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Abstract 

In 1992, the expansion of a CTG repeat within the 3’ UTR of the DMPK gene was 

identified as the cause of myotonic dystrophy type 1 (DM1), the most common form of 

adult onset muscular dystrophy affecting one in 8,000 Caucasians. The array-length 

determines the severity and age of onset of the disease. This expansion, once transcribed, 

sequesters a developmental splicing regulator MBNL1 in the form of nuclear foci. The 

MBNL1 antagonist, CUG-BP1, also a developmental splicing regulator, is raised by some 

unknown mechanism in DM1 patients. This alteration between the dynamic balance of 

these two proteins results in the missplicing of genes, which are thought to contribute 

profoundly to the multisystemic pathology of DM1. The disease is primarily RNA 

mediated, but how the mutant transcript brings about such pleiotropic effects is not yet 

clear. Recent research indicates a more direct involvement of CUG-BP1, and other 

potential factors may be important. To identify the full range of targets and the pathogenic 

consequences, we sought to mimic the pathogenesis of myotonic dystrophy type 1 with 

temporal and spatial control: Temporal to reproduce the developmental pathogenesis of the 

congenital form, and spatial to isolate tissue specific pathology. To do this, we attempted 

to use the Cre-lox system for the conditional expression of an EGFP reporter-linked 

expanded CUG repeat RNA in the mouse. Expression of the transgene was controlled by 

Cre excision of a transcriptional stop, placed upstream of the EGFP-expanded repeat open 

reading frame. The transgenes were constructed and tested successfully, and a normal 

length repeat transgenic line was established. Unfortunately generation of the expanded 

repeat line was not successful. The constructs were used to generate cell-culture models of 

DM1, in both human and murine cells, which mimicked the nuclear foci formation and 

MBNL1 co-localisation seen in patient cells. Expression of exogenous MBNL1/GFP 

fusion protein in this model resulted in an increase in the size of foci, indicating that 

MBNL1 protein is limiting within the cell, and may possibly play a protective role. The 

murine DM1 cell-culture model was used to investigate the effects of expanded CUG 

repeat expression on splicing within the transcriptome. The differential effect between 5 

and 250 repeat RNA expression using Affymetrix whole transcript and exon arrays was 

compared. Using whole genome arrays, 6 genes were down-regulated and 128 up-

regulated. With exon arrays, 58 genes showed alternative exon usage. Six genes were 

selected for further bioinformatics analysis: MtmR4, which has possible neuromuscular 

involvement; Kcnk4, Narg1, Ttyh1 and Bptf, potentially related to brain development; and 

Cacna1c, a promising candidate for heart conductance defects and sudden death. 
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Dedication 

 

 

To Mum and Dad:  

“Although my nature like a butterfly is to sip the nectar from many flowers, here is the 

proof I can also gorge on a single bloom.” 
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1 Introduction 

The birth of a first grandchild is usually an uplifting and joyous event. Often, in families 

with the myotonic dystrophy type 1 mutation, it is devastating. Grandparents and parents 

are frequently asymptomatic, unaware that they have the mutation until a congenitally 

affected grandchild is born. 

1.1 The nature of myotonic dystrophy 

Myotonic Dystrophy Type 1 (DM1) is the most common form of adult muscular dystrophy 

with an occurrence of 1 in 8,000 individuals worldwide. The symptoms are pleiotropic, not 

purely affecting muscle, manifesting clinically as myotonia; progressive muscle weakness 

and wasting; cardiac conduction defects; cataracts; insulin resistance; premature frontal 

balding and testicular atrophy in males; reduced fertility in females; and in the more severe 

form, mental handicap and respiratory distress (Harper, 2001). The severity of symptoms is 

extremely variable ranging from asymptomatic or only mildly affected adults in old age, to 

severely affected neonates. Genetically the disease shows autosomal dominance, and 

anticipation, whereby the severity of a disease is greater, and the age of onset becomes 

earlier through successive generations of the affected family. 

1.1.1 Pathology  

DM1 is often diagnosed late in the progression of the disease probably because of the 

tolerant, uncomplaining nature of the patients, a symptom in itself. Facial weakness 

including ptosis and wasting of the jaw muscles is a constant and characteristic feature, 

which can be severe in children with the congenital form of the disease, affecting speech 

and swallowing. Neck and distal limb weakness is also apparent. The definitive clinical 

diagnosis, which excludes other forms of muscular dystrophy including fascio-scapulo 

humeral dystrophy (FSHD), autosomal recessive limb-girdle dystrophy (ARLD) and 

Becker dystrophy, is of myotonia (36% of patients) in conjunction with progressive muscle 

wasting. Histologically, muscle defects have been well characterised. Patient muscle tissue 

shows centralised nuclei; poor fibre packing; ringed fibres, predominance of type 1 fibres 

and type 1I fibre atrophy (Borg et al., 1987; Tohgi et al., 1997; Vihola et al., 2003). In the 

brain, cell loss, neuronal inclusion bodies and tau-associated pre-senile neurofibriliary 

tangles are evident (Kiuchi et al., 1991; Sergeant et al., 2001). 
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DM1 is not purely a muscular disorder and the patient may present with other seemingly 

unrelated systemic indications such as cardiac conduction defects –particularly heart block 

and atrial arrhythmias; cardiomyopathy; aspiration pneumonia; alveolar hypoventilation 

(breathing difficulties leading to lethargy and daytime sleepiness); minor sensory loss of 

the peripheral nerves; mild mental retardation –severe in the congenital form; 

hypersomnia; testicular atrophy; diabetes; cataract; retinal degeneration; ocular hypotonia; 

skeletal deformities of the jaw and palate; cranial hyperostosis; air sinus enlargement; 

premature balding and calcifying epithelioma (stony tumour of the face or arms). Mental 

retardation and skeletal deformities are more pronounced in childhood cases and include 

talipes (deformities of the foot) and scoliosis (lateral spinal curvature). The causes of death 

are primarily cardiac and respiratory related, sudden death from cardiac arrhythmia 

accounting for 29% of deaths (Harper, 2001).  

1.1.2 Unstable tandem repeat diseases  

Myotonic dystrophy belongs to a growing group of inherited human disorders associated 

with the expansion of microsatellite repeats, which were until the 1990’s thought to be 

commonplace benign stretches of DNA. The repeats are usually stable at around 30 

repeats, but arrays over 40 repeats tend to be unstable (Harper, 2001). Since then, the cause 

of several diseases has been attributed to the aberrant expansion of these regions, most of 

which are neurological such as the spinocerebellar ataxias; Huntington disease; 

spinobulbar muscular atrophy; fragile X syndrome and Fredrich ataxia (Wells et al., 2006). 

Most of the repeat regions within these genes are highly polymorphic throughout the 

general population where normal and affected individuals fall into ranges, rather than 

having a definitive cut-off point. There are defining features shared amongst microsatellite 

repeat disorders. Repeat expansions show both somatic and germline instability, expanding 

throughout the lifetime of the individual, which contributes to the pathology, since longer 

repeat lengths result in more severe symptoms. Genetic anticipation is also observed, 

whereby the longer the inherited tract length, the earlier the age of onset of the disease and 

the more severe the clinical presentation (Wells et al., 2006).  

Not all CTG repeat tracts cause disease. The SEF2-1 gene on chromosome 18q21.1 

(Breschel et al., 1997) for instance contains a heritable intronic expanding CTG repeat, and 

the ERDA1 locus 17q213, a polymorphic CTG repeat array (Schalling et al., 1993; 

Nakamoto et al., 1997) which lack pathogenic effect. Of those expansions that are 

symptomatic there are two subclasses of disease, defined by the location of the repeat 

region relative to the gene. The first contains the repeats within the reading frame of the 
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gene leading to long stretches of the same amino acid, usually glutamine (in-frame CAG 

repeats), incorporated into the translated protein. The second subclass comprises those 

tracts situated within non-coding regions of the gene such as the promoter region; 5’UTR; 

intron or 3' UTR (Figure 1). In this class, except for those within the promoter region, 

which are not transcribed, expanded repeats are transcribed but not translated. Myotonic 

dystrophy falls into the second category in that the expanded RNA is transcribed but not 

translated (Brook et al., 1992). Additionally, the mutation is situated within the promoter 

region of a flanking gene where it is not transcribed (Boucher et al., 1995). 

 
 

Figure 1 The relative positions of disease associated expanded repeats within a fictitious 
gene. Schematic diagram. Diseases are classed depending whether they are within coding or 
untranslated regions. * HDL2 isoforms generated by alternative splicing. † The DM1 mutation is 
positioned within the 3’UTR of DMPK and the promoter region of SIX5. Abbreviations: FRAXA, 
Fragile X Syndrome (Fu et al., 1991); FRAXE, Fragile XE Mental retardation (Chakrabarti et al., 
1996; Gu et al., 1996; Gecz et al., 1997); FRDA, Friedreich ataxia (Campuzano et al., 1996); SCA , 
Spinocerebellar ataxia (Gatchel et al., 2005); HD, Huntington disease (Group, 1993); DM1, 
Myotonic dystrophy type 1 (Aslanidis et al., 1992; Brook et al., 1992; Buxton et al., 1992; Harley et 
al., 1992); SBMA, Spinobulbar muscular atrophy (La Spada et al., 1991); DRPLA, 
Dentatorubralpallidoluysian atrophy (Ikeuchi et al., 1995) HDL2, Huntington disease-like 2 
(Margolis et al., 2001; Holmes et al., 2001). 

 

1.1.3 The myotonic dystrophy mutation 

In molecular terms, DM1 is associated with the expansion of a CTG repeat in the 3’ UTR 

of the DM protein kinase (DMPK) gene, and within the promoter region of the flanking 

gene SIX5, which maps to chromosome 19q13.3 (Buxton et al., 1992; Boucher et al., 

1995), a gene-dense region of the genome (Figure 2). A correlation exists between the 

length of the repeat tract, and the age of onset and severity of the disease. Each DMPK 

allele in unaffected individuals has between 5 and 37 CTG repeats, with tracts upwards of 
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50 repeats becoming disease-associated. Expansions can be divided into three groups 

(mild; moderate and congenital) depending on the severity of the disease, which also 

relates to the age of onset. Mild or asymptomatic (late onset) cases have 50 to 100 repeats. 

Myotonia and weakness are rare in these patients, the most common finding being 

cataracts. Moderate (adult onset) cases have 100 to 500 repeats. These patients are likely to 

suffer one or several features of DM1 including myotonia; progressive muscle weakness –

becoming debilitating in the fifth and sixth decades; cardiac conduction defects; respiratory 

failure; cataracts and gonadal and endocrine abnormalities. The symptoms tend to be more 

acute with increased repeat length. In severe (congenital) cases repeat lengths from 500 up 

to ~3000 are detected (Harley et al., 1993). Hypotonia is present from birth, adult onset 

symptoms are also present from early childhood, and there is much more involvement of 

the central nervous system –congenital patients being mentally retarded, with an average 

IQ of 66 (Harper, 2001). 

The DMPK protein itself belongs to the family of serine-threonine kinases and is expressed 

highly in skeletal muscle and heart and in lower levels in smooth muscle (Lam et al., 

2000). Using antibodies, forms of DMPK protein between 42 to 84 kDa have been 

identified, expressed primarily in muscle, heart and brain, and at low level ubiquitously 

(van der Ven et al., 1993; Maeda et al., 1995; Salvatori et al., 1997; Shimokawa et al., 

1997; Pham et al., 1998; Beffy et al., 2005). There is some controversy over the full extent 

of DMPK expression since different sized proteins have been found in different tissues 

using different antibodies. Using a phage display generated monoclonal antibody panel to 

DMPK epitopes, Lam et al. (2000) reported exclusive expression of the 80KDa form, and 

only in skeletal muscle, smooth muscle and heart. They suggested that the previously 

observed size and tissue distribution using first generation antibodies, was probably caused 

by cross reaction between DMPK related proteins such as the 72KDa myotonic dystrophy 

related cdc-42 binding kinase (MRCK) (Leung et al., 1998). However, the second-

generation antibody specificity could be limited by antigen conformational artefacts of the 

phage display technique, resulting in some epitopes avoiding recognition, and so the 

controversy continues.  

The DMPK gene has 15 exons. Initially, many alternatively spliced DMPK transcripts were 

identified in mouse and humans (Jansen et al., 1992). However further analysis using 

existing cDNA and EST expression data for both species (Jansen et al., 1992; Fu et al., 

1993; Mahadevan et al., 1993; Shaw et al., 1993), and sequencing of these libraries 

suggested that not all transcripts were equally prevalent between tissue types and splicing 
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in mouse may be more complex than in humans, (Groenen et al., 2000). Using transgenic 

mice over-expressing hDMPK, Groenen et al. made a detailed comparison of the splicing 

behaviour of human and mouse DMPK genes. They showed that most isoforms were 

expressed in many tissues including heart, skeletal muscle, liver and brain, but the 

proportions differed, with predominant isoforms specific to heart; skeletal muscle, brain 

and smooth muscle tissue. Several additional splicing events were specific to mouse. Using 

RT-PCR, six major alternatively spliced DMPK isoforms have been identified in the 

human and the mouse (Brook et al., 1992; Jansen et al., 1992; Groenen et al., 2000), and a 

seventh minor isoform in DM1, which includes a novel terminal exon resulting in the 

excision of the expanded repeat tract (Tiscornia et al., 2000). This form of the transcript 

has been shown to freely exit the nucleus in DM1 patients, whereas forms with expanded 

repeats are retained. All isoforms include an N-terminal leucine rich domain –which 

possibly regulates DMPK activity (in Wells et al., 2006, chapter 5), a serine-threonine 

kinase domain and a coiled-coil region putatively involved in multimerisation and 

substrate binding (van Herpen et al., 2005). Variation occurs via alternative splicing 

between exons 12 and 15 producing 3 different C-termini involved in isoform specific 

subcellular localisation to either the endoplasmic reticulum, mitochondrial membrane (van 

Herpen et al., 2005) or cytosol (Wansink et al., 2003). For each of these 3’ variations there 

is a “VSGGG” motif “with” and “without” version, formed from an extension of exon 8 

during splicing. The seventh minor isoform, translated from the repeat-free transcript also 

includes a “VSGGG” motif, and a unique C-terminus which may direct localisation 

elsewhere within the cell. The function of the “VSGGG” motif is not yet known, but is 

thought to be a target for conformational regulation (Groenen et al., 2000).  

The biological function of DMPK has been widely studied since the discovery of its 

involvement in DM1, and considerable progress has been made with the identification of 

activators, substrates and functional domains within the protein. This information allows 

speculation and hypothesis about the biological significance of the DMPK gene product 

within the cell, but the full explanation has not yet been elucidated. Kinases are known to 

regulate the majority of cellular pathways, especially those involved in signal transduction. 

The DMPK protein like other kinases regulates substrate activity and is regulated itself, by 

phosphorylation. There is evidence that DMPK is involved in ion homeostasis and aspects 

of actin cytoskeleton remodelling (Jin et al., 2000), specifically myotube differentiation 

(Beffy et al., 2005), via Rac-1 and Raf-1 signalling (Shimizu et al., 2000). In vitro, 

substrates of DMPK include CUG-BP1, a developmental splicing regulator strongly 

implicated in DM1 pathogenesis, whose concentration and activity is increased in the 
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nucleus in DM1 patients (Timchenko et al., 2001). Phosphorylation of CUG-BP1 results in 

a decreased nuclear concentration of this form in DM1 patients (Roberts et al., 1997), so 

DMPK may contribute to the regulation of cellular CUG-BP1 distribution. However, 

CUG-BP1 has not been confirmed as a DMPK substrate in vivo. 
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Figure 2 Schematic diagram depicting the gene-dense region around the myotonic 
dystrophy protein kinase gene (DMPK). Abbreviations: RSHL1, Radial Spoke Head Like protein; 
DMWD, Myotonic Dystrophy WD gene; UTR, Untranslated region; SIX, sine oculis-like. 

 
 
1.1.4 Somatic variation and anticipation 

The somatic variation of expanded repeats was originally uncovered by the diffuse signals 

observed on Southern blot analysis of repeat region restriction fragments (Buxton et al., 

1992; Wong et al., 1995). The use of small pool PCR techniques later revealed these 

fragments to comprise a heterogeneous mosaic of variable repeat lengths which tend to be 

expansion biased, age dependent and tissue specific (Monckton et al., 1995; Wong et al., 

1995). Instability of DM1 CTG repeats has been reported in a wide range of human tissues, 

including peripheral blood lymphocytes, liver, pancreas, kidney, brain and heart (Lavedan 

et al., 1993; Kinoshita et al., 1996; Martorell et al., 1998 ). Furthermore, instability in 

muscle is high compared to other tissues such as blood (Thornton et al., 1994), which 

could account for the major muscle involvement of the myotonic dystrophy phenotype. 

Germline instability is clearly responsible for much of the phenotypic variation and 

intergenerational effects (Harper, 2001). In sperm, the repeat array is also unstable and 

expansion biased, concordant with anticipation, but the overall expansion rate is not as 

high as in the soma. This may be due to contractions which have been observed in, and are 

restricted to the male germline (Shelbourne et al., 1992; Monckton et al., 1995; Martorell 

et al., 2000), or selection against the transmission of large expansions (Jansen et al., 1994). 

Consequently in congenital cases, the mutant allele is usually inherited from an affected 

mother (Lavedan et al., 1993). 
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The fact that mutant DMPK alleles are unstable and expand throughout the lifetime of the 

individual both somatically and within the germline supports the observed genetic 

anticipation, whereby subsequent generations of an affected family suffer earlier disease 

onset and increasingly severe symptoms. Alleles with repeat arrays at the longer end of the 

'normal' range have been termed 'pre-mutation' and people possessing these lengths are at 

high risk of having affected family members within a limited number of generations 

(Martorell et al., 2001).  

In vivo data suggests the actual mechanism of expansion is independent of cell division. In 

mice, as in humans, there is no obvious correlation between cell division rates and the 

tissue specificity of somatic mosaicism in vitro (Gomes-Pereira et al., 2001 and 

unpublished data) and in vivo. Indeed, expansions continue to accumulate in post-mitotic 

tissues such as brain, arguing against a major role for cell division in repeat expansion (Lia 

et al., 1998; Fortune et al., 2000; Kennedy et al., 2000). Mouse models indicate repeat 

instability is dependent on the mismatch repair process rather than replication. In a DM1 

context, Pms2 (a MutL homologue) null mice, demonstrated increased somatic instability 

(Gomes-Pereira et al., 2004). Also in DM1 mice, expansion was found to be dependent on 

Msh3 (a mutS homologue) (Foiry et al., 2006). In Huntington transgenic mice, instability 

was found to be dependent on Msh2 (a MutS homologue), both somatically and within the 

germline (Manley et al., 1999; Kovtun et al., 2001). MSH2 was also required for germline 

contractions in sperm in DM1 transgenic mice expressing >300 repeats (Savouret et al., 

2004). Research suggests then that major components of mismatch repair including MSH2; 

MSH3 and PMS2 are required to bring about repeat expansion. 

The two principal aspects of DM1 –instability of the repeat expansion and pathogenesis of 

the disease, are currently under intense academic scrutiny. Since the severity and the age of 

onset in myotonic dystrophy relate to the length of the expansion, the rate of somatic 

instability has strong implications for the pathogenesis and progression of the disease. 

Longer repeats elicit more severe symptoms, which appear earlier probably by advancing 

the pathogenic response (Gomes-Pereira et al., 2006 for review). This may produce 

different phenotypic effects depending on the developmental stage of the affected 

individual, accounting for the congenital form. Research into mechanisms in these areas 

could lead to treatment of the condition by either impeding expansion from an early age; 

actual reduction in repeat length, or modification of the downstream effects caused by 

expression of the expanded arrays.  
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1.1.5 Pathogenesis 

The genetic mutation was identified in the mid 1990s (Aslanidis et al., 1992; Brook et al., 

1992; Buxton et al., 1992; Harley et al., 1992), and yet our knowledge of how the CTG 

expansion leads to the DM1 phenotype is still incomplete. Current research is focussed in 

three main areas: Haploinsufficiency of DMPK; Chromatin disruption and RNA gain of 

function.  

1.1.5.1 DMPK haploinsufficiency 

Once the myotonic dystrophy mutation was uncovered, it was expected that expansions of 

CUG repeats would affect transcription or translation of DMPK leading to 

haploinsufficiency. Messenger RNA levels were assessed by researchers and in some cases 

found to be reduced in adult (Fu et al., 1993; Hofmann-Radvanyi et al., 1993; Eriksson et 

al., 1999) as well as unaffected in adult (Inukai et al., 2000), and raised (Sabouri et al., 

1993) and reduced (Hofmann-Radvanyi et al., 1993) in congenital tissues. Conflicting 

reports as to whether mRNA transcripts were increased or decreased may have stemmed 

from the different methods and position of PCR primers used in each study, and the 

different tissue types analysed (Hofmann-Radvanyi et al., 1993). Krahe et al. showed that 

the levels of unprocessed pre-mRNA was equivalent between wild type (wt) and disease 

alleles, and that the overall amount of processed polyA+ DMPK transcript (wt and mutant) 

was equivalent between unaffected and affected individuals, but that processed (polyA+ 

and spliced) levels of the disease allele were reduced compared to wild type (Krahe et al., 

1995). Around the same time, analysis of the intracellular localisation of transcripts had 

shown mutant DMPK RNA to become aggregated and retained within the nucleus in 

discrete foci in patient tissues (Taneja et al., 1995). Later, this was also shown in myoblast 

culture expressing CUG repeat tracts (Davis et al., 1997), and that differentiation of the 

myoblasts was inhibited by expression of the CUG expansions (Amack et al., 1999). This 

lead researchers to postulate that aberrant RNA processing of the DMPK gene leading to 

haploinsufficiency of myotonic dystrophy protein kinase (DMPK), could be the cause of 

disease development. This hinted that the method of RNA extraction used by researchers –

whether nuclear RNA in addition to cytoplasmic RNA had been recovered, was vital in the 

interpretation of previously published results. It has already been mentioned that six major 

cell-type specific alternatively-spliced isoforms of DMPK have been detected to date 

(Groenen et al., 2000). In addition, Tiscornia et al. reported a novel isoform of DMPK 

lacking repeats not retained in the nucleus in DM1 cells. This would result in imbalances in 

relative levels of cytoplasmic DMPK mRNA isoforms (Tiscornia et al., 2000) 
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corroborating the theory that the position of the PCR primers –whether they were within 

alternatively spliced exons, and the type of tissue analysed could have been important. 

Using antiserum directed against DMPK, levels of the protein were reduced in patient 

tissue and cells, adding credence to the haploinsufficiency hypothesis (Fu et al., 1993; 

Koga et al., 1994). However a more recent publication (Narang et al., 2000) reports that 

the antisera used in these experiments was not specific for DMPK –cross-reacting with 

other proteins, and that using a DMPK-specific antibody, levels are moderately raised in 

adult DM1 tissues but in congenital cases a slight decline is apparent. In contrast, Salvatori 

et al. showed a decrease of DMPK to 50% normal levels in 16 adult DM1 skeletal muscle 

samples. The lowest concentration of DMPK protein correlated to those samples 

containing the least number of type 1 skeletal muscle fibres, but did not correlate with 

repeat length (Salvatori et al., 2005). 

Aside from the conflicting reports of DMPK mRNA and DMPK protein levels to date, 

there are other anomalies to the haploinsufficiency hypothesis. Mouse models homozygous 

for the loss of Dmpk have been extensively analysed phenotypically and pathologically and 

so far develop only a mild myopathy (Jansen et al., 1996) and cardiac conduction defects 

(Berul et al., 1999). In isolated cardiac myocytes, abnormal contractile activity and 

calcium cycling (Pall et al., 2003), and abnormal sodium channel gating (Lee et al., 2003) 

was apparent. Homozygous loss of DMPK in mice has therefore failed to reproduce many 

of the multisystemic effects observed in DM1, such as myotonia; progressive muscle 

wasting; diabetes and cataracts. In addition, individuals homozygous for the DM1 mutation 

have been documented, and diploid production of mutant DMPK mRNA did not adversely 

affect the clinical presentation in these patients (Martorell et al., 1996). It has to be noted 

however that in this particular study, the length of repeats, are not the same with 1000/60; 

61/38 and 51/120 respectively which makes assessing “homozygotes” difficult. If the 

effect of the repeats were additive, then the gain would not be expected to increase disease 

severity into the next category. Nevertheless, these observations, and the fact that no other 

DM1 cases have been identified arising from a point mutation or a deletion within the 

coding region, support the view that the complete clinical pathology of DM1 does not 

result from simple loss of function alone. 

1.1.5.2 Disruption of chromatin structure 

 The DMPK gene is located within a gene dense region of 19.3q (Figure 2). Expression of 

the mutant allele has been associated with the loss of a nearby DNase-I hypersensitive site 
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(Otten et al., 1995), and therefore could affect transcription of surrounding genes. Using 

electron microscopy and competitive nucleosome reconstitution, blocks of repeats n=75 

and n=100 have been shown to form unusually stable nucleosomes in vitro which could 

reasonably be expected to profoundly alter local chromatin structure (Wang et al., 1995). 

More recently Flippova et al. showed that CTG repeats at the DM1 locus are a component 

of a CTCF-dependent insulator element, and that repeat expansion results in conversion of 

the region to heterochromatin (Filippova et al., 2001). Cho et al. confirmed this and also 

showed that an antisense transcript emanating from the adjacent SIX5 regulatory region 

extending into the insulator element is produced, and converted into 21 nucleotide (nt) 

fragments. CTCF restricted the extent of the antisense RNA at the wt DM1 locus and 

constrained the methylation to the nucleosome associated with the CTG repeat, whereas 

the expanded allele in congenital DM1 was associated with loss of CTCF binding, spread 

of heterochromatin, and regional CpG methylation (Cho et al., 2005). The presence of 21 

nucleotide repeats and associated histone methylation would suggest a role in gene 

silencing, which would be expected to have a profound effect on DMPK expression in 

congenital DM when CTCF insulation failed.  

Of the genes surrounding the site of the DM1 mutation, SIX5 (formerly known as DM 

locus-associated homeodomain protein, DMAHP) has been the most extensively studied. 

SIX5 contains a Six domain and a homeodomain (Boucher et al., 1995) as first 

characterised in sine oculis, a homeobox gene essential for the development of the eye in 

Drosophila melanogaster (Cheyette et al., 1994). The 5' UTR and promoter region of SIX5 

is associated with a CpG island at the 3' end of DMPK, extends over 3.5 Kb and is 

interrupted by the DM1 CTG repeat (Figure 2). RT-PCR analysis shows that SIX5 is 

expressed in a number of human tissues, including skeletal muscle, heart and brain 

(Boucher et al., 1995), and in DM1, levels have been shown to be reduced (Thornton et al., 

1997). As a result, SIX5 was selected as a candidate gene for DM1 pathogenesis due to 

haploinsufficiency. However, mice homozygous for loss of SIX5 expression had no 

apparent abnormalities of skeletal muscle function, but did develop lenticular opacities at a 

higher rate than controls (Klesert et al., 2000). Sarkar et al. demonstrated that 

heterozygous loss of SIX5 in mice was sufficient to produce cataracts (Sarkar et al., 2000). 

SIX5 deficiency could contribute to the cataract phenotype in myotonic dystrophy 

providing evidence of multigenic involvement. The cataracts lacked the characteristic 

posterior positioning and red-green iridescence seen in patients (Ranum et al., 2004) 

however, but this may be due to the differences between the murine and the human eye.  
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Of the other genes surrounding the DM1 locus (Figure 2), DMWD is normally expressed 

highly in brain and testes (Jansen et al., 1992)–tissues affected in myotonic dystrophy. 

Reduced expression is evident in the cytoplasm of DM1 skeletal muscle (Eriksson et al., 

1999; Westerlaken et al., 2003). Radial Spokehead-Like gene, (RSHL1) has been 

implicated in sperm motility (Eriksson et al., 2001). Both fertility and brain function are 

affected in DM1, but little is known about the function of these genes, so how their 

disruption would affect the phenotype is not yet clear. 

1.1.5.3 Gain of function  

The evidence in support of a gain of function of the mutant allele arises from its dominance 

and from a broad correlation between the length of the repeat and the severity of the 

disease. The first experimental evidence for a dominant effect of mutant DMPK transcripts 

on RNA metabolism was postulated in 1995. In DM1 patients, Wang et al. found relatively 

small decreases of DM kinase RNA in the total RNA pool from muscle, but dramatic 

disease-specific decreases of both the mutant and wt DM kinase RNAs in the poly(A)+ 

fraction (Wang et al., 1995). They postulated a trans-dominant effect of the expanded 

repeat RNA upon both WT and expanded transcripts. This data didn’t hold up however 

since the levels of allele-specific RNA were not measured directly, but extrapolated by 

combining two sets of data –the relative levels of each allele based on a restriction site 

difference, and the relative levels of DMPK polyA RNA (WT and mutant) compared to 

creatine kinase. As mentioned earlier, using direct allele-specific measurement, Krahe et 

al. showed that the levels of polyA+ RNA from normal and mutant alleles were equivalent, 

and that the DM allele pre-mRNA was incorrectly processed at the splicing level. The 

unstable repeat impaired post-transcriptional pre-mRNA processing (Krahe et al., 1995). 

The misleading results from Wang et al. could be explained then, if the quantitative 

measurements were based on PCR primer position spanning an intron. Around the same 

time, Taneja et al. discovered foci of CUG transcripts within the nucleus of patient cells 

(Taneja et al., 1995). Subsequently, attention has focussed on binding interactions, both 

RNA secondary structure and RNA-protein interactions, and their possible effects in vivo.  

Timchenko et al. isolated two novel forms of a hetero-nuclear binding protein (hnRNP) 

(CUG)n triplet-repeat binding protein CUGBP1 and CUGBP2 and proposed that repeat 

expansion leads to sequestration of these hnRNPs on mutant transcripts (Timchenko et al., 

1996). Napierala and Krzyosiak demonstrated that expanded CUG transcripts formed 

stable duplex hairpin structures in vitro (Napierala et al., 1997). The RNA dominant 

mutation model for DM1 pathogenesis at this time predicted that the expansion mutation 
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acts at the RNA level, by forming long dsRNAs that sequester certain RNA-binding 

proteins. CUGBP1 was shown to regulate alternative splicing of the human cardiac 

troponin T (cTnT) muscle fibre protein. In the embryo, exon5 of cTnT is included in the 

transcript whereas in the adult it is not. Splicing of cTnT was disrupted in DM1 striated 

muscle and in normal cells expressing transcripts that contained CUG repeats (Philips et 

al., 1998). CUG-BP1 levels and activity are increased in DM1 cells (Timchenko et al., 

2001). Exon-skipping or alternative splicing of the insulin receptor has also been shown to 

occur when CUGBP1 is over-expressed in normal cells, or when an expanded CUG repeat 

is expressed in normal cells (Savkur et al., 2001). As mentioned earlier, the symptoms of 

myotonic dystrophy include cardiac myopathy and insulin resistance. So, altered splicing 

of genes regulated post-transcriptionally by CUG-BP1 may play a pivotal role in DM1 

pathogenesis.  

Michalowski et al. tested the hairpin model. They demonstrated similar RNA secondary 

structure and found in vitro, that purified CUGBP1 bound to the hairpin base but not to the 

stem. In DM1 cells they found no change in the intracellular localisation of CUGBP1, and 

no association with nuclear foci concluding that sequestration of CUGBP1 was unlikely 

(Michalowski et al., 1999). This is not necessarily what happens in vivo however. In the 

cell, processes are dynamic, occurring within a complex assortment of proteins, substrates, 

and catalysts. As RNA in transcribed for instance, proteins may bind as the RNA is 

generated, before it has formed a secondary double-stranded structure. In this form CUG-

BP1 could bind. Preliminary research indicates this to be the case in that cytoplasmic RNA 

foci are associated with CUG-BP1 (Timchenko, unpublished). 

Miller et al. proposed that DM1 is caused by aberrant recruitment of triplet repeat 

expansion (EXP) proteins to the mutant DMPK repeat array, since in DM1 cells they 

accumulated in nuclear foci (Miller et al., 2000). EXP, activated during mammalian 

myoblast differentiation (Miller et al., 2000), is homologous to the Drosophila muscleblind 

proteins required for terminal differentiation of muscle and photoreceptor cells (Begemann 

et al., 1997). EXP proteins have since been renamed muscleblind-like (MBNL) of which 

there are three proteins in the human and mouse, MBNL1; 2 and 3 all of which co-localise 

with nuclear foci in DM1 and DM2 myoblasts (Fardaei et al., 2002). In humans, the 

expression pattern varies between tissues, with MBNL3 expression mostly confined to the 

placenta. MBNL2 expression is equally and abundantly expressed in tissues examined 

(pancreas; kidney; skeletal muscle; liver; lung; placenta; brain and heart) and MBNL1 is 

highest in skeletal muscle (Fardaei et al., 2002). In the adult mouse the expression pattern 
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is similar for MBNL2, low levels of MBNL3, and MBNL1 were expressed most highly in 

heart (Kanadia et al., 2003).  

With the discovery of aberrant splicing of the CLC-1 voltage-dependent chloride channel 

in DM1 patient skeletal muscle (Cooper et al., 2001), evidence was growing in favour of a 

splicing disorder. This channel is responsible for maintaining resting membrane potential 

(Bretag, 1987) and there is a direct relation of CLC-1 dysfunction to myotonia (Steinmeyer 

et al., 1991; Gronemeier et al., 1994), and myotonic disorders  such as autosomal dominant 

myotonia congenita (George et al., 1993) and the “myotonic mouse” (Gurnett et al., 1995). 

It has been reported that CUGBP1 belongs to a family of RNA binding proteins involved 

in the developmental regulation of alternative splicing (Ladd et al., 2001), but CUG-BP1 

did not co-localise with nuclear foci and as such was not a likely candidate for 

sequestration on the CUG repeat array. Attention therefore focused on the MBNL double-

stranded CUG binding proteins. The muscle and eye pathology and the RNA splicing 

defects of Clcn1 were recreated in a mouse model by disruption of the Mbnl1 gene. 

Myotonia and cataracts were amongst the symptoms, and Tnnt2 (cTnT) and TnnT3 splicing 

was also shown to be defective, as found in DM1 skeletal muscle (Kanadia et al., 2003). 

Further research has shown MBNL1 to developmentally regulate alternative splicing in 

genes some of which related to DM symptoms; such as the insulin receptor and cardiac 

troponin T (Ho et al., 2004; Dansithong et al., 2005), in a dynamic balance between itself 

and CUG-BP1 (Ladd et al., 2005). MBNL1 also regulates protein Tau, although the 

connection between disruption and DM1 pathology has not yet been resolved (Leroy et al., 

2006). 

Yet, sequestration of MBNL1 to foci may not be the cause. Ho et al. showed that the 

formation of foci and co-localisation of MBNL1 are separable events. They expressed 

expanded CAG or CUG repeats in DM1 myoblasts and found that both expansions 

aggregated into nuclear foci, and both expansions co-localised with MBNL1, but mis-

regulated splicing was seen only by expressing CUG repeats (Ho et al., 2005). Foci 

formation may not be the basis, but merely a marker of pathogenesis: It may even be 

protective. More recently a reversible mouse model of DM1 has been developed, 

employing controllable expression of the DMPK 3' UTR with and without expanded CTG 

repeats. Here the researchers were surprised to find that mice over-expressing a normal 

length repeat of 5 CUGs reproduced cardinal features of myotonic dystrophy, including 

myotonia; cardiac conduction abnormalities; histopathology and RNA splicing defects, but 

in the absence of detectable nuclear inclusions. Increased levels of CUG-BP1 were 
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detected in skeletal muscle, as seen in individuals with DM1 (Mahadevan et al., 2006). An 

expanded CUG repeat is known to produce a long single hairpin in vitro (Michalowski et 

al., 1999) and long CUG hairpins have been shown to induce dicer cleavage and RNAi 

knockdown of DMPK (Krol et al., 2007). Krol et al demonstrated that CNG hairpins are 

also formed in the triplet expansion disorders Huntington disease, and spinocerebellar 

ataxia type 1 and constitute another class of dicer targets, uncovering a previously 

unknown mechanism involving dicer-controlled down-regulation of mutant transcripts in 

the triplet repeat disease process. It is possible that dicer cleavage of CUG hairpins could 

release increased amounts of short CUG repeats into the cytoplasm increasing CUG-BP1 

levels as a result of titration by binding to the short repeat RNAs. In this case foci could be 

protective up to a point, preventing toxic short repeats from entering the cytoplasm via 

dicer cleavage, leading to elevated CUGBP1. MBNL1-associated foci were also found to 

lack pathogenic effect in Drosophila (Houseley et al., 2005). These accounts are consistent 

with the report of foci formation being separable from missplicing (Ho et al., 2005), since 

cleaved CAG repeats may not alter CUG-BP1 levels. MBNL1 disruption however, leads to 

muscle; eye and RNA splicing abnormalities characteristic of DM disease (Kanadia et al., 

2003), which is inconsistent with a protective role of MBNL1 sequestration. In this model 

however, symptoms only occur in the homozygote –a total functional knockdown is 

apparent, which does not truly replicate the disease state since in vivo there is a certain 

amount of association and disassociation of MBNL1 within foci (Ho et al., 2005). 

Could dicer CUG hairpin cleavage play a role in congenital DM? It has recently been 

reported that dicer is required for embryonic skeletal muscle development (O'Rourke J et 

al., 2007). In the congenital form the repeat tracts are lengthy and could reasonably be 

expected to deplete dicer reserves within the cell, affecting other miRNA-controlled 

functions such as myogenesis. 

1.1.6 Myotonic dystrophy type 2 

As mentioned earlier, not all cases of DM arise from DMPK associated CTG repeat 

expansions. The DM type 1 mutation accounts for 98% of myotonic dystrophy cases 

(Harper, 1989). Recently, a second mutation – myotonic dystrophy type 2 (DM2), was 

discovered, accounting for the majority of the remaining 2% of cases, caused by an 

uninterrupted CCTG expansion within the first intron of the cellular nucleic acid binding 

protein (CNBP) gene (Liquori et al., 2001), also known as ZNF9. Type 2 symptoms are 

almost identical to those of type 1. The notable distinctions are the lack of the congenital 

and childhood onset forms of the disease, and the lack of central nervous system 
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developmental abnormalities and retardation (Day et al., 2003). In general, symptoms are 

less pronounced and occur later in life. It is not clear whether anticipation is present, but 

the length of repeat is much greater, ranging between 75 and 11,000 CCTG repeats 

(Liquori et al., 2001). 

Although expansions in CNBP cause DM-like symptoms, the affected gene product –a 

sterol regulated single stranded nucleic acid binding protein (Rajavashisth et al., 1989) is 

apparently unrelated to DMPK. The function is currently under intensive scrutinisation. 

Six of the seven fingers can be substituted into HIV1 nucleocapsid and support viral 

genomic RNA replication (McGrath et al., 2003). CNBP can bind to IRES (internal 

ribosome entry site) sequences and may stimulate cap independent translation as part of a 

ribonucleoprotein complex (Gerbasi et al., 2007). It is active throughout development, 

mediating neural crest expansion (Weiner et al., 2007) and regulating forebrain formation 

in the mouse (Shimizu et al., 2003). Mouse models homozygous for CNBP gene disruption 

are embryonic lethal, confirming an essential role in development. Interestingly, when 

heterozygous for CNBP gene disruption, mice demonstrate cardinal features of DM such 

as abnormal muscle histology; myotonic discharges and heart conduction defects, and a 

reduction in the levels of Clcn1 expression (Chen et al., 2007), suggesting that CBNP 

haploinsufficiency plays an important role in DM2 pathogenesis. However in DM2 

patients, CNBP levels are unaffected (Botta et al., 2006; Margolis et al., 2006). As a result, 

these seemingly conflicting reports suggest that even if haploinsufficiency of CNBP does 

cause a DM-like phenotype, it still may not actually make any contribution in DM2 

patients.  

The genes surrounding the DM2 mutation (KIAA1160, Rab 11B, glycoproteinIX, 

FLJ11631, and FLJ12057) do not bear any obvious similarities to those surrounding 

DMPK (Figure 2). It is therefore unlikely that any disruption of chromatin structure by the 

repeats, leading to altered regulation of neighbouring genes, would result in diseases with 

such remarkably similar features. Molecularly, parallels arise on inspection of the 

expanded RNAs. Both DM1 and DM2 transcripts are retained within the nucleus and co-

localise with MBNL1 (Mankodi et al., 2001; Fardaei et al., 2002). Similar splicing defects 

for the insulin receptor and the chloride channel are also observed between DM1 and DM2 

in muscle biopsies (Savkur et al., 2004; Botta et al., 2007), and also for microtubule 

associated protein Tau (Maurage et al., 2005). It would not be unreasonable then to 

hypothesise that sequestration of MBNL1, leading to alterations of the dynamics of CUG-

BP1 and MBNL1 regulation, is also pivotal to the mis-regulated splicing in DM2.  
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1.1.7 Alternative splicing: Dynamic control by CUG-BP1 and 

MBNL1 

The cardiac troponin T gene is misspliced in myotonic dystrophy, the embryonic exon 5 

inappropriately included in the adult. In 1998, Philips et al. reported that in the chicken 

homologue (ccTNT), CUG-BP1 promoted inclusion by binding to muscle specific 

enhancers (MSE). Four enhancers were found to be essential for enhanced exon inclusion –

one upstream and three downstream of the exon. CUG-BP1 was found to specifically bind 

to a sequence containing CUGCUG, common to the human gene, within enhancers two 

and four. Using a human cTNT minigene system they determined that the CUG sequences 

were essential for exon inclusion (Philips et al., 1998). Ho et al. investigated the 

involvement of MBNL1 proteins and determined that they also regulated exon 5 alternative 

splicing in cTNT, and additionally, promoted exon 11 exclusion in the insulin receptor 

gene –another transcript misspliced in DM. In the cTNT gene, MBNL1 was found to bind 

to introns surrounding exon 5 in both chicken and in human. Two MBNL1 binding sites 

which affected splicing regulation were defined upstream of the human exon 5, a site 

distinct from the CUG-BP1 binding site. They also noted that in ccTNT, MBNL1 bound 

weakly to MSE1 (upstream) and strongly to MSE4 (downstream) where the CUG-BP1 

binding site is located, indicating antagonistic regulation with CUG-BP1 (Ho et al., 2004). 

CUG-BP1 is down-regulated in adult heart compared to the embryo, concomitant with 

exon 5 exclusion, and is also down-regulated in other tissues during development (Ladd et 

al., 2005). This suggests that competition between CUG-BP1 and MBNL1 for binding 

sites could be a plausible mechanism for developmentally regulated splicing. Recent work 

demonstrates that as little as 6 bases are sufficient for MBNL1 binding (Warf et al., 2007), 

via a structured GC-rich stem-loop containing pyrimidine mis-matches, in both normal 

splicing substrates and pathogenic RNA. Under the electron microscope MBNL1 forms a 

ring-like structure, which binds the double-stranded RNA stem. It is possible then that 

CUG and CCUG expansions may trap MBNL1 protein within stacked ring structures along 

the double-stranded hairpin (Warf et al., 2007; Yuan et al., 2007). 

It seems clear that alteration of the dynamic balance between CUG-BP1 and MBNL1 

splicing regulators causes inappropriate generation of foetal isoforms during adulthood. 

Some misspliced genes can be attributed to a symptom in both myotonic dystrophy type 1 

and type 2, although the association is not clear for some genes such as cardiac troponin T, 

or protein Tau. If the pathogenesis arises from an RNA gain of function, the differences 

between the two types –notably the lack of the congenital form in DM2– must relate to 
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temporal or spatial expression patterns of the DMPK and CNBP genes themselves, to 

expression of the surrounding genes due to structural effects of the repeat, or to the specific 

function of DMPK and CNBP, separately or in combination. While each of the hypotheses 

addresses part of the pathogenesis, it is most likely that a number of complex mechanisms 

operate in concert, leading to the substantial clinical variability between patients. 

 

1.2 RNA processing disorders 

When the DM1 mutation was first discovered, it was expected that expansion of the CTG 

repeat tract would result in a simple loss of function of the DMPK gene product, perhaps 

by interference with transcription or translation. As research has evolved, evidence for a 

gain of function of the toxic RNA has become pivotal in understanding the pathogenesis in 

DM, to join a growing group of RNA processing disorders. Insights into the disease 

mechanism of other members of this group could shed light on the mechanism of DM 

pathology.  

1.2.1 Ocularpharyngeal muscular dystrophy 

Ocularpharyngeal muscular dystrophy (OPMD) is a progressive myopathy, which shares 

some characteristics of myotonic dystrophy, namely ptosis and dysphagia due to muscle 

weakness in the face and neck. Difficulty in swallowing can become so severe as to result 

in death by choking, aspiration pneumonia or malnutrition. Limb-girdle muscles are also 

affected to a lesser extent (Hill et al., 2001). Usually inherited as an autosomal dominant 

disease, OPMD is caused by the expansion of a GCG trinucleotide repeat within the coding 

region of the polyA binding protein 2 (PABP2) gene, leading to extension of an alanine 

stretch within the protein. Functionally, PABP2 binds with high affinity to the polyA tail 

of messenger RNA via a specific RNA binding domain and is involved in its 

polyadenylation, controlling adenylate addition to approximately 250 nucleotides (Wahle, 

1991; Wahle, 1995). PABP2 also has an oligomerisation domain, and expansion of the 

alanine stretch promotes atypical oligomerisation of the protein to form intranuclear 

inclusions in muscle cells: The inclusions, considered to be the pathological hallmark of 

the disease, comprise oligomerised PABP2 protein; mRNA and other RNA binding 

proteins (Fan et al., 2003), some of which have been identified. It is not clear as to whether 

the inclusions themselves are pathogenic, but could possibly become generalised PolyA 
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RNA traps, and their presence leads to apoptosis (Fan et al., 2001). In mouse models there 

is a close correlation with the presence of inclusions to pathology and that symptoms tend 

to be more severe with longer repeat lengths (Hino et al., 2004). Interference with 

aggregate formation reduces toxicity (Bao et al., 2002; Bao et al., 2004), but interference 

of oligomerisation domains of expanded PABP2 leads to their solublisation and a 

subsequent increase in toxicity implying inclusions may be protective (Messaed et al., 

2007). Inclusions are located in speckles –domains within the nucleus that are enriched in 

polyA+ RNA, splicing factors and other mRNA processing machinery that are thought to 

represent mRNA processing centres, and the nucleolus –sites of ribosome assembly. The 

mutant protein inhibits myogenesis in cell-culture where the expression of several muscle-

specific proteins, alpha actinin; muscle creatine kinase; myogenin and myoD is reduced 

(Wang et al., 2006). It is not clear why pathology is limited to muscle cells –since 

presumably PABP2 is ubiquitously expressed. Where this disease becomes particularly 

interesting in the context of DM1, is that CUG-BP1, a splicing regulator implicated in 

DM1 pathology, plays a role in deadenylation (Paillard et al., 2003; Moraes et al., 2006). 

Since in DM1 the concentration and activity of CUG-BP1 increases, it follows that 

deadenylation may increase. If in OPMD adenylation is disrupted, then both mutant 

mechanisms could result in short polyA tails, which would affect mRNA stability (Lewis 

et al., 1997; Cougot et al., 2004; Kuhn et al., 2004). Indeed, some characteristic symptoms 

–progressive myopathy, ptosis and dysphagia, are shared by both disorders. 

1.2.2 Spinal muscular atrophy 

Spinal muscular atrophy is a spliceopathy rather than a microsatellite repeat disorder. It is 

the second largest autosomal recessive cause of infant mortality after cystic fibrosis 

affecting 1:6,000-10,000 live births (Wirth, 2000). It comprises a group of neuromuscular 

disorders characterised by the selective destruction of α-motor neurons within the spinal 

cord leading to progressive muscle atrophy in the limbs and trunk. Life expectancy is 

reduced, and between individuals the disease severity is highly variable ranging from 

difficulty in standing, to becoming wheel chair bound. Severely affected infants often die 

from respiratory insufficiency by the age of two. 

On chromosome 5q, in normal DNA, there is an inverted duplication of a 500 kb element 

spanning at least four genes. The disease is caused by deletions of, or mutations in, the 

telomeric copy of one of these genes –the survival of motor neurone 1 gene (SMN1) 

(Lefebvre et al., 1995). The severity of the disorder is modified by expression of one or 

more centromeric duplications of the gene (termed SMN2), which can partially compensate 
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for the primary mutation (Gavrilov et al., 1998; Vitali et al., 1999; Harada et al., 2002). 

Since SMN1 is ubiquitously expressed, it is thought that SMN2 expression can 

satisfactorily rescue the mutation in all tissues except motor neurones, although the reason 

for this is not clear. The centromeric copies are almost identical to the SMN1 gene except 

for a translationally silent C-T transition, which results in predominant exon 7 skipping 

(Lorson et al., 1999; Monani et al., 1999) creating defective oligomerisation within the 

resultant protein (Lorson et al., 1998).  

In eukaryotes, nuclear pre-mRNA splicing is essential for mRNA biogenesis, carried out 

by the spliceosome. In terms of function, the SMN1 protein forms part of a large 

macromolecular complex involved in the assembly of small nuclear ribonucleoproteins 

(snRNPs) –major components of the spliceosome. Although snRNPs have been shown to 

self associate from their component parts in an ATP independent manner (Sumpter et al., 

1992; Raker et al., 1996; Raker et al., 1999), recent research suggests that SMN1 complex 

is absolutely required for the efficiency and accuracy of snRNP assembly (Pellizzoni et al., 

2002), akin to the role of chaperones in protein folding. The molecular consequences of 

reduced levels of full-length SMN1 in motor neurones are not known, but may lead to the 

formation of aberrant snRNPs, which could contribute to the specificity and function of the 

spliceosome affecting downstream mRNA processing. There has been no association 

between the location of foci and the spliceosome in DM1 (Houseley et al., 2005), and no 

other evidence of spliceosomal involvement , therefore it is unlikely to contribute to DM 

pathogenesis. 

1.2.3 Fascioscapulohumeral muscular dystrophy 

Fascioscapulohumeral muscular dystrophy is the third most prevalent muscular dystrophy 

after the dystrophinopathies (including Duchenne and Becker muscular dystrophy) and 

myotonic dystrophy, affecting 1 in 20,000 of the population. There is a progressive loss of 

all skeletal muscle, with noticeable weakness usually starting with facial, scapular/back 

and upper arm muscles (Tyler et al., 1950). High frequency hearing loss and retinal 

abnormalities are also common associations (Gurwin et al., 1985). With patients ranging 

from asymptomatic to wheelchair bound, the clinical spectrum is highly variable, as is the 

age of onset, but most carriers of the mutation are symptomatic by their second decade. 

Genetically the mutation is autosomal dominant, and is associated with the deletion of a 

number of 3.2 Kb repeat units termed D4Z4 on chromosome 4q35 (van Deutekom et al., 

1993). The normal population carries 11-100 D4Z4 repeat units, but in affected individuals 

repeats are reduced to 1-10, with a rough inverse correlation between the age of onset and 
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severity of the disease: One to three repeats causes more severe symptoms (Lunt et al., 

1995; Tawil et al., 1996). Although the mutation was mapped to the region in 1993, the 

pathogenesis is not clear. The D4Z4 repeat units contain an open reading frame, DUX4, but 

expression of this gene has not been established. The mutation however is within a gene-

dense region and so the expression of flanking genes has been extensively studied. A 

repressor complex controlling upstream FRG1 transcription levels, binds to D4Z4 repeats 

(Gabellini et al., 2002), and so a deletion of these repeats could result in de-repression of 

the target gene, leading to increased expression levels. Recently Gabellini et al. generated 

transgenic mice over-expressing the human DUX4 flanking genes FRG2; FRG1 and ANT1 

in skeletal muscle. Those mice expressing FRG2 and ANT1 seemed normal, but those 

expressing FRG1 developed a muscular dystrophy with features characteristic of human 

FSHD (Gabellini et al., 2006). Fascinatingly, over-expression of FRG1 resulted in the 

missplicing of some genes also targeted in myotonic dystrophy, namely MTMR1 and 

TNNT3, but not CLC1. These results were corroborated in FSHD patient cell-cultures, and 

in mouse C2C12 muscle cells over expressing FRG1. The FRG1 protein is located in the 

nucleolus, cajal bodies and speckles (van Koningsbruggen et al., 2004), and so is predicted 

to be involved in RNA processing, perhaps as a component of the spliceosome. Recent 

research carried out to discover which proteins associated with FRG1, identified RNA 

biogenesis proteins SMN1 and PABP2 as binding partners, mutations in which are also 

associated with neuromuscular disorders (spinal muscular atrophy, see 1.2.2 and 

ocularpharyngeal muscular dystrophy, see 1.2.1) (van Koningsbruggen et al., 2007). 

Interestingly there is a link between adenylation factor PABP2 and FRG1, which initiated a 

literature search for any association of CUG-BP1 with FRG-1, but none was found. 

1.2.4 Fragile X syndrome and fragile X-associated tremor/ataxia 

Fragile X syndrome is the most prevalent heritable single gene form of mental retardation. 

Symptoms are broad, ranging from severe mental retardation and autism to those with a 

normal IQ, although these patients usually have some form of learning disability. Females 

tend to suffer less severe symptoms since the disorder is X-linked recessive. The mutation 

is caused by the expansion of a CGG triplet repeat within the 5’UTR of the fragile X 

mental retardation 1 gene (FMR1) and in the unaffected population the repeat tract varies 

between 5 and 44. Arrays greater than 200 are considered full mutation and give rise to 

fragile X syndrome, but the presence of 50-200 repeats –the premutation range gives rise 

to the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS) 

(Hagerman and Hagerman, chapter 10 in Wells et al., 2006). This disease differs from 
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fragile X syndrome in that patients tend to be affected later in life rather than from 

childhood, with gait ataxia and intention tremor, and more variably parkinsonism and 

numbness in the lower extremities. Although the same mutation is causative in both fragile 

X syndrome and FXTAS, it is thought that pathogenesis follows two different mechanisms. 

Fragile X syndrome is clearly borne of protein deficiency due to silencing of the gene by 

methylation (Lim et al., 2005; Ladd et al., 2007), whereas in FXTAS, the gene is 

transcriptionally active with elevated levels and altered sites of initiation, suggesting a gain 

of function mechanism. Post mortem, ubiquitinated FMR1 mRNA-positive nuclear 

inclusions in cells of the central nervous system are the cardinal feature of FXTAS 

(Tassone et al., 2004). Other proteins identified from purified inclusions include the RNA 

binding proteins MBNL1 (instrumental in DM missplicing) and hnRNP A2 as well as heat 

shock proteins HSP27 and αB-crystallin, and neurofilament proteins –one of which is 

mutated in Charcot-Marie-Tooth disease of the axonal type (peripheral neuropathy) (De 

Sandre-Giovannoli et al., 2002).  

Recent research indicates that FMR protein effects microRNA-guided translational 

repression as part of the miRNP assembly by exchange of the complex-associated micro 

RNA for the target mRNA (Plante et al., 2006; Plante et al., 2006). Micro RNAs 

(miRNAs) are thought to translationally regulate ~30% of the genes in the human genome. 

They are borne from extensive processing of non-coding RNA, transcribed from 

endogenous miRNA genes; first to stem-loop double-stranded primer RNA by the 

microprocessor complex containing drosher, then to single-stranded miRNA by a complex 

containing dicer and transactivating response RNA-binding protein (TRBP). This complex 

associates with AGO2 to form the microribonucleoprotein (miRNP) or RNA induced 

silencing complex (RISC), which recognises the mRNA target, leading to cleavage if the 

miRNA is a perfect match, or transcriptional repression if not (Ouellet et al., 2006). It is 

thought that FMR1 is involved in post-transcriptional gene control. Micro CUG RNAs 

(21nt) have been detected in the total RNA of DM1 cells, so it is possible that DMPK is 

regulated by dicer (Krol et al., 2007). There is then a possibility that the expanded repeat 

also disrupts the post-transcriptional control of other genes in DM1 by disruption of the 

same process.  

1.2.5 Huntington disease-like 2 

Huntington disease-like 2 (HDL2) is an autosomal dominant progressive disorder almost 

indistinguishable from Huntington disease (HD). The diseases are characterized by 

abnormalities of movement; dementia; and psychiatric disturbances, and pathologically, 
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marked striatal atrophy and moderate cortical atrophy, and intranuclear inclusions. The 

inclusions in HDL2 are not huntingtin or junctophilin-3 (the affected gene in HDL2) 

positive however. Death occurs approximately 20 years after onset, which is usually the 

fourth decade, but longer repeat tracts elicit an earlier onset. Whereas HD is caused by the 

expansion of a CAG repeat leading to an extended polyglutamine repeat within the 

Huntingtin protein, the HDL2 CTG repeat is situated within the alternatively-spliced 

junctophilin-3 gene (JPH3), and manifests variably –in frame to code for polyalanine or 

polyleucine, or non-coding within the 3’UTR, the repeat region is removed from the full-

length transcript (Margolis et al., 2001). How the expansion in HDL2 leads to an almost 

identical phenotype to HD is unclear, but an RNA gain-of function mechanism seems 

likely. The HDL2 repeat is transcribed in the CTG orientation producing RNA foci that co-

localise with MBNL1. Missplicing is apparent in amyloid precursor protein (APP) and 

microtubule associated protein tau (MAPT) (Rudnicki et al., 2007). If MBNL1 depletion is 

involved in missplicing as in DM, the differences in target genes may relate to the 

expression pattern of JPH3 compared to DMPK. Myotonic dystrophy protein kinase is 

present at low levels in brain and high in heart, skeletal muscle and testis (Sarkar et al., 

2004). Junctophilin-3 is expressed at high levels in brain, is modest in testis and minimal 

elsewhere (Takeshima et al., 2000). 

1.2.6 Friedreich ataxia 

Friedreich ataxia (FRDA) is a progressive neurodegenerative disorder caused by an 

unstable GAA repeat expansion within intron 1 of the frataxin (FXN) gene (Campuzano et 

al., 1996). Symptoms include gait instability and general clumsiness, sensory loss and 

muscle weakness, and less often cardiomyopathy, scoliosis and diabetes (Geoffroy et al., 

1976). Onset varies between 5 and 25 years of age. Frataxin is a mitochondrial protein and 

current research suggests that loss of frataxin impairs mitochondrial iron handling and 

respiratory chain function contributing to increased oxidative stress and cell damage 

leading to spinal atrophy (Campuzano et al., 1997; Lodi et al., 1999; Bradley et al., 2000; 

Cavadini et al., 2002). The disease is recessive and point mutations are rare (2-4%), but 

can cause the disease (Puccio et al., 2000). It is thought that an expansion over 60 repeats 

allows the formation of “sticky” triplex DNA formation, which inhibits transcription of the 

gene by direct sequestration of RNA polymerase II (Sakamoto et al., 1999). 
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1.2.7 Spinocerebellar ataxias 8, 10 and 12 

The spinocerebellar ataxias (SCAs) encompass a large group of dominantly inherited 

progressive disorders in which the cerebellum slowly degenerates. Coordination of 

movement is generally affected involving gait, speech and hand and eye motor control, 

which deteriorates over time. Mental function is not affected. Spinocerebellar ataxias are 

grouped into three types; CAG repeat expansions encoding a polyglutamine stretch; non-

coding repeat expansions and non-repeat associated (deletion; missense; nonsense and 

splicing) mutations. SCA 8, 10 and 12 belong to the non-coding expansion group, although 

SCA 8 is now also associated with group 1 since recent research shows it is bi-

directionally transcribed resulting in a polyglutamine expansion in the ataxin 8 (ATXN8) 

gene, and a complementary mRNA ataxin 8 opposite strand (ATXN8OS) containing an 

untranslated CUG expansion (Moseley et al., 2006). Moseley et al. generated a successful 

transgenic SCA8 mouse model by expressing the human ATXN8OS gene with 116 CTG 

repeats, demonstrating the pathogenicity of the CUG repeats. Little is known about the 

function of the ATXN8OS gene, but in light of these results, an RNA mediated gain of 

function mechanism is still likely.  

The SCA 10 mutation consists of an expanded ATTCT repeat within exon 9 of the 

ATXN10 gene, expressed in brain. Little is known about the function ATXN10, but in 

SCA10 patient-derived cell-lines, transcription levels are normal and the RNA is correctly 

processed. Mouse models null for the gene do not survive embryogenesis in the 

homozygotes, and heterozygotes show no phenotype (Wakamiya et al., 2006) indicating 

that a simple loss or gain of function of the protein is doubtful. 

The SCA12 CAG repeat is located within exon 7 of the PPP2R2B gene (Holmes et al., 

1999), which encodes a brain-specific regulatory subunit Bβ of the ubiquitous PP2A 

phosphatase (Mayer et al., 1991). This gene is alternatively spliced, the different isoforms 

determining substrate specificity and subcellular localisation. The disease pathogenesis has 

not yet been established, but no evidence that SCA12 is a polyglutamine disease has been 

found. Expansions were not detected in western blots of patient derived cell-lines or in 

SCA12 brains (Holmes, 2003). Research by Holmes et al. suggests that the mutation 

increases expression levels of the predominant Bβ isoforms (Bβ1), which use the exon 7 

alternative promoter, perhaps shifting PP2A target specificity (Holmes, 2000). 
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1.3 Transgenic mouse models of myotonic dystrophy 

Many mouse models have been generated to further understand the progression of disease 

in myotonic dystrophy. Not all models have been created with pathogenesis in mind -a 

large amount of research has focussed on the repeat expansion and instability. Published 

DM1-related mouse model data is compared here from a pathogenesis perspective. The 

transgenes are summarised in Figure 3. 

1.3.1 Gene deficiency and over-expression models 

These models have already been discussed in relation to the pathogenesis of DM1 in 

Pathogenesis 1.1.5, but to recap: Of the gene disruption models, transgenic mice deficient 

in DMPK (Dm15 or Dmpk gene in mice) did not show significant myopathy, but have 

shown cardiac conduction abnormalities (Reddy et al., 1996; Berul et al., 2000). Mice 

lacking the adjacent Six5 gene developed cataracts with either heterozygous or 

homozygous loss, but of a different type, not posterior subcapsular iridescent cataracts, 

(Klesert et al., 2000; Sarkar et al., 2000). MBNL1 disruption in contrast, lead to muscle, 

eye and RNA splicing abnormalities characteristic of DM disease (Kanadia et al., 2003). 

Transgenic mice over-expressing CUG-BP1 in muscle and heart also replicated DM1-like 

features in these tissues, including abnormal muscle histology and disrupted splicing (Ho 

et al., 2005). None of these single gene disruption models mimic the complete 

multisystemic phenotype of the disease including the congenital form in DM1. However, 

both the MBNL1 deficiency and CUG-BP1 over-expression models are consistent with a 

mechanism for DM pathogenesis in which expanded repeats result in alteration in the 

dynamic balance between MBNL1 and CUG-BP1, and have trans-dominant effects on 

specific pre-mRNA targets. 

1.3.2 Expressed transgenes 

If the phenotype of myotonic dystrophy results from a gain of function of the mutant 

DMPK transcript, one would expect that the mouse models generated to date would reflect 

this. Not all models were specifically created to answer pathogenesis hypotheses, so 

analysis of the models in this way is slightly hampered by the fact that the researchers who 

created them tended to concentrate on either the mechanism of repeat expansion or the 

mechanism of pathogenesis, and publish accordingly. Of the mouse models, some 

transgenes included a promoter:  
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Gourdon et al. 1997: The DM1 region including upstream DMWD and downstream SIX5 

was used for this transgenic model. Fifty-five CTG repeats are present within the DMPK 

3’UTR and all three genes are expressed at wild type levels. Although the repeat tract was 

found to be unstable, no phenotype was observed. The same research group then produced 

mice using the same region with 20 repeats in the normal line or 300 repeats for the 

expanded line (Seznec et al., 2000). The levels of CTG expression were again found to be 

consistent with wild type levels. There was no phenotype observed with 20 repeats, but 

with 300 repeats, mice displayed clinical, histological, molecular and electrophysiological 

abnormalities in skeletal muscle consistent with those observed in DM1 patients. 

Abnormal tau expression was also observed in the brain. In addition, mice had crossed 

teeth, perhaps indicating a weakness in the jaw musculature. A proportion of offspring 

expressing sufficient mRNA exhibited myotonia (Seznec et al., 2001) An abnormal 

glucose and insulin response was evident in the expanded repeat mice and molecularly, 

tissue and age-dependent abnormal regulation of IR mRNA splicing was found in skeletal 

muscles, adipose tissue, liver and pancreas (Guiraud-Dogan et al., 2007). 

Jansen et al. 1996, restricted the DM1 region used for their mice to the last exon of 

DMWD and the DMPK gene, which included 20 CTG repeats within the 3’UTR. DMPK 

levels were altered between 0 to 10 fold depending on the line, due to multicopy 

integration. Offspring suffered high pre and neonatal mortality, as high as 50% in Tg 

positive mice through female transmission, where the females themselves often became 

sick and occasionally died, and 20% mortality when transmitted through the male 

germline. Mice developed cardiac hypertrophy, but no DM-like pathology or phenotype 

was detected. O’Cochlain et al. analysed mice expressing 26 copies of the human DMPK 

gene with 11 CTG repeats. The mice exhibited hypertrophic cardiomyopathy with 

dysrhythmia, myotonic myopathy and hypotension, all distinctive muscle traits of DM1 

(O'Cochlain et al., 2004). 

In their mouse model, Monckton et al. 1998, reduced the region still further, to the 

DMPK 3’UTR that contained 162 repeats. Transcription was directed from the EF1α 

promoter. They reported myotonia in three of four lines at 2 years of age. The mice also 

suffered ataxia, testicular atrophy and infertility so severe as to lose the lines (Monckton, 

1998). 

Mankodi et al. 2000, included 5 and 250 CTG repeats within the 3’UTR of a gene 

unrelated to DMPK, human skeletal actin (HSA). Gene expression was limited by the HSA 
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promoter to skeletal muscle. In the 250 CTG repeat, but not the 5 CTG repeat mice 

myotonia was present from four weeks before muscle pathology was histologically 

defined, and transcripts were retained in the nucleus within discrete foci. 

Mankodi et al., 2000, Seznec et al. 2000 (Figure 3) and Monckton et al. (unpublished, 

personal communication) have communicated findings of myotonia and other aspects of 

DM pathology in their mice. Clearly in these examples, mice expressing CTG repeats with 

expansions of 162 repeats and above exhibit DM-related symptoms, including the hallmark 

myotonia. None of the other mouse lines presented myotonia, perhaps either because the 

repeat expansion was insufficient to cause disease within the lifetime of the mouse 

(Gourdon et al., 1997, 55 repeats), or expression levels were insufficient due to transgene 

positional effects. The most interesting model here is that of Mankodi et al. 2000, since 

myotonia was reproduced in mice simply by expressing a modified human skeletal actin 

gene containing 250 CTG repeats within the 3’ UTR. The repeat sequence comprised a 

dimerised (CTG)130 fragment devoid of flanking sequences from the DM1 region 

(Mankodi et al., 2000). Over-expression of MBNL1 in the same transgenic line rescued the 

pathogenic effect: Skeletal muscle from the HSALR transgenic mouse line was subjected to 

in vivo mediated transduction with a recombinant adeno-associated viral vector over-

expressing MBNL1, which rescued the myotonia. This reversal occurred concurrently with 

restoration of the normal adult-splicing patterns of four pre-mRNAs misspliced in DM 

muscle (Clcn1, Cypher, Serca1 and Tnnt3) (Kanadia et al., 2006): Strong evidence for the 

MBNL1 depletion hypothesis. 

Removal of toxic RNA was also shown to alleviate DM-like symptoms in an inducible 

mouse model of DM1, an important finding indicating that in the future, treatment of DM 

may become a possibility. Mahadevan et al. produced a tet responsive GFP reporter 

flanked by the DMPK 5’ UTR, and the DMPK 3’UTR containing 5 or 200 CTG repeats. 

Induction of expression resulted in a major phenotype in the 5 repeat mice a few days after 

induction, and after nine months without induction due to a leaky promoter. Although foci 

were seen in the 200 repeat mice, no phenotype was observed probably because expression 

was too low. Cessation of transcription restored function and splicing anomalies. As with 

the HSA-(CTG)5/200 model (Mankodi et al., 2000), no DMPK protein was expressed 

giving clear delineation of the contribution of DMPK 5’ and 3’UTR mRNA to DM 

pathophysiology (Mahadevan et al., 2006). 
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Figure 3 Transgenic mouse models of myotonic dystrophy. Schematic diagram summarising 
the transgenes used, and a brief description of the phenotype produced. Notably DM like 
symptoms only arise on the expression of large repeats, the deficiency of MBNL or the over-
expression of CUG-BP1. Abbreviations: EF1α , elongation factor 1α promoter; HSA, human 
skeletal actin, and see figure 1 legend. N.B. The listed phenotypic effects are not exhaustive, in 
cases where research groups primarily focus on instability, the phenotype has often not been 
stated. 
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1.4 Project outline  

Myotonic dystrophy type 1 is a multisystemic disease caused essentially by the 

dysregulated splicing of MBNL1 and CUG-BP1 pre-mRNA targets, some whose function 

can be directly related to a clinical feature, such as the chloride channel to myotonia, or the 

insulin receptor to diabetes. Many symptoms nevertheless have yet resisted explanation: 

Cataracts, testicular atrophy, heart block, anaesthetic sensitivity and mental retardation for 

example. The purpose of this thesis is to increase understanding of the gain of function 

hypothesis –the pathogenesis of an expressed expanded CUG repeat tract, within multiple 

organ systems using both in vivo and in vitro approaches. To delineate cause and effect, we 

attempted to use the Cre-lox system for the conditional expression of an expanded CTG 

repeat in the mouse, to mimic the pathogenesis of myotonic dystrophy type 1 with 

temporal and spatial control. We successfully generated a 5 repeat transgenic line, but not 

an expanded repeat line. The constructs generated were validated in vitro, and formed the 

basis of a cell-culture model, which reproduced the pathogenic marker of DM1, 

MBNL1-associated foci. This culture system was then used to identify further genes 

possibly misspliced in DM1, by comparing the effects of repeat expression on downstream 

RNA processing, using differential expression and alternative exon microarray analysis. 

The pore-forming unit of the cardiac L-type calcium channel (Cacna1c) was identified as a 

candidate gene, mutations in which are known to cause conduction defects identical to 

those observed in myotonic dystrophy type 1.
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2 Materials and methods 

 
2.1 Materials 

All chemicals, molecular biology reagents, disposable tissue culture plastics, enzymes and 

kits used during the duration of this project were obtained from standard suppliers, such as 

Biorad, Fisher Scientific, Invitrogen, New England Biolabs, Pierce, Promega, Merck Ltd., 

Qiagen, and Sigma unless otherwise stated. 

2.1.1 Tissue culture disposable materials 

Tissue culture disposable plastic materials are listed in Table 2.1 below. 

Table 2.1. Tissue culture materials and suppliers. 

Disposable Materials Supplier 

100 and 35 mm polystyrene tissue culture dishes Corning 

25 tissue culture flasks Costar and Iwaki 

5, 10 and 25 ml pipettes Corning 

6 and 96-well tissue culture microplates Iwaki 

60 x 15 mm polystyrene tissue culture dishes Corning 

75 and 150 cm2 tissue culture flasks Iwaki 

Cell scrapers Sigma 

Cryo 1°C freezing container Nalgene 

8-well chamber glass slides Nalge Nunc 

15 and 50 ml Falcon Tubes Corning 

 

2.1.2 Size markers 

For DNA, 1Kb+ ladder from Invitrogen was used throughout unless otherwise stated. For 

protein, Seeblue prestained molecular weight markers (also Invitrogen) were used. 

2.1.3 Constructs 

The GFP/MBNL fusion construct was kindly donated by Marion Hamshere of the Institute 

of Genetics, University of Nottingham (Fardaei et al., 2001). 
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 pCre (aka pCAGGS-nls-CRE) was kindly donated by Andras Nagy of the Samuel 

Lunenfeld Research Institute, Toronto. 

2.1.4 Kits 

Reagents used throughout this project in kit form are listed in Table 2. 

Table 2 

Kit Manufacturer 
Qiaprep spin miniprep kit Qiagen 

Endofree maxiprep kit Qiagen 

RNeasy mini kit Qiagen 

DNeasy BLOOD AND TISSUE  KIT Qiagen 

Supersignal west pico chemiluminescent substrate kit Pierce 

ECL+ chemiluminescence detection system Amersham Biosciences 

PGEM T-easy vector system Promega 

Ready-to-go DNA labelling beads (-dCTP) Amersham Biosciences 

Nucleon  BACC kit Nucleon 

CelLytic NuCLEAR extraction kit Sigma 

 

2.1.5 Microscopy and photography 

A Nikon TNS phase contrast microscope and a Zeiss Axiovert S100 fluorescence 

microscope were used routinely during the course of this project. Other items of equipment 

used throughout this project are listed in Table 3. 

Table 3 

Equipment Manufacturer 

Axiovert 100S Fluorescent microscope Zeiss 

Filter sets: 

   EGFP: FITC filter set number 9 

 

Zeiss 

   Cy3: Rhodamine filter set number 15 Zeiss 

   DAPI, AMCA and Alexafluor 350: DAPI filter set number 2 Zeiss 

Axiophot II with Axiocam digital imaging system Zeiss 

UVP gel documentation system 7500 UVP 

EOS 300 SLR Canon 

400ASA colour negative film Kodak 

EOS 350D Digital SLR Canon 
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LSM 510 Meta confocal imaging system Zeiss 

X-ray film Konica and Kodak 

 

2.1.6 Membranes and miscellaneous 

Hybond N+ was obtained from Amersham Pharmacia Biotech, Immobilon P PVDF 

membrane from Millipore, and Na-45 paper from Schleicher and Schulell. Schleicher & 

Schuell also supplied gel blotting paper. Saran wrap was obtained from Dow. 

Snakeskin™ dialysis tubing was obtained from Pierce. 

Precast Nupage 4-12% bis-Tris polyacrylamide gels were supplied by Invitrogen.  

Calibrite beads used to test FACS recovery modes, were manufactured by BD Biosciences. 

2.1.7 Cell-lines and bacterial hosts 

Cell-lines and bacterial hosts are listed in Table 4. 

Table 4 

Cell-line/Strain Description 
  

Mammalian: 

Cos-7 

 

African green monkey, kidney 

HeLa Human, epithelial, fibroblast 

DmtD Kidney cell-line derived from DM transgenic mouse model Dmt162 

(Monckton et al., 1997, see figure 3 for transgene)  

3T3 Murine embryonic fibroblast, J2 

CGR8.8 ES cell-line derived from strain 129/Ola 

DM1 fibroblast DM1 fibroblast cells lines donated by J.D. Brook, University of Nottingham 

  

Bacterial: 

Top10f’ 

 

F´[lacIq Tn10 (TetR)] mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 

recA1 araD139 Δ(ara-leu)7697 galU galK rpsL endA1 nupG 

 

JM109 F′ [traD36 proABlacIqZΔM15] e14-(McrA-) recA1 endA1 gyrA96 thi-1 

hsdR17(rK- mK+) supE44 relA1Δ(lac-proAB)  

 

DH5α F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rk-, 
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mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1  

 

Stbl2 (for 

information –not 

used) 

F-, mcrA Δ(mcrBC-hsdRMS-mrr) recA1 endA1 lon gyrA96 thi supE44 relA1 

Δ(lac-proAB) 

  

 

2.1.8 Antibodies 

Antibodies used throughout this project are listed in Table 5. 

Table 5 

Antibody  Supplier 
   

Mouse anti vimentin 530513 Pharmingen 

Rabbit anti EXP42 (MBNL1) Polyclonal Maurice Swanson* 

Mouse anti MBNL1 MCA-MBNL Universal Biologicals 

Mouse anti CUG-BP1 Clone 3B1 Abcam 

FITC conjugated rabbit anti GFP Ab6662-100 Abcam 

AMCA conjugated anti-rabbit 111-156-003 Stratech 

Alexafluor350 conjugated anti-rabbit A-21062 Molecular probes 

FITC conjugated anti-mouse Ab50084 Abcam 

HRP-conjugated anti mouse 115-035-003 Stratech 

   

*Miller et al., 2000. 

2.1.9 Equipment 

Equipment used throughout this project is listed in Table 6. 

Table 6 

Model Manudacturer 

  

FacsCalibur BD Biosciences 

Genepulser II Biorad 

37ºC Humidified tissue culture incubator Sanyo 

X-cell II gel system Invitrogen 

Novex blot module Invitrogen 

DU 530 UV/Vis spectrophotometer Beckman 
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Nanodrop ND-1000 UV/Vis spectrophotometer Thermo Fisher Scientific 

Biometra Uno II thermal cycler Biometra 

Agilent 2100 Bioanalyser Agilent Technologies 

  

 

2.1.10 Solutions 

2.1.10.1 General 

Solutions were made up as described in (Sambrook et al., 1989). 

0.5 M EDTA pH 8.0 

0.5 M EDTA with NaOH to pH 8.0. 

 

1 kb+ ladder 

60 ng/µl 1 kb ladder, 1X DNA loading dye in 1X TBE. 

 

1 M Tris•HCl pH 8.0 

1 M Trizma base and HCl to pH 8.0. 

 

10 mg/ml BSA 

10 mg/ml (w/v) in 18Ω milliQ water. 

 

10% (w/v) SDS 

10% (w/v) SDS in H2O. 

 

100 X Denhardt’s solution 

2% (w/v) Ficoll®400, 2% (w/v) polyvinylpyrolidone, 2% (w/v) BSA. 

 

10X DNA loading dye 

50% (w/v) Glycerol, 0.25% (w/v) xylene cyanol, 0.25% (w/v) bromophenol blue. 

 

1X TBE 

90 mM Trizma base, 90 mM orthoboric acid, 2 mM EDTA. 
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1X TBST 

20 mM Tris•Cl pH7.6, 137 mM NaCl, 0.06% Tween-20. 

 

1X TBSTM2.5 

1 X TBST, 2.5% w/v Marvel skimmed milk powder. 

 

1X TBSTM5 

1 X TBST, 5% w/v Marvel skimmed milk powder. 

 

2 X RNA loading Dye 

5 X DNA loading dye and 0.4% SDS in DEPC-treated water. 

 

2.5 kb molecular ruler 

333 ng/µl of 2.5 kb molecular ruler, 1X TE, 1X Orange G loading dye. 

 

20X SSC 

3.0 M NaCl, 0.3 M sodium citrate. 

 

20X SSPE 

3.0 M NaCl, 0.2 M NaH2PO4, 20 mM EDTA, pH 8.0. 

 

3 M Sodium acetate pH 5.2 

3 M sodium acetate, pH 5.2 

 

3% H2O2 

3% (v/v) H2O2. 
 

4% Paraformaldehyde 

4% Paraformaldehyde (w/v) in PBS-MgCl2. 
 

5X Orange G loading dye 

0.06 % (w/v) Orange G, 50 % (v/v) glycerol in H2O. 

 

70% (v/v) Ethanol 

70% (v/v) absolute ethanol in H2O. 
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75% (v/v) Ethanol 

75% (v/v) absolute ethanol in H2O. 

 

80% (v/v) Ethanol 

80 % (v/v) absolute ethanol in H2O. 

 

DAPI  

10ng/µl in Vectashield mounting medium (Vector Laboratories).  

 

Denaturing solution 

0.5 M NaOH, 1.5 M NaCl in H2O. 

 

Depurinating solution 

0.25 M HCl in H2O. 

 

dNTP 

Equal molar amounts of dATP; dGTP; dCTP and dTTP. 

 

Ethidium bromide 

Stock solution: 25 mM in H2O. 

 

Guanidinium thiocyanate, 1M 

0.118g/ml (w/v) in DEPC treated water. 

 

Injection buffer 

10mM Tris; 0.1mM EDTA prepared by diluting 1M Tris.Cl Ph7.4 and 500mM EDTA 

(Sigma) with 18Ω MilliQ water. This was sterilised with a 2 micron syringe and filter. 

 

Lysis buffer 

50 mM Tris•HCl pH 8.0, 100 mM EDTA pH 8.0, 0.5% (w/v) SDS in H2O. 

 

Neutralising solution 

1.5 M NaCl, 0.5 M Trizma base and HCl to pH 7.5. 
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PBS 

137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 2 mM KH2PO4, pH 7.4. 

 

PBS-MgCl2 

PBS, 5mM MgCl2, pH 7.4. 

 

PBST 

PBS; 0.1% Triton X-100 

 

Phenol 

Phenol saturated with 10 mM Tris pH 8.0, 1 mM EDTA.  

 

Phenol:chloroform:isomayl alcohol, 25:24:1 

Phenol:chloroform:isomayl alcohol, 25:24:1, saturated with 10 mM Tris pH 8.0, 1 mM 

EDTA. 

 

Proteinase K 

Stock solution: 20 mg/ml proteinase K in filter sterilised 50 mM Tris•HCl pH 8.0. 

 

RNA in situ buffer 

40% v/v formamide, 1mM DTT, 1mg/ml E.coli tRNA, 1mg/ml sonicated salmon sperm 

DNA, 10% dextran sulphate, 0.2% BSA, 2X SSC. 

 

Southern blot hybridisation solution 

7% (w/v) SDS, 1M NaPO4, 2 mM EDTA. 

 

TAE 

40 mM Tris•acetate, 1 mM EDTA in H2O. 

 

TE 

10 mM Tris•HCl pH 8.0, 1 mM EDTA pH 8.0 in H2O. 
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2.1.10.2 Bacterial culture 

Bacterial cultures were grown in LB supplemented with the appropriate antibiotic 

overnight with shaking. Colonies were grown on LB agar plates with the appropriate 

antibiotic, X-gal and/or IPTG as stated, inverted, overnight at 37ºC.  

Ampicillin 
Stock solution: 50 mg/ml (w/v) in H2O. 
Working solution 50µg/ml. 
 
IPTG 
Stock solution: 100 mg/ml (w/v) in H2O.  
Working solution 10µg/ml. 
 
Luria-Bertani (LB) medium 
3% (w/v) Bacto® tryptone, 0.5% (w/v) Bacto® yeast extract, 1% (w/v) NaCl. 
LB agar contained 1.5% (w/v) agar. 
 
SOB medium 
2% (w/v) Bacto® tryptone, 0.5% (w/v) Bacto® yeast extract, 0.85 mM NaCl, 0.25 mM KCl 
pH 7.0 with NaOH. Sterilized 10 mM MgSO4 added prior to use. 
 
SOC medium 
0.04% (w/v) glucose in SOB medium. 
 
X-gal 
Stock solution: 50mg/ml (w/v) in dimethylformamide. 
Working concentration: 50 µg/ml. 
 

2.1.10.3 Cell culture  

Tissue culture media such as DMEM, GMEM and Opti-MEM, serum, antibiotics, ESGRO 

and solutions were obtained from Invitrogen or Sigma. 

2.1.10.3.1 General 

Culture medium 

1 X DMEM; 1 X penicillin and streptomycin solution; 1 X non-essential amino acids; 10% 

foetal bovine serum. 

 

Trypsin/EDTA solution 

Stock solution: 5.0 g/l trypsin, 2.0 g/l EDTA, 8.5 g/l NaCl (stored at -20°C). 

Working concentration: 0.5 g trypsin, 0.2 g EDTA•4Na/l in PBS. 

 

100 X Penicillin and streptomycin solution 
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Stock solution: 10,000 U/ml penicillin, 10,000 µg/ml streptomycin. Penicillin G (sodium 

salt) and streptomycin sulphate in PBS. 

 

10X Dulbecco’s phosphate buffered saline (PBS) 

136 mM NaCl, 26mM KCl, 15mM KH2PO4, 8mM Na2HPO4•7H2O. 

 

Foetal bovine serum (FBS) 

Origin E.C. Virus and mycoplasma tested. 

 

Gancyclovir 

2 mg/ml (w/v) in distilled water. 

 

G418 

50 mg/ml (w/v) disulphide salt solution (Sigma). 

 

 

2.1.10.3.2 ES cells 

Culture medium 

1X GMEM, 0.25% sodium bicarbonate, 1 X non-essential amino acids, 1X sodium 

pyruvate, 1X glutamax, 1X penicillin and streptomycin solution, 1% β mercaptoethanol, 5 

X 106 U leukaemia inhibitory factor (ESGRO).  

 

G418, 50 mg/ml 

Powder 1g (w/v). Filter sterilised (0.2 µM). 

 

TVP 

0.025% trypsin, 1% chicken serum, 1 mM EDTA, in PBS 

 

Foetal bovine serum (FBS), heat inactivated 

Origin E.C. Virus and mycoplasma tested, Heat inactivated. Batch tested for ES cell 

plating efficiency and colony morphology. 
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2.2 DNA methods 

2.2.1 Preparation of plasmid DNA 

For ES cell electroporation and some microinjections, plasmid DNA was isolated from 

their bacterial hosts by standard alkaline lysis followed by CsCl purification (Sambrook et 

al., 1989). All other plasmid DNA was isolated using commercially available kits as 

directed by the manufacturer: Qiaquick Spin Miniprep kits (50µl distilled water used for 

elution) were used to obtain DNA for cloning and restriction analysis and Qiagen Endo-

free Maxi prep kits were used to for the other microinjections and cell transfection.  

2.2.2 Purification of DNA  

After restriction digest, DNA was purified by electrophoresis through an appropriate 

concentration of Seakem agarose containing 15µg/ml Ethidium Bromide in 0.5 X TBE. 

The DNA fragment was retrieved in the following ways depending on the final use. 

2.2.2.1 Transfection into cultured cells 

The fragment was electrophoresed onto Na45 paper (Scleicher & Schuell), and eluted as 

directed by the manufacturer. 

2.2.2.2 Pronuclear injection 

The fragment was electrophoresed onto Na45 paper (Scleicher & Schuell), and eluted as 

directed by the manufacturer. 

Or the fragment was excised from the gel and eluted by electrophoresis into 0.5 X TBE in 

dialysis tubing. The buffer containing the DNA was applied to an Elutip-d DEAE sephacell 

column (Scleicher & Schuell) and the DNA collected as described by the manufacturer.  

Regardless of the purification method, DNA was diluted to the required concentration 

using injection buffer. Debris was removed by centrifugation at 14,000 rpm in a microfuge. 

The top 75% of the solution was transferred to a new tube and the remainder discarded.  

2.2.3 DNA extraction from cultured cells 

DNA was prepared using a Nucleon or Qiagen blood and tissue kit as directed by the 

manufacturer. 
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2.2.4 Preparation of mouse tail lysates 

Half to one centimetre of tail tip was placed in a 1.5 ml screw top eppendorf tube with 550 

µl of lysis buffer and 15 µl of 20 mg/ml of proteinase K. The tissue was incubated 

overnight at 60°C. The lysate was vortexed briefly and centrifuged at 21,000 g for 5 

minutes to pellet the debris. The supernatant was transferred to a fresh tube and stored at 

4°C. One to two µl were used in a 10µl PCR. 

If PCRs during genotyping failed, the DNA was further purified. The supernatant (250 µl) 

was transferred into a fresh tube and an equal volume of phenol added and mixed 

vigorously by vortexing for 5 seconds. The mixture was centrifuged for 5 minutes at 

21,000 g to separate the two phases. The upper phase was placed into a clean tube, and 250 

µl of phenol:chloroform:isoamyl alcohol (25:24:1) was added and mixed vigorously by 

vortexing for 5 seconds. The mixture was centrifuged for 5 minutes at 21,000 g. The upper 

phase was removed and transferred into a clean tube. In order to remove any remaining 

traces of phenol, 250 µl of chloroform were added and vortexed for 5 seconds, followed by 

centrifugation for 5 minutes at 21,000 g. The upper aqueous phase was removed and 

transferred into a clean tube, and 25 µl of 3 M sodium acetate pH 5.2 was added and mixed 

briefly by inverting the tube 5 to 10 times. The DNA was finally precipitated by the 

addition of 500 µl of ice-cold absolute ethanol, followed by incubation at –20°C for at least 

1 hour, and 30 minutes centrifugation at 21,000 g in a bench top centrifuge. The 

supernatant was decanted off, the pellet rinsed with 1 ml of ice-cold 80% (v/v) ethanol, and 

the precipitate collected by centrifugation at 21,000 g in a bench top centrifuge. The DNA 

pellet was either air dried at room temperature for 30 to 60 minutes, or at 4°C overnight. 

Once dried, the DNA pellet was dissolved in 100 to 200 µl of TE at 60°C for 30 minutes, 

or at 37°C overnight. 

2.2.5 Determination of DNA concentration 

DNA samples were diluted 1:100 in H2O and the spectrophotometer baseline corrected 

with H2O. The OD was measured and the concentration calculated as 100 x 50 x OD260 

mg/ml. The purity was checked using the 260/280 ratio, which for DNA should 

approximate 1.8. 

Alternatively, DNA concentrations were determined by electrophoresis on agarose gels, 

followed by densitometry estimation against low molecular weight DNA mass ladder 

(Invitrogen), and/or Log2 ladder (New England Biolabs). 
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2.2.6 Oligonucleotides and PCR 

The oligonucleotides used in this project were synthesised by Genosys and supplied 

desalted, except for the LoxP-EGFP and LoxP-Neo forward primers, which were HPLC 

purified. Fluorescent primers were purified by PAGE.  

2.2.6.1 Primer pairs used for construct sequences 

Forward and reverse primer sets used to generate DNA fragments for cloning into the 

founder and targeting constructs are detailed in Table 7. 

Table 7 

Sequence Forward and Reverse Primer Sequences Template DNA 
   

LoxP-EGFP 5’-CACGTAGTGATAACTTCGTATAGCATACATTATA

CGAAGTTATGTCGCCACCATGGTGAG-3’ 

5’-GGATCCTCTAGAAGCTCTAGGCTCGAGTTACTT

GTACAGC-3’ 

pIRES-EGFP 

LoxP-Neo 5’-GCTAGCATAACTTCGTATAGCATACATTATACG

AAGTTATAGAGCCACCATGATTGAACA-3’ 

5’ GCGGCCGCTCAGAAGAACTCGTC-3’ 

pCIneo 

ERDA 5’-GGATCCTGCATGCATCATATGTTGCTTTTC-3’ 

5’-TCTAGACCTTCCTTCCACCTTATTTTTC-3’ 

Human genomic 

DNA 

DM repeat 

region 

Round1 (DM-A) 

5’-AGTGCAGTTCACAACCGCTCCGAGC-3’ 

Round 1 (DM-BR) 

5’-GTGGAGGATGGAACACGGAC-3’ 

Round 2 (XhoI DM-H) 

5’-CTCGAGTCTCCGCCCAGCTCCAGTCC-3’ 

Round 2 (EcoRI DM-BR) 

5’-GAATTCGTGGAGGATGGAACACGGAC-3’ 

Patient sample 

numbers: 

175 1001; 101 

5053; 137 3666 

BGH PolyA 5’-GAATTCAGCTCGCTGATCAGCCTC-3’ 

5’-GGATCCCCAGCTGGTTCTTTCC-3’ 

pIRES-EGFP 

Thymidine 

Kinase 

5’-GCCTTGTCGACGCCACCATGGCTTCGTACC-3’ 

5’- GAATTCTCAGTTAGCCTCCCCCATCTC-3’ 

HSV UL97 gene 

PGK 

Promoter 

Isolated on a 500bp TaqI restriction fragment, with 

filled in recessed termini. 

pPNT 

Neo cassette The XhoI site was removed from pPNT (this was 

situated within the neo cassette fragment). The 

cassette was then isolated on an XbaI (filled-in 

terminus) –NotI fragment. This was then cloned into 

pPNT 
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the NotI and SfoI (filled-in terminus) sites of the TK 

construct. 

   

Note –Areas underlined comprise 5’ extensions which contain restriction sites and/or a LoxP site. 
They have no homology to the template DNA. 

 

2.2.6.2 PCR  Primers and conditions 

Polymerase chain reactions were carried out on DNA and first strand cDNA templates in a 

biometra Uno II thermocycler in 1 X PCR buffer as detailed below, with 0.5U taq 

polymerase and 10 picomoles of forward and reverse primers per 10 µl reaction, unless 

otherwise stated. Genomic samples were denatured once at 94ºC for 2 m before cycling. 

Conditions are listed in Table 8. 

Buffer A: 45mM Tris•Cl pH 8.8; 11mM (NH4)2SO4; 4.5mM MgCl2; 0.113mg/ml BSA; 

4.4µM EDTA; 1mM each dNTP. 

Buffer B: 16mM (NH4)2SO4; 67mM Tris-HCl (pH 8.8 at 25°C); 0.01% Tween-20; 1 mM 

MgCl2; 200nM dNTP. 

Buffer C: 16mM (NH4)2SO4; 67mM Tris-HCl (pH 8.8 at 25°C); 0.01% Tween-20; 

6pMoles primer, 2.5 mM MgCl2; 500mM dNTP. 

Table 8 

PCR: Primers and products Cycles 
 

SP-PCRA (DMA-BR) 

Forward: 5’- AGTGCAGTTCACAACCGCTCCGAGC -3’ 

Reverse: 5’- CGTGGAGGATGGAACACGGAC -3’ 

 

94oC 45s 

64oC 45s        X 28, 72oC10m. 

72oC 3m 

Cre excisionA  

Forward: 5’-CAAGGTTACAAGACAGGTTTAAGGAG-3’ 

Reverse: 5’-GGACACGCTGAACTTGTGG-3’ 

94oC 45s 

60oC 45s        X 28, 72oC10m. 

72oC 1m 

EGFPA 

Forward: 5’-CGACCACATGAAGCAGCACGA-3’ 

Reverse: 5’-GTTGTCGGGCAGCAGCAC-3’ 

94oC 45s 

66oC 45s        X 25, 72oC 10m. 

72oC 1m 

DMH-BRA  

Forward: 5’-TCTCCGCCCAGCTCCAGTCC-3’ 

Reverse: 5’-CGTGGAGGATGGAACACGGAC-3’ 

96oC 45s 

65oC 45s        X 25, 72oC 10m. 

72oC 3m 



Christine Haworth  Chapter 2, 58 
 
ConcatomerB  

Forward: 5’-GG AGTGGGATTTTGGTAGGCATC-3’ 

Reverse: 5’-GGGCTATGAACTAATGACCCCG-3’ 

94oC 45s 

62ºC 45s        X 25, 72oC 10m. 

72oC 45s 

Clcn1B  (6pMoles primer) 

Forward: 5’-GGAATACCTCACACTCAAGGCC-3’ 

Reverse: 5’-CACGGAACACAAAGGCACTGAATGT-3’ 

94oC 45s 

63oC 45s        X 32, 72oC 10m. 

72oC 45s 

cTnnt2C  

Forward: 5’-GCCGAGGAGGTGGTGGAGGAGTA-3’ 

Reverse: 5’-GTCTCAGCCTCACCCTCAGGCTCA-3’ 

94oC 45s 

72oC 45s        X 32, 72oC 10m. 

72oC 45s 

Int-NeoB 

Forward: 5’-CAAGGTTACAAGACAGGTTTAAGGAG-3’ 

Reverse: 5’-GCAGCCTCTGTTCCACATAC-3’ 

94oC 45s 

57oC 45s        X 30, 72oC 10m. 

72oC 1m 

MuSFA  

Forward: 5’-GCCCCTGCCTCACCGTATAG-3’ 

Reverse: 5’-CTGGGGTCCACCACTTCAAG-3’ 

94oC 45s 

62oC 45s        X 29, 72oC 10m. 

72oC 3m 

DM-QRA 

Forward: 5’-CACTGTGGAGTCCAGAGCTTTG-3’ 

Reverse: 5’-CACTGTGGAGTCCAGAGCTTTG-3’ 

94oC 45s 

62oC 45s         X 28, 72oC 10m. 

72oC 45s 

GAPDHA   

Forward: 5’-AACGACCCCTTCATTGAC-3’ 

Reverse: 5’-TCCACGACATACTCAGCAC-3’ 

94oC 45s 

60oC 45s          X 27, 72oC 10m. 

72oC 45s 

CMVA  94oC 45s 

Forward:  5’-CATGTCCAATATGACCGCCATG-3’ 

Reverse: 5’-GCAGCCTCTGTTCCACATAC-3’ 

58oC 45s        X 25, 72oC 10m. 

72oC 1m 

Superscript letters denote which PCR buffer was used 

 
2.2.6.3 Small pool PCR 

Small-pool (SP-PCR) analyses (Jeffreys et al., 1994; Monckton et al., 1994) were 

performed to assess the levels of trinucleotide repeat instability in different batches of 

EcoRI restricted pLoxEGFP250 constructs used throughout this project. Single molecule 

SP-PCR, where the DNA template is diluted to a low concentration, was used to amplify a 

rare 750 bp repeat from HindIII restricted patient DNA. 

DNA was serially diluted in 1X TE, containing 0.1 µM of carrier primer DM-A, the 

forward primer for subsequent PCR, to give between 10 and 10,000 DNA molecules per 

µl. The amplification of 1µl of each DNA solution was carried out in a final volume of 7 

µl, with 0.175 U of Taq DNA polymerase, 0.2 µM of each primer DM-A and DM-BR, in 

1X PCR buffer A. Cycling conditions are detailed in (Table 8). 
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2.2.7 Gel electrophoresis 

DNA molecules were separated using 0.6-1.5% agarose gel electrophoresis depending on 

the fragment size. NuSieve agarose gel electrophoresis was used to separate the products of 

the Clcn1and Tnnt2 PCR products (2% (w/v) NuSieve: 1% (w/v) agarose). Gels were 

prepared in 0.5 X TBE and when cool ethidium bromide was added to a final concentration 

of 500 nM. Samples and DNA size markers were mixed with 1/10 volume of DNA loading 

dye and electrophoresed at 80 volts (V) at room temperature in 0.5X TBE until the 

fragments had separated. The gels were visualised using a UV transilluminator 

(wavelength 254 nm) and photographed. 

2.2.8 Southern transfer 

DNA was transferred to Hybond N+ membrane using the squashblot method. After 

electrophoresis, gels were rinsed in deionised water, incubated in depurinating solution for 

10 minutes, denaturing solution for 30 minutes and neutralising solution for 30 minutes. 

Incubations were performed with gentle shaking.  

A piece of Hybond N+ nylon membrane the same size as the gel was wet in deionised 

water then dipped in neutralising solution. A piece of Saran Wrap, larger in size than the 

gel, was placed on the bench, with a piece of gel blotting paper, the same size as the gel 

and wet in neutralising solution, layered on top. The gel was inverted and placed on the 

Saran Wrap, and the membrane layered on top of the gel. Any air bubbles trapped under 

the membrane were carefully removed. Two sheets of gel blotting paper were rinsed in 

neutralising solution and layered onto the membrane. The blot was topped with a thick 

layer of paper towels, a glass plate and a weight. The DNA was transferred from the gel 

onto the membrane by capillary action for 3 to 16 hours. The blot was dismantled and the 

membrane placed on a piece of dry gel blotting paper DNA side up, and baked for at least 

20 minutes in an 80°C oven. The DNA was cross-linked to the membrane by exposure to 

1,200 J/m2 UV light. 

2.2.9 Preparation of radiolabelled DNA 

Fragments (30ng linearised template DNA and 5ng 1Kb+ ladder) were radiolabelled using 

Ready-to-go DNA labelling beads (Amersham Biosciences) and α[32P]dCTP, as directed 

by the manufacturer.   
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2.2.10 Southern hybridisation 

Filters to be hybridised were placed in a hybridisation bottle and rotated at 65°C for 30 

minutes with 10 ml of Southern blot hybridisation solution. The radiolabelled probe was 

denatured at 100°C for 5 minutes and quenched on ice for two minutes before being added 

to the bottle, which contained 10 ml of fresh Southern blot hybridisation solution. 

Hybridisation was performed at 65°C overnight in a rotating hybridisation oven. 

Following hybridisation, the filters were briefly washed inside the bottle in 0.2% (w/v) 

SDS, 0.2X SSPE at room temperature. The filters were then washed twice in the same 

washing solution for 30 minutes at 65°C. Finally the filters were transferred onto a flat tray 

and washed by gently shaking them at room temperature in the same solution. The filters 

were baked at 80°C until dry, and exposed to X-ray film at room temperature. 

Autoradiographs were developed after approximately 4 hours exposure. 

2.2.11 Cloning techniques 

2.2.11.1 Endonuclease restriction of DNA 

Restriction digests were carried out to obtain DNA fragments for cloning, transfection and 

microinjection, and to verify inserts and whole constructs based on the fragment size or 

banding pattern obtained. 

DNA (200ng-1µg) was restricted in a 10µl volume with 5-10 units of enzyme in the 

recommended restriction buffer at 37oC for 1.5 to 2 hours. EcoRI and XhoI double digests 

were carried out by first incubating in XhoI buffer for 1 hr, then diluting the sample to 20µl 

in the recommended EcoRI buffer and incubating for a further hour. This avoided star 

activity by EcoRI due to low salt buffer. Where more DNA was required the reactions 

were scaled up proportionately. 

2.2.11.2 Filling in of recessed 3’ ends 

Residual restriction enzymes were first heat inactivated by heating to 70ºC for 10 m One 

unit of Klenow (DNA polymerase 1 large fragment) (Promega) and 1µl 10mM dNTP mix, 

was added to 10µl of restriction endonuclease digestion mix and incubated for 30 m at 

37ºC. The enzyme was then denatured by heating to 70ºC for 10 minutes. 
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2.2.11.3 Ligation 

Linear vector DNA (50 ng) was incubated with insert DNA at 8oC overnight in the buffer 

provided, with 1 unit T4 ligase (Promega). 

Ligations were carried out with a 3:1 insert:vector molar ratio. Where the concentration of 

insert was not known because the sample was too small, 3 ligations were set up with 1, 3 

and 5 µl insert.  

2.2.11.4 Transformation of bacterial hosts 

On ice, 0.5 µl of the ligation reaction mix was added to 20 µl commercially prepared 

chemically competent cells and mixed by pipetting. After 30 minutes on ice, the tubes were 

place at 42oC for 45 s then on ice for 2 m, 180 µl SOC medium was added and the samples 

incubated at 37oC for 30 m to express the β-lactamase gene. One and nine tenths of the 

transfection mix were plated onto 50 µg/ml ampicillin LB plates, allowed to dry and 

incubated inverted overnight at 37oC. 

2.2.11.5 Culture of bacteria 

A single colony was picked using a sterile toothpick and added to either 5ml or 100ml of 

selective LB medium, and incubated at 37ºC overnight at 300 rpm in an orbital shaker. 

Cultures were generally processed for DNA or storage immediately, or stored at room 

temperature until required. Glycerol stocks were first streaked out to single colonies on 

selective L-agar plates and incubated inverted overnight, at 37ºC. 

2.2.11.6 Glycerol stocks 

Overnight bacterial cultures were mixed 1:1 with 40% Glycerol:peptone and stored at 

-80oC. 

2.2.12 Transfection of DNA into cells 

2.2.12.1 Transient 

Most transfer of DNA into cultured cells was transient, in that the cells were used for 

analysis usually 24 hours later (unless otherwise stated), without selection for stable 

integrants. As such only a proportion of the cells resulting from transfection were positive 

for the construct –typically ~60% based on the EGFP positive cell count in fluorescent 

micrographs of 3T3 cells transfected with pLoxEGFP.  
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2.2.12.2 Stable 

Cells with stably integrated transgenes were selected for using G418 at a concentration 

determined by trial and error. Cells were plated with a series of G418 concentrations in 

normal growth media. The lowest concentration leading to cell death after ten days 

treatment was chosen for selection. 

Hela: 425 µg/ml 

Cos7: 425 µg/ml 

DmtD2976 Kidney: 300 µg/ml 

CGR8.8 ES cells: 200 µg/ml 

Transfected cells were grown in selective medium until colonies appeared –usually 10 

days. The plates were washed twice in PBS. Colonies were dissociated using 50µl 

trypsin/EDTA or TVP as described previously (2.5.2), within cloning rings (Sigma) placed 

over the colony. The suspended cells were then transferred to 96-well plates containing 

normal growth medium, and incubated at 37ºC. The clones were expanded by allowing the 

cells to become 95% confluent, then dissociating the cells using trypsin. The suspension 

was then transferred to one well of a 6-well plate also containing growth medium. After the 

cells became 95% confluent, they were again dissociated and transferred to a 25cm2 tissue 

culture flask containing growth medium. Once the cells reached 80% confluency, a 

proportion was frozen (2.5.4) for storage. 

2.2.12.3 Liposome based 

Liposome-based transfection was used for all applications except ES cell transfection. 

FACS samples were prepared using only Lipofectamine2000 (Invitrogen). 

Either Transit LT1 (Miras) or Lipofectamine2000 (Invitrogen) transfection reagents were 

used as directed by the manufacturer. Briefly, for each well, the DNA and the 

Lipofectamine2000 reagent were diluted into separate tubes containing 250µl Opti-MEM 

(Invitrogen), the diluted DNA was added to the diluted reagent and gently rocked to mix. 

The tube was allowed to rest at room temperature for between 20 and 60 minutes whilst the 

transfection complexes formed. Meanwhile, the medium was removed from the cells, 

which were then washed with PBS. Serum-free medium was added and the complexes 
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added dropwise. The plates were rocked to mix and incubated for 4 hours. After this time, 

the medium was supplemented with foetal bovine serum to 10%. The medium was 

changed after 24 hours. Before preparing samples for FACS, the transfections were 

optimised by varying the ratio of pLoxEGFP DNA to reagent, to give the highest number 

of fluorescent cells. Thereafter, 4 µg of DNA and 7.5 µl Lipofectamine was used for each 

35mm2 transfection.  

2.2.12.4 Electroporation 

DNA was introduced into ES cells using the Genepulser II (Biorad) electoporation 

apparatus. First two 75 cm2 flasks of cells at ~80% confluency were trypsinised as 

described in 2.5.2. The cells were washed 3 times in PBS in 15 ml falcon tubes, each time 

collecting the cells by centrifugation at 1000 rpm in a bench top centrifuge. The final pellet 

was resuspended in 0.5 ml PBS. The DNA was diluted with 150 µl PBS, then added to the 

cells and mixed gently. The cell-DNA mixture was then transferred to a genepulser cuvette 

and the current applied. The settings were 0.8KV, capacitance 3 for 0.1 second. The cells 

were left to recover for 5 minutes at room temperature. The transfected cells were diluted 

to 6mls with ES cell culture medium then divided between 6, 100mm diameter dishes 

containing 10mls ES cell growth medium and incubated for 24 hours at 37ºC. After this 

time, the medium was supplemented with G418 antiobiotic, to select for stable 

transfectants. 

 

2.3 RNA methods 

Care was taken to avoid contamination with RNAses. Gloves were worn at all times. All 

solutions were made up with water treated with 0.1% DEPC at 37ºC for two hours 

followed by autoclaving. Disposable plastic falcon tubes were used to store and make-up 

solutions, and disposable prepacked RNase-free pipette-tips were used. Benches were 

swabbed down with RNaseZap and rinsed with DEPC-water. 

2.3.1 Isolation of RNA 

Total RNA was prepared for all applications using the RNeasy RNA miniprep kit as 

directed by Qiagen. Purified RNA was later DNAse 1 treated if required using the RNeasy 

minicolumns and a modified protocol: To each 100 µl RNA, 12 µl reaction buffer and 10 
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µl RQ1 RNase-free DNAse1 (Promega) was added. The reaction was incubated at 37ºC for 

30 minutes. Ten microlitres of stop solution (Promega) was then added and the reaction 

incubated at 65ºC for 10 minutes. The resulting mix was added to 350 µl RNeasy RLT 

buffer (provided) and mixed. Absolute ehanol (250 µl) was added and mixed, and the 

solution added to the RNeasy spin column. The rest of the protocol was then followed as 

for the isolation of RNA from animal cells. 

2.3.2 Determination of RNA quality and concentration 

The RNA concentration was analysed using the Nanodrop ND-1000 spectrophotometer. 

The degradation level was either assessed using the Agilent 2100 Bioanalyser, or by 

electrophoresis on a guanidinium thiocyanate agarose gel.  

To make the guanidinium thiocyanate agarose gel the gel tray and equipment were soaked 

in 3% H2O2 for 10 m, then rinsed in DEPC treated water. One gram of agarose was added 

to 100 mls TAE and microwaved until dissolved. Once cooled to hand hot, 2 µl 10 mg/ml 

ethidium bromide and 0.5 µl 1M guanidinium thiocyanate were added and the gel poured. 

RNA samples were prepared by adding 9 µl 2 X RNA loading dye to 1 µl RNA and 

incubation at 85ºC for 10 minutes. Samples were loaded and run at 80v for 45 m in TAE, 

then photographed under UV. 

2.3.3 Complementary DNA synthesis 

First strand cDNA was synthesised using Superscript II (Invitrogen) from 5 µg total RNA 

template using 500 nM random hexamers in a final volume of 20 µl as directed by the 

manufacturer. The resulting cDNA was stored at -20ºC until required.  

2.3.4 Fluorescent in situ hybridisation  

Cells attached to coverslips were washed twice in PBS; 5 mM MgCl2 at 37ºC and 

transferred to a clean 6-well plate before fixing for 10 m at room temperature in 4% 

paraformaldehyde. Excess fixative was removed by washing 3 times for 10 m each in PBS-

MgCl2 at room temperature. Cells on each coverslip were pre-treated with 40% 

Formamide; 2 X SSC for 10 m, the solution removed and replaced with 200 µl in situ 

hybridisation buffer containing 10 pMol Cy3-(CAG)10 , Cy3-(CTG)10 
 or Cy3-GFP. A 

square of parafilm was carefully placed over the cell layer and the whole plate sealed with 

tape. This was placed in a sealed moist chamber, at 37oC overnight. Excess probe was 
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removed by a series of washes increasing in stringency: 2 X SSC twice for 30 m and 1 X 

SSC twice for 30 m. The slides were mounted with Vectastain containing DAPI at 

100ng/ml. The edges of the coverslips were sealed using ClariOn mounting medium 

(Sigma). 

2.3.5 Double labelling with ICC and FISH 

 Cells were fixed and washed as described previously (2.3.4). The cells were then fixed 

briefly in 70% ethanol for 10 m and rehydrated in PBS-MgCl2 for 10 m. Non-specific sites 

were blocked by incubating in PBST for 30 m. The primary antibody was diluted in PBST 

(anti-MBNL 1:100 or anti-vimentin 1:200) and incubated with the cells for 1hr at room 

temperature, or overnight at 4ºC. The antibody was removed by washing three times for 5 

minutes with PBST. Hybridisation of the secondary antibody (alexa 350 anti-rabbit 1:200 

or FITC anti mouse 1:200) was carried out in the same way as the primary antibody. The 

antibody was removed by washing three times for 5 minutes with PBST. The protocol 

described for fluorescent in situ hybridisation (2.3.4) was the followed from the 40% 

formamide; 2 X SSC pre-treatment step. 

2.3.6 Microarray analysis 

RNA samples were prepared using the Qiagen RNeasy mini kit without DNase treatment 

as requested by the Molecular Biology Support Unit at the University of Glasgow, who 

carried out the target preparation, hybridisation and normalisation calculations. Whole 

transcript levels were assessed using the Affymetrix mouse genome 430 2.0 array, and for 

exon level differences, the Affymetrix mouse exon 1.0 ST array was used. Whole 

transcript gene lists were generated by Pawel Herzyk of the MBSU, using rank product and 

iterative group analysis (Breitling et al., 2004; Breitling et al., 2004). Partek Genomics 

Suite® software was used to identify mis-spliced genes within the exon array data.  

2.4 Protein methods 

2.4.1 Isolation of protein 

Total protein was extracted from cells using the proprietary reagent CelLytic M lysis 

reagent from Sigma as directed, which isolates cytoplasmic and nuclear proteins. 

Nuclear and cytoplasmic fractions were obtained using the Sigma CelLytic NuCLEAR 

extraction kit as recommended by the manufacturer. 
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2.4.2 Determination of protein concentration 

Protein concentration was estimated using the Bradford assay (Bradford, 1976). Twenty 

five µl of sample or BSA standard was mixed with 750 µl Coomassie Plus reagent (Pierce) 

at room temperatiure and left on the bench for 10 m. Using varying dilutions of 10 mg/ml 

BSA to give standards of: 10 mg/ml; 2 mg/ml; 1.5 mg/ml; 1 mg/ml; 0.75; 0.5; 0.25; 0.025 

and 0 mg/ml, the Nanodrop UV/Vis spectrophotometer software was used to set a standard 

curve. Test samples were then read using the calibrated machine. 

2.4.3 Immunodetection of protein 

Proteins were separated by 4-12% PAGE and transferred to Immobilon P PVDF membrane 

using a Novex blot module and the X-cell II apparatus as recommended by the 

manufacturer. Briefly, to each 12 µl of protein sample, 3 µl of 4X NuPAGE LDS sample 

buffer and 12 µl 10X NuPAGE reducing agent was added, and the samples heated to 70ºC 

for 10 m. They were then loaded onto the polyacrylamide gel and run in 1 X NuPAGE 

MOPS running buffer. After separation the proteins were transferred to the membrane in 1 

X transfer buffer consisting of 1X NuPAGE transfer buffer; 0.1%ml NuPAGE antioxidant 

and 10% Methanol, at 30 V for 1 hour. 

Membranes were pre-wet in methanol, then equilibrated in 1X TBST for 20 m, changing 

the solution after 10 m. Non-specific binding sites were blocked by incubation overnight in 

1X TBSTM5, shaking slowly at 4ºC. The primary antibody was diluted 1:2000 for both 

anti-CUG-BP1 and anti-MBNL1 in 1X TBSTM2.5, added to the membrane and incubated 

overnight, again at 4ºC. The membrane was washed four times for 15 minutes each at room 

temperature, in 1X TBSTM2.5. The HRP-congugated secondary antibody was diluted 

1:10,000 in 1X TBSTM2.5 and added to the membrane. Incubation was for 2 hrs at room 

temperature. The membrane was washed as described after the primary antibody 

incubation. A final wash of 15 m duration at room temperature was performed in 1X 

TBST. The chemiluminescent substrate mix was prepared as directed by the manufacturer 

(Supersignal, Pierce or ECL+, Amersham Biosciences) then pipetted onto the membrane 

and left for 5 minutes at room temperature. The membrane was blotted on Whatman paper 

to remove the surface liquid and covered with Saran wrap.  The membrane was exposed to 

x-ray film for varying amounts of time, typically 30 seconds, and the films developed. 
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2.5 Cell culture methods 

All reagent were pre-heated to 37ºC before use. ES cells were grown on gelatinised plates. 

Ten mls of 0.1% gelatin was placed in a 25 cm2 flask and incubated at 4ºC overnight, or 

until required. Before use the gelatin was removed. 

2.5.1 Feeding cultured cells 

The medium was changed daily during ES cell culture and every 3 days for all other 

cultures unless otherwise stated. 

2.5.2 Subculturing cells 

Cells growing in 25 cm2 flasks were washed twice in PBS before the addition of 0.5 ml 

trypsin/EDTA solution, or TVP solution for ES cells. The liquid was rocked gently over 

the cell-layer, then incubated at 37ºC for 5 m. The flask was tapped gently to dislodge the 

cells and a cell-scraper used to loosen the remaining cells if necessary. Ten mls of culture 

medium was added to stop the trypsin reaction. One tenth to one third (ES cells one third) 

of the cell suspension was transferred to a new flask, and 10 mls of culture medium added. 

The cells were rocked to mix and placed back into the incubator. Reagents were scaled 

proportionately for other dish and flask sizes. 

2.5.3 Thawing frozen cells 

Frozen cell samples stored in liquid nitrogen were quickly thawed by immersion of the 

cryovials in a water bath at 37°C. Five ml of fresh warm medium were added to the cells, 

and mixed gently by repeated pipetting. The cells were then collected by centrifugation at 

200 g for 5 minutes, resuspended in fresh culture medium, and finally plated on a tissue 

culture flask or plate. 

2.5.4 Freezing live cells for storage 

A single cell suspension was obtained following trypsin digestion of cells between 80 and 

95% confluency, as described previously (2.5.2). Cells were precipitated by centrifugation 

at 200 g for 5 minutes, resuspended in fresh culture medium at a concentration of ~1 x 106 

cells/ml (MEF and ES cell culture medium was supplemented with 50% foetal calf serum 

for freezing) and transferred into 2 ml cryovials. Dimethylsulphoxide (DMSO) was added 

to a final concentration of 10% (v/v) (5% v/v for ES cells), and then mixed well by gently 
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inverting the tubes. The vials were transferred into a freezing container with isopropanol at 

room temperature, and then slowly cooled to -70°C over at least 4 hours. Finally the frozen 

samples were moved to liquid nitrogen, where they were kept until needed.  

2.5.5 Determination of cell concentration 

Following trypsin digestion and neutralisation with standard growth medium, cells were 

counted on a haemocytometer, using a phase contrast microscope. The haemocytometer 

was covered with the coverslip and a drop of cell suspension was dropped at the edge of 

the coverslip on both sides of the chamber. At least 100 cells were counted, and the 

number of cells/ml calculated. 

 

2.5.6 Establishment of primary cell-lines 

2.5.6.1 Transgenic tail cell-lines 

Tg5 transgenic mice tails were tipped and kept on ice for up to 30 minutes until processed. 

Primary cultures were established by the explant technique. Tails were wiped using a tissue 

dipped in 70% ethanol, and the skin removed using sterile scissors and forceps. The skin 

was opened out and pressed hard onto a tissue culture dish inside down. Cuts were made 

1mm apart along the length of the tail, still attached at the top and fanned out to separate. 

4mls of medium was added dropwise so as not to dislodge the tissue and the dish incubated 

at 37ºC in a humidified 5% CO2 atmosphere. The standard growth medium consisted of 

Dulbecco’s modified Eagle medium with high glucose (DMEM) supplemented with 10% 

foetal bovine serum (FBS), 1 X non-essential amino acids, 100 U/ml of penicillin and 100 

µg/ml of streptomycin. The dish was not moved for the first 3 days. The medium was 

changed weekly until cells became 60-80% confluent they were subsequently subcultured 

at a 1:3 or 1:4 ratio during the first 5 passages and at a higher ratio (varying from 1:5 to 

1:10) thereafter, as described in section (2.5.2). 

2.5.6.2 MEF feeder cells 

2.5.6.2.1 Preparation 

All solutions were maintained at 37ºC. Three pregnant FVB/N mice 14 days post coitum 

were sacrificed by cervical dislocation. The embryos were collected by dissection and 

sacrificed by cervical snipping. The embryos were decapitated and the livers removed. The 
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embryos were stored in PBS for up to 30 minutes until all were processed. The embryos 

were washed three times in PBS then cut into very fine pieces within the 50 ml falcon tube 

and again washed three times in PBS. All the supernatant was removed and 15 ml trypsin-

versene added. The contents were incubated at 37ºC for 20 minutes with gentle agitation. 

Five ml of serum was then added to a fresh tube. Ten mls of DMEM was added to the 

embryo tube and the supernatant transferred to the serum tube. The volume was made up to 

50 ml with DMEM, then centrifuged at 1000 rpm in a table-top centrifuge for 5 minutes. 

The pellet was resuspended in general culture medium and the tissue allowed to settle for 2 

minutes. The supernatant was transferred to a fresh tube. The cells were counted using a 

haemocytometer and all but 9 X 107 cells frozen for storage (2.5.4). The reserved cells 

were inoculated into two 150 cm2 tissue culture flasks and incubated until almost 

confluent. The cells were then trypsinised (2.5.2) and the total amount used to inoculate 

four 150 cm2 tissue culture flasks which were incubated until confluent. These cells were 

also trypsinised and used to inoculate ten 150 cm2 tissue culture flasks. Once these flasks 

were almost confluent the contents were arrested for growth by irradiation. 

2.5.6.2.2 Growth arrest 

 
Once the cells were confluent the flask lid was tightened the lid of the flasks and exposed 

to the gamma source for 3000 rads. The flask was then swabbed with 70% ethanol and 

returned to the incubator before trypsinisation as described previously (2.5.2) and freezing 

also as described previously (2.5.4). 

Use of a gamma source was kindly permitted by The Beatson Institute for Cancer Research 

in Glasgow. 

2.6 Pronuclear injection 

Pronuclear injection was carried out by the Molecular Biology Support Unit, at the 

University of Glasgow, with DNA diluted in injection buffer. Mouse strains are detailed in 

Table 9. 
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2.6.1 Mouse strains 

Table 9 

Strain Use 

B6D2 -F1 Hybrid of C57B6/DBA2 Donor  

ICR Foster mother 

T145 Vasectomised male 
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3 Design and generation of a murine model of 
DM1 pathogenesis 

3.1 Synopsis 

Myotonic dystrophy is a multisystemic disorder, not purely affecting muscle. The type 1 

mutation comprises an expansion of a CTG trinucleotide repeat within the 3’ UTR of the 

DMPK gene, and in type 2 the expansion of a CCTG repeat within the first intron of 

CNBP. The array-length determines the severity and age of onset of the disease. In both 

mutations, the repeats are transcribed but not translated. The RNA becomes trapped within 

the nucleus in the form of ribonuclear foci, which co-localise with the double stranded 

CUG binding protein MBNL1. Single stranded CUG binding protein CUG-BP1 works 

dynamically with MBNL1 to regulate alternative splicing during development to control 

mRNA isoform switching. Recruitment of MBNL to RNA aggregates results in depleted 

reserves within the nucleoplasm, affecting the MBNL1/CUG-BP1 balance, which leads to 

gene missplicing. As such, DM is an RNA mediated disease, but how this RNA brings 

about such pleiotropic effects is still unclear. Recent research also indicates a more direct 

involvement of CUG-BP, and other potential factors may be important. In order to 

delineate cause and effect we have attempted to use the Cre-lox system for the conditional 

expression of a toxic RNA in the mouse, to mimic the pathogenesis of myotonic dystrophy 

type 1 with temporal and spatial control. The nature of the transgene was essentially an 

EGFP reporter linked to an expanded CTG repeat within the 3’UTR, controlled by Cre-lox 

dependent excision of an SV40 transcriptional stop signal. Repeat tracts of 5 and 250 

repeats were cloned to recreate the normal and mutant alleles. The transgene was 

assembled, and each component and the Cre-lox mechanism tested and shown to be 

functional. Tracts of 800 repeats were originally intended to be cloned to reflect the 

congenital form, but proved unsuccessful due to probable rearrangements within the 

bacterial host. Pronuclear injection was used to generate the mouse model: One mouse line 

was established with the normal transgene, but attempts to produce the mutant mouse were 

unsuccessful. 

3.2 Introduction 

Myotonic dystrophy type 1 (DM1) is one of a large group of inherited human disorders 

associated with the expansion of trinucleotide DNA repeats. It is an autosomal dominant 
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disease showing genetic anticipation and is characterised clinically by myotonia, muscle 

weakness, cardiac conduction defects, cataracts, mental retardation, premature frontal 

balding and testicular atrophy in males, and reduced fertility in females (Harper, 1998). So 

far two types of myotonic dystrophy have been characterised, type 1 and type 2. Both 

mutations are dominant, non-coding expansion disorders, consisting of expanded arrays of 

repeats located within the untranslated region of genes apparently unrelated to each other. 

The first consists of a CTG repeat expansion within the 3’ UTR of DMPK (Fu et al., 1992; 

Mahadevan et al., 1992) -a protein kinase putatively involved in cell elongation and fusion 

during skeletal muscle morphogenesis (Beffy et al., 2005). Type 2 consists of a CCTG 

repeat expansion within the first intron of exon 1 of the CNBP transcription factor gene 

(Liquori et al., 2001) thought to be involved in cell proliferation and tissue patterning 

during anterior-posterior axis, craniofacial and limb development (Shimizu et al., 2003), and 

gametogenesis (Liu et al., 2005). Comparisons of symptoms of the two types of myotonic 

dystrophy show remarkable similarity, with the most notable difference being the lack of 

any congenital form of the disease in DM2 (Day et al., 2003). How these expansions lead 

to the DM phenotype is still unclear. Many mouse models have been produced to address 

this (see chapter 1 for more detail), but none of the models to date have reproduced the 

complex multisystemic effects of DM pathogenesis. Knockout models that mimicked the 

haploinsufficiency of DMPK or surrounding genes perhaps affected by chromatin 

remodelling by the repeat, such as SIX5, only exhibited partial DM symptoms of mild 

myopathy and cardiac conduction defects (Berul et al., 2000; Jansen et al., 1996) and 

cataracts respectively (Klesert et al., 2000; Sarkar et al., 2000), but not myotonia, the 

benchmark symptom of the disease. As more mouse models were produced focussing on 

the DMPK 3’ UTR, it became apparent that only those expressing the repeat showed 

further symptoms characteristic of the disease: Results using an expanded CUG repeat-

expressing mouse showed late onset myotonia, testicular atrophy and infertility (Monckton 

et. al., unpublished results; also in chapter 1 of Wells et al., 1998). The discovery of the 

DM2 mutation, where patients suffer from a similar single locus mutation and multi-

systemic phenotype in the apparently unrelated gene CNBP, concentrated hypotheses 

towards RNA mediated pathogenesis. Evidence to support this came from a correlation 

between the length of the repeat and the severity of the disease; the DMPK or CNBP 

message from the mutant chromosome becoming trapped in the nucleus (Davis et al., 

1997); sequestration of RNA CUG binding protein MBNL1 to these foci (Fardaei et al., 

2002) and that levels of RNA CUG binding protein CUG-BP1 are altered in DM1 patients 

(Timchenko et al., 2001). More recent mouse models also support an RNA based 



Christine Haworth  Chapter 3, 73 
 
mechanism. Mankodi et al. recreated the myotonia and muscle wasting characteristics of 

adult-onset DM1 by the expression of an expanded CUG repeat alone, lacking any 

associated DMPK sequences, from the human skeletal actin promoter {Mankodi, 2000 

#13}). They attributed the myotonia to missplicing of chloride channel 1 gene Clcn1 

(Charlet et al., 2002; Mankodi et al., 2002). Subsequently, splicing defects were found to 

explain many of the symptoms in DM (Kuyumcu-Martinez et al., 2006; for review, 

Mankodi et al., 2002). MBNL knockout mice and mice over-expressing CUG-BP1 

demonstrated the same tissue-specific missplicing seen in myotonic dystrophy patients 

(Kanadia et al., 2003; Ho et al., 2005). Although mouse models have now addressed many 

of the aspects of DM symptoms and pathogenesis, there are still unanswered questions. 

Infertility, sudden cardiac death, mental retardation, lethargy, cataracts and congenital 

onset are amongst some of the features still not fully explained.  

It seemed plausible that if the pathogenic mechanism between DM1 and DM2 was the 

same, then the differences must lie in the levels, and the patterns of expression during 

development and between different tissue types. In ideal terms, to generate a mouse model 

of any human genetic disease, one would modify the orthologous murine gene to contain 

the human mutation. This however would only allow replication of the disease in its 

multisystemic entirety. In order to delineate cause and effect we wanted to generate the 

ability to express long and short expansions temporally and/or spatially by limiting the 

expression of repeats in the mouse: temporal to gain insight into the pathogenesis of the 

congenital form; and spatial to link tissue specificity with the symptoms directly. 

3.2.1 Conditional expression 

Modelling the congenital form of DM1 by expressing large numbers of repeats in mice has 

not yet been successful. The severity of the phenotype would be unpredictable and could 

result in the morbidity or reduced viability of the line. By using a conditional system, 

tissue specific expression patterns can be limited maintaining function in other organs, and 

in the inactive state, promote fecundity of the line. In order to separate the phenotypic 

aspects of myotonic dystrophy and to overcome fertility problems caused by the ubiquitous 

expression of the expanded repeat tract (seen in Te162 mice, Monckton et al., 1998 and 

unpublished data), we aimed to produce a conditional CUG repeat expressing mouse 

model using Cre-lox site-specific excision. Many site-specific recombinase systems have 

been described from bacteria and yeast and their reactions vary in complexity. The yeast 

Flp-FRT and bacteriophage P1 Cre-lox mechanisms have been the most widely used in 

mice because of their simplicity, since they do not require additional cis or trans elements 
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and have high efficiency. They have been widely exploited as a tool for in vivo 

manipulation of DNA, usually for the removal of selection cassettes when targeting 

endogenous genes in ES cells or living animals. As a result of this there is now a growing 

bank of Cre-expressing transgenic mice with well-characterised limited expression patterns 

specific for tissues affected in myotonic dystrophy such as skeletal muscle: myosin light 

chain 1f (Bothe et al., 2000), actin promoter(Miwa et al., 2000), human alpha skeletal 

actin (Miniou et al., 1999); testes (Bunting et al., 1999) and eye (Utomo et al., 1999). An 

interferon responsive Cre-expressing mouse is also available, which allows the ubiquitous 

expression of the activated transgene upon administration of the drug by injection (Kuhn et 

al., 1995). 

 

Figure 4 Cre mediated transgene activation. A simplified diagram illustrating the activation of 
transcription. Expression of genes 3’ to the transcriptional stop signal is arrested. Cre binding 
results in excision of the regulatory element, allowing read-through of downstream sequences.  

In nature, bacteriophage P1 exists within its host as a low copy number plasmid, and uses 

Cre-lox to maximise genomic segregation. Cre recombinase catalyses the conversion of 

multimeric prophage molecules into single unit copies via site-specific recombination 

between two loxP sequences (Abremski et al., 1983; Hoess et al., 1984). The DNA 

between two of these sites is circularised, resulting in single molecules. Here, we utilise 

this mechanism as a means of transcriptional control. By the placement of a loxP-flanked 

polyadenylation signal between the promoter and the open reading frame, transcription is 

inhibited (Figure 4). Expression of the transgene will occur only after Cre mediated 



Christine Haworth  Chapter 3, 75 
 
excision and as such is defined by its pattern of expression. This system will enable us to 

activate the production of CUG repeat messenger RNA in a developmental or tissue 

specific manner by crossing with existing TgCre mice.  

 
 
Figure 5 Primary, targeting and activated transgenes Schematic representation of the targeting 
strategy. Stage 1: The primary transgene pStopEGFP•TK is randomly integrated into the mouse 
genome using ES cells. Stage 2: Targeting constructs pStopEGFP5; pStopEGFP250 and 
pStopEGFP800 derived from the primary construct have repeat cassettes in place of the TK 
cassette. Using homologous recombination, these constructs direct 5, 250 or 800 repeats to the 
3’UTR of the EGFP gene, at identical positions within the genome. EGFP and repeat expression is 
defined by the Cre recombinase expression pattern. Constructs and transgenes post Cre mediated 
excision contain one loxP site and are referred to as pLoxEGFP (0 repeats); pLoxEGFP5 (5 
repeats) and pLoxEGFP250 (250 repeats).  

In order to obtain transgenic mice that are free from positional effects differing only in the 

number of expanded repeats, we decided to use a two-stage process in ES cells. In the first 

stage, the primary TK construct would be randomly integrated into the genome and several 

clones selected based on Cre activated EGFP expression. These cell-lines would then be 
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used as a target for the integration of 5, 250 and 800 CTG repeats by homologous 

recombination (Figure 5). Once selected, cells from the clones would then be injected into 

blastocysts and transferred to the uterus of the foster mother. Chimeric offspring would 

then be set up for breeding and the F1 generation typed for germline transmission of the 

transgene. 

 
 
3.2.2 Transgene structure  

Selection of the promoter to drive EGFP and repeat expression was given much 

consideration. Although ideally we would have used the DMPK promoter, in this instance 

it was not possible since the full extent of the region was not known. Temporally, the 

chosen promoter needed to be active at least as early in development as the DMPK 

promoter, and in the tissues involved in this study. DMPK transcripts have been shown to 

be present in mice as early as day 10.5 p.c. (Jansen et al., 1996), and can first be detected 

in whole embryos at mid-gestation (Unigene expression analysis for Mm6529, based on 

EST data). This is equivalent to 9-11 days p.c. since total gestation time is 19 days in the 

mouse. Baskar and co-workers analysed the developmental expression pattern of the CMV 

immediate early promoter using a lacZ transgene reporter, and first detected expression as 

a dorsal stripe in the neural folds of mouse embryos at day 8.5 p.c. A broader pattern was 

exhibited at day 9.5 p.c. and included the somites, from which muscle is derived (Baskar et 

al., 1996). The CMV promoter is generally considered to be active over a broad range of 

cell-types, capable of producing high levels of transcript in vitro and in vivo, and has been 

used successfully in other transgenic mouse models (Hallauer et al., 2000, skeletal muscle; 

van den Pol et al., 1998, neurons). The expression profile and well-characterised aspect of 

the promoter made it a solid choice, although the level of expression is higher than that of 

the DMPK promoter, which could potentially pose problems since high levels of 

expression can stress the cell. This higher level may however result in earlier onset of 

disease, which could be beneficial when considering the lifespan of the mouse. When 

constructing living models, expression levels are difficult to control because of the strong 

influence of genomic context. The integration site can effect the levels of gene expression 

and even silence them in some cases (Mankodi et al., 2000). If the transgene integrates into 

an essential gene, morbidity or lethality can also occur. In this strategy, these positional 

effects can be selected for after integration since clones can be selected for expression 

levels in tissue culture by pCre activation before blastocyst injection, and for viability by 

generation of the mouse itself. 
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The pCIneo expression vector (Promega) was used as the backbone since it contained the 

chosen promoter and other elements required for expression in mammals, namely an intron 

based on that of chicken β-globin and the BGH polyadenylation signal.  

The loxP sequence is 34 bp long and arranged as an inverted repeat of 13 bp separated by 

an 8bp spacer region. This region contains two ATG codons, which could be utilised as 

initiation codons (Figure 6) resulting in missense translation of the EGFP reporter. To 

avoid this, both loxP sites were incorporated in reverse orientation. If two loxP sequences 

are present in trans, inverted with respect to each other, the intervening sequence is flipped 

to the opposite direction by Cre, so in order to give directionality during cloning, the 

sequences themselves were incorporated into the neomycin and EGFP forward PCR 

primers. 

To free the model of variations due to position rather than repeat length, the secondary 

repeat constructs needed to be targeted to the randomly integrated primary TK construct 

(Figure 5). Homologous recombination is a rare event, the frequency lying around 1 in 10-5
 

to 1 in 10-9
 integrants. Higher efficiencies are generally associated with longer flanking 

homologous sequences (Pinkert, 1994), with approximately 5000 bp of flanking 

homologous sequence optimal (Thomas et al., 1987). In our transgene there is 4465 bp 5’ 

homologous flanking region from the CMV promoter to the end of the EGFP ORF, but 

only 411 bp 3’ provided by the BGH PolyA, so in order to make the transgene sufficiently 

large for second stage targeting we included a 2600 bp stretch of the human ERDA1 region 

3’ to the non-homologous repeat section. The human ERDA1 region (17q21.3) is 

associated with CTG repeats polymorphic within the population which account for most of 

long CTG repeats detected by the repeat expansion detection (RED) method in the genome 

(Sidransky et al., 1998). Even though extensively researched (Schraen-Maschke et al., 

1999; Bowen et al., 2000; Meira-Lima et al., 2001; Mendlewicz et al., 2004), ERDA1 has 

not been linked to any disorder and is considered genetically inert. It has no homology to 

the mouse genome. In these constructs, part of the non-repeat ERDA1 DNA is used as 

random sequence to extend the TK/repeat flanking region of the construct, to facilitate 

second round targeting. 

 

Figure 6 The sequence of loxP. The inverted repeats are highlighted with arrows and possible 
initiation codons are in bold. 
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Both the neomycin and thymidine kinase genes need to be expressed in ES cells. Neomycin 

to enable positive selection for stable first-round integrants using the primary construct, 

and thymidine kinase (TK) to enable negative selection for second-round homologous 

recombinants, and so are placed under the control of the PGK promoter, which is widely 

used for ES cell targeting (Tybulewicz et al., 1991: Yu, 2000 #612; Rijli et al., 1994; Seidl 

et al., 1998). 

 
3.3 Transgene assembly 

 

Figure 7 Cloning strategy. Diagram depicting the assembly of the component parts. Numbers 
refer to the order of ligation into pCIneo. Fragments 2 and 4 were first assembled in pBluescript 
SKII+. Partial replacement of fragment 4 with fragment 5 converts the founder to the targeting 
construct. Primers, restriction fragments and templates are detailed in materials and methods. Not 
to scale. 
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The constructs were pieced together from components obtained by restriction digest, or 

PCR amplification, with each primer designed to incorporate a unique restriction site. A 

loxP site was incorporated into the forward amplimers 5’ to the Kozak sequence and the 

initiation codon of both the EGFP and neo ORF. PCR products were cloned into pTEasy 

and verified by sequencing. A cloning vector was used to assemble fragments before 

cloning into a modified pCIneo vector. These modifications comprised replacement of the 

vector (pCIneo) neomycin resistance with loxP-EGFP ORF, removal of the BamHI 

restriction site and the addition of a unique KpnI site upstream of the CMV promoter. At 

first, neomycin resistance (required to select for recombinant ES clones) was designed to 

be transcribed from the CMV promoter and terminate by the SV40 PolyA, but concerns 

arose about the function of the CMV immediate early promoter in undifferentiated cells 

after reports that the CMV promoter was inactive in ES cells (Chung et al., 2002). To 

counteract this, the PGK-neo-PolyA cassette from the targeting vector pPNT was cloned 

into the neo ORF in the reverse direction. Primer pairs and restriction fragments used for 

generation are detailed in chapter 2 “Materials and Methods”. Finished constructs were 

verified by restriction digest. 

3.4 Component function 

3.4.1 CMV promoter, EGFP and loxP interference 

Once gene expression has been activated by Cre excision, a single loxP site remains within 

the transcribed region. This sequence is 34 base pairs long: A 13bp inverted repeat 

separated by an 8bp spacer region. It was possible that this sequence could form a hairpin 

structure within the transcribed RNA, inhibiting translation, resulting in low levels of 

protein production (Figure 8A). The Kozak consensus sequence for ribosome binding lies 

2bp 3’ of the possible hairpin and so may not interfere with binding, allowing translation. 

To test the sufficiency of protein expression from the CMV promoter with the loxP site 

present, the loxP-EGFP ORF fragment was cloned into the MCS of the pCIneo vector (to 

generate pLoxEGFP), and transfected into mouse 3T3 cells. A high proportion of these 

cells glowed green when visualised by fluorescence microscopy (Figure 8B). No 

fluorescence was seen in cells transfected with reagent alone. It is clear then that the EGFP 

fragment used for the founder and targeting constructs is functional and that expression 

from the CMV promoter is strong enough to be visualised even when the loxP sequence is 

present within the transcript. It is impossible to know in a transient transfection if the 
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EGFP is transcribed from a single copy gene as would be the situation created in the 

mouse, or if multiple copies are present within the cell and are in fact required in order to 

accumulate sufficient levels of the fluorescent protein. Therefore, we transfected pCDC2-

EGFP, also a strong promoter, which was available in our laboratory and pLoxEGFP in 

parallel to compare EGFP levels. Because the fluorescence was at least equivalent when 

judged by eye (figure 5C), and the loxP site is unavoidable in this strategy, we did not see 

it necessary to generate a further control construct with the CMV promoter and EGFP, 

without the loxP site. Since the CMV promoter is strong and frequently chosen for 

expression vectors carrying EGFP as a reporter (e.g. pIRES-EGFP, Clontech; pcDNA 6.2 

DEST series, Invitrogen) high levels of transcript should be produced.  

 

Figure 8 EGFP expression in the presence of the loxP site. A Schematic diagram of pCI lox 
EGFP Expression showing possible hairpin formation.  The ribosome is shown in blue at the Kozak 
sequence. B Fluorescent micrograph showing EGFP expression in mouse 3T3 cells. Photographed 
under UV excitation and brightfield. Magnification X10. C Fluorescent micrograph showing a 
comparison of EGFP expression from pLoxEGFP and pCDC2-EGFP plasmids in Cos7 cells 
(African green monkey). 

 
3.4.2 Neomycin 

The neomycin gene from Tn5 encodes an aminoglycoside 3'-phosphotransferase, which 

confers resistance to G418, an aminoglycoside antibiotic. G418 blocks polypeptide 

synthesis by inhibiting the elongation step in both prokaryotic and eukaryotic cells, and so 

cells expressing the neomycin gene survive whilst those without it die. This would allow us 

to select ES cell clones transfected with the construct by adding G418 to the medium.  
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Stable cell-lines were generated to test neomycin function. The lowest concentration of 

G418 resulting in cell death after ten days treatment was determined for the cell-types 

DmtD2976 Kidney pg 21; Cos7 and HeLa cells. The targeting transgenes pStopEGFP 

containing 5 and 250 repeats were then linearised and isolated on a KpnI-XbaI restriction 

fragment for DmtD2976 Kidney and Cos7 cells and an AclI fragment for the second set of 

Cos7 and HeLa cells (Figure 20), transfected into the cells, and selected for until colonies 

appeared. Colonies from each were picked and propagated. Untransfected cells from the 

same lines died in the same time period; therefore the neomycin gene is functional 

conferring G418 resistance. When analysed by PCR all clones with amplifiable DNA 

present were positive for the construct (Figure 9). 

 

Figure 9 A representative DNA analysis of stable cell lines Representative HeLa clones for 5 
repeats (1, 5, 6, 7, 12) and 250 repeats ( 2, 7, 10, 11, 12); co-transfected HeLa control 
(pStopEGFP250 and pCre); no DNA control; untransfected HeLa control and pStopEGFP250 
control. A PCR using DMR and QR amplimers specific for the human DMPK 3’ UTR and not 
present in the transgene. This confirms the presence of DNA in the sample. B PCR using primers 
within the EGFP ORF confirming the presence of the construct.  

3.4.3 Thymidine kinase 

Viral thymidine kinase (TK), the product of the CMV UL97 gene, specifically 

phosphorylates gancyclovir, a nucleoside analogue, precipitating chain termination and 

causing cell death once incorporated into the DNA during replication. It would be used as 

negative selection for cells that have lost the gene through homologous recombination, 

required for targeting the repeat constructs to the primary gene construct. 

The mouse cell lines described in 3.4.2 harbouring the founder construct, and control cells 

without were treated with 560ng/ml Gancyclovir for 5 days. The test cell lines died whilst 

control cells grew to confluence indicating that the TK gene is functional. 
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3.4.4 Transcriptional stop, loxP and Cre excision 

It is important to prevent transcription of the expanded repeats in the uninduced state. To 

facilitate this the SV40 PolyA signal, a widely used strong transcriptional terminator, has 

been positioned between the loxP sites. To further hinder any possible read-through 

transcription prior to Cre activation, the neomycin selection cassette has been positioned 

3’-5’ relative to the direction of transcription from the CMV promoter. To test the 

mechanism of activation and repression, murine 3T3 cells were transfected with the 

pStopEGFP5 targeting construct with and without Cre-expressing plasmid or pCre alone 

(Figure 10 top three rows).  

  

Figure 10 Cre activation of EGFP fluorescence. Brightfield and fluorescent micrographs showing 
EGFP fluorescence activated by Cre excision in 3T3 cells. EGFP fluorescence was only detected 
when cells were transfected with both pStopEGFP5 and pCre, or with the constitutively-expressing 
pLoxEGFP5. There were fewer EGFP fluorescent cells with pStopEGFP5+pCre compared to 
pLoxEGFP since the amount of transcriptional target (pStopEGFP5) was reduced by half in the co-
transfection, the other half made up by pCre. 

Fluorescence could only be detected in those cells transfected with both pStopEGFP5 and 

pCre plasmids indicating that Cre recombinase was required for activation of fluorescence, 
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and that fluorescence was repressed by the transcriptional control elements. The 

mechanism was also tested by using recombinant Cre in vitro. PStopEGFP5 and 

pStopEGFP250 plasmids were treated with recombinant Cre, and the resulting mixture 

transformed into JM109 cells. Cre-excised plasmids were isolated (Figure 11) and the 

pLoxEGFP5 derivative used to transfect 3T3 cells (Figure 10 bottom). The proportion of 

fluorescent cells was much higher in the pLoxEGFP5 sample compared to the co-

transfected samples because the total amount of DNA in each transfection was constant, 

and two plasmids were required for fluorescence in the co-transfection. Secondly, the 

starting amount of pStopEGFP5 plasmid was reduced by half, the other half made up by 

pCre, so fluorescence was further reduced. The same result has been obtained using DmtD 

Kidney; Cos7 and HeLa cells (data not shown). 

 

 

Figure 11 Analysis of lox constructs after in vitro treatment with recombinant Cre.  A BglII 
restriction analysis of transformants. pStopEGFP5 and pStopEGFP250 are untreated parental 
controls. The positions of fragments specific to excised or untreated constructs are indicated, 
unlabeled fragments are common to all. The asterix denotes plasmids identified with putative 
spontaneous deletions in the number of repeats. B DMH-BR PCR over the repeat region. Sample 
numbers 5, 9, and 14 are spontaneous deletions containing approximately 150, 100 and 150 
repeats respectively. Numbers correspond to 250 repeat clones in A. 

 

3.4.5 The repeats 

The CTG repeat has been shown to form a single hairpin in vitro (Michalowski et al., 

1999) which was thought may interfere with EGFP transcription if placed directly 3’ to the 

termination codon. To avert this, a portion of the DMPK 3’ UTR (113bp 5’ and 112bp 3’of  
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Figure 12 Human DMPK 3’ UTR showing the position of nested primers used to amplify 
repeat sequences. A schematic diagram depicting the relative primer positions for semi-nested 
PCR. First round primers are blue. Second round primers are orange and include restriction site 5’ 
extensions for cloning. 

 
 

 

 
 

Figure 13 Cloning the repeats.  A Products of nested PCR used for cloning. Bands were excised 
as indicated by white boxes. Templates consisted of HindIII digested patient genomic DNA. PCR 
was carried out for 28 cycles or 7 cycles (*) and with varying dilutions of DNA. Products obtained 
using the highest dilution and lowest number of cycles was used for cloning, in order to minimise 
aberrant nucleotide incorporation during PCR. B Repeats after cloning. Note that there is slight 
variation in the length of cloned “60” repeats in sample A. The smaller 5 repeat band may be due to 
contaminating 5 repeat PCR product within the agarose. Unexpected band sizes were obtained for 
the 800 and 250 repeat samples C and D. 800 repeats would be 2620bp and 250 repeats 970bp. 
The vector backbone is 3Kb which indicates that many of the clones in sample C and D are 
probably undigested DNA. The largest insert contains no more than 40 repeats. 

 
the repeats: Accession # L19268), was included to act as a spacer between the end of the 

EGFP reading frame and the polyadenylation sequence. This region used includes the 

subsequently discovered splicing factor binding sites for hnRNP C; PTB; U2AF and PSF 

(Tiscornia et al., 2000). DMPK 3’ UTR regions containing CTG repeats were isolated from 

patient DNA samples previously characterised for the length of repeat (Hogg et. al. 
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unpublished results) by semi-nested PCR (Figure 12). The mutant alleles in these patients 

contained distributions around 60; 250 and 812 repeats, with normal alleles of 5; 11 and 5 

respectively. These samples would act as a template to amplify 5; 250 and 800 repeat 

arrays to model unaffected, and the adult onset and congenital forms of myotonic 

dystrophy type 1. The 60 repeat was also cloned for possible use at a later date. Once 

amplified the fragments were gel purified based on size as bands, or regions in the case of 

the 800 repeat since smears were obtained due to the mosaicism of repeat length in somatic 

tissues (Figure 13A). The DNA was isolated from the agarose and ligated into pTeasy, a 

PCR-product cloning vector. Using blue-white screening in JM109, transformants for the 5 

repeat and 60 repeat ligations were obtained, but not for 250 or 800 repeat ligations. Insert 

sizes were confirmed by restriction digestion and found to be correct for the 5 repeat, and 

varied between 55 and 60 repeats for the 60 (Figure 13B samples A and B). UTRs were 

verified by sequencing (MBSU, Glasgow). The transformations for 250 and 800 repeat 

lengths were repeated increasing the amount of ligation reaction. Colonies were analysed 

but did not digest completely with EcoRI, some insert bands were present, but not of the 

expected size ranging from mostly 5 repeats from the 800, to no more than 40 repeats for 

the 250 repeat insert (Figure 13B samples C and D). 

PCR amplification and cloning was repeated with more product obtained using 10ng 

HindIII DNA, XhoI-DM-H/EcoRI-DM-BR PCR, and a larger PCR volume. Bands were 

excised, ligated and cloned and as before. Unexpected results were obtained once again. 

From the results it looked as if some of the samples were not fully restricted since there 

were very large bands present. EcoRI digestion should release inserts of 1kb for 250 

repeats and 2.6Kb for the 800 repeat leaving a 3Kb backbone, yet no restriction patterns 

showing 3Kb and 1Kb or 3KB and 2.6Kb were observed. Most samples (Figure 13B 

samples C and D, and Fifure 14A top) contained multiple fragments of varying intensities 

often seen with undigested plasmid samples. For clarification, the samples were Southern 

blotted and hybridised with a DM56 repeat probe to check the position of the repeat 

fragments on the gel (Figure 14A bottom). This probe was in general use in the laboratory 

for the detection of repeat alleles by Southern blot and consists of a CTG repeat PCR 

product amplified with oligonucleotide primers DM-C and DM-ER from the DM1 3’UTR 

(Figure 20). The repeat positive clones were digested with a fresh aliquot of EcoRI 

enzyme, and electrophoresed alongside undigested and XhoI restricted samples. XhoI 

digestion was included for the samples for clarification of plasmid size since only one XhoI 

site should be present in the clone, from the 3’ end of the insert. If multiple inserts had 

been cloned, fragments would be released by XhoI. After restriction, only one band was 
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present, so this was not the case. Insert fragments released by EcoRI were smeary, 

indicating a range of repeat lengths. These were judged to be smaller than 250 repeats in 

all but two samples (Figure 14B arrows). From the Southern and the second digest, 

samples 5 and 8 (originally from the 800 repeat pool) contained the largest inserts at 

around the correct size for a 250 repeat (Figure 14A top and B arrows). These were 

streaked out to single colonies from the same culture used to isolate plasmid DNA for the 

restriction analysis. Plasmid DNA was isolated and digested with EcoRI and the products 

electrophoresed beside undigested sample or XhoI digested sample (Figure 14C). There 

was a large amount of insert variation present, but the average size of the bands was 

equivalent to the most predominant bands in the parent clones, 5 and 8. The asterisked, 

clone 8 derivative was selected for cloning into the final targeting construct. Verification of 

the insert by sequencing was attempted, but it proved impossible to sequence across the 

full stretch of repeats so the expansion may be imperfect, however the first 50 repeats at 

the 5’ end (where sequence information was good) are pure.  

3.4.5.1 Further attempts to clone 800 repeats  

To try a different approach to clone an 800 repeat array, small-pool PCR was used to 

amplify single molecules from the patient DNA. One of the amplified aliquots contained a 

750 repeat and also a 5 repeat allele (Figure 15A). The 750 repeat allele fell into the range 

for congenital DM1 classification, and so attempts were made to clone it in place of 800 

repeats. A second round of PCR was performed using the aliquot with semi-nested primers 

as previously described (Figure 12; 25 cycles). The product was gel isolated using low 

melting temperature agarose, ligated directly and transformed into Top10f’ with blue-white 

selection. Transformants were restricted with EcoRI and found to have massively variable 

insert sizes (Figure 15B). Clone 10 was selected for further purification, as the top insert 

band was the correct size for 800 repeats, and present at a high level compared to the 

smaller insert fragments. It was hoped this plasmid could be made homogeneous for a 

large insert. The clone was streaked out to single colonies as previously described. EcoRI 

restriction analysis revealed that the insert ranges had again reduced in size (Figure 15C). 

This clone was abandoned and clones 3, 12 and 24 were analysed by restriction digest to 

check the restriction sites (Figure 15D). EcoRI should release the insert because of 

flanking sites within the MCS. PvuI should not cut within the insert so a duplex digest with 

EcoRI and PvuI should leave a fragment of the same size as that when EcoRI is used alone, 

yet both larger fragments have reduced in size and only smaller band sizes remain 

constant. XhoI does not cut within the vector, and so should result in a single band of 

5665bp for an insert of 800 repeats and the vector backbone. Yet digestion with XhoI gave 
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a doublet band. If two inserts had been cloned then one would see a doublet band with 

XhoI, and also if two plasmids were present with different array lengths -which could 

happen if repeats result in deletions during replication or mismatch repair.  

 

Figure 14 Unexpected restriction pattern of repeat clones A Top EcoRI restriction did not 
release inserts. No bands corresponding to repeat arrays were observed. A Bottom Southern blot 
of the same gel confirms presence of repeats. Arrows indicate inserts of the correct size for 200-
250 repeats. B Clones found to be positive for the repeats by Southern blot in A were re-digested 
with fresh EcoRI and electrophoresed beside undigested samples to confirm enzyme activity; XhoI 
linearisation was included to confirm plasmid size and rule out rearrangements. Arrows indicate 
inserts of the correct size for 250 repeats. Note that insert bands appeared smeary possibly 
indicating insert heterogeneity within the clones. C Clones 5 and 8 (identified as 250 repeat clones 
in B) were streaked out to single colonies, DNA was isolated and re-analysed for insert size. Note 
the variation in insert size between the clones. The range of variation is similar to the predominant 
fragment size in the parental clone. The asterix denotes the clone selected for construct 
generation. The arrow indicates insert size corresponding to 250 repeats. D Clones selected for the 
final construct. EcoRI-digested. 8* corresponds to the 250-repeat clone in C. The 5 repeat clone 
was selected previously (Figure 13B left hand clone of A).  
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Figure 15 Cloning 750 repeats. A A 750 repeat band was identified from SP-PCR of patient 
DNA and used as a template for the second round PCR (Figure 12) unfortunately this sample also 
contained the normal 5 repeat allele which preferentially amplified. B Massive variability between 
repeat-containing inserts in the cloned product. Some clones contain large repeat inserts (arrows). 
Most have a mixture of large and small fragments. Clone 10 was selected for further analysis 
because the large band was proportionally high in the mix compared to other clones. C The 
overnight culture of clone 10 used for DNA analysis in B, was streaked out to single colonies. DNA 
was isolated and re-analysed with EcoRI. The large band disappeared, with no insert bands above 
250 repeats observed. D Restriction analysis of selected clones with larger inserts. The sizes for a 
750 repeat band are: EcoRI: 2653 bp + 3000 bp; XhoI: 5665 bp; EcoRI/PvuI: 2653 bp + 1710 bp 
+1096 bp + 191 bp + 16 bp. The XhoI doublet probably originates from different sized inserts.  
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Attempts so far involved the analysis of many clones since it looked as if the repeats were 

reducing and expanding during the cloning and bacterial transformation. Streaking out 

existing transformants and probing with repeats should reveal those clones with the largest 

inserts since more probe would bind. Clones 29; 32 and 36 (Figure 15B) were chosen 

based on insert size, streaked out to single colonies, picked and transferred to nylon 

membrane and hybridised to a DM56 repeat probe. There was an obvious variation in the 

strength of the hybridisation signal between clones (Figure 16A), those corresponding to 

the strongest were propagated and analysed by EcoRI restriction. Again there is a massive 

variation in the length of the repeat fragments, with large deletions apparent between 

sibling isolates (Figure 16B), and compared to the parental clones (from Figure 15B). We 

concluded that the 800 repeat was too unstable to clone. 

 
 
Figure 16 Identification and DNA analysis of repeat clones. A Single colonies from clones 29; 
32 and 36 (Figure 15B) probed with DM 56 repeat probe. + (positive control) = pLoxEGFP250 in 
JM109; - (negative control) = pLoxEGFP in JM109. B EcoRI restriction analysis of DNA from the 
high signal colonies reveals high variability of insert sizes both within and between clones. 
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By this time Mankodi et al. had published evidence that 250 repeats expressed within the 

3’ UTR of an mRNA unrelated to DM1 was sufficient to induce DM-like symptoms in 

mice. Because of this information and time constraints the mouse model was limited to 5 

and 250 repeats. 

3.4.5.2 Propagation of repeat constructs  

The hallmark of myotonic dystrophy pathogenesis is the formation of ribonuclear foci; 

aggregates of the mutant RNA trapped within the nucleus. Until the floxed 250 repeat 

construct was tested for foci formation in mammalian cells (which is addressed in chapter 

four), we did not realise that there was any significant instability with expansions of 250 

repeats whilst amplifying the DNA in bacteria. During testing, not all EGFP positive cells 

harboured CUG ribonuclear foci, which made us wonder if there were smaller length 

repeat inserts within the DNA preparation used. To test this, DNA was linearised and 

serially diluted to single molecules, then subjected to PCR across the repeat tract. 

Surprisingly, the preferentially amplified size within this particular preparation 

corresponded to 27 repeats, not 250 (Figure 17A left). Restriction analysis of the insert 

fragment revealed a ladder of repeat lengths ranging from 250 to 5 repeats (Figure 17 A 

right). The original overnight culture was then streaked out to single colonies and analysed 

for insert size. The clone with the most homogeneous population of repeat tract was 

selected (Figure 17 B), streaked out and reanalysed. Clone 250a* was selected as the 

master stock for future floxed plasmid preparations (Figure 17 C). 

Throughout the time of this thesis three large-scale preparations each of the original and 

the floxed 250 repeat targeting constructs have been made. Each time it was necessary to 

reselect the correct repeat length. For each batch, the construct was re-transformed into 

JM109 without blue-white selection and a single colony used for inoculation of each of ten 

100ml overnight cultures. A 1.5ml sample was taken from the culture and analysed for 

insert size whilst the remaining culture was pelleted by centrifugation and stored at -20oC. 

Clones were selected based on the size and homogeneity of repeat length (Figure 18), and 

the corresponding pellets prepped. Different host cells have been used to culture the 

plasmid, DH5α, Top10F’ and JM109. The latter two contain lacIq, which affords 

constitutive expression of the repressor giving tighter control of gene expression. Whilst 

Top10F’ and JM109 give much higher yields compared to DH5α, there seems to be no 

significant difference in homogeneity of repeat length (data not shown). 
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Figure 17 Repeat array contraction during plasmid propagation. A Dilution PCR and restriction 
analysis showing variation in repeat length after propagating pLoxEGFP250 from a glycerol stock. 
B EcoRI restriction analysis of subcultures of the original pLoxEGFP250 glycerol stock in A. The 
number of bands in each derivative has reduced, and the overall range of the band-sizes is similar 
to the original. C A second set of subcultures from a and b in B. The number of bands in each 
derivative has reduced again, the overall range of the band-sizes similar to the original. 
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Figure 18 Heterogeneity of repeat length in floxed 250 preparations. A Original denotes 
master stock plasmid pLoxEGFP250a*(Figure 17C) used for transformation. 1-10 denotes 
subcultured single colony transformants, analysed by EcoRI digestion to release the cloned repeat 
array. Sample 1 was selected and is shown in SP-PCR analysis in B. B SP-PCR analysis of 
pLoxEGFP250 constructs used throughout this research. 500 molecule dilutions; 7 replicates. 
Samples: Original floxed 250; batch #2 and transformant 1 from A. Note the presence of deletion 
products ranging from 250 to approximately 5 repeats.  

 

3.5 The mouse model 

3.5.1 Targeted integration 

Precise alteration of endogenous genes is a method usually used for null or knockout 

models. Here we attempted to use ES cells for random integration of the master construct 

followed by targeted integration to that construct, to produce a gain-of-function model 

where control and mutant mice differ only in the number of repeats, free of positional 

effects.  

ES cells derived from preimplantation embryos retain totipotency which reduces as the 

number of passages increase (Nagy et al., 1993). This would allow genetic manipulation 

by targeting in the early passages. We proposed that if the passage number was kept low, 

two rounds of manipulation are possible. The first, a random integration of the master 

construct followed by clone selection. The second, targeted integration of the 5 and 250 

repeats. Once manipulated, ES cells from selected clones would be injected into 
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blastocysts, which would then be implanted into the uterus of the pseudopregnant foster 

mother to produce chimeras, hopefully with colonisation of the germ-line. 

The ES cell-line CGR8.8 was a kind gift from Professor R.W. Davies (I.B.L.S., University 

of Glasgow), originally derived from mouse strain 129j/Olac (Nichols et al., 1990). These 

cells had already been shown to give germ-line transmission in the Davies laboratory. 

Before proceeding with the integration, a kill-curve was done to select the optimum dose 

of G418 to use for selection of transgene-positive cells. It was important to use the lowest 

effective dose to ensure single copy integrants would be isolated, and that selection was 

not biased towards those cells expressing large amounts of neomycin due to the presence of 

multiple copies of the transgene. One hundred CGR8.8 embryonic stem cells were seeded 

into each well of a gelatinised 12 well plate. After 48 hours, 0; 100; 200; 300 and 

400µg/ml G418 was added to the medium in duplicate wells. The G418 supplemented 

medium was replaced each day and the state of the cells noted.  Cell death began in the 

higher concentrations after 48hrs, and cells were completely dead by day 6. Few cells 

remained at 200µg/ml G418. At day ten, no colonies could be seen at 200µg/ml G418, and 

so this concentration was chosen for the selection of transfectants. 

To test promoter function in ES cells, pLoxEGFP was linearised and transfected into 

CGR8.8 embryonic stem cells using electroporation, and the media supplemented with the 

cytokine leukaemia inhibitory factor (Lif) to maintain the undifferentiated state of the cells 

(Nichols et al., 1990). Unfortunately it was not possible to include a cell-type positive 

control such as 3T3 cells for electroporation due to contamination prevention guidelines of 

the ES cell facility. G418 was added after 24 hours to select for stable transfectants. 

Colonies appeared after 7 days and were viewed using fluorescent microscopy. Few cells 

exhibited EGFP fluorescence. This could have been due to a low rate of transfection, often 

experienced in primary cell-lines such as ES cells. ES cells require close cell-cell contact 

in order to maintain the undifferentiated state. The cells that did fluoresce were situated on 

the perimeter of the ES cell colony where the cells are most likely to be differentiating 

(Figure 19). Since each colony is derived from a single cell, EGFP fluorescence should be 

apparent throughout the colony. This was not the case so it is reasonable to conclude that 

the promoter is not functioning in the undifferentiated state, as has been reported (Chung et 

al., 2002).  
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Figure 19 EGFP fluorescence in CGR8.8 129/Ola ES cells. Fluorescent micrograph after 
transfection showing EGFP fluorescence at the perimeter of a colony.  

Although it was disappointing to conclude that the CMV promoter was not available for 

clone selection in the undifferentiated cells, it was not relevant for the mouse model, and 

may be beneficial. As explained in 3.4.1, the CMV promoter satisfies the criteria required 

in that it is at least as powerful and as active temporally as the DMPK promoter, which 

drives expression of the DM1 mutation. It did mean that in order to select clones based on 

EGFP expression levels, the clones would need to be differentiated after transfection with 

Cre. 

The master transgene TgStopEGFP•TK was excised from the pStopEGFP•TK construct on 

a KpnI-XbaI fragment (Figure 20) removing the unnecessary bacterial growth genes, and 

introduced into ES cells by electroporation. Cells were plated onto a MEF feeder layer and 

after 24hrs, transformants were selected for using G418 supplemented medium. Massive 

cell death occurred on day six revealing 20 bright circular colonies. Once they had reached 

1-2mm in diameter, 18 undifferentiated colonies were picked. The cells were disassociated 

and the clones expanded by growth first in 96 well plates, then 24 well plates, again on a 

MEF feeder layer. The differentiation state of each clone was determined by visual 

microscopic inspection and 70% of the sample frozen down. The remaining 30% was 

expanded by 3 days further culture. DNA was extracted and subjected to three different 

PCR analyses: ‘EGFP’ to confirm the presence of the construct by amplification of a 

portion of the EGFP ORF ‘Concatemer’ to ascertain the presence of arrays. In this assay 

primers are positioned to face away from the body of the construct such that a product is 

only made when the construct has integrated as a tandem array; and ‘mUSF’ to verify the 

presence of PCR grade DNA in the sample. Primers mUSF-A and mUSF-BR were used to 

amplify a 1019 bp fragment within the mouse upstream stimulatory factor (mUSF) 

housekeeping gene. The generation of a PCR product in this reaction confirmed the 

presence of mouse DNA in the sample. 
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The EGFP PCR was also subjected to Southern hybridisation to an EGFP probe for 

sequence confirmation. Twelve of the clones were positive for EGFP and so contained the 

transgene (Figure 21A). Of these clones, two were determined by concatemer PCR to 

contain more than one insert (Figure 21B). DNA usually integrates into the genome at a 

single point either as a single molecule, or a head to tail array (Brinster et al., 1981). The 

expected band size if an array was present was 437 bp if the array is in the usual head to 

tail arrangement, which is what we see in clone 12. Clone 15 shows a smaller band of ~220 

bp. If the clones were head to head, or tail to tail, the band would be 410 bp or 450 bp 

respectively. This sample was not positive for EGFP (Figure 21), so possibly this clone 

resulted from a DNA rearrangement.  

 

 

Figure 20 The position of PCR amplimers relative to the transgene. Schematic diagram of 
linear pStopEGFP5/250 (not to scale) illustrating the position of amplimers used in PCR analyses. 
Product sizes are given for pStopEGFP5; pStopEGFP250 and DmtD162 (genotyping control) 
templates. NP = template sequence not present. Restriction sites used for transgene isolation are 
also shown. 
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Figure 21 PCR analyses of pStopEGFP•TK ES cell clones A Southern blot of EGFP PCR 
hybridises to an EGFP probe. Twelve clones were positive for the transgene. B Concatomer PCR: 
Clones 12 and 15 were positive for arrays. C Most preparations were positive for PCR grade DNA. 

 
The cells were at passage 11 as they were plated into 96 well plates and a high proportion 

of colonies looked undifferentiated. That is to say that the cells upon visual microscopic 

inspection were growing as densely-packed bright circular colonies with few patches of 

flattened differentiating cells (Nichols et al., 1990). As the clones were expanded, the 

number of undifferentiated colonies was much reduced and only in clones 5 and 14 did the 

colonies look dense, bright and round. Unfortunately both were negative for EGFP (Figure 

21A). 

The design of our model was such that the only difference between lines was the length of 

the repeat tract. To do this we were attempting to randomly integrate the master construct 

and then using negative selection to target differing repeat lengths to this construct by 

homologous recombination. To free the model of positional effects was advantageous 

because it would remove the further consideration of the integration site in an already 

complicated disease. Transgenic models such as ours are usually generated by random 

integration however, with several lines selected from each transgene to control for position 

effects. For example during the generation of HSASR/LR myotonic mice, in some lines the 

transgene was not expressed, or ‘silenced’, possibly because of the integration site 
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(Mankodi et al., 2000). At this point in our experiments, doubts had been raised by another 

researcher over the integrity of the CGR8.8 cells we had both been using, since they had 

failed repeatedly to obtain homologous recombinants (C. Winchester, personal 

communication). This coupled with the differentiated look of our ‘construct positive’ 

clones led us to suspend work on the ES cell strategy, and attempt random integration of 

the second round constructs (pStopEGFP5 and pStopEGFP250) directly to generate the 

model by the usual random integration route. This would also establish the function of the 

Cre-lox strategy in vivo before returning to, or perhaps repeating the lengthier ES cell 

targeting strategy at a later date. 

3.5.2 Random integration 

Pronuclear injections into B6D2 hybrid zygotes were carried out by the Central Research 

Facility at the University of Glasgow by the procedure documented in “Manipulating the 

Mouse Embryo” (Hogan, 1994). The transgene was excised on an AclI fragment (Figure 

20) which contained 1146bp 5’ and 583bp 3’ flanking DNA to insulate the ends of the 

transgene from exonuclease digestion. The DNA was purified using DEAE sephacel, and 

for the TgStopEGFP5 and the first round of TgStopEGFP250 injections was diluted to 

1.8ng/µl in injection buffer, corresponding to approximately 100 molecules per injection. 

The initial injection concentration was low in order to bias the procedure towards single 

copy integrants. Since Cre recombinase excises DNA between two loxP sites, arrays 

present within the genome would complicate the excision process, and therefore 

unpredictably affect activation of EGFP expression.  

The number of live births totalled 16 after pronuclear injection with TgStopEGFP5 and166 

after pronuclear injection with TgStopEGFP250. The number of live births was smaller for 

TgStopEGFP5 simply because fewer eggs were injected after the detection of a successful 

integrant.  For the TgStopEGFP250 injections, three batches of DNA were used, each 

prepared from separate cultures and verified by restriction digestion. The first batch was at 

a concentration of 1.8ng/µl, as for TgStopEGFP5. The second was diluted to three different 

concentrations to increase the chances of integration: 1ng/µl; 5ng/µl and 10ng/µl, all 

single-use aliquots to avoid freeze-thaw nicks in the DNA. The third batch was supplied at 

2ng/µl, also in single use aliquots. 
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3.5.3 Genotyping 

Once implant mice were weaned, usually between four and six weeks of age, 1cm tail-tips 

were removed under anaesthetic and the DNA extracted. The presence of the transgene 

was assayed using MTT multiplex PCR, routinely used in our laboratory for the 

genotyping of DmtD162 mice. This PCR amplifies three separate bands in the control 

DmtD162 mice (mUSF; DM-C/DM-ER and DM-R/DM-QR) and two in TgStopEGFP5 

and TgStopEGFP250 mice (mUSF and DM-C/DM-ER). The mUSF set of primers are an 

internal control for the presence of PCR grade DNA, so any samples which did not show 

up positive for this 1 Kb product were re-analysed with increased amounts of DNA 

sample, or repurified DNA. If the result was still negative, a second tail tip was used. The 

extra 180bp PCR product in the DmtD162 control originates from the presence of further 

DMPK 3’UTR sequence 3’ to the repeat region, not present in the TgStopEGFP5 and 

TgStopEGFP250, amplified by DM-R and DM-QR. The third set of primers, DM-C and 

DM-ER amplify the repeat region in both DmtD162 and the EGFP constructs (Figure 20).  

 

Figure 22 Implant genotyping by PCR Top: MTT multiplex PCR DNA analysis on tail-tip lysates. 
Bottom Southern blot of the above agarose gel and hybridisation to the DM56 repeat probe. Arrows 
indicate putative positive mice, black TgStopEGFP5; white TgStopEGFP250.  

 
Two mice positive for the repeat region of the transgene were identified, number 6869 

TgStopEGFP5 and 6877 TgStopEGFP250 (Figure 22).  The same batch of tail tips was 
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then subjected to three further PCR assays for verification: ‘EGFP’ and ‘Intron’ PCR to 

confirm the presence of the construct and DM-H/DM-BR PCR to confirm the presence and 

length of the repeat region. At this stage mouse number 6869 TgStopEGFP5 was 

confirmed as positive for the transgene, but 6877 TgStopEGFP250 was negative (Figure 

23). The analyses were repeated using second tail tips from the same batch of mice and the 

results were still found to be positive for mouse number 6869 TgStopEGFP5 and negative 

for 6877 TgStopEGFP250 (data not shown). Tail-tip lysates from mouse 6869 

TgStopEGFP5 were used as a positive control for all further PCR genotyping of implants. 

 

 
 
Figure 23 Further analysis of putativeTgStopEGFP5/250 mice. Three DNA analyses: Mouse 
number 6869 TgStopEGFP5 is positive, 6877 TgStopEGFP250 is negative. Intron PCR produces a 
product of 341bp if the construct is present regardless of repeat length. DM-H/DM-BR PCR spans 
the repeats producing band sizes of 252bp for 5 repeats and 927bp for 250. EGFP PCR produces 
a 369bp product within the ORF.  

 
The donor egg genotype used for pronuclear injection was derived from a female C57Bl6 - 

male DBA/2 cross, so to obtain a pure background positive mouse 6869 TgStopEGFP5 

was set up with strain C57Bl6 for breeding. Offspring were genotyped using MTT 
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multiplex PCR and Southern blot hybridisation to the DM56 repeat probe; DM-H/DM-BR 

PCR was used to verify the repeat length and EGFP PCR to show the transgene was 

transmitted through the germline and to identify mice for breeding (Figure 24). Note that 

segregation of the transgene was not 50:50. The founder mouse 6869 Tg(StopEGFP5) 

fathered 74 offspring in total, 11 of which were positive for the transgene, and so could 

have been mosaic, the transgene having integrated after the single cell stage. This apparent 

effect on segregation could also be the result of embryonic lethality, caused by the 

unfortunate integration of the construct into an essential gene. Since the founder mouse 

was male, any male offspring produced will be DBA/2 for the Y chromosome, so for the 

F2 generation, female transgenics were selected to establish the line.  

 
 

Figure 24 Genotyping of the Tg(StopEGFP5) F1 generation. A sample of 6869 Tg(StopEGFP5) 
offspring PCR genotyping detecting transmission of the transgene. F1 mice 10279; 10284 and 
10294 are positive. MUSF was also amplified to confirm the presence of PCR grade DNA (data not 
shown). 

 

Figure 25 A representative proportion of implant genotype analyses. The presence of 
amplifiable DNA is determined using MTT PCR. Repeat (DM-H/DM-BR) and Intron PCR verify the 
presence of the construct and repeat (DM-H/DM-BR) PCR also verifies the CTG array length. 
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In total 182 live births were analysed after pronuclear injection, 16 with TgStopEGFP5 and 

166 with TgStopEGFP250. Finally, to ensure no positives were missed, before sacrifice all 

implant mice were assayed using EGFP PCR; H-BR PCR; and either mUSF or MTT PCR 

(Figure 25), followed by Southern blot analysis using the EGFP or DM56 repeat probe as 

appropriate (data not shown). No positive mice were obtained for TgStopEGFP250. 

 
3.6 The Cre-lox mechanism ex vivo 

To test the function of the Cre-Lox mechanism in vivo, cell lines were established from the 

tails of the F3 and F4 C57Bl6 backcross of mouse Tg(StopEGFP5) (Figure 26).  

 

Figure 26 Pedigree of tail cell-lines Derivation of tail cell-lines from founder mouse 6869 
Tg(StopEGFP5) during C57Bl6 backcross. Line D did not become immortal within the time scale. 

 
These lines strictly-speaking were ex vivo and as such should be a good reflection of the 

situation in the living animal. Tail tips were removed and wiped with 70% ethanol before 

removing the bones using a scalpel. The tail tissue was flattened out and parallel 1-2mm 

cuts made almost all the way along the length but leaving a small piece of tissue uncut to 

keep the strands together. The tissue was then placed onto a 60mm culture dish skin side 

up and the strands splayed out. The tissue was pressed very firmly in order to adhere to the 

dish surface, and prewarmed culture medium added gently dropwise. The dishes were 

incubated at 37ºC until cells could be seen growing out from the tissue, which was then 

removed. Cells continued to be incubated and passaged until growth slowed. The cells 
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were then incubated without passage until they began to grow once again. At this stage the 

cells had overcome senescence, whereby the cells lost the ability to divide, and were 

considered immortal. Once the lines were continuously dividing, cells were transfected 

with the Cre-expressing plasmid pCre. The experiment was controlled for using mouse 

fibroblast 3T3 cells: The constitutively expressed pLoxEGFP served as a positive 

transfection control, whilst co-transfection with pStopEGFP5 and pCRE acted as a positive 

Cre-lox mechanism control. The pStopEGFP5 and pCRE plasmids were also transfected 

alone to show no fluorescence prior to Cre activation. The Tg(StopEGFP5) cell-lines were 

also transfected with pLoxEGFP to show that the cells were able to be transfected. All cells 

on the coverslip were analysed 24 hours later using fluorescent microscopy. None of the 

Tg(StopEGFP5) cell-lines tested showed Cre activated EGFP fluorescence after 

transfection with pCre (Figure 27). This experiment was carried out three times in total. 

The same result was obtained; no EGFP fluorescence could be detected after pCre 

transfection of the Tg(StopEGFP5) tail cell-lines. 

Why transfection with pCre did not activate EGFP fluorescence was not clear in this 

experiment. Possibly the construct had suffered rearrangement within the mouse genome 

causing the mechanism to malfunction. To test whether activation was working at the DNA 

level, cells were transfected again as described in the previous experiment. DNA was 

extracted and subjected to PCR with primers that lay outside the region of Cre excision 

(Figure 20). This detects a shift between product sizes from 2925 bp before excision to 328 

bp after excision. The mechanism was found to be functioning correctly in all three lines 

since both bands could be detected after pCre transfection (Figure 28). 

It is possible that the amount of EGFP produced was too low to be visualised directly by 

fluorescence microscopy. To enhance the EGFP signal α-GFP primary antibody was used 

with an AMCA-conjugated secondary, which according to the manufacturer can give an 

eightfold increase in signal. The cell-lines and control 3T3 cells were grown on coverslips 

and transfected with pCre, or pLoxEGFP as a positive control for both transfection and the 

antibody hybridisation. Control 3T3 cells were also transfected with pCre or pLoxEGFP, 

also pStopEGFP5 or pStopEGFP5 + pCre as a positive control for pCre function, and no 

DNA. After antibody hybridisation, using fluorescence microscopy, all samples transfected 

with pLoxEGFP showed blue and green fluorescence (Figure 29) data not shown for 

3T3/pLoxEGFP). All the cells on each coverslip were analysed. In 3T3 cells, no 

fluorescence was detected with pCre (Figure 29) or pStopEGFP5 alone (data not shown), 

or no DNA (data not shown). PCre plasmid was shown to be functional since 3T3 cells co-
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transfected with pStopEGFP5+pCre were EGFP positive (Figure 29). It was noted that the 

signal was at a similar level for cells exhibiting very strong EGFP fluorescence but was 

generally enhanced for those cells with lower levels of EGFP fluorescence (Figure 29 

arrows). However, there was still no signal for the lines tested for Cre activation (Figure 29 

 

Figure 27 Cre activation of Tg(StopEGFP5) tail lines. Brightfield and fluorescent micrographs. 
PCre transfection of the Tg(StopEGFP5) tail cell-lines should have activated EGFP fluorescence by 
removal of the loxP-flanked polyA signal but no signal was detectable using fluorescent 
microscopy. The controls show that technically the experiment is valid, since transfection of 
pStopEGFP5 or pCre alone does not result in EGFP fluorescence, whereas co-transfection of 
pStopEGFP5 and pCre activates fluorescence showing that the excision mechanism is working. 
PLoxEGFP transfections were used to confirm the ability of the cells to take up and express 
plasmid DNA. 

           

Figure 28 Cre-lox excision at the DNA level. Cre assay PCR showing a reduction in product size 
from Tg(StopEGFP5) cell-line DNA after Cre excision. Constitutively expressing pLoxEGFP 
functions as a positive control for transfection, and a size marker for Cre excision.  
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Figure 29 Enhancement of EGFP detection using αGFP. Fluorescent micrograph. 
Tg(StopEGFP5) cell lines were transfected with pCre, which should activate EGFP expression. 
Anti-GFP primary antibody and AMCA (blue) conjugated secondary antibodies were used against 
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EGFP to try to amplify the fluorescent signal. There is a slight increase in the detection of EGFP 
expressing cells using these antibodies (white arrows) when compared to EGFP alone. However, 
even after enhancing detection with αGFP/AMCA, EGFP still could not be detected in pCre-
transfected Tg(StopEGFP5) cell lines.  

 

 

 

Figure 30 EGFP RNA analysis pre and post Cre-lox excision. Top EGFP RT-PCR. The 
increase in transcript after pCre activation of expression is small. 20 cycles were used with the 
conditions described below. Bottom Optimisation to ensure amplification is within the linear range. 
Cells were transfected with pLoxEGFP as previously described, and harvested after 24 hrs. This 
preparation was ‘100%’ since it was comparable to the test sample transfection rate. The sample 
was then diluted using untransfected 3T3 cells. Total RNA was prepared from the mixes, and 
500ng of RNA was reverse-transcribed in a 10µl volume, 1µl of which was used in each PCR 
reaction. Reverse transcriptase was omitted from the ‘no RT‘ controls. Amplification was limited to 
10; 15; 20 and 25 cycles. 15 or 20 cycles were deemed to be in the linear range depending on the 
amount of starting sample. NB There is contamination in the ‘no RT’ controls probably due to 
plasmid DNA binding to the RNA purification column. 
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To check whether the EGFP transcript was being expressed pStopEGFP5 cells were 

transfected with pCre; reagent alone (no DNA) or pLoxEGFP as a positive control, and 

RNA isolated after 24hours. Samples were subjected to optimised EGFP RT-PCR (Figure 

30 Bottom) to ensure that product levels seen after amplification were a reflection of the 

amount of starting template. Unfortunately the experiment shows contamination in one of 

the ‘no RT’ controls and so should ideally have been repeated (Figure 30 Top). If the 

increase in EGFP transcript after Cre activation is real, and not due to contamination, then 

the increase is not large. If time allowed, this experiment would have been repeated, using 

Cre assay primers which span the intron to distinguish between pre and post Cre-excised 

transcripts. For the mouse model, it is important to ascertain whether there is read-through 

transcription of the SV40 PolyA signal in the absence of Cre. In this case RNA transcribed 

would not result in EGFP fluorescence, but would still contain the repeat region -which is 

the basis of DM pathogenesis, although low levels of expanded triplet repeats have been 

shown to be without pathogenic effect in mice (Mahadevan et al., 2006). 

 
3.7 Discussion 

Our aim was to create a conditional mouse model of DM1, based on the limited expression 

of expanded CUG repeats linked to an EGFP reporter, using the Cre-lox system. 

Expression of the repeat tract would be defined by the pattern of Cre recombinase 

expression, obtained by crossing our Lox-repeat transgenic line with available Cre 

expressing lines. We planned to generate the transgenic lines using two rounds of 

integration in ES cells; the first, a random integration of the construct backbone, to obtain 

an integration site target to which the second round constructs containing differing lengths 

of repeat tract could be targeted by homologous recombination. Five constructs were 

created as described in Figure 5: One founder construct pStopEGFP•TK and a 5 and 250 

repeat version each of the pStopEGFP targeting construct and the constitutively expressed 

pLoxEGFP construct. The 800 repeat form proved too elusive for the time available to 

carry out this work. Three further pLoxEGFP constructs arising from spontaneous 

deletions during in vitro Cre excision were isolated and the 3’UTR length verified by 

restriction digest. The component parts of all these constructs were tested in at least one 

stage of their construction and shown to be functional.  

One transgenic mouse was generated using the normal repeat allele TgStopEGFP5 by 

random integration. Cell-lines were established from tail-tip tissue taken from generation 
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F3 and F4 and used to test the Cre-lox mechanism in vitro. EGFP fluorescence could not 

be detected after pCre transfection by fluorescent microscopy directly, or by using α-GFP 

to increase the signal. PCR analysis of the transfectants revealed the excision mechanism 

to be functional at the DNA level. 

3.7.1 Repeats 

We successfully generated the pStopEGFP•TK construct required for first round random 

integration and pStopEGFP5 and pStopEGFP250 for second round targeting of repeats to 

integration by homologous recombination. It was our intention to use 5; 250 and 800 

expanded repeat tracts for our mouse model to reflect the normal; adult-onset and 

congenital forms of the disease. Whilst the cloning of 5 repeats was straightforward, 250 

repeats was difficult and 800 repeats unsuccessful due to deletions generated during 

bacterial propagation of the DNA. It was not clear at the outset that the repeat tract itself 

was changing. We were attempting to clone from a size distribution generated from patient 

DNA, and often a large band when gel purified will contain a small amount of 

contaminating short sequences. During cloning of the 250 repeat it was assumed that these 

fragments were also cloned, and selected for because they might be expected to grow more 

rapidly since the insert would be smaller. For this reason small colonies were also picked, 

which would be expected to contain larger or ‘difficult to propagate’ inserts, but these did 

not show any increase in size or insert homogeneity. It became clear as larger repeat 

lengths were attempted it was probable that clones containing long repeats were 

undergoing a rearrangement either during transformation into the host, or during 

replication within the bacterium, creating a population of plasmids whereby repeats had 

been lost, and also perhaps part of the 3’UTR, losing the EcoRI or XhoI site, or duplicating 

it leading to the appearance of partially digested samples and large doublets respectively. 

Intraplasmid rearrangements have been shown to be mediated by CTG repeats in E. coli 

(Hashem et al., 2002; Wojciechowska et al., 2005). Another factor influencing 

rearrangements may have been introduced as the repeats were cloned. Here, blue-white 

screening was used whereby the insert is cloned into the lacZ gene. This disrupts 

translation of β-galactosidase and the subsequent hydrolysis of x-gal substrate to an 

insoluble blue dye, resulting in white colonies for cloned inserts. Using this mechanism 

means that the cloned insert was also expressed. It has been shown that in E.coli, induction 

of transcription of repeats results in an increase of deletions within the array (Bowater et 

al., 1997). Expression must not have been the only factor since heterogeneity within the 

repeat was still apparent upon re-transformation and propagation of further batches of 250 
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repeat constructs without blue-white screening, where the lacZ gene was repressed by LacI 

(lacIq) (as in Figure 18A). It would be interesting to see how recently developed bacterial 

hosts such as SURE or stbl2 cells would fare. SURE cells have tight lacZ control and are 

recombination (recABJ), UV and SOS repair deficient, designed to grow up plasmids 

harbouring repeated sequences and those with abnormal secondary structure such as Z-

form DNA.  

An alternative method designed to create large repeat tracts is to clone arrays of interrupted 

repeats as done by de Haro et al. to create a Drosophila model of DM1 (de Haro et al., 

2006). Here 24 blocks of (CUG)20CUCGA were used to create an interrupted repeat of 

480, (iCUG)480. In this instance expression of (iCUG)480 led to DM-like symptoms of 

muscle wasting and degeneration. Furthermore, (iCUG)480-induced symptoms could be 

modified by altering levels of MBNL1 and CUG-BP1, RNA binding proteins implicated as 

pivotal in DM pathogenesis. So clearly a pure repeat tract is not necessary to induce DM-

like symptoms. Whether interruption of the repeats modifies the effect of the mutated array 

in any other way has not yet been established, but recent research indicates that 

interruptions reduce the rate of repeat expansion (Braida, unpublished) and may modify 

disease progression as proposed by Matsuura et al. in SCA10 (Matsuura et al., 2006). 

3.7.2 Random integration 

We set out to use ES cells to generate our transgenic model, but because of perceived 

doubts about the integrity of the cell line, we switched to random integration, the usual 

method for generation of transgenic models such as ours. We used the new transgenic 

services of Glasgow University’s Central Research Facility to carry out the injections. 

They successfully generated a Tg(StopEGFP5) transgenic mouse using pronuclear 

injection. However, multiple attempts to generate the mutant Tg(StopEGFP250) mouse 

failed. According to the literature (Hogan, 1994; Pinkert, 1994) and our in-house training 

course (“Transgenic mice: Applications and Methodology” run by Dr. J.B.Wilson) one 

would expect to obtain four positive transgenic animals from each 100 eggs injected. In 

generating transgenic mice by pronuclear microinjection, typically 50-80% of eggs survive 

the injection, and 10-30% of implanted microinjected eggs can be expected to reach term. 

Of those mice born usually 20-40% are transgenic (Hogan, 1994). We obtained 1 

transgenic mouse from 182 live births. We have been unable to obtain complete records as 

to the number of eggs injected to create all 182 live mice, since it transpires that records 

were not kept by the facility in the early days. Of those records that were made, of 2071 
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eggs that were injected with TgStopEGFP250, 716 survived injection (34%), 710 were 

implanted and of these 82 (12%) were born live, and 1 pup was found dead. None of these 

animals were positive for the transgene (dead pup not tested). The survival rate in these 

experiments was half the expected rate for injections. This could have been due to the 

injection process, handling, culture conditions or the DNA preparation. Efficiency in terms 

of DNA integration and development of eggs to term depends on the concentration of the 

DNA, with increasing concentration resulting in higher frequencies of integration, but a 

reduction in survival (Hogan, 1994). Brinster et al. found 1-2µg/ml to be optimal (Brinster 

et al., 1985). Here 4 batches of DNA were prepared by 3 different recommended methods 

of purification: CsCl/agarose gel/NA45 paper; endofree maxiprep/agarose gel/dialysis, and 

endofree maxiprep/agarose gel/DEAE sephacell. Although a low concentration of DNA 

was used to bias towards incorporation of single molecules, it was within the optimal 

range. 

The number of mice born was low, 12% of implants, but just within the expected range for 

live births after implantation (10-30%). Reasons causing this could be technical such as 

overculture of embryos followed by oviduct rather than uterine transfer, or construct 

related such as embryonic lethality caused by ‘leaky’ transcription of repeats through the 

SV40 terminator. During genotyping of the TgStopEGFP5 F1 progeny it was noted that the 

transgene segregation was not 50:50 as would be expected from integration during the 

single cell stage. Analysis of the F1 progeny using a chi square test showed that transgene 

integration most likely happened during the 4 cell stage. Results calculated for transgene 

integration at each of the early stages of embryonic cell division were: 1 cell, 36.54; 2 cell, 

4.05; 4 cell, 0.38 and 8 cell, 9.37. The control TgStopEGFP5 was the only positive 

transgenic mouse to come from the facility, the number of total injections unknown, but at 

least 2 other research groups were using the service. Although aliquots had been given it 

transpired that the DNA had been stored at 4ºC and repeatedly used. This would result in 

reduced concentration due to molecular adhesion to the tube wall over time, and perhaps 

degradation. Subsequent batches were given as single use tubes to overcome this, storage 

specified as -20ºC. The 5 and10ng/µl concentrations in this second batch would also have 

compensated for reduced concentration, although (assuming injection of equivalent 

numbers) the numbers of mice being born seemed to reduce with increasing concentration; 

20; 14 and 11 from 1; 5 and10ng/µl respectively, indicating that this perhaps was not an 

issue. Technically, it could be that integration is more difficult for larger repeats, but DM 

mouse models constitutively expressing up to 300 repeats have been successfully 
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generated (300 repeats: Seznec et al., 2000 ; 250 repeats: Mankodi et al., 2000; 162 

repeats: Monckton et al., 1997 ), so this strategy should also have been possible.  

It has been recently published that over expression of 5 CTG repeats in a mouse model 

results in a major phenotype a few days after induction or after nine months without 

induction due to a leaky promoter (Mahadevan et al., 2006). Our TgStopEGFP5 mouse 

was produced in 2003 and since it was deemed a normal control line and appeared healthy, 

no phenotypic analyses were carried out. It was later sacrificed due to unspecified ill-health 

aged 22 months. 

3.7.3 Cre-lox mechanism and activated fluorescence 

The mechanism of Cre-Lox activation of EGFP expression is functional in vitro at the 

DNA level and in cell culture, by pre-treatment of pStopEGFP5 or pStopEGFP 250 with 

recombinant Cre prior to transfection, and in vivo by co-transfection of pStopEGFP5 or 

pStopEGFP 250 and pCre into DmtD162 kidney; Cos7; Hela and 3T3 cells. It is not clear 

why no fluorescence was seen after pCre transfection of TgStopEGFP5 tail lines even after 

α-GFP enhancement. Is it that the EGFP expression levels are too low? Ideally the EGFP 

RT-PCR analysis on pCre transfected TgStopEGFP5 tail lines should be repeated, since 

contamination was evident within the controls, albeit low level (Figure 30). So, whilst it is 

not possible to determine whether low levels of RNA are expressed before Cre activation 

from this analysis, it is apparent that the levels of RNA present after Cre activation are not 

high. It is assumed during the transfection process that equal amounts of DNA enter the 

cell when comparing tail cells transfected with pCre to the pLoxEGFP control, but the 

actual EGFP transcriptional target gene may vary hugely in copy number between the two, 

since the target for pCre is endogenous. Cre recombinase also catalyses the integration of 

the circularised excision product, so at any one time it can be assumed that only half of the 

target gene will be activated for fluorescence. It could still be that the EGFP levels are too 

low to be detected, which could have been investigated by comparing expression levels in 

another GFP fluorescent mouse. Another explanation in this ex-vivo experiment, is that Cre 

recombinase itself is interfering with transcription. If high levels of EGFP are produced in 

the control EGFP transfection, then it can be assumed that high levels of Cre are produced 

in the pCre transfection since the promoters are of a similar strength. Large amounts of Cre 

may lead to continuously occupied lox binding sites, which would be expected to interfere 

with transcription. Allowing plasmid loss post-transfection by extended incubation of the 

cells could test this theory. As transfected cells divide, the plasmid is lost naturally in the 

absence of positive selection due to uneven segregation of the molecules. After the plasmid 
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disappears, the amount of Cre within the cell would diminish, freeing lox binding sites and 

allowing production of EGFP. These cell-lines are representative of a single integration 

event not fully characterised. Positional effects can contribute to the level of expression 

within a gene. There may be more rearrangements, tandem integration or arrays, each of 

which could adversely affect Cre excision, so there are a multitude of reasons as to why 

Cre does not activate EGFP fluorescence in these single-founder cell-lines. Whilst the ex 

vivo approach should give a good reflection of what’s happening in the mouse model, the 

amounts of pCre DNA entering the cell in a transient transfection are extremely variable 

and unpredictable. In the true in vivo situation where Cre and lox mouse lines are crossed 

in order to induce expression, only one transgene would be present in each cell so this 

approach may still have been successful. 
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4 Design and characterisation of a cell culture 
model of DM1 pathogenesis 

4.1 Synopsis 

In both myotonic dystrophies type 1 and type 2, the mutant transcript becomes trapped 

within the nucleus forming foci, which co-localise to three members of the muscleblind 

family of double-stranded RNA binding proteins MBNL1; MBNL2 and MBNL3. MBNL 

proteins act in opposition to CUG-BP1, a single-stranded binding protein, to regulate the 

alternative splicing of target genes during development. Recruitment of MBNL1 to nuclear 

foci of expanded repeat arrays transcribed from the mutant gene, is thought to alter the 

dynamic balance between these regulators, resulting in the missplicing of genes, some of 

which can be directly related to a specific symptom of the disease. 

In chapter three we generated founder and targeting constructs to create a conditional 

mouse model of DM1, based on the limited expression of CTG repeats positioned within 

the 3’UTR of the EGFP gene using the Cre-lox system. Here we have used the targeting 

constructs pStopEGFP5 and pStopEGFP250, which allow transcription of EGFP and the 

repeat tract only after Cre excision of the upstream SV40 polyA signal, and their 

constitutively-expressing floxed derivatives pLoxEGFP5 and pLoxEGFP250, to create an 

inducible cell-culture model of DM1 to study early pathogenic changes. Our model 

replicated the key markers of pathogenesis observed in DM patient cells. In HeLa cells, we 

have shown that expression of the expanded repeat transcripts from constitutively 

expressed construct pLoxEGFP250 (chapter 3) formed foci within the nucleus, which co-

localised with MBNL1 protein. Foci were also formed in Cos7 and 3T3 cells. Since 

MBNL1 and CUG-BP1 proteins are central to the aberrant splicing seen in DM we also 

confirmed their presence within the cell. During co-localisation experiments using an 

MBNL1/GFP fusion protein it was noted that expression of MBNL1/GFP, therefore 

increasing the amount of available MBNL1 within the cell, increased the size of foci 

formed, supporting the MBNL sequestration hypothesis, but also suggesting a protective 

role of MBNL1 in DM1. 
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4.2 Introduction 

Recent evidence suggests that the genes affected in myotonic dystrophy employ alternative 

splicing to produce different isoforms, regulated during development through a dynamic 

balance between two splicing regulators MBNL1 and CUG-BP1 (Ho et al., 2004). These 

proteins are antagonistic, favouring either the inclusion or exclusion of exons by adjacent 

site-specific binding during splicing of the messenger RNA, producing the embryonic or 

adult form of the gene when appropriate. Sequestration of MBNL1 protein within nuclear 

foci, and/or the increase in nuclear CUG-BP1 activity seen in DM1 patient cells, is thought 

to alter the balance between the two regulators and causes regulation of splicing to shift in 

favour of the production of embryonic or dysfunctional forms (by using cryptic splice 

sites) of the proteins concerned (Ladd et al., 2005; Lin et al., 2006). Although it is clear 

that missplicing is caused by this shift in the balance of regulation, little is known about the 

mechanism of regulation itself, and what regulates the regulators. CUG-BP1 is a single 

stranded binding protein whereas MBNL1 binds double-stranded RNA, so it may not be as 

straightforward as binding stoichiometry during splicing. In fact recent research indicates 

the mechanism may involve complex formation between either CUG-BP1 or MBNL1 and 

another splicing factor, heterogeneous nuclear ribonucleoprotein H (hnRNP H) (Paul et al., 

2006). In DM1 patient cells, and in cells expressing expanded CTG arrays, the activity and 

concentration of CUG-BP1 increases in the nucleus (Timchenko et al., 2001), but the 

overall total of nuclear and cytoplasmic CUG-BP1 is constant. What causes this and the 

reasons for it are unknown, so significant gaps remain in our understanding of DM 

pathogenesis. 

Myotonic dystrophy is a multisystemic disease, which varies in severity between 

individuals and progresses throughout the lifetime of the individual. The mutation expands 

somatically at varying rates between tissues and continues as the patient ages, the 

symptoms increasing in severity caused by the increase in array length. Sample donations 

from patients are invasive involving tissue biopsies and so are infrequent, nowadays rarely 

done since the advent of molecular CTG repeat analysis used for diagnosis, rather than 

skeletal muscle histology (Harper, 2001). The poor availability of patient samples and the 

variation between them confounds analyses done using them. Mouse models, and cell-lines 

generated from patient tissue have been used and are useful for pathogenic study, but the 

disease process is fixed and already underway. When we look at samples from patients it is 

not clear whether primary or secondary changes are being studied. For instance, 

researchers have reported decreased levels of DMPK in patient muscle (Fu et al., 1993; 
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Koga et al., 1994). Salvatori et al. reported that decreased expression of DMPK correlated 

with the proportion of type 1 fibres compared to type 2, and that the decrease therefore was 

probably due to secondary effects resulting from type 2 fibre atrophy rather than a direct 

effect of the repeat on DMPK levels (Salvatori et al., 2005). It is therefore difficult to use 

patient samples to study the primary events arising from the earliest transcription of the 

mutant gene, as may be the case with the congenital form of DM1. An inducible tissue 

culture model would help to fill these gaps. Cell-culture based systems are easy to use, 

readily available and consistent. Depending on the cell-type used, the model would help to 

unite data already obtained from both human cells and samples and mouse models to study 

the effects of expanded CTG arrays on the processing of downstream targets. Since DM is 

a multisystemic disorder not purely affecting muscle, we chose to use non-muscle derived 

cell-lines to encompass rather than exclude any possible global effects. 

4.3 Validation of an inducible model  

Here we utilise transient transfection as a means to activate expanded array expression 

from the targeting constructs generated in chapter 3, allowing the study of pathogenesis 

from the first hours of expanded repeat transcription.  

4.3.1 Cre, Lox and foci 

The model is based on the expression of normal length or expanded CUG repeats placed 

within the 3’UTR of an EGFP reporter transcript. The induction of EGFP fluorescence and 

therefore expanded array expression by the Cre-lox excision mechanism has already been 

shown in 3T3 cells (Chapter 3.44, Figure 10). Here, pStopEGFP5 and pCre were 

transfected into 3T3 cells, EGFP fluorescence could only be detected when the two 

plasmids were transfected together. In the same experiment, in vitro Cre-excised derivative 

pLoxEGFP was also transfected into 3T3 cells and produced EGFP fluorescence. 

Activation of EGFP by Cre excision has also been successfully achieved in Cos7; HeLa 

and DmtD162 kidney cell-lines using co-transfections of pStopEGFP5 or pStopEGFP250 

and pCre plasmids (data not shown).  

In both myotonic dystrophy type 1 and type 2, the mutant transcripts become trapped 

within the nucleus and are retained in the form of foci (Davis et al., 1997; Liquori et al., 

2001). To determine whether our expressed transcripts form foci within the nucleus, Cos7 

cells were co-transfected with pCre and pStopEGFP5 or pStopEGFP250, and fluorescent 
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in situ hybridisation with Cy3 (red) conjugated (CAG)10 or (CTG)10 oligonucleotides 

performed. The CAG repeat oligonucleotide is expected to bind to the CUG expanded 

array, whilst the CTG repeat oligonucleotide should not, acting as a negative control. 

Nuclei were counter-stained with DAPI, a fluorescent blue dye.  

 

Figure 31 Nuclear foci in Cos7 cells expressing 250 repeats. A Fluorescent micrographs Low 
power magnification of Cos7 cells co-transfected with pStopEGFP250 or pStopEGFP5 and pCre. 
Foci can bee seen in the pStopEGFP250 repeat/pCre co-transfectants but not in the pStopEGFP5 
repeat/pCre co-transfectants. B High power magnification (X63) detailing foci within the nucleus in 
Cos7 cells co-transfected with pStopEGFP250 and pCre plasmids. 
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Foci were detected in the nuclei of cells when co-transfected with pCre and 

pStopEGFP250, but not with pCre and pStopEGFP5 (Figure 31). No foci were detected 

using the Cy3-(CTG)10 (data not shown). The Cy3-(CAG)10 fluorescent in situ 

hybridisations were repeated using HeLa and 3T3 cell-lines. Foci were detected in nuclei 

when co-transfected with pCre and pStopEGFP250 but not with pCre and pStopEGFP5 

(Figure 32). Therefore, in our model, the transcribed RNA containing expanded CUG 

repeats forms foci within the nucleus, and in cell-types other than muscle; monkey kidney 

(Cos7), human epithelial (HeLa) and mouse fibroblasts (3T3). It was observed that in 

general the foci were larger in Cos7 cells, and smaller and more well-defined in HeLa and 

3T3 cells (Figure 31 and 32), which, if MBNL1 is limiting in foci formation, could be due 

to differences in endogenous MBNL1 levels between the cell-lines. 

 

Figure 32 Fluorescent micrographs showing nuclear foci of expanded repeat transcripts in 
HeLa and 3T3 cells Fluorescent micrographs. No foci are detected by Cy3-(CAG)10 in situ 
hybridisation using constructs expressing only 5 repeats. Hela cells were transfected with 
pStopEGFP5 and pCre. 3T3 cells were transfected with constitutively-expressing pLoxEGFP5. NB 
All cells on the coverslips were assessed for foci formation, representative samples have been 
shown as detailed close-ups in order to visualise foci. 
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Here we used co-transfection to test the Cre-lox mechanism and foci formation, which 

results in a low number of cells expressing both plasmids and consequently a low number 

of cells expressing the expanded array. Single versus double transfection has been shown 

in chapter 3 to give significantly increased EGFP fluorescence when using equivalent 

amounts of DNA (Chapter 3.44 Figure 10, pStopEGFP5 + pCre vs. pLoxEGFP5). Single 

transfections could be used to activate expression in our model using the cell-lines made in 

Chapter 3 (3.4.2) for testing neomycin function: HeLa and Cos7 cells stably transfected 

with pStopEGFP5 or pStopEGFP250. Expression of the reporter and expanded array could 

be activated by the simple transfection of pCre.  

4.3.2 Stable cell-lines 

To confirm Cre-lox function in these lines, Cos7 and HeLa pStopEGFP5 and 

pStopEGFP250 stable cell-lines (KpnI-XbaI fragment, chapter 3, Figure 20) were 

transfected with pCre. Cos7 and HeLa cells were transfected with pLoxEGFP as a positive 

control for transfection and fluorescence, or pCre alone as a negative control. EGFP 

fluorescence was detected microscopically in the pLoxEGFP control transfection, but not 

in the clones, HeLa or Cos7 cells using pCre (data not shown). The experiment was 

repeated, and produced the same negative result (data not shown). PCR analyses had been 

performed previously to confirm the presence of the transgene: EGFP PCR on the Cos7 

clones and for the Hela clones, EGFP (chapter 3, Figure 9) and DMH-BR PCR over the 

CTG repeat region (Chapter 3, Figure 20 for primer positions). To confirm the presence of 

the promoter, CMV PCR was carried out on a subset of the Cos7 clones, selected to reflect 

high, medium and low levels of EGFP product, since this could relate to the transgene 

expression level which may have been useful in future analyses. The construct was present 

in most clones as determined by EGFP and H-BR PCR analysis, but in the PCR obtained 

for the CMV promoter, product was absent in most isolates (Figure 33). Ideally the 

reaction should have been repeated since there is contamination present in the Cos7 

untransfected control, however this has no bearing on the interpretation of the negative 

result. Perhaps the close proximity of the 5’ end to the promoter region had resulted in 

promoter sequence loss due to endonuclease activity during integration. To check this, the 

KpnI -XbaI transgene fragment (Chapter 3, Figure 20) was tested by direct transfection into 

Cos7 cells to make sure it was functional. No fluorescence was evident (data not shown). 

A larger AclI fragment, incorporating a further ~300 bp of flanking region (Chapter 3, 

Figure 20) was isolated and co-transfected into Cos7 cells with pCre, and successfully 

expressed EGFP (data not shown). The AclI fragment was then stably integrated into Cos7 
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cells and ten clones from each of pStopEGFP5 and pStopEGFP250 isolated. 

Unfortunately, once again, transfection with pCre did not activate EGFP fluorescence (data 

not shown). 

 

Figure 33 The transgene is present within the stable clones. PCR analyses carried out to verify 
the transgene integrity. A Cos7 clones. CMV PCR was carried out on a subset of samples 
asterisked in the EGFP analysis. B HeLa clones. Most clones positive for DNA amplified both 
EGFP and H-BR PCR products. Note the different repeat lengths in “250” clones. 

It is not clear why this approach was unsuccessful. Possibly, the transfection of pCre used 

to activate the stable lines, resulted in many copies of the recombinase in comparison to the 

low copy number of the integrated transgene. This could have generated high levels of 

recombinase relative to the target transgene, interfering with transcription of the reporter 

gene by physically blocking RNA polymerase with incessant loxP binding. 

4.3.3 The constitutively expressed transgene 

The advantage of using stably pStopEGFP5/250-transfected cells was to increase the 

number of cells actively expressing EGFP after transfection. Since cells already harbour 

pStopEGFP5/250 integrated within the genome, cells need only a single plasmid 

transfection of pCre for EGFP gene expression, rather than the pCre + pStopEGFP5/250 

co-transfections previously used for transgene expression. So, rather than induce 

expression of EGFP via transient Cre activation of stable pStopEGFP5/250 cell-lines, this 

single transfection approach can also be done using pre-excised pLoxEGFP5/250 (Figure 
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34). In fact, transient transfection of the constitutively expressing floxed transgene confers 

an advantage over stably integrated transgenes due to the lack of position effects, often 

noted after genome integration. 

 

Figure 34 Two different approaches for single plasmid activation. Schematic diagram 
depicting the differences between two approaches to activation of transcription using a single 
plasmid transfection. Top pStopEGFP5/250 is first integrated into the genome of the chosen cell-
line and clones selected by neomycin resistance. EGFP transcription is then activated by excision 
after transfection with pCre. Bottom Constitutively expressing pLoxEGFP5/250 is transfected 
directly into the chosen cell-line. 

Floxed constructs were generated in chapter 3 (chapter 3, Figure 11B) by in vitro excision 

of pStopEGFP5 and pStopEGFP250 using recombinant Cre recombinase. During isolation, 

some constructs were identified with variations in the length of cloned repeats. PCR 

analysis revealed the arrays to be reduced to approximately 150, 100 and 110 triplet 

repeats. To confirm that the floxed pLoxEGFP250 products formed nuclear foci, HeLa 

cells were transfected with floxed products pLoxEGFP5 and pLoxEGFP250. The 100 and 

150-repeat floxed constructs were also included in the experiment to discover to what 

extent shortened arrays would form foci. Transfected cells were subjected to in situ 

hybridisation using Cy3-labelled (CAG)10 oligonucleotides. PLoxEGFP5 was included as a 

negative control for foci formation and no foci were detected. In pLoxEGFP constructs 

containing 100, 150 and 250 repeats however, foci were detected in the nucleus.  
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Figure 35 Foci formation with 100, 150 and 250 repeats in HeLa cells The top row of pictures 
show the three channels DAPI; EGFP and Cy3 separately and merged for the pLoxEGFP5 
transfectants. No foci are detected with Cy3-(CAG)10. The bottom row shows the three channels 
DAPI, EGFP and Cy3-(CAG)10 merged for pLoxEGFP constructs with 100, 150 and 250 repeats. 
Foci are apparent within the nucleus. 

 

4.3.4 EGFP and RNA foci 

From the experiments conducted so far, it is clear that although the EGFP transcript is 

retained in the nucleus in the form of foci, enough transcript escapes into the cytoplasm to 

produce detectable levels of EGFP. However, it is not always the case that EGFP and foci 

are detected within the same cell. Looking at transfections so far in Cos7; HeLa and 3T3 

cells, on occasion EGFP positive cells were devoid of foci, and in contrast some foci 

positive cells showed no green fluorescence (Figure 36). The occurrence of EGFP-positive 

foci-negative cells can be explained by the heterogeneous nature of repeat length in any 

one plasmid preparation (discussed in chapter 3, figure 15); cells transfected with small 

numbers of repeats would not be expected to form foci. Those cells with foci but no EGFP 

fluorescence are harder to explain, but foci formation must be a dynamic process: Repeats 

must be present before MBNL can bind. During a transient transfection, we are using a 

population of cells in different stages of the cell cycle with transfection complexes present 

over a period of 24 hours; not every complex will enter the cell and the contents 

transcribed at exactly the same moment. If a cell is transfected later rather than sooner 

within this timeframe, and if MBNL binds as the transcript is generated, in these particular 

cells the RNA binding protein would not be limiting, so all transcripts could be retained 

within the nucleus resulting in no EGFP translation. A time-course correlation between 

EGFP fluorescence and the presence of foci is investigated in chapter 5, section 3.1.1, and 
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is found to be most consistent at 48hrs, whereas these samples are processed at 24 hours 

post transfection, which could further affect the correlation. 

 

 

Figure 36 EGFP positive cells do not always exhibit foci Fluorescent micrograph illustrating the 
lack of correlation between EGFP fluorescence and the presence of foci in HeLa cells transfected 
with pLoxEGFP250  

 
In our model, expansions of 100 repeats and above form nuclear foci. It is possible that in 

cells harbouring the 5 repeat construct, the RNA becomes aggregated within the nucleus 

but is not detected using the Cy3-(CAG)10 oligonucleotide because there are 50 fold fewer 

target repeats: 5 vs. 250. To address this, a Cy3-GFP oligonucleotide was synthesised. The 

body of the two constructs is identical and so an oligonucleotide directed to the EGFP 

portion should have equivalent amounts of target RNA. Any differences in the pattern of 

staining should be due to the location and density of the target rather than absolute number 

of repeats. HeLa cells were transiently transfected with pLoxEGFP5 or pLoxEGFP250 

construct and after 24 hours in situ hybridisation was performed with Cy3-GFP, or Cy3-

(CAG)10  oligonucleotides as a positive control for the presence of foci. Unfortunately the 

Confocal 488nm laser was out of alignment and awaiting maintenance, rendering the 

EGFP signal more faint and grainy than usual, but still useful to identify EGFP positive 

cells, the Cy3 and DAPI channels were unaffected. The Cy3-(CAG)10 control samples 

showed the expected pattern of staining with nuclear foci apparent in the pLoxEGFP250 

transfectants, and no staining in the pLoxEGFP5 transfectants (Figure 37). Of the Cy3-
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GFP samples, no foci or general staining could be detected in the pLoxEGFP 5 

transfectants. In the EGFP positive portion of the pLoxEGFP 250 transfectants some cells, 

but not all exhibited foci-like staining in the nucleus, and many cells showed bright 

staining in the cytoplasm (Figure 37). Throughout this project in situ hybridisation to 

pLoxEGFP 250 transfectants with Cy3-(CAG)10 does highlight repeat RNA within the 

cytoplasm which peaks at 16 hours post transfection in 3T3 cells (see Chapter 5.3.1.1 ‘the 

dynamics of foci formation’) but not as seen here with Cy3-GFP. In this experiment few 

cells showed foci, most staining was found in the cytoplasm, and a significant number of 

cells exhibited EGFP fluorescence with no staining, something not seen as often with Cy3-

(CAG)10 probes. If the cytoplasmic staining is seen in EGFP positive cells in the 

pLoxEGFP250 transfectants, it is strange then that no cytoplasmic staining is seen in cells 

transfected with pLoxEGFP5. To conclude from this experiment, either the hybridisation 

itself failed, which is unlikely since the control Cy3(CAG)10 samples showed the expected 

results, or the Cy3-GFP is in fact not sensitive enough to detect a single copy target 

without amplification as afforded by a 50 fold increase in repeat number (250 vs. 5 

repeats). If foci were formed with arrays of 5 repeats, they would not be detected by Cy3-

(CAG)10 fluorescent in situ hybridisation. Taneja et al. looked extensively at the 

distribution of the DMPK transcript using a mixture of thirteen different 40-45bp probes 

placed throughout the transcript, in normal and DM1 patient cells. They observed focus 

formation only in DM1 patient cells and not in normal cells (Taneja et al., 1995). This 

conclusion has since been confirmed using riboprobes (Houseley et al., 2005), which 

confer more sensitive detection of target nucleic acid, since they are single-stranded and 

have a higher specific activity. Foci detected with (CAG)10  oligonucleotides therefore are a 

feature of expanded repeat expression and are specific to these cells.  

 
4.3.5 RNA binding proteins 

The most recently published literature suggests that the missplicing seen in myotonic 

dystrophy is caused by a shift in equilibrium between two opposing splicing regulators 

with trans dominant effects on specific pre-mRNA targets; primarily CUG-BP1 and 

MBNL1 RNA-binding proteins (de Haro et al., 2006; Kanadia et al., 2006; Lin et al., 

2006; Paul et al., 2006). 
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Figure 37 Foci detection using Cy3-GFP in situ hybridisation. Merged 3 channel fluorescent 
micrographs (EGFP; DAPI and Cy3) showing the failure of Cy3-GFP oligonucleotides to detect foci 
in control pLoxEGFP250 transfected HeLa cells, as well as the test pLoxEGFP5 transfected cells. 
Foci can clearly be seen in the control pLoxEGFP250 transfected HeLa cells using Cy3(CAG)10. 
Note that the green colouration originates from construct EGFP and not the fluorescent probe GFP, 
which is red (Cy3).  

 
4.3.5.1 CUG-BP1  

CUG-BP1 is a member of the CELF (CUG-BP and ETR-3 like factor) family of binding 

proteins. These proteins regulate the splicing of target mRNAs during development. In 

myotonic dystrophy patient cells, it had been noted that the concentration and activity of 

CUG-BP1 increased within the nucleus (Roberts et al., 1997; Timchenko et al., 2001). 

This led Philips et al. to look for CUG binding sites. They noticed CUG binding sites 

within muscle specific enhancers of the chicken (cardiac troponin T) cTnT gene, and went 

on to confirm it to be alternatively regulated during development by CUG-BP1, and more 

importantly to be mis-spliced in adult DM1 patients (Philips et al., 1998). Since this first 

data was published a plethora of CUG-BP1 target genes, some which can be directly 

related to symptoms have been discovered to be mis-spliced in DM1, such as chloride 

channel 1 causing the hallmark myotonia (Cooper et al., 2001; Mankodi et al., 2002) and 

the insulin receptor, insulin resistance (Savkur et al., 2001).  

Therefore in order to model this dynamic antagonism in the chosen cell-lines, it is 

important that CUG-BP1 is present. HeLa and 3T3 cells were transfected with 

pLoxEGFP5; pLoxEGFP250; pLoxEGFP (3T3 cells only) or transfection reagent alone 

and harvested after 24 hours. HeLa transfectants were lysed and washed before the nuclear 
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proteins were extracted. Total protein was extracted from the 3T3 transfectants. Each 

protein sample (50µg) was separated by SDS-PAGE (4-12%) before transfer and 

immobilisation onto a membrane. Protein bands were detected using α-CUG-BP1 

hybridisation followed by HRP-conjugate-chemiluminescent detection. CUG binding 

protein was detected in 3T3 extracts and the nuclei of HeLa cells (Figure 38). The levels of 

CUG-BP1 between the three HeLa nuclear samples appeared equivalent, although because 

no protein loading control was used it is impossible to confirm this.  

 

Figure 38 CUG-BP1 is expressed in HeLa and 3T3 cells 50µg nuclear extracts (HeLa) whole cell 
(3T3). The doublet seen in 3T3 cells is likely to consist of hyper and hypo-phosphorylated forms of 
CUG-BP1 (Roberts et al., 1997). 

Anti-CUG-BP1 analysis was repeated in HeLa cells to study the levels of the binding 

protein in separated cytoplasmic and nuclear fractions. Although in the transient 

transfection not every cell expresses the repeat (routinely in our hands, ~65% express the 

EGFP reporter as visualised by fluorescent microscopy), it may still be possible to detect 

an increase in the levels of nuclear CUG-BP1 caused by the expression of 250 CUG 

repeats. 

HeLa cells were transfected with pLoxEGFP5; pLoxEGFP250 or transfection reagent 

alone and harvested after 24 hours. Nuclear and cytoplasmic fractions were prepared, and 

50µg of each protein sample separated by SDS-PAGE (4-12%), before transfer and 

immobilisation onto a membrane. Protein bands were detected using α-CUG-BP1 

hybridisation followed by HRP-conjugate-chemiluminescent detection (Figure 39). CUG-

BP1 was detected in the nucleus of HeLa cells at much higher levels than in the cytoplasm. 

But there was no difference in CUG-BP levels between samples. 
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Figure 39 CUG-BP1 in HeLa nuclear and cytoplasmic fractions. CUG-BP1 is present at much 
higher levels in the nucleus compared to the cytoplasm of HeLa cells. 

 
4.3.5.2 MBNL  

MBNL is recruited to foci of mutant RNA within the nucleus (Miller et al., 2000; Fardaei 

et al., 2001; Fardaei et al., 2002), and works in opposition to the splicing regulator CUG-

BP1. Using mouse models that over-express CUG-BP1 (Ho et al., 2005), or are 

nullizygous for MBNL1 protein (Kanadia et al., 2003), it has been shown that alteration of 

the balance between these two proteins leads to missplicing equivalent to that seen in 

myotonic dystrophy. In addition, chloride channel defects resulting from the over-

expression of CUG-BP1 in the mouse, have been reversed by increasing expression of 

MBNL1 (Kanadia et al., 2006). The current model of pathogenesis suggests that in 

myotonic dystrophy, MBNL depletion by foci formation may lead to the shift in MBNL1-

CUG-BP1 equilibrium, resulting in the splicing of developmentally inappropriate isoforms.  

The presence of MBNL in cultured cells was investigated by immunocytochemistry using 

αMBNL1 polyclonal antibody (αEXP42, a gift from Maurice Swanson, Miller et al., 

2000). Cells were fixed during exponential growth and the antibody hybridised overnight. 

Control cells were incubated without αMBNL1. Antibody binding was detected using an 

anti-rabbit AMCA conjugated secondary antibody followed by fluorescence microscopy. 

Control cells with no αMBNL1 showed slight background secondary antibody staining 

throughout the cytoplasm and the nucleus, but staining in the αMBNL1 sample was 

stronger, and primarily in the nucleus (Figure 40).  
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Figure 40 Nuclear MBNL staining in HeLa cells. Fluorescent micrographs showing MBNL 
staining primarily in the nucleus of HeLa cells. Anti-vimentin was used as a positive control for the 
immunocytochemistry procedure. 

 

Overall the amount of fluorescence is lower than expected. Since MBNL is most abundant 

in the nucleus this could be due to difficulty of antibody entry through the nuclear 

membrane, or an effect of the fixation method used. To take a different approach western 

transfer and hybridisation was used. HeLa cells were transfected with pLoxEGFP5; 

pLoxEGFP250 or transfection reagent alone and harvested after 24 hours. Nuclear and 

cytoplasmic fractions were collected. At the same time, total protein was extracted from 

3T3 cells to establish the presence of MBNL in this cell-line. Protein samples were 

separated by SDS-PAGE (4-12%) before membrane transfer. Protein bands were detected 

using α-MBNL monoclonal (MCA-MBNL, Encor Biotechnology Inc), followed by HRP-

conjugate-chemiluminescent detection. Preliminary results indicated that MBNL was 

present (Figure 41). Ideally the hybridisation should have been optimised to increase the 

level of signal, which was faint. No signal was obtained using 3T3 cell extracts (data not 

shown). This was not an unexpected result since the HeLa cell chemiluminescent signal 

was faint; even though the extracts were nuclear indicating that the hybridisation was 

possibly at fault.  

 

Figure 41 Western showing MBNL in HeLa nuclear and cytoplasmic fractions. MBNL was 
detected in the nuclear fraction. 
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4.3.5.3 Co-localisation between MBNL and foci 

MBNL1, MBNL2 and MBNL3 have been shown to co-localise with nuclear foci of 

expanded repeats in DM1 and DM2 patient cells (Fardaei et al., 2002). To determine 

whether MBNL was recruited to RNA foci in this system, double labelling was performed. 

In order to minimise antibody usage the cell-culture surface area was scaled down 

compared to the previous ICC, by growing HeLa cells in 8-well 81mm2 chamber slides. 

The cells were transfected 24 hours after plating, with pLoxEGFP250 or pLoxEGFP5. The 

following day, subsets of each transfection were either processed singly for Cy3-(CAG)10 

in situ hybridisation or αMBNL1 (αEXP42) immunocytochemistry as positive controls for 

each procedure, or by double labelling with αMBNL1 immunocytochemistry followed by 

Cy3-(CAG)10 in situ hybridisation. In the pLoxEGFP250 positive controls, foci were 

detected in samples with Cy3-(CAG)10 in situ hybridisation, but no fluorescence was seen 

using αMBNL1 immunocytochemistry (data not shown). In the double-labelled 

pLoxEGFP250 sample, fluorescent microscopy revealed nuclear foci staining by Cy3-

(CAG)10  in the pLoxEGFP250 sample, but no MBNL staining by αMBNL1/AMCA 

immunocytochemistry (Figure 42). No foci were seen in any of the pLoxEGFP5 samples 

(data not shown).  

 

 

Figure 42 Failed attempt to visualise MBNL in foci Fluorescent micrographs. HeLa cells 
transfected with pLoxEGFP250 followed by αMBNL/AMCA ICC and Cy3-(CAG)10  double labelling. 
Foci can be identified in the nucleus of EGFP positive cells, but no staining is seen using αMBNL, 
and therefore no co-localisation. 
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The experiment was repeated several times unsuccessfully: Cy3 positive foci did not show 

co-localised (or otherwise) staining with αMBNL1/AMCA. Another researcher had also 

encountered difficulties with the procedure (Houseley, personal communication). Antibody 

hybridisation appears to have failed since there is no general nuclear staining as seen in the 

HeLa cells during the ICC test (Figure 40). There could be a number of technical reasons 

for this. The antibody may have bound, but become disassociated during the in situ portion 

of the experiment -caused by formamide in the hybridisation buffer. Also, the foci do not 

appear as sharp when compared to in situ hybridisation done in a single labelling 

experiment (Figure 32). This could be due to partial degradation of RNA within foci 

during the antibody staining, from RNAses within the polyclonal antibody serum. 

Degradation of RNA in this way could also lead to the release of bound MBNL proteins. 

Some antibodies are not suited to ICC, and require high concentrations compared to 

western blots, but the antibody aliquot was insufficient for use at higher concentrations. 

There were obstacles that hindered analysis making it unclear as to whether endogenous 

MBNL does not co-localise with foci or if the double labelling procedure itself is at fault. 

The experimental design was flawed due to the absence of a positive control for the 

antibody staining of foci within the nucleus. It was also observed that the rate of 

transfection was reduced when using chamber slides, perhaps due to the formation of a 

deep meniscus. This caused cells to settle around the edge, and may also have interfered 

with complex dispersion lowering the number of target cells for study. The choice of 

secondary fluorophore, AMCA, is not ideal since the fluorescent signal from the lower, 

blue end of the spectrum is not as strong as the middle range, but since EGFP utilises the 

middle range and Cy3 from the far end, there was no other choice using the microscope 

equipment we had available. Far-red fluorophores such as Cy5 are too faint under 

fluorescent microscopy. Dyes with similar emission frequencies would now be a viable 

option since the confocal we have can visualise infrared, and can also distinguish between 

different emission spectra e.g. EGFP vs. FITC. 

To address some of the issues with the experimental design, a plasmid expressing 

MBNL1/GFP fusion protein under the control of the CMV promoter (a kind gift from 

Marion Hamshere (Fardaei et al., 2001)) was used to help visualise endogenous MBNL in 

cells expressing expanded CUG arrays. Although the use of the same reporter protein in 

two different constructs in the same transfection was likely to confuse analysis, it could 

resolve some doubts about the procedure. From the experiments performed so far, it was 

not clear whether endogenous MBNL does not co-localise with foci or if the double 
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labelling procedure itself was at fault. In our experiments pLoxEGFP250 constructs did not 

produce EGFP (i.e. green) foci. If MBNL1/GFP fusion protein does produce EGFP foci in 

the presence of pLoxEGFP250, these could be used as a positive marker for α-MBNL1 

immunocytochemistry to establish whether the double labelling procedure is working. It 

would also confirm the integrity of the α-MBNL1 used in the previous experiments. 

HeLa cells were seeded into chamber slides and transfected singly with MBNL1/GFP 

plasmid, or co-transfected with MBNL1/GFP plasmid + pLoxEGFP250 or MBNL1/GFP 

plasmid + pLoxEGFP5. After 24 hours, immunocytochemistry was performed with 

αMBNL1/AMCA followed by in situ hybridisation with Cy3-(CAG)10. No foci were 

detected in the MBNL1/GFP sample (Figure 43A) or the co-transfected MBNL1/GFP 

plasmid + pLoxEGFP5 (data not shown). Cy3 positive foci were detected in the co-

transfected MBNL1/GFP plasmid + pLoxEGFP250 sample which co-localised both to 

EGFP foci and αMBNL1/AMCA (Figure 43A). This suggests that MBNL1/GFP fusion 

protein is recruited to the RNA foci. It also confirms the integrity of the MBNL1 antibody. 

It is strange that the anti-MBNL staining in the co-transfected 250 repeat cells is 

perinuclear in this particular cell (Figure 43A), and that no Cy3 foci-positive cells were 

seen showing co-localised anti-MBNL staining within the nucleus. In the MBNL1/GFP 

control there is less general fluorescence within the nucleus using the antibody/AMCA 

combination compared to EGFP fluorescence (Figure 43A), which suggests that entry of 

the antibody was hindered, only detecting a small proportion of the MBNL present. 

However, this result cannot be representative, in this transfection only a few EGFP positive 

cells per well were observed, perhaps because the transfection was inefficient due to the 

use of chamber slides. Also, each EGFP positive cell is not guaranteed to include both 

plasmids resulting in very few cells of interest. So because the small scale was causing a 

problem, and it looked as if EGFP from MBNL1/GFP may be co-localising with foci, the 

transfections were repeated on a larger scale using coverslips, but without ICC.  

HeLa cells were transfected singly with MBNL1/GFP plasmid, pLoxEGFP250 or 

pLoxEGFP5. Co transfections were performed with MBNL1/GFP plasmid and 

pLoxEGFP250 or MBNL1/GFP plasmid and pLoxEGFP5. The transfectants were then 

subjected to in situ hybridisation with Cy3-(CAG)10.  All cells on the coverslip were 

assessed. Neither Cy3 foci nor EGFP foci were detected in MBNL1/GFP; pLoxEGFP5 or 

MBNL1/GFP plasmid and pLoxEGFP5 transfections (data not shown). Cy3 foci were 

detected in pLoxEGFP250, and MBNL1/GFP plasmid and pLoxEGFP250 co-

transfections, indicating the presence of RNA foci (Figure 43B+C). EGFP foci were only 
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seen in the MBNL1/GFP plasmid + pLoxEGFP250 co-transfections indicating that the 

presence of both plasmids is required in order to form EGFP foci. Where EGFP foci are 

present, the positions co-localise with the Cy3-labelled RNA foci in the nucleus (Figure 

43B Merged), indicating that both MBNL and CUG repeats are present within the same 

structure. It is difficult to form a conclusion with absolute certainty however because of the 

use of the same reporter protein to locate both MBNL and CUG-repeat expression. Ideally 

the experiment should be repeated, substituting an alternative fluorescent protein fusion 

such as EBFP (blue), or ECFP (cyan) for EGFP in the MBNL construct. 

It was mentioned earlier, that although the EGFP transcript is retained in the nucleus in the 

form of foci, clearly enough transcript escapes into the cytoplasm to produce detectable 

levels of EGFP. The reason for this is not known. It could be that the DNA sequence 

surrounding the repeat region within the construct may be important. The woodchuck post-

transcriptional element for instance has been shown to induce nuclear export of mutant 

DM1 transcripts when placed 3’ to the repeats (Mastroyiannopoulos et al., 2005). This 

escape could also be explained if MBNL is required to form foci, and is the limiting factor 

in their formation. Excess EGFP transcripts produced from a strong promoter may deplete 

MBNL stores leaving sufficient free of bound MBNL, to be exported to the cytoplasm to 

generate high enough levels of EGFP for visualisation. There are two pieces of evidence to 

support this: Firstly it is borne out by the difference in fluorescence levels between 

constructs containing 5 and 250 repeats: The 250 repeat transfectants exhibit lower 

fluorescence when transfected with the equivalent amount of DNA (chapter 5, Figure 45), 

probably because some of the expanded transcripts are retained within the nucleus, bound 

to MBNL. Secondly, during co-transfection with pLoxEGFP250 and MBNL1/GFP, 

preliminary results suggest that the foci are larger than those formed from pLoxEGFP250 

and endogenous MBNL (Figure 43B white vs. pink arrows). Since both constructs utilise 

EGFP as a reporter, in a co-transfection it is only possible to hint at which cells contain 

which plasmids. The expression pattern of EGFP from MBNL1/GFP is mostly 

concentrated within the nucleus (Figure 43A), whereas that from pLoxEGFP250 is evenly 

spread throughout the cell (Figure 43C). Using this information it is possible to map the 

cells (Figure 43D). Foci from this experiment were studied in greater detail using animated 

z-stacks taken using confocal microscopy. Here MBNL1/GFP foci are large suggesting 

that most MBNL is sequestered into foci, since increasing the amount of MBNL increases 

the size of the foci (Figure 44). It was interesting to note that the foci were not present 

within nucleoli, which appear as voids in DAPI-stained nuclei.  
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Figure 43 Fluorescent micrograph showing co-localisation of MBNL1/GFP with foci. A 
MBNL1/GFP and MBNL1/GFP + pLoxEGFP250 transfected HeLa cells with Cy3-(CAG)10 in situ 
hybridisation and αMBNL1/AMCA immunocytochemistry. EGFP foci (green arrows) are formed in 
the presence of both MBNL and repeat plasmids, which co-localise to Cy3-(CAG)10 foci within the 
nucleus. Note that in the left hand panel, EGFP fluorescence is much higher than the blue AMCA 
fluorescence within the nucleus indicating antibody entry is hindered. B MBNL1/GFP + 
pLoxEGFP250 or pLoxEGFP250 (panel C) transfected HeLa cells with Cy3-(CAG)10 in situ 
hybridisation. EGFP foci (green arrows) co-localise to Cy3 foci (white arrows) indicating co-
localisation of MBNL1/GFP and expanded array foci. Note that the RNA foci are larger in MBNL-
GFP + pLoxEGFP250 (white arrows) compared to pLoxEGFP250 alone (pink arrows) see map D 
indicating that the size of foci may be dependent on the amount of MBNL present. D Schematic 
map of the probable plasmid content within cells, based on the distribution pattern of EGFP 
expression comparing MBNL1/GFP alone (e.g. in A), with pLoxEGFP250 alone (e.g. in C). 

 
 
 
 

 

 

  

 

 

 
Figure 44 (movie) The effect of MBNL1/GFP on foci size. 3D animated confocal Z-stack. Hela 
cells transfected with pLoxEGFP250 alone (left) or with pLoxEGFP250 and MBNL1/GFP (right) 
after in situ hybridisation with Cy3-(CAG)10. Foci are increased in size and reduced in number in 
cells expressing pLoxEGFP250 and MBNL1/GFP. DAPI (nucleus) and Cy3 (foci) merged. See 
attached CD. 

 
 
4.4 Discussion 

We set out to determine whether the constructs generated to create an in vivo mouse model 

of myotonic dystrophy type 1, could be utilised to produce an in vitro model of DM1 

pathogenesis to study the earliest affected genes. Two approaches were investigated: pCre 

activation of pStopEGFP5 or pStopEGFP250 stable cell lines in HeLa and Cos7 cells; and 

direct transfection of HeLa; Cos7 and 3T3 cell-lines with the constitutively expressing 

pLoxEGFP5 or pLoxEGFP250. It is not clear why the former approach failed as many 

clones were generated (10 each of pStopEGFP5 and pStopEGFP5), and in different cell-
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types (HeLa; Cos7 and DmtD162 kidney). PCR analysis throughout the construct 

confirmed its presence within the cell clones. It is possible that transfection of pCre used to 

activate the stable lines, resulted in over expression of the recombinase in comparison to 

the low copy number of the integrated transgene. This might have interfered with 

transcription of the reporter gene, by physically blocking RNA polymerase by continual 

loxP binding. The latter constitutive approach however was successful for reporter 

expression, and chosen for validation. Nuclear foci are formed in both DM1 and DM2 

patient cells and co-localise with MBNL protein (Fardaei et al., 2002), this pathogenic 

marker is used as a diagnostic feature of myotonic dystrophy (Bonifazi et al., 2006). In our 

cell-culture system, foci were identified in the nucleus 24 hours post transfection using 

pLoxEGFP250, but not detected using pLoxEGFP5. Foci co-localised with MBNL1/GFP 

fusion protein, and endogenous MBNL in perinuclear foci using αMBNL/AMCA and Cy3-

(CAG)10 double labelling. Interestingly, foci tended to be larger in Cos7 cells, and smaller 

and more well defined in HeLa and 3T3 cells, and those foci formed in the presence of 

excess MBNL (in the form of MBNL1/GFP) were larger than foci formed without 

additional MBNL. These observations were incidental and not substantiated, but could 

indicate that MBNL protein is limiting in foci formation, possibly preventing transcript 

exit into the cytoplasm up until that limit is reached.  

4.4.1 Cell-lines 

Our model is generic in terms of the cell-types affected in myotonic dystrophy. It is not 

biased by the specific function of a particular tissue and as such may be used to study the 

genesis of global effects, likely to be a good target for therapeutic intervention, and which 

may be important in the study of the congenital form of the disease.  

The original intention was to use ES cells as the basis of the cell-culture model. 

Pleuripotent embryonic stem cells can be differentiated into almost any cell lineage 

(O'Shea, 1999; Nagy et al., 2006), including those tissues characteristically affected in 

myotonic dystrophy such as skeletal (Dekel et al., 1992) and cardiac muscle (Sachinidis et 

al., 2003). An inducible model able to differentiate into the tissue of choice would be an 

invaluable and versatile tool to study and delineate the multisystemic facets of myotonic 

dystrophy throughout development. Unfortunately, due to questions raised over the 

pleuripotency of the clones generated in chapter 3, it was not deemed feasible to generate 

an ES cell-based model at this moment in time, but would be worth doing in the future. 
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Our model has been tested using a variety of cell-types from different organisms each 

positive for foci formation. As the project evolved, published research started to indicate 

that missplicing was fundamental to the disease process. As a result of this Cos7 (green 

African monkey kidney) cells were rejected for the model due to the poorly characterised 

genome sequence important for primer design in alternative splicing analysis. Both HeLa 

(human epithelial) and 3T3 (murine fibroblast) cells however are well-established general 

laboratory cell-lines, and produce a high rate of transfection with DNA. The genome 

project recently completed for both human and mouse can be utilised in conjunction with 

these cell lines to unite previously published data: Murine culture system with mouse 

model data and the human with patient data. The immediacy using transient constitutive 

transfection, allows study of the early pathogenesis and also overcomes confounding issues 

such as somatic expansion, and positional effects seen in other stable in vivo systems. 

4.4.2 MBNL 

At the time these experiments were designed and carried out, the focus of pathogenesis 

was on CUG-BP1. It wasn’t known that the balance of two splicing regulators was pivotal 

to the pathogenesis of DM. In hindsight, although it has not been established that 

missplicing in DM is limited to MBNL1 and CUG-BP1 disequilibrium, ideally we need to 

determine that the levels of MBNL1 and CUG-BP1 in cells chosen for the model are 

equivalent to those cell-types affected in the disease to enable the same changes in 

splicing. 

It was interesting to note that foci formed with MBNL1/GFP were large. Increasing the 

amount of MBNL1 available increases their size, suggesting that most MBNL1 is 

sequestered into foci. Is MBNL1 required for foci formation? Research by Housley et al. 

indicates that, in Drosophila, although muscleblind (the MBNL1 orthologue) does co-

localise with foci, muscleblind is not required for foci formation. In some cells, induced 

expression of (CUG)162 resulted in the formation of CUG positive foci where muscleblind 

could not be detected using standard immunohistochemical methods (Houseley et al., 

2005). This could be confirmed using existing mouse models to generate MBNL knockout-

repeat expressing mice. Lack of foci would indicate a prerequisite of MBNL for foci 

formation. If this was so, as has been reported by MBNL1 siRNA knockdown experiments 

in DM1 myoblasts (Dansithong et al., 2005), then MBNL could play a protective role in 

DM1. It has recently been shown that foci formation is separable from missplicing. Both 

expanded CAG and CUG repeats formed MBNL-associated nuclear foci, but mis-regulated 

splicing was only seen with CUG repeat expression (Ho et al., 2005). This questions the 
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hypothesis that sequestration of MBNL into foci causes the shift of CUG-BP1/MBNL1-

regulated splicing toward embryonic variants. More recently, involvement of the RNAi 

mechanism has been implicated. Long CNG repeat hairpins are a target for dicer, from 

which it generates gene-silencing siRNAs to that target. In the case of DM1, dicer cleaves 

the mutant repeat transcript into many short 21nt CUG repeats (Krol et al., 2007). Recently 

Mahadevan et al. created an inducible mouse model where low level expanded repeat 

expression leads to foci formation, but a lack of phenotypic effects. The control cohort 

over-expressing 5 CUG repeats does not form nuclear foci but surprisingly exhibited 

myotonia, heart conduction defects and RNA missplicing (Mahadevan et al., 2006). 

Perhaps short cytoplasmic CUG repeats are toxic, leading to repeat-associated CUG-BP1 

within the cytoplasm, which in turn would raise levels of CUG-BP1 (Timchenko et al., 

2001) causing missplicing. It would be interesting therefore to investigate the role of short 

CUG repeats in the cytoplasm. It may be that MBNL1 is protective up to a limit, until 

sequestration leads to an irrevocable imbalance between splicing regulators, allowing 

unimpeded activity of CUG-BP1. It would explain why long repeats are more pathogenic 

since larger repeats would deplete MBNL1 more rapidly resulting in earlier onset and 

increased severity. Additionally, foci have been shown to be formed by as little as 57 

repeats, lengths that are not pathogenic in people (Amack et al., 1999). 

From published research, it is clear that both reduced levels of MBNL, and increased levels 

of CUG-BP1 lead to aberrant splicing of target genes, but it is also clear that there is much 

to discover, that the mechanism of pathogenesis is not so straightforward.  
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5  The effects of expanded CUG-repeat expression 
on mRNA steady state levels and splicing 
patterns  

5.1 Synopsis 

Myotonic dystrophy type 1 is a multisystemic disease in which the missplicing of genes 

can be directly related to important clinical features, such as the chloride channel to 

myotonia, or the insulin receptor to diabetes. Many symptoms nevertheless have yet 

resisted clear explanation: cataracts, testicular atrophy, heart block, anaesthetic sensitivity 

and mental retardation for example. Here we have used an in vitro cell culture model to 

discover further genes possibly aberrantly spliced in myotonic dystrophy, to attempt to 

clarify some of the unexplained symptoms. Affymetrix whole and exon transcript arrays 

were used to determine differential transcript levels and alternative exon usage between 

murine fibroblast 3T3 cells transfected with either 5 (pLoxEGFP5) or 250 (pLoxEGFP250) 

CUG repeats. For the exon arrays 0 (pLoxEGFP) repeats were also compared. Using whole 

genome arrays, 6 genes were down-regulated and 128 up-regulated. With exon arrays, 58 

genes showed alternative exon usage. Six genes were selected for further bioinformatics 

analysis: MtmR4, which has possible neuromuscular involvement; Kcnk4, Narg1, Ttyh1 

and Bptf, potentially related to brain development; and Cacna1c, a promising candidate for 

heart conductance defects and sudden death.  

5.2 Background 

In myotonic dystrophy, the expanded repeat transcript becomes trapped within nuclear 

foci. Recruitment and sequestration of the splicing regulator MBNL1 to these foci, is 

thought to alter the dynamic equilibrium between itself and another splicing regulator 

CUG-BP1, resulting in the production of developmentally inappropriate splice isoforms. 

The first gene discovered to be mis-spliced was cardiac troponin T (cTNT) (Philips et al., 

1998), originally identified as a target of CUG-BP1, whose activity and concentration 

within the cell is altered in DM1 (Timchenko et al., 2001). Cardiac troponin T is the 

tropomyosin-binding subunit of the troponin complex, regulating muscle contraction in 

response to alterations in intracellular calcium ion concentration. It is normally expressed 

in adult heart, and embryonically within skeletal muscle, but in DM1 is also expressed in 
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adult skeletal muscle (Philips et al., 1998; Ladd et al., 2005). Mutations in the gene are 

associated with cardiomyopathy (Thierfelder et al., 1994), which features in DM1 but is 

not always present (Harper, 2001). A clear link as to how missplicing in this gene could 

result in cardiac conduction system defects however, has not yet been established. It wasn’t 

until splicing of the chloride channel 1 gene (CLCN1) was found to be abnormal, resulting 

in the loss of chloride channel 1 (CLCN1) function and producing the definitive myotonia, 

that it was generally believed that aberrant splicing could also be responsible for the other 

symptoms of DM1 (Charlet et al., 2002; Mankodi et al., 2002). Missplicing of the CLCN1 

gene in DM1 skeletal muscle tissue compared to unaffected adult expression patterns 

results in the inclusion of exons normally reserved for the embryo, as well as the use of 

cryptic acceptor sites causing premature chain termination during translation (Charlet et 

al., 2002). Since then, other missplicing events have been identified, accounting for further 

phenotypic effects. Exclusion of an adult-specific exon in the insulin receptor transcript 

has been associated with the specific type of insulin resistant diabetes seen in DM1 

(Savkur et al., 2001). The microtubule-associated protein tau (MAPT) transcript undergoes 

complex, regulated alternative splicing, giving rise to several mRNA species differentially 

expressed in the nervous system. In DM1, the proportion of splice variants is disrupted 

(Sergeant et al., 2001; Leroy et al., 2006). Deletions in this gene have been associated with 

developmental delay and learning disability (Shaw-Smith et al., 2006), which is seen in 

congenital DM1. Myotubularin related protein 1 (MTMR1), also aberrantly spliced (Buj-

Bello et al., 2002), contains the consensus sequence for the tyrosine phosphatase activity of 

myotubularin (MTM). Mutations in MTM have been identified as being responsible for X-

linked myotubular myopathy (Buj-Bello et al., 1999), and mice deficient for the gene 

develop a generalized and progressive myopathy starting at around 4 weeks of age, with 

amyotrophy and accumulation of central nuclei in skeletal muscle fibers leading to death at 

6-14 weeks (Buj-Bello et al., 2002). There may be a link therefore between the progressive 

muscle wasting and myopathy, and MTMR1 mis-processing in DM1. Aberrant splicing is 

also witnessed in transcripts of two major proteins of the sarcoplasmic reticulum, the 

ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 

(SERCA) 1 or 2. The foetal variant, ASI(-) of RyR1 which lacks residue 3481-3485, and 

SERCA1b which differs at the C-terminus, were significantly increased in skeletal muscles 

from DM1 patients and the HSALR DM1 transgenic mouse model (Kimura et al., 2005). In 

addition, a novel variant of SERCA2 was significantly decreased in DM1 patients (Kimura 

et al., 2005). Chemically increased Ca2+ in mouse skeletal muscle induced some DM-like 

symptoms –myotonia, balding and cataracts (Takahashi et al., 1999), so inappropriately 

spliced RyR1 and SERCA1 mRNAs might contribute to impaired Ca2+ homeostasis in 
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DM1 muscle, and increased calcium levels seen in cultured DM1 cells (Benders et al., 

1996).  

Many missplicing events linked to symptoms have now been identified in myotonic 

dystrophy, but the list is not exhaustive. There are many symptoms not explained, some of 

which are more distressing for patients and their families to live with such as somnolence 

and dementia. Here we utilise the cell-culture model –consisting of murine 3T3 cells 

expressing either 0, 5 or 250 repeats within the 3’UTR of the EGFP gene (chapter four), to 

attempt to identify genes mis-spliced early in the pathogenesis of the disease, which are 

most likely to make good therapeutic targets. The objective is to identify further genes mis-

spliced as a direct result of expanded CUG repeat expression, using whole transcript and 

exon microarray analysis. Exon arrays became available during the course of the 

experiments, and are the most suitable chips to use to identify changes in exon inclusion 

and exclusion since probesets span all exons within the transcript. In whole transcript 

arrays most probsets are situated only at the 3’ end of the gene. Using these arrays it was 

thought possible to identify splice variants due to altered mRNA levels resulting from 

nonsense mediated decay, a mechanism activated when missplicing results in a premature 

termination codon situated in an exon other than the 3’ terminal exon –as observed in DM1 

with the chloride channel 1 transcript (Nagamitsu et al., 2000; Charlet et al., 2002)– as 

well as those differing in the 3’ termini, although none have yet been reported in DM. 

5.3 Microarray analysis 

Our model is based on a transient rather than a stable transfection system, in order to 

identify the earliest pathogenic events. Even though experimental parameters can be 

adjusted to optimise the rate of transfection, only a proportion of cells will contain the 

construct. We decided therefore to increase the proportion of construct-positive cells by 

separating the EGFP positive and non-fluorescent fractions from each transfection using 

fluorescent activated cell sorting (FACS). For each transfection, this would result in two 

pools of cells differing only in the expression of EGFP and also provide a tight internal 

negative control to limit technical variation between treated ‘EGFP on’ and untreated 

‘EGFP off’ fractions. RNA isolated from the ‘on’ and ‘off’ pools of each of the 

pLoxEGFP5 and pLoxEGFP250 transfected 3T3 cells gave four samples which could then 

be assessed for differential gene expression by microarray hybridisation (Table 10). 
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Table 10 EGFP ‘on’ and ‘off’ fractions used for differential gene expression analysis 
Differences between 1 and 3 result from expanded array expression. Although samples 2 and 4 
appear to be duplication, they are required to control for the fidelity of cell sorting. 

 Sample Interpretation 

1 pLoxEGFP250 ‘on’ Test sample 

2 pLoxEGFP250 ‘off’ Internal negative control 

3 pLoxEGFP5 ‘on’ Negative test sample 

4 pLoxEGFP5 ‘off’ Internal negative control 

 
 
5.3.1 Parameter selection 

5.3.1.1 Dynamics of foci formation 

It was first necessary to establish the optimal time-point for RNA isolation after 

transfection –a point that would reflect the patient situation where aggregates of the mutant 

transcript are formed and retained within the nucleus in discrete foci, and at the same time 

express the EGFP reporter at a sufficient level for cell separation to increase the proportion 

of cells harbouring the construct. A time course experiment was set up to correlate foci 

formation and EGFP detection. Murine 3T3 cells were plated into 52 Petri dishes 

containing coverslips. The next day 13 dishes were each transfected with pLoxEGFP (0 

repeats); pLoxEGFP5 (5 repeats) or pLoxEGFP250 (250 repeats) constructs, or reagent 

alone. At time zero, and then every four hours for a total of 48 hours, a dish for each 

transfection was removed and the live cells photographed using fluorescence microscopy. 

The coverslips were then removed, fixed and stored in PBS until all time-points had been 

gathered. The remaining cells in the dishes after coverslip removal were trypsinised and 

stored in RNAlater solution, to be used at a later date out with this thesis to study the effect 

of expanded repeat tracts on the dynamics of gene missplicing. The coverslip samples were 

then processed in one batch for Cy3-(CAG)10 in situ hybridisation. Faint EGFP 

fluorescence was observed at 8 hrs post transfection and peaked in intensity between 20 

and 32 hours (Figure 45; data not shown for reagent alone). 
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Figure 45 Fluorescent micrographs charting EGFP fluorescence over 48 hrs. Live cell 
micrographs taken using brightfield and fluorescence microscopy. 3T3 cells were transfected with 
pLoxEGFP5 or pLoxEGFP250 constructs and samples photographed at 4-hour intervals over 48 
hours. EGFP fluorescence can be detected at 8 hours post transfection and peaked between 20 
and 32 hours. The intensity of EGFP fluorescence in the pLoxEGFP250 transfected sample did not 
reach as high a level as the pLoxEGFP negative and pLoxEGFP5 normal control samples, 
probably because of transcript retention within the nucleus. 
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No foci or Cy3 staining were detected in pLoxEGFP (0 repeats, negative control), and 

pLoxEGFP5 (normal control) transfections (data not shown). With construct 

pLoxEGFP250, Cy3-(CAG)10 in situ hybridisation illustrates the dynamics of foci 

formation within the cell over time. RNA was first detected faintly at 8hrs (data not 

shown). Of notable interest was the high amount of general fluorescence within the 

cytoplasm as the RNA levels increased and peaked between 16 and 20 hours. Over time 

the RNA became more discreet within foci, both within the nucleus and the cytoplasm, 

finally primarily in the nucleus from 28hrs (Figure 46A). It was not clear whether 

cytoplasmic RNA returned to the nucleus and became concentrated into foci, or if the foci 

were initially present but masked by the abundance of RNA, later revealed after RNA 

degradation perhaps, but in a previous parallel experiment using HeLa cells, general 

staining and some indistinct foci were apparent within the nucleus at 8hrs (Figure 47). It 

would be interesting to repeat this experiment using 1hr intervals between 6 and 12 hours 

post transfection, to clarify the presence of foci and pattern of general staining in the cell; 

whether cytoplasmic as well as nuclear, and whether foci are formed as a primary or 

secondary event. Cytoplasmic foci have not been reported in the literature, but have been 

observed by other researchers (L.Timchenco, personal communication) and were apparent 

in DM1 fibroblast patient cell-lines (a kind gift from J. D. Brook) (Figure 46D). However, 

it has been proposed that the presence of cytoplasmic foci is a phenotype of some, but not 

all, patient cell-lines (S. Reddy, personal communication). 

The CMV promoter ensured high-level expression of the transcripts, which was confirmed 

by bright EGFP fluorescence. However, Houseley et al. observed bright general staining in 

cells without foci, expressing GFP-tagged CUG expansions using a single-copy GFP 

Riboprobe (Houseley et al., 2005), so it was surprising that we did not see general staining 

in pLoxEGFP5 cells above background, especially within the cytoplasm (Figure 46B). 

This however, may have been an artefact due to the stringency of hybridisation since the 

Cy3-(CAG)10 probe (30 nucleotides) would only bind to 15 nucleotides of the (CAG)5 

repeat, and could have failed to hybridise, or have been washed away during processing. 
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Figure 46 The dynamics of foci formation. Fluorescent micrographs. Cy3-(CAG)10 in situ 
hybridisation on 3T3 cells transfected with pLoxEGFP250; pLoxEGFP5 or pLoxEGFP, sampled at 
4 hourly intervals. A. The presence of EGFP fluorescence and foci formation over time. In 
3T3/pLoxEGFP250 cells, EGFP fluorescence can be visualised faintly from 8 hours and peaks 
between 24 and 32 hours. Cy3-(CAG)10 staining is predominantly cytoplasmic as well as nuclear at 
16 and 20 hours post transfection, but becomes more discreet over time with foci mainly nuclear 
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from 28 hours post transfection. B. Low (X16) and high (X63) power images of 3T3 cells 
transfected with pLoxEGFP5 20 hours post transfection, showing that no Cy3-(CAG)10 staining is 
present in the normal control. C. High power (X63) images of 3T3/pLoxEGFP250 transfections at 
16 hours showing intense Cy3-(CAG)10 staining in the cytoplasm. By 48 hours the staining is 
limited to discrete foci predominantly within the nucleus. D. Cy3-(CAG)10 staining in patient DM1 
fibroblast cell-lines (left and middle) reveals cytoplasmic foci. These have also been observed 
using pLoxEGFP250 in 3T3 cells (right). 

 

Figure 47 Foci are apparent in HeLa cells at 8hrs post transfection. Fluorescent micrograph. 
HeLa cells transfected with pLoxEGFP250 show Cy3-(CAG)10 staining within the nucleus and 
diffuse foci at 8 hrs post transfection. 

 

Not all EGFP positive cells transfected with pLoxEGFP250 exhibited foci (Figure 46A). 

This could have been due to plasmid heterogeneity as previously described (chapter 3), or 

the confocal plane may not have passed through the focus. Foci are spread throughout the 

nucleoplasm avoiding the nucleoli (chapter 4 Figure 44 3D movies). Therefore, when 

taking a representative image, the focal plane will not pass through all foci, and could miss 

all of them. To assess the presence of nuclear and cytoplasmic foci within EGFP positive 

cells, foci were identified in individual cells by focusing through the whole thickness of the 

cell dorsally to ventrally and the presence noted (Figure 48B). All EGFP positive cells on 

each slide were counted. This resulted in a variable number (14-54) of cells assessed at 

each time point, but was enough to give an indication of foci and EGFP correlation.  

The 48hr time-point was selected to prepare RNA for microarray analysis since the Cy3-

(CAG)10 staining pattern most closely reflected the situation in patient cells, where RNA is 

concentrated mostly into a few larger nuclear foci (Figure 46A and C). 
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Figure 48 Cytoplasmic CUG repeats and the presence of nuclear foci within EGFP positive 
cells charted over time post transfection. A Bright general cytoplasmic staining and cells with 
defined cytoplasmic foci were counted as positive, in cells positive for nuclear foci. B Greater than 
97 percent of EGFP positive cells contained nuclear foci at each time interval. Error bars show the 
95% confidence interval. Time points 0, 4, 8, 40 and 44 hrs were not determined. 

Unfortunately the intensity of EGFP fluorescence at this time-point was reduced, probably 

because of the sequestration of the RNA within the nucleus, also the proportion of EGFP 

positive cells was low probably due to faster growth of untransfected cells, making the 

acquisition of fluorescent cells by FACS more prolonged. Pilot tests were carried out to 

ensure that the cells could survive the separation procedure and that the RNA made from 

them was of good quality (addressed in 5.3.1.2.3).  

5.3.1.2 Fluorescent activated cell sorting (FACS)  

The use of the FACS separation system FACSCalibur (BD Biosciences), was kindly 

provided by Prof. J.Mottram (Wellcome Centre for Molecular Parasitology, Anderson 

College, Glasgow). 

Firstly, parameters for cell-separation were established. 

5.3.1.2.1 Cell density 

The pattern of gene expression varies during different phases of cell growth, so in order to 

maintain consistency it was important that the cells would be actively growing at harvest. 

The exponential phase is considered to be up to 95% confluence. Pervious experiments 

indicated that the transfection of cells with densities below 50% resulted in cell death (data 

not shown), so cells were plated at different densities in large tissue culture flasks and 

allowed to grow overnight, and cultures closest to 50% confluence were selected for 
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transfection. This would allow the maximum exponential growth post transfection. Cells 

were then photographed after 24 and 48 hrs. 

5.3.1.2.2 Gates and purity 

Cells were sorted during FACS using gates set with control samples. This was first tested 

using fluorescent beads. Voltage gates were optimised for each bead colour separately and 

used to sort and collect green beads from an approximately equal mixture of non-

fluorescent, fluorescent green and fluorescent red beads in PBS. For sorting, three modes 

are available: Single cell, where only single positive beads are collected; Recovery, where 

all events containing a positive bead are collected; and exclusion, where all negative beads 

are rejected. Single cell sorting was not used since it was expected that the yield would be 

low. Using the recovery mode, the proportion of green beads was enriched from 56% to 

69%. In exclusion mode, where only pure positive fractions are collected, 98% of the 

beads recovered were green (Figure 49). Therefore exclusion mode was chosen for future 

cell sorting. 

Following these successful attempts at sorting, the gates were then established for 

separating EGFP positive cells from non-expressing cells. For the control samples 3T3 

cells were transfected with either regent alone or pLoxEGFP5, and harvested after 24 

hours. After separation optimisation, the reagent alone sample produced a single ‘negative’ 

grouping. The pLoxEGFP5-transfected sample produced two groupings: negative and 

EGFP positive, since not all cells in the sample would be expressing EGFP, thus allowing 

identification of the EGFP positive fraction (Figure 50). Gates were drawn around the two 

fractions and the fluorescence intensity within each gate (region 1 and 2) plotted for each 

sample. The shape of the curves within region 1 is similar for each sample, indicating that 

there are few contaminating EGFP positive cells within the untransfected cell gate. 

Correspondingly, when events collected using region 2 are plotted, few cells were counted 

from the negative sample indicating little untransfected-cell contamination within the 

EGFP positive gate (Figure 50). The separation procedure was lengthy. In the previous 

experiment, setting the gates, collection and concentration of 1 X 105 EGFP positive and 1 

X 105 negative events took on average 5 hours.  
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Figure 49 Calibration beads shown before and after sorting. A. Facscalibur acquisition dot-plot 
showing the differences in the bead mixture based on emission spectra during passage through the 
488 nm laser. Each crossing of the laser beam is termed an event, which can include more than 
one bead. Separation parameters were optimised for a mixture of non-fluorescent, red fluorescent 
and green fluorescent beads. Each grouping corresponds to clear (grey arrow); FITC (green arrow) 
and PE (red arrow) beads. Sort gates were then drawn around the regions to be collected (not 
shown). B. The bead mixture before and after sorting and recovery using two different sort modes. 
In recovery mode, every positive event is collected, even if a contaminating bead is present. This 
results in high recovery of positive events, but lower purity. In exclusion mode only events 
containing positive beads are collected, mixtures are rejected. This results in a pure but lower yield 
of positive events. 

 

The 3T3 transfections were repeated, again using reagent-alone or pLoxEGFP5. Both 

samples were used to refine the gate settings. The EGFP positive fraction was sorted and 

collected from the pLoxEGFP5 sample. After sorting, the proportion of EGFP-positive 

cells detectable by fluorescence microscopy was much higher (63%; 28 of 44 cells) than in 

the unsorted sample (26.5%; 21 of 79 cells), and EGFP fluorescence could be detected in 

most but not all cells (Figure 51). The reason why some cells appeared non-fluorescent 

during microscopy was unclear, but could have been because fluorescence detection during 

FACS is more sensitive than the eye or camera, or due to the position of the gates, or 

plasmid loss from the cell. As a precaution the gate drawn for collection of the negative 

sample was tightened. 
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Figure 50 Establishment of sort gates. Reagent-only and pLoxEGFP5-transfected 3T3 cells 
were used to establish separation settings. Acquisition dot plots (left) show a single cell-group in 
the reagent-only sample corresponding to untransfected cells. In the pLoxEGFP5-transfected 
sample two groups are apparent, corresponding to untransfected and EGFP-positive fractions. 
Gates were drawn around the two groups –region 1 and 2 – and the number and fluorescence 
intensity of events plotted in each (histograms middle and right). Region 1 histograms (middle) 
show similar area curves indicating few contaminating EGFP positive cells within the negative gate. 
Region 2 histograms (right) show few negative cells (top) contaminating the EGFP positive gate. 

 
 
5.3.1.2.3 Cell viability and RNA integrity 

It was of concern that the cells used during the sorting –and those recovered would have 

been stored in PBS for a considerable amount of time. To ensure that cells collected using 

the cell-sorter could survive the procedure, pLoxEGFP5-transfected cells were saved at 

each stage of the sorting in the previous experiment, plated into tissue culture dishes and 

incubated overnight. The cells were photographed using brightfield and fluorescent 

microscopy from all stages of the experiment; starting sample; post trypsin harvest; 

recovered sorted cells and unsorted post sort (starting sample after the experiment) and 

appeared healthy, with no bacterial or fungal contamination observed (Figure 51). Leftover 

starting sample was also tested for viability using trypan blue reagent, a diazo dye used to 

stain cells with disrupted outer membranes. Cells with an intact membrane exclude the 

dye, and dead cells are coloured blue. Cells were found to be a healthy with few taking up 

the pigment (Figure 52). In conclusion, the sorting procedure and the maintenance of the 
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sample in PBS on ice for the extended period of 5 hours was not found to be detrimental to 

cell viability. 

 

Figure 51 Cell viability after the sorting procedure Brightfield and fluorescent micrographs. 
pLoxEGFP5 transfected 3T3 cells were used to test the sorting procedure and subsequent cell 
viability. The starting sample was photographed. Samples were taken at the stages indicated, 
plated onto tissue culture dishes and incubated overnight. The sorting procedure was not found to 
be detrimental to cell viability. The proportion of EGFP positive cells was increased in the sorted 
compared to the unsorted and post-trypsin samples. 

 

Figure 52 Cell viability after storage on ice. Left, brightfield and right, fluorescent micrographs. 
3T3 Cells from the post-trypsin harvest were stored on ice for 5 hours and tested for viability using 
trypan blue reagent. A few cells took up the dye but most cells did not, indicating the majority had 
an intact membrane and were still alive.  

The separation procedure was prolonged, allowing the collection of one positive and one 

negative fraction from one transfection per day. Since three replicates of each sample were 

required for the analysis, the collection of samples would span many weeks. It was 
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necessary to store sorted cells to allow all replicates collected to be processed at the same 

time, limiting technical variations, whilst maintaining quality. To confirm the integrity of 

RNA during storage of the samples, RNA was extracted from unsorted and sorted cells 

stored in RNA-later solution. RNA-later is a proprietary solution formulated for the storage 

of cell and tissue samples without compromising the integrity of the RNA prior to 

extraction. Mouse 3T3 cells were transfected with reagent alone; pLoxEGFP5; or 

pLoxEGFP250. After 24 hours, cells were harvested and stored in RNAlater for 11 weeks 

at -20ºC. The pLoxEGFP5 and pLoxEGFP250 transfections were repeated, EGFP positive 

and negative fractions sorted and 5 X 105 events collected from each fraction as described 

previously. The samples were stored for one week in RNAlater at -20ºC. The cells from all 

samples were collected as previously described, and RNA extracted using RNeasy mini kit 

(Qiagen), the method recommended by the Molecular Biology Support Unit for microarray 

analysis. RNA was visualised using guanidinium hydrochloride agarose gel 

electrophoresis, and assayed using the Bioanalyser (Agilent Technologies). The RNA 

stored before sorting was of the same quality as RNA prepared from live 3T3 cells, but the 

RNA extracted form sorted cells showed signs of degradation (Figure 53A+B). This could 

have been due to temperature rises in the sample during sorting, so to counteract this, the 

sorting protocol was modified such that the source sample was aliquotted and stored on 

ice, each aliquot discarded after 30 minutes sampling. The buffers were also kept on ice 

and topped up more frequently. When recovering the sample it proved difficult to form a 

pellet and a significant amount of cellular material remained bound to the wall of the tube. 

The number of cells (events) recovered from each FACS is small, so no losses could be 

tolerated. For this reason, we decided to store collected cells in RNA lysis buffer, the first 

solution used in the RNA extraction, at -80ºC since this would reduce the sample loss to 

zero. After these measures were adopted, RNA integrity was no longer compromised 

(Figure 53C). 
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Figure 53 RNA integrity following storage in RNAlater solution. A. Guanidinium thiocyanite 
agarose gel electrophoresis. The samples on the left hand gel had been stored in RNAlater for 11 
weeks without affecting the quality of the RNA extracted. RNA was compared to that extracted from 
live cells as a control. The samples on the right hand gel were first sorted using FACS, then stored 
in RNAlater solution for 3 weeks. The sample quality of the positive fractions is reduced since the 
intensity of the ribosomal RNA band at 28s is not higher than that of the 18s band. B. Bioanalyser 
results. A proportionately large 5s peak compared to the 18s and 28s peaks, and the deviation 
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from the baseline between the 18s and 28s peaks indicated sample degradation within the positive 
cell-fractions. C. After minor modification of sample handling during sorting, the RNA isolated was 
of better quality using the same criteria of ribosomal RNA comparison. Note the proportionately 
small 5s peak and the low baseline between 18 and 28s peaks, indicating a lack of degradation. 

 

5.3.2 Transcript expression array 

The Affymetrix “GeneChip Mouse Genome 430 2.0 Array” allows for the analysis of 

39,000 transcripts in a single array. Each transcript is represented by multiple probe sets 

(four adjacent oligonucleotides) allowing several measurements to be made to accurately 

evaluate individual transcript levels. Whilst coverage of the mouse genome may not be 

absolutely complete, it is comprehensively represented on the array since the probe sets 

were derived from sequences selected from GenBank®, dbEST, and RefSeq, which are 

further refined by comparison with the draft assembly of the mouse genome (Whitehead 

Institute for Genome Research MGSC, April 2002). In this particular GeneChip, the bias 

for the probeset position is towards the 3’ end of the transcript, which is not ideal for the 

analysis of alternatively spliced isoforms. It should however reveal any missplicing that 

results in a premature termination codon, since this would lead to nonsense mediated decay 

and reduced levels of transcript (Nagamitsu et al., 2000), as is the case with the chloride 

channel in DM1 (Charlet et al., 2002). 

5.3.2.1 Sample preparation for whole transcript arrays 

The samples were prepared in triplicate, in parallel, such that three chips were hybridised 

for each sample group pLoxEGFP5 ‘on’; pLoxEGFP5 ‘off’; pLoxEGFP250 ‘on’ and 

pLoxEGFP250 ‘off’ –twelve chips in total. The mouse 3T3 cells used for transfections 

were plated at diluting densities some weeks before starting the experiment such that cells 

plated for each transfection had the same passage number, even though the transfections 

were staggered over two consecutive days for 3 weeks. Mouse 3T3 cells were plated to 

give 50% confluence after 24 hours growth, then transfected with pLoxEGFP5 or 

pLoxEGFP250. After 48 hours, the cells were harvested using trypsin and washed in ice 

cold PBS, and kept cool throughout processing. EGFP positive and EGFP negative 

fractions were sorted and collected from transfected samples using a FACSCalibur cell-

sorter, with the parameters established in section 5.3.1.2. On any particular day, only one 

negative and one positive fraction was collected from a single transfection, so after sorting, 

cells were concentrated by centrifugation, resuspended in RNA lysis buffer and stored at -

80ºC until all samples had been collected. The transfections and cell sorting were repeated 
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until three replicates each of pLoxEGFP5 and pLoxEGFP250 EGFP positive and EGFP 

negative fractions had been gathered. Total RNA was prepared, and transferred to MBSU 

for quality assessment and to carry out the microarray hybridisation procedure. 

RNA samples were labelled using the Affymetrix one-cycle gene chip target labelling 

protocol, which does not involve amplification of the sample. After hybridisation, signals 

were first normalised using robust microchip average (RMA (Irizarry et al., 2003)), then 

scored for differential expression between pLoxEGFP5 vs. pLoxEGFP250 transfected 

samples using Rank Products (Breitling et al., 2004). Expression differences were also 

ordered according to Iterative Group Analysis (iGA), which statistically identifies 

functional classes of genes with significant changes (Breitling et al., 2004). These genes 

may be members of a pathway for instance. Not all members of the group need to be 

changed and not by a large amount. 

5.3.2.2 Results of analysis 

The comparison of pLoxEGFP5- vs. pLoxEGFP250- should give an indication of the 

fidelity of separation since each sample should contain only the untransfected fraction of 

non-fluorescent cells, and so there should be no difference in gene expression levels. 

According to the rank product analysis however, with a false discovery rate of less than 

5%, in the pLoxEGFP250- sample, 106 genes are up-regulated and 10 are down-regulated, 

relative to pLoxEGFP5-. It is possible therefore that the separation was not absolute, or 

that some pLoxEGFP250 transfected cells did not fluoresce perhaps because of transcript 

retention, thus contaminating the negative sample with cells expressing expanded arrays. 

Likewise, there should be no difference in transcript expression between pLoxEGFP250+ 

vs. pLoxEGFP5- and pLoxEGFP250+ vs. pLoxEGFP250-, since again, both pLoxEGFP5- 

and pLoxEGFP250- samples should contain only untransfected cells. In fact the 

differences between these two are large (312 up and 79 down-regulated compared to 49 up 

and 5 down-regulated respectively, (Table 11: Tests 2 and 5)), compared to the differential 

expression within pLoxEGFP250+ vs. pLoxEGFP250- (Table 11, Test 3), indicating that 

the nature of pLoxEGFP250+ and pLoxEGFP250- is similar. Down-regulated genes 

identified within pLoxEGFP250- vs. pLoxEGFP5- were compared to those listed in 

pLoxEGFP250+ vs. pLoxEGFP5- (Table 11, Tests 5 and 2). If there was contamination of 

pLoxEGFP250+ within the pLoxEGFP250- sample then one would expect the same genes 

to be listed. Seven of the 10 genes were found within the 5% cut off, so indicating probable 

contamination of the pLoxEGFP250- sample with pLoxEGFP250+. The down-regulated 

gene lists were then compared within the pLoxEGFP5+ vs. pLoxEGFP250+ and 
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pLoxEGFP5+ vs. pLoxEGFP250- analyses (Table 11, Tests 1 and 6). Again if there was 

contamination of pLoxEGFP250- with pLoxEGFP250+, the same genes would be 

expected in the lists. At the same 5% limit, 5 of 6 genes were also listed within the 42 up-

regulated genes (N.B. up-regulated genes were compared because the base-line was 

reversed in the pLoxEGFP5+ vs. pLoxEGFP250- (test 6, Table 11) comparison).  

Table 11 Up and down regulation of transcripts 

Test vs. baseline Up Down Test 

1. 250+ vs. 5+ 128 6 Extended CUG repeats 

2. 250+ vs. 5- 312 79 Extended CUG repeats and construct related 

3. 250+ vs. 250- 49 5 Extended CUG repeats and construct related 

4. 5+ vs. 5- 130 90 Normal length repeats and construct related 

5. 250- vs. 5- 106 10 Separation control 

6. 5+ vs. 250- 42 66 Normal length repeats, construct related and separation 

control 

Note–False discovery rate limit ≤ P=0.05. 

 
To detect structure in the relationship between our samples, a principle components 

analysis (PCA) was carried out (at the MBSU). Briefly, PCA is a type of factor analysis, 

which uses a mathematically defined transformation of a given multivariable data set. This 

simplifies the data so that the greatest variance lies on the first coordinate – termed the 

principle component. It reduces the dimensionality of the data in effect, by combining 

variables until only the defining components remain, and is commonly used with 

microarray data sets to look at the relationship between samples. The results of the analysis 

show the relationships between the pairs of separated ‘EGFP on’ and ‘EGFP off’ samples, 

for each replicate of pLoxEGFP5 and pLoxEGFP250. In general the relationship between 

EGFP off samples (-5(1); -5(2); -5(3); -250(2) and -250(3)) and EGFP on samples (+5(1); 

+5(2); +5(3); +250(2) and +250(3)), irrespective of whether they were derived from 5 or 

250 CUG repeat expression, shifts upwards and to the right for negative samples. The 

exception to this is the -250(1) and +250(1) pair, where the shift is downwards (Figure 

54A). To test whether the samples had been mislabelled, residual RNA unused in the 
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microarray analysis was subjected to semi-quantitative EGFP RT-PCR. Unfortunately, the 

-250(1) sample was used up during array hybridisation, but comparison of +250(1) EGFP 

PCR product levels with other EGFP+ RNA fractions should indicate whether the +250(1) 

sample belonged with the positive or negative group. RT-PCR was carried out using the 

remaining RNA samples. To ensure that the levels of product seen after amplification were 

a quantification of template in the starting sample, the number of cycles required to 

generate linearity of the PCR product was established using control RNA. Total RNA from 

untransfected, and pLoxEGFP-transfected 3T3 cells was mixed in varying proportions: 0; 

1; 5; 10; 20; 50 and 100% pLoxEGFP-transfected, and used to determine the optimal 

number of cycles for amplification (Figure 30 Bottom).  

 

 

Figure 54 Samples +250(1) and -250(1) were not accidentally switched A. Principle component 
analysis. Mathematical algorithm plotting the relationship between the FACS-separated sample 
pairs suggested +250(1) and -250(1) may have been switched. B. Semi-quantitive EGFP RT-PCR 
indicates that the levels of PCR product amplified from +250(1) were equivalent to the other 
EGFP+ fractions, therefore a switch was unlikely. 
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For both control and test samples 500 ng of RNA was reverse-transcribed, and 2/5 of the 

reaction product used for the EGFP PCR analysis. Fifteen cycles were used for the 

amplification (Figure 54B). Note that it was not possible to include a “no RT” control due 

to the very limited amounts of sample. In fact, the samples would be expected to be 

positive for DNA since they were not DNase treated (small amounts of plasmid DNA such 

as pLoxEGFP5/250 used for the transfections tend to co-isolate with RNA during 

preparation). This was of little consequence here since we were looking at the level of 

separation. If the product arose from plasmid DNA rather than transcript, the separation 

level was still a valid measure. The amount of EGFP product amplified from the +250(1) 

sample was found to be equivalent to the other EGFP positive samples, which suggested 

the samples had not been accidentally switched.  

Whilst this data set was incomplete since some samples were used up during array 

hybridisation, there were enough to indicate the level of separation, and at the molecular 

level it was clear that separation was not totally successful. As predicted from the 

microarray results, EGFP negative samples are contaminated with EGFP transcripts across 

all samples, whether pLoxEGFP5 or pLoxEGFP250 derived. In conclusion, since the 

separation had failed, reliable data was restricted to the pLoxEGFP250+ vs. pLoxEGFP5+ 

comparison (Test 1 Table 11) since both these fractions must contain the construct. 

In this comparison 128 genes were up-regulated (Table 12) and 6 down-regulated (Table 

13). Genes subjected to non-sense mediated decay would appear to be down-regulated in 

this analysis, as would those with exon exclusion in alternatively spliced 3’ ends. Of the 6 

down-regulated genes 3 were unannotated RIKEN DNA bank cDNAs, the remainder 

comprised Hes1 (hairy and enhancer of split 1); D3Ertd300e (DNA segment, Chr 3, 

ERATO Doi 300, expressed) and Tfrc (transferrin receptor). Hes1 is involved in neuronal 

differentiation (Bae et al., 2000) and also tenuously thought to be a negative regulator of 

myogenesis due to its ‘helix-loop-helix’ domain, and its role in maintenance of the 

undifferentiated state (Kageyama et al., 2000). At the time of this analysis, nothing was 

known about the function of the D3Ertd300e gene product (also known as p38 interacting 

protein), since then researchers have found it is critically required for the regulation of 

gastrulation in the mouse. Zohn et al. created a mouse model with a splicing defect in this 

gene, which exhibits exencephaly and spina bifida. These mutations are not completely 

penetrant, probably because low levels of transcripts are processed normally. The same 

researchers showed that mutant embryos homozygous for a more severe p38IP allele are 

necrotic, developmentally delayed, exhibit misshapen head folds and exencephaly, and fail 
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to form somites or form only a few anterior somites (Zohn et al., 2006). Some aspects of 

this phenotype are reminiscent of the congenital form of DM1 such as misshapen head and 

impaired muscle development, so in hindsight this gene should have been selected for 

further characterisation.  

Iterative Group Analysis (iGA) predicted the involvement of iron homeostasis (transferrin 

receptor), and nucleolus organisation and biogenesis pathways. Nucleoli, the sites of 

ribosome biosynthesis, enlarge in response to large protein production requirements. Due 

to the nuclear retention of EGFP transcripts in the pLoxEGFP250 sample, a high protein 

production requirement would not be expected compared to pLoxEGFP5 transfected cells 

where the transcript is not thought to be retained in the nucleus. Supporting this, during 

transfection experiments, EGFP fluorescence from pLoxEGFP250 transfected cells was 

generally found to be of a lower intensity than in pLoxEGFP5 transfected cells (Figure 45), 

therefore differences relating to this pathway may be due to artefact. Up-regulated genes 

(Table 12) were also assessed to determine whether mutations in these genes could lead to 

DM-like symptoms, but no connections could be made. IGA analysis was used to facilitate 

interpretation by prediction of the putatively affected pathways, most of which were found 

to be cell-growth and metabolism related, such as gelatinase A activity; glucuronate and 

glycospingolipid metabolism; lysosome organisation and biogenesis, and response to sterol 

depletion; all of which could relate to the effects of excessive EGFP protein production in 

pLoxEGFP5 transfected cells. It was stated earlier that an increase in the number of genes 

down-regulated upon CUG repeat expression could be due to nonsense mediated decay. 

This could also result from decreased mRNA stability. Houseley et al. found that over-

expression of an MBNL1/GFP fusion protein in Drosophila already expressing CUG 

repeats, resulted in increased stability of the CUG repeat transcript (Houseley et al. 2005). 

CUGBP1 has deadenylase activity, if MBNL1 aided mRNA stability in other transcripts, it 

follows then that depletion by CUG repeat expression may appear as an increase in down-

regulated genes. Conversely, for those genes up-regulated, the stability of the mRNA could 

be increased.  

After extensive analysis of the genes listed using published literature, connections between 

the genes listed and DM symptoms seemed tentative. By this time Affymetrix had 

developed mouse exon arrays, which were ideally suited for the discovery of alternative 

splice forms, so no genes were selected for further characterisation from this analysis. 
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Table 12 Genes up-regulated; pLoxEGFP250+ vs. pLoxEGFP5+. 

FDR 
 

Fold 
Change 

Gene Symbol 
 

Gene Title 
 

0 2.22 Dbp D site albumin promoter binding protein 
0 2.46 Pla2g1b Soluble PLA2-Ib precursor (Pla2g1b) 
0 2.37 Ogn osteoglycin 
0 2.23 Ogn osteoglycin 
0 2.15 Tmsb4x thymosin, beta 4, X chromosome 
0 2.11 C3 complement component 3 
0 2.07 C1s complement component 1, s subcomponent 
0 2.57 Cyr61 cysteine rich protein 61 
0 2.07 Lcn2 lipocalin 2 
0.1 2.17 D530037H12Rik RIKEN cDNA D530037H12 gene 
0.09 
 

1.98 
 

Efemp1 
 

epidermal growth factor-containing fibulin-like extracellular 
matrix protein 1 

0.08 2.31 Cyr61 cysteine rich protein 61 
0.15 1.92 Cbr2 carbonyl reductase 2 
0.21 1.95 Ddx3y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked 
0.2 1.9 Trp53inp1 transformation related protein 53 inducible nuclear protein 1 
0.19 1.87 Nt5e 5' nucleotidase, ecto 
0.18 1.83 Matn2 matrilin 2 
0.17 
 

2.08 
 

--- 
 

Avian musculoaponeurotic fibrosarcoma (v-maf) AS42 
oncogene homolog (Maf), mRNA 

0.21 2.12 Sepp1 selenoprotein P, plasma, 1 
0.2 1.87 Svs5 seminal vesicle secretion 5 
0.19 1.86 Dcn decorin 
0.18 
 

1.91 
 

Maf 
 

avian musculoaponeurotic fibrosarcoma (v-maf) AS42 
oncogene homolog 

0.17 1.35 Car9 carbonic anhydrase 9 
0.17 1.8 Tgfbi transforming growth factor, beta induced 
0.2 1.56 Fos FBJ osteosarcoma oncogene 
0.19 
 

1.84 
 

Rbmy1a1 
 

RNA binding motif protein, Y chromosome, family 1, 
member A1 

0.19 1.78 Tgfbi transforming growth factor, beta induced 
0.36 1.82 Sqrdl sulfide quinone reductase-like (yeast) 
0.48 1.88 Fzd10 frizzled homolog 10 (Drosophila) 
0.47 2.06 Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 
0.65 1.74 Zc3h6 zinc finger CCCH type containing 6 
0.62 
 

1.74 
 

Nfkbiz 
 

nuclear factor of kappa light polypeptide gene enhancer in 
B-cells inhibitor, zeta 

0.61 1.83 1110032E23Rik RIKEN cDNA 1110032E23 gene 
0.79 1.69 Matn2 matrilin 2 
0.8 1.68 Tgfbi transforming growth factor, beta induced 
0.81 1.72 Capn6 calpain 6 
0.81 
 
 
 
 
 
 
 

1.69 
 
 
 
 
 
 
 

Ugt1a2 ///  
Ugt1a6a /// 
Ugt1a10 /// 
Ugt1a7c /// 
 Ugt1a5 /// Ugt1a9 
/// Ugt1a6b /// 
Ugt1a1 
 

UDP glucuronosyltransferase 1 family, polypeptide A2 /// 
UDP glucuronosyltransferase 1 family, polypeptide A6A /// 
UDP glycosyltransferase 1 family, polypeptide A10 /// UDP 
glucuronosyltransferase 1 family, polypeptide A7C /// UDP 
glucuronosyltransferase 1 family, polypeptide A5 /// UDP 
glucuronosyltransferase 1 family, polypeptide A9 /// UDP 
glucuronosyltransferase 1 family, polypeptide A6B /// UDP 
glucuronosyltransferase 1 family, polypeptide A1 

0.82 1.26 Adm adrenomedullin 
0.85 1.74 Enpp2 ectonucleotide pyrophosphatase/phosphodiesterase 2 
0.88 1.68 --- --- 
1.02 
 

1.73 
 

Steap2 
 

PREDICTED: six transmembrane epithelial antigen of 
prostate 2 [Mus musculus], mRNA sequence 

1 1.39 Ccng2 cyclin G2 
1.02 1.66 2310047A01Rik RIKEN cDNA 2310047A01 gene 
1.16 1.86 Aldh3a1 aldehyde dehydrogenase family 3, subfamily A1 
1.13 1.68 Aldh6a1 aldehyde dehydrogenase family 6, subfamily A1 
1.15 1.65 Ctso cathepsin O 
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1.13 1.65 Ppil6 peptidylprolyl isomerase (cyclophilin)-like 6 
1.15 1.64 Alcam activated leukocyte cell adhesion molecule 
1.29 1.66 Rab6b RAB6B, member RAS oncogene family 
1.3 1.47 Eno2 enolase 2, gamma neuronal 
1.29 1.67 Mtss1 metastasis suppressor 1 
1.27 
 
 

1.64 
 
 

--- 
 
 

0 day neonate eyeball cDNA, RIKEN full-length enriched 
library, clone:E130004J04 product:unclassifiable, full insert 
sequence 

1.34 1.62 Islr immunoglobulin superfamily containing leucine-rich repeat 
1.35 1.64 Luc7l2 LUC7-like 2 (S. cerevisiae) 
1.45 1.65 1810011O10Rik RIKEN cDNA 1810011O10 gene 
1.46 1.74 Car6 carbonic anhydrase 6 
1.44 1.69 Ly6c lymphocyte antigen 6 complex, locus C 
1.41 1.68 Cdsn corneodesmosin 
1.41 1.62 H1f0 H1 histone family, member 0 
1.4 1.61 Ii Ia-associated invariant chain 
1.48 1.62 Pink1 PTEN induced putative kinase 1 
1.48 
 

1.61 
 

Tomm7 
 

translocase of outer mitochondrial membrane 7 homolog 
(yeast) 

1.46 1.61 Mapk12 mitogen-activated protein kinase 12 
1.48 
 

1.65 
 

Pdlim5 
 

PDZ and LIM domain 5, mRNA (cDNA clone MGC:46824 
IMAGE:4457868) 

1.49 1.57 Tmem53 transmembrane protein 53 
1.47 1.63 Ly6a lymphocyte antigen 6 complex, locus A 
1.52 1.49 Lss lanosterol synthase 
1.56 1.68 Mgp matrix Gla protein 
1.72 1.62 Gchfr GTP cyclohydrolase I feedback regulator 
1.7 1.59 Pla2g1b phospholipase A2, group IB, pancreas 
1.96 1.59 BC010787 cDNA sequence BC010787 
1.97 1.59 Cyba cytochrome b-245, alpha polypeptide 
1.99 1.59 Pltp phospholipid transfer protein 
2.03 1.62 Sdpr serum deprivation response 
2.03 1.59 Hexb hexosaminidase B 
2.07 1.58 Hdac11 histone deacetylase 11 
2.04 1.6 Sulf2 sulfatase 2 
2.03 1.6 Haghl hydroxyacylglutathione hydrolase-like 
2.01 1.58 Dcxr dicarbonyl L-xylulose reductase 
2.09 1.33 Ccng2 cyclin G2 
2.1 1.57 Wdr34 WD repeat domain 34 
2.07 1.57 LOC545323 similar to neurobeachin-like 1 
2.22 1.56 Erbb2ip Erbb2 interacting protein 
2.3 1.56 Dzip1 DAZ interacting protein 1 
2.33 1.57 Cldn10 Claudin 10 (Cldn10), transcript variant 1, mRNA 
2.34 1.57 Tgfbi transforming growth factor, beta induced 
2.36 1.58 Igfbp3 insulin-like growth factor binding protein 3 
2.34 
 
 

1.59 
 
 

 
 
 

Transcribed locus, moderately similar to XP_484812.1 
PREDICTED: hypothetical protein XP_484812 [Mus 
musculus] 

2.36 1.56 Irf2bp2 interferon regulatory factor 2 binding protein 2 
2.6 
 

1.58 
 

Eif2s3y 
 

eukaryotic translation initiation factor 2, subunit 3, structural 
gene Y-linked 

2.58 1.36 AI451617 expressed sequence AI451617 
2.58 1.61 BC049816 cDNA sequence BC049816 
2.56 1.54 Hrasls3 HRAS like suppressor 3 
2.7 1.55 Alcam activated leukocyte cell adhesion molecule 
2.72 1.6 Sdpr serum deprivation response 
2.77 1.67 Mmp2 matrix metallopeptidase 2 
2.75 1.69 0910001A06Rik RIKEN cDNA 0910001A06 gene (0910001A06Rik), mRNA 
2.79 1.54 Neu1 neuraminidase 1 
2.76 1.14 Acss2 acyl-CoA synthetase short-chain family member 2 
2.74 1.61 2210419I08Rik RIKEN cDNA 2210419I08 gene 
2.9 1.68 Aspn asporin 
3.01 1.52 Ranbp2 RAN binding protein 2 
2.99 1.54 Maf avian musculoaponeurotic fibrosarcoma (v-maf) AS42 
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   oncogene homolog 
3.24 1.56 1500004A08Rik RIKEN cDNA 1500004A08 gene 
3.21 1.52 --- --- 
3.56 1.79 --- --- 
3.54 1.55 Xdh xanthine dehydrogenase 
3.52 1.42 6330406I15Rik RIKEN cDNA 6330406I15 gene 
3.76 1.52 Foxc1 forkhead box C1 
3.75 1.51 Tgm2 transglutaminase 2, C polypeptide 
3.76 
 

1.52 
 

Galntl2 
 

UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase-like 2 

3.84 
 

1.53 
 

AI325464 
 

Expressed sequence AI325464, mRNA (cDNA clone 
MGC:30834 IMAGE:4006813) 

3.92 1.13 Adm adrenomedullin 
4.08 1.52 Gstm1 glutathione S-transferase, mu 1 
4.09 1.51 Psap prosaposin 
4.22 1.53 Calu calumenin 
4.21 1.64 Mmp2 matrix metallopeptidase 2 
4.19 
 

1.52 
 

Hsd3b7 
 

hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid 
delta-isomerase 7 

4.42 
 

1.51 
 

Rnase4 
 

ribonuclease, RNase A family 4 
 

FDR, False discovery rate; ---, unannotated cDNA or EST sequences. 

 

Table 13 Genes downregulated; pLoxEGFP250+ vs. pLoxEGFP5+. 

FDR 
Fold 
Change Gene Symbol Gene Title 

0 -2.69 --- --- 
3.5 -1.88 Hes1 hairy and enhancer of split 1 (Drosophila) 
3 -1.57 D3Ertd300e DNA segment, Chr 3, ERATO Doi 300, expressed 
3.25 -1.57 Tfrc transferrin receptor 
3 -1.75 AI662270 expressed sequence AI662270 
3.83 
 

-1.57 
 

1810054D07Rik 
 

RIKEN cDNA 1810054D07 gene 
 

FDR, False discovery rate; ---, unannotated cDNA or EST sequences. 

 

Table 14 Genes upregulated; pLoxEGFP250+ vs. pLoxEGFP5-. 

FDR 
Fold 
Change Gene Symbol Gene Title 

0 6.29 1110032E23Rik RIKEN cDNA 1110032E23 gene 
0 4.99 Tmsb4x thymosin, beta 4, X chromosome 
0 4.17 Car6 carbonic anhydrase 6 
0 4.15 Sdpr serum deprivation response 
0 3.8 Sdpr serum deprivation response 
0 3.74 Sdpr serum deprivation response 
0 3.74 Ddx3y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked 
0 3.51 Sqrdl sulfide quinone reductase-like (yeast) 
0 3.15 Alcam activated leukocyte cell adhesion molecule 
0 3.01 Dcn decorin 
0 
 

3.02 
 

Gsta1 /// Gsta2 
 

glutathione S-transferase, alpha 1 (Ya) /// glutathione S-
transferase, alpha 2 (Yc2) 

0 
 

3.12 
 

Efemp1 
 

epidermal growth factor-containing fibulin-like extracellular 
matrix protein 1 

0 
 

2.94 
 

Rbmy1a1 
 

RNA binding motif protein, Y chromosome, family 1, member 
A1 
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0 2.9 2210419I08Rik RIKEN cDNA 2210419I08 gene 
0 2.89 Alcam activated leukocyte cell adhesion molecule 
0 
 

2.88 
 

Maf 
 

avian musculoaponeurotic fibrosarcoma (v-maf) AS42 
oncogene homolog 

0 2.66 9430093N24Rik MKIAA1983 protein 
0 2.59 Alcam activated leukocyte cell adhesion molecule 
0 2.55 Mapk12 mitogen-activated protein kinase 12 
0 2.58 Cyba cytochrome b-245, alpha polypeptide 
0 2.49 Ccl2 chemokine (C-C motif) ligand 2 
0 2.55 Alcam activated leukocyte cell adhesion molecule 
0 2.44 --- --- 
0 
 

2.45 
 

Gatm 
 

glycine amidinotransferase (L-arginine:glycine 
amidinotransferase) 

0 2.4 Grem1 gremlin 1 
0 2.41 Mtss1 metastasis suppressor 1 
0 2.42 Gpnmb glycoprotein (transmembrane) nmb 
0 2.36 Ccl7 chemokine (C-C motif) ligand 7 
0 
 

2.32 
 

Eif2s3y 
 

eukaryotic translation initiation factor 2, subunit 3, structural 
gene Y-linked 

0 2.52 Fyb FYN binding protein 
0 
 

2.3 
 

H60 
 

PREDICTED: histocompatibility 60 [Mus musculus], mRNA 
sequence 

0 2.3 Rorb RAR-related orphan receptor beta 
0 2.26 Igf2r insulin-like growth factor 2 receptor 
0.03 2.25 Cdsn corneodesmosin 
0.03 2.2 Ampd3 AMP deaminase 3 
0.03 2.15 Ppil6 peptidylprolyl isomerase (cyclophilin)-like 6 
0.03 2.21 BC034507 cDNA sequence BC034507 
0.03 2.46 Pla2g1b Soluble PLA2-Ib precursor (Pla2g1b) 
0.03 2.15 Ociad2 OCIA domain containing 2 
0.03 2.24 Kctd4 potassium channel tetramerisation domain containing 4 
0.02 2.1 Ass1 argininosuccinate synthetase 1 
0.02 2.15 Mtss1 metastasis suppressor 1 
0.02 2.22 3110004L20Rik RIKEN cDNA 3110004L20 gene 
0.02 2.09 Gchfr GTP cyclohydrolase I feedback regulator 
0.02 2.15 Enpp2 ectonucleotide pyrophosphatase/phosphodiesterase 2 
0.02 2.03 Ctsb cathepsin B 
0.04 2.03 Gadd45a growth arrest and DNA-damage-inducible 45 alpha 
0.04 2.01 Svs5 seminal vesicle secretion 5 
0.04 
 

2 
 

Dusp3 
 

dual specificity phosphatase 3 (vaccinia virus phosphatase 
VH1-related) 

0.04 2.08 BC034507 cDNA sequence BC034507 
0.04 1.98 Tnfaip2 tumor necrosis factor, alpha-induced protein 2 
0.04 1.97 Nqo1 NAD(P)H dehydrogenase, quinone 1 
0.04 1.97 Tgfbi transforming growth factor, beta induced 
0.06 1.98 H1f0 H1 histone family, member 0 
0.07 
 

2.05 
 

Plf /// Plf2 /// 
Mrpplf3 

proliferin /// proliferin 2 /// mitogen regulated protein, proliferin 3 
 

0.07 1.94 U90926 cDNA sequence U90926 
0.07 2.04 BC049816 cDNA sequence BC049816 
0.09 
 

1.98 
 

Erbb3 
 

v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 
(avian) 

0.12 2.02 Cth cystathionase (cystathionine gamma-lyase) 
0.12 2.32 Cyr61 cysteine rich protein 61 
0.11 1.96 Igf2r insulin-like growth factor 2 receptor 
0.11 1.93 Dpysl3 dihydropyrimidinase-like 3 
0.11 2.19 Hcn1 hyperpolarization-activated, cyclic nucleotide-gated K+ 1 
0.11 1.95 9430041P20Rik RIKEN cDNA 9430041P20 gene 
0.11 
 
 
 
 
 

1.91 
 
 
 
 
 

Ugt1a2 
Ugt1a6a 
Ugt1a10 
Ugt1a7c 
Ugt1a5 
Ugt1a9 

UDP glucuronosyltransferase 1 family, polypeptide A2 /// UDP 
glucuronosyltransferase 1 family, polypeptide A6A /// UDP 
glycosyltransferase 1 family, polypeptide A10 /// UDP 
glucuronosyltransferase 1 family, polypeptide A7C /// UDP 
glucuronosyltransferase 1 family, polypeptide A5 /// UDP 
glucuronosyltransferase 1 family, polypeptide A9 /// UDP 
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Ugt1a6b 
Ugt1a1 

glucuronosyltransferase 1 family, polypeptide A6B /// UDP 
glucuronosyltransferase 1 family, polypeptide A1 

0.12 
 

2.21 
 

--- 
 

Avian musculoaponeurotic fibrosarcoma (v-maf) AS42 
oncogene homolog (Maf), mRNA 

0.13 
 

1.95 
 

Malat1 
 

metastasis associated lung adenocarcinoma transcript 1 (non-
coding RNA) 

0.16 2.36 Cyr61 cysteine rich protein 61 
0.17 1.92 Tgfbi transforming growth factor, beta induced 
0.19 1.88 Tgm2 transglutaminase 2, C polypeptide 
0.2 1.86 Hdac11 histone deacetylase 11 
0.19 1.93 Pik3r5 phosphoinositide-3-kinase, regulatory subunit 5, p101 
0.21 
 

1.82 
 

Hsd3b7 
 

hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid 
delta-isomerase 7 

0.2 1.85 Ntn1 netrin 1 
0.23 1.85 Ctsb cathepsin B 
0.22 1.83 Tgfbi transforming growth factor, beta induced 
0.22 1.88 Emb embigin 
0.22 1.8 Gnpda2 glucosamine-6-phosphate deaminase 2 
0.23 1.87 --- --- 
0.22 1.82 Masp1 mannan-binding lectin serine peptidase 1 
0.23 1.82 Aldh2 aldehyde dehydrogenase 2, mitochondrial 
0.23 1.8 Hexb hexosaminidase B 
0.23 1.84 Trp53inp1 transformation related protein 53 inducible nuclear protein 1 
0.23 1.83 Wdr34 WD repeat domain 34 
0.24 1.92 C3 complement component 3 

0.24 
 
 
 
 
 
 

1.78 
 
 
 
 
 
 
 

Ugt1a2 /// 
Ugt1a6a /// 
Ugt1a10 /// 
Ugt1a7c /// 
Ugt1a5 /// 
Ugt1a9 /// 
Ugt1a6b /// 
Ugt1a1 

UDP glucuronosyltransferase 1 family, polypeptide A2 /// UDP 
glucuronosyltransferase 1 family, polypeptide A6A /// UDP 
glycosyltransferase 1 family, polypeptide A10 /// UDP 
glucuronosyltransferase 1 family, polypeptide A7C /// UDP 
glucuronosyltransferase 1 family, polypeptide A5 /// UDP 
glucuronosyltransferase 1 family, polypeptide A9 /// UDP 
glucuronosyltransferase 1 family, polypeptide A6B /// UDP 
glucuronosyltransferase 1 family, polypeptide A1 

0.24 1.79 2810013C04Rik RIKEN cDNA 2810013C04 gene 
0.24 1.8 2610003J06Rik RIKEN cDNA 2610003J06 gene 
0.25 1.85 Sulf2 sulfatase 2 
0.24 1.99 H3f3b H3 histone, family 3B 
0.27 1.89 1110013L07Rik RIKEN cDNA 1110013L07 gene 
0.29 1.77 Gpc1 glypican 1 
0.32 1.86 Parp12 poly (ADP-ribose) polymerase family, member 12 
0.32 1.87 C1s complement component 1, s subcomponent 
0.34 1.78 Vegfc vascular endothelial growth factor C 
0.41 1.78 Evi2a ecotropic viral integration site 2a 
0.42 1.75 Neu1 neuraminidase 1 
0.42 1.76 Vegfc vascular endothelial growth factor C 
0.43 1.73 Nt5e 5' nucleotidase, ecto 
0.47 1.77 Hs6st2 heparan sulfate 6-O-sulfotransferase 2 
0.48 1.73 Gsto2 glutathione S-transferase omega 2 
0.47 
 

1.74 
 

Grina 
 

glutamate receptor, ionotropic, N-methyl D-asparate-
associated protein 1 (glutamate binding) 

0.47 1.72 Cxcl5 chemokine (C-X-C motif) ligand 5 
0.48 1.72 Htra1 HtrA serine peptidase 1 
0.49 1.74 Vat1 vesicle amine transport protein 1 homolog (T californica) 
0.5 1.73 Gstm1 glutathione S-transferase, mu 1 
0.51 1.71 H1f0 H1 histone family, member 0 
0.51 1.71 Cryzl1 crystallin, zeta (quinone reductase)-like 1 
0.5 1.7 Rassf5 Ras association (RalGDS/AF-6) domain family 5 
0.5 1.73 Jarid1d jumonji, AT rich interactive domain 1D (Rbp2 like) 
0.53 1.7 Mgst2 microsomal glutathione S-transferase 2 
0.54 1.71 Ddit3 DNA-damage inducible transcript 3 
0.56 1.7 Psap prosaposin 
0.57 1.87 AI256396 EST AI256396 
0.57 1.77 Xdh xanthine dehydrogenase 
0.59 1.76 Cbr2 carbonyl reductase 2 
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0.59 1.79 1500005K14Rik RIKEN cDNA 1500005K14 gene 
0.58 2.04 Sepp1 selenoprotein P, plasma, 1 
0.59 1.69 Them2 thioesterase superfamily member 2 
0.59 1.7 Psap prosaposin 
0.6 1.72 Tgm2 transglutaminase 2, C polypeptide 
0.59 1.7 Ctsl cathepsin L 
0.6 1.82 B230342M21Rik RIKEN cDNA B230342M21 gene 
0.61 
 

1.83 
 

Gdpd1 
 

glycerophosphodiester phosphodiesterase domain containing 
1 

0.61 1.76 Igfbp3 insulin-like growth factor binding protein 3 
0.63 1.68 Ii Ia-associated invariant chain 
0.63 1.68 Htra1 HtrA serine peptidase 1 
0.68 
 

1.67 
 

Gas2 
 

Growth arrest specific 2, mRNA (cDNA clone MGC:18565 
IMAGE:4237356) 

0.72 1.74 B430320C24Rik RIKEN cDNA B430320C24 gene 
0.72 1.7 D430039N05Rik RIKEN cDNA D430039N05 gene 
0.71 1.7 Ctso cathepsin O 
0.72 1.72 Rapgef3 Rap guanine nucleotide exchange factor (GEF) 3 
0.71 2.04 Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 
0.75 1.66 Pdlim1 PDZ and LIM domain 1 (elfin) 
0.79 1.66 Rnf157 ring finger protein 157 
0.79 1.69 Gstm1 glutathione S-transferase, mu 1 
0.85 1.73 Igfbp3 insulin-like growth factor binding protein 3 
0.85 1.96 --- --- 
0.84 
 

1.7 
 

Pscdbp 
 

pleckstrin homology, Sec7 and coiled-coil domains, binding 
protein 

0.84 1.69 Ctsb cathepsin B 
0.84 1.64 --- --- 
0.85 1.73 Ly6a lymphocyte antigen 6 complex, locus A 
0.84 1.68 Tgfbi transforming growth factor, beta induced 
0.86 1.7 Ctsb cathepsin B 
0.88 1.67 Vegfc vascular endothelial growth factor C 
0.96 1.66 Cnp1 cyclic nucleotide phosphodiesterase 1 
0.98 1.64 Gnpda2 glucosamine-6-phosphate deaminase 2 
1.01 
 

1.63 
 

Napb 
 

N-ethylmaleimide sensitive fusion protein attachment protein 
beta 

1.05 1.62 Atp6ap2 ATPase, H+ transporting, lysosomal accessory protein 2 
1.05 1.63 Laptm4b lysosomal-associated protein transmembrane 4B 
1.06 1.68 Itgb7 integrin beta 7 
1.05 
 

1.61 
 

Bphl 
 

biphenyl hydrolase-like (serine hydrolase, breast epithelial 
mucin-associated antigen) 

1.06 1.81 Fzd10 frizzled homolog 10 (Drosophila) 
1.05 
 
 

1.69 
 
 

Phex 
 
 

phosphate regulating gene with homologies to endopeptidases 
on the X chromosome (hypophosphatemia, vitamin D resistant 
rickets) 

1.05 1.63 A930001N09Rik RIKEN cDNA A930001N09 gene (A930001N09Rik), mRNA 
1.05 1.64 Ptgs1 prostaglandin-endoperoxide synthase 1 
1.06 1.65 Klhl24 kelch-like 24 (Drosophila) 
1.06 1.65 Sh2d5 SH2 domain containing 5 
1.06 1.66 Tgm2 transglutaminase 2, C polypeptide 
1.06 
 

1.62 
 

P2rx4 
 purinergic receptor P2X, ligand-gated ion channel 4 

1.06 1.63 Plxnd1 plexin D1 
1.07 
 

1.62 
 

Malat1 
 

metastasis associated lung adenocarcinoma transcript 1 (non-
coding RNA) 

1.09 1.61 Hrsp12 heat-responsive protein 12 
1.1 1.62 Dcxr dicarbonyl L-xylulose reductase 
1.1 1.64 Trim44 tripartite motif-containing 44 
1.11 1.65 Rassf5 Ras association (RalGDS/AF-6) domain family 5 
1.16 1.59 Klhl24 kelch-like 24 (Drosophila) 
1.15 1.68 Dhrs6 dehydrogenase/reductase (SDR family) member 6 
1.15 1.26 Adm adrenomedullin 
1.17 1.6 Kif21a kinesin family member 21A 
1.19 1.62 Cst6 cystatin E/M 
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1.2 1.19 Adm adrenomedullin 
1.22 1.6 Bbs7 Bardet-Biedl syndrome 7 
1.26 1.59 Scara5 scavenger receptor class A, member 5 (putative) 
1.27 1.59 A630026N12Rik RIKEN cDNA A630026N12 gene 
1.39 
 
 
 
 
 
 
 

1.58 
 
 
 
 
 
 
 

Ugt1a2 /// 
Ugt1a6a /// 
Ugt1a10 /// 
Ugt1a7c /// 
Ugt1a5 /// 
Ugt1a9 /// 
Ugt1a6b /// 
Ugt1a1 

UDP glucuronosyltransferase 1 family, polypeptide A2 /// UDP 
glucuronosyltransferase 1 family, polypeptide A6A /// UDP 
glycosyltransferase 1 family, polypeptide A10 /// UDP 
glucuronosyltransferase 1 family, polypeptide A7C /// UDP 
glucuronosyltransferase 1 family, polypeptide A5 /// UDP 
glucuronosyltransferase 1 family, polypeptide A9 /// UDP 
glucuronosyltransferase 1 family, polypeptide A6B /// UDP 
glucuronosyltransferase 1 family, polypeptide A1 

1.38 1.59 Hspa4l heat shock 70kDa protein 4 like 
1.4 1.65 Trappc6a trafficking protein particle complex 6A 
1.4 1.65 Emb embigin 
1.39 1.61 Itgb2 integrin beta 2 
1.39 1.64 Tcn2 transcobalamin 2 
1.41 1.59 Enah Enabled homolog (Drosophila) (Enah), mRNA 
1.4 
 

1.63 
 

Phyhd1 /// Lrrc8 
 

phytanoyl-CoA dioxygenase domain containing 1 /// leucine 
rich repeat containing 8 

1.45 1.62 Klhl24 kelch-like 24 (Drosophila) 
1.45 1.66 Capn6 calpain 6 
1.45 1.65 1810011O10Rik RIKEN cDNA 1810011O10 gene 
1.5 1.62 5730457F11Rik RIKEN cDNA 5730457F11 gene 
1.49 1.59 Msln mesothelin 
1.51 1.64 Uhrf2 ubiquitin-like, containing PHD and RING finger domains 2 
1.54 1.59 0610031J06Rik RIKEN cDNA 0610031J06 gene 
1.55 
 

1.62 
 

Sirt5 
 

sirtuin 5 (silent mating type information regulation 2 homolog) 5 
(S. cerevisiae) 

1.58 1.57 6230421P05Rik RIKEN cDNA 6230421P05 gene 
1.59 1.57 Bhlhb5 basic helix-loop-helix domain containing, class B5 
1.65 1.56 Ghitm growth hormone inducible transmembrane protein 
1.67 1.63 2810003C17Rik RIKEN cDNA 2810003C17 gene 
1.7 1.62 Gsta4 glutathione S-transferase, alpha 4 
1.73 1.56 Ndrg4 N-myc downstream regulated gene 4 
1.72 1.57 Dbp D site albumin promoter binding protein 
1.72 1.58 Creg1 cellular repressor of E1A-stimulated genes 1 
1.73 1.56 Atp6ap2 ATPase, H+ transporting, lysosomal accessory protein 2 
1.78 1.61 1110046J04Rik RIKEN cDNA 1110046J04 gene 
1.78 1.57 MGI:2446326 suprabasin 
1.88 1.57 5730469M10Rik RIKEN cDNA 5730469M10 gene 
1.87 1.59 Jarid1b jumonji, AT rich interactive domain 1B (Rbp2 like) 
1.93 1.72 LOC231914 similar to mKIAA0060 protein 
1.95 1.6 --- Expressed sequence R75581 (R75581), mRNA 
1.94 1.58 9130227C08Rik RIKEN cDNA 9130227C08 gene 
1.93 1.64 Hist1h2bc histone 1, H2bc 
1.96 1.3 Ccng2 cyclin G2 
1.96 1.59 Hba-a1 hemoglobin alpha, adult chain 1 
2.04 1.59 Matn2 matrilin 2 
2.08 1.57 D330001F17Rik RIKEN cDNA D330001F17 gene 
2.14 
 

1.53 
 

Stch 
 

stress 70 protein chaperone, microsome-associated, human 
homolog 

2.19 
 

1.55 
 

Sema3c 
 

sema domain, immunoglobulin domain (Ig), short basic 
domain, secreted, (semaphorin) 3C 

2.22 1.57 Atp6v0b ATPase, H+ transporting, V0 subunit B 
2.25 
 

1.58 
 

Sema3a 
 

sema domain, immunoglobulin domain (Ig), short basic 
domain, secreted, (semaphorin) 3A 

2.24 1.61 Phyh phytanoyl-CoA hydroxylase 
2.33 
 

1.6 
 

Grina 
 

glutamate receptor, ionotropic, N-methyl D-asparate-
associated protein 1 (glutamate binding) 

2.37 1.62 Foxf1a forkhead box F1a 
2.42 
 

1.54 
 

Malat1 
 

metastasis associated lung adenocarcinoma transcript 1 (non-
coding RNA) 

2.53 1.67 Enpp2 ectonucleotide pyrophosphatase/phosphodiesterase 2 
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2.58 1.54 Aldh6a1 aldehyde dehydrogenase family 6, subfamily A1 
2.59 1.53 Hexb hexosaminidase B 
2.6 1.55 Dpp7 dipeptidylpeptidase 7 
2.61 
 
 

1.53 
 
 

--- 
 
 

Adult male medulla oblongata cDNA, RIKEN full-length 
enriched library, clone:6330544N02 product:unclassifiable, full 
insert sequence 

2.61 1.57 --- Transcribed locus 
2.61 1.52 Tspyl4 TSPY-like 4 
2.67 1.63 Ahr aryl-hydrocarbon receptor 
2.71 1.55 2510042P03Rik RIKEN cDNA 2510042P03 gene 
2.7 1.54 9130022K13Rik RIKEN cDNA 9130022K13 gene 
2.69 1.54 Laptm4b lysosomal-associated protein transmembrane 4B 
2.71 1.51 Igfbp6 insulin-like growth factor binding protein 6 
2.8 1.51 Abhd4 abhydrolase domain containing 4 
2.8 1.5 4921509J17Rik RIKEN cDNA 4921509J17 gene 
2.82 1.79 Aldh3a1 aldehyde dehydrogenase family 3, subfamily A1 
2.83 1.51 1110003E01Rik RIKEN cDNA 1110003E01 gene 
2.94 1.53 Atp6ap2 ATPase, H+ transporting, lysosomal accessory protein 2 
3.02 1.29 Ccng2 cyclin G2 
3.09 1.53 D5Ertd593e DNA segment, Chr 5, ERATO Doi 593, expressed 
3.1 1.61 Dpysl3 dihydropyrimidinase-like 3 
3.11 
 

1.51 
 

Serpinb6a 
 

Serine (or cysteine) peptidase inhibitor, clade B, member 6a, 
mRNA (cDNA clone MGC:6042 IMAGE:3481963) 

3.18 1.53 Parvb Parvin, beta (Parvb), mRNA 
3.2 1.54 Zhx1 zinc fingers and homeoboxes protein 1 
3.24 1.54 Creg1 cellular repressor of E1A-stimulated genes 1 
3.25 1.6 Vat1 vesicle amine transport protein 1 homolog (T californica) 
3.25 1.53 MGI:2446326 suprabasin 
3.26 1.53 --- --- 
3.43 1.51 5133401H06Rik RIKEN cDNA 5133401H06 gene 
3.46 1.49 Gba glucosidase, beta, acid 
3.56 
 
 
 

1.56 
 
 
 

1200016E24Rik 
A130040M12Rik 
E430024C06Rik 
/// LOC433071 

RIKEN cDNA 1200016E24 gene /// RIKEN cDNA 
A130040M12 gene /// RIKEN cDNA E430024C06 gene /// 
hypothetical gene supported by AK004796; BC040222 
 

3.61 
 

1.49 
 

U2af1-rs1 
 

U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) 1, 
related sequence 1 

3.59 1.53 Zc3h6 zinc finger CCCH type containing 6 
3.58 1.51 5031439G07Rik RIKEN cDNA 5031439G07 gene 
3.6 1.5 Igfbp4 insulin-like growth factor binding protein 4 
3.59 1.51 Igfbp4 insulin-like growth factor binding protein 4 
3.59 1.5 Igfbp4 insulin-like growth factor binding protein 4 
3.58 1.51 Ghitm growth hormone inducible transmembrane protein 
3.66 1.5 Acpl2 acid phosphatase-like 2 
3.79 
 
 

1.56 
 
 

2010309G21Rik 
/// LOC207685 
/// LOC547243 

RIKEN cDNA 2010309G21 gene /// hypothetical protein 
LOC207685 /// similar to Ig lambda-2 chain 
 

3.78 1.53 1810011O10Rik RIKEN cDNA 1810011O10 gene 
3.79 1.49 --- --- 
3.81 1.49 Tpp1 tripeptidyl peptidase I 
3.99 1.55 Rapgef3 Rap guanine nucleotide exchange factor (GEF) 3 
4.01 1.48 Echdc3 enoyl Coenzyme A hydratase domain containing 3 
4.06 1.49 Il1rl1 interleukin 1 receptor-like 1 
4.05 1.52 Irg1 immunoresponsive gene 1 
4.03 1.47 Irf2bp2 interferon regulatory factor 2 binding protein 2 
4.06 1.49 Tob1 transducer of ErbB-2.1 
4.06 1.52 6030443O07Rik RIKEN cDNA 6030443O07 gene 
4.06 1.47 Gla galactosidase, alpha 
4.12 1.49 Dpp7 dipeptidylpeptidase 7 
4.12 1.48 1110003E01Rik RIKEN cDNA 1110003E01 gene 
4.12 1.5 Ndrg4 N-myc downstream regulated gene 4 
4.28 1.48 Rnase4 ribonuclease, RNase A family 4 
4.29 1.49 --- --- 
4.28 1.48   
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4.27 1.34 Hist1h1c histone 1, H1c 
4.48 
 

1.51 
 

Steap2 
 

PREDICTED: six transmembrane epithelial antigen of prostate 
2 [Mus musculus], mRNA sequence 

4.49 1.47 Bcl2l11 BCL2-like 11 (apoptosis facilitator) 
4.48 1.47 Decr1 2,4-dienoyl CoA reductase 1, mitochondrial 
4.5 1.48 --- Transcribed locus 
4.5 1.53 Arrdc3 arrestin domain containing 3 
4.5 
 
 
 
 
 
 

1.51 
 
 
 
 
 
 

Gstm1 /// 
LOC433943 /// 
LOC436518 /// 
LOC547390 
 
 
 

glutathione S-transferase, mu 1 /// similar to Glutathione S-
transferase Mu 1 (GST class-mu 1) (Glutathione S-transferase 
GT8.7) (pmGT10) (GST 1-1) /// similar to Glutathione S-
transferase Mu 1 (GST class-mu 1) (Glutathione S-transferase 
GT8.7) (pmGT10) (GST 1-1) /// similar to Glutathione S-
transferase Mu 1 (GST class-mu 1) (Glutathione S-transferase 
GT8.7) (pmGT10) (GST 1-1) 

4.49 
 
 
 

1.57 
 
 
 

Uty /// 
LOC546404 /// 
LOC546411 
 

ubiquitously transcribed tetratricopeptide repeat gene, Y 
chromosome /// similar to male-specific histocompatibility 
antigen H-YDb /// similar to male-specific histocompatibility 
antigen H-YDb 

4.59 1.47 Capg capping protein (actin filament), gelsolin-like 
4.58 1.47 LOC546143 hypothetical protein LOC546143 
4.59 1.5 B930075F07 hypothetical protein B930075F07 
4.6 1.49 Atp6v0b ATPase, H+ transporting, V0 subunit B 
4.62 1.49 2310047A01Rik RIKEN cDNA 2310047A01 gene 
4.65 1.47 Hspa4l heat shock 70kDa protein 4 like 
4.63 1.49 2410006H16Rik RIKEN cDNA 2410006H16 gene 
4.62 1.47 1700022C21Rik RIKEN cDNA 1700022C21 gene 
4.69 
 

1.5 
 

Gdpd1 
 

glycerophosphodiester phosphodiesterase domain containing 
1 

4.89 1.56 Saa3 serum amyloid A 3 
4.87 1.54 Zfand2a zinc finger, AN1-type domain 2A 
4.86 1.36 Eno2 enolase 2, gamma neuronal 
4.85 1.46 Gba glucosidase, beta, acid 
4.84 1.49 Foxg1 forkhead box G1 
4.82 1.47 Ccnt2 cyclin T2 
4.82 1.31 Ddit4 DNA-damage-inducible transcript 4 
4.84 1.49 --- --- 
4.85 1.5 Gsto1 glutathione S-transferase omega 1 
4.85 1.46 Atg10 autophagy-related 10 (yeast) 
4.86 1.47 P2rx4 purinergic receptor P2X, ligand-gated ion channel 4 
4.85 1.49 Mitf microphthalmia-associated transcription factor 
4.87 1.48 Ldh2 lactate dehydrogenase 2, B chain 
4.85 1.61 2310043N10Rik RIKEN cDNA 2310043N10 gene 
4.89 1.45 Dstn Destrin (Dstn), mRNA 
4.89 1.45 B230315F11Rik RIKEN cDNA B230315F11 gene 
4.88 1.5 1810015C04Rik RIKEN cDNA 1810015C04 gene 
4.87 1.45 Scpep1 serine carboxypeptidase 1 
4.96 
 

1.48 
 

Dusp1 
 

dual specificity phosphatase 1 
 

 

Table 15 Genes downregulated; pLoxEGFP250+ vs. pLoxEGFP5-. 

FDR 
Fold 
Change Gene Symbol Gene Title 

0 -2.28 Has2 hyaluronan synthase 2 
0 -2.06 6530401D17Rik RIKEN cDNA 6530401D17 gene 
0 -2.02 5930437A14Rik RIKEN cDNA 5930437A14 gene 
0 -1.93 Has2 hyaluronan synthase 2 
0 -1.89 X83313 EST X83313 
0 -1.93 Dlk1 delta-like 1 homolog (Drosophila) 

0 -1.87 Hivep3 
human immunodeficiency virus type I enhancer binding 
protein 3 

0 -1.96 2010012C16Rik RIKEN cDNA 2010012C16 gene 
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0 -2.09 AI662270 expressed sequence AI662270 
0.1 
 

-1.75 
 

Grem2 
 

gremlin 2 homolog, cysteine knot superfamily (Xenopus 
laevis) 

0.09 -1.76 B230120H23Rik RIKEN cDNA B230120H23 gene 
0.08 -1.94 AI662270 expressed sequence AI662270 
0.08 -1.78 Dcp2 DCP2 decapping enzyme homolog (S. cerevisiae) 
0.07 -1.84 Sp100 nuclear antigen Sp100 
0.33 -1.82 Oas1a 2'-5' oligoadenylate synthetase 1A 
0.31 -1.75 Asb4 ankyrin repeat and SOCS box-containing protein 4 
0.35 -1.89 Egr3 early growth response 3 
0.61 -1.72 Tyki thymidylate kinase family LPS-inducible member 
0.58 -1.66 Kbtbd8 kelch repeat and BTB (POZ) domain containing 8 
0.9 -1.72 Igf2bp3 insulin-like growth factor 2, binding protein 3 
1.14 -1.71 Mlf1 myeloid leukemia factor 1 
1.09 -1.65 --- --- 
1.04 -1.7 --- --- 
1.08 -1.69 Sp100 nuclear antigen Sp100 
1.04 -1.51 Dusp9 dual specificity phosphatase 9 
1.08 -1.6 Isg20l1 interferon stimulated exonuclease gene 20-like 1 
1.22 -1.64 5730596K20Rik RIKEN cDNA 5730596K20 gene 
1.18 -1.7 Lphn2 latrophilin 2 
1.17 -1.69 Adamtsl1 ADAMTS-like 1 
1.2 -1.67 Odz3 odd Oz/ten-m homolog 3 (Drosophila) 
1.16 -1.62 Adam12 a disintegrin and metallopeptidase domain 12 (meltrin alpha) 
1.19 -1.61 Thbs1 thrombospondin 1 
1.18 -1.64 Tmem47 transmembrane protein 47 
1.26 -1.58 --- RNA transcript from U17 small nucleolar RNA host gene 
1.26 -1.86 Iigp1 interferon inducible GTPase 1 
1.28 -1.72 Iigp1 interferon inducible GTPase 1 

1.24 -1.57 Mcm5 
minichromosome maintenance deficient 5, cell division cycle 
46 (S. cerevisiae) 

1.21 -1.6 Samd9l sterile alpha motif domain containing 9-like 

1.26 -1.64 Cacna1c 
Calcium channel, voltage-dependent, L type, alpha 1C subunit 
(Cacna1c), mRNA 

1.27 -1.57 Egfl9 EGF-like-domain, multiple 9 
1.29 -1.91 Serpine1 serine (or cysteine) peptidase inhibitor, clade E, member 1 
1.4 -1.57 Thbs1 thrombospondin 1 
1.53 -1.63 8030463A06Rik RIKEN cDNA 8030463A06 gene (8030463A06Rik), mRNA 
1.52 
 

-1.55 
 

 
 

PREDICTED: similar to protease [Mus musculus], mRNA 
sequence 

1.51 -1.62 Iigp2 interferon inducible GTPase 2 
1.54 -1.62 Tnc tenascin C 
1.51 -1.56 Cdh11 cadherin 11 
1.67 -1.61 Id2 inhibitor of DNA binding 2 
1.86 -1.55 --- --- 
1.92 -1.53 Hnrpdl heterogeneous nuclear ribonucleoprotein D-like 
2.29 -1.52 Ddx49 DEAD (Asp-Glu-Ala-Asp) box polypeptide 49 
2.48 -1.52 2310001H13Rik RIKEN cDNA 2310001H13 gene 
2.53 -1.59 2900073C17Rik RIKEN cDNA 2900073C17 gene 
2.52 -1.57 --- Transcribed locus 
2.49 -1.59 Tgtp T-cell specific GTPase 
2.8 -1.52 --- --- 
2.88 -1.5 Tbrg4 transforming growth factor beta regulated gene 4 
2.91 -1.51 Flnc filamin C, gamma (actin binding protein 280) 
2.95 -1.64 --- Transcribed locus 
3.1 -1.58 Ror1 receptor tyrosine kinase-like orphan receptor 1 
3.05 -1.53 Oasl2 2'-5' oligoadenylate synthetase-like 2 

3.47 -1.47 D19Bwg1357e 
DNA segment, Chr 19, Brigham & Women's Genetics 1357 
expressed 

3.63 -1.49 5033421C21Rik RIKEN cDNA 5033421C21 gene 
3.73 -1.54 Slfn8 schlafen 8 
3.83 -1.51 Thbs1 thrombospondin 1 
3.83 -1.49 Mybl2 myeloblastosis oncogene-like 2 
3.99 -1.43 Pa2g4 proliferation-associated 2G4 
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4.24 -1.49 Angpt1 angiopoietin 1 

4.3 -1.48 MGI:1933403 
type 1 tumor necrosis factor receptor shedding 
aminopeptidase regulator 

4.31 -1.48 Cdc6 cell division cycle 6 homolog (S. cerevisiae) 
4.25 -1.61 Igtp interferon gamma induced GTPase 
4.38 -1.57 Sp100-rs similar to component of Sp100-rs 
4.36 -1.56 Psip1 PC4 and SFRS1 interacting protein 1 
4.85 -1.55 Ifi44 interferon-induced protein 44 
4.85 -1.26 AA408556 expressed sequence AA408556 
4.96 -1.49 C1ql3 C1q-like 3 

4.99 -1.6 Hmgcs1 
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1, mRNA 
(cDNA clone MGC:36620 IMAGE:5347038) 

4.94 -1.41 Usp18 ubiquitin specific peptidase 18 
4.94 
 

-1.63 
 

Hey1 
 

hairy/enhancer-of-split related with YRPW motif 1 
 

FDR, False discovery rate; ---, unannotated cDNA or EST sequences. 

 

Table 16 Genes up-regulated; pLoxEGFP5+ vs. pLoxEGFP5-. 

FDR 
Fold 
Change Gene Symbol Gene Title 

0 3.59 --- --- 
0 3.44 1110032E23Rik RIKEN cDNA 1110032E23 gene 
0 
 

3.13 
 

Gsta1 /// Gsta2 
 

glutathione S-transferase, alpha 1 (Ya) /// glutathione S-
transferase, alpha 2 (Yc2) 

0 2.56 Sdpr serum deprivation response 
0 2.52 Sdpr serum deprivation response 
0 2.38 Sdpr serum deprivation response 
0 2.4 Car6 carbonic anhydrase 6 
0 2.32 Tmsb4x thymosin, beta 4, X chromosome 
0 2.21 Alcam activated leukocyte cell adhesion molecule 
0 1.94 Gadd45a growth arrest and DNA-damage-inducible 45 alpha 
0 1.97 9430093N24Rik MKIAA1983 protein 
0 1.88 Dpysl3 dihydropyrimidinase-like 3 
0 1.86 Nqo1 NAD(P)H dehydrogenase, quinone 1 
0 1.91 Ddx3y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked 
0 1.93 Sqrdl sulfide quinone reductase-like (yeast) 
0 1.8 Ccl2 chemokine (C-C motif) ligand 2 
0 1.85 LOC433022 hypothetical LOC433022 
0 1.96 D3Ertd300e DNA segment, Chr 3, ERATO Doi 300, expressed 
0 1.79 Grem1 gremlin 1 

0 1.75 
Plf /// Plf2 /// 
Mrpplf3 

proliferin /// proliferin 2 /// mitogen regulated protein, proliferin 
3 

0 1.74 Fyb FYN binding protein 
0 1.8 2210419I08Rik RIKEN cDNA 2210419I08 gene 
0 1.77 Alcam activated leukocyte cell adhesion molecule 
0 1.73 Ptprc Alternatively spliced Ly-5 glycoprotein mRNA, 5' end 
0 
 

1.73 
 

Gatm 
 

glycine amidinotransferase (L-arginine:glycine 
amidinotransferase) 

0 1.75 Dub1 deubiquitinating enzyme 1 
0 1.7 Lynx1 Ly6/neurotoxin 1 
0 1.68 Ass1 argininosuccinate synthetase 1 
0 1.71 U90926 cDNA sequence U90926 
0.03 1.76 Alcam activated leukocyte cell adhesion molecule 
0.03 
 
 

1.62 
 
 

2010309G21Rik /// 
LOC207685 /// 
LOC547243 

RIKEN cDNA 2010309G21 gene /// hypothetical protein 
LOC207685 /// similar to Ig lambda-2 chain 
 

0.03 
 

1.66 
 

H60 
 

PREDICTED: histocompatibility 60 [Mus musculus], mRNA 
sequence 

0.03 1.72 Tiparp TCDD-inducible poly(ADP-ribose) polymerase 
0.06 1.64 LOC433022 hypothetical LOC433022 
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0.06 1.62 Cyba cytochrome b-245, alpha polypeptide 
0.06 1.64 A130040M12Rik RIKEN cDNA A130040M12 gene 
0.05 1.69 Hist1h2bc histone 1, H2bc 
0.11 
 

1.72 
 

Malat1 
 

metastasis associated lung adenocarcinoma transcript 1 (non-
coding RNA) 

0.13 1.7 Parp12 poly (ADP-ribose) polymerase family, member 12 
0.12 1.64 0610040B09Rik RIKEN cDNA 0610040B09 gene 
0.12 1.68 Evi2a ecotropic viral integration site 2a 
0.12 1.6 Gpnmb glycoprotein (transmembrane) nmb 
0.12 1.62 2810013C04Rik RIKEN cDNA 2810013C04 gene 
0.11 1.59 Gsta4 glutathione S-transferase, alpha 4 
0.11 1.7 Kctd4 potassium channel tetramerisation domain containing 4 
0.11 1.62 Dcn decorin 
0.11 1.59 Igf2r insulin-like growth factor 2 receptor 
0.1 1.63 --- --- 
0.1 1.6 Dusp4 dual specificity phosphatase 4 
0.1 1.78 Rorb RAR-related orphan receptor beta 
0.1 1.67 Sfrs2ip splicing factor, arginine/serine-rich 2, interacting protein 
0.12 1.58 Mtss1 metastasis suppressor 1 
0.15 
 

1.59 
 

Rbmy1a1 
 

RNA binding motif protein, Y chromosome, family 1, member 
A1 

0.15 1.66 Mep1a meprin 1 alpha 
0.18 1.63 3110004L20Rik RIKEN cDNA 3110004L20 gene 
0.2 1.57 Ccl7 chemokine (C-C motif) ligand 7 
0.23 1.59 Mapk12 mitogen-activated protein kinase 12 
0.22 1.56   
0.34 1.58 --- Transcribed locus 
0.33 1.58 Calr3 calreticulin 3 
0.34 1.55 Seh1l SEH1-like (S. cerevisiae 
0.4 1.52 D11Ertd730e DNA segment, Chr 11, ERATO Doi 730, expressed 
0.41 1.56 Traf1 Tnf receptor-associated factor 1 
0.44 1.51 --- Transcribed locus 
0.46 1.51 9130227C08Rik RIKEN cDNA 9130227C08 gene 
0.47 1.52 E430024C06Rik RIKEN cDNA E430024C06 gene 
0.46 1.52 B430320C24Rik RIKEN cDNA B430320C24 gene 
0.46 1.5 Myd116 myeloid differentiation primary response gene 116 
0.54 1.53 Edn1 endothelin 1 
0.56 1.52 Atf3 activating transcription factor 3 
0.62 1.51 Gpc1 glypican 1 
0.61 1.51 BC034507 cDNA sequence BC034507 
0.7 1.49 Ociad2 OCIA domain containing 2 

0.72 1.52 
LOC432995 /// 
LOC436333 

hypothetical gene supported by BC047216 /// hypothetical 
gene supported by BC047216 

0.71 1.49 Vegfc vascular endothelial growth factor C 
0.76 1.48 2810003C17Rik RIKEN cDNA 2810003C17 gene 
0.82 
 

1.48 
 

Erbb3 
 

v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 
(avian) 

0.81 1.5 Gadd45b growth arrest and DNA-damage-inducible 45 beta 
0.81 1.48 Ampd3 AMP deaminase 3 
0.85 1.51 Zfp622 zinc finger protein 622 
0.91 1.54 BC034507 cDNA sequence BC034507 
0.95 1.51 Hcn1 hyperpolarization-activated, cyclic nucleotide-gated K+ 1 
0.95 1.48 Sqstm1 sequestosome 1 
0.94 1.47 Atp6v0b ATPase, H+ transporting, V0 subunit B 
0.94 1.5 Foxf1a forkhead box F1a 
0.98 
 

1.51 
 

Maf 
 

avian musculoaponeurotic fibrosarcoma (v-maf) AS42 
oncogene homolog 

0.99 1.48 Dazl deleted in azoospermia-like 
0.98 1.53 Trim44 tripartite motif-containing 44 
1.04 1.47 3110023G01Rik RIKEN cDNA 3110023G01 gene 
1.07 1.48 Hmox1 heme oxygenase (decycling) 1 
1.05 1.64 Alcam activated leukocyte cell adhesion molecule 
1.16 
 

1.5 
 

Napb 
 

N-ethylmaleimide sensitive fusion protein attachment protein 
beta 
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1.18 
 

1.47 
 

Eif2s3y 
 

eukaryotic translation initiation factor 2, subunit 3, structural 
gene Y-linked 

1.24 
 
 
 

1.45 
 
 
 

1200016E24Rik /// 
A130040M12Rik /// 
E430024C06Rik /// 
LOC433071 

RIKEN cDNA 1200016E24 gene /// RIKEN cDNA 
A130040M12 gene /// RIKEN cDNA E430024C06 gene /// 
hypothetical gene supported by AK004796; BC040222 
 

1.25 1.47 Ppifs peptidylprolyl isomerase F, opposite strand transcription unit 
1.24 1.46 Ahr aryl-hydrocarbon receptor 
1.39 1.47 Zfand2a zinc finger, AN1-type domain 2A 

1.39 1.57 Efemp1 
epidermal growth factor-containing fibulin-like extracellular 
matrix protein 1 

1.41 1.44 Vegfc vascular endothelial growth factor C 
1.44 1.45 --- --- 
1.47 1.45 9430041P20Rik RIKEN cDNA 9430041P20 gene 
1.63 1.43 Pik3r5 phosphoinositide-3-kinase, regulatory subunit 5, p101 
1.68 1.45 Mtss1 metastasis suppressor 1 
1.84 1.44 Hs6st2 heparan sulfate 6-O-sulfotransferase 2 
1.9 1.47 LOC231914 similar to mKIAA0060 protein 
1.93 1.47 2900093K20Rik RIKEN cDNA 2900093K20 gene 
2.36 1.42 1110013L07Rik RIKEN cDNA 1110013L07 gene 
2.41 1.42 Csf1r colony stimulating factor 1 receptor 
2.5 1.43 1110051M20Rik RIKEN cDNA 1110051M20 gene 
2.61 1.44 --- Transcribed locus 
2.69 
 

1.43 
 

Dusp3 
 

dual specificity phosphatase 3 (vaccinia virus phosphatase 
VH1-related) 

2.72 1.41 Rbm3 RNA binding motif protein 3 
2.84 1.41 Bhlhb5 basic helix-loop-helix domain containing, class B5 
2.87 1.41 4930535I16Rik RIKEN cDNA 4930535I16 gene 
3.29 
 

1.41 
 

Malat1 
 

metastasis associated lung adenocarcinoma transcript 1 (non-
coding RNA) 

3.28 1.4 Stx3 syntaxin 3 
3.96 1.4 --- --- 
4.17 1.39 Lmo1 LIM domain only 1 
4.39 
 

1.4 
 

9130008F23Rik 
 

RIKEN cDNA 9130008F23 gene 
 

FDR, False discovery rate; ---, unannotated cDNA or EST sequences. 

 

Table 17 Genes down-regulated; pLoxEGFP5+ vs. pLoxEGFP5-. 

FDR 
Fold 
Change Gene Symbol Gene Title 

0 -1.81 Dlk1 delta-like 1 homolog (Drosophila) 
0 
 

-1.75 
 

Cacna1c 
 

Calcium channel, voltage-dependent, L type, alpha 1C subunit 
(Cacna1c), mRNA 

0 -1.78 6530401D17Rik RIKEN cDNA 6530401D17 gene 
0 
 

-1.71 
 

Tomm7 
 

translocase of outer mitochondrial membrane 7 homolog 
(yeast) 

0 
 

-1.7 
 

Sc4mol 
 

Sterol-C4-methyl oxidase-like, mRNA (cDNA clone 
MGC:11745 IMAGE:3152545) 

0 -1.68 Lcn2 lipocalin 2 
0 -1.78 Car9 carbonic anhydrase 9 
0 
 

-1.74 
 

Hivep3 
 

human immunodeficiency virus type I enhancer binding 
protein 3 

0 -1.65 Odz3 odd Oz/ten-m homolog 3 (Drosophila) 
0 -1.68 Asb4 ankyrin repeat and SOCS box-containing protein 4 
0 -1.69 Ogn osteoglycin 
0 -1.66 Haghl hydroxyacylglutathione hydrolase-like 
0.31 -1.58 Gpc6 glypican 6 
0.29 -1.62 Fos FBJ osteosarcoma oncogene 
0.27 -1.61 Lancl2 LanC (bacterial lantibiotic synthetase component C)-like 2 
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0.25 -1.64 5930437A14Rik RIKEN cDNA 5930437A14 gene 
0.29 -1.6 --- --- 
0.28 -1.66 Col3a1 procollagen, type III, alpha 1 
0.89 
 

-1.57 
 

AI325464 
 

Expressed sequence AI325464, mRNA (cDNA clone 
MGC:30834 IMAGE:4006813) 

0.95 -1.48 Igf2bp3 insulin-like growth factor 2, binding protein 3 
1 -1.6 X83313 EST X83313 
1.05 -1.57 Nfix nuclear factor I/X 
1 -1.55 --- Transcribed locus 
1.08 -1.55 Hnrpab heterogeneous nuclear ribonucleoprotein A/B 
1.16 -1.53 Ror1 receptor tyrosine kinase-like orphan receptor 1 
1.12 -1.55 Psip1 PC4 and SFRS1 interacting protein 1 
1.11 
 

-1.55 
 

Apbb2 
 

Amyloid beta (A4) precursor protein-binding, family B, member 
2, mRNA (cDNA clone MGC:100042 IMAGE:30550087) 

1.11 -1.54 Has2 hyaluronan synthase 2 
1.07 -1.54 --- Transcribed locus 
1.13 -1.59 Rtn4 RTN4 (Rtn4) mRNA, complete cds, alternatively spliced 
1.1 -1.56 Arf6 ADP-ribosylation factor 6 
1.06 -1.6 Ogn osteoglycin 
1.09 -1.53 Acss2 acyl-CoA synthetase short-chain family member 2 
1.09 -1.58 Il13ra1 interleukin 13 receptor, alpha 1 
1.17 -1.61 Nrn1 neuritin 1 
1.28 -1.56 6330406I15Rik RIKEN cDNA 6330406I15 gene 
1.32 -1.53 Tgfb1i4 TSC22-related inducible leucine zipper 1b (Tilz1b) 

1.37 -1.52 D630048P19Rik 
Optic atrophy 3 (human), mRNA (cDNA clone MGC:106414 
IMAGE:6404450) 

1.44 -1.56 Pcbp3 Poly(rC) binding protein 3 (Pcbp3), mRNA 
1.77 -1.5 D530037H12Rik RIKEN cDNA D530037H12 gene 
1.78 -1.51 8430408J07Rik RIKEN cDNA 8430408J07 gene 
1.93 -1.5 Il13ra1 interleukin 13 receptor, alpha 1 
2.21 -1.5 Cp ceruloplasmin 
2.18 -1.47 Iigp1 interferon inducible GTPase 1 
2.38 -1.49 5730555F13Rik RIKEN cDNA 5730555F13 gene 
2.39 -1.5 Cog1 component of oligomeric golgi complex 1 
2.68 -1.46 Mlf1 myeloid leukemia factor 1 
2.67 
 

-1.47 
 

Ctsb 
 

Cathepsin B, mRNA (cDNA clone MGC:6211 
IMAGE:3500700) 

2.61 
 

-1.48 
 

Zfp289 /// 
LOC434076 

zinc finger protein 289 /// similar to zinc finger protein 289 
 

2.76 -1.46 Tmem45a transmembrane protein 45a 
2.78 -1.49 H2-T23 histocompatibility 2, T region locus 23 
2.9 -1.48 Tead1 TEA domain family member 1 (Tead1), mRNA 
2.91 -1.48 Rpap1 RNA polymerase II associated protein 1 
3.04 -1.47 Cald1 Caldesmon 1 (Cald1), mRNA 
3.16 -1.47 Arntl2 aryl hydrocarbon receptor nuclear translocator-like 2 
3.16 -1.46 Dclre1b DNA cross-link repair 1B, PSO2 homolog (S. cerevisiae) 
3.25 -1.48 Asb4 ankyrin repeat and SOCS box-containing protein 4 
3.24 -1.47 A730054J21Rik RIKEN cDNA A730054J21 gene 
3.27 -1.41 2610005L07Rik RIKEN cDNA 2610005L07 gene 
3.25 -1.47 6330406I15Rik RIKEN cDNA 6330406I15 gene 
3.2 -1.46 Dscr1l1 Down syndrome critical region gene 1-like 1 
3.18 -1.45 5730596K20Rik RIKEN cDNA 5730596K20 gene 
3.19 -1.48 Cp ceruloplasmin 
3.25 -1.45 Rgs20 regulator of G-protein signaling 20 
3.2 -1.45 C1ql3 C1q-like 3 
3.24 -1.46 Cdh11 cadherin 11 
3.33 -1.45 Col1a1 procollagen, type I, alpha 1 
3.34 -1.47 --- Transcribed locus 
3.29 -1.47 Cp ceruloplasmin 
3.24 -1.47 Cp ceruloplasmin 
3.32 -1.44 2010012C16Rik RIKEN cDNA 2010012C16 gene 
3.47 -1.45 5033421C21Rik RIKEN cDNA 5033421C21 gene 
3.42 -1.46 Chrdl1 Chordin-like 1 (Chrdl1), mRNA 
3.39 -1.46 --- Adult male medulla oblongata cDNA, RIKEN full-length 
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enriched library, clone:6330531L09 product:unclassifiable, full 
insert sequence 

3.41 -1.43 LOC56628 MHC (A.CA/J(H-2K-f) class I antigen 
3.38 -1.41 Phf20 PHD finger protein 20 
3.36 -1.44 Ccnc cyclin C 
3.37 -1.43 C030045D06Rik RIKEN cDNA C030045D06 gene 
3.52 
 

-1.46 
 

Pdlim5 
 

PDZ and LIM domain 5, mRNA (cDNA clone MGC:46824 
IMAGE:4457868) 

3.55 -1.44 Phf3 PHD finger protein 3 
3.79 
 

-1.44 
 

Psmb9 
 

proteosome (prosome, macropain) subunit, beta type 9 (large 
multifunctional peptidase 2) 

3.96 -1.43 Adam12 a disintegrin and metallopeptidase domain 12 (meltrin alpha) 
4.52 -1.44 Islr immunoglobulin superfamily containing leucine-rich repeat 
4.5 -1.43 Pcdhb21 protocadherin beta 21 
4.47 -1.45 Fmod fibromodulin 
4.52 -1.43 Thy1 thymus cell antigen 1, theta 
4.72 -1.43 Osmr oncostatin M receptor 
4.76 -1.49 AI451617 expressed sequence AI451617 
4.83 -1.42 Scd2 stearoyl-Coenzyme A desaturase 2 
4.98 
 

-1.42 
 

Adamtsl1 
 

ADAMTS-like 1 
   

FDR, False discovery rate; ---, unannotated cDNA or EST sequences. 

 

5.3.3 Exon expression array 

In the Affymetrix GeneChip® Mouse Exon 1.0 ST Array, probesets are interspersed evenly 

throughout the length of the transcript, with at least four probes per exon. At least one 

probeset is present per exon, and forty probes per transcript on average. The array is very 

comprehensive, designed to identify exon skipping; intron retention (by placement of 

probes within introns adjacent to exon-intron boundaries in genes known to undergo events 

of this type); mutually exclusive exon usage; alternative promoter usage; alternative 

polyadenylation and alternative splicing donor/acceptor sites with changes over 25 bp (the 

size of a probe). Exon sequences were compiled from existing cDNA-based information 

taken from REFSeq and GenBank® mRNAs, and ESTs from dbEST. Predicted exon 

sequences were included derived from information taken from GENSCAN 

(genes.mit.edu/GENSCAN.html); Ensembl: (www.ensembl.org/); Vega: 

(vega.sanger.ac.uk/); geneid and sgp: (www1.imim.es/software/geneid/index.html); 

TWINSCAN: (genes.cs.wustl.edu/); Exoniphy: (genome.ucsc.edu/cgi-

bin/hgTrackUi?g=exoniphy&db=hg16); MicroRNA Registry: 

(www.sanger.ac.uk/Software/Rfam/mirna/); MITOMAP: (www.mitomap.org/) and 

Structural RNA Predictions: (genome.ucsc.edu/cgi-bin/hgTrackUi?g=rnaGene&db=hg16). 

It is unlikely that an alternative exon would not be included within these measures, but if it 

were not, the exon would not be identified. Cryptic exons such as those of the chloride 

channel in DM however, are likely to be under represented. 
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5.3.3.1 Sample preparation for exon arrays 

Samples were prepared in triplicate, in parallel, such that three chips were hybridised for 

each sample group pLoxEGFP; pLoxEGFP5 and pLoxEGFP250 –nine chips in total. It has 

been noted that on occasion cells have been observed that contain foci but do not show 

EGFP fluorescence when viewed microscopically. Although this was well controlled for 

by sample choice in the whole transcript array, it was clear from the EGFP RT-PCR 

(Figure 54B) the quality of separation at the molecular level was poor. Also, recently 

published data by Mahadevan et al. 2006, hinted that over-expression of 5 CUG repeats 

may be pathogenic (Mahadevan et al., 2006). For these reasons the basic design of the 

experiment was simplified to pLoxEGFP vs. pLoxEGFP5 vs. pLoxEGFP250, without cell 

sorting. This means that if pLoxEGFP5 over-expression is pathogenic, differences should 

be apparent in comparison to the zero repeat sample pLoxEGFP. 

 

Figure 55 Construct expression in exon array samples. A Fluorescent micrographs. Exon array 
starting samples. Live 3T3 cells transfected with pLoxEGFP; pLoxEGFP5 or pLoxEGFP250 prior to 
harvest. Cells were 60% confluent. EGFP fluorescence was apparent in all samples. B EGFP RT-
PCR. Each sample with and without reverse transcriptase. The EGFP product was present in all 
samples, faintly in pLoxEGFP250. C DM-H/DM-BR RT-PCR over the repeat region. No repeats are 
apparent in pLoxEGFP replicates; 5 repeats are present in the pLoxEGFP5 samples and a faint 
presence of 250 repeats can be seen in the pLoxEGFP250 samples. Note that in both EGFP and 
DM-H/DM-BR RT-PCRs the amount of pLoxEGFP250 products are much lower than pLoxEGFP5, 
even though EGFP fluorescence in the starting sample is almost as high as pLoxEGFP and 
pLoxEGFP5 in A. 
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Cells were transfected as described in 5.3.2.1 ‘Sample preparation for whole transcript 

arrays’ using pLoxEGFP; pLoxEGFP or pLoxEGFP250. To ensure the cells were always 

in the exponential phase, after 24 hours, they were harvested using trypsin, diluted 1:3 and 

incubated for a further 24 hours. Total RNA was prepared and a portion subjected to EGFP 

RT-PCR to confirm expression of the construct, and DM-H/DM-BR PCR to confirm the 

repeat length. The results show that the expected repeat length is present in each sample, 

and that EGFP is also transcribed in each (Figure 55).  

The amount of construct expression in both RT-PCRs using the pLoxEGFP250 sample is 

low compared to pLoxEGFP5. The reasons for this are not clear since EGFP fluorescence 

is clearly present in the starting sample confocal images, although they are of a lower 

intensity (Figure 55A). It may be that the RNA within foci is not as easily isolated or 

reverse-transcribed. Hamshere et al. reported that expanded DMPK polyA+ alleles were 

underrepresented in nuclear polyA+ fractions, suggesting this may be the case (Hamshere 

et al., 1997), although their method of isolation was based on phenol-chloroform extraction 

compared to the guanidinium based extraction used here. In the recent reversible mouse 

model generated by Mahadevan et al., lines with expanded repeats also showed low 

expression of repeat arrays using quantitative real-time PCR. However, it is not clear 

which chemistry was used for RNA isolation (Langlois et al., 2003; Mahadevan et al., 

2006). 

5.3.3.2 Results of analysis 

Genes known to be mis-spliced in DM do not always show a large difference or fold 

change between any two particular RNA isoforms (Kanadia et al., 2006; Lin et al., 2006). 

In some transcripts a new isoform has appeared, such as the 6b/7a/8 or 6/7a/7/8a/8 exon 

inclusion of CLCN1, expressed at a low level compared to the ‘normal’ 6/7/8 transcript 

(Figure 65, right). In DM, the proportions of a collection of alternative transcripts are often 

changed, with some forms only present in DM samples. Therefore the differential splicing 

analysis was ranked according to p-value of alternative splicing (the interaction between 

the two ANOVA factors -probeset level within the gene and transcript level between the 

samples with 0, 5 and 250 repeats), rather than a high fold change between transcript 

isoforms.  

GeneChip differences were analysed by 2-way ANOVA analysis using Partek® Genomics 

Suite software, on three metaprobeset levels, core; extended and full. The core set 

comprises probes with confirmed cDNAs. The extended set also includes expressed 
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sequence tags (EST), and the full set comprises confirmed cDNAs; ESTs and predicted 

splice products. All three lists were studied during gene selection. Significance was limited 

to a p-value of ≤0.001 for alternative exon usage ANOVAs. Between the test samples: 

pLoxEGFP0; pLoxEGFP5 and pLoxEGFP250 repeats, 29; 54 and 58 genes showed 

alternative exon usage the core (Table 18), extended (Table 19) and full (Table 20) 

probesets respectively.  

Table 18 Genes with differential exon usage using the core metaprobeset 

gene_assignment 
 
 

p-value  
Alternative 
splicing 

NM_198017 // C430003P19Rik // RIKEN cDNA C430003P19 gene // 7 F3 // 109359 /// A 3.75E-11 
NM_015744 // Enpp2 // ectonucleotide pyrophosphatase/phosphodiesterase 2 // 15 D 9.33E-08 
NM_027135 // Sec24d // SEC24 related gene family, member D (S. cerevisiae) // 3  2.15E-06 
BC029239 // Timm8b // translocase of inner mitochondrial membrane 8 homolog b (y 2.52E-06 
NM_008444 // Kif3b // kinesin family member 3B // 2 86.0 cM // 16569 /// AK08154 2.81E-06 
XM_975671 // LOC674573 // similar to Mitogen-activated protein kinase kinase kin 3.16E-06 
XM_001000465 // 9930012K11Rik // RIKEN cDNA 9930012K11 gene // 14 D2 // 268759  4.55E-06 
NM_010764 // Man2b1 // mannosidase 2, alpha B1 // 8 C2|8 37.0 cM // 17159 /// AK 4.58E-06 
NM_028066 // F11 // coagulation factor XI // 8 B1.1|8 25.0 cM // 109821 7.81E-06 
NM_178224 // Cbs // cystathionine beta-synthase // 17 A-C|17 17.4 cM // 12411 // 8.68E-06 
NM_054048 // Rcor2 // REST corepressor 2 // 19 A // 104383 /// AK205817 // Rcor2 9.16E-06 
NM_021536 // Rhot1 // ras homolog gene family, member T1 // 11 B5|11 47.26 cM // 9.90E-06 
NM_027347 // Crsp3 // cofactor required for Sp1 transcriptional activation, subu 1.27E-05 
NM_025982 // Tspan31 // tetraspanin 31 // 10 D3 // 67125 /// AK160269 // Tspan31 1.35E-05 
NM_016774 // Atp5b // ATP synthase, H+ transporting mitochondrial F1 complex, be 1.48E-05 
NM_146226 // Apeh // acylpeptide hydrolase // 9 F2 // 235606 /// BC034199 // Ape 2.17E-05 
XM_897143 // LOC622510 // hypothetical LOC622510 // 2 C3 // 622510 /// XM_922075 2.51E-05 
NM_021398 // Slc43a3 // solute carrier family 43, member 3 //  // 58207 /// NM_0 2.97E-05 
XM_994018 // 2600009E05Rik // RIKEN cDNA 2600009E05 gene // 2 F3 // 77006 /// XM 4.36E-05 
NM_001001454 // Ttyh1 // tweety homolog 1 (Drosophila) // 7 A1 // 57776 /// NM_0 4.57E-05 
XM_992228 // Epn2 // epsin 2 // 11 B2 // 13855 /// NM_010148 // Epn2 // epsin 2  4.73E-05 
NM_023220 // 2010106G01Rik // RIKEN cDNA 2010106G01 gene // 2 F3 // 66552 /// BC 4.94E-05 
NM_026127 // 4833420G17Rik // RIKEN cDNA 4833420G17 gene // 13 D2.3 // 67392 /// 5.73E-05 
XM_988508 // Bptf/Falz // fetal Alzheimer antigen // 11 E1 // 207165 /// XM_903112 // 6.02E-05 
NM_013680 // Syn1 // synapsin I // X A1-A4|X 6.2 cM // 20964 7.13E-05 
NM_008782 // Pax5 // paired box gene 5 // 4 B1|4 20.7 cM // 18507 7.66E-05 
NM_183315 // Ctxn1 // cortexin 1 // 8 A1.1|8 13.0 cM // 330695 7.87E-05 
XM_990359 // Cbx1 // chromobox homolog 1 (Drosophila HP1 beta) // 11 D|11 58.0 c 9.36E-05 
BC067070 // 4932415G12Rik // RIKEN cDNA 4932415G12 gene // 10 C2 // 67723 9.39E-05   

Genes selected for further bioinformatics analysis are highlighted in red 
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Table 19 Genes with differential exon usage using the extended metaprobeset 

gene_assignment 
 
 

p-value 
Alternative  
splicing 

NM_133916 // Eif3s9 // eukaryotic translation initiation factor 3, subunit 9 (et 1.41E-08 
NM_133215 // Mtmr4 // myotubularin related protein 4 // 11 C // 170749 2.90E-08 
NM_198017 // C430003P19Rik // RIKEN cDNA C430003P19 gene // 7 F3 // 109359 /// A 8.71E-08 
NM_015744 // Enpp2 // ectonucleotide pyrophosphatase/phosphodiesterase 2 // 15 D 1.50E-07 
XR_004056 // LOC382931 // similar to 3-phosphoglycerate dehydrogenase // 14 E2.1 1.80E-07 
XM_983388 // Ppp2r5a // protein phosphatase 2, regulatory subunit B (B56), alpha 4.83E-07 
NM_013854 // Abcf1 // ATP-binding cassette, sub-family F (GCN20), member 1 // 17 8.97E-07 
NM_177615 // C78409 // expressed sequence C78409 // 10 D3 // 216441 9.90E-07 
NM_007992 // Fbln2 // fibulin 2 // 6 D-E|6 37.2 cM // 14115 /// AK017870 // 5730 2.27E-06 
NM_001039080 // Rbms2 // RNA binding motif, single stranded interacting protein  3.44E-06 
XM_001000465 // 9930012K11Rik // RIKEN cDNA 9930012K11 gene // 14 D2 // 268759  5.23E-06 
NM_008431 // Kcnk4 // potassium channel, subfamily K, member 4 // 19 A|19 4.5 cM 5.35E-06 
NM_019426 // Atf7ip // activating transcription factor 7 interacting protein //  1.14E-05 
NM_008782 // Pax5 // paired box gene 5 // 4 B1|4 20.7 cM // 18507 1.38E-05 
XM_983442 // Kcnmb4 // potassium large conductance calcium-activated channel, su 1.43E-05 
NM_007801 // Ctsh // cathepsin H // 9 E3.1|9 50.0 cM // 13036 /// BC080767 // Ct 1.55E-05 
NM_025813 // Mfsd1 // major facilitator superfamily domain containing 1 // 3 E2  1.58E-05 
NM_053089 // Narg1 // NMDA receptor-regulated gene 1 // 3 D // 74838 /// AK07804 1.63E-05 
AK020953 // B230104C08Rik // RIKEN cDNA B230104C08 gene // 6 G3 // 77841 1.68E-05 
NM_008149 // Gpam // glycerol-3-phosphate acyltransferase, mitochondrial // 19 D 1.86E-05 
NM_021398 // Slc43a3 // solute carrier family 43, member 3 //  // 58207 /// NM_0 2.67E-05 
XM_001052047 // Lhx3 // LIM homeobox protein 3 // 2 A2-C1|2 16.0 cM // 16871 /// 2.68E-05 
NM_178892 // Tiparp // TCDD-inducible poly(ADP-ribose) polymerase // 3 E1 // 999 3.14E-05 
XM_001005692 // LOC673486 // similar to eukaryotic translation initiation factor 3.32E-05 
NM_009392 // Tlx2 // T-cell leukemia, homeobox 2 // 6 C3-D1|6 35.5 cM // 21909 3.56E-05 
BC029239 // Timm8b // translocase of inner mitochondrial membrane 8 homolog b (y 3.82E-05 
NM_172339 // Snapc4 // small nuclear RNA activating complex, polypeptide 4 // 2  4.77E-05 
XM_979043 // Gm1027 // gene model 1027, (NCBI) // 4 C7 // 381538 /// NM_028209 / 4.80E-05 
XM_994018 // 2600009E05Rik // RIKEN cDNA 2600009E05 gene // 2 F3 // 77006 /// XM 5.13E-05 
NM_030109 // Sf3b2 // splicing factor 3b, subunit 2 // 19 A // 319322 /// AK1890 5.14E-05 
NM_011883 // Rnf13 // ring finger protein 13 // 3 D // 24017 /// AF037206 // Rnf 5.51E-05 
XM_984379 // Prpf19 // PRP19/PSO4 pre-mRNA processing factor 19 homolog (S. cere 6.50E-05 
NM_001001144 // Scap // SREBP cleavage activating protein // 9 F2 // 235623 ///  6.68E-05 
NM_026476 // 2610101N10Rik // RIKEN cDNA 2610101N10 gene // 9 E4 // 67958 /// AK 6.76E-05 
NM_145959 // D15Ertd621e // DNA segment, Chr 15, ERATO Doi 621, expressed // 15  6.79E-05 
NM_013746 // Plekhb1 // pleckstrin homology domain containing, family B (evectin 7.23E-05 
XM_986293 // Rhox12 // reproductive homeobox 12 // X A3.3 // 382282 7.68E-05 
XM_992477 // Ak3l1 // adenylate kinase 3 alpha-like 1 // 4 C6|4 47.6 cM // 11639 8.22E-05 
NM_028411 // Tmem138 // transmembrane protein 138 // 19 B // 72982 /// AK007197  8.40E-05 
NM_023671 // Clns1a // chloride channel, nucleotide-sensitive, 1A // 7 E3|7 50.0 8.68E-05 
XM_923609 // Ptpn23 // protein tyrosine phosphatase, non-receptor type 23 // 9 F 8.94E-05 
NM_133781 // Cab39 // calcium binding protein 39 // 1 C5 // 12283 /// XM_976988  9.03E-05 
NM_175004 // Ptrh2 // peptidyl-tRNA hydrolase 2 // 11 C // 217057 /// AK031620 / 9.27E-05 
NM_001013026 // Ttf2 // transcription termination factor, RNA polymerase II // 3 9.80E-05 
NM_028247 // Slc16a10 // solute carrier family 16 (monocarboxylic acid transport 1.25E-05 
NM_054048 // Rcor2 // REST corepressor 2 // 19 A // 104383 /// AK205817 // Rcor2 1.25E-05 
--- 2.79E-05 
NM_028066 // F11 // coagulation factor XI // 8 B1.1|8 25.0 cM // 109821 3.45E-05 
NM_001038663 // Mapk1 // mitogen activated protein kinase 1 // 16 A3|16 9.82 cM  4.47E-05 
NM_026127 // 4833420G17Rik // RIKEN cDNA 4833420G17 gene // 13 D2.3 // 67392 /// 7.35E-05 
NM_211355 // 1110034C04Rik // RIKEN cDNA 1110034C04 gene // 12 E // 68734 /// AK 9.97E-05 
XR_003366 // LOC384857 // similar to Keratin, type II cytoskeletal 8 (Cytokerati 1.26E-05 
AK029589 // 4930405O22Rik // RIKEN cDNA 4930405O22 gene //  // 414079 /// AK1604 1.29E-05 
NM_019468 // G6pd2 // glucose-6-phosphate dehydrogenase 2 // 5 C3.1|5 39.0 cM // 2.87E-05   

Genes selected for further bioinformatics analysis are highlighted in red 
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Table 20 Genes with differential exon usage using the full metaprobeset 

Gene_assignment 
 
 

p-value 
Alternative  
splicing 

NM_177615 // C78409 // expressed sequence C78409 // 10 D3 // 216441 7.95E-07 
NM_133215 // Mtmr4 // myotubularin related protein 4 // 11 C // 170749 6.48E-08 
NM_198017 // C430003P19Rik // RIKEN cDNA C430003P19 gene // 7 F3 // 109359 /// A 8.96E-08 
NM_133916 // Eif3s9 // eukaryotic translation initiation factor 3, subunit 9 (et 1.15E-07 
NM_008008 // Fgf7 // fibroblast growth factor 7 // 2 F-G // 14178 /// AK037172 / 4.59E-07 
--- 1.30E-06 
NM_008149 // Gpam // glycerol-3-phosphate acyltransferase, mitochondrial // 19 D 1.86E-06 
--- 2.88E-06 
NM_013854 // Abcf1 // ATP-binding cassette, sub-family F (GCN20), member 1 // 17 3.84E-06 
NM_173182 // Fndc3b // fibronectin type III domain containing 3B // 3 A3 // 7200 5.08E-06 
NM_001039080 // Rbms2 // RNA binding motif, single stranded interacting protein  5.42E-06 
NM_019426 // Atf7ip // activating transcription factor 7 interacting protein //  5.87E-06 
NM_008431 // Kcnk4 // potassium channel, subfamily K, member 4 // 19 A|19 4.5 cM 6.38E-06 
XM_994149 // Gcn1l1 // GCN1 general control of amino-acid synthesis 1-like 1 (ye 6.56E-06 
NM_053089 // Narg1 // NMDA receptor-regulated gene 1 // 3 D // 74838 /// AK07804 9.64E-06 
--- 9.97E-06 
--- 1.06E-05 
XM_983388 // Ppp2r5a // protein phosphatase 2, regulatory subunit B (B56), alpha 1.23E-05 
AK029589 // 4930405O22Rik // RIKEN cDNA 4930405O22 gene //  // 414079 /// AK1604 1.30E-05 
NM_009781 // Cacna1c // calcium channel, voltage-dependent, L type, alpha 1C sub 1.48E-05 
NM_007801 // Ctsh // cathepsin H // 9 E3.1|9 50.0 cM // 13036 /// BC080767 // Ct 1.63E-05 
--- 1.78E-05 
AK020953 // B230104C08Rik // RIKEN cDNA B230104C08 gene // 6 G3 // 77841 2.13E-05 
XM_001000465 // 9930012K11Rik // RIKEN cDNA 9930012K11 gene // 14 D2 // 268759 / 3.20E-05 
NM_008591 // Met // met proto-oncogene // 6 4.0 cM // 17295 /// AK021346 // D730 3.39E-05 
NM_001001144 // Scap // SREBP cleavage activating protein // 9 F2 // 235623 ///  3.46E-05 
--- 3.53E-05 
NM_026127 // 4833420G17Rik // RIKEN cDNA 4833420G17 gene // 13 D2.3 // 67392 /// 3.62E-05 
NM_178654 // Pkn2 // protein kinase N2 // 3 H1 // 109333 /// AK083670 // D030063 3.70E-05 
NM_009392 // Tlx2 // T-cell leukemia, homeobox 2 // 6 C3-D1|6 35.5 cM // 21909 3.79E-05 
XM_001052047 // Lhx3 // LIM homeobox protein 3 // 2 A2-C1|2 16.0 cM // 16871 /// 4.01E-05 
NM_011883 // Rnf13 // ring finger protein 13 // 3 D // 24017 /// AF037206 // Rnf 4.02E-05 
NM_007458 // Ap2a1 // adaptor protein complex AP-2, alpha 1 subunit // 7 B2 // 1 4.20E-05 
XM_001005692 // LOC673486 // similar to eukaryotic translation initiation factor 4.38E-05 
XM_994018 // 2600009E05Rik // RIKEN cDNA 2600009E05 gene // 2 F3 // 77006 /// XM 4.38E-05 
NM_001033259 // D130073L02Rik // RIKEN cDNA D130073L02 gene // 10 B4 // 215999 / 4.82E-05 
BC029239 // Timm8b // translocase of inner mitochondrial membrane 8 homolog b (y 4.92E-05 
NM_011161 // Mapk11 // mitogen-activated protein kinase 11 //  // 19094 /// NM_0 5.09E-05 
NM_054048 // Rcor2 // REST corepressor 2 // 19 A // 104383 /// AK205817 // Rcor2 5.23E-05 
XM_001001499 // Akap11 // A kinase (PRKA) anchor protein 11 // 14 D3 // 219181 / 5.65E-05 
NM_026476 // 2610101N10Rik // RIKEN cDNA 2610101N10 gene // 9 E4 // 67958 /// AK 5.84E-05 
XM_979043 // Gm1027 // gene model 1027, (NCBI) // 4 C7 // 381538 /// NM_028209 / 5.85E-05 
NM_001005331 // Eif4g1 // eukaryotic translation initiation factor 4, gamma 1 // 5.85E-05 
XM_984379 // Prpf19 // PRP19/PSO4 pre-mRNA processing factor 19 homolog (S. cere 6.23E-05 
NM_030109 // Sf3b2 // splicing factor 3b, subunit 2 // 19 A // 319322 /// AK1890 6.36E-05 
NM_021605 // Nek7 // NIMA (never in mitosis gene a)-related expressed kinase 7 / 6.46E-05 
--- 6.62E-05 
--- 6.64E-05 
NM_028411 // Tmem138 // transmembrane protein 138 // 19 B // 72982 /// AK007197  6.67E-05 
--- 6.70E-05 
NM_033075 // D17H6S56E-5 // DNA segment, Chr 17, human D6S56E 5 // 17 B1|17 19.0 6.75E-05 
NM_019468 // G6pd2 // glucose-6-phosphate dehydrogenase 2 // 5 C3.1|5 39.0 cM // 7.60E-05 
NM_175093 // Trib3 // tribbles homolog 3 (Drosophila) // 2 G3 // 228775 /// NM_1 7.90E-05 
XM_986293 // Rhox12 // reproductive homeobox 12 // X A3.3 // 382282 8.27E-05 
--- 8.45E-05 
NM_019710 // Smc1l1 // SMC (structural maintenance of chromosomes 1)-like 1 (S.  9.51E-05 
NR_002854 // Dlx1as // distal-less homeobox 1, antisense // 2 C2|2 44.0 cM // 11 9.88E-05 
XM_975459 // Trim55 // tripartite motif-containing 55 // 3 A2 // 381485/// XM9 9.93E-05  

Genes selected for further bioinformatics analysis are highlighted in red 
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Genes were selected for further analysis by using web-based bioinformatics such as USCS 

(http://genome.ucsc.edu/cgi-bin/hgGateway) and MGI 

(http://gbrowse.informatics.jax.org/cgi-bin/gbrowse/mouse_current/) genome browser 

gateways. The browsers show alignments of a comprehensive set of sequences from public 

domain databases that include known and predicted DNA and mRNA sequences, both full 

length and expressed sequence tags. Often exon inclusion or exclusion was apparent within 

the alignments, and published alternative splice isoforms could be identified. Genes with 

known alternatively spliced exons were considered good candidates. In addition, NCBI 

OMIM database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=OMIM) and MGI 

(http://www.informatics.jax.org/) gene detail searches were used to identify candidate 

genes whose disruption resulted in symptoms related to those observed in DM. Six genes 

were selected (Table 21) and the function, known alternative splicing and possible 

relations to DM1 symptoms were summarised: 

Table 21 Alternative splice ANOVA p-values using core, extended and full probeset data.  

 Core  Extended Full 

MtmR4 4.99E-01 2.90E-08 6.48E-08 

Kcnk4 2.38E-03 5.35E-06 6.38E-06 

Narg1 9.19E01 1.63E-05 9.64E-06 

Ttyh1 4.57E-05 6.96E-01 1.54-04 

Bptf 6.02E-05 1.41E-01 2.32-01 

Cacna1c 2.87E-02 1.54E-02 1.48E-05 

Note–Significant values are shown in red 

 

5.3.3.2.1 MtmR4 

The myotubularin gene MTM1, is the archetypal member of a family of highly conserved 

protein-tyrosine phosphatase-like enzymes, of which there are at least ten members (MTM1 

and MTMR1-9). MTM1 is mutated in X-linked myotubular myopathy, causing a severe 

congenital myopathy characterised by the presence of disorganized skeletal muscle with 

fibres that contain centrally located nuclei (Laporte et al., 1996; Buj-Bello et al., 1999). 
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Mutations in MTMR2 result in the neurodegenerative disorder type 4B Charcot-Marie-

Tooth disease (CMT4B), a demyelinating motor and sensory neuropathy that starts in 

infancy, characterized by the presence of foci of abnormally folded myelin sheaths and 

Schwann cell proliferation in peripheral nerves (Berger et al., 2002). CMT4B causes 

progressive symmetric distal and proximal weakness starting in the lower extremities. 

Also, cranial-nerve deficits are observed in most patients. Recently, MTMR1 was shown to 

be mis-spliced in DM. Researchers identified 6 alternatively spliced mRNA isoforms of 

MTMR1, one which is muscle specific, induced during myogenesis, and represents the 

major isoform in adult skeletal muscle. The authors found reduced levels of the muscle-

specific isoform and the appearance of an abnormal MTMR1 transcript in cultured 

differentiated muscle cells and in skeletal muscle from congenital myotonic dystrophy 

patients, leading them to postulate that MTMR1 may play a role in muscle formation (Buj-

Bello et al., 2002). They also showed that mice deficient for the gene develop a 

generalized and progressive myopathy (Buj-Bello et al., 2002). Little is known about the 

function of the remaining myotubularin family members including MtmR4, identified in 

this microarray analysis, but given the effects of MTMR1 and MTMR2 mutations, MTMR4 

warrants further investigation. Zhao et al. found expression of MTMR4 in all human tissues 

examined except lung, small intestine, stomach, salivary gland, adrenal gland, and uterus 

(Zhao et al., 2001).  

MtmR4 was found to have three significant exon differences. Interestingly expression of 

either 5 or 250 CUG repeats lead to alternative exon splicing in different exons (Figure 

56). It is impossible to compare alternative splicing at the core probeset level with the DM 

missplicing of MTMR1 since alternative exons 2.1; 2.2 and 2.3 are not represented, this 

would need to be investigated molecularly. Buj-Bello et al. (2002) also reports, but does 

not specify, newly identified mis-spliced exons (Buj-Bello et al., 2002), which could relate 

to the differences documented here.  
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Figure 56 Alternative exon usage in MtmR4. Graph plotting probeset value. Data for 5 and 250 
repeats were subtracted from 0 repeats (pLoxEGFP). Each exon is represented by one or more 
probesets that have been spaced proportionately to the genomic sequence for clarity. Probesets 
corresponding to probable alternative exon usage are circled. Refseq sequences are aligned to 
show the position of the exon within the gene. Refseq: NM133215 length 24,080 bp . Arrows (and 
red lines) indicate single nucleotide differences, which terminate the open reading frame. This may 
affect probe hybridisation at this position, but does not account for the differences between the 
samples, and therefore probably has no relevance. 

 
5.3.3.2.2 Kcnk4 

A little mentioned indication in myotonic dystrophy, but problematic when performing 

surgical procedures, is that of anaesthetic sensitivity. In DM1, patients have a higher 

sensitivity to sedatives, anaesthetic, and neuromuscular blocking agents which can result in 

cardiovascular and respiratory complications, thought to originate from muscular fatigue 

and myotonia (Aldridge, 1985; Klompe et al., 2007). KCNK4 is a stretch and 

polyunsaturated fatty acids activated tandem pore-domain potassium (K2P) channel. A 

voltage insensitive background potassium channel, which restores the membrane resting 

potential close to equilibrium (Lesage et al., 2000). The channel is highly expressed in 

brain (Fink et al., 1998; Lesage et al., 2000) and the role of K2P channels in general 

anesthesia and neuroprotection have been proposed recently. Harinath et al. 2004, 

identified TREK-1 and TRAAK channels (also known as Kcnk2 and Kcnk4) as molecular 
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targets for trichloroethanol (an active metabolite of the general anaesthetic chloral hydrate) 

and suggested that activation of these channels might contribute to the CNS depressant 

effects of chloral hydrate (Harinath et al., 2004). The channel is also activated by the 

glutamate release inhibitor Riluzole, a potent neuroprotective agent with anticonvulsant, 

anaesthetic (Mantz et al., 1992) and anti-ischaemic properties in brain (Heurteaux et al., 

2006), retina (Ettaiche et al., 1999; Izumi et al., 2003) and spinal cord (Lang-Lazdunski et 

al., 1999). This drug also has shown protective effects in animal models of Parkinson’s 

disease (Boireau et al., 1994; Benazzouz et al., 1995); in other models of acute 

neurodegenerative diseases (Kennel et al., 2000; Fumagalli et al., 2006) and in human 

neurodegenerative diseases (Howard et al., 2002; Jankovic et al., 2002; Killestein et al., 

2005; Wu et al., 2006; Mitsumoto et al., 2007). If activation of this channel by Riluzole 

confers such beneficial neuroprotective effects, it is feasible then that dysfunction of 

KCNK4 –possibly brought about by alternative splicing– could have the opposite 

degenerative effects, such as retinal degeneration and cortical atrophy. 

Two KCNK4 alternative splice variants have been characterised in human with a third 

detected on northern analysis. Gene expression in mouse is limited to the neuronal system, 

but in human is expressed more widely, mainly in the heart and brain but also in the liver, 

skeletal muscle, kidney and pancreas (Fink et al., 1998; Ozaita et al., 2002). Any 

differences between their function, or developmental expression of the alternative 

transcripts, has not yet been established.  

 
 



Christine Haworth  Chapter 5, 182 
 
Figure 57 Alternative exon usage in Kcnk4. Graph plotting probeset value. Data for 5 and 
250 repeats were subtracted from 0 repeats (pLoxEGFP). Each exon is represented by one 
or more probesets which are spaced proportionately to the genomic sequence. Probesets 
corresponding to probable alternative exon usage are circled. Refseq sequences are 
aligned to show the position of the exon within the gene. Refseq: NM008431 length 8,826 bp. 

 

Kcnk4 was found to have three possible exon differences, which differ from those of the 

human orthologue published by Ozaita et al. No information was found in the literature 

concerning embryonic transcript expression. Again, expression of either 5 or 250 CUG 

repeats lead to alternative exon splicing (Figure 57). 

 
5.3.3.2.3 Narg1  

Localized at excitatory synapses, NMDA receptors are one of the major classes of 

ionotropic neurotransmitter receptors of mammalian brain (Stephenson, 2006). Sugiura et 

al. showed that highly specific NMDA receptor-dependent regulation of NARG1, NARG2 

and NARG3 gene expression plays an important role in the transition from proliferation of 

neuronal precursors to differentiation of neurons. Narg1 (also known as murine N-terminal 

acetyltransferase 1, mNAT1) is an embryonic gene highly expressed in the developing 

brain in regions of neuronal proliferation and migration and subsequently down-regulated 

during early postnatal development, in part, by the onset of N-methyl-d-aspartate (NMDA) 

receptor function (Sugiura et al., 2001). Narg1 and its co-subunit, Ard1, assemble to form 

a functional acetyltransferase. Throughout brain development, Narg1 and Ard1 are highly 

expressed in areas of cell division and migration, and are down-regulated as neurons 

differentiate (Sugiura et al., 2003). Suguira et al., also found that Narg1 and Ard1 are 

expressed in proliferating mouse P19 embryonic carcinoma cells; treatment of these cells 

with retinoic acid initiated exit from the cell cycle, neuronal differentiation, and down-

regulation of Narg1 and Ard1 as the NMDA receptor 1 gene was induced. The results 

provided direct evidence that Narg1 and Ard1 form an N-terminal acetyltransferase in mice 

and suggested that expression and down-regulation of this enzyme complex played an 

important role in the generation and differentiation of neurons. (Sugiura et al., 2003), so it 

follows that inappropriate regulation could affect neuronal generation in the newborn. 

NARG1 could have a role in other symptoms of DM, such as retinal degeneration, 

cataracts and testicular atrophy: In the eye, NARG1 is also required to control retinal 

neovascularisation in adult ocular endothelial cells (Paradis et al., 2002), and involved in 
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corneal morphogenesis. Narg1 (also known as Tubedown1) is highly expressed in mouse 

embryonic cornea (E18.5) and also in adult corneal endothelium (Saika et al., 2001). 

 There are two known isoforms of the protein produced by alternative splicing in the 

mouse (swissprot Q9BXJ9-1 and Q9BXJ9-4). Interestingly, NARG1 may also be 

important in spermatogenesis since expression levels varied throughout spermatogenesis in 

the rat (He et al., 2002).  

In our analysis, Narg1 was found to have three possible exon differences. Again, 

expression of either 5 or 250 CUG repeats lead to alternative exon splicing (Figure 58). 

 

 
 

Figure 58 Alternative exon usage in Narg1. Graph plotting probeset value. Data for 5 and 250 
repeats were subtracted from 0 repeats (pLoxEGFP). Each exon is represented by one or more 
probesets which are spaced proportionately to the genomic sequence. Probesets corresponding to 
probable alternative exon usage are circled. Refseq sequences are aligned to show the position of 
the exon within the gene. Refseq: NM053089 length 57,883 bp. 

 
5.3.3.2.4 Ttyh1 

Myotonic dystrophy is a multisystemic disease, which affects the brain to varying degrees. 

Cerebral atrophy and white matter lesions are often observed in DM1 (Damian et al., 1993; 

Antonini et al., 2004). Neurofibriliary tangles (NFTs) –which are present in Alzheimer’s 

and most other dementias (Robert et al., 2007)– are also seen in DM1 brains (Kiuchi et al., 

1991). These are formed from insoluble aggregates of abnormally phosphorylated neuronal 
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microtubule associated protein tau. It would seem that the tau mis-splicing of exon 2 is 

responsible for neuronal loss since changes in tau isoform ratios leads to NFT formation, 

but it is not known if tangles are pathogenic; a benign marker of pathogenesis, or 

protective. There is a link between Tau mutations and learning disabilities, but the 

association is not absolutely clear since in mouse models, the formation of NFTs can be 

disassociated from tau induced neuronal loss (Andorfer et al., 2005; Santacruz et al., 

2005). Alzheimer’s disease is classed as a tauopathy, but lacks any genetic tau mutation yet 

NFT are formed, and there is neuronal loss, so the mechanism of pathogenesis is in part 

unclear. The brain lesions observed in DM1 can be explained by tau induced neuronal loss, 

nevertheless this need not exclude involvement of other genes. 

 

Figure 59 Alternative exon usage in Ttyh1. Graph plotting probeset values. Data for 5 and 250 
repeats were subtracted from 0 repeats (pLoxEGFP). Each exon is represented by one or more 
probesets which are spaced proportionately to the genomic sequence. Probesets corresponding to 
probable alternative exon usage are circled. Genbank mRNA sequences are aligned. Red 
markings indicate base differences. The arrow marks known alternative exon usage. Refseq 
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sequences are aligned to show the position of the exon within the gene. Refseq: NM021324 length 
16,709 bp. 

Human TTYH1 is related to the drosophila gene family tweety  (flightless behavioural, 

Campbell et al., 2000), expression is restricted to neuronal tissue and testis (Matthews et 

al., 2007). There are two known splice variants, the least common one of which is a swell-

activated maxi chloride channel, probably controlling cell volume (Suzuki, 2006). 

Mathews et al., expressed mouse Ttyh1 in non-neuronal human kidney (HEK) cells which 

caused axon-like protrusions to occur. They observed the highest concentration of TTYH1 

at the tips of the protrusions, where adhesion and guidance molecules are also expressed. 

The protein was also found to be associated with integrin alpha 5. Integrins play a key role 

in cell migration relative to extracellular matrix, in cell adhesion to basement membranes 

and resulting cell polarization. Their data suggested a role for TTYH1 in process 

formation, cell adhesion and possibly as a transmembrane receptor (Matthews et al., 2007), 

functions important during brain development. 

Ttyh1 was found to have four possible exon differences, and yet again, expression of either 

5 or 250 CUG repeats lead to alternative exon splicing. The latter two differences were 

positioned within the 3’ UTR, where alternative splice variants have been sequenced 

previously and deposited in genbank (Figure 59).  

 
 
5.3.3.2.5 Bptf 

BPTF is involved in brain development and chromatin remodelling. Also Known as Fac1, 

Nurf301 and falz, Bptf was identified by the reactivity of its encoded protein to a 

monoclonal antibody prepared against brain homogenates from patients with Alzheimer's 

disease. The gene’s discoverers determined that it is developmentally regulated, since they 

found abundant expression in fetal brain, where it is present throughout the gray and white 

matter of the developing spinal cord at 18-22 gestational weeks. In the adult, expression 

was found to be at low levels in brain and spinal cord, except in neurodegenerative 

diseases where the protein is up-regulated (Bowser et al., 1995). Functionally, the subunit 

composition suggests that it represents the human ortholog of the nurf301 component of 

the Drosophila nucleosome remodelling factor (NURF) complex. Wysoka et al., 

discovered that the gene product preferentially bound to trimethylated histone H3 lysine 4 

tails (H3K4me3), which mark the transcription start sites of virtually all transcriptionally 

active genes (Yan et al., 2006), allowing activation by chromatin remodelling by the 
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NURF complex (Wysocka et al., 2006). Human NURF is enriched in brain, Barak et al. 

demonstrated that it regulates human ENGRAILED, a homeodomain protein that regulates 

neuronal development in the mid-hindbrain. They also showed that hNURF potentiates 

neurite outgrowth in cell culture, and suggest a role for the transcription factor complex in 

neuronal growth (Barak et al., 2003). 

Human BPTF is alternatively spliced, two different isoforms have been described 

completely (Entrez nucleotide sequence database ID: NM182641 -isoform 1 and 

NM004459 -isoform 2) and four named isoforms formed by alternative splicing are listed 

in the Swissprot database (Swissprot ID Q12830-1, Q12830-2, Q12830-3, Q12830-4). 

From the analysis, expression of either 5 or 250 CUG repeats lead to six possible exon 

differences between the two samples compared to EGFP. The exon difference noted in 

pLoxEGFP5 corresponds to a known alternatively spliced exon in the human gene (Figure 

60), which is excluded in isoform 2 (NM004459) and included in isoform 1 (NM182641). 

As mentioned earlier, BPTF is thought to be developmentally regulated, but it is not clear 

whether this is done by isoform switching, or if the isoforms co-exist. 

 

Figure 60 Alternative exon usage in Bptf. Graph plotting probeset values. Data for 5 and 250 
repeats were subtracted from 0 repeats (pLoxEGFP). Each exon is represented by one or more 
probesets which are spaced proportionately to the genomic sequence. Probesets corresponding to 
probable alternative exon usage are circled. Refseq sequences are aligned to show the position of 
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the exon within the gene. The arrow identifies the exon excluded after expression of the 
pLoxEGFP5 transgene also excluded in human isoform 2. Refseq: mouse, NM176850 length 
98,842 bp; human, NM004459.6 and NM182641.3. 

 
5.3.3.2.6 Cacna1c 

CACNA1C is the pore-forming subunit of the L-type, voltage dependent calcium channel 

responsible for excitation-contraction coupling in the heart (see Striessnig, 1999 for 

review); heart development (Rottbauer et al., 2001), and is expressed in developing 

skeletal muscle (Chaudhari et al., 1993). Cardiac conduction defects have been well 

documented in myotonic dystrophy, both in patients and mouse models (Berul et al., 2000; 

Harper, 2001; Pall et al., 2003; Mahadevan et al., 2006).  

Excitation-contraction coupling in the heart is a carefully ordered process. In order for 

blood to be pumped directionally through the heart, atrial blood must first be squeezed into 

the ventricles and then out into the aorta. The atrial contraction triggered by the sino-atrial 

node, and the delay whilst atrial action potentials are restored and the ventricles fill with 

blood, is referred to as the PR interval. The QRS complex (the peak on an ECG, Figure 61) 

relates to the spread of electrical activity triggered by the atrio-ventricular node. This 

spreads down the centre of the heart and upwards through the ventricles resulting in 

ventricular contraction, which after returning to resting potential is termed the QT interval. 

 

Figure 61 The electrocardiogram (ECG). Schematic diagram depicting the nomenculature of 
electrical peaks and troughs during a heartbeat. P, P wave; PR, PR interval; QRS, QRS complex; 
QT, QT interval; T, T wave. Adapted from Merck Manuals online medical library 
(http://www.merck.com/mmpe/index.html). 

Molecularly excitation-contraction coupling is controlled by ion transport. Myocardiocytes 

possess a negative membrane potential when at rest. Electrical signals cause voltage gated 

calcium channels to depolarise, releasing calcium ions into the cell. The influx of calcium 

results in further release of free calcium into the cell from the sarcoplasmic reticulum, 
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causing the cell to contract. After a delay potassium channels open, allowing potassium to 

flow out of the cell for repolarisation. Cav1.2 is the L-type or long lasting, voltage 

dependent calcium channel responsible for excitation-contraction coupling in the heart. It 

mediates calcium influx in response to membrane depolarisation, and controls sustained 

contraction of the myocardium via calcium-induced Ca2+ release from the sarcoplasmic 

reticulum. The Cacna1c gene product is the chief pore-forming subunit of Cav1.2, 

responsible for the calcium current, and is associated with auxiliary subunits α2δ, β and γ, 

which modulate membrane expression and current properties (Tuluc et al., 2007). 

Although the Cav1.2 controls the main calcium current in the heart, it also has other 

cellular functions; excitation-coupling in smooth muscle, hormone release (in mice, 

selective ablation in beta cells resulted in impaired insulin secretion and systemic glucose 

intolerance (Schulla et al., 2003)), regulation of transcription, and synaptic integration 

(Catterall et al., 2005 for review).  

Mutations in CACNA1C lead to conductance defects in the heart –a major complication in 

myotonic dystrophy. Particular amino acid substitutions in the cardiac Cav1.2 channel have 

been shown to cause elevated ST levels and short QT intervals (Figure 61) on 

electrocardiograms and result in sudden cardiac death (Antzelevitch et al., 2007). In DM1 

however ECGs generally reveal different variations –a long PR interval and wide QRS 

complex (Figure 61) (Bu'Lock et al., 1999), which could result from different voltage 

sensitivities in the same gene caused by aberrant splicing (Soldatov et al., 1995; Tang et 

al., 2004). Indeed, mutations in exon8/8a of this gene lead to Timothy syndrome, an 

autosomal dominant disorder characterised by long QT intervals (Figure 61) and 

ventricular cardiac arrhythmias (Splawski et al., 2004; Splawski et al., 2005; Faber et al., 

2007).  

Aberrant splicing of Cav1.2 could also play a role in anaesthetic sensitivity. Volatile 

anaesthetics depress cardiac contractility by inhibition of cardiac L-type calcium channels 

(Gingrich et al., 2005), so further depression of an already sub-functional channel could 

worsen complications and result in heart and respiratory failure. It seems likely then that 

dysregulation of CACNA1C alternative splicing could play a major role in the defective 

heart conductance observed in DM, and also contribute to anaesthetic sensitivity. 

CACNA1C is subject to extensive alternative splicing with 19 of 55 exons alternatively 

spliced (Tang et al., 2004; Murakami et al., 2006). The N-terminus is associated with 

trafficking and the C-terminus Ca2+-dependent and slow voltage-dependent inactivation 
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(Kobrinsky et al., 2005). Both embryonic and adult specific isoforms are produced from 

combinatorial splicing of exons 31-33 resulting in shifts in the voltage dependence of 

activation (Diebold et al., 1992; Tang et al., 2004). 

 

 

Figure 62 Alternative exon usage in Cacna1c. Graph plotting probeset values. Data for 5 and 
250 repeats were subtracted from 0 repeats (pLoxEGFP). Each exon is represented by one or 
more probesets which have been spaced equally rather than proportionately to the genomic 
sequence for clarity. Probesets corresponding to probable alternative exon usage are circled. 
Refseq sequences are aligned. Refseq: NM009781 length 602,340 bp. F denotes area of 
embryonic alternative splicing. 
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Cacna1c was found to have at least two possible exon differences. Expression of either 5 

or 250 CUG repeats lead to alternative exon splicing (Figure 62).  

Preliminary analysis of probeset data at the full metaprobeset level (data not shown), which 

has a much lower p-value (1.48E-05 vs. 2.87E-02 at the core level) indicates differential 

exon usage around the foetal region. This is consistent with the inappropriate foetal 

isoform switching seen in DM patients and warrants further investigation. 

 

5.4 Expression of known genes 

In anticipation of the microarray results we wanted to look at the expression of genes 

already known to be mis-spliced in myotonic dystrophy. We chose the chloride channel 1 

(Clcn1) and cardiac troponin T (Tnnt2) genes for study since the splicing patterns had 

already been well characterised in mouse models. For Tnnt2, exon 5 inclusion is promoted 

by the expression of expanded CUG repeats and in Clcn1, exon 7a inclusion which leads to 

the formation of a premature termination codon and probably nonsense mediated decay 

(Mankodi et al., 2002; Kanadia et al., 2003; Kanadia et al., 2006). Mouse 3T3 cells were 

transfected with reagent alone; pLoxEGFP; pLoxEGFP5 or pLoxEGFP250 and harvested 

after 24 hours incubation. Total RNA was extracted, and used as a template for first strand 

cDNA synthesis primed with random hexamers. Primers were designed as described in 

Κanadia et al. 2003 to amplify Tnnt2 cDNA between exons 2 and 6 and Clcn1 between 

exons 5 and 8. The PCR annealing temperature and magnesium chloride concentrations 

were optimised in order to detect reaction products using ethidium bromide staining and 

agarose gel electrophoresis (Figure 63).  

 

Figure 63 Detection of Tnnt2 transcripts in 3T3 cells. Agarose gel separated RT-PCR. 3T3 cells 
were transfected with constitutively expressing pLoxEGFP constructs containing 0; 5 or 250 CUG 
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repeats and analysed by RT-PCR . Primers were positioned between exons 2 and 6. Isoform sizes 
were estimated from Kanadia et al. 2003, the positions and exon content indicated on the RHS. 
The expression of expanded CUG repeats has been reported to increase the inclusion of exon 5, 
but in this experiment levels were too low to detect. No difference in the expression pattern was 
seen between treatments. *See Figure 64 legend. 

 

The Tnnt2 banding pattern obtained for the adult FVBN heart cDNA corresponded in size 

to that previously published (Figure 63) (Kanadia et al., 2003) where exon 5 exclusion is 

the predominant isoform. Inclusion of exon 5, as seen in DM1 patients, should result in a 

product of approximately 170 bp, but a fragment of this size was not detected in any of the 

transfected 3T3 cells or in the control heart cDNA. A small product of approximately 

75bp, not referred to in the literature, was generated using these primers. It was evident in 

all 3T3 cDNA samples and also in FVBN heart control cDNA (Figure 63, top, question 

mark). The size of the band could have corresponded to a product of exon 2 spliced 

directly to exon 6 (calculated using genescan intron-exon prediction on mouse 

chromosome 1 genomic sequence AC108813.8) yet a product of identical size was also 

obtained using tail genomic DNA (data not shown), indicating the sequence template 

lacked introns. In the published literature, figures were tightly cropped (Kanadia et al., 

2003; Ho et al., 2005), so it was impossible to ascertain whether this fragment was an 

artefact in our hands alone. During optimisation of the PCR, where a range of MgCl2 

concentrations were tested, the presence and intensity of the small reaction product did not 

change in proportion to the two larger bands, and always appeared to be the most 

significant product (Figure 64), indicating good sequence identity with the primers. 

Increasing the annealing temperature to the calculated melting temperature of the probe 

(72ºC) had no effect (data not shown), also indicating good sequence identity. Ideally, the 

fragment could have been excised, cloned and sequenced. Since small PCR products 

preferentially amplify in a reaction, to try to increase the detection sensitivity of the upper 

bands, the original gel was Southern blotted and hybridised to a probe generated from the 

doublet PCR product from FVBN heart (Figure 63*). No Tnnt2 exon 5 inclusion–

corresponding to a 170bp fragment –was detected in any of the samples (Figure 64).  There 

is a smudge around this area in the pLoxEGFP250-transfected samples, but the result is not 

clear and it is difficult to conclude anything from the poor separation of bands, but there 

clearly are slight differences. Ideally, the PCR products should be separated using 

polyacrylamide gel electrophoresis, to improve resolution.  
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Figure 64 cTnnt2 RT-PCR A A decrease in the magnesium chloride concentration does not 
reduce the predominance of the 70 bp band, which originates from RNA since no product is 
present in the no RT control, but contains only genomic sequence and so is not an alternatively 
spliced product of cTnnt2. B Southern blot of the Tnnt2 gel (Figure 63) hybridised to FVBN doublet 
band (Figure 63*) The 180bp band corresponding to exon 5 inclusion is not present in control 
samples but may be present in pLoxEGFP250 transfected 3T3 cells as a smudge. 

 

The prepared cDNA samples were also used to ascertain the presence of the Clcn1 

transcript in 3T3 cells, and the effect of CTG repeat expression on Clcn1 splicing patterns. 

Briefly, random-primed cDNA prepared from 3T3 cells transfected with pLoxEGFP; 

pLoxEGFP5, pLoxEGFP250 or reagent alone and FVBN skeletal muscle, was used as a 

template for the exon 5-8 Clcn1 primer set published by Kanadia et al. 2003. The PCR 

products were separated by agarose gel electrophoresis. From the 3T3 samples, four bands 

were obtained (Figure 65). The predicted sizes for isoforms including and excluding exon 

7a were calculated using cDNA accession numbers AY046403, AY046404, and the sizes 

correspond to the smallest PCR products. The larger two products could be further 

products of alternative exon missplicing implicated in DM1, extended 6-7a and 8a 

(Mankodi et al., 2002), but identification of the exon content would require sequencing, 

since information relating to the sequence and the PCR product sizes has not been 

published. The proportion of alternatively-spliced transcripts in 3T3 cells is different to the 

skeletal muscle control, which has a much higher incidence of the smallest product 

corresponding to the adult form of Clcn1, excluding exons 7a and 8a. No variation is seen 
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between the test samples, therefore expression of expanded CUG repeats has surprisingly 

no effect on the pattern of Clcn1 alternative splicing in 3T3 cells. 

 

Figure 65 Detection of Clcn1 transcripts in 3T3 cells. Agarose gel separated RT-PCR. 3T3 cells 
were transfected with constitutively expressing pLoxEGFP constructs containing 0; 5 or 250 CUG 
repeats and analysed by RT-PCR. Primers were positioned within exons 5 and 8. The predicted 
sizes for isoforms indicated on the RHS are: 6-7-8, 340 bp; 6-7a-7-8, 419 bp (cDNA accession 
numbers AY046403, AY046404). The proportion of alternatively-spliced transcripts in 3T3 cells is 
different to the skeletal muscle control, which has a much higher incidence of the smallest product 
corresponding to the adult form of Clcn1 with no inclusion of exons 7a and 8a. No variation is seen 
between the test samples. Therefore expression of expanded CUG repeats has no effect on the 
pattern of Clcn1 alternative splicing in 3T3 cells. 

 

5.5 Discussion 

Microarray analyses were carried out in order to identify further novel genes aberrantly 

spliced after the expression of expanded CUG repeats in a cell culture system. Mouse 

fibroblast 3T3 cells transfected with 5 or 250 repeats from the pLoxEGFP construct were 

separated based on EGFP fluorescence. RNA was isolated and used for whole transcript 

microarray analysis. In the most reliable comparison between EGFP positive fractions 

pLoxEGFP250+ vs. pLoxEGFP5+, 138 genes were up-regulated and 6 down-regulated. No 

genes were selected for further analysis at this point due to the launch of the more ideally 

suited exon microarray chips. For this, RNA was isolated from mouse fibroblast 3T3 cells 

expressing 0, 5 or 250 repeats from the pLoxEGFP construct without FACS separation. 

Between the test samples: pLoxEGFP0; pLoxEGFP5 and pLoxEGFP250 repeats, 29; 54 

and 58 genes showed alternative exon usage within the core (Table 18), extended (Table 

19) and full (Table 20) probesets respectively.  Six genes were selected from those 

identified, based on previously known alternative exon usage, and the possible correlation 

of gene function and symptoms in myotonic dystrophy explored in the literature and 

discussed.  
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Since transient transfection does not result in all cells expressing the EGFP construct, in 

the whole transcript analysis, cells were separated using FACS to enrich the number of 

cells expressing the reporter with or without repeats. Even with total separation, this would 

include some cells expressing EGFP with no apparent foci, which has been explained by 

the heterologous population of repeat lengths in the starting plasmid, where a small 

percentage of deletions have been identified (Chapter 3: Growing repeats and Chapter 4 

EGFP and RNA foci). Since repeat lengths as small as 100 formed foci the small amount 

of EGFP positive; non-foci containing cells collected during FACS was not expected to 

skew the results. However, after the analysis, EGFP RT-PCR on the leftover samples 

revealed EGFP template within the “negative EGFP” cell fractions, indicating that either a 

significant proportion of “EGFP negative foci positive” cells were present, or that the 

separation was not pure. Ideally, Cy3-(CAG)10 in situ hybridisation analysis should have 

been attempted on “EGFP negative” separated samples before RNA isolation, but it seems 

that separation is most likely the fault since high numbers of “EGFP negative foci positive” 

cells were not observed during pLoxEGFP250 transfections in general. If sample 

separation was very poor then the numbers of differentially expressed genes would be 

expected to be near zero. In test 4 (Table 2: pLoxEGFP5+ vs. pLoxEGFP5-) the 

differences in the numbers of genes unregulated (130; listed in Table 16) and down-

regulated (90; listed in Table 17) were notable however, this was also the case with test 2 

(Table 2: pLoxEGFP250+ vs. pLoxEGFP5-) the differences in the numbers of genes 

unregulated (312; listed in Table 14) and down-regulated (79; listed in Table 15), 

suggesting that some form of enrichment between positive and negative EGFP fractions 

had occurred. Indeed, the Cacna1c gene was identified in both pLoxEGFP5+ vs. 

pLoxEGFP5- (Table 17) and pLoxEGFP250+ vs. pLoxEGFP5- (Table 15) down-regulated 

gene comparisons. It would be prudent then to reanalyse these lists to possibly identify 

further mis-spliced genes. 

The experiment at the time it was designed was well controlled for the possibility of poor 

separation. PLoxEGFP5 samples were considered to be equivalent to the normal or control 

situation, and results could then be reanalysed by using the difference between 

pLoxEGFP5 positive and pLoxEGFP250 positive chips only. Doubt was cast on the 

negativity of the pLoxEGFP5 samples when Mahadevan et al. (2006) reported that over-

expression of 5 CUG repeats in the mouse resulted in myotonia, cardiac conduction 

abnormalities, histopathology and also RNA splicing defects, in the absence of detectable 

nuclear inclusions. Since our model also utilised the pCMV promoter, it was reasonable to 

expect that the pLoxEGFP5 could also be pathogenic. For the exon array analysis then, 
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FACS separation was not carried out, and pLoxEGFP (0 repeats) was added as the 

negative control.  

Myotonic dystrophy affects so many systems, that it is difficult to select a gene whose 

deficiency does not replicate at least some of the symptoms of DM. Consequently little 

bias has been used in the selection of genes for further analysis. It is interesting to note that 

the Cacna1c gene, the candidate gene for conduction defects in DM, was also identified in 

the whole transcript analysis in the down-regulated pLoxEGFP5+ vs. pLoxEGFP 5- 

comparison, and in the down-regulated pLoxEGFP250+ vs. pLoxEGFP5- comparison. 

Here the levels of the Cacna1c transcript were reduced 1.75 fold in the 5+ fraction and 

1.64 fold in the 250+ fraction compared to out best negative pLoxEGFP5- (Table 17 and 

Table 15). This was the only gene of those selected from the exon array analysis that was 

also identified in the whole transcript arrays. This is not surprising since differences in 

transcript levels using these arrays rely on 3’ end alternative splice events or nonsense 

mediated decay due to the use of cryptic splice sites outside the terminal exon, which is not 

expected to be a frequent event. In DM1 missplicing identified to date, this happens only in 

the chloride channel 1 gene. 

It is not clear from the literature whether the splicing differences identified here match 

existing developmental patterns. As was already mentioned, the patterns in Mtmr4 are 

impossible to match at the core probeset level since these intron-derived exons are not 

represented; this is also true of Cacna1c. For the other selected genes, no developmental 

patterns have been published.  

It was noted that in the genes selected that often, alternative exon usage was apparent in 

both samples compared to the EGFP baseline, but not necessarily in the same exon. Is this 

an artefact of the selection procedure, or is it statistically significant? It could be an artefact 

of the analysis. Using Partek Genomic suite, a higher alternative exon usage score may be 

given to those genes differing between both samples. Of the 25 highest ranking genes from 

the full data set 21 genes showed alternative exon usage in both samples compared to 

EGFP, and in different exons, so an artefact does seem likely. In light of this, it would be 

prudent to repeat the analyses, and separately compare EGFP vs. pLoxEGFP5 and EGFP 

vs. pLoxEGFP250, to determine whether the same genes are selected. If the differences are 

real it may be that we are looking at the result of two different effects: That of increased 

levels of CUG-BP1 (pLoxEGFP 5), as seen in the recent mouse model, and increased 

CUG-BP1 combined with depletion of MBNL (pLoxEGFP250).  
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The results of the exon array analyses were searched for known genes Clcn1; Insr; Ryr1; 

Tnnt2; Serca (also known as atp2a1) and Amphiphysin (Amph -also known as Bin1). The 

p-values were high (Table 22), indicating that the genes were unlikely to be mis-spliced. 

Why these genes were not mis-spliced in 3T3 cells is uncertain. It may be that since the 

origin of the cells was embryonic, the levels of MBNL1 and CUG-BP1 are already 

‘altered’ and that further depletion of MBNL by expanded repeats would make no change 

to the pattern of splicing. Of those genes known to be misspliced in DM1, there is no 

information in the literature concerning alternative splicing in 3T3 cells. 

Table 22 Alternative splicing p-values of genes known to be mis-spliced in DM1 

 Core Extended Full 

Clcn1 0.586979 0.609543 0.535062 

Insr 0.395370 0.106255 0.059114 

Ryr1 0.396188 0.319517 0.130963 

Tnnt2 0.965664 1 0.775952 

Serca 0.172591 0.176744 
 

0.675686 
 

Amph 0.492576 
 

0.0217275 
 

0.357725 
 

 

In the analysis presented in this chapter, core probeset data has been used. Hence before 

primer design, the alternative exon usage should also be assessed at the extended and the 

full metaprobeset levels, since changes in these further probesets would affect primer 

position. Indeed in most of the genes selected, p-values are highest in these sets (Table 21). 

Ideally, the selected genes would next be characterised by RT-PCR using primers 

surrounding the exons in question, firstly using samples generated with the culture system 

described, then patient cells and also mouse DM models in order to assess possible isoform 

changes during development. Candidate cDNAs would then be cloned and sequenced to 

verify the exon-intron boundaries. 
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6 Discussion 

6.1 DM1 as an RNA processing disorder  

Up until fairly recently our understanding of the pathogenesis of myotonic dystrophy was 

making slow progress. The DM1 locus is a gene dense region, and the effects of the 

expanded CTG repeat are complex. Expansion of the CTG repeat results in the spread of 

heterochromatin centered on the CTG repeat region (Otten et al., 1995), resulting in 

reduced expression of surrounding genes such as SIX5 (Klesert et al., 1997; Thornton et 

al., 1997). Since only repeat-containing transcripts are retained in the nucleus, the 

proportional expression pattern of functionally distinct isoforms of the DMPK gene itself is 

also altered (Groenen et al., 2000; Tiscornia et al., 2000; Wansink et al., 2003; van Herpen 

et al., 2005), leading to reduced levels of functionally distinct isoforms (Groenen et al., 

2000). Despite extensive research into these effects, haploinsufficiency at the DM1 locus 

alone does not appear to account for the extensive multisystemic effects seen in patients. 

The main pathogenic effects arise from a toxic gain-of-function of the expanded repeat 

RNA (Philips et al., 1998; Kuyumcu-Martinez et al., 2006). Expression of the mutant RNA 

results in nuclear retention of the transcript and sequestration of the splicing regulator 

MBNL1 to that transcript within foci (Miller et al., 2000; Fardaei et al., 2002). At the same 

time mutant RNA expression increases the MBNL1 antagonist CUG-BP1, by some 

unknown mechanism that may involve phosphorylation whilst bound to short single 

stranded CUG repeats within the cytoplasm (possibly generated by dicer), followed by 

nuclear relocalisation (Timchenko, personal communication). The alteration in the 

antagonistic balance between CUG-BP1 and MBNL1 splicing regulators results in a failure 

of embryonic to adult alternative splicing events in a number of genes, of which there are 

now many identified in DM1 (Ho et al., 2004; Lin et al., 2006). Some are clearly directly 

responsible for specific aspects of the pathology, for instance the chloride channel to 

myotonia and the insulin receptor to insulin resistance, for others the relationship is less 

clear (Savkur et al., 2001; Mankodi et al., 2002).  

In order to identify further genes misspliced in DM1, we generated a murine cell culture 

model of myotonic dystrophy type 1 which mimicked the nuclear expanded RNA foci 

formation and MBNL1 co-localisation seen in patient cells. The formation of foci was 

observed with as few as 100 CUG repeats in HeLa cells. MBNL1 co-localisation to the 

foci was apparent using a GFP/MBNL1 fusion protein construct co-transfected with 
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pLoxEGFP250. Notably, the foci formed in these cells appeared to be larger, and fewer in 

number, than cells transfected with pLoxEGFP250 alone, suggesting the extent of foci 

formation was limited by the availability of MBNL1. Using this system and Affymetrix 

exon array analysis to compare effects of 0; 5 and 250 CUG repeat expression on the 

transcriptome, we identified 29; 54 and 58 genes that showed alternative exon usage within 

the core, extended and full probesets respectively. From this list, bioinformatics analysis 

revealed several nominee genes possibly mis-spliced in DM1 –MtmR4, which has possible 

neuromuscular involvement; Kcnk4, Narg1, Ttyh1 and Bptf, potentially related to brain 

development; and Cacna1c, a promising candidate for heart conductance defects and 

sudden death. The discovery of mis-splicing in the pore-forming unit of Cacna1c, if 

confirmed, could be of major consequence to patients undergoing surgery. Identification of 

the gene as a target in DM allows the anaesthetist to avoid the use of sedatives with effects 

on this channel and select alternative agents, possibly avoiding the complications of 

surgery in DM patients altogether.  

However DM1 is not just a spliceopathy, DMPK insufficiency and DM1 locus chromatin 

disruption also play a probable role, but there are further questions. CUG-BP1 is a 

developmental splicing regulator instrumental in the embryonic-adult alternative splicing 

switch, but CUG-BP1 has another function in addition to this. The protein has deadenylase 

activity, controlling polyA tail length and mRNA stability (Paillard et al., 2003; Moraes et 

al., 2006). What are the effects of elevated levels in relation to this role, and are there other 

functions? Are there as yet unidentified additional functions of MBNL1, MBNL2 or 

MBNL3, and what would be the consequence of depleted reserves on them? What about 

RNAi? Small 21nt RNAs have been reported by both Cho et al. and Krol et al.. Cho et al. 

showed that the DM1 3’UTR is transcribed bi-directionally generating 21nt RNAs in both 

the normal and expanded allele, and suggested a role for the RNAi pathway in DMPK 

regulation (Cho et al., 2005; Krol et al., 2007).  

Here, other RNA processing disorders are contrasted and compared, including DM2, 

looking for similarities and dissimilarities to try to gain insight into as yet unanswered 

questions, and also to solicit new ones. 

6.2 Other RNA processing disorders 

The pathogenesis of myotonic dystrophy can probably be mostly explained by the 

combination of deregulated splicing of CUG-BP1 and MBNL1 target genes during 
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development, and haploinsufficiency of DMPK and neighbouring genes. Yet one big 

question remains: How does the congenital form arise? Missplicing in myotonic dystrophy 

is in some instances borne from a failure of isoform switching between the embryonic and 

adult forms of target genes, therefore it is unlikely to be caused by MBNL1 depleted mis-

regulated splicing since embryonic forms are entirely appropriate in the neonate. More 

importantly, there have been no reports of a congenital form in DM2, and therefore in the 

newborn, DM1 pathogenesis must most likely arise from the differences between myotonic 

dystrophy type 1 and type 2.  

Historically, patients with presentations clinically similar to DM1, but without the DMPK 

expansion were diagnosed with proximal myotonic myopathy (PROMM) (Ricker, 1999). 

These patients had symptoms similar to DM1, but muscle weakness was mainly proximal, 

and wasting slight. Over time, with the accumulation of clinical data, the differences 

between PROMM and DM1 became less significant, and the disease was re-classed as a 

second type of myotonic dystrophy, DM2 (Ranum et al., 1998; Ricker et al., 1999; Liquori 

et al., 2001). Type 2 in general is a milder form of the disorder, closely resembling that of 

adult onset DM1. Whereas DM1 patients initially present because of daytime sleepiness 

and apathy, or distal weakness and stiffness, or in juvenile cases –developmental delay, 

DM2 patients first complain of muscle pain, stiffness or fatigue, or lower extremity 

weakness (Harper, 2001). Distal weakness such as facial muscle involvement is less 

pronounced as is bulbar involvement, so speech and swallowing are less often affected. 

Muscle atrophy is less pronounced. Although the muscle defects between the two types 

differ slightly, other symptoms, such as cataracts; hypogonadism and insulin sensitivity are 

equivalent (see Finsterer, 2002 and Day et al., 2003 for review). 

Both mutations consist of an untranslated expanded repeat, which becomes trapped in the 

nucleus: A CTG expansion in the 3’ UTR of the DMPK gene in DM1 and in DM2, a 

CCTG expansion within intron 1 of the CNBP gene. MBNL proteins 1, 2 and 3 are 

recruited to foci within their respective aggregate mutant transcripts and sequestered 

(Fardaei et al., 2002). This is believed to result in deregulation of alternative splicing 

events dynamically controlled by MBNL1 and CUG-BP1 during development. Indeed, in a 

mouse MBNL1ΔE3 model missplicing of Clcn1, Tnnt2 and Tnnt3 was observed in the 

homozygote, also cataracts; centralised nuclei and split fibres within skeletal muscle, but 

no atrophy was apparent at 11 weeks. There was also no evidence of neonatal muscle 

weakness associated with the congenital form (Kanadia et al., 2003). MBNL1 

sequestration therefore, can account for the splicing defects, and some muscle histology 
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relevant to both types 1 and 2, but appears an unlikely explanation for the increase in 

severity of muscle wasting or CNS involvement in DM1. 

It is the differences then that become interesting. In DM1, 50 to ~3000 repeat tracts result 

in the disease (Harper, 2001). In DM2, between 75 and 11,000 CCTG repeats are required 

(Liquori et al., 2001). Why are more repeats necessary in DM2 to elicit a pathological 

response? What of the genes themselves; the flanking regions, expression patterns and 

expression levels?  

The genes at the two DM loci have no apparent similarities. Research indicates that 

flanking genes around a locus can be responsible for disease pathogenesis, such as in 

fascioscapularhumeral muscular dystrophy, where deletion of a repressor binding site 

results in increased transcription of the neighbouring FRG1 gene (Gabellini et al., 2002). 

At the DM1 locus however, none of the surrounding genes RSHL1, DMWD or SIX5 have 

been satisfactorily implicated in the disease. Six5 insufficiency in mice leads to cataracts as 

in DM1, but not of the same type. It would be reasonable to use existing mouse models to 

attempt to create the complete pathogenic spectrum, by perhaps combining existing models 

MBNL1ΔE3 and the Six5 or DMPK knockout mice. 

Phosphorylation of CUG-BP1 by DMPK results in a decrease of nuclear CUG-BP1 in vitro 

(Roberts et al., 1997), so would haploinsufficiency of the kinase result in a reduced 

requirement for MBNL1 sequestration in order to elicit a response from a smaller number 

of repeats? In DM2, longer repeats would then be required to deplete MBNL1 to shift the 

dynamic CUG-BP1/MBNL1 balance as far.  

In DM2, only the repeat array is retained within the nucleus, not the CNBP transcript –

levels of CNBP protein are not affected (Margolis et al., 2006). In DM1 however, the 

mutant transcript is retained resulting in an alteration of the proportion of functionally 

distinct DMPK isoforms (Groenen et al., 2000). Most isoforms in normal individuals are 

expressed in many tissues including heart, skeletal muscle, liver and brain, except for 

isoform 2 which is only found in the heart and skeletal muscle (Fu et al., 1993; swissprot 

Q09013), and isoform 14 which is only found in the brain, with high levels in the striatum 

(cognitive function), cerebellar cortex (motor function) and pons (respiration regulation), 

all functions which are affected in DM1 (Gennarelli et al., 1995). Alteration of the isoform 

proportions could lead to functional insufficiency specifically in these tissue types. 
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FXTAS shares interesting links with DM pathology. Although from the symptoms there is 

no obvious similarity (gait ataxia and intention tremor), except that the disease is late-onset 

(in Wells et al., 2006, chapter 10). In FXTAS, miRNA-mediated post-transcriptional 

control is probably disrupted by over-expression of the miRNA guide protein FMR1 

(Plante et al., 2006; Plante et al., 2006). Of DM1, the CTG array is known to form a single 

hairpin of a type capable of invoking RNAi (Langlois et al., 2005). Could this result in 

short CUG repeats entering the cytoplasm and lead to an increase of CUG-BP1 protein? 

Small 21nt CUG RNAs have been detected in DM1 patient cells, and a recent mouse 

model has shown that over-expression of short 5-repeat CTG arrays is sufficient to mimic 

DM pathogenesis in mice (Mahadevan et al., 2006). Presumably the 5-repeat transcripts 

generated in this model play a role in the alteration of cellular CUG-BP1 levels perhaps by 

phosphorylation of bound protein increasing localisation to the nucleus. These mice suffer 

from myotonia and splicing defects, but there is no mention of a congenital defect such as 

brain involvement. This may be due to the design of the transgene whereby repeat 

transcription is induced at any one point in time, rather than being expressed during 

development, which incidentally, would be difficult to orchestrate in this model since 

animals die 3-4 weeks after induction. However, it may also be because production of 5 

CUG repeats may not mimic the microRNA function of dicer-generated short 21nt RNAs, 

possibly generated from CUG hairpins. In addition to increasing nuclear CUG-BP1 levels 

by binding and phosphorylation, this could lead to protein insufficiency through RNA 

mediated gene silencing. If DMPK is regulated by dicer as indicated by the presence of 

21nt CUG RNAs, then expanded repeats may be detrimental to the cellular RNAi process 

affecting unrelated post transcriptionally-regulated genes in DMPK positive tissues.  

It has not yet been established whether the DM2 mutant array is capable of forming similar 

hairpins, if so would short 21nt CCTG repeats be less toxic than CTG repeats? RNAi 

generation of short cytoplasmic CTG repeats leading to increased CUG-BP1 levels is 

consistent with the observation that MBNL1 sequestration is separable from misregulated 

splicing (Ho et al., 2005), since CAG repeats may not lead to increased levels of CUG-

BP1. Further research is required to establish whether RNAi gene silencing plays a role in 

the pathogenesis in either or both DM1 and DM2 and whether this could be implicated in 

the congenital form, perhaps by the silencing of specific DMPK isoforms in the brain and 

other tissues.  

It was mentioned earlier that CUG-BP1 levels increase in concentration and activity within 

the nucleus. We have seen the effects of over-expression of CUG-BP1 delineated in a 



Christine Haworth  Chapter 6, 202 
 
mouse model (Ho et al., 2005). Here the splicing disruption and abnormal muscle 

histology was reproduced, but effects in other DM systems such as the brain are not 

apparent since expression was limited to heart and skeletal muscle. What are the effects of 

increased CUG-BP1 activity in other tissues during development and on other roles of 

CUG-BP1? Deadenylation by CUG-BP1 was reported in 2003 by Paillard et al. Possible 

over activity by CUG-BP1 could lead to shortened target polyA tails of other genes within 

the cell, affecting their stability. This is probably the cause of occulopharangeal muscular 

dystrophy. The PABP2B protein –defective in OPMD, binds with high affinity to the 

polyA tail of messenger RNA, controlling adenylate addition to approximately 250 

nucleotides. In OPMD patients, the protein becomes aggregated with bound RNA and 

other proteins. It is not clear whether the disease arises from disrupted adenylation, or 

sequestration of the ‘other’ unidentified proteins, but symptoms are late onset, and include 

ptosis, dysphagia and generalised muscle wasting –as in DM. Analysis of DM2 skeletal 

muscle showed no increase in CUG-BP1 (Lin et al., 2006). If levels are not elevated in 

DM2, it may be that DM2 symptoms arise from MBNL1 depletion rather than over-

expression of CUG-BP1. This would still alter the antagonistic balance between the 

splicing regulators, but given the additional role of CUG-BP1 in deadenylation, could 

result in a milder phenotype. It would be interesting to delineate the effects of CUG-BP1 

over-expression with respect to deadenylation from splicing regulation. This could be 

possible by over-expression of MBNL1 in the existing CUG-BP1 over-expressor mouse 

model. 

A protein known to associate with PABPB2 is FRG1 implicated in fascioscapulohumeral 

muscular dystrophy (FSHD), which is caused by a deletion, rather than an expansion, of 

D4Z4 repeats believed to function as a binding site for a transcriptional repressor complex 

(van Deutekom et al., 1993; Gabellini et al., 2002). The repressor limits transcription of 

flanking genes FRG1; FRG2 and ANT1, but in mouse models, only over-expression of 

FRG1 develops a muscular dystrophy with features characteristic of human FSHD 

(Gabellini et al., 2006). In this model, missplicing was identified in muscle-related genes 

Mtmr1 and Tnnt3 transcripts in the mice and in FSHD patient muscle cell cultures, genes 

also mis-spliced in DM (Buj-Bello et al., 2002; Kanadia et al., 2003). In contrast, Osborne 

et al. found that FRG1 levels in FSHD patient skeletal muscle biopsies were not raised, 

and splicing patterns in MTMR1 and TNNT3 were normal (Osborne et al., 2007). Both sets 

of data appear robust so it is not clear where the discrepancies arise. The presence of FRG1 

pseudogenes should be noted however, which would require careful consideration for the 

choice of PCR amplimer design to accurately measure transcript levels.  
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Huntington disease-like 2 (HDL2) also shares missplicing with DM1. Abnormal splicing is 

observed in amyloid precursor protein (APP) and microtubule associated protein tau 

(MAPT) (Rudnicki et al., 2007), as in DM1 (Jiang et al., 2004; Leroy et al., 2006). HDL2 

is almost indistinguishable from the polyglutamine associated classical Huntington disease, 

yet the CTG expansion at the 3’ end of the junctophilin-3 (JPH3) gene leads variably to 

polyleucine; polyalanine; or is untranslated depending on the splice variant (Margolis et 

al., 2001). How the expansion in HDL2 leads to an almost identical phenotype to HD is 

unclear, but an RNA gain-of function mechanism seems likely. The HDL2 repeat is 

transcribed in the CTG orientation, which produces RNA inclusions that co-localise with 

MBNL1. Lengthwise, the expansion in HDL2 is shorter ~60 repeats, which in DM1 terms 

is only mildly pathogenic. This makes MBNL1 sequestration less likely, yet if the 

expression levels of the affected gene were higher than DMPK, it would corroborate over-

expression of 5 repeats being toxic (Mahadevan et al., 2006). Expression patterns differ 

between the two genes JPH3 and DMPK, which could account for differences in pathology 

to DM. DMPK has low levels of expression in brain, and is high in heart, skeletal muscle 

and testis (Sarkar et al., 2004). Whereas JPH3 is present at high levels in brain, modest in 

testis and minimal elsewhere (Takeshima et al., 2000). 

Expression of the ATXN8OS gene with 116 CTG repeats in mice successfully demonstrates 

the pathogenicity of the non-coding expansion in SCA8 (Moseley et al., 2006). This length 

of repeat is in the pathogenic range for DM1, but symptoms are not related. In SCA8 

movement is affected, –gait, speech hand and eye coordination (in Wells et al., 2006, 

chapter 28), caused by degeneration of the cerebellum, in DM1 pathogenesis is primarily 

muscle-related. The differences again –as in HDL2, probably derive from the expression 

patterns of the two genes. In the mouse model, repeat positive ATXN8OS transcripts were 

only found in the cerebellum; basal ganglia; frontal lobe and parietal lobe (Moseley et al., 

2006). 

Of the RNA processing disorders discussed here, it seems likely that SCA 8 and HDL2 

share a similar RNA gain of function mechanism with DM1 -notably MBNL1 associated 

RNA foci are apparent in HDL2. The differences in the pathology probably arise from the 

pattern of mutant RNA expression. Less is known about these pathogenic mechanisms than 

DM1, so perhaps DM1 pathogenesis may shed light on the disease process in these 

instances. Two interesting areas have been highlighted since they take further research of 

DM1 pathogenesis in two directions little studied so far–the involvement of RNAi, and the 

effects of over-deadenylation by CUG-BP1.  The consequences of shortened polyA tails in 
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OPMD share remarkable similarity to characteristic symptoms of DM1 –ptosis and 

dysphagia, perhaps hinting at the possibility of over-active deadenylation by CUG-BP1 in 

DM1. In FXTAS, miRNA-mediated post-transcriptional control is probably disrupted. If 

DMPK is regulated by dicer as indicated by the presence of 21nt CUG RNAs in DM1 

patient cells, then expanded repeats may be detrimental to this universal process but 

limited to DMPK positive tissues, which would explain the phenotypic differences between 

the two diseases. These two pathways are applicable to both myotonic dystrophy type 1 

and type 2, but with perhaps variable effect since the expression patterns of DMPK and 

CNBP are not the same, which may therefore account for some of the differences between 

the two types. Our model could be used to address some of these questions. Since the 

model is based on the expression of expanded CUG repeats within the immediate DMPK 

3’ UTR effects would be limited to this and would not include the consequences of 

haploinsufficiency of DMPK or the surrounding genes. Chromatin disruption would not be 

an issue since here the expansion is extra-genomic. The model would be ideal for 

investigation into the role of the RNAi silencing mechanism, both on the transgene itself 

and RNA levels generally within the transcriptome. Also, with a simple modification, 

DM2 CCTG repeats could be expressed allowing the assessment of the relative increases 

of CUG-BP1 after CTG or CCTG expression to help determine whether DM2 is primarily 

MBNL1-depletion mediated, lacking additional CUG-BP1 effects. This would indicate that 

the differences between the two types arise from the other role(s) of CUG-BP1, such as 

increased deadenylation, which could also be investigated using this system. The length of 

PolyA tails could be determined and the affected genes identified. In this model the cell-

type is not restricted. Results could be compared between cell-lines derived from different 

tissues, and at different developmental stages, perhaps gaining further insight into the 

elusive pathogenesis of the congenital form.  

The progression of our understanding of DM1 pathogenesis as an RNA processing disorder 

has enabled access to a plethora of information from other research areas within this 

expanding group of diseases. Insights gained from the similarities and differences has 

opened up further avenues of research into myotonic dystrophy pathogenesis, and what is 

already known about DM will facilitate understanding of other diseases within the field. 

Understanding has not only progressed in areas of disease, but also in the mechanisms of 

normal human biology such as the role of CUG-BP1 as a splicing regulator. New 

directions of research into the pathogenesis of myotonic dystrophy should in turn reveal 

new therapeutic targets, and subsequently, yield new therapies. 
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