
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Ferrari, Nicola (2013) Investigating RUNX transcription factors in 
mammary gland development and breast cancer. PhD 
 
http://theses.gla.ac.uk/4790/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given. 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4790/


 
 

Investigating RUNX transcription factors in 
mammary gland development and breast 

cancer 
 
 
 
 
 
 
 

Nicola Ferrari 
 
 
 
 
 
 
 
 

Submitted in fulfilment of the requirements for the degree of 
Doctor of Philosophy 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Beatson Institute for Cancer Research 
College of Medical, Veterinary and Life Sciences 
University of Glasgow 
Glasgow 
UK 
 
 
 

October 2013 
  



2 
 

 

Summary 

Breast cancer is the third most common cause of cancer death in the UK, 

accountable for more than 11000 deaths in 2010 alone (www.cancerresearchuk. 

org). Developmental pathways commonly required for normal development are 

often hijacked during tumour progression, so a better understanding of 

mammary gland development is necessary to fully understand the roots of breast 

cancer. The Runx gene family are known to be important regulators of 

development in different lineages. In particular RUNX1 and RUNX2 have been 

widely studied in the context of haematopoiesis and osteogenesis respectively, 

but their role in epithelial tissue is much less well understood. In this thesis a 

role for RUNX1 and RUNX2 in mammary development and breast cancer has been 

identified. 

The first part of this study is focused on characterizing the expression and 

function of the Runx genes in the mammary epithelium. RUNX1 and RUNX2 

protein levels fluctuate during embryonic and adult mammary development, and 

an in vivo conditional knockout strategy shows that both genes are important for 

maintenance of mammary epithelium homeostasis. Moreover, combined loss of 

RUNX1 and RUNX2 significantly perturbs the normal mammary architecture with 

an expansion of the basal population in vivo and the appearance of 

preneoplastic lesions in aged mammary glands.  An exciting new role for RUNX2 

in mammary stem cells has also been revealed showing that RUNX2 is important 

for the regenerative potential of mammary epithelial cells in vitro.  Evidence is 

also presented to indicate that RUNX2 could be linked to regulation of 

quiescence and Wnt signalling in the stem cell compartment and during 

transformation.  

Finally, the role of these genes in breast cancer is discussed demonstrating 

involvement of RUNX1 and RUNX2 specifically in the triple negative (ER-PR-

HER2-) subtype. In particular, for the first time, RUNX1 is revealed as an 

independent prognostic indicator correlating with poor prognosis in triple 

negative tumours.  Meanwhile, evidence from various mouse models 

demonstrates that RUNX2 may be specifically involved in the squamous 

metaplastic form of this disease.  



3 
 

Table of Contents 

Summary ..................................................................................... 2 

Table of Contents .......................................................................... 3 

List of Figures ............................................................................... 6 

Acknowledgements ......................................................................... 9 

Author’s Declaration ...................................................................... 10 

Abbreviations .............................................................................. 11 

 
1 Introduction ........................................................................... 15 

1.1 Mammary gland development ................................................. 15 

1.1.1 Function and evolution ............................................................................................................. 15 
1.1.2 Mammary gland development: an overview............................................................................ 16 
1.1.3 Embryonic development ........................................................................................................... 16 
1.1.4 Virgin mammary development ................................................................................................. 20 
1.1.5 Pregnancy and lactation ........................................................................................................... 24 
1.1.6 Involution .................................................................................................................................. 26 

1.2 Mammary stem cells............................................................ 29 

1.2.1 Birth of the mammary stem cell concept ................................................................................. 30 
1.2.2 The troubled pathway towards isolation of MaSCs .................................................................. 31 
1.2.3 MaSCs and pregnancy .............................................................................................................. 35 
1.2.4 In vitro assays for the study of MaSCs ...................................................................................... 36 
1.2.5 MaSCs regulators: signalling pathways and transcription factors. .......................................... 37 

1.3 Breast cancer .................................................................... 40 

1.3.1 Aetiology, progression of disease and treatment ..................................................................... 40 
1.3.2 Molecular classification of breast cancer ................................................................................. 42 
1.3.3 Understanding the molecular portrait of breast cancer ........................................................... 45 
1.3.4 The origin of breast cancer subtypes ........................................................................................ 46 

1.4 The RUNX Genes ................................................................ 47 

1.4.1 The Runx genes: evolution, structure and regulation ............................................................... 47 
1.4.2 RUNX Genes in Development ................................................................................................... 56 
1.4.3 RUNX Genes and Cancer: an Overview. .................................................................................... 62 

1.5 RUNX genes in mammary development ..................................... 70 

1.6 RUNX genes in breast cancer.................................................. 71 

 
Aims of the thesis ......................................................................... 75 

 
2 Materials & Methods ................................................................. 76 

2.1 Animals ........................................................................... 76 

2.1.1 Characterization of the Runx2flx/flx mouse model ...................................................................... 76 
2.1.2 Other mouse strains ................................................................................................................. 77 

2.2 Wholemount/histological analysis of mammary glands ................... 80 

2.3 In vivo imaging .................................................................. 80 

2.4 Fat pad transplantation ........................................................ 81 

2.5 Cell lines ......................................................................... 81 

2.5.1 Cell line transfections ............................................................................................................... 81 
2.5.2 Cell line assays .......................................................................................................................... 82 



4 
 

2.6 Primary mouse mammary cells ............................................... 83 

2.6.1 Flow cytometry/cell sorting ...................................................................................................... 83 
2.6.2 MMECs 2D cultures. ................................................................................................................. 87 
2.6.3 Mammospheres ........................................................................................................................ 87 
2.6.4 WNT3a treatments on mammospheres and 2D-MMECs ......................................................... 88 
2.6.5 Matrigel Colony forming assay ................................................................................................. 88 

2.7 Immunohistochemistry ......................................................... 89 

2.8 Immunofluorescence ........................................................... 89 

2.9 Non quantitative PCR .......................................................... 90 

2.9.1 PCR determination of Runx2 status. ......................................................................................... 90 
2.9.2 PCR detection of Runx2 mRNA. ................................................................................................ 91 

2.10 Quantitative RT-PCR ........................................................... 91 

2.11 Western blot ..................................................................... 92 

2.12 Human breast samples/tissue microarray ................................... 93 

2.13 Statistical analysis .............................................................. 93 

 
3 Characterization of the RUNX genes in the mammary gland. ................. 94 

3.1 INTRODUCTION .................................................................. 94 

3.1.1 RUNX proteins in mammary gland development. .................................................................... 94 
3.1.2 Experimental Aims. ................................................................................................................... 95 

3.2 RESULTS .......................................................................... 96 

3.2.1 Characterization of RUNX expression in the normal mammary gland. .................................... 96 
3.2.2 Mammary specific deletion of RUNX1 and RUNX2................................................................. 102 
3.2.3 Effects of combined deletion of Runx1 and Runx2 on virgin mammary development. .......... 112 

3.3 DISCUSSION ..................................................................... 120 

 
4 A new role for RUNX2 in mammary stem cells .................................. 127 

4.1 INTRODUCTION ................................................................. 127 

4.1.1 Runx genes and stem cells. ..................................................................................................... 127 
4.1.2 RUNX, mammary stem cells and Wnt signalling. ................................................................... 129 
4.1.3 Experimental Aims. ................................................................................................................. 129 

4.2 RESULTS ......................................................................... 130 

4.2.1 Expression of Runx1 and Runx2 in mammospheres. .............................................................. 130 
4.2.2 In vivo deletion of Runx2 in the mammary basal compartment does not affect normal 
mammary development. ...................................................................................................................... 135 
4.2.3 In vivo deletion of Runx2 in the K14+ population impairs in vitro MMECs regenerative 
potential. .............................................................................................................................................. 139 
4.2.4 Runx2 is a downstream target of Wnt signalling in mammary stem cells. ............................ 148 

4.3 DISCUSSION ..................................................................... 151 

 
5 The role of RUNX2 in metaplastic squamous breast cancer. ................. 156 

5.1 INTRODUCTION ................................................................. 156 

5.1.1 Runx2 in breast cancer ........................................................................................................... 156 
5.1.2 Experimental Aims .................................................................................................................. 157 

5.2 RESULTS ......................................................................... 158 

5.2.1 Runx2 expression in mouse models of breast cancer ............................................................. 158 
5.2.2 Runx2 in a mouse model of mammary squamous metaplasia. .............................................. 161 
5.2.3 RUNX2 deletion in an in vitro model of triple negative metastatic breast cancer.................. 167 

5.3 DISCUSSION ..................................................................... 171 



5 
 
6 A role for RUNX1 in breast cancer ................................................ 175 

6.1 INTRODUCTION ................................................................. 175 

6.1.1 RUNX1 in epithelial cancer. .................................................................................................... 175 
6.1.2 RUNX1 in breast cancer .......................................................................................................... 176 
6.1.3 Experimental Aims. ................................................................................................................. 177 

6.2 RESULTS ......................................................................... 178 

6.2.1 Expression of RUNX1 in human breast cancer. ....................................................................... 178 
6.2.2 Effects of RUNX1 overexpression in vitro. .............................................................................. 184 

6.3 DISCUSSION ..................................................................... 190 

 
7 Conclusions and Future Directions ................................................ 193 

 
Bibliography ............................................................................... 201 

 

  



6 
 

List of Figures 

Figure 1-1  The mammary cell hierarchy .............................................. 39 
 
Figure 1-2  Post-transcriptional regulation of RUNX proteins. ...................... 55 
 
Figure 2-1   Characterization of the Runx2flx/flx mouse model. ..................... 78 
 
Figure 2-2  Runx2 deletion after in vitro Cre-recombination. ...................... 79 
 
Figure 2-3   FACS gating strategy for mammary population profiling. ............. 85 
 
Figure 2-4  Validation of FACS sorting strategy. ...................................... 86 
 
Figure 3-3-1  Expression of Runx genes in mammary luminal and basal 
populations. ................................................................................ 98 
 
Figure 3-3-2    Expression of RUNX1 and RUNX2 in human and murine mammary 
gland. ....................................................................................... 99 
 
Figure 3-3   RUNX1 and RUNX2 expression in murine embryonic development. 100 
 
Figure 3-4  RUNX1 and RUNX2 expression in adult mammary development. .... 101 
 
Figure 3-5  Characterization of BLG-Cre expression through the use of a GFP 
reporter. ................................................................................... 103 
 
Figure 3-6   Characterization of Runx1 and Runx2 conditional knock-out mice. 105 
 
Figure 3-7   Effects of loss of RUNX1 and RUNX2 in the virgin mammary gland. 107 
 
Figure 3-8   Effects of RUNX1 and RUNX2 loss in mammary epithelium in vivo. 108 
 
Figure 3-9    Effects of RUNX1 and RUNX2 loss on luminal and basal populations in 
vivo. ........................................................................................ 109 
 
Figure 3-10  Effects of in vivo Runx2 deletion during the lactation cycle. ...... 111 
 
Figure 3-11   Effects of combined loss of RUNX1 and RUNX2 in the virgin 
mammary gland. .......................................................................... 113 
 
Figure 3-12  Effects of combined loss of RUNX1 and RUNX2 in mammary 
epithelium in vivo. ....................................................................... 114 
 
Figure 3-13   Combined loss of RUNX1 and RUNX2 on luminal and basal 
populations in vivo. ...................................................................... 115 
 
Figure 3-14  Changes in GFP reporter expression in RUNX1-RUNX2 double knock-
out glands.................................................................................. 116 
 
Figure 3-15  Double deletion of RUNX1 and RUNX2 causes alveolar hyperplasia in 
virgin mice. ................................................................................ 118 



7 
 
 
Figure 3-16   Double deletion of Runx1 and Runx2 causes pre-neoplastic lesions 
in virgin mice. ............................................................................. 119 
 
Figure 4-1   Characterization of Runx expression in mammospheres. ............ 131 
 
Figure 4-2   RUNX2 protein is enriched in mammospheres. ........................ 132 
 
Figure 4-3   Effects of Runx2 loss on mammospheres formation. ................. 134 
 
Figure 4-4   Effects of loss of Runx2 in the basal layer of the virgin mammary 
gland. ...................................................................................... 136 
 
Figure 4-5  Analysis of Runx2 loss in the basal lineage using a GFP reporter. ... 137 
 
Figure 4-6   K14-Cre is expressed in the luminal population of the virgin 
mammary gland. .......................................................................... 138 
 
Figure 4-7  In vivo loss of Runx2 in the basal lineage impairs mammosphere 
formation. ................................................................................. 140 
 
Figure 4-8  Runx1, Runx2 and p21 expression on mammospheres derived from 
K14-Cre+/Runx2flx/flx mice. ............................................................. 141 
 
Figure 4-9   Runx expression in matrigel colony-forming assays. .................. 143 
Figure 4-10  In vivo loss of Runx2 in the K14+ cells impairs matrigel colony 
formation. ................................................................................. 144 
 
Figure 4-11   Runx1 and Runx2 expression on K14-Cre+/Runx2flx/flx matrigel 
colonies. ................................................................................... 145 
 
Figure 4-12   In vivo regeneration activity of Runx2 deleted mammary cells. .. 147 
 
Figure 4-13   Effects of Wnt signalling on mammosphere cultures. ............... 149 
 
Figure 4-14  Effects of Wnt signalling activation on Runx2 expression in 
mammospheres. .......................................................................... 150 
 
Figure 5-1  RUNX2 expression in mouse models of breast cancer. ................ 159 
 
Figure 5-2      Examples of RUNX2 basal pattern of expression in squamous 
lesions. ..................................................................................... 160 
 
Figure 5-3  Effects of β-catenin stabilization at different stages of mammary 
development. ............................................................................. 163 
 
Figure 5-4  Histological analysis of β-catenin-induced squamous lesions. ....... 164 
 
Figure 5-5  Effects of β-catenin stabilization on RUNX2 expression. ............. 165 
 
Figure 5-6   Effects of RUNX2 loss on squamous metaplasia. ...................... 166 
 
Figure 5-7  Creation of a stable RUNX2 knockdown in MDA-MB-231 cells. ....... 169 



8 
 
 
Figure 5-8  Effects of RUNX2 knockdown in MDA-MB-231 cells. ................... 170 
 
Figure 6-1   RUNX1 expression on multi-cancer gene expression profiling studies.
 .............................................................................................. 179 
 
Figure 6-2  RUNX1 expression in normal versus invasive breast carcinoma. ..... 180 
 
Figure 6-3  Examples of RUNX1 expression in a breast cancer cohort. ........... 181 
 
Figure 6-4   Correlation of RUNX1 expression and survival in a breast cancer 
cohort. ..................................................................................... 182 
 
Figure 6-5   RUNX1 expression in different subtypes of breast cancer. .......... 185 
 
Figure 6-6   Relationship between RUNX1 status and standard clinical, 
pathological, and biological features of triple-negative breast cancer. ......... 186 
 
Figure 6-7   Relationship between RUNX1 status and inflammatory 
infiltrate/blood vessel invasion in triple-negative breast cancer. ................ 187 
 
Figure 6-8   Expression of RUNX1 in a panel of human breast cancer cell lines. 188 
 
Figure 6-9   In vitro effects of RUNX1 overexpression in hMEC-TERT. ............ 189 
  



9 
 

Acknowledgements 

I am particularly indebted to my supervisor Dr. Karen Blyth for excellent 

supervision and support during the course of my studies, and for teaching me the 

rigorous application of the scientific method. I would also like to thank my 

advisor Professor Owen Sansom and Professor Ewan Cameron for useful 

discussions and input of new ideas.  

I am grateful to all the members of my laboratory for the invaluable help offered 

in developing my technical skills and for their expert advice. A big thanks to 

Dimitris for help with everything concerning RNA and PCR; Laura for 

immunohistochemistry and animal work and a special thank you to Susan for 

teaching me everything else. I would also like to thank all the colleagues at the 

Institute who have helped me during the course of my studies (too many to be 

listed).  

A big thank you to Tamara, family and friends. 

The studies described in this thesis were carried out at the Beatson Institute for 

Cancer Research with the support of Cancer Research UK. 

 

 

  



10 
 

Author’s Declaration 

I hereby declare that all the work reported in this thesis is my own unless 

otherwise stated. None of the work has been previously submitted for any other 

degree at any other institution. All sources of information used in the 

preparation of this thesis are indicated by reference. 

 

 

Nicola Ferrari 

October 2013 

 

 

  



11 
 

Abbreviations 

 
AKT  v-akt murine thymoma viral oncogene homolog 

ALL  acute lymphoblastic leukaemia 

AML  acute myeloid leukaemia 

APC  adenomatous polyposis coli (gene) 

APC  allophycocyanin (fluorochrome) 

AREG  amphiregulin 

BC  breast cancer  

BLG  beta-lactoglobulin 

BMP  bone morphogenetic protein 

BRCA1  breast cancer 1, early onset protein 

BSA  bovine serum albumin 

BSP  bone sialoprotein 

CBF-β  core-binding factor, beta subunit 

CCD  cleidocranial dysplasia 

cdk(s)  cyclin-dependent kinase(s) 

cDNA  complementary DNA 

CK  cytokeratin 

Cre  cre recombinase protein 

DAB  3,3-diaminobenzidine 

DAPI  4',6-diamidino-2-phenylindole 

DMEM  Dulbecco's modified Eagle's Medium 

DNA  deoxyribonucleic acid 

EGF  epidermal growth factor 

EGTA  ethylene glycol tetra-acetic acid 

ELF5  E74-like factor 5 (ets domain transcription factor) 



12 
 
EMT  epithelial-mesenchymal transition 

EpCAM  epithelial cell adhesion molecule 

ER  oestrogen receptor 

EtOH  ethanol 

F12  Ham's F12 nutrient mixture 

FACS  fluorescence-activated cell sorting 

FCS  fetal calf serum 

FGF  fibroblast growth factor 

Flx  floxed 

FSC  forward scatter 

GAPDH glyceraldehyde phosphate dehydrogenase 

GATA3  GATA binding protein 3 

GFP  green fluorescent protein 

GH  growth hormone 

HER2  v-erb-b2 avian erythroblastic leukaemia viral oncogene homolog 2 

HFSC  hair follicle stem cell 

HRP  horseradish peroxidase 

Ig   immunoglobulin 

IGF-1  insulin-like growth factor 1 

IHC  immunohistochemistry 

IKKβ  IKB kinase beta 

JAK2  janus kinase 2 

kDa  kilodalton 

µg  microgram 

µl  microliter 

µm  micrometer 

µM  micromolar 



13 
 
LacZ  beta-D-galactosidase 

LEF  lymphoid enhancer-binding factor 

LGR5  leucine rich repeat containing G protein coupled receptor 5 

LIF  leukaemia inhibitory factor 

Lin-  lineage negative 

M  molar 

MaSC  mammary stem cell 

MBC  metaplastic breast cancer 

MDS  myelodysplastic syndrome 

MEF  mouse embryonic fibroblast 

mg  milligram 

ml  millilitre 

mm  millimetre 

mM  millimolar 

MMECs  mouse mammary epithelial cells 

MMP  matrix metalloproteinase 

MMTV  mouse mammary tumour virus 

mRNA  messenger ribonucleic acid 

MUC1  mucin 1 

Myc  v-myc avian myelocytomatosis viral oncogene homolog 

NF-kB  nuclear factor of kappa light polypeptide gene enhancer in B-cells 

ng  nanogram 

nm  nanometre 

NMTS  nuclear matrix targeting sequence 

P21  cyclin-dependent kinase inhibitor 1A 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 



14 
 
Pen/strep penicillin/streptomycin 

PI-MEC parity-identified mammary cells  

PR  progesterone receptor 

PRL  prolactin 

PTHrP  parathyroid hormone-related protein 

Puro  puromycin 

RANKL  receptor activator of nuclear factor κB (NF-κB)-ligand 

RNA  ribonucleic acid 

RT  room temperature 

RT-PCR reverse transcriptase-polymerase chain reaction 

RUNX  runt-related transcription factor 

sh-RNA short hairpin RNA 

SMBC  squamous metaplastic breast cancer 

SRC  v-src avian sarcoma viral oncogene homolog 

SSC  side scatter 

STAT  signal-transducer and activator of transcription protein 

SV40  simian virus 40 

TEBs  terminal end buds 

TGFβ  transforming growth factor beta  

TIMP  tissue inhibitors of metalloproteinases 

TMA  tissue microarray 

TN  triple negative 

WAP  whey acidic protein 

WNT  wingless-type MMTV integration site 

WT  wild type 

 

  



15 
 
 

1 Introduction 

 
1.1  Mammary gland development 

To introduce mammary gland development nothing could be more appropriate 

than the inspiring and elegant words of Daniel Medina, a pioneer of mammary 

gland research (Medina 1996):   

“The problems of mammary gland development and function have 
attracted the attention of scientists for over a century. Since the 
complete anatomical description of the gland in 1845, it has been 
studied by physiologists to understand milk and milk secretion, by 
cell and electron microscopists to understand structure and secretory 
function, by developmental biologists to understand organ 
development in the postnatal organism, by endocrinologists to 
understand hormone action, by molecular biologists to understand 
regulation of gene expression, by biotechnologists to develop in vivo 
bioreactors, by cancer biologists and virologists to study the causes 
and processes of neoplastic transformation, and by clinical scientists 
to examine, treat, and cure breast cancer. The organ interests and 
excites the experimental scientist because of its unique development 
and function, its experimental applicability, its complex biological 
and cellular interactions, and, despite all this, its inherent simplicity 
and beauty.” 

 

1.1.1   Function and evolution 

The mammary gland is the organ designated to the production, secretion and 

delivery of milk to the newborn offspring. In 1758, Linnaeus was the first to 

recognize the uniqueness of mammary glands and on this basis he created the 

class Mammalia, or creatures with ‘mammae’ or ‘breasts’. Several theories have 

been proposed to explain the origin and the evolution of this glandular organ. On 

one side it is thought that the mammary gland evolved through the combination 

of different skin gland populations into a new functional organ (Blackburn 1993) 

while others support the view that the mammary gland most likely derives from 

an ancestral apocrine-like gland (Oftedal 2002). However, the exact evolutionary 

origin of the mammary gland is still unknown due to the absence of any direct 

fossil evidence of mammary glands.  
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1.1.2   Mammary gland development: an overview. 

The mammary gland is a very dynamic tissue which undergoes dramatic changes 

during different developmental phases (Richert, 2000; Hennighausen & Robinson, 

2005; Watson & Khaled, 2008). From a small ectodermal invagination during the 

first phases of embryonic development, the mammary gland develops into a 

highly plastic and expanding duct tree under the influence of pubertal hormones 

(Brisken & O’Malley 2010). The ductular appearance of the virgin epithelium is 

then replaced during pregnancy and lactation through a massive event of cell 

proliferation and differentiation which lead to the formation of mature alveoli, 

the milk-producing unit of the mammary gland. The end of lactation sees the 

beginning of involution, a strictly regulated process involving apoptosis and 

tissue remodelling, which will bring the mammary gland back to a virgin-like 

state (Watson & Kreuzaler 2011).  Several cell types take part in this process; 

comprising epithelial cells forming the ductal structures which themselves are 

surrounded by a fatty stroma made up by adipocytes, vascular endothelial cells, 

blood vessels, fibroblasts and a variety of immune cells (Wiseman & Werb 2002). 

Given the high complexity and plasticity of this organ, the creation of a 

mammary gland requires the coordination of many biological processes such as 

proliferation, invasion and cell death among others. Interestingly all of these 

developmental pathways are hijacked during the development of breast cancer. 

Hence a better understanding of the basic biological mechanism regulating 

normal mammary gland development will help to shed more light on the 

neoplastic transformation. Given its advantages as an experimental model 

(Smith, 2012), much of the characterization of mammary gland development has 

been done in mice.  Despite some unavoidable differences, such as tissue 

architecture and hormonal control, the mouse mammary gland shares similar 

developmental features with the human one.  

1.1.3   Embryonic development 

During early embryogenesis, the ectoderm represents the external germ layer, 

which is composed of the surface ectoderm, neural crest, and neural tube. The 

surface ectoderm gives rise to the epidermis and other stratified epithelia such 

as the oral epithelium (Jiménez-Rojo et al. 2012). Then, in those new-formed 

tissues, a continuous cross-talk between the epithelium and the mesenchyme 
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gives rise to diverse specialized structures, called ectodermal appendages, such 

as hair follicles, mammary glands, salivary glands and teeth (Jiménez-Rojo et al. 

2012). Interestingly all ectodermal appendages share common morphological 

features and similar developmental processes during early organogenesis, while 

later stages of development are characterized by structure-specific 

morphogenetic programs (Mikkola & Millar 2006).  

Embryonic mammary development starts on embryonic day (E) 10.5, with the 

formation of the milk or mammary lines, ectodermal ridges running between the 

fore and hind limbs in both male and females embryos (for excellent reviews on 

embryonic mammary development see Robinson 2007; Watson & Khaled 2008; 

Cowin & Wysolmerski 2010). Around E11.5, the mammary line resolves into five 

pairs of placodes, lens-shaped thickenings of the surface ectoderm, 

symmetrically positioned along the milk line in characteristic locations (three 

thoracic and two inguinal). Each pair of placodes develops symmetrically 

following a characteristic temporal sequence. Interestingly different placodes 

seem to be specified by different molecular determinants as shown by genetic 

studies on mice; for example Lef1-deficient animals do not form placodes 2 and 

3 (van Genderen et al. 1994). 

Wnt signalling is necessary for the specification of the mammary line and 

placode development (Chu et al. 2004). The mammary line can be visualized in 

situ by Wnt10b staining (Veltmaat et al. 2004). Moreover the use of transgenic 

mice expressing the Wnt reporter gene TOPGAL, confirmed Wnt activation in 

mesenchymal and epithelial components of the mammary line followed by an 

increased expression in the placodes until E15.5 (Chu et al. 2004). Activation of 

Wnt signalling through lithium chloride treatment on embryonic skin caused an 

increase in placode number and size while disruption of Wnt signalling through 

transgenic expression of the secreted Wnt inhibitor DKK1 inhibited placode 

formation (Chu et al. 2004). The placode-specific functions of Wnt signalling 

seem to be mediated by LEF1 as in Lef1 knock-out embryos, Wnt signalling is not 

activated and placodes do not form or degenerate, resulting in lack of mammary 

epithelium (Boras-Granic et al. 2006). Wnt signalling is also necessary for hair 

follicle and tooth development, as shown by suppression of all placodes 

development after in vivo blockade of Wnt signalling through expression of Wnt 

inhibitor DKK (Andl et al. 2002). This result suggests that Wnt signalling is a key 
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lineage specifier during ectodermal appendage development where it acts to 

induce multipotent ectodermal cells to adopt a generic placodal cell fate.  

Fgf signalling seems to act in parallel to Wnt signalling in specifying the 

mammary line as Fgf10-/- and Fgfr2b-/- mice fail to develop all but mammary 

bud #4 (Mailleux et al. 2002). While Fgfr2b is expressed in the mammary buds as 

early as E11.5, Fgf10 is not detectable in the embryonic mammary epithelium 

but is first seen in the somites underlying the milk line (Mailleux et al. 2002). 

Fgf10 is thought to exert its key role on milk line specification and positioning  

through paracrine signalling originating from somites and acting on a subset of 

ectodermal cells expressing its receptor Fgfr2b (Veltmaat et al. 2006). The role 

of Fgf10 as the critical somitic factor required for mammary line specification is 

further supported by the phenotype of Gli3 deleted mice (Hatsell & Cowin 

2006). Gli3 loss causes a reduction of Fgf10 expression, abrogation of TOPGAL 

expression in the mammary line in the region of placode 3 and loss or 

misplacement of buds 3 and 5. In the current view, somitic Gli3 represses 

Hedgehog signalling and regulates expression of Fgf10, which in turn signals to 

ectodermal Fgfr2b and then to Wnt10b to specify mammary line formation 

(Veltmaat et al. 2006).  

Another key regulator of mammary placode specification and positioning is Tbx3, 

a member of the T-box family of transcription factors (Rowley et al. 2004). 

Interestingly embryos deleted for Tbx3 do not develop mammary buds and fail to 

express Wnt10b and Lef1 (Davenport et al. 2003). Interestingly in humans, TBX3 

haploinsufficiency is associated with the ulnar-mammary syndrome, a dominant 

developmental disorder characterized by abnormal forelimb and apocrine gland 

development which lead sometimes to complete loss of mammary glands 

(Bamshad et al. 1997). Transgenic overexpression of Ectodysplasin (Eda), a 

member of the tumour necrosis factor family, in the ectoderm causes the 

development of supernumerary glands (Mustonen et al. 2003) while deletion of 

GATA3, a transcription factor involved in T-cell development, caused a variable 

loss of placodes and a failure to develop the nipple sheath (Asselin-Labat et al. 

2007). Overall these studies have uncovered a web of molecular mechanisms 

underlying mammary line and placode specification. 
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By E13.5, morphologically distinct epithelial placodes are present along the 

mammary line in mouse embryos, and by E14.5 these buds have invaded into the 

underlying dermis. At this point signals generated from the mammary epithelium 

push the surrounding mesenchymal cells to differentiate into a mammary-

specific mesenchyme (Robinson 2007). The mesenchymal cells become arranged 

in concentric layers around the epithelial bud and start to express receptors for 

oestrogen and androgens. The primary mammary mesenchyme plays a key role in 

mammary development; maintaining mammary epithelial cell identity, 

supporting ductal morphogenesis and in male mice causing the destruction of the 

mammary epithelial bud in the presence of testosterone (Robinson 2007). 

Parathyroid hormone-related protein (PTHrP), produced by the epithelial bud 

has been identified as a key inducer of mammary mesenchyme identity 

(Wysolmerski et al. 1998; Foley et al. 2001).  PTHrP is expressed by the 

mammary epithelial bud as it starts to invaginate into the mesenchyme while its 

receptor, PTH1R, is expressed in the mesenchyme surrounding the placode. 

Deletion of PTHrP or PTH1R, leads to a failure of ductal growth into the 

mesenchyme resulting in arrest of mammary development at the late bud stage 

(Foley et al. 2001). In addition the epithelial cells lose their mammary-identity 

and revert to an epidermal fate as shown by expression of keratinocyte-specific 

keratins (Foley et al. 2001). Moreover, mammary placodes fail to regress in male 

embryos indicating that PTHrP production in the epithelium is required to induce 

androgen receptor expression within the mammary mesenchyme (Dunbar et al. 

1999). PTHrP signalling is also necessary for the mammary mesenchyme to 

induce the overlying epidermis to form the nipple (Foley et al. 2001). These data 

underline the importance of epithelial/mesenchymal interactions during 

mammary morphogenesis and the pivotal role of PTHrP as a determinant of 

mammary mesenchyme. 

The next phase of development, which starts around E16, is characterized by the 

beginning of ductal branching morphogenesis. In a tightly coordinated process of 

invasion, a solid cord of epithelial cells emerges from the mammary bud and 

extend down through the primary mammary mesenchyme into the final stromal 

compartment, the mammary fat pad (Cowin & Wysolmerski 2010). At this time 

two other morphological processes take place: ductal lumen formation and 

nipple morphogenesis. By E18.5 all the mammary placodes have developed into 
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small immature glands that bear between 10 and 15 small branches. At the 

conclusion of embryonic development, the mammary gland consists of a short 

primary duct ending in a small ductal tree that is embedded in one end of larger 

mammary fat pad. The branching morphogenesis of the embryonic mammary 

gland is hormone independent as shown by normal embryonic mammary 

development of mice that are deficient in either oestrogen, prolactin, growth 

hormone or progesterone receptor (Cowin & Wysolmerski 2010). Instead 

embryonic ductal morphogenesis requires soluble factors that are supplied by 

the mammary fat pad precursor, such as PTHrP (Hens et al. 2007).  

1.1.4   Virgin mammary development 

The rudimentary epithelial tree in the mammary fat pad remains quiescent until 

puberty, growing at a very slow rate to keep up with normal body growth 

(allosteric growth).  Allosteric growth stops with the onset of puberty when 

ovarian steroid hormone production induces the complex process of pubertal 

ductal morphogenesis (Watson & Khaled 2008). At the tips of the ducts, highly 

proliferative structures, called terminal end buds (TEBs) develop and start to 

invade into the fat pad driving ductal elongation (Sternlicht 2006). TEBs 

bifurcate, forming secondary branches which will further invade into the fatty 

stroma until the entire fat pad is filled with a network of branched ducts. The 

fully grown mammary gland will then start cycling under the influence of the 

oestrous-induced hormones with waves of side-branching followed by apoptosis 

occurring within each oestrous cycle (Schedin et al. 2000). Thus the adult virgin 

mammary gland is an active remodelling tissue constantly involved in cycles of 

proliferation and apoptosis. In the pubertal mammary gland, the initial drive for 

ductal morphogenesis comes from three main circulating hormones: ovarian 

hormone oestrogen and progesterone and the pituitary growth hormone (GH) 

(Brisken & O’Malley 2010).  

Oestrogen 

Pubertal ductal outgrowth of the mammary gland requires oestrogen, a steroid 

hormone synthesized by the ovaries. Oestrogen binds to two distinct receptors, 

oestrogen receptor (ER) α and ERβ, which become activated and function as 

transcription factors when bound to the steroid hormone (Heldring et al. 2007). 
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Ovariectomized mice, which cannot produce oestrogen, fail to develop a 

mammary ductal network and this phenotype is rescued upon implantation of 

slow-release oestrogen pellets into the mammary gland (Daniel et al. 1987). 

Moreover the ductal network in pubertal mice deficient in ERα fails to grow and 

invade the fat pad (Korach et al. 1996) while no effect is seen after ERβ deletion 

(Krege et al. 1998). Although ERα is expressed both in the mammary epithelium 

and stroma, transplantation experiments showed that only epithelial ER is 

required for pubertal outgrowth (Mallepell et al. 2006). 

Progesterone 

At puberty, the rise in gonadotrophin levels leads to progesterone secretion from 

the ovaries. Progesterone receptor (PR) is a member of the nuclear hormone 

receptor family of ligand-dependent transcription factors which regulates 

specific target genes through binding to cis-acting progesterone response 

elements (Li & O’Malley 2003). PR is expressed in both epithelial and stromal 

compartments in the mouse mammary gland (Haslam & Shyamala 1981). Several 

studies showed that epithelial PR is not required for primary ductal growth but is 

a key regulator of ductal branching and proliferation in the virgin mammary 

gland (Obr & Edwards 2012). The mammary glands of young virgin PR-deleted 

females have no obvious defect of ductal development (Lydon et al. 1995). 

However, since PR deleted females are unable to ovulate, the effects of PR loss 

on oestrous-induced branching could not be investigated. To overcome this 

defect, oestrous cycles where artificially simulated by treating WT and PR-

deleted virgin females with estradiol and progesterone: interestingly the WT 

breast tissue responded with increased side-branching and lobuloalveolar 

development, whereas the mammary glands of PR deleted females remained 

essentially unchanged (Brisken et al. 1998). This suggested that PR is not 

required for initial ductal growth but it is essential for oestrous-dependent side-

branching and alveologenesis. The essential role of progesterone during the 

expansion of the alveolar compartment during pregnancy is discussed below. 

Growth Hormone 

Although pubertal mammary development is started by the surge of oestrogen 

levels, the action of oestrogen depends on the presence of growth hormone 
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(GH). Experiments in the 1940s demonstrated that the pituitary gland was 

required for mammary gland development and that oestrogen-driven ductal 

development fails in hypophysectomised rodents (Reece et al. 1936; Kleinberg & 

Ruan 2008). Moreover transgenic mice lacking GH receptor displayed severely 

impaired mammary ductal outgrowth at puberty (Gallego et al. 2001). 

Interestingly GH signalling is required in the stroma since ductal epithelium 

arising from GH receptor null glands transplanted into the cleared fat pads of 

WT mice develop as normal (Gallego et al. 2001).  

Other factors required in pubertal growth 

Several other growth factors are required for pubertal ductal morphogenesis 

(reviewed in McNally & Martin 2011). During pubertal mammary development, 

the action of oestrogen depends on the presence of GH to drive ductal 

outgrowth. Further experiments showed that the IGF-1 signalling pathway is 

necessary downstream of GH to induce pubertal mammary development (Wood 

et al. 2000).  IGF-1 deleted mice have a defective pubertal mammary 

development characterized by impaired ductal outgrowth (Ruan & Kleinberg 

1999). Moreover IGF1-R null embryonic mammary buds transplanted into WT 

hosts possess limited outgrowth potential and show defects in TEB proliferation 

(Bonnette & Hadsell 2001). Rescue experiments also showed that IGF-1 is 

downstream of GH and oestrogen signalling where IGF-1 treatment rescued 

ductal development in oestrogen deficient (ovariectomized) and GH-deficient 

(hypophysectomized) animals (Ruan et al. 1992), while GH or oestrogen 

treatment did not rescue IGF-1-null glands (Ruan & Kleinberg 1999).  

Fibroblast growth factor (FGF) signalling has been implicated in the control of 

postnatal mammary development (Hynes & Watson 2010). During ductal 

outgrowth multiple FGFs as well as FGFR1 and FGFR2 are expressed. TEBs have 

high levels of FGFR2, which is essential at this stage because FGFR2 null glands 

have a severe delay in adolescent ductal development, penetrating the fat pad 

more slowly and showing fewer branch points compared with WT controls (Lu, 

2008). Moreover an analysis of genetic mosaicism reveals that epithelia without 

FGFR2 are eliminated from the ducts that do develop (Lu et al. 2008). Other 

FGF-deficient models (e.g., FGF-7) showed no mammary phenotype indicating 
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the presence of possible compensatory mechanisms between FGF family 

members (Sternlicht 2006).  

Epidermal growth factor (EGF) ligands are produced as transmembrane 

precursors that after cleavage bind and activate EGF-R receptors. Several EGF-

family ligands and all of the EGF-R receptors are expressed in the mammary 

gland during mammary development (Schroeder & Lee 1998). Interestingly, slow-

release pellets delivering EGF restored ductal development in ovariectomized 

(Coleman et al. 1988) and ERα-deficient mice (Kenney et al. 2003) while 

exogenous oestrogen drives EGF-R activation in ovariectomized mice (Sebastian 

et al. 1998). These results suggest that EGF-R promotes mammary ductal 

outgrowth downstream of ERα. Moreover reciprocal transplant experiments 

between WT epithelium and EGF-R mutant stroma, revealed that only stromal 

EGFR is required for ductal morphogenesis (Wiesen et al. 1999). Amphiregulin 

(AREG) has been found to be the key EGF-family ligand to bind EGF-R and to 

mediate pubertal morphogenesis downstream of ER signalling. Ductal 

morphogenesis is not supported in Areg deleted mice (Luetteke et al. 1999) 

while ductal outgrowth can be induced in ovariectomized mice by treatment 

with recombinant AREG (Kenney et al. 1996).  

Together with hormones and growth factors, immune cells are also important for 

pubertal mammary gland development (Coussens & Pollard 2011). Work from 

Pollard’s laboratory showed that eosinophils and macrophages are recruited 

around the growing terminal end buds during postnatal development (Gouon-

Evans et al. 2000). Furthermore, in vivo ablation of eosinophils and macrophages 

resulted in impaired TEBs development and reduced mammary branching 

demonstrating the requirement of immune cells during pubertal development 

(Gouon-Evans et al. 2000). 
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1.1.5   Pregnancy and lactation 

Unlike the majority of other organs which mainly develop to a mature state 

during the embryonic phase, the mammary gland only reaches a mature fully 

functional state during the pregnancy-lactation cycle in the adult female. 

Undoubtedly lactation is the most important developmental stage of the breast 

as shown by the very high metabolic demand, requiring about 25% of daily 

maternal energy intake during lactation to produce milk (Hassiotou & Geddes 

2013). Although a mini-remodelling of the breast occurs at each menstrual cycle 

it is only during the processes of pregnancy and lactation that the ductular 

appearance of the virgin epithelium is replaced through a massive event of cell 

proliferation and differentiation which lead to the formation of mature alveoli, 

the milk-producing unit of the mammary gland.  Alveolar morphogenesis is 

initiated by coitus which provides nervous stimulation inducing prolactin 

secretion from the pituitary gland which in turn, sustains ovarian progesterone 

secretion (Exton et al. 2001). These hormones induce rapid proliferation of 

mammary epithelial cells followed by alveoli differentiation to form the 

secretory alveolar epithelium, capable of milk production and secretion during 

lactation.  

Prolactin 

Prolactin (PRL), produced by the lactotrophic cells of the anterior pituitary, is 

the major driver of development during pregnancy (Oakes et al. 2008). Grafting 

experiments with prolactin receptor (PRL-R) deleted epithelium showed no 

defects in ductal outgrowth and side branching (Brisken et al. 1999). However 

Prl signalling pathway is required for alveologenesis and differentiation of MECs 

into milk producing cells as showed by the total absence of alveolar 

differentiation and milk production in transplanted Prl-null epithelium (Ormandy 

et al. 1997). Confirming an epithelial role for prolactin signalling, WT epithelium 

grafted into Prl-R deleted stroma developed normally (Ormandy et al. 2003). 

Jak2 and Stat5 knockout mice showed failed lobuloalveolar development like 

Prl-R deleted mammary glands, indicating their critical role in Prl-R-mediated 

alveolar morphogenesis (Liu et al. 1997; Wagner et al. 2004). PRL binds the 

prolactin receptor, leading to receptor dimerization, phosphorylation and 

activation of the JAK2 kinase which in turn recruit and phosphorylates STAT5. 
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Phosphorylated STAT5 then dimerizes and translocates to the nucleus where it 

can activate the transcription of genes involved in alveolar morphogenesis 

(Wakao et al. 1994). The transcription factor ELF5 acts downstream of the PRLR 

to modulate alveolar morphogenesis and milk production, as shown by the 

impaired alveolar morphogenesis of transgenic mice heterozygous for Elf5 (Zhou 

et al. 2005). Confirming their key role in alveologenesis, STAT5 and ELF5 have 

also been shown to regulate the specification of luminal progenitors, the cell 

population which will generate the alveolar lineage during pregnancy (Yamaji et 

al. 2009; Chakrabarti et al. 2012).  

Progesterone 

The ovarian hormone progesterone is required together with prolactin for the 

process of alveologenesis. Since PR knock-out mice are infertile (Lydon et al. 

1995), transplantation of mammary epithelial cells derived from PR deleted mice 

into the cleared mammary fat pad of wild type female recipients has been used 

to study this.  Transplanted mouse mammary epithelial cells (MMECs) from PR 

deleted mice into WT hosts, failed to undergo alveolar morphogenesis during 

pregnancy proving the essential role of PR signalling in the epithelial 

compartment during alveologenesis (Brisken et al. 1998). Progesterone is 

thought to act on PR positive epithelial cells stimulating the production of a 

paracrine signal which, in turn, induces the proliferation of neighbouring cells 

(Ismail et al. 2002). One candidate molecule likely responsible for this paracrine 

signalling is receptor activator of nuclear factor κB (NF-κB)-ligand (RANKL). In 

fact RANKL mRNA is induced by treatment with oestrogen and/or progesterone, 

in the mammary gland of ovariectomized adult mice, but not in PR-null mice 

(Mulac-Jericevic et al. 2003). Moreover ectopic expression of RANKL using a 

MMTV transgene results in side branching stimulation in the absence of 

pregnancy (Fernandez-Valdivia et al. 2009). These data suggested that RANKL is 

a paracrine mediator of progesterone-induced proliferation. Another molecule 

which has been suggested as a possible paracrine effector of progesterone 

signalling is WNT4. MMECs extracted from Wnt4-deleted mice showed lack of 

branching in transplanted outgrowth during pregnancy (Brisken et al. 2000). 

Further experiments showed that WNT4 expression is PR dependent; WNT4 is 

induced in the mammary gland of adult ovariectomized mice by progesterone 
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treatment while PR deleted cells showed loss of WNT4 expression (Mulac-

Jericevic et al. 2003; Fernandez-Valdivia et al. 2008). 

1.1.6   Involution 

The end of lactation sees the beginning of involution, a strictly regulated process 

involving apoptosis and tissue remodelling, which will bring the mammary gland 

back to a virgin-like state (Watson 2006; Stein et al. 2007; Watson & Kreuzaler 

2011). In the last decades conditional knock-out animal models have been used 

extensively to unveil the molecular regulators of the involution process. Since 

natural weaning is often a long and gradual process not easily controllable, 

investigators have used forced weaning as a model for the study of involution. In 

this protocol pups are removed from the lactating dam after 7-10 days of 

lactation initiating the involution process which gives a controllable model in 

which to study the morphological and molecular features regulating this process. 

Teat sealing is another technique that has been used for the study of involution 

(Watson & Kreuzaler 2011). In particular this protocol allows the study of local 

regulators of involution (such as effects of milk accumulation) since the lactating 

hormonal milieu is maintained by the continued presence of suckling pups 

(Watson 2006). 

Involution in the mouse mammary gland can be divided into two discrete phases 

called first phase and second phase (Watson, 2006; Watson & Kreuzaler, 2011). 

The first phase lasts approximately 48 h and can be reversed through re-

suckling. The second phase instead is characterized by an irreversible 

remodelling programme which will bring the gland to a pre-pregnant state (Lund 

et al., 1996).  Morphologically the first phase of involution is marked by 

accumulation of milk in the alveoli and the appearance of shed, dying cells 

within the alveolar lumen (Richert et al. 2000).  The first phase of involution 

depends on local factors and probably it is triggered by the accumulation of milk 

into the alveoli (Li et al. 1997). Milk retention could lead to accumulation of 

secreted factors in the milk or to mechanical stretch of the alveolar epithelium 

which could signal the start of the involution process (Quaglino et al. 2009). 

Likely these processes are not mutually exclusive and in fact some evidence 

indicates that they could be mutually linked. For example, the plasma 

membrane calcium-ATPase 2 (PMCA2), which transports 60–70% of milk calcium 
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outside the alveolar cells, is regulated by changes in the shape of mammary 

epithelial cells (VanHouten et al. 2010) and it is dramatically downregulated 

during involution (Reinhardt & Lippolis 2009). Furthermore, mice deleted for 

PMCA2 exhibited precocious cell death at day 18 of pregnancy (VanHouten et al. 

2010). In this scenario milk stasis could induce mechanical stress in the alveoli 

leading to a sharp drop in PMCA2 expression. This in turn could cause 

accumulation of calcium into the alveolar cells and initiation of calcium 

mediated cell death. Together with PMCA2 other factors have been found to 

play a role in the induction of involution. Not surprisingly involution is affected 

by interference with well-known regulators of the apoptotic program: for 

example deletion of the anti-apoptotic Bcl2l1 gene accelerates involution while 

a delay is seen after loss of the pro-apoptotic BAX protein (Schorr et al. 1999; 

Walton et al. 2001). Moreover expression of constitutively active AKT in the 

mammary gland under the control of the MMTV promoter caused a delay in 

involution and a decrease in apoptosis (Schwertfeger et al. 2001). Work on 

genetically modified mice has found others factors which are involved in 

involution such as LIF, serotonin and TGFβ-3 (Nguyen & Pollard 2000; Matsuda et 

al. 2004; Kritikou et al. 2003). Most of these studies exhibit a subtle involution 

phenotype, indicating that complex compensatory mechanisms are taking place 

in this phase of development. However two pathways seem to be crucial for 

involution: the JAK/STAT and the NF-kB pathways. Conditional deletion of STAT3 

in the mouse mammary epithelium causes a block in cell death and tissue 

remodelling (Chapman et al. 1999), extending the reversible phase of involution 

until at least 6 days after forced involution (Humphreys et al. 2002). Similarly, 

conditional deletion of IKKβ/2, the upstream regulator of the NF-kB pathway, 

caused a delayed involution and a reduction of cell death (Baxter et al. 2006). 

Since both pathways are necessary but not sufficient to trigger involution, these 

results indicate that cooperation between JAK/STAT and NF-kB pathways is 

required for a correct involution. The mechanism responsible for cell death 

during the first phase of involution has always presumed to be apoptosis. 

However the morphology of the dying cells that shed into the lumen is not 

classically apoptotic: shed cells are swollen, they lack any membrane blebbing 

and they have two hypercondensed nuclei (Watson & Kreuzaler 2011). Recently, 

a study from the Watson laboratory clarified this issue. A caspase-independent 

lysosomal pathway of cell death was found to be necessary for post-lactational 
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regression of the mammary gland (Kreuzaler et al. 2011). Interestingly the 

lysosomal pathway of cell death is independent of caspases 3, 6 and 7, but it 

requires STAT3 which upregulates the expression of intra-lysosomal specific 

proteases (cathepsin B and cathepsin L). Then leaky lysosomes leads to release 

of cathepsins into the cytoplasm and the initiation of cell death (Chwieralski et 

al. 2006). As a result cells are shed into the lumen where caspases are cleaved, 

probably in response to anoikis.  

The overall structure of the mammary gland is not affected during the first 

phase of involution (Richert et al. 2000). However after 48 hours, the reversible 

phase ends and an irreversible process of widespread cell death and tissue 

remodelling signals the transition to the second phase. In this phase the alveoli 

start to collapse while adipocytes re-differentiate and begin to fill the fat pad 

(Richert et al. 2000). At the molecular level this phase is characterized by an 

increased protease activity which is responsible for the extensive tissue 

remodelling observed. Stromal cells increase their expression of MMP-2, MMP-3, 

MMP-9 and MMP-11 which will act on the tissue extracellular matrix causing 

alveolar collapse, cell detachment and cell death for anoikis (Pullan et al. 1996). 

Since the removal of extracellular matrix by MMPs is the main trigger of cell 

death in the second phase of mammary involution, fail-safe mechanism needs to 

be in place during the first phase to avoid early activation of MMPs. Tissue 

inhibitors of metalloproteinases (TIMPs) are direct inhibitors of zinc-dependent 

proteinases such as MMPs and key regulators of involution (Fata et al. 2001). In 

vivo loss of function of TIMP3, an inhibitor of MMP2, causes accelerated 

involution with loss of the reversible first phase (Fata et al. 2001). The wave of 

apoptosis generated by MMPs action creates a vast number of tissue and cell 

debris which needs to be removed in order to create space for the regenerating 

adipocytes; this process involves autophagy and phagocytosis carried out by 

activated mammary cells and recruited macrophages (Monks et al. 2005) and 

inflammatory cells. In fact different types of immune cells are recruited in the 

involuting mammary gland, starting with neutrophils at day 1 involution followed 

at day 4 by plasma cells, eosinophils and B-lymphocytes (Stein et al. 2004). The 

involvement of inflammation is also supported by microarray data that identified 

an immune cascade response during involution (Stein et al. 2004; Clarkson et al. 

2004). 
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1.2  Mammary stem cells 

The normal adult mammary gland is composed of a bi-layered structure 

consisting of an inner layer of luminal cells, and an outer layer of basal cells on 

a laminin-containing basement membrane. The luminal compartment consists of 

different subpopulations of hormone positive and negative progenitors which 

during pregnancy can differentiate into alveolar cells, the milk producing unit of 

the mammary gland (Richert et al. 2000). Besides its localization, the luminal 

population can be identified by the expression of cytokeratins (CK8, 18 and 19), 

MUC1 and EpCAM (Richert et al. 2000). The basal/myoepithelial population is 

responsible for the secretion of basement membrane components during all 

developmental stages and for the movement of milk through the alveoli and the 

ducts during lactation. These cells are characterized by the expression of CK14, 

CK5, smooth muscle actin and P63 (Moumen et al. 2011). However, under this 

apparently simple and dualistic structure of the mammary epithelium derived by 

histological studies, lies a complex hierarchical cellular system which has 

emerged from studies focused on mammary stem cells (Visvader & Smith 2010). 

Stem cells are emerging as fundamental players in both embryonic development 

and adult tissue homeostasis, especially in those organs characterized by high 

regenerative potential and cell turnover (Biteau, 2011). Stem cells are 

multipotent cells characterized by two unique features: self-renewability and 

wide differentiation capability. In adult organs the majority of the stem cell 

population is in a state of quiescence, which is necessary for stem cell 

maintenance preserving them from oxidative stress, accumulation of mutations 

and telomerase shortening (Blanpain et al. 2012). However, under appropriate 

stimuli, stem cells are able to enter a proliferation phase characterized by self-

replication and lineage differentiation,  (Biteau et al. 2011). The mammary 

gland is a very dynamic tissue which undergoes extensive cellular remodelling 

and changes in morphology throughout different developmental phases 

(Hennighausen & Robinson 2005).  In such a dynamic context, different 

mammary epithelial cell populations with different specialized functions are 

continuously generated and replaced.  This high tissue turnover implies the 

existence of a population of mammary stem/progenitor cells characterized by a 

high degree of self-renewability which are able to differentiate into the various 

cell types constituting the mammary epithelium. The existence of a mammary 
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stem cell (MaSC) population has been postulated since DeOme’s transplantation 

studies in the late 50’s (DeOme, 1959) but only in the last 10 years has solid 

evidence of their existence been found. These seminal experiments and the 

current status of the field are discussed.  

1.2.1   Birth of the mammary stem cell concept 

DeOme in the 1950s (DeOme, 1959) pioneered a technique which has become 

the standard assay in mammary stem cell biology: the cleared fat-pad 

transplantation. This procedure allows the identification of mammary stem cells 

by transplanting cells in limited dilution in a virgin fat pad cleared of the 

endogenous epithelium. It is based on the assumption that only cells 

characterized by high degree of self-renewal and regenerative potential will be 

able to proliferate and give rise to a fully functional new mammary epithelium. 

At 3 weeks of age, the mouse mammary fat pad is largely devoid of mammary 

epithelium: the rudimental epithelial tree consists of only a few branches 

confined to the vicinity of the nipple. Therefore, if the region between the 

nipple and the lymph node is surgically removed, no endogenous epithelium will 

be left to repopulate the mammary fat pad which is then described as "cleared". 

At this stage mammary cells can be injected in the cleared tissue where they 

can grow and repopulate the entire fat pad. DeOme and colleagues published 

the first successful mammary gland reconstitution experiment showing that 

small pieces of mammary epithelium could recreate a fully functional 

reconstituted gland (DeOme et al., 1959).  Follow up experiments showed that 

the regenerative potential of normal mammary cells is limited. Daniel and 

colleagues performed up to seven serial transplantations over the course of two 

years showing that the ability of normal mammary epithelium to reconstitute a 

gland  declines with time (Daniel, 1968). In the same paper, 5 independent serial 

transplants showed considerable variation in overall lifespan between individual 

outgrowths suggesting that mammary epithelial cells could differ in their 

regenerative potential (Daniel 1968). Interestingly the regenerating capability of 

mammary epithelial cells is independent of donor’s age indicating the existence 

of precursor cells throughout the entire life span of the mammary gland (Hoshino 

& Gardner, 1967; Young, Medina, DeOme, & Daniel, 1971). Moreover fragments 

taken from different regions of the mammary gland, such as primary and tertiary 

branches, alveoli and terminal end buds were able to reconstitute fully 
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functional outgrowths, indicating the presence of repopulating cells throughout 

the ductal epithelial tree (Smith & Medina 1988). The development of tissue 

dissociation techniques allowed the transplant of dissociated mammary 

epithelial cells rather than tissue fragments (DeOme et al. 1978) and was 

followed by the introduction of the limiting dilution transplantation, the “gold 

standard” for defining stem cell activity. Using the limiting dilution 

transplantation technique Smith and co-workers, showed the existence of 

distinct mammary progenitor populations characterized by specific limited 

differentiation potential during pregnancy (Smith 1996). This experiment was 

the first suggestion of the existence of a cell hierarchy in the mammary 

epithelium with various degree of regenerative potential. Limiting dilution 

experiments suggested that a limited number of mammary cells were able to 

generate a duct tree. The first evidence that this regenerative activity could be 

attributed to a single cell came from experiments where fragments of MMTV-

infected mammary tissue were transplanted into cleared mammary fat pads of 

uninfected mice.  The ability of the MMTV virus to integrate randomly in the 

genome was used to investigate clonal expansion during the regenerative 

process. In particular the MMTV integration pattern was analysed through 

Southern blot in serially transplanted outgrowths, indicating that the majority of 

epithelial tissue in the reconstituted glands was likely to be derived from a 

single mammary cell (Kordon & Smith 1998). Further studies based on X-

chromosome inactivation patterns in human samples showed that entire lobules 

and large ducts of normal breast tissue have the same X chromosome inactivated 

suggesting that clonal expansion was also responsible for human mammary gland 

development (Tsai et al. 1996).  Taken together these early experiments 

provided a solid proof for the existence of a population characterized by high 

regenerative capability. These studies represent the foundations on which future 

mammary stem cell research was built and which resulted in the exciting 

discoveries of the last decades.  

1.2.2   The troubled pathway towards isolation of MaSCs 

Various experimental approaches have been carried out to characterize and 

isolate MaSCs (Smith et al. 2012). A first approach tried to identify cells with 

stem cell characteristics through cytological examination (Smith & Medina 1988).  

Smith and Medina identified a population of pale coloured cells with large nuclei 



32 
 
and clear cytoplasm. These cells were distributed sporadically among the 

mammary duct tree and generated cells capable of differentiating in the 

presence of lactogenic stimuli. Another morphological study identified potential 

mammary stem cells using electron microscopy techniques: a mammary 

epithelial subpopulation constituted by small light cells was proposed to be the 

putative stem cell compartment based on size, mitotic activity, absence of 

organelles and ability to give rise to darker cells, which were thought to be the 

differentiated population of cells (Chepko & Smith 1997). Furthermore, several 

independent studies identified long-term label retaining subpopulations in the 

mammary epithelium thought to represent stem cells (Zeps et al. 1996; Smith 

2005). However none of these methods showed that a single label-retaining cell 

or pale cell could reconstitute a fully functional gland in vivo. In fact both the 

morphological and the label retention methods shared a common limitation: 

they do not allow the isolation of large numbers of relatively pure MaSC 

populations which can be further tested in in vitro or in vivo assays. To address 

this issue, lessons learned from haematopoietic stem cells were applied to the 

mammary stem cell field. In particular the use of fluorescence-activated cell 

sorting (FACS) allowed the isolation of different cell populations from 

dissociated mammary gland preparations, based on the expression of surface 

marker proteins. The subpopulations obtained were then assayed for 

repopulating ability in vivo by cleared fat pad transplantation of limiting 

numbers of cells. In 2006, a study from Visvader’s laboratory (Shackleton et al. 

2006) identified a subpopulation of cells that are enriched for mammary stem 

cells on the basis of high expression of CD29 (β1-integrin) and moderate levels of 

CD24 (heat stable antigen). When CD24+ CD29hi cells were transplanted into 

cleared fat pads of virgin mice, they were able to generate a functional gland 

with high efficiency. Indeed transplantation of single CD24+ CD29hi cells was 

sufficient to regenerate an entire mammary gland (6/102 transplants) which 

could undergo full alveolar differentiation during pregnancy. Interestingly the 

transplanted epithelial tree contained daughter stem cells with the same in vivo 

repopulating activity as the original CD24+ CD29hi population (Shackleton et al. 

2006). At the same time, Stingl and co-workers, using a different set of markers, 

high expression of CD49f (α6-integrin) and moderate levels of CD24, identified a 

subpopulation of the mammary gland enriched for stem cells (Stingl et al. 2006). 

Again, the purified CD24+ CD49fhi population was able to generate the complete 
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functional mammary gland from a single cell (Stingl et al. 2006). Meanwhile 

CD24, used as a single marker, allowed the enrichment for fat pad repopulation 

capacity in the CD24Low population (Sleeman et al. 2006). However, based on 

CD24, CD29 or CD49f markers, the maximum enrichment for MaSCs achievable is 

far from purity (less than 1 MaSC in 100 cells). Placing GFP under the control of 

the s-SHIP promoter, which is expressed in embryonic and hematopoietic stem 

cells but not differentiated cells, allowed the isolation of a MaSC-enriched 

GFP+CD49fhi population (Bai & Rohrschneider 2010). These cells are 

characterized by an increased frequency of MaSC (1/48 cells). Recently another 

study reported an improved protocol for MaSC purification with the combination 

of an additional marker, CD1d, to further enrich the CD24+CD29hi population. 

The CD24+CD29hiCD1d+ population showed an enrichment frequency to nearly 

single-cell level of 1 MaSC per 8 cells (dos Santos et al. 2013).   

Besides being used to characterize the mammary stem cell population, FACS 

profiling of the mammary epithelium has also unveiled the different lineages 

which make up the mature mammary gland. The luminal cell compartment is 

very heterogeneous, being composed of a mixture of progenitor and 

differentiated cells which fluctuate in response to hormones  (Schedin, 2000). 

FACS sorting has been used to isolate luminal progenitors based on the 

expression of CD61 (Asselin-Labat et al. 2007), c-KIT (Regan et al. 2012) and 

CD14 (Asselin-Labat et al. 2011). Luminal progenitor populations are 

characterized by high in vitro colony forming and proliferative potential, but 

limited ability to repopulate a cleared fat pad. Moreover Asselin-Labat and co-

workers showed a dramatic decline in the proportion of CD61+ progenitor cells 

during pregnancy (Asselin-Labat et al. 2007). Overall these studies have shown 

that luminal progenitors are a highly dynamic population of the virgin mammary 

epithelium which is lost during pregnancy, through their differentiation into 

alveolar cells (Asselin-Labat et al. 2007). Like the luminal compartment, the 

basal lineage is also likely to be constituted by different subpopulations with 

various degrees of regenerative potential and differentiation; however the 

characterization of this compartment is still lagging behind. Only recently two 

different studies identified a subpopulation of  LGR5+ cells with increased 

regenerative potential when compared to other basal cells and which were 
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necessary for postnatal mammary organogenesis (Plaks et al. 2013; Van 

Keymeulen et al. 2011).  

Cell surface analyses have led to the concept of an existing differentiation 

hierarchy among mammary epithelial cells where a mammary stem cell 

population, which resides in the basal layer of the mammary gland, gives rise to 

progressively restricted progenitors which will finally differentiate into the 

mature luminal and basal mammary lineage  (Visvader & Smith 2010).  However 

this model has been challenged by lineage tracing experiments. Recently an 

elegant study from Blanpain’s laboratory showed the existence of two lineage 

restricted mammary stem cell populations in the adult mammary gland: a basal-

restricted and a luminal-restricted unipotent stem cell (Van Keymeulen et al. 

2011). Furthermore, the only mammary multipotent stem cell capable of 

generating both basal and luminal population was detected uniquely during the 

embryonic mammary development (Van Keymeulen et al. 2011). Another lineage 

tracing study which followed the Wnt responsive population during mammary 

development reached the same conclusion showing that the basal cell layer in 

the mature virgin gland does not contribute to the luminal cell layer 

(van Amerongen et al. 2012). These evidences support the view that both 

luminal and basal compartments, under normal physiological conditions, are 

maintained by separate stem/progenitor compartments. Moreover these studies 

demonstrate a critical limitation of fat pad transplantation experiments: the 

regenerative potential showed by transplanted cells is not reflecting their real 

physiological behaviour in the intact tissue. This raises the question of whether 

previous studies using FACS sorting and fat pad transplantation to demonstrate 

the existence of multipotent mammary stem cells are indeed mere artefact. 

However it should be realised that lineage tracing has its own limitations.  For 

example the reporter may not be expressed in stem cells (epigenetic silencing) 

or could alter stem cell function in vivo (Baens et al. 2006). Moreover MaSCs may 

not be targeted by the promoters used to drive the reporter expression. Along 

these lines it is interesting that none of the previous studies have reported 

labelled cap cells in terminal end buds.  
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1.2.3   MaSCs and pregnancy 

MaSCs have also been studied during pregnancy. The first evidence for the 

involvement of a stem cell population during pregnancy came from experiments 

using the WAP-Cre model in combination with the Rosa26LacZ reporter mice. In 

this model a LacZ-marked lobular-limited progenitor, which was able to persist 

after involution and take part in the remodelling of the involuting mammary 

epithelium, was identified in the pregnant mouse mammary gland (Wagner et al. 

2002). These LacZ-positive cells, called parity-identified mammary cells (PI-

MEC), showed self-renewal and multipotent potential, producing outgrowth with 

both luminal and basal cells, following serial transplantation in epithelium-free 

mammary fat pads (Boulanger et al. 2005). Progesterone is one of the key 

hormonal regulators of mammary epithelium alveolar development and 

interestingly MaSC pool increases 14-fold during maximal progesterone levels at 

the dioestrus phase of the mouse oestrous cycle (Joshi et al. 2010). Moreover the 

stem-cell-enriched CD49fhi population expands after treatment with exogenous 

progesterone, demonstrating a key role for progesterone in driving MaSCs 

expansion (Joshi et al. 2010). Confirming these data, work from the 

Visvader/Lindeman laboratory showed that the MaSC pool increases under the 

hormonal milieu of pregnancy, with a significant 10- fold increase in mid-

pregnancy (Asselin-Labat et al. 2010). By the end of pregnancy, the number of 

stem cells return to levels observed in virgin mice, suggesting that the MaSC 

expansion is necessary to sustain the high proliferative first phase of pregnancy 

but it is not required during the terminal differentiation phase (Asselin-Labat et 

al. 2010). These results indicate that MaSCs undergo strict hormonal regulation 

during oestrous cycle and pregnancy. However, using FACS sorting techniques it 

was shown that MaSCs do not express oestrogen receptor or progesterone 

receptor (Asselin-Labat et al. 2006). Hence MaSCs are likely under control of 

paracrine signalling molecules which are secreted from other mammary 

compartments in response to hormones. A study from Joshi and co-workers 

suggested a mechanism for this paracrine signalling where pregnancy-induced 

progesterone activates a subset of luminal cells, which in turn secrete WNT4 and 

RANKL signals. These molecules act on the basal and MaSC population which 

respond by upregulating transcriptional targets and cell cycle markers (Joshi et 

al. 2010). Intriguingly, a recent study provides evidence confirming the link 

between pregnancy, Wnt signalling and MaSC expansion (van Amerongen et al. 
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2012).  Van Amerongen and co-workers showed the existence of multipotent 

stem cells residing in the basal layer which become Wnt-activated during 

pregnancy and contribute to both basal and luminal lineages. Taken together 

these data are suggesting the existence of MaSC with multipotent potential 

which, in normal physiological conditions are restricted to unipotency but can 

switch from unipotent to multipotent potential under particular circumstances 

such as pregnancy.  

1.2.4   In vitro assays for the study of MaSCs 

In vivo mammary transplantation and lineage tracing experiments, besides the 

limitations listed before, are relatively costly and time consuming. These 

restrictions have driven the development of in vitro 2D or 3D assays as simplified 

models for investigating mammary stem cell properties (Smith et al. 2012). One 

of the first assays to be developed was based on plating mammary cells in 2D at 

low density, using media containing epidermal growth factor and adding a layer 

of irradiated fibroblasts to achieve maximal cloning efficiencies (Stingl et al. 

2006). In this culture model, robust growth of colonies with luminal, basal or 

bipotent characteristics, based on cytokeratin expression, can be achieved 

(Stingl et al. 2006; Shackleton et al. 2006). In 2D assays colony-forming cells are 

at least 100-fold more numerous than cells detected in fat pad transplantation 

showing that the more permissive conditions of this assay probably allow the 

expansion of more differentiated progenitor cells (Makarem et al. 2013). 

Mammosphere culture is another in vitro culture technique which allows the 

enrichment for MaSC. It is based on the use of non-adherent conditions which 

induce anoikis on differentiated cells and serum free media supplemented with 

EGF and bFGF (Dontu et al. 2003).  This assay was first developed in the neural 

stem cell research field, allowing the growth of a multipotent population of 

neural cells in suspension which were called neurospheres. Neurospheres were 

shown to consist of 4%–20% stem cells, the rest of the population representing 

progenitor cells in various stages of differentiation (Reynolds & Weiss 1996). 

Applying the same technique to the mammary field, Dontu and colleagues 

showed that human mammary cells cultivated in low adherent and serum free 

conditions formed floating colonies which were called mammospheres (Dontu et 

al. 2003). Interestingly whereas freshly isolated mammary cells contain only 8% 

multilineage progenitors, mammosphere cultures are enriched to ∼68% in 
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primary mammospheres, and virtually 100% in secondary and later-passage 

mammospheres.  A key result confirming the enrichment for cells with high 

regenerative capability achievable with this assay was obtained by the Pelicci’s 

laboratory demonstrating that cleared fat pad injection of a single sphere was 

able to generate mammary outgrowth in 11 out of 18 transplantations (Cicalese 

et al. 2009). However several limitations are linked to this assay.  For example 

the floating culturing conditions and the absence of any matrix means mammary 

stem cells are grown in extremely artificial conditions which could influence 

their behaviour. Moreover given the very strong tendency of mammary epithelial 

cells to adhere to one another, it can be difficult to distinguish between 

aggregation versus clonal growth (Pastrana et al. 2011). To overcome the 

clonogenicity issue mammary cells have been immobilized in a semi-solid matrix 

such as Matrigel were they can grow and develop ducts-like structures. These 

colony-forming assays in Matrigel allow assessment of the clonal growth of 

mammary cells in a 3D environment which more closely resembles the 

physiological conditions (Zeng & Nusse 2010; Guo et al. 2012). 

1.2.5   MaSCs regulators: signalling pathways and transcription 
factors. 

Over the past few years the role of various signalling pathways has been 

evaluated in the context of mammary stem and progenitor cells. Several studies 

indicated Wnt signalling to be involved in MaSC regulation. Overexpression of 

Wnt1 using the mammary-specific MMTV promoter resulted in a 6-fold increase 

in the number of MaSCs (Shackleton et al. 2006). Moreover treatment with 

recombinant WNT protein leads to an expansion of mammary stem cells in vitro 

as shown by their ability to reconstitute functional glands in transplantation 

assays (Zeng & Nusse 2010). In addition LGR5+ cells have recently been 

identified as a basal subpopulation characterized by high regenerative potential, 

underlying the key regulatory role of Wnt pathway in MaSCs (Plaks et al. 2013). 

On the other hand Notch pathway normally plays a role in restricting expansion 

of MaSCs. In fact deletion of Cbf-1, a canonical effector in the Notch pathway, 

caused higher stem cell repopulating activity in vivo, accompanied by aberrant 

terminal end buds and ductal branching development (Bouras et al. 2008). In 

addition the Notch pathway is required for luminal cell fate determination by 

promoting commitment of MaSCs to the luminal cell lineage at the expense of 
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the basal lineage (Bouras et al. 2008). Hedgehog signalling also appears to play a 

negative regulatory role in MaSCs. Expression of constitutive activated human 

SMO (SmoM2) under the MMTV promoter in transgenic mice caused a decrease in 

the frequency of regenerative stem cells in MMTV-SmoM2 epithelium relative to 

wild type (Moraes et al. 2007).  

The concept of a mammary epithelial hierarchy implies that specific 

transcription factors are needed to determine the correct specification of the 

different mammary subpopulations.  Indeed several transcription factors have 

been found to play a role in mammary stem cells and lineage differentiation 

(Siegel & Muller 2010). For example the transcription factor p53 regulates the 

self-renewal of MaSCs, with loss of p53 leading to increased symmetric cell 

division and expansion of the stem cell pool (Cicalese et al. 2009). Slug and Sox9 

have also been found to be key determinants of the mammary stem cell fate 

with transient co-expression sufficient to convert differentiated luminal cells 

into MaSCs with long-term mammary gland-reconstituting ability (Guo et al. 

2012). The list of transcription factors found to be involved in the regulation of 

mammary stem cells is constantly expanding and now includes MYC, C/EBPβ, and 

STAT3 among others (Staniszewska et al. 2012; Moumen et al. 2012; LaMarca et 

al. 2010). Nevertheless, given the emerging complexity of the mammary 

epithelial hierarchy, it is tempting to predict the existence of several other 

transcription factors involved in the mammary stem cell differentiation process. 

The identification of new transcription factors with a role in mammary lineage 

specification could translate to important advances in breast cancer research, 

allowing the identification of new potent regulators of mammary epithelium 

cell-fate which could be hijacked during the neoplastic process.  In fact 

transcription factors, due to their biological role as regulators of wide arrays of 

target genes and as convergence nodes of different pathways, represent very 

promising therapeutic targets (Koehler 2010). 
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Figure 1-1  The mammary cell hierarchy 

Diagram showing an overview of the mammary cell hierarchy. A multipotent stem cell can give 
rise to two lineage-restricted progenitors (luminal and basal). The luminal progenitor can further 
differentiate into mature ductal cells and, during pregnancy, into alveolar cells. The basal 
progenitor can differentiate into mature basal cells. Only bipotent stem cells and progenitors 
have self-renewal capacity as opposed to terminally differentiated cells (A). Cartoon showing 
how luminal and basal mammary lineages are heterogeneous populations composed of different 
cells with variable proliferative and self-renewal potential (B). 
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1.3  Breast cancer  

Breast cancer is the leading cause of cancer death in women, accounting for 22% 

of all female cancers (Jemal et al. 2010). Every year more than 1.3 million 

women worldwide are diagnosed for breast cancer, making it the second most 

common type of cancer behind lung cancer (Kamangar et al. 2006). In the last 

decades much investment in funding has led to a research boost into our 

understanding of breast cancer origin, pathology and treatment options. These 

efforts have resulted in a marked improvement in the survival rates for breast 

cancer where in the sixties, only 35% of women diagnosed with breast cancer in 

the United States would have been alive ten years later whereas that percentage 

increased to 77% by the mid-nineties. However half-a-million women still die 

from this disease each year indicating that further improvements in breast 

cancer treatment are still needed.  

1.3.1   Aetiology, progression of disease and treatment 

Although the aetiology of human breast cancer remains largely unknown, risk 

factors associated with this disease can be grouped into three broad categories: 

hereditary, hormonal and reproductive factors, and environmental (Hankinson et 

al. 2004). Family history is one of the strongest determinants of risk. Hereditary 

factors are associated primarily with early-onset premenopausal breast cancer. 

In particular the BRCA1 gene has been implicated in the pathogenesis of 

hereditary breast cancer whereby women with mutations in either BRCA1 or 

BRCA2 have a 60% to 85% lifetime risk for developing breast or ovarian cancer 

(Fackenthal et al. 2007). Germline mutations in p53 account for 1% of early 

onset breast cancer (Gasco et al. 2002). Interestingly women with Li-Fraumeni 

syndrome (carrying a mutated p53 gene) who survive childhood cancers often 

develop breast cancer, underlying the genetic connection between loss of p53 

and this pathology (Gasco et al. 2002). A link between hormonal and 

reproductive status of patients and breast cancer is strongly suggested by the 

association between the incidence of this tumour and the age of menarche, 

menopause and first pregnancy (Guinee et al. 1994). In particular nulliparous 

women, or those who become pregnant after the age of 35, have a twofold to 

threefold higher risk of breast cancer than those women whose pregnancy 

occurred before age 25. Several environmental factors have been found to 
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influence breast cancer risk such as smoking, dietary factors and chemical 

compounds (DeBruin & Josephy 2002).  

The natural history of breast cancer involves progression through defined 

pathological and clinical stages, beginning with ductal hyperproliferation, which 

can then evolve into in situ and invasive carcinomas (Allred et al. 2001). Invasive 

breast cancer spreads regionally by direct extension through the chest wall or 

via lymphatic channels to regional lymph nodes (Lee, 1983). The axillary lymph 

nodes are the most common site of regional metastasis and breast cancer 

patients are usually stratified into node negative or positive based on excision of 

axillary lymph nodes (Devitt, 1965). Metastatic breast cancer can then spread 

from regional sites to colonize distant organs; the most common sites of distant 

metastasis are lung and pleura, liver, bone, skin, adrenal and brain (Lee 1983). 

Interestingly, unlike many tumours, breast cancers can recur and metastasize 

decades after primary tumour excision (Gerber et al. 2010). Not surprisingly the 

presence of distant metastasis correlates with poor prognosis since no 

treatments currently exist for metastatic breast cancer.  

Several factors determine the choice of treatment for a newly diagnosed breast 

cancer such as the age of the patient, involvement of axillar lymph nodes, the 

size of the tumour, histological grade, expression of hormonal receptors and 

HER2 status. The first type of treatment for breast cancer is usually surgery 

followed by adjuvant chemotherapy, radiotherapy or in some cases, hormone or 

targeted treatments. The choice of treatment is strictly dependent on the type 

of breast cancer identified. Focusing on the receptor status human breast cancer 

can be subdivided into three main groups: oestrogen receptor positive (ER+), 

epidermal growth factor receptor 2 positive (HER2+) and triple negative (ER-

/PR-/HER2-).  ER+ and HER2+ patients benefit from targeted treatments such as 

Tamoxifen and Trastuzumab which have consistently improved disease outcome 

(Howard et al. 2012). On the other hand, the triple negative subtype lacks any 

specific targeted therapy and it has been associated with worse overall prognosis 

in comparison with the other subtypes (Foulkes et al. 2010).  
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1.3.2   Molecular classification of breast cancer 

Human breast cancers have been categorized by pathologists into various 

histological subtypes based on a set of features of the primary tumour at the 

time of diagnosis such as lesion size, necrosis, nuclear grade and mitotic index. 

However clinical responses of patients to therapy showed considerable 

heterogeneity among the same subtype, indicating the need for a new, better 

classification method (Stingl & Caldas 2007). In fact the histological 

classification of human breast tumours is confounded by a number of factors 

including scoring subjectivity and intra-inter tumour heterogeneity. In recent 

times a new way to classify human breast tumours, based on gene expression 

profiling by microarray analysis, has provided a new perspective on breast 

cancer. Breast cancer is no longer a single disease but a collection of distinct 

malignancies which vary from the clinical, morphological and molecular point of 

view (Stingl & Caldas 2007). A pivotal study from Perou and co-workers was the 

first to provide a molecular classification for breast cancer (Perou et al. 2000). 

Gene expression profiling of 38 breast cancer cases revealed four distinct 

molecular subtypes: luminal, HER2, basal-like and normal breast (Perou et al. 

2000). A follow-up study using a larger cohort of patients refined this 

classification showing that the luminal subgroup could be divided into at least 

two groups (luminal A and B), and that different molecular subtypes were 

associated with different prognosis (Sorlie et al. 2003).  The main molecular 

subtypes are described below. 

Luminal A 

The luminal A group comprises 50–60% of all diagnosed breast tumours, 

representing the most common subtype. It is characterized by the expression of 

genes typically expressed in the luminal epithelium and which are linked to ER 

transcriptional regulation (Prat & Perou 2011). In particular the 

immunohistochemistry profile of the luminal A subtype is characterized by 

expression of ER, PR, Bcl-2, GATA3 and cytokeratin CK8/18, and absence of 

HER2 expression. Moreover these tumours show a low rate of proliferation and a 

low histological grade. Luminal A patients have a generally good prognosis with a 

relapse rate significantly lower than that of other subtypes (27.8%) (Colleoni et 

al. 2012). However this subtype of breast cancer has the higher incidence of 
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bone metastases (18.7%) compared to other sites such as liver and lungs 

(Kennecke et al. 2010). The treatment of luminal A tumours is mainly based on 

hormonal aromatase inhibitors, which work by inhibiting the action of the 

enzyme aromatase, responsible for the synthesis of oestrogen, and selective 

oestrogen receptor modulators like Tamoxifen, a competitive inhibitor of the 

oestrogen-oestrogen receptor binding (Guarneri & Conte 2009). 

Luminal B 

The luminal B group makes up 10–20% of all breast tumours. Compared to the 

luminal A group, they have a more aggressive phenotype, higher histological 

grade and worse prognosis (Colleoni et al. 2012). Both luminal A and B express 

ER and the main biological difference between the two subtypes is an increased 

expression of proliferation genes, such as Ki67 and cyclin-B1, and growth factor 

receptors EGFR and HER2 in the luminal B group. Bone is still the most common 

site of recurrence (30%), together with a high recurrence rate in other organs 

such as the liver (Kennecke et al. 2010). Luminal B tumours are treated with 

Tamoxifen and aromatase inhibitor. However the worse prognosis compared to 

luminal A tumours, underlines the need of new therapeutic options for this 

subgroup. 

HER2 positive 

HER2 positive tumours represent 15-20% of breast cancers. They are 

characterized by a high expression of the HER2 gene and other genes associated 

with the HER2 pathway. Morphologically, these tumours are highly proliferative, 

with a high histological grade and frequent p53 mutations (Montemurro et al. 

2013). HER2 amplified tumours are a heterogeneous group and have been further 

subdivided into three separate subtypes; one characterized by worse prognosis 

with 12% of patients alive after 10 years, compared to the 50–55% survival in the 

other two groups (Staaf et al. 2010). From the clinical point of view, the HER2 

subtype is characterized by a poor prognosis, although the introduction of anti-

HER2 treatment has substantially improved survival in both primary and 

metastatic diseases (Slamon et al. 2001). 
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Basal-like and triple negative  

The basal-like subtype accounts for 15% to 20% of newly diagnosed breast cancer 

cases. One of the most relevant features of this subtype is the lack of the three 

key receptors in breast cancer: oestrogen, progesterone and HER2. For this 

reason the basal-like group is also defined as triple-negative breast cancer 

(TNBC). However some controversies exist on the definition of TNBC and basal-

like breast cancers (Gusterson 2009) and although triple-negative is not 

synonymous with basal-like tumours both groups show a wide range of 

similarities (Rakha et al. 2007). At the morphologic level, TNBC and basal-like 

tumours share similar characteristics such as larger tumour size, higher grade, 

presence of necrosis, pushing borders of invasion, and lymphocytic infiltrate 

(Livasy et al. 2006). The majority of TNBCs are invasive ductal carcinoma, but 

less common histologic subtypes (for example medullary and metaplastic) are 

also represented in this group (Bertucci et al. 2006; Weigelt et al. 2009). Basal-

like and TNBC tumours usually express genes characteristic of mammary 

myoepithelial cells, including cytokeratins CK5, CK14 and CK17, P-cadherin, 

Caveolin 1 and 2, Vimentin and EGF-R (Nielsen et al. 2004). However low levels 

of genes characteristic of luminal epithelium such as CK8/18 and cKIT can be 

found in these subtypes (Livasy et al. 2006). Moreover TNBC and basal-like 

tumours frequently show high expression of proliferation markers (Ki67) and 

activation of the beta-catenin pathway (Geyer et al. 2011; Arnedos et al. 2012). 

Interestingly, tumours with germ-line mutations in the BRCA1 gene belong to 

these groups (Sorlie et al. 2003).  

From a clinical point of view they are characterized by appearance at an early 

age (<40 years old), and predominantly in women of African origin (Metzger-

Filho et al. 2012). The pattern of metastatic relapse is aggressive, mainly 

localized to lungs, central nervous system and lymph nodes (Kennecke et al. 

2010). Basal-like tumours have a worse prognosis compared to the luminal 

subgroups, with a higher relapse rate in the first 3 years despite showing a high 

response to chemotherapy (Rouzier et al. 2005). Hence the identification of new 

therapeutic targets and treatment strategies for TNBC is urgently needed. Given 

the extreme heterogeneity of TNBC and basal-like tumours, effort has been put 

into trying to identify biologically distinct TNBC subgroups. In 2007, a new triple 

negative molecular subtype named claudin-low, was identified (Herschkowitz et 
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al. 2007). These distinct tumours were characterized by the low gene expression 

of tight junction proteins claudin 3, 4 and 7 and E-cadherin. A follow up study 

showed that claudin-low tumours are enriched in epithelial-to-mesenchymal 

transition (EMT) features, immune system responses, and stem cell-associated 

genes (Prat et al. 2010). In addition four independent gene clusters were 

identified in the TNBC subgroup using the transcriptome data from 21 

independent breast cancer studies (Lehmann et al. 2011). These clusters were 

defined by mesenchymal features, immune system–related genes, DNA damage 

response genes and activated androgen receptor signalling.  

1.3.3   Understanding the molecular portrait of breast cancer 

The implementation of high throughput technologies has opened our eyes on the 

intimate molecular heterogeneity of breast cancer. However the complete 

molecular portrait of breast cancer is still far from being completed. The 

continuous development and improvement of high-throughput techniques means 

that more powerful, fast and reliable methods are available every year, helping 

to dig more deeply into the molecular architecture of breast cancer (Gray & 

Druker 2012). In 2012, five independent whole-genome analyses, through 

massively parallel DNA and RNA sequencing of various breast cancers, refined 

our current tumour-classification system with the finding of new subtypes among 

the categories established by early transcriptome profiling studies (Ellis et al. 

2012; Stephens et al. 2012; Shah et al. 2012; Curtis et al. 2012; Banerji et al. 

2012). For example Curtis and co-workers identified new breast-cancer subtypes 

that are associated with different patient outcomes, based on the combination 

of copy number and gene expression analysis (Curtis et al. 2012). Banejerji and 

co-workers instead, identified three new molecular aberrations implicated in 

breast cancer (mutations in the genes CBF-β, RUNX1 and the MAGI3–AKT3 gene 

fusion) (Banerji et al. 2012). In a recent study, a diverse set of breast tumours 

were assayed using DNA methylation, microRNA (miRNA) expression and protein 

expression, combined with mRNA expression profiling, DNA copy number analysis 

and massively parallel sequencing (Cancer Genome Atlas Network 2012). The 

information generated was then integrated across platforms demonstrating the 

existence of four main breast cancer classes, each of which shows significant 

molecular heterogeneity. Moreover somatic mutations in only three genes (TP53, 

PIK3CA and GATA3) occurred in more than 10% of all breast cancers while 
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several subtype-specific and novel gene mutations were identified (Cancer 

Genome Atlas Network 2012). Overall these studies show that individual breast 

cancers typically carry a few consistent characterized abnormalities, along with 

tens to thousands of other changes that are rare or unique to the individual 

tumour and about which little is known. The challenge in the future will be to 

understand which of these genes are responsible for tumourigenesis and how this 

ensemble of aberrations collaborates to drive tumour growth and response to 

therapy.  

1.3.4   The origin of breast cancer subtypes 

The previous studies showed that breast cancer can be viewed as a collection of 

multiple different diseases, each one characterized by specific molecular, 

histological and clinical features. Two competing models have been suggested to 

explain this extensive heterogeneity: the clonal evolution and the cancer stem 

cell hypotheses (Shackleton et al. 2009). According to the clonal evolution 

hypothesis breast cancer subtypes do not mirror the features of normal cell 

populations and the unique subtype-specific gene expression patterns are rather 

generated by evolution of transformed cells during decades of clonal selection 

influenced by a particular tumour genetic background. According to the cancer 

stem cell hypothesis instead, accumulation of specific mutations in a particular 

cell type of the normal mammary epithelium generates transformed multipotent 

cells (cancer stem cells) which will then give rise to a specific breast cancer 

subtype (Smalley et al. 2003). In this view the molecular features of each 

subtype are mirroring the characteristic of the cell type which was originally 

transformed. For example MaSC are thought to be the cell of origin of triple 

negative breast cancer based on their shared features such as lack of expression 

of hormone receptors and expression of basal cytokeratins (Perou 2010). On the 

other hand luminal A tumours, are thought to derive from relatively well-

differentiated cells of the ER+ lineage, whereas luminal B tumours are believed 

to develop from less differentiated luminal progenitors (Polyak 2007). The 

theory of the cell of origin of breast cancer is still controversial and further 

studies are needed to corroborate this hypothesis. In particular a better 

characterization of the mammary epithelial cell hierarchy, through the 

identification of new markers to identify stem, progenitor and differentiated 

cells of the mammary epithelium, is essential to allow a better understanding of 
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the cellular targets of breast cancer mutations. By determining the identity of 

the original cell population that was transformed to form the cancer stem cell 

population, investigators will be able to identify early key steps in the formation 

of breast cancer, which could potentially translate into novel therapeutic 

targets. 

 

1.4   The RUNX Genes 

The Runx genes represent a family of different transcription factors 

characterized by a common feature: a highly conserved 128 amino acid sequence 

known as the Runt domain. The Runt domain, located in the amino-terminal 

region of these proteins, is required for their DNA binding activity and for 

protein-protein interactions (Levanon & Groner 2004). Runx genes regulate the 

transcription process binding the DNA as a multicomponent complex together 

with the DNA binding partner CBF-β cofactor and a wide variety of tissue specific 

co-repressors and co-activators (Chuang et al. 2012). RUNX transcription factors 

are involved in several fundamental processes during animal development, 

playing a key role in the regulation of cell differentiation and proliferation 

(Coffman 2009). In addition and strictly connected to this decision, Runx genes 

have been found to take part in cancer development, although their ambiguous 

roles of oncogenes or tumour suppressors have yet to be clarified  (Blyth et al., 

2005; Blyth et al., 2010).   

1.4.1   The Runx genes: evolution, structure and regulation 

1.4.1.1  The Runx genes: an evolutionary look. 

The RUNX proteins are well represented among metazoan organisms, from 

mouse to sea urchin and sponges, underlining the importance of this 

transcriptional regulatory system (Braun & Woollard 2009; Sullivan et al. 2008).  

While lower organisms such as C. elegans usually have a single Runx gene, more 

evolved organisms possess additional Runx genes probably deriving from ancient 

duplication events. These genes have then acquired different lineage and tissue 

specificity while becoming intertwined to distinct cell regulatory systems. As a 

result RUNX family members have developed exclusive gene-specific functions. 
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The first Runx gene to be discovered, runt, was identified as a major player in 

Drosophila early segmentation process (Gergen & Butler 1988) and later in 

neuronal development and sex determination (Duffy et al. 1991). Another 

Drosophila Runx homolog, lozenge, was found to regulate cell fate specification 

during haematopoiesis and to control cell patterning during eye development 

(Daga et al. 1996; Lebestky et al. 2000). Moreover the Drosophila genome 

project identified 2 additional Runx homologs, CG34145 and CG42267, whose 

function is still unknown (Rennert et al. 2003).   

The sea urchin S. purpuratus has two Runx genes but only one, called SpRunt-1 

has been characterised so far (Fernandez-Guerra et al. 2006). SpRunt-1 is 

involved in the regulation of both cell proliferation and terminal differentiation 

in all major tissues during different stages of embryogenesis (Coffman et al. 

2004). In particular SpRunt-1 is generally required in early embryonic 

development to support cell division, and it is required later on to activate 

expression of structural genes involved in terminal differentiation in a specific 

subset of tissues (Coffman et al. 2004). Further studies in sea urchin have 

unveiled an anti-apoptotic role for RUNX during gastrulation (Dickey-Sims et al. 

2005) and the existence of a crosstalk between Runx and Wnt signalling during 

early development (Robertson et al. 2008). 

Since its genome contains only one Runx gene, rnt-1, C. elegans is an 

invertebrate model organism commonly used for investigating the role of Runx in 

development avoiding redundancy problems. Genetic analysis have shown a key 

role of rnt-1 as a regulator of cell division patterns in seam cells, a population of 

well characterized neuroectodermal stem cells located in the worm epidermis 

(Nimmo & Woollard 2008). In particular in rnt-1 mutants, symmetrical cell 

division of seam stem cells is drastically impaired, leading to a reduction in their 

number in adult animals (Nimmo et al. 2005). Moreover overexpression of either 

rnt-1 or bro-1, a homologue of mammalian CBF-β, leads to increase of both 

asymmetrical and symmetrical divisions among seam cells, resulting in massive 

hyperplasia and a tumour-like phenotype (Kagoshima et al. 2007).    

The key role of Runx genes as important regulators of stem cells is also emerging 

from studies on Planarians (Rink 2013). Planarian flatworms are capable of 

regenerating any missing body part and represent an attractive model for the 
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investigation of the molecular pathway underlying tissue regeneration. Planarian 

regeneration uses a population of regenerative cells (neoblasts) which includes 

pluripotent stem cells. Interestingly, after wounding runt-1 is activated directly 

within neoblasts where it is necessary for specifying different cell types during 

regeneration (Wenemoser et al. 2012). 

The recurrent theme of Runx genes as specific lineage determinants is further 

confirmed in more complex vertebrate animal models. In particular in Zebrafish 

and Xenopus Runx1 is expressed in hematopoietic progenitors where it controls 

stem cell specification (Tracey et al. 1998; Kalev-Zylinska et al. 2002; Burns et 

al. 2005). Moreover in Xenopus, Runx1 is also required for the development of 

Rohon/Beard neurons, a particular class of sensory neurons which mediate 

response to touch in the larval stage (Park et al. 2012). In both fish and frogs, 

Runx2 is detected in developing skeletal elements where it regulates 

chondrogenesis (Flores et al. 2004; Flores et al. 2006; Kerney et al. 2007) while 

in Zebrafish, Runx3 has been studied in the context of haematopoiesis and 

chondrocyte differentiation (Kalev-Zylinska et al. 2003). 

The mammalian genome contains three different Runx genes: Runx1, Runx2 and 

Runx3. These genes maintain strong structural similarities but they have 

acquired lineage-specific roles. RUNX1 is required for the development of 

hematopoietic lineages; RUNX2 is a master regulator of bone formation while 

RUNX3 has a role in neuronal development (Cohen 2009). Taken together, the 

evidence gathered from different animal models, separated by millions of years 

of evolution, helps to build a general picture of Runx genes as key transcription 

factors involved in the regulation of lineage determination and self/renewal 

through a finely tuned action on cell proliferation and differentiation. Such a key 

role in diverse developmental processes implies that Runx genes need to be 

tightly controlled at the transcriptional and post-transcriptional level.  

1.4.1.2 The Runx Genes: genomic and protein structure.  

Runx genes are located on different chromosomes which are species-specific. 

RUNX1 is localised on human chromosome 21, RUNX2 on chromosome 6 and 

RUNX3 on chromosome 1 while in mouse they are located on chromosomes 16, 

17 and 4 respectively (Stock & Otto 2005). The three mammalian RUNX genes 
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share a similar genomic structure which can also be found in two neighbouring 

paralog genes outside the RUNX locus: CLIC and DSCR (Levanon & Groner 2004). 

RUNX1 is the biggest gene with 9 exons and 12 possible isoforms, RUNX2 has 8 

exons and 12 possible isoforms, while RUNX3 is the smallest one with 6 exons 

and few isoforms (Bangsow et al. 2001).  

RUNX proteins have an average size of 50 KDa, ranging from the 44 KDa of RUNX3 

to the 57KDa of RUNX2. Despite the difference in size, RUNX proteins contain 

several conserved regions. At the N-terminus is the highly conserved Runt 

domain, which is shared by all members of the RUNX family with a degree of 

homology close to 90%. RUNX proteins bind through their Runt domains, to a 

conserved nucleotide sequence (R/TACCRCA). Structural studies have 

determined the three-dimensional conformation of the Runt domain in its DNA-

bound state showing that it forms an immunoglobulin (Ig) fold (Nagata et al. 

1999). The Ig fold is a common domain, mainly involved in molecular recognition 

and binding, that can be found in the DNA-binding domain of other transcription 

factors such as P53, NF-kB, NFAT, and STAT (Williams & Barclay 1988). However, 

unlike other transcription factors, the Runt domain uses loop regions located at 

the end of the Ig fold for DNA binding (Berardi et al. 1999). Since the Runt 

domain has a low DNA-binding affinity, during the transcriptional process DNA 

binding usually occurs together with the heterodimeric binding partner CBF-β.  

In addition to the Runt domain, necessary for protein-DNA binding capability, 

RUNX proteins share other common features. All these proteins have a large C-

terminal transactivation domain and a C-terminal inhibitory domain (ID) which 

downregulates protein expression. Other domains, localized in the C-terminal 

region, further contribute to RUNX regulation: a NMTS sequence, required for 

nuclear targeting of RUNX activated proteins (Zaidi et al. 2001), a VWRPY 

sequence, which binds to the co-repressor Groucho/TLE (Imai et al. 1998) and a 

PY sequence, a proline-rich motif required for protein interactions (Terry et al. 

2004).   Studies conducted on RUNX1 also show transactivation properties in the 

N-terminal and the α-helix of Runt domain (Liu et al. 2006). Interestingly RUNX 

family members show less homology in the areas outside the Runt domain: the 

presence of isoform-specific regulatory elements and protein binding sequences 

may account for the functional differences observed between RUNX proteins 
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(Levanon & Groner 2004). For example, RUNX2 is the only RUNX protein with a 

specific glutamine-alanine repeat domain (QA), localized in N-terminal, which is 

required for osteoblast lineage specification (Thirunavukkarasu et al. 1998).   

1.4.1.3 Transcriptional regulation of RUNX genes. 

Given their essential role in development, RUNX genes are integrated into a 

complex regulatory network which acts both at the transcriptional and post-

transcriptional level. RUNX genes have two different promoters, P1 (distal) and 

P2 (proximal), resulting in two main isoforms with distinct 5’-UTRs sequences 

(Levanon & Groner 2004). Interestingly, both P1 and P2 genomic regions contain 

several RUNX binding sites suggesting the possibility of cross-regulation between 

the RUNX genes (Otto et al. 2003). Indeed cross-regulation has been reported 

whereby RUNX3 overexpression downregulates RUNX1 in human B cell lines 

(Spender et al. 2005) while RUNX2 represses RUNX3 in tooth development (X.-P. 

Wang et al. 2005). Moreover autoregulation of RUNX genes has been shown in 

vitro with overexpression of RUNX2 in NIH3T3 cells downregulating RUNX2 

transcription in a negative feedback loop (Drissi et al. 2000).  

1.4.1.4 Translational and post-translational regulation of RUNX genes. 

RUNX gene expression is tightly regulated at the translational level through the 

two distinct 5’UTRs sequences (called P1-5’UTR and P2-5’UTR) of the P1 and P2 

isoforms. In RUNX1 P1-5’UTR directs cap-mediated translation while P2-5’UTR 

contains an internal ribosomal entry sequence (IRES) which regulates its 

translation (Pozner et al. 2000). In RUNX2 both P1 and P2-5’UTR contain IRES 

sequences (Xiao et al. 2003) and RUNX3 P2-5’UTR exhibits internal translation 

initiation capability (Bone et al. 2010). IRES elements are involved in 

translational regulation when cap-dependent system is impaired, such as during 

mitosis, suggesting a particular role for these isoforms in proliferating cells 

(Vagner et al. 2001).   

Transcription factors can be further regulated through a wide variety of post-

translational modifications such as phosphorylation, acetylation, ubiquitination, 

SUMOylation, and methylation, which are necessary for fine-tuning of 

transcriptional regulation. These modifications control various aspects of 

transcriptional factors activity such as auto inhibition, dimerization, proteolytic 
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cleavage, cellular localization and ubiquitin-mediated degradation. Not 

surprisingly, RUNX activity is dynamically regulated by a growing list of post-

translational modifications (reviewed in Wang et al. 2009). RUNX proteins can be 

regulated through phosphorylation mediated by various kinases such as ERK, SRC 

and Cyclin/Cdks (Chuang et al. 2012). For example ERK1/2 dependent 

phosphorylation of RUNX2 is critical for osteoblast-specific gene expression (Xiao 

et al. 2000) and RUNX2 activity is stimulated after phosphorylation by ERK1/2 

and p38 MAP kinase (Ge et al. 2012). Moreover, the serine/threonine kinase PIM-

1, which has been implicated in cytokine-dependent signalling in hematopoietic 

cells, interacts and phosphorylates RUNX1 and RUNX3 enhancing their 

transactivation activity (Aho et al. 2006), while SRC-mediated phosphorylation 

causes a re-localization of RUNX3 to the cytoplasm in breast cancer cells (Goh et 

al. 2010).  Acetylation of transcription factors, mediated by histone 

acetyltransferase (HAT) proteins, leads to changes in protein-protein and 

protein-DNA interaction, which subsequently influence gene expression (Sterner 

& Berger 2000). All mammalian RUNX proteins can be acetylated by p300 

resulting in increased DNA binding ability, protein stability and stimulated 

transactivation properties (Yamaguchi et al. 2004; Jin et al. 2004; Jeon et al. 

2006). The necessity of a fine control on RUNX activity in response to different 

stimuli means that RUNX proteins levels are controlled post-translationally by 

ubiquitin-mediated proteasome degradation.  Various  E3 ubiquitin ligases such 

as MDM2, promote degradation of RUNX proteins (Zhao et al. 2003; Chi et al. 

2009), while proteins such as CBF-β and SIN3A interact with RUNX preventing 

their proteasomal degradation (Huang et al. 2001). 

1.4.1.5 Co-repressor and co-activators. 

RUNX and CBFβ heterodimers are relatively weak transcriptional factors but they 

can increase their efficiency through recruitment of a wide array of co-

activators and co-repressors. Moreover the vast array of these co-regulators is 

pivotal to guarantee specificity and accuracy in RUNX-mediated transcriptional 

regulation. Several transcription factors have been found to interact with RUNX 

genes to drive transcriptional activation or repression depending on the context. 

The list of transcription factors interacting with RUNX proteins contains several 

which play key roles in development such as AP1 (c-Fos and c-Jun), BMP-

responsive SMADs (SMAD1 and SMAD5), Hes1, GATA-1, STATs and Oct-1 among 
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others (Chuang et al. 2012).  Interestingly many of these transcription factors 

such as STAT5 and SOX9, interact with RUNX via the Runt domain, suggesting 

that they may compete with each other for binding to RUNX (Zhou et al. 2006; 

Ogawa et al. 2008). It is generally believed that transcription factors cooperate 

with RUNX proteins to facilitate the recruitment of additional co-regulators and 

the assembly of higher-order transactivation complexes. In fact, other RUNX 

interactors do not bind to the DNA directly, but are recruited to the template by 

DNA-bound RUNX proteins which act as a scaffold. TLE proteins, the human 

homologs of Drosophila Groucho and Grg proteins in mice, are broadly expressed 

co-repressors which are recruited to promoters/enhancers by numerous 

transcription factors (Cinnamon & Paroush 2008). The TLE/Groucho family is one 

of the first characterized groups of co-repressors, found to interact with RUNX 

through the highly conserved VWRPY sequence, present at the C-terminus of all 

Runt domain proteins (Aronson et al. 1997). Interestingly the interaction 

between TLE/Groucho and RUNX proteins results in transcriptional repression of 

osteoblast (Javed et al. 2000) and T-cell specific genes (Seo et al. 2012). In 

addition RUNX proteins can also recruit different co-repressors such as mSIN3A 

(Lutterbach et al. 2000) and CoAA (Li et al. 2009). The mechanism whereby 

those co-repressors inhibit RUNX-mediated transcription is still not clear.  

A growing list of chromatin-modifying proteins has been shown to interact with 

RUNX proteins acting as both activator and repressor. RUNX proteins interact 

with the acetyltransferase p300 through their C-terminal region, leading to 

stimulation of RUNX-mediated transcription (Kitabayashi et al. 1998; Jin et al. 

2004; Boumah et al. 2009). Others acetyltransferases, such as PCAF (Wang et al. 

2013), MOZ and MORF (Pelletier et al. 2002; Kitabayashi et al. 2001) physically 

interact with RUNX proteins, strongly stimulating their transactivation activity. 

RUNX proteins can also associate with histone-modifying enzymes, such as 

histone acetyltransferase HDAC, to induce transcription repression (Ali et al. 

2012). RUNX proteins have also been shown to collaborate with the SWI/SNF 

chromatin modelling complex for transcription activation. In particular RUNX1 

and RUNX2 recruit the SWI/SNF complex to specific target genes to regulate 

respectively hematopoietic and osteoblast specific genes (Villagra et al. 2006; 

Bakshi et al. 2010). The repertoire of proteins that cooperate with RUNX in 
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transcriptional regulation continues to increase year after year, reflecting the 

necessity of fine tuning of RUNX activity according to specific cell contexts. 

  



55 
 
 

 

 

 

 

 

Figure 1-2  Post-transcriptional regulation of RUNX proteins. 

RUNX proteins can be regulated through various post-transcriptional modifications and by 
interactions with tissue-specific co-repressors and co-activators. In addition RUNX proteins can 
interact and cross-regulate with each other. Thus RUNX-mediated transcription is highly context 
dependent. 
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1.4.2   RUNX Genes in Development 

RUNX genes are fundamental in mammalian development, as underlined by the 

severity of individual gene knockout phenotypes in transgenic mice. In particular 

Runx1 is required for haematopoiesis (Okuda et al. 1996), Runx2 for osteogenesis 

(Otto et al. 1997) and Runx3 for neurogenesis (Inoue et al. 2002). Several studies 

have also uncovered various developmental roles for Runx genes in a wide 

variety of tissues and organs. 

1.4.2.1 RUNX1  

RUNX1 has a primary role in haematopoiesis (reviewed in Swiers et al. 2010) 

since Runx1 null mice fail to generate haematopoietic cells of all lineages 

(Okuda et al. 1996). Runx1 deficient embryos die at E12.5 with diffuse 

haemorrhages within the ventricle of the central nervous system and vertebral 

canal. Interestingly blood cells in the sites of haemorrhaging consist only of 

primitive erythrocytes, since all definitive blood cells are absent from Runx1 

deficient embryos.  This failure is due to a blockage in haematopoietic stem cell 

differentiation during embryo development (North et al. 1999). Further studies 

revealed the precise step of definitive haematopoiesis where Runx1 is required: 

Runx1 is expressed in a specific subset of endothelial cells where it is essential 

for the formation of intra-aortic haematopoietic clusters and their 

differentiation into haematopoietic progenitor and stem cells (Chen et al. 2009). 

This key finding helped to confirm the highly debated theory of “hemogenic 

endothelium” (Jordan 1916): during embryogenesis, haematopoietic stem and 

progenitor cells are generated, in a Runx1-dependent way, from a unique 

population of vascular endothelium termed hemogenic endothelial cells (Antas 

et al. 2013). Others studies using conditional knockout mouse models have 

confirmed the master role of Runx1 in haematopoiesis, not only at an embryonic 

stage but also during differentiation of various adult lineages. Haematopoietic 

precursors differentiate into mature T-cells through discrete stages which can be 

defined based on expression of T-cell surface antigens CD4 and CD8. Immature 

thymocytes lacking CD4 and CD8 co-receptors (CD4-CD8-), progress through a 

double positive stage (CD4+CD8+), and are then selected to become either T-

helper cells (CD4+CD8-) or cytotoxic T-cells (CD4-CD8+). Runx1 is necessary for 

T-cell specification with a role in repressing CD4 expression in immature 
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thymocytes (Taniuchi et al. 2002). Moreover inducible Runx1 deletion in the 

bone marrow showed that Runx1 is necessary for megakaryocytic maturation and 

differentiation of T- and B-cells (Ichikawa et al. 2004; Niebuhr et al. 2013). 

In addition to its role in the haematopoietic system Runx1 takes part in 

developmental processes regulating lineage specification and differentiation in 

other organs. During embryonic bone development Runx1 is expressed in pre-

chondrocytic tissue, after birth it is expressed in resting zone chondrocytes and 

suture lines of the calvarium, and in the adult, in periosteal and perichondral 

membranes of all bones but is absent in mature cartilage or mineralized bone 

(Yamashiro et al. 2002; Lian et al. 2003). The expression of Runx1 at sites of 

cartilage growth, suggests that Runx1 expression may be related to 

chondroprogenitor cell differentiation (Y. Wang et al. 2005; Soung et al. 2012). 

However, in vivo, Runx1 conditional knockout mice showed that Runx1 is not 

essential for major skeletal growth, but plays a role in the development of the 

sternum and some skull elements (Kimura et al. 2010; Liakhovitskaia et al. 

2010).  

Genetic studies on Drosophila demonstrated that Runx genes are involved in 

neuronal development (Duffy et al. 1991) with expression in neural cells of the 

developing nervous system of Zebrafish and mouse (Zagami et al. 2009). Dorsal 

root ganglion neurons (DRG) convey peripheral somatosensory stimuli to the 

spinal cord. They can be subdivided in three major subpopulations – nociceptive, 

mechanoreceptive, and proprioceptive.  Runx1 is specifically expressed in DRG 

nociceptive neurons where it controls lineage specification and regulates axonal 

outgrowth and guidance in the developing embryo (Kramer et al. 2006; 

Marmigère et al. 2006). Outside DRG neurons, Runx1 plays a role in regulating 

survival of post-mitotic neurons of the embryonic central and peripheral nervous 

system (Theriault et al. 2004) and regulates neural progenitor cell proliferation 

in olfactory receptor neurons (Theriault et al. 2005). 

In recent years, studies on the hair follicle linked RUNX1 to lineage 

differentiation of epithelial tissues (Scheitz & Tumbar 2012). Runx1 is expressed 

in a subset of cells during embryonic and adult hair follicle formation (Osorio et 

al. 2011). Interestingly, lineage tracing experiments showed that embryonic 

Runx1 positive epithelial cells contribute to all lineages of hair follicle during, 
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morphogenesis and adult homeostasis, proving that Runx1 expressing cells are 

precursors of adult hair follicle stem cells (HFSCs) (Osorio et al. 2011). 

Moreover, while the majority of adult epithelial Runx1 expressing cells are short-

lived progenitors (Osorio et al. 2011), Scheitz et al. 2012 showed that the adult 

bulge cells expressing Runx1 are HFSCs since they contribute long-term to HF 

homeostasis as well as to physical injury repair. Induced epithelial knockout of 

Runx1 has been used to characterize the role of Runx1 in skin development. 

However Runx1 loss was only found to affect hair structure (Raveh et al. 2006) 

and to cause a temporary delay in morphogenesis and hair cycle which is 

overcome with age and injury (Osorio et al. 2008). Remarkably, a much more 

profound effect on hair follicle integrity was caused by Runx1 loss in the 

embryonic skin mesenchyme, an important HFSCs niche component. After Runx1 

deletion in the mesenchyme, the hair follicle shows no abnormalities during 

morphogenesis, but in the first hair cycle, when adult stem cells generate the 

differentiated hair lineages, hair follicles are converted to enormous sebaceous 

cysts (Osorio et al. 2011). Overall these studies identified RUNX1 as a key 

transcriptional factor regulating hair follicle differentiation. Focusing on 

different epithelia, RUNX1 expression has been observed in other tissues 

specifically in the basal layer of the oral epithelium, and in LGR5+ cells of the 

intestinal crypt and in the more differentiated villus cells (Scheitz et al. 2012). 

RUNX1 expression has been detected also in mammary epithelium as will be 

discussed in detail in Section 1.5. 

1.4.2.2 RUNX2 

RUNX2 has a primary developmental role as a key lineage determinant for 

osteoblast differentiation. In fact Runx2 knockout mice exhibit complete lack of 

bone formation and die soon after birth because of asphyxia caused by lack of 

ossification in the ribs (Komori et al. 1997; Otto et al. 1997). Moreover, deletion 

of a nuclear targeting signal located in the C-terminal domain of Runx2 

phenocopied Runx2-null mice, highlighting the importance of proper nuclear 

localization of this transcription factor (Choi et al. 2001). Mutations of RUNX2 

resulting in a hypomorphic allele, are linked to a congenital human disease, 

cleidocranial dysplasia (CCD), characterized by abnormal clavicles, 

supernumerary teeth, short stature, and a variety of other skeletal changes  

(Mundlos et al. 1997). These mutations affect only one allele of RUNX2 leading 
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to a decrease in wild-type RUNX2 levels and activity. Interestingly Runx2 

haploinsufficiency in mice causes similar phenotypes as observed in CCD families 

(Komori et al. 1997). Moreover RUNX2 is one of few genes undergoing specific 

modifications in the modern human lineage compared to Neanderthal genomes 

(Green et al. 2010) suggesting that an evolutionary change in RUNX2 was 

involved in the determination of morphological traits which characterize modern 

human skeletal development. Those evolutionary observations are confirming 

the key role for RUNX2 as a main regulator of cranial and skeletal features. 

Studies have clarified the role of Runx2 in osteoblast differentiation (Long 2011). 

During embryonic development Runx2 is expressed in osteochondroprogenitors; 

bipotent progenitors which have the capacity to differentiate into osteoblasts or 

chondrocytes (Marie 2008). Then Runx2 expression decreases in cells which will 

differentiate into chondrocytes while remains expressed at high levels in cells of 

the osteoblast lineage and perichondrium. Interestingly, the perichondrium, 

which normally contains bipotent osteochondroprogenitors, becomes hypoplastic 

in Runx2-null mice demonstrating its requirement for the production and/or 

maintenance of the bone progenitors (Komori et al. 1997). Thus during skeletal 

development Runx2 activates a differentiation pathway in bone marrow-derived 

mesenchymal stem cells which is necessary for osteoblast differentiation. Runx2 

expression needs to be downregulated to guarantee correct osteoblast terminal 

differentiation exemplified by mouse models where bone formation is impaired 

by Runx2 overexpression (Liu et al. 2001). In particular overexpression of Runx2 

results in increased osteoblast number but inhibits their terminal maturation, 

resulting in accumulation of less mature osteoblasts and consequent osteopenia 

(Liu et al. 2001). Moreover osteoclastogenesis is stimulated, possibly by the 

increased production of RANKL and MMP-13 by the immature osteoblasts 

(Geoffroy et al. 2002). In addition Runx2 is also necessary for the proper 

function of terminally differentiated osteoblasts: mature mice in which active 

Runx2 levels have been reduced, exhibit decreased expression of the genes 

encoding several bone matrix proteins such as BSP, Osteocalcin and Osteopontin 

(Ducy et al. 1999). These results indicate that RUNX2 proteins levels need to be 

finely tuned throughout the entire process of osteoblast differentiation to 

guarantee a correct skeletal development.  
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Runx2 is also expressed in extra-skeletal tissues where its function is less well 

understood. Expression of Runx2 is high in the haematopoietic stem cell 

population, where it is expressed at higher levels than Runx1, and sharply 

decreases during myeloid differentiation (Kuo et al. 2009). Moreover forced 

Runx2 expression in in vitro differentiation assays, blocks myeloid progenitor 

differentiation capacity (Kuo et al. 2009). Besides myeloid differentiation, Runx2 

is also involved in the regulation of the lymphoid lineage. Runx2 is expressed at 

the earliest stage of thymocyte development (Satake et al. 1995; Blyth et al. 

2010) and enforced expression of Runx2 in transgenic mice under the CD2 

promoter affects T cell development, resulting in an expansion of double-

negative and CD8 immature single-positive cells (Vaillant et al. 2002). Moreover 

additional evidence suggests a role for Runx2 in B-cell differentiation since 

Runx2 transcripts are enriched in a subpopulation of memory B cells (Ehrhardt et 

al. 2008).  

The development of ectoderm-derived appendages results in several highly 

specialized organs such as hair follicles, mammary glands and teeth (Jiménez-

Rojo et al. 2012). Interestingly Runx2 is emerging as a common regulator of 

ectodermal-derived epidermal appendages development. It is found expressed 

during tooth development (Jiang et al. 1999; Bronckers et al. 2001) where it is 

necessary for tooth morphogenesis and odontoblast differentiation (Camilleri & 

McDonald 2006). Runx2-deficient mice have an impaired tooth development, 

which is blocked at late bud stage (D’Souza et al. 1999). Moreover, patients with 

RUNX2 mutations show a wide variety of dental disorders, with supernumerary 

teeth, abnormal tooth eruption, and tooth hypoplasia (Mundlos et al. 1997). 

Runx2 is not involved in the initiation of tooth formation, but it is necessary for 

the regulation of the epithelial –mesenchymal crosstalk required to control tooth 

morphogenesis (Aberg et al. 2004). Only one study so far has analysed the role of 

Runx2 in skin and hair follicle development. Glotzer et al., 2008 found that 

Runx2 is expressed in embryonic and adult hair follicles, and it cycles during hair 

follicle development. Moreover hair follicle maturation is slightly delayed in the 

absence of Runx2 and overall skin and epidermal thickness of Runx2 null 

embryos is reduced (Glotzer et al. 2008). The role of Runx2 in mammary 

development will be discussed in a separate chapter. 
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In addition RUNX2 expression has been found in vascular endothelial cells, testis, 

sperm and other reproductive organs such as placenta, ovary, Mullerian duct and 

prostate  (Sun et al. 2001; Jeong et al. 2008; Blyth et al. 2010). A functional role 

for Runx2 in those tissues however has yet to be clarified. 

1.4.2.3 RUNX3 

In the vertebrate somatosensory system, stimuli are transmitted from the 

periphery to the spinal cord by sensory neurons located in dorsal root ganglia 

(DRG) that flank the spinal cord. Two independent studies demonstrated that 

Runx3 knockout mice manifest severe limb ataxia due to defective development 

of proprioceptive neurons in the dorsal root ganglia (DRG) (Inoue et al. 2002; 

Levanon et al. 2002). During DRG neurogenesis, proprioceptive tyrosine kinase 

receptor C + (TrkC+) and mechanoreceptive (TrkB+) neurons are derived from a 

common bipotent precursor (TrkB+, TrkC+). During segregation of the two 

complementary sensory populations, Runx3 is specifically expressed in TrkC+ 

neurons where it represses TrkB expression, acting as a lineage specifier for 

proprioceptive neurons (Inoue et al. 2002; Levanon et al. 2002). Runx3 also 

regulates axonal outgrowth and/or axonal guidance of proprioceptive DRG 

neurons (Levanon et al. 2002; Chen et al. 2006). As with Runx1 and Runx2, 

Runx3 has been found to play a role in T-cell development (Durst & Hiebert 

2004). Runx3 knockout mice have reduced numbers of CD8+ T-cells in the 

thymus and in the circulating T-cell population together with increased 

expression of CD4 in the peripheral CD8+ cells (Woolf et al. 2003). In addition, 

when T-cells were analysed in immunodeficient mice reconstituted with 

haematopoietic stem cells from the foetal livers of embryos lacking Runx3 mice, 

CD4 was de-repressed in the peripheral cytotoxic T cells (Taniuchi et al. 2002). 

Those studies show how Runx3 is necessary for CD4 silencing and CD8 T-cell 

maturation during T-cell development. 

In addition to neuronal defects, Runx3 deleted mice from Ito’s group developed 

hyperplasia of the gastric mucosa and died shortly after birth apparently due to 

starvation (Li et al. 2002). The increased proliferation rate in the gastric 

epithelia of Runx3 knockout mice was attributed to suppression of apoptosis and 

reduced sensitivity to the growth inhibitory effects of TGF-β1 (Li et al. 2002). 

These results suggest a possible role for Runx3 in regulation of gastric epithelium 
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homeostasis. However, this phenotype was not found in the Runx3 knockout 

mice produced by Levanon et al (2002). The reason for the discrepancy between 

the different Runx3 knockout phenotypes is still not clear, but one factor could 

be the different genetic backgrounds used in these studies (Bae & Ito 2003).  

This overview of Runx genes in developmental processes shows how the field has 

progressed in recent years, moving from a confined view of RUNX proteins as 

master gene regulators of a few specific lineages to a wider role for RUNX 

transcription factors in multiple tissues and cell types. Consequently future 

studies using conditional knockout strategies, will likely find new developmental 

roles for this widely conserved family of transcription factors. We are just 

beginning to discover and understand a more global role for the RUNX proteins 

as regulators of tissue function and maintenance. 

1.4.3   RUNX Genes and Cancer: an Overview. 

As shown previously, RUNX genes act as important regulators during mammalian 

development in a lot of different tissues, through regulation of cell proliferation 

and differentiation. In addition RUNX genes are deeply involved in tuning stem 

cell fate and lineage determination (Appleford & Woollard 2009; Wang et al. 

2010). Therefore it is not surprising that RUNX genes have been implicated in 

cancer. One of the interesting features of RUNX genes in cancer is their 

contrasting behaviour as both oncogenes and oncosuppressors in different types 

of cancers (Blyth et al. 2005; Pratap et al. 2006; Chuang et al. 2012).  An 

overview is presented here of the evidence linking RUNX genes to different types 

of tumours while the role of RUNX genes in breast cancer will be discussed later. 

1.4.3.1 RUNX1 

The first evidence that linked RUNX genes and cancer was the discovery of 

RUNX1 as one of the genes most frequently targeted by chromosomal 

translocation in acute myeloid leukaemia (AML) (Miyoshi et al. 1991) with three 

of the most common chromosomal translocations in acute leukaemia involving 

RUNX1 (Lam & Zhang 2012). The first translocation to be discovered, present in 

10–20% of adult AML, is the t(8;21) chromosomal translocation, which results in 

fusion of the N-terminal portion of RUNX1, including the Runt domain, to a 
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heterologous partner protein, ETO (Miyoshi et al. 1991). Another common 

translocation, TEL-RUNX1, is a result of t(12;21) and it is present in about 25% of 

patients with childhood pre-B cell acute lymphoblastic leukaemia (ALL).  TEL-

RUNX1 produces a fusion with the N-terminal domain of the TEL protein and 

almost the entire RUNX1 protein, including its DNA binding and transactivation 

domains (Golub et al. 1995). The third most common translocation involving 

RUNX1 is t(3;21), which causes the fusion of the N-terminal portion of RUNX1 

including its Runt domain with one of three genes on chromosome three 

including EVI, MDS1, or EAP. This translocation was first discovered in patients 

affected by chronic myelogenous leukaemia and in approximately 3% of therapy-

related myelodysplastic syndrome (MDS) and AML (Rubin et al. 1987). There is 

strong evidence that the products arising from translocations involving RUNX1 

have dominant negative activity with respect to the endogenous RUNX1 product. 

For example fusion of RUNX1 to ETO leads to recruitment of co-repressors and 

active repression of RUNX1-mediated gene transcription while TEL–RUNX1 has 

also been shown to function as a constitutive repressor of RUNX target genes 

(Meyers et al. 1995; Hiebert et al. 1996). Some in vivo genetic studies are also 

supporting the dominant negative function of RUNX1 translocation as shown by  

RUNX1– ETO knock-in mice which produced a very similar phenotype to loss of 

RUNX1 (Yergeau et al. 1997). In the current view, RUNX1 translocations cause 

the block of haematopoietic stem/progenitor cells at an immature 

developmental stage, where the accumulation of additional collaborating 

mutations is required to drive the malignancy. Supporting this hypothesis, two 

studies showed that expression of RUNX1–ETO in human haematopoietic stem 

cells or primary erythroid cells greatly increases their survival and self-renewal 

in vitro (Mulloy et al. 2002; Tonks et al. 2003). In addition to translocations, 

RUNX1 is also targeted by somatic point mutations that have been identified in 

de novo and therapy-related AML and MDS (Osato et al. 1999; Harada et al. 

2003). Again the majority of these mutations were found to be clustered within 

the Runt domain probably resulting in dominant-negative forms of RUNX1, while 

other mutations have been found in the C-terminal portion. Additional hints 

pointing for a tumour suppressor role for RUNX1 in the haematopoietic system 

come from the hereditary disease familial platelet disorder (FPD), an autosomal 

dominant condition characterized by platelet defects, and propensity to develop 

AML (Song et al. 1999). FPD patients frequently show monoallelic RUNX1 
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mutations, and biallelic mutations resulting from a second hit are often 

associated with progression to AML (Preudhomme et al. 2009). Besides a clear 

tumour suppressive role, several evidences show how RUNX1 can function as an 

oncogene in haematopoietic malignancies (Blyth et al. 2005). Retroviral 

mutagenesis studies identified Runx1 as a common insertion site for murine 

leukaemia virus (MLV), mostly in T- or B-cell lymphomas (Li et al. 1999). Those 

insertions result in overexpression of a full-length, gene product (Wotton et al. 

2002). Supporting the data coming from murine models, human cancers also 

manifest evidence of a possible oncogenic role for RUNX1. The strongest 

indication so far comes from a small subset (3–5%) of childhood B-ALL with poor 

prognosis, in which RUNX1 is affected by amplification of a large segment of 

chromosome 21q (Niini et al. 2000; Robinson et al. 2003). RUNX1 amplification 

has also been reported, although much more rarely, in myeloid leukaemias 

(Roumier et al. 2003). Interestingly in vitro studies showed that Runx1 

overexpression causes senescence in wild-type mouse embryonic fibroblasts but 

induces a transformed phenotype in the absence of functional p53 (Wotton et al. 

2004). These observations suggest a scenario where the oncogenic consequences 

of RUNX1 overexpression are manifested only in the presence of a specific 

genetic background.  In addition to haematopoietic malignancies, RUNX1 has 

also been linked to various epithelial cancers, including breast cancer (discussed 

in Chapter 3). 

1.4.3.2 RUNX2 

The oncogenic potential of RUNX2 has been demonstrated in lymphoma models, 

with the discovery of Runx2 as a frequent target for viral insertions in T-cell 

lymphomas of CD2-MYC mice (Stewart et al. 1997). Follow up studies confirmed 

that Runx2 overexpression interferes with murine immature T-cell 

differentiation but other collaborating mutations such as Myc activation or p53 

deletion are required for cancer development (Vaillant et al. 1999; Blyth et al. 

2001). In particular, the mechanism underlying the potent synergy between Myc 

and Runx2 in lymphoma development has been studied in depth (Blyth et al. 

2006). Double transgenic animals co-expressing Myc and Runx2 uniformly 

develop tumours by 36 days on average (Blyth et al. 2001). In preneoplastic cells 

co-expression of MYC counteracts the negative effects of RUNX2 on cell growth 

and proliferation, releasing the T-cell differentiation block conferred by Runx2 
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overexpression.  At the same time, RUNX2 collaborates with MYC by inhibiting its 

ability to induce apoptosis in T-cell tumours (Blyth et al. 2006).  Additional 

evidence of an oncogenic role for RUNX2 comes from studies on a model for 

CBFβ-SMMHC (also known as inv16), a common translocation in human AML 

(Castilla et al. 2004). Retroviral infection of this model identified Runx2 as a 

target for insertional mutagenesis (Kuo et al. 2009). Moreover full-length Runx2 

cooperated with CBFβ-SMMHC in leukaemia development in transplantation 

assays and conversely, Runx2 haplo-insufficiency delayed the onset and reduced 

the incidence of acute myeloid leukaemia (Kuo et al. 2009). Focusing on the 

human disease, so far RUNX2 expression has been detected in plasmacytoid 

dendritic cell malignancy (Dijkman et al. 2007) and in multiple myeloma (Colla 

et al. 2005) so although mouse studies indicate a possible oncogenic role for 

RUNX2 in haematopoietic malignancies, little clinical evidence supporting this 

hypothesis has been found in human disease.  

Focusing on other malignancies, RUNX2 genomic locus 6p21 is amplified in 

osteosarcoma (Lau et al. 2004) and increased expression of RUNX2 in 

osteosarcoma biopsies has been associated with increased tumourigenicity, 

metastases, lower survival, and poor prognosis (Sadikovic et al. 2010; Kurek et 

al. 2010). RUNX2 is consistently upregulated in papillary carcinomas and thyroid 

carcinoma cell lines compared with normal thyroid tissue (Endo et al. 2008; 

Dalle Carbonare et al. 2012). In addition RUNX2 silencing on thyroid carcinoma 

cells caused a decrease in EMT-related molecules and angiogenic factors (Niu et 

al. 2012). In recent years several studies have also linked RUNX2 to prostate 

cancer (Pratap et al. 2006; Blyth et al. 2010). In the conditional Pten-knockout 

mouse model, a widely used mouse model of prostate cancer, Runx2 levels 

increased with growth of prostate tumour suggesting an oncogenic role for this 

transcription factor (M. Lim et al. 2010). Furthermore increased RUNX2 

expression positively correlated with Gleason scores and metastatic potential of 

human prostate cancer (Chua et al. 2009; Akech et al. 2010). Several in vitro 

studies have focused on understanding the possible oncogenic mechanism of 

Runx2 in prostate cancer. In the PC-3 cell line, RUNX2 can mediate N to E-

cadherin switch, activation of AKT and enhanced invasive capacity (Chua et al. 

2009). Conversely, knocking down of RUNX2 expression in the PC3 cell line led to 

increased adhesion to fibronectin and reduced invasion through matrigel (Akech 
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et al. 2010). In a similar way transcriptomic analysis of gene expression in 

response to RUNX2 overexpression in the C4-2B cell line, showed up-regulation 

of genes implicated in cancer progression and cellular migration (Baniwal et al. 

2010). Those results showed how RUNX2 can regulate invasive features of 

prostate cancer cell lines. In addition, RUNX2 positively regulated Survivin, an 

important inhibitor of apoptosis, thus facilitating cancer cell survival in vitro 

(Akech et al. 2010, Lim et al. 2010). 

1.4.3.3 RUNX3 

A tumour suppressor role for RUNX3 has been proposed following studies using 

transgenic knockout mouse models. In particular Runx3 deficiency in the gastric 

epithelia is associated with a preneoplastic state characterized by loss of chief 

cells (Li et al. 2002). Runx3 deleted mice, unlike wild-type mice, consistently 

develop gastric cancer after chemical-induced (N-methyl-N-nitrosourea) 

carcinogenesis (Ito et al. 2011). These results, published by Ito’s group, have 

caused some controversy on the actual role of Runx3 in stomach cancer. In fact 

a Runx3 knock-out model created by Yoram Groner’s laboratory showed no 

evidence of gastric abnormalities (Levanon et al. 2002). Moreover RUNX3 protein 

was not detectable at the protein level in the gastric epithelium by Groner’s 

group (Levanon et al. 2011), questioning the tumour suppressor role for this 

protein in this organ. Heterozygous inactivation of Runx3 has also been shown to 

induce colon adenoma at a frequency similar to ApcMin/+ mice (Ito et al. 2008), 

data again not reproducible by other laboratories. Runx3 has also been shown to 

be required in the lung during bronchiolar epithelial cell differentiation and 

Runx3 deletion leads to lung adenoma development in aging mice (Lee et al. 

2010). One recent study has analysed the role of Runx3 in neuroblastoma: high 

levels of RUNX3 expression contribute to the favourable outcome in patients 

with neuroblastoma. Furthermore Runx3 tumour suppressor role in this 

malignancy could depend on its direct repression of MYCN oncogenic activity (Yu 

et al. 2013). All the evidence presented so far suggests a causal link between 

loss of Runx3 and cancer development. However, compared to RUNX1 and 

RUNX2, point mutations in the RUNX3 gene are rarely identified. This 

phenomenon could be explained by the finding that RUNX3 inactivation in cancer 

seems to occur mainly through aberrations in DNA methylation or histone 

modification (Lee 2011). Importantly, multiple studies have shown that 
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hypermethylation and subsequent silencing of RUNX3 gene expression is 

prevalent in solid tumours of breast, colon, lung, bladder and gastric origins 

(Chuang & Ito 2010). These results suggest a strong tumour suppressive role for 

RUNX3. However evidence indicates that RUNX3 can also act as an oncogene 

(Blyth et al. 2005). In lymphomas Runx3 is targeted by viral insertions, which 

drive protein overexpression (Wotton et al. 2002). Moreover Runx3 is expressed 

in a considerable proportion of pancreatic tumours suggesting that Runx3 might 

play a role in the pathogenesis of pancreatic ductal adenocarcinoma (Li et al. 

2004). RUNX3 is also overexpressed in skin (Lee et al. 2011), head and neck 

(Kudo et al. 2011) and ovarian cancers (Nevadunsky et al. 2009) again supporting 

an oncogenic role for RUNX3 in those tumours. The evidences linking RUNX3 to 

breast cancer will be discussed in detail later in the thesis. 

1.4.3.4 RUNX genes in tumours: mechanism and pathways.  

Runx genes can regulate cell growth and proliferation through a tight control on 

the cell cycle: not surprisingly the effects of Runx genes on the cell cycle are 

highly context dependent and dose sensitive (Coffman 2009). RUNX protein 

levels oscillate throughout the cell cycle indicating that variations in RUNX 

activity influence cell cycle progression. Indeed RUNX1 has been found to 

stimulate G1 to S progression in haematopoietic cells (Strom et al. 2000) while 

overexpression of RUNX2 in MC3T3-E1 osteoblastic cells delays progression from 

G1 to S phase (Galindo et al. 2005). Another way RUNX proteins regulate the cell 

cycle is through the control of cell cycle regulators: for example RUNX1 

represses p21 transcription, inducing cell cycle progression, in hair follicle stem 

cells in vivo (Lee et al. 2013). On the other hand RUNX activity is modulated by 

cell cycle regulators such as cyclins and cyclin-dependent kinases (Cdks): for 

example RUNX protein is ubiquitinated and degraded following phosphorylation 

by Cdk–cyclin complexes such as Cdk4/cyclin D1 and Cdk1/cyclin B (Biggs et al. 

2006). Furthermore Cdk/cyclin complexes can affect RUNX function through 

other mechanisms such as disruption of RUNX-DNA interaction, displacing of co-

receptors and inhibition of RUNX transactivation ability (Chuang et al. 2012). In 

addition to their role on cell cycle, RUNX proteins can control cell growth 

through expression of genes required for protein synthesis, such as rRNA genes 

(Young et al. 2007). Beyond regulation of cell growth and proliferation, RUNX 

can influence tumour growth through control on apoptosis and senescence.  In 
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particular RUNX proteins can either activate apoptosis through induction of pro-

apoptotic proteins such as BAX and BIM (Eliseev et al. 2008) or inhibit MYC-

induced or p53-dependent cell death (Blyth et al. 2006; Ozaki et al. 2013). In 

addition Runx genes play a key role in oncogene-induced senescence, as shown 

by in vitro experiments on primary mouse embryonic fibroblasts (MEFs) where, 

after aberrant Ras expression, all RUNX proteins are necessary to induce a 

senescence-like growth arrest (Kilbey et al. 2008).  RUNX genes are also playing 

a role in the regulation of genes that are intimately associated with tumour 

progression, invasion and metastasis including osteopontin, bone sialoprotein 

and matrix metalloproteinase. Again the role of Runx is highly isoform- and 

context- dependent: RUNX2 has been shown to promote invasiveness of breast 

and prostate cancer cells (Pratap et al. 2005), whereas RUNX3 expression 

inhibits metastasis of colon cancer cells (Peng et al. 2008) and decreases cell 

migration and invasion abilities of renal cell carcinoma cells (Chen et al. 2013).   

Runx genes are intertwined with major intercellular signalling pathways 

associated with animal development, each of which is also known to be hijacked 

during neoplastic transformation.  

TGFb signalling 

Transforming growth factor-β (TGFβ) signalling is a key pathway involved in 

various developmental programmes where it regulates multiple processes such 

as differentiation, proliferation, apoptosis and adhesion (Massagué 2012). 

Interestingly like Runx, the TGF-β pathway can play opposite roles as it serves to 

both inhibit the growth of many normal cells and induce highly malignant tumour 

processes such as EMT.  Multiple lines of evidence support cooperation between 

Runx and the two major branches of TGF-β superfamily: TGF-β and bone 

morphogenetic proteins (BMPs) (Ito & Miyazono 2003). All RUNX members 

interact with the SMAD transcription factors which are key effectors of the TGF-

β pathway. RUNX proteins physically interact with Smad2/3 acting on the TGF-β 

signalling pathway and cooperatively stimulating the synthesis of IgA (Pardali et 

al. 2000). In addition, the ability of RUNX3 to augment the TGF-β pathway is 

essential for its tumour suppressor role in gastric cancer since gastric 

hyperplasia in Runx3 knockout mice occurs, in part, through defective TGF-β -

mediated apoptosis (Li et al. 2002). In another example, RUNX2 interacts with 
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SMAD5 to perform critical roles in BMP-induced bone formation (Lee et al. 2000). 

RUNX2 can also regulate the expression TGF-β type I receptor (Ji et al. 1998). 

Wnt Signalling 

Wnt signalling is a key regulator of stem cell differentiation and maintenance in 

different systems (Cadigan & Peifer 2009). Interestingly several evidences, 

coming from different experimental models, are linking RUNX and Wnt 

signalling. In particular, in sea urchin embryos, Runt-1 expression promotes the 

expression of several Wnt genes (Robertson et al. 2008). In C.Elegans, Rnt-1 

collaborates with Wnt signalling to regulate asymmetric divisions in the T-blast 

stem-cell lineage (Kagoshima et al. 2007). In osteoblasts and chondrocytes Wnt 

signalling induces differentiation and activates RUNX2 where Wnt induces 

chondrocyte hypertrophy through RUNX2 upregulation (Dong et al. 2006) while 

during osteogenesis, RUNX2 is a direct target of β-catenin/TCF1 for the 

stimulation of bone formation (Gaur et al. 2005). Finally in the skin epithelium, 

RUNX1 is an activator of Wnt signalling since in vivo loss of RUNX1 results in a 

generalized decrease in LEF1 protein and in canonical Wnt signalling (Osorio et 

al. 2011). 

Notch signalling 

The Notch signalling pathway plays a key role in modulating cell fate decisions 

throughout the development of invertebrate and vertebrate species (Fortini 

2009). Studies in Zebrafish showed that Notch signalling activates RUNX1 

expression, which in turn drives haematopoietic stem cell and progenitor 

expansion (Burns et al. 2005). In Drosophila haemocytes (blood cells), where 

Notch promotes crystal cell differentiation, the RUNX protein Lozenge (Lz) 

directs Notch to activate a combination of target genes which drives cells into 

the differentiation programme (Terriente-Felix et al. 2013). In bone 

development, Notch signalling in bone marrow acts to maintain a pool of 

mesenchymal progenitors by suppressing osteoblast differentiation through HES 

or HEY proteins, which diminish RUNX2 transcriptional activity via physical 

interaction (Hilton et al. 2008). 
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The Hippo/MST2 pathway 

The Hippo/MST2 signalling pathway is a potent regulator of organ growth, and its 

deregulation leads to tumourigenesis (Zhao et al. 2010). Several studies have 

uncovered a crosstalk between RUNX and components of the Hippo pathway. 

YAP1 (Yes-associated protein), the main downstream target of the mammalian 

Hippo pathway, interacts with the PY motif of RUNX proteins via its WW domain 

(Yagi et al. 1999). Following this interaction, RUNX proteins recruit YAP1 to 

RUNX target promoters such as Osteocalcin, to stimulate transcription (Cui et al. 

2003). In addition, RUNX3 forms a complex with two other components of the 

Hippo/MST2 pathway, scaffold protein SAV1 and tumour suppressor LATS2 kinase 

and it is necessary for Hippo-mediated cell death (Min et al. 2012). 

1.5   RUNX genes in mammary development 

The first evidence of Runx expression in mammary tissue came from a Runx2 

knock-out mouse where expression of LacZ from the targeted allele was 

detected in the embryonic mammary epithelium (Otto et al. 1997).  Later work 

showed that RUNX2 is expressed in normal mammary epithelial, and some breast 

cancer, cell lines (Selvamurugan & Partridge 2000; Inman & Shore 2003). 

Moreover RUNX2 can directly regulate several mammary specific genes such as 

Osteopontin (Inman & Shore 2003) and Beta-casein (Inman et al. 2005). All three 

Runx genes were shown to be expressed in the adult mouse mammary epithelium 

with expression fluctuating during different stages of mammary development 

(Blyth et al. 2010). At the transcript level, Runx1 is the most abundant gene and 

all three Runx transcripts follow a similar pattern of expression in whole gland 

extracts; decreasing during late pregnancy and lactation and rising again during 

involution. These stage-specific fluctuations in transcript levels suggest that 

RUNX proteins undergo a specific spatial and temporal regulation in mammary 

epithelium, underlining a possible new role for these transcription factors in the 

context of mammary development. The expression of RUNX genes has also been 

investigated in MCF10A cells, a human mammary epithelial cell line derived from 

a basal-like fibrocystic disease; RUNX1 mRNA is 15 fold higher than RUNX2 while 

RUNX3 is undetectable (Wang et al. 2011). Interestingly, RUNX2 overexpression 

in the MCF10A cell line cultured in a 3D culture model disrupts normal acini 

development resulting in increased cell proliferation and hyperplasia  (Pratap et 
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al. 2009).  On the other hand, confirming the exquisite cell context dependence 

of RUNX genes, a different study showed that loss of RUNX1 in MCF10A resulted 

in hyperplastic acini (Wang et al. 2011). These results suggest key independent 

roles for both RUNX1 and RUNX2 in regulating normal mammary epithelium 

growth and homeostasis, however direct in vivo genetic evidence, through 

conditional knock-out or knock-in transgenic models is still lacking.  A study from 

our lab is the first to address this need (McDonald et al, submitted). Using a 

transgenic mouse model in which Runx2 is placed under the transcriptional 

control of an MMTV promoter (MMTV-Runx2 mouse) we have shown that ectopic 

Runx2 expression leads to a defect in alveolar development and lack of milk 

production in post-parturient transgenic mice.  Downstream analysis showed that 

Runx2 overexpression could block lactation through its negative effects on the 

prolactin signalling pathway as shown by downregulation of prolactin receptor 

and decreased pSTAT5 activation in MMTV-Runx2 lactating glands. These results 

suggest that RUNX2 is involved in the regulation of mammary alveolar progenitor 

differentiation in vivo. Moreover MMTV-Runx2 transgenic glands are 

characterized by delayed ductal elongation during virgin development and a 

reduction in tertiary side-branching in the mature gland. These results represent 

the first evidence of an in vivo role for a member of the RUNX transcription 

family in mammary tissue. A natural extension to these studies using conditional 

knock-out models has been addressed in this thesis. 

1.6   RUNX genes in breast cancer 

A growing body of evidence has linked RUNX genes with breast cancer (Ferrari et 

al. 2013; Chimge & Frenkel 2012).  The most studied RUNX gene in the context 

of breast cancer is RUNX2 while recent studies are also indicating a possible role 

for RUNX1 and RUNX3. The most compelling evidence linking RUNX1 to breast 

cancer comes from two recent sequencing studies which identified RUNX1 

somatic mutations in a small number of human breast cancer cases (Ellis et al. 

2012; Banerji et al. 2012). In addition RUNX1 was identified as a downregulated 

gene in a 17-gene signature associated with metastasis of adenocarcinoma 

nodules of diverse origin, including breast cancer (Ramaswamy et al. 2003). 

Decreased expression of RUNX1 was also detected in BC compared to normal 

breast epithelial cells, with a more pronounced decrease with increasing tumour 

invasiveness (Kadota et al. 2010). Finally,  RUNX1 silencing in MCF10A cells led 
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to the formation of hyperplastic acinar structures in 3D cultures (Wang et al. 

2011). There is however also studies suggesting a possible oncogenic role for 

RUNX1 in breast cancer (Janes 2011) which is discussed in greater detail in 

Chapter 6.   

In human breast cancers expression of RUNX3 decreases during human BC 

progression and reduced RUNX3 expression predicts worse survival, suggesting a 

putative tumour suppressive role for RUNX3 in BC (Jiang et al. 2008; Bai et al. 

2013). Moreover in vivo studies showed that 20% of Runx3 heterozygous knockout 

mice develop spontaneous ductal carcinoma at an average age of 14.5 months 

(Huang et al. 2012). However, as work from our laboratory is unable to detect 

Runx3 gene expression in purified mammary epithelial cells from normal mice 

(see Chapter 3) we question the role of Runx3 as a tumour suppressor in this cell 

lineage. As the study by Huang and colleagues use a constitutive knockout model 

it is possible that reduced gene dosage in the non-autonomous tissue (e.g. 

stroma) may promote tumourigenesis.  This discordance is somewhat mirroring 

the unsolved controversy about the possible tumour suppressive role of Runx3 in 

gastric and colorectal cancers (Ito et al. 2008; Li et al. 2002; Levanon et al. 

2011). Interestingly all these in vivo cancer studies are based on the same Runx3 

knock-out mouse (Li et al. 2002) and these results have not been confirmed by 

other laboratories (Levanon et al. 2003). Further studies are needed to clarify 

this discrepancy.  

While RUNX1 and RUNX3 have a supposedly tumour suppressor role in the 

mammary epithelium, evidence indicates that RUNX2 could have oncogenic 

properties in breast cancer. RUNX2 is upregulated in some human breast cancer 

cell lines compared to normal mammary epithelial cells (Lau et al. 2006; Inman 

& Shore 2003). In addition RUNX2 was identified as one of the most upregulated 

genes in a comparative transcriptomic analysis of invasive versus non-invasive 

breast cancer cell lines (Nagaraja et al. 2006).  Since the metastatic cell line 

MDA-MB-231 expresses high levels of RUNX2, much of the research published to 

date to understand the role of RUNX2 in breast cancer, focus on this in vitro 

model. RUNX2 inhibition in these cells results in a less invasive phenotype in 

vitro together with reduced osteolytic disease in vivo (Javed et al. 2005). 

Conversely RUNX2-negative MCF-7 cells become more invasive after RUNX2 

overexpression (Pratap et al. 2006; Leong et al. 2010).  Inhibition of RUNX2 in a 
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3D culture model reverted the disorganized structures formed by MDA-MB-231 

cells to a more normal phenotype resulting in formation of acinar-like structures 

(Pratap et al. 2009). RUNX2 deletion was also shown to inhibit tumour growth in 

mammary fat pad transplantations of MDA-MB-231 cells (Pratap et al. 2009). In 

line with these observations, RUNX2 regulates genes that are closely associated 

with tumour invasiveness, metastasis and angiogenesis, such as BSP, OPN, MMPs 

and VEGF (Pratap et al. 2005; Inman & Shore 2003; Javed et al. 2005; Barnes et 

al. 2003). Interestingly many of these RUNX2-dependent genes, seen to be 

upregulated in breast cancer cell lines, are also the same genes which are 

required for bone development and turnover (MMPs, RANKL, OPN, BSP) (Pratap 

et al. 2006).  This observation has led to the formulation of the ‘osteomimicry’ 

theory in which RUNX2-mediated expression of bone-specific genes confers 

osteoblast-like features to breast cancer cells allowing them to home and thrive 

in the bone microenvironment, leading to bone metastasis formation (Barnes et 

al. 2003). However the in vivo proof of this theory is still lacking and only a few 

in vitro studies support this hypothesis. During bone metastasis, breast cancer 

cells must induce osteoclast activity and block osteoblast differentiation in order 

to create a vital space in which to grow (Suva et al. 2011). Interestingly the 

ability of two breast cancer cell lines to inhibit osteoblast differentiation and 

enhance osteoclast differentiation is abrogated upon deletion of RUNX2 in in 

vitro  co-culture assays (Barnes et al. 2004).  Moreover, in the MDA-MB-231 

model, the RUNX2/CBF-β complex was shown to inhibit osteoblast 

differentiation through the induction of Sclerostin, a known inhibitor of bone 

formation (Mendoza-Villanueva et al. 2011).  Taken together these data are 

indicating RUNX2 as a key regulator of the invasive and metastatic potential of a 

few breast cancer cell lines in vitro. Recent publications have also linked RUNX2 

in primary breast cancer. In particular, our work and that of others has found 

expression of RUNX2 restricted to specific subsets of breast cancer.  In a study 

from Das and co-workers, nuclear RUNX2 expression was detected in 28% of 

breast tumours and this expression was significantly associated with ER/PR 

positive, Grade 2 tumours (Das et al. 2009).  However, this study is in contrast 

with other publications (McDonald et al. submitted; Khalid et al. 2008) which 

identified a positive association between RUNX2 and ER-negative disease. Meta-

analysis of gene expression in 779 breast cancer biopsies showed a negative 

correlation between the expression of ER and RUNX2 target genes (Khalid et al. 
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2008).   In a small TMA study, high RUNX2 expression was associated with worse 

clinical outcome, and this correlation was more marked in ER negative patients 

(Onodera et al. 2010), while unpublished data from our laboratory confirm the 

correlation between RUNX2 expression and ER negative patients in human breast 

cancer. Assessment of RUNX2 expression in a large tissue microarray constituted 

by 459 primary human breast cancers showed that high RUNX2 expression 

correlates with poor overall patient survival and ER negative tumours (McDonald 

et al. submitted). Supporting evidence of a role for RUNX2 in ER negative disease 

comes from in vitro analysis where high RUNX2 expression is found specifically in  

“basal-like” (ER-negative) cell lines, and not in those of a ‘luminal-like’ subtype 

(Lau et al. 2006). Confirming the negative correlation between RUNX2 and 

oestrogen, recent in vitro experiments showed that RUNX2 expression can 

decrease oestrogen-driven colony formation of breast cancer cells in soft agar 

colony assays (Chimge et al. 2012) while estradiol treatment antagonizes RUNX2-

induced EMT and invasiveness in vitro, in part through decreased expression of 

the EMT-inducer SNAI2 (Chimge et al. 2011).  

To conclude, the picture of RUNX genes in breast cancer is still far from 

complete and their dualistic role as oncogenes and tumour suppressors (Blyth et 

al, 2005), highlight their extreme context dependency. It is likely that each of 

the Runx proteins will play different, and even opposing, roles in different 

subtypes of breast cancers. Better characterization of RUNX function in small 

subgroups of breast cancer will hopefully translate into more targeted therapies 

which could greatly benefit subsets of patients.  
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Aims of the thesis 

 

The mammary gland is a complex secretory organ that undergoes dramatic 

changes during its entire development. In order to maintain such complexity, 

mammary gland development is a tightly controlled process that involves a wide 

variety of molecular regulators. A better understanding of the regulatory system 

involved in mammary development is needed to improve our knowledge of 

breast cancer initiation and progression. This could translate in the 

identification of new therapeutic targets for the treatment of this deadly 

disease. Accumulating evidence suggests a possible role for RUNX transcription 

factors in mammary gland development and in breast cancer. However this 

evidence is mainly coming from in vitro studies and no in vivo study has been 

carried out so far.  

The aim of the first part of this thesis was to determine the physiological role of 

Runx genes in normal mammary gland development through understanding the 

expression of Runx genes in the mammary epithelium and utilising an in vivo 

conditional deletion strategy to create Runx-specific knock-out in the mouse 

gland. 

Besides being key developmental regulators, Runx genes have recently emerged 

as major players in stem cell biology, coordinating cell-fate decisions and 

lineage differentiation. It was intriguing then that results achieved in the first 

part of this thesis suggested Runx expression may correlate with mammary stem 

cells.  Therefore the involvement of RUNX proteins in mammary stem cell 

physiology was investigated in Chapter 4 through a combination of in vitro 

(mammospheres, matrigel colony-forming assay) and in vivo assays.   

Finally, considering that genes involved in normal tissue development often take 

part in cancer initiation and progression, the role of RUNX1 and RUNX2 in breast 

cancer was characterized through a combination of in vitro and in vivo 

modelling as discussed in Chapter 5 and Chapter 6.  
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2 Materials & Methods 

 

 

2.1 Animals 

All animal work was carried out under UK Home Office guidelines in line with 

Animal (Scientific Procedures) Act 1986 and the EU Directive 2010. Experimental 

cohorts and breeding stocks were maintained for defined periods of time and 

health of animals was checked at least two times weekly. Animals were 

euthanized by cervical dislocation or by carbon dioxide (CO2) asphyxiation. 

Mouse ear notching and general maintenance (food, water and housing) was 

carried out by the Biological Services Unit at the Beatson Institute. Genotyping 

was carried out by Transnetyx, Inc. (Cordova, TN, US). 

2.1.1  Characterization of the Runx2flx/flx mouse model 

The Runx2flx/flx mouse was made in the lab of Professor Mike Owen by Theresa 

Higgins and Iain Rosewell, (ICRF labs, London) and characterised here. To 

generate Runx2flx/flx mice one loxP site was inserted in the intron 5' of exon 3 and 

a ploxPneo cassette in the intron 3' of exon 3 of the Runx2 gene. Exon 3 was 

chosen because that was the one encoding for the RUNX2 DNA binding domain 

(FIGURE 2-1-A). A gPCR on DNA extracted from the tail of Runx2flx/flx mice was 

carried out to amplify each loxP site using the following primers: loxP1 (F-

GACCTCCTCCCTACAGCTTCG) and R-CCCTCGCGTTTCAAGGTGCCG), loxP2 (F-

CAGCTGACAGCAGGTTGAAA; R-TGTCTGTTGTGCCCAGTCAT) and loxP3 (F-

TCGCTAACTTGTGGCTGTTG; R-TGGATGCTCTCAAAAAGGAAA).  The PCR products 

were purified from contaminants (primers, nucleotides, enzymes, salts and other 

impurities from DNA samples) with QIAquick PCR Purification Kit (Qiagen). Then 

the location and the integrity of the loxP sequences were confirmed through 

DNA sequencing of the PCR products (FIGURE 2-1-B). To confirm the 

recombination capability of the Runx2flx/flx mouse model, mouse embryonic 

fibroblasts (MEFs) from Runx2flx/flx and Runx2WT/WT embryos, were retrovirally 

transfected with a Cre-expressing plasmid (pBABE-Puro-Cre) or a control empty-
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vector (pBABE-Puro). After 5 days of selection in Puromycin (2µg/ml) transfected 

MEFs were harvested and Runx2 expression was assessed both at the RNA and at 

the protein level (FIGURE 2-2).  

2.1.2   Other mouse strains 

Runx1flx/flx mice (Growney et al. 2005), BLG-Cre mice (Selbert et al. 1998),and 

Z/EG reporter mice (Novak et al, 2000) have all been described previously.  K14-

Cre mice (Dassule et al. 2000) were obtained from The Jackson Laboratory.  

MMTV-PyMT (Guy et al. 1992) and MMTV-Her2 (Muller et al. 1988) tumour 

samples were obtained from mouse cohorts bred in our facilities. BLG-

Cre/Brca1flx/flx/p53+/- mouse tumour samples were kindly provided by Prof. Matt 

Smalley (European Cancer Stem Cell Research Institute, Cardiff). Apc1572T mouse 

tumour samples were kindly provided by Prof. Riccardo Fodde (Erasmus Medical 

Centre, Rotterdam). BLG-Cre/Ptenflx/flx Apcflx/flx mouse tumour samples and the 

Catnb+/lox(ex3) mouse model (Harada et al. 1999)  were kindly provided by Prof. 

Owen Sansom (Beatson Institute for Cancer Research, Glasgow). 

FVB wild type, SCID and CD1-nude mice were obtained from Charles River 

Laboratories (UK). 
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Figure 2-1   Characterization of the Runx2flx/flx mouse model. 

Schematic representation of the Runx2flx/flx mouse (exon3 genomic locus), with the relative 
position of loxP sequences and Neomycin cassette (neo) (A). Sequences of the three loxP sites as 
obtained from DNA sequencing (highlighted in yellow). The expected loxP sequence of 34bp is 
shown above (B). 
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Figure 2-2  Runx2 deletion after in vitro Cre-recombination. 

RT-PCR on MEFs extracted from Runx2flx/flx and Runx2WT/WT embryos and retrovirally transfected 
with a Cre-expressing plasmid (WT-Cre, Flx-Cre) or a control empty vector (WT-Puro, Flx-Puro). 
β-Actin was used as loading control (A). Western blot on cytoplasmic (C) and nuclear (N) extracts 
extracted from MEFs derived from Runx2flx/flx and Runx2WT/WT embryos; MEFs were retrovirally 
transfected with a Cre-expressing plasmid (WT-Cre, Flx-Cre) or a control empty vector (WT-Puro, 
Flx-Puro). Lamin A/C was used as a nuclear control. β-Actin was used as a total loading control 
(B). 
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2.2   Wholemount/histological analysis of mammary glands 

For wholemount analysis, inguinal mammary glands were dissected, air dried 

onto a glass slide and fixed in Carnoy’s (300ml 70% EtOH, 150ml chloroform, 50 

ml acetic acid).  Glands were rehydrated through ethanol and stained with 

carmine alum overnight.  Glands were dehydrated in increasing concentration of 

EtOH, cleared in xylene, mounted in Permount (Thermo Fisher) and captured 

with a Zeiss stereomicroscope.  For pregnancy samples the state of pregnancy 

was determined by checking vaginal plugs (as carried out by BSU staff). For 

involution studies a 7 day forced involution strategy was used where pups were 

standardised to 6, culled 7 d after parturition to initiate involution and the dam 

was taken at the selected time points. For histological analysis, adult mammary 

glands were dissected into 10% neutral buffered formalin and processed for 

haematoxylin and eosin (H&E) staining.  For histological analysis of embryonic 

mammary glands, the age of embryos were determined by checking vaginal 

plugs. Whole embryos were taken at the different time points and fixed into 

neutral buffered formalin for at least 1 week. Embryos were then cut 

transversally at the level of the 4th and 3rd mammary gland, embedded in 

paraffin blocks and serial sections were taken to identify the embryonic 

mammary duct tree. All histopathological processing was carried out by Mr. Colin 

Nixon and staff. 

2.3  In vivo imaging 

In vivo GFP imaging was carried out on freshly dissected mammary tissue. 

Briefly, gland #4 was dissected and spread onto a glass microscope slide. The 

gland was then imaged using OV-100 Imaging System (Olympus). 

CD-1 nude mice were injected with 106 cells/mouse in the tail vein (procedure 

carried out by Derek Miller). Metastatic growth was monitored weekly by in vivo 

luciferase imaging. Mice were anaesthetized with isofluorane and 

subcutaneously injected with 150 mg/kg of D-luciferin (PerkinElmer, US) in PBS. 

Bioluminescence images were acquired 5 min after injections, to allow the 

distribution of D-luciferin in the entire body of the animal, by using the IVIS 

Spectrum Imaging System (PerkinElmer, US). 
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2.4  Fat pad transplantation 

Single cell suspensions of freshly extracted mammary epithelial cells (see below) 

were re-suspended into a solution of PBS/25% Matrigel™ Matrix Phenol Red-Free 

(BD Biosciences, CAT 356237) at the desired concentration to allow a final 

injection volume of 10µl. Cells were injected using a 10µl Hamilton syringe 

(Hamilton, CH) into the inguinal fat pads of 3-week-old SCID females cleared of 

endogenous epithelium by surgical intervention. At the point of clearing, fat 

pads were mounted on a slide and stained for wholemount analysis to confirm 

the clearing of endogenous epithelium. The outgrowths were analysed 7 weeks 

after transplantation by GFP imaging (Leica M205 FA) and wholemount analysis 

(Zeiss Semi 2000-C). 

 

2.5  Cell lines 

Mouse embryonic fibroblasts from Runx2flx/flx and Runx2WT/WT embryos (previously 

extracted by Dr. Karen Blyth) were expanded in culture using DMEM (Gibco), 10% 

Fetal Calf Serum (FCS), 1% Pen/strep (Gibco) and 1% L-Glutamine (Gibco). 3SS 

(mouse leukaemia cell line) nuclear extracts (kindly provided by Prof. Ewan 

Cameron) were used as a negative control in RUNX1 western blots. MDA-MB-231-

luc-D3H2LN cells (kind gift of Dr Dan Croft) were grown in Hyclone MEM/EBSS 

media (Thermoscientific), 10% FCS; 1% MEM/NEAA (non-essential amino acid); 1% 

of Sodium Pyruvate; 1% Pen/strep and 1% L-Glutamine. MDA-MB-468, HCC-70, 

BT-549, T47D, MDA-MB-361 and BT-474 nuclear extracts were generated by 

Susan Mason.  hMEC-TERT cell line (a kind gift of Barbara Chaneton) was grown 

in HuMEC complete media (Gibco). All cell lines were grown in a Galaxy+ 

incubator (RS Biotech) at 37oC with 5% CO2. Cells were dissociated enzymatically 

and passaged using a solution of 0.05% trypsin (Gibco). 

2.5.1   Cell line transfections 

To generate RUNX2 stable knock-out, MDA-MB-231-luc-D3H2LN cells were 

transfected with 4 different RUNX2 Sh-RNAs and 1 scrambled control (HuSHTM, 

Origene) through electroporation using Nucelofector Kit V, program X-013 

(Amaxa, Lonza).  After electroporation, cells were allowed to recover for 24h 
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and then selected in puromycin selection media (1µg/ml) for 2 weeks. Selected 

cells were then FACS-sorted for GFP expression for at least three times to 

achieve maximum population purity. 

To generate RUNX1 overexpressing cells, hMEC-TERT were transfected with p-

BABE-Puro-Runx1 or p-BABE-Puro (kindly provided by Anna Kilbey) through 

electroporation using Nucelofector Kit V, program T-013 (Amaxa, Lonza). After 

electroporation, cells were allowed to recover for 24h and then selected in 

puromycin selection media (10µg/ml) for 2 weeks. 

2.5.2   Cell line assays 

2.5.2.1 2D Growth curve  

Cells were seeded in triplicate in 12 well plates (5x104 cells/well) and harvested 

at 24, 48, 72 and 96 hours. Cells were trypsinised and counted using the Trypan 

Blue (Life Technologies) exclusion method on haemocytometer.  

2.5.2.2 Tumourspheres 

Cells were dissociated enzymatically (Trypsin) and mechanically by pipetting to 

single-cell suspension and plated on nonadherent plates (Corning) at a 

concentration of 1000 cells/ml. Cells were grown in a serum-free Hyclone 

MEM/EBSS media (Minimal Essential Medium with Earle's, Thermoscientific) with 

1% Pen/strep and 1% L-Glut (Gibco) supplemented with B27® (Gibco), 20 ng/ml 

EGF (Sigma), 20 ng/ml b-FGF (Sigma), BSA 0.4% and 4 µg/ml Heparin (Sigma). 

Tumourspheres were grown for 7 days and colonies were counted under a bright 

field microscope. 
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2.6   Primary mouse mammary cells 

Mouse mammary epithelial cells (MMECs) were extracted from mammary glands 

of adult virgin mice (more than 12 weeks of age) unless otherwise specified. At 

least 2 mice x group were used for virgin analysis, 1 per group for other 

developmental stages. Glands #4 were dissected and the lymph node excised to 

avoid contamination with non-mammary cells; glands #2-3 were dissected 

avoiding the surrounding muscular tissue. Dissected glands were placed into 

50ml falcon tubes with cold 15ml DMEM (0% FCS, + Pen/Strep) and kept on ice. 

Then glands were finely minced using a McIlwain tissue chopper (Mickle 

Laboratories, UK) at maximum speed and force until a liquid slurry with white 

fat on the top was formed. The minced tissue was then transferred into a 50ml 

falcon tube and digested for 90 mins in 15ml of Collagenase (300 U/ml, Sigma) 

plus Hyaluronidase (100 U/ml, Sigma) solution in DMEM 0% FCS at 37˚C under 

shaking. Tubes were then spun down at 300g for 5 min, pellets were 

resuspended in 5ml DMEM 0% FCS and transferred to a 15ml falcon tube. After an 

additional centrifugation (300g for 5 min), pellets were incubated for 5min at RT 

in 2ml NH4Cl solution (0.8% in H2O) to eliminate red blood cells. The reaction 

was stopped with 3ml of DMEM 0%FCS and cells were spun down (300g for 5 min). 

After eliminating the supernatant, 2ml of TEG (0.25% trypsin and 1mM EGTA in 

PBS) plus 10% DNAse (1mg/ml in PBS, Worthington) were added to the pellet 

followed by serial pipetting to allow dissociation. The digestion solution was 

then incubated for 10 min at 37˚C in a water bath. After incubation all 

remaining DNA clumps were dissolved by pipetting or by additional DNAse 

treatment. The digestion was stopped by addition of DMEM 10% FCS followed by 

filtering with a 70µm filter to eliminate remaining clumps of tissue. After an 

additional centrifugation step (250g for 5 min) pellets were resuspended in the 

required final media. The single cell suspension was checked and counted using 

the Trypan Blue exclusion method on haemocytometer. 

2.6.1   Flow cytometry/cell sorting 

For mammary population profiling virgin mammary glands were dissected (at 

least 3 groups of n≥3 for Runx2flx/flx and Runx2WT/WT cohorts); for pregnancy, 

lactation and involution stages (at last 3 groups of n=1 for Runx2flx/flx and 

Runx2WT/WT cohorts).  Tissues were processed to obtain single cell suspensions of 
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mammary epithelial cells (see above). Cells were labelled with CD24- 

Phycoerythrin (PE) (1:200, BD Bioscience), CD29-PerCP-eFluor® 710 (1:100, 

eBioscience), CD31- Allophycocyanin (APC) (1:100, BD Bioscience) and CD45-APC 

(1:200, BD Bioscience) in preparation for flow cytometry (1h incubation on ice in 

the dark). DAPI (1:250, Sigma) was added to the samples at the end of antibody 

incubation, 5 minutes before analysis. For each day of FACS analysis, single 

labelled controls were prepared to confirm the gating strategy. Live Lin- cells 

(DAPI/CD31/CD45 negative) were gated on a BD FACSAria, doublet exclusion was 

sequentially performed for FSC (FSC-A vs FSC-H plot) and single cells were 

analysed to assess GFP+ populations in CD24hiCD29lo (luminal) and CD24hiCD29hi 

populations (basal/myoepithelial) using FlowJo software (FIGURE 2-3).  For cell 

sorting, CD24hiCD29lo and CD24hiCD29hi populations were collected and processed 

for RNA extraction and quantitative RT-PCR. The efficacy of the sorting strategy 

was confirmed by RT-PCR for a basal (CK5) and a luminal (CK18) marker (FIGURE 

2-4). 
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Figure 2-3   FACS gating strategy for mammary population profiling. 

Cells were first gated based on forward and size scatter to exclude debris (SSC-A/FSC-A). Alive 
cells were selected based on DAPI staining (DAPI/FSC-A). Blood and endothelial cells were 
excluded based on CD31 and CD45 staining (Lin-/FSC-A). Doublets and triplets were excluded 
based on forward scatter height vs area (FSC-H/FSC-A). Luminal and basal population were 
resolved based on CD24 and CD29 markers (CD24/CD29). % of GFP+ cells was assessed in the 
luminal and in the basal population (GFP+ Luminal and GFP+ Basal). 
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Figure 2-4  Validation of FACS sorting strategy. 

Luminal and basal populations from 6 weeks virgin FVB mice were sorted based on CD24/CD29 
expression. RNA was extracted from those populations and qRT-PCR was performed for a luminal 
(CK18) and a basal (CK5) marker. As expected CK18 was enriched in the luminal population, 
while CK5 was enriched in the basal one. 
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2.6.2   MMECs 2D cultures. 

Single cells extracted from 12 week old virgin mice were plated onto 6-well 

plates (3x105 cells seeded per well) and cultured in DMEM/F12 10% FCS with 

Pen/strep and L-Glut, supplemented with 10 ng/ml EGF (Sigma), 5 μg/ml Insulin 

(Roche) and 10 ng/ml Cholera Toxin (Sigma). For quantitative RT-PCR analysis, 

2D MMECs were dissociated enzymatically after 7 days and processed for RNA 

extraction. 

2.6.3   Mammospheres 

Single cells extracted from 12 week old virgin mice, were plated in ultra-low 

adherent 24-wells plates (Corning) at a density of 20,000 viable cells/ml for 

primary passage and 1000 cells/ml for second passage. Cells were grown in a 

serum-free medium DMEM/F12 with Pen/Strep and L-Glut (Gibco), supplemented 

with B27® (Gibco), 20 ng/ml EGF (Sigma), 20 ng/ml bFGF (Sigma), 0.4% BSA and 

4 μg/ml Heparin (Sigma). Growth factors were re-added fresh to the culture 

every 3-4 days. Plates were left untouched in the incubator to avoid cell 

clumping due to excessive manipulation. After 7 days, mammospheres were 

counted under a bright field microscope, collected by gentle centrifugation (200 

g for 5 minutes) and dissociated enzymatically (10 min in TEG at 37˚C in water 

bath) and mechanically, by pipetting. The cells obtained from dissociation were 

checked for single-cellularity, counted using the Trypan Blue exclusion method 

on haemocytometer and seeded again to generate secondary mammospheres. 

For quantitative RT-PCR analysis, mammospheres were processed for RNA 

extraction after 7 days. For histologic analysis, mammospheres were fixed on 

day 7 with 500 µl of 2% paraformaldehyde for 15 minutes. After centrifugation 

pellets were resuspendend in 150 µl of 3% UltrPureTM low-melting agarose 

(Invitrogen) and left for 20 minutes at room temperature to solidify. The agarose 

plug was then put into 70% EtOH and embedded in paraffin blocks. RUNX2 

staining (1:500 45 min at RT, Sigma) was carried out on mammosphere blank 

sections using citrate buffer antigen retrieval and standard IHC protocols (see 

below). For size measurement, primary and secondary mammospheres colonies 

were photographed with a bright field microscope (Olympus CKX41) after 7 days 

in culture and colony size was assessed using Axiovision software (Zeiss). 
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For adenoviral infection of mammospheres, MMECs single cell suspensions from 

Runx2flx/flx and Runx2WT/WT 12 week old virgin mice, were spin-infected with 

Ad5CMVCre-eGFP (Iowa University) (3.30 hours at 300g, RT; MOI=100) in 200 µl 

DMEM/F12 with 2% FCS, 20 ng/ml EGF (Sigma) and 20 ng/ml bFGF (Sigma). After 

infection, cells were seeded at 20,000 cells/ml in ultra-low adherent 24-well 

plates (Corning). After 7 days mammospheres were counted under a bright field 

microscope and processed for RNA extraction and quantitative RT-PCR.  

2.6.4   WNT3a treatments on mammospheres and 2D-MMECs 

For long-term WNT3a treatment, primary mammospheres (from 12 week old FVB 

virgin mice) were grown for 1 week in mammosphere media supplemented with 

50 ng/µl of recombinant  WNT3a (Sigma, SRP3259) or vehicle (H2O). After 7 days 

mammospheres were counted under a bright field microscope and processed for 

RNA extraction and quantitative RT-PCR. For size measurement, mammospheres 

colonies were photographed with a bright field microscope (Olympus CKX41) and 

colony size was assessed using Axiovision software (Zeiss) after 7 days in culture.  

For short-term WNT3a treatment, mammospheres and 2D-MMECs were grown for 

3 days in normal conditions. At day 4, 100ng/µl of recombinant WNT3a or vehicle 

(H2O) was added to the media and cells were processed for RNA extraction 24h 

after. 

2.6.5   Matrigel Colony forming assay 

Single cells extracted from 12 week old virgin mice were re-suspended in ice-

cold Growth-factor-reduced Matrigel (BD Biosciences, CAT 356237). 8000 

cells/well were seeded for primary Matrigel colony formation. 5000 cells/well 

were seeded for secondary Matrigel colony formation. A drop of 20 µl of 

Matrigel/cells was added in the centre of each well of a 24 well plate and the 

plate was returned to the incubator for 5 minutes to allow the Matrigel to 

solidify. 1 ml of DMEM/F12 with Pen/Strep and L-Glut supplemented with 20 

ng/ml EGF (Sigma) was added to each well. Fresh EGF was re-added to the 

culture every 3-4 days. After 7 days, Matrigel colonies were counted under a 

bright field microscope and dissociated enzymatically (10 min in TEG at 37˚C in 

water bath) and mechanically, by pipetting. The cells obtained from dissociation 

were checked for single-cellularity, counted using the Trypan Blue exclusion 
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method on haemocytometer and seeded again to generate secondary Matrigel 

colonies. For quantitative RT-PCR analysis, Matrigel colonies were processed for 

RNA extraction after 7 days. For histologic analysis, Matrigel colonies were fixed 

with 500 µl of 2% paraformaldehyde for 15 minutes on day 7. After 

centrifugation pellets were resuspendend in 150 µl of 3% UltrPureTM low-melting 

agarose (Invitrogen) and left for 20 minutes at room temperature to solidify. The 

agarose plug was then put into 70% EtOH and embedded in paraffin blocks. For 

size measurement, primary and secondary Matrigel colonies were photographed 

after 7 days in culture with a bright field microscope (Olympus CKX41) and 

colony size was assessed using Axiovision software (Zeiss). 

 

2.7  Immunohistochemistry 

Paraffin-embedded tissue sections were rehydrated before antigen retrieval 

using pH6 sodium citrate buffer (or 1mM EDTA pH8 for RUNX2).  After washing 

with Tris buffered saline and blocking endogenous peroxidase (Peroxidase 

blocking solution, DAKO), sections were incubated with the following HRP-

conjugated primary antibodies:  RUNX1 (Sigma HPA004176; 1/200 1h RT), RUNX2 

(Sigma HPA022040; 1/100 overnight at 4°C), β-Catenin (BD Bioscience, 610154; 

1/1000 1h RT), GFP (Abcam ab6556; 1/2000 overnight at 4°C). Anti-rabbit 

secondary (Dako EnVision) was used for all antibodies except for β-Catenin (anti-

mouse; Dako EnVision).  Sections were incubated with secondary antibodies for 1 

hour at RT, treated with DAB (Dako) and counterstained with haematoxylin. 

Images were captured using a Zeiss AX10 or an Olympus BX51 microscope. 

 

2.8  Immunofluorescence 

Paraffin-embedded tissue sections were rehydrated before antigen retrieval 

using pH6 sodium citrate buffer and permeabilized with incubation in 1% Triton® 

X-100 (T8787, Sigma) in PBS for 10 minutes. Slides were then blocked with a 

solution of 0.5% Triton® X-100 and 5% Goat Serum (DAKO, X0907) in PBS for 1h at 

RT. Primary antibodies were diluted in Dako REALTM Antibody Dilutent and 
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incubated on sections overnight at 4°C. Primary antibodies used were anti-

cytokeratin 8/18 (Fitzgerald 20R-CP004; 1/400), anti-GFP (Abcam ab6556; 

1/250), anti-CK14 (Abcam ab7800; 1/250). After washing with Tris buffered 

saline sections were incubated with Alexa 488 (goat-anti-rabbit-IgG), Alexa 594 

(goat-anti-mouse-IgG) and Alexa 647 (goat-anti-guinea pig-IgG) secondary 

antibodies (1:250 in PBS, Invitrogen) for 1 hr at room temperature. Slides were 

mounted using Vectashield mounting media with DAPI (Vector, H-1200). Confocal 

images were captured using a Zeiss 710 confocal microscope. 

 

2.9  Non quantitative PCR  

2.9.1  PCR determination of Runx2 status. 

To test the presence of the recombined Runx2 allele, genomic DNA was 

extracted using isopropanol precipitation. Samples were resuspended in 500 µl of 

chilled isopropanol to precipitate DNA. After centrifugation (16 rcf for 10 min at 

4˚C) the supernatant was poured off and 500 µl of 70% EtOH added to wash the 

DNA pellet. After an additional centrifugation (16 rcf for 5 min at 4˚C), the 

supernatant was poured off and samples were left to dry for 20 min. The final 

DNA pellet was resuspended in 100 µl of dH2O and dissolved at 37˚C for 15 min. 

A set of primers was then used to check for the recombination of the Runx2 

genomic locus; Flx probes: F-TCAGCTTTAGCGTCGTCAGA, R-CAAGCTAACGGG 

ACTTGGAA. WT probe: R-TGTCCGCCACCGCCAAG. PCR was performed in a 25 μl 

reaction mixture containing 12.5 μl of 2 x Reddymix  ThermoPrime Taq DNA 

Polymerase master mix (Thermo),  0.4 μM of each of the primers and 1 μl of 

DNA. The reaction mixture with added water instead of the DNA template was 

run as a negative control. The cycling conditions were as follows: 95°C for 3 

min, followed by 34 cycles of three steps consisting of denaturation at 95°C for 

30 s, primer annealing at 60°C for 30 s and extension at 72°C for 60s plus a final 

step of extension at 72°C for 10 min. PCR reactions were loaded onto a 2% 

agarose gel and bands visualized under a GelDoc-IT TS Imaging System (UVP, US). 
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2.9.2   PCR detection of Runx2 mRNA. 

RNA was isolated using a Qiagen RNeasy Mini Kit (Qiagen, UK) according to the 

manufacturer’s instructions and quantified using a Nanovue spectrophotometer.  

RNA was cleared from any DNA contamination with DNAse treatment and reverse 

transcribed to cDNA using Quantitect® Reverse Transcription Kit (Qiagen, 

205311). A PCR for genomic DNA was performed to confirm the purity of the 

cDNA obtained. RT-PCR was performed in a 25 μl reaction mixture containing 

12.5 μl of 2 x Reddymix  ThermoPrime Taq DNA Polymerase master mix 

(Thermo),  1 μM of each of the primers and 1 μl of cDNA. Primers used were 

Runx2 (F- AGAGGGCACAAGTTCTATCTG; R-GCTGTTGCTGTTGTTGCT) and β-Actin 

(F-     AGAGGGAAATCGTGCGTGAC; R-CAATAGTGATGACCTGGCCGT). The reaction 

mixture with added water instead of the cDNA template was run as a negative 

control. The cycling conditions were as follows: 95°C for 3 min, followed by 34 

cycles of three steps consisting of denaturation at 95°C for 30 s, primer 

annealing at 60°C for 30 s and extension at 72°C for 60s plus a final step of 

extension at 72°C for 10 min. PCR reactions were loaded onto a 2% agarose gel 

and bands visualized under a GelDoc-IT TS Imaging System (UVP, US). 

 

2.10   Quantitative RT-PCR 

RNA was isolated using a Qiagen RNeasy Mini Kit (Qiagen, UK) according to the 

manufacturer’s instructions and quantified using a Nanovue spectrophotometer.  

RNA was cleared from any DNA contamination with DNAse treatment and reverse 

transcribed to cDNA using Quantitect® Reverse Transcription Kit (Qiagen, 

205311).  SYBR Green based quantitative PCR was performed in triplicate in a 20 

μl reaction mixture containing 10 μl of 2 x SYBR®Green JumpstartTM Taq (Sigma, 

S4438) master mix,  0.5 μM of each of the primers and 5 μl of 10x diluted cDNA. 

The reaction mixture with water instead of the template was run as a control. 

The cycling conditions were as follows: 94°C for 2 min, followed by 40 cycles of 

two steps consisting of denaturation at 94°C for 15 s and primer 

annealing/extension at 60°C for 60s plus a final step of extension at 72°C for 5 

min. A melting curve analysis was performed from 70°C to 95°C in 0.3°C 

intervals to demonstrate the specificity of each amplicon and to identify the 
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formation of primer dimers. Data were acquired using an MJ Chromo4 (BioRad) 

and analysed using MJ Opticon Monitor 3 software (BioRad). The following 

primers were used: Runx1 (Qiagen Quantitect Assay QT0010000380), Runx2 

(Qiagen Quantitect assay QT00102193), Runx3 (F-GCA CCG GCA GAA GAT AGA 

AGAC; R-GGTTTAAGAAGCCTTGGATTGG), Axin2 (F-GCTCCAGAAGATCACAAAGAG; 

R-AGCTTTGAGCCTTCAGCATC), Hes1 (F-CAGGAGGGAAAGGTTATTTTGACG; R-TAG 

TTGTTGAGATGGGAGACCAGGCG), Slug (F-CTCACCTCGGGAGCATACA; R-GACTTAC 

ACGCCCCAAGGATG), p21 (F-CAAGAGGCCCAGTACTTCC; R-TGGAGTGATAGAA 

ATCTGTCAGG) and GAPDH (PrimerDesign kit).  All reactions were performed in 

triplicate, and expression was normalised to GAPDH.   

 

2.11  Western blot 

Nuclear extracts were prepared from mammary cell lines using NE-PER Nuclear 

and Cytoplasmic Extraction Reagents (Thermo Scientific, Cat No 78833) as per 

kit instructions. Briefly, addition of the first two reagents of the kit (CER1, 

CER2) to a cell pellet causes cell membrane disruption and release of 

cytoplasmic contents. After recovering the intact nuclei from the cytoplasmic 

extract by centrifugation, the nuclei are lysed with a third reagent (NER) to 

yield the nuclear extract. At least 15 micrograms of protein extract were 

resolved on 10% NuPAGE Novex Bis-Tris gels (Life Technologies) and transferred 

to Hybond-ECL nitrocellulose membranes (Amersham).  Membranes were probed 

with antibodies to RUNX1 (HPA004176, Sigma), RUNX2 (HPA022040, Sigma and 

R&D Systems, AF2006), GAPDH (Cell Signalling), β-Actin (Cell signalling), Lamin 

A/C (Cell Signalling), E-Cadherin (Cell Signalling), Vimentin (Sigma). 
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2.12  Human breast samples/tissue microarray 

All expression studies in human tissues were ethically approved (REC Ref: 

Project Number 02/SG007(10), R and D project: RN07PA001).  

Tissue microarrays used in the current study were kindly provided by Dr. Joanne 

Edwards who has given a brief outline of the procedure. 0.6 mm2 cores of breast 

cancer tissue, identified by the pathologist, were removed from representative 

areas of the tumour taken from breast cancer patients at the time of surgical 

resection.  All tissue microarray blocks were constructed in triplicate.  All 

patients were diagnosed with operable invasive breast carcinoma between 1980 

and 1999 in the Greater Glasgow and Clyde area.  These patients received 

standard adjuvant treatment according to protocols at the time of diagnosis.  

Patient follow-up details included information on clinical attendances, 

recurrence and metastasis, date and cause of death as well as adjuvant therapy 

details.  ER, PR (Mohammed et al. 2012), HER2 status (Mohammed et al. 2012), 

immune and inflammatory infiltrate (Mohammed et al. 2012) were already 

available for this cohort. The tissue microarrays were stained for RUNX1 protein 

by immunohistochemistry and quantified using the weighted histoscore method 

[(0 x % negative staining) + (1 x % weak staining) + (2 x % moderate staining) + (3 

x % strong staining)] to give a value of 0 – 300 (Kirkegaard et al. 2006). 

 

2.13  Statistical analysis 

Statistical significance (p<0.05) of differential findings between experimental 

groups was determined by a Student’s t test (unless otherwise specified) using 

Minitab or GraphPad software.  For the human studies SPPS-19 software was 

employed and disease-specific survival rates were generated using the Kaplan-

Meier method.  The log-rank test was used to compare significant differences 

between subgroups using univariate analysis.  Interrelationships between RUNX1 

expression and clinical parameters, hormonal status and inflammatory features 

were calculated using Cox-regression and chi square test. 
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3 Characterization of the RUNX genes in the 
mammary gland. 

 

 

3.1 INTRODUCTION 

 

3.1.1  RUNX proteins in mammary gland development.  

Given its first discovery as the “bone-master regulator” gene, most of the 

research on RUNX2 has been focused on its role in osteoblast lineage 

specification and regulation of bone development (Long 2011). Similarly most 

research on RUNX1 has been focused on its role in the haematopoietic system 

while RUNX3 has been mostly studied in the context of its role as a putative 

tumour suppressor in epithelial lineages and in neuronal development (Blyth et 

al. 2005).  However RUNX genes are expressed in a wide variety of tissues and 

cell types indicating possible new roles for these transcription factors in 

different systems (Blyth et al. 2010; Scheitz & Tumbar 2012). In particular 

several evidences coming from in vitro and in vivo studies are suggesting a new 

role for RUNX genes in mammary gland development (see Chapter 1). Briefly, all 

three RUNX transcripts have been shown to fluctuate during the different phases 

of mammary development, decreasing during pregnancy and lactation to rise 

again in involution (Blyth et al. 2010). In addition, RUNX2 regulates genes 

characteristic of mammary epithelial cells such as β-Casein and Osteopontin in 

the HC11 mammary cell line (Inman et al. 2005; Inman & Shore 2003). Moreover 

RUNX2 is likely to be expressed in normal murine mammary cells in the 

embryonic mammary gland (Otto et al. 1997) and it is enriched in the terminal 

end buds (TEB) of young pubertal mammary glands (Kouros-Mehr & Werb 2006). 
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3.1.2   Experimental Aims. 

So far the early lethality of RUNX knock-out animals has hindered the study of 

the role of those transcription factors in the mammary gland, an organ which 

mainly develops after birth. The aim of this study was to characterize the 

function of RUNX genes in mammary gland development through a combination 

of in vitro and in vivo loss of function approaches based on the use of RUNX-

specific conditional knock-out models.  
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3.2  RESULTS 

 

3.2.1   Characterization of RUNX expression in the normal 
mammary gland. 

To better understand the role of RUNX proteins in mammary gland development 

it is important to improve our knowledge of their normal physiological 

expression pattern in mammary epithelial tissue. The mammary epithelium is 

composed of two main lineages: luminal (ductal and alveolar) and basal cells 

(myoepithelial) (Richert et al. 2000). Recent advances in cell surface marker 

analysis through FACS allow the isolation of specific cell lineages from mouse 

mammary epithelium. In particular specific enrichment for the 

basal/myoepithelial or luminal compartment can be achieved by using a 

combination of cell surface markers (CD31, TER119 and CD45 to exclude 

haematopoietic and endothelial cells together with the epithelial markers CD24 

and CD29) (Shackleton et al. 2006). To investigate RUNX expression in the two 

main mammary lineages FACS sorting for luminal and basal populations was 

performed (see Material and Methods) on fresh-extracted mouse mammary 

epithelial cells (MMECs) from 6 week old mice. qRT-PCR on the sorted 

populations showed that Runx1 represents the more expressed isoform while 

Runx3 transcripts are expressed at very low levels or undetectable in both 

compartments (FIGURE 3-1-A). Moreover both Runx1 and Runx2 transcripts are 

enriched in the basal population which interestingly has been showed to be 

enriched in mammary stem cells (Shackleton et al. 2006). Since the pubertal 

virgin mammary gland at 6 weeks is an actively growing and expanding organ 

characterized by high numbers of TEBs, expression in the mature virgin 

mammary gland was also assessed.  qRT-PCR on FACS-sorted MMECs extracted 

from 12 week old mature virgin mice confirmed the expression pattern for all 

Runx isoforms as observed in the younger mice (FIGURE 3-1-B). From these 

results it was decided to concentrate future analysis on RUNX1 and RUNX2 

proteins, since they are the major RUNX proteins expressed in mammary tissue. 

To confirm RUNX1 and RUNX2 expression at the protein level, 

immunohistochemistry (IHC) was performed showing that both RUNX1 and RUNX2 

are indeed expressed in discrete subpopulations of mouse and human mammary 
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epithelium (FIGURE 3-2). RUNX1 and RUNX2 expression was then characterized 

during different phases of embryonic and adult mammary development. 

Interestingly RUNX1 and RUNX2 have the opposite pattern of expression during 

embryonic development, with RUNX2 being expressed specifically at embryonic 

day E12 while RUNX1 was apparent from E16 onwards (FIGURE 3-3). However, in 

adult mouse mammary development both RUNX1 and RUNX2 show a similar 

expression pattern, decreasing during pregnancy and lactation to rise again 

during involution (FIGURE 3-4) which confirms with what has been shown at the 

RNA level (Blyth et al. 2010). 
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Figure 3-3-1  Expression of Runx genes in mammary luminal and basal populations. 

The relative levels of Runx1, Runx2 and Runx3 mRNA measured by real-time RT-PCR on mouse 
mammary luminal and basal populations as sorted by FACS, based on expression of CD29 and 
CD24 surface markers. MMECs were extracted from 6 weeks (A) and 12 weeks (B) virgin FVB 
female mice. Data are expressed as mean relative expression (±SD). Runx1 is plotted on a 
different Y-axis due to the higher levels of expression.  Expression normalised to Gapdh is 
relative to luminal Runx2; each bar represents at least 3 separate experiments (3 independent 
groups of 3 mice each). 
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Figure 3-3-2    Expression of RUNX1 and RUNX2 in human and murine mammary gland. 

Immunohistochemistry for RUNX1 and RUNX2 on mouse and human virgin mammary epithelium. 
Sections were counterstained with haematoxylin. Scale bars represent 10 μm. 

 

 

 

 

 

 



100 
 
 

 

Figure 3-3   RUNX1 and RUNX2 expression in murine embryonic development. 

Immunohistochemistry for RUNX1 and RUNX2 on mouse embryonic mammary epithelium, taken 
at the selected timepoints (e.g. E12 is 12 days post-coitus). Sections were counterstained with 
haematoxylin. Scale bars represent 20 μm.  
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Figure 3-4  RUNX1 and RUNX2 expression in adult mammary development. 

Immunohistochemistry for RUNX1 and RUNX2 on adult mouse mammary epithelium, taken at the 
selected timepoints (12 week old virgin, d17 pregnancy, d1 lactation, d7 involution). Sections 
were counterstained with haematoxylin. Scale bars represent 30 μm. 
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3.2.2   Mammary specific deletion of RUNX1 and RUNX2 

To understand the functional role of Runx genes in mouse mammary gland 

biology in vivo and given the early lethality of RUNX knock-out animals, 

conditional knock-out mouse models for Runx1flx/flx (Growney et al. 2005) and 

Runx2flx/flx (unpublished, see Material and Methods for characterization) in 

combination with a mammary specific Cre recombinase (BLG-Cre) were used.  In 

those mice Cre DNA-recombinase is under the control of the mammary gland 

specific promoter of the ovine beta-lactoglobulin (BLG) gene. BLG-Cre is mainly 

activated during pregnancy and lactation and is commonly used as a specific Cre 

for targeting the mammary luminal lineage (Selbert et al. 1998). First BLG-Cre 

expression in the mammary gland was characterized using the Z/EG reporter 

mouse which utilises a lox-stop-lox GFP reporter cassette (Novak et al., 2000).  

In vivo GFP imaging on BLG-Cre:Z/EG+ mice showed consistent GFP expression in 

the mammary epithelium indicating that the transgenic models were working 

(FIGURE 3-5-A). To identify the mammary lineages which are targeted by BLG-

Cre expression, FACS mammary lineage profiling was performed using GFP 

expression as a tracker for BLG-Cre activation. Confirming published data 

(Molyneux et al. 2010), we found that BLG-Cre is mainly expressed in the virgin 

luminal population. However, a small but detectable percentage of the basal 

population in which BLG-Cre is active was also detected (FIGURE 3-5-B). 

Immunofluorescence was used to confirm this data showing double positive 

GFP+/CK14+ cells in BLG-Cre:Z/EG+ mice (FIGURE 3-5-C). This discrepancy with 

published data could be due to differences in mouse strains or the use of a more 

sensitive reporter gene compared to β-gal as used previously (Molyneux et al. 

2010). BLG-Cre expression was then characterized at different stages of 

mammary development confirming that Cre expression is activated during 

pregnancy and lactation and decreases during involution (FIGURE 3-5-D).  
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Figure 3-5  Characterization of BLG-Cre expression through the use of a GFP reporter. 

In vivo GFP expression as a surrogate for Cre expression in 12 week virgin BLG-Cre:Z/EG negative 
(a) and BLG-Cre:Z/EG+ (b) mice.  Scale bars represent 5 mm (A). Reporter GFP expression as 
analysed by FACS, gated on CD24+/CD29low luminal population (green) and CD24+/CD29high 
basal population (red) from 12 week BLG-Cre+:Z/EG+ mice. Data are expressed as % of GFP+ 
cells over total (±SD). 8 groups of 2 mice each analysed (B).  CK14 (red) and GFP (green) co-
immunofluorescence on mammary gland tissue from BLG-Cre+:Z/EG+ mice. Red arrow indicates 
a GFP+ (green) CK14+ (red) basal cell. Glands were counterstained with DAPI (blue). Scale bar 
represents 10 μm (C). Reporter GFP expression, as analysed by FACS, on total cells extracted 
from mammary glands of BLG-Cre+:Z/EG+ mice at different developmental stages (n=3 for each 
stage). Data are expressed as % of GFP+ cells over total (±SD) (D).  
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Using the RUNX conditional knock-out mice two mouse cohorts were generated: 

BLG-Cre:Z/EG:Runx1flx/flx and BLG-Cre:Z/EG:Runx2flx/flx (FIGURE 3-6-A). IHC on 

BLG-Cre Runx1flx/flx mice showed a reduction of RUNX1 protein expression in the 

adult virgin epithelium (FIGURE 3-6-B). Moreover PCR for Runx2 genomic locus 

on MMECs extracted from BLG-Cre Runx2flx/flx mice showed the presence of a 

recombinant band, indicating that an in vivo Cre-mediated deletion of the Runx2 

gene was occurring (FIGURE 3-6-C). These results confirm that the conditional 

knock-out strategy is working in vivo. 
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Figure 3-6   Characterization of Runx1 and Runx2 conditional knock-out mice. 

Schematic representation of the conditional knock-out strategy used to create a mammary-
specific deletion of Runx1 and Runx2 combined with a GFP reporter. The BLG promoter will drive 
Cre expression specifically in the mammary gland. In the target tissue Cre recombinase will drive 
recombination at the LoxP sites resulting in Runx1 or Runx2 loss. In addition Cre recombinase 
activity will cause loss of the LacZ cassette and activation of eGFP expression (A). 
Immunohistochemistry for RUNX1 on 12 weeks old virgin mammary epithelium from BLG-Cre 
Runx1WT/WT and BLG-Cre Runx1flx/flx mice. Scale bar represents 30 μm (B). PCR on gDNA extracted 
from BLG-Cre Runx2flx/flx MMECs and tail. In the BLG-Cre Runx2flx/flx MMECs (Flx Cre+) the 2 bands 
correspond to the recombined Runx2 locus (lower band) and the unrecombined cells (upper 
band). The size of the band in Runx2flx/flx cells is larger than the one from Runx2WT/WT because of 
the presence of LoxP sites (C). 
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No obvious phenotype was detectable in mature virgin mice (>12 weeks of age) 

from the two cohorts as assessed by whole gland analysis and histological 

analysis (FIGURE 3-7). However, the lack of phenotype in Runx deleted mice 

could be due to loss of recombined cells and re-population of the gland by wild 

type (unrecombined) cells. Furthermore, since BLG-Cre is only expressed in a 

small percentage of the virgin mammary epithelium (around 15% of mammary 

epithelial cells, Figure 1-5-D) the phenotype may be too mild to be observed at 

the histological level. To better analyse the recombinant glands, the fate of 

Runx-deleted cells was tracked in the mammary epithelium using the lox-stop-

lox GFP reporter cassette. FACS analysis of GFP expression levels in MMECs 

extracted from mature virgins of BLG-Cre Runx1flx/flx and BLG-Cre Runx2flx/flx 

females was performed. Interestingly both RUNX1 and RUNX2 loss caused a 

significant decrease in overall GFP levels compared to BLG-Cre+ Runx1WT/WT 

Runx2WT/WT (FIGURE 3-8).  Thus, RUNX1 and RUNX2 loss is impairing mammary 

epithelial cell maintenance in vivo. To determine if RUNX1 and RUNX2 are 

playing diverse roles in different mammary cell types, mammary population 

profiling through FACS using CD24 and CD29 cell surface markers, was performed 

to separate basal and luminal lineages. The GFP+ in each of the gated basal and 

luminal population is then used to specifically ascertain levels of RUNX-deleted 

cells. Interestingly loss of RUNX1 caused a reduction in GFP+ cells in the luminal 

compartment but did not affect the basal population (FIGURE 3-9-A, 3-9-B). In 

contrast BLG-Cre Runx2flx/flx mice showed a reduction in both basal and luminal 

GFP+ cells compared to BLG-Cre Runx2WT/WT mice (FIGURE 3-9-C, 3-9-D). These 

results suggest that RUNX1 and RUNX2 expression is important for maintenance 

of specific subpopulations of the virgin mammary epithelium in vivo.  
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Figure 3-7   Effects of loss of RUNX1 and RUNX2 in the virgin mammary gland. 

Wholemounts (A) and histological sections (B) of mammary gland from BLG-Cre RunxWT/WT, 
Runx1Flx/Flx and Runx2Flx/Flx mice extracted from 12 week virgin mice (n>7 for each genotype). No 
differences were detected between the three genotypes. Scale bars in (A) represent 1 mm. Scale 
bars in (B) represent 50 μm. 
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Figure 3-8   Effects of RUNX1 and RUNX2 loss in mammary epithelium in vivo. 

Reporter GFP expression as analysed by FACS, on cells extracted from whole mammary glands of 
12 week BLG-Cre RunxWT/WT, BLG-Cre Runx1Flx/Flx and BLG-Cre Runx2Flx/Flx mice. Data are 
expressed as % of GFP+ cells over total (±SD). n≥4 for each genotype. *p<0.05, Mann Whitney 
test. 
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Figure 3-9    Effects of RUNX1 and RUNX2 loss on luminal and basal populations in vivo. 

Reporter GFP expression as analysed by FACS, gated on CD24+/CD29low luminal population 
(green) and CD24+/CD29high basal population (red). MMECs were extracted from 12 week BLG-Cre 
Runx1Flx/Flx (A, B) and BLG-Cre Runx2Flx/Flx (C,D) mice and compared to the BLG-Cre RunxWT/WT 
cohort . Data are expressed as % of GFP+ cells over total in the selected population (±SD). n≥4 
for each stage. *p<0.01, Mann Whitney test. 
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To investigate if Runx2 is involved at different stages of mammary development 

the BLG-Cre Runx2flx/flx cohort was analysed during the lactation cycle. 

Conditional Runx2 knock-out mice do not have any obvious defect during 

pregnancy and lactation and they can lactate and nurse their pups as normal. 

FACS analysis of GFP expression levels in MMECs extracted from different phases 

of the lactation cycle of the BLG-Cre Runx2flx/flx mice showed no difference in 

GFP levels compared to BLG-Cre Runx2WT/WT mice (FIGURE 3-10). This result 

shows that RUNX2 is not necessary for the process of alveolar differentiation and 

milk production in vivo. Further work is currently focusing on the 

characterization of the effects of RUNX2 loss on the involution process and on 

the analysis of RUNX1 during the different phases of the lactation cycle.  
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Figure 3-10  Effects of in vivo Runx2 deletion during the lactation cycle. 

Reporter GFP expression, as analysed by FACS, on total mammary gland cells extracted from 
BLG-Cre Runx2WT/WT (green) and BLG-Cre Runx2Flx/Flx (blue) mice at different developmental 
stages. Data are expressed as % of GFP+ cells over total (±SD). n≥3 for each stage. *p<0.05, Mann 
Whitney test. 
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3.2.3   Effects of combined deletion of Runx1 and Runx2 on virgin 
mammary development. 

All three RUNX transcription factors bind to the same DNA sequence and some 

cross-regulation between different RUNX family members has been found in the 

haematopoietic system (Spender et al. 2005). Hence some redundancy could also 

occur in the mammary gland where RUNX1 and RUNX2 follow a similar pattern of 

expression. To avoid any compensatory effect of single RUNX deficiency in vivo, 

a double knockout mouse BLG-Cre:Runx1flx/flx:Runx2flx/flx was generated. No 

obvious phenotype was detectable in young virgin females from this cohort 

(FIGURE 3-11). FACS analysis of GFP expression levels was then performed in 

MMECs extracted from mature virgins from BLG-Cre:Runx1flx/flx:Runx2flx/flx mice. 

Interestingly combined loss of both Runx1 and Runx2 rescued the significant 

decrease in overall GFP levels caused by the single knock-outs (FIGURE 3-12). To 

understand the cellular dynamics underlying this rescue mammary population 

profiling through FACS was performed using GFP+ cells as a marker for deleted 

cells. The percentage of GFP+ cells in the luminal compartment was reduced in 

the double knock-out gland compared to BLG-Cre RunxWT/WT mice, a similar 

phenotype to the single Runx1 and Runx2 knock-outs (FIGURE 3-13-A). However, 

the basal population was significantly affected in the double knock-out gland 

with a 5-fold increase in the GFP+ basal population (FIGURE 3-13-B). GFP and 

CK14 co-immunofluorescence confirmed the increase in basal GFP expression in 

the BLG-Cre:Runx1flx/flx:Runx2flx/flx glands (FIGURE 3-14-A). Interestingly the 

overall pattern of GFP expression in the double knock-out mice showed a drastic 

change with appearance of many ducts with high basal GFP positivity and ducts 

showing GFP expression only in the basal layer (FIGURE 3-14-B). This result 

shows that combined loss of RUNX1 and RUNX2 is causing a deregulation in 

normal homeostasis of mammary lineages driving an expansion of the basal 

population.  
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Figure 3-11   Effects of combined loss of RUNX1 and RUNX2 in the virgin mammary gland. 

Representative wholemounts (A) and histological sections (B) of mammary gland from BLG-Cre 
RunxWT/WT and BLG-Cre:Runx1Flx/Flx:Runx2Flx/Flx mice extracted from 12 week virgin mice (n>7 for 
each stage). No differences were detected between the two genotypes. Scale bars in (A) 
represent 1 mm. Scale bars in (B) represent 50 μm. 
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Figure 3-12  Effects of combined loss of RUNX1 and RUNX2 in mammary epithelium in vivo. 

Reporter GFP expression as analysed by FACS, on total mammary gland extracted from 12 week 
BLG-Cre Runx1Flx/Flx, BLG-Cre Runx2Flx/Flx, BLG-Cre:Runx1Flx/Flx:Runx2Flx/Flx mice, compared to the 
BLG-Cre RunxWT/WT cohort. Data are expressed as % of GFP+ cells over total (±SD). n≥4 for each 
stage. *p<0.05, Mann Whitney test. No significance was found comparing the double knock-out 
with the single knock-out cohorts. 
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Figure 3-13   Combined loss of RUNX1 and RUNX2 on luminal and basal populations in vivo. 

Reporter GFP expression as analysed by FACS, on CD24+/CD29low luminal population (A) and 
CD24+/CD29high basal population (B). MMECs were extracted from 12 week BLG-Cre Runx1Flx/Flx, 
BLG-Cre Runx2Flx/Flx, BLG-Cre:Runx1Flx/Flx:Runx2Flx/Flx mice and compared to the BLG-Cre 
RunxWT/WT cohort. Data are expressed as % of GFP+ cells over total in the selected population 
(±SD). n≥4 for each stage. In graph A, *=p<0.05, **=p<0.01 when compared to the WT/WT. In 
graph B, *=p<0.005 when compared to the WT/WT, Mann Whitney test. No significance was found 
comparing the double knock-out with the single knock-out cohorts in the luminal compartment. 
The double knock-out was statistically different from the single knock-out cohorts in the basal 
compartment. p<0.02, Mann Whitney test.  
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Figure 3-14  Changes in GFP reporter expression in RUNX1-RUNX2 double knock-out glands. 

CK14 (red) and GFP (green) co-immunofluorescence on mammary glands extracted from BLG-
Cre+ RunxWT/WT and BLG-Cre+Runx1Flx/FlxRunx2Flx/Flx mice. Glands were counterstained with DAPI 
(blue). Representative images shown. Scale bars represent 50 μm (A). Bar chart showing the 
distribution of GFP+ cells in BLG-Cre+ RunxWT/WT and BLG-Cre+ Runx1Flx/Flx Runx2Flx/Flx mice as 
determined by GFP IHC (n=4 per each genotype) (B). 
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To determine the long term effects of the population imbalance caused by 

Runx1 and Runx2 single and double deletion, cohorts of BLG-Cre Runx1flx/flx, 

BLG-Cre Runx2flx/flx  and BLG-Cre:Runx1flx/flx:Runx2flx/flx mice were aged to 6 

months and compared to a BLG-Cre wild-type cohort. Histological analysis 

showed an increase in alveolar structures in the double knock-out glands 

compared to wild-type and single knock-outs (FIGURE 3-15). Moreover 33% of 

double knock-out mice develop rare lesions in the mammary gland compared to 

none of the controls or the single Runx-deleted models (Chi square test 

p=0.0089) (Figure 3-16-A). Histological analysis showed that all lesions are 

hyperplastic intraductal preneoplastic lesions, characterized by nuclear atypia, 

squamous metaplasia or necrosis in the middle combined with an abundant 

immune reaction (Figure 1-16-B).  
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Figure 3-15  Double deletion of RUNX1 and RUNX2 causes alveolar hyperplasia in virgin mice. 

Representative examples of alveolar structures detected in wholemounts (A) and histological 
sections (B) of mammary glands extracted from 6 month virgin mice from the BLG-Cre:Runx1 
Flx/Flx:Runx2Flx/Flx  cohort. Scale bar in (A) represents 200 μm. Scale bar in (B) represents 25 μm. 
Scatter plot showing the number of alveolar clusters per gland detected in 6 month old BLG-Cre  
Runx1Flx/Flx, BLG-Cre Runx2Flx/Flx, BLG-Cre:Runx1Flx/Flx:Runx2Flx/Flx mice, compared to the BLG-Cre 
RunxWT/WT controls. Mice (n≥6 per group) were oestrous matched (metestrous-diestrous) through 
vaginal smear (C). Alveolar clusters per gland were counted under a bright-field microscope on 
an H&E section. * = p<0.05. t-test with Welch’s correction. 

 

 



119 
 

 

Figure 3-16   Double deletion of Runx1 and Runx2 causes pre-neoplastic lesions in virgin 
mice. 

Table showing the incidence of preneoplastic lesions found in the 6 month aging cohort (number 
of mice with detectable preneoplastic lesions, total number assessed in brackets). Chi square 
test p=0.0089 (A). H&E stained examples of lesions developed by BLG-Cre:Runx1Flx/Flx:Runx2Flx/Flx 
mice (B). 
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3.3 DISCUSSION 

The results presented in this chapter represent an answer to the unmet need of 

better characterization of RUNX expression in normal mammary development. 

Increasing the basic understanding of the role of Runx genes in the regulation of 

normal mammary epithelial homeostasis will expand the knowledge of the 

molecular controls acting in this tissue and would hopefully translate into new 

possible biomarkers or targeted therapies for breast cancer treatment.  

Studies on FACS purified mammary epithelial cells investigate for the first time 

expression of Runx genes in enriched populations of mammary epithelial cells. 

These findings demonstrate that Runx1 is the main expressed Runx transcript 

while Runx2 levels are around 50 fold lower. Moreover Runx3 transcript is not 

detectable in the purified mammary populations. Supporting this pattern of 

expression, IHC on mouse and human mammary epithelium showed high 

widespread levels of RUNX1 staining, while RUNX2 was expressed at lower levels 

in discrete subpopulations of luminal and basal cells. RUNX3 expression could not 

be assessed due to the lack of good specific antibodies for IHC.  However given 

the absence of detectable Runx3 RNA in the mammary epithelium it seems 

unlikely that any protein can be translated. Interestingly, confirmation of this 

pattern of expression comes from another study of qRT-PCR on MCF10A cells, a 

human mammary epithelial cell line derived from a basal-like fibrocystic 

disease, where a similar pattern of Runx expression with RUNX1 mRNA being 15 

fold higher than RUNX2 and undetectable levels of RUNX3 was found (Wang et 

al. 2011). However, the lack of detectable Runx3 expression in normal mammary 

epithelial cells is conflicting with some published observations. Firstly this 

differs with the expression pattern published by Blyth and colleagues (Blyth et 

al. 2010) which indicates that all three Runx genes are expressed in the adult 

mouse mammary gland. However this study was based on qRT-PCR analysis on 

whole mammary extracts where contamination with non-epithelial cells, like 

stromal, immune and endothelial cells would be expected.  Secondly, some 

reports have indicated Runx3 as a tumour suppressor in breast cancer. In 

particular one study shows that about 20% of female Runx3(+/-) heterozygous 

mice spontaneously developed ductal carcinoma at an average age of 14.5 

months (Huang et al. 2012). However the authors failed to provide convincing 

evidence of Runx3 expression in normal mammary epithelium. Thus the 
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phenotype observed could be caused by the effects of Runx3 haploinsufficiency 

on non-epithelial stromal components of the mammary gland.  

Another interesting data coming from our analysis of FACS purified mammary 

populations is the finding that both Runx1 and Runx2 are enriched in the 

mammary basal population: a lineage which has been shown to be enriched in 

mammary stem cells (Shackleton et al. 2006). Moreover several proteins which 

have been found enriched in the basal population (such as SLUG, β1-Integrin, 

LGR5) have also been found to play a role in the regulation of mammary stem 

cells (Plaks et al. 2013; Guo et al. 2012; Taddei et al. 2008). So it is tempting to 

speculate an involvement for Runx1 and Runx2 in the mammary stem cell 

population. The characterization of Runx1 and Runx2 in mammary stem cells will 

be discussed in the next chapter. 

Our studies characterize for the first time RUNX1 and RUNX2 protein expression 

during mouse mammary gland development. Focusing on embryonic mammary 

development, expression of RUNX1 and RUNX2 seems to follow an opposite 

pattern of expression. Mouse embryonic mammary development starts around 

embryonic day 10 (E10) with the formation of the milk line, a slight thickening of 

the ectoderm which at E11.5 develops into individual placodes which sink deeper 

into the dermis (Robinson 2007). This phase of mammary embryonic 

development, between E10 and E13, is when the growing epithelium acquires its 

identity as mammary tissue (Wansbury et al. 2011). Interestingly RUNX2 

epithelial expression is detectable specifically at E12 and is then turned off. This 

result indicates that RUNX2 could play a role in the early specification of the 

mammary lineage. Between E13 to E15, the bud undergo a period of relative 

quiescence, to then start proliferating again at E15.5 when the primary sprout 

starts invading the mammary mesenchyme towards the fat pad. At E18.5 the 

elongating duct has grown into a small rudimental ductal system (Cowin & 

Wysolmerski 2010). These last stages of mammary embryonic development, 

going from E16 to E18.5, are the ones characterized by RUNX1 expression. This 

pattern would suggest that RUNX1 is not involved in early mammary epithelium 

specification. Hence its expression could mark an embryonic population of 

mammary epithelial cells which have already acquired their lineage 

specifications. Further investigations are needed to investigate the functional 

role of RUNX1 and RUNX2 in mammary embryonic development.  
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Focusing on RUNX1 and RUNX2 protein expression in the adult mammary gland, 

RUNX1 IHC showed that this protein is widely expressed at high levels in the 

adult mammary epithelium. On the other hand, RUNX2 expression is confined to 

specific subpopulations of luminal and basal cells which are scattered in 

mammary epithelium. Moreover the RUNX2 positive population greatly varies 

between different areas of the same mammary gland and between mammary 

glands extracted from different mice, suggesting waves of expansion and 

contraction of RUNX2 positive cells. This dynamic pattern of expression is 

reminiscent of the cycling changes which characterize the mammary gland tissue 

during the oestrous cycle. Thus it is tempting to speculate that the spatial and 

temporal regulation of RUNX2 in adult mammary epithelium could be linked to 

the oestrous cycle: interestingly preliminary results from our laboratory seem to 

indicate an increase in RUNX2 expression during metestrous and diestrous (data 

not shown). This phase of the oestrous cycle is characterized by an increase in 

progesterone levels together with WNT-4 which are driving the branching 

expansion characteristic of that stage (Brisken et al. 2000).  So RUNX2 

expression could mark a highly dynamic progenitor subpopulation of the adult 

mammary epithelium which could undergo expansion in the second phase of the 

oestrous cycle and could participate in the formation of secondary and tertiary 

branching. Further experiments using ovariectomized mice treated with single 

injections of oestrogen and progesterone to induce a controlled oestrous cycle 

are needed to investigate the possible link between RUNX2 expression and 

oestrous cycle. Focusing on RUNX1 and RUNX2 expression during the lactational 

cycle, both genes were found to follow a similar pattern of expression, dropping 

during pregnancy and lactation to rise again in involution. Interestingly RUNX1 

and RUNX2 expression are at the lowest during the highest differentiated phases 

of mammary gland development (pregnancy and lactation) where the majority of 

the mammary gland is comprised of alveolar cells. This data suggests that RUNX 

genes need to be turned off to allow a complete alveolar differentiation 

program. The in vivo proof of this concept can be found in the phenotype 

observed in transgenic mice overexpressing RUNX2 under a luminal promoter 

(MMTV-Runx2). These mice showed impaired lactation capability due to a block 

in alveolar differentiation as showed by lack of functional alveolar structures 

and terminal differentiation markers such as WAP and β-Casein (McDonald et al, 

submitted).  
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To study the role of RUNX1 and RUNX2 in the mammary epithelium we adopted a 

combination of conditional RUNX knock-out models targeted to the mammary 

epithelium. No overall effects after deletion of both RUNX1 and RUNX2 were 

observed in the mammary epithelium. The lack of a gross detectable phenotype 

is not surprising considering that BLG-Cre is only acting in a small percentage of 

mammary epithelial cells at the virgin stage. Moreover Cre expression in this 

model peaks during pregnancy and lactation, stages where the maximum amount 

of recombination is achieved, but which are both characterized by lack of 

expression of RUNX proteins. To achieve a better recombination in the virgin 

mammary gland, our lab is currently generating conditional knock-out models 

using a different mammary specific Cre (MMTV-Cre) (Wagner et al. 2001). This 

model will help identify any possible gross defects after RUNX loss in the virgin 

stage. The use of a genetic marker (GFP expression) to trace the fate of RUNX-

deleted cells in vivo allowed us to show for the first time the requirement for 

both RUNX1 and RUNX2 in normal mammary epithelial maintenance. In fact both 

loss of RUNX1 and RUNX2 caused a reduction of overall GFP levels in the virgin 

mammary gland. Moreover focusing on mammary populations, individual loss of 

either RUNX1 or RUNX2 caused a decrease in GFP positivity in the luminal 

compartment. However, only RUNX2 deletion caused a reduction in GFP+ cells in 

the basal layer, suggesting a possible specific role for RUNX2 in this population. 

The mechanism underlying the loss of RUNX-deleted cells is still unknown. 

However the most likely explanation could be induction of quiescence and block 

of the cell cycle after loss of Runx genes. RUNX proteins are well known 

regulators of the cell cycle in different systems: for example, in vitro studies 

showed that RUNX1 stimulates the G1 to S phase transition in haematopoietic 

cells (Strom et al. 2000) and RUNX2 acts as transcriptional repressor of the 

p21Cip1/Waf1 cyclin-dependent kinase inhibitor (Westendorf et al. 2002). In 

vivo studies also showed evidence of a link between RUNX and quiescence where 

in the adult skin RUNX1 promotes hair follicle stem cell proliferation through 

repression of negative cell cycle regulators such as p21, p27, p57, and p15 (Lee 

et al. 2013).  In our model, a block in the cell cycle would be sufficient to cause 

a decrease of GFP populations in long term maintenance. In particular while the 

RUNX wild-type cells will keep dividing and growing in number, the RUNX-

deleted quiescent population will be slowly diluted down and the mammary 

gland will be repopulated by non-recombined cells. Transcriptional profiling of 
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sorted GFP+ populations from the Runx knock-out mice would help to clarify the 

molecular mechanisms underlying loss of RUNX-deleted cells in the virgin 

mammary gland. It should be acknowledged that the use of reporter mice to 

track the fate of conditional-deleted cells may bring some intrinsic flaws as 

shown by work from Anton Berns’ lab. Here the existence of marked differences 

in the recombination frequencies of different loci within the same cell was 

demonstrated (Vooijs et al. 2001). A different frequency of recombination at the 

GFP locus compared to the Runx locus cannot be ruled out in the models 

presented in this chapter. To prove the efficiency of GFP reporter expression as 

direct readout for in vivo RUNX deletion, freshly sorted GFP+ populations could 

be tested for recombination at the RUNX locus by genomic PCR.  

To avoid any compensatory effect of single Runx gene deficiency in vivo, a 

double Runx1-Runx2 knockout mouse was generated. This model is characterized 

by the appearance of gross phenotypes detectable both in mature virgins and 

aging cohorts indicating that compensation between RUNX isoforms is happening 

in the single knock-out models.  The first striking phenotype of the double 

Runx1-Runx2 knockout mouse is the rescue of overall GFP positivity in Runx1-

Runx2 knock-out glands: this is not caused by a rescue in the luminal population 

but it is caused by a 5 fold specific expansion of the basal population.  

Immunofluorescence showed that GFP+ basal cells maintain their normal 

localization as a single layer surrounding the duct suggesting that those cells are 

not transformed. This result indicates Runx genes as new key regulators of the 

basal population.  However, the overall picture of the role of Runx1 and Runx2 

in the mammary basal population is not clear: in fact both Runx1 and Runx2 are 

enriched in the basal lineage but only loss of Runx2 leads to a decrease in the 

basal population. Moreover combined loss of Runx1 and Runx2 causes basal cell 

expansion. Those results could be explained taking in account the vast array of 

isoform specific cofactors which are required for RUNX-mediated transcriptional 

control. In speculation RUNX2, but not RUNX1, may be a key regulator of 

proliferation of a mammary basal subpopulation and it does so cooperating with 

an unknown transcriptional cofactor which we can call cofactor-X. In a normal 

gland RUNX2 and cofactor-X cooperate and control the growth of a basal 

subpopulation.  After loss of RUNX1, as a compensatory effect, RUNX2, which is 

usually expressed at lower levels than RUNX1, is upregulated together with 
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cofactor-X. Then the complex RUNX2-cofactor-X compensates for RUNX1 loss 

keeping basal cell growth under control. In the scenario of loss of RUNX2 

instead, cofactor-X will not be transcribed in basal cells. RUNX1 will then try to 

compensate RUNX2 loss but, since cofactor-X is not translated, RUNX1 will not 

be able to maintain normal basal cell homeostasis and it will drive a different 

transcriptional program resulting in a block of proliferation or induction of 

quiescence. In the case of combined loss of RUNX1 and RUNX2 instead, basal 

cells lose all key controllers of cell proliferation (RUNX2, cofactor-X and RUNX1) 

leading to an expansion and uncontrolled growth of that subpopulation. In 

another scenario, the luminal lineage could be the one responsible for the 

expanded basal subpopulation: combined loss of RUNX1 and RUNX2 could start a 

dedifferentiation program pushing luminal cells into the basal lineage. It will be 

interesting to investigate the actual mechanism for this phenotype further. 

At 12 weeks of age double Runx1-Runx2 knockout mice showed no gross 

abnormality. However more severe phenotypes started to appear when mice 

were aged for 6 months.  The first detectable phenotype was an increased 

alveolar hyperplasia. Alveolar hyperplasia is the most common preneoplastic 

lesion in mouse mammary glands (Medina 2002), characterized by appearance of 

foci of hyperplastic lobuloalveolar development in a virgin mammary gland. 

Activation of several oncogenes such as CyclD1, Wnt1 and Tnf, have been found 

to cause alveolar hyperplasia in the mouse mammary gland. Moreover Runx1-

Runx2 knockout mice also develop rare preneoplastic lesions characterized by 

elements of necrosis, squamous metaplasia and extensive inflammation and 

stromal cell recruitment. The rarity of these lesions is not surprising considering 

the low amount of recombination achieved by BLG-Cre in the virgin mammary 

gland. The downstream molecular causes underlying alveolar hyperplasia and 

preneoplastic lesions development are currently under investigation. However 

the squamous metaplastic appearance of some of the lesions would suggest an 

involvement of Wnt signalling, whose activation has already been shown to cause 

extensive squamous metaplasia in the mammary gland (Miyoshi, Shillingford, et 

al. 2002). Further experiments will help to clarify the underlying mechanism of 

preneoplastic lesion formation after Runx1 & Runx2 loss. In particular fat pad 

transplantation of FACS sorted basal GFP+ cells from the double Runx1-Runx2 

knockout mice will test the ability of Runx-deleted cells to regenerate an entire 
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mammary epithelium and will clarify the oncogenic potential of this population. 

Moreover double Runx1-Runx2 knockout mice will be crossed with transgenic 

lines carrying oncogenes (Myc, Wnt) targeted specifically to the mammary gland. 

These models will test the tumour suppressor/oncogenic role of Runx isoforms in 

the context of breast cancer and how different oncogenic signalling pathways 

can affect this behaviour. 
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4 A new role for RUNX2 in mammary stem 
cells 

 

 

4.1  INTRODUCTION 

 

4.1.1   Runx genes and stem cells. 

An exciting role for RUNX proteins in stem cell biology has emerged recently 

from different studies using diverse animal models, from sea urchins to 

mammals (Braun, 2009). In invertebrate systems, which represent a good 

simplified model for the study of basic developmental processes, Runx genes are 

involved in several processes linked to stem cell regulation and homeostasis;  in 

particular RUNX proteins have been found to play key roles in stem cell 

maintenance, lineage differentiation and organ regeneration in Planarians, 

C.elegans and Drosophila (Kagoshima et al. 2007; Braun & Woollard 2009; 

Wenemoser et al. 2012).  Additional studies are unveiling a role for RUNX 

transcription factors in stem cell biology in different mammalian systems such as 

haematopoietic stem cells, hair follicle stem cells and mesenchymal stem cells 

(Wang et al. 2010). Several features make Runx genes an ideal hub for the 

control of stem cell homeostasis; Runx genes regulate transcription through 

interaction with a wide variety of co-repressors and co-activators which bring to 

this transcriptional network high flexibility and context dependency, features 

necessary for the regulation of dynamic entities such as stem cells (Chuang et al. 

2012). Moreover RUNX transcription factors can control different signalling 

pathways such as Wnt, Notch and Hedgehog, which are all fundamental in stem 

cell biology (Coffman 2009).  RUNX proteins can also interact with several 

chromatin-modifying proteins, such as acetyltransferases, helping to shape the 

stem cell epigenetic landscape (Lunyak & Rosenfeld 2008). Finally RUNX proteins 

can function as potent cell cycle regulators, activating and/or repressing cell 

proliferation and quiescence (Coffman 2003).  
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Mammary gland stem cells represent a poorly characterized population of the 

adult mammary gland characterized by the ability to differentiate into the 

multiple cell lineages which make up the mammary epithelium, and the capacity 

to self-renew in order to maintain a stable pool of tissue stem cells (Rosen 

2012).  Improving our knowledge of mammary stem cell biology is of pivotal 

importance for a deeper understanding of mammary gland and breast cancer 

development. Recently some evidence has emerged in the literature, suggesting 

a possible role for RUNX transcription factors in mammary stem cell biology.  

Runx2 transcript is enriched in the mammary basal population, a compartment 

characterized by high stem cell content.  In particular, microarray analysis on 

FACS sorted murine mammary cells showed that Runx2 is enriched in the 

CD24+/Low Sca1- basal population (Kendrick et al. 2008).  Interestingly, Runx2 

expression is also upregulated in the luminal ER negative population (CD24+/high 

SCA1-) where the luminal-restricted progenitors are thought to reside (Kendrick 

et al. 2008).  Moreover, qRT-PCR on the same populations confirmed that Runx2 

transcript is upregulated in the basal/myoepithelial and in the stem-cell 

enriched mammary population (Molyneux et al. 2010).  Embryonic mammary 

development is characterized by actively proliferating stem cells which will 

generate all the different cell types and structures of the mature ductal 

epithelium.  Intriguingly, work from the Howard lab identified Runx1 as a key 

node of the transcriptional network which guides mammary embryonic 

development (Wansbury et al. 2011).  Moreover, gene expression analysis on 

microdissected adult mammary tissue revealed that both Runx1 and Runx2 RNA 

are enriched in the terminal end buds, virgin-specific mammary structures which 

are thought to contain a high number of activated mammary stem cells (Kouros-

Mehr & Werb 2006).   In vitro experiments using HC11 cells, a murine mammary 

epithelial cell line, added some evidence to a possible involvement of Runx 

genes in mammary stem cell biology.  HC11 cells have been widely used as a 

model to study changes in gene expression during the mammary stem cell 

differentiation process (Ball et al. 1988). Runx2 transcript decreases during in 

vitro mammary differentiation in HC11 cells, suggestive of a possible role in 

stem cell maintenance (Williams, 2009). Several observations from our previous 

experiments also point to a role for RUNX proteins in mammary stem cells 

(previous chapter). First, we confirmed that not only Runx2 but also Runx1 is 

enriched in the mammary basal population. Second, both RUNX1 and RUNX2 are 
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expressed during embryonic mammary development, a stage characterized by a 

high degree of stemness and epithelial plasticity. Finally our conditional knock-

out mouse model shows that loss of RUNX2 dramatically affects the basal cell 

population in vivo, indicating a possible key role for this transcription factor in 

this lineage. 

 

4.1.2   RUNX, mammary stem cells and Wnt signalling. 

Wnt signalling is a key regulator of stem cell differentiation and maintenance in 

different systems (Cadigan & Peifer 2009). Moreover the Wnt pathway has been 

shown to play a role in mammary gland development and in mammary stem cell 

regulation and maintenance (Zeng & Nusse 2010). Interestingly evidence coming 

from different experimental models links RUNX2 and Wnt signalling (see 

Introduction). Studies show that Wnt and RUNX2 follow similar expression 

patterns in the mammary gland while Wnt signalling pathway is enriched in the 

mammary basal population (E. Lim et al. 2010; van Amerongen et al. 2012), the 

same population which we have shown to be enriched in Runx2. Also, similar to 

RUNX2 expression, Wnt signalling is active until E15.5 in mammary embryonic 

epithelial cells and then is switched off (Chu et al. 2004).   

 

4.1.3   Experimental Aims. 

The aim of this study was to characterize RUNX1 and RUNX2 in mammary stem 

cell biology. In addition the interaction between Wnt signalling and RUNX2 in 

mammary stem cells has been investigated. 
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4.2  RESULTS 

 

4.2.1   Expression of Runx1 and Runx2 in mammospheres. 

To investigate a possible role for Runx genes in mammary stem cells, 

mammospheres were used as a tool for the generation of mammary stem cell-

enriched cultures (see Introduction and Material and Methods for details). As a 

control, primary mammary cells were grown in differentiating conditions (from 

now on called 2D MMECs) as adherent 2D-culture on plastic with foetal calf 

serum (FCS) and a cocktail of growth factors (Insulin, EGF and Cholera toxin). 

Fresh-extracted MMECs, after one week in mammosphere-culturing conditions 

form floating spherical colonies as expected (FIGURE 4-1-A & B). First the 

pattern of expression of all three Runx genes was analysed by qRT-PCR to check 

if in vitro culture was affecting their normal pattern of expression. Again Runx1 

transcript represented the main isoform while Runx3 levels were very low, close 

to the limit of detectability (FIGURE 4-1-C).  This data confirmed our previous 

results on fresh sorted MMECs and showed that in vitro culturing conditions are 

not causing drastic changes in the pattern of expression of Runx genes. Runx 

expression was then assessed in primary cells grown in differentiating conditions 

and those grown as primary and secondary mammospheres. Since mammosphere 

passaging has been shown to enrich for mammary cells with stem cell features 

(Dontu et al. 2003), this experiment allowed to test a possible involvement of 

Runx genes in the MaSC population. Interestingly Runx2 was enriched in primary 

and secondary mammospheres when compared to 2D MMECs (FIGURE 4-1-D). On 

the other hand Runx1 showed no enrichment in primary mammospheres and a 

decrease in secondary mammospheres (FIGURE 4-1-E). Western blot analysis 

confirmed RUNX2 enrichment in primary mammospheres at the protein level 

(FIGURE 4-2-A). IHC analysis was used to characterize the pattern of RUNX2 

expression in mammospheres. High RUNX2 expression in primary and secondary 

mammospheres was detectable in a subgroup of cells, usually located at the 

centre of the spheres (FIGURE 4-2-B & C).  Together these results indicate a 

correlation between elevated RUNX2 expression and stem cell-enriched cultures.  
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Figure 4-1   Characterization of Runx expression in mammospheres. 

Bright field (A) and H&E (B) of primary mammospheres after 1 week of culture. qRT-PCR for 
Runx1, Runx2 and Runx3 on MMECs grown in 2D (2D MMECs), primary and secondary 
mammospheres  (C-E). RNA levels were normalized to GAPDH. Data are expressed as mean 
relative expression (±SD). n≥5 for each group. Expression in primary and secondary 
mammospheres was compared to 2D MMECs; in (E), *=p<0.001. **=p<0.0005. Expression in 
primary mammospheres was also compared to secondary mammospheres; in (D), p<0.02. In (E), 
p<0.05. 
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Figure 4-2   RUNX2 protein is enriched in mammospheres. 

Western blot on MMECs grown in 2D from two separate experiments (2D MMEC1, 2D MMEC2) and 
primary mammospheres nuclear and cytoplasmic extract (1stMammo N, 1stMammo Cyt). Two 
different antibodies against RUNX2 were used as specified in the figure (A). RUNX2 IHC on 
primary (B) and secondary mammospheres (C). Scale bars represent 30 μm. 

  



133 
 
To test if RUNX2 is necessary for mammospheres formation a loss of function 

experiment was performed whereby MMECs extracted from Cre-negative 

Runx2WT/WT and Runx2Flx/Flx mice were infected with adenoviral Cre-GFP and 

grown as mammospheres. There was no difference in total number of primary 

and secondary mammospheres generated from Runx2WT/WT and Runx2Flx/Flx cells 

(FIGURE 4-3-A & B). However RT-PCR on RNA extracted from mammospheres 

derived from Runx2Flx/Flx cells showed that the partial Runx2 knock-down induced 

by Cre expression in vitro is rescued in secondary mammospheres (FIGURE 4-3-C 

& D). This result indicates that Runx2-deleted cells are selected against in this 

assay suggesting a functional role for Runx2 in mammosphere formation. 
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Figure 4-3   Effects of Runx2 loss on mammospheres formation. 

Quantification of primary (A) and secondary (B) mammospheres on MMECs extracted from 
Runx2WT/WT and Runx2Flx/Flx mice and infected with Adenoviral Cre. MMECs were spin-infected 
with adenoviral Cre-GFP and grown in non-adherent conditions as mammospheres. Primary and 
secondary mammospheres were counted after 7 days in culture under a bright field microscope. 
Runx2 mRNA expression from primary and secondary mammospheres (C) Runx2 expression is 
shown as fold change compared to the WT control. Data are expressed as mean fold expression 
(±SD), average of 4 independent experiments. Chart showing rescue of Runx2 expression in 4 
independent experiments (D).   
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4.2.2   In vivo deletion of Runx2 in the mammary basal 
compartment does not affect normal mammary 
development. 

To investigate the role of Runx2 in mammary stem cells in vivo, a loss of 

function mouse model targeted to the mammary basal population was created. 

Here K14-Cre mice, which express the Cre recombinase under the control of the 

human keratin 14 promoter, were used. Under this promoter, specific deletion 

of loxP flanked target sequences can be achieved in the basal layer of different 

epithelial tissues such as skin, tongue and mammary gland (Dassule et al. 2000). 

To achieve a targeted deletion of Runx2 in the basal population of the mammary 

epithelium the K14-Cre mouse was combined together with the Runx2flx/flx 

mouse. No obvious phenotype was detectable in K14-Cre+/Runx2flx/flx glands at 

the histological level in mature virgin, lactating and involuting stages when 

compared to K14-Cre+/Runx2WT/WT controls (FIGURE 4-4-A). The lactating 

capability of K14-Cre+/Runx2flx/flx mice was also tested by weighing litters at 7 

days of age. No difference in weight was found between pups nursed by K14-

Cre+/Runx2WT/WT and K14-Cre+/Runx2flx/flx females indicating that loss of Runx2 

in the basal layer of the mammary gland is not affecting milk production 

(FIGURE 4-4-B).  The fate of K14-Cre/Runx2 deleted cells in the mammary 

epithelium was then tracked using the GFP reporter as previously described 

(Chapter 3). FACS analysis on MMECs extracted from mature virgins showed no 

difference in total GFP expression levels between K14-Cre+/Runx2WT/WT and K14-

Cre+/Runx2flx/flx mice (FIGURE 4-5-A). Interestingly the levels of GFP expression 

driven by K14-Cre (~40% of total MMECs) are much higher compared to BLG-Cre 

(~16% of total MMECs, see figure 3-8) indicating that K14-Cre is highly active in 

the mature virgin state. To identify possible aberrations in mammary lineages 

induced by loss of Runx2 in the basal population, mammary population profiling 

through FACS looking at GFP expression specifically in basal and luminal lineages 

was carried out. Loss of Runx2 causes no effects on GFP levels in either the basal 

or luminal population (FIGURE 4-5-B & C). FACS analysis confirmed that K14-Cre 

is expressed at high levels in the basal layer of the mammary gland: however a 

considerable amount of GFP+ cells were also detected in the luminal 

compartment (FIGURE 4-5-B). GFP expression in luminal cells was confirmed 

through immunofluorescence showing double positive GFP+/CK18+ cells in K14-

Cre Z/EG+ mice (FIGURE 4-6). 
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Figure 4-4   Effects of loss of Runx2 in the basal layer of the virgin mammary gland. 

Representative histological sections of mammary glands from K14-Cre+/RunxWT/WT and K14-
Cre+/Runx2Flx/Flx mice extracted from mice at 12 week old virgin, lactation  day 3 and involution 
day7 (n>4 for each stage). Scale bar represents 50 μm (A). Bar chart showing the weight of pups 
from K14-Cre+/RunxWT/WT and K14-Cre+/Runx2Flx/Flx litters expressed in grams. Litters (n≥5) were 
normalized to 6 and pups were weighed after 7 days from the start of lactation (B). 
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Figure 4-5  Analysis of Runx2 loss in the basal lineage using a GFP reporter. 

Reporter GFP expression as analysed by FACS, on  whole mammary gland extraction (A), and 
gated on CD24+/CD29low luminal population (B) and CD24+/CD29high basal population (C). MMECs 
were isolated from 12 week K14-Cre+/Runx2WT/WT and K14-Cre+/Runx2Flx/Flx mice. Data are 
expressed as % of GFP+ cells over total in the selected population (±SD). n≥5 for each stage. 
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Figure 4-6   K14-Cre is expressed in the luminal population of the virgin mammary gland.  

Immunofluorescence of CK14 (red), CK18 (yellow) and GFP (green) on mammary glands extracted 
from K14-Cre+/Runx2WT/WT mice. Red arrows indicate GFP+ luminal cells on the merge image. 
Glands were counterstained with DAPI (blue). Scale bar represents 20 μm. 
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4.2.3   In vivo deletion of Runx2 in the K14+ population impairs in 
vitro MMECs regenerative potential. 

Overall Runx2 loss with a K14-Cre driven promoter, and high recombination in 

the basal lineage, causes no detectable phenotypes in the mammary gland. 

However loss of genes involved in stem cells and regeneration can often result in 

no overall phenotype during normal development, with the defect becoming 

apparent only after challenging the recombinant tissue through regenerative 

assays (Taddei et al. 2008).  To test the regenerative potential of Runx2 deleted 

mammary epithelial cells in vitro stem cell assays were carried out. In fresh 

extracted MMECs from K14-Cre+/Runx2flx/flx and K14-Cre+/Runx2WT/WT mice, loss 

of Runx2 caused a significant reduction in number and size of primary 

mammospheres (FIGURE 4-7-A-C). In addition secondary mammosphere growth 

was also affected (FIGURE 4-7-D & E). qRT-PCR on RNA extracted from primary 

and secondary mammospheres confirmed Runx2 deletion in K14-Cre+/Runx2flx/flx 

derived spheres while Runx1 levels were not affected (FIGURE 4-8-A & B). 

Considering that Runx genes are key regulators of cell cycle progression 

(Coffman 2009), RNA levels of p21, a cyclin-dependent kinase inhibitor, were 

checked to test if loss of Runx2 was affecting mammospheres proliferation 

status. qRT-PCR for p21 on RNA extracted from primary mammospheres from 

K14-Cre+/Runx2flx/flx and K14-Cre+/Runx2WT/WT mice showed that p21 levels are 

reduced after Runx2 deletion (FIGURE 4-8-C). 
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Figure 4-7  In vivo loss of Runx2 in the basal lineage impairs mammosphere formation. 

Bright field images of mammosphere cultures derived from K14-Cre+/Runx2WT/WT and K14-
Cre+/Runx2Flx/Flx mice. Scale bars represent 100 μm (A). Quantification and size of primary (B-C) 
and secondary (D-E) mammospheres on MMECs extracted from K14-Cre+/Runx2WT/WT and K14-
Cre+/Runx2Flx/Flx mice. Primary and secondary mammospheres were counted and measured after 
7 days in culture. Data are expressed as mean (±SD). Four independent experiments for each 
group. *= p<0.001; **=p<0.01. 
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Figure 4-8  Runx1, Runx2 and p21 expression on mammospheres derived from K14-
Cre+/Runx2flx/flx mice. 

qRT-PCR for Runx2 (A) and Runx1 (B) mRNA expression in primary and secondary mammospheres 
derived from K14-Cre+/Runx2WT/WT and K14-Cre+/Runx2Flx/Flx mice. p21 mRNA expression on 
primary mammospheres derived from K14-Cre+/Runx2WT/WT and K14-Cre+/Runx2Flx/Flx mice (C). 
RNA levels were normalized to GAPDH. Data are expressed as mean relative expression (±SD). 
n=4 for each group. *=p<0.05. **=p<0.01. 
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In vitro clonogenic assays are widely used in the stem cell field as a surrogate to 

identify putative stem/progenitor cells (Grompe 2012). To further characterize 

the role of Runx2 in mammary stem cells, the self-renewal potential of Runx2 

deleted cells in vitro using colony-forming assays in Matrigel (Guo et al. 2012) 

was performed. Specifically, fresh MMECs were extracted and seeded as single 

cells in Matrigel with serum-free medium supplemented with epidermal growth 

factor (EGF) (Zeng & Nusse 2010). In this assay, after one week in culture, 

MMECs form 3D colonies which develop into a ring of cells surrounding a hollow 

lumen, a structure resembling a mammary duct tree (FIGURE 4-9-A & B). These 

colonies can be further dissociated into single cells and plated again to form 

secondary colonies. Runx1 and Runx2 expression was assessed in this system. RT-

PCR on primary and secondary colonies grown from wild type mice confirmed 

that Runx1 is the most expressed of the Runx genes while Runx3 transcripts are 

undetectable (FIGURE 4-9-C). Moreover, in a nice parallel with findings in the 

mammospheres system, Runx2 is enriched in secondary colonies while Runx1 

expression is not (FIGURE 4-9-D & E).    

Fresh extracted MMECs from K14-Cre+/Runx2flx/flx and K14-Cre+/Runx2WT/WT mice 

were then assessed in matrigel colony-forming assays. Interestingly MMECs 

extracted from K14-Cre+/Runx2flx/flx mice formed less primary and secondary 

colonies when compared to controls (FIGURE 4-10-A-C). No difference was 

detectable in the size of matrigel colonies between the two groups (FIGURE 4-

10-D,E).  Runx2 deletion was confirmed by RT-PCR on RNA extracted from 

primary matrigel cultures (FIGURE 4-11-A-B). Again Runx1 levels were not 

affected indicating the specificity of the targeted deletion approach. These 

results indicate that Runx2 expression in the K14+ cells of the mammary 

epithelium is required for sustaining MMECs growth in matrigel colony-forming 

assays. 
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Figure 4-9   Runx expression in matrigel colony-forming assays. 

Bright field (A) and H&E (B) of primary colonies after 1 week in culture. qRT-PCR for Runx1, 
Runx2 and Runx3 on primary and secondary matrigel colonies (C). qRT-PCR for Runx2 (D) and 
Runx1 (E) on primary and secondary matrigel colonies. RNA levels were normalized to GAPDH.  
Data are expressed as mean relative expression (±SD). n=4 for each group. *=p<0.001. 
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Figure 4-10  In vivo loss of Runx2 in the K14+ cells impairs matrigel colony formation. 

Bright field images of primary matrigel colonies derived from K14-Cre+/Runx2WT/WT and K14-
Cre+/Runx2Flx/Flx mice. Scale bars represent 100 μm (A). Quantification and size of primary (B&D) 
and secondary (C&E) matrigel colonies from K14-Cre+/Runx2 WT/WT and K14-Cre+/Runx2Flx/Flx 
MMECs. Primary and secondary matrigel colonies were counted and measured after 7 days in 
culture. Data are expressed as mean number of colonies (% over the WT) and mean colony 
diameter (±SD). Four independent experiments for each group.   
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Figure 4-11   Runx1 and Runx2 expression on K14-Cre+/Runx2flx/flx matrigel colonies. 

qRT-PCR of Runx1 (A) and Runx2 (B) expression on primary matrigel colonies derived from K14-
Cre+/Runx2WT/WT and K14-Cre+/Runx2Flx/Flx mice after 7 days in culture. RNA levels were 
normalized to GAPDH. Data are expressed as mean relative expression (±SD). n=4 for each group. 
*=p<0.005. 
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To determine if these in vitro findings were transferable to an in vivo setting 

and to test if Runx2 is indeed involved in the regulation of mammary stem cell 

regenerative potential, the cleared fat pad transplantation assay was 

performed. MMECs were extracted from K14-Cre+/Runx2flx/flx and K14-

Cre+/Runx2WT/WT mice bearing the Z/EG transgene. Two different concentrations 

of cells (1x104 and 1x105 MMECs) were injected into the cleared fat pad of 3 

week old SCID female mice. After 7 weeks epithelial duct trees were detectable 

at the same frequency in both control and Runx2 knock-out groups (FIGURE 4-12-

A). Moreover in vivo GFP analysis indicated that Runx2 deleted cells contributed 

to the ductal outgrowth in a similar manner to the WT (FIGURE 4-12-B). This 

data indicates that Runx2 deleted cells can contribute to mammary epithelial 

regeneration when injected together with WT cells.  
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Figure 4-12   In vivo regeneration activity of Runx2 deleted mammary cells. 

Table showing the results obtained from cleared fat pad transplantation of total MMECs 
extracted from K14-Cre+/Runx2flx/flx and K14-Cre+/Runx2WT/WT mice bearing the Z/EG transgene. 
Freshly isolated total MMECs were transplanted at the two concentrations specified above (A). 
Examples of reconstituted glands from the two cohorts: whole mounts (left) and in vivo GFP 
imaging of glands extracted from K14-Cre+/Runx2WT/WT (top) and K14-Cre+/Runx2flx/flx (bottom) 
mice. Scale bars represent 1mm (B).  
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4.2.4    Runx2 is a downstream target of Wnt signalling in 
mammary stem cells. 

The evidence showed so far suggests that RUNX2 is important for the 

regenerative potential of a mammary stem/progenitor population. Since Wnt 

signalling has been shown to regulate mammary stem cells and evidence links 

Runx and Wnt signalling pathways (see Introduction) the role of Runx2 as a 

possible mediator or regulator of Wnt signalling in mammary stem cells was 

investigated. Wnt signalling status was checked in mammosphere culture using 

Axin2 expression, one of the main downstream targets of Wnt signalling (Jho et 

al. 2002), as a readout for Wnt pathway activation. RT-PCR showed increased 

levels of Axin2 in mammospheres culture compared to MMECs grown in 

differentiating conditions (FIGURE 4-13-A). This result indicates that Wnt 

signalling is more active in a population enriched in mammary stem cells. The 

effects of Wnt signalling activation on the mammosphere-forming capacity of 

MMECs was then tested. Treatment of fresh extracted MMECs grown as 

mammospheres with recombinant WNT3A caused an increase in mammosphere 

number and size (FIGURE 4-13-B-D). These data suggest a growth promoting 

effect of Wnt pathway on mammary stem cells. Runx2 as a downstream target of 

Wnt signalling in MMECs was tested by performing a 24h treatment with 

recombinant WNT3A on MMECs grown in 2D differentiating conditions and on 

MMECs grown as mammospheres. After incubation with the recombinant protein, 

qRT-PCR for Axin2 was used as a readout to confirm activation of Wnt pathway 

in both systems (FIGURE 4-14-A,B). Interestingly WNT3A treatment did not affect 

Runx2 transcript levels in MMECs grown in differentiating conditions (FIGURE 4-

14-C). However WNT3A treatment caused a significant up-regulation of Runx2 

expression in mammospheres (FIGURE 4-14-D). To confirm the specificity of that 

up-regulation levels of Slug, another transcription factor involved in mammary 

stem cells, were unchanged (FIGURE 4-14-E). Moreover RT-PCR for Hes1, one of 

the main transcriptional targets of Notch pathway, showed no difference, 

confirming the specific activation of Wnt signalling (FIGURE 4-14-F). These 

results are indicating Runx2 as a potential downstream target of Wnt signalling 

specifically in mammary stem cell-enriched cultures. 
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Figure 4-13   Effects of Wnt signalling on mammosphere cultures. 

qRT-PCR for Axin2 of MMECs grown in 2D (2D MMECs) and primary mammospheres. RNA levels 
were normalized to GAPDH. Data are expressed as mean relative expression (±SD). n≥5 for each 
group (A). Bright field images of mammosphere cultures treated for 1 week, with either vehicle 
(Vh) or WNT3A (B).  Quantification (C) and size (D) of primary mammospheres extracted from 12 
week old virgin FVB mice and treated for 1 week, with either vehicle (Vh) or WNT3A. Data are 
expressed as mean (±SD). 3 independent MMECs extractions for each group. *=p<0.005. 
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Figure 4-14  Effects of Wnt signalling activation on Runx2 expression in mammospheres.  

qRT-PCR for Axin2 (A,B) and Runx2 (C,D) on MMECs grown in 2D (2D MMECs) and primary 
mammospheres treated for  24h, with either vehicle (Vh) or WNT3A. qRT-PCR for Slug (E) and 
Hes1 (F) on primary mammospheres treated for  24h, with either vehicle (Vh) or WNT3A. RNA 
levels were normalized to GAPDH. Data are expressed as mean relative expression (±SD). 3 
independent MMECs extractions for each group.*=p<0.05. **=p<0.0005. 
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4.3  DISCUSSION 

 

In this study mammosphere culture was used as a tool to study the role of Runx 

genes in the mammary stem cell population. Several studies have shown a link 

between mammospheres and MaSC: in particular cleared fat pad injection of a 

single sphere is able to generate mammary outgrowth in 11 out of 18 

transplantations, indicating that enrichment for cells with high regenerative 

capability is achievable in this assay (Cicalese et al. 2009). Moreover, the 

progenitor/stem cell content of mammospheres has been shown to increase with 

passage.  Indeed whereas freshly isolated mammary cells contain less than 10% 

multi-lineage progenitors when cultured under differentiating conditions, these 

are enriched to 70% in primary mammospheres, and virtually 100% in secondary 

mammospheres (Dontu et al. 2003). Results presented here showed that Runx2 

expression is enriched in primary and further enriched in secondary 

mammosphere cultures. This data indicates that Runx2 expression increases 

together with the stem cell content of mammospheres. Characterization of 

RUNX2 expression through immunohistochemistry showed that RUNX2 is 

expressed at high levels in a few cells usually located at the centre of the 

sphere. Intriguingly work from Wicha’s lab showed that cytokeratin 5 (CK5) and 

CD49f, two known markers for the basal stem cell population,  followed a similar 

pattern of expression (Dontu et al. 2003). Confirming these observations in a 

different in vitro system, Runx2 is also upregulated in secondary matrigel 

colonies. These results unveiled a correlation between cells characterized by a 

certain degree of self-renewal in vitro and upregulation of Runx2 expression. 

Interestingly this upregulation is specific for Runx2 since Runx1 showed no sign 

of enrichment in either mammosphere or matrigel cultures. Rather, Runx1 was 

significantly downregulated in secondary mammospheres suggesting a possible 

role for this transcription factor in a more differentiated population of the 

mammary epithelium. The specific enrichment for Runx2 but not Runx1 in 

mammosphere cultures is also fitting with the data coming from the BLG-

Cre/Runx2flx/flx cohorts indicating that only loss of Runx2 (and not Runx1) 

perturbs the basal compartment.  Taken together, the experiments above show 

a correlation between high Runx2 expression and stem cell enriched cultures. To 

investigate the functional role of Runx2 in mammospheres in vitro, Runx2 knock-
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out experiments, using adenoviral infection were performed. These experiments 

showed that Runx2 is required for mammospheres formation since Runx2-deleted 

cells undergo a negative selection in the mammosphere assay.  

Given the correlative and functional link discovered between Runx2 and stem 

cells and since stem cells are enriched in the basal population we decided to 

create an in vivo deletion of Runx2 specific for the basal lineage using the K14-

Cre system. K14-Cre/Runx2flx/flx mice didn’t show any phenotype at the 

histological level in all the tested developmental stages. This lack of phenotype 

could be due to a sufficient number of wild-type cells still present in the Runx2-

deleted gland which can compensate for Runx2 loss of function. Moreover 

lineage profiling with GFP marker showed no alterations in the mammary 

populations after Runx2 deletion indicating that loss of Runx2 per se in the basal 

compartment is not deleterious. This is in apparent contrast with the reduction 

of GFP+ basal cells seen after Runx2 loss in the BLG-Cre model. However this 

could be explained by the fact that Runx2 is expressed only in a small 

subpopulation of basal cells while K14-Cre is expressed in the majority of them. 

Hence the lack of a detectable reduction in the number of basal cells in the K14-

Cre/Runx2flx/flx mouse could be due to the inherent lack of sensitivity of this 

system; in other words the reduction in GFP+ cells which may be caused by loss 

of Runx2 in the basal layer would be smaller than the biological variation of K14-

Cre expression. In the BLG-Cre model instead, the small percentage of basal 

cells that are targeted and which could represent the RUNX2 positive basal 

population, allows us to detect their loss after RUNX2 deletion.  

Although no gross phenotype was detectable in normal mammary development 

of K14-Cre/Runx2flx/flx mice, interesting results started to appear when those 

cells were challenged in in vitro stem cell assays. MMECs extracted from K14-

Cre/Runx2flx/flx mice generated fewer colonies in the mammosphere assay. This 

is showing that Runx2 expression in the mammary basal compartment is required 

for the mammosphere generating potential of the virgin mammary gland. 

Moreover a reduction in colony size suggests that Runx2 deleted colonies are 

somewhat arrested in development. Two possible scenarios could explain the 

reduced size and number of colonies observed; firstly, Runx2 loss forces MaSC 

into quiescence hindering mammosphere formation. Or in fact Runx2 deleted 

stem cells may be unable to enter quiescence; this would cause stem cell 
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exhaustion in vivo in the K14-Cre+/Runx2flx/flx mammary epithelium. Hence 

MMECs extracted from the Runx2 deleted glands will be depleted of stem cells 

and this will cause the defective mammospheres forming capability. Preliminary 

results showing reduced levels of p21, a key regulator of quiescence (Cheng et 

al. 2000), in Runx2 deleted mammospheres cultures support the second 

scenario. Furthermore, evidence in the literature suggests a role for Runx2 in 

the induction of quiescence. For example Runx2 is upregulated during 

quiescence in osteoblasts and Runx2 can induce quiescence in prostate cancer 

cells (Galindo et al. 2005; Baniwal et al. 2010). Further experiments such as cell 

cycle profiling through FACS of primary mammospheres from K14-

Cre+/Runx2flx/flx and K14-Cre+/Runx2WT/WT mice will help to confirm if loss of 

Runx2 is affecting MaSC cell cycle.  

To further test if Runx2 could affect the regenerative potential of mammary 

cells in a different in vitro culture model, 3D matrigel colony forming assay was 

performed. This assay is commonly used in mammary stem cell research by 

several labs for the study of MaSC regenerative potential in vitro (Guo et al. 

2012; Zeng & Nusse 2010; Bai & Rohrschneider 2010). Interestingly results from 

these experiments confirmed that loss of Runx2 impairs in vitro mammary 

regenerative potential causing a reduction in the number of colonies formed 

after one week in culture. How can loss of Runx2 cause a reduction of 

regenerative potential in in vitro experiments without affecting normal 

mammary development? Looking into the literature this situation appears to be a 

common theme of different studies focusing on the role of stem cell genes in 

mammary gland and skin: no obvious gross defects are detectable during normal 

development with a phenotype becoming apparent only when cells are tested in 

regenerative assays in vitro and in vivo (Taddei et al. 2008; Jensen et al. 2009). 

This behaviour would suggest that, at least in some tissues, normal epithelial 

adult homeostasis does not require activation of the stem cell population, whose 

regenerative potential is instead necessary in more extreme conditions which 

can be physiological, such as tissue repair after wounding, or experimentally 

induced, such as stem cell assays. Besides forcing stem cell regenerative 

potential, in vitro assays also serve as a good tool to eliminate confounding and 

redundant effects of the tissue microenvironment on the targeted population 

which could result in the rescue of the phenotype. Overall in vitro assays 
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represent a way to simplify in vivo systems, unmasking phenotypes which would 

be otherwise hidden by the complexity of tissue compensatory systems.  

However in vitro assays also come with flaws; cells are grown in artificial 

conditions, no microenvironment is present and the structures formed are only 

reminiscent of the real complex architecture of a mature mammary epithelium. 

To prove if Runx2 is really needed for the generation of a functional mammary 

duct tree in vivo, a cleared fat pad transplantation experiment was required. 

Epithelial duct trees were detectable at the same frequency in both control and 

Runx2 knock-out groups showing that Runx2-deleted cells can take part in the 

regeneration process and be incorporated in the newly formed duct tree. 

However this experiment does not definitively prove that Runx2 is not essential 

for mammary regenerative potential as the cells injected were not FACS purified 

so they represented a mixed population of Runx2 wild-type and Runx2 deleted 

cells. Thus the duct tree reconstitution capability of the Runx2 deleted group 

could be due to the regenerative potential of the non-recombined population 

with Runx2-deleted cells being passively incorporated in the duct tree. Serial fat 

pad transplantation experiments using a pure population of FACS sorted GFP+ 

basal cells extracted from K14-Cre+/Runx2flx/flx and K14-Cre+/Runx2WT/WT mice 

will clarify if Runx2 is absolutely required for the regenerative potential of 

mammary stem cells.  

The fat pad transplantation technique also comes with limitations: in this assay 

MMECs undergo several stresses (tissue dissociation, enzymatic digestion, FACS 

sorting) which could affect the MaSC population. Moreover recent lineage tracing 

studies showed that fat pad transplantation can force cells to acquire stem cell 

behaviours which they do not normally have in physiological conditions (Van 

Keymeulen et al. 2011; van Amerongen et al. 2012).  The final experiment which 

would show if Runx2 is really involved in a mammary stem population would be 

lineage tracing using a tetracycline-inducible GFP, driven by the endogenous 

Runx2 promoter. This would allow a precise localization and characterization of 

RUNX2 positive cells in the mammary epithelium. Using pulse and chase 

experiments at different stages of development (embryonic, virgin, pregnancy) 

would allow the clarification of the actual contribution of RUNX2 positive cells 

to mammary development and homeostasis (van Amerongen et al. 2012; Van 

Keymeulen et al. 2011). 
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 The signalling mechanism by which Runx2 can exert its effects on stem cell 

regulation has also been investigated. With evidence linking Runx2 with Wnt 

signalling (Dong et al. 2006; Gaur et al. 2005) this seemed to be a promising area 

to investigate. First it was shown that Wnt signalling is activated in 

mammospheres compared to 2D-MMECs and that Wnt treatment stimulates the 

growth of mammospheres. These results are in line with the published evidence 

indicating Wnt signalling as a key regulator of MaSC (Zeng & Nusse 2010). 

Moreover, treating mammospheres for 24h with recombinant WNT3A induces 

Runx2 transcription indicating that Runx2 is a downstream target of Wnt 

signalling. The specificity of Runx2 activation was confirmed by looking at Slug, 

another gene involved in MaSC which did not show any change after Wnt 

treatment. Furthermore no effects on Runx2 expression were seen on 

differentiating 2D MMECs suggesting that Runx2 is downstream to Wnt signalling 

only in MaSC enriched cultures. Probably MaSC cells are characterized by a 

different epigenetic conformation or a specific set of coactivators which allows 

the increase of Runx2 expression in response to Wnt signalling. 
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5 The role of RUNX2 in metaplastic squamous 
breast cancer. 

 

 

5.1 INTRODUCTION 

 

5.1.1   Runx2 in breast cancer 

An oncogenic role for RUNX2 was first reported in the haematopoietic lineage, 

where RUNX2 overexpression was shown to promote lymphoma development in 

mice (Stewart et al. 1997; Vaillant et al. 1999). In addition several studies have 

also suggested a possible role for RUNX2 as an oncogene in metastatic breast and 

prostate cancer (Pratap et al. 2006; Blyth et al. 2010). In particular some human 

breast cancer cell lines overexpress RUNX2 and its inhibition leads to less 

invasive potential in vitro and to decreased osteolytic metastatic activity in vivo 

(Barnes et al. 2003).  Furthermore RUNX2 regulates several genes that are 

involved in breast cancer metastasis such as collagenase3, bone sialoprotein, 

osteopontin and MMP-9 (Pratap et al. 2005; Barnes et al. 2003). More hints 

regarding a role for RUNX transcription factors in the mammary gland are 

emerging from studies using three-dimensional epithelial culture systems. 

Interestingly RUNX2 overexpression in a 3D culture model using the MCF10A cell 

line disrupts normal acini development resulting in increased cell proliferation 

and hyperplasia (Pratap et al. 2009). However all the published studies to date 

have analysed the effects of RUNX2 in an in vitro context, using a limited 

number of cell lines. Hence in vivo evidence of the pro-tumourigenic role of 

RUNX2 in breast cancer is still lacking. A study from our laboratory is the first to 

provide in vivo confirmation of an oncogenic role for RUNX2 in breast cancer. 

McDonald et al showed that in vivo overexpression of Runx2 caused hyperplasia 

and induces DCIS in old virgin mice (McDonald, Ferrari et al, submitted). Only a 

few studies have looked at RUNX2 in human breast cancer with contrasting 

results (Onodera et al. 2010; Das et al. 2009; Khalid et al. 2008). Unpublished 
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data from our laboratory show that RUNX2 is highly expressed in a small 

percentage of human breast cancers and interestingly its expression correlates 

with triple negative disease. Triple negative breast cancers, which account for 

around 15% of all BCs, are a mixed group of tumours defined by lack of 

expression of oestrogen, progesterone, and ERBB2 receptors. This subgroup is 

associated with poor outcome and lack of specific targeted therapy (Foulkes et 

al. 2010).  

5.1.2   Experimental Aims 

A few previous reports (our lab included) have indicated RUNX2 as a new 

oncogene in a specific subgroup of human breast cancer, the triple negative 

subtype. The aim of this study was to better characterize the role of RUNX2 in 

triple negative breast cancer through a combination of in vitro and in vivo 

modelling.  
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5.2  RESULTS 

 

5.2.1   Runx2 expression in mouse models of breast cancer 

RUNX2 is highly expressed in a small percentage of human breast cancers and 

interestingly its expression correlates with triple negative tumours (McDonald et 

al, unpublished). These results indicate that the role of RUNX2 in breast cancer 

could be restricted to a particular subgroup of the triple negative subtype. To 

better identify the breast cancer subgroup in which RUNX2 may play a role, six 

mouse models representing different breast cancer subtypes (Herschkowitz et al. 

2007) were stained for RUNX2. Luminal-like models (MMTV-PyMT and MMTV-

Her2) as well as a basal-like BRCA1 tumour model (BLG-Cre/Brca1flx/flx/p53+/-) 

showed low or negative RUNX2 staining (FIGURE 5-1). Conversely,  Apc1572T and 

BLG-Cre/Ptenflx/flxApcflx/flx mice, two mouse models of metaplastic breast 

cancer, a rare subtype of triple negative BC (Gaspar et al. 2009), showed high 

RUNX2 positivity, especially in correlation with squamous metaplastic lesions 

(FIGURE 5-1). In addition, in the Apc1572T model, RUNX2 expression is very high in 

the basal layer of the squamous metaplastic lesions which has been shown to 

contain a high percentage of the Ki67+ cells (Kuraguchi,  2009) (FIGURE 5-2). 

Intriguingly, both Apc1572T and BLG-Cre/Ptenflx/flxApcflx/flx models, are 

characterized by truncating mutations or deletions in the Apc tumour suppressor 

gene, the main negative regulator of the Wnt/β-catenin pathway (Cadigan & 

Peifer 2009). Thus both models are characterized by the constitutive activation 

of canonical Wnt signalling, suggesting a link between Runx2 and this pathway. 
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Figure 5-1  RUNX2 expression in mouse models of breast cancer. 

RUNX2 IHC on five mouse models of breast cancer. MMTV-PyMT and MMTV-Her2 are luminal-like 
BC while BLG-Cre/Brca1flx/flx/p53+/-, Apc1572T and BLG-Cre/Apcflx/flxPtenflx/flx are basal-like 
models. Three to five independent tumours have been stained from each genotype. Scale bars 
represent 50µM. 
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Figure 5-2      Examples of RUNX2 basal pattern of expression in squamous lesions. 

RUNX2 expression on Apc1572T tumours as assessed by IHC. Scale bars represent 50µM. 
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5.2.2   Runx2 in a mouse model of mammary squamous metaplasia. 

These data suggested a link between RUNX2 expression, squamous metaplastic 

breast cancer (SMBC) and activated Wnt signalling in mouse models of breast 

cancer. To further investigate a possible involvement of RUNX2 in metaplastic 

breast cancer, a mouse model of Wnt-induced squamous metaplasia was chosen 

(Miyoshi, Shillingford, et al. 2002), where endogenous β-catenin is stabilized 

through the deletion of exon 3 (amino acids 5-80) of the β-catenin gene 

(Catnb+/lox(ex3) mice). This model has been reported to give rise to extensive 

squamous metaplasia, but not adenocarcinomas, upon β-catenin activation 

during pregnancy (Miyoshi, Shillingford, et al. 2002). As the Cre recombinase 

used here was different from the ones published previously, it was important to 

first characterize the model, choosing to look at virgin, lactating and involuting 

stages. Activation of β-catenin driven by BLG-Cre was confirmed to induce 

squamous metaplastic lesions at all stages tested (FIGURE 5-3). These lesions are 

characterized by the presence of asymmetrical keratinized structures usually 

with a thicker layer of squamous cells at one edge (FIGURE 5-4-A). Like in 

normal epidermis (Blanpain & Fuchs 2009), the squamous cells located in the 

basal region undergo a constant process of maturation. Actively cycling basal 

cells continuously produce progenitors which are pushed upwards towards the 

centre of the cysts, while undergoing a terminal differentiation program. As they 

mature, cells acquire a flatten morphology and start to produce large amounts 

of epidermal keratins such as CK1 (FIGURE 5-4-B). At the end of the process 

these cells will become embedded in a very dense keratin structure, similar to 

hair matrix and will die, as shown by the presence of ghost cells in the middle of 

the lesions (FIGURE 5-4-C).  To investigate if Wnt signalling activation in the 

virgin epithelium induces Runx2 expression, qRT-PCR was performed on RNA 

extracted from virgin glands of BLG-Cre/Catnb+/lox(ex3) and BLG-Cre/Catnb+/+ 

mice. Interestingly a significant upregulation of Runx2 transcript was found in 

the mammary epithelium expressing the activated form of β-catenin, 

corroborating the idea of Runx2 as a downstream target of Wnt signalling in the 

mammary gland (FIGURE 5-5-A). RUNX2 activation at the protein level was then 

confirmed through immunohistochemistry showing that β-catenin stabilization 

induces RUNX2 expression during the lactation phase, a stage of development 

which is normally devoid of RUNX2 (FIGURE 5-5-B). RUNX2 expression was usually 

located in the basal layer of the squamous lesions (FIGURE 5-5-C). Interestingly 
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β-catenin expression was restricted to this compartment and not expressed in 

the terminal differentiating cells (FIGURE 5-5-D).  

To investigate how RUNX2 loss could affect development of mammary squamous 

metaplasia three cohorts, BLG-Cre/Catnb+/lox(ex3)/Runx2WT/WT, BLG-Cre/ 

Catnb+/lox(ex3)/Runx2WT/flx and BLG-Cre/Catnb+/lox(ex3)/Runx2flx/flx, were generated. 

Since BLG-Cre is mainly activated during pregnancy, and to achieve high levels 

of Wnt activation in the majority of the mammary epithelium, mice were taken 

through one round of pregnancy and then sacrificed at involution day 7. Loss of 

RUNX2 caused a significant increase in the number of squamous lesions 

compared to the wild-type and heterozygous cohort (FIGURE 5-6). This data 

could suggest that RUNX2 is activated by Wnt signalling and acts to repress the 

formation of squamous lesions. In this situation, RUNX2 would restrict the 

mammary to epidermal trans-differentiation signal mediated by aberrant Wnt 

signalling in the mammary epithelium. 
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Figure 5-3  Effects of β-catenin stabilization at different stages of mammary development. 

H&E examples of 12 weeks virgin, lactating d1 and involuting day 7, BLG-Cre/Catnb+/lox(ex3) mice. 
Red arrows indicate keratinized squamous lesions. Scale bars represent 100µM. n≥2 per group. 
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Figure 5-4  Histological analysis of β-catenin-induced squamous lesions. 

H&E examples of squamous lesions developed by BLG-Cre/Catnb+/lox(ex3) mice. Red arrows 
indicate layers of differentiating squamous cells. Black arrows indicate the keratin deposit in the 
middle of the lesion (A). H&E of a squamous lesion. Red arrow indicates the layer of 
differentiating cells which have acquired a flatten morphology. Black arrow indicates completely 
keratinized, terminally differentiated layers, which are released into the lesion (B). H&E of a 
mature squamous lesion. Red arrows indicate ghost cells as white traces left on the keratin 
matrix by dead cells (C). Scale bar in (A) represents 50µM. Scale bars in (B-C) represent 25µM.  
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Figure 5-5  Effects of β-catenin stabilization on RUNX2 expression. 

qRT-PCR for Runx2 on RNA extracted from BLG-Cre/Catnb+/+ and BLG-Cre/Catnb+/lox(ex3) virgin 
glands. RNA levels were normalized to GAPDH. Data are expressed as mean relative expression 
(±SD). n≥3 for each group. p<0.05, Mann-Whitney test (A). RUNX2 immunohistochemistry on 
lactating day 1 BLG-Cre/Catnb+/+ and BLG-Cre/Catnb+/lox(ex3) glands (B). RUNX2 (C) and β-catenin 
(D) IHC on BLG-Cre/Catnb+/lox(ex3) squamous lesions. Scale bar in (B) represents 50µM. Scale bars 
in (C-D) represent 20µM.  
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Figure 5-6   Effects of RUNX2 loss on squamous metaplasia. 

Representative H&E images of BLG-Cre/Catnb+/lox(ex3)/Runx2WT/WT and BLG-Cre/Catnb+/lox(ex3)/ 
Runx2flx/flx glands taken at involution day 7. Black arrows indicate squamous lesions. Scale bars 
represent 100µM (A). Bar-chart showing the number of squamous lesions/cm2, developed by BLG-
Cre/Catnb+/lox(ex3)/Runx2WT/WT (Runx2 WT/WT), BLG-Cre/Catnb+/lox(ex3)/Runx2WT/flx (Runx2 WT/Flx) 
and BLG-Cre/Catnb+/lox(ex3)/ Runx2flx/flx (Runx2 Flx/Flx) cohorts. n≥4 for each group. p<0.05, 
Mann-Whitney test (A). 
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5.2.3   RUNX2 deletion in an in vitro model of triple negative 
metastatic breast cancer 

The human breast cancer cell line MDA-MB-231 is a commonly used in vitro 

model representative of the triple-negative subtype as it lacks expression of the 

ER, PR and HER2 markers (Holliday & Speirs 2011).  This cell line expresses high 

levels of RUNX2 (Nagaraja et al. 2006) and was used to investigate the role of 

RUNX2 in triple-negative cells.  The subline MDA-MB-231-luc-D3H2LN, a highly 

metastatic variant of MDA-MB-231 which has been derived from a spontaneous 

lymph node metastasis of a MDA-MB-231 mammary fat pad tumour (Jenkins, 

2005) was utilised due to its high metastatic potential.  Furthermore, the 

presence of a luciferase reporter in this cell line is advantageous for in vivo 

imaging in experimental metastasis models (intravenous and intracardiac) and 

orthotopic mammary fat pad models (Jenkins et al. 2005). RUNX2 has been 

shown to be an important regulator of invasive and tumourigenic features of 

MDA-MB-231 (Pratap et al. 2009), however no study so far has looked at its role 

in the metastatic seeding process. Using short-hairpin RNA technology, stable 

MDA-MB-231 RUNX2 knock-out cell lines were generated, one carrying a scramble 

sh-RNA as a control (shSCR) and two with different RUNX2-shRNAs (shRUNX2-1, 

shRUNX2-2). The RUNX2 knock-down was confirmed through western blot 

(FIGURE 5-7-A).  No difference in 2D growth was detected between the control 

and the two knock-down (FIGURE 5-7-B).  

Previous data (Chapter 4) indicated that RUNX2 is a regulator of stemness in the 

mammary epithelium. To test if loss of RUNX2 was affecting the cancer stem cell 

properties of MDA-MB-231-luc-D3H2LN cells, a tumoursphere assay was used as 

an marker of stemness (Ponti et al. 2005). In this assay cells are grown in non-

adherent conditions and in absence of serum; conditions which allow enrichment 

in cancer stem cells. Interestingly loss of RUNX2 caused a drastic reduction in 

tumoursphere-forming capacity of MDA-MB-231 cells (FIGURE 5-8). This data is 

suggesting that RUNX2 loss could hinder cancer stem cell properties of MDA-MB-

231-luc-D3H2LN cells. Several studies have indicated a strong link between 

cancer stem cells and metastasis formation (Gao et al. 2012; Malanchi et al. 

2011). To asses if loss of RUNX2 was affecting the metastatic behaviour of MDA-

MB-231 cells, in vivo experimental metastasis experiments (tail vein injections) 

were performed taking advantage of MDA-MB-231 luciferase expression to follow 
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the metastatic disease through in vivo imaging. Interestingly, in a pilot 

experiment (3 mice per cohort), tail-vein injection of shSCR and shRUNX2-1 cells 

showed a potential decrease of lung metastasis formation after Runx2 knock-

down (FIGURE 5-8). 
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Figure 5-7  Creation of a stable RUNX2 knockdown in MDA-MB-231 cells. 

RUNX2 western blot on MDA-MB-231 cells, transfected with sh-scrambled (shSCR) or 2 
independent sh-RNAs targeting RUNX2 (shRUNX2-1, sh-RUNX2-2) (A).  2D Growth curve of MDA-
MB-231 cells transfected with shSCR, or sh-RUNX2 1 and sh-RUNX2-2 (B).  Cell numbers were 
counted daily in quadruplicate for each time point, for each cell line. Graph representative of 
two independent experiments. 
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Figure 5-8  Effects of RUNX2 knockdown in MDA-MB-231 cells. 

Tumoursphere quantification from shSCR, and sh-RUNX2 cells grown in non-adherent conditions 
for 7 days. Tumourspheres were counted under a bright field microscope. Data are expressed as 
mean +/- SD. Graph representative of four independent experiments. p<0.05 (A). Bright field 
images of tumourspheres. Scale bars represent 150µM (B). In vivo luciferase imaging of nude 
mice (n=3 per group), 12 weeks after being tail vein injected with MDA-MB-231 cells transfected 
with shSCR or shRUNX2-1 (C). 
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5.3  DISCUSSION 

 

Unpublished data from our laboratory indicate that RUNX2 expression correlates 

with triple negative samples in human breast cancer. Metaplastic breast cancer 

(MBC) is a heterogeneous subtype of triple negative breast carcinoma 

characterized by poor outcome, and few therapeutic options (Lee et al. 2012). 

One feature of MBC is the co-existence of both carcinoma and non-epithelial 

components which can include fibrosarcomatous, cartilaginous, osseus, 

muscular, or squamous differentiation (Cooper et al. 2013). MBC is rare relative 

to invasive ductal carcinoma, representing less than 1% of all breast cancers. 

However, since the total number of BC diagnosed in 2011, in the US alone 

(http://www.cancer.org) was 288130, more than 2000 women were expected to 

be affected by metaplastic breast cancer. Moreover the 5-year survival rate for 

MBC is approximately 65% compared to 89% for invasive ductal cancer, indicating 

the need of new treatment options (Verma 2012). Therefore, a better 

understanding of the molecular alterations underlying the distinctive 

morphological and clinical characteristics of this aggressive subtype is needed in 

order to identify potential new targets for treatment.    

RUNX2 immunohistochemistry on a panel of mouse breast cancer models showed 

that BRCA1-deleted triple negative breast cancers lack RUNX2 expression while a 

strong staining was detected in two different models of Wnt-induced squamous 

metaplastic breast cancer (Apc1572T and BLG-Cre/Ptenflx/flx Apcflx/flx). Moreover in 

a nice confirmation of our unpublished human data, RUNX2 expression was 

negligible in two luminal-like breast cancer models (Herschkowitz et al. 2007). 

The development of squamous metaplasia in the mouse mammary gland is 

induced by aberrant Wnt signalling (Miyoshi, Rosner, et al. 2002; Miyoshi, 

Shillingford, et al. 2002; Gaspar et al. 2009), which activates a process of trans-

differentiation of the mammary epithelium resulting in epidermal-like structures 

with extensive keratinization and basosquamous/pilar histological structures 

(Kuraguchi et al. 2009). Interestingly RUNX2 expression in both squamous 

metaplastic breast cancer (SMBC) models was limited to the tumour cells 

positioned in the basal layer of the lesions. This compartment is characterized 

by cells in a high proliferative state when compared with the other squamous 
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part of the tumour which are mainly quiescent (Kuraguchi et al. 2009). Moreover 

in the normal epidermis this is the compartment were the stem cell population 

resides (Blanpain & Fuchs 2009). These results suggest a link between RUNX2 

expression and a highly proliferative population of SMBC, which could be 

endowed with cancer stem cell features. 

To understand the possible role of RUNX2 expression in squamous metaplasia a 

published mouse model was chosen, where expression of an active form of β-

catenin (Catnb+/lox(ex3)) in the mammary gland causes constitutive Wnt signalling 

activation and widespread squamous metaplasia (Miyoshi, et al. 2002). 

Intriguingly, aberrant β-catenin activation driven by BLG-Cre expression induced 

RUNX2 expression in vivo in the mammary gland. This result is supporting 

previous in vitro data obtained from WNT3A treatment on mammospheres 

(Chapter 4), suggesting that Runx2 is a direct downstream target of Wnt 

signalling in the mammary epithelium. Moreover these data are also in line with 

various findings from other systems which link RUNX proteins to Wnt signalling 

(Gaur et al. 2005; Osorio et al. 2011). The Wnt-induced trans-differentiation 

process of the mammary epithelium is fascinating: activation of a single 

molecule, such as β-catenin, in a mature gland is able to reprogram mammary 

epithelial cells into a different lineage characterized by a completely different 

structure and function (i.e. epidermis). This could be explained by the fact that 

β-catenin is a key specifier of hair follicle fate (Gat, 1998; Huelsken, 2001); 

hence its over-activation is sufficient to induce aberrant epidermal/follicular 

trans-differentiation in the mammary epithelium. However the underlying 

molecular mechanism for this mammary to epidermal trans-differentiation has 

not been investigated.  A better understanding of this process could help 

identify new regulators of mammary epithelial identity and expand our basic 

knowledge of mammary epithelium plasticity.  Furthermore, since squamous 

metaplasia is a key feature of a subgroup of TN breast cancers (Weigelt et al. 

2009), these studies could identify new potential targets for this type of tumour.  

The experiments described in this chapter unveil a potential role for RUNX2 in 

Wnt-induced squamous metaplasia development. Conditional deletion of RUNX2 

combined with β-catenin activation led to an increase of squamous lesions 

compared to controls. This result could suggest that RUNX2 is counteracting the 

β-catenin-induced epidermal trans-differentiation process. When RUNX2 is lost 
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however, its repressor function is missing and the trans-differentiation process 

can proceed uncontrolled, leading to increased squamous metaplasia. A possible 

mechanism for RUNX2’s repressor role in this system could be through a block of 

terminal differentiation of β-catenin-activated cells, via induction of 

quiescence. Interestingly previous experiments, where loss of Runx2 in vivo 

caused a decrease in mammosphere size and number followed by a decrease in 

p21 (Chapter 4) are suggesting RUNX2 as a possible positive regulator of 

quiescence in mammary cells. A way to test if RUNX2 deletion could cause exit 

from quiescence after β-catenin  activation, would be the analysis of cell cycle 

regulators such as p21 and Cyclin D1 via qRT-PCR and western blot on BLG-

Cre/Catnb+/lox(ex3)/Runx2WT/WT and BLG-Cre/Catnb+/lox(ex3)/Runx2flx/flx glands.  

Overall these experiments suggest a new role for RUNX2 in the mammary gland 

as a downstream target of Wnt signalling and as an essential repressor of 

squamous metaplasia development. Further studies to characterize the exact 

molecular mechanism of increased trans-differentiation after RUNX2 loss are 

currently underway. Preliminary data on multiparous experiments, where 

females from control and RUNX2-deleted cohorts have been taken through 

multiple rounds of pregnancies to achieve maximum levels of recombination 

confirm the involution data, showing a dramatic increase in squamous 

metaplasia in RUNX2-deleted glands. Moreover the almost complete absence of 

proliferation (as assessed by ki67 staining) in RUNX2-deleted glands support the 

view that loss of RUNX2 is pushing cells towards terminal differentiation. 

Molecular analysis of the involuting and multiparous glands through qRT-PCR and 

western blot will help to clarify the mechanism of the observed phenotype.  To 

better investigate the role of RUNX2 in squamous metaplastic breast cancer, 

future experiments could use the Apc1572T mouse model, which develops 

squamous metaplastic breast cancer, in combination with the K14-

Cre/Runx2flx/flx mouse. If the same mechanism observed in the Catnb+/lox(ex3) 

model, where loss of RUNX2 induces differentiation, is conserved, we could 

speculate that less aggressive and more differentiated tumours will develop 

after RUNX2 deletion. The correlation between high RUNX2 expression, Wnt 

pathway activation and metaplastic breast cancer seems to be conserved also in 

human disease; transcriptomic analysis on human metaplastic breast cancer 

listed RUNX2 among the upregulated gene signature (Hennessy et al. 2009) while 
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Wnt signalling was found to be activated in 95% of metaplastic breast cancer 

(Hayes et al. 2008). As a future priority, RUNX2 expression needs to be 

confirmed at the protein level on human SMBCs samples through 

immunohistochemistry. 

In an attempt to understand the functional role of RUNX2 in human triple 

negative disease we performed in vitro experiments using a well-established 

model of the MDA-MB-231 cell line (Holliday & Speirs 2011). Interestingly, in a 

nice parallel with previous data on mammospheres, RUNX2 inhibition caused 

decreased tumoursphere capacity without affecting MDA-MB-231 growth in 2D. 

This result indicates that RUNX2 could be a widespread regulator of regenerative 

potential in both normal and breast cancer cells. Cancer stemness and 

metastatic potential are strongly linked (Malanchi et al. 2011; Gao et al. 2012). 

In fact only cancer cells characterized by a certain degree of regenerative 

potential will be able to seed and form new tumour colonies in a foreign tissue. 

RUNX2’s role in metastatic cancer cell seeding has not been investigated since 

the only “metastatic” assays used were orthotopic injections which do not 

involve seeding (Javed et al. 2005). RUNX2 has been shown to be important for 

the osteolytic potential of MDA-MB-231 cells when injected directly into the 

intramedullary space of the tibia (Barnes et al. 2004; Pratap et al. 2008). In 

addition MDA-MB-231 cells stably expressing shRNA-Runx2, when injected in the 

mammary fat pad, showed a significant reduction in tumour growth when 

compared with a control group (Pratap et al. 2009). Our pilot experiment 

showed that RUNX2 inhibition impairs lung colonization in an experimental 

metastasis experiment suggesting that RUNX2 is also required for the ability of 

MDA-MB-231 cells to seed and grow in the lung.  Further experiments 

transplanting MDA-MB-231 cells into the fat pad with stable RUNX2 knockdown,  

and thereafter removal of primary tumour will allow the assessment of 

metastatic growth and clarify the role of RUNX2 in breast cancer metastatic 

disease. Furthermore, since the majority of the research conducted so far has 

always been limited to the use of a single cell line (MDA-MB-231) which cannot 

recapitulate the disease complexity, there is a need for new and better in vitro 

and in vivo models for the study of RUNX2 role in breast cancer.   
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6 A role for RUNX1 in breast cancer 

 

 

6.1 INTRODUCTION 

 

6.1.1   RUNX1 in epithelial cancer. 

RUNX1 has been extensively studied in the haematopoietic system where it is 

essential for the establishment of definitive haematopoiesis and the generation 

of haematopoietic stem cells during embryonic development (Swiers et al. 

2010). Moreover RUNX1 is the most frequently mutated gene in human 

leukaemia, usually through chromosomal translocations which interfere with 

RUNX1 transcriptional activity (Lam & Zhang 2012). Hence, the mainstream of 

RUNX1 research has been focused on its tumour suppressive function in 

haematopoietic malignancies (Lam & Zhang 2012). However, in recent years, a 

new role for RUNX1 outside the haematopoietic system has started to emerge 

with several studies indicating how this transcription factor could be more 

broadly implicated in cancer than previously thought (Scheitz & Tumbar 2012; 

Taniuchi et al. 2012). In particular RUNX1 has been identified as a key regulator 

of tumourigenesis in various epithelial cancers. RUNX1 is expressed at high levels 

in mouse skin papilloma and squamous cell carcinoma, and Runx1 deficiency 

impairs mouse skin tumourigenesis (Hoi et al. 2010). Moreover deletion of Runx1 

in a mouse model of head and neck cancer caused a significant delay in tumour 

formation (Scheitz et al. 2012). RUNX1 is also highly expressed in primary and 

metastatic epithelial ovarian cancer compared to normal tissue (Keita et al. 

2013) while in prostate cancer, RUNX1 expression increases with pathological 

stage (Yeh et al. 2009). These data are indicating an oncogenic role for RUNX1 in 

different epithelial cancers. In contrast, RUNX1 seems to have a tumour 

suppressor role in the intestine since both wild-type and ApcMin mice develop 

significantly more colon and small intestine tumours after Runx1 deletion 

(Fijneman et al. 2011). These studies serve to highlight the context dependence 
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of Runx genes (Blyth et al. 2005), being able to orchestrate both an oncogenic 

and a tumour suppressive program probably through collaboration with different 

combinations of tissue-specific transcriptional co-regulators.  

6.1.2   RUNX1 in breast cancer 

A role for RUNX1 in breast cancer is also starting to emerge. However the 

evidences published so far are discordant. Wang et al using 3D culture models 

showed that RUNX1 deletion in MCF10A resulted in increased cell proliferation 

and abnormal morphogenesis (Wang et al. 2011). Furthermore two independent 

whole-exome sequencing studies on human breast cancers discovered recurrent 

RUNX1 mutations and deletions in a small subgroup of human tumours (Ellis et 

al. 2012; Banerji et al. 2012) while Kadota et al showed that RUNX1 deletion is 

associated with high-grade primary breast tumours (Kadota et al. 2010). These 

studies indicate a possible tumour suppressor role for RUNX1 in breast cancer. 

On the other hand, work from Tumbar’s laboratory, found RUNX1 among the top 

1% highly expressed genes in tumour versus normal tissue in a meta-analysis of 

microarray studies of various cancers, including breast (Scheitz et al. 2012). 

RUNX1 was also identified among the upregulated transcripts in breast tumours 

and short term tumour cultures when compared with established breast cancer 

cell lines (Dairkee et al. 2004). This study suggests that RUNX1 could be lost in 

established cell lines and poses a word of caution on the use of in vitro models 

for the study of RUNX1 involvement in BC. Other transcriptomic studies on 

human breast cancer support an oncogenic role for RUNX1 in this malignancy. In 

human breast cancer oestrogen receptor (ER), progesterone receptor (PR), and 

epidermal growth factor receptor 2 (HER2) are well-established prognostic and 

predictive markers and testing for them is now considered standard of care 

(Taneja et al. 2010). Based on the receptor status, human breast cancer can be 

subdivided into three main groups: oestrogen receptor positive (ER+), epidermal 

growth factor receptor 2 positive (HER2+) and triple negative (ER-/PR-/HER2-).  

ER+ and HER2+ patients benefit of targeted treatments such as Tamoxifen 

and/or Trastuzumab which have consistently improved disease outcome (Higgins 

& Baselga 2011). On the other hand, the triple negative subtype lacks any 

specific targeted therapy and is associated with worse overall prognosis in 

comparison with the other subtypes (Foulkes et al. 2010). Interestingly RUNX1 is 

among a 264 gene signature which correlates with bad prognosis in triple 
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negative breast cancer (Karn et al. 2011) and indeed was seen to specifically 

correlate with bad prognosis in the claudin-low subtype of triple negative breast 

cancers (Rody et al. 2011). Finally, RUNX1 is among the top 20% differentially 

expressed genes in two triple negative subtypes: the mesenchymal stem-like 

(MSL), and a luminal androgen receptor (LAR) (Lehmann et al. 2011). 

Interestingly the MSL subtype also displays low expression of claudins 3, 4, and 

7, confirming a possible link between RUNX1 expression and the claudin-low 

subtype. Overall these transcriptomic studies suggest a possible oncogenic role 

for RUNX1.  

 

6.1.3   Experimental Aims. 

The role of RUNX1 in breast cancer is still unresolved with different studies 

suggesting a possible oncogenic role while others point towards a tumour 

suppressive function. Since breast cancer is a very heterogeneous disease, 

constituted by different subtypes, each characterized by specific molecular 

alterations (Sorlie et al. 2003; Prat & Perou 2011), it is tempting to speculate 

that the discordant data on RUNX1 in this malignancy could reflect different 

subtype-specific roles for this transcription factor. The aim of this study was to 

better characterize RUNX1 in human breast cancer with a particular focus on the 

different tumour subtypes. 
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6.2  RESULTS 

 

6.2.1   Expression of RUNX1 in human breast cancer. 

To get a preliminary overview of RUNX1 expression in human breast cancer, 

data-mining in an online cancer gene microarray database 

(https://www.oncomine.org/ ) was performed. Two multi-cancer gene 

expression profiling studies showed an upregulation of RUNX1 in breast cancer 

tissue (Yu et al. 2008; Su et al. 2001). RUNX1 is amongst the top 2% upregulated 

genes in breast cancer compared to other tumours (FIGURE 6-1-A) and in the top 

3% upregulated genes in breast cancer when tumours were compared to 

adjacent normal mammary tissue (FIGURE 6-1-B). RUNX1 is also in the top 4% 

upregulated genes in invasive breast carcinoma when compared to normal tissue 

(FIGURE 6-2) (Cancer Genome Atlas Network 2012). These analyses are 

suggesting that RUNX1 could be upregulated in breast cancer. However the 

association of RUNX1 expression with clinical outcome and its significance as a 

prognostic factor in human breast cancer is still unclear. To investigate if RUNX1 

expression influenced clinical outcome in primary breast tumours, a tissue 

microarray (TMA) containing 449 patients with operable invasive ductal breast 

cancer (Mohammed et al., 2012) was stained for RUNX1. RUNX1 antibody was 

first validated by western blot and immunohistochemistry, confirming its 

specificity (data not shown). The invasive cancers showed different degrees of 

RUNX1 expression predominantly localised to the nucleus (FIGURE 6-3). RUNX1 

expression was determined by histoscore (as described in material and methods) 

and patients were divided into two groups: RUNX1 negative (histoscore = 0, 

n=109) and RUNX1 positive (histoscore > 0, n=340). The relationship between 

RUNX1 expression and clinical outcome was then assessed by looking at overall 

survival (OS) in the cohort. Survival analyses showed no difference between 

RUNX1 negative (154.9 months - 95% confidence interval, 142–164 months) and 

RUNX1 positive tumours (148.7 months - 95% confidence interval, 142.6–153.8 

months) in the full cohort (FIGURE 6-4-A). The distribution of RUNX1 positive and 

negative samples in relation to hormonal status (ER/PR/HER2) of the full cohort 

is showed in FIGURE 6-4-B. 
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Figure 6-1   RUNX1 expression on multi-cancer gene expression profiling studies. 

RUNX1 gene expression on a panel of 162 tumours. RUNX1 is overexpressed (2.24 fold-change) in 
breast cancer compared to RUNX1 median expression across the database. p = 5.94E-7 (A). 
RUNX1 gene expression on a panel of 270 tumour samples as shown in legend, compared to 
correspondent adjacent normal tissues from breast (n=13), colon (n=9), oesophagus (n=13), liver 
(n=8), lung (n=12), and thyroid gland (n=16). RUNX1 is overexpressed (3.01 fold-change) in breast 
cancer compared to RUNX1 median expression (cancer vs non-malignant tissue) across the 
database. p = 4.58E-13 (B). Information taken from www.oncomine.org. 
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Figure 6-2  RUNX1 expression in normal versus invasive breast carcinoma. 

RUNX1 gene expression on a panel of normal breast (61) and invasive breast carcinoma (76) 
samples. RUNX1 is overexpressed (2.1 fold-change) in invasive breast carcinoma compared to 
normal tissue. p = 2.03E-17. Information taken from www.oncomine.org. 
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Figure 6-3  Examples of RUNX1 expression in a breast cancer cohort. 

Invasive breast carcinomas from a tumour tissue microarray (TMA) were stained for expression of 
RUNX1.  Examples of tumours with positive RUNX1 staining are shown on the left column. 
Examples of tumours with negative RUNX1 staining are shown on the right column. Scale bar 
represents 100µM. 
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Figure 6-4   Correlation of RUNX1 expression and survival in a breast cancer cohort. 

Kaplan Meier of patient survival in a cohort of 449 breast cancers. Survival is plotted for patients 
with cancers scored positive for RUNX1 (green), or negative for RUNX1 expression (blue). p>0.1. 
p-value calculated using Log Rank (Mantel-Cox) test (A). Table showing the distribution of RUNX1 
positive and negative patients in relation to their hormonal status (B). 
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To define the prognostic impact of RUNX1 expression in different breast cancer 

subtypes, the patient cohort was divided into 4 subgroups accordingly to their 

receptor status (ER+, PR+, HER2+ and ER-/PR-/HER2-). The relationship between 

RUNX1 expression and clinical outcome was then assessed by looking at overall 

survival in each breast cancer subtype. Survival analyses showed no difference 

between the RUNX1 positive and negative groups in the ER+, PR+ and HER2+ 

patients (FIGURE 6-5). However RUNX1 positivity significantly correlated with 

poorer prognosis in the receptor negative patients (RUNX1+, 127.3 months - 95% 

CI, 111.7–143 months vs RUNX1-, 162 months - 95% CI, 145.3–178.8 months - 

p=0.017) (FIGURE 6-5-D).  

To test if RUNX1 was an independent prognostic factor in the triple negative 

cohort we performed a correlation analysis using the Cox regression model. 

Interestingly RUNX1 was an independent prognostic factor (p=0.009) together 

with size (p=0.005) and lymph node status (p=0.003) in the triple negative (TN) 

cohort. A bivariate analysis (Pearson’s chi-square) was then performed to 

determine the presence of an association between clinicopathological history 

and RUNX1 expression in TN samples. RUNX1 expression was not significantly 

associated with age (p=0.564), tumour type (p=0.442), tumour size (p=0.456), 

grade (p=0.352), nodal status (p=0.348), necrosis (p=0.736), Ki67 (p=0.225) and 

TUNEL (p=0.257) (FIGURE 6-6). This data indicates that RUNX1 is an independent 

prognostic factor specific for the triple negative subgroup of breast cancers.  

Besides being influenced by well recognised host and tumour related factors 

such as patient age, histological type and grade, tumour size, lymph node and 

hormonal status, the prognosis of breast cancer is also dependent on other 

factors such as lymphocytic infiltrate and blood vascular invasion (Z M A 

Mohammed, Going, et al. 2012). To determine any association between 

inflammatory reaction/blood vascular invasion and RUNX1 expression in the 

triple negative subgroup a new bivariate analysis (Pearson’s chi-square) was 

performed on a set of markers previously published (Z M A Mohammed, Going, et 

al. 2012; Klintrup et al. 2005; Mohammed et al. 2013). The inflammatory 

reaction in this cohort  had been previously assessed in Joanne Edwards 

laboratory by Klintrup-Makinen scoring (Z M A Mohammed, Going, et al. 2012), a 

measure of inflammation at the invasive margin of the tumours, together with 

scoring for lymphocytes (CD4+ and CD8+), plasma cells (CD138+) and 
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macrophages (CD68+). Vascular invasion was also determined by endothelial cell 

scoring (CD34+). RUNX1 expression was not significantly associated with 

Klintrup-Maninen scoring (p=0.081), CD8 (p=0.675), CD138 (p=0.251), CD68 

(p=0.710), or CD34 (p=0.928). Interestingly RUNX1 expression was correlated 

with lymphocytic CD4 staining (p=0.016) (FIGURE 6-7).  

6.2.2   Effects of RUNX1 overexpression in vitro. 

RUNX1 expression was tested on a panel of breast cancer cell lines by western 

blot analysis. The chosen cell lines included normal human mammary epithelial 

cells derived from primary tissue and immortalized with TERT expression (hMEC-

TERT), 4 basal-like (MDA-MB-468, HCC-70, MDA-MB-231, BT-549) and 3 luminal-

like (T47D, MDA-MB-361, BT-474) breast cancer cell lines. Significantly, RUNX1 

expression was not detectable in normal hMEC-TERT but was overexpressed in all 

basal-like cancer cell lines and in 1 out of 3 of the luminal cell lines (FIGURE 6-

8).  These results suggest an oncogenic role for RUNX1 in human breast cancer, 

with a particular association with the basal like subgroup of cancers.   

To further investigate the putative oncogenic role for RUNX1 in breast cancer, 

the effects of overexpressing RUNX1 in immortalized mammary epithelial cells 

(hMEC-TERT) was assessed. hMEC-TERT were transfected with a plasmid 

encoding the mouse RUNX1 protein (pBABE-puro-Runx1) and vector alone as 

control (pBABE-puro). Initially both hMEC-TERT control (hMEC-Puro) and hMEC-

TERT overexpressing Runx1 (hMEC-Runx1) showed the same morphology. 

However with passaging, cells with an elongated shape and a fibroblastic 

appearance started to appear in hMEC-Runx1 cultures. The control hMEC-Puro 

instead, maintained the same flat and rounded epithelial morphology (FIGURE 6-

9-A). RUNX1 overexpression was confirmed by western blot (FIGURE 6-9-B). This 

result suggests that RUNX1 overexpression is activating an EMT program in a 

subpopulation of hMEC-TERT. To confirm that RUNX1 overexpression elicits EMT 

changes in hMEC-TERT cells, two classical EMT markers were analysed by 

western blot. Vimentin was strongly upregulated while E-Cadherin levels were 

decreased in hMEC-Runx1 compared to hMEC-Puro (FIGURE 6-9-C).  
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Figure 6-5   RUNX1 expression in different subtypes of breast cancer. 

Kaplan Meier of patient survival in the ER+ (A), PR+ (B), HER2+ (C) and triple negative (TN) 
cohort (D). Survival is plotted for patients with cancers positive for RUNX1 (green), or those with no 
RUNX1 expression (blue).  ER+ cohort, p=0.721. PR+ cohort, p=0.378. HER2+ cohort, p=0.551. 
TN cohort, p=0.017. p-value calculated using Log Rank (Mantel-Cox) test. 

 

 

  



186 
 
 

 

Figure 6-6   Relationship between RUNX1 status and standard clinical, pathological, and 
biological features of triple-negative breast cancer. 

p-value calculated using Chi-squared test (linear by linear association). NS, not significant. 
Where information is not available on the full cohort (n=115), the number of patients with 
information is specified in brackets: Invasive grade (113), Tumour size (114), Ki67 (113), TUNEL 
(87). 
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Figure 6-7   Relationship between RUNX1 status and inflammatory infiltrate/blood vessel 
invasion in triple-negative breast cancer. 

p-value calculated using Chi-squared test (linear by linear association). NS, not significant. 
Where information is not available on the full cohort (n=115), the number of patients with 
information is specified in brackets:  CD34 (114). 
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Figure 6-8   Expression of RUNX1 in a panel of human breast cancer cell lines. 

RUNX1 western blot on a panel of human breast cell lines: hMEC-TERT (immortalized human 
mammary epithelial cells), basal-like (red) and luminal-like (green) breast cancer cell lines. 3SS 
(a leukaemia cell line deleted for RUNX1) was used as a negative control. Human GAPDH was 
used as a loading control. 
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Figure 6-9   In vitro effects of RUNX1 overexpression in hMEC-TERT. 

Bright field images of hMEC-TERT transfected with pBABE-puro (hMEC-puro) or pBABE-puro-
Runx1 (hMEC-Runx1) vector, after 4 passages in culture (A). RUNX1 western blot on hMEC-puro 
and hMEC-puro-Runx1. GAPDH was used as a loading control (B). Western blot for Vimentin and 
E-Cadherin on hMEC-puro and hMEC-puro-Runx1 cells. Actin was used as loading control (C). 
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6.3  DISCUSSION 

 

Triple-negative breast cancer (TNBC), which accounts for 15% to 20% of breast 

cancers, is an aggressive disease, associated with a significantly higher 

probability of relapse and poorer overall survival when compared with other 

breast cancer subtypes (Arnedos et al. 2012). Moreover, the lack of identified 

molecular targets in the majority of TNBCs implies that chemotherapy remains 

the treatment of choice for patients with TNBC. However early relapse after 

chemotherapy is common in patients with TNBC (Gluz et al. 2009). Hence there 

is an urgent need for identification of new prognostic markers which could 

translate into novel druggable targets specific for this lethal subgroup (Foulkes 

et al. 2010).  

Recently a number of studies indicated RUNX1 as a possible tumour suppressor 

gene in the mammary epithelium while others suggested a putative oncogenic 

role (see Chapter 1).  To clarify the role for RUNX1 in human breast cancer, 

invasive breast carcinomas from a tumour tissue microarray were stained for 

expression of RUNX1. No difference in overall survival was detectable in the full 

cohort or in ER+, PR+ and HER2+ subgroups. However RUNX1 expression was 

significantly associated with poorer overall survival in the triple negative (ER-

/PR-/HER2-) group of patients. Interestingly this data is supported by several 

transcriptomic studies which have identified RUNX1 as a possible oncogene in 

TNBC (Karn et al. 2011; Rody et al. 2011; Lehmann et al. 2011). Moreover in 

vitro analysis showed that all basal-like cell lines tested overexpressed RUNX1 

compared to only 1 out 3 luminal-like. Correlation analysis using the Cox 

regression model, confirmed that RUNX1 is an independent prognostic factor 

together with size and lymph node status in the TNBC subgroup. Moreover 

bivariate analysis (Pearson’s chi-square) did not find any association between 

clinicopathological history and RUNX1 expression in TNBC samples confirming the 

independent prognostic value of RUNX1 expression. Inflammation has been 

shown to represent a critical component of tumour progression (Grivennikov et 

al. 2010). Interestingly, RUNX1 expression correlates with the presence of 

lymphocytic CD4+ infiltrate in TNBC. RUNX1 is one of the key factors that drives 

various aspects of T-cell differentiation including regulation of cytokine 
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production (Wong et al. 2012). We could speculate that in TNBC highly positive 

for RUNX1 that RUNX1 would drive a transcriptional program in breast cancer 

cells resulting in production and secretion of high levels of cytokines which 

would then lead to recruitment of lymphocytic cells at the tumour site. Further 

studies will clarify the significance of the correlation between RUNX1 and CD4 

lymphocytes in TNBC.  Overall the results indicate that RUNX1 could be a new 

prognostic biomarker in triple negative breast cancers. The usefulness of RUNX1 

as a new prognostic marker is reinforced by the fact that RUNX1 positive samples 

represent the majority (73%) of the triple negative cohort. Interestingly, no 

reliable markers have been identified as having a predictive role for the 

prognosis of TNBC patients so far (Arnedos et al. 2012). So RUNX1 could 

represent one of the first prognostic factors specific for triple negative breast 

cancers. Follow-up studies looking at RUNX1 expression in different cohorts of 

breast cancer patients from different institutions, will help to confirm the 

prognostic value of RUNX1. RUNX1 overexpression induced EMT in immortalized 

normal mammary cells suggesting that the worse prognosis in TN patients could 

be due to increased invasiveness of RUNX1 expressing tumours. These data are in 

line with reports correlating RUNX1 expression to the claudin-low tumours, a TN 

subtype characterized by mesenchymal features (Lehmann et al. 2011; Rody et 

al. 2011). Moreover RUNX2 expression has been shown to induce EMT in a breast 

cancer cell line (Chimge et al. 2011) suggesting a possible broad role of Runx 

transcription factors as EMT inducers.  

The widespread expression of RUNX1 in TNBC suggests new therapeutic avenues 

for the treatment of TNBCs. In particular, work from Tumbar’s laboratory 

showed that Runx1 overexpression leads to Stat3 activation and is necessary for 

skin and oral cancer growth (Scheitz et al. 2012). Interestingly STAT3 is involved 

In human breast cancer with high STAT3 levels correlating with poorer survival 

(Diaz et al. 2006). It would be interesting to ascertain if RUNX1 overexpression 

and STAT3 activation was also conserved in human breast cancer and in TNBC in 

particular. Further studies are needed to investigate this correlation between 

STAT3 and RUNX1 expression in TNBC which could pave the way for new 

treatment options, based on the use of STAT3 inhibitors (Fagard et al. 2013). 

Moreover the development of small-molecule inhibitors which bind to CBFβ and 

inhibit RUNX1 activity opens the possibility of a RUNX1-specific targeted therapy 
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for the treatment of TNBC (Gorczynski et al. 2007; Cunningham et al. 2012). 

Taken together these results are indicating RUNX1 as a new prognostic 

biomarker in TNBC and are opening exciting possibilities for the development of 

new targeted therapies for this lethal subgroup.  
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7 Conclusions and Future Directions 

 

The mammary gland is a very dynamic tissue composed of different mammary 

epithelial cell populations with different specialized functions (Visvader & Smith 

2010).  In order to maintain lineage heterogeneity, various transcription factors 

are used to determine the correct specification of different mammary 

subpopulations (Siegel & Muller, 2010).  Our current understanding of mammary 

lineage determination is far from complete; thus the identification of new 

transcription factors with a role in mammary lineage specification is required to 

improve our knowledge of normal mammary epithelial development and 

homeostasis.    

This study identifies for the first time RUNX1 and RUNX2, two transcription 

factors previously linked to haematopoiesis and bone development (Blyth et al. 

2005), as new regulators of the mammary epithelium. RUNX1 and RUNX2 follow a 

similar pattern of expression during mammary development, decreasing during 

pregnancy and lactation to rise again during involution. In addition, mammary 

population profiling showed that both RUNX1 and RUNX2 are enriched in the 

basal compartment. However, only loss of RUNX2 in vivo is detrimental for the 

basal compartment while both genes affect the luminal population. These 

results suggest a possible independent role for RUNX1 and RUNX2 in the 

maintenance of specific mammary lineages. The mechanisms driving the loss of 

RUNX-deleted cells are still not clear and, given the extreme context 

dependency of Runx genes (Blyth et al. 2005), they are likely to be different in 

divergent compartments of the mammary gland. For example RUNX1 loss in a 

subpopulation of luminal cells could cause apoptosis while RUNX2 loss in basal 

cells could cause induction of differentiation. Both in vivo and in vitro 

approaches to unravel the role of RUNX1 and RUNX2 in the mammary gland will 

be informative. Here combined infection of FACS sorted basal and luminal 

MMECs with lentivirus carrying sh-RNA targeting Runx1 or Runx2 could be used to 

create luminal and basal RUNX knock-out cells. These cells could then be grown 

in different culture conditions (2D, Matrigel) and analysed for any growth defect 

when compared to sh-scrambled controls. In addition, transcriptional profiling of 
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early time points cultures will help to show the main transcriptional changes 

occurring after RUNX loss in luminal and basal mammary cells.  

However the ultimate experiment which will clarify the role of RUNX1 and 

RUNX2 in the mammary epithelium will be the generation of lineage tracing 

models. As an example of this technique, Van Amerongen et al., performed 

lineage tracing to characterize the contribution of Wnt-activated cells to 

different stages of mammary development, using an Axin2CreERT2 mouse combined 

with fluorescent reporters (van Amerongen et al. 2012). In the same way the 

construction of transgenic mice carrying the Runx1CreERT2 and Runx2CreERT2 

constructs (which will drive an inducible Cre from the endogenous Runx1 and 

Runx2 promoters) combined with GFP and RFP fluorescent reporters will allow us 

to mark any RUNX1 or RUNX2 positive cell in the entire mammary gland. This will 

allow a precise localization of RUNX positive cells at different stages of 

mammary development through a combination of in vivo imaging, IHC and FACS 

population profiling. In addition transcriptional profiling of pure RUNX positive 

populations, FACS sorted based on fluorescent marker expression, will help to 

characterize those populations at the molecular level. Overall this in vivo 

approach will help to characterize the role and the dynamics of RUNX positive 

lineages in the mammary epithelium, with the possibility to further extend 

lineage tracing analysis to other organs in which RUNX proteins could be 

implicated, such as prostate (Blyth et al. 2010). 

One of the most interesting phenotypes observed in this thesis is the dramatic 

expansion of the basal population when both Runx1 and Runx2 are deleted in the 

BLG-Cre driven model, especially given that Runx2 loss alone diminishes this 

pool. These results suggest the existence of compensatory mechanisms between 

RUNX proteins in the mammary gland and they are supporting a role for Runx 

genes as lineage regulators in mammary epithelium. Since BLG-Cre is expressed 

in both luminal and basal compartments, this effect could be due to an 

expansion of the basal population or a dedifferentiation of luminal cells into the 

basal lineage. The creation of conditional Runx1-Runx2 mouse models specific 

for the basal and the luminal population would address this point. A luminal 

specific K8-Cre (Van Keymeulen et al. 2011) combined with the 

Runx1flx/flxRunx2flx/flx mouse and a fluorescent reporter would prove if loss of 

RUNX1 and RUNX2 is sufficient to drive luminal to basal dedifferentiation in vivo. 
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Conversely, the creation of a double Runx1 and Runx2 knock-out in the basal 

layer of the mammary gland using a K14-Cre would show if combined loss of 

RUNX1 and RUNX2 can drive an expansion of the basal population in vivo. 

However, the creation of K14-Cre/Runx1flx/flx mice was found to be problematic 

since all animals displayed severe growth defects (data not shown), an 

interesting phenotype which we have not characterized further. This problem 

could be avoided by using a Tamoxifen or doxycycline-inducible K14-Cre in 

combination with the Runx1flx/flxRunx2flx/flx mouse.  

Another interesting phenotype was the appearance of preneoplastic lesions in 

double Runx1 and Runx2 knock-out mice. The frequency of lesions (33%) is quite 

high, taking into consideration the low amount of recombination driven by BLG-

Cre in the virgin gland (~15% of recombined MMECs over total). This result is 

pointing to a tumour suppressive role for RUNX1 and RUNX2 in mammary 

epithelium which, however, only becomes apparent when both genes are 

deleted. Importantly, this study is the first to adopt a double conditional knock-

out strategy for the combined deletion of two Runx genes in vivo.  The 

interesting phenotypes observed in this model suggest that the extent to which 

different Runx genes compensate for each other during development of different 

organs in single knock-out mice remains largely unknown; in the future we can 

envisage that the use of combined double or triple Runx conditional knock-out 

models will likely identify new compensatory mechanisms between RUNX 

proteins in the regulation of multiple tissues. Further experiments are needed to 

characterize the mechanism underlying the formation of neoplastic lesions in 

aged mice after combined loss of RUNX1 and RUNX2. Fat pad transplants of FACS 

sorted luminal or basal RUNX1-RUNX2 deleted cells will show if the oncogenic 

potential lies in the basal or in the luminal compartment. Molecular 

characterisation of these lesions will also help to identify the signalling pathways 

which are perturbed (for example Wnt).  For this a candidate pathway approach 

could be done using IHC which has the advantage that spatial information can be 

made apparent.  Alternatively by laser microdissecting the lesions a microarray 

could be carried out to get a broader overview of the genetic features of the 

hyperplastic areas. 

In Chapter 4 the possible role for RUNX1 and RUNX2 in the mammary stem cell 

population was examined. Widespread expression of RUNX1 in the mammary 
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epithelium, and the fact that its expression decreases in mammosphere culture, 

suggests that this transcription factor could be expressed in a more 

differentiated population of the virgin mammary gland. Future experiments will 

need to investigate if RUNX1 expression is necessary for the differentiation of 

mammary cells. The COMMA-1D cell line could be used to clarify this point. 

COMMA-1D cell line exhibits several characteristics distinctive of normal 

mammary epithelial cells, including induction of casein synthesis in vitro and 

normal duct morphogenesis in the cleared mammary fat pads of syngeneic mice 

(Danielson et al. 1984). The creation of stable RUNX1 deleted and RUNX1 

overexpressing COMMA-1D cells, followed by differentiation assays will address if 

RUNX1 is involved in mammary differentiation in vitro. These studies will then 

be expanded in vivo through the use of RUNX1 mammary conditional knock-out 

models. 

In vitro assays indicate that RUNX2 has a role in the regenerative potential of 

mammary epithelial cells. This is in line with several reports from different 

systems which indicate RUNX proteins as key regulators of stem cell biology 

(Appleford & Woollard 2009). However the final proof for a role of RUNX2 in the 

regulation of mammary regenerative potential in vivo is still lacking. Fat pad 

experiments using pure FACS sorted populations of RUNX2-deleted cells will 

clarify this point. In particular GFP+ basal cells will be extracted from K14-Cre 

Runx2flx/flx mice and implanted at limiting dilutions in cleared fat pads 

(Shackleton et al. 2006). This will prove if RUNX2 has a role in mammary 

regenerative potential in vivo. In addition lineage tracing experiments (see 

above) will help to unveil the real behaviour of the RUNX2 positive mammary 

population in vivo.  Single induction of mice carrying the Runx2CreERT2 allele in 

combination with a fluorescent reporter at different developmental time points 

will result in the permanent labelling of RUNX2 positive population in the 

mammary epithelium. The behaviour of labelled RUNX2 positive cells will then 

be followed in vivo to investigate if they are maintained over time and after 

several rounds of involution, two classic features of stem cell populations (Van 

Keymeulen et al. 2011).  

The functional role for RUNX2 in a MaSC population is still unknown, but some 

pieces of evidence indicate that RUNX2 could be linked to regulation of 

quiescence and Wnt signalling in those cells. HC11, a murine mammary 
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epithelial stem-like cell line, could be used as an in vitro model to test RUNX2’s 

molecular regulation of stem cells. In fact Runx2 transcript has been shown to 

decrease during the in vitro differentiation process of HC11 cells (Williams et al. 

2009). The creation of stable HC11 RUNX2 knock-out cells using sh-RNAs, 

followed by growth analysis, differentiation assays and transcriptional profiling 

will address possible molecular mechanisms of RUNX2-mediated regulation of 

mammary stem cells. The actual relevance of RUNX2-dependent pathways 

identified in HC11 cells could then be confirmed in primary cells, using RUNX2 

deleted mammosphere cultures. 

Focusing on the link to Wnt, RUNX2 could contribute to the regulation of the 

MaSC population acting as a downstream mediator of Wnt signalling, as shown by 

RUNX2 induction after WNT3A treatments on mammospheres. Future work is 

needed to understand the role of RUNX2 on the Wnt pathway in this cell type. 

For example, is RUNX2 acting as a repressor or as a co-activator of the Wnt 

signal and what is the outcome of Wnt-induced RUNX2 expression in MaSC? 

Possible answers to those questions come from the in vivo studies of aberrant 

Wnt signalling activation in the mammary gland performed in Chapter 5. In vivo 

β-Catenin stabilization in the mammary gland induces RUNX2 expression and loss 

of RUNX2 correlates with increased trans-differentiation of the mammary 

epithelium into squamous metaplastic lesions. This result could suggest that 

RUNX2 acts as a repressor of Wnt-induced squamous differentiation.   

In the context of normal mammary development Wnt signalling is finely tuned to 

guarantee the correct balance between MaSC maintenance, luminal progenitor 

expansion and alveolar differentiation (Brisken et al. 2000; Joshi et al. 2010). 

During pregnancy, progesterone induces WNT4 production from PR+ cells which 

then signal in a paracrine fashion to the MaSC compartment stimulating their 

expansion (Joshi et al., 2010). MaSC expansion during the first phases of 

pregnancy is probably linked to their differentiation and creation of a large pool 

of luminal progenitors which will differentiate into alveolar cells (Asselin-Labat 

et al. 2010). One hypothesis from our results could be that RUNX2 is expressed in 

a subpopulation of mammary stem cells/progenitors where it is required to 

maintain their regenerative potential. In this scenario RUNX2 is activated during 

the waves of progesterone-induced WNT4 which characterize oestrous cycle and 

act as a gatekeeper of stemness restricting MaSC expansion and differentiation. 
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During pregnancy instead RUNX2 expression is downregulated and progesterone-

induced WNT4 can stimulate MaSC expansion and differentiation in luminal 

progenitors which will drive the subsequent phases of alveolar differentiation. 

This scenario is in line with the lactational defects observed after ectopic RUNX2 

expression in transgenic MMTV-Runx2 animals (McDonald, Ferrari et al. 

submitted) where RUNX2 overexpression in the pregnant mammary gland blocks 

alveolar development. Intriguingly, such a hypothetical role for RUNX2 in 

mammary lineage specification has a nice parallel in the osteoblast maturation 

process where during skeletal development RUNX2 activates a differentiation 

pathway in bone marrow-derived mesenchymal stem cells which is necessary for 

osteoblast differentiation (Long 2011). Interestingly, RUNX2 expression needs to 

be downregulated to guarantee a correct osteoblast terminal differentiation (Liu 

et al. 2001). If this is indeed paralleled in the mammary lineage then the role of 

RUNX2 as a key lineage specifier, regulating the fine balance of proliferation, 

quiescence and differentiation in different organs and tissues is highly relevant. 

The role of RUNX1 and RUNX2 in breast cancer was discussed in Chapter 5 and 6. 

Interestingly both RUNX1 and RUNX2 have been linked to the TN subtype. RUNX1 

is expressed in the majority of TNBC (~80%) while RUNX2 is detectable in a 

smaller group of the same cohort (15%, McDonald et al, submitted). In addition, 

no overlap or exclusiveness between the two RUNX genes has been detected in 

the patient cohort analysed (data not shown). 

Triple negative breast cancer is an highly heterogeneous group (Metzger-Filho et 

al. 2012). Metaplastic breast cancer (MBC) is a subtype of TNBC characterized by 

poor outcome, and few therapeutic options (Lee et al. 2012). Staining of various 

mouse models of BCs showed squamous metaplastic breast cancer (SMBC) to be 

highly positive for RUNX2. This result suggests that the 15% of TN cases with high 

RUNX2 expression identified by McDonald et al., could belong to the metaplastic 

subgroup. To confirm this correlation, it will be interesting to examine human 

SMBC for RUNX2 to test if this expression pattern found in mouse models 

translates to the human disease. In addition the use of an in vivo model of SMBC 

(APC1572T) (Gaspar et al. 2009) combined with the Runx2flx/flx model will help to 

clarify the role of RUNX2 in cancer development and progression. This study 

could lead to important clinical outcomes such as the identification of RUNX2 as 

a new biomarker and/or therapeutic target for SMBC. 
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Bone metastasis are a frequent outcome of aggressive breast cancer, leading to 

intense pain and severe complications (Suva et al. 2011). For many years RUNX2 

has been described as a possible mediator of breast bone metastasis formation 

based on work from the Stein group (Javed et al. 2005; Barnes et al. 2004). 

However these studies have several limitations; first they are based on intra-

tibia injections, an orthotopic model which cannot recapitulate the seeding and 

homing of BC cancer cells in a bone microenvironment. Secondly, all these 

studies have been conducted using a single breast cancer cell line (MDA-MB-231). 

To address the first point, intracardiac injections, an in vivo model of bone 

metastasis needs to be used (Kretschmann & Welm 2012). In this model MDA-MB-

231 deleted for RUNX2 will be injected intracardically in nude mice; this will 

allow the spreading of BC cells into the entire body of the animal and the 

development of bone metastasis. In such a system the contribution of RUNX2 to 

the homing and the growth of MDA-MB-231 cells in the bone microenvironment 

can be assessed by in vivo luciferase imaging and histological analysis on bone 

lesions. The second point is not currently addressable with current available 

models (Kretschmann & Welm 2012); in fact excluding MDA-MB-231 cells, no 

alternative system for the study of breast cancer bone metastasis exist. Since a 

large percentage of all patients dying of breast cancer(∼70%) have evidence of 

metastatic bone disease (Coleman 2006) more research is needed to address this 

need. 

With recent deep sequencing efforts showing that RUNX1 is a putative tumour 

suppressor in breast cancer (Ellis et al. 2012; Banerji et al. 2012) it is timely to 

investigate the role of RUNX1 in human breast cancer as carried out in Chapter 

6. For the first time an assessment of RUNX1 protein expression on a large 

cohort of human breast cancers has been carried out. Interestingly RUNX1 was 

identified as an independent prognostic factor in TN patients, whose expression 

correlates with poorer survival. This result suggests a possible oncogenic role for 

RUNX1 in TNBC and it is in apparent contrast with the recent sequencing studies 

reporting inactivating RUNX1 mutations in human BC (Ellis et al. 2012; Banerji et 

al. 2012). However, Ellis et al. was focused on ER+ breast cancers while Banerji 

et al. on BC samples from a mixture of different subtypes. So these studies are 

not focused on TN breast cancer and that could be a reason why RUNX1 

oncogenic role has not been identified. Taken together these studies suggest 
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that RUNX1 could play different roles in different cancer subtypes: tumour 

suppressor in luminal-like BC and oncogene in TNBC.  The result from the human 

TMA suggests a possible oncogenic role for RUNX1 in TNBC but cannot exclude if 

RUNX1 is merely a marker of TNBC characterized by worse prognosis or it has an 

actual biological role in this subtype. Preliminary in vitro experiments tried to 

address this question; RUNX1 overexpression induced EMT in non-tumourigenic 

normal human mammary cells suggesting that this could be one of the 

mechanisms by which RUNX1 expression increases cancer aggressiveness. Taken 

together our results are indicating Runx1 as a new prognostic biomarker in TNBC. 

Moreover the availability of small-molecule inhibitors targeting RUNX1 

(Gorczynski et al. 2007; Cunningham et al. 2012) are opening exciting 

possibilities for the development of new targeted therapies for this lethal 

subgroup. 
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