were proposed, containing both the aryl iodide 

part of the potential SPECT imaging agents 134 and 135, and the methoxy group found in 

potential PET imaging agent 170 (Figure 2.5). 

 

 

 

Figure 2.5 Target compounds with multiple labelling sites 
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2.3.1 Multiple Labelling Sites Concept 

 

From one common precursor the order in which the final steps are performed can be 

altered to produce either a SPECT or PET imaging agent as shown in Scheme 2.27.  From 

compound 202 containing an aryl bromide and phenol, performing alkylation of the phenol 

followed by iodination using radiolabelled sodium iodide could form SPECT imaging 

agent 
123

I-200.  However, if iodination was performed first, then alkylation using 

radiolabelled iodomethane, PET imaging agent 
11

C-200 would be formed.   

 

 

 

Scheme 2.27 Concept of compounds with multiple labelling sites 
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2.3.2 Synthesis of Target Compounds 

 

Methoxy substituted aryl iodide 178 was employed as the starting point in the synthesis of 

compounds 200 and 201.  Aryl iodide 178 had originally been synthesised when 

attempting to form amine fragment 174, but the trifluoromethylation reaction on this 

substrate was unsuccessful.  From this point, the same series of reactions that had been 

used in the synthesis of potential SPECT imaging agents 134 and 135 were employed to 

form benzodiazepinones 200 and 201 (Scheme 2.28).  The yield of the formation of β-keto 

amide 209 was taken over two steps due to the instability of the amine intermediate 207.   

 

 

 

Scheme 2.28 Synthesis of target compounds 200 and 201 
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With a library of seven benzodiazepinones completed (Figure 2.6), attention was then 

turned to investigating the properties of these compounds. 

 

 

 
 

 

 

Figure 2.6 Library of seven benzodiazepinones 

 

2.4 Investigation of Physicochemical Properties 

 

It was important to investigate the physicochemical properties of the compound library as 

it is not just binding to the biological target that determines whether a compound has 

potential as a radiotracer.  When a compound enters the body it has to have the correct 

physicochemical properties in order to reach the biological target.  As the compounds have 

been proposed for use in brain imaging it is vital that the compounds are able to cross the 

blood brain barrier.  
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2.4.1 Blood Brain Barrier 

 

Evidence for the existence of the blood brain barrier (BBB) was first found in 1885 when 

Ehrlich observed that soluble dyes injected into the bloodstream of animals caused staining 

by the dye in all organs except the brain and spinal cord.  In 1913 Goodman then observed 

that when dye was injected into the spinal cord staining was found in the brain and spinal 

cord but not in other organs.  It is now known that this is because the central nervous 

system (CNS) is separated from the blood by a permeability barrier.  Blood capillaries in 

the brain are lined by endothelial cells which are connected by cell adhesion molecules that 

form tight junctions, rather than containing pores found in blood capillaries outside the 

CNS.  Although the BBB is formed by the endothelial cells, pericytes and astrocytes which 

surround the blood vessel also contribute to the barrier (Figure 2.7).
117

 

 

 

 

Figure 2.7 Structure of the BBB
117

 

(Reprinted from A. M. Palmer, Neurobiol. Dis., 2010, 37, 3−12. Copyright 2010, with 

permission from Elsevier) 

 

The BBB has many important functions such as ion regulation, separation of central and 

peripheral nervous systems (which use many of the same neurotransmitters), and the 

prevention of neurotoxins and macromolecules from entering the brain.
118

   

 

For a drug to be brain penetrant, it must cross the blood brain barrier.  There are various 

mechanisms by which a molecule can pass from the blood to the brain.  Small lipophilic 

molecules can cross the BBB by passive diffusion across the cell membrane, whereas 

hydrophilic molecules are more likely to cross the BBB by methods such as saturable 

transporters, endocytosis and transcytosis, or paracellular transport.
119
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2.4.2 Partition Coefficient 

 

The partition coefficient is defined as the ratio of concentrations of an unionised compound 

partitioned between two immiscible phases at equilibrium.  The logarithmic form of the 

octanol-water partition coefficient (expressed as Log P) is often used as an indicator of the 

likelihood of a compound to cross the cell membrane (Figure 2.8). 

 

 

 

Figure 2.8 Equation for the calculation of Log P 

 

In order for a compound to cross the BBB by diffusion, it must be sufficiently lipophilic to 

pass through the cell membrane.  However, if a compound is too lipophilic, the aqueous 

solubility can decrease to the point where problems arise from poor aqueous solubility, 

metabolic instability or high plasma protein binding.
120

  For CNS targets, it is generally 

observed that Log P should be below 4 and ideally between 1 and 3.5.
121

 

 

The traditional octanol-water method of determining Log P is time consuming and not 

suitable for obtaining data for large numbers of compounds.  To overcome this, many 

algorisms have been developed to provide Log P values in silico.  Log P can also be 

determined using reverse phase high performance liquid chromatography (HPLC) with a 

C18 column.
122,123

  Log P values for the library of benzodiazepinones were determined 

using four different in silico methods and by HPLC, which was performed by Adele Blair, 

a PhD student from the Sutherland group.   

 

It can be seen that compounds 169, 170 and 171 generally have a lower Log P than 

compounds 134, 135, 200 and 201 (Table 2.4).  However, depending on the method used 

there is a difference of 1.85 to 2.36 between the highest and lowest values for one 

compound.  Recent work by Tavares and co-workers has shown that there can be a large 

variation in Log P depending on the method used.
124

  Therefore, Log P alone should not be 

used as an indicator of whether a compound is likely to cross the blood brain barrier.  Log 
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P is a very simplistic way of modelling BBB penetration and there are other methods that 

can provide more information. 

 

Compound 

Log P 

(Chem 

Sketch) 

Log P 

(Marvin 

Sketch) 

Log P 

(Chem 

Draw) 

cLog P 

(Chem 

Draw) 

cLog P 

(HPLC) 

 

134 

3.88 5.12 4.64 5.60 5.73 

 

135 

3.88 5.12 4.64 5.60 5.77 

 

169 

2.68 3.44 2.96 3.92 4.60 

 

170 

2.71 3.08 2.40 3.92 4.67 

 

171 

3.23 3.29 2.70 4.40 5.06 

 

200 

3.64 4.87 4.51 5.09 5.67 

 

201 

3.64 4.87 4.51 5.09 5.72 

 

Table 2.4 Log P values obtained using HPLC and in silico methods 
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2.4.3 Membrane Partition Coefficient and Permeability 

 

For compounds expected to cross the BBB by passive diffusion through the cell membrane 

it is important to consider compound-membrane interactions.  For each compound-

membrane lipid mixture there is a characteristic equilibrium constant for compound 

partitioning into fluid membranes, defined as the membrane partition coefficient (Km).  

Values for this parameter can be obtained by HPLC using an immobilised artificial 

membrane (IAM) column.  An IAM column has phospholipid analogues immobilised on 

chromatographic material to mimic fluid cell membranes (Figure 2.9).  By observing the 

retention time of a compound on an IAM column, a value for Km can be calculated.
125,126

 

 

                               

 

Figure 2.9 Solute interacting with (a) membrane bilayers (b) IAM column surface 

 

When considering molecule transport, Km does not directly predict membrane transport.  

To permeate the cytosol a molecule must enter and exit the membrane, and for molecules 

travelling though the cell, a second membrane entry and exit must occur.  Therefore, when 

a molecule passes through a cell membrane, partitioning occurs four times.  To account for 

this dynamic process, permeability (Pm) must be considered.  Pm is directly proportional to 

Km but also accounts for molecular size and membrane thickness.  Pm can be defined by 

the equation provided in Figure 2.10 (a), where Dm is the membrane diffusion coefficient 

and L is the membrane thickness.  Dm is inversely proportional to molecular size (V).  

Assuming molecular size is proportional to molecular weight (MW) and the membrane 

thickness is constant, Pm can be calculated by the equation in Figure 2.10 (c).
126

 

 

                                         

 

Figure 2.10 Equations relating Km to Pm 
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2.4.4 Plasma Protein Binding 

 

Once a compound reaches the blood it can become bound to the proteins present in blood 

plasma.  As this binding is usually reversible, an equilibrium exists between the bound and 

unbound species.  Only the unbound fraction can undergo processes such as binding to the 

target receptor and metabolism.  Although there are many proteins in the blood that are 

capable of binding drugs, the most significant are human serum albumin (HSA, the most 

abundant protein in human blood plasma) and α1-acid glycoprotein (AGP).
127

 

 

A column with HSA immobilised on a chromatographic support is used to measure plasma 

protein binding by HPLC.  Compounds with high plasma protein binding will have a 

greater affinity for HSA and will therefore elute later than compounds with lower binding.  

Valko and co-workers have illustrated a good correlation between PPB measured in vivo 

and values obtained by HPLC.
128

 

 

2.4.5 HPLC results for Compound Library 

 

Tavares and co-workers have shown that relationships exist between properties determined 

by HPLC and in vivo data.
124

  This gave rise to a set of parameters that a compound should 

adhere to in order to be progressed as a potential radiotracer (Table 2.5). 

 

Parameter HPLC Value 

Permeability (Pm) < 0.5 

Membrane partition coefficient (Km) < 250 

Plasma Protein Binding (PPB) < 95% 

 

Table 2.5 Progression limits for compounds 

 

The library of benzodiazepinones were subjected to these HPLC techniques by Adele Blair 

(Table 2.6).  From this data it can be seen that the compounds split into two groups with 

compounds 134, 135, 200 and 201 being outwith every parameter.  It is clear that the 
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additional benzene results in compounds with high lipophilicity and is unfavourable for 

physicochemical properties.  Compound 171 is very close to the required value for PPB 

but Km and Pm, although much lower than that of the biaryl compounds, are too high.  

Methoxy compound 170 is the best candidate, with iodide 169 also suitable for 

progression. 

 

Structure 
Pm (IAM 

column) 

Km (IAM 

column) 

%PPB (HSA 

column) 

 

134 

> 2.27 > 1144.81 98.46 

 

135 

> 2.27 > 1144.81 98.67 

 

169 

0.51 218.40 94.92 

 

170 

0.44 176.15 92.41 

 

171 

0.77 343.73 95.12 

 

200 

> 2.15 > 1148.85 98.08 

 

201 

> 2.13 > 1138.17 98.32 

Key:  Within limits,  marginally above limits,  above limits 

Table 2.6 Physicochemical properties determined by HPLC 
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2.5 Biological Evaluation 

 

In order to be of use as a radiotracer, a compound must have high affinity with the receptor 

it is targeting.  Therefore, the affinity of the library of benzodiazepinones with group II 

metabotropic glutamate receptors had to be investigated. 

 

2.5.1 Non-Competitive Antagonism 

 

Previously described benzodiazepinones have been shown to function as non-competitive 

antagonists of mGluR2/3.
129,130

  Agonist binding activates a receptor, whereas antagonist 

binding inhibits the agonist mediated response.  Competitive antagonism occurs when the 

antagonist binds at the same site as an agonist (Figure 2.11).  When an antagonist binds to 

an allosteric site on the receptor it is defined as a non-competitive antagonist.  Binding to 

the allosteric site prevents receptor activation by either causing a conformational change to 

agonist site to reduce agonist binding, or by blocking the effect of agonist binding at some 

point in the signalling cascade. 

 

      

 

Figure 2.11 (a) Competitive binding, (b) non-competitive binding 

 

Functional assays which measure a biological response of binding to the allosteric site are 

used to determine the inhibitory potency of non-competitive antagonists. 

 

2.5.2 Principals of the [
35

S]GTPγS Assay 

 

The [
35

S]GTPγS assay is a functional assay commonly used to determine binding to G 

protein coupled receptors (GPCRs) in vitro.  The assay makes use of the fact that upon 

activation G proteins exchange bound guanosine diphosphate (GDP) for guanosine 

triphosphate (GTP) (Figure 2.12). 
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Figure 2.12 Structures of GPD, GTP and [
35

S]GTPγS 

 

The G protein exists as a Gαβγ heterotrimer with GDP bound to the Gα subunit.  Upon 

binding of an agonist to a GPCR, GDP is exchanged for GTP on the Gα subunit of the G-

protein, which becomes dissociated from the Gβγ subunits.  GTP is then hydrolysed by 

GTPase activity to GDP, and the Gα subunit recombines with the Gβγ subunits to 

complete the cycle (Figure 2.13). 

 

 

 

Figure 2.13 GDP/GTP exchange
131

 

(Reprinted from Life Sci., 2003, 74, 489−508. Copyright 2003, with permission from 

Elsevier) 

 

When this process occurs in the presence of sulphur-35 labelled GTP, known as 

[
35

S]GTPγS (Figure 2.12), the GDP is exchanged with [
35

S]GTPγS upon agonist activation.  

Unlike GTP, [
35

S]GTPγS is non-hydrolysable by GTPase activity.  Therefore rather than 

being hydrolysed back to GDP and reforming the heterotrimer, Gα bound [
35

S]GTPγS 

accumulates (Figure 2.14). 
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Figure 2.14 GDP/GTP exchange in the presence of [
35

S]GTPγS
131

 

(Reprinted from Life Sci., 2003, 74, 489−508. Copyright 2003, with permission from 

Elsevier) 

 

The assay measures the level of G-protein activation following binding of an agonist.    

The amount of sulphur-35 and hence the level of activation can be quantified by passing 

the assay mixture through a glass-fibre membrane filter and performing liquid scintillation 

analysis to count the level of radioactivity retained on the filter.  In the presence of a non-

competitive antagonist, agonist binding will be disrupted and so the level of activation 

lowered.  By performing measurements at a range of non-competitive antagonist 

concentrations, IC50 values can be determined. 

 

2.5.3 Control Experiments 

 

Before testing the library of benzodiazepinones, a number of control experiments had to be 

performed to confirm the assay was functioning correctly.  Firstly, to determine the 

occurrence of agonist stimulation and sulfur-35 accumulation on the protein, the basal and 

stimulated binding had to be determined.  Running the experiment without any agonist 

present defines the basal binding and with agonist, the stimulated binding.  To ensure that 

the increased binding reflects actions at mGluR2/3, an experiment using an agonist and 

competitive antagonist was proposed.  Finally, carrying out an experiment with a large 

excess of cold GTPγS was planned to define the non-specific binding of [
35

S]GTPγS.  The 

required results to proceed with the assay are detailed in Table 2.7. 
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Conditions Agonist Antagonist 
Cold 

GTPγS 

 

Expected 

Result 

1*    basal binding 

2*   
higher than basal 

binding 

3*   
close to basal 

binding 

4*   
lower than basal 

binding 

*All conditions contain protein, GDP, [
35

S]GTPγS and assay buffer. 

 = present in experiment,  = not present in experiment 

 

Table 2.7 Conditions for control experiments 

 

2.5.4 Initial Attempts Using Rat Brain Homogenate 

 

Control experiments were initially performed using rat brain cortex homogenate.  The 

Bradford protein assay was carried out to quantify the protein so that known amounts could 

be used in the assay.  As rat brain contains various glutamate receptors a specific 

mGluR2/3 agonist had to be used to ensure that any observed stimulation was from actions 

at mGluR2/3.  Specific agonist LY354740
33

 (which has been used to stimulate [
35

S]GTPγS 

binding autoradiographically
132

) and the competitive antagonist LY341495
133

 were used, 

both of which have low nanomolar affinity for mGluR2/3 (Figure 2.15).  

 

                  
 

Figure 2.15 Compounds used in control experiments 

 

The first conditions tested were based on work by Richards and co-workers who performed 

mGluR2/3 stimulation autoradiographically.
132

  [
35

S]GTPγS was present at a concentration 

of 0.1 nM and 1 μM LY354740 was used to stimulate.  A lower DPM (disintegrations per 

minute) value was observed for the experiment containing 10 μM cold GTPγS, but no 

significant stimulation was observed.  Initial efforts to increase stimulation focused on 
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altering the level of GDP present in the assay.  Changing from 100 μM to 2 mM and then 5 

mM GDP decreased the DPM values (Figure 2.16).  It was hoped that by decreasing the 

basal binding, stimulated binding would become observable.  The experiments were 

performed incubating at 37 °C for 30 minutes and 22 °C for 2 hours but no stimulation was 

observed in either case. 

 

                  

 

Figure 2.16 Control experiments with (a) 100 μM GPD, (b) 2 mM GDP, (c) 5 mM GDP 

 

Whilst this was being carried out a paper was published by Odagaki and co-workers in 

which they thoroughly investigated [
35

S]GTPγS assay conditions using rat cerebral cortex 

homogenate.
134

  They were able to achieve a 50% increase in specific binding when 

stimulating with L-glutamate.  Ionotropic glutamate agonists such as NMDA, AMPA and 

kainic acid showed no stimulatory effects.  Therefore, the observed stimulation was due to 

activation of G-proteins coupled with metabotropic glutamate receptors. 

 

In their conditions, reducing agent dithiothreitol (DTT) was used as an additive.  

[
35

S]GTPγS autoradiography performed by Happe and co-workers showed a reduction in 

basal and non-specific binding in the presence of DTT, thus improving ratio of stimulated 
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to basal binding.
135

  The control experiments were performed with the addition of 0.2 mM 

DTT, 20 μM GDP, 30 μg protein and varied concentrations of agonist LY354740, 

incubating at 22 °C for 2 hours (Figure 2.17).  At both 1 μM and 3 μM agonist, a small 

increase in binding over basal was observed. 

 

                  

 

Figure 2.17 Control experiments with (a) 1μM agonist, (b) 3 μM agonist. 

 

The best conditions from the Odagaki paper were then performed using LY354740 instead 

of L-glutamate.  It was decided not to move to L-glutamate as it would introduce 

stimulation of other metabotropic glutamate receptors.  Incubation conditions of 30 °C for 

1 hour, and a [
35

S]GTPγS concentration of 0.2 nM were used.  Similar results to those 

produced previously were obtained (Figure 2.18).  Further variations to the concentration 

of [
35

S]GTPγS and amount of protein were also investigated but no stimulation was 

observed. 

 

               

 

Figure 2.18 Odagaki conditions with (a) 1 μM and (b) 3 μM. 
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Saponin is a permeabilizing agent and has been shown in [
35

S]GTPγS studies with other 

GPCRs to facilitate the interaction of guanine nucleotides with GPCRs.
136

  To investigate 

whether saponin could offer any improvement it was added to the assay mixture at a 

concentration of 100 μg/mL.  However, this again offered no increase over basal binding 

(Figure 2.19).   

                        

 

Figure 2.19 Controls with 100 μg/mL saponin  

 

By this point some small stimulation had been observed but could not be consistently 

repeated.  The work by Odagaki and co-workers was the only example in the literature 

performing the [
35

S]GTPγS assay using metabotrobic glutamate receptor stimulation with 

rat brain homogenate.  As the best conditions from the paper and close alterations did not 

provide a significant increase over basal binding, work using homogenates was terminated 

at this stage. 

 

The lack of stimulation could be attributed to many factors.  It may be the case that the 

increased binding due to agonist binding to mGluR2/3 did take place but was not high 

enough to be detected above the noise of basal and non-specific binding.  Also the 

presence of other biological material in the homogenates could have caused an interaction 

that prevented stimulation from occurring. 

 

2.5.5 Using Membrane Expressing Human mGluR2 

 

Failure of the control experiments using rat brain homogenate led to the decision to use 

membranes from cells expressing human recombinant mGluR2, which were obtained from 

Millipore (ChemiSCREEN™ mGLU2 metabotropic glutamate receptor membrane 
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preparation).
137

  As the membranes were obtained from cells expressing mGluR2 a specific 

agonist was not needed and L-glutamate was used.  The control experiments were carried 

out and provided very positive results.  All of the expected effects described in Table 2.7 

were observed (Figure 2.20).  Stimulating with 100 μM and 10 μM L-glutamate gave a 

117% and 95% increase over basal binding receptively.  Reducing the amount of glutamate 

by a factor of ten gave only a small reduction in the level of stimulation, therefore, a 

glutamate concentration of 10 μM was used when performing the assay to determine IC50 

values.  The addition of 10 μM LY341495 reduced stimulated binding back down to basal 

level, and 10 μM cold GTPγS gave a very low level of non-specific binding. 

 

                     

 

Figure 2.20 Graphs of control experiments; (a) 100 μM glutamate, (b) 10 μM glutamate. 

 

Work then moved to testing the affinity of non-competitive antagonists.  A compound of 

known affinity was first tested to ensure that the expected result could be obtained.  

Commercially available Ro 64-5229 (Figure 2.21) was chosen for this purpose, which has 

a published IC50 of 0.11 μM in the [
35

S]GTPγS assay.
138

  This previously published IC50 

value for Ro 64-5229 was obtained using rat mGluR2 transfected cell membrane rather 

than human mGluR2.  Also the agonist used was 1S,3R-ACPD (Figure 2.21) at a 

concentration of 10 μM rather than L-glutamate.  These differences should not lead to a 

large variation in binding affinity as testing in rat and human mGluR2 has previously been 

shown to give very similar IC50 values.
139

  Using L-glutamate instead of 1S,3R-ACPD 

should also not be significant as they have very similar IC50 values for binding to mGluR2 

of 1 μM and 1.3 μM respectively.
140
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Figure 2.21 Structure of test compound 

 

The assay was performed using Ro 64-5229 in three separate experiments performed in 

triplicate.  Data obtained was plotted to give a sigmoidal curve, from which an IC50 value 

of 0.53 ± 0.03 μM (n = 3) was obtained (Figure 2.22).  This is of the same order of 

magnitude as the previous result which was determined using slightly different 

experimental conditions.   
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Figure 2.22 Graph of Ro 64-5229 binding 

 

With this excellent result, the binding affinity of the library of benzodiazepinones could be 

tested.  Due to the high cost of performing the assay, not all of the compounds were tested 

three times.  Instead, all compounds that performed well in the HPLC screening were 

tested three times, and all data possible with the remaining resources was obtained for the 

other compounds.   

 

The compounds were all found to have similar binding to mGluR2, providing IC50 values 

between 89 and 133 nM (Table 2.8).  It is difficult to compare binding affinity of these 

compounds to previously published benzodiazepinones by Woltering and co-workers, due 

to differences in the binding assays used.
61-64

  What can be observed is that the 
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benzodiazepinones have greater affinity for mGluR2 than Ro 64-5229 and comparable 

affinity to benzodiazepinones published by Hemstapat and co-workers, which were 

determined using similar conditions.
130

  The sigmodial curves produced by binding of the 

benzodiazepinones all have a hill slope of greater than 1.  This is precedented as Cartmell 

and co-workers tested a range of compounds that bind to mGluR2 and found great 

variation in the hill slopes of from 0.6 to 2.
140

 

 

Compounds 169, 170 and 201 produced the most potent inhibition of agonist stimulated 

[
35

S]GTPγS binding, however, compound 201 gave a large error due to the fact that it was 

only tested twice.  Fortunately, compounds 169 and 170 also produced the best HPLC 

results and consequently were selected for further research.  
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Compound IC50 Hill Slope 

 

Ro 64-5229 

533 ± 27 nM (n=3) 1.00 

 

134 

132 ± 7 nM (n=3) 1.65 ± 0.13 

 

135 

133 ± 24 nM (n=2) 1.75 ± 0.38 

 

169 

89 ± 5 nM (n=3) 1.80 ± 0.14 

 

170 

91 ± 30 nM (n=3) 1.49 ± 0.36 

 

171 

100 ± 14 nM (n=3) 2.05 ± 0.15 

 

200 

not tested not tested 

 

201 

89 ± 46 (n=2) 2.52 ± 1.10 

 

Table 2.8 Binding affinity of benzodiazepinones 
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2.6 Synthesis of a Labelling Precursor 

 

After examining the physicochemical properties and biological affinity results, methoxy 

substituted compound 170 emerged as a lead compound for further work, such as 

radiolabelling.  In the synthesis of potential PET imaging agent 170, an aromatic 

nucleophilic substitution was used to attach the methoxy group early in the synthetic route.  

To access a radiolabelled analogue, an alternate strategy was required in which the alkyl 

group could be added in the final step.  If phenol 214 (Figure 2.23) could be accessed, a 

radiolabelled compound could be formed by alkylation using carbon-11 labelled 

iodomethane.  Further non-labelled analogues in this series could also be quickly accessed 

by alkylation of phenol 214.   

 

 

 

Figure 2.23 Structure of radiolabelling precursor 214 

 

2.6.1 Attempted Synthesis by Demethylation  

 

Initial attempts to synthesise phenol 214 by Lewis acid mediated demethylation of 

methoxy substituted compound 170 with boron tribromide proved to be unsuccessful with 

only decomposition of the starting material being observed at both room temperature and 

under reflux (Scheme 2.29). 

 

 

 

Scheme 2.29 Attempted demethylation of compound 170 
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2.6.2 Attempted Synthesis Using a Methoxymethyl Ether Protecting 

Group  

 

A new method for the synthesis of phenol 214 was then proposed in which the 

benzodiazepinone would be formed from β-keto amide 215 containing a methoxymethyl 

(MOM) ether protecting group on the phenol, which would be removed under the acidic 

cyclisation conditions.  To achieve this, amine fragment 216 containing a MOM-protected 

phenol had to be synthesised (Scheme 2.30).  

 

 

 

Scheme 2.30 Retrosynthetic analysis of phenol 214 

 

Preliminary efforts to synthesise amine fragment 216 focused on first producing phenol 

217 and then protecting with a MOM group.  Formation of phenol 217 via a nucleophilic 

aromatic substitution of chlorobenzene 190 using sodium hydroxide was attempted 

following the procedure of Jacobs, which had been successful on a similar compound.
141

  

Unfortunately only starting material was observed under these conditions (Scheme 2.31).   

 

 

 

Scheme 2.31 Attempted nucleophilic aromatic substitution 
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As the phenol could not be prepared directly from chlorobenzene 190, demethylation of 

methoxybenzene 176 was attempted.  Reactions using lithium chloride or boron tribromide 

were carried out but neither gave the desired phenol 217.  Instead, only removal of the Boc 

protecting group occurred to give aniline 195 (Scheme 2.32). 

 

 

 

Scheme 2.32 Attempted demethylation of methoxybenzene 176 

 

Attention was then turned to demethylation reactions using aniline 195.  Various 

conditions were investigated as outlined in Scheme 2.33 and Table 2.9.  Lewis acid 

mediated methods using boron tribromide and aluminium trichloride produced either 

starting material or decomposition (entries 1 and 2).  Lithium chloride gave some success 

with desired phenol 217 being isolated in a yield of 26% (entries 3 and 4).  The best results 

were obtained using pyridine hydrochloride (entries 5 to 8).
142

  Optimisation was required 

as no reaction occurred at 140 °C, but using the high temperature of 210 °C resulted in 

decomposition.  A best yield of 61% was obtained using a lower reaction temperature of 

150 °C.  Increasing the reaction time at this temperature resulted in a poorer yield as 

product 217 began to decompose before starting material 195 was completely consumed.     
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Scheme 2.33 Demethylation of methoxybenzene 195  

 

Entry Reagent Conditions Outcome 

1 BBr3 DCM, rt or Δ S.M. 

2 AlCl3 DCM, rt Decomposition 

3 LiCl DMF, Δ, 18 h 
Product observed but 

not isolated 

4 LiCl DMSO, 150 °C, 18 h 26% 

5 Pyridine.HCl 140 °C, 3 h S.M. 

6 Pyridine.HCl 210°C, 3 h Decomposition 

7 Pyridine.HCl 150 °C, 12 h 61% 

8 Pyridine.HCl 150 °C, 24 h 52% 

 

Table 2.9 Optimisation of demethylation of methoxybenzene 195 

 

With phenol 217 in hand, the next step was to protect the phenol and aniline groups.  

Treating compound 217 with either bromomethyl methyl ether or di-tert-butyl dicarbonate 

resulted in protection of the phenol functional group in modest yields of 58% and 67%, 

respectively (Scheme 2.34).  

 

 
 

Scheme 2.34 Protection of phenol 217 
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Due to the fact that the synthetic route was producing moderate yields, it was felt that the 

desired compound could be reached more efficiently using an alternate synthetic route.  As 

such, the sequence was terminated at this stage. 

 

2.6.3 Synthesis Using a Benzyl Protecting Group 

 

A new synthetic route was devised in which a benzyl protected phenol was introduced by 

nucleophilc aromatic substitution using benzyl alcohol, rather than forming a phenol then 

protecting it as had been carried out previously.  Various conditions were trialled (Scheme 

2.35 and Table 2.10) with the most successful being those of Boltze and co-workers, in 

which the reaction was performed neat in benzyl alcohol with phase transfer catalyst 

tetrabutylammonium bromide present to encourage solvation of the hydroxide.
143

  

 

 

 

Scheme 2.35 Synthesis of benzyl ether 220 

 

Entry Reagent(s) Solvent Temperature Outcome 

1 BnOH, NaH DMF 50 °C 
inseparable 

mixture 

2 BnOH, KOH DMSO 60 °C starting material 

3 
BnOH, NBu4Br, 

KOH 
- 60 °C 60% 

 

Table 2.10 SnAr reaction with benzyl alcohol 

 

Protection of the amine moiety of compound 220 was achieved by bis-Boc protection 

followed by mono-deprotection to give protected amine 222.  Hydrogenation of compound 

222 achieved both nitro reduction and benzyl ether cleavage to give phenol 223.  β-keto 

amide formation was attempted on phenol 223 but a mixture of products were observed 

due to reaction at the phenol (Scheme 2.36).  It became clear that the phenol would need to 

remain protected during this step.      
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Scheme 2.36 Attempted synthesis of β-keto amide 224  

 

Tin(II) chloride was employed to selectively reduce the nitro group of compound 222 in 

the presence of the benzyl ether.  This reaction gave amine 225 in an excellent yield of 

98%.  Treatment with β-keto ester 145 produced β-keto amide 226, and intramolecular 

imine formation then furnished benzodiazepinone 227 (Scheme 2.37). 

 

 

 

Scheme 2.37 Synthesis of benzodiazepinone 227 

 

Deprotection of the phenol was then required to complete the synthetic route.  Ether 

cleavage by hydrogenation was trialled as work by Janciene and co-workers revealed the 

benzodiazepinone core to be stable to palladium-catalysed hydrogenation.
144

  However, 

this reaction produced a mixture of compounds from which the desired phenol 214 could 

not be isolated (Scheme 2.38).   
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Scheme 2.38 Attempted debenzylation of benzodiazepinone 227 

 

Lewis acid mediated debenzylation using boron tribromide was then performed which 

afforded phenol 214 in a high 81% yield (Scheme 2.39).  It is worth noting that this 

reaction follows the commonly observed order of reactivity of Lewis acid mediated ether 

cleavage, with successful debenzylation of benzyl ether 227 under these conditions, 

whereas attempted demethylation of the analogous methyl ether 170 was unsuccessful.
145

 

 

 

 

Scheme 2.39 Debenzylation of benzodiazepinone 227 

 

2.7 Future Work 

 

With phenol 214 in hand, the next stage of work on this project will be to optimise the 

alkylation of this compound.  Once this compound has been successfully alkylated, a 

carbon-11 labelled version could be produced for animal PET imaging, or a tritiated 

(hydrogen-3 labelled) version for autoradiography studies (Scheme 2.40). 
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Scheme 2.40 Alkylation of phenol 214 

 

Potential SPECT imaging agent 169 was also selected for labelling studies.  A suitable 

labelling precursor 228 could be synthesised from aryl iodide 169 by treatment with 

hexamethyditin and palladium(0).  Radiolabelling could then be performed with iodine-

123 for animal SPECT studies or iodine-125 for autoradiography to further investigate the 

suitability of benzodiazepinone 169 as a SPECT imaging agent (Scheme 2.41).  

 

 

 

Scheme 2.41 Stannylation of iodide 169 followed by iododestannylatiom 
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The only series that did not provide a compound suitable for progression were the 

compounds with multiple labelling sites that could be used for SPECT or PET imaging.  In 

this series the two compounds (benzodiazepinones 200 and 201) had poor physicochemical 

properties.  To overcome this, compound 231 is proposed which removes one of the 

benzene rings present in compounds 200 and 201, which caused the lipophilicity to be too 

high.  Benzodiazepinone 231 could be easily synthesised in three steps from previously 

used nitrobenzene 178 (Scheme 2.42). 

 

 

 

Scheme 2.42 Proposed synthesis of benzodiazepinone 231 

 

2.8 Conclusions 

 

A library of seven benzodiazepinones were synthesised following the general strategy of 

forming separate amine and β-keto ester fragments, coupling together and cyclising to 

form the benzodiazepinone core.  This synthetic route allowed access to a variety of 

analogues around the benzodiazepinone core.  A particular success of this chemistry was 

the synthesis of the highly substituted amine fragments which were synthesised in good to 

very high yields from inexpensive starting materials. 

 

Investigating the physicochemical properties of these compounds revealed the addition of a 

benzene ring at the 8-position of the benzodiazepinone caused compounds 134, 135, 200 

and 201 to become too highly lipophilic.  Compounds 169 and 170 were found to have the 

necessary partition coefficient, permeability and plasma protein binding to be considered 
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for further research.  Using the [
35

S]GTPγS binding assay showed all the compounds to 

have similar mGluR2 potency, comparable to existing benzodiazepinones.  Therefore, the 

binding was considered to be sufficient to progress the compounds to labelling studies. 

 

Iodide 169 and methoxy substituted compound 170 were selected for radiolabelling and a 

synthetic route to labelling precursor 214 was successfully developed.  Future work on this 

project will focus on the synthesis of labelling precursor 228, and the radiolabelling 

experiments that will allow further biological investigation to take place both in vitro and 

in vivo.  

 

Therefore this project achieved its aim to identify compounds with good binding to 

mGluR2 and favourable physicochemical properties, which with further research will have 

the potential to be used as SPECT or PET imaging agents.  
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3 Novel Heterocycle Containing α-Amino Acids 

 

3.1 Introduction 

 

The importance of α-amino acids in chemistry, biology and medicine is well established.  

Proteinogenic amino acids provide the building blocks for proteins and enzymes, and are 

involved in enzyme catalysed reactions.  Amino acids are important in signal transduction 

with compounds such as L-glutamate, L-aspartate and glycine functioning as 

neurotransmitters,
146

 whilst other proteinogenic amino acids act as the precursors in the 

biosynthesis of neurotransmitters.
147,148

  In organic chemistry, proteinogenic amino acids 

are regularly employed as starting materials in the synthesis of natural products and 

biologically active compounds, using a chiral pool approach.
149-151

 

  

Non-proteinogenic amino acids include those that are produced naturally but are not found 

in proteins, and amino acids which do not occur naturally.  These compounds are also of 

great interest due to their medicinal applications
152,153

 and use as probes of protein 

structure and function.
154

 

 

3.1.1 Heterocycle Containing α-Amino Acids 

 

An interesting subset of α-amino acids are those which contain heterocyclic rings.  Among 

the proteinogenic α-amino acids, L-tryptophan, L-histidine and L-proline fall into this 

category (Figure 3.1).   

 

                               

 

Figure 3.1 Naturally occurring heterocycle containing amino acids 
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L-Tryptophan contains an indole side chain and is of particular biological significance as it 

is the biochemical precursor of the neurotransmitter serotonin,
148

 the hormone melatonin
155

 

and the vitamin niacin (Figure 3.2).
156

   

 

 

 

Figure 3.2 Structures of serotonin, melatonin and niacin 

 

L-Histidine is found at many enzyme active sites as the imidazole ring present in L-

histidine allows it to act as either a proton donor or acceptor and also permits for the 

coordination of metal ions.
157

  The pyrrolidine ring of L-proline makes it unique among the 

proteinogenic amino acids, being the only one containing a secondary amine.  L-Proline 

has important applications in organic chemistry in which it is commonly used as an 

organocatalyst in asymmetric synthesis.
158,159

 

 

Non-proteinogenic heterocycle containing α-amino acids are also of great interest.  Many 

of these compounds occur naturally.  One example of this is (−)-dysiherbaine, which was 

isolated from the marine sponge dysidea herbacea by Sakai and co-workers in 1997 

(Figure 3.3).
160

  This compound showed binding activity for non-NMDA ionotropic 

glutamate receptors.  The biological activity coupled with the synthetically challenging 

structure of contiguous stereogenic centers made this compound an ideal total synthesis 

target.  Snider and co-workers published the first total synthesis of this compound in 

2000
161

 and there have been many more total syntheses since.
162

  

 

 

 

Figure 3.3 Structure of (–)-disiherbaine 
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A number of unnatural heterocycle containing α-amino acids also show activity at 

ionotropic glutamate receptors.  The AMPA receptor is named due to the fact that it can be 

stimulated by the α-amino acid (S)-AMPA (Figure 3.4).
17

  Heterocycle containing α-amino 

acid (S)-5-fluorowillardiine is also an agonist of this receptor (Figure 3.4).
163

 

 

                                              

 

Figure 3.4 AMPA receptor agonists 

 

3.1.2 Fluorescent Heterocycle Containing α-Amino Acids 

 

Many heterocycle-containing α-amino acids have fluorescent properties.  Fluorescence is a 

process which involves the emission of light from a compound that has absorbed light of a 

different, usually shorter, wavelength.  Upon excitation, an electron is promoted to an 

excited state (S1 or S2).  A singlet to singlet transition then occurs (S1 to S0) with the 

release of energy as a photon to return the electron to its ground state (Figure 3.5).  As this 

is an allowed transition it occurs on a fast nanosecond scale.
164

 

 

 

 

Figure 3.5 Molecular relaxation pathways
164

 

(Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, 2, 910−919, 

copyright 2005) 
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Structures with a high degree of aromaticity and conjugation are more likely to be 

fluorescent as the large π-system results in a small difference in energy between the ground 

and excited states, which allows low energy photons to promote electrons into excited 

states. 

 

A number of naturally occurring amino acids such as phenylalanine, tyrosine and 

tryptophan are fluorescent and emit at 282 nM, 303 nM and 348 nM, respectively.
165

  

Amino acids containing a fluorescent side chain can be used in biology to label a protein of 

interest.  Fluorescence microscopy can then be employed to monitor the location of the 

protein in cells.  Brun and co-workers synthesised coumarin containing α-amino acid 232 

which was found to be fluorescence with emission at 464 nM (Figure 3.6).
166

  As this 

wavelength is significantly higher than the emission of the naturally occurring fluorescent 

amino acids, compound 232 could be used as a fluorescent label for peptides.  This was 

demonstrated by synthesising an amino acid 232 labelled version of the peptide penetratin 

and imaging its internalisation into HeLa cells. 

 

 

 

Figure 3.6 Structure of coumarin containing amino acid 232 

 

3.1.3 Formation of Heterocycles from Enones 

 

Many heterocycles can be formed by exploiting the reactivity of the enone moiety to form 

a variety of nitrogen, oxygen and sulfur containing five, six or seven membered 

heterocycles. 

 

Five membered heterocycles such as pyrazole can be formed from an enone starting 

material.  The synthesis of pyrazole 235 was carried out by Duggineni and co-workers as 

part of the synthesis of a substrate for a Pictet-Spengler reaction.
167

  Treatment of enone 
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233 with phenylhydrazine produced pyrazoline 234 which subsequently underwent 

oxidation to give the corresponding pyrazole 233, both in excellent yields (Scheme 3.1). 

 

 

 

Scheme 3.1 Formation of pyrazole 235 

 

Substituted pyrimidines are an example of a six membered ring that can be formed from an 

enone starting material.  In the synthesis of pyrimidine based ligands by Jones and co-

workers, enone 236 was treated with range of amidine hydrochlorides to form a library of 

2-substituted pyrimidines (237−240) in moderate to high yield (Scheme 3.2).
168

   

 

 

Scheme 3.2 Formation of pyrimidines 237−240 

 

Malononitrile is an ideal Michael donor for reaction with an enone due to the presence of 

the electron withdrawing cyano groups.  Michael addition of malononitrile to enone 241, 

followed by cyclisation and air mediated oxidative aromatisation produced 2-amino-3-

cyanopyran 242 (Scheme 3.3).  However, in the presence of ammonium acetate, imine 

formation occurs prior to cyclisation and oxidation to form 2-amino-3-cyanopyridine 

243.
169
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Scheme 3.3 Synthesis of pyran 242 and pyridine 243 

 

Using an alkoxide base in the reaction instead of ammonium acetate provides an alkoxy-

substituent in place of the amino group.  Reaction of enone 244 with malononitrile and 

sodium methoxide produced 3-cyano-2-methoxypyridine 245 (Scheme 3.4).
170

 

 

 
 

Scheme 3.4 Formation of pyridine 245 

 

Jain and co-workers reported the synthesis of 3-cyano-2-pyridones from the reaction 

between an enone and cyanoacetamide under basic conditions in an oxygen atmosphere 

(Scheme 3.5).
171

  This reaction is believed to occur by Michael addition of cyanoacetamide 

to enone 246 followed by imine formation and oxygen mediated oxidation to form cyano-

substituted pyridone 247. 

 

 
 

Scheme 3.5 Formation of 3-cyano-2-pyridone 247 
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Enones can also function as the diene component in hetero Diels-Alder reactions.  

Ciufolini and co-workers used a ytterbium(III)-catalysed Diels-Alder reaction between 

enone 248 and ethyl vinyl ether to form dihydropyran 249 as part of the synthesis of a 

model substrate in their total synthesis of (+)-camptothecin.
172

  Treatment with 

hydroxylamine then transformed the dihydropyran to pyridine 250 (Scheme 3.6). 

 

 

Scheme 3.6 Synthesis of pyridine 250 

 

Finally, enones can also be used to form seven membered heterocycles.  An erbium(III)-

catalysed reaction with either 1,2-diaminobenzene or 2-aminothiophenol has been shown 

to produce 1,5-benzodiazepines and 1,5-benzothiazepines, respectively (Scheme 3.7).
173

  

The analogous 1,5-benzoxazepine can be formed by reaction of an enone with 2-

aminophenol.
174

 

 

 
 

Scheme 3.7 Synthesis of 1,5-benzodiazepine 252 and 1,5-benzothiazepine 253 

 

3.1.4 Proposed Research 

 

Firstly, a library of enone containing α-amino acids were to be synthesised utilising the 

synthetic route previously developed in the Sutherland group by Lindsay Fowler, in which 

such enones were produced in four steps from L-aspartic acid 255 (Scheme 3.8).
175

  During 
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this previous work, a fluorescent enone containing α-amino acid was prepared (Figure 3.7), 

but was found to be unstable after several days at room temperature.   

 

 

 

Figure 3.7 Structure of fluorescent amino acid 254 

 

It was therefore proposed to explore the reactivity of the enone moiety to form 

heterocycles, using the reactions discussed in Section 3.1.3 (Scheme 3.8).  It was then 

planned to remove the protecting groups to produce a library of novel heterocycle 

containing α-amino acids, the fluorescent properties of which could then be investigated. 

   

 

Scheme 3.8 Proposed synthesis of novel heterocycle containing α-amino acids 

 

3.2 Synthesis of Novel Heterocycle-Containing Amino Acids 

 

3.2.1 Synthesis of Enones 

 

A library of enones was synthesised according to the route previously developed in the 

Sutherland group by Lindsay Fowler.
175

  Starting from L-aspartic acid 255, treatment with 

thionyl chloride in methanol allowed quantitative methyl ester formation.  Amine 259 was 

then protected with the bulky trityl group, which directed the subsequent reaction with the 

anion of dimethyl methylphosphonate onto the β-methyl ester, to form phosphonate ester 
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261.  A Horner-Wadsworth-Emmons reaction using benzaldehyde was then employed to 

form enone 262 in an excellent yield (Scheme 3.9). 

 

 

 

Scheme 3.9 Synthesis of enone 262 

 

Phosphonate ester 261 was then reacted with various aldehydes to form six further enones 

(263−268) in moderate to high yields (Figure 3.8).  Using Horner-Wadsworth-Emmons 

conditions led exclusively to formation of the E-enones, with no Z-enone being observed.  

This was confirmed by 
1
H NMR spectroscopy in which the coupling constant between the 

alkene protons varied from 15.7 to 16.2 Hz, all within the expected range for an E-alkene.   

 

 

 

 

Figure 3.8 Structures of enones 263−268 

 

Most of the aldehydes used were commercially available, however, biaryl aldehydes 270 

and 272 had to be synthesised.  Suzuki coupling reactions were employed to form these 
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compounds quantitatively from readily available starting materials 269 and 271 (Scheme 

3.10).  

 

 

 

Scheme 3.10 Suzuki reactions to form biaryl aldehydes 270 and 272 

 

3.2.2 Synthesis of Pyrazoles 

 

With a small library of enones in hand, attention was then turned to exploiting the 

reactivity of the enone moiety to form a heterocycle.  It was planned to treat phenyl 

substituted enone 262 with phenylhydrazine to form pyrazoline 273, which could then be 

oxidised to form pyrazole 274 (Scheme 3.11).   

 

 

Scheme 3.11 Planned synthesis of pyrazole 274 

 

However, when the reaction was carried out under both neutral
176

 and basic
177

 conditions, 

pyrazoline 273 was not observed.  Analysis by 
1
H NMR spectroscopy revealed that 

although the starting material had been consumed, the alkene protons were still intact and a 

new peak was present at 9.26 ppm.  This is consistent with the formation of hydrazone 275 

by imine condensation with the new signal being the hydrazone NH moiety (Scheme 3.12).  

Although it was encouraging that the first part of the reaction had taken place, the Michael 
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addition required to generate pyrazoline 273 had not occurred.  A potential explaination for 

the lack of Michael addition is that the hydazone may have been formed as the E-isomer to 

avoid steric clash with the alkene substituents, which cannot rotate to avoid this, unlike the 

group on the other side of the hydrazone.  With this geometry the Michael addition to form 

a pyrazoline would not be able to occur. 

 

 

 

Scheme 3.12 Formation of hydrazone 275 

 

Reviewing the literature revealed that this reaction had often been performed under acidic 

conditions.
178,179

  In order to conduct the reaction using acid mediated conditions, it was 

necessary to replace the acid labile trityl group with a protecting group that would be stable 

to acid.  A carboxybenzyl (Cbz) group was chosen for this purpose.  Treatment of the trityl 

protected enone 262 with aqueous hydrochloric acid in methanol formed the amine 276 as 

a hydrochloride salt.  The crude product of this reaction was then treated with benzyl 

chloroformate to form Cbz protected enone 277 (Scheme 3.13).   

 

 

Scheme 3.13 Synthesis of Cbz protected 277 

 

This sequence was successful for all the enones with aromatic substituents (278−282), 

although the furan analogue 282 was obtained in a low yield of 31% (Figure 3.9).  Methyl 

substituted enone 283 could not be isolated using this method.  It was observed that the 

crude product of the trityl deprotection reaction on these two substrates contained many 

more impurities than the other compounds.  The removal of excess aqueous hydrochloric 

acid under vacuum during work-up required temperatures greater than 50 °C.  It was 

proposed that decomposition of the furan and methyl substrates could occur under these 
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conditions due to the reduced stability of these enones compared to the phenyl substituted 

compounds. 

 

 

Figure 3.9 Structure of Cbz protected compounds 278−283 

                                                                                  

To Cbz protect methyl substituted enone 283, an alternative trityl deprotection was carried 

out by treatment of enone 268 with two equivalents of trifluoroacetic acid in 

dichloromethane.  This milder procedure provided a much cleaner amine and hence much 

cleaner Cbz protected product, which was able to be isolated in a high yield of 82% 

(Scheme 3.14).   

 

 
 

Scheme 3.14 Synthesis of Cbz protected 283 

 

The method was simpler to perform practically and so was used when bringing through 

additional material for some of the aromatic analogues.  For the phenyl, nitrophenyl and 

methoxyphenyl compounds (277−279) a similar or improved yield was obtained (Figure 

3.10).        

 

 
 

Figure 3.10 Cbz protected compounds synthesised under milder conditions 



 104 
 

Phenyl substituted enone 277 was then subjected to the pyrazoline forming reaction under 

acid mediated conditions (Scheme 3.15).  Pyrazoline 285 was obtained as a mixture of 

diastereomers.  As one of the stereocenters would be lost during the subsequent oxidation, 

the ratios and assignment of the diastereomers was not investigated.  The crude product 

was then oxidised to the corresponding pyrazole 286 using DDQ in 76% yield over the two 

steps. 

 

 

 

Scheme 3.15 Synthesis of pyrazole 286 

 

This method was used to produce pyrazoles 287−290 in high yields of from 73% to 84% 

(Figure 3.11).  Fluorophenyl analogue 291 could not be formed under these conditions as 

the reaction produced a complex mixture of compounds.  A possible explanation for this is 

decomposition of the furan under acidic conditions.  Formation of methyl analogue 292 

was observed but was unable to be isolated from a complex mixture, most likely due to the 

reduced stability of the methyl substituted enone compared to the aromatic analogues. 

  

 

Figure 3.11 Structures of pyrazoles 287−292 

 

In an attempt to investigate alternate substitution around the pyrazole, the pyrazoline 

forming reaction was attempted using methylhydrazine rather than phenylhydrazine.  

Various analogues were attempted, however, when using methylhydrazine clean products 



 105 
 

could not be isolated.  When methoxy substituted compound 279 was used, a mixture of 

regioisomers 295 and 296 appeared to be formed.  The ratio of the major to minor 

regioisomer was 3:1 but the compounds could not be isolated sufficiently cleanly to 

perform full analysis to assign which was the major regioisomer (Scheme 3.16).  It was 

thought that the formation of regioisomers could be the reason that reactions with 

methylhydrazine were failing to produce clean products.    

 

 

 

Scheme 3.16 Attempted synthesis of a methyl substituted pyrazole 

 

Unlike phenylhydrazine, the nitrogen atoms in methylhydrazine are not sufficiently 

different in terms of their nucleophilicity to lead to one product.  In an attempt to 

differentiate the reactivity of the nitrogen atoms, methylhydrazine 297 was Boc protected 

following a literature procedure to form compound 298 (Scheme 3.17).
180

   

 

 

 

Scheme 3.17 Boc protection of methylhydrazine 
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It was hoped that the Boc protected methylhydrazine would undergo imine formation, 

followed by treatment with acid which would remove the Boc group and allow the Michael 

addition to occur (Scheme 3.18).  

  

 

 

Scheme 3.18 Proposed synthesis of methyl substituted pyrazoline 293 

 

There was some precedent in the literature for the use of Boc protected methylhydrazine in 

the synthesis of methyl substituted pyrazoles.
181

  Unfortunately, when this was attempted 

neither the intermediate hydrazone 299 or target pyrazoline 293 were observed (Scheme 

3.19).  As there was not sufficient time to investigate this approach any further work on the 

synthesis of methyl substituted compounds was terminated at this point. 

 

 

 

Scheme 3.19 Attempted synthesis of pyrolazine 293 

 

3.2.3 Deprotection to Parent α-Amino Acids 

 

To complete the synthetic route, deprotection to the parent amino acids was required.  

Ester hydrolysis, followed by removal of the Cbz group by hydrogenation was considered 
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to be the ideal sequence for deprotection as this would potentially allow for the free 

carboxylic acid to be coupled to a peptide before amine deprotection.  For the nitro 

containing compounds 287 and 290 removal of the Cbz group by hydrogenation was not 

suitable as this would result in reduction of the nitro group to the corresponding aniline.  

Treatment of these compounds with 6 M aqueous hydrochloric acid under reflux achieved 

both removal of the Cbz group and methyl ester hydrolysis to give parent amino acids 300 

and 301 in excellent yields of 97% and 98%, respectively (Scheme 3.20). 

 

 

Scheme 3.20 Deprotection to form amino acids 300 and 301 

 

For the compounds that do not contain a nitro group, a two-step deprotection strategy was 

employed.  Basic ester hydrolysis followed by palladium-catalysed hydrogenation was 

used to remove the protecting groups on phenyl substituted pyrazole 286 to give amino 

acid 302 in 88% yield (Scheme 3.21).   

 

 

 

Scheme 3.21 Deprotection to form amino acid 302 

 

The same sequence of reactions was attempted on methoxyphenyl and naphthalene 

substituted compounds 288 and 289 but the products of these reactions could not be 

isolated sufficiently cleanly to perform full analysis of the products.  Analysis of  the 
1
H 

NMR spectra obtained during these reactions showed the ester hydrolysis had proceeded 
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cleanly, but small impurities were present after hydrogenation to remove the Cbz group.  

To overcome this problem, acid mediated Cbz removal was instead used.  Under these 

conditions, methoxy and naphthalene substituted pyrazoles 303 and 304 were formed in 

high yields of 79% and 83%, respectively (Scheme 3.22). 

 

 

 

Scheme 3.22 Deprotection to form amino acids 303 and 304 

 

The specific rotation was measured for all compounds at each stage of this synthetic 

sequence, and all were found to be optically active.  In the timeframe of this project it was 

not possible to determine whether the chiral centre present in the starting material had been 

fully retained throughout the synthetic sequence or if some degree of racemisation had 

occurred.  Work on this project is continuing within the Sutherland group and this 

determination will be performed in the future using chiral HPLC.  

 

3.3 Fluorescence of Amino Acids 

 

Once the synthesis of the library of amino acids was completed, the physical properties of 

these compounds were investigated.  The absorption maxima for each compound were 

determined and these values were then used as the excitation wavelength for obtaining 

emission spectra.  Nitrophenyl substituted amino acid 300 and naphthalene substituted 

amino acid 304 were found to be fluorescent with emission at 415 nm and 356 nm, 

respectively (Figure 3.12).  
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Figure 3.12 Emission spectra of amino acids (all performed in MeOH) 

 

To be of use as a fluorescent label for peptides emission should occur at a higher 

wavelength than that of the fluorescent proteinogenic amino acids to ensure that their 

emission does not overlap.  The emission of naphthalene substituted amino acid 304 occurs 

at a very similar wavelength to that of tryptophan and so does not meet this criteria.  

However, the emission of nitrophenyl substituted amino acid 300 occurs at over 400 nm 

and therefore should be easily distinguishable from fluorescent proteinogenic amino acids, 

and so has the potential to be used a fluorescent label. 

 

3.4 Future Work 

 

Future work on this project will focus on using the nitrophenyl substituted analogue to 

form different heterocycles from enone intermediate 278.  Using the reactions discussed in 

Section 3.1.3, α-amino acids such as pyridine 308, 3-cyano-2-methoxypyridine 309 and 

pyrimidine 310 could potentially be synthesised. 
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Scheme 3.23 Structure of amino acids 308−310 that could potentially be synthesised 

 

Another avenue for future work on this project could focus on the incorporation of a 

known fluorophore via the enone substituent.  N,N-Dimethylaminonaphthyl substituted 

enone 254 (Figure 3.7), has previously been shown to be fluorescent with emission at 540 

nM.
175

  Heterocycle containing derivatives of this structure could also be produced to give 

compounds such as α-amino acids 311−314 (Figure 3.13).  If such amino acids were found 

to be highly fluorescent the use of these compounds as fluorescent labels for peptides could 

then be investigated. 
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Figure 3.13 Structures of amino acids 311−314 

 

3.5 Conclusions 

 

A library of five novel heterocycle containing α-amino acids was synthesised starting from 

inexpensive L-aspartic acid.  Enone substituted α-amino acids were prepared and reaction 

with phenylhydrazine followed by oxidation formed phenylpyrazole substituted 

compounds in high yield.  The parent α-amino acids were the accessed by removal of the 

protecting groups on the amine and carboxylic acid.  Investigation of their physical 

properties revealed amino acids 300 and 304 to be fluorescent, with nitrophenyl substituted 

compound emitting at 415 nm and hence having potential use as in fluorescence imaging.   

 

This project achieved its aim to synthesise novel heterocycle containing α-amino acids 

some of which are fluorescent.  Further research will hopefully allow further compounds to 

be produced to provide a library of novel fluorescent α-amino acids.  Such compounds 

could then be investigated as peptide labels for fluorescence imaging. 
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4 Experimental 

 

4.1 General Experimental 

 

Reagents and starting materials were obtained from commercial sources and used as 

received.  Dry solvents were purified using a PureSolv 500 MD solvent purification 

system.  Brine refers to a saturated aqueous solution of sodium chloride in deionised water.  

Flash column chromatography was carried out using Fisher matrix silica 60. Macherey-

Nagel aluminium-backed plates pre-coated with silica gel 60 (UV254) were used for thin 

layer chromatography and were visualised by staining with potassium permanganate.  
1
H 

NMR and 
13

C NMR spectra were recorded on a Bruker DPX 400 or 500 spectrometer.  
1
H 

shift values are reported in ppm relative to tetramethylsilane (δH 0.00), residual chloroform 

(δH 7.26), dimethylsulfoxide (δH 2.50), or methanol (δH 3.31) as standard.  
13

C chemical 

shift values are reported in ppm relative to tetramethylsilane (δC 0.00), CDCl3 (δC 77.16), 

(CD3)2SO (δC 39.52) or CD3OD (δC 49.00) as standard. Proton and carbon assignments are 

based on two-dimensional COSY and DEPT experiments, respectively. Infrared spectra 

were obtained neat using a SHIMADZU spectrometer.  Mass spectra were obtained using a 

JEOL JMS-700 or Bruker Microtof-q spectrometer.  Melting points were determined on a 

Gallenkamp melting point apparatus.  Optical rotations were determined as solutions 

irradiating with the sodium D line (λ = 589 nm) using an Autopol V polarimeter.  [α]D 

values are given in units 10
−1

 deg cm
2
 g

−1
. 

 

4.2 Experimental Procedures and Spectroscopic Data for 

Compounds 

 

4-Iodo-2-nitroaniline (150)
182

 

 

5

6

3
I

NH2

NO2

 

 

Iodine monochloride (1.0 M in dichloromethane) (19.0 mL, 19.0 mmol) was added to a 

solution of 2-nitroaniline (151) (2.50 g, 18.1 mmol) and sodium acetate (1.56 g, 19.0 
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mmol) in acetic acid (20 mL).  The reaction mixture was stirred at 90 C for 0.5 h before 

being allowed to cool to room temperature and poured on to ice water.  A precipitate 

formed that was collected by filtration to give 4-iodo-2-nitroaniline (150) as an orange 

solid (4.20 g, 88%).  Mp 117−119 C (lit.,
182

 118−119 C); δH (400 MHz, CDCl3) 6.11 

(1H, br s, NH2), 6.61 (1H, d, J 8.8 Hz, 6-H), 7.57 (1H, dd, J 8.8, 1.9 Hz, 5-H), 8.44 (1H, d, 

J 1.9 Hz, 3-H); δC (101 MHz, CDCl3) 75.9 (C), 120.6 (CH), 133.2 (C), 134.4 (CH), 143.8 

(CH), 144.0 (C); m/z (CI) 265 (MH
+
, 56%), 235 (24), 186 (10), 158 (24), 139 (32), 79 (98).  

 

1-(tert-Butoxycarbonylamino)-4-iodo-2-nitrobenzene (149)
183

 and  

1-[Bis(tert-butoxycarbonyl)amino]-4-iodo-2-nitrobenzene (154) 

 

5

6

3
I

NHBoc

NO2

                         
5

6

3
I

NBoc2

NO2

 

 

Method A: Lithium hexamethyldisilazide (1.0 M in tetrahydrofuran) (26.8 mL, 26.8 mmol) 

was added dropwise to a solution of 4-iodo-2-nitroaniline (150) (3.54 g, 13.4 mmol) in 

tetrahydrofuran (50 mL) at 0 °C.  The solution was then allowed to warm to room 

temperature and a solution of di-tert-butyl dicarbonate (3.51 g, 16.1 mmol) in 

tetrahydrofuran (20 mL) was added dropwise.  The reaction mixture was stirred at room 

temperature for 18 h then quenched with a saturated aqueous solution of ammonium 

chloride (150 mL), extracted with ethyl acetate (3 × 100 mL), dried (MgSO4) and 

concentrated in vacuo.  The resulting material was purified by flash column 

chromatography eluting with 10% ethyl acetate in petroleum ether (40−60) to give 1-

[bis(tert-butoxycarbonyl)amino]-4-iodo-2-nitrobenzene (154) as a white solid (0.93 g, 

15%), then 1-(tert-butoxycarbonylamino)-4-iodo-2-nitrobenzene (149) as a yellow solid 

(2.94 g, 60%).  Data for 1-[bis(tert-butoxycarbonyl)amino]-4-iodo-2-nitrobenzene (154); 

Mp 121−123 °C; νmax/cm
−1

 (neat) 2984 (CH), 1763 (CO), 1742 (CO), 1525, 1346, 1273, 

1150, 1109, 1001, 827; δH (400 MHz, CDCl3) 1.41 (18H, s, 6 × CH3), 7.06 (1H, d, J 8.3 

Hz, 6-H), 7.95 (1H, dd, J 8.3, 2.0 Hz, 5-H), 8.37 (1H, d, J 2.0 Hz, 3-H); δC (101 MHz, 

CDCl3) 27.9 (6 × CH3), 84.2 (C), 92.3 (C), 132.8 (CH), 133.2 (C), 133.8 (CH), 142.8 

(CH), 146.0 (C), 150.0 (C); m/z (EI) 464.0443 (M
+
. C16H21IN2O6 requires 464.0444), 364 

(30%), 308 (100), 264 (74), 216 (37).  Data for 1-(tert-butoxycarbonylamino)-4-iodo-2-

nitrobenzene (149); Mp 96−98 C (lit.,
183

 92−94 C); νmax/cm
−1

 (neat) 3364 (NH), 2970 
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(CH), 1728 (CO), 1566, 1497, 1335, 1242, 1142, 895; δH (400 MHz, CDCl3) 1.54 (9H, s, 3 

× CH3), 7.85 (1H, dd, J 9.0, 1.9 Hz, 5-H), 8.37 (1H, d, J 9.0 Hz, 6-H), 8.50 (1H, d, J 1.9 

Hz, 3-H), 9.61 (1H, br s, NH); δC (101 MHz, CDCl3) 28.3 (3 × CH3), 82.5 (C), 83.1 (C), 

122.5 (CH), 134.2 (CH), 135.9 (C), 136.4 (C), 144.3 (CH), 152.0 (C); m/z (EI) 363.9921 

(M
+
. C11H13IN2O4 requires 363.9920), 308 (16%), 264 (23), 216 (6), 84 (81), 57 (100).   

Method B: To a solution of 1-[bis(tert-butoxycarbonyl)amino]-4-iodo-2-nitrobenzene 

(154) (1.17 g, 2.52 mmol) in dichloromethane (30.0 mL) at 0 ºC was added trifluoroacetic 

acid (0.39 mL, 5.0 mmol).  The mixture then warmed to room temperature and was stirred 

for 3 h.  The reaction mixture was diluted with a saturated aqueous solution of sodium 

hydrogen carbonate (20 mL), extracted with dichloromethane (3 × 20 mL), dried (MgSO4) 

and concentrated in vacuo to give 1-(tert-butoxycarbonylamino)-4-iodo-2-nitrobenzene 

(149) as a yellow solid (0.900 g, 98%).  Spectroscopic data as reported above. 

   

4-(2’-Bromophenyl)-1-(tert-butoxycarbonylamino)-2-nitrobenzene (146) 

 

4'

3'

6'
5'

5

6

3

Br

NO2

NHBoc
 

 

To a solution of 1-(tert-butoxycarbonylamino)-2-nitro-4-iodobenzene (149) (1.50 g, 3.81 

mmol) in N,N-dimethylformamide and water (100 mL, 9:1) was added 2-

bromophenylboronic acid (0.820 g, 4.12 mmol), potassium carbonate (1.42 g, 10.3 mmol) 

and tetrakis(triphenylphosphine)palladium(0) (0.092 g, 0.08 mmol).  The reaction mixture 

was heated to 110 ºC and stirred for 1.5 h.  After cooling to room temperature the solution 

was concentrated in vacuo, redissolved in chloroform (100 mL) and filtered through 

Celite
®

 and concentrated in vacuo.  The resulting solid was dissolved in diethyl ether (100 

mL), washed with water (6 × 50 mL) and brine (2 × 50 mL), dried (MgSO4) and 

concentrated in vacuo.  The crude product was purified by flash column chromatography 

eluting with 10% ethyl acetate in petroleum ether (40–60) to give 4-(2’-bromophenyl)-1-

(tert-butoxycarbonylamino)-2-nitrobenzene (146) as a yellow oil (1.01 g, 62%).  vmax/cm
−1

 

(neat) 3370 (NH), 2980 (CH), 1734 (CO), 1517, 1470, 1338, 1238, 1139, 1022, 753; δH 

(500 MHz, CDCl3) 1.53 (9H, s, 3 × CH3), 7.25 (1H, ddd, J 8.0, 7.3, 1.8 Hz, 4’-H), 7.33 

(1H, dd, J 7.7, 1.8 Hz, 6’-H), 7.39–7.41 (1H, m, 5’-H), 7.67–7.72 (2H, m, 5-H and 3’-H), 

8.27 (1H, d, J 2.1 Hz, 3-H), 8.64 (1H, d, J 8.8 Hz, 6-H), 9.74 (1H, br s, NH); δC (126 MHz, 
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CDCl3) 28.4 (3 × CH3), 82.2 (C), 120.4 (CH), 122.7 (C), 126.6 (CH), 127.9 (CH), 129.7 

(CH), 131.2 (CH), 133.5 (CH), 134.9 (C), 135.5 (C), 135.6 (C), 137.0 (CH), 139.8 (C), 

152.4 (C); m/z (EI) 392.0385 (M
+

. C17H17
79

BrN2O4 requires 392.0372), 336 (49%), 292 

(95), 167 (58), 139 (37).  

 

4-(3’-Bromophenyl)-1-(tert-butoxycarbonylamino)-2-nitrobenzene (147) 

 

5
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3
NO2

6'
5'

4'

2'
Br
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The reaction was carried out according to the above procedure using 1-(tert-

butoxycarbonylamino)-4-iodo-2-nitrobenzene (149) (0.100 g, 0.27 mmol), 3-

bromophenylboronic acid (0.082 g, 0.41 mmol), potassium carbonate (0.094 g, 0.68 mmol) 

and tetrakis(triphenylphosphine)palladium(0) (0.006 g, 0.005 mmol) in N,N-

dimethylformamide and water (8 mL, 9:1) to give 4-(3’-bromophenyl)-1-(tert-

butoxycarbonylamino)-2-nitrobenzene (147) as a yellow solid (0.076 g, 72%).  Mp 

107−109 C; νmax/cm
−1

 3345 (NH), 2986, (CH), 1732 (CO), 1577 (C=C), 1522, 1340, 

1248, 1152, 892; δH (400 MHz, CDCl3) 1.56 (9H, s, 3 × CH3), 7.34 (1H, t, J 7.9 Hz, 5’-H), 

7.50−7.54 (2H, m, 4’-H and 6’-H), 7.73 (1H, t, J 1.8 Hz, 2’-H), 7.81 (1H, dd, J 8.9, 2.3 Hz, 

5-H), 8.39 (1H, d, J 2.3 Hz, 3-H), 8.66 (1H, d, J 8.9 Hz, 6-H), 9.69 (1H, br s, NH); δC (101 

MHz, CDCl3) 28.4 (3 × CH3), 82.3 (C), 121.4 (CH), 123.4 (C), 124.0 (CH), 125.5 (CH), 

129.9 (CH), 130.8 (CH), 131.2 (CH), 133.6 (C), 134.2 (CH), 135.6 (C), 136.2 (C), 140.4 

(C), 152.3 (C); m/z (EI) 392.0363 (M
+
. C17H17

79
BrN2O4 requires 392.0372), 336 (32%), 

292 (78), 246 (19), 167 (43), 57 (99).  
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4-(4’-Bromophenyl)-1-(tert-butoxycarbonylamino)-2-nitrobenzene (148) 
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The reaction was carried out according to the above procedure using 1-(tert-

butoxycarbonylamino)-2-nitro-4-iodobenzene (149) (3.00 g, 8.24 mmol), 4-

bromophenylboronic acid (1.74 g, 8.65 mmol), potassium carbonate (2.85 g, 20.6 mmol) 

and tetrakis(triphenylphosphine)palladium(0) (0.18 g, 0.16 mmol) in N,N-

dimethylformamide and water (125 mL, 9:1) to give 4-(4’-bromophenyl)-1-(tert-

butoxycarbonylamino)-2-nitrobenzene (148) as a yellow solid (2.51 g, 78%).  Mp 134−136 

C; νmax/cm
−1

 (neat) 3366 (NH), 2970 (CH), 1730 (CO), 1489, 1341, 1244, 1143, 812; δH 

(400 MHz, CDCl3) 1.56 (9H, s, 3 × CH3), 7.46 (2H, d, J 8.4 Hz, 2’-H and 6’-H), 7.60 (2H, 

d, J 8.4 Hz, 3’-H and 5’-H), 7.81 (1H, dd, J 8.9, 2.1 Hz, 5-H), 8.39 (1H, d, J 2.1 Hz, 3-H), 

8.65 (1H, d, J 8.9 Hz, 6-H), 9.69 (1H, br s, NH); δC (101 MHz, CDCl3) 28.2 (3 × CH3), 

82.1 (C), 121.3 (CH), 122.4 (C), 123.6 (CH), 128.2 (2 × CH), 132.2 (2 × CH), 133.8 (C), 

133.9 (CH), 135.2 (C), 136.1 (C), 137.0 (C), 152.1 (C); m/z (EI) 392.0367 (M
+
. 

C17H17
79

BrN2O4 requires 392.0372), 336 (40%), 292 (59), 246 (22), 167 (21), 139 (24), 57 

(100). 

    

2-Amino-4-(2’-bromophefnyl)-1-(tert-butoxycarbonylamino)benzene (142) 
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To a solution of 4-(2’-bromophenyl)-1-(tert-butoxycarbonylamino)-2-nitrobenzene (146) 

(0.680 g, 1.73 mmol) in ethyl acetate and pyridine (70 mL, 6:1) was added tin(II) chloride 

dihydrate (1.95 g, 8.65 mmol), and the mixture stirred at room temperature for 6 h.  The 

reaction mixture was then filtered through Celite
®
 and concentrated in vacuo.  The 

resulting solid was redissolved in ethyl acetate (100 mL), washed with water (4 × 50 mL) 

and brine (2 × 20 mL), dried (MgSO4) and concentrated in vacuo.  The resulting material 
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was purified by flash column chromatography eluting with 0–50% ethyl acetate in 

petroleum ether (40−60) to give 2-amino-4-(2’-bromophenyl)-1-(tert-butoxycarbonyl 

amino)benzene (142) as a white solid (0.380 g, 61%).  Mp 152–154 C; vmax/cm
−1

 (neat) 

3375 (NH), 2970 (CH), 1705 (CO), 1532, 1360, 1243, 1164, 1048, 886; δH (500 MHz, 

CDCl3) 1.53 (9H, s, 3 × CH3), 3.79 (2H, br s, NH2), 6.27 (1H, br s, NH), 6.82 (1H, d, J 1.8 

Hz, 3-H), 6.84 (1H, dd, J 8.0, 1.8 Hz, 5-H), 7.17 (1H, ddd, J 8.0, 7.1, 2.0 Hz, 4’-H), 7.29 

(1H, dd, J 7.6, 2.0 Hz, 6’-H), 7.30–7.34 (1H, m, 5’-H), 7.36 (1H, d, J 8.0 Hz, 6-H), 7.64 

(1H, dd, J 8.0, 1.0 Hz, 3’-H); δC (126 MHz, CDCl3) 28.5 (3 × CH3), 80.9 (C), 118.9 (CH), 

121.1 (CH), 122.7 (C), 124.1 (CH), 124.5 (C), 127.4 (CH), 128.7 (CH), 131.4 (CH), 133.2 

(CH), 139.0 (C), 139.3 (C), 142.4 (C), 152.9 (C); m/z (CI) 363.0708 (MH
+

. C17H20-

79
BrN2O2 requires 363.0708), 307 (53%), 285 (32), 263 (10), 229 (35), 172 (100). 

    

2-Amino-4-(3’-bromophenyl)-1-(tert-butoxycarbonylamino)benzene (143) 
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The reaction was carried out according to the above procedure using 4-(3’-bromophenyl)-

1-(tert-butoxycarbonylamino)-2-nitrobenzene (147) (0.266 g, 0.676 mmol) and tin(II) 

chloride dihydrate (0.767 g,  3.40 mmol) in ethyl acetate and pyridine (30 mL, 6:1) to give 

2-amino-4-(3’-bromophenyl)-1-(tert-butoxycarbonylamino)benzene (143) as a white solid 

(0.177 g, 72%).  Mp 146–149 C; vmax/cm
−1

 (neat) 3356 (NH), 2925 (CH), 1685 (CO), 

1503, 1247, 1158, 1058, 862; δH (400 MHz, CDCl3) 1.53 (9H, s, 3 × CH3), 3.87 (2H br s, 

NH2), 6.25 (1H, br s, NH), 6.96 (1H, d, J 1.8 Hz, 3-H), 6.99 (1H, dd, J 8.1, 1.8 Hz, 5-H), 

7.27 (1H, t, J 7.9 Hz, 5’-H), 7.37 (1H, d, J 8.1 Hz, 6-H), 7.42–7.47 (2H, m, 4’-H and 6’-H), 

7.67 (1H, t, J 1.7 Hz, 2’-H); δC (101 MHz, CDCl3) 28.5 (3 × CH3), 80.9 (C), 116.3 (CH), 

118.7 (CH), 122.9 (C), 124.9 (CH), 124.9 (C), 125.7 (CH), 130.1 (2 × CH), 130.3 (CH), 

137.6 (C), 140.1 (C), 143.1 (C), 153.9 (C); m/z (EI) 362.0630 (M
+
. C17H19

79
BrN2O2 

requires 362.0630), 306 (14%), 289 (20), 262 (99), 234 (13), 181 (15), 154 (19), 139 (16), 

127 (11), 91 (10), 57 (99). 
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2-Amino-4-(4’-bromophenyl)-1-(tert-butoxycarbonylamino)benzene (144) 
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The reaction was carried out according to the above procedure using 4-(4’-bromophenyl)-

1-(tert-butoxycarbonylamino)-2-nitrobenzene (148) (1.82 g, 4.63 mmol) and tin(II) 

chloride dihydrate (5.22 g, 23.1 mmol) in ethyl acetate and pyridine (175 mL, 6:1) to give 

2-amino-4-(4’-bromophenyl)-1-(tert-butoxycarbonylamino)benzene (144) as a white solid 

(1.06 g, 63%).  Mp 194–196 C; νmax/cm
−1

 (neat) 3356 (NH), 2978 (CH), 1686 (CO), 1502, 

1248, 1163, 1057, 805; δH (400 MHz, CDCl3) 1.53 (9H, s, 3 × CH3), 3.84 (2H, br s, NH2), 

6.25 (1H, br s, NH), 6.95 (1H, d, J 2.0 Hz, 3-H), 6.98 (1H, dd, J 8.1, 2.0 Hz, 5-H), 7.36 

(1H, d, J 8.1 Hz, 6-H), 7.39 (2H, d, J 8.5 Hz, 2’-H and 6’-H), 7.52 (2H, d, J 8.5 Hz, 3’-H 

and 5’-H); δC (101 MHz, CDCl3) 28.5 (3 × CH3), 80.9 (C), 116.2 (CH), 118.5 (CH), 121.4 

(C), 124.7 (C), 125.0 (CH), 128.7 (2 × CH), 131.9 (2 × CH), 138.0 (C), 139.9 (C), 140.1 

(C), 153.9 (C); m/z (EI) 362.0626 (M
+
. C17H19

79
BrN2O2 requires 362.0630), 306 (15%), 

262 (95), 234 (16), 181 (12), 154 (19), 83 (58). 

   

Methyl 3-(1’H-imidazol-1’-yl)benzoate (152)
95
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Methyl 3-aminobenzoate (153) (10.0 g, 66.2 mmol) was dissolved in methanol (45 mL) 

and 40% aqueous glyoxal solution (7.61 mL, 66.2 mmol) was added.  The mixture was 

stirred at room temperature for 18 h before the addition of ammonium chloride (7.08 g, 

132 mmol), 37% aqueous formaldehyde (10.7 mL, 132 mmol), and methanol (240 mL).  

The reaction mixture was heated under reflux and stirred for 1 h before adding 85% 

aqueous phosphoric acid (9.26 mL).  The mixture was heated under reflux for a further 5 h 

before concentrating in vacuo.  The resulting residue was dissolved in water (300 mL), 
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basified to pH 9 using 30% aqueous potassium hydroxide, and extracted with diethyl ether 

(4 × 300 mL).  The organic extracts were combined, dried (MgSO4) and concentrated in 

vacuo.  The resulting material was purified by flash column chromatography eluting with 

50−100% ethyl acetate in petroleum ether (40−60) to give methyl 3-(1’H-imidazol-1’-

yl)benzoate (152) as a brown oil (7.48 g, 58%).  Spectroscopic data in accordance with 

literature.  δH (400 MHz, CDCl3) 3.96 (3H, s, CH3), 7.23 (1H, br s, 4’-H), 7.35 (1H, t, J 1.3 

Hz, 5’-H), 7.54−7.62 (2H, m, 4-H and 5-H), 7.93 (1H, br s, 2’-H), 8.03 (1H, dt, J 7.3, 1.6 

Hz, 6-H), 8.05−8.07 (1H, m, 2-H); δC (101 MHz, CDCl3) 52.6 (CH3), 118.2 (CH), 122.3 

(CH), 125.5 (CH), 128.5 (CH), 130.1 (CH), 130.5 (CH), 132.1 (C), 135.5 (CH), 137.5 (C), 

165.9 (C); m/z (EI) 202 (M
+
, 100%), 171 (93), 143 (47), 116 (50), 84 (31).  

 

tert-Butyl 3-[3’-(1”H-imidazol-1”-yl)phenyl]-3-oxopropanoate (145) 
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A solution of lithium hexamethyldisilazide (1.0 M in tetrahydrofuran) (41.5 mL, 41.5 

mmol) in dry tetrahydrofuran (100 mL) was cooled to –78 ºC under argon and tert-butanol 

(5.57 mL, 41.5 mmol) was added.  After stirring for 1 h, methyl 3-(1’H-imidazol-1’-

yl)benzoate (152) (3.50 g, 17.3 mmol) was added and stirring was continued at –78 C for 

a further 2 h.  The reaction mixture was allowed to warm to room temperature before the 

addition of a saturated aqueous solution of ammonium chloride (200 mL).  The mixture 

was extracted with ethyl acetate (4 × 100 mL), dried (MgSO4) and concentrated in vacuo.  

The resulting oil was purified by flash column chromatography eluting with 0−5% 

methanol in dichloromethane.  Further purification was carried out by flash column 

chromatography eluting with 100% ethyl acetate to give tert-butyl 3-[3’-(1”H-imidazol-1”-

yl)phenyl]-3-oxopropanoate
 
(145) as a brown oil (3.94 g, 80%).  νmax/cm

−1
 (neat) 3117, 

2978 (CH), 1728 (CO), 1690 (CO), 1589 (C=C), 1505, 1312, 1250, 1142, 1057, 795; NMR 

spectra are a mixture of keto-enol tautomers (1:0.13)  Signals are given for the major 

tautomer.  δH (400 MHz, DMSO-d6) 1.39 (9H, s, 3 × CH3), 4.18 (2H, s, 2-H2), 7.15 (1H, br 

s, 4”-H), 7.69 (1H, t, J 7.9 Hz, 5’-H), 7.84−8.01 (3H, m, 4’-H, 6’H and 5”-H), 8.15 (1H, br 

s, 2’-H), 8.38 (1H, br s, 2”-H); δC (101 MHz, DMSO-d6) 27.6 (3 × CH3), 47.0 (CH2), 80.9 
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(C), 118.1 (CH), 120.0 (CH), 125.1 (CH), 126.4 (CH), 130.1 (CH), 130.4 (CH), 135.7 

(CH), 137.2 (C), 137.4 (C), 166.7 (C), 193.2 (C); m/z (FAB) 287.1395 (MH
+
. C16H19N2O3 

requires 287.1396), 231 (17%), 213 (22), 187 (30), 147 (12), 73 (30). 

 

8-(2”’-Bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (136) 
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To a solution of 2-amino-4-(2’-bromophenyl)-1-(tert-butoxycarbonylamino)benzene (142) 

(0.283 g, 0.779 mmol) in toluene (2 mL) was added tert-butyl 3-[3’-(1”H-imidazol-1”-

yl)phenyl]-3-oxopropanoate (145)
 
(0.223 g, 0.779 mmol).  The solution was heated under 

reflux for 6 h, cooled to room temperature and concentrated in vacuo.  The resulting 

material was purified by flash column chromatography eluting with 0–2.5% ethanol in 

dichloromethane to give 4-(2””-bromophenyl)-1-(tert-butylcarbonylamino)-2-{3’-

[3”(1”’H-imidazol-1”’-yl)phenyl]-3’-oxopropanamido}benzene (139) as a white solid 

(0.269 g, 60%).  To a solution of 4-(2””-bromophenyl)-1-(tert-butoxycarbonylamino)-2-

{3’-[3”-(1”’-H-imidazol-1”’-yl)phenyl]-3’-oxopropanamido}benzene (139) (0.214, 0.372 

mmol) in dichloromethane (4 mL) at 0 °C was added trifluoroacetic acid (0.5 mL).  The 

reaction mixture was warmed to room temperature and stirred for 1 h.  A saturated aqueous 

solution of sodium hydrogen carbonate (10 mL) was added, the mixture extracted with 

dichloromethane (3 × 5 mL), dried (MgSO4) and concentrated in vacuo.  The crude 

material was then triturated with toluene to give 8-(2”’-bromophenyl)-4-[3’-(1”H-

imidazol-1”-yl)phenyl]-2,3-dihydro-1H-1,5-benzodiazepin-2-one (136) as a white solid 

(0.151 g, 90%).  Mp 179–181 °C (decomposition); νmax/cm
−1

 (neat) 3086 (NH), 2924 (CH), 

1682 (CO), 1505, 1462, 1308, 1254, 1049, 891; δH (500 MHz, DMSO-d6) 3.69 (2H, s, 3-

H2), 7.16 (1H, br s, 4”-H), 7.23 (1H, d, J 1.9 Hz, 9-H), 7.30 (1H, dd, J 8.3, 1.9 Hz, 7-H), 

7.33–7.38 (1H, m, 4”’-H), 7.44 (1H, dd, J 7.6, 1.8 Hz, 6”’-H), 7.48–7.54 (1H, m, 6-H and 

5”’-H), 7.70 (1H, t, J 7.9 Hz, 5’-H), 7.77 (1H, dd, J 8.0, 1.0 Hz, 3”’-H), 7.83–7.89 (2H, m, 

4’-H and 5”-H), 8.07 (1H, br d J 7.9 Hz, 6’-H), 8.25 (1H, t, J 1.8 Hz, 2’-H), 8.37 (1H, br s, 
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2”-H), 10.74 (1H, br s, NH); δH (126 MHz, DMSO-d6) 39.9 (CH2), 118.3 (CH), 119.6 

(CH), 121.7 (C), 122.4 (CH), 123.2 (CH), 125.2 (CH), 126.2 (CH), 127.8 (CH), 128.2 

(CH), 129.7 (CH), 129.9 (C), 130.1 (CH), 130.5 (CH), 131.4 (CH), 133.2 (CH), 135.9 

(CH), 137.4 (C), 138.5 (2 × C), 138.8 (C), 140.9 (C), 157.8 (C), 166.1 (C); m/z (FAB) 

457.0660 (MH
+
. C24H17

79
BrN4O requires 457.0664), 238 (62%), 220 (15), 169 (100), 85 

(100).  

   

8-(3”’-Bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (137) 
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The reaction was carried out according to the above procedure, using 2-amino-4-(3’-

bromophenyl)-1-(tert-butoxycarbonylamino)benzene (143) (0.347 g, 0.955 mmol) and tert-

butyl 3-[3’-(1”H-imidazol-1”-yl)phenyl]-3-oxopropanoate
 
(145)

 
(0.275 g, 0.960 mmol) in 

toluene (10 mL) to give 4-(3””-bromophenyl)-1-(tert-butoxycarbonylamino)-2-{3’-[3”-

(1”’H-imidazol-1”’-yl)phenyl]-3’-oxopropanamido}benzene (140) as a white foam (0.344 

g, 63%).  Cyclisation was performed as described above, using 4-(3””-bromophenyl)-1-

(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-

oxopropanamido}benzene (140) (0.080 g, 0.139 mmol) and trifluoroacetic acid (5 mL) in 

dichloromethane (0.5 mL) to give 8-(3”’-bromophenyl)-4-[3’-(1”H-imidazol-1”-

yl)phenyl]-2,3-dihydro-1H-1,5-benzodiazepin-2-one (137) as a white solid (0.056 g, 88%).  

Mp 204–205 °C (decomposition); νmax/cm
–1

 (neat) 3055 (NH), 2854 (CH), 1683 (CO), 

1503, 1256, 1112, 1061, 913, 863, 776; δH (500 MHz, DMSO-d6) 3.68 (2H, s, 3-H2), 7.16 

(1H, br s, 4”-H), 7.47 (1H, t, J 7.9 Hz, 5”’-H), 7.53 (1H, d, J 1.9 Hz, 9-H), 7.55 (1H, d, J 

8.4 Hz, 6-H), 7.58–7.62 (2H, m, 7-H and 6”’-H), 7.67–7.72 (2H, m, 5’-H and 4”’-H), 

7.79–7.88 (3H, m, 4’-H, 5”-H and 2”’-H), 8.06 (1H, br d, J 7.9 Hz, 6’-H), 8.24 (1H, br s, 

2’-H), 8.32 (1H, br s, 2”-H), 10.53 (1H, br s, NH); δC (126 MHz, DMSO-d6) 39.9 (CH2), 

118.3 (CH), 119.6 (CH), 120.1 (CH), 122.5 (C), 122.8 (CH), 123.2 (CH), 125.7 (CH), 

126.2 (CH), 128.8 (CH), 129.2 (CH), 130.1 (CH), 130.4 (CH), 130.6 (CH), 130.7 (C), 
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131.3 (CH), 135.9 (CH), 136.5 (C), 137.4 (C), 138.8 (C), 139.0 (C), 141.5 (C), 157.9 (C), 

166.1 (C); m/z (ESI) 457.0644 (MH
+
.C24H18

79
BrN4O requires 457.0659). 

 

8-(4”’-Bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (138) 
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The reaction was carried out according to the procedure described above, using 2-amino-4-

(4’-bromophenyl)-1-(tert-butoxycarbonylamino)benzene (144) (0.178 g, 0.490 mmol) and 

tert-butyl 3-[3’-(1”H-imidazol-1”-yl)phenyl]-3-oxopropanoate (145)
 

(0.109 g, 0.381 

mmol) in toluene (10 mL) to give 4-(4””-bromophenyl)-1-(tert-butoxycarbonylamino)-2-

{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-oxopropanamido}benzene (141) as a white foam 

(0.160 g, 73%).  Cyclisation was performed as described above, using 4-(4””-

bromophenyl)-1-(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-

oxopropanamido}benzene (141) (0.230 g, 0.400 mmol) and trifluoroacetic acid (1 mL) in 

dichloromethane (8 mL) to give 8-(4”’-bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-

2,3-dihydro-1H-1,5-benzodiazepin-2-one (138) as a white solid (0.166 g, 91%).  Mp 200–

202 C (decomposition); νmax/cm
−1

 (neat) 3079 (NH), 2923 (CH), 1682 (CO), 1579, 1504, 

1474, 1315, 1216, 1059, 812; δH (400 MHz, DMSO-d6) 3.68 (2H, s, 3-H2), 7.16 (1H, br s, 

4”-H), 7.49 (1H, d, J 1.9 Hz, 9-H), 7.54 (1H, d, J 8.4 Hz, 6-H), 7.59 (1H, dd, J 1.9, 8.4 Hz, 

7-H), 7.62–7.73 (5H, m, 5’-H, 2”’-H, 3”’-H, 5”’-H and 6”’-H), 7.83–7.89 (2H, m, 4’-H 

and 5”-H), 8.06 (1H, br d, J 7.9 Hz, 6’-H), 8.25 (1H, br s, 2’-H), 8.37 (1H, br s, 2”-H), 

10.69 (1H, br s, NH); δC (101 MHz, DMSO) 39.9 (CH2), 118.3 (CH), 119.5 (CH), 119.7 

(CH), 121.2 (C), 122.4 (CH), 123.1 (CH), 126.1 (CH), 128.6 (2 × CH), 128.7 (CH), 130.0 

(CH), 130.3 (CH), 130.6 (C), 132.0 (2 × CH), 135.8 (CH), 136.8 (C), 137.4 (C), 138.2 (C), 

138.8 (2 × C), 157.7 (C), 166.0 (C); m/z (FAB) 457.0668 (MH
+
. C24H18

79
BrN4O requires 

457.0664), 441 (34%), 219 (60), 203 (22), 169 (81), 147 (34), 84 (100). 
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4-[3’-(1”H-Imidazol-1”-yl)phenyl]-8-(3”’-iodophenyl)-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (134) 
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A solution of 8-(3”’-bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-(3”’-

bromophenyl)-2,3-dihydro-1H-1,5-benzodiazepin-2-one (137) (0.030 g, 0.066 mmol) in 

1,4-dioxane (1 mL) was degassed for 0.25 h before the addition of hexamethylditin (54 μL, 

0.26 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.008 g, 0.007 mmol).  The 

reaction mixture was heated to 90 ºC and stirred under Ar for 48 h.  The reaction mixture 

was concentrated in vacuo and purified by flash chromatography on silica eluting with 0–

4% ethanol in dichloromethane to give 4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-[3”’-

(trimethylstannyl)phenyl]-2,3-dihydro-1H-1,5-benzodiazepin-2-one (164) (0.290, 81%).  

To a solution of 4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-[3”’-(trimethylstannyl)phenyl]-2,3-

dihydro-1H-1,5-benzodiazepin-2-one (164) (0.029 g, 0.054 mmol) in ethanol (50 mL) was 

added sodium iodide (0.011 g, 0.073 mmol) in 0.01 M aqueous sodium hydroxide (11 mL).  

The solution was then acidified to pH 4–5 using 0.05 M aqueous hydrochloric acid.  A 

solution of chloramine-T (0.032 g, 0.14 mmol) in water (30 mL) was added and the 

mixture stirred at room temperature for 0.5 h.  The reaction was then quenched by the 

addition of sodium metabisulfite (0.400 g) in water (20 mL).  The solution was then diluted 

with a saturated aqueous solution of sodium hydrogen carbonate (40 mL), extracted with 

dichloromethane (4 × 80 mL), dried (MgSO4) and concentrated in vacuo.  The resulting 

solid was then triturated with diethyl ether to give 4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-

(3”’-iodophenyl)-2,3-dihydro-1H-1,5-benzodiazepin-2-one (134) as a white solid (0.023 g, 

85%).  Mp 208–209 °C (decomposition); νmax/cm
–1

 (neat) 3190 (NH), 3090 (CH), 1676 

(CO), 1551, 1505, 1312, 1269, 1055, 874, 777; δH (400 MHz, DMSO-d6) 3.68 (2H, s, 3-

H2), 7.16 (1H, br s, 4”-H), 7.31 (1H, t, J 7.7 Hz, 5”’-H), 7.49 (1H, br s, 9-H), 7.53 (1H, d, J 

8.3 Hz, 6-H), 7.59 (1H, br d, J 8.3 Hz, 7-H), 7.65–7.80 (3H, m, 5’-H, 4”’-H and 6”’-H), 

7.82–7.90 (2H, m, 4’-H and 5”-H), 8.00–8.10 (2H, m, 6’-H and 2”’-H), 8.25 (1H, br s, 2’-

H), 8.38 (1H, br s, 2”-H), 10.66 (1H, br s, NH); δC (101 MHz, DMSO-d6) 39.9 (CH2), 95.7 

(C), 118.3 (CH), 119.5 (CH), 120.0 (CH), 122.7 (CH), 123.2 (CH), 126.0 (CH), 126.1 
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(CH), 128.7 (CH), 130.1 (CH), 130.4 (CH), 130.6 (C), 131.2 (CH), 135.0 (CH), 135.8 

(CH), 136.4 (CH), 136.5 (C), 137.4 (C), 138.8 (C), 138.9 (C), 141.4 (C), 157.8 (C), 166.0 

(C); m/z (ESI) 505.0508 (MH
+
. C24H18IN4O requires 505.0520). 

 

4-[3’-(1”H-Imidazol-1”-yl)phenyl]-8-(4”’-iodophenyl)-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (135) 
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The reaction was carried out as described above, using 4-[3’-(1”H-imidazol-1”-yl)phenyl]-

8-(4”’-bromophenyl)-2,3-dihydro-1H-1,5-benzodiazepin-2-one (138) (0.200 g, 0.437 

mmol), hexamethylditin (0.36 mL, 1.8 mmol) and tetrakis(triphenylphosphine) 

palladium(0) (0.051 g, 0.044 mmol) in 1,4-dioxane (4.8 mL)  to give 4-[3’-(1”H-imidazol-

1”-yl)phenyl]-8-[4”’-(trimethylstannyl)phenyl]-2,3-dihydro-1H-1,5-benzodiazepin-2-one 

(165) (0.136 g, 57%).  Iododestannylation was performed as described above, using 4-[3’-

(1”H-imidazol-1”-yl)phenyl]-8-[4”’-(trimethylstannyl)phenyl]-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (165) (0.035 g, 0.065 mmol), sodium iodide (0.010 g, 0.065 mmol) 

and chloramine-T (0.030 g, 0.13 mmol) in ethanol (25 mL) to give 4-[3’-(1”H-imidazol-

1”-yl)phenyl]-8-(4”’-iodophenyl)-2,3-dihydro-1H-1,5-benzodiazepin-2-one (135) as a 

white solid (0.024 g, 73%).  Mp 217–218 °C (decomposition); νmax/cm
–1

 (neat) 2919 (CH), 

1672 (CO), 1500, 1314, 1242, 1102, 1057, 802; δH (500 MHz, DMSO-d6) 3.67 (2H, s, 3-

H2), 7.17 (1H, br s, 4”-H), 7.44–7.60 (5H, m, 6-H, 7-H, 9-H, 2”’H and 6”’-H), 7.69 (1H, t, 

J 7.6 Hz, 5’-H), 7.77–7.91 (4H, m, 4’-H, 5”-H, 3”’-H and 5”’-H), 8.06 (1H, br d, J 7.6 Hz, 

6’-H), 8.25 (1H, br s, 2’-H), 8.33 (1H, br s, 2”-H), 10.58 (1H, br s, NH); δC (126 MHz, 

DMSO-d6) 39.9 (CH2), 94.2 (C), 118.3 (CH), 119.5 (CH), 119.6 (CH), 122.4 (CH), 123.2 

(CH), 126.1 (CH), 128.7 (3 × CH), 130.1 (CH), 130.4 (CH), 130.7 (C), 135.8 (CH), 137.0 

(C), 137.4 (C), 137.9 (2 × CH), 138.5 (C), 138.8 (2 × C), 157.7 (C), 166.0 (C); m/z (ESI) 

505.0507 (MH
+
. C24H18IN4O requires 505.0520). 
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2-Amino-1-(tert-butoxycarbonylamino)-4-iodobenzene (167)
183
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To a solution of 1-(tert-butoxycarbonylamino)-4-iodo-2-nitrobenzene (149) (0.200 g, 

0.550 mmol) in ethanol (17 mL) was added tin(II) chloride dihydrate (0.620 g, 2.75 mmol).  

The reaction mixture was heated to 70 °C and stirred for 3 h.  After cooling to room 

temperature the mixture was concentrated in vacuo.  The resulting solid was dissolved in 

ethyl acetate (20 mL) and a saturated aqueous solution of sodium hydrogen carbonate (10 

mL) was added.  The mixture was then extracted with ethyl acetate (3 × 20 mL), dried 

(MgSO4) and concentrated in vacuo to give 2-amino-1-(tert-butoxycarbonylamino)-4-

iodobenzene (167) as an off-white solid (0.170 g, 91%).  Mp 140−141 °C (lit.,
183

 127−130 

°C); νmax/cm
−1

 (neat) 3349 (NH), 2922 (CH), 1678 (CO), 1587 (C=C), 1506, 1489, 1410, 

1248, 1157, 1051, 853; δH (400 MHz, CDCl3) 1.50 (9H, s, 3 × CH3), 3.74 (2H, br s, NH2), 

6.18 (1H, br s, NH), 7.01 (1H, d, J 8.2 Hz, 6-H), 7.05–7.11 (2H, m, 3-H and 5-H); δC (101 

MHz, CDCl3) 28.3 (3 × CH3), 80.9 (C), 89.8 (C), 124.7 (C), 126.0 (CH), 126.1 (CH), 

128.5 (CH), 141.3 (C), 153.6 (C); m/z (CI) 335.0265 (MH
+
. C11H16IN2O2 requires 

335.0257), 311 (10%), 279 (100), 209 (22), 153 (43), 113 (17), 69 (64). 

 

4-[3’-(1”H-Imidazol-1”-yl)phenyl]-8-iodo-2,3-dihydro-1H-1,5-benzodiazepin-2-one 

(169) 
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To a solution of 2-amino-1-(tert-butoxycarbonylamino)-4-iodobenzene (167) (0.145 g, 

0.434 mmol) in toluene (1 mL) was added tert-butyl 3-[3’-(1”H-imidazol-1”-yl)phenyl]-3-

oxopropanoate (145) (0.149 g, 0.520 mmol).  The solution was heated under reflux for 4 h 

before cooling to room temperature and concentrating in vacuo.  The resulting material 

was purified by flash column chromatography eluting with 0–4% ethanol in 



 126 
 

dichloromethane to give 1-(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-

yl)phenyl]-3’-oxopropanamido}-4-iodobenzene (168) as a white foam (0.158 g, 67%).  To 

a solution of 1-(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-

oxopropanamido}-4-iodobenzene (168) (0.124 g, 0.227 mmol) in dichloromethane (1 mL) 

at 0 °C was added trifluoroacetic acid (0.3 mL).  The mixture was warmed to room 

temperature and stirred for 0.5 h.  A saturated aqueous solution of sodium hydrogen 

carbonate (10 mL) was added, the solution extracted with dichloromethane (2 × 10 mL), 

dried (MgSO4) and concentrated in vacuo.  The crude material was then triturated with 

toluene to give 4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-iodo-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (169) as a white solid (0.056 g, 58%).  Mp 238−240 °C 

(decomposition); νmax/cm
−1

 (neat) 3074 (NH), 2082 (CH), 1679 (CO), 1587, 1502, 1311, 

1229, 1054, 909; δH (400 MHz, DMSO-d6) 3.65 (2H, s, 3-CH2), 7.16 (1H, br s, 4”-H), 7.23 

(1H, d, J 8.8 Hz, 6-H), 7.53–7.59 (2H, m, 7-H and 9-H), 7.68 (1H, t, J 7.9 Hz, 5’-H), 7.82–

7.89 (2H, m, 4’-H and 5-”H), 8.03 (1H, br d, J 7.9 Hz, 6’-H), 8.22 (1H, br s, 2’-H), 8.37 

(1H, br s, 2”-H), 10.64 (1H, br s NH); δC (101 MHz, DMSO-d6) 39.9 (CH2), 91.0 (C), 

118.3 (CH), 119.5 (CH), 123.2 (CH), 126.1 (CH), 129.8 (CH), 130.0 (2 × CH), 130.4 

(CH), 131.6 (C), 132.6 (CH), 135.8 (CH), 137.4 (C), 138.7 (C), 138.8 (C), 158.2 (C), 166.0 

(C); m/z (EI) 428.0128 (M
+
. C18H13IN4O requires 428.0134), 386 (84%), 359 (13), 260 

(18), 193 (10), 170 (10), 78 (11). 

 

5-Chloro-4-iodo-2-nitroaniline (182)
184
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Iodine monochloride (1.0 M in dichloromethane) (45.7 mL, 45.7 mmol) was added to a 

solution of 5-chloro-2-nitroaniline (183) (7.00 g, 40.6 mmol) and sodium acetate (3.75 g, 

45.7 mmol) in acetic acid (35 mL).  The reaction mixture was heated to 80 C and stirred 

for 3 h.  The mixture was then allowed to cool to room temperature and the remaining 

dichloromethane removed in vacuo.  The resulting residue was poured onto ice water with 

stirring and the precipitate formed was collected by filtration to give 5-chloro-4-iodo-2-

nitroaniline (182) as an orange solid (11.1 g, 92%).  Mp 200–201 C (lit.,
184

 202−203 C); 

vmax/cm
−1

 (neat) 3350 (NH), 1609 (C=C), 1543, 1478, 1309, 1234, 1124, 892; δH (400 

MHz, DMSO-d6) 7.26 (1H, s, 6-H), 7.59 (2H, br s, NH2), 8.36 (1H, s, 3-H); δC (101 MHz, 
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DMSO-d6) 79.0 (C), 118.5 (CH), 130.3 (C), 136.0 (CH), 143.8 (C) 146.0 (C); m/z (EI) 

297.8999 (M
+
. C6H4

35
ClIN2O2 requires 297.9006), 268 (10%), 252 (32), 225 (9), 172 (4), 

125 (37).  

 

4-Iodo-5-methoxy-2-nitroaniline (180)
184
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5-Chloro-4-iodo-2-nitroaniline (182) (5.00 g, 16.8 mmol) was added to a solution of 

potassium hydroxide (2.08 g, 37.0 mmol) in dimethylsulfoxide (17 mL) and methanol (17 

mL).  The mixture was heated to 60 °C and stirred for 6 h.  After allowing to cool to room 

temperature the solution was poured onto 1 M aqueous hydrochloric acid (100 mL) and 

extracted with ethyl acetate (3 × 70 mL).  The organic extracts were combined, washed 

with 1 M aqueous hydrochloric acid (6 × 50 mL) and brine (2 × 50 mL), dried (MgSO4) 

and concentrated in vacuo to give 4-iodo-5-methoxy-2-nitroaniline (180) as an orange 

solid (4.66 g, 94%).  Mp 182–183 C (lit.,
184

 189 C); vmax/cm
−1

 (neat) 3340 (NH), 1639 

(C=C), 1571, 1332, 1233, 1107, 921, 840; δH (400 MHz, CDCl3) 3.90 (3H, s, OCH3), 6.11 

(1H, s, 6-H), 6.25 (2H, br s, NH2), 8.55 (1H, s, 3-H); δC (101 MHz, CDCl3) 56.8 (CH3), 

71.2, (C), 97.7 (CH), 127.9 (C), 137.1 (CH), 146.8 (C), 163.1 (C); m/z (EI) 293.9504 (M
+
. 

C7H7IN2O3 requires 293.9501), 264 (47%), 248 (53), 121 (48), 106 (50).  

   

1-[Bis(tert-butoxycarbonyl)amino]-4-iodo-5-methoxy-2-nitrobenzene (188) 
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To a solution 4-iodo-5-methoxy-2-nitroaniline (180) (2.95 g, 10.0 mmol) in 

dichloromethane (135 mL) was added di-tert-butyl dicarbonate (4.80 g, 22.0 mmol), 4-

dimethylaminopyridine (0.240 g, 2.00 mmol) and triethylamine (3.07 mL, 22.0 mmol) and 

the solution stirred at room temperature for 18 h.  The reaction mixture was then diluted 

with water (100 mL), extracted with dichloromethane (3 × 70 mL), dried (MgSO4) and 
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concentrated in vacuo.  The resulting material was then purified by flash chromatography 

eluting with 0–50% ethyl acetate in petroleum ether (40–60) to give 1-[bis(tert-

butoxycarbonyl)amino]-4-iodo-5-methoxy-2-nitrobenzene (188) as a white solid (4.76 g, 

96%).  Mp 186–188 C; vmax/cm
−1

 (neat) 2977 (CH), 1793 (CO), 1570 (C=C), 1515, 1339, 

1282, 1229, 1153, 1098, 1009, 847; δH (400 MHz, CDCl3) 1.43 (18H, s, 6 × CH3), 3.97 

(3H, s, OCH3), 6.66 (1H, s, 6-H), 8.60 (1H, s, 3-H); δC (101 MHz, CDCl3) 27.9 (6 × CH3), 

57.4 (CH3), 84.2 (C), 84.3 (C), 112.4 (CH), 135.8 (C), 136.3 (CH), 139.1 (C), 150.2 (C), 

162.4 (C); m/z (EI) 494.0552 (M
+
. C17H23IN2O7 requires 494.0550), 394 (12%), 338 (93), 

321 (10), 294 (58), 246 (10), 61 (28), 43 (100). 

 

1-(tert-Butoxycarbonylamino)-4-iodo-5-methoxy-2-nitrobenzene (178) 
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To a solution of 1-[bis(tert-butoxycarbonyl)amino]-4-iodo-5-methoxy-2-nitrobenzene 

(188) (1.14 g, 2.31 mmol) in dichloromethane (30 mL) at 0 ºC was added trifluoroacetic 

acid (0.35 mL, 4.6 mmol).  The reaction mixture then warmed to room temperature and 

was stirred for 2 h.  The reaction mixture was diluted with a saturated aqueous solution of 

sodium hydrogen carbonate (30 mL) and extracted with dichloromethane (3 × 40 mL).  

The organic extracts were combined, dried (MgSO4) and concentrated in vacuo to give 1-

(tert-butoxycarbonylamino)-4-iodo-5-methoxy-2-nitrobenzene (178) as a yellow solid 

(0.910 g, 100%).  Mp 193–194 C; vmax/cm
−1

 (neat) 3347 (NH), 2989 (CH), 1719 (CO), 

1572 (C=C), 1430, 1330, 1229, 1042, 845; δH (400 MHz, CDCl3) 1.55 (9H, s, 3 × CH3), 

4.00 (3H, s, OCH3), 8.20 (1H, s, 6-H), 8.65 (1H, s, 3-H), 10.06 (1H, br s, NH); δC (101 

MHz, CDCl3) 28.3 (3 × CH3), 57.4 (CH3), 76.1 (C), 82.4 (C), 100.6 (CH), 130.0 (C), 136.9 

(CH), 139.1 (C), 152.3 (C), 163.9 (C); m/z (EI) 394.0029 (M
+
. C12H15IN2O5 requires 

394.0026), 338 (45%), 294 (50), 248 (10), 168 (9), 83 (58), 44 (100). 
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5-Chloro-2-nitro-4-(trifluoromethyl)aniline (190)
109 
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A solution of 1,5-dichloro-2-nitro-4-(trifluoromethyl)benzene (189) (4.80 g, 18.5 mmol) in 

1,4-dioxane (10 mL) was saturated with ammonia gas.  The reaction vessel was sealed and 

heated to 100 C for 4 days.  The solution was again saturated with ammonia gas, the 

reaction vessel sealed and heated to 100 C for a further 2 days.  The reaction mixture was 

allowed to cool to room temperature, then poured on to water (100 mL) and stirred until a 

yellow precipitate formed.  The precipitate was collected by filtration to give 5-chloro-2-

nitro-4-(trifluoromethyl)aniline (190) as a yellow solid (3.34 g, 76%).  Mp 111–112 C 

(lit.,
109

 113–114 C); δH (400 MHz, CDCl3) 6.39 (2H, br s, NH2), 6.97 (1H, s, 6-H), 8.50 

(1H, s, 3-H); δC (126 MHz, CDCl3) 117.3 (q, JC-C-F 33.4 Hz, C), 120.6 (CH), 122.3 (q, JC-F 

271.8 Hz, C), 127.0 (q, JC-C-C-F 5.7 Hz, CH), 129.6 (C), 139.1 (C), 146.5 (C); m/z (EI) 

240.0 (M
+

, 62%), 210 (12), 194 (35), 182 (16), 132 (13), 83 (100). 

   

5-Methoxy-2-nitro-4-(trifluoromethyl)aniline (195) 

 

6

3
F3C

MeO NH2

NO2

 

 

5-Chloro-2-nitro-4-(trifluoromethyl)aniline (190) (2.30 g, 9.56 mmol) was added to a 

solution of potassium hydroxide (1.18 g, 21.0 mmol) in dimethylsulfoxide (10 mL) and 

methanol (10 mL).  The reaction mixture was heated to 60 C and stirred for 5 h.  After 

cooling to room temperature the reaction was poured onto 1 M aqueous hydrochloric acid 

(40 mL) and extracted with ethyl acetate (3 × 30 mL).  The combined organic extracts 

were then washed with water (3 × 30 mL) and brine (2 × 30 mL), dried (MgSO4) and 

concentrated in vacuo to give 5-methoxy-2-nitro-4-(trifluoromethyl)aniline (195) as a 

yellow solid (2.19 g, 97%).  Mp 136–138 C; vmax/cm
−1

 (neat) 3341 (NH), 1636 (C=C), 

1566, 1420, 1327, 1234, 1111, 918, 841; δH (400 MHz, CDCl3) 3.92 (3H, s, OCH3), 6.21 

(1H, s, 6-H), 6.46 (2H, br s, NH2), 8.41 (1H, s, 3-H); δC (101 MHz, CDCl3) 56.5 (CH3), 



 130 
 

99.0 (CH), 109.8 (q, JC-C-F 32.9 Hz, C), 125.2 (C), 122.8 (q, JC-F 271.2 Hz, C), 127.4 (q, JC-

C-C-F, 5.7 Hz, CH), 149.0 (C), 162.4 (C); m/z (EI) 236.0406 (M
+
. C8H7F3N2O3 requires 

236.0409), 217 (22%), 206 (82), 190 (38), 178 (24), 147 (30), 83 (68). 

 

5-(3’-Fluoropropoxy)-2-nitro-4-(trifluoromethyl)aniline (196)  

 

6

3
F3C

O NH2

NO2

1'

2'

3'

F
 

 

To a solution of 5-chloro-2-nitro-4-(trifluoromethyl)aniline (190) (1.00 g, 4.16 mmol) in 

dimethylsulfoxide (2.00 mL) was added 3-fluoropropanol (3.13 mL, 41.6 mmol) and 

potassium carbonate (1.15 g, 8.32 mmol) was added.  The reaction mixture was stirred at 

90 C for 24 h.  Potassium carbonate (1.15 g, 8.32 mmol) was added and the mixture 

stirred for a further 48 h at 90 C.  The reaction mixture was then diluted with 1 M aqueous 

hydrochloric acid (80 mL) and extracted with dichloromethane (3 × 50 mL), dried 

(MgSO4) and concentrated in vacuo.  The resulting material was purified using flash 

chromatography on silica eluting with 30% ethyl acetate in petroleum ether (40–60) to give 

5-(3’-fluoropropoxy)-2-nitro-4-(trifluoromethyl)aniline (196) as a yellow solid (0.880 g, 

71%).  Mp 148–149 C; (Found: C, 42.49; H, 3.47; N, 9.81. C10H10F4N2O3 requires C, 

42.56; H, 3.57; N, 9.93%); vmax/cm
−1

 (neat) 3480 (NH), 3354 (NH), 1641 (C=C), 1571, 

1306, 1245, 1115, 1034, 914, 851; δH (400 MHz, CDCl3) 2.22 (2H, dquin, J 26.4, 5.7 Hz, 

2’-H2), 4.18 (2H, t, J 5.7 Hz, 1’-H2), 4.65 (2H, dt, J 46.9, 5.7 Hz, 3’-H2), 6.22 (1H, s, 6-H), 

6.45 (2H, br s, NH2), 8.42 (1H, s, 3-H); δC (101 MHz, CDCl3) 30.1 (d, JC-C-F 20.2 Hz, 

CH2), 64.9 (d, JC-C-C-F 4.9 Hz, CH2), 80.1 (d, JC-F 164.9 Hz, CH2), 99.6 (CH), 109.9 (q, JC-

C-F 33.2 Hz, C), 122.9 (q, JC-F 269.5 Hz, C), 125.4 (C), 127.4 (q, JC-C-C-F 5.6 Hz, CH), 148.8 

(C), 161.5 (C); m/z (CI) 283 (MH
+
, 100%), 253 (18), 233 (8), 133 (16), 85 (34).  

  

 

 

 

 

 



 131 
 

1-[Bis(tert-butoxycarbonyl)amino]-5-methoxy-2-nitro-4-(trifluoromethyl)benzene 

(198) 

 

6

3
F3C

MeO

NO2

NBoc2  

 

To a solution of 5-methoxy-2-nitro-4-(trifluoromethyl)aniline (195) (3.27 g, 13.8 mmol) in 

dichloromethane (150 mL) was added di-tert-butyl dicarbonate (6.66 g, 30.5 mmol), 4-

dimethylaminopyridine (0.340 g, 2.76 mmol) and triethylamine (4.25 mL, 30.5 mmol) and 

the solution stirred at room temperature for 18 h.  The reaction mixture was then diluted 

with water (100 mL) and extracted with dichloromethane (3 × 50 mL), dried (MgSO4) and 

concentrated in vacuo.  The resulting material was then purified by flash chromatography 

eluting with 30% ethyl acetate in petroleum ether (40–60) to give 1-[bis(tert-

butoxycarbonyl)amino]-5-methoxy-2-nitro-4-(trifluoromethyl)benzene (198) as a white 

solid (5.70 g, 95%).  Mp 123–125 C; vmax/cm
−1

 (neat) 2986 (CH), 1805 (CO), 1620 

(C=C), 1589, 1528, 1319, 1242, 1150, 1096, 849; δH (400 MHz, CDCl3) 1.44 (18H, s, 6 × 

CH3), 4.01 (3H, s, OCH3), 6.91 (1H, s, 6-H), 8.43 (1H, s, 3-H); δC (101 MHz, CDCl3) 28.0 

(6 × CH3), 57.2 (CH3), 84.6 (C), 114.8 (CH), 118.9 (q, JC-C-F 33.1 Hz, C), 122.1 (q, JC-F 

273.1 Hz, C), 125.4 (q, JC-C-C-F 5.4 Hz, CH), 138.0 (C), 139.0 (C), 150.2 (C), 161.1 (C); 

m/z (EI) 336.0925 (M
+
−C5H8O2. C13H15F3N2O5 requires 336.0933), 280 (8%), 236 (12), 83 

(90), 57 (100).  

 

1-[Bis(tert-butoxycarbonyl)amino]-5-(3’-fluoropropoxy)-2-nitro-4-

(trifluoromethyl)benzene (199) 

 

6

3
F3C
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NO2

1'

2'

3'

F
 

 

The reaction was performed according to the above procedure using 5-(3’-fluoropropoxy)-

2-nitro-4-(trifluoromethyl)aniline (196) (1.33 g, 4.71 mmol), di-tert-butyl dicarbonate 

(2.26 g, 10.4 mmol), 4-dimethylaminopyridine (0.120 g, 0.940 mmol) and triethylamine 

(1.44 mL, 10.4 mmol) in dichloromethane (65 mL).  The material was then purified by 

flash chromatography eluting with 20% ethyl acetate in petroleum ether (40–60) to give 1-
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[bis(tert-butoxycarbonyl)amino]-5-(3’-fluoropropoxy)-2-nitro-4-(trifluoromethyl)benzene 

(199) as a white solid (1.86 g, 82%).  Mp 84–86 C; (Found: C, 49.84; H, 5.46; N, 5.87. 

C20H26F4N2O7 requires C, 49.79; H, 5.43; N, 5.81%); vmax/cm
−1

 (neat) 2982 (CH), 1794 

(CO), 1620 (C=C), 1586, 1523, 1327, 1254, 1138, 1099, 1038, 918, 849; δH (400 MHz, 

CDCl3) 1.44 (18H, s, 6 × CH3), 2.26 (2H, dquin, J 26.3, 5.8 Hz, 2’-H2), 4.27 (2H, t, J 5.8 

Hz, 1’-H2), 4.66 (2H, dt, J 46.9, 5.8 Hz, 3’-H2), 6.91 (1H, s, 6-H), 8.43 (1H, s, 3-H); δC 

(101 MHz, CDCl3) 28.0 (6 × CH3), 30.1 (d, JC-C-F 20.1 Hz, CH2), 65.6 (d, JC-C-C-F 4.7 Hz, 

CH2), 79.9 (d, JC-F 165.2 Hz, CH2), 84.7 (C), 115.4 (CH), 119.0 (q, JC-C-F 33.0 Hz, C), 

122.2 (q, JC-F 272.9 Hz, C), 125.4 (q, JC-C-C-F 5.4 Hz, CH), 138.2 (C), 139.0 (C), 150.2 (C), 

160.2 (C); m/z (CI) 383 (MH
+
−C5H8O2, 37%), 353 (24), 327 (98), 283 (61), 253 (30). 

 

1-(tert-Butoxycarbonylamino)-5-methoxy-2-nitro-4-(trifluoromethyl)benzene (176) 

 

6

3
F3C

MeO NHBoc

NO2

 

 

To a solution of 1-[bis(tert-butoxycarbonyl)amino]-5-methoxy-2-nitro-4-(trifluoromethyl) 

benzene (198) (1.30 g, 2.98 mmol) in dichloromethane (40 mL) at 0 ºC was added 

trifluoroacetic acid (0.46 mL, 6.0 mmol).  The reaction mixture warmed to room 

temperature and was stirred for 2 h.  The reaction mixture was diluted with a saturated 

aqueous solution of sodium hydrogen carbonate (30 mL) and extracted with 

dichloromethane (3 × 20 mL).  The organic extracts were combined, dried (MgSO4), and 

concentrated in vacuo to give 1-(tert-butoxycarbonylamino)-5-methoxy-2-nitro-4-

(trifluoromethyl)benzene (176) as a yellow solid (1.00 g, 100%).  Mp 108–109 C; 

vmax/cm
−1

 (neat) 3395 (NH), 1636 (CO), 1481, 1335, 1258, 1134, 964, 856; δH (400 MHz, 

CDCl3) 1.56 (9H, 3 × CH3), 4.03 (3H, s, CH3), 8.38 (1H, s, 6-H), 8.50 (1H, s, 3-H), 10.20 

(1H, br s, NH); δC (101 MHz, CDCl3) 28.0 (3 × CH3), 56.7 (CH3), 82.7 (C), 101.7 (CH), 

112.5 (q, JC-C-F 33.1 Hz, C), 122.3 (q, JC-F 271.9 Hz, C), 126.2 (q, JC-C-C-F 5.5 Hz, CH), 

127.4 (C), 141.5 (C), 151.8 (C), 162.6 (C); m/z (EI) 336.0929 (M
+
. C13H15F3N2O5 requires 

336.0933), 280 (8%), 236 (24), 206 (9), 83 (100). 
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1-(tert-Butoxycarbonylamino)-5-(3’-fluoropropoxy)-2-nitro-4-(trifluoromethyl) 

benzene (177) 

 

6

3
F3C

O NHBoc

NO2

1'

2'

3'

F
 

 

The reaction was carried out according to the above procedure using 1-[bis(tert-

butoxycarbonyl)amino]-5-(3’-fluoropropoxy)-2-nitro-4-(trifluoromethyl)benzene (199) 

(1.55 g, 3.21 mmol) and trifluoroacetic acid (0.49 mL, 6.4 mmol) in dichloromethane (40 

mL) to give 1-(tert-butoxycarbonylamino)-5-(3’-fluoropropoxy)-2-nitro-4-

(trifluoromethyl)benzene (177) as a yellow solid (1.20 g, 98%).  Mp 75–76 C; (Found: C, 

47.13; H, 4.71; N, 7.21. C15H18F4N2O5 requires C, 47.12; H, 4.75; N, 7.33%); vmax/cm
−1

 

(neat) 3356 (NH), 2988 (CH), 1743 (CO), 1631 (C=C), 1580, 1440, 1343, 1233, 1133, 

1049, 924, 849; δH (400 MHz, CDCl3) 1.55 (9H, s, 3 × CH3), 2.24 (2H, dquin, J 25.8, 5.8 

Hz, 2’-H2), 4.33 (2H, t, J 5.8 Hz, 1’-H2), 4.66 (2H, dt, J 46.9, 5.8 Hz, 3’-H2), 8.39 (1H, s, 

6-H), 8.50 (1H, s, 3-H), 10.19 (1H, br s, NH); δC (101 MHz, CDCl3) 28.3 (3 × CH3), 30.0 

(d, JC-C-F 20.4 Hz, CH2), 65.4 (d, JC-C-C-F 5.0 Hz, CH2), 80.0 (d, JC-F 165.2 Hz, CH2), 82.9 

(C), 102.5 (CH), 112.9 (q, JC-C-F 33.0 Hz, C), 122.5 (q, JC-F 271.8 Hz, C), 126.6 (q, JC-C-C-F 

5.4 Hz, CH), 127.8 (C), 141.6 (C), 152.0 (C), 162.0 (C); m/z (EI) 382 (M
+
, 3%), 282 (23), 

222 (17), 131 (6), 57 (100). 

 

2-Amino-1-(tert-butoxycarbonylamino)-5-methoxy-4-(trifluoromethyl)benzene (174) 

 

6

3
F3C

MeO NHBoc

NH2

 

 

To a solution of 1-(tert-butoxycarbonylamino)-5-methoxy-2-nitro-4-(trifluoromethyl) 

benzene (176) (0.880 g, 2.62 mmol) in ethyl acetate and pyridine (6:1, 70 mL) was added 

tin(II) chloride dihydrate (2.96 g, 13.1 mmol) and the reaction mixture stirred at room 

temperature for 18 h.  The precipitate formed was removed by filtration through Celite
®
.  

The filtrate was diluted with water (150 mL), extracted with ethyl acetate (3 × 50 mL), 

dried (MgSO4) and concentrated in vacuo.  The resulting material was purified by 

triturating with petroleum ether (40–60) to give 2-amino-1-(tert-butoxycarbonylamino)-5-
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methoxy-4-(trifluoromethyl)benzene (174) as a white solid (0.680 g, 85%).  Mp 151–152 

C; vmax/cm
−1

 (neat) 3372 (NH), 2986 (CH), 1690 (CO), 1528, 1497, 1427, 1296, 1111, 

1057, 887; δH (400 MHz, CDCl3) 1.53 (9H, s, 3 × CH3), 3.16 (2H, br s, NH2), 3.87 (3H, s, 

OCH3), 6.92 (1H, br s, NH), 7.04 (1H, s, 3-H), 7.58 (1H, s, 6-H); δC (101 MHz, CDCl3) 

28.4 (3 × CH3), 56.6 (CH3), 81.5 (C), 105.4 (CH), 113.5 (q, JC-C-F 31.0 Hz, C), 119.4 (q, JC-

C-C-F 5.2 Hz, CH), 123.7 (q, JC-F 271.7 Hz, C), 126.0 (C), 133.9 (C), 153.0 (C), 153.5 (C); 

m/z (EI) 306.1192 (M
+
. C13H17F3N2O3 requires 306.1191), 250 (52%), 232 (14), 206 (70), 

191 (42), 163 (15), 134 (13), 83 (100), 57 (100). 

 

2-Amino-1-(tert-butoxycarbonylamino)-5-(3’-fluoropropoxy)-4-(trifluoromethyl) 

benzene (175) 

 

6
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3'

F
 

 

The reaction was carried out according to the above procedure using 1-(tert-

butoxycarbonylamino)-5-(3’-fluoropropoxy)-2-nitro-4-(trifluoromethyl)benzene (177) 

(1.13 g, 2.96 mmol) and tin(II) chloride dihydrate (3.34 g, 14.8 mmol) in ethyl acetate and 

pyridine (12 mL, 6:1).  The crude material was purified using flash column 

chromatography eluting with 0–30% ethyl acetate in petroleum ether (40–60) to give 2-

amino-1-(tert-butoxycarbonylamino)-5-(3’-fluoropropoxy)-4-(trifluoromethyl)aniline 

(175) as a white solid (0.890 g, 83%).  Mp 121–122 C; (Found: C, 51.02; H, 5.69; N, 

7.81. C15H20F4N2O3 requires C, 51.13; H, 5.72; N, 7.95%); νmax/cm
−1

 (neat) 3358 (NH), 

2994 (CH), 1690 (CO), 1526, 1499, 1441, 1296, 1219, 1111, 1059, 957, 880; δH (400 

MHz, CDCl3) 1.52 (9H, s, 3 × CH3), 2.16 (2H, dquin, J 25.5, 5.8 Hz, 2’-H2), 3.18 (2H, br 

s, NH2), 4.13 (2H, t, J 5.8 Hz, 1’-H2), 4.64 (2H, dt, J 47.0, 5.8 Hz, 3’-H2), 6.92 (1H, br s, 

NH), 7.03 (1H, s, 3-H), 7.57 (1H, s, 6-H); δC (101 MHz, CDCl3) 28.4 (3 × CH3), 30.4 (d, 

JC-C-F 20.0 Hz, CH2), 64.7 (d, JC-C-C-F 5.6 Hz, CH2), 80.7 (d, JC-F 163.9 Hz, CH2), 81.3 (C), 

105.9 (CH), 113.5 (q, JC-C-F 31.2 Hz, C), 118.7 (q, JC-C-C-F 4.8 Hz, CH), 123.7 (q, JC-F 271.7 

Hz, C), 127.5 (C), 133.3 (C), 152.0 (C), 152.9 (C); m/z (CI) 353 (MH
+
, 24%), 297 (98), 

279 (10), 253 (38), 81 (42). 
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4-[3’-(1”H-Imidazol-1”-yl)phenyl]-7-methoxy-8-trifluoromethyl-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (170) 

 

6
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2'

N
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4"

N
2"

 

 

To a solution of 2-amino-1-(tert-butoxycarbonylamino)-5-methoxy-4-(trifluoromethyl) 

benzene (174) (0.654 g, 2.14 mmol) in toluene (4 mL) was added tert-butyl 3-[3’-(1”H-

Imidazol-1”-yl)phenyl]-3-oxopropanoate (145)
 
(0.733 g, 2.56 mmol).  The solution was 

heated under reflux for 3.5 h before cooling to room temperature and concentrating in 

vacuo.  The resulting material was purified by flash column chromatography eluting with 

0–5% ethanol in dichloromethane to give 1-(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-

imidazol-1”’-yl)phenyl]-3’-oxopropanamido}-5-methoxy-4-(trifluoromethyl)benzene 

(172) as a white solid (0.723 g, 69%).  To a solution of 1-(tert-butoxycarbonylamino)-2-

{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-oxopropanamido}-5-methoxy-

4(trifluoromethyl)benzene (172) (0.490, 0.945 mmol) in dichloromethane (5 mL) at 0 °C 

was added trifluoroacetic acid (1 mL).  The reaction mixture was warmed to room 

temperature and stirred for 2 h.  A saturated aqueous solution of sodium hydrogen 

carbonate (10 mL) was added, the solution extracted with dichloromethane (3 × 5 mL), 

dried (MgSO4) and concentrated in vacuo.  The crude material was then triturated with 

toluene to give 4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-8-trifluoromethyl-2,3-

dihydro-1H-1,5-benzodiazepin-2-one (170) as a white solid (0.266 g, 70%).  Mp 222–223 

C (decomposition); νmax/cm
−1

 (neat) 2842 (CH), 1685 (CO), 1497, 1403, 1300, 1223, 

1101, 1044, 919, 827; δH (400 MHz, DMSO-d6) 3.69 (2H, s, 3-H2), 3.93 (3H, s, OCH3), 

7.16 (1H, br s, 4”-H), 7.24 (1H, s, 6-H), 7.48 (1H, s, 9-H), 7.70 (1H, t, J 7.9 Hz, 5’-H), 

7.83–7.90 (2H, m, 4’-H and 5”-H), 8.06 (1H, d, J 7.9 Hz, 6’-H), 8.27 (1H, br s, 2’-H), 8.36 

(1H, br s, 2”-H), 10.56 (1H, br s, NH); δC (126 MHz, DMSO-d6) 40.0 (CH2), 56.3 (CH3), 

110.6 (CH), 114.9 (q, JC-C-F 30.8 Hz, C), 118.1 (CH), 119.6 (CH), 120.7 (q, JC-C-C-F 5.4 Hz, 

CH), 123.0 (C), 123.1 (q, JC-F 271.9, C), 123.4 (CH), 126.1 (CH), 129.9 (CH), 130.2 (CH), 

135.6 (CH), 137.3 (C), 138.4 (C), 143.1 (C), 152.8 (C), 159.8 (C), 165.7 (C); m/z (FAB) 

401.1224 (MH
+
. C20H16F3N4O2 requires 401.1225), 238 (15%), 169 (26), 136, (13), 107 

(16), 86 (100). 
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7-(3”’-Fluoropropoxy)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-trifluoromethyl-2,3-

dihydro-1H-1,5-benzodiazepin-2-one (171) 
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The reaction was carried out as described above, using 2-amino-1-(tert-

butoxycarbonylamino)-5-(3’-fluoropropoxy)-4-(trifluoromethyl)benzene (175) (0.400 g, 

1.14 mmol) and tert-butyl 3-[3’-(1”H-imidazol-1”-yl)phenyl]-3-oxopropanoate (145)
 

(0.389 g, 1.36 mmol) in toluene (3 mL) to give 1-(tert-butoxycarbonylamino)-5-(3””-

fluoropropoxy)-2-{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-oxopropanamido}-4-

(trifluoromethyl)benzene (173) as a white solid (0.507 g, 79%).  Cyclisation was 

performed as described above using 1-(tert-butoxycarbonylamino)-5-(3””fluoropropoxy)-

2-{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-oxopropanamido}-4-(trifluoromethyl)benzene 

(173) (0.070 g, 0.12 mmol) and trifluoroacetic acid (0.35 mL) in dichloromethane (0.7 mL) 

to give 7-(3”’-fluoropropoxy)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-trifluoromethyl-2,3-

dihydro-1H-1,5-benzodiazepin-2-one (171) as a white solid (0.049 g, 91%).  Mp 225–227 

C (decomposition); νmax/cm
−1

 (neat) 2854 (CH), 1683 (CO), 1584, 1495, 1396, 1316, 

1218, 1180, 1104, 1048, 954; δH (500 MHz, DMSO-d6) 2.14 (1H, dquin, J 25.2, 5.9 Hz, 

2”’-H2), 3.69 (2H, s, 3-H2), 4.25 (2H, t, J 5.9 Hz, 1’”-H2), 4.62 (2H, dt, J 47.2, 5.9 Hz, 3”’-

H2), 7.16 (1H, br s, 4”-H), 7.27 (1H, s, 6-H), 7.48 (1H, s, 9-H), 7.70 (1H, t, J 7.9 Hz, 5’-H), 

7.84–7.90 (2H, m, 4’-H and 5”’-H), 8.06 (1H, br d, J 7.9 Hz, 6’-H), 8.27 (1H, br s, 2’-H), 

8.37 (1H, br s, 2”-H), 10.60 (1H, br s, NH); δC (126 MHz, DMSO-d6) 29.6 (d, JC-C-F 19.9 

Hz, CH2), 40.0 (CH2), 64.6 (d, JC-C-C-F 5.8 Hz, CH2), 80.5 (d, JC-F, 161.9 Hz, CH2), 111.4 

(CH), 115.2 (q, JC-C-F 30.9 Hz, C), 118.3 (CH), 119.7 (CH), 120.9 (q, JC-C-C-F 5.6 Hz, CH), 

123.3 (q, JC-F 272.0 Hz, C), 123.3 (C), 123.6 (CH), 126.3 (CH), 130.1 (CH), 130.5 (CH), 

135.8 (CH), 137.4 (C), 138.4 (C), 143.3 (C), 152.0 (C), 160.0 (C), 166.0 (C); m/z (FAB) 

447.1448 (MH
+
. C22H19F4N4O2 requires 447.1444), 307 (21%), 289 (15), 155 (11), 89 (12). 
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4-(3’-Bromophenyl)-1-(tert-butoxycarbonylamino)-5-methoxy-2-nitrobenzene (205) 

 

6
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To a solution of 1-(tert-butoxycarbonylamino)-4-iodo-5-methoxy-2-nitrobenzene (178) 

(1.75 g, 4.44 mmol) in N,N-dimethylformamide and water (90 mL, 9:1) was added 3-

bromophenylboronic acid (0.892 g, 4.44 mmol), potassium carbonate (1.23 g, 8.88 mmol) 

and tetrakis(triphenylphosphine)palladium(0) (0.104 g, 0.09 mmol).  The reaction mixture 

was heated to 110 ºC and stirred for 1.5 h.  After cooling to room temperature the solution 

was concentrated in vacuo.  The resulting residue was redissolved in chloroform (90 mL) 

and filtered through Celite
®

 and concentrated in vacuo.  The resulting solid was dissolved 

in diethyl ether (200 mL), washed with water (4 × 100 mL) and brine (2 × 100 mL), dried 

(MgSO4) and concentrated in vacuo.  The crude product was purified by flash column 

chromatography eluting with 0–10% ethyl acetate in petroleum ether (40–60) to give 4-(3’-

bromophenyl)-1-(tert-butoxycarbonylamino)-5-methoxy-2-nitrobenzene (205) as a yellow 

solid (1.34 g, 71%).  Mp 140–141 C; νmax/cm
−1

 (neat) 3356 (NH), 2986 (CH), 1736 (CO), 

1620 (C=C), 1574, 1273, 1141, 1018, 849; δH (400 MHz, CDCl3) 1.57 (9H, s, 3 × CH3), 

3.97 (3H, s, OCH3), 7.29 (1H, t, J 7.9 Hz, 5’-H), 7.40–7.44 (1H, m, 6’-H), 7.49 (1H, ddd, J 

7.9, 1.8, 1.0 Hz, 4’-H), 7.65 (1H, t, J 1.8 Hz, 2’-H), 8.21 (1H, s, 3-H), 8.31 (1H, s, 6-H), 

10.15 (1H, br s, NH); δC (101 MHz, CDCl3) 28.4 (3 × CH3), 56.6 (CH3), 82.2 (C), 101.4 

(CH), 122.4 (C), 123.7 (C), 128.1 (CH), 128.4 (CH), 129.0 (C), 129.9 (CH), 130.9 (CH), 

132.4 (CH), 138.0 (C), 138.7 (C), 152.4 (C), 162.6 (C); m/z (EI) 422.0465 (M
+
. 

C18H19
79

BrN2O5 requires 422.0477), 366 (17%), 322 (20), 294 (5), 197 (8), 105 (22). 

 

 

 

 

 

 

 

 



 138 
 

4-(4’-Bromophenyl)-1-(tert-butoxycarbonylamino)-5-methoxy-2-nitrobenzene (206) 

 

6

3
NO2

NHBocMeO

6'
5'

3'

2'

Br

 

 

The reaction was carried out according to the above procedure using 1-(tert-

butoxycarbonylamino)-4-iodo-5-methoxy-2-nitrobenzene (178) (2.00 g, 5.07 mmol), 4-

bromophenylboronic acid (1.02 g, 5.07 mmol), potassium carbonate (1.40 g, 10.1 mmol) 

and tetrakis(triphenylphosphine)palladium(0) (0.116 g, 0.101 mmol) in N,N-

dimethylformamide and water (100 mL, 9:1) to give 4-(4’-bromophenyl)-1-(tert-

butoxycarbonylamino)-5-methoxy-2-nitrobenzene (206) as a yellow solid (1.41 g, 66%).  

Mp 159–160 C; νmax/cm
−1

 (neat) 3356 (NH), 2986 (CH), 1735 (CO), 1620 (C=C), 1574, 

1443, 1273, 1142, 1018, 849; δH (400 MHz, CDCl3) 1.56 (9H, s, 3 × CH3), 3.96 (3H, s, 

OCH3), 7.37 (1H, d, J 8.5 Hz, 2’-H and 6’-H), 7.54 (1H, d, J 8.5 Hz, 3’-H and 5’-H), 8.20 

(1H, s, 3-H), 8.30 (1H, s, 6-H), 10.15 (1H, br s, NH); δC (101 MHz, CDCl3) 28.4 (3 × 

CH3), 56.6 (CH3), 82.2 (C), 101.4 (CH), 122.1 (C), 124.0 (C), 128.1 (CH), 129.0 (C), 

131.1 (2 × CH), 131.6 (2 × CH), 134.8 (C), 138.5 (C), 152.4 (C), 162.5 (C); m/z (EI) 

422.0482 (M
+
. C18H19

79
BrN2O5 requires 422.0477), 366 (33%), 322 (36), 292 (6), 197 

(13), 154 (8), 126 (8), 105 (8), 57 (100). 

 

2-Amino-4-(4’-bromophenyl)-1-(tert-butoxycarbonylamino)-5-methoxybenzene (208) 

 

6

3
NH2

NHBocMeO

6'
5'

3'

2'

Br

 

 

To a solution of 4-(4’-bromophenyl)-1-(tert-butoxycarbonylamino)-5-methoxy-2-

nitrobenzene (206) (1.00 g, 2.36 mmol) in ethyl acetate and pyridine (70 mL, 6:1) was 

added tin(II) chloride dihydrate (2.66 g, 11.8 mmol), and the reaction mixture stirred at 

room temperature for 17 h.  The mixture was then filtered through Celite
®
 and 

concentrated in vacuo.  The resulting solid was redissolved in ethyl acetate (100 mL), 

washed with water (2 × 50 mL) and brine (2 × 50 mL), dried (MgSO4) and concentrated in 
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vacuo.  The resulting solid was purified by trituarating with petroleum ether (40−60) and 

diethyl ether to give 2-amino-4-(4’-bromophenyl)-1-(tert-butoxycarbonylamino)-5-

methoxybenzene (208) as a white solid (0.697 g, 75%).  Mp 188–189 C; νmax/cm
−1

 (neat) 

3364 (NH), 2978 (CH), 1682 (CO), 1597 (C=C), 1505, 1420, 1250, 1165, 1057, 833; δH 

(400 MHz, CDCl3) 1.54 (9H, s, 3 × CH3), 3.32 (2H, br s, NH2), 3.75 (3H, s, OCH3), 6.69 

(1H, br s, NH), 6.80 (1H, s, 3-H), 7.30 (1H, s, 6-H), 7.35 (2H, d, J 8.4 Hz, 2’-H and 6’-H), 

7.49 (2H, J 8.4 Hz, 3’-H and 5-H); δC (101 MHz, CDCl3) 28.5 (3 × CH3), 56.3 (CH3), 81.1 

(C), 106.7 (CH), 121.1 (C), 122.1 (CH), 125.9 (C), 128.4 (C), 128.6 (C), 131.1 (2 × CH), 

131.2 (2 × CH), 136.9 (C), 151.8 (C), 153.6 (C); m/z (CI) 393.0819 (MH
+
. C18H22

79
BrN2O3 

requires 393.0814), 337 (51%), 315 (100), 293 (28), 259 (65), 215 (27), 113 (70), 73 (80).   

 

8-(3”’-Bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-2,3-dihydro-1H-

1,5-benzodiazepin-2-one (203) 
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To a solution of 4-(3’-bromophenyl)-1-(tert-butoxycarbonylamino)-5-methoxy-2-

nitrobenzene (205) (0.100 g, 0.236 mmol) in ethyl acetate and pyridine (7 mL, 6:1) was 

added tin(II) chloride dihydrate (0.379 g, 1.68 mmol), and the reaction mixture stirred at 

room temperature for 17 h.  The mixture was then filtered through Celite
®
 and 

concentrated in vacuo.  The resulting solid was redissolved in ethyl acetate (10 mL), 

washed with water (2 × 5 mL) and brine (2 × 5 mL), dried (MgSO4) and concentrated in 

vacuo.  The resulting solid was purified by flash column chromatography eluting with 10–

50% ethyl acetate in petroleum ether (40−60) to give 2-amino-4-(3’-bromophenyl)-1-(tert-

butoxycarbonylamino)-5-methoxybenzene (207) as a purple/black solid (0.073 g) which 

was used without further purification.  To a solution of 2-amino-4-(3’-bromophenyl)-1-

(tert-butoxycarbonylamino)-5-methoxybenzene (207) (0.073 g) in toluene (0.5 mL) was 

added tert-butyl 3-[3’-(1”H-imidazol-1”-yl)pheny]-3-oxopropanoate (145)
 
(0.066 g, 0.23 

mmol).  The solution was heated to 75 C and stirred for 7 h before cooling to room 

temperature and concentrating in vacuo.  The resulting material was purified by flash 
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column chromatography eluting with 0–4% ethanol in dichloromethane to give 4-(3””-

bromophenyl)-1-(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-

oxopropanamido}-5-methoxybenzene (209) as a white solid (0.054 g, 37%) (over two 

steps).  To a solution of 4-(3””-bromophenyl)-1-(tert-butoxycarbonylamino)-2-{3’-[3”-

(1”’H-imidazol-1”’-yl)phenyl]-3’-oxopropanamido}-5-methoxybenzene (209) (0.070 g, 

0.12 mmol) in dichloromethane (5 mL) at 0 °C was added trifluoroacetic acid (0.15 mL).  

The reaction mixture was warmed to room temperature and stirred for 1.5 h.  A saturated 

aqueous solution of sodium hydrogen carbonate (10 mL) was added, the solution extracted 

with dichloromethane (3 × 5 mL), dried (MgSO4) and concentrated in vacuo to give 8-(3”’-

bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (203) as a white solid (0.052 g, 93%).  Mp 299–300 C 

(decomposition); νmax/cm
−1

 (neat) 3395 (NH), 3189 (CH), 1668 (CO), 1502, 1235, 1166, 

1058, 1014; δH (500 MHz, DMSO-d6) 3.66 (2H, s, 3-H2), 3.84 (3H, s, OCH3), 7.14 (1H, s, 

6-H), 7.17 (2H, br s, 9-H, 4”-H), 7.42 (1H, t, J 7.9 Hz, 5”’-H), 7.50–7.59 (2H, m, 4”’-H 

and 6”’-H), 7.67–7.73 (2H, m, 5’-H and 2”’-H), 7.83–7.88 (2H, m, 4’-H and 5”-H), 8.06 

(1H, br d, J 8.0 Hz, 6’-H), 8.26 (1H, br s, 2’-H), 8.37 (1H, br s, 2”-H), 10.48 (1H, br s, 

NH); δC (126 MHz, CDCl3) 39.9 (CH2), 60.0 (CH3), 109.7 (CH), 118.3 (CH), 119.6 (CH), 

121.4 (C), 123.2 (CH), 123.6 (CH), 123.9 (C), 126.1 (CH), 126.9 (C), 128.3 (CH), 130.1 (2 

× CH), 130.4 (2 × CH), 131.7 (CH), 135.8 (CH), 137.4 (C), 138.8 (C), 139.5 (C), 139.9 

(C), 152.5 (C), 157.8 (C), 165.6 (C); m/z (ESI) 487.0751 (MH
+
. C25H20

79
BrN4O2 requires 

487.0764). 

 

8-(4”’-Bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-2,3-dihydro-1H-

1,5-benzodiazepin-2-one (211) 
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To a solution of 2-amino-4-(4’-bromophenyl)-1-(tert-butoxycarbonylamino)-5-

methoxybenzene (208) (0.200 g, 0.509 mmol) in toluene (1 mL) was added tert-butyl 3-

[3’-(1”H-imidazol-1”-yl)pheny]-3-oxopropanoate
 

(145)
 

(0.175 g, 0.611 mmol).  The 
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solution was stirred under reflux for 4 h before cooling to room temperature and 

concentrating in vacuo.  The resulting material was purified by flash column 

chromatography eluting with 0–3% ethanol in dichloromethane to give 4-(4””-

bromophenyl)-1-(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-

oxopropanamido}-5-methoxybenzene (210) as a white solid (0.226, 73%).  To a solution 

of 4-(4””-bromophenyl)-1-(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-

yl)phenyl]-3’-oxopropanamido}-5-methoxybenzene (210) (0.420 g, 0.694 mmol) in 

dichloromethane (4 mL) at 0 °C was added trifluoroacetic acid (0.5 mL).  The reaction 

mixture was warmed to room temperature and stirred for 1.5 h.  A saturated aqueous 

solution of sodium hydrogen carbonate (10 mL) was added, the solution extracted with 

dichloromethane (3 × 5 mL), dried (MgSO4) and concentrated in vacuo to give 8-(4”’-

bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (211) as a white solid (0.317 g, 94%).  Mp 187–188 C 

(decomposition); νmax/cm
−1

 (neat) 3121 (NH), 2839 (CH), 1688 (CO), 1480, 1375, 1236, 

1046, 817; δH (400 MHz, DMSO-d6) 3.66 (2H, s, 3-H2), 3.83 (3H, s, OCH3), 7.11–7.19 

(3H, m, 6-H, 9-H, 4”-H), 7.47 (2H, d, J 8.4 Hz, 2”’-H and 6”’-H), 7.65 (2H, d, J 8.4 Hz, 

3”’-H and 5”’-H), 7.70 (1H, t, J 7.9 Hz, 5’-H), 7.83–7.89 (2H, m, 4’-H and 5”-H), 8.06 

(1H, br d, J 7.9 Hz, 6’-H), 8.26 (1H, br s, 2’-H), 8.37 (1H, s, 2”-H), 10.52 (1H, br s, NH); 

δC (101 MHz, DMSO-d6) 39.9 (CH2), 55.9 (CH3), 109.7 (CH), 118.3 (CH), 119.6 (CH), 

120.7 (C), 123.2 (CH), 123.4 (CH), 123.9 (C), 126.1 (CH), 127.4 (C), 130.1 (CH), 130.4 

(CH), 131.2 (2 × CH), 131.3 (2 × CH), 135.9 (CH), 136.3 (C), 137.4 (C), 138.9 (C), 139.7 

(C), 152.4 (C), 157.7 (C), 165.7 (C); m/z (ESI) 487.0746 (MH
+
. C25H20

79
BrN4O2 requires 

487.0764). 
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4-[3’-(1”H-Imidazol-1”-yl)phenyl]-8-(3”’-iodophenyl)-7-methoxy-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (200) 
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A solution of 8-(3”’-bromophenyl)-4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-2,3-

dihydro-1H-1,5-benzodiazepin-2-one (203) (0.055 g, 0.113 mmol) in 1,4-dioxane (1.4 mL) 

was degassed for 0.25 h before the addition of hexamethylditin (91 μL, 0.44 mmol) and 

tetrakis(triphenylphosphine)palladium(0) (0.013 g, 0.011 mmol).  The reaction mixture 

was heated to 90 C and stirred under Ar for 6 h.  The mixture was concentrated in vacuo 

and purified by flash chromatography on silica eluting with 0–5% ethanol in 

dichloromethane to give 4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-8-[3”’-

(trimethylstannyl)phenyl]-2,3-dihydro-1H-1,5-benzodiazepin-2-one (212) (0.044 g, 70%).  

To a solution of 4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-8-[3”’-(trimethylstannyl) 

phenyl]-2,3-dihydro-1H-1,5-benzodiazepin-2-one (212) (0.044 g, 0.077 mmol) in ethanol 

(50 mL) was added sodium iodide (0.012 g, 0.080 mmol) in 0.01 M aqueous sodium 

hydroxide (12 mL).  The solution was then acidified to pH 4–5 using 0.05 M aqueous 

hydrochloric acid.  A solution of chloramine-T (0.036 g, 0.16 mmol) in water (40 mL) was 

added and the mixture stirred at room temperature for 0.5 h.  The reaction was then 

quenched by the addition of sodium metabisulfite (0.900 g) in water (90 mL).  The solution 

was then diluted with a saturated aqueous solution of sodium hydrogen carbonate (100 

mL), extracted with dichloromethane (4 × 80 mL), dried (MgSO4) and concentrated in 

vacuo.  The resulting solid was then purified by flash column chromatography eluting with 

0–3% ethanol in dichloromethane to give 4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-(3”’-

iodophenyl)-7-methoxy-2,3-dihydro-1H-1,5-benzodiazepin-2-one (200) as a yellow solid 

(0.022 g, 54%).  Mp 197–198 C (decomposition); νmax/cm
−1

 (neat) 3078 (NH), 2955 (CH), 

1674 (CO), 1582, 1497, 1366, 1234, 1041, 779; δH (500 MHz, CDCl3) 3.64 (2H, s, 3-H2), 

3.89 (3H, s, OCH3), 7.01 (1H, s, 9-H), 7.07 (1H, s, 6-H), 7.17 (1H, t, J 7.8 Hz, 5”’-H), 7.27 

(1H, br s, 4”-H), 7.42 (1H, br s, 5”-H), 7.50–7.56 (2H, m, 4’-H and 6”’-H), 7.62 (1H, t, J 

7.9 Hz, 5’-H), 7.69–7.72 (1H, m, 4”’-H), 7.89 (1H, t, J 1.6 Hz, 2”’-H), 7.92 (1H, br s, NH), 

7.99 (1H, br s, 2”-H), 8.06 (1H, br d, J 7.9 Hz, 6’-H), 8.23 (1H, t, J 1.8 Hz, 2’-H); δC (126 
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MHz, CDCl3) 40.0 (CH2), 56.0 (CH3), 94.1 (C), 109.7 (CH), 118.4 (CH), 120.7 (CH), 

122.6 (C), 123.7 (CH), 123.9 (CH), 126.8 (CH), 128.7 (C), 128.7 (CH), 129.8 (CH), 130.4 

(CH), 130.5 (CH), 135.7 (CH), 136.5 (CH), 137.9 (C), 138.2 (CH), 139.0 (C) 139.5 (C), 

140.1 (C), 153.7 (C), 157.6 (C), 166.3 (C); m/z (ESI) 535.0608 (MH
+
. C25H20IN4O2 

requires 535.0625). 

 

4-[3’-(1”H-Imidazol-1”-yl)phenyl]-8-(4”’-iodophenyl)-7-methoxy-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (201) 
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The reaction was carried out as described above, using 8-(4”’-bromophenyl)-4-[3’-(1”H-

imidazol-1”-yl)phenyl]-7-methoxy-2,3-dihydro-1H-1,5-benzodiazepin-2-one (211) (0.080 

g, 0.16 mmol), hexamethylditin (136 μL, 0.660 mmol) and 

tetrakis(triphenylphosphine)palladium(0) (0.019 g, 0.016 mmol) in 1,4-dioxane (2 mL)  to 

give 4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-8-[4”’-(trimethylstannyl)phenyl]-2,3-

dihydro-1H-1,5-benzodiazepin-2-one (213) (0.084 g, 89%).  Iododestannylation was then 

performed as described above, using 4-[3’-(1”H-imidazol-1”-yl)phenyl]-7-methoxy-8-[4”’-

(trimethylstannyl) phenyl]-2,3-dihydro-1H-1,5-benzodiazepin-2-one (213) (0.084 g, 0.15 

mmol), sodium iodide (0.023 g, 0.153 mmol) and chloramine-T (0.068 g, 0.30 mmol) in 

ethanol (100 mL) to give 4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-(4”’-iodophenyl)-7-

methoxy-2,3-dihydro-1H-1,5-benzodiazepin-2-one (201) as a yellow solid (0.042 g, 53%).  

Mp 203–204 C (decomposition); νmax/cm
−1

 (neat) 3109 (NH), 2932 (CH), 1678 (CO), 

1582 (C=C), 1500, 1477, 1312, 1230, 1038, 1003, 817; δH (400 MHz, DMSO-d6) 3.65 

(2H, s, 3-H2), 3.82 (3H, s, OCH3), 7.08–7.23 (3H, m, 6-H, 9-H and 4”-H), 7.32 (2H, d, J 

8.2 Hz, 2”’-H and 6”’-H), 7.70 (1H, t, J 7.8 Hz, 5’-H), 7.81 (2H, d, J 8.2 Hz, 3”’-H and 

5”’-H), 7.83–7.91 (2H, m, 4’-H and 5”-H), 8.06 (1H, br d, J 7.8 Hz, 6’-H), 8.26 (1H, br s, 

2’-H), 8.38 (1H, br s, 2”-H), 10.52 (1H, br s, NH); δC (101 MHz, CDCl3) 39.9 (CH2), 55.9 

(CH3), 93.6 (C), 109.7 (CH), 118.4 (CH), 119.6 (CH), 123.2 (CH), 123.3 (CH), 123.9 (C), 

126.1 (CH), 127.5 (C), 130.1 (CH), 130.4 (CH), 131.4 (2 × CH), 136.0 (CH), 136.6 (C), 
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137.0 (2 × CH), 137.4 (C), 138.9 (C), 139.7 (C), 152.4 (C), 157.7 (C), 165.7 (C); m/z 

(FAB) 535.0638 (MH
+
. C25H20IN4O2 requires 535.0631), 409 (9), 304 (7), 282 (29), 119 

(21), 96 (41), 85 (50), 56 (100).  

 

5-Hydroxy-2-nitro-4-(trifluoromethyl)aniline (217) 

 

6

3
F3C

HO

NO2

NH2  

 

A mixture of pyridine (0.69 mL, 8.4 mmol) and 37% aqueous hydrochloric acid (0.75 mL, 

9.1 mmol), was distilled under Ar at 250 °C to remove water.  The mixture was cooled to 

140 °C before adding 5-methoxy-2-nitro-4-(trifluoromethyl)aniline (195) (0.100 g, 0.423 

mmol).  After stirring at 150 °C for 8 h the reaction mixture was allowed to cool to room 

temperature.  The mixture was then diluted with water (10 mL) and brine (5 mL), extracted 

with ethyl acetate (9 × 15 mL), dried (MgSO4) and concentrated in vacuo.  The resulting 

material was purified by flash column chromatography eluting with 15−30% ethyl acetate 

in petroleum ether (40−60) to give 5-hydroxy-2-nitro-4-(trifluoromethyl)aniline (217) as a 

yellow solid (0.057 g, 61%).  Mp 196−198 °C (decomposition); νmax/cm
−1

 (neat) 3505 

(NH), 3387 (NH), 3187 (OH), 1634 (C=C), 1568, 1416, 1310, 1201, 1103, 922, 841; δH 

(400 MHz, CDCl3) 6.47 (1H, s, 6-H), 7.76 (2H, br s, NH2), 8.15 (1H, s, 3-H), 11.54 (1H, br 

s, OH); δC (101 MHz, CDCl3) 102.0 (CH), 106.3 (q, JC-C-F 31.6 Hz, C), 123.3 (q, JC-F 270.5 

Hz, C), 123.4 (C), 126.4 (q, JC-C-C-F 5.7 Hz, CH), 150.0 (C), 160.6 (C); m/z (EI) 222.0248 

(M
+
. C7H5F3N2O3 requires 222.0252), 203 (6%), 176 (8), 172 (7), 128 (6), 84 (100).  

 

5-Methoxymethyloxy-2-nitro-4-(trifluoromethyl)aniline (218) 
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3
F3C

MOMO

NO2

NH2  

 

To a solution of 5-hydroxy-2-nitro-4-(trifluoromethyl)aniline (217) (0.020 g, 0.090 mmol) 

in dichloromethane (0.5 mL) at 0 °C was added N,N-diisopropylethylamine (0.024 mL, 

0.135 mmol) and bromomethyl methyl ether (0.008 mL, 0.099 mmol).  The solution was 
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warmed to room temperature and stirred for 3 h.  The reaction mixture was then diluted 

with water (10 mL), extracted with dichloromethane (3 × 10 mL) and ethyl acetate (3 × 10 

mL), dried (MgSO4) and concentrated in vacuo.  The resulting residue was purified by 

flash column chromatography eluting with 10−20% ethyl acetate in petroleum ether 

(40−60) to give 5-methoxymethyloxy-2-nitro-4-(trifluoromethyl)aniline (218) (0.014, 

58%).  Mp 127−128 °C; νmax/cm
−1

 (neat) 3472 (NH), 3337 (NH), 2916 (CH), 1645 (C=C), 

1570, 1306, 1225, 1084, 921, 853; δH (400 MHz, CDCl3) 3.50 (3H, s, CH3), 5.28 (2H, s, 

CH2), 6.43 (2H, br s, NH2), 6.53 (1H, s, 6-H), 8.43 (1H, s, 3-H); δC (101 MHz, CDCl3) 

56.8 (CH3), 94.5 (CH2), 102.1 (CH), 110.2 (q, JC-C-F 32.8, C), 122.8 (q, JC-F 271.2 Hz, C), 

125.9 (C), 127.3 (q, JC-C-C-F 5.6 Hz, CH), 148.6 (C), 159.8 (C); m/z (EI) 266.0510 (M
+
. 

C9H9F3N2O4 requires 266.0514), 247 (10%), 235 (5), 159 (5), 78 (23).  

  

5-(tert-Butoxycarbonyloxy)-2-nitro-4-(trifluoromethyl)aniline (219) 

 

6

3
F3C

BocO

NO2

NH2  

 

To a solution of 5-hydroxy-2-nitro-4-(trifluoromethyl)aniline (217) (0.040 g, 0.18 mmol) 

in dichloromethane (2 mL) was added di-tert-butyl dicarbonate (0.039 g, 0.18 mmol), 4-

dimethylaminopyridine (0.002 g, 0.018 mmol) and triethylamine (0.025 mL, 0.18 mmol) 

and the solution stirred at room temperature for 4 h.  The reaction mixture was then diluted 

with water (5 mL) and extracted with dichloromethane (3 × 10 mL), dried (MgSO4) and 

concentrated in vacuo.  The resulting material was purified by flash column 

chromatography eluting with 20% ethyl acetate in petroleum ether (40−60) to give 5-(tert-

butoxycarbonyloxy)-2-nitro-4-(trifluoromethyl)aniline (219) as a yellow solid (0.039 g, 

67%).  Mp 109−110 °C; νmax/cm
−1 

(neat) 3491 (NH), 3383 (NH), 3003 (CH), 1763 (CO), 

1653 (C=C), 1568, 1240, 1121, 1055, 916; δH (500 MHz, CDCl3) 1.49 (9H, s, 3 × CH3), 

7.02 (1H, s, 6-H), 8.02 (2H, br s, NH2), 8.27 (1H, s, 3-H); δC (126 MHz, CDCl3) 27.0 (3 × 

CH3), 85.0 (C), 108.4 (q, JC-C-F 32.8, C), 113.4 (CH), 122.5 (q, JC-F 270.6, C), 126.2 (q, JC-

C-C-F 5.2 Hz, CH), 127.3 (C), 149.2 (C), 149.6 (C), 151.4 (C); m/z (EI) 322.0771 (M
+
. 

C12H13F3N2O5 requires 322.0777), 307 (12%), 279 (9), 222 (100), 203 (37), 176 (17), 149 

(25). 
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5-Benzyloxy-2-nitro-4-(trifluoromethyl)aniline (220) 

 

6

3
F3C

BnO

NO2

NH2  

 

To a solution of 5-chloro-2-nitro-4-(trifluoromethyl)aniline (190) (1.30 g, 5.40 mmol) in 

benzyl alcohol (17 mL) was added tetra-n-butylammonium bromide (0.087 g, 0.027 mmol) 

and potassium hydroxide (0.727 g, 13.0 mmol).  The reaction mixture was heated to 60 °C 

and stirred for 48 h.  After cooling to room temperature the reaction was quenched with 1 

M aqueous hydrochloric acid (100 mL), extracted with ethyl acetate (3 × 50 mL), dried 

(MgSO4) and concentrated in vacuo.  The addition of diethyl ether (50 mL) and petroleum 

ether (40–60) (50 mL) resulted in the formation of a precipitate that was collected by 

filtration to give 5-benzyloxy-2-nitro-4-(trifluoromethyl)aniline (220) as a yellow solid 

(1.01, 60%).  Mp 146–147 °C; (Found: C, 53.84; H, 3.48; N, 8.86. C14H11F3N2O3 requires 

C, 53.85; H, 3.55; N, 8.97%); vmax/cm
–1

 (neat) 3350 (NH), 1640 (C=C), 1576, 1451, 1335, 

1236, 1103, 907, 833; δH (400 MHz, CDCl3) 5.19 (2H, s, CH2), 6.25 (1H, s, 6-H), 6.43 

(2H, br s, NH2), 7.32–7.44 (5H, m, Ph), 8.45 (1H, s, 3-H); δC (101 MHz, CDCl3) 70.8 

(CH2), 100.1 (CH), 110.1 (q, JC-C-F 33.0 Hz, C), 122.7 (q, JC-F 271.2 Hz, C), 125.3 (C), 

126.7 (2 × CH), 127.4 (q, JC-C-C-F 5.7 Hz, CH), 128.4 (CH), 128.8 (2 × CH), 134.9 (C), 

148.6 (C), 161.1 (C); m/z (CI) 313 (MH
+
, 100%), 283 (80), 223 (100), 147 (54), 119 (63), 

89 (90). 

 

5-Benzyloxy-1-bis[tert-butoxycarbonyl)amino]-2-nitro-4-(trifluoromethyl)benzene 

(221) 

 

6

3
F3C

BnO

NO2

NBoc2  

   

To a solution of 5-benzyloxy-2-nitro-4-(trifluoromethyl)aniline (220) (1.70 g, 5.44 mmol) 

in dichloromethane (60 mL) was added di-tert-butyl dicarbonate (2.61 g, 12.0 mmol), 4-

dimethylaminopyridine (0.130 g, 1.09 mmol) and triethylamine (1.67 mL, 12.0 mmol) and 

the solution stirred at room temperature for 18 h.  The reaction mixture was then diluted 

with water (60 mL), extracted with dichloromethane (2 × 50 mL), dried (MgSO4) and 
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concentrated in vacuo.  The resulting material was then purified by flash chromatography 

eluting with 20% ethyl acetate in petroleum ether (40–60) to give 5-benzyloxy-1-bis[tert-

butoxycarbonyl)amino]-2-nitro-4-(trifluoromethyl)benzene (221) as a white solid (2.73 g, 

98%).  Mp 166–168 °C; (Found: C, 56.17; H, 5.29; N, 5.48. C24H27F3N2O7 requires C, 

56.25; H, 5.31; N, 5.47%); vmax/cm
–1

 (neat) 2992 (CH), 1790 (CO), 1624 (C=C), 1530, 

1343, 1233, 1150, 1098, 912, 847; δH (500 Hz, CDCl3) 1.37 (18H, s, 6 × CH3), 5.30 (2H, s, 

CH2), 6.90 (1H, s, 6-H), 7.33–7.41 (5H, m, Ph), 8.45 (1H, s, 3-H); δC (126 MHz, CDCl3) 

27.7 (6 × CH3), 71.3 (CH2), 84.4 (2 × C), 115.8 (CH), 119.2 (q, JC-C-F 33.0 Hz, C), 122.0 

(q, JC-F 272.9 Hz, C), 125.3 (q, JC-C-C-F 5.4 Hz, CH), 126.8 (2 × CH), 128.6 (CH), 129.0 (2 

× CH), 134.4 (C), 137.9 (C), 138.7 (C), 149.8 (C), 159.8 (C); m/z (CI) 413 (MH
+
−CO2t-

Bu, 59%), 401 (26), 375 (39), 357 (100), 327 (33), 313 (15), 267 (23), 237 (14), 113 (13). 

 

5-Benzyloxy-1-(tert-butoxycarbonylamino)-2-nitro-4-(trifluoromethyl)benzene (222) 

 

6

3
F3C

BnO

NO2

NHBoc
 

 

To a solution of 5-benzyloxy-1-[bis(tert-butoxycarbonyl)amino]-2-nitro-4-

(trifluoromethyl)benzene (221) (2.71 g, 5.29 mmol) in dichloromethane (73 mL) at 0 ºC 

was added trifluoroacetic acid (0.81 mL, 11 mmol).  The reaction mixture was then 

warmed to room temperature and stirred for 2 h.  The reaction mixture was diluted with a 

saturated aqueous solution of sodium hydrogen carbonate (50 mL), extracted with 

dichloromethane (2 × 50 mL), dried (MgSO4) and concentrated in vacuo to give 5-

benzyloxy-1-(tert-butoxycarbonylamino)-2-nitro-4-(trifluoromethyl)benzene (222) as a 

yellow solid (2.12 g, 97%).  Mp 159–160 °C; (Found: C, 55.14; H, 4.59; N, 6.74. 

C19H19F3N2O5 requires C, 55.34; H, 4.65; N, 6.79%); νmax/cm
−1

 (neat) 3343 (NH), 2992 

(CH), 1732 (CO), 1632 (C=C), 1580, 1439, 1341, 1236, 1140, 978, 843; δH (400 MHz, 

CDCl3) 1.57 (9H, s, 3 × CH3), 5.30 (2H, s, CH2), 7.32–7.50 (5H, m, Ph), 8.50 (1H, s, 6-H), 

8.52 (1H, s, 3-H), 10.18 (1H, br s, NH); δC (101 MHz, CDCl3) 28.1 (3 × CH3), 71.2 (CH2), 

82.7 (C), 102.8 (CH), 113.1 (q, JC-C-F 33.0 Hz, C), 122.4 (q, JC-F 272.0 Hz, C), 126.5 (q, JC-

C-C-F 5.5 Hz, CH), 127.4 (2 × CH), 127.7 (C), 128.5 (CH), 128.7 (2 × CH), 134.7 (C), 141.4 

(C), 151.9 (C), 161.6 (C); m/z (CI) 413 (MH
+
, 37%), 383 (11), 357 (100), 327 (13), 313 

(13), 267 (23), 223 (12). 
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2-Amino-1-(tert-butoxycarbonylamino)-5-hydroxy-4-(trifluoromethyl)benzene (223) 

  

6

3
F3C

HO

NH2

NHBoc
 

 

To a solution of 5-benzyloxy-1-(tert-butoxycarbonylamino)-2-nitro-4-

(trifluoromethyl)benzene (222) (1.16 g, 2.81 mmol) in methanol (40 mL) was added 10% 

palladium on carbon (0.116 g).  The reaction mixture was stirred under a hydrogen 

atmosphere for 17 h.  The mixture was then filtered through Celite
®
 and concentrated in 

vacuo.  The resulting material was then recrystallised from dichloromethane/petroleum 

ether (40–60) to give 2-amino-1-(tert-butoxycarbonylamino)-5-hydroxy-4-

(trifluoromethyl)benzene (223) as a white solid (0.729 g, 89%).  Mp 220–222 °C 

(decomposition); (Found: C, 48.94; H, 5.14; N, 9.29. C12H15F3N2O3 requires C, 49.32; H, 

5.17; N, 9.59%); νmax/cm
−1

 (neat) 3331 (NH), 2993 (CH), 2739, 1678 (CO), 1518, 1433, 

1277, 1155, 1119, 1074, 905, 831; δH (400 MHz, DMSO-d6) 1.48 (9H, s, 3 × CH3), 4.63 

(2H, br s, NH2), 6.86 (1H, s, 3-H), 7.30 (1H, s, 6-H), 8.40 (1H, br s, NH), 9.42 (1H, br s, 

OH); δC (101 MHz, DMSO-d6) 28.1 (3 × CH3), 79.4 (C), 110.1 (q, JC-C-F 29.8 Hz, C), 

110.2 (CH), 113.2 (q, JC-C-C-F 5.1 Hz, CH), 124.3 (q, JC-F 271.4 Hz, C), 129.4 (C), 131.0 

(C), 146.8 (C), 152.9 (C); m/z (CI) 293 (MH
+
, 39%), 237 (100), 193 (20), 113 (31).  

 

2-Amino-5-benzyloxy-1-(tert-butoxycarbonylamino)-4-(trifluoromethyl)benzene (225) 

 

6

3
F3C

BnO

NH2

NHBoc
 

 

To a solution of 5-benzyloxy-1-(tert-butoxycarbonylamino)-2-nitro-4-

(trifluoromethyl)benzene (222) (2.10 g, 5.09 mmol) in ethanol (145 mL) was added tin(II) 

chloride dihydrate (5.75 g, 25.5 mmol).  The reaction mixture was heated to 70 °C and 

stirred for 6 h.  After cooling to room temperature, the mixture was concentrated in vacuo.  

The resulting solid was dissolved in ethyl acetate (100 mL) and a saturated aqueous 

solution of sodium hydrogen carbonate (100 mL) was added.  The mixture was then 

extracted with ethyl acetate (3 × 70 mL), dried (MgSO4) and concentrated in vacuo.  The 

resulting material was purified by flash column chromatography eluting with 20% ethyl 
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acetate in petroleum ether (40–60) to give 2-amino-5-benzyloxy-1-(tert-

butoxycarbonylamino)-4-(trifluoromethyl)benzene (225) as an off-white solid (1.91 g, 

98%).  Mp 129–130 °C; νmax/cm
−1

 (neat) 3360 (NH), 2992 (CH), 1688 (CO), 1597 (C=C), 

1497, 1437, 1296, 1223, 1123, 1063, 883; δH (400 MHz, CDCl3) 1.54 (9H, s, 3 × CH3), 

3.12 (2H, br s, NH2), 5.13 (2H, s, CH2), 6.87 (1H, br s, NH), 7.07 (1H, s, 3-H), 7.28−7.49 

(5H, m, Ph), 7.66 (1H, s, 6-H); δC (101 MHz, CDCl3) 28.3 (3 × CH3), 70.9 (CH2), 81.2 (C), 

106.4 (CH), 113.9 (q, JC-C-F 31.9 Hz, C), 118.9 (q, JC-C-C-F 5.2 Hz, CH), 123.6 (q, JC-F 271.7 

Hz, C), 127.1 (2 × CH), 127.1 (C), 127.8 (CH), 128.5 (2 × CH), 133.3 (C), 136.6 (C), 

152.0 (C), 152.8 (C); m/z (CI) 383.1590 (MH
+
. C19H22F3N2O3 requires 383.1583), 327 

(33%), 283 (18), 113 (26), 71 (100). 

 

7-Benzyloxy-4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-trifluoromethyl-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (227) 
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BnO N
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To a solution of 2-amino-5-benzyloxy-1-(tert-butoxycarbonylamino)-4-

(trifluoromethyl)benzene (225) (0.250 g, 0.654 mmol) in toluene (1.5 mL) was added tert-

butyl 3-[3’-(1”H-imidazol-1”-yl]phenyl)-3-oxopropanoate (145) (0.223 g, 0.779 mmol).  

The solution was heated under reflux for 4 h before cooling to room temperature and 

concentrating in vacuo.  The resulting material was purified by flash column 

chromatography eluting with 0–5% ethanol in dichloromethane to give 5-benzyloxy-1-

(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-yl)phenyl]-3’-

oxopropanamido}-4-(trifluoromethyl)benzene (226) as a white solid (0.286 g, 74%).  To a 

solution of 5-benzyloxy-1-(tert-butoxycarbonylamino)-2-{3’-[3”-(1”’H-imidazol-1”’-

yl)phenyl]-3’-oxopropanamido}-4-(trifluoromethyl)benzene (226) (0.085 g, 0.14 mmol) in 

dichloromethane (0.75 mL) at 0 °C was added trifluoroacetic acid (0.25 mL).  The reaction 

mixture was warmed to room temperature and stirred for 2 h.  The solution was diluted 

with dichloromethane (5 mL).  A saturated aqueous solution of sodium hydrogen carbonate 

(5 mL) was added, the mixture extracted with dichloromethane (3 × 5 mL), dried (MgSO4) 

and concentrated in vacuo to give 7-benzyloxy-4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-
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trifluoromethyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one (227) as a white solid (0.059 g, 

88%).  Mp 209−211 °C (decomposition); νmax/cm
−1

 (neat) 3100 (NH), 2870 (CH), 1674 

(CO), 1493, 1404, 1306, 1223, 1121, 1055, 914, 895; δH (400 MHz, DMSO-d6) 3.70 (2H, 

s, 3-H2), 5.31 (2H, s, OCH2Ph), 7.16 (1H, br s, 4”-H), 7.32−7.52 (7H, m, 6-H, 9-H and Ph), 

7.71 (1H, t, J 7.9 Hz, 5’-H), 7.84−7.90 (2H, m, 4’-H and 5”-H), 8.06 (1H, br d, J 7.9 Hz, 

6’-H), 8.26 (1H, t, J 1.8 Hz, 2’-H), 8.36 (1H, br s, 2”-H), 10.60 (1H, br s, NH); δC (126 

MHz, DMSO-d6) 40.1 (CH2), 70.1 (CH2), 111.8 (CH), 115.5 (q, JC-C-F 30.9 Hz, C), 118.3 

(CH), 119.8 (CH), 120.9 (q, JC-C-C-F 5.2 Hz, CH), 123.4 (q, JC-F 271.9 Hz, C), 123.4 (C), 

123.6 (CH), 126.3 (CH), 127.1 (2 × CH), 128.0 (CH), 128.6 (2 × CH), 130.1 (CH), 130.5 

(CH), 135.9 (CH), 136.4 (C), 137.4 (C), 138.4 (C), 143.2 (C), 151.8 (C), 160.1 (C), 166.0 

(C); m/z (ESI) 477.1517 (MH
+
. C26H20F3N4O2 requires 477.1533). 

 

7-Hydroxy-4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-trifluoromethyl-2,3-dihydro-1H-1,5-

benzodiazepin-2-one (214) 

 

6

9
F3C

HO N

3

H
N

O

6'

5' 4'

2'

N

5"

4"

N
2"

 

 

To a suspension of 7-benzyloxy-4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-trifluoromethyl-2,3-

dihydro-1H-1,5-benzodiazepin-2-one (227) (0.150 g, 0.315 mmol) in dichloromethane (4 

mL) was added boron tribromide (1.0 M in dichloromethane) (1.55 mL, 1.55 mmol).  After 

stirring for 8 h, the solution was diluted with a saturated aqueous solution of sodium 

hydrogen carbonate (5 mL), extracted with ethyl acetate (3 × 10 mL), dried (MgSO4) and 

concentrated in vacuo.  The resulting solid was then triturated with dichloromethane to 

give 7-hydroxy-4-[3’-(1”H-imidazol-1”-yl)phenyl]-8-trifluoromethyl-2,3-dihydro-1H-1,5- 

benzodiazepin-2-one (214) as a pale yellow solid (0.099 g, 81%).  Mp 232−234 °C 

(decomposition); νmax/cm
−1

 (neat) 3071 (NH), 2922 (CH), 2743, 1651 (CO), 1582, 1491, 

1412, 1317, 1221, 1105, 1059, 889; δH (500 MHz, DMSO-d6) 3.65 (2H, s, 3-H2), 7.03 (1H, 

s, 6-H), 7.15, (1H, s, 4”-H), 7.40 (1H, s, 9-H), 7.69, (1H, t, J 7.9 Hz, 5’-H). 7.79−7.87 (2H, 

m, 4’-H and 5”-H), 8.04 (1H, br d, J 7.9 Hz, 6’-H), 8.21 (1H, br s, 2’-H), 8.32 (1H, s, 2”-

H), 10.37 (1H, s, NH), 10.51 (1H, br s, OH); δC (126 MHz, DMSO-d6) 39.9 (CH2), 113.8 

(CH), 114.0 (q, JC-C-F 30.4 Hz, C), 118.1 (CH), 119.6 (CH), 120.3 (q, JC-C-C-F 5.3 Hz, CH), 
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122.1 (C), 123.4 (CH), 123.4 (q, JC-F 272.0 Hz, C), 126.1 (CH), 129.9 (CH), 130.2 (CH), 

135.7 (CH), 137.3 (C), 138.5 (C), 143.0 (C), 151.4 (C), 159.8 (C), 165.8 (C); m/z (EI) 

386.0984 (M
+
. C19H13F3N4O2 requires 386.0991), 344 (50%), 324 (46), 296 (12), 169 (8), 

84 (14).  

 

Dimethyl (2S)-2-aminobutandioate hydrochloride (259)
149

 

 

MeO2C

3
2 CO2Me

NH2.HCl  

 

To a suspension of L-aspartic acid (255) (5.00 g, 37.6 mmol) in dry methanol (100 mL) at 

0 °C under argon was added thionyl chloride (3.80 mL, 52.6 mmol).  The mixture was 

allowed to warm to room temperature and stirred under reflux for 3 h.  The solution was 

allowed to cool to room temperature and concentrated in vacuo, azeotroping with toluene 

to give dimethyl (2S)-2-aminobutandioate hydrochloride (259) as a white solid (7.41 g, 

100%).  Mp 115–116 °C (lit.,
149

 114–115 °C); [α]D
24

 +22.0 (c 1.0, MeOH), lit.,
185

 [α]D
25

 

+16.4 (c 4.4, MeOH); δH (400 MHz, CDCl3) 3.26 (1H, dd, J 18.0, 4.4 Hz, 3-HH), 3.35 

(1H, dd, J 18.0, 3.2 Hz, 3-HH), 3.75 (3H, s, OCH3), 3.85 (3H, s, OCH3), 4.63 (1H, br s, 2-

H), 8.73 (3H, br s, NH3
+
); δC (101 MHz, CDCl3) 33.9 (CH2), 49.7 (CH), 52.7 (CH3), 53.7 

(CH3), 168.7 (C), 170.6 (C); m/z (CI) 162 (MH
+
, 100%), 148 (5), 102 (20).  

 

Dimethyl (2S)-2-(tritylamino)butandioate (260)
175

 

 

 

 

To a suspension of dimethyl (2S)-2-aminobutandioate hydrochloride (259) (7.38 g, 37.3 

mmol) in dichloromethane (300 mL), at 0 °C under argon was added triethylamine (10.4 

mL, 74.6 mmol) dropwise, followed by triphenylmethyl chloride (12.5 g, 44.8 mmol).  The 

reaction mixture was allowed to warm to room temperature and stirred for 6 h.  The 

mixture was diluted with dichloromethane (50 mL), washed with 2.0 M citric acid (300 

mL), water (150 mL), brine (150 mL), dried (MgSO4) and concentrated in vacuo.  The 

resulting material was purified by flash column chromatography eluting with 20% diethyl 
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ether in petroleum ether (40−60) to give dimethyl (2S)-2-(tritylamino)butandioate (260) as 

a white solid (12.6 g, 84%).  Mp 70–71 °C (lit.,
175

 71−72 °C);  [α]D
25

 +43.7 (c 1.0, CHCl3), 

lit.,
175

 [α]D
23

 +36.6 (c 1.0, CHCl3); δH (400 MHz, CDCl3) 2.50 (1H, dd, J 14.7, 7.0 Hz, 3-

HH), 2.65 (1H, dd, J 14.7, 5.4 Hz, 3-HH), 2.93 (1H, J 9.8 Hz, NH), 3.26 (3H, s, OCH3), 

3.65–3.73 (4H, m, 2-H and OCH3), 7.15–7.20 (3H, m, 3 × Ar-H), 7.23–7.28 (6H, m, 6 × 

Ar-H), 7.46–7.51 (6H, m, 6 × Ar-H); δC (101 MHz, CDCl3) 40.2 (CH2), 51.8 (CH3), 52.0 

(CH3), 53.7 (CH), 71.2 (C), 126.5 (3 × CH), 127.9 (6 × CH), 128.8 (6 × CH), 145.7 (3 × 

C), 171.0 (C), 173.9 (C); m/z (CI) 404 (MH
+
, 2%), 326 (9), 285 (11), 243 (100), 162 (95). 

 

Methyl (2S)-5-(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate (261)
175

 

 

3
2 CO2Me

NHTr

5

O

(MeO)2P

O  

 

To a solution of dimethyl methylphosphonate (4.44 mL, 39.7 mmol) in dry tetrahydrofuran 

(125 mL) at –78 °C under argon was added n-butyllithium (1.6 M in hexanes) (23.3 mL, 

37.2 mmol) dropwise.  After stirring at –78 °C for 1 h, the solution was added via cannula 

to a stirring solution of dimethyl (2S)-2-(tritylamino)butandioate (260) (5.00 g, 12.4 mmol) 

in dry tetrahydrofuran (125 mL) at –78 °C.  After stirring at –78 °C under argon for 3 h, 

the reaction was quenched by the addition of a saturated aqueous solution of ammonium 

chloride (80 mL).  The solution was then concentrated in vacuo, redissolved in ethyl 

acetate (200 mL), washed with water (100 mL) and brine (100 mL), dried (MgSO4) and 

concentrated in vacuo.  The resulting material was purified by flash column 

chromatography eluting with 80% ethyl acetate in petroleum ether (40−60) to give methyl 

(2S)-5-(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate (261) as a white solid 

(4.65 g, 76%).  Mp 116−117 °C (lit.,
175

 117−119 °C); [α]D
25

 +26.5 (c 0.5, CHCl3), lit.,
175

 

[α]D
24

 +31.1 (c 1.0, CHCl3); δH (400 MHz, CDCl3) 2.78 (1H, dd, J 16.7, 6.9 Hz, 3-HH), 

2.84−2.96 (2H, m, 3-HH and NH), 3.05 (1H, d, J 22.7, 5-HH), 3.06 (1H, d, J 22.7, 5-HH), 

3.29 (3H, s, OCH3), 3.70 (1H, ddd, J 9.6, 6.9, 4.7 Hz, 2-H), 3.76 (3H, s, OCH3), 3.79 (3H, 

s, OCH3), 7.16–7.21 (3H, m, 3 × Ar-H), 7.23–7.29 (6H, m, 6 × Ar-H), 7.45–7.49 (6H, m, 6 

× Ar-H); δC (101 MHz, CDCl3) 41.9 (d, JC-P 127.8 Hz, CH2), 48.8 (CH2), 52.0 (CH3), 52.9 

(CH), 53.1 (d, JC-O-P 6.0 Hz, 2 × CH3), 71.3 (C), 126.6 (3 × CH), 127.9 (6 × CH), 128.8 (6 

× CH), 145.7 (3 × C), 174.0 (C), 199.3 (d, JC-C-P 6.6 Hz, C); m/z (CI) 496 (MH
+
, 18%), 473 

(27), 254 (56), 243 (100). 
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4-(3’-Nitrophenyl)benzaldehyde (270)
186

 

 

4'

2'

6'
5'

3

2

6
5

O2N

CHO
 

 

To a solution of 4-bromobenzaldehyde (269) (0.100 g, 0.540 mmol) in N,N-

dimethylformamide and water (3 mL, 19:1) was added 3-nitrophenylboronic acid (0.135 g, 

0.809 mmol), potassium carbonate (0.187 g, 1.35 mmol) and 

tetrakis(triphenylphosphine)palladium(0) (0.031 g, 0.027 mmol).  The reaction mixture 

was heated to 110 ºC and stirred for 4 h.  After cooling to room temperature, the solution 

was concentrated in vacuo, redissolved in chloroform (10 mL), filtered through Celite
®

 and 

concentrated in vacuo.  The resulting solid was dissolved in diethyl ether (20 mL), washed 

with water (3 × 10 mL), dried (MgSO4) and concentrated in vacuo.  The crude product was 

purified by flash column chromatography eluting with 10% ethyl acetate in petroleum 

ether (40–60) to give 4-(3’-nitrophenyl)benzaldehyde (270) as an off-white solid (0.123 g, 

100%).  Mp 113−114 C (lit.,
186

 114−116 C); δH (400 MHz, CDCl3) 7.68 (1H, t, J 8.0 Hz, 

5’-H), 7.81 (2H, d, J 8.3 Hz, 3-H and 5-H), 7.95−8.00 (1H, m, 6’-H), 8.03 (2H, d, J 8.3 Hz, 

2-H and 6-H), 8.26−8.31 (1H, m, 4’-H), 8.51 (1H, t, J 2.0 Hz, 2’-H), 10.10 (1H, s, CHO); 

δC (101 MHz, CDCl3) 122.4 (CH), 123.3 (CH), 128.0 (2 × CH), 130.2 (CH), 130.7 (2 × 

CH), 133.4 (CH), 136.2 (C), 141.6 (C), 144.5 (C), 149.0 (C), 191.8 (CH); m/z (CI) 228 

(MH
+
, 100%), 198 (10). 

 

5-(4'-Fluorophenyl)-2-furaldehyde (272)
187

 

 

 

 

The reaction was carried out according to the above procedure using 5-bromo-2-

furaldehyde (271) (0.100 g, 0.571 mmol), 4-fluorophenylboronic acid (0.120 g, 0.858 

mmol), potassium carbonate (0.198 g, 1.43 mmol) and tetrakis 

(triphenylphosphine)palladium(0) (0.035 g, 0.030 mmol) in N,N-dimethylformamide and 

water (8 mL, 9:1), to give 5-(4'-fluorophenyl)-2-furaldehyde (272) as an off-white solid 
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(0.108 g, 100%).  Mp 76−77 °C (lit.,
187

 79−80 °C); δH (400 MHz, CDCl3) 6.79 (1H, d, J 

3.7 Hz, 4-H), 7.11−7.18 (2H, m, 3’-H and 5’-H), 7.32 (1H, d, J 3.7 Hz, 3-H), 7.79−7.85 

(2H, m, 2’-H and 6’-H), 9.64 (1H, s, CHO); δC (101 MHz, CDCl3) 107.5 (CH), 116.3 (d, 

JC-C-F, 22.3 Hz, 2 × CH), 123.9 (CH), 125.5, (d, JC-C-C-C-F 3.4 Hz, C), 127.5 (d, JC-C-C-F 8.4 

Hz, 2 × CH), 152.2 (C), 158.7 (C), 163.6 (d, JC-F 250.9 Hz, C), 177.3 (CH); m/z (CI) 191 

(MH
+
, 100%). 

 

Methyl (2S,5E)-4-oxo-6-phenyl-2-(tritylamino)hex-5-enoate (262)
175

 

 

3
2 CO2Me

NHTr

5

O
6

Ph

 

 

To a solution of methyl (2S)-5-(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate 

(261) (1.50 g, 3.03 mmol) in dry acetonitrile (30 mL) was added potassium carbonate 

(0.440 g, 3.18 mmol) and benzaldehyde (0.620 mL, 6.06 mmol).  The reaction mixture was 

heated to 50 °C and stirred for 48 h.  The mixture was then allowed to cool to room 

temperature before concentrating in vacuo.  The resulting residue was then dissolved in 

ethyl acetate (80 mL), diluted with water (40 mL), extracted with ethyl acetate (3 × 40 

mL), dried (MgSO4) and concentrated in vacuo.  The resulting material was purified by 

flash column chromatography eluting with 20% diethyl ether in petroleum ether (40−60) to 

give methyl (2S,5E)-4-oxo-6-phenyl-2-(tritylamino)hex-5-enoate (262) as a colourless oil 

(1.29 g, 90%).  [α]D
25

 +61.2 (c 0.5, CHCl3), lit.,
175

 [α]D
25

 +111 (c 1.0, CHCl3); δH (400 

MHz, CDCl3) 2.79 (1H, dd, J 15.2, 7.0 Hz, 3-HH), 2.88−2.95 (1H, m, 3-HH and NH), 3.28 

(3H, s, OCH3), 3.79 (1H, ddd, J 9.9, 7.0, 5.3 Hz, 2-H), 6.69 (1H, d, J 16.2 Hz, 5-H), 

7.15−7.20 (9H, m, 9 × Ar-H), 7.38−7.55 (12H, m, 6-H and 11 × Ar-H); δC (101 MHz, 

CDCl3) 45.7 (CH2), 52.0 (CH3), 53.8 (CH), 71.3 (C), 126.4 (CH), 126.5 (3 × CH), 127.9 (6 

× CH), 128.4 (2 × CH), 128.8 (6 × CH), 129.0 (2 × CH), 130.6 (CH), 134.4 (C), 143.3 

(CH), 145.8 (3 × C), 174.5 (C), 197.5 (C); m/z (FAB) 476 (MH
+
, 6%), 398 (10), 307 (10), 

243 (100), 232 (18). 
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Methyl (2S,5E)-6-(4’-nitrophenyl)-4-oxo-2-(tritylamino)hex-5-enoate (263)
188

 

 

3
2 CO2Me

NHTr

5

O
6

6'
5'

3'
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O2N

 

 

The reaction was carried out according to the above procedure using methyl (2S)-5-

(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate (261) (2.00 g, 4.04 mmol), 

potassium carbonate (0.613 g, 4.44 mmol) and 4-nitrobenzaldehyde (1.22 g, 8.08 mmol) in 

dry acetonitrile (40 mL).  The crude material was purified by flash column 

chromatography eluting with 30% diethyl ether in petroleum ether (40−60) to give methyl 

(2S,5E)-6-(4’-nitrophenyl)-4-oxo-2-(tritylamino)hex-5-enoate (263) as a pale yellow oil 

(1.42 g, 68%).  [α]D
23

 +57.0 (c 1.0, CHCl3), lit.,
188

 [α]D
25

 +43.3 (c 0.2, CHCl3); δH (400 

MHz, CDCl3) 2.79 (1H, dd, J 15.4, 6.9 Hz, 3-HH), 2.90 (1H, dd, J 15.4, 5.1 Hz, 3-HH), 

2.94 (1H, d, J 10.1 Hz, NH), 3.31 (3H, s, OCH3), 3.76–3.84 (1H, m, 2-H), 6.76 (1H, d, J 

16.2 Hz, 5-H), 7.16–7.21 (3H, m, 3 × Ar-H), 7.22–7.28 (6H, m, 6 × Ar-H), 7.45–7.52 (7H, 

m, 6-H and 6 × Ar-H), 7.67 (2H, d, J 8.8 Hz, 2’-H and 6’-H), 8.26 (2H, d, J 8.8 Hz, 3’-H 

and 5’-H); δC (101 MHz, CDCl3) 46.2 (CH2), 52.1 (CH3), 53.7 (CH), 71.3 (C), 124.2 (2 × 

CH), 126.6 (3 × CH), 128.0 (6 × CH), 128.8 (6 × CH), 128.9 (2 × CH), 129.6 (CH), 139.9 

(CH), 140.6 (C), 145.7 (3 × C), 148.7 (C), 174.3 (C), 196.9 (C); m/z (FAB) 521 (MH
+
, 

2%), 460 (6), 443 (5), 307 (46), 289 (26), 243 (42), 154 (100). 

 

Methyl (2S,5E)-6-(4’-methoxyphenyl)-4-oxo-2-(tritylamino)hex-5-enoate (264)
189

 

 

3
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The reaction was carried out according to the above procedure using methyl (2S)-5-

(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate (261) (0.600 g, 1.21 mmol), 

potassium carbonate (0.176 g, 1.27 mmol) and 4-methoxybenzaldehyde (0.291 mL, 2.42 

mmol) in dry acetonitrile (12 mL).  The crude material was purified by flash column 

chromatography eluting with 30% ethyl acetate in petroleum ether (40−60) to give methyl 
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(2S,5E)-6-(4’-methoxyphenyl)-4-oxo-2-(tritylamino)hex-5-enoate (264) as a colourless oil 

(0.328 g, 54%).  [α]D
26

 +44.6 (c 0.5, CHCl3), lit.,
189

 [α]D
23

 +54.1 (c 1.0, CHCl3); δH (400 

MHz, CDCl3) 2.78 (1H, dd, J 15.0, 7.0 Hz, 3-HH), 2.85−2.95 (2H, m, 3-HH and NH), 3.26 

(3H, s, OCH3), 3.75−3.85 (4H, m, 2-H and OCH3), 6.58 (1H, J 16.2 Hz, 5-H), 6.91 (2H, d, 

J 8.8 Hz, 3’-H and 5’-H), 7.13−7.19 (3H, m, 3 × Ar-H), 7.20−7.27 (6H, m, 6 × Ar-H), 

7.42−7.53 (9H, 6-H, 2’-H, 6’-H and 6 × Ar-H); δC (101 MHz, CDCl3) 45.7 (CH2), 52.0 

(CH3), 53.9 (CH), 55.4 (CH3), 71.3 (C), 114.5 (2 × CH), 124.3 (CH), 126.5 (3 × CH), 

127.1 (C), 127.9 (6 × CH), 128.9 (6 × CH), 130.1 (2 × CH), 143.2 (CH), 145.8 (3 × C), 

161.8 (C), 174.5 (C), 197.5 (C); m/z (FAB) 506 (MH
+
, 7%), 428 (6), 262 (10), 243 (100), 

161 (20). 

 

Methyl (2S,5E)-6-(naphthalen-2’-yl)-4-oxo-2-(tritylamino)hex-5-enoate (265)
175
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The reaction was carried out according to the above procedure using methyl (2S)-5-

(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate (261) (0.600 g, 1.21 mmol), 

potassium carbonate (0.176 g, 1.27 mmol) and 2-naphthaldehyde (0.378 g, 2.42 mmol) in 

dry acetonitrile (12 mL).  The crude material was purified by flash column 

chromatography eluting with 10−30% diethyl ether in petroleum ether (40−60) to give 

methyl (2S,5E)-6-(naphthalen-2’-yl)-4-oxo-2-(tritylamino)hex-5-enoate (265) as a white 

solid (0.563 g, 89%).  Mp 63−64 °C (lit.,
175

 62−63 °C); [α]D
26

 +52.7 (c 1.0, CHCl3), lit.,
175

 

[α]D
24

 +64.1 (c 1.0, CHCl3); δH (400 MHz, CDCl3) 2.84 (1H, dd, J 15.0, 7.0 Hz, 3-HH), 

2.94 (1H, d, J 10.0 Hz, NH), 2.97 (1H, dd, J 15.0, 5.3 Hz, 3-HH), 3.28 (3H, s, OCH3), 3.83 

(1H, ddd, J 10.0, 7.0, 5.3 Hz, 2-H), 6.80 (1H, d, J 16.2 Hz, 5-H), 7.15−7.20 (3H, m, 3 × 

Ar-H), 7.22−7.29 (6H, m, 6 × Ar-H), 7.46−7.56 (8H, m, 6’-H, 7’-H and 6 × Ar-H), 7.65 

(1H, d, J 16.2 Hz, 6-H), 7.66 (1H, dd, J 8.6, 1.7 Hz, 3’-H), 7.81−7.89 (3H, m, 4’-H, 5’-H 

and 8’-H), 7.94 (1H, br s, 1’-H); δC (101 MHz, CDCl3) 45.8 (CH2), 52.0 (CH3), 53.9 (CH), 

71.3 (C), 123.5 (CH), 126.5 (CH), 126.6 (3 × CH), 126.8 (CH), 127.4 (CH), 127.8 (CH), 

127.9 (6 × CH), 128.1 (CH), 128.6 (CH), 128.8 (6 × CH), 130.6 (CH), 131.9 (C), 133.3 

(C), 134.4 (C), 143.4 (CH), 145.8 (3 × C), 174.5 (C), 197.5 (C); m/z (FAB) 526 (MH
+
, 

5%), 448 (7), 418 (6), 382 (7), 282 (8), 243 (100), 181 (7). 
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Methyl (2S,5E)-6-(3”-nitrobiphen-4’-yl)-4-oxo-2-(tritylamino)hex-5-enoate (266)
175

 

 

 

 

The reaction was carried out according to the above procedure using methyl (2S)-5-

(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate (261) (0.700 g, 1.41 mmol), 

potassium carbonate (0.205 g, 1.48 mmol) and 4-(3’-nitrophenyl)benzaldehyde (270) 

(0.645 g, 2.84 mmol) in dry acetonitrile (12 mL).  The crude material was purified by flash 

column chromatography eluting with 40−60% ethyl acetate in petroleum ether (40−60) to 

give methyl (2S,5E)-6-(3”-nitrobiphen-4’-yl)-4-oxo-2-(tritylamino)hex-5-enoate (266) as a 

yellow oil (0.664 g, 79%).  [α]D
23

 +55.0 (c 1.0, CHCl3), lit.,
175

 [α]D
23

 +67.1 (c 1.0, CHCl3); 

δH (400 MHz, CDCl3) 2.82 (1H, dd, J 15.2, 6.9 Hz, 3-HH), 2.93 (1H, d, J 10.0 Hz, NH), 

2.94 (1H, dd, J 15.2, 5.2 Hz, 3-HH), 3.30 (3H, s, OCH3), 3.81 (1H, ddd, J 10.0, 6.9, 5.2 

Hz, 2-H), 6.75 (1H, d, J 16.2 Hz, 5-H), 7.16−7.21 (3H, m, 3 × Ar-H), 7.23−7.29 (6H, m, 6 

× Ar-H), 7.49−7.55 (7H, m, 6-H and 6 × Ar-H), 7.63−7.71 (5H, m, 2’-H, 3’-H, 5’-H, 6’-H 

and 5”-H), 7.93−7.97 (1H, m, 6”-H), 8.23−8.27 (1H, m, 4”-H), 8.49 (1H, t, J 2.0 Hz, 2”-

H); δC (101 MHz, CDCl3) 45.8 (CH2), 52.0 (CH3), 53.8 (CH), 71.3 (C), 121.9 (CH), 122.6 

(CH), 126.5 (3 × CH), 126.9 (CH), 127.7 (2 × CH), 127.9 (6 × CH), 128.8 (6 × CH), 129.1 

(2 × CH), 129.9 (CH), 132.9 (CH), 134.6 (C), 140.6 (C), 141.7 (C), 142.1 (CH), 145.7 (3 × 

C), 148.8 (C), 174.4 (C), 197.4 (C); m/z (FAB) 597 (MH
+
, 3%), 530 (23), 353 (9), 243 

(100), 219 (18), 165 (16). 

 

Methyl (2S,5E)-6-[5’-(4”-fluorophenyl)furan-2’-yl]-4-oxo-2-(tritylamino)hex-5-enoate 

(267)
175

 

 

 

 

The reaction was carried out according to the above procedure using methyl (2S)-5-

(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate (261) (0.700 g, 1.41 mmol), 
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potassium carbonate (0.205 g, 1.48 mmol) and 5-(4'-fluorophenyl)-2-furaldehyde (272) 

(0.540 g, 2.84 mmol) in dry acetonitrile (14 mL).  The crude material was purified by flash 

column chromatography eluting with 20−40% ethyl acetate in petroleum ether (40−60) to 

give methyl (2S,5E)-6-[5’-(4”-fluorophenyl)furan-2’-yl]-4-oxo-2-(tritylamino)hex-5-

enoate (267) as a yellow oil (0.631 g, 79%).  [α]D
23

 +59.8 (c 1.0, CHCl3), lit.,
175

 [α]D
23

 

+63.6 (c 1.0, CHCl3);  δH (400 MHz, CDCl3) 2.76 (1H, dd, J 14.9, 7.0 Hz, 3-HH), 2.90 

(1H, dd, J 14.9, 5.4 Hz, 3-HH), 2.91 (1H, d, J 9.5 Hz, NH), 3.27 (3H, s, OCH3), 3.76−3.84 

(1H, m, 2-H), 6.67 (1H, d, J 15.8 Hz, 5-H), 6.70 (1H, d, J 3.6 Hz, 4’-H), 6.75 (1H, d, J 3.6 

Hz, 3’-H), 7.09−7.20 (5H, m, 3”-H, 5”-H and 3 × Ar-H), 7.22−7.29 (7H, m, 6-H and 6 × 

Ar-H), 7.48−7.52 (6H, m, 6 × Ar-H), 7.68−7.74 (2H, m, 2”-H and 6”-H); δC (101 MHz, 

CDCl3) 46.3 (CH2), 52.0 (CH3), 54.0 (CH), 71.3 (C), 107.8 (CH), 116.1 (d, JC-C-F 22.1 Hz, 

2 × CH), 118.7 (CH), 123.0 (CH), 126.1 (d, JC-C-C-C-F 3.4 Hz, C), 126.3 (d, JC-C-C-F 8.1 Hz, 

2 × CH), 126.5 (3 × CH), 127.9 (6 × CH), 128.8 (6 × CH), 128.9 (CH), 145.8 (3 × C), 

150.4 (C), 155.6 (C), 162.9 (d, JC-F 249.4 Hz, C), 174.5 (C), 196.9 (C); m/z (FAB) 560 

(MH
+
, 25%), 482 (24), 316 (98), 243 (100), 216 (96), 166 (71), 124 (35). 

 

Methyl (2S,5E)-4-oxo-2-(tritylamino)hept-5-enoate (268)
189 

 

 

 

The reaction was carried out according to the above procedure using methyl (2S)-5-

(dimethoxyphosphoryl)-4-oxo-2-(tritylamino)pentanoate (261) (2.00 g, 4.04 mmol), 

potassium carbonate (0.586 g, 4.24 mmol) and acetaldehyde (0.680 mL, 12.1 mmol) in dry 

acetonitrile (30 mL).  The crude material was purified by flash column chromatography 

eluting with 30% ethyl acetate in petroleum ether (40−60) to give methyl (2S,5E)-4-oxo-2-

(tritylamino)hept-5-enoate (268) as a colourless oil (1.41 g, 84%).  [α]D
25

 +17.6 (c 1.0, 

CHCl3), lit.,
189

 [α]D
25

 +17.1 (c 1.0, CHCl3); δH (400 MHz, CDCl3) 1.89 (3H, dd, J 6.8, 1.6 

Hz, 7-H3), 2.66 (1H, dd, J 15.3, 7.0 Hz, 3-HH), 2.79 (1H, dd, J 15.3, 5.2 Hz, 3-HH), 2.85 

(1H, d, J 10.0 Hz, NH), 3.26 (3H, s, OCH3), 3.72 (1H, ddd, J 10.0, 7.0, 5.2 Hz, 2-H), 6.07 

(1H, dq, J 15.7, 1.6 Hz, 5-H), 6.77 (1H, dq, J 15.7, 6.8 Hz, 6-H), 7.15−7.20 (3H, m, 3 × 

Ar-H), 7.22−7.28 (6H, m, 6 × Ar-H), 7.45−7.50 (6H, m, 6 × Ar-H); δC (101 MHz, CDCl3) 

18.3 (CH3), 44.9 (CH2), 51.9 (CH3), 53.6 (CH), 71.2 (C), 126.5 (3 × CH), 127.9 (6 × CH), 
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128.8 (6 × CH), 132.1 (CH), 143.6 (CH), 145.8 (3 × C), 174.5 (C), 197.4 (C); m/z (CI) 414 

(MH
+
, 4%), 336 (14), 285 (36), 243 (100), 172 (47). 

 

Methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-4-oxo-6-phenylhex-5-enoate (277) 

 

 

 

Method A: To a solution of methyl (2S,5E)-4-oxo-6-phenyl-2-(tritylamino)hex-5-enoate 

(262) (0.745 g, 1.57 mmol) in methanol (33 mL) was added 37% aqueous hydrochloric 

acid (5.2 mL).  The reaction mixture was stirred at room temperature for 1 h before 

diluting with water (33 mL) and concentrating in vacuo to remove the methanol.  The 

remaining solution was then washed with ethyl acetate (20 mL) and the aqueous layer 

concentrated in vacuo.  The resulting material was dissolved in dichloromethane (22 mL) 

and N,N-diisopropylethylamine (0.680 mL, 3.93 mmol) was added followed by benzyl 

chloroformate (0.336 mL, 2.36 mmol).  The reaction mixture was stirred at room 

temperature for 1 h before diluting with water (50 mL).  The mixture was then extracted 

with dichloromethane (4 × 50 mL), dried (MgSO4) and concentrated in vacuo.  The 

resulting residue was purified by flash column chromatography eluting with 50% diethyl 

ether in petroleum ether (40−60) to give methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-4-

oxo-6-phenylhex-5-enoate (277) as a white solid (0.505 g, 88%).  Mp 77−78 °C; νmax/cm
−1

 

(neat) 3333 (NH), 3059 (CH), 2951 (CH), 1734 (CO), 1688 (CO), 1533 (C=C), 1435, 

1343, 1254, 1090, 980, 748; [α]D
26

 +26.5 (c 1.0, CHCl3); δH (400 MHz, CDCl3) 3.26 (1H, 

dd, J 17.9, 4.2 Hz, 3-HH), 3.48 (1H, dd, J 17.9, 4.2 Hz, 3-HH), 3.75 (3H, s, OCH3), 4.68 

(1H, dt, J 8.4, 4.2 Hz, 2-H), 5.12 (2H, s, OCH2Ph), 5.85 (1H, d, J 8.4 Hz, NH), 6.69 (1H, d, 

J 16.2 Hz, 5-H), 7.26−7.43 (8H, m, 8 × Ar-H), 7.51−7.59 (3H, m, 6-H and 2 × Ar-H); δC 

(101 MHz, CDCl3) 43.4 (CH2), 50.2 (CH), 52.8 (CH3) 67.2 (CH2), 125.6 (CH), 128.2 (2 × 

CH), 128.3 (CH), 128.6 (4 × CH), 129.2 (2 × CH), 131.0 (CH), 134.2 (C), 136.4 (C), 144.2 

(CH), 156.2 (C), 171.7 (C), 197.6 (C); m/z (CI) 368.1506 (MH
+
. C21H22NO5 requires 

368.1498), 326 (8%), 260 (23), 234 (21), 219 (18), 181 (6), 147 (17), 107 (16), 85 (100).  

Method B: To a solution of methyl (2S,5E)-4-oxo-6-phenyl-2-(tritylamino)hex-5-enoate 

(262) (1.06 g, 2.23 mmol) in dichloromethane (45 mL) was added trifluoroacetic acid (0.33 

mL, 4.5 mmol).  The reaction mixture was stirred at room temperature for 2 h before 

concentrating in vacuo.  The resulting residue was dissolved in chloroform (5 mL) and 
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petroleum ether (40−60) was added until an orange oil formed which stuck to the flask.  

The solvent was then decanted off, and the remaining oil was dissolved in dichloromethane 

(30 mL) followed by the addition of N,N-diisopropylethylamine (0.971 mL, 5.58 mmol) 

and benzyl chloroformate (0.478 mL, 3.35 mmol).  The reaction mixture was stirred at 

room temperature for 1 h before diluting with water (50 mL).  The mixture was then 

extracted with dichloromethane (4 × 50 mL), dried (MgSO4) and concentrated in vacuo.  

The resulting residue was purified by flash column chromatography eluting with 50% ethyl 

acetate in petroleum ether (40−60) to give methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-

4-oxo-6-phenylhex-5-enoate (277) as a white solid (0.682 g, 83%).  Spectroscopic data as 

reported above.   

 

Methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(4’-nitrophenyl)-4-oxohex-5-enoate 

(278) 

 

 

 

Method A: The reaction was carried out according to the previously described procedure 

for compound 277 (method A) using methyl (2S,5E)-6-(4’-nitrophenyl)-4-oxo-2-

(tritylamino)hex-5-enoate (263) (0.820 g, 1.58 mmol) and 37% aqueous hydrochloric acid 

(5.2 mL) in methanol (33 mL), followed by treatment with N,N-diisopropylethylamine 

(0.662 mL, 3.80 mmol) and benzyl chloroformate (0.325 mL, 2.28 mmol) in 

dichloromethane (25 mL).  The crude material was purified by flash column 

chromatography eluting with 30−40% ethyl acetate in petroleum ether (40−60) to give 

methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(4’-nitrophenyl)-4-oxohex-5-enoate 

(278) as a yellow solid (0.470 g, 72%).  Mp 73−74 °C; νmax/cm
−1

 (neat) 3331 (NH), 2953 

(CH), 1730 (CO), 1686 (CO), 1512 (C=C), 1343, 1202, 1059, 978, 860; [α]D
28

 +20.6 (c 

1.0, CHCl3); δH (400 MHz, CDCl3) 3.30 (1H, dd, J 18.1, 4.2 Hz, 3-HH), 3.48 (1H, dd, J 

18.1, 4.2 Hz, 3-HH), 3.76 (3H, s, OCH3), 4.70 (1H, dt, J 8.4, 4.2 Hz, 2-H), 5.12 (2H, s, 

OCH2Ph), 5.82 (1H, d, J 8.4 Hz, NH), 6.80 (1H, d, J 16.2 Hz, 5-H), 7.29−7.37 (5H, m, 

Ph), 7.58 (1H, d, J 16.2 Hz, 6-H), 7.69 (2H, d, J 8.8 Hz, 2’-H and 6’-H), 8.26 (2H, d, J 8.8 

Hz, 3’-H and 5’-H); δC (101 MHz, CDCl3) 42.9 (CH2), 50.1 (CH), 52.9 (CH3), 67.2 (CH2), 

124.3 (2 × CH), 128.1 (2 × CH), 128.3 (CH), 128.6 (2 × CH), 128.9 (CH), 129.1 (2 × CH), 
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136.2 (C), 140.3 (C), 140.8 (CH), 148.9 (C), 156.1 (C), 171.5 (C), 197.0 (C); m/z (CI) 

413.1352 (MH
+
. C21H21N2O7 requires 413.1349), 383 (42%), 348 (38), 305 (30), 275 (30), 

257 (23), 137 (68), 91 (68), 69 (100).  

Method B: The reaction was carried out according to the previously described procedure 

for compound 277 (method B) using methyl (2S,5E)-6-(4’-nitrophenyl)-4-oxo-2-

(tritylamino)hex-5-enoate (263) (0.391 g, 0.751 mmol) and trifluoroacetic acid (0.11 mL, 

1.5 mmol) in dichloromethane (15 mL), followed by treatment with N,N-

diisopropylethylamine (0.327 mL, 1.88 mmol) and benzyl chloroformate (0.161 mL, 1.13 

mmol) in dichloromethane (10 mL).  The crude material was purified by flash column 

chromatography eluting with 30−40% ethyl acetate in petroleum ether (40−60) to give 

methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(4’-nitrophenyl)-4-oxohex-5-enoate 

(278) as a yellow solid (0.238 g, 77%).  Spectroscopic data as reported above. 

 

Methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(4’-methoxyphenyl)-4-oxohex-5-

enoate (279) 

 

 

 

Method A: The reaction was carried out according to the previously described procedure 

for compound 277 (method A) using methyl (2S,5E)-6-(4’-methoxyphenyl)-4-oxo-2-

(tritylamino)hex-5-enoate (264) (0.318 g, 0.629 mmol) and 37% aqueous hydrochloric acid 

(2.3 mL) in methanol (15 mL), followed by treatment with N,N-diisopropylethylamine 

(0.270 mL, 1.55 mmol) and benzyl chloroformate (0.133 mL, 0.932 mmol) in 

dichloromethane (10 mL).  The crude material was purified by flash column 

chromatography eluting with 30% ethyl acetate in petroleum ether (40−60) to give methyl 

(2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(4’-methoxyphenyl)-4-oxohex-5-enoate (279) as 

a colourless oil (0.148 g, 59%).  νmax/cm
−1

 (neat) 3347 (NH), 2953 (CH), 1717 (CO), 1655 

(CO), 1597 (C=C), 1510 (C=C), 1248, 1208, 1169, 1026, 980, 816; [α]D
29

 +30.3 (c 1.0, 

CHCl3); δH (400 MHz, CDCl3) 3.23 (1H, dd, J 17.9, 4.2 Hz, 3-HH), 3.47 (1H, dd, J 17.9, 

4.2 Hz, 3-HH), 3.75 (3H, s, OCH3), 3.85 (3H, s, OCH3), 4.67 (1H, dt, J 8.5, 4.2 Hz, 2-H), 

5.12 (2H, s, OCH2Ph), 5.88 (1H, d, J 8.5 Hz, NH), 6.58 (1H, d, J 16.2 Hz, 5-H), 6.92 (2H, 

d, J 8.8 Hz, 3’-H and 5’-H), 7.27−7.38 (5H, m, Ph), 7.46−7.56 (3H, m, 6-H, 2’-H and 6’-
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H); δC (101 MHz, CDCl3) 42.1 (CH2), 50.1 (CH), 52.7 (CH3), 55.4 (CH3), 67.0 (CH2), 

114.5 (2 × CH), 123.2 (CH), 126.7 (C), 128.0 (2 × CH), 128.1 (CH), 128.5 (2 × CH), 130.2 

(2 × CH), 136.2 (C), 143.9 (CH), 156.1 (C), 161.9 (C), 171.7 (C), 197.4 (C); m/z (EI) 

397.1526 (M
+
. C22H23NO6 requires 397.1525), 336 (10%), 306 (10), 289 (19), 262 (19), 

243 (45), 182 (34), 161 (100). 

Method B: The reaction was carried out according to the previously described procedure 

for compound 277 (method B) using methyl (2S,5E)-6-(4’-methoxyphenyl)-4-oxo-2-

(tritylamino)hex-5-enoate (264) (0.600 g, 1.19 mmol) and trifluoroacetic acid (0.18 mL, 

2.4 mmol) in dichloromethane (25 mL), followed by treatment with N,N-

diisopropylethylamine (0.519 mL, 2.98 mmol) and benzyl chloroformate (0.255 mL, 1.79 

mmol) in dichloromethane (16 mL).  The crude material was purified by flash column 

chromatography eluting with 30−40% ethyl acetate in petroleum ether (40−60) to give 

methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(4’-methoxyphenyl)-4-oxohex-5-enoate 

(279) as a colourless oil (0.412 g, 87%).  Spectroscopic data as reported above. 

 

Methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(naphthalen-2’-yl)-4-oxohex-5-

enoate (280) 

 

 

 

The reaction was carried out according to the previously described procedure for 

compound 277 (method A) using methyl (2S,5E)-6-(naphthalen-2’-yl)-4-oxo-2-

(tritylamino)hex-5-enoate (265) (0.563 g, 1.07 mmol) and 37% aqueous hydrochloric acid 

(4.0 mL) in methanol (25 mL), followed by treatment with N,N-diisopropylethylamine 

(0.444 mL, 2.55 mmol) and benzyl chloroformate (0.218 mL, 1.53 mmol) in 

dichloromethane (17 mL).  The crude material was purified by flash column 

chromatography eluting with 20−30% ethyl acetate in petroleum ether (40−60) to give 

methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(naphthalen-2’-yl)-4-oxohex-5-enoate 

(280) as a colourless oil (0.368 g, 82%).  νmax/cm
−1

 (neat) 3339 (NH), 3059 (CH), 2951 

(CH), 1717 (CO), 1659 (CO), 1505 (C=C), 1207, 1057, 976, 812; [α]D
28

 +27.5 (c 1.0, 

CHCl3); δH (400 MHz, CDCl3) 3.31 (1H, dd, J 18.0, 4.2 Hz, 3-HH), 3.54 (1H, dd, J 18.0, 

4.2 Hz, 3-HH), 3.77 (3H, s, OCH3), 4.71 (1H, dt, J 8.6, 4.2 Hz, 2-H), 5.13 (2H, s, 
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OCH2Ph), 5.89 (1H, d, J 8.6 Hz, NH), 6.82 (1H, d, J 16.2 Hz, 5-H), 7.28−7.39 (5H, m, 

Ph), 7.51−7.58 (2H, m, 6’-H and 7’-H), 7.67 (1H, dd, J 8.6, 1.5 Hz, 3’-H), 7.73 (1H, d, J 

16.2 Hz, 6-H), 7.82−7.90 (3H, m, 4’-H, 5’-H and 8’-H), 7.96 (1H, br s, 1’-H); δC (101 

MHz, CDCl3) 42.4 (CH2), 50.1 (CH), 52.8 (CH3), 67.0 (CH2), 123.4 (CH), 125.5 (CH), 

126.9 (CH), 127.6 (CH), 127.8 (CH), 128.0 (2 × CH), 128.2 (CH), 128.5 (2 × CH), 128.7 

(CH), 128.9 (CH), 130.9 (CH), 131.5 (C), 133.2 (C), 134.5 (C), 136.2 (C), 144.2 (CH), 

156.1 (C), 171.6 (C), 197.4 (C); m/z (CI) 418.1653 (MH
+
. C25H24NO5 requires 418.1654), 

383 (32%), 310 (48), 275 (20), 147 (30), 107 (29). 

 

Methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(3”-nitrobiphen-4’-yl)-4-oxo-hex-5-

enoate (281) 

 

 

 

The reaction was carried out according to the previously described procedure for 

compound 277 (method A) using methyl (2S,5E)-6-(3”-nitrobiphen-4’-yl)-4-oxo-2-

(tritylamino)hex-5-enoate (266) (0.550 g, 0.922 mmol) and 37% aqueous hydrochloric acid 

(3.5 mL) in methanol (22 mL), followed by treatment with N,N-diisopropylethylamine 

(0.401 mL, 2.30 mmol) and benzyl chloroformate (0.197 mL, 1.38 mmol) in 

dichloromethane (16 mL).  The crude material was purified by flash column 

chromatography eluting with 30−50% ethyl acetate in petroleum ether (40−60) to give 

methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-(3”-nitrobiphen-4’-yl)-4-oxo-hex-5-

enoate (281) as a pale yellow solid (0.377 g, 84%).  Mp 102−104 °C; νmax/cm
−1

 (neat) 3325 

(NH), 3034 (CH), 1742 (CO), 1683 (CO), 1664 (CO), 1529 (C=C), 1342, 1179, 1057, 970, 

802; [α]D
27

 +17.2 (c 1.0, CHCl3); δH (400 MHz, CDCl3) 3.29 (1H, dd, J 18.0, 4.2 Hz, 3-

HH), 3.51 (1H, dd, J 18.0, 4.2 Hz, 3-HH), 3.77 (3H, s, OCH3), 4.71 (1H, dt, J 8.5, 4.2 Hz, 

2-H), 5.13 (2H, s, OCH2Ph), 5.87 (1H, d, J 8.5 Hz, NH), 6.77 (1H, d, J 16.2 Hz, 5-H), 

7.28−7.39 (5H, m, Ph), 7.57−7.70 (6H, m, 6-H, 2’-H, 3’-H, 5’-H, 6’-H, and 5”-H), 7.94 

(1H, ddd, J 7.8, 1.7, 1.0 Hz, 6”-H), 8.24 (1H, ddd, J 8.2, 2.2, 1.0 Hz, 4”-H), 8.46−8.50 

(1H, m, 2”-H); δC (101 MHz, CDCl3) 42.6 (CH2), 50.2 (CH), 52.9 (CH3), 67.2 (CH2), 

122.0 (CH), 122.8 (CH), 126.2 (CH), 127.9 (2 × CH), 128.2 (2 × CH), 128.3 (CH), 128.7 
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(2 × CH), 129.4 (2 × CH), 130.1 (CH), 133.0 (CH), 134.4 (C), 136.3 (C), 141.0 (C), 141.8 

(C), 143.1 (CH), 148.9 (C), 156.2 (C), 171.7 (C), 197.5 (C); m/z (CI) 489.1664 (MH
+
. 

C27H25N2O7 requires 489.1662), 459 (8%), 418 (10), 381 (42), 351 (23), 338 (32), 310 

(19), 275 (10), 181 (15), 147 (26), 91 (100). 

 

Methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-6-[5’-(4”-fluorophenyl)furan-2’-yl]-4-

oxohex-5-enoate (282) 

 

 

 

The reaction was carried out according to the previously described procedure for 

compound 277 (method A) using methyl (2S,5E)-6-[5’-(4”-fluorophenyl)furan-2’-yl]-4-

oxo-2-(tritylamino)hex-5-enoate (267) (0.626 g, 1.12 mmol) and 37% aqueous 

hydrochloric acid (4.1 mL) in methanol (28 mL), followed by treatment with N,N-

diisopropylethylamine (0.488 mL, 2.80 mmol) and benzyl chloroformate (0.240 mL, 1.68 

mmol) in dichloromethane (19 mL).  The crude material was purified by flash column 

chromatography eluting with 30% ethyl acetate in petroleum ether (40−60) to give methyl 

(2S,5E)-2-[(benzyloxycarbonyl)amino]-6-[5’-(4”-fluorophenyl)furan-2’-yl]-4-oxohex-5-

enoate (282) as a yellow oil (0.157 g, 31%).  νmax/cm
−1

 (neat) 3344 (NH), 2919 (CH), 1717 

(CO), 1600 (CO), 1506 (C=C), 1484, 1211, 1156, 1025, 967, 838; [α]D
26

 +11.3 (c 1.0, 

CHCl3); δH (400 MHz, CDCl3) 3.20 (1H, dd, J 17.9, 4.2 Hz, 3-HH), 3.44 (1H, dd, J 17.9, 

4.2 Hz, 3-HH), 3.75 (3H, s, OCH3), 4.68 (1H, dt, J 8.5, 4.2 Hz, 2-H), 5.12 (2H, s, 

OCH2Ph), 5.87 (1H, d, J 8.5 Hz, NH), 6.66 (1H, d, J 15.8 Hz, 5-H), 6.70 (1H, d, J 3.6 Hz, 

4’-H), 6.78 (1H, d, J 3.6 Hz, 3’-H), 7.09−7.16 (2H, m, 3”-H and 5”-H), 7.28−7.39 (6H, m, 

6-H and Ph), 7.68−7.74 (2H, m, 2”-H and 6”-H); δC (101 MHz, CDCl3) 42.7 (CH2), 50.3 

(CH), 52.9 (CH3), 67.2 (CH2), 108.0 (CH), 116.2 (d, JC-C-F 22.1 Hz, 2 × CH), 119.4 (CH), 

122.0 (CH), 126.1 (d, JC-C-C-C-F 3.0 Hz, C), 126.5 (d, JC-C-C-F 8.3 Hz, 2 × CH), 128.2 (2 × 

CH), 128.3 (CH), 128.7 (2 × CH), 129.6 (CH), 136.3 (C), 150.2 (C), 156.0 (C), 156.2 (C), 

163.1 (d, JC-F 249.5 Hz, C), 171.8 (C), 196.9 (C); m/z (EI) 451.1434 (M
+
. C25H22FNO6 

requires 451.1431), 343 (15%), 316 (22), 300 (100), 229 (20), 215 (66), 159 (26), 133 (20), 

123 (23), 91 (62). 
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Methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-4-oxohept-5-enoate (283) 

 

 

 

The reaction was carried out according to the previously described procedure for 

compound 277 (method B) using methyl (2S,5E)-4-oxo-2-(tritylamino)hept-5-enoate (268) 

(1.20 g, 2.90 mmol) and trifluoroacetic acid (0.43 mL, 5.8 mmol) in dichloromethane (60 

mL), followed by treatment with N,N-diisopropylethylamine (1.26 mL, 7.25 mmol) and 

benzyl chloroformate (0.621 mL, 4.35 mmol) in dichloromethane (50 mL).  The crude 

material was purified by flash column chromatography eluting with 30% ethyl acetate in 

petroleum ether (40−60) to give methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-4-oxohept-

5-enoate (283) as a colourless oil (0.726 g, 82%).  νmax/cm
−1

 (neat) 3331 (NH), 2951 (CH), 

1717 (CO), 1667 (CO), 1506 (C=C), 1437, 1207, 1028, 968, 739; [α]D
25

 +26.5 (c 1.0, 

CHCl3); δH (400 MHz, CDCl3) 1.91 (3H, dd, J 6.9, 1.6 Hz, 7-H3), 3.09 (1H, dd, J 18.0, 4.2 

Hz, 3-HH), 3.33 (1H, dd, J 18.0, 4.2 Hz, 3-HH), 3.73 (3H, s, OCH3), 4.62 (1H, dt, J 8.5, 

4.2 Hz, 2-H), 5.11 (2H, s, OCH2Ph), 5.80 (1H, d, J 8.5 Hz, NH), 6.09 (1H, dq, J 15.9, 1.6 

Hz, 5-H), 6.88 (1H, dq, J 15.9, 6.9 Hz, 6-H), 7.29−7.39 (5H, m, Ph); δC (101 MHz, CDCl3) 

18.5 (CH3), 41.6 (CH2), 50.1 (CH), 52.7 (CH3), 67.1 (CH2), 128.1 (2 × CH), 128.2 (CH), 

128.6 (2 × CH), 131.5 (CH), 136.4 (C), 144.6 (CH), 156.2 (C), 171.7 (C), 197.5 (C); m/z 

(CI) 306.1343 (MH
+
. C16H20NO5 requires 306.1341), 262 (33%), 198 (15), 172 (13), 155 

(17), 91 (16). 

   

Methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-(1’,5’-diphenyl-1’H-pyrazol-3’-

yl)propanoate (286) 

 

 

 

To a solution of methyl (2S,5E)-2-[(benzyloxycarbonyl)amino]-4-oxo-6-phenylhex-5-

enoate (277) (0.169 g, 0.460 mmol) in methanol (4 mL) was added phenylhydrazine (0.045 

mL, 0.46 mmol) and 37% aqueous hydrochloric acid (0.015 mL).  The reaction mixture 

was stirred under reflux for 17 h, cooled to room temperature and concentrated in vacuo.  
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The resulting material was diluted with ethyl acetate (10 mL) and a saturated aqueous 

solution of sodium hydrogen carbonate (10 mL), extracted with ethyl acetate (3 × 10 mL), 

dried (MgSO4) and concentrated in vacuo.  The resulting material was then dissolved in 

dichloromethane (30 mL) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.104 g, 0.460 

mmol) was added.  After stirring at room temperature for 2 h, the reaction mixture was 

concentrated in vacuo and the resulting solid purified by flash column chromatography 

eluting with 20−30% ethyl acetate in petroleum ether (40−60), followed by triturating with 

chloroform to give methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-(1’,5’-diphenyl-1’H-

pyrazol-3’-yl)propanoate (286) as a colourless oil (0.160 g, 76%).  νmax/cm
−1

 (neat) 3379 

(NH), 3061 (CH), 2951 (CH), 1717 (CO), 1503 (C=C), 1375, 1207, 1051, 912, 761; [α]D
23

 

+29.2 (c 0.25, CHCl3); δH (400 MHz, CDCl3) 3.23 (1H, dd, J 14.9, 4.9 Hz, 3-HH), 3.30 

(1H, dd, J 14.9, 5.8 Hz, 3-HH), 3.77 (3H, s, OCH3), 4.71–4.79 (1H, m, 2-H), 5.10 (2H, d, J 

12.2 Hz, OCHHPh), 5.14 (2H, d, J 12.2 Hz, OCHHPh), 5.77 (1H, d, J 8.4 Hz, NH), 6.27 

(1H, s, 4’-H), 7.15–7.36 (15H, m, 3 × Ph); δC (101 MHz, CDCl3) 30.7 (CH2), 52.5 (CH3), 

53.6 (CH), 67.0 (CH2), 107.6 (CH), 125.1 (2 × CH), 127.4 (CH), 128.2 (3 × CH), 128.4 

(CH), 128.5 (2 ×CH), 128.6 (2 ×CH), 128.8 (2 ×CH), 128.9 (2 ×CH), 130.5 (C), 136.5 (C), 

140.0 (C), 144.0 (C), 148.3 (C), 156.1 (C), 172.1 (C); m/z (CI) 456.1925 (MH
+
. 

C27H26N3O4 requires 456.1923), 368 (9%), 348 (100), 305 (11), 257 (23) 137 (59).  

 

Methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(4”-nitrophenyl)-1’-phenyl-1’H-

pyrazol-3’-yl]propanoate  (287) 

  

 

 

The reaction was carried out according to the above procedure using methyl (2S,5E)-2-

[(benzyloxycarbonyl)amino]-6-(4’-nitrophenyl)-4-oxohex-5-enoate (278) (150 mg, 0.364 

mmol), phenylhydrazine (0.035 mL, 0.364 mmol) and 37% aqueous hydrochloric acid 

(0.012 mL)  in methanol (3 mL), followed by treatment with 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (0.082 g, 0.364 mmol) in dichloromethane (22 mL).  The crude material was 

purified by flash column chromatography eluting with 20–40% ethyl acetate in petroleum 

ether (40−60) to give methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(4”-nitrophenyl)-

1’-phenyl-1’H-pyrazol-3’-yl]propanoate (287) as a yellow oil (0.138 g, 76%).  νmax/cm
−1
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(neat) 3350 (NH), 2951 (CH), 1717 (CO), 1597, 1502 (C=C), 1346, 1207, 1051, 972, 853; 

[α]D
23

 +30.0 (c 0.3, CHCl3); δH (400 MHz, CDCl3) 3.21−3.34 (2H, m, 3-H2), 3.77 (3H, s, 

OCH3), 4.73−4.81 (1H, m, 2-H), 5.09 (1H, d, J 12.2 Hz, OCHHPh), 5.14 (1H, d, J 12.2 

Hz, OCHHPh), 5.72 (1H, d, J 8.4 Hz, NH), 6.41 (1H, s, 4’-H), 7.18–7.23 (2H, m, 2 × Ar-

H), 7.29–7.38 (10H, m, 2”-H, 6”-H and 8 × Ar-H), 8.14 (2H, d, J 8.7 Hz, 3”-H and 5”-H); 

δC (101 MHz, CDCl3) 30.7 (CH2), 52.5 (CH3), 53.4 (CH), 67.0 (CH2), 108.7 (CH), 123.8 

(2 × CH), 125.2 (2 × CH), 128.1 (CH), 128.1 (CH), 128.2 (2 × CH), 128.5 (2 × CH), 129.3 

(4 × CH), 136.3 (C), 136.5 (C), 139.3 (C), 141.5 (C), 147.3 (C), 148.8 (C), 155.9 (C), 

171.9 (C); m/z (EI) 500.1695 (M
+
. C27H24N4O6 requires 500.1696), 441 (10%), 392 (15), 

349 (100), 278 (68), 232 (22), 91 (45).  

 

Methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(4”-methoxyphenyl)-1’-phenyl-1’H-

pyrazol-3’-yl]propanoate (288) 

 

 

 

The reaction was carried out according to the above procedure using methyl (2S,5E)-2-

[(benzyloxycarbonyl)amino]-6-(4’-methoxyphenyl)-4-oxohex-5-enoate (279) (0.080 g, 

0.20 mmol), phenylhydrazine (0.20 mL, 0.20 mmol) and 37% aqueous hydrochloric acid 

(0.050 mL)  in methanol (1.6 mL), followed by treatment with 2,3-dichloro-5,6-dicyano-

1,4-benzoquinone (0.046 g, 0.201 mmol) in dichloromethane (12 mL).  The crude material 

was purified by flash column chromatography eluting with 20–30% ethyl acetate in 

petroleum ether (40−60) to give methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(4”-

methoxyphenyl)-1’-phenyl-1’H-pyrazol-3’-yl]propanoate (288) as a colourless oil (0.073 

g, 75%).  νmax/cm
−1

 (neat) 3339 (NH), 2951 (CH), 1717 (CO), 1506 (C=C), 1436, 1248, 

1176, 1027, 835; [α]D
26

 +10.6 (c 0.5, CHCl3); δH (400 MHz, CDCl3) 3.23 (1H, dd, J 14.8, 

4.9 Hz, 3-HH), 3.30 (1H, dd, J 14.8, 5.7 Hz, 3-HH), 3.78 (3H, s, OCH3), 3.81 (3H, s, 

OCH3), 4.72−4.78 (1H, m, 2-H), 5.11 (1H, d, J 12.3 Hz, OCHHPh), 5.15 (1H, d, J 12.3 

Hz, OCHHPh), 5.80 (1H, d, J 8.3 Hz, NH), 6.22 (1H, s, 4’-H), 6.82 (2H, d, J 8.8 Hz, 3”-H 

and 5”-H), 7.11 (2H, d, J 8.8 Hz, 2”-H and 6”-H), 7.22−7.38 (10H, m, 2 × Ph); δC (101 

MHz, CDCl3) 30.8 (CH2), 52.5 (CH3), 53.6 (CH), 55.4 (CH3), 67.0 (CH2), 107.1 (CH), 

114.0 (2 × CH), 122.9 (C), 125.2 (2 × CH), 127.3 (CH), 128.2 (3 × CH), 128.6 (2 × CH), 
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128.9 (2 × CH), 130.1 (2 × CH), 136.5 (C), 140.1 (C), 143.9 (C), 148.2 (C), 156.1 (C), 

159.7 (C), 172.2 (C); m/z (EI) 485.1961 (M
+
. C28H27N3O5 requires 485.1951), 426 (31), 

377 (27), 334 (100), 318 (17), 263 (61), 199 (18), 91 (33).  

 

Methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(naphthalen-2”-yl)-1’-phenyl-1’H-

pyrazol-3’-yl]propanoate (289) 

 

 

 

The reaction was carried out according to the above procedure using methyl (2S,5E)-2-

[(benzyloxycarbonyl)amino]-6-(naphthalen-2’-yl)-4-oxohex-5-enoate (280) (0.150 g, 

0.359 mmol), phenylhydrazine (0.036 mL, 0.36 mmol) and 37% aqueous hydrochloric acid 

(0.013 mL) in methanol (3 mL), followed by treatment with 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (0.082 g, 0.36 mmol) in dichloromethane (22 mL).  The crude material was 

purified by flash column chromatography eluting with 20% ethyl acetate in petroleum 

ether (40−60) to give methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(naphthalen-2”-yl)-

1’-phenyl-1’H-pyrazol-3’-yl]propanoate (289) as a white solid (0.132 g, 73%).  Mp 66−67 

°C; νmax/cm
−1

 (neat) 3341 (NH), 2924 (CH), 1719 (CO), 1597, 1499 (C=C), 1341, 1207, 

1047, 818; [α]D
25

 +14.0 (c 0.2, CHCl3); δH (400 MHz, CDCl3) 3.27 (1H, dd, J 15.0, 4.7 Hz, 

3-HH), 3.33 (1H, dd, J 15.0, 5.7 Hz, 3-HH), 3.79 (3H, s, OCH3), 4.73−4.82 (1H, m, 2-H), 

5.10 (1H, d, J 12.3 Hz, OCHHPh), 5.15 (1H, d, J 12.3 Hz, OCHHPh), 5.81 (1H, d, J 8.1 

Hz, NH), 6.38 (1H, s, 4’-H), 7.19 (1H, dd, J 8.5, 1.6 Hz, 3”-H), 7.24−7.38 (10H, m, 2 × 

Ph), 7.46−7.53 (2H, m, 6”-H and 7”-H), 7.69−7.84 (4H, m, 1”-H, 4”-H, 5”-H and 8”-H); 

δC (101 MHz, CDCl3) 30.7 (CH2), 52.5 (CH3), 53.5 (CH), 67.0 (CH2), 107.9 (CH), 125.0 

(2 × CH), 126.3 (CH), 126.6 (CH), 126.7 (CH), 127.4 (CH), 127.7 (CH), 127.8 (C), 128.0 

(CH), 128.1 (CH), 128.1 (3 × CH), 128.2 (CH), 128.5 (2 × CH), 128.9 (2 × CH), 132.8 (C), 

133.0 (C), 136.4 (C), 139.9 (C), 143.9 (C), 148.3 (C), 156.0 (C), 172.1 (C); m/z (EI) 

505.2012 (M
+
. C31H27N3O4 requires 505.2002), 446 (10%), 397 (55), 354 (45), 338 (20), 

283 (100), 215 (10), 108 (13), 91 (27). 
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Methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(3”’-nitrobiphen-4”-yl)-1’-phenyl-

1’H-pyrazol-3’-yl]propanoate (290) 

 

 

 

The reaction was carried out according to the above procedure using methyl (2S,5E)-2-

[(benzyloxycarbonyl)amino]-6-(3”-nitrobiphen-4’-yl)-4-oxo-hex-5-enoate (281) (0.200 g, 

0.409 mmol), phenylhydrazine (0.040 mL, 0.41 mmol) and 37% aqueous hydrochloric acid 

(0.012 mL)  in methanol (3 mL), followed by treatment with 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (0.093 g, 0.41 mmol) in dichloromethane (25 mL).  The crude material was 

purified by flash column chromatography eluting with 20% ethyl acetate in petroleum 

ether (40−60) to give methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(3”’-nitrobiphen-

4”-yl)-1’-phenyl-1’H-pyrazol-3’-yl]propanoate (290) as a yellow oil (0.199 g, 84%).  

νmax/cm
−1

 (neat) 3359 (NH), 1716 (CO), 1508 (C=C), 1348, 1207, 1052, 803; [α]D
23

 +20.5 

(c 0.4, CHCl3); δH (400 MHz, CDCl3) 3.26 (1H, dd, J 15.0, 4.9 Hz, 3-HH), 3.32 (1H, dd, J 

15.0, 5.6 Hz, 3-HH), 3.79 (3H, s, OCH3), 4.73−4.81 (1H, m, 2-H), 5.11 (1H, d, J 12.3 Hz, 

OCHHPh), 5.15 (1H, d, J 12.3 Hz, OCHHPh), 5.78 (1H, d, J 8.3 Hz, NH), 6.36 (1H, s, 4’-

H), 7.26−7.39 (12H, m, 2”-H, 6”-H and 2 × Ph), 7.56 (2H, d, J 8.3 Hz, 3”-H and 5”-H), 

7.62 (1H, t, J 8.0 Hz, 5”’-H), 7.88−7.93 (1H, m, 6”’-H), 8.19−8.24 (1H, m, 4”’-H), 8.44 

(1H, t, J 1.9 Hz, 2”’-H); δC (101 MHz, CDCl3) 30.6 (CH2), 52.5 (CH3), 53.4 (CH), 67.0 

(CH2), 107.7 (CH), 121.8 (CH), 122.4 (CH), 125.2 (2 × CH), 127.2 (2 × CH), 127.6 (CH), 

128.1 (3 × CH), 128.5 (2 × CH), 129.0 (2 × CH), 129.4 (2 × CH), 129.9 (CH), 130.5 (C), 

132.8 (CH), 136.3 (C), 138.4 (C), 139.8 (C), 141.9 (C), 143.1 (C), 148.4 (C), 148.8 (C), 

156.0 (C), 172.0 (C); m/z (EI) 576.2007 (M
+
. C33H28N4O6 requires 576.2009), 476 (45%), 

425 (15), 409 (26), 381 (17), 354 (100), 308 (17). 
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1-tert-Butoxycarbonyl-1-methylhydrazine (298)
180

 

 

 

 

A solution of di-tert-butyl dicarbonate (2.18 g, 9.99 mmol) in dichloromethane (8 mL) was 

added dropwise to a solution of methylhydrazine (297) (0.53 mL, 10 mmol) in 

dichloromethane (7 mL).  The reaction mixture was stirred at room temperature for 1.5 h 

before concentrating in vacuo.  The resulting material was purified by flash column 

chromatography eluting with 50% ethyl acetate in petroleum ether (40−60) to give 1-tert-

butoxycarbonyl-1-methylhydrazine (298) as a colourless liquid (1.46 g, 81%).  

Spectroscopic data in accordance with literature.
180

  δH (500 MHz, CD3Cl) 1.47 (9H, s, 3 × 

CH3), 3.05 (3H, s, CH3), 4.07 (2H, br s, NH2); δC (126 MHz, CD3Cl) 28.1 (3 × CH3), 37.9 

(CH3), 79.8 (C), 156.7 (C); m/z (CI) 147 (MH
+
, 51%), 132 (12), 91 (100). 

 

 (2S)-2-Amino-3-[5’-(4”-nitrophenyl)-1’H-pyrazol-3’-yl]propanoic acid hydrochloride 

(300) 

 

 

 

To a solution of methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(4”-nitrophenyl)-1’-

phenyl-1’H-pyrazol-3’-yl]propanoate (287) (0.080 g, 0.16 mmol) in methanol (0.5 mL) 

was added 6.0 M aqueous hydrochloric acid (4.5 mL).  The reaction mixture was then 

stirred under reflux for 48 h.  After cooling to room temperature, the mixture was 

concentrated in vacuo and triturated with diethyl ether to give (2S)-2-amino-3-[5’-(4”-

nitrophenyl)-1’H-pyrazol-3’-yl]propanoic acid hydrochloride (300) as a pale yellow foam 

(0.060 g, 97%).  νmax/cm
−1

 (neat) 3340 (NH), 2918 (CH), 2850, 1744 (CO), 1596 (C=C), 

1515, 1344, 1255, 1080, 854; [α]D
27

 −6.0 (c 0.3, MeOH); δH (400 MHz, CD3OD) 

3.33−3.51 (2H, m, 3-H2), 4.45 (1H, br s, 2-H), 6.73 (1H, s, 4’-H), 7.29−7.46 (5H, m, Ph), 

7.48 (2H, d, J 7.7 Hz, 2”-H and 6”-H), 8.19 (2H, d, J 7.7 Hz, 3”-H and 5”-H); δC (101 

MHz, CD3OD) 29.6 (CH2), 53.5 (CH), 109.9 (CH), 124.7 (2 × CH), 126.8 (2 × CH), 129.6 
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(CH), 130.4 (2 × CH), 130.8 (2 × CH), 137.5 (C), 140.6 (C), 143.8 (C), 148.7 (C), 148.9 

(C), 170.9 (C); m/z (ESI) 351.1082 (M–H
–
. C18H15N4O4 requires 351.1099). 

 

(2S)-2-Amino-3-[5’-(3”’-nitrobiphen-4”-yl)-1’-phenyl-1’H-pyrazol-3’-yl]propanoic 

acid hydrochloride (301) 

 

 

 

The reaction was carried out according to the above procedure using methyl (2S)-2-

[(benzyloxycarbonyl)amino]-3-[5’-(3”’-nitrobiphen-4”-yl)-1’-phenyl-1’H-pyrazol-3’-

yl]propanoate (290) (0.150 g, 0.260 mmol) in methanol (0.7 mL) and 6.0 M aqueous 

hydrochloric acid (7.0 ml) to give (2S)-2-amino-3-[5’-(3”’-nitrobiphen-4”-yl)-1’-phenyl-

1’H-pyrazol-3’-yl]propanoic acid hydrochloride (301) as an off white foam (0.118 g, 

98%).  νmax/cm
−1

 (neat) 3026 (NH), 2861 (CH), 1731 (CO), 1525 (C=C), 1347, 1197, 973, 

803; [α]D
28

 −8.3 (c 0.3, MeOH); δH (400 MHz, CD3OD) 3.37 (1H, dd, J 15.8, 7.5 Hz, 3-

HH), 3.46 (1H, dd, J 15.8, 4.6 Hz, 3-HH), 4.45 (1H, dd, J 7.5, 4.6 Hz, 2-H), 6.64 (1H, s, 

4’-H), 7.33−7.45 (7H, m, 2”-H, 6”-H and Ph), 7.66−7.73 (3H, m, 3”-H, 5”-H and 5”’-H), 

8.04 (1H, ddd, J 7.8, 1.7, 0.9 Hz, 6”’-H), 8.23 (1H, ddd, J 8.2, 2.2, 0.9 Hz, 4”’-H), 

8.45−8.47 (1H, m, 2”’-H); δC (101 MHz, CD3OD) 29.6 (CH2), 53.6 (CH), 108.8 (CH), 

122.5 (CH), 123.4 (CH), 126.7 (2 × CH), 128.4 (2 × CH), 129.3 (CH), 130.3 (2 × CH), 

130.6 (2 × CH), 131.3 (CH), 131.5 (C), 134.1 (CH), 140.2 (C), 141.1 (C), 143.0 (C), 145.5 

(C), 148.5 (C), 150.3 (C), 171.0 (C); m/z (ESI) 429.1545 (MH
+
. C24H21N4O4 requires 

429.1557). 
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(2S)-2-Amino-3-(1’,5’-diphenyl-1’H-pyrazol-3’-yl)propanoic acid (302) 

 

 

 

To a solution of methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-(1’,5’-diphenyl-1’H-

pyrazol-3’-yl)propanoate (286) (0.086 g, 0.19 mmol) in methanol and water (5 mL, 7:3) 

was added cesium carbonate (0.080 g, 0.25 mmol).  The reaction mixture was stirred at 

room temperature for 17 h before concentrating in vacuo.  The resulting residue was 

dissolved in water (10 mL), acidified to pH 1 with 1.0 M aqueous hydrochloric acid, 

extracted with dichloromethane (3 × 10 mL), dried (MgSO4) and concentrated in vacuo.  

To a solution of the resulting residue in methanol (5 mL) was added 10% palladium on 

carbon (0.050 g), and the reaction mixture stirred under a hydrogen atmosphere for 17 h.  

The mixture was then filtered through Celite
®
 and concentrated in vacuo to give (2S)-2-

amino-3-(1’,5’-diphenyl-1’H-pyrazol-3’-yl)propanoic acid (302) as a white foam (0.051 g, 

88%).  νmax/cm
−1

 (neat) 3380 (NH), 3058 (CH), 1630 (CO), 1502 (C=C), 1423, 1375, 1112, 

760; [α]D
28

 −25.8 (c 0.4, MeOH); δH (400 MHz, CD3OD) 3.20−3.45 (2H, m, 3-H2), 4.02 

(1H, br s, 2-H), 6.53 (1H, s, 4’-H), 7.17−7.40 (10H, m, 2 × Ph); δH (126 MHz, CD3OD) 

30.3 (CH2), 55.7 (CH), 108.7 (CH), 126.7 (2 × CH), 129.0 (CH), 129.6 (3 × CH), 129.8 (2 

× CH), 130.1 (2 × CH), 131.5 (C), 141.3 (C), 145.9 (C), 150.0 (C), 173.8 (C); m/z (ESI) 

308.1382 (MH
+
. C18H18N3O2 requires 308.1394).  

 

(2S)-2-Amino-3-[5’-(4”-methoxyphenyl)-1’-phenyl-1’H-pyrazol-3’-yl]propanoic acid 

hydrochloride (303) 

 

 

 

To a solution of methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-[5’-(4”-methoxyphenyl)-1’-

phenyl-1’H-pyrazol-3’-yl]propanoate (288) (0.069 g, 0.14 mmol) in methanol and water (3 

mL, 7:3) was added cesium carbonate (0.059 g, 0.18 mmol).  The reaction mixture was 

stirred at room temperature for 17 h before concentrating in vacuo.  The resulting residue 
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was dissolved in water (5 mL), acidified to pH 1 with 1.0 M aqueous hydrochloric acid, 

extracted with dichloromethane (3 × 10 mL), dried (MgSO4) and concentrated in vacuo.  

The resulting residue was suspended in 6.0 M aqueous hydrochloric acid (2 mL) and the 

mixture stirred under reflux for 24 h.  The reaction mixture was concentrated in vacuo and 

triturated with diethyl ether to give (2S)-2-amino-3-[5’-(4”-methoxyphenyl)-1’-phenyl-

1’H-pyrazol-3’-yl]propanoic acid hydrochloride (303) as a white foam (0.041 g, 79%).  

νmax/cm
−1

 (neat) 3359 (NH), 3211 (OH), 2921 (CH), 1729 (CO), 1611, 1506 (C=C), 1437, 

1151, 834; [α]D
28

 −5.0 (c 0.2, CHCl3); δH (500 MHz, CD3OD) 3.28−3.46 (2H, m, 3-H2), 

3.78 (3H, s, OCH3), 4.38−4.43 (1H, m, 2-H), 6.46 (1H, s, 4’-H), 6.86 (2H, d, J 8.7 Hz, 3”-

H  and 5”-H), 7.14 (2H, d, J 8.7 Hz, 2”-H  and 6”-H), 7.27−7.42 (5H, m, Ph); δC (126 

MHz, CD3OD) 29.6 (CH2), 53.7 (CH), 55.9 (CH3), 108.0 (CH), 115.1 (2 × CH), 123.6 (C), 

126.6 (2 × CH), 129.0 (CH), 130.1 (2 × CH), 131.2 (2 × CH), 141.3 (C), 146.2 (C), 148.3 

(C), 161.6 (C), 171.0 (C); m/z (ESI) 338.1489 (MH
+
. C19H20N3O3 requires 338.1499). 

 

(2S)-2-Amino-3-[5’-(naphthalen-2”-yl)-1’-phenyl-1’H-pyrazol-3’-yl]propanoic acid 

hydrochloride (304) 

 

 

 

The reaction was carried out according to the above procedure using (2S)-2-

[(benzyloxycarbonyl)amino]-3-[5’-(naphthalen-2”-yl)-1’-phenyl-1’H-pyrazol-3’-

yl]propanoate (289) (0.030 g, 0.059 mmol) and cesium carbonate (0.026 g, 0.080 mmol) in 

methanol and water (1 mL, 7:3), followed by treating with 6.0 M aqueous hydrochloric 

acid (1 mL) to give (2S)-2-amino-3-[5’-(naphthalen-2”-yl)-1’-phenyl-1’H-pyrazol-3’-

yl]propanoic acid hydrochloride (304) as an off white foam (0.019 g, 83%).  νmax/cm
−1

 

(neat) 3366 (NH), 2922 (CH), 1739 (CO), 1596 (C=C), 1497, 1205, 1081, 819; [α]D
28

 −3.7 

(c 0.3, MeOH); δH (400 MHz, CD3OD) 3.40 (1H, dd, J 15.8, 7.3 Hz, 3-HH), 3.49 (1H, br 

d, J 15.8 Hz, 3-HH), 4.47 (1H, br s, 2-H), 6.70 (1H, s, 4’-H), 7.25 (1H, br d, J 8.2 Hz, 3”-

H), 7.32−7.42 (5H, m, Ph), 7.46−7.54 (2H, m, 6”-H and 7”-H), 7.72−7.87 (4H, m, 1”-H, 

4”-H, 5”-H and 8”-H); δC (101 MHz, CD3OD) 29.5 (CH2), 53.5 (CH), 109.0 (CH), 126.7 

(2 × CH), 127.0 (CH), 127.8 (CH), 128.0 (CH), 128.5 (C), 128.7 (CH), 129.2 (CH), 129.3 
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(2 × CH), 129.3 (CH) 130.2 (2 × CH), 134.4 (2 × C), 140.9 (C), 146.3 (C), 148.4 (C), 

171.0 (C); m/z (ESI) 358.1541 (MH
+
. C22H20N3O2 requires 358.1550). 

 

4.3 Procedure for [
35

S]GTPγS Binding Assay137 

 

ChemiSCREEN™ membrane preparation (recombinant human mGluR2 metabotropic 

glutamate receptor) was obtained from Millipore.  Membranes were permeabilised by 

addition of saponin to an equal concentration by mass, then mixed with [
35

S]GTPγS (0.1 

nM), glutamate (10 μM) and various concentrations of test compound, in HEPES (20 mM), 

sodium chloride (100 mM), magnesium chloride (10 mM), GDP (0.5 μM), pH 7.4 (final 

volume 100 µL).  Incubation was carried out for 30 min at 30°C.  Basal binding was 

determined without L-glutamate or test compound present, and stimulated binding without 

test compound present.  Reactions were terminated by rapid filtration through Whatman 

GF/B glass fibre filters pre-soaked with water using a 24-well Brandel cell harvester.  The 

filters were washed 3 times (1 mL per well per wash) with ice cold sodium phosphate (10 

mM), pH 7.4.  Disintegrations per minute were determined by liquid scintillation analysis 

and IC50 values derived from nonlinear regression analysis using GraphPad Prism Version 

4 (GraphPad Software Inc). 
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