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Summary

This thesis is concerned with solutions to nonlinear evolution equations. In particular

we examine two soliton equations, namely the Novikov- Veselov-Nithzik (NVN) equa-

tions and the modified Novikov-Veselov-Nithzik (mNVN) equations. We are interested

in the role that determinants and pfaffians play in determining new solutions to various

soliton equations. The thesis is organised as follows.

In chapter 1 we give an introduction and historical background to the soliton theory

and recall John Scott Russell's observation of a solitary wave, made in 1844. We

explain the Lax method and Hirota method and discuss the relevant basic topics of

soliton theory that are used throughout this thesis. We also discuss different types of

solutions that are applicable to nonlinear evolution equations in soliton theory. These

are wronskians, grammians and pfaffians.

In chapter 2 we give an introduction to pfaffians which are the main elements of

this thesis. We give the definition of a pfaffian and a classical notation for the pfaffians

is also introduced. We discuss the identities of pfaffians which correspond to the Jacobi

identity of determinants. We also discuss the differentiation of pfaffians which is useful

in pfaffian technique. By applying the pfaffian technique to the BKP equation, an

example of soliton solutions to the BKP equation is also given.

In chapter 3 we study the asymptotic properties of dromion solutions written in

terms of pfaffians. We apply the technique that is used in [35] for the Davey-Stewartson

(DS) equations to the NVN equations. We study the asymptotic properties of the (1, 1)-

dromion solution and generalize them to the (M, N)-dromion solution. Summaries

of these asymptotic properties are given. As an application, we apply the general

results obtained for the (M, N)-dromion solution to the (2,2)-dromion solution and

to the (1, 2)-dromion solution and show the asymptotic calculations explicitly for each



dromion. In the last section we give a number of plots which show various kind of

dromion scattering. These illustrate that dromion interaction properties are different

than the usual soliton interactions.

In chapter 4 we exploit the algebraic structure of the soliton equations and find so-

lutions in terms of fermion particles [54]. We show how determinants and pfaffians arise

naturally in the fermionic approach to soliton equations. We write the r-function for

charged and neutral free fermions in terms of determinants and pfaffians respectively,

and show that these two concepts are analogous to one another. Examples of how to

get soliton and dromion solutions from r-functions for the various soliton equations are

given,

In chapter 5 we use some results from [61] and [62]. We study two nonlinear evo-

lution equations, namely the Konopelchenko-Rogers (KR) equations and the modified

Novikov- Veselov-Nithzik (mNVN) equations. We derive a new Lax pair for the mNVN

equations which is gauge equivalent to a pair of operators. We apply the pfaffian tech-

nique to the KR and mNVN equations and show that these equations in the bilinear

form reduce to a pfaffian identity.

In this thesis, chapter 1 is a general introduction to soliton theory and chapter 2 is

an introduction to the main elements of this thesis. The contents of these chapters are

taken from various references as indicated throughout the chapters. Chapters 3, 4, 5

are the author's own work with some results used from other references also indicated

in the chapters.
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Chapter 1

Introd uction

1.1 The First Observation of a Soliton

Over one hundred and fifty years ago, while conducting experiments to determine the

most efficient design for canal boats, a young Scottish engineer named John Scott

Russell (1808-1882) made a remarkable scientific discovery. As he described it in his

"Report on Waves" [1] in 1844 :

"I was observing the motion of a boat which was rapidly drawn along a narrow

channel by a pair of horses, when the boat suddenly stopped - not so the mass of water

in the channel which it had put in motion; it accumulated round the prow of the vessel

in a state of violent agitation, then suddenly leaving it behind, rolled forward with great

velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-

defined heap of water, which continued its course along the channel apparently without

change of form or diminution of speed. I followed it on horseback, and overtook it still

rolling on at a rate of some eight or nine miles an hour, preserving its original figure

some thirty feet long and a foot to a foot and a half in height. Its height gradually

diminished, and after a chase of one or two miles I lost it in the windings of the channel.

Such, in the month of August 1834, was my first chance interview with that singular

and beautiful phenomenon which 1 have called the Wave of Translation" .

Following this discovery, Scott Russell built a wave tank in his laboratory, and in

order to study this phenomenon more carefully, he made further important observations
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of the properties of the solitary wave.

1.2 The Discovery of the Soliton and the KdV equa-

tion

Fifty years later in 1895, after extensive investigations, two Dutchmen, Korteweg and

de Vries, developed a nonlinear partial differential equation governing long one di-

mensional, small amplitude, surface gravity waves propagating in a shallow channel

of water. Their aim was to model the propagation of shallow water waves appli-

cable to situation that Scott Russell saw. (The attempt, in 1982, to recreate the

phenomena on the original site (Union canal) was a complete failure, but a more re-

cent attempt, in 1995, to recreate the soliton wave was successful. See the URL:

http://www.ma.hw.ac.uk/solitons.) This famous equation is known as the KdV equa-

tion [2] (named after Korteweg and de Vries)

(1.1 )

One of the interesting properties of the KdV equation is the existence of permanent

wave solutions. To obtain a travelling wave solution of the KdV equation, we seek a

solution in the following form

U(x, t) = W(x - et) = W(z).

Substituting this into the KdV equation in (1.1) yields a third order ordinary differential

equation

W'" + 6WW' - cW' = 0,

where' = fz. Integrating this twice gives

where A, B are constants. If we add the boundary conditions

W, W', W" -+ 0 as z -+ ±oo, the constants of integration are zero, and we have
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Solving this differential equation gives us the solitary wave solution

U(x, t) = W(z) = ~sech2( -¥(x - ct)).

If we take -4 = k, then the solution can be written as

(1.2)

where k is the wave number. The speed is c = 4P and the amplitude is a = 2k2• A

key feature of KdV is that the speed of solitary waves is proportional to their height.

Therefore taller waves travel faster than shorter waves and there is a tall, fast, thin

solitary wave or (it could be) a small, slow, fat solitary wave. The obvious question

then arises: what happens when a taller solitary wave overtakes a shorter (and therefore

slower) solitary wave; in particular, do the individual pulses survive the collision? The

answer to this question was not known until 1965 when Norman Zabusky and Martin

Kruskal [3] discovered numerically that KdV solitary waves maintained their identity

following collisions, and reported that "here we have a nonlinear physical process in

which interacting localized pulses do not scatter irreversibly." They considered the

initial-value problem for the KdV equation

Ut + UUx +eo.: = 0

U(x,O) = cos(7I'x)

and took 8 = 0.022. They discovered that after a short time the wave steepens and

almost produces a shock, and later a train of at least eight (well-defined) solitary waves

develop with the faster waves overtaking the slower waves. When two solitary waves

given in the form of (1.2), with different speeds and are initially well separated with

the faster one behind the slower one, the faster wave overlaps the slower wave and the

waves interact nonlinearly. After the interaction, the waves separate with the larger

one in front of the smaller one, and have their initial profiles. The only effect of the

interaction is the phase shifts, that is the waves are at different positions than where

they would have been. Zabusky and Kruskal coined the term 'soliton' to reflect the

particle-like nature of these robust travelling solitary waves.

Definition 1.2.1 (Soliton) A soliton is a solution of a nonlinear equation or system

which represents a wave of permanent form, is localized and decaying at infinity and

interacts with other solitons so that after the interaction it retains its form.
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1.3 Conservation Laws

An important stage in the development of the general method of solution for the

KdV equation was the discovery that the KdV equation had an infinite number of

independent conservation laws. A conservation law is an equation of the form

aT ax _ 0at + ax - ,
where T is density and X is the associated flux. If additionally X ~ 0 as Ixl -+ 00

then
d 100-d T(x, t)dx = -[X]~oo = o.
t -00

Therefore i:T(x, t)dx = C

for all time, and so C is conserved. The first three conservation laws for the KdV

equation are

Ut + (3U2 + Uxx)x 0,

(U2)t + (4U3 + 2UUxx - U;)x - 0,

(U3
- ~U;)t + (~U4 + 3U2Uxx - 6UU; - UxUxxx + ~U;x)x o.

The first two of these conservation laws correspond to conservation of mass and mo-

mentum respectively. The third was discovered by Whitham [4] in 1965. The fourth

and fifth conservation laws for the KdV equation were found by Kruskal and Zabusky

[5] in 1963. Later four more conservation laws were found and subsequently Miura

found the tenth conservation law for the KdV equation. The reason that they are

called first, second etc. is due to the highest order of the density, for example, the

conserved densities for the first three conservation laws are Tl = U, T2 = U2 and

T3 = U3 - !U;.

After studying the conservation laws of the KdV equation, in 1968, Miura [7] dis-

covered the following transformation, now known as Miura's trans/ormation:

(1.3)

If V is a solution of the modified Korteweg-de Vries (mKdV) equation
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then U given by the Miura transformation (1.3) is a solution of the KdV equation (1.1).

This can be seen from the relation

(1.4)

Every solution of the KdV equation can be obtained from a solution of the mKdV

equation via Miura's transformation, but the converse is not true. Miura's transfor-

mation leads to many other important results related to the KdV equation. Initially it

formed the basis of a proof that the KdV and mKdV equations have an infinite number

of conservation laws [8]. Let W be such that

(1.5)

which is called the Gardner transformation and may be thought of as generalization of

Miura's transformation (1.3). Then the equivalent relation to (1.4) is

Ut + 6UUx + Uxxx = (1 - e :x - 2f2W)(Wt + 6(W - f2W2)Wx + Wxxx).

(1.6)

Hence, U given by equation (1.5), is a solution of the KdV equation if W is a solution

of

(1.7)

and again the converse is not true. It is clear that if we set f = 0 then (1.7) becomes

the KdV equation and the Gardner transformation reduces to U = W. Since the KdV

equation does not contain e, then its solution U depends only on x and t; however

W, a solution of equation (1.7), depends on x, t and f. Then, in order to generate

conservation laws for the KdV equation, we take a power series solution of (1.5) in the

form
00

W(x, t; f:) =L f:nwn(x, t).
n=O

(1.8)

Since the equation (1.7) is in conservation form

a( ) a 2 2 3at W + ax (Wxx + 3W - 2f: W ) = 0,

then i:W(x, t; f:)dx = constant,
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and so the power series in E

I:Wn(x, t)dx = constant,

for each n = 0,1,2, .... Substituting (1.8) into (1.5) and equating coefficients of powers

of E and solving recursively gives

Wo U,

WI Wo,x = o;
W2 WI,x + W; = u; + U2

, (1.9)

W3 W2,x + 2WOWI = o.: + 4UUx,

W4 - W3,x + 2WoW2 + Wi = Uxxxx + 6UUxx + 5U; + 2U3,

etc.. Continuing to all powers of E gives an infinite number of conserved densities.

The corresponding conservation laws can be found by substituting (1.8) and (1.9) into

equation (1. 7) and equating coefficients of powers of Eo In particular we note that each

odd power of E gives an exact derivative and the corresponding integral repeats an

earlier conservation law. However the even powers of E give independent conservation

laws for the KdV equation.

1.4 Lax Method

Shortly after the discovery of the "soliton", in 1967 Gardner, Greene, Kruskal and

Miura [6] discovered a new method of solution for the KdV equation by making use

of the ideas of direct and inverse scattering. They termed the procedure the inverse-

scattering-transform (1ST) method.

In 1968 Lax [9] put the inverse-scattering-transform method for solving the KdV

equation into a more general framework which subsequently generalized as a method

for solving other partial differential equations. Let us consider two operators Land

M, where L is the operator of the spectral problem and M is the operator governing

the associated time evolution of the eigenfunctions

Lv AV,

Mv.

(1.10)

(1.11)
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Now we differentiate (1.10) with respect to t to get

and hence, using (1.11), we get

LtV + LMv

AtV + MLv.

Therefore we obtain

[Lt + (LM - ML)]v = AtV

and if we solve this equation for nontrivial eigenfunctions v(x, t) we obtain

i; + [L, M] = 0, (1.12)

where

[L,M]:= LM - ML, (1.13)

if and only if At = O. Equation (1.12) is called Lax's equation, and (1.13) is the

commutator. The Lax equation contains a nonlinear evolution equation for suitably

chosen Land M. For example if we take

a2

ox2 + U,

-4 a3 _ 3U!'_ - 3!'_Uax3 ax ax'

L (1.14)

M (1.15)

then L and M satisfy (1.12) provided that U satisfies the KdV equation (1.1). There-

fore, the KdV equation can be thought of as the compatibility condition of the two

linear operators given by (1.14) and (1.15). If a nonlinear partial differential equation

arises as the compatibility condition of two such operators L and M, then (1.12) is

called the Lax representation of the partial differential equation and L and M are the

Lax Pair.

1.5 Hirota Bilinear Method

In 1971 Hirota [10] developed a direct method for finding N-soliton solutions of non-

linear evolution equations, which are obtained from a nonlinear evolution equation via

7



a dependent variable transformation. This method is called the Hirota bilinear method

and has application to a large class of nonlinear evolution equations [29].

Here we show how the KdV equation can be written in the Hirota bilinear form

and hence we find soliton solutions of the KdV equation [11].

We start by introducing the dependent variable transformation in the following

form:

fj2
U = 2 ax2logf,

where f(x, t) is a new dependent variable. Substituting (1.16) into (1.1), integrating

(1.16)

twice with respect to x and setting integration constants to zero, we obtain

(1.17)

which is the bilinear form of the KdV equation. This equation can be expressed in

terms of Hirota bilinear derivatives in the following way

(1.18)

where Dx and D, are Hirota operators. These are defined in more general form by

D' DmDng·f =x y t

(fJ fJ)l(fJ fJ)m(fJ a)nfJx - fJx' ay - ay' at - at' g(x, y, t)f(x', y', t') I =:~=
1'=1

for nonnegative integers l, rn, n. To find soliton solutions of the KdV equation from

the Hirota form (1.18) we look for solutions in the form
N

f = 1+ LEnf(n). (1.19)
n=1

Substituting (1.19) into (1.18) and equating coefficients of powers of E gives the follow-

ing recursion relations:

E: j(l) + /(1)xxxx xt

j(2) + 1(2)xxxx xt

j(3) + 1(3)xxxx xt

- 0,

-~(DxDt + D!)j(l) . j(1),

-(DxDt + D~)f(l) . f(2),

(1.20)

and so on. The N-soliton solution for the KdV equation is found by assuming that

f(1) has the form
N

f(l) =L exp(rli),
i=l

8



where TJi = 2kix - wit + XiO and ki, Wi = 8k? and XiO are constants. Then the N-soliton

solution can be written in the bilinear form in the following form:

where

For N = 1, we take

and by solving (1.20) we find that

j(n) = 0, for

Therefore we have

and substituting this into (1.16), we get the same solution as in (1.2) apart from a

phase constant Xl,O

the one-soliton solution for the KdV equation.

For N = 2, we take

and by solving (1.20) we find that

where

and

j(n) = 0, for

Therefore the two-soliton solution for the KdV equation is obtained from

82
U(x, t) = 28x2 (log h),

where

9



1.6 Wronskian, Grammian and Pfaffian Solutions

More recently the series ansatz (1.19) has been replaced in the Hirota method by

expressions in terms of wronskians [12], grammians [15] or pfaffians [44]. Wronskians

and grammians are special types of determinants and will be explained below. Pfaffians

are explained in the next chapter. There are two main advantages of these types of

solution over the series ansatz; they allow much easier methods for verifying solutions

and are a convenient form in which to study the asymptotic properties of solutions. The

method of solution in terms of wronskians, grammians or pfaffians can be applied to

many nonlinear partial differential equations, and give rise to different type solutions,

for instance soliton solutions, lump solutions and dromion solutions.

1.6.1 Wronskian Solutions

Writing the solution of evolution equations in terms of wronskians has the advantage

of avoiding long complicated calculations, especially when verifying the N-soliton so-

lution. The wronskians have nice properties when differentiated since each row of a

wronskian is the derivative of the previous one. Therefore the derivative of a wronskian

is a single determinant. Higher derivatives lead to sums of determinants that depend

on the number of differentiations and not the number N of solitons. For example we

consider the Kadomtsev-Petviashvili (KP) [37] equation

(1.21 )

which has the solution
fj2

U = 2 8x2logf.

Substitution of (1.22) in (1.21) gives

(1.22)

II« - fxft + ffxxxx + 3/;x - 4fxfxxx + 3ffyy - 3f; = 0, (1.23)

and this can be written in Hirota form as

(1.24)

Next we introduce the wronskian determinant, namely

10



where the wronskian W of the elements cPi (i = 1, ... , N) is defined as

cPl cPN

W(cPhcP2, .. ·,cPN) =
cP~l) cP~)

with (j) 8i cPi
cPi = 8xi

cP~N-l) cPt-I)

and cPi satisfies the partial differential equations

0,

= o.

In order to make the differentiation of wronskians easier, it is convenient to use the

following notation for f

f

cPN cPt-I)
IcP' ..... cP(N-l) I· (1.25)

(See [12] for details). To obtain the soliton solutions we take

A." -_ e-kiX+k~YHk~t + "",'ekiX+k~Y-4k~t, ('; - 1 N)'fJ u .- , ••• , (1.26)

where 0i are constants. Differentiating f in (1.25) and substituting the derivatives into

the left hand side of (1.23) gives a 2N x 2N determinant, which vanishes by virtue

of Laplace expansion. Thus, using the relation in (1.26), (1.22) gives the N-soliton

solutions for the KP equation (1.21).

1.6.2 Grammian Solutions

Grammian solutions are the determinants of a matrix whose elements are in an integral

form. The grammian method is much more practical than the wronskian method,

since the Nth order wronskian solution requires by definition (N - 1) differentiations,

whereas the Nth order grammian needs only one integration. In this method the

solution is expressed in terms of grammian determinants and is verified by using the

11



Jacobi identity. For example for the KP equation (1.21), the solution f is given in the

following determinantal form

(1.27)

with the entries

where Cij are constants and the ¢i and 'l/Jj are functions of x, y, t and satisfy the following

linear partial differential equations

(48; - 8t)¢i 0,
(48; - 8t)'l/Jj 0,
(38; + 8y)'l/Jj - 0,
(38; - 8y)¢i 0.

(See [15] for details and that f given in (1.27) satisfies the bilinear equation (1.23) by

virtue of a Jacobi identity.)

There is a similarity between grammian solutions and pfaffian solutions. The gram-

mian solution of a soliton equation reduces to a Jacobi identity, whereas the pfaffian

solution reduces to a pfaffian identity. These identities are described in the next chap-

ter. The derivative of grammians and pfaffians also have similar structures. The

derivative of grammians can be expressed in terms of bordered determinants. These

expressions arise because, in general, for an n x n matrix A whose entries aij are such

that a~j = O'.i/3j, the derivative of its determinant can be written as

n

IAI' = L(-I)i+jO'.i/3jAij
i,j=1

A

° /31 ... e:

where Aij is the (i,j)th minor of A. The derivatives of pfaffians are explained in the

next chapter.

12



Chapter 2

Introd uction to Pfaffians

Roughly speaking, a pfaffian is the square root of the determinant of a skew-symmetric

matrix. Let

be a n x n skew-symmetric matrix (i.e. aij = -aji and consequently aii = 0 for

i,j = 1,2",' , n). It is known that if n is odd, then det(A) is zero, but if n is even

det(A) is a perfect square of a polynomial in the entries aij, called the pfaffian of A

and denoted by Pf(A). To be precise, for even n

a

where a runs over the permutations of {I,·" ,n} such that

a(l) < a(2),a(3) < a(4),··· ,a(n -1) < a(n),

a(l) < a(3) < .. , < a(n - 1),

and f(a)( = ±1) is the parity of this permutation. For example, if we take the dimension

of matrix A to be 4 we have,

0 al2 al3 a14

-al2 0 a23 a24 = (al2a34 - a13a24+ al4a23)2det(A) =
-al3 -a23 0 a34

-al4 -a24 -a34 0

13



and we can write the pfaffian of A as a triangular array and expand it as

Pf(A) =

A classical notation for the pfaffian of A [53] is

Pf(A) = (1,2, .. · , n),

where (i,j) = aii. One expansion rule for pfaffians is given by

n

(1,2,··· ,n) = L (-1)i(l,i)(2,3,··· ,i, ... ,n),
i=2

where A indicates that the index underneath should be deleted. We can write the

example above with pfaffian representation as

(1,2,3,4) = (1,2)(3,4) - (1,3)(2,4) + (1,4)(2,3).

2.1 Identities of Pfaffians

Identities of pfaffians correspond to the Jacobi identity of determinants. The Jacobi

identity is given as follows: for an N x N matrix A, we write A~;::::lfor the minor

obtained by omitting the ith, ... ,jth rows and the kth, ... , Ith columns, in this notation

the Jacobi identity is

If, for example, we take

IAI A~~ =
A~ Ai

k. Ai AiI I

P a b

A= eT 0 0

cfI' 0 0

with {i,j} = {k,l} = {2,3}, then we get the following identity

P a b
P aP a P b

cfI' 0

P b

JI' 0
cfI' 0 0

14



where P is a square matrix, and a, b, c, d are vectors.

Let m and n be positive integers. For the even case (even number of ai) we have

the following pfaffian identity

(al,a2,··· ,a2m,I,2,··· ,2n)(1,2,··· ,2n)
2m

= 2)-IY(at,as,I,2, ... ,2n)(a2,a3,··· ,as,··· ,a2m,I,2,··· ,2n), (2.1)
s=2

and for the odd case (odd number of ai)

(aI, a2,··· , a2m-l, 1,2,··· ,2n - 1)(1,2,··· ,2n)
2m-1

= L(-lr-l(as,I,2, ... ,2n-l)(a},a2'··· ,as,··· ,a2m-},1,2,··· ,2n), (2.2)
s=1

where a, are just extra indices in the same way that the a, b, cT, ~ are extra columns

and rows. (See [60] for the proof of the identities (2.1), (2.2).)

For example from (2.1) and (2.2), for m = 2, we have the following pfaffian identities

-(at, a3, 1,2,··· , 2n)(a2, a4, 1,2,··· ,2n)

+(all a4, 1,2,··· ,2n)(a21 a3, 1,2,··· ,2n)

and

(a},a2,a3,1,2,··· ,2n-l)(1,2,··· ,2n)

= (at, 1,2,··· ,2n - 1)(a2, a3, 1,2,··· ,2n)

-(a2,1,2,··· ,2n -1)(al,a3,1,2,··· ,2n)

+(a3,1,2,··· ,2n-l)(at,a2,1,2,··. ,2n).

2.2 Differentiation of Pfaflians

In this section we will show how the derivatives of pfaffians may be represented by the

sum of pfaffians. Suppose that
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where I,9 are differential operators, then by defining indices f and 9 such that (f, i) =

fUji), (g, i) = g(Od and (f,g) = 0, we have

(i,j)x = (f,g,i,j)

l(f,g) (f,i) (f,j)

(g, i) (g, j)

(i, j)

1 ° f(Oj) f(Oj)

= g(Oj) g(Oj)

(i, j)
g(Oj)f(Oj) - f(Oj)g(Oj).

In general, it can be shown that [60]

8{}x(1,2, ... ,2n) = (f,g,1,2,'" ,2n).

Higher order derivatives of pfaffians can be calculated in a similiar way. Let us

assume that

:y(i,j) = l(Oj)k(Oj) - k(Oj)l(Oj),

where k, 1 are differential operators and (k,i) = k(Oj), (l,i) = l(Oj) and (k,l) = 0, and

we also assume that f 0 k = k 0 i, f 0 l = l 0 f, go k = k 0 g, go I = log, where '0' is

explained later. We then have

o
{}y(1,2, ... ,2n) = (k,l,1,2, .. · ,2n)

and
{}2

{}y8x (1,2,,,, , 2n) -
{}
{}y(f,g,1,2, ... ,2n)

(fok,goi,1,2, .. · ,2n)+(jol,gok,1,2,· .. ,2n)

+(j,g,k,l,1,2, .. · ,2n),

where (j0 k, i) = f(k(Oi)), (g 0 l, i) = g(l(Oj)), (f 0 l, i) = f(l(Oj)), (g 0 k, i) = g(k(Oi))

and (j,k) = (f,l) = (g,k) = (g,l) = 0.

For example if

:x (i,j) = OjOi,x - «»,
:y(i,j) = OJ,yOj - OjOj,y
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then

a
ax (1,2,·" , 2n) = (ax'!, 1,2,,,, ,2n),

a
ay(1,2, ... ,2n) - (I,ay,1,2, .. · ,2n),

a2

ayax(1,2, ... ,2n) = (axy,I,1,2, ... ,2n)+(ax,ay,1,2, ... ,2n),

where (az,i) = ()j,z, Z = x,y,xy, and (I,i) = OJ.

2.3 Soliton Solutions to the BKP Equation

The BKP equation

may be written in the bilinear form as

(2.3)

In this section we will show that the n-soliton solution Tn satisfies the BKP equation

by virtue of pfaffian identities. This was first proved by Hirota [60] and is called the

pfaffian technique. The T function is expressed in terms of pfaffian as

Tn = (1,2, .. , ,2n) (2.4)

whose (i,j)th element is given by

( .. ) jX [ali! f ali] d
Z, J = Cij+ -00 ax j - i ax x,

where Ii satisfies the linear differential equations

i,j=1,2,···,2n (2.5)

ali a3 Ii
ay - ax3'

ali a51i
at ax5'

For example, if we choose

with

where kj, i= 1,2"" ,n are constants, then the (i,j)th term is

17



The two-soliton solution T2 can be obtained by choosing the constants C12 = C34 = 1

and C13 = C14 = C23 = C24 = O. Hence, from (2.4)

where

and
A _ (k1 - k3)(kl - k4)(k2 - k3)(k2 - k4)

12 - (kl + k3) (k1 + k4) (k2 + k3) (k2 + k4)'

gives the two-soliton solution for the BKP equation.

In order to show that the Tn in (2.4) satisfy the bilinear form (2.3), we need to

differentiate the pfaffian given by (2.4). We begin with the differentiation of the element

(i,j) with respect to x, from (2.5)

a ( .. )ax t,)
ali!. _ 1" ah

- ax J tax'

where we have used the pfaffians representing derivatives of functions !i(X), hence

(do, i) = Ii, (d1, i) = :xli and (do, d1) = O. The derivative of the pfaffian (2.4) is given

in the following form

aax (1,2,,,, ,2n) = (do, db 1,2,,,, ,2n).

Higher order derivatives of the pfaffian (1,2"" ,2n) can be calculated by using the

following relation

aax (dm, dn, 1,2"" ,2n) = (dm+b dn, 1,2"" ,2n) + (dm, dn+1, 1,2"" ,2n)

+(do, d1, dm, dn, 1,2,,,, ,2n).
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From this relation the higher order derivatives can be written as follows;

82
8x2(1,2, ... ,2n) - (do,d2,1,2,··· ,2n)

83

8x3 (1, 2"" , 2n) - (db d2, 1, 2"" , 2n) + (do, d3, 1,2"" , 2n)

84
8x4(1,2, ... ,2n) 2(dbd3,1,2, .. · ,2n)+(do,d4,1,2, .. · ,2n)

85

8x5 (1, 2",' , 2n) 2(d2,d3, 1,2"" , 2n) + 3(dbd4, 1,2"" , 2n)

+(do,d5, 1,2,,,, ,2n)
868x6(1,2, ... ,2n) - 5(d2,d4,1,2, .. · ,2n) +4(d1,d5,1,2, .. · ,2n)

+(do, ds, 1,2"" , 2n) + 2(do, d1, d2, d3, 1,2"" , 2n)

Next we calculate the y-derivative of (i,j), from (2.5)

!_(i ')= (X [84Iir+ 8/i83fJ _ 8
3/i8fJ _/i84Ij] dx

8y , ) J-00 8x4 J 8x 8x3 8x3 8x 8x4

where we have used W = ~:{i.Integrating this integral by parts, we get

8 (.. )8y X,)
_ 83Iir _t.83fJ _ 2 (82 Ii8fJ _ 8Ii82fJ )

8x3 3 , 8x3 8x2 8x 8x 8x2
(do, d3, i, j) - 2(db d2, i, j).

Higher order derivatives of the pfaffian (1,2,· .. ,2n) are obtained by using the following

relation

88y(dm,dn,1,2, ... ,2n) = (dm+3,dn,1,2,.·· ,2n) + (dm,dn+3,1,2,··. ,2n)

+(do, d3, dm, dn, 1,2"" , 2n) - 2(dh d2, dm, dn, 1,2"" , 2n).

The t-derivative of the element (i, j) is calculated as follows

Hence, following the same procedure, we find the necessary derivatives for the proof as

follows:
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{)
{)y(1,2, ... ,2n) = (do,d3,1,2, .. · ,2n) -2(d1,d2,1,2, .. · ,2n),

{)2
{)x{)y(1,2, ... ,2n) = -(dbd3,1,2,··· ,2n) + (do,d4,1,2,··· ,2n),
{)3

{)X2{)y(1,2, ... ,2n) = -(d2,d3,1,2,··· ,2n) + (do,d5,1,2,··· ,2n),
{)4

{)x3{)y (1,2, ... , 2n) = -( d2, d4, 1,2"" , 2n) + (db d5, 1,2,,,, ,2n)

+ (do, d6, 1,2,'" ,2n) - (do, db d2, d3, 1,2"" , 2n),
{)2
{)y2(1, 2"" , 2n) = 2(d2, d4, 1,2"" , 2n) - 2(db d5, 1,2"" ,2n)

+ (do,d6,1,2,··· ,2n) -4(do,dbd2,d3,1,2, ... ,2n),
{)
{)t(1,2, ... ,2n) = (do,d5,1,2, .. · ,2n) -2(d1,d4,1,2, .. · ,2n)

+2(d2,d3,1,2, .. · ,2n),
{)2

{)x{)/l, 2,'" , 2n) = -(db d5, 1,2"" , 2n) + (do, d6, 1,2"" , 2n)

+ 2(do, db d2, d3, 1,2,," ,2n).

Substituting these results into the bilinear BKP equation (2.3), we get

(do,d1,d2,d3,1,2, .. · ,2n)(1,2, .. · ,2n)

-(do, db 1,2,'" ,2n)(d2, d3, 1,2"" , 2n)

+(do,d2,1,2,· .. ,2n)(d1,d3,1,2,··· ,2n)

-(do, d3, 1,2,,,, ,2n)(d1, d2, 1,2,,,, ,2n)

which vanishes by virtue of the pfaffian identity (2.1).

In the next chapter we will study the asymptotic properties of dromion solutions

written in terms of pfaffians. In chapter 4 we will see how pfaffians arise naturally in

the fermionic approach to soliton equations and in chapter 5 the pfaffian technique will

be applied to two other integrable systems.
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Chapter 3

Dromion solutions of the

Nizhnik- Veselov-Novikov equations

and their asymptotic properties

3.1 Introduction

In recent years the generalizations of integrable (1+ 1)-dimensional equations to (2+ 1)

dimensions have been widely studied. The integrable generalization of the nonlinear

Schrodinger (NLS) equation are the Davey-Stewartson (DS) equations [34]. Gilson

and Nimmo [35] studied the dromion solutions of the DS equations [25] and their

asymptotic properties. The generalization of the Korteweg-de- Vries (KdV) equation

has two possibilities which are the Kadometsev-Petviashvili (KP) equations [37] and

the Nizhnik-Veselov-Novikov (NVN) equations [38]. These generalizations, the DS and

NVN equations, have two dimensional localized hump solutions that decay exponen-

tially in all directions, which are called two dimensional solitons or dromions. The KP

equation does not have such solutions. The word dromion comes from the Greek word

dromos, which means track and has been given [31] to these objects, because they are

located at the intersection of plane waves, which can be thought to form tracks.

An alternative approach has been through direct methods using the bilinear form

of the DS and NVN equations. Hietarinta and Hirota [40] and Jaulent et al. [41]

21



obtained a broader class of dromion solutions of the DS equations in terms of wronskian

determinants and as polynomials in exponentials respectively. Athorne and Nimmo [43]

and Ohta [44] obtained dromion solutions of the NVN equations in terms of pfaffians.

These (2+ 1)-dimensional generalizations also possess the usual features of (1+ 1)-

dimension integrable equations, namely solvability by the inverse scattering transform,

existence of Backlund transformations and Hamiltonian formulation [30], [31], [32].

3.2 A class of solutions of the NVN equations

In this section we recall some results obtained in [43]. The NVN equations are

(3.1 )

(3.2)

A class of solutions of (3.1) and (3.2) is given by

(3.3)

where OJ are solutions of the linear equations

,,/,.+ <1>(0) ,,/,. = 0
o/xy xy 0/ (3.4)

(3.5)

and

{
(1,2,,,, ,n)

P(Ol,'" , On) =
(1,2,,,, ,n,/)

where (i,j) = P(Oj,Oj), (i, /) = OJ and

n even

n odd

(3.6)

In (3.6)

denotes the wronskian of OJ and OJ with respect to variable X = x or X = y and so

P( OJ, OJ) is skew-symmetric.
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In particular, setting (j_)(O) = 0 in (3.4) and (3.5) yields separable (}j

where
(}~X) = (}~X)
It IXXX

for X = x or X = y.

To obtain plane wave soliton solutions, we choose

and then (3.3) gives, in the case n = 1,

If k or l tends to zero then U tends to the trivial solution. Then the individual solitons

are a kind of "ghost" solitons [49], parallel to the x and y axes. These are given by

()= aexp(kx + k3t) + {3 and ()= 0+ (3exp(ly + l3t)

respecti vely.

A single dromion solution may be thought of as a two-soliton solution made out of

two intersecting ghost solitons. Outside the interaction region, the solution is approx-

imated by individual ghost solitons and the physical field U vanishes.

If we take n = 2 with

and using equation (3.6), the pfaffian becomes

!Wx[(}l, (}2] dx - WY[(}l' (}2] dy

-((}1(}2 + C - 1),

(3.7)

(3.8)

where c is some constant. From equation (3.3)

and thus
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where

Here, we see that as (x, y) -+ 00 at least one of the terms in the denominator tends to

infinity, and hence U is a localized solution which we call the (1, l)-dromion solution

of the NVN equations. This is illustrated in figure 3.1.

Figure 3.1: (l,l)-dromion plot for the parameters given by k

a=f3=l.

- !, c = ~ and

An (M, N)-dromion solution, in which M + N is even, is obtained by choosing

()j = aj exp(kjx + kft) + 1 for i = 1 ... M, ,

and

()j+M = 1 + f3j exp(ljY + lJt) for j = 1,··· ,N.

To express the solution in a compact form, we take S as the square of the pfaffian

P(()l,··· ,()M+N), hence

24



Then S has the following block structure:

JX Wx[Oj,Op] dx

S= (3.9)

where i, p = 1,· .. ,M and j, q = M + 1,· .. ,M + N. Then the solution is given by

U = (log(S))xy.

To obtain an (M, N)-dromion solution where M + N is odd, we may consider a

special case of an (M, N + 1) dromion where clearly M + (N + 1) is even. This will be

discussed in more detail later.

In the next section we will show that this describes the interaction of M x N

dromions.

For convenience we introduce an auxilary field to the NVN equations. From equa-

tions (3.1) and (3.2), we see that the NVN equations have two dependent variables; U

corresponds to the physical field and ~ is related to an auxilary field

(3.10)

which is introduced to help visualize the nature of the soliton. While U is localized,

V is not in general. For the solution we discuss, the point of intersection of the plane

wave solitons in the V-plane and the localized solitons in the U-plane coincide.

3.3 Asymptotic analysis of the (l,l)-dromion solu-

tion

To understand the meaning of the parameters that appear in the (M, N)-dromion

solution (3.9) we consider the simplest case in which M = N = 1. The form of S is

then

(3.11)

and from (3.7) and (3.8) we get

(3.12)
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To simplify the presentation, we use P instead of P(Ot, (2), Taking

P becomes

(3.13)

where c is constant and

The effect of the parameters c, k and 1 on the properties of the solution to the NVN

equations is explained in the following theorem.

Theorem 3.3.1 For c > 0 and k, 1 =f. 0,

U = 28x8y(log(P)) and V = (8; + 8~)(10g(P)) (3.14)

with P given by (3.13) have the following properties:

1) V is the interaction a pair of plane wave solitons, one parallel to the y-axis, V(x),

parametrized in terms of k and the other parallel to the x-axis, V(v), parametrized in

terms of l. These waves have speeds _k2 and -[2, and amplitudes ~ and ~ respectively.

The relative phase shifts of the plane wave solitons at the interaction may be expressed

in terms of

F1. = log(c),

the 'perpendicular phase shift'i for v(x) the relative phase shift is sgn( l)F 1. and for V(y)

it is sgn(k)F1.'

2) U decays to zero exponentially as (x, y) -+ 00 in any direction and the amplitude

zs

kl VC - 1
U« = "2 VC+ 1

kl etFl. - 1
- 1 •

2 e'2Fl. + 1
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At time t the maximum or minimum on the dromion is located at

(x, y) = (
log(c) - 2k3t log(c) - 2Pt)

2k ' 2l

(
1 (+ _) 2 1 + _ 2 )2" 1/Jx - 1/Jx - k t, 2" (1/Jy - 1/Jy ) - It,

where 1/J-;' and 1/J;- are the phase constants in the plane waves in the V -plane at y = ±oo

and x = ±oo respectively. The trajectory of the dromion is the line

Proof. 1) To find the speeds and the amplitudes, we fix y and hence p in P

-c - eP - (1+ eP) e'TI

_ _( c + eP) (1 + 1+ e
P

e'TI).
c+ eP

Since p and c are constants, this expression for P gives the same U and V as

P = 1+ ae'TI,

where a = (1 + eP)/(c + e").

Hence

V «~;+ a!)(log(P))

a;(log(1 + a e'TI))

= (1+ ae'TI)2

= ~k2 sech2 (~k [(x + k2t) + ~ log(a)])

which is a one-dimensional plane wave soliton propagating in the x direction. Hence

the speed is _k2 and the amplitude is k:. If we fix x and hence Tl in P, the other

one-dimensional plane wave soliton perpendicular to this one, propagating in the y

direction would be of the form

V a!(1og(1 + peP))

~l2 sech? (~l [(y + l2t) + ~ log(P)]) .
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Hence the speed is -L2 and the amplitude is ~.

To determine the phase shift we consider the change in P as x and y change from

-00 to +00. To get the phase shift in the x direction we fix x and t in the limits as

y -+ 00 and as y -+ -00.

In what follows, the symbol ~ is used to denote functions that are 'asymptotically

equivalent'. We say that two expressions P = Band P = C are equivalent under the

changes of variable (3.14) from P to U and V if C = ae{3x+'YY B for some constants

a, /3" so that both Band C give the same U and V. So, we write A ~ B as X -+ a

to mean that A '"'"C (A is asymptotic to C) as X -+ a and Band C are equivalent in

the sense given above.

For I > 0, as y -+ 00

hence

and as y -+ -00

p,"", -c - e71

hence

Thus the phase constants at y = ±oo are

1tP; = 0 and tP; = -k log(c)

and then the phase shift in the plane wave parallel to the y-axis is

+ _ 1 ()tPx - tPx = k log c . (3.15)

By a similar calculation, the phase shift when I < 0 is

+ _ _ 1 (tPx - tPx - -k log c). (3.16)

Hence the relative phase shift (= (wave number) x (absolute phase shift)) is sgn( l) log( c)

as required.
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Similarly to get the phase shift in the y direction we fix y and t in the limits as

x -+ 00 and as x -+ -00. For k > 0, as x -+ 00

hence

and as x -+ -00

p ~ -c- eP

hence

v = ~ sech2 (~l [(y + 12t) - ~ log(c)]) .

Thus the phase constants at x = ±oo are

1
"p:=0 and "p;=-ylog(c)

and then the phase shift in the plane wave parallel to the x-axis is

(3.17)

and the phase shift when k < 0 is

+ -_ 11 ()"py -"py - -y og c . (3.18)

2) For P given by (3.13)

u = 2kl(c-1)ell+P

(c + ell + er + e1)+p)2

2 kl(c - 1)
(3.19)

from which we see that U is exponentially localized since at least one of the exponential

terms in the denominator tends to infinity as (x, y) -+ 00. To show this we consider

the exponentials in the denominator in (3.19) and a ray in any direction y = ax, where

a E JR. With y = ax and the appropriate expressions for 7] and p,
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becomes

Here, if x -+ 00 or x -+ -00 the expression tends to infinity, whatever the signs of k, I

and a are.

To find any critical points we need to solve the equations Ux = 0 and Uy = O. From

2 kl ekx+k3 t+ly+13t (c - 1)
U---------........:....-_.:..._---.".- (c + ek(x+k2t) + e,(y+12t) + ekx+k3t+ly+!3t)2

differentiating with respect to x gives

2k2Iekx+k3t+ly+13t (c -1) (c _ ek(x+k2t) + e
'
(Y+12t) _ ekX+k3t+1Y+13t)

U ----------~--------~----~x - (c + ek(x+k2t) + e,(y+12t) + ekx+k3t+ly+Pt)3

and differentiating with respect to y gives

2 kI2ekx+k3t+ly+13t (c - 1) (c + ek(x+k2t) _ el(Y+12t) _ ekX+k3t+lY+13t)

U -----------~~----------------~------~
y - (c+ ek(x+k2t) + e1(y+12t)+ ekx+Pt+ly+i3t)3

One obvious solution of this pair of equations is c = 1, but this corresponds to the trivial

solution U = 0 and it is therefore excluded. Hence, solving the equations Ux = 0 and

Uy = 0 for x and y is the same as solving the equations

which imply that

This pair has a unique real solution

log( Vc) - Pt log( Vc) -13t
x= k ,y= 1 .

Since U -+ 0 as (x, y) -+ 00 and there is a unique critical point, this clearly must be a

local maximum or minimum located at the point

( ) _ (log(c) - 2Pt log(c) - 213t)
x, Y - 2k ' 21 .
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By eliminating t we get the trajectory of the dromion

1
k2y -12x = 2kl log(c) (k3 - 13).

If we substitute the critical values of x and y into U, we obtain the amplitude of the

dromion, namely
U, _ kl y'c -1
0- 2 y'c+1

which can be written in terms of the phase shift F.L as follows:

kl etF.l. - 1
Uo= - 1 •

2 e2F.l. + 1
o

Summary of results for (1,1)-dromion:

The main result is that there is a dromion in the U-plane and a pair of perpendicular

plane waves in the V-plane. We observe further from Theorem 3.3.1 that

• The dromion may have arbitrary amplitude, positive, negative or zero. The

amplitude is

1. positive if kl > 0 and c > 1 or kl < 0 and 0 ::; c < 1,

2. negative if kl < 0 and c> 1 or kl > 0 and 0 ::; c < 1,

3. zero if kl = 0 or c = 1

• The plane waves always have positive amplitude and exert a phase-shift on one

another. In particular, the directions of these phase shifts (forward or backward)

depend on the signs of k, land log(c). The phase shift is zero if and only if the

dromion amplitude is zero.

• At any fixed time, the dromion (in the U-plane) is symmetrically located between

the plane waves (in the V-plane). This is illustrated schematically for the case

k > 0, 1 > 0, log( c) > 0 in figure 3.2.

We next consider the general case in which V consists of M + N plane waves, M

plane waves parallel to the y-axis and N plane waves parallel to the x-axis, each set

of plane waves interacting like one-dimensional multisolitons and U consists of M X N

dromions situated symmetrically at the interaction of the plane waves in the V-plane.
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Figure 3.2: Phase shifts in the plane waves and the location of the dromion.

3.4 Asymptotic analysis of the (M, N)-dromion so-

lution

In this section we consider the nature of the (M, N)-dromion solution as t -+ ±oo. In

order to get succinct expressions for these asymptotic forms of the solution we order

the parameters ki and 1j in this way:

(3.20)

Also, to have non-singular solutions we make the following choices for the arbitrary

constants appearing in the solution

(}i = (3j = 1 for Z,) odd

(}i = (3j = -1 for Z,) even.

Next we write the (M, N)-dromion solution given in (3.9), in the case when M + N is

even, in the following form

81 82

S = (3.21)-er 83

where 81 and e3 are skew-symmetric matrices with entries

e· - c, - (}oe'li + (} e'lP + o.o kp-ki e'li+'1p
I,p - Ip I P \.-<1 P kp+ki
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8M+ 0 M+ = CM+ °M+ + poepj - P epq + pop DePj+PqJ. q J q J q J q l)+lq l~j<q~N

respectively, and 82 has the entries

i = 1,... ,M,j = 1,... ,N

where Cip, cM+iM+q and CiM+j are arbitrary constants. We will only be interested in

Cij such that the solution has no singularities. The conditions on Cij which give this

property will be found by considering the asymptotic form of all of the M x N dromions.

To study the (M, N)-dromion solution in the case M + N is odd, we may consider

an (M + 1,N) or an (M, N + 1) dromion in which we set a k, or an lj equal to zero

respectively. In making this choice it is important that the ordering (3.20) is preserved.

An example of how a (2,1) dromion is obtained from a (2,2) dromion will be given

later.

Further, it is convenient to express the determinant S in (3.21) in terms of other

matrices, so that it can have simpler structure, namely

S = 1 C + D A - AT D + D BDl. (3.22)

The matrices in (3.22) have the following structure: A is a constant matrix with the

(ij)-th entry

for i = 1, ... ,M

j = 1, ... ,M +N

(_l)i-(M+1) (1 -l5ij) for i = M + 1, ... ,M + N

j = 1, ... ,M +N

where l5ij is the Kronecker 15symbol; B is a skew-symmetric matrix with the block

structure

(3.23)

in which K and L are constant skew-symmetric matrices with entries

(-1)i+j kj - ki 1< i < j ~M
kj + k;

(_1)i+i+11j -Ii 1~ i < j ~N;
t, + li

(3.24)

(3.25)
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R is a rank-I matrix with entries

~j = (_1)i+i+1 for i = 1, ... ,M, j = 1, ... ,N j

C is the general constant skew-symmetric matrix, which has the entries

for

and

D - diagfe?' e'12 ellM• ePl eP2 ePN)- , ,..., , , ,... , (3.26)

is a diagonal matrix, where

(3.27)

Pi = Lj{y + LJt) (3.28)

for i = 1, ... ,M and j = 1,... ,N.

To determine the asymptotic form of the solution we fix the rnth (x, t)-dependent

plane wave and the nth (y, t)-dependent plane wave and we call the corresponding

dromion the (rn, n)th. We write S given by (3.22) in terms of

so that the (rn, n)th dromion is independent of t (i.e. is stationary) when x and yare

fixed. Also, we write the expressions (3.27) and (3.28) in terms of x and y we have

1Ji - ki(x + (ki2 - km 2)t)

pj Lj(Y + (i/ - in2)t)

for i = 1, ... ,M and j = 1, ... ,N.

We will show that the asymptotic form of the solution as t -+ ±oo is a dromion.

This will show that the (M, N)-dromion solution consists of M x N dromions separate

asymptotically as t -+ ±oo. Unlike solitons however amplitudes are not necessarily

preserved. The study of these limits is rather technical but in the end we will obtain

compact expressions for the change in amplitude of the dromions due to interaction.
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Considering the limits of S with x and if fixed we have

as t -+ -00

~; ~ { +00 for i < m
pj ~ {

+00 for j<n
and

-00 for i > m -00 for j>n

and as t -+ 00

n. ~ {
-00 for i < m

{ -00
for j < n

and Pi -+
+00 for i » m +00 for j > n

while 'rim and Pn are t-independent, and the limits of the exponentials are

as t -+ -00

«» -+ ° (i < m) e-PJ -+ ° (j < n)

ef/i -+ ° (i> m) e
pj

-+ ° (j > n)

and as t -+ 00

ef/i -+ ° (i < m) e
Pj

-+ ° (j < n)

e-f/i -+ ° (i > m) e-Pj -+ ° (j > n).

To exploit these limits we must use appropriate equivalent forms for S given by

(3.22). We factorize the diagonal matrix D given by (3.26) so that the factors or their

inverses have finite limits as t -+ -00 and as t -+ 00, as

where

D_ = diag(1, ... , 1, 1,ef/m+l, ••• , ef/M; 1, ... ,1,1, ePn+I, ••• , ePN),

Do diag( 1, ... , 1, ef/m, 1, ... , 1; 1, ... , 1,ePn, 1, ... , 1),

D+ diag (ef/l , ••• , ef/m-l , 1, 1, ... , 1;ePI , ••• , ePn-1 , 1, 1, ... , 1).

Hence we get, as t -+ -00

D_ -+ diag(1, ,1,1,O, ,O;1, ,1,1,O, ,O)

Df_l -+ diag(O, ,O,1,1, ,1jO, ,O,1,1, ,1)

and as t -+ 00

D+ -+ diag(O, ,O,1,1, ,1jO, ,O,1,1, ,1)

o:: -+ diag(1, ,1,1,O, ,O;1, ,1,1,O, ,O).
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To find the asymptotic forms of S as t ~ -00 and t ~ 00 we take out factors of

D+ or D_ so that it is expressed solely in terms of matrices having finite limits.

As t ~-oo

S - I C+DA-ATD+DBD I
I C + D+D_DoA - AT D_DoD+ + D+DoD_BD_DoD+ I
I D+ II D+IC D+I + D_DoAD+1 - Dt-I AT D_Do + DoD_BD_Do II D+ I

so the limit is

(3.29)

As t ~ 00

S I C+DA-ATD+DBD I
I D_ II D=IC D=1 + D+DoAD=l - tr:AT D+Do + DoD+BD+Do II D_ I

and the limit is

(3.30)

We see from (3.29) and (3.30) that S_ and S+ are the determinants of skew-symmetric

matrices and are hence the squares of the pfaffians P_ and P+ respectively. By ex-

panding P_ and P+ by their mth and (M + n)th lines one finds that

A necessary and sufficient condition that P_ and P+ have no zeros, and hence U =

2(log P±)xy has no singularities, is that PI,"" P4 and P5, ••• , Ps have the same sign.

Furthermore, an overall change of sign in P± does not change U, and so, since U is

supposed to be non-singular, without loss of generality we may write

P_ = !PI I+ IP21e'7m + IP31ePn + IP4Ie'7m+Pn

P+ !P51 + IP61e'7m + IP71ePn + IPsle'7m+Pn
(3.31 )
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where the pfaffians Pi (i = 1..8) satisfy the relation Pl = Si and are defined in terms

of minors of A, Band C, and Si are the skew-symmetric determinants

0 (B) l(i<m (A) l(i<m (B) l(i<m (A) l(i<m
'<J<m mEtiEtM M+l(J<M+n M+n(J(M+N

0 (C) m(i(M ( - AT) m(iOl;M (C) mEti,Mi<iOl;M M+l,,<M+n M+n,i<M+N

SI 0 (B) M+I(i<M+n (A) M+IEti<M+n
'<J<M+n M+n'l;JEtM+N

0 (C) M+nEtiEtM+N
i<JEtM+N

0

0 (B) 1,iEtm (A) l<iEtm (B) l<i(m (A) l(i(m
'<J:Ii;m m<iEtM M+h;;i<M+n M+n(JlitM+N

0 (C)m<i(M (_AT) m<iEtM (C) m<i<M
i<i(M M+l:li;J<M+n M+nlitJlitM+N

S2 = 0 (B) M+lliti<M+n (A) M+lliti<M+n
'<J<M+n M+n(JlitM+N

0 (C) M+n:li;ilitM+N
i<JEtM+N

0

0 (B) lEti<m (A) l:1i;i<m (B) lEti<m (A) lEti<m
'<J<m mEti:li;M M+IEtJ<M+n M+n<i(M+N

0 (C)m:li;i:li;M (AT) . (C) mliti:li;M- mEt·EtM
i<iEtM M+IEtiEtM+n M+n<JEtM+N

S3 = 0 (B) M+lEti:li;M+n (A) M+1Eti:li;M+n
i<JEtM+n M+n<JEtM+N

0 (C) M+n<iEtM+N
i<JEtM+N

0

0 (B) l:li;iEtm (A) l:li;iEtm (B) l:li;i(m (A) l:li;iEtm
'<JEtm m<i:li;M M+l:li;JEtM+n M+n<JlitM+N

0 (C)m<iEtM (_AT) m<iEtM (C) m<i(M
i<iEtM M+l(i(M+n M+n<JfiOM+N

S4 = 0 (B)M+lfiOifiOM+n (A) M+1EtiEtM+n
i<J(M+n M+n<J:Ii;M+N

0 (C) M+n<iE;M+N
i<JEtM+N

0

37



0 (C)l";i,.;m (_AT) l";i";m (C) l";i";m (_AT) l";i";m
'<J";m m<i";M M+l";J,M+n M+n<i";M+N

0 (B)m<i";M (A) m<i,M (B) m<i,M
i<i";M M+l";i";M+n M+n<J,M+N

S5 = 0 (C) M+l";i,M+n (_AT) M+l,i,M+n
i<i";M+n M+n<i";M+N

0 (B) M+n<i';;M+N
i<J';;M+N

0

0 (C) l,i<m (_AT) l";i<m (C) l";i<m (_AT) l,i<m
'<J<m m,i';;M M+lliti,M+n M+n<J,M+N

0 (B)m";ilitM (A) mlitilitM (B) m'i';;M
i<i"M M+lor;;ilitM+n M+n<ilitM+N

S6 = 0 (C) M+llitilitM+n (_AT) M+1liti,M+n
i<i<M+n M+n<J,M+N

0 (B) M+n<i";M+N
i<J';;M+N

0

0 (C) I",i",m (_AT) l"i",m (C) l(i(m (_AT) l(i'm
'<J";m m<i<M M+l(i<M+n M+n(J(M+N

0 (B)m<i"'M (A) m<i(M (B) m<i(M
i<i(M M+l";i<M+n M+n<,..M+N

S7 = 0 (C) M+lli;i<M+n (_AT) M+l';;i<M+n
i<i<M+n M+n<J(M+N

0 (B)M+n(i(M+N
i<J,M+N

0

0 (C)l";i<m (_AT) l",i<m (C) l,i<m (_AT) l,i<m
'<J<m m'i"M M+l(j<M+n M+n';;J(M+N

0 (B)m(i(M (A) m'i(M (B) m(i'M
i<i(M M+l(i<M+n M+n(J<M+N

Ss = 0 (C)M+l(i<M+n (_AT) M+l";i<M+n
'<J<M+n M+n(J(M+N

0 (B) M+n";i";M+N
i<j';;M+N

0

It may be shown (see Appendix) that each of the Si (i = 1...8) may be factorized

into skew-symmetric determinants defined in terms of minors of Band C; to be precise,
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S1 C~;~B<;<, S2 C>;~B~;<,

S3 C~.>B<.~, S4 C>.>B~.~,7' ,~ , .....:''0:
(3.32)

S5 C~.~B>.>, S6 C<.~B~.>,~'''''':: , t...;: ~,

S7 C~.<B>.~, S8 C<.<B~.~.""'=' '? , ::0":;;;--

The subscript notation in (3.32) is used to denote certain principal minors of an (M +
N) x (M + N)-dimensional matrix for fixed m and n. For instance, X<;~ means

the minor formed from rows and columns 1"" ,rn - 1,M + 1", . ,M + n of the

corresponding matrix X. In general, let W be a skew-symmetric (M +N) x (M +N)-

dimensional matrix with the entries

(3.33)

where X is a M x M, Y is a M x Nand Z is a N x N dimensional block matrix. For

a given rn, n (1 ~ rn ~ M and 1 ::; n ::;N) and inequalities -<1, -<2 (where -<1 and -<2
can be <, ~, >, and ~), we define W to be a particular sub-matrix of W:

W=
(

(X) i.-<lm
J-<1 m

(- yT) i-<2M+n
J-<lm

(Y) . i-<lm )
J-<2 M+n

(Z) i-<2M+n
J-<2M+n

then W-<I;-<2 = det(W). We also define the pfaffian

Pf (w f) for odd-dimension
_(.T 0

Pf(W) for even-dimension

where e is the column matrix with all entries equal to 1.

We give an example on this for a (2,2)-dromion solution and a (1, 2)-dromion so-

lution in the next section.

Further, minors of B in (3.32) can also be factorized (see Appendix) into other

minor skew-symmetric determinants, defined in terms of parameters k, and lj, which

are given in (3.24) and (3.25) respectively. Hence, we have the fully factorized form of
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the skew-symmetric determinants Si:

SI - C~i~K<L<, S2 - C>i~K~L<,

S3 C~i>K<L~, S4 - C>i>K~L~,
(3.34)

S5 C~i~K>L>, S6 C<i~K~L>,

S7 C~i<K>L~, Ss - C<i<K~L~,

where the single subscript notations are defined in a similar fashion. In general, for a

given m and n (1 ::; m ::; M and 1 ::; n ::;N) and inequality --<, (where --< can be <,
~, >, and ~), we define K to be the sub-matrix of the (M x M) block-matrix J( in

(3.23)

K=(J()i--<m.
J--<m

Then K-<. = det(K) and we also define the pfaffian

Pf(K) for even-dimension

Pf (k f) for odd-dimension
_fT 0

where e = (-1,1, ... , ±1). Similiarly, we define L to be the sub-matrix of the (N x N)

block-matrix L in (3.23)

L-<. =det(i) and

P f(i) for even-dimension

Pf ( _~T :) for odd-dimension.

Now we write the pfaffians Pi (i=1 ... 8) (3.31) of the skew-symmetric determinants

Si (i=l ... 8) in terms of minor pfaffians of the corresponding minor determinants

formed from C, Bin (3.32) and C, K, Lin (3.34). We will denote the pfaffians with the

lowercase letters of the corresponding uppercase letters that have been used for denoting

skew-symmetric determinants. For instance, C~i< is the pfaffian corresponding to the
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skew-symmetric determinant C~;<. From (3.32) we have the pfaffians IPil = (S;)t:

IPt! - Ic~;~b<;< I, IP21 Ic>;~b~;< I,

IP31 Ic~;>b<;~ I, IP41 Ic>;>b~;~ I,

IP51 Ic~;~b>;> I, 1P61 - Ic<;~b~;> I,

IPrl - Ic~;<b>;~I, IPs I Ic<;<b~;~I,

and the pfaffians in the fully factorized form, from (3.34):

IPt! Ic~;~k<l< I, IP21 1c>;~k~l<l,

IP31 Ic~;>k<l~ I, IP41 - Ic>;>k~l~l,

IP51 - Ic~;~k>l>l, IP61 - Ic<;~k~l>l,

IPrl - 1c~;<k>l~l, IPs I = Ic<;<k~l~l·

Here the pfaffian c determines the phase shifts F1. between the interacting per-

pendicular plane waves and determines the amplitude of the dromions. The pfaffian b

determines the phase shifts between the two sets of parallel plane waves in the V -plane,

These interpretations may be made, because, if we choose the entries of pfaffian c so

that the perpendicular phase shift and hence the amplitudes of the dromions vanish

then the only phase shifts we get, determined by the pfaffian b, are the parallel phase

shifts experienced by the parallel plane waves in the V-plane. This is achieved by

setting all arbitrary constants in c to be 1, so that all minor pfaffians C-<I;-<2 are equal

to 1.

Then the asymptotic expressions in (3.31) can be written

as t ~ -00

(3.35)

and as t ~ 00

(3.36)

(3.31) can also be written in the following way
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as t -+ -00

p_ - Ik<l<1 + Ik~l<le'1m + Ik</~lePn + Ik~/~le'1m+Pn

'" 1+ I k~ I e'1m + Il~ I ePn + I k~l~ I e'1m+Pn
k< 1< k<l<

1+ e'1m+F,~ + ePn+F,j;, + e'1m+Pn+F,~+F,j;,

and as t -+ 00

p+ - Ik>l>1 + Ik~/>le'1m + Ik>l~lePn + Ik~l~le'1m+Pn

'" 1+ I k~ I e'1m+ Il~ I ePn + I k~/~ I e'1m+Pn
k> I> k>l>

1+ e'1m+F,t + ePn+fI~ + e'1m+Pn+F,t+F,~

where Fj~ and Fj~ are the relative phase shifts experienced by the (x, t)-dependent

and (y, t)-dependent parallel plane waves in the V -plane respectively. This is a case in

which all of the dromions have zero amplitude and the solution for this case is U == O.

As a consequence of these two pfaffians band c being independent, these two kinds of

phase shifts, determined by band c, are independent from each other.

We have now shown that the (M, N)-dromion solution U decomposes into M x N

dromions determined by (3.31) as t -+ -00 and as t -+ 00. To identify the properties

of the resulting dromions, we compare the asymptotic expressions in (3.31) with (3.13)

generalizing Theorem 3.3.1, and give the theorem for the general case:

Theorem 3.4.1

U = 8x8y(1og(S)) and V = ~(8~+ 8;)(log(S))

with S given by (3.22) have the following properties:

1) V is the interaction of M plane-wave solitons parallel to the y-axis and N plane-

wave solitons parallel to the x-axis which decomposes asymptotically into M x N solu-

tions as described in Theorem 3.3.1 part 1.

2) U decomposes asymptotically into M x N dromions as described in Theorem 3.3.1

part 2. The amplitude of the (rn, n) th dromion is

and (3.37)
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as t ---* -00 and t ---* 00 respectively, and the perpendicular phase shifts are

as t ---* -00 and t ---* 00 respectively.

and (3.38)

The location at time t of the (rn, n) th dromion moves from

as t ---* -00 to

as t ---* 00, giving the two-dimensional phase shift due to all interactions

(
1 1 c~.~c~.<c>.~C>.>k>2 k~ 1 1 1 c~.~c<.~c~.>C>.>l>2l~ I)1 -";;::'-';;;::'" '="'" t =:s 1 "'~ t-..;;:: 7' , '-;

2km og c<;~c<;<c~;~c~;>k~k$ '2ln og c~;<c<;<c~;~c>;~l~l$ .

Summary of results for (M, N)-dromion:

We observe from Theorem 3.4.1 that the summary of results for (1, 1)-dromion can be

generalized to (M, N)-dromion. The main result is that there are M x N dromions in

the U-plane and M +N perpendicular plane waves in the V-plane. We observe further

that

• The (rn, n)th dromion may have arbitrary amplitude, positive, negative or zero

and varies as t ---* -00 and t ---* 00. The amplitude is

1. positive

(b) as t ---* 00 :

2. negative
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3. zero

(a) as t -+ -00 : if kmin = 0 or IC>i>C~i~1 = lc~i>C>i~l,

(b) as t -+ 00 : if kmin = 0 or IC<i<C~i~ I = IC~i<C<i~ I

• The plane waves in the V-plane always have positive amplitude and exert a phase-

shift on one another. The directions of these phase shifts (forward or backward)

depend on the signs of km, in and

The phase shifts in (3.38) are zero if and only if the corresponding dromion

amplitude is zero.

• At any fixed time, the (m, n)th dromion (in the U-plane) is symmetrically located

between the mth plane-wave soliton parallel to the y-axis and the nth plane-wave

soliton parallel to the z-axis (in the V-plane).

3.5 A class of (2, 2)-dromion solutions

In this section we apply the general results obtained in section 3.4 on the asyrnptotics

of the (M, N)-dromion solution to the (2,2)-dromion solution. In order to clarify the

results of the last section, we present the asymptotics explicitly for these solutions.

From (3.21) the (2,2)-dromion solution is

0 e12 813 814

-8T 0 823 82412
S(2,2) = (3.39)

-eT -8f3 0 83413

-eT eT _eT 014 - 24 34

44



where

812 k2 - kl +- C12 - e'11 - e'12 _ e'11 '12
k2 + kl

813 - C13 - e'11 - ePI - e'11+PI

814 - C14 - e'11 + eP2 + e'11 +P2

823 - C23 + e'12 - ePI + e'12+PI

024 C24 + e'12 + eP2 - e'12+P2

834
L2 =t, +

= C + ePI + eP2 + ePI P2
34 L2+ Ll •

Here the arbitrary constants C12, C13, C14, C23, C24, C34 will be chosen so that the solution

has no singularities. The conditions on the constants which give this property will be

found by considering the asymptotic form of all of the (2) x (2) dromions. Also,

where the parameters kl' k2' Lllh have the ordering

and

Next we expand the (2,2}-dromion solution (3.39), as in the form (3.22)

S(2,2) = I C + D A - AT D + D B D I, (3.40)

where

0 -1 -1 -1

1 0 1 1
A= (3.41)

1 1 0 1

-1 -1 -1 0

0 _k2-kl -1 1
k2+kl

ka-kJ 0 1 -1
B= ka+kl (3.42)

1 -1 0 !dl.
12+/1

-1 1 _l.t.l..1. 012+/1
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0 C12 C13 C14

-C12 0 C23 C24c= (3.43)
-C13 -C23 0 C34

-C14 -C24 -C34 0

and

D = diag( e?", e1l2; eP1, eP2 ).

To obtain the asymptotic solution for the (2,2)-dromion solution we focus on, for

example, the 2nd (x, i)-dependent plane wave and the 1st (y, t)-dependent plane wave,

hence "12 and Pl are fixed, and the corresponding dromion is the (2,1 )th dromion. Then,

from (3.31), one can write the asymptotic solution for the (2,2)-dromion solution

p~2,2) _ IPP,2)1 + IPJ2,2)le1l2 + IPJ2,2)lePI + Ipp,2)le1l2+P1

p~2,2) 1P?,2) I+ IPJ2,2)le1l2 + 1P?,2)lePI + IPJ2,2)le1l2+P1,

where the pfaffians p?,2) (i = 1...8) are defined in terms of minors of A, B, C in (3.41),

(3.42) and (3.43) respectively.

(3.44)

We now represent the pfaffians p?,2) of the corresponding skew-symmetric deter-

minants s12,2) with the notations used for the general case in section 3.4. To show this,

we rearrange the skew-symmetric determinants S?,2) and its block matrices, formed

from minors of the matrices (3.41), (3.42), (3.43), (for further explanation see section

3.4). It is done as follows: If the entries of any of the determinants Sj(2,2), formed from

minors of the matrices (3.41), (3.42), (3.43), are not in the block structure, then we

interchange the appropriate rows and columns of the determinants S?,2) . This is the

case for S~2,2) and S~2,2) and in each case we need to interchange a pair of rows and a

pair of columns to make them factorizable (see Appendix for the general case). If the

block entries of any of the determinants s12,2) are odd-dimensional, then we enlarge

the determinants S?,2) by adding an extra row and column to each block matrix, so

that the block matrices are not singular, yet the determinant of the overall matrix is

unchanged. The extra row and column to the block matrix formed from (3.41) are

in the same structure as the block matrix itself, so that the enlarged sub-matrix is a

rank-l matrix. The extra column to the block matrix formed from (3.42) is in the form

E = ( -1, 1, -1, 1, ... , ±1), and the corresponding row is _ET, and the extra column
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to the block matrix formed from (3.43) is in the form e = (1, 1,1,,,',1),and the

corresponding row is _fT,

In the following, first we show the skew-symmetric determinants S?,2) in terms

of minor skew-symmetric determinants, formed from (3.42) and (3.43), and then the

pfaffians pP,2) in terms of minor pfaffians of the minor skew-symmetric determinants,

The Sf2,2) = (pP,2») 2 are as follows:

0 -1 -1 -1 -1 -1
0 -1 -1 -1 1 0 1 1 1 1

S!2,2)
1 0 C23 C24 1 -1 0 C23 C24 1

- -
1 -C23 0 C34 1 -1 -C23 0 C34 1

1 -C24 -C34 0 1 -1 -C24 -C34 0 1

1 -1 -1 -1 -1 0

0 C23 C24 1

0 -1 -C23 0 C34 1
= B<i< C~i~ = (C23 - C24+ C34)2-

1 0 -C24 -C34 0 1
-1 -1 -1 0

IPF,2) I Ib<i< C~i~ I = IC23 - C24+ C341
0 _ ka-k, -1 -1k2+kl

ka-kl 0 1 1
S~2,2) k2+kl-

1 -1 0 C34

1 -1 -C34 0

0 _ ka-k, 0 C34 = B(,;< C>;~ = (C34 Z~~Z:) 2
k2+kl-

ka-kl 0 -C34 0k2+kl

IP?,2)1 = Ib C I -Ic ka-k, I('j< >i~ - 34 k2+kl
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5(2,2)
3

o -1 -1 -1

1 0 -1 C24

o -1

1 o
-1 -1

1 1

1 1 o 1 1 -1

1 -1 -C24 o1 -C24 -1 0

o -1 o
1 0 -C24 0

Ip?,2) I - Ib<i~C~i> I= IC241

o

1

o
-1

1

o
1 -1 -1

o

1

1

o
-1

-1

1 1

o -1

1 0

5(2,2)
5 -

1

1

o

o C12 C13 1

o

1 1

1

1

1

-1

-1

1

o -1

1

1 1 -1

1 1 -1

1 1 -1

o 1 -1

o

o -1 -1

1

1 -1

( )

2
- B C - krkl- ~i~ >i> - kdkl

o 1 -1 -1

-1 -1 -1 0 -1

1 1
-1 -1 -1 0

o

o C12 C13 1

o

=

o

1

1

o
-1

-1

o 1

o

o 1

-1 0

1

1

-1

-1

o

-1

-1 -1 -1 0

1P'5(2,2)I - I b I I IC~i~ >i> = C12 - C13 + C23

-1

1

o -1

1 0

1 1
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0 -1 C13 1 0 C13 -1 1

8~2,2)
1 0 1 -1 -C13 0 -1 1

-
-C13 -1 0 1 1 1 0 -1
-1 1 -1 0 -1 -1 1 0

0 C13 0 -1 = C<i~ B~i> = (C13)2-
-C13 0 1 0

IPJ2,2)1 - IC<i~ b~i> I = IC131

0 C12 -1 1

8(2,2) -C12 0 -1 1
-7 !L::ll.1 1 0 12+11

-1 -1 -~ 012+11

0 C12 0 ~ ( rIl+11 - - ldl.- - C~i< B>i~ - C1212+110 _!dJ.. 0-C12 Il+11

1P?,2) I [c b 1-lc!dJ..1~i< >i~ - 12b+ll

0 1 -1 -1 1 -1
0 -1 -1 1 -1 0 -1 -1 1 -1

8(2,2) 1 0 1 -1 1 1 0 1 -1 -1
8 ~ 1 !L::ll.1 -1 0 12+11 1 -1 0 12+11 1

-1 1 _ !L::ll. 0 -1 -1 1 _ldl. 0 -1
12+11 12+11

1 1 1 -1 1 0

0 1 -1 -1
0 1 -1 0 !L::ll. 1 ( r12+11 -C B - ~
-1 0 1 -~ 0 -1 - <i< ~i~ - 12+11

12+11

1 -1 1 0

IPP,2)1 - Ic<,< b~.~I = I:2-:1 I·
':>":>' 2+ 1

Hence, from (3.44), the asymptotic expressions, (when the (2, l)th dromion is fixed)

for the (2, 2)-dromion solution are

P(2,2)
+ -
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3.6 A class of (1, 2)-dromion solutions

Next we show the (1, 2)-dromion solution as a reduction from the (2,2)-dromion so-

lution. As mentioned earlier, the (2,2)-dromion solution has two plane waves parallel

to the y-axis and two plane waves parallel to the x-axis. If we cancel out one of these

plane waves by making its amplitude zero, then we get the (1, 2)-dromion solution. Let

us take k, = O. Hence we have one plane wave parallel to the y-axis and two plane

waves parallel to the x-axis. From (3.39) we write the (1, 2)-dromion solution with the

arbitrary constants chosen as C12 = C13 = C14 = 2:

0 812 813 814

-8T 0 823 82412
S(I.2) = (3.45)

-8[3 -8T 0 83423

_8T _8T -eT 014 24 34

where

812 1 - 2e7l2

013 1 - 2eP'

014 = 1+ 2eP2

823 C23 + e7l2
- ePI + e7l2+P1

824 C24 + e7l2 + eP2 - e7l2+P2

834
l2 - II +

C + ePI + eP2 + ePI P2
34 L2 + Ll •

Here the arbitrary constants C23, C24, C34 are chosen such that the solution has no sin-

gularities. The conditions, on the constants, which give this property will be found by

considering the asymptotic form of all of the (1) x (2) dromions. The phases are

where the parameters k2' 11,12 have the ordering

and
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Next we expand the (1, 2)-dromion solution (3.45), as in the form (3.22), namely

S(1,2) = I C + D A - AT D + D B D I, (3.46)

where

0 -1 -1 -1

1 0 1 1
A= (3.47)

1 1 0 1

-1 -1 -1 0

0 -1 -1 1

1 0 1 -1
B=

1 -1 0 !l=lJ.
12+11

-1 1 -~ 012+11

0 2 2 2

-2 0 C23 C24C=
-2 -Cn 0 C34

-2 -C24 -C34 0

and

D = diag( 1, el12j eP1, eP2 ).

(3.48)

(3.49)

To obtain the asymptotic solution for the (1, 2)-dromion solution, again we focus on,

for example, the (x, t)-dependent plane wave and the 1st (y, t)-dependent plane wave.

Hence "l2 and P1 are fixed, and the corresponding dromion is the (2, 1)th dromion. Then,

from (3.31), one can write the asymptotic solution for the (1, 2)-dromion solution

p~1,2) _ IP1(1,2)1+ IPP,2)le112 + IPJ1,2)lePI + Ipp,2)leI12+P1

Pt1,2) _ IPJ1,2)1 + IPJ1,2)le112 + Ipp,2)lePI + IPJ1,2)leI12+P1,
(3.50)

where the pfaffians pP,2) (i = 1 ... 8) are defined in terms of minors of (3.47), (3.48),

and (3.49). To apply the notations used in the last section, we rearrange the corre-

sponding skew-symmetric determinants Sj(1,2) of the pfaffians IPp,2) I in the same way

as it is done for the (2,2)-dromion solution.
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0 -1 -1 -1 -1 -1

0 -1 -1 -1 1 0 1 1 1 1

S(I,2) - 1 0 1 1 1 -1 0 -1 1 1
4 - =

1 -1 0 1 1 -1 1 0 -1 -1
1 -1 -1 0 1 -1 -1 1 0 1

1 -1 -1 1 -1 0

0 -1 -1 -1
1 0 1 1 0 1 = B~i~ c.; = (1)2=
1 -1 0 -1 -1 0

1 -1 1 0

I (1,2)I I IP4 = b~i~ C>i> = 1

0 2 2 1 1 -1
0 2 2 1 -2 0 C23 1 1 -1

S(I,2) -
-2 0 C23 1 -2 -C23 0 1 1 -1

5 - =
-2 -C23 0 1 -1 -1 -1 0 1 -1

-1 -1 -1 0 -1 -1 -1 -1 0 -1
1 1 1 1 1 0

0 2 2 1
-2 0 C23 1 0 -1 = C~i~ e.; = (C23)2=
-2 -C23 0 1 1 0

-1 -1 -1 0

IPJ1,2)I= IC~i~b>i>1= IC231

0 -1 2 1 0 2 -1 1

S(I,2)- 1 0 1 -1 -2 0 -1 1
6 - -

-2 -1 0 1 1 1 0 -1
-1 1 -1 0 -1 -1 1 0

0 2 0 -1 = C<i~ B~i> = (2)2=
-2 0 1 0

IP~I,2)1= IC<i~b~i>1= 2
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0 2 -1 1
S(I,2) _ -2 0 -1 1
7 -

!d.1.1 1 0 '2+/,
-1 -1 _!d.1. 0'2+/,

0 2 0 !d.1.
= C~i< B>i~ = (2~~f:::) 2'2+/,

-2 0 _!d.1. 0'2+/,

Ip? ,2) I = Ic~i<b>j~ I = 12:~~::1
0 1 -1 -1 1 -1

0 -1 -1 1 -1 0 -1 -1 1 -1

S(I,2) _ 1 0 1 -1 1 1 0 1 -1 -1
-8 -

!d.1. 1 1 -1 0 !d.1. 11 -1 0 '2+/, '2+/,

-1 1 _!d.1. 0 -1 -1 1 _!d.1. 0 -1
'2+1, '2+',

1 1 1 -1 1 0

0 1 -1 -1

0 1 -1 0 !d.1. 1 ( r'2+/, -C B - ldJ.
-1 0 1 _ldJ. 0 -1

- <j< ~j~ - '2+/1
12+/1

1 -1 1 0

1P'(1,2)1 I b I 1ldJ.18 = C<j< ~j~ = '2+/, '

hence, from (3.50), the asymptotic expressions, (when the (2, 1)th dromion is fixed) for

the (1, 2)-dromion solution are

p~I,2) _ IC23 - C24 + C341 + 1c341e'12+ IC24IeP' + e'12+PI

P(I,2) [c 1+ 2e'12 + 12ldJ.1 eP' + 1ldJ.1 e'12+P'.+ 23 '2+/, '2+/,

3.7 Plots of Dromion Interactions

In the generic case, both before and after the interaction, the (2,2)-dromion solution

has four dromions (see figure 3.3) situated in the U -plane at the corners of the rectangle

formed by the plane-wave solitons in the V-plane (see figure 3.4). Using (3.37) and

(3.38) we determine the class of pfaffians c which makes the amplitude of some of these

dromions zero either as t --t -00 or as t --t 00. In order to get a particular dromion
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interaction, we also need to find out the asymptotics in each case when a particular

dromion is fixed. In section 3.5 we found the asymptotic expressions when the (2, l)th

dromion is fixed. Similarly, if we follow the same procedure, we get the following

asymptotic expressions as t -+ -00

(when the (1, l)th dromion is fixed)

(when the (1, 2)th dromion is fixed)

(when the (2, l)th dromion is fixed)

(when the (2,2)th dromion is fixed)

p(~2) = IC241 + I k2 - ki I e1)2+ Il2 - lil eP2 + I k2 - ki l2 - II I e1)2+P2
- k2+kI l2+l1 k2+kIl2+iI

and as t -+ 00

(when the (1, l)th dromion is fixed)

p(2,2) = Icd + I k2 - kil e1)1 + Il2 - ill ePI + I k2 - ki i2 - ill e1)I+PI
+1 k2 + ki l2 + II k2 + ki /2 + it

(when the (1, 2)th dromion is fixed)

(2 2) I I I k2 - ki I 'l1 I I P2+ I k2 - ki 11)1 +P2P+2' = C13 - c14 + C34 + C34 k2 + kl e + C13 e k2 + kl e

(when the (2, l)th dromion is fixed)

(22) I I I 11)2 I l2-/11 PI Il2-i111)2+PlP+i = C12 - C13 + C23 + C13 e + C12h+ /1 e + l2 + II e

(when the (2,2)th dromion is fixed)

To avoid singularities in the solution, we restrict the constants such that

C13 < 0, C34 > 0, C12 < 0, C24 < 0,
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C14 - C34 - C13 < 0, C24 - C23 - C34 < 0, C12 + C23 - C13 < 0,

so that the coefficients in the asymptotic expressions have the same sign. We determine

the dromion amplitudes from (3.37). The amplitudes U; = 0 and ut = 0 when the

phase shifts F~ = 0 and r: = 0, respectively. Thus, as t -+ -00,

the (1, 1)th dromion does not appear when

the (1, 2)th dromion does not appear when

the (2,1 )th dromion does not appear when

the (2,2)th dromion does not appear when

and as t -+ 00

the (1, 1)th dromion does not appear when

the (1, 2)th dromion does not appear when

the (2,1 )th dromion does not appear when

the (2,2)th dromion does not appear when

C24 = -1,

C13 = -1,

In particular, we consider the case in which the (1, 1)th and the (2, 2)th dromions do

not appear before and the (1, 2)th, (2,1 )th dromions do not appear after the interaction

to produce a solution describing the 90° scattering of two dromions. This kind of

scattering is shown in figure 3.5; two dromions with equal amplitudes are approaching

each other and interacting (a head-on collision) at time zero. During the interaction a

double dromion occurs as the two dromions collide. After the interaction two dromions

appear, one with bigger amplitude and faster than before the interaction, the other

dromion has smaller amplitude with different sign. For this plot, we have taken the

following values for the parameters kl = II = 1, k2 = l2 = ~, C12 = -~, C13 = -~,
C14 = -~, C23 = -~, C24 = -1, C34 = ~.

Next we consider the case in which the (1,2)th and the (2, 1)th dromions do not

appear before and the (1, 2)th, (2, 1)th dromions do not appear after the interaction to

produce a solution describing the 0° scattering of two dromions. This kind of scattering
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is shown in figure 3.6; two dromions one with positive amplitude and the other with

negative amplitude are approaching each other and interacting. At the interaction, all

four dromions appear and after the interaction two of them disappear and they almost

recover their initial profile. This kind of interaction is similar to soliton interactions, as

they do not change their initial profile upon interaction. Details of this interaction are

shown in figure 3.7. For this plot, we have taken the following values for the parameters

kl = il = 1, k2 = i2 = ~, C12 = -3, C13 = -~, C14 = 1, C23 = 1, C24 = -2, C34 = 3.

Next we consider the case in which the (1, l)th and the (2,2)th dromions do not

appear before and after the interaction. Two dromions one with negative amplitude

are approaching each other and collide. This collision is not exactly an interaction like

in other dromion interactions. After the collision the dromions bounce away and have

bigger amplitudes than before the collision. This kind of scattering is shown in figure

3.8. For this plot, we have taken the following values for the parameters kl = il = 1,

k2 = h = ~,C12 = -3, C13 = -1, C14 = -~, C23 = -~, C24 = -1, C34 = 2.

Next we consider the 2 x 1 dromion scattering obtained from the (1,2)-dromion

solution. The asymptotic expressions for the (1,2)-dromion solution are as follows as

t-+-oo

(when the (2, l)th dromion is fixed)

(when the (2,2)th dromion is fixed)

p(I,2) = [c I+ eTl2 + IL2 - Ll 1 eP2 + IL2 - Ll 1 eTl2+P2

-2 23 i2 + il i2 + it

and as t -+ 00

(when the (2, l)th dromion is fixed)

p(I,2) = [c I+ 2eTl2 + 12i2 - il 1 ePI + IL2 - Ll 1 eTJ2+P1

+1 23 L2 + Ll i2 + Ll

(when the (2,2)th dromion is fixed)

This kind of scattering is shown in figure 3.9; initially two dromions with positive

amplitudes are approaching each other and interacting. During the interaction one
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dromion absorbs the other dromion, and after the interaction we see only one dromion

with a bigger amplitude then the dromions before the interaction. For this plot, we

have taken the following values for the parameters kl = 0, il = 1, k2 = i2 = ~,

C12 = -k, C13 = -1, C14 = -1, C23 = -1, C24 = -~, C34 = k·
We also investigate whether there exists an annihilation property for the (2,2)-

dromion solution. We look for a scattering that has two dromions before the interaction,

but no dromion afterwards. That means that the dromions after the interaction must

have zero amplitudes. In order to have all dromion amplitudes zero, we must take the

following values of constants C13 = C14 = C23 = C24 = -1. These values of constants

also makes the amplitudes of dromions, before the interaction, zero. Therefore, the

annihilation property for the NVN equations does not exist.

Next we also consider the case in which the (1, l)th and the (1,2)th dromions do

not appear before and the (1, l)th, (1,2)th, (2, l)th dromions do not appear after the

interaction to produce a solution describing the 2 X 1 scattering of two dromions. This

kind of scattering is shown in figure 3.10; two dromions one with positive amplitude

and the other negative amplitude are approaching each other and interacting. During

the interaction the dromion with the positive amplitude absorbs the dromion with

the negative amplitude, and after the interaction only one dromion emerges, that has

smaller positive amplitude than the dromion before the interaction. This shows that the

dromion with negative amplitude has negative effect on the other dromion's amplitude.

For this plot, we have taken the following values for the parameters kl = il = 1,

k2 = i2 = ~, C12 = -1, C13 = -1, C14 = -1, C23 = -1, C24 = -2, C34 = 2.

It turns out that in contrast to one-dimensional solitons these two-dimensional soli-

tons (dromions) do not in general preserve their form upon interaction. Only for a

special choice of the parameters do these solutions preserve their form. In general the

computer generated plots show that the dromions have different interaction proper-

ties as compared to soliton interactions, as their initial profile is changed after the

interaction.

Appendix
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To factorize the pfaffian PI and the skew-symmetric determinant SI = (Pt}2, we take

its skew-symmetric matrix form and denote with G, hence

det( G) = SI = Pt.

For convenient we write G in the following block structure:

BI Al B2 A2
_AT Cl A3 C2G= 1

_BT -AI B3 A42

_AT -CJ -AI C32

where

BI (B) l~i<m, Al (A) lII.i<m ,
l~J<m m,j,M

B2 (B) l~i<m , A2 (A) I"i<m ,
M+IE;J<M+n M+n:l;JE;M+N

Cl (C) m"iE;M A3 (_AT) mE;i:l;M ,
m~<i:litM M+ll1itl<M+n

C2 (C) mlliti"M , B3 = (B) M+I,i<M+n,
M+n";illitM+N M+lE;J<M+n

A4 (A) M+I,i<M+n , C3 (C) M+n,iE;M+N •
M+nE;j"M+N M+n"illitM+N

In order to have simpler structure for factorization, we exploit the matrix G in

the following way. We interchange columns and rows in the determinant, so that the

determinants Si can be written in the form of block structure. The numbers of the

interchanges of the columns and rows are given by rio We interchange the rows in the

second block-row with the rows in the third block-row, so the number of interchanges

is r = (M - m + 1) x (n - 1), and we also interchange the corresponding columns in the

second block-column with the columns in the third block-column, so again the number

of interchanges is r = (M - m + 1) x (n - 1). Hence the number of total interchanges

in the matrix G is rl = 2 x (M - m + 1) x (n - 1).

The interchanges of the columns and rows do not affect the value of the determinant,

since whenever two columns are interchanged so the corresponding two rows are also

interchanged, nullifying the change in sign. Therefore the numbers rj are even for the

determinants Si, but may not be even for the pfaffians Pi. Therefore, we take the

absolute values of the pfaffians, namely IPil.
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This process is achieved simply by pre-multiplying the permutation matrix P by G

and pT.

p=

I 0 0 0
o 0 I 0
010 0
000 I

where I and 0 are identity and zero block-matrices respectively.

Hence we get G = pT G P. Next we take G to continue with the proof, since

det( G) = det(G). We have

B1 B2 Al A2
BT B3 AT A4G - 2 - 3

-AT A3 Cl C2
AT -Af eT C3- 2 - 2

( ~T n' (3.51)
-A

where Band C are skew-symmetric matrices, and A is a rank-I matrix given by

Next we factorize the matrix (3.51) in this form

(3.52)

where, again I and 0 are identity and zero block-matrices respectively. Taking the

determinants of the factorized matrices in (3.52), we get

det(G) = det(B) det(C + AT B-1 A).

The expression AT B-1 A is a zero matrix, as long as the A is a rank-I matrix and

the B is a skew-symmetric matrix. If B is skew-symmetric then so is B-1 a skew-

symmetric matrix. (If B is odd-dimensional, and hence not invertible, then see page 46

for explanation.)
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Thus we get

det(G) - det(B) det(C)

SI = B<o< c.;
t :;0-"7

p2 b2 2<0<C~o~1 , r'~

!PI 1 Ib<i< c~i~l·

Further we can also factorize the matrix B in terms of skew-symmetric matrices B,

and B3 defined by the parameters kj and 1j respectively.

B

det(B)

(
B1 0) (I s;: B2 )

-Br I 0 B3 + BrB;_-lB2

det(Bd det(B3 + Br s;' B2)

det(Bt) det(B3)

where I and 0 are identity and zero matrices respectively, B2 is a rank-l matrix, B,

and B3 are skew-symmetric matrices and the entries for the matrices B1 and B3 are

given in (3.24) and (3.25) respectively. Hence

SI - B<o< c.;
t 7'7

- K< L< C~i~

IPll - Ib<i< c~i~1

- Ik< l< C~i~I.

The proof for the other pfaffians IPjl (i=2 ... 8) can be done in a similar way.
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Figure 3.3: The location of the dromions in the If-plane.

Figure 3.4: The interaction of the plane waves and the location of the dromions in the

V-plane.
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(a)

(cl)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 3.5: 90° Dromion scattering. (a)t = -10; (b)t = -5; (c)t = -2; (cl)t = -1;

(e)t = 0; (f)t = 1; (g)t = 2; (h)t = 5; (i)t = 10.
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(a)

(cl)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 3.6: 00 Dromion scattering. (a)t = -10; (b)t = -5; (c)t = -2; (cl)t = -1;

(e)t = 0; (f)t = 1; (g)t = 2; (h)t = 5; (i)t = 10.
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Figure 3.7: Details of the interaction shown in figure 3.6.
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 3.8: Dromion interaction. (a)t = -10; (b) t = -5; (c) t = -2; (d)t = -1;

(e)t = 0; (f)t = 1; (g)t = 2; (h)t = 5; (i)t = 10.
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(a)

(cl)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 3.9: 2 x 1 Dromion scattering. (a)t = -10; (b)t = -5; (c) t = -2; (cl)t = -1;

(e)t = 0; (f)t = 1; (g)t = 2; (h)t = 5; (i)t = 10.
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(a)

(cl)

(g)

(b)

(e)

(h)

•

(c)

(f)

(i)

Figure 3.10: 2 x 1 Dromion interaction. (a)t = -10; (b) t = -5; (c) t = -2; (cl)t = -1;

(e)t = 0; (f)t = 1; (g)t = 2; (h)t = 5; (i)t = 10.
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Chapter 4

Algebraic Solutions of Soliton

equations

4.1 Introduction

In recent years solutions to soliton equations in soliton theory have been given in

many ways such as by means of Grammians, Wronskians, Pfaffians etc .. The diversity

of expressing solutions reflects the richness of algebraic structures which the soliton

equations possess in common. It is Sato [14] that unveiled the structures by means

of the method of algebraic analysis in the study of the Kadomtsev-Petviashvili (KP)

hierarchy. Among the variety of soliton equations, the KP hierarchy is the most widely

studied one.

In this chapter, we exploit the algebraic structure of soliton equations and find

solutions in terms of fermion particles. These particles can either be charged or neutral,

and they can have one component structure or they can have more than one, depending

on the structure of the equation. An example of their fermionic structure is shown in

the table below for some soliton equations. We write the r-function for charged and

neutral free fermions in terms of determinants and pfaffians respectively, and show that

these two concepts are analogous to one another. We write the r-function for charged

fermions in the following form

r", = det(A) det(A-1 + V),
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where A is a constant matrix and V is a matrix with the entries of charged fermions.

And we also write the corresponding pfaffian analogue of this r-function in the following

form

T.p = Pf(A) Pf(A' + V),

where A, A' are constant triangular matrices, A' is the analogue of the inverse A and

V is also a triangular matrix with the entries of neutral fermions. Observe that T", is in

determinant form and T.p is in pfafiian form. These are explained in more detail in the

later sections. In section 5, we derive new general formulae for charged fermions, from

which the rational solutions and soliton solutions for the KP hierarchy can be obtained.

In section 6, we derive formulae for the rational solutions of the l-cornponent and 2-

component BKP hierarchies. In section 7, we give general formulae for the soliton

solutions of the l-cornponent and 2-component BKP hierarchies. Examples of how to

get the soliton and dromion solutions to various soliton equations, from r-functions are

also given.

Fermions 1 component 2 component

charged ('l/Ji) KP DS

neutral (cPi) BKP NVN

4.2 Preliminaries

Here we recall some results from [54]. Let A be an associative algebra over C with

generators 'l/Jj, 'l/Ji (i E Z), satisfying the anti-commutator relations

(4.1 )

where [X, Y]+ = XY + Y X. The generators 'l/Jj, 'I/J,( (i E Z) will be referred to as free

fermions.

Here ( ) denotes a linear form on A, called the (vacuum) expectation value, defined

as follows. For a E C or quadratic in free fermions

(a) = a, (i E Z)

(t/Jit/Jj) = 0, (i,j E Z) (4.2)



{
o.. (i < 0)(tPitP~) = 1,3 ,

3 0 (otherwise) {
0" (i > 0)(tPjtPi) = 1,3 - •

o (otherwise)
For a general product WI ... Wr of free fermions Wi, we apply Wick's theorem to compute

the expectation values

(r odd)

where a runs over the permutations such that a(l) < a(2),· .. ,a(r - 1) < a(r) and

a(l) < a(3),··· ,a(r - 1). We see that this theorem gives the expectation value of

the general product of free fermions WI ••. Wr in terms of a pfaffian. Therefore, Wick's

theorem can be expressed in terms of pfaffians in the following way

{
0 (r odd)

(WI'" Wr) =
Pf( (WiWj)) (r even)

Lemma 4.2.1 From Wick's theorem we have

Proof.

where k, I = 1" .. ,r and rn, n = 1" .. ,s. Using the definition of the expectation value

in (4.2)

r=s

r=f.s

hence

{
± det((·I ..• 1.*)) r = s

(.1.. • ••• 1.. .1.~ •••• 1.~ ) = 'f/lp 'f/Jq
'f/'1 'f/'r 'f/31 'f/3. o r=f.s

Looking at the term (tPil tPjl) ... (tPir tPjr) on each side we see that the sign is (-1)tr(r+l).

o
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It is convenient to use the generating functions for free fermions defined as

tjJ(p) :=L tjJipi,
ieZ

tjJ*(q) :=L tjJiq-j·
sez

(4.3)

Lemma 4.2.2 The expectation values are given by

and

Proof. From the definition (4.3)

m,neZ m,n<O

= E (qj)m _ qj
m=l Pi Pi - %

and similiarly

m,nEZ m,n~O

00 ( )mL Pi
m=O qj

qj
Pi - qj

o

4.2.1 Partitions

Here we introduce some notations from [56] which will be used later in this chapter.

A partition is any sequence

(4.4)

of non-negative integers in non-increasing order,

and containing only finitely many non-zero terms. The non-zero Ai in (4.4) are called

the parts of A. Sometimes it is convenient to use a notation which indicates the number

of times each integer occurs as a part:
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means that exactly mi of the parts of A are equal to i.

The diagram of a partition A may be formally defined as the set of points (i, j) E Z2

such that 1 2:: j 2:: Ai. In drawing such diagrams we shall adopt the convention, as with

matrices, that the first coordinate i (the row index) increases as one goes downwards,

and the second cordinate j (the column index) increases as one goes from left to right.

For example, the diagram of the partition (5441) is

I

-

consisting of 5 squares in the top row, 4 in the second row, 4 in the third row, and 1

in the fourth row. We shall usually denote the diagram of a partition A by the same

symbol A.

Another notation for partitions which is occasionally useful is the following, due to

Frobenius. Suppose that the main diagonal of the diagram of A consists of r squares

(i,i) (1::; i::; r). Let ai = Ai - i be the number of squares in the ith row of A to

the right of (i, i), for (1 ::; i ::;r), and let {3i= A~ - i be the number of squares in the

ith column of A below (i,i), for (1 ::; i::; r). We have at> a2 > ... > ar 2:: 0 and

{3t > {32> ... > {3r 2:: 0, and we denote the partition .x by

For example, if A - (5441), then we have a = (421) and {3

(4211310).

(310), hence A -

Let a,b 2:: 0, then (alb) is the Frobenius notation for the partition (a + 1,1b).

4.3 Charged Free Fermions

We give "time" evolution to the free fermions via a hamiltonian H(g;_). For a E A
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Note first of all that

[H(~), ¢(p)] = L Xn[L ¢i¢i+n,¢k]pk
n~I,keZ ieZ

L xnpk(L(¢i¢i+n'I/Jk - ¢k¢i¢i+n)).
n~I,kEZ ieZ

Then using (4.1) we have

[H(~), ¢(p)] L xnpk(Ldk,i+n¢i)
n~I,keZ ieZ

L Xnpk¢k_n = L xnpn¢(p)
n~I,keZ

- e(~,p)¢(p),

where e(~,p) := LXnpn. Then
n~l

where (adH(~))X = [H(~),X] and so (adH(~))j¢(p) = (e(~,p))j¢(p), hence

(4.5)

Similarly, [H(~), ¢*(q)] = -e(~,q)¢*(q) and so

(4.6)

We call a polynomial r(x) a r-junciion if it is representable in the following form

for some g:

(4.7)

for each I E Z, where

¢-l··· ¢i i < 0
W'!'= 1 i=O ,,

¢~... ¢i-l i > 0

¢; ... ¢~1 i < 0

Wi= 1 i=O

¢i-l··· ¢o i > 0
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For example we take

(4.8)

for some r, s. Then for r = s,

TO(~,g) - (Olg(~)IO)

_ eEi=l e(~'Pi)-e(~,q;)(g)

_ eEi=l e(~,p;)-e(~,qi) det( (t/J(pdt/J·(qj)))

and then, using Lemma 4.2.2, we get

(4.9)

Next we wish to express the r-function TI' From (4.7)

TI(~,g) - (llg(~)ll)

- (\)j~g(~)q,l)

- (t/J~g(~)t/Jo)

- eEi=l e(~'Pi)-e(~,qi)(t/J~t/J(pd ... t/J(Pr )t/J.( qt} ... t/J.( qr )t/Jo)

-(t/J·(qdt/Jo) -(t/J·(qr)t/JO)

_ eEr=le(~'Pi)-e(~,qi) (t/J(pt}t/J.(qt}) (t/J(pdt/J·(qr))

-(t/J~t/Jo)

- (t/J~t/J(PI))

using Lemma 4.2.2 we get

-1 -1 -1

.sc: -1
Pl-qr (4.10)

_.!lr_ -1
Pr-qr

Next we do the following operation in the determinant in (4.10): we subtract the first

row of the determinant from the rest of the rows. We get
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-1 -1 -1
~ J.!:..._ 0

Tl(~,g) - eEi=, e(~.Pi)-e(~.qi) PI-ql PI-qr

~ J.!:..._ 0Pr-ql pr-qr

Lemma 4.3.1 For all 9 E A,

(4.12)

Proof. In order to proof the lemma, we first need to show

(4.13)

where 9 is given by (4.8). Using the definition of fermions from (4.3)

1,1(1/J(p)) = L tl(1/Ji)pi = L 1/Ji-1P' = p'1/J(p)
ieZ ieZ

and

tl(1/J*(q)) =L tl(1/Jj)q-i = L 1/Ji_lq-i = q-I1/J*(q),
ieZ ieZ

and hence

() IIi=IPi
tl 9 = II" g.i=lqi

Using these results we can show the equality in (4.13):
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Then, clearly

Tl(!f.,g) - Tl-l(!f.,£I(g)) = TI-2(!f.,£I(tl(g))) = TI-2(!f.,£2(g))···

- Tl-l(!f., £l(g)) = To(!f.,tl(9))

and

TI-m (!f., £m (g) )

TO(~, tl-m (tm (g)))

TO(~' t/(g)).

Every product of free fermions is the coefficientof some power ofPI, ... ,pr, qI , ... ,qr

in 9 defined in (4.8). By expanding both sides of (4.12) with respect to these parame-

ters, the full result follows. Hence the result is proved for 9 given by (4.8). 0

Now we wish to express the r-function TO in terms of Schur functions [56]. In general

a Schur function S)." where A= (01, .•• , Or1,81,... , f3r ), is defined by

(4.14)

where
13

S(al13)= I) -l)kha+1+k(x)e13_k(x),
k=O

where hi(x) and ej(x) are the complete and elementary symmetric functions, respec-

tively.

The element 9 as given by (4.8) can be written as

9 = L p~I... p~nq~it ... q;;jng',
il s" • .inEZ
it .....inEZ

where

Then (4.9) can be used as a generating function to determine TO(!f.; g') by looking at

the coefficients of p~l ... p~nqlit ... q;;jn, where il > i2··· > in,jl > j2 > ... > jn E Z.

Next we expand the entries of the determinant in (4.9) in the following way:
00

ee(!:,p;) =L hi( X )pi,
i=O

00

e-e(!:tqi) = I) -l)jej(x)qi
j=O

(4.15)
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and
00 ( )kqj Pi

p._q. = - L -q.t :, ) k=O)
Thus the (i,j)th entry in (4.9) can be written as

eEr:l (e(~,Pi)-e(~,qi» qi
Pi - qj

00 00

- L L(-l)j+lhi(x)ej(x)pi+kqi-k
i,i=O k=O
00 00

- L L(-l)k-j+1hi_k(x)ek_i(x)piq-i, (4.16)
i,i=O k=O

where hn(x) = en(x) = 0 for n < 0 and ho(x) = eo(x) = 1 .

Lemma 4.3.2 The coefficients of p~l ... p~nq~iI ... q;in in (4.16) can be expressed

in terms of Schur function in the following form:

00

L( -ll-i+1hi_k(x)ek_i(x)
k=O

( I)-i-IS- (iI-i-I)

( I)-i-IS- - (i+l,l-J-l).

Proof.
i k

L(-I)k-H1hi_k(x)ek_i(x) = L(-I)i+lhk_i(x)ei(x) = 0 (4.17)
k=i i=O

SInce

1 - eEi=o pix; e- Lk=O P"Xk

- L hi(x)pi L( -l)kek(x)pk
i=O k=O

k
L L(-I)ihk_i(x)ei(x)pk
k=Oi=O

k
0 - L L(-I)ihk_i(x)ei(x)pk

k=l i=O
k

L( _l)i hk-i(X )ei(x).
i=O
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From (4.17)
-1 1

L)-l)k-ihi_k(x)ek_i(x) + L)-l)k-ihi_k(x)ek_i(x) = 0
k=i k=O

k=O k=i
-i-l- L (-1)-k-i-l hi+k+l (x )e-k-i-l (x)
k=O

- (_1)-i-1 S(il-i-l)

o

Hence (4.9) can be written as

TO(~'g) = det(t (-lti-1 S(iI_i_1)piq-i)
1,3=0

(4.18)

and

TO(~'g') - (-1v==>: det (SUI-i-1»)

- (-ltil- ...-in-ndet(S(i+l,I-J-l»).

Similiarly Tl(~,g) can be written from (4.18) by using Lemma 4.3.1 as

Tl(~,g) = det (f:(-l)-iS(i_ll_i)piq-i)
I,}=O

and

Tl(~,g') - (-ltil- ...-indet(SU_ll_i»)

- (-ltit-···-in det( S(i,l-i»).

In general

Tl(~,g) = det(t (_1)-i+1-1 S(i_ll_i+1_1)piq-i)
1,3=0

and

(_ltil-.··-in+nl-n det (S(i-ll-i+1-1»)

( l)-il- ..·-in+nl-n d t (S .)- e (i-l+l,1-J+I-1).

Hence, by (4.14), each Tl is a Schur function. These give rational solutions of the KP

equation, where u = 2a~(logT).
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4.4 Charged Free Fermions with 2 Components

In this section we consider free fermions with 2 components. Consider free fermions

'ljJfj) , 'ljJfj)* indexed by n E Z and j = 1,2, satisfying the anti-commutator relations

[.I.(j) .I.(k).] r r
'Pm , 'Pn + = °jkUmn,

(4.19)

where [X, Y]+ = XY +YX. Such fermions are obtainable by renumbering the fermions

of a single component. For example, the simplest choice is

.1. (2) .1.
'Pn = 'P2n+1

.d2)* .1••
'Pn = 'P2n+l' (4.20)• /.(1)* = .1.*w« 'P2n'

Fixing the renumbering (4.20), we identify the vacuum expectation values for the 2

component fermions with the single component fermions. The time evolution for the

2 component fermions are induced by the following Hamiltonian

where the time variables are !f(j) = (!f~j),!f~j), ... )(j = 1,2).

Lemma 4.4.1 The expectation values of 2 component free fermions are given by

and

('IjJ(h) (p!h) )'IjJ(k)*( q~k))) = (t/J(h)*( q~h))t/J(k)(p!k))) = 0,

('IjJ(h) (p!h))'IjJ(h) (p~h))) = (t/J(h)*( q!h))t/J(h).( qt))} = 0,

where h, k = 1,2.
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Proof. From the definition (4.3) and (4.20)

(tP(h)(p!h»)tP(h)*(q~h»)) - L (tP!:)tP~h)*)(p~h»)m(qt»)-n
m,nEZ

m,nEZ

m,n<O
00 (h) m (h)

'""" (qi ) qiL.J W = (h) (h)
m=l Pi Pi - %

and similiarly

m,nEZ

m,nEZ

m,n~O

E (p~::)m _
m=O %

(h)
%

(h) (h) •
Pi - qi

o

Note first of all that

L x!i) [L tP!!)tPW:, tP~)] p(i)k
i~l,kEZ nEZ

L x~i)p(i)k (L)tP!!)tPW:tPki) - tPki)tP!!)tPW:))
i~l,kEZ nEZ

then using (4.19), we have

L x!i)p(i)k (L ~k'i+ntP!!»)
i~l,kez neZ

L x~i)p(i)ktPk~i =L x!i)pU)itP(i) (pU))
i~l,kEZ i~l

e(~(i) ,pU) )tP(i) (p(i) ),

tP(h) (p(h) ,~(l), ~(2») eH(~(l) ,~(2»tP(i)(p(j) )e-H(~(l) ,~(2»

_ e(adH(~(1),~(2»)tPU)(p(i»)

_ (1 + ad H(~(1),~(2») + ~(ad H(~(1),~(2»))2 + ... )tP(i)(p(i»),
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where (adH(~(1),~(2»))X = [H(~(1),~(2»),X] and so

(ad H(~(1),~(2»))mtjJ(j)(p(j)) = (~(~(j),p(j)))mtjJ(j)(p(j)). Hence

(4.21)

tjJ(i)*( q(j), ~(l), ~(2») _ eH(i:(I) ,i:(2) )tjJ(i)*( q(i»)e-H(i:(l) ,:!(2»

_ e-e(i:(i) ,q(i) )tjJ(i)*( q(j»).

The r-functions for the 2 component free fermions with the total charge II + 12, we

define in the following form for some 9 = 9(1)9(2):

- (/1l/2Ie
H(i:(1)'i:(2»91/2 -/3,/1 + 13)

(\lI(1)*\lI(2)* eH(:!(l) ,i:(2» \lI(2) \lI(I) )- 'I 12 9 12-13 11+/3 '

(4.22)

where

tjJ(i) tjJ(i) 1<0-1... I

\lI(i)* - 1 1=0I - ,
tjJ(i)* tjJ(i)* 1>0o • •• 1-1

tjJ(i)* tjJ(i)* 1< 0I . .. -1

\lI(i) - 1 1=0I -

tjJ(i) tjJ(i) 1>01-1 • •• 0

For example we take

(4.23)

for some r, s. Then for r = s,

and, using Lemma 4.4.1, we get
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4.5 Charged Free Fermions In General

In this section, we wish to express 9 more generally in the following form

~N a ..• I.;.I.i.9 = e""';.i=1 OJ'I' 'I' , (4.24)

where the t/Ji, t/Jj* (i,j = 1, ... ,N) can be either one-component or two-component

fermions. For example, in this chapter we will take t/Ji = t/J(Pi) for the one-component

case and t/Ji = t/J(l)(p(l)) or t/Ji = t/J(2)(p(2)) for the two-component case. Then the

r-function TO is

TO (g(~))
N

1+ L aidl (t/Ji1t/Ji1*) +
N

L

+
N

L (4.25)

If we give the following expectation values

(4.26)

and using Wick's theorem, the r-function in (4.25) can be written in the (N x N)

determinantal structure in the following form:

TO = det(I + AV), (4.27)

where I is the identity matrix, A is a constant matrix with the entries A = [aji],

and V is a matrix with the entries of expectation values of quadratic free fermions

V = [(t/Jit/Jj*)]. See Appendix for the proof.

Next we give a general M order r-function, from which the higher order T-functions

can be obtained. This formula can be written in the following form

TM = (t/Jil* ... t/JiM*gt/Jil ... t/JiM)

X y
- G Z

(4.28)

where

X=
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y=

z=

and while 9 can be given either as

(4.29)

or as in (4.24) then the matrix G can be either G = (ee(!:,Pi)-e(!:,q)) __I!L._) or G = I+ AV, ~-~'
respectively. Thus, G depends on the choice of g. For example, for M = 1, N = rand

9 is given by (4.29), we have

TI = (1/Ji1 *9(:£.)1/Ji1 )

(1/Ji1.,ph) ... (1/Jil1/Jr*) (1/Jil1/Jil*)

(1/JI1/Jil*)

G

If we choose 1/Ji1 = .,po, .,pi1* = 1/Jo and 1/Ji = 1/J(Pi), 1/Ji* = 1/J*(qj) (j = 1,··· , r), then we

recover the Tl-function in (4.10).

In order to get the soliton solution for the l-component case, we choose the constants

aii = 0 (i =I- j). From (4.25)

N N
T 1+L ailil (1/Jil1/Ji1*) + L ai1i1 ai2i2{1/Jil1/Jil*1/Ji21/Ji2*) + ... +

gives rise to the N-soliton solution.
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For example, for N = 2 from (4.25) we have the following solution

2

TO = 1+ L ailil (t/Ji1t/Jjl*) +
2

L
- 1 + au(t/Jlt/Jh) + a12(t/Jlt/J2*)+ a21(t/J2t/Jh) + a22(t/J2t/J2*)

+au a22( t/Jlt/Jht/J2t/J2*)+ al2a21 (t/Jlt/J2*t/J2t/Jh)

- 1 + all(t/Jlt/Jh) + a12(t/Jlt/J2*)+ a21(t/J2t/Jh) + a22(t/J2t/J2*)

+( aUa22 - a12a21)( (t/Jlt/Jh)( t/J2t/J2*) - (t/Jlt/J2*)(t/J2t/Jh) )

1 + au (t/Jlt/Jh) + a21(t/J2t/Jh) all(t/Jlt/J2*) + a21(t/J2t/J2*)

a12(t/Jlt/Jh) + a22(t/J2t/Jh) 1 + a12(t/Jlt/J2*)+ a22(t/J2t/J2*)
(4.30)

and this can be written as in (4.27), T = det(I2 + A2 \12) where 12 = diag(1, 1),

(
all a21) ((t/Jlt/Jh) (t/Jlt/J2*))A2 = and \12 = .

a12 a22 (t/J2t/Jh) (t/J2t/J2*)

In general the 2-soliton solution can be written from (4.30) by choosing al2 = a21 =
o (the reason for this choice will be explained in a later example)

T=
1 + au(t/Jlt/Jh) all (t/Jlt/J2*)

a22(t/J2t/Jh) 1+ a22(t/J2t/J2*)
(4.31 )

Example 4.5.1 As an example for the one component fermions, we put t/Jl -

t/J(pt}, t/Jh = t/J*(qt} and t/J2= t/J(P2), t/J2*= t/J*(q2) in (4.31). The T-function is

T = 1+ all(t/J(pt}t/J*(ql)) + a22(t/J(p2)t/J*(q2))

+alla22( (t/J(pt}t/J*( qt})(t/J(p2)tfJ*( q2)) - (t/J(pt}t/J*( q2) )(t/J(P2 )t/J*( qt})).

fT1 k' h . I d hoosi PI - ql P2 - q2 t
1. a mg t e ezpeciaiion va ues an c oosmg au = , a22 = we ge

ql qz

T = 1 + e'11 + e'12 + A12e'11 +'12 ,

where

i= 1,2

and
A12 = (PI - P2)(ql - q2).

(PI - q2)(ql - P2)
Hence u = 28;(log T) gives the 2-so1iton solution {12} for the K P equation
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Example 4.5.2 Here we give an example for the resonant soliton solution for the

K P equation. The 4-soliton solution for the K P equation arises from the following

choice

The r-function r is

r - (g(~))

- 1+ all(¢(pd¢*(ql)) + a22(¢(p2)¢*(q2)) + a33(¢(p3)¢*(q3)) + a44(¢(p4)¢*(q4))

+alla22(¢(pd¢*( qt}¢(P2)¢*( q2)) + alla33( ¢(pd¢*( qd¢(P3)¢*( q3))

+alla44(¢(pt)¢*( qd¢(p4)¢*( q4)) + a22a33(¢(p2)¢*( q2)¢(p3)¢*( q3))

+a22a44( ¢(p2)¢*( q2)¢(P4)¢*( q4)) + a33a44(¢(P3)¢*( q3)¢(P4)¢*( q4))

+all a22a33(¢(PI )¢*( ql )¢(P2)¢* (q2)¢(P3)¢* (q3))

+all a22a44(¢(PI )¢*( ql )¢(P2)¢* (q2)¢(P4)¢* (q4))

+all a33a44(¢(PI )¢*( ql )¢(P3)¢* (q3)¢(P4)¢* (q4))

+a22a33a44(¢(P2)¢*( q2)¢(P3)¢* (q3)¢(P4)¢* (q4))

+all a22a33a44(¢(PI )¢*( ql )¢(P2)¢*( q2)¢(P3)¢* (q3)¢(P4)¢*( q4)).

Now we make the following choice of the parameters) namely we substitute P2 = PI)

then P3 = P2) P4 = P2) q4 = q2) and q3 = ql· Then the r-function

r = 1+ all (¢(pd¢*(qt}) + a22(¢(pd¢*(q2)) + a33(¢(p2)¢*(qd) + a44(¢(P2)¢·(q2))

+alla44(¢(pd¢*( qd¢(p2)¢*( q2)) + a22a33(¢(Pl )¢*( q2)¢(P2)¢* (qd)·

. . . ~-~ ~-~ P2-~Takmg the expectation values and choosmg all = )a22 = ) a33 = )
ql q2 ql

P2 - q2a44 = we get
q2
r = 1+ ee(Pl,X)-e(qltx) + ee(Pl,X)-e(Q2,X) + ee(p2,X)-e(q"x) + ee(P2,X)-e(Q2,X)

+A12ee(Pl,x)-e(QI,x)+e(P2,x)-e(Q2'x),

where
Al2 = (P2 - pd(ql - q2)(Pl - P2)(ql - q2).

(PI - q2)(P2 - ql )(Pl - ql )(P2 - q2)
This gives rise to the resonant 4-s01iton solution of the K P equation.

In order to get the r-function for the 2-soliton solution, as in the previous example,

here we choose a22 = a33 = O. The reason for this choice is that this makes the 2nd
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and 3rd terms vanish in the T-function. Hence the resonant behaviour that gives rise

to a solitoff [36} vanishes and we get the 2-soliton solution.

Example 4.5.3 For the two component free fermions, we take all = a22 = ° and
put tjJl = tjJ(I)(p(I»), tjJh = tjJ(I)*(q(I») and tjJ2= tjJ(2)(p(2»), tjJ2*= tjJ(2)*(q(2») in (4.30).

Then the r-funciion Tl from (4.30) is

1+ a2l (t/J2t/Jh) a2l (t/J2t/J2*)

a12(t/Jlt/Jh) 1+ a12(t/Jlt/J2*)
_ 1+ a12(?/J(1)(p(I»)?/J(2)*(q(2»))+ a2t{?/J(2)(p(2»)?/J(1)*(q(1»))

(4.32)

+a12a2l ( (t/J(l) (p(1) )?/J(2)*(q(2»)) (t/J(2)(p(2) )t/J(1)*(q( I»))

_ (?/J(l) (p(l) )?/J(l)*( q(1»)) (?/J(2)(p(2) )?/J(2)*(q(2»)) ).
pel) _ q(l) q(2) _ p(2)

Taking the expectation values and choosing al2 = q(l) ,a21 = q(2) ,we get

the Tl-function for the two component KP-hierachy (DS equations)

where

j = 1,2. (4.33)

Hence u = za gives the I-soliton solution [54} to the DS equations, where T3 is the
7'1

bordered determinant of (4.32).

Example 4.5.4 In order to get the I-dromion solution for the DS equations we

define the following functions [54J ( see (4·22))

Tl{Z) - (Ill l2 - 1IeH(z)glh -L- 1,Ll + L),

T2{Z) - (Ll + 1, L2- 2IeH(z)gIL2 - L- 1, Ll + L), (4.34)

then the DS equations can be written in the following bilinear equations

D~2)T2 . Tl + D~2)2Tl . T2 = 0,

D~l)Tl . T2+ D~1)2T2 . Tl = 0,

D~2)Tl . T3+ D~2)2T3 . Tl = 0,

D~1)T3 . Tl + DP)2 Tl . T3 = 0,

DP) D~2)Tl . TI - 2T2 . T3= 0.

(4.35)
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The T-functions in (4.34) provide a method for generating solutions of the two-component

KP hierarchy of bilinear equations. In what follows we take the simplest choice l = i1 =
12 - 1 = O. Hence we have

where g(z) = eH(z)ge-H(z). The TI-function is as in (4.30)

1+ all (t/}.,ph) + a21 (.,p2.,ph) all (.,pI'IP*) + a21 ("p2"p2*)

a12( .,pl.,ph) + a22( .,p2.,ph) 1+ a l2(.,p I"p2*) + a22( .,p2.,p2*)

1+ all (.,pl.,ph) + a12( .,p1.,p2*)+ a21 (.,p2.,ph) + a22( .,p2.,p2*)

+(alla22 - a12a21)( (.,pI.,ph}(.,p2.,p2*) - ("p1.,p2*)(.,p2"ph) ),

where we choose .,pI = .,p(1)(p(l»), .,ph = .,p(1)*(q(1») .,p2 = .,p(2)(p(2»), .,p2* = .,p(2)*(q(2»)
p(l) _ q(I) p(2) _ q(2) p(l) _ q(2) p(2) _ q(l) .

and all = q(1) ,a22 = q(2) , a12 = q(2) ,a2I = q(1) . Takmg the

expectation values, we get

where

j = 1,2

and
(p(2) _ p(1»)(q(2) _ q(l»)

A12 = (p(l) _ q(1»)(p(2) _ q(2»)'

The T2-function can be written from (4.28) in the following form:

(.,pit.,ph)

1+ all (.,pl.,ph) + a2l (.,p2.,ph)

a12(.,pl.,ph) + a22{.,p2.,ph)

(.,pit.,p2*)

au (.,pl"p2*) + a21 ("p2"p2*)

1+ al2(.,pl.,p2*) + a22{.,p2"p2*)

(.,pit "pi'*)

("pl"pi,*) ,

("p2.,pi'*)

where we choose ib" = .,p(l)(p(l»), .,ph = .,p(l)*(q(l») .,p2 = .,p(2)(p(2»), .,p2* = .,p(2)*(q(2») and
. (1)*' (2) p(l) - q(2)

"plt* ="po ,,,pIt = "p-l' al2 = q(2) . Then the T2-function is

_ q(l)(p(l) - q(2») 2e(p(1),z)-{(q(1) ,z)-e(q(2) ,z)
T2 - p(l) _ q(l) e

Similarly the T3-function can be written from (4.28) in the following form

("pit "pit*)

(.,pl.,pi,*) ,
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where we choose ¢I = ¢(1)(p(I»),¢h = ¢(I)*(q(I») ¢2 = ¢(2)(p(2»), ¢2* = ¢(2)*(q(2») and
i
l
* (2)* i (I) p(2) - q(1) .

¢ = ¢o ,¢ 1 = ¢-l' a21 = q(l) . Then the T3-functton becomes

_ q(2)(p(2) - q(1») 2~(p(2),z)_~(q(2) ,z)-~(q(l) ,z)
T3 - p(2) _ q(2) e

The transformations P = ~, Q = ~, U = log TI yield the bilinear equations (4.35) to

the following DS equations

-u: + P:z;z + PYlI + 2(U:z;:z; + Uyy)P = 0,

iQt + Qz:z; + Qyy + 2(U:z;:z; + Uyll)Q = 0,

QP = 4U:z;y.

Hence Q = za is the I-dromion solution [54} for the DS equations.
7'1

4.6 Neutral Free Fermions

In the previous section we constructed charged free fermions ¢n and ¢~ (n E Z) for

the KP-Hierarchy. Here we exploit neutral free fermions ¢n (n E Z) [50], [54] for the

BKP-Hierarchy, satisfying the anti-commutation relation

The charged free fermions introduced in the previous section can be split into two

sets of neutral free fermions. Namely, if we set

(m E Z),

The expectation values of neutral free fermions are defined by

n=O
o n<O

and the generating function for neutral free fermions is defined as

¢(p) :=L ¢ipi.
ieZ

(4.36)
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Lemma 4.6.1 The expectation values are given by

Proof. From the definition (4.36)

and similiarly

(<!>(Pi)¢>o) - L (4)m¢>o)pi =L ~dm,oPi = ~.
m,nEZ m~O

o

The time evolution for the neutral free fermions

where the Hamiltonian H(!f.) is defined as

H(!f.) = ~ L (-l)n+IXi<!>n<!>_n_l.
neZ

;=1,3, ...

The T-function

T = (g(!:)),

where we choose

9 = <!>(pd •.. <!>(P2r),

for some r. Then using Wick's theorem

I(<!>(Pl ) <!>(P2) ) ( <!>(Pl ) <!>(P2r ) )

(4)(P2) <!>(P2r ) )
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and using Lemma 4.6.1, we get

1 II P' - p' ~2rTt/>= (4)(X, PI) ... 4>(X, P2r)) = - I J e,,-, •• I (x.I'.).

2r '<' Pi + PiI J

(4.39)

Now we wish to express the r-function Tt/> in terms of another class of symmet-

ric functions, Schur's Q-functions [56], [57], [58]. In general, for a partition A =

(AI, ... ,Am), a Q-function is defined by

m

Q>.(Xj t) = II (a(i) - a(i))(a(i) - ta(j)tl II q>..(x(i)j t)lx(')=r
I:$i<j:$m i=l

which reduces to the Schur function S>.(x) when t = 0, so that Q>.(x;O) = S>.(x). In

particular we have the Q-function for the partition A= (ij), namely

i-I
Q(ii) = qiqj +22) -1)k+1qi+k+lqj_k_l'

k=O

(4.40)

For a general A, we define a triangular matrix A = (Q(>..>.))). Then, if A has even

number of parts Q>. = Pf(A), and if A has odd number of parts then

Q>.=

The element 9 is given by (4.38) can be written as

9 = L p;I ... p;~g',
il.·..hreZ

where

Then (4.39) can be used as a generating function to determine Tq,(~,g') by looking at

the coefficients of p;1 ... p;2;, where il > i2 ... > i2r E Z. Next we expand the entries

of the determinant in (4.39), in the following way:

00 ( )n+1!Pi - Pi = !+" _Pi ,
2p' +p' 2 L- p'

I J n=O I

00

ee(~.I'i) =L qk( x )p~,
k=o

(4.41 )
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where qk(X) are the complete symmetric functions. Thus the (i,j)th entry in (4.39)

can be written as

_ ~Pi - Pi ee(&IPi)+e(£Pj)

2Pi +Pi

(
1 00 ( )n+l) 00 00- 2" +L -P~ L qk(X)p~ L ql(x)p~

n=O P. k=O 1=0
100 00 00

- 2"L qkq,P~p~ +L L( _1)n+lqkqIP~-n-lp~+n+l
/0.0 /0.0 n=O
1.0 '_0
00 00 00

1 " k I + ""( l)n+l k 1- 2" L..Jqkq'PiPi L..JL..J - qk+n+lql-n-lPiPj
/0_-1 11.-1 n=O
1.0 1_0

(4.42)

1.0

where qi(X) = 0 for i < 0 and qo(x) = 1 . The coefficients of pfp~ in (4.42) are the

Q-functions defined in (4.40). Therefore, we can write the (i,j)th entry of neutral free

fermions in terms of Q-functions as follows:

Hence the r-function in (4.39) can be written in the following form:

r.(lC,9) = 2-- PfCt-. Q(.;I,wt;py)
Ij_O

- 2-r t Pf( Q(kiI1))P~1 ... p~rp~1... p~
lel,'" ,lcr--l
'11'" Ilr-O

and

Tt/J(~,g') = 2-r Pf( Q(ii)).

Hence by (4.40) each Tt/J is a Q-function. These give rational solutions [50]of the BKP

equation, where u = 2ox(1og T,p).

4.7 Neutral Free Fermions In General

Next we wish to express 9 more generally for the neutral free fermions in the following

form:
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where <pi, ¢J (i < j = 1, ... , 2N) can be either one-component or two-component

fermions. For example we will take <pi = <p(Pi) for the one-component case and ¢i =

¢(1)(p(I)) or ¢i = ¢(2)(p(2)) for the two-component case. Then the T-function is

Tt/> - (g(~))
2N

- 1+ L aidt (¢itqlt) +
2N

L
it <it=1

2N

L (4.43)

Next we give the following expectation value

(4.44 )

Using the definition of the expectation value in (4.44) and Wick's theorem, the Tt/>

function in (4.43) can be written in the following pfaffian form:

Tt/> = Pf(A) Pf(S), (4.45 )

where A and A' are constant tri-angular matrices with the entries Aj<i = [aij], A:<j =

[a:i] respectively and S is the tri-angular matrix with the entries Si<j = [a:j + (¢i¢-i)].

A and A' have the relations A = Pf(A)(A')t and (Pf(A)tl = Pf(A').

Consider a triangular array A = [aij]i<j=l ..... n of size n, i.e.

A=

Then one may define an adjoint array At = [(-l)i+j+1a!j]i<j=l .....n whose entries are

pfaffians of subarrays of A. To be precise al, is the pfaffian of the array obtained by

deleting the k-th and l-th lines in A. Now we define

Note that this array is the analogue of the inverse of a matrix; for a matrix M,

-I 1 Mt
M = det(M) .
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Indeed if W and W' are the skew-symmetric matrices whose upper triangles are A and

A' respectively, then W' = W-I•

For example, for N = 2 from (4.43) we have the following solution:

4

T¢2 - 1+ L aidl (<lilcjJl) +
4

L
il<it =1 il <il,il<i2=1

1+ a12(¢1¢2) + a13(¢1¢3) + a14(</>1</>4)+ a23(</>2</>3) + a24(</>2</>4) + a34(</>3¢4)

+a12a34(¢1</>2¢3</>4) + a13a24(</>1¢3</>2</>4)+ aI4a23(¢1</>4</>2¢3)

_ 1+ a12(</>1</>2)+ aI3(</>1<p3)+ aI4(</>1¢4) + a23(</>2</>3) + a24(¢2</>4) + a34(¢3¢4)

+(a12a34 - a13a24 + aI4a23)((</>1<p2}(¢3</>4) - (</>1</>3)(¢2¢4)+ (¢1¢4)(</>2¢3))

(
1 a12 (-I..u..2) al3 (-1..1-1..3) al4 ( I 4)

- Pf(A2) Pf(A2) + Pf(A2) 'fJ 'fJ + Pf(A2) 'fJ 'fJ + Pf(A2) ¢ <p

+ a23 (<p2</>3)+ a24 (</>2</>4)+ a34 (¢3¢4) + (</>1<p2}(¢3¢4)
Pf(A2) Pf(A2) Pf(A2)

_(</>1¢3)(</>2</>4)+ (¢1¢4}(<p2¢3))

(

I I I 2) I ( 1 3) I ( I 4) I 2 3)- Pf(A2) Pf(A2) + a34(</> <p - a24 </><p + a23 </></> + aI4(¢ </>

-a~3(¢2</>4} + a~2(¢3¢4) + (¢1</>2)(<p3</>4) _ (¢1¢3)(¢2¢4)

+(¢1¢4)(¢2</>3}), (4.46)

where

[al2 [a;..
I I

al3 al4 -a24 a23

A2= = Pf(A2) I I

a23 a24 al4 -a13
I

a34 a12
and

[ a~2
I I

al3 al4
A;= I Ia23 a24

Ia34

Now we can write the expression Tt/Jl in (4.46) in the form of (4.45)

(4.47)
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where

[a~2 + (</i</>2) a~3 + (</>1</>3) a~4 + (</>1</>4)

a;3 + (</>2</>3) a;4 + (c/>2c/>4)

a;_' + (c/>3c/>4)

Example 4.7.1 For the soliton solution for the one-component case, we put c/>1=

</>(pt}, </>2= </>(qt}, </>3= </>(P2), </>4= </>(q2) and choose al2 = 2P1 + ql , a34 = 2P2 + q2,
PI - ql P2 - q2

a13 = a14 = a23 = a24 = O. The r-function from (4.47) is

r -

11 + a12(</>(pt}</>(q1)) a12(</>(pd</>(P2)) a12(</>(pd</>(q2))

a34(</>(qt}</>(P2)) a34(</>(qd</>( q2))

1+ a34 (c/>(P2)c/>(q2»)
1+ a12(</>(pt}</>(qt}) + a34(</>(P2)</>(q2)) + a12a34( (</>(pdc/>(q.)) (c/>(P2)c/>(q2»)

-( </>(P1)c/>(P2»)( c/>(ql )c/>(q2») + (</>(P1)</>(q2») (c/>(ql )c/>(P2») )

where "li = ~(X,Pi) + e(x, qi) (i = 1,2) and

B _ (PI - P2) (q1 - q2 )(P1 - q2) (ql - P2)
12 - (PI + P2)(ql + q2)(Pl + q2)(q1 + P2)'

Hence u = 2ox(log r) gives the 2-soliton solution [58} for the BKP equation

Example 4.7.2 For the two-component case, we putc/>l = c/>(l)(p(l»,c/>2= c/>(J)(q(I»,

cP3 = </>(2)(p(2»), </>4= </>(2)(q(2») in (4.47). Then the r-function from (4.47) is

11 + a12( </>(l)(p(l) )</>(1) (q(l»)) aI3( ¢(l)(p(l) )cP(I)( q(l») a14 (¢p )(p( 1))¢( 1)(q( 1»)

r - a23( ¢(2)(p(2) )¢(2)( q(2») a24 (c/>(2)(p(2) )c/>(2)(q(2»)

1+ a34(c/>(2)(p(2»c/>(2)(q(2»)

- 1+ a12(c/>(I)(p(1»¢(1)(q(1») + a34(¢(2) (p(2»c/>(2)(q(2»)

+(a12a34 - a13a24 + aI4a23)(c/>(1)(p(1»c/>(1)(q(1»)(c/>(2)(p(2»c/>(2)(q(2»)
1p(l) - q(l) ,,(I) 1p(2) - q(2) ,,(3) ,,(1)+,,(3)

- 1+ a122' p(1) + q(I) e + a342' p(2) + q(2) e + BI2e
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where TJ(i) = ~(x(i),p(i)) + ~(x(i),q(i)) (i = 1,2) and

1p(l) _ q(l) p(2) _ q(2)

B12 = (a12a34 - a13a24+ a14a23)4' p(l) + q(l) p(2) + q(2)'

Hence u = oxy(logT) gives the 1-dromion solution [.U} for the NVN equations

u = ~Xy.

We note that the r-function in (4.45) is the pfaffian analogue of the r-function in

(4.27), namely from (4.45) T can be written in the following form

T = Pf(A) Pf(S) = Pf(A) Pf(A' + V),

where Vi<j = [(¢i¢>i)] and the corresponding determinantal form can be written in the

following form, from (4.27):

T = det(I + AV) = det(A(A-1 + V)) = det(A)det(A-J + V).

Appendix

To show that the expression given in (4.27) is valid, we take W = A V (where W is an

(N x N) matrix with the entries W = [Wi;]) and expand in the following form [551:

TO - det(I + AV) = det(I + W)
N N

Wii Wij +"'+iwi,1+ LWii+ L (4.48)-
i=l i<;=l Wii w"JJ

where Wij = aki(1j;k1j;j*}. Hence the expression in (4.25) is reduced to the expansion in

(4.48) after eliminating some terms according to the definition given in (4.26).
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Chapter 5

The KR and mNVN Equations:

The Pfaffian Technique

5.1 Introduction

In this chapter we study two (2 + I}-dimensional integrable nonlinear evolution equa-

tions; both have dimensional reductions to known integrable equations in (1 + 1)-

dimensions. If the two spatial variables appear on an equal footing and hence allow

such reductions in either variable one calls the (2 + 1)-dimensional system a strong

generalization of the (1+ I)-dimensional system. For example, the KdV equation has

two generalizations to (2 + I)-dimension, namely the KP equation which is a weak

generalization, and the NVN equations which are a strong generalization of the KdV

equation. The Konopelchenko-Rogers (KR) equations are a (2+ 1)-dimensional strong

generalization of the (1 + I)-dimensional sine-Gordon(sG) equation analogous to the

modified Novikov-Veselov-Nitzhik (mNVN) equations

These reduce to the potential mKdV equation

when y -7 -x. Hence the mNVN equations are a strong generalization of the potential

mKdVequation. Both the KR and mNVN equations have pfaffian solutions.
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In section 2, we recall some results from [61] and [62]; we apply the gauge transfor-

mation to the Lax pair of the KR equations and, after rescaling the Lax pair, we derive

the weak Lax pair for the KR equations. The compatibility of this Lax pair leads to

the KR equations. In section 3 we carry out the same procedure as in section 2 and

obtain a new result for the mNVN equations. In section 4, we show that the KR and

mNVN equations in the bilinear form reduce to the identity of pfaffians. These are

new results.

5.2 The two-dimensional sine-Gordon equation

The system of Konopelchenko and Rogers [59] arises as the compatibility conditions

for the triad of operators

L, - ax + Sf)y,

L2 - atf)y - Vf)y - Wy,

where az = :z is a derivative with respect to the indicated variable and

s=
(

COSO sin 0 )

sin 0 - cos 0 '
(5.1 )

v = ~ (0 -Ot),
2 Ot 0

1 ( ¢x - cosO¢y
Wy = -2sinO -¢ysinO

¢Y sinO )

- (¢"'x + cos Oel>;') ,

eI>"'xsin 0 )
- (eI>;'+ cos Oel>"'x) ,

1 ( ¢y - cosO¢x
WX=-2sinO -eI>xsinO

in which Ot = ¢ + 1>.

Next we will transform the Lax pair of the 2-dimensional sine-Gordon(sG) equation

into a new Lax pair which is gauge equivalent to a pair of operators. The Lax pair of
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the 2-dimensional sine-Gordon or Konopelchenko-Rogers (KR) equations is

L 9-1L19 = 8x - J{)y + Q

M .- 9-1(L2 - JL3)9 = 8t{)y + S8tax + i(ByA + 8xSA)at

where 9 is the gauge and

(5.2)

is the reflection matrix,

1 ( 0Q--
- 2 Oy - Ox

A=( 0 1),
-1 0

(5.3)

(
sin 3: _ cos 3: ) ,
_ cos 30 _ sin 30

2 2

~ 1 ((PX+BYt-pY)tan~ (px -Byt+PY) )
W2 =-40' (-px + BYt + Py) (px + OYt + py) tan 2

~ Oxt
WI = 0

4cos 2

in which P = ¢ - 4>. The matrix S = So can be written in the following form

where

(

COS 0 - sin B )
Ro =

sin 0 cos 0
(.5.4 )

is the rotation matrix and J is the reflection matrix given in (.5.2). The gauge is chosen

to be a 'half-rotation and reflection', thus 9 := SO/2, for which 92 = I. If we rotate axes

(X, Y) ~ (x,y) so that 8x = 8x + {)y, 811 = ax - {)y we get the following Lax pair
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where
n _
Ox -

p" + O"t cos 0
2 sin 0

e = Px - Oxt cos 0
" 2 sin 0

To simplify the notation and to free 0 for more conventional usage, we rescale

()-t 2u and e -t Vt. In these variables the Lax pair is

(5.5)

(5.6)

Let

~= (::) (5.7)

be a common solution of L~ = M~ = 0 for L and M given by (5.5) and (5.6)

respectively. If we write L~ = 0 and M~ = 0 in component form we get the linear

equations for the KR equations

4>~+ ux4>2 - 0,

4>~ - u,,4>l - 0,

4>!t+ V"t4>l + u,,4>~ - 0,

4>!t+ Vxt4>2 - ux4>: - o.

(5.8)

(5.9)

(5.10)

(5.11 )

The commutator for (5.5) and (5.6) is

[L,M] = LM _ ML = ([L,Mh,l [L,Mh,2),
[L, M12,1 [L, Mh,2

where

[L, Mh,l Vx"t + ulIU"t - (u! - u~)8t,

[L, M]l,2 - UxVxt - uxV"t - Ux"t - uxt8" + (ux + u,,)(8x - 811)8t,

[L, M]2,1 u"Vxt - u"V"t + Ux"t + u"t8x + (ux + ulI)(8r - 811)8"

[L, Mb,2 - VXllt + UxUxt + (u! - u~)8t.
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To eliminate the operators, we use the linear equations (5.8)-(5.11) in the above com-

mutator, then we get

[L, Mh,l - VXllt - UIIUxt - UXUllh

[L,M]l,2 - -UxVllt - Uxllt - UIIVxh

[L,M]2,l UIIVxt + Uxllt + UxVllt,

[L,Mb,2 - VXllt - UxUllt - UIIUxt.

Solving these equations for the compatibility condition [L, M] = 0, we get the KR

equations

Uxllt + UxVllt + UIIVxt - 0,

VXII - UXulI - O.

(5.12)

(5.13)

5.3 Lax pair for the modified Novikov- Veselov-Nithzik

equations

It is known that a Lax pair that gives pfaffian solutions of nonlinear equations satisfies

the following equation [63]

(5.14 )

where L is one of the Lax pair and Lt is the adjoint of L. As shown below this is

satisfied by Ll for the KR equations. We wish to study similar Lax pairs which obey

this constraint.

We take the following Lax pair

L - 8y + sax

M - at + (Eal + alF + Tax + axH + B)ax.

where S is given in (5.1) and E, F, T, H, B are arbitrary 2 x 2 matrices, which we

will find out later. The adjoint pair is

Lt - -f}y - axsT,

ut -at - ax(alET + FTal- axTT - HTax + BT).
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Next we substitute these into the left hand side of (5.14). We get

and
oxM +Mtox =
oX(Ot+ (Eo} + o}F + Tox + oxH + B)ox)
+(-Ot - Ox(olET + FTo} - oxTT - HTOx + BT))OX = 0

when F = ET, H = _TT and B = BT. The compatibility condition for this Lax pair

[l,M] = [By,Ot] + [By, Eoi] + [By,oiETox] + [By,Toi] + [By, -oxTTox]

+[By,Box] + [SOX,Ot]+ [Sox,EBi] + [Sox,olETox]

+[Sox, Tol] + [SOx, -oxTTox] + [Sox, Box] = 0

gives E = Sand T = _TT. Hence we can write the Lax pair (strong) [63] for the

mNVN equations in the following form:

L - By + Sox

M = Ot+ (Soi + oiS + Tox + oxT + 8)ox,

(5.15 )

(5.16)

where S is given in (5.1), T = wA is a skew-symmetric matrix in which A is given

by (5.3), and B is a symmetric real matrix. The matrices S and A have the following

properties

S2 = I, A2 = -I, SAS = -A, ASA = S, AS = -SA (.5.17)

and

(AS)2 = (SA)2 = I, (5.18)

where I is the 2 x 2 identity matrix. To find the entries of the matrices T and B, we

make use of the compatibility condition of the Lax pair, [l, M] = O. This commutator

IS
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[L,M] [By,8t] + [By,S8i] + [By,8~S8x] + [By, T8~] + [By,8xT8x]

+[By,Box] + [Sox,8t] + [Sox,SOi] + [S8x,o~S8x]

+[Sox,T8~] + [S8x,8xT8x] + [S8x,B8x]

2(Sy - SSx - SxS + ST - TS)Oi + (2SXY + 2Ty - 3SSxx

-SxxS - 4S~ + 3STx - 4TSx - TxS + SB - BS)8~

+(SXXY + Txy + By - St - SSxxx - Sx x Sx - 2SxSxx

-2TSxx + STxx - TxSx + SBx - BSx)ox. (5.19)

Before looking at this in more detail we will determine the necessary derivatives of the

matrices Sand A. Using the properties of the matrices S and A given in (5.17), (5.18),

we have

Sx = OxSA, Sy = OySA, s, = 0tSA, (5.20)

Sx x = OxxSA - OiS, (5.21)

Sxx x = OxxxSA - 30xOxxS - OiSA, (5.22)

(5.23)

Tx =wxA, Tx x = wxxA, Txy = wxyA. (5.24)

In order that the compatibility condition [L, M] = 0 is satisfied, the coefficients

of the operators ax, a}, 8i must vanish. Using the derivatives (5.20)-(5.24) and the

relations in (5.17) and (5.18), from (5.19), the coefficient of 8i vanishes if

Sy - SSx - SxS + ST - TS = SA(Oy + 2w) = o.

Hence w = - !Oy and T = - !OyA. From the coefficient of 8}, we get

(20xx +Oyy)A = SB - BS (5.25)

and, from the coefficient of 8x, we get

(OXXY- 20t)SA - 30xOXYS+ 2By + 2SBx - 20xBSA

= (OXyy + 20xx X)A. (5.26)
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From (5.25) B = SBS + (20xx + Oyy)SA. To write B explicitly, we take B in the

following form

1
B = (Oxx + 2"0yy)SA + as + {3I, (5.27)

where a and {3 are to be found in terms of dependent variables, and then

1 1
Bx = (Oxxx + 2"0xyy)SA - f1x(Oxx + 2"0YY)S + axS + aOxSA + {3x,

(5.28)

1 1
By = (OXXY + 2"0yyy)SA - Oy(Oxx + 2"0YY)S + ayS + aOySA + (3y.

(5.29)

Next, we substitute (5.27), (5.28) and (5.29) into (5.26) and, after simplifying, we get

the following equations

30xxy + Oyyy - 20t + 2aOy - 2{30x - 0

- 30xOxy - 20yOxx - OyOyy + 2ay + 2{3x - 0

- Ox (20xx + Oyy) + ax + {3y - O.

(5.30)

(5.31)

(5.32)

From (5.31), we write

(a - ~O~ - ~O~)y = (OxOy - (3)x,

and define the following relations

1 2 1 2
'¢x = 0- :t0x - :tOy,

From (5.32), we write

'¢y = OxOy - {3. (5.33)

(a - O~ + ~O~)x = {OxOy - (3)y, (5.34)

and then we substitute the expressions defined by (5.33) into (5.34). We get the

following relation

3( 2 2'¢xx - '¢yy = :t Ox - Oy)x. (5.35)

Hence using the definition (5.33), the B in (5.27) can be written in the following form

1) 1 2 1 2
B = (Oxx + 2"0Yy SA + ('¢x + :t0x + :t0y)S + (OxOy -1/Jy )/.

(5.36)
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In summary we have

L {}y + Sox

M = at + (sa} + a}s + Tax + oxT + 8)ax

where S is given in (5.1), T = wA is a skew-symmetric matrix in which A is given by

(5.3), and B is given by (5.36), and the compatibility condition gives (5.30) and (5.35).

5.3.1 Alternative form of the Lax pair

Now we will use a Lax pair which is gauge equivalent to the pair I, tV! given by (5.15),

(5.16) respectively. To do this, again we observe that the matrix S = So may be written

in terms of the rotation matrix given in (5.4) and the reflexion matrix given in (5.2),

so that

So = -RoJ = -JR_o.

Again, the gauge is chosen to be a 'half-rotation and reflection',

g:= SO/2

for which g2 = I, and «' = g. For further usage, we also observe the following

equalities of matrices

Ag = -gA, gAg = -A, (gA)2 = I, gSg = gSAgA = -J,

-JA = gSgA = C,

where C is defined as

and the derivatives for 9 are

1 1 2
gxx = -(}XXgA - -(}xg

2 4
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Then the gauge transformation for the Lax operator L is

L = g-1 Lg = g({)y + sax)g

- ggy + g2{)y + gSgX + gSgaX
1 1

- {)y - Jax + 20yA - 20xJA

and hence L can be written in the following form:

L = {)y - Jax + Q, (5.37)

where

Q = ~ ( 0 Ox + Oy ) ,
2 Ox - Oy 0

(5.38)

and the gauge transformation for the Lax operator M is

M g-lilg

g(at + sa~ + aisox + Tai + axTox + Bax)g

ggt + lat + gSo~g +ga}saXg + gTa}g + gaxToXg + gBoXg
1 2 1 1 1 2- at + {OxxC + 4_OxJ+ 20xyA - 20yyC - tPxJ - 4_OyJ - tPy)ax
ll2 n3 1 1 2 1+(OxC + OyA)ux - 2Jux + 20tA + 4_OxOyA- 20xtPyA

1 3 1 1 2 1+OxxxC - 80xC + 20xtPxC + 8(JxOyC - 2(JxOxxJ
1 1 1

-t/xOyyJ - 20XXOy - 40XOXY.

Hence M can be written in the following form

M = at + pax +2Qa} - 2Ja~ + R, (5.39)

where
p = ( -Hoi - O}) + tPx - tPy Oxx - ~Oyy + ~OXy )

Oxx - ~Oyy - !OXy HOk - O}) - tPX - tPy ,

Q is given by (5.38), and
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in which

RI -

R2 -

R3 -

R4

1 1
2(JxX(OX - Oy) + 40X(Oyy - OXY),

1 1 1 1 1 3
20t + 40XOy(OX + 20y) + 20X(¢X - ¢y) + OXXX - SOX,
1 1 1 1 1 3

-20t - 40XOy(OX - 20y) + 20X(¢X + ¢y) + OXXX - SOX,
1 1

-20xx(Ox + Oy) - 40x(Oyy + (JXY)'

Ifwe rotate axes (X, Y) -+ (x,y) so that ax = ax +8y, all = ax -8y, then we have

a _ ax + all
x - 2 ' (5.40)

and

1
Oxxx = s((Jxxx + 3(JxxlI + 30xIIII + (JIIIIII)'

After substituting these expressions into (5.37) and (5.39), we get the following Lax

parr

(5.41 )

and

(5.42)

where

1 (0 (Jr)Q=- ,
2 (J 0

II
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in which

1 1
TI - 160y(20xx + 30xy + 30yy) + 160x(Oyy - Oxy),

T2 ~Ot + 3
1
2(0; - O~Oy - 30xO~ - 0;) + i(Ox + Oy)tPy

1
+g(Oxxx + 30xxy + 30xyy + Oyyy),

1 1 (03 0 02 2 3) 1T3 -"20t - 32 x + x y + 301/0x - Oy + 4(Ox + Oy)tPx
1

+g(Oxxx + 30xxy + 30xyy + Oyyy),
1 1

T4 = -16Ox(20yy + 30xy + 30xx) - 160y(Oxx - OXI/)'

If we simplify (5.42) by taking out the multiples and powers of L, we then get the

following:

1 3 1 3 3
at + 4ay + "2tPl)y - 160XOyay + 160yOyy,
121 1 1 1 13 23
gOxax - gOxxax + gOyyy + 4tPyOy + 20t + 32 (Ox - 30xOI/ - Oy),
121 1 1 1 13 23
gOyay - gOyyay + gOxxx + 4tPxOx - 20t - 32 (Ox + 30yOx - Oy),

1 3 1 3 3
at - 4ax - "2tPxax + 160XOyaX - 160xOxx.

To simplify the notation we rescale the variables

where

MI -

M2 =

M3

M4

0~2u, (5.43)

so that we can get the appropriate form of the mNVN equations. In these variables

the Lax pair for the mNVN equations is

and (5.44)

where

MI - 4at + a; + 3(vxy + Vyy - uxul/)al/ + 3uyuYI/

M2 = uxa~ - uxxax + 3(uyv;,;y + UyVyy - u;,;u!) + Uyyy + 4ut + u~ - u!

M3 Uya~ - Uyyay + 3(u;,;v;,;;,;+ UxV;,;y - uyu;) + u;,;x;,;- 4ut - u; + u!

M4 - 4at - a; - 3(vxx + vxy - UXuy)ax - 3uxuxx.
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Now, we take the common solution ~ given by (5.7) so that L~ = 0 and M~ = 0

and write them in component form. Thus we get the following linear equations for the

mNVN equations

</>!+ uz;</>2 = 0,

</>~- Uy</>l _ 0,

4</>: + </>!yy+ 3(vz;y + Vyy - uz;uy)</>! + 3UyUyy</>1

+uz;</>;z; - uz;z;</>;+ 3(UyVz;y + UyVyy - uz;u~)</>2

(5.45)

(5.46)

+ UWy</>2 + 4ut<l} + (u! - u~)</>2

4</>: - </>~z;z;- 3( Vz;z; + Vz;y - Uz;Uy)</>~ - 3uz;uz;z;</>2

+uy</>!y - Uyy</>! + 3(Uz;Vz;z; + Uz;Vz;y - UyU~)</>l

+ uz;z;z;<I>l - 4Ut<l>l - (u! - U~)<I>l = O.

0, (5.47)

(5.48)

Next we write the compatibility for (5.44) and in order to write it in the simplest form

we exploit the evolution equations given by (5.45)-(5.48). Hence we get

1 ( 3Aoy - ~uz; 3Auy + ~oz; )
[L, M] = LM - M L = 4 '

3Auz; + ~8y 3A8z; + ~Uy

where

and

The compatibility condition [L, M] = ° for (5.44) is only satisfied when A = 0 and

~ = O. Thus, under this condition, we get the mNVN equations

(5.49)

(5.50)
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Using (5.49) and (5.50), the equations (5.45)-(5.48) can be simplified to

<I>~+ ux<l>2 - 0, (5.51)

<I>~- Uy<l>1 - 0, (5.52)

4<1>: + <I>!yy + 3vyll<l>! + 3ulIulIlI<I>l + ux<l>;x - uxx<l>;

+(3uxvxx + uxxx)<I>2 - 0, (5.53)

4<1>: - <I>;xx - 3vxx<l>; - 3uxuxx<l>2 + uy<l>!y - uyll<l>!

+ (3uyvyy + Uyyy)<I>1 O. (5.54)

The compatibility condition of the strong Lax pair in (5.15), (5.16), as we expect,

gives the same equations as in (5.49), (5.50). From (5.30), after substituting values

for Q and f3 from (5.33) into (5.30), we rotate the axes as in (5.40) and rescale the

variables as given by (5.43), and then we recover the equation ~ = O. Similiarly from

(5.35), we do the same scaling and rotation of axes and then we recover the equation

A = O. The compatibility of the strong Lax pair given in (5.15), (5.16) and the weak

Lax pair given in (5.44) lead to the same nonlinear equation given in (5.49), (5.50).

5.4 The KR and mNVN equations: The Pfafflan

Technique

In this section we will prove that Pfaffians satisfy the KR and mNVN equations.

The bilinear form of KR equations can be written in the following way

U = Uo + iIn( G / F), v = Vo + In(GF), (5.55)

where G and F are complex conjugates of one another. Introducing this change into

(5.13) we get

We suppose that (uo, vo) is itself a solution of (5.12), (5.13) and so from (5.56) we find

the bilinear equation

(5.57)
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Now considering (5.12) in a similar way we get

+ (FG)-l[i{DXDyDt + VOxtDy + VOytD:c) + uoxDyDt + uoyD:cDt]G· F

+ (FGt2{ -iDtG· F)[DxDy - i{uoxDy + uoyDx)]G· F = o.

Since we suppose that (uo, vo) satisfies (5.12), and using (5.57), we get a second bilinear

equation

(5.58)

The pair (5.57), (5.58) are the Hirota form of (5.12), (5.13). Particularly, if we take

Uo = 0, VOxt = A and VOyt = p" then the Hirota form (5.57), (5.58) simplifies to become

{DxDyDt + ADy + p,Dx)G· F - 0,

DxDyG· F - O.

We introduce pfaffians denoted by (1,2,··· ,2n) (see chapter 2) which represent

the functions G and F in the following form

G = (I 2 ... 2n)" , (5.59)

and

F = (1 2 ... 2n)*" , (5.60)

(5.61)

where * denotes the complex conjugate, for X = x or y or t, Wx [a, b) = abx - axb and

in which, for k = 1, ... ,2n, 4>1 and 4>~ satisfy the equations (5.8)-{5.11). The integral

in (5.61) is written so that it is exact, thus

WXy[Oj, OJ]= -Wyx[Oj, OJ], W:ct[Oj, OJ] = (O;{Oj)t - {OdtOj)x,

Wyt[Oj, OJ]= -{O;{(Jj)t - (OJ)tfJi)y·
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Therefore, we may find the t dependent element in (5.61) by using these equalities with

the linear equations given in (5.8)-(5.11). The (i,j)-th element of pfaffians in (5.59),

(5.60) is (i,j) = S[Oi, OJ] and (Ii,j) = 4>~, (Ii, [i) = O. Thus the (i,j)-th element can

be written in the following form

(i,j) = / (Wz[4>L 4>}] - Wz[4>~, 4>~])dx - (Wy[4>!, 4>}] - Wy[4>~, 4>~])dy

+(wtf4>L 4>}] + Wt[4>~, 4>~])dt + i( (Wz[4>L 4>~] + Wz[4>~, 4>}])dx

-(Wy[4>L4>:l + WY[4>~,4>}])dy + (4):4>~- 4>~4>})tdt).

In order to prove the equations (5.12), (5.13) we exploit the identities of pfaflians

which correspond to the Jacobi identity of determinants, and show that the derivatives

of the pfaffians are represented by the sum of the pfaffians. From (2.1) and (2.2), for

m = 2, we have the following pfaffian identities

= (ab a2, bI,~,· .. '~m)( a3, a4, bI!~" .. , ~m)

-(ab a3, bi.bx.:>: , b2m)(a2, a4, bI!b2,'" , ~m)

+( aI, a4, bi, b2, ... , b2m)( a2, a3, bi, b2, ... , b2m) (5.62)

and

(ab a2, a3, b., b2,' .. '~m-d(bb b2," . ,b2m)

= (ab bi!~"" , ~m-l))(a2' a3, bI, bs,:: , ~m)

-(a2,b},b2,'" '~m-d)(aI!a3,bI,~,··· ,b2m)

+I a3, bI!bi-: .. , b2m-d)(at, a2, bi! b2, ... ,b2m). (5.63)

With these properties we prove that the KR and mNVN equations reduce to the identity

of pfaffians. To write the derivatives of the pfaffians we introduce the symbol IYz such

that (~,i) = 4>lz where Z = x,y,t,xy,xt,yt,xyt etc. and (8~,~) = O. In this

notation we have the derivatives of (5.59), (5.60)

Gt = (8t1,[1,1,2, ,2n) + (8:,[2,1,2, ,2n)

+i( 8:, [1,1,2, , 2n) + i(I2, 8l, 1,2, , 2n),
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G1I= -u1I(I2,Il, 1,2"" , 2n) + (II, a~, 1,2"" , 2n) + i(/2, a~, 1,2" .. ,2n),

Gxt - -uxt(12,/1,1,2,··· ,2n)-ux(a:,/1,1,2,··· ,2n)

+(a:,a~, 1,2"" ,2n) + (12,a~,a:,/l, 1,2"" ,2n)

-iVxt(I2, 11,1,2,." , 2n) + iux(af, 11,1,2, ... ,2n)

+i(a~,af,I,2,··· ,2n) + i(I2,a;,al,II,I,2,·.· ,2n),

G1It - -U1lt(12,[I,I,2,··· ,2n)+uy(af,[2,1,2,.·· ,2n)

+(a:,a~,1,2, ... ,2n) + (/1,a~,a:,[2,1,2, ... ,2n)

-iVyt(I2,It, 1,2" .. ,2n) + iu1I(a:, [2, 1,2" .. ,2n)

+i(a:,a~,1,2, .. · ,2n) +i([I,a~,[2,a:,1,2, ... ,2n),

Gxy -ux(/2,a:,I,2, ... ,2n)+u1l(1\a;,1,2,··· ,2n)

+(11, a~,I2, a~, 1,2" .. ,2n) - iUXuy(12,Il, 1,2,··· ,2n)

+i(a;,a:,1,2, ... ,2n),

GX1lt - UxV1lt(I2,I1,1,2, .. · ,2n)+uyvxt(12,[I,I,2, ... ,2n)

-uxuy(af,It, 1,2" .. ,2n) - Uxt(12,a~, 1,2,· .. ,2n)

-ux(a:, a~, 1,2,'" , 2n) + U1It(Il,a~, 1,2"" , 2n)

+u1l(af, a;, 1,2"" ,2n) - uz;u1l(a;,[2, 1,2,'" , 2n)

+(1I,a:,a~,a!,1,2, ,2n) - (a~,af,[2,a!,1,2, ... ,2n)

-ivxyt(12,II,I,2, ,2n) -iVxt(12,a~,1,2, ,2n)

-iv1It(a~,II,I,2, ,2n)-iuxuy(a:,[I,I,2, ,2n)

-iuXuy(I2,af,I,2,··· ,2n)+iux(a:,a~,1,2, ,2n)

-iuy(a~,a;,1,2,··· ,2n)+i(/l,a~,a~,a:,1,2, ,2n)

+i(l2,a;,a;,a~,1,2, ... ,2n)

where we have taken Uo = u and Vo = v, for simplicity. Substituting these results into

the left hand side of (5.57), we obtain
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2((1,2"" ,2n)([1,a~,[2,a~,1,2, ,2n)

+(12,11,1,2, ,2n)(a;,a~,1,2, ,2n)

-([2,a~,1,2, ,2n)(ll,a~,1,2, ,2n)

-(a~,[1,1,2, ,2n)(I2,a~,1,2, ,2n))

which vanishes by virtue of the pfaffian identity of the form (5.62). Similarly substi-

tuting these derivatives into the left hand side of (5.58), we obtain

2i((l1,[2,1,2, ... ,2n)(a~,a:,a;,/2,1,2, ,2n)

-(a:, a~,11,/2,1,2,,,, ,2n)(a;, 12,1,2, ,2n)

+(a~, a;, [1, [2, 1,2"" ,2n)(a:, 12,1,2, ,2n)

-(a:, at
1,It, [2, 1,2,,,, ,2n)(a;, 12,1,2, ,2n)

+(/2,/1,1,2, ... ,2n)(a;,a:,a:,/I,I,2, .. · ,2n)

-(al,a~,[2,[1,1,2, .. · ,2n)(a;,lI,I,2, .. · ,2n)

+(a~, a~,12,[1,1,2, ,2n)(al, 11,1,2,... ,2n)

-(a;,a;,/2,[I,I,2, ,2n)(a;,/1,1,2, .. · ,2n))

which vanishes by virtue of two pfaffian identities of the form (5.63).

Next we prove that the mNVN equations reduce to the pfaffian identities. We have

already shown that equation (5.50) reduces to a pfaffian identity. Similarly, the bilinear

form of equation (5.49) can be written by substituting the expressions in (5.55) into

(5.49). We get

+(GF)-1[i(4Dt - D~ + D! - 3vorrDr + 3vowDII + 3u~.rDr - 3u~Dw)

-3uorD! + 3uOJ/D;lG. F = O.

Since we suppose that (uo, vo) satisfies (5.49), then we get the following bilinear form

[4Dt - D~ + D; - 3(voxx - u~r)Dr + 3(vaw - u~)DII

+ 3i( uorD! - uoIlD;)]G . F = O. (5.64 )

114



Particularly, again if we take Uo = 0, VOzt = ~ and Vo¢ = 1', then the Hirota form

simplifies to become

For the mNVN equations, the elements of G are given by the skew-product

(i, j) = f (Wx[¢L ¢j] - Wx[¢~, ¢~])dx - (Wy[t/>!' t/>}]- Wy[t/>~,t/>~])dy

-(Wt[¢!,¢j] +Wt[¢~,¢~] -lWx[¢~,z,t/>:,z] + ~W"[t/>L,,t/>1,,])dt

+i( (Wx[¢L ¢~]+ Wz[¢~, ¢}])dx - (Wy[t/>:' t/>J]+ W,,[cf>~,cf>!])dy

+(cP:¢: - ¢~t/>})tdt)

in which, for k = 1, ... ,2n, ¢1and ¢~satisfy the linear equations (5.51)-(5.M). The z

and y dependent elements of this integral are the same as in (5.61), and also exact, and

hence we can write the t dependent elements (i.e. by differentiating the z dependent

element with respect to t and integrating with respect to z, and exploiting the linear

equations given in (5.51)-(5.54)).

In order to reduce the bilinear form (5.64) to pfaffian identities, we need the fol-

lowing derivatives together with the previous derivatives of G, again for simplicity. we

take Uo = u and Vo = v.

Gt = (11,0:,1,2, .. · ,2n)+([2,8:,1,2, .. · ,2n)
111 1fJ2fJ2+2'(011,01111,1,2, ,2n) + 2'( xx' x,I,2, .. · ,2n)

+i(0:,[1,1,2, ,2n) +i(l2,8,t,1,2, .. · ,2n)

Gxx -uxx(l2, [1,1,2"" ,2n) - ux(8~, [1,1,2,··· ,2n)

+([2, 8~x, 1,2,,,' ,2n) + i(8:x,/l, 1,2,'" ,2n)

-iux(8;, [2, 1,2,,,, ,2n)

Gyy - _uyy(l2,Il,1,2, ... ,2n) -ulI(l28~,1,2, ,2n)

+(11,0;11,1,2,· .. ,2n) +i(l2,0;y,I,2, ,2n)

+iUy(Il,8:,1,2,· .. ,2n)
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Gxxx = -Uxxx(/2, [1,1,2, .. · ,2n) - 2uxx(8!, [1,1,2,··· ,2n)

-ux(8~x,lI,I,2, ,2n)+u!(8~,[2,1,2,· .. ,2n)

+(8~,8;x' 1,2, ,2n) + (/2,a;xx' 1,2, ,2n)

+i(8~xx,lI,I,2, ... ,2n)-2iux(8!x,[2,1,2, ,2n)

+i{I2, 8;,e:[1,1,2,··· ,2n) - iuxx(8!, [2,1,2,·.. ,2n)

Gyyy = -Uyyy{I2,[i,1,2, ,2n) -2urr(l2,8~,1,2, ... ,2n)

_U!(/I, 8;,1,2, ,2n) - ur(/2, 8~,1,2,·.. ,2n)

+(8:,8:y,I,2,··· ,2n)+(/I,a:Yr,I,2, ,2n)

+i{I2,8~yy,I,2, ... ,2n) +2iuy(Il,8~,1,2, ,2n)

+i([I, 8:, [2, 8;y, 1,2,··· ,2n) + iurr(Il, 8;,1,2,··· ,2n)

Substituting these results into the left hand side of (5.64), we obtain

4i((1,2,··· ,2n)(/2,8;,8;x,I1,1,2, ,2n)

_(/2,[1,1,2,··· ,2n)(8;,8;x,I,2, ,2n)

+(I2,8~x,I,2, ... ,2n)(8!,I1,1,2, ,2n)

_(/2, 8~,1,2,·.· ,2n)(8;x, 11,1,2, ,2n)

+(II,8;,1,2, ,2n)(I2,8;r,I,2, ,2n)

_(I2, 8;,1,2, ,2n)([I, 8;y, 1,2,·.. ,2n)

+(12, 11,1,2, , 2n)(8;, 8;r' 1,2,··· ,2n)

+(1,2,··· ,2n)(I2,a;y,8;,I1,1,2,.·. ,2n))

which vanishes by virtue of the pfaffian identity of the form (5.62).
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