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Abstract 
 

Porous materials possessing random microstructures exist in both organic (e.g. 

polymer foam, bone) and in-organic (e.g. silica aerogels) forms. Foams and 

aerogels are two such materials with numerous engineering and scientific 

applications such as light-weight cores in sandwich structures, packaging, impact 

and crash structures, filters, catalysts and thermal and electrical insulators. As 

such, design and manufacture using these materials is an important task that can 

benefit significantly from the use of computer aided engineering tools. With the 

increase in computational power, multi-scale modelling is fast becoming a 

powerful and increasingly relevant computational technique. Ultimately, the aim is 

to employ this technique to decrease the time and cost of experimental 

mechanical characterisation and also to optimise material microstructures. Both 

these goals can be achieved through the use of multi-scale modelling to predict 

the macro-mechanical behaviour of porous materials from their microstructural 

morphologies, and the constituent materials from which they are made. The aim of 

this work is to create novel software capable of generating realistic randomly 

micro-structured material models, for convenient import into commercial finite 

element software. An important aspect is computational efficiency and all 

techniques are developed paying close attention to the computation time required 

by the final finite element simulations. Existing methods are reviewed and where 

required, new techniques are devised. The research extensively employs the 

concept of the Representative Volume Element (RVE), and a Periodic Boundary 

Condition (PBC) is used in conjunction with the RVEs to obtain a volume-averaged 

mechanical response of the bulk material from the micro-scale. Numerical 

methods such as Voronoi, Voronoi-Laguerre and Diffusion Limited Cluster-Cluster 

Aggregation are all employed in generating the microstructures, and where 

necessary, enhanced in order to create a wide variety of realistic microstructural 

morphologies, including mono-disperse, polydisperse and isotropic microstructures 

(relevant to gas-expanded foam materials) as well as diffusion-based 

microstructures (relevant for aerogels). Methods of performing large strain 

simulations of foams microstructures, up to and beyond the onset strain of 
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densification are developed and the dependence of mechanical response on the 

size of an RVE is considered. Both mechanical and morphological analysis of the 

RVEs is performed in order to investigate the relationship between mechanical 

response and internal microstructural morphology of the RVE. The majority of the 

investigation is limited to 2-d models though the work culminates in extending the 

methods to consider 3-d microstructures. 
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Chapter 1 . Introduction 

1.1 Classification of porous materials  

Porous materials are important in a wide range of applications including core 

materials in sandwich structures, impact energy absorbing materials in crash 

structures including helmets and automotive components, cushioning products 

designed to distribute pressure and thermally insulating materials [Banhart, 2001]. 

Some porous structures have smart behaviours, for example, shape memory 

polymers have been flagged for future use as a man-made self-healing structural 

foam [Patrick et al. 2012; John and Li, 2010 ], while cancellous bone can both 

adapt to loading conditions and self-repair. Porous materials can be classified using 

a variety of schemes. One possibility is to classify them based on the constituent 

material from which they are made, for example organic (e.g. polymeric foam) or 

inorganic (e.g. metallic and ceramic foams or silica aerogels). Another possible 

classification is related to their manufacture process, for example naturally 

occurring (e.g. cancellous bone, sponge) or man-made (polymer, metal or ceramic 

foams) and diffusion based materials such as aerogels. A third possible 

classification scheme is related to the materials internal morphological structure. 

Indeed, several investigations have studied the effect of manufacturing technique 

on the final microstructure [Woignier et al. 1989; Gibson and Ashby, 1997; 

Horrigan et al. 2009; Surace and Filippis, 2010; Malekjafarian et al. 2011; Bouakba 

et al. 2012]. In these investigations a typical goal is to understand the link 

between bulk mechanical response and microstructural properties such as porosity, 

pore size distribution, average cellular orientation and cell morphology. Since the 

main focus of this investigation is in understanding the relationship between the 

internal morphology of materials with randomly organised microstructures and the 

material's macroscopic mechanical behaviour (see Section 1.6), this particular 

classification scheme is elaborated further below. 
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1.1.1 Lattice materials 

These are usually man-made networks containing a repeated unit cell throughout 

the material. Based upon engineering requirements, lattice structures can be 

manufactured in different geometrical forms such as a 3-d network of inter-

connected beams (see Figure 1-1a) or a 2-d lattice structure extruded in the out-

of-plane direction, for example a honeycomb core (see Figure 1-1b) [Wadley et al. 

2003]. Lattice structures can be manufactured with extremely high specific 

mechanical properties [Chen et al. 2013; Abramovitch et al. 2010]. For example, 

2-d lattice structures such as honeycomb-cored sandwich panels are commonly 

used in engineering applications due to their high strength to weight ratio in the 

out-of-plane direction [Bitzer, 1997]. The topic of lattice structured porous 

materials is growing in importance due to increasingly viable manufacturing routes 

[Deshpande et al. 2001] and the design of novel internal architectures that can be 

optimised to provide unusual properties such as negative Poisson’s ratios (auxetic 

materials) [Scarpa et al. 2004; Bianchi et al. 2010]. Honeycomb lattice structures 

are particularly relevant to this investigation as it has been popular practice in the 

past to study the in-plane mechanical properties of honeycomb as a first step 

towards understanding the more complex behaviour of random foam 

microstructures, e.g. [Gibson and Ashby, 1997].  
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Figure 1-1: (a) Pyramidal lattice core [Zhang et al. 2013] (b) A honeycomb with 
hexagonal cell. Structure is extruded in out-plane direction (Z-axis). 

 

1.1.2 Random cellular materials 

These are the main focus of this investigation and are available as both man-made 

(e.g. polymer or metal foam) and natural (e.g. cancellous bone, sponge, coral) 

materials. Unlike lattice structured porous materials, cellular materials can be 

viewed as a 3-d network of connected cells, where each cell has its own unique 

geometry, i.e. there is no repeat unit cell within the internal structure. The 

porosity and type of constituent material within foam determine useful properties 

such as compressibility, density, specific mechanical properties and 

thermal/electrical conductivity. Based on the desired application and also the type 

of constituent material, different manufacturing techniques can be used to 

produce foam materials such as gas-expansion (e.g. polyurethane foam) or gas-

injection methods (aluminium foam) [Jebur, 2013].  

 

Foam materials can be further sub-classified according to their internal 

morphology into foams with cells connected together by solid struts or ribs (open-

cell foams, see Figure 1-2a) and those connected with faces or windows (closed-

cell foams, see Figure 1-2b). As a result, open cell foams are permeable whereas 
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closed cell foams are impermeable. Further, the microstructure can be described 

as either mono-disperse or poly-disperse. Mono-disperse foams are comprised of 

cells with a narrow range of cell volumes whereas poly-disperse foams contain 

cells with a wide range of volumes. The mechanical behaviour of foam can also be 

either isotropic or anisotropic. Mechanical anisotropy is generally related to 

internal microstructural anisotropy; a statistically significant degree of alignment 

of elongated cells along a preferred axis within the microstructure. The elongation 

of the cells usually results from the manufacture process [Huber and Gibson, 

1988], and leads to transverse isotropy in the material’s mechanical response 

[Tagarielli et al. 2005]. The mechanical properties of foams are strongly influenced 

by three distinct parameters: (i) the relative density of the foam, ρR, (ii) the 

mechanical properties of the constituent solid material and (iii) the generic cell 

morphology within the foam microstructure [Gibson and Ashby, 1997]. 

 

 

Figure 1-2: (a) an open cellular aluminum foam [San Marchi et al. 2004] (b) closed 
cell polymeric foams [Mills et al. 2003]. 

 

1.1.3 Aerogel materials 

These are ultra low-density, highly porous materials, composed of a 3-d network of 

randomly interconnected nanoparticles. Like cellular materials, they can be 

classified as either organic or inorganic, based on the constituent material. An 

example of an organic aerogel is resorcinol formaldehyde aerogel whereas silica 

aerogel is an example of an inorganic aerogel. The pore size of aerogels is 

generally in the range of 0.1-100µm (see Figure 1-3) [Hench, 1998; Moner-Girona 
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et al. 2003], much smaller than most gas-expanded foams, which typically have 

pore diameters of between 100-500µm [Kumar, 2007]. The fundamental difference 

between gas-expanded foam and aerogels is in their manufacture method; aerogels 

are created via a diffusion-based chemical synthesis process (Brinker and Scherer, 

1990; Pierre, 1998; Dorcheh and Abbasi, 2008]. This results in their peculiar and 

unique particle-based internal structure. Conventional open-cellular foams can be 

idealised as a 3D network of interconnected beam-like elements (or ribs). 

Aerogels, on the other hand, have more complex internal structures. For example, 

silica aerogels, have a pearl necklace-like nanostructure whilst vanadium oxide 

aerogels have a worm-like morphology (see Figure 1-3 and 1-4). These differences 

mean that very different computational techniques are required to model the 

microstructures of aerogels and random cellular materials such as foam.  

 

Figure 1-3: (a) SEM image of silica aerogel (b) proposed interior structure (Zhang 
et al. 2004). 
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Figure 1-4: Electron microscopy image of vanadium pentoxide [Livage, 1991]. 

 

1.2 Multi-scale modelling of porous materials  

An important goal is to evaluate the mechanical response of porous materials for 

subsequent engineering design purposes. The traditional method to accomplish this 

is by experimental characterisation. However, this approach can be difficult, time 

consuming (and therefore expensive) and provides little information with regard to 

the underlying deformation mechanisms occurring within the material’s 

microstructure and consequently limited scope for microstructural optimisation. 

The exponential increase in computational power has made computational 

modelling an interesting alternative to experiments in evaluating the mechanical 

response of porous materials. As the microstructure is an important factor in 

determining the bulk mechanical response of porous materials, a large body of 

work has been dedicated to understanding the relationship between the 

microstructure and macro-scale properties [Miehe and Koch,2002; Hohe and 

Becker, 2003; Kouznetsova et al., 2001; Smit et al. 1998; Swan, 1994].  
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1.2.1 Representative volume element 

Due to the heterogeneous nature of foams, use of a Representative Volume 

Element (RVE) is generally considered to be a more powerful approach than the 

unit cell method to predicting the micro-to-macro response of porous materials, 

allowing the macroscopic response to be predicted from the material’s underlying 

internal microstructural morphology [Gittus et al. 1987, Pavliotis and Stuart, 

2008].  The concept of a RVE [Hill, 1963] is frequently used for microstructural 

design of heterogeneous media such as composites, ceramics, foams and granular 

materials [Kouznetsova et al. 2001]. Here, the volume averaged deformation 

gradient across the RVE is determined from the displacement of its surface, 

likewise the volume averaged nominal stress is computed in terms of the nominal 

stress on its surface. Once these volume averaged behaviours are determined they 

can be used either in parameter fitting for continuum-based constitutive models, 

or more directly, using a micro-to-macro simulation strategy [Miehe and Koch, 

2002; Hohe and Becker, 2003]. The accuracy and practicality of computational 

homogenisation depends on the use of RVEs that are both realistic and 

computationally efficient, two criteria that are often at odds with one another 

[Swan, 1994; Smit et al. 1998; Kouznetsova et al., 2001]. The size of the RVE and 

its level of detail are two important considerations. For materials based on a 

regularly repeating micro or mesoscale structure, such as a honeycomb core or a 

woven textile, the choice of RVE size is usually trivial, and can be taken as the 

repeat unit cell within the material [Smit, 1998] (though this choice precludes the 

prediction of deformations with wavelengths longer than the size of the repeat 

unit cell). When it comes to materials possessing random microstructures, in 

general, the larger the RVE the more microstructural information it will contain. 

Ideally, an RVE model should be sufficiently large to be statistically representative 

of the composite [Drugan and Willis, 1996] while small in comparison to the larger 

structure. 

1.2.2 Repeat unit cell approach 

In repeat unit cell approach the microstructure of porous material is idealised as a 

network of connected regular cell with unique size and geometry (e.g. honeycomb 

and Kelvin structure for 2-d and 3-d idealisation, respectively). This approach is 

well suited to modelling lattice-structured porous materials (see Section 1.1) 
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[Warren and Kraynik, 1988; Zhu et al. 1997;] but is less appropriate for materials 

with randomly organised microstructures. Nevertheless, many studies have been 

performed to understand the mechanical behaviour of foam materials by 

considering the response of a unit hexagonal, cubic or Kelvin cell using both 

analytical and numerical approaches (see for example, Figure 1-1b) [Papka and 

Kyriakides, 1994; Gibson and Ashby, 1997; Zhu et al. 1997; Zhu et al. 2000]. In this 

case, the repeat unit cell method permits the prediction of mechanical behaviour 

when a foam is subjected to small strains and can produce reasonably accurate 

results [Gibson and Ashby, 1997; Zhu and Windle, 2002]. However, the use of a 

repeat unit cell in describing the internal microstructure of a foam is clearly a 

significant simplification and inevitably introduces errors that tend to become 

more significant as the applied strain increases [Zhu and Windle, 2002; Mills, 

2007]. 

1.3 Boundary condition on RVE 

In finite element applications, it is important to choose the most appropriate type 

of boundary condition. Mixed Boundary condition (MBC), Prescribed Displacement 

Boundary Condition (PDBC) and Periodic Boundary Condition (PBC) are the three 

most popular types of constraints that are imposed on the microstructures [Chen 

et al. 1999]. By considering imaginary 2-d square shape RVE, in the MBC, the 

normal displacement is imposed on two non-opposite edges where the opposite 

pairs are fixed to perform rotational and translational displacement. In 

applications where the average bulk behaviour is desired a Periodic Boundary 

Condition (PBC) is usually employed with the RVE [Guedes and Kikuchi, 1990; 

Anthoine, 1995] in order to obtain a homogenised macro-response for a material’s 

bulk behaviour. According to Chen et al. 1999, a PBC produces an intermediate 

response for the RVE stiffness, lower than that predicted using a Prescribed 

Displacement but higher than that predicted by a Mixed Boundary Condition, 

consequently a PBC has been adopted throughout the computational modelling of 

this investigation. 
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Figure 1-5: (a) Schematic representation of a 2-d material composed of a periodic 
microstructure consisting of a repeated RVE. (b) 2D RVE with applied PBC showing 
counterpart nodes on opposing faces. 

 

The concepts of a RVE and a PBC are intrinsically linked [Smit et al. 1998]. To 

apply a PBC on any 2-d or 3-d RVE, the structure must be fully periodic. This means 

that a node on one boundary must have a counterpart at the same horizontal 

(sides) or vertical (top/bottom) position along the opposite boundary, (see Figure 

1-5). Here the superscripts L, R, T and B indicate the left, right, top and bottom 

boundaries respectively. A two dimensional PBC requires that:  (1) The motion of 

counterpart nodes on each pair of RVE boundaries are constrained to each other 

and (2) Stress continuity across boundaries is preserved. A full description of the 

method of applying a PBC in the FEM is given in Chapter 3. 

1.4 Generation of porous RVEs 

Imaged-based X-ray micro computed tomography (X-ray microCT) is a very 

powerful method for characterisation of foam microstructure and can provide 

significant detail about material deformation mechanisms [Montminy et al. 2001; 

Elliot et al. 2002; Elmoutaouakkil et al. 2002; Dillard et al. 2005; Youssef et al. 

2005; McDonald et al. 2009]. X-ray microCT has previously been used to generate 

porous RVEs within the FEM by converting the image to a FE model. Various 

commercial software are currently available to perform such conversions (e.g. 

Simpleware, Mimics, AMIRA). For foams of medium to high relative density, this 
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usually involves the creation of an RVE using continuum finite elements. For open-

cell foams with small relative density the interconnected network of straight beam 

(struts) can be idealised using structural finite elements (see Figure 1-6). In this 

case, it becomes possible to use beam or shell elements to determine the 

mechanical response of the RVE. This simplification can lead to significant 

improvements in computational efficiency. Nevertheless, the direct conversion of 

image-based structures into FE models usually leads to extremely high demands on 

computational resource because the RVE is not periodic and therefore very large 

models are required to create an RVE that is both statistically representative of 

the real material and is also relatively free from edge and therefore size effects 

[Elliot et al. 2002; Jebur et al., 2012]. For this reason, an alternative approach to 

image-based modelling is to generate periodic RVEs (see Section 1.2) using 

numerical algorithms. In order to generate the wide range of possible 

microstructures observed in real materials a variety of numerical algorithms are 

required.  

 

 

Figure 1-6: (a) Poly Urethane foam X-ray micro-tomography image (b) An 
equivalent beam-based model of real structure [Elliot et al. 2002]. 

 

In the case of aerogels with pore diameters measured at the nano-scale, non-

destructive imaging techniques such as X-ray microCT lack sufficient resolution to 
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capture images with high geometrical details. Other techniques such as Focused 

Ion Beam (FIB) [Yao, 2007] may therefore be considered (see Section 2.2). 

1.5 Objectives  

The investigation will focus on the development of novel software capable of 

numerically generating realistic microstructures for porous materials that are 

meshed and ready for import directly into commercial finite element codes. RVEs 

created by the code will have PBCs automatically imposed, ensuring compatibility 

with subsequent numerical homogenisation methods. Porous materials can have a 

wide range of microstructures, for example, fractal or cellular, open- or closed-

cell, mono- or poly-disperse, isotropic or anisotropic; the structure is usually 

determined by the manufacture, synthesis or growth process (see Section 1.1). For 

this reason, a variety of numerical algorithms are required to generate the wide 

range of possible microstructures. The software will generate microstructures 

based on structural finite elements (e.g. beam and shell) subsequently allowing 

relatively fast mechanical analysis. In order to create RVEs capable of undergoing 

large deformations self-contact within the RVE will be implemented. An important 

theme throughout the investigation is to relate the mechanical response of the 

RVEs generated by the various algorithms to their internal morphology and also to 

analyse the accuracy of the internal morphologies in relation to real materials. 

1.6 Thesis overview 

The remainder of this thesis is structured as follows. Chapter 2 begins with a 

literature review of numerical techniques that have been used previously by others 

to generate RVEs for porous materials employing a 2-d simplification of the 

internal microstructure. Novel modelling approaches are described that are 

adaptations of existing methods. In Chapter 3, 2-d RVEs are generated using one of 

the novel algorithms described in Chapter 2. The response of the RVE when 

subjected to large compressive strains is examined. Self-contact is implemented 

using a shell-based modelling technique. Contact strain and onset strain of 

densification are used to investigate RVE size-dependence. The aim of Chapter 4 is 

to investigate the anisotropy of 2-d beam-based RVEs generated using the 

techniques described in Chapter 2. The RVE response when subjected to uniaxial 

compressive strains in different directions is examined. Compression is applied in 
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directions perpendicular, transverse and off-axis to the RVE orientation. In Chapter 

5, 2-d beam-based RVEs generated using numerical-methods introduced in Chapter 

2 are characterised in terms of their internal morphology by performing a direct 

study of their geometrical parameters such as the distributions of cellular 

orientation and cell area. The aim is to investigate the relationship between 

microstructure morphology and mechanical response. In Chapter 6 numerical-

modelling techniques to generate open-cellular foam-like 3-d microstructures are 

reviewed. Advantages and drawbacks of these techniques are discussed based on 

geometrical data automatically extracted from the numerically generated RVEs 

and subsequently compared against real foams morphologies described in the 

literature. Finally, Chapter 7 describes recommendations for future work. 
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Chapter 2 . Two dimensional 

modelling of porous microstructures 

2.1 Two dimensional modelling of foams 

Numerical generation of realistic foam microstructures is a challenging goal. A 

usual first step in this process is to simplify the problem by first investigating the 

behaviour of 2-d microstructures with the ultimate aim of extending the analysis to 

more realistic and more relevant 3-d microstructures. This approach has been 

adopted in this investigation.     

2.1.1 Generation of two-dimensional beam-based Representative Volume 

Rlement (RVE) 

A recognised method of generating foam-like microstructures is through Voronoi 

tessellation [Voronoi, 1908]. With regard to foam microstructure generation, there 

are two main approaches to using the Voronoi technique for space decomposition, 

namely classical and Laguerre-Voronoi which will be addressed in section 2.1.3. 

Under the first approach, each individual Voronoi cell is constructed based on the 

distance between its generator point and the neighbouring points. The Voronoi cell 

generator point is usually referred as a ‘site’, ‘seed’ or ‘nuclei’ in most of the 

literature [Aurenhammer, 1991; Zhu and Windle, 2002, Zhu et al. 2006]. The 

general process of generating a cellular structure from this approach is as follows: 

(i) identify neighbouring seeds around a given target seed, (ii) connect each  

neighbouring seed to the target seed using straight connecting lines, (iii) draw 

perpendicular lines across the connecting lines such that the connecting lines are 

bisected at their mid-points (iv) a Voronoi cell is generated by connecting the 

intersection points between the perpendicular bisector lines (see Figure 2-1).  
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Figure 2-1: Illustrative example of Voronoi tiling using the first approach. Red 
points indicate intersection between perpendicular lines. The Voronoi cell is 
constructed by connecting these points. If the target and neighbouring seeds lie at 
the centre of hexagonally packed circles of equal diameter, the final Voronoi 
tesselation will be hexagonal. 

 

Due to the simplicity of using the Voronoi method, numerous researchers have 

applied the approach to model foam microstructures [Silva et al. 1997a, b; Van Der 

Burg et al. 1997; Shulmeister et al. 1998]. Since by definition, foams possess 

random microstructures, mechanisms to generate randomised seed distributions 

are required. To do this both Silva et al. 1997a, b and Grenestedt and Tanaka, 1998 

started with a regular and equally spaced seed distribution in a square matrix 

arrangement. An irregular Voronoi structure was then produced by adding spatial 

perturbations to the initial seed positions. This was achieved as follows; based on 

the initial body centred cube seed distribution (BCC), a perturbation was added to 

these initial seed coordinates in order to achieve a non-uniform seeding. The 

perturbation was controlled by setting an amplitude value and multiplying this by 

randomly selected stochastic variables generated using a uniform distribution. The 

weakness of this approach is based on the perturbation of the tetrakaidecahedron 
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seed generator; selecting high values of the perturbation amplitude results in an 

irregular structure that has a very different microstructural cellular morphology to 

actual closed or open-cell foams.  

2.1.2 Two-dimensional beam-based RVE generation for mono-disperse cellular 

structure 

Zhu et al. 2001 later proposed a novel method to quantify the degree of 

irregularity of 2-d Voronoi tessellation. The method allows for the generation of 

both regular geometries, such as a honeycomb microstructures, or highly irregular 

geometries with highly scattered rib lengths and cellular orientations. The result is 

the so-called ‘Poisson’s Voronoi’ microstructure [Tanemura, 2003]. The method 

works as follows: based on a honeycomb geometry a constant distance, 0d , is 

calculated between each adjacent seed: 

50

0
0

3

2
.

n

A
d 







=                                                                                       Equation 2-1 

where A0  is the area of a square region that includes all seeds and n is the number 

of seeds. To generate a honeycomb structure using a Voronoi tessellation, the 

minimum distance between each adjacent seed should not be less than 0d . Zhu 

introduced a parameter, αZ, to control the degree of irregularity of the Voronoi 

structure based on 0d :  

0d

δ
αZ =                                                                                                                                          Equation 2-2 

where δ  is the minimum allowable distance between two adjacent seed points. 

Based on Eq. 2-2 αZ=1 results in a perfectly regular honeycomb microstructure. As 

αZ tends to zero the distance between adjacent seeds becomes more variable and 

the resultant microstructure becomes more irregular (but not necessarily more 

realistic). Example microstructures have been generated in this investigation, see 

Figure 2-2, by implementing the algorithm described in Zhu et al. [2001]. 
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Figure 2-2: Voronoi samples with 200 cells, generated using the algorithm 
described in Zhu et al. 2001. (a) αZ =0.75, (b) αZ =0.45. 

 

Zhu’s method has several advantages over the previous approach described in 

Section 2.1.1. The technique is simple to apply and is quite fast and convenient for 

generating samples with different structural irregularities. It is also relatively 

simple to extend the same procedure in generating 3-d foam-like models (see 

Chapter 6). But perhaps its most fascinating characteristic is its power to generate 

different microstructures but with the same degree of irregularity, characterised 

by a single parameter, αz.  However, the method does have its limitations which 

have been noted after implementing the method in this investigation, in a MatlabTM 

code. The first limitation was noted when generating seeds for αZ >0.8, here the 

process becomes time consuming as the number of seeds per unit area increases. 

As mentioned before, the more regular 2-d structure will approach hexagonal 

network (i.e. regular honeycomb). Mathematically, it is not possible to fit fully 

periodic hexagonal structure into perfectly square shape RVE and due to this the 

simulation time will increase to generate seeds for more regular microstructure. 

To resolve this problem in this investigation, the method of Zhu has been modified 

by employing a technique introduced by Li et al. 2006 where applying Voronoi 

tessellation over equally spaced seeds in BCC lattice (Body Centred Cube) will 

results in generation of tetrakaidecahedron or Kelvin cells. Seeds are initially 

placed in BCC lattice and then perturbation are added based on the height of a 



2—17 

 

 

regular tetrakaidecahedron and amplitude which almost works as α in the Zhu 

method in order to controls the degree of irregularity. In this novel hybrid method 

seeds are initially equally spaced in a regular seeding arrangement corresponding 

to that of a perfectly regular honeycomb pattern. Next, a set of normally-

distributed pseudo-random values are generated within a range with limits ∆±  

where ∆  is calculated using 

( )500
100

0 ,,α
δα

∆ ∈×=                                                                                                                  Equation 2-3 

 

And where 

3

2 0
0

N

A
δ =                                                                                                                                  Equation 2-4 

Here 0δ  is the minimum distance between neighbouring seeds of a regular 

honeycomb cellular pattern in a closed area, A0, N is the number of cells and the 

parameter, α, controls the degree of irregularity within the RVE. Here, 0δ  is 

exactly the same as 0d  calculated in Eq. 2-1. These random values are then added 

to the initial regularly arranged honeycomb seed positions (see Figure 2-3). 
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Figure 2-3: Generation of random cellular structure using a Voronoi tessellation 
method. The broken lines indicate a honeycomb pattern generated from regularly-
spaced seeds (white circles). By adding perturbations to the honeycomb seeds, an 
alternative seeding (black stars) is used to generate a randomized structure. 

 

So far, different approaches for generating randomised Voronoi cells have been 

discussed. However, in order to create a RVE with PBC suitable for subsequent use 

in the FEM, further work is required.  To do this a unit square is first populated 

with a regular arrangement of seed positions (the precursor seeding for a 

honeycomb pattern). Eq. 2-3 is then used to perturb these initial seed positions to 

produce a unit square containing an irregular distribution of seeds. This 

‘perturbed’ unit square seeding is copied nine times to create a larger square 

containing 3 x 3 identical perturbed unit square seedings. Applying a Voronoi 

tessellation algorithm to the resulting 3 x 3 structure produces a fully periodic 

cellular pattern within the central square, with pairs of counterpart nodes 

automatically generated on opposing boundaries (see Figure 2-4). 
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Figure 2-4: An example of a fully periodic structure (the central square). 

 

 

2.1.3 Two-dimensional beam-based RVE generation for poly-disperse cellular 

structures 

The second limitation within both Zhu’s original method and the modified version 

of this algorithm proposed in this research, is regarding their ability to model poly-

disperse microstructures. In general all seed-based modelling techniques lead to 

Gaussian cell-size distributions (see Chapter 5) that may not be appropriate for 

some foams [Fazekas et al.2002; Gervois et al. 2002; Kanaun and Tkachenko, 

2006]. The main reason for this weakness is explained as follows: in the case where 

there is a mixture of cells with significantly different sizes, use of the Voronoi 

method as described above, i.e. using bisector lines to generate the cells, results 

in an over-estimation of the number of Voronoi cells of small size and an under-

estimation of the number of cells of large size.  

 

To overcome this issue, instead of constructing Voronoi cells based on their seed 

point coordinates using the methods described in Section 2.1.1-2.1.2 each 

individual cell can instead be represented using a ‘hard-disk’ with a specified size 

and coordinate, see Figure 2.5. (Note, the method of seeding the microstructure 
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using hard-disks will be described later in current section). Now, cell-partitioning 

can be based on the location of the contact points between the hard-disks rather 

than the mid-way bi-sector points between seed positions. The difference in the 

resulting microstructure is demonstrated in Figure 2.5. This alternative method is 

referred to as ‘Laguerre-Voronoi Tessellation’. Here the bisectors are derived from 

the distance between touching point of the two disks rather than from the 

distance between the centres (see Figure 2-5). 

 

Figure 2-5: (a) Voronoi Tesselation generated from seed positions produced by an 
arrangement of hard-discs. (b) Laguerre Voronoi Tesselation generated using the 
same arrangement of hard-disks. Note the latter results in a much more poly-
disperse microstructure. 

 

In general, the method of Zhu is suitable for the generation of 2 and 3-d periodic 

RVEs with different degrees of irregularity, for cells with low or even a moderate 

degrees of size poly-dispersity (see Chapter 3 for further discussion of this point). 

However, for cases of significant cell size dispersion, the Laguerre-Voronoi method 

is more effective. Before applying the Laguerre-Voronoi tessellation method, a 

mechanism is required to arrange the hard-disks shown in Figure 2.5, with the 

maximum possible packing density. 

 

Generally, there are two main methods that are frequently used for generating 

hard-disk packing: (i) Random Sequential Adsorption (RSA) [Cooper, 1988] and 

classical hard-disk Molecular Dynamics (MD). In the RSA method, hard-disks are 
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randomly generated with different sizes and coordinates. The discs are then 

sequentially and irreversibly placed in the RVE unless they overlap. The advantages 

of using RSA are its simplicity and relatively small computational resource 

requirement, an advantage that becomes more apparent for poly-disperse cell size 

distributions. Different techniques are reported in the literature for applying the 

RSA method, most techniques are suitable for single mode and bimodal cell size 

generation [Harder and Silbert, 1980; Adamczyk et al. 1997; Brilliantov et al. 1998; 

Rouault and Assouline, 1998; Gray et al. 2001; Richard et al. 2001; Wu et a. 2003; 

Gan et al. 2010;]. To generate a poly-disperse polycrystalline microstructure, Fan 

et al. (2004) applied a modified version of a collective rearrangement algorithm 

initially developed by He and Ekere (1998). In other attempt, Farr and Groot 

(2009) developed a new method for packing 3-d poly-disperse spheres based on a 

one-dimensional mapping. Although all these approaches are applicable to 2 and 3-

d cases, as mentioned before, they are best suited to single or bimodal cell size 

distributions, a higher degree of poly-dispersity tends to be more complicated and 

time consuming and requires alternative algorthims. 

 

After studying most of the mentioned RSA techniques, the Drop and Roll method 

[Visscher and Bolsterli, 1972; Okubo and Odagaki, 2004]  was judged by the author, 

to a better algorithm for packing 2-d hard-disks with different degrees of poly-

dispersity, two important advantages of the Drop and Roll method, compared to 

other packing methods, are (i) increased contact between neighbouring disks, 

which results in higher packing density, (ii) simplicity and (iii) a more efficient 

computational algorithm [Gibson, 2007]. The classical 2-d Drop and Roll method 

involves a fixed container with two parallel hard walls and one horizontal hard 

floor.  A disk is first generated with a random diameter size and x-coordinate 

which must lie within the container area and near the top of the container. The 

disk is then ‘dropped’ towards the floor of the container until an equilibrium state 

is reached. In general, there are three states of equilibrium that each dropped disk 

must fulfil to prevent further motion, namely (i) the disk hits the hard ground (see 

Figure 2-6a), (ii) the disk’s centre of gravity lies between the centres of gravity of 

at least two adjacent disks that have previously been dropped and achieved 
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equilibrium, see Figure 2-6b) and (iii) the centre of gravity of a dropped disk lies 

between that of an adjacent disk, already in equilibrium, and one of the hard walls 

(see Figure 2-6c). 

 

 

Figure 2-6: Three states of equilibrium which any disk requires fulfilling during the 
Drop and rolling method. (a) hitting the hard ground (b) setting between two hard 
disks in the way the its centre of gravity placed between the centres of two 
adjacent hard disk (c) its centre of gravity placed between one adjacent disk and 
hard wall. 

 

If the dropped disk hits any other previously dropped disks during its fall towards 

the hard ground, it will roll about the centre of these disks and will continue to 

move until fulfilling the equilibrium conditions (ii) or (iii), as described above  (see 

Figure 2-7). The calculation is based on the position of the falling disc’s centre of 

gravity with reference to adjacent disks, hard walls and hard ground. 
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Figure 2-7: An illustrative example of the rolling disk in the Drop and Roll method. 
Since the target disk has a positive centre of gravity with regards of centre of 
adjacent disk, it rolls clock-wise. 

 

The Drop and Roll algorithm was implemented as part of this investigation and 

then enhanced to make it suitable for the generation of RVEs with PBCs. By using 

the Drop and Roll method it is possible to construct an RVE which is periodic about 

the left and right hand walls of the RVE using the following procedure: (i) consider 

a central container C (see Figure 2-8) to be the target area for the final RVE, (ii) 

consider containers CL and CR with exactly the same size and with common walls at 

the left and right hand sides of container C, (iii) in each step, generate a hard disk 

in C and create identical disks with the same axial coordinates as in the 

corresponding containers, CL and CR (iv) the hard disk in the left and right 

containers must roll and propagate in the same manner as in the central container 

(v) the hard disks are allowed to roll freely across the side walls until reaching an 

equilibrium position, thus the side walls can be described as soft walls, whereas 

the ground is a hard wall. 
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Figure 2-8: Example of generating a 2-d periodic pattern about hard walls, using 
the Drop and Roll method. Black discs lie on the ground, whereas the rolling disk 
(blue) will passes through the hard wall. 

 

However, since some of the disks lie on the straight hard ground the 2-d RVE is not 

periodic across its top and bottom boundaries. To tackle this problem, rather than 

dropping constantly from the top direction an using a bottom hard ground wall, it 

was decided to drop disks from four orthogonal directions by changing both the 

direction of gravity and the position of the hard ground. Also, in order to avoid 

generation of an RVE with hard disks lying along a straight line above the ground 

wall,  step (i) was re-defined; in this new implementation the dropped hard disks 

were permitted to penetrate the hard ground up to their central points, i.e. the 

hard ground is now better described as a semi-hard ground (see Figure 2-9).  

 

Hard Ground 

Imaginary Hard Wall 

Direction of Gravity 

C CR CL 
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Figure 2-9: Example of periodic RVE of poly-disperse disks generated by modified 
Drop and Roll method (Total occupied area of square RVE by hard-disk = 80%). 

 

It will be shown in Sections 4.2.3, 5.3.2 that RVEs generated from seed-based 

Voronoi techniques, such as that employed in the Zhu method, tend to generate 

microstructures with inherently anisotropic organisation and mechanical 

properties. This is particularly true for cases with a lower degree of irregularity 

when the cell morphology approaches a honeycomb (see Chapter 3 for further 

discussion). It will be shown in the next chapter that the Drop and Roll method is 

better suited to producing perfectly isotropic RVEs. The Drop and Roll method is 

therefore found to be a very efficient technique to produce isotropic RVEs with 

different degrees of poly-dispersity. However, its disadvantage is in (i) its 

relatively large computational resource requirement resulting in very time-

consuming simulations, (ii)  it is sometimes impossible to generate mono-sized 

cells within the RVE using this method and (iii) it is difficult to extend the method 

to the 3-d case (see Chapter 6 for further discussion of this point) 
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2.1.4 Mono-disperse foam-like RVE generation by employing the Lloyd’s 

relaxation algorithm 

In order to generate realistic morphologies closely resembling real mono-disperse 

foam microstructures, in a reasonable computational time, the Centroidal Voronoi 

Tessellation (CVT) method has been found to be a convenient approach. The 

technique can be used to construct both 2-d and 3-d periodic RVEs with a highly 

mono-disperse cellular size distribution. This technique is a special type of 

classical Voronoi method which decomposes Euclidian space into even, but not 

necessary equal, sub-sections [Burkardt et al. 2002]. Liu et al. 2009 considered the 

Lloyd’s algorithm [Lloyd, 1982] to be the best technique for computing a CVT. This 

algorithm can be described as an iterative ‘relaxation process’ where a classical 

Voronoi cell is generated in each iteration. Each corresponding seed will then be 

updated using the position of the Voronoi cell’s centre of mass (see Figure 2-10).  
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Figure 2-10: Illustrative example of Lloyd’s algorithm. At each iteration (a, b, c, 
d) a centre of mass for each Voronoi cell is calculated (black stars) and replaced by 
seed (circles). 

 

The iteration process is terminated by setting a given tolerance between the 

computed centre of mass and the Voronoi seed. By first generating a set of random 

seeds in a specified plane or space, the final microstructure will eventually appear 

to be similar to Voronoi models generated using algorithms similar to those 

described in Section 2.1.2 when using a low degree of irregularity but here the RVE 

has  isotropic properties (as demonstrated in Chapters 3 and 5). The technique can 
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therefore be employed to generate periodic foam-like RVEs with almost perfect 

mono-disperse cell-size distribution (see Figure 2-11). 

 

Figure 2-11: Example of a fully periodic RVE (the central square), generated using 
the Lloyd’s relaxation algorithm  

 

2.2 Two-dimensional modelling of aerogels 

In order to create a generic periodic RVE mesh-generator for all porous materials, 

some attention has been paid to materials other than gas-expanded foams, namely 

aerogels. This part of the investigation demonstrates the idea that alternative 

numerical algorithms must be considered if significantly different microstructures 

are to be modelled. 

2.2.1 Introduction 

For the purposes of modelling the microstructure of a given material it is 

important to understand the general process of material production. A three 

dimensional aerogel network is generated by continuous colloidal interaction 

between primary and secondary particles during the sol-gel process where, primary 

particles aggregate to form larger blocks of secondary particles. The secondary 
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particles then connect to each other and form a pearl-necklace type structure 

separated by mesopores (see Figure 2-12).  

 

                  

Figure 2-12: Physical representation of aerogel synthesis [Husing and Schubert, 
1998]. 

 

2.2.2 Two-dimensional particle-based RVE generation methods 

For a given type of precursor material e.g. silica, the microstructural geometry  of 

aerogels tends to be similar. In chapter 3 it will be shown that, since aerogels are 
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porous, some of their mechanical properties, such as stiffness, can be estimated 

reasonably well using a simple power law relationship between stiffness and 

relative density. However, a more intimate understanding of the relationship 

between nanostructure and macroscopic properties requires detailed modelling of 

the underlying aerogel network morphology. As with regular gas-expanded foams, 

a mutli-scale modelling approach can be used to predict mechanical properties 

using FEM. Imaging aerogels is possible by using several techniques such as 

Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM) or 

Small Angle Neutron Scattering (SANS) [Pajnok et al. 1996; Despetis et al. 2012; 

Merzbacher et al. 1998]. Due to the micro and nano-scale porosities of aerogels, all 

these imaging techniques are required to be performed in order to study the real 

structure of aerogels across both the nano and micro scalesaerogels [Ma et al. 

2000].  

 

Molecular Dynamic (MD) is one of the techniques employed in the past to generate 

a silica aerogel fractal network. The method requires large computational power 

with knowledge about the material chemical evolution and molecular interactions 

[Nakano et al. 1993; Pohl et al. 1995; Bhattacharya and Kieffer, 2005]. The 

colloidal movement of nanoparticles can be explained by Fick’s law of diffusion 

[Callister, 2003]: 
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                                                                                                                             Equation 2-5 

where φc is the concentration of diffusing particles, Dc is the diffusion coefficient, 

x is position and t is the time. Based on this diffusion law, Witten and Sander 

(1981, 1983) proposed a method known as Diffusion Limited Aggregation (DLA) 

where particles, based on a diffusive protocol, undergo continuous Brownian 

motion. In this algorithm, collision with any immobile particle causes the diffusing 

particle to stop moving. The algorithm results in a complex random dendritic 

structure (see Figure 2-13).  
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Figure 2-13: Example of 2-d fractal generated by DLA algorithm [Leto, 2007]. 

 

Using the DLA as their inspiration Meakin (1983) developed an algorithm to 

generate fractal structures. The algorithm predicts a microstructure comprised of 

several connected clusters, the final network geometry is superficially very similar 

to those seen in silica aerogels. In most of the literature this technique has been 

referred to Diffusion Limited Cluster Aggregation (DLCA) or Diffusion Limited 

Cluster-Cluster Aggregation (DLCCA) method [Rahmani et al. 1996]. In this 

modified technique, clusters as well as single particles undergo Brownian motion 

(diffusion) based on a diffusive protocol. As with the DLA they also stick together 

on contact producing larger clusters. The process continues until a final single 

cluster, comprised of all the initially distinct particles, is created (see Figure 2-

14). 
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Figure 2-14: 2-d periodic Fractal structure generated by DLCA method consisting 
of 25000 particles [Meakin, 1983]. 

 

Generally, there are two approaches to implementing a DLCA algorithm, each 

involving a lattice with area, AL, and a particle lattice density, ρp= Np/AL where Np 

is the number of non-overlapping particles in the lattice [Meakin and Wasserman, 

1984]. These are the on-lattice and off-lattice methods. The main difference 

between the two algorithms is that under the first approach, each particle is 

represented by a square ‘pixel’ inside a lattice grid and can only perform random-

walk motion whereas in the second approach, particles are represented by small 

disks (in 2-d) and are free to perform fully Brownian motion in any direction.  

Meakin (1999) found that both modelling methods have the same fractal 

dimensionality, equal to a universal value, but the lattice model is computationally 

more efficient. To define a diffusive protocol, Meakin (1983; 1999), proposed a 

diffusion coefficient as follows: 

( ) F
γ

SSD ≈                                                                                                                       Equation 2-6 
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where, D, is a diffusive coefficient, S, is the mass of a given cluster and, γF, is the 

diffusion coefficient exponent. By comparing results of several simulations Meakin 

(1983) provided a simple way to evaluate γF for the 2-d case, i.e. 

5141
2

1
..,d

d
γF −≈

−
−=                                                                                                Equation 2-7 

where, d, is the fractal dimensionality. Although there is some debate about the 

right approach to defining a diffusive protocol, particularly in regard to limiting 

the effect of size scale [Kolb and Jullien, 1984; Emmerling and Fricke, 1997; Gimel 

et al. 1999] DLCA has generally been shown to be a good method of modelling 

many inorganic aerogels such as silica.  Nevertheless, a few exceptions to this have 

been noted [Roberts, 1996]. 

2.2.3 Generation of 2-d periodic aerogel model by DLCA 

A DLCA algorithm has been implemented in this investigation using MATLABTM 

software and employing Meakin’s (1999) procedure (see Figure 2-15).  In the pre-

modelling stage based on the final targeted structure, operator must specify a 

lattice size, fractal density (number of particle per unit lattice), diffusion 

coefficient and allowable cluster/particle displacement values.  From fractal 

density value and the lattice size, N number of non-overlapped particles are 

generated and labelled. During each iteration, particles (or clusters) are randomly 

selected and assigned to lateral and/or vertical displacement. If two particles (or 

cluster) colloid with each other they will aggregate as a new cluster with different 

label. The whole process will continue in several iteration loop until one cluster to 

be achieved . 2-d aerogel-like microstructures have been generated where each 

particle is represented by a unit square cell in a lattice matrix. 
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Figure 2-15: DLCA procedure based on 2-d lattice based modelling. 
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In the DLCA method implemented here, the algorithm has been adapted to ensure 

geometrical periodicity. This is achieved by transforming single particles or 

clusters to the counterpart boundary if the particle or cluster diffuses through the 

lattice boundaries. 

 

 

Figure 2-16: Four different stages of aggregation process. Lattice size, L = 100, 
Packing density, φ=0.05, number of particles, N = 450, δL=1 and γF = -0.5. (top left) 
total number of clusters = 451 (top right) total number of clusters = 225 (bottom 
left) total number of clusters = 13 (bottom right) total number of clusters = 1. 
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2.2.4 Converting lattice-based RVE to beam-based 

Classical DLCA needs to be further modified to provide a more realistic structure. 

This is due to the presence of ‘dangling bonds’ [Emmerling and Fricke, 1997; Ma et 

al. 2000] which add an artificial mass to the cluster without having a contribution 

on overall stiffness and strength of material. For the purpose of the current work, 

due to the over-simplification already introduced by considering only a 2-d 

microstructure, treatment of dangling-bonds is omitted. Since the final DLCA 

structure is similar to an assembly of randomly sized connected rods, and also 

(particularly for small values of the φ), most of the rod-like elements are of just 

one particle thickness, it is convenient to idealise the final microstructure as a 

beam-based network. Converting such as a lattice-based structure to a slender 

beam-based structure has been performed in only a few previous works. In such 

cases the beam geometry was added as a straight line connecting the centres of 

two adjacent particles [Ma et al. 2000; 2002]. It can be seen in Figure 2-16 that 

the microstructure generated from DLCA cannot lead to acceptable results when 

using a multi-scale RVE modelling approach due to the internal discontinuous 

geometry of cluster. However, for the purpose of the current section, the 

equivalent 2-d beam-based RVE of DLCA-generated microstructure models are 

generated using the same procedure as that used in modelling foam (see Figure 2-

17). 
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Figure 2-17: An example of a fully periodic structure (the central square)  
generated using the DLCA method.  Beams are generated by considering straight 
lines between the centres of two adjacent particles. 

 

2.3 Conclusions of Chapter 2 

Use of several different algorithms to generate two dimensional idealisations of 

open-cell networks has been considered, and also, by using the concepts of a RVE 

and a PBC, several modelling methodologies have been proposed to generate 

beam-based structures of foams and aerogels. These models are formatted so that 

they can be employed easily by general purpose FE software, such as Abaqus, in 

order to investigate the mechanical response of these materials at the micro-scale. 

Advantages and limitations associated with each modelling technique were briefly 

mentioned in this Chapter. In the next Chapters, it will be shown that the accuracy 

of results produced when using a specific modelling technique, strongly depend on 

the type of mechanical response that is required from FE simulation. For example 



2—38 

 

 

the prediction of microstructure stiffness at very small compressive strain (less 

than 1%) is almost insensitive to RVE size and cellular morphology, however, for 

further compressive strain analysis more modelling and simulation complexity is 

required. 
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Chapter 3 .  Mechanical Evaluation 

of Two-dimensional RVEs 

 

3.1 Introduction 

To investigate the mechanical response of the microstructure in plateau region, 

particularly for irregular and poly-disperse geometries, it is vital to include self-

contact within the microstructure. Several good attempts to include self-contact in 

previous studies have been reported in order to simulate the impact response of 

foam while including the effect of densification [Zheng et al. 2005; Li et al. 2007; 

Borovinsek and Ren, 2008; Song et al. 2010]. These simulations were conducted 

without application of a PBC, a necessary omission due to the inertial response 

induced during high rate impacts. Thus, these studies were effectively simulations 

of simple macro-scale structures incorporating detail at the micro-scale. To the 

best of the authors’ knowledge, there have been no investigations reported in the 

literature that consider the large-strain compressive behaviour of either a two or 

three-dimensional beam-based RVE that incorporates both self-contact and a 

periodic boundary condition. Here, a method of simultaneously including both of 

these features in two-dimensional RVEs, using a commercial FE code is 

demonstrated. Depending on the application, various material properties can be of 

interest when designing products incorporating foams, including stiffness, yield 

stress, Poisson’s ratio, length and form of the plateau region and onset strain of 

densification [Li et al 2006b]. In addition, during the course of this investigation an 

additional material parameter has been identified; the contact strain. The latter 

has been found to be a very useful parameter in enhancing computational 

efficiency through guiding simulation strategy and through predicting the onset 

strain of densification using relatively small RVEs (see Section 3.2.4). Due to the 

gradually changing form of a typical foam’s stress - strain curve, exact 

determination of these parameters can be difficult and so, in current chapter, 

brief descriptions of these properties and the methods used to determine their 

values is presented. Properties are considered in the following order: (i) the form 
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of the plateau stress and (ii) the onset strain of densification and the contact 

strain. Prior to discussing these results, Sections 3.2.2 and 3.2.3 address some of 

the computational issues that have to be addressed in conducting this 

investigation. In order to facilitate generic comparison of results with those 

produced elsewhere (e.g. Zhu et al. 2002) a dimensionless ‘reduced stress’ is used 

throughout this investigation, (see Eq. 3-1) [Zhu et al. 2006] which allows 

comparison of stress results between RVEs of differing relative density and with 

different  element modulus. 

3


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sE

σ
σ                                                                                                                             Equation 3-1 

here ES and ρS are the Young’s modulus and density of solid material and ρ*
 is the 

foam density. The behaviour of cellular structures examined in this investigation is 

highly non-linear. The reduced stress–strain curves rarely show an initial perfectly 

linear response at small-strains, due to the gradual yet early onset of bending and 

buckling of beams within the microstructure. Defining equivalent representative 

quantities for the plateau region of the stress-strain curves is not straight forward 

and so only a qualitative comparison of the form of the reduced stress-strain curve 

is performed. The onset strain of densification is the point towards the end of the 

plateau region, at which the gradient of the stress–strain curve shows a sudden 

increase.  It is a particularly important quantity when considering the behaviour of 

foams under large compressive strains such as in impact, packaging and cushioning 

applications. Following Li et al 2006b, the onset strain of densification can be 

identified consistently and objectively using the location of the maximum of the 

‘efficiency function’, η: 

( ) ( ) ( )dε
ε

ε
εσ

εσ
εη

y
∫= 1

                                                                                                                   Equation 3-2 

where, σ, is stress, ε is strain and εy is the yield strain of the material (taken here 

at 10% strain). The contact strain introduced here, is very similar to the onset 

strain of densification though the use of computational modelling allows a more 

precise definition; i.e. the strain at which self-contact within the microstructure 

results in an increase of 5 per cent in the stress-strain response of the RVE, 
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immediately prior to the permanent divergence of the two curves as the strain 

increases, as compared to an identical RVE deforming without self-contact. It also 

differs to the onset strain of densification in the method by which it is determined. 

By conducting simulations both with and without contact, its location becomes 

apparent when directly comparing the subsequent reduced stress - strain curves; 

the two curves follow similar paths until a certain strain, after which the curves 

diverge (see Figure 3-1).  

 

 

Figure 3-1: Example of determination of contact strain (for RVE generated by 
modified Zhu method with high degree of irregularity, i.e. α=50). 

 

Experience suggests that in most cases self-contact within the RVE microstructure 

usually starts after about 20% (minimum) compressive strain, though only begins to 

significantly affect the form of the reduced stress-strain curve at higher strains, 

i.e. at and after the contact strain. To investigate the effect of structural 

inhomogeneity, the modified method of Zhu and the Drop and Roll algorithms are 

employed in generating RVEs for use in mechanical simulations in the current 

chapter, here considering only uniaxial compression in the direction perpendicular 

to the top surface of the square RVE.  
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3.2 Mono-disperse microstructure created using the modified Zhu 

algorithm 

3.2.1 RVE design  

To study the effect of the degree of irregularity four different values of α have 

been employed in generating RVEs (α = 0, 10, 20, 50). Examples are shown in 

Figure 3-2 where each image shows RVEs containing 150 cells; the smallest RVE 

size used in this investigation. The relative density of each RVE is kept constant 

however the total element length tends to increase with an increasing degree of 

irregularity. 

 

Figure 3-2: Single size RVE (about 150 cells) with different degree of irregularities 
with same size and material specifications. (a) α=0, (b) α=10, (c) α=20, (d) α=50. 

Consequently, Eq. 3-3 implies that the average thickness of the elements tends to 

decrease with increasing values of α.  Since only low-density open cell foams are 
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considered in the current investigation (ρ*/ρs=0.05), use of beam structures of 

constant cross-section is a reasonable approximation. Each rib of each cell has 

been initially modelled using five equal length Timoshenko beam elements with a 

constant square cross-section of side-length, tc. The latter is calculated using Eq. 

3-3 which relates t, to the relative density, ρ*/ρs, and total length of the elements 

within the RVE [Zhu et al. 2001a]:  

( )
∑
=

′

∗
=

e
n

k kl

Asρρ

c
t

1

                                                                                                                            Equation 3-3 

where ne is the number of elements, A is the area of the RVE, l ′  is the length of 

each individual element and k is the number of elements within RVE.  For all 

cases, the material model is linear elastic with a Young’s modulus, Es of 109 Pa, 

material density, ρs of 2000 kgm-3 and Poisson’s ratio = 0.33 consequently it should 

be noted that all conclusions from this work are restricted to linear elastic 

behaviour. More realistic material behaviour will be included in future work in 

order to determine if behaviours such as plastic yielding or strain hardening 

significantly affect the generic findings of this work. All element cross-section 

properties are assigned prior to the analyses and remain constant during 

deformation. In the versions of Abaqus used in this investigation (up to and 

including version 6.12), contact detection between shell elements has been found 

to be significantly more reliable (less penetration) than contact detection between 

beam elements. Consequently, for larger strain simulations involving self-contact 

between the beam structures within the RVE, beam elements have been replaced 

by equivalent shell element-based beam structures. The technique is fully 

explained in the Section 3.2.3.   

3.2.2 Boundary condition on periodic 2-d RVE 

As briefly noted in Section 1.3, in order to apply a PBC on any two or three 

dimensional RVE, the structure must be fully periodic, meaning that a node on one 

boundary must have a counterpart at the same horizontal (on sides) or vertical (on 

top/bottom) position along the opposite boundary (see Figure 1-5), where the 

superscripts L, R, T and B indicate the left, right, top and bottom boundaries, 

respectively. A two dimensional PBC requires that: (1) The motion of counterpart 
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nodes on each pair of RVE boundaries are constrained to each other and (2) Stress 

continuity across boundaries is preserved. For example, considering the first 

condition and referring to nodes along the side boundaries of the RVE shown in 

Figure 1-5(b), 

��
� = ��

� + ��
�� 									
 = 1,2                                                                                           Equation 3-4                                                               

��
� = ��

� , ��
�									
 = 1,2                                                                                               Equation 3-5 

where U is the nodal displacement in the i th direction, the subscript, i, represents 

the degree of freedom with i = 1,2 indicating displacements in the X and Y 

directions and i = 3 indicating rotation perpendicular to the X–Y plane. In order to 

implement the PBC, the ‘EQUATION’ keyword option available in Abaqus™ has been 

employed. Two dummy nodes are generated, indicated in Eq. 3-4 by the 

superscript, di. The second condition implies the traction vector acting on opposing 

boundaries of the RVE is equal and opposite at all counterpart points. Using two 

side nodes as an example,  

�� ∙ ���ᴦ�� = −�� ∙ ���ᴦ��                                                                                                       Equation 3-6 

Where the unit vectors nR(ᴦR) and nL(ᴦL)  are normal to the right and left boundaries 

at the location of the nodes. The motion of the dummy node controlling the 

relative displacement of the horizontal edges of the RVE is prescribed according to 

the imposed compression strain (and the size of the RVE) while the motion of the 

dummy node controlling the displacement of the vertical edges of the RVE is 

determined by the FE code in order to maintain stress equilibrium across the 

vertical boundaries. Stress continuity at the boundaries when imposing a PBC is 

discussed in detail by Smit et al. (1998). 

3.2.3 Equivalent shell-based RVEs                                                                   

Three dimensional general purpose linear shell elements with reduced integration 

(type S4R element in Abaqus) have been used. As with the Timoshenko beam 

elements, (B21), transverse stiffness is considered and the behaviour of these 

elements converges to shear flexible theory for thick shells and to classical theory 

for thin shells (Abaqus User Manual v6.9). By appropriate adjustment of their 

structural and material parameters, the axial and flexural mechanical response of 
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beam and shell elements can be made equivalent. In this investigation, the 

thickness of beam and shell elements is equal while the width of the shell 

elements in the Z direction is 10 times the thickness, see Figure 3-3. 

 

 

Figure 3-3: Schematic representation of four nodded 3-d shell-based RVE based on 
2-d beam-based RVE where the shell width is 10 times than beam and shell 
thickness. 

 

Decreasing this factor results in faster simulation times but increases the risk of 

numerical convergence problems. Note that for reasons of computational 

efficiency this investigation aims to use structural elements throughout. Equivalent 

shell elements are therefore calibrated against beam elements rather than against 

a continuum element model of a beam in order to maintain the same underlying 

assumptions in the models and to therefore facilitate direct comparison of shell-

element and beam-element based RVEs. Eq. 3-7 and 3-8 are the main structural 

equations for the bending modulus of rectangular cross-section beam and shell 

elements for slender beams and thin shells.  
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where q is the applied load, hs is the shell thickness, w is the deflection (of the 

beam/shell), υ is the Poisson’s ration, I is the second moment of inertia of the 

beam, E is the Young’s modulus and D′  represents the flexural rigidity of 

beam/shell. The Poisson’s ratio of the material, which is present in the shell 

formulation, see Eq. 3-7, is absent from the beam formulation [Saada, 1974] and 

so the shell’s material Poisson’s ratio must be set to 0 to produce an equivalent 

response as the beam elements. In addition, a structural element’s ‘effective 

section’ Poisson’s ratio controls the element’s thickness behaviour as a result of 

axial or in-plane strains. As mentioned previously, the beam’s cross-sectional area 

is constant, implying a default effective section Poisson’s ratio of 0. In contrast, 

for shell elements, unless specified otherwise the element’s effective section is 

predicted using Eq. 3-9 and can be chosen between 0 and 0.5. (Abaqus User 

Manual) 
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where, sυ  is the effective section Poisson’s ratio, 
h

t , is the shell thickness and 
h

A , is the 

shell sectional area, the superscript  indicates the original value of t and A. In order to 

produce a constant cross-sectional area, as with the beam elements, sυ  is chosen 

as 0. All nodal displacements are constrained to lie within the X-Y plane and nodal 

rotations are constrained about the Z axis only. By normalising the shell RVE force 

response by the shell width elongation factor (i.e. by dividing by 10), exactly the 

same mechanical response as an equivalent beam-based RVE (B21) is obtained.  

 

3.2.4 Size and computational resource considerations 

Size effects have been explored using RVEs containing 150, 600, 1350 and 2400 

cells which can be conveniently referred to as the sizes 1x150, 4x150, 9x150 and 

16x150 (see Figure 3-4).  
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Figure 3-4: RVE 1X150, 4X150, 9X150 and 16X150 with 150, 600, 1350 and 2400 
cells respectively. 

 

Practical limitations on computational resource mean that statistical investigations 

into the effect of RVE size on property predictions for all α values, and the effect 

of α value on property predictions for all RVE sizes would be prohibitively time 

consuming. To illustrate, Figure 3-5 shows the computation time versus RVE size 

for the explicit shell-based simulations including contact (simulations conducted 

using a 64 bit Windows with intel(R)Xeon(R) CPU @ 2.66GHz and 12GB RAM). 
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Figure 3-5: The average simulation cost of each RVE size per 5% compression. 

 

A 16x150 cell simulation requires about 80 times longer than a 1x150 cell 

simulation and can take more than 35 hours to reach 80% compression – see Figure 

3-5. To overcome this computational limitation it has been assumed that 

conclusions regarding the size effect on a given property produced using a degree 

of irregularity with α = 20, can be applied to RVEs with α = 0, 10 and 50, see Figure 

3-4. Given that the degree of irregularity, α= 20, sits approximately midway 

between 0 and 50 this assumption is considered to be a reasonable compromise. 

This degree of irregularity is considered the most realistic representation of a two-

dimensional slice of open-cellular polymer foam considered in this investigation 

(following preliminary visual comparison with actual micrographs of polymer foam 

cross sections). The strategy of extrapolating these conclusions on size effect to 

RVE behaviour generated using other α values means that simulations exploring the 

effect of changing α value can be performed with the smallest sized RVE (to 

reduce computational requirements) and the likely effect on predicted properties 

due to using this smallest RVE size can then be estimated. 
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3.2.5 Large strain response results 

The plateau region begins at the end of linear-elastic regime and continues until 

the onset strain of densification. The reason behind the yielding of the foam and 

the form of the plateau region is generally attributed to bending, buckling or 

torsion (for 3-d deformation) within the foam microstructure [Banhart and 

Baumeister, 1998; Elliott et al. 2002; Jang et al. 2010] (or some combination of all 

three mechanisms). As explained in section 3-1, the onset strain of densification is 

determined here using Eq. 3-2. By definition, both the onset strain of densification 

and contact strain can only be predicted if self-contact within the RVE is modelled. 

It will be shown that the onset strain of densification always occurs at higher 

strains than the contact strain. In order to predict the onset strain of densification 

and contact strain the dynamic explicit method using shell-based RVEs with 

contact detection enabled has been employed. 

 

Examining first the form of the plateau stress, Figure 3-6 shows how the shape of 

the reduced stress - strain curve changes with RVE size. 
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Figure 3-6: Averaged stress-strain curves for RVE with different size and α=20. The 
form of plateau stress region is sensitive to the size of RVE. Densification strain 
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(OSD) and contact strain (CS) are indicated in the figure. Error bars indicate 1 
standard deviation of 10 simulations. 

 

The plateau becomes flatter for larger RVEs with a slightly negative gradient 

developing between 20 to 35% strain. This is due to an increase in stress at around 

20% strain along with a small decrease in stress between 30 to 40% strain with 

increasing RVE size. These conclusions suggest a small RVE can be expected to 

provide only an approximate estimate for the magnitude of the plateau stress and 

the form of the plateau may be less flat and lack the slightly negative gradient 

seen in larger RVEs. Examining the effect of changing the degree of irregularity, 

Figure 3-7 shows that the form of the plateau region of the reduced stress–strain 

curve becomes less horizontal and more inclined as α increases, i.e. the foam 

behaves gradually less like an ideal energy absorbing material as the degree of 

irregularity increases. 
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Figure 3-7: Averaged stress-strain curves for 1X150 RVE with increasing α. 
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The small RVE size probably serves to exaggerate the size of this positive gradient 

but the general trend in behaviour remains clear; an increase in the degree of 

irregularity increases the size of the positive slope in the plateau region. Zhu et al. 

2006 made a similar comparison of the reduced stress-strain curves of two-

dimensional beam-based RVEs with four different degree of irregularity (including 

honeycomb and Poisson Voronoi). Their results suggested that as irregularity 

increases, the level of the whole of the plateau stress decreases. In their 

investigation the RVE was constructed from about 60 cells and self-contact within 

the microstructure was not considered. 

 

Examining now the onset strain of densification and contact strain, these are 

marked on the reduced stress – strain curves as ‘OSD’ and ‘CS’ in both Figures 3-6 

and 3-7 and are also plotted as a function of RVE size in Figure 3-8 and as a 

function of degree of irregularity in Figure 3-9. 

 

 

Figure 3-8: Onset strain of densification and contact strains for RVEs with 
different size but the same degree of irregularity (α=20). 
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Figure 3-9: Onset strain of densification and contact strain for RVEs with varying 
α. Open points correspond to RVE of size 1X150 cells, closed points correspond to 
RVE of size 16X150 cells. (The closed points are offset slightly to α=22 and 52 for 
clarity, though they still correspond to α=20 and 50).  

 

Figures 3-6 and 3-7 show that for a given degree of irregularity (α = 20) the onset 

strain of densification decreases with increasing RVE size and converges towards 

the contact strain which remains almost constant with RVE size. This suggests that 

the onset strain of densification is more sensitive to the RVE size than the contact 

strain, an observation that prompts two interesting possibilities (i) the contact 

strain of a small RVE could be used to predict the onset strain of densification in 

larger RVEs (ii) the difference between the contact strain and onset strain of 

densification could be used to quantify the influence of RVE size; a large 

difference would suggest the RVE is too small and can be improved by increasing 

its size. If point (i) were to prove correct, this would allow dramatic savings in 

computational resource when aiming to correctly predict the foam’s onset strain of 

densification. For example, referring to section 3.2.3, the smallest RVE simulations 

(1X150 cells) require only about 1/80th of the time of the largest RVE simulations 

(16x150 cells). In order to find the contact strain in the quickest time, simulations 

using small RVEs must be conducted, both with and without contact. Simulations 
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without contact are relatively fast and increase the overall computation time by 

around only 20 per cent. In addition to requiring longer simulation time, around 50 

per cent of the largest RVE simulations (this figure depends on the degree of 

irregularity of the RVE) produce errors before reaching large compressive strains 

(due to excessively distorted elements) and have to be discarded. This discard rate 

effectively increases the overall computational time for the large RVEs to about 

130 times that of the small RVE simulations. Thus, the time saving involved in using 

the contact strain of small RVEs to estimate the onset strain of densification for 

the large RVEs is around two orders of magnitude. 

 

Now considering the effects of the degree of irregularity, Figures 3-7 and 3-9 show 

how the onset strain of densification remains almost constant as α increases while 

the contact strain significantly decreases. Results of Figure 3-8 and the open points 

in Figure 3-9 are all conducted using the smallest RVE size of 1x150 cells and are 

therefore likely to be adversely influenced by size effects that have been shown to 

strongly affect both the form of the plateau region and the onset strain of 

densification.  

 

A final set of 10 simulations was conducted using RVEs with the maximum degree 

of irregularity (α = 50) and using the largest RVE size. The resulting average 

reduced stress–strain curve is shown in Figure 3-10 and the corresponding onset 

strain of densification and contact strain found using this curve are plotted as 

filled points in Figure 3-9. 
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Figure 3-10: Averaged stress-strain curve for the largest RVE when α=50. 

 

This final set of simulations (using α = 50) is designed to see if the same trends in 

terms of size effect that were found using α = 20, also occur when using α = 50. 

The results plotted in Figure 3-9 and 3-10 show once again that (a) the low strain 

zone of the plateau region is increased in value, creating a lower stress-strain 

gradient along the length of the plateau region (b) the contact strain remains 

stationary when the RVE size is increased from 1x150 to 16x150 cells and (c) the 

onset strain of densification decreases, effectively moving towards the contact 

strain. In this case using α = 50, the decrease is not sufficiently large for the two 

strain measures to closely coincide even when using the largest RVE, though the 

result does suggest that the contact strain, which is again almost RVE size 

independent, is indeed an excellent indicator for the onset strain of densification, 

as suggested in point (i) above. Indeed according to point (ii) above, the result also 

suggests that the largest RVE (16x150 cells) should be increased further still if the 

adverse influence of size effects is to be fully eliminated. These final results add 

weight to the hypothesis that the contact strain of a small RVE can be used to 

predict the onset strain of densification in larger RVEs.  
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3.3 Poly-disperse RVE microstructure generated using the Drop and 

Roll method 

As discussed in Chapter 2, the modified Zhu method provides a reasonably good 2-d 

foam-like microstructure for fairly cellular mono-disperse geometries. However, 

for higher degree of irregularities, the resultant structure will approach fully 

random Voronoi geometry (i.e. Poisson’s Voronoi) which is not a good 

representation of the real microstructure of typical foams. As with the enhanced 

method of Zhu, when using the Drop and Roll method there is a control mechanism 

to define the geometrical degree of irregularity of the resulting RVE. The approach 

used here was originally suggested by Kraynik et al. (2004). This involves selecting 

the disk size (radius) distribution for use in generating the RVE, using a log-normal 

function, i.e. 
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( )sdσzµr ⋅′+= exp                                                                                                                 Equation 3-12 

where m is the disk mean radius, γ is the variance of the disk radii and µ and σsd are 

the mean and standard deviation required to generate random data following a 

lognormal distribution and z′  is random generated variable. γ is the main 

parameter controlling the degree of poly-dispersity since it defines the range of 

disk sizes and plays a similar role to α in the method proposed by Zhu. The 

‘lognrnd.m’ function is available in MatlabTM (see Eq. 3-12) and directly calculates 

random values based on a log-normal frequency distribution function. In Eq. 3-11 

and 3-12, by using mean and variance inputs (m and γ), mean and standard 

deviations (µ and σsd) are calculated and used in Eq. 3-12. In order to avoid 

generation of very large or very small disks, a limit is set within a specified 

interval by choosing rmin and rmax as the minimum and maximum disk radii. The 
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criteria to choose a smallest and largest disk sizes limits depends to the operator 

knowledge of the final target structure. To generate a dense packing of circular 

hard disks, a square with size 80X80 is considered. The following parameter values 

are used in Eq. 3-10-12. 

rmin = 0.5 

rmax = 5.0 

m = 2.5 

γ = 0.05, 0.1, 0.15, 0.20 

Increasing γ results in a higher poly-dispersity of the hard disc diameters.  

                         

Figure 3-11: RVEs with 4 different degree of poly-dispersity: (a) γ=0.05, (b) 
γ=0.10, (c) γ=0.15, (d) γ=0.20. The final beam-based structures are obtained by 

(a) (b) 

(c) (d) 
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solving the Apollonius problem [Wolfram Mathematica®] for packed hard circular 
disks and then by applying a Laguerre-Voronoi tessellation.   

As in the previous section, all the structures are generated based on relative 

densities equal to 0.05 and then converted to shell elements. 
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Figure 3-12: Averaged stress-strain curves for RVE with increasing γ. 
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Figure 3-13: Onset strain of densification and contact strain for RVEs with varying 
γ. 

 

By comparing Figures 3-7 and 3-12 and also 3-9 and 3-13 it can be seen that as the 

degree of irregularity increases, the contact strain (CS) shifts to lower strains. 

Therefore, the self-contact within the microstructure causes an earlier increase in 

the gradient of the stress-strain curve in the plateau region. This is unlike the 

microstructures generated by the modified method of Zhu with a small degree of 

irregularity where CS is close to OSD and will decrease for higher degree of 

irregularity, here the form of the plateau region was also found to be relatively 

insensitive to compressive strain.  The same scenario is also true for RVEs 

generated using Lloyd’s algorithm where contact strain (CS) is almost appears at 

0.5 compressive strain which is mainly due to the small scatter of cellular 

morphology (see Figure 3-14). 
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Figure 3-14: Contact effect on RVE generated by Lloyd’s algorithm. The contact 
strain (CS) is highlighted by red transparent circle where two curves starts to 
deviate from each other. Both curves are obtained as an average value of 5 
simulations over statistically different RVEs.  

 

3.4 Conclusions of Chapter 3 

Two-dimensional beam-based RVEs with different size and degree of irregularity 

have been generated using both the Voronoi and the Laguerre-Voronoi tessellation 

methods. The inclusion of self-contact within the microstructure in the simulations 

has permitted the mechanical response of the RVEs to be investigated to very high 

compression strains, often greater than 80 per cent. To the best of the authors’ 

knowledge, this is the first time that the analysis of important mechanical 

properties of structural foams, such as plateau shape and the onset strain of 

densification, have been investigated using a periodic RVE constructed using 

structural elements. Use of the latter means that simulation time is dramatically 

reduced compared to equivalent FE investigations using 3-d continuum elements to 

model the microstructure. Nevertheless, these large strain properties, which so far 

have been investigated using only linear elastic material behaviour, are shown to 

be sensitive to RVE size and ideally require large RVEs of at least 16x150 cells in 

order to eliminate size effects. This currently leads to long computation times 

(greater than 35 hours for 1 simulation using the current computer specification – 

see section 3.2.3), which can be prohibitively costly when running multiple 
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simulations in order to determine average stress-strain curves and stochastic 

variability between results. With this issue in mind, an important finding in this 

investigation is the discovery that the contact strain in a small RVE appears to be 

an excellent indicator of the onset strain of densification in a large RVE. This 

finding reduces computational requirements by a factor of around 100 times for 

these 2-d simulations. If this discovery holds true for 3-d simulations, then the 

savings in computation time are expected to be considerably greater still, a 

question that may form the subject of a future study. 

 

The other important achievement from studying the contact effect is a better 

understanding of deformation mechanisms occurring in the plateau strain region 

which is of great concern for porous material characterisation because it can be 

used a guidance to optimise the design criteria for component including porous 

structure (e.g. cyclist helmets). Geometrical inhomogeneity (e.g. cellular 

polydispersity, geometrical irregularity) has a significant impact on mechanical 

behaviour of the RVEs after the initiation of Contact Strain (CS) where self-contact 

increasingly contributes towards the total stress in the RVE. As a result, the stress-

strain slope is found to increase at earlier strains with increasing polydispersity.  
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Chapter 4 . Orientation Dependent 

Compressive Response of Two-

Dimensional Representative Volume 

Elements 

 

4.1 Introduction 

The first step in modelling isotropic random foams should be to create isotropic 

RVEs. Such RVEs should have no ‘preferential’ direction, both from a mechanical 

and a morphological point of view [Hill, 1963; Guedes and Kikuchi, 1990; Kruyt and 

Rothenburg, 2004]. With this in mind, it is clear that microstructure generation 

algorithms designed to model isotropic random foams should ideally be free from 

any inherent directional bias (any intended anisotropy can easily be added to the 

initially isotropic RVE by the user using an affine elongation of an isotropic random 

microstructure). In Chapter 2 several microstructure generation algorithms were 

discussed and the importance of the initial seeding on the resulting RVE 

microstructure was emphasised. In the literature, isotropy of apparently randomly 

micro-structured RVEs is generally assumed to be true a priori, despite a lack of 

rigorous testing [Zhu et al. 2001a; Kraynik et al. 2003]. In this chapter, the validity 

of this assumption is analysed. It will be shown that some microstructure 

generation algorithms create more mechanically isotropic RVEs than others.  

 

One of the most computationally efficient methods to be reviewed in Chapter 2 

was that proposed by Zhu [Zhu et al. 2001b] and an enhanced version of this 

algorithm (see Section 2.1.2) was implemented and employed in Chapter 3 to 

understand the effects of self-contact on the compressive response of the RVE 

under large strains. The benefit of this particular algorithm lies in its power to 

control the geometrical irregularity of RVE for multi-scale statistical application as 
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well as simplicity and its ease of implementation. As described in Sections 2.1.2 

and 3.2.1 the technique begins with a regular seeding that, without further 

modification, produces a hexagonal honeycomb structure. Random foam 

microstructures are generated, by perturbing the initial seeding position in a 

stochastic manner away from the initially regularly spaced configuration. Clearly, 

if the perturbation is small then the RVE behaves as a slightly perturbed 

honeycomb structure, if the perturbation is sufficiently large then all trace of the 

initial honeycomb structure will eventually be erased, prompting two questions 

that are important to the enhanced Zhu method of generating isotropic randomly 

micro-structured RVEs:  (i) “just how isotropic is the in-plane response of a 

honeycomb microstructure?” and (ii) “what perturbation size (or degree of 

irregularity) is required to completely erase all trace of the initial honeycomb 

microstructure?”. In answer to (i), it will be shown that the response of a 

honeycomb structure is isotropic only under very small strain compression and 

becomes progressively more anisotropic with increasing strain. In answer to (ii) it 

will also be shown that an isotropic RVE can be created using the enhanced 

method of Zhu, though only for extremely irregular microstructures that are so 

distorted that their realism, when compared to real foam microstructures, is 

debateable. Consequently, a novel method of converting these highly irregular 

unrealistic / isotropic RVE microstructures into more useful realistic / isotropic 

random microstructures has been developed and is demonstrated later in this 

chapter. The method employs the Lloyd’s relaxation algorithm (see Section 2.1.4), 

application of which is shown to produce a realistic / isotropic random RVE with a 

mono-disperse cell size distribution. In Chapter 5 it will be shown that the form of 

the resulting RVE microstructure morphology compares well with many, typical 

gas-expanded polymeric foams (see Section 1.1.2). However, due to the mono-

disperse microstructure, the method is not particularly well-suited to the 

generation of poly-disperse microstructures typically observed in many metallic 

foams (see Section 1.1.2). To create such morphological microstructures the 

enhanced drop and roll technique is better suited, as will be shown in Chapter 5. 

In that chapter the mechanical isotropy of poly-disperse RVEs created using the 

enhanced drop and roll method is examined for varying levels of poly-dispersity. 
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The remainder of this chapter is structured as follows. Section 4.2 is a review of 

the relevant literature. In Section 4.3 methods of applying compression in vertical, 

horizontal and also arbitrary directions, while still maintaining a PBC, are 

discussed. In Section 4.4 an investigation into the directional response of a 

honeycomb structure is presented. Analytical solutions proposed previously in the 

literature are examined before comparing these predictions against those from a 

honeycomb structured RVE with PBC applied. In Section 4.5, the effect of 

increasing the degree of irregularity on mechanical isotropy of RVEs produced 

using the enhanced Zhu method (employed previously in Chapter 3) is examined. 

An investigation into the mechanical isotropy of RVEs generated using the Lloyds 

relaxation algorithm is presented in Section 4.6. In Section 4.7 the isotropy of RVEs 

generated using the enhanced drop and roll method is investigated. Finally, in 

Section 4.8 a 2-d mechanical evolution of aerogel specific RVE and its challenges 

are discussed. 

4.2 Literature review 

4.2.1 Directional response of honeycomb structures 

Hexagonal structures, commonly known as honeycomb, are often used as a first 

step towards the study of randomly structured 2-d foams [Gibson and Ashby, 

1997]. Also, as described in Section 4.1, the honeycomb structure is effectively the 

unperturbed foam structure created using the enhanced Zhu method. For these 

reasons, this first section focuses on the mechanical response of honeycomb 

structures. The regular nature of a honeycomb structure means that it is accessible 

to theoretical analysis by considering a repeat unit cell. Section 4.2.2 reviews 

previous work in this direction while Section 4.2.3 looks at the response of a 

honeycomb RVE created using the enhanced Zhu method, numerical and analytical 

predictions are compared.  

4.2.2 Analytical predictions of honeycomb response 

According to Gibson and Ashby (1997), under uni-axial loading, the in-plane linear-

elastic stiffness of the hexagonal cell in both the transverse and perpendicular 

directions can be calculated using Eq. 4-1 and 4-2 respectively: 
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where Es is the linear-elastic Young’s modulus of the constituent material, tb is the 

beam thickness, h and l are the side lengths of the cell and θ is the beam angle 

(see Figure 4-1). The Poisson’s ratios ( *υ12and *υ21) in both the perpendicular and 

transverse directions (X1 and X2) are also calculated using the honeycomb geometry 

to be 
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Figure 4-1: Hexagonal unit cell. 
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For regular honeycomb, where h=l  and θ=30 degree, both Eq. 4-1 and 4-2 are 

further simplified to 

3
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The above relationship is a power-law function where the term tb/l can be written 

in terms of the relative density ρ*
/ρs, as 
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The non-linear elastic collapse stress in the X2 direction ( )2*
elσ  is calculated using 

Euler’s buckling principle [Timoshenko and Gere, 1961] to find, 

( )
θlh

tπn

E

σ br

s

*
el

cos

1

24 2

322
2 =                                                                                                              Equation 4-8 

In Eq. 4-8, nr represents the rotational stiffness at nodal connections which varies 

for different loading and constraint scenarios [Gibson et al. 1981]. Eq. 4-1 to 4-8 

were established for honeycomb with low relative density (tb/l<1/4) where beam 

bending is the major mode of deformation. Silva et al. 1995 improved these 

equations by also considering axial and shear deformations in order to study cases 

with relative densities up to 0.3: 
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These equations provide analytical small-strain predictions with which to compare 

numerical results later in this investigation (see Section 4.4). 

4.2.3 Modelling of two-dimensional random foam microstructures using a 

numerical RVE approach 

A major limitation when using a single cell modelling approach is the inability to 

capture the random microstructural complexity of real foams. To overcome this 

limitation Zhu et al. (2001) investigated the important elastic properties of foam-
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like beam-based microstructures using a 2-d Voronoi modelling technique (see 

Chapter 2.1.3) by applying uniaxial compression on a RVE with a periodic boundary 

condition. The most important results of Zhu’s work are summarised in Table 4-1. 

Table 4-1: Effect of cellular irregularity on 2-d foam-like microstructure elastic 
behaviour [Zhu et al. 2001]. 

 
Young’s 

Modulus 

Shear 

Modulus 
Bulk Modulus 

Poisson’s 

Ratio 

Cellular 

Irregularity 

Increase Increase Increase Decrease NA 

Decrease Decrease Decrease Increase NA 

Relative 

Density 

Increase Decrease NA NA Decrease 

Decrease Increase NA NA Increase 

 

For low relative density and for microstructures with a reasonably low degree of 

irregularity, the results of Zhu et al. (2001) are in agreement with Gibson and 

Ashby’s (1997) power-law function (Eq. 4-5). For the perfect honeycomb case with 

increasing relative density, Zhu’s results expressed in the form of reduced Young’s 

modulus: 
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where the final results are very close to the power-law function of Silva et al. 

1995. However, as previously stated (see Chapter 2.1.1), using a classical Voronoi 

modelling approach (see Section 2.1.3) does not necessarily provide a realistic 2-d 

foam-like microstructure, particularly for cases with a high degree of irregularity. 

Attempting to improve the realism of the microstructure, Fazekas et al. (2002) 

used the Laguerre-Voronoi method (see Section 2.1.3) to generate 2-d beam-based 

microstructures with a range of geometrical poly-dispersities and small relative 

densities (<0.05). Some of the findings of Fazekas et al. (2002) were very similar to 

those of Zhu et al. (2001). Both the Young’s modulus and the bulk modulus were 

found to obey Gibson and Ashby’s, power-law function for low relative densities 
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(see Eq. 4-5), irrespective of the microstructural morphology. Another important 

goal of the study by Fazekas et al. (2002) was in determining the effect of the 

cellular area fraction on the Young’s modulus and yield stress. In the case of a low 

relative density, Fazekas’ results suggested that increasing cellular area poly-

dispersity produced a higher Young’s modulus and a lower yield stress.  

 

The main limitation of the work of both Zhu et al. (2001) and Fazekas et al. (2002) 

was the restriction of the investigations to strains below the yield strain. Further, 

the work of Fazekas, only considered bimodal microstructures and consequently 

the final results were not representative of generally poly-disperse media. Zhu et 

al. (2006) extended the previous work of Zhu et al. (2001) to examine the 

behaviour of 2-d beam-based Voronoi microstructures up to much greater 

engineering strains of 0.6. In this attempt, microstructures with a low relative 

density, (ρ
*
/ρs), consisting of uniform elastic beams were employed. An important 

result of this study was the prediction of the mode of cellular deformation after 

yielding and before densification, i.e. within the plateau region. Zhu et al. (2006) 

concluded that since stress monotonically increases with compressive strain, 

regardless of the degree of geometrical irregularity, the microstructure would not 

collapse before densification. For slender beams with linear elastic material, the 

compressive stress-strain relationship can therefore be explained by elastic beam 

bending in the linear region and by elastic buckling in the plateau region, by 

considering the mode of cellular deformation which results from beam’s 

orientation with respect to load direction. Due to the absence of self-contact 

modelling beyond the plateau region and into the densification stage was not 

undertaken. Papka and Kyriakides (1994) studied the in-plane compression of 

metallic honeycomb by applying loads in vertical direction, where whole load-

deformation response was characterised by three distinct regimes: (i) a stiff linear 

elastic response (ii) plastic buckling due to interaction between geometric and 

material non-linearity where stress in general stays approximately constant for 

increasing strain and (iii) full collapse of cells with a sharp increase of stress.   
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The remainder of this chapter investigates the deformation of 2-d periodic RVEs 

under uni-axial compression within the linear regime. The investigation make use 

of the modelling techniques explained in Chapter 2 and also a novel approach to 

obtaining the RVE uni-axial compressive response in an arbitrary direction with 

respect to the orientation of the square RVE (see Section 4.5-4.7).   

4.3 Beam-based RVE Preparation for FE analysis 

4.3.1 Application of PBC on RVE for Compression in an Arbitrary Direction 

The method of applying a PBC on an RVE when vertically compressing an initially 

square RVE (i.e. in a direction perpendicular to the top surface of the RVE) was 

described in Section 3.2.2. In the current section a method of extending this 

procedure to compression of a rectangular RVE in any arbitrary direction is 

described. A full theoretical description of the method is provided in Appendix A2, 

here the numerical implementation of the technique in AbaqusTM is discussed. 
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In Eq. 4.16 to 4.19, the superscripts d1, d2 and d3 represents dummy nodes 1, 2, and 

3. Ui represents displacement in the ith direction and θ0 denotes to direction of the 

applied load.  

4.4 Mechanical Response of Periodic Honeycomb Structure when 

Compressed in Arbitrary Directions 

The main purpose of the current section is to investigate the mechanical response 

of a honeycomb structure under in-plane uniaxial compression in arbitrary 

directions. The two main reasons for doing this are: (i) to study the in-plane 

mechanical response of a hexagonal microstructure with respect to applied loading 

direction and (ii) to generalise the study to a 2-d foam-like structure with 
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geometrical irregularity. The reasons behind beginning with an investigation of a 

honeycomb structure, rather than a random RVE, is due to its importance to the 

enhanced Zhu method of generating a random RVE and also the availability of 

analytical predictions with which to compare the numerical results. The six-fold 

geometrical symmetry of the honeycomb structure, as shown in Figure 4-2, 

provides at method of validating the technique of applying strains in arbitrary 

directions.  

 

 

Figure 4-2: Six axes about hexagonal six nodes where spaced by 600 from each 
other. (a) Solid axis spaced 300

 from principle axis X1. (b) Solid axis spaced 600
 

from principle axis X1. 

 

Based on the symmetrical nature of the honeycomb cell, it is clear that uni-axial 

compression in a vertical direction (i.e. θ0 = 900) should produce exactly the same 

mechanical response as compression along the direction with θ0= 300
. The same is 

also true for compression in the directions with θ0 = 00
 and θ0 = 600

. Therefore, from 

this hypothesis, it is possible to directly check whether the approach of applying 

uniaxial strains in arbitrary directions (i.e. Eq. 4.16 to 4.19) is correct or not. 

4.4.1 Finite element model for honeycomb structure 

In this section, the FE model of the RVE microstructure is described. Since only 

low-density open cell foams are considered in the current investigation (ρ*/ρs 

300 

(a) 
(b) 

X2 (90 degree) 

X1 (0 degree) 

600 

X2 (90 degree) 

X1 (0 degree) 
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=0.041), the use of beam structures of constant cross-section is thought to be a 

reasonable approximation. This approximation is affirmed to some degree by 

previous studies, for example, when modelling aluminium open cell foam using a 

small 3-d RVE and solid elements, the effect of variations of rib cross-sectional 

shape and area, as a function of length along the rib, was found to be of 

diminishing importance with decreasing foam relative density [Gong et al. 2005; 

Jang et al. 2008]. For small strain simulations with no self-contact within the 

structure (less than 20% compressive strain for very irregular microstructures) each 

rib of each cell has been modelled using five equal length 2D Timoshenko 

quadratic beam elements (B21 type element in AbaqusTM) with a constant square 

cross-section of side-length, tb. For all cases in this chapter, the constituent 

material model is linear elastic with a Young’s modulus, Es, of 1GPa and a 

Poisson’s ratio = 0.33. Consequently all conclusions from this work are restricted to 

linear elastic behaviour for the constituent material. The Timoshenko beam 

element formulation is capable of including the effects of transverse shear 

stiffness for thick section beams (recommended for cross section diameters up to 

1/8th of the structures axial length) and converges on the slender element result 

(zero-transverse shear stiffness) for elements where the cross-section diameter is 

less than about 1/15th of the beam’s axial length (Abaqus User Manual v6.9). The 

error in the structural element approximation progressively increases as the 

thickness/length ratio increases and inevitably leads to some error at higher 

relative densities. The foam density in this investigation is close to the upper limit 

of what can be feasibly considered using structural elements for 2-d RVEs, without 

causing excessively large errors due to the high rib thickness/length ratios. For a 

perfectly regular honeycomb structure a relative density of 0.05 in Eq. 3.3 leads to 

ratios of about 1/7. For random RVEs this ratio varies from rib to rib due to 

changing rib lengths and the use of a constant rib thickness throughout the RVE. 

The average value of the ratio falls to about 1/25 for the most irregular case, 

though here a small proportion of the ribs have significantly higher ratios than 1/8. 

All element cross-section properties are assigned prior to the analyses and remain 

constant during deformation. Since the current investigation is considered as both 

a time- and inertia-independent analysis, the Abaqus ‘Static General’ with 

geometrical non-linearities included in the solution algorithm has been employed 
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for all FE simulations in this chapter. This provides an accurate response with less 

simulation time compared to a dynamic implicit or an explicit FE analysis.  

4.4.2 Method of determining mechanical response of honeycomb RVE in 

different loading directions 

Eq. 4-10, 4-12 and 4-14 suggest that for an elastic honeycomb of low relative 

density the Young’s modulus and the Poisson’s ratio should be identical when 

uniaxially compressed in both the vertical and horizontal directions. Here the 

mechanical response is investigated when compressed at angles θ0 = 00
, 150, 300, 

450, 600 and 900 to strains up to 10 percent compression. From Eq. 4-16 to 4-19, it 

is straight-forward to obtain strain and stress values for the vertical and horizontal 

directions, since the loading direction is perpendicular to the RVE surface 

boundary. In these two cases an overall force applied to the dummy node can be 

directly used to compute a compressive stress because from Eq. 4-17 and 4-18 for 

either θ0 = 00
 or 900, the third dummy node, d3, deformation is identical to d1 or d2 

displacements. However, for compression at angles other than 00 and 900, a three-

step process is required to determine the strain-stress data.  

 

Step1: Calculating dimensions of imaginary RVE. Consider the case where the 

RVE is compressed at 600 from the X2 axis. The undeformed RVE can be assumed to 

be part of a larger imaginary RVE (see Figure 4-3). For a RVE structure with initial 

height, H0 and width W0 the imaginary RVE width and height are calculated as  

( ) gleLoading an,  θθπWθHLW =−+=
000

2cos0cos00
                                     Equation 4-20 

( )
00

2sin0sin00 θπWθHLH −+=                                                                                 Equation 4-21 
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Figure 4-3: The RVE in the undeformed state. A larger imaginary RVE (blue broken 
lines) is constructed with boundaries perpendicular and parallel to the applied 
loading direction, here θ0=600. 

 

Step 2: Correction of compressive strain. The same argument can be used to 

determine the size of the imaginary RVE during compression. Depending on the 

loading angle, the imaginary RVE will be compressed on one side and stretched on 

the other (see Figure 4-4). Ideally, the compression direction should remain 

perpendicular to the upper and lower boundaries of the imaginary RVE. However, 

in practice the PBC does not strictly impose this constraint and the boundaries of 

the RVE do not necessarily remain in a perfect rectangle during compression. From 

experience, a small drifting angle, θd, between the axis of the upper and lower 

faces of the RVE can occur. This angle varies from one RVE orientation to the next 

and is usually less than 1 degree.  However, this drift angle can have some effect 

on the final stress-strain curve calculation. To define a physical meaning of drifting 

angle, for example, considering an RVE compressed at 600
, θ0 and θ2 are expected 

to be identical, as demonstrated in Figure 4-4: 
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Figure 4-4: A loading vector is expected to be perpendicular to the line parallel 
with RVE surface but during a simulation the surface which bears compression 
(blue solid line) performs some slight drifting.  

 

From Figure 4-4 a compression vector (the green solid arrow) is expected to be 

perpendicular to the top boundary of the box (the blue solid line). But in practice, 

θ2 is slightly smaller to θ0 by an amount, θd, the drifting angle. Therefore, the 

compressive strain is calculated as 

10
θ

d
θθα −+=′                                                                                                                      Equation 4-22 

20
θ

d
θθβ ++=                                                                                 Equation 4-23 

( ) ( )βWαHLH cossin +′=                                                                                                    Equation 4-24 

( )
0

0

LH

-LHLH
ε =                                                                                                                           Equation 4-25 
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Figure 4-5: Deformed compressed honeycomb in 600 loading direction. 

 

Step 3: Calculation of stress versus strain curve. For pure incompressible material 

with elastic deformation which is the subject of current research, it is possible to 

calculate the load by differentiating the strain energy, Wel, of the RVE versus 

displacement (see Figure 4-6). 
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Figure 4-6: Example curve of elastic strain energy. By differentiating the strain 
energy, Wel, curve with respect to the vertical boundary deformation, uel, it is 
possible to compute the force, F, applied on the imaginary RVE as a function of 
the compressive strain. 

 

After obtaining the strain energy-deformation curve from the FE simulation, it is 

then possible to relate the overall force and strain energy as follows: 

 

Assuming that the honeycomb RVE undergoes homogenous deformation throughout, 

it can be argued that an imaginary RVE should also deform in a similar manner. 

Consequently the strain energy of the imaginary RVE should be proportionately 

greater than that of the actual RVE by an amount equivalent to the ratio of the 

areas of the imaginary and actual RVEs. The resultant force of the imaginary RVE 

can therefore be computed as 

( ) ( )∫=
elu

elelelel duuFuW
0

( ) ( )
el

elel
el du

udW
uF =

Equation 4-1 

Equation 4-2 
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( ) ( )
el

du
el

u
el

Wd

A

A
el

uF
)(

′
=                                                                                                        Equation 4-28 

where deformation, uel=LH0 × ε, the undeformed honeycomb RVE area, A′=LH0 × 

LW0 and the deformed imaginary RVE area, A=LH × LW 

Due to the 2-d nature of problem and since beam elements of square cross 

sectional geometry are used, the stress is calculated by simply dividing the force 

for the imaginary RVE by the length of the top of the imaginary RVE multiplied by 

the beam thickness 

btLW

F
σ

×
=                                                                                                                               Equation 4-29 

4.4.3 Mechanical response of honeycomb RVE in arbitrary loading direction for 

compressive strain less than 10% 

From the symmetry of the honeycomb unit cell it is expected that the mechanical 

response in the θ0=30 and θ0=900 directions should be identical, likewise for the 

θ0=00 and θ0=600 directions. The stress versus strain curves are computed at various 

directions, as shown in Figure 4.7. 

 

Figure 4-7: Stress-strain relationship for honeycomb RVE comprised of 325 unit 
cells when uniaxially compressed in several different directions. 
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Examination of Figure 4-7 reveals that for an increasing compressive strain, the 

stress-strain curves unexpectedly start to deviate from each other. This deviation 

is negligible for strains less than about 10%. But depending on the direction of 

compression, the divergence increases at different rates with increasing strain. For 

example, compression at θ0=00 and θ0=600 produce almost identical deformation of 

the microstructure within the RVEs and hence very similar stress-strain curves (see 

Figures 4-7 and 4-8). 

 

Figure 4-8: Deformed honeycomb RVE at compressive strain = 0.30 for loading 
directions (a) 600 and (b) 00, respectively. 

 

However, the same is not true for applied loads at θ0=300 and θ0=900. In this case 

at 15% compressive strain the two deformed microstructures are noticeably 

different (see Figure 4-9):  
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Figure 4-9: Deformed honeycomb RVE at compressive strain = 0.15 for loading 
directions (a) 300 and (b) 900, respectively. For clarity, grey cells indicate regions 
with localised buckling. 

 

It is generally understood that a PBC does not produce an accurate average 

response of RVE for a large compressive strain, particularly when non-linear 

deformation mechanism such as buckling become dominant [Gong and Kyriakides, 

2005; Li et al. 2006]. When load is applied in a vertical direction; the stress-strain 

relationship is almost linear at about 10% compression. There is debate in the 

literature regarding the dominant deformation mechanism in this region, i.e. 

whether it is beam-bending [Elliot et al. 2003] or buckling [Mills, 2006] (see Figure 

4.8). The source of this inconsistency is due to the shape of deformed beams and 

also the critical load calculation on each individual beam, which is different for 

various structural properties (e.g. relative density) and the type of boundary 

condition. However, for larger compressive strains, the stress-strain relationship 

starts to become non-linear due to the initiation of buckling within the 

microstructure. The periodic geometry of the RVE’s boundaries and also the 

identical nodal positions on these boundaries mean that when the RVE is 

compressed in the θ0=900 direction, cells located at counterpart boundaries deform 

in exactly in a same way, even in the case of buckling (see Figure 4-9a and b), 

therefore the RVE region on boundaries always deform in a homogenous way. For 
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the θ0=300 case however, since the load direction is not perpendicular to the top 

and bottom surfaces (i.e. the RVE boundaries), this time, both the top and right 

boundaries on one side, and the bottom and left boundaries, on the other side, 

compress towards each other where in the case of θ0=900, only the top and bottom 

surfaces are compressed toward each other, and the left and right surfaces are not 

directly involve in compressive deformation. For compressive strains over 10%, the 

buckling mechanism results in different buckling patterns in the microstructure. 

Unlike the θ0=00 and 900 cases, different loading direction result in scatter buckling 

patterns where some of them are highlighted by using grey colour in Figure 4-9. 

Looking at the θ0=300 and 600 cases, the beam buckling mechanism is more 

significant when the load is applied at 300 compared to the case with compression 

applied at 600. Even at large compressive strains (e.g. 30%) cells are mostly 

deformed in similar pattern compared to θ0=300 case. Therefore in general, 

applying large compressive deformation using PBC does not provide a true 

mechanical response in multi-directional loading. However, in the vicinity of the 

linear regime (typically less than 10% compressive strain) due to negligible 

presence of beam-buckling, the RVE’s boundaries still deform periodically and 

therefore the final response is still valid.  

 

The elastic properties of beam-based honeycomb with low relative density 

compressed in different directions can be compared. Using steps 1 to 3, as 

described in Section 4.4.2, the secant modulus of the stress-strain curves can be 

calculated. The results are given in Table 4-2. 

Table 4-2: Secant Modulus (SM) calculated for different loading directions 

Loading 

Direction 

SM at ε=0.005 

[Pa] 

SM at ε=0.01 

[Pa] 

SM at ε=0.05 

[Pa] 

SM at ε=0.1 

[Pa] 

00 
1.050 x105 

 
1.021 x105 0.860 x105 0.723 x105 

150 1.050 x105 1.021 x105 0.893 x105 0.780 x105 
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300 1.050 x105 1.042 x105 0.973 x105 0.900 x105 

450 
1.050 x105 

 
1.028 x105 0.930 x105 0.830 x105 

600 
1.050 x105 

 
1.021 x105 0.860 x105 0.710 x105 

750 1.050 x105 11.021 x105 0.893 x105 
0.815 x105 

 

900 1.050 x105 1.053 x105 0.993 x105 0.930 x105 

 

Using a relative density of 0.041 and a Young’s modulus for the solid constituent 

material of 1.0 GPa, Equations 4-6 and 4-7 predict a modulus of 1.063 E5 Pa which 

is very close to the values in Table 4-2 at ε=0.005.  

  

Table 4-2 and Figure 4-9 show that at very low compressive strains, honeycomb of 

low relative density has an elastic modulus which is independent of the direction 

of compression. This result is also predicted analytically by Eq. 4-6 and 4-7. 

However, as the compressive strain increases, the stress values for different 

loading directions significantly deviate from each other. At ε=0.1 this difference is 

as much as 30%. It can therefore be said that a honeycomb structure does not 

produce an isotropic elastic behaviour for anything other than very small strains. 

The main reason for this anisotropic behaviour is due to the change in the 

dominant deformation mechanism in the different loading directions. This becomes 

more evident when analysing the deformation at even larger strains, as 

demonstrated in the following section. 
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4.4.4 Mechanical response of honeycomb RVE compressed in arbitrary loading 

directions for strains greater than 10% 

Consider the behaviour of a honeycomb microstructure when compressed up to 30 

percent strain in both the transverse and perpendicular directions (θ0=0o, 90o).  

During the first 10% compressive strain, the structural stiffness is significantly 

higher when compression is applied in the perpendicular direction but an abrupt 

yield behaviour occurs at about 10 percent strain, followed by a much more 

compliant compressive response (see Figure 4-10).  In contrast, the structure is 

less stiff at low strains when compressed in the transverse direction but because 

no abrupt yield occurs in this direction, at compressive strains greater than around 

10 percent the stiffness is higher in this direction than when the structure is 

compressed in the perpendicular direction (see Figure 4-10). 

 

 

Figure 4-10: Stress versus strain curves for compression in the transverse (0 
degree) and perpendicular (90 degree) directions. 
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Figure 4-11: Deformed honeycomb structures at compressive strain = 0.1 with 
applied force at (left) perpendicular and (right) transverse direction. 

 

 

 

Figure 4-12: Deformed honeycomb structures at compressive strain = 0.2 with 
applied force at (left) perpendicular and (right) transverse direction.  
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Figure 4-13 shows the effect of the compressive loading direction on the Poisson’s 

ratio (calculated as the ratio of the laterally induced to the directly applied 

strains) for the honeycomb structure. It should be mentioned that in real foams 

the Poisson’s ratio is less than 0.5. However, due to the 2-d idealisation in the 

current investigation the Poisson’s ratio is greater than 0.5 even at large 

compressive strains. Note that in 2-d, a Poisson’s ratio of less than 1.0 corresponds 

to a compressible material. The geometrical anisotropy clearly also has a major 

effect on this property. It also should be noted that from Eq. 4-14, the Poisson’s 

ratio of honeycomb at very small compressive strain is very close to one.  

 

It is apparent that both the stress versus strain and Poisson’s ratio versus strain 

curves can be correlated to cellular deformation of the structure when loaded in 

the perpendicular direction. For example, in the case of θ0=900, at ε≈0.1 there is a 

sudden change in the gradient of the Poisson’s ratio curve that occurs at exactly 

the same strain as the kink in the compressive stress versus strain curve.  

 

 

Figure 4-13: Effect of loading direction on Poisson’s ratio. 
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The results presented in Section 4.4 clearly reveal that a honeycomb produces an 

increasingly anisotropic response when compressed to increasingly large 

compressive strains. In the next section, it will be shown that this mechanical 

anisotropy remains even after introducing a large degree of irregularity into the 

microstructure by perturbing the seed positions in order to generate a random 

foam microstructure. 

4.5 Mechanical response of increasingly randomised RVEs generated 

using the enhanced method of Zhu, when compressed at 00, 450 and 

900 

In the previous section by applying a load in different directions, it was seen that 

for strains of less than 10%, the maximum and minimum structural stiffness of a 

honeycomb structure are predicted in the perpendicular and transverse directions, 

respectively (see Figure 4-7). In this section, microstructures generated using the 

enhanced method of Zhu, with progressively increasing degrees of irregularity (see 

Section 3.2.1) are compressed in arbitrary directions.  The aim is to investigate the 

effect of loading direction on the RVE’s mechanical response. 2-d beam-based 

RVEs containing about 550 cells with 6 different degrees of irregularities and a 

constant relative density, ρ*/ρs =0.05, have been generated (see for example, 

Figure 4-14). 
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Figure 4-14: RVEs with 5 different degree of irregularity: (a) α=5, (b) α=10, (c) 
α=15, (d) α=20, (e) α=25, (f) α=50. 

 

Over 120 RVEs have been simulated using a PBC for all cases with loading applied 

at θ0=00, 900 and 450. From the previous section it was concluded that, in general, 

when compression is applied in directions other than θ0=00 and 900,due to the 

(a) (b) 

(c) (d) 

(e) (f) 
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effect of beam-buckling, the RVE response is not accurate (see Section 4.4.3) 

beyond the linear regime (less than 10% strain). Therefore, for the current section 

the compressive strains up to 10% only are considered. The averaged stress-strain 

curves for each RVE case are plotted in Figures 4-15 to 4-20. Note that error bars 

are omitted from these figures for clarity, though the standard deviation at various 

levels of strain is provided in Table 4-3:     

 

 

Figure 4-15: Averaged stress-strain curves for compressed RVE with degree of 
irregularity α=5. 
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Figure 4-16: Averaged stress-strain curves for compressed RVE with degree of 
irregularity α=10. 

 

 

Figure 4-17: Averaged stress-strain curves for compressed RVE with degree of 
irregularity α=15. 
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Figure 4-18: Averaged stress-strain curves for compressed RVE with degree of 
irregularity α=20.  

 

 

Figure 4-19: Averaged stress-strain curves for compressed RVE with degree of 
irregularity α=25. 
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Figure 4-20: Averaged stress-strain curves for compressed RVE with degree of 
irregularity α=50. 

 

Table 4-3: Selected mean and standard deviation values for RVEs compressed in 
different orientations 

ε θ0 

σ at α=5  

[Pa]  

σ at α=10 

[Pa] 

σ at α=15 

[Pa] 

σ at α=20 

[Pa] 

σ at α=25 

[Pa] 

σ at α=50 

[Pa] 

0.001 

900 171±0.11  173±0.41 174±0.82 180±0.74 186±1.53 242±3.51 

00 171±0.11 171±0.40 173±0.87 180±0.72 185±1.55 242±3.35 

450 173±0.27 174±0.33 178±0.85 180±1.05 187±2.06 231±9.18 

0.005 

900 851±0.56 856±1.98 863±4 890±3.62 915±7.49 1174±17.30 

00 837±0.54 841±1.86 845±4.22 878±3.45 903±7.47 1170±15.39 

450 846±0.34 851±1.83 865±4.28 877±4.96 899±11.25 1152±48.73 

0.01 

900 1687±1.10 1695±3.89 1706±8 1753±14.62 1796±14.62 2260±33.95 

00 1633±1.03 1642±3.64 1648±8.13 1711±14.27 1758±14.27 2250±28.00 

450 1660±0.59 1673±3.65 1697±8.34 1716±9.39 1753±21.72 2227±93.78 

0.05 900 7930±5.14 7904±16.12 7832±39 7868±30.46 7847±61.27 8558±105.93 
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00 6885±3.90 6913±14.95 6927±32.21 7142±52.53 7288±52.53 8464±70.03 

450 7424±2.11 7431±16 7468±34.03 7446±31.70 7477±81.64 8450±270.73 

0.1 

900 14920±9.40 14690±18.81 14318±69 14012±62.88 13580±99.42 12676±146.25 

00 11670±6.02 11707±24.87 11727±52.90 12023±48.98 12201±79.91 12591±116.02 

450 13397±2.73 13292±27 13207±62.90 12987±47.18 12792±148.49 12639±285.11 

 

Figures 4-15 to 4-20 show that the mechanical response tends to become more 

isotropic as the degree of irregularity increases, i.e. the stress versus strain curves 

produced when the RVE is loaded at 0, 45 and 90o tend to converge as the degree 

of irregularity increases. For example, when α=5 the maximum difference between 

the mean compressive stress in the 0 and 90o loading directions at a compressive 

strain of 10 percent is about 22%, this value falls to about 10% for α=25 and 1% for 

α=50 (see Table 4-3). Thus the RVE with α=50 is isotropic in its mechanical 

response, though this method of producing an isotropic RVE has a cost. Namely, 

the RVE no longer possesses a realistic microstructure, as can be seen when 

comparing Figure 4-14f with a cross-section of an actual polymer foam, see Figure 

4-21. 
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Figure 4-21: Example of 2-d slice of polymeric foam, imaged using microCT 
[Private communication Dr Zaoyang Guo]. 

 

4.6 Generating isotropic RVEs with realistic mono-disperse 

microstructures 

In the previous section, a problem with the enhanced method of Zhu was revealed; 

isotropic RVEs can be produced using the technique but at the cost of reducing the 

realism of the final microstructure. So far the ‘realism’ of the microstructure has 

been assessed only by subjective judgement of the microstructural morphology, 

i.e. by visual comparison of microCT cross-sections of polymeric foam and the RVE 

(see Section 4.5). In Chapter 5 a novel, more rigorous method of quantifying the 

structural morphology of RVEs will be presented and used to verify this subjective 

assessment in a more objective way. For now the investigation continues and a 

more detailed discussion of ‘realistic’ morphologies is deferred to Chapter 5.  

 

In this section a novel technique of generating mechanically isotropic RVEs is 

demonstrated. The method employs the Lloyds relaxation algorithm described in 

Section 2.1.4. To demonstrate the method, 20 RVEs with a PBC applied, each with 

over 500 cells are generated using the enhanced method of Zhu with a degree of 

irregularity, α = 50. The relative density of the RVEs is 0.05 (ρ*/ρs=0.05). The 



4—96 

 

 

microstructure is ‘relaxed’ via application of the Lloyds relaxation algorithm. An 

example of the effect of the algorithm on the final microstructure is demonstrated 

in Figure 4-22. The figure shows the microstructure before and after application of 

the Lloyds relaxation algorithm. The resulting RVEs are then subject to 

compression in the θ0=00, 45o and 900 directions. The predicted average stress 

versus strain curves are shown in Figure 4-23. 

 

 

Figure 4-22: (a) microstructure before applying Lloyd's algorithm (b) 
microstructure after applying Lloyd's algorithm. 
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Figure 4-23: Averaged stress-strain curves for compressed RVEs in three different 
loading directions. 

 

Table 4-4: Selected mean and standard deviation values for RVEs compressed in 
different angles 

θ0 
σ at ε =0.001 

[Pa] 

σ at ε =0.005 

[Pa] 

σ at ε =0.01 

[Pa] 

σ at ε =0.05 

[Pa] 

σ at ε =0.1 

[Pa] 

00 188.81±3.20 929.30±15.77 1823±31.01 7963±137.54 13915±236.92 

450 190.12±2.70 924.83±12.80 1813±24.58 7913±96.64 13850±157.41 

900 187.98±3.57 925.35±17.34 1816±33.48 7946±135.85 13942±234.84 

 

Figure 4-23 and Table 4-4 demonstrate that at a compressive strain of 0.1, the 

maximum difference between the averaged compressive stress versus strain curves 

of the RVEs for the three different loading directions is only 0.66%. The averaged 

Poisson’s ratio of the RVEs in the transverse (0o) and perpendicular (90o) directions 

(see Figure 4-24) also shows that RVE generated by the Lloyd’s relaxation 

algorithm shows no directional dependence and have almost identical curves, 

indicating that the deformation mechanisms in the different loading directions no 

longer undergo a distinct and co-ordinated change in the dominant deformation 

mode within the microstructure.  
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Figure 4-24: Averaged Poisson’s ratio for compressed RVE in transverse and 
perpendicular directions. Due to 2-d modelling idealisation a Poisson’s ratio is 
greater than 0.5. 

 

In chapter 5 it will be shown that the structure produced by application of the 

Lloyds relaxation algorithm is a good morphological representation of a slice 

though certain polymeric foams. However, as discussed in Chapter 1, not all foams 

have a mono-disperse microstructural morphology. Some foams, such as 

polyurethane foam, can possess a very poly-disperse microstructural morphology 

[Elliot et al. 2002]. In Chapter 5, it will be shown that the Lloyds algorithm tends 

to reduce poly-dispersity and is therefore ill suited to generating poly-disperse 

isotropic microstructures. In this case, the Drop and Roll method, described in 

Section 2.1.3, would seem to be a better option. The next section examines the 

isotropy of RVEs generated using the Drop and Roll technique. 
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4.7 Mechanical response of poly-disperse structure when 

compressed at 00, 450 and 900 

In this section the isotropy of RVEs generated using the Drop and Roll method (see 

Section 2.1.3) is investigated. To investigate the effect of microstructural poly-

dispersity the same methodology as that employed in Chapter 3 (Section 3.3) is 

employed by considering RVEs with four different degrees of poly-dispersity 

(γ=0.05, 0.10, 0.15, 0.20). Due to limited computational resource the RVE size 

sensitivity analysis is omitted in this section. Instead reasonably large RVE 

structures containing over 500 cells are employed (see Figure 3-11, Chapter 3). 

Over 80 RVEs (20 RVEs for each degree of poly-dispersity) are simulated using a 

PBC for cases with θ0=00, 900, 450 and applying strains up to 10% uniaxial 

compression. The averaged stress-strain curves for each RVE case are shown in 

Figures 4-25 to 4-29. 

 

 

Figure 4-25: Averaged stress-strain curves for compressed RVE with degree of 
irregularity γ=0.05. 
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Figure 4-26: Averaged stress-strain curves for compressed RVE with degree of 
irregularity γ=0.10. 

 

 

Figure 4-27: Averaged stress-strain curves for compressed RVE with degree of 
irregularity γ=0.15. 
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Figure 4-28: Averaged stress-strain curves for compressed RVE with degree of 
irregularity γ=0.20. 

 

Table 4-5: Selected mean and standard deviation values for RVEs compressed in 
different angles 

ε θ0 

σ at γ=0.05  

[Pa]  

σ at γ=0.10 

[Pa] 

σ at γ=0.15 

[Pa] 

σ at γ=0.20 

[Pa] 

0.001 

900 182.60±5.54  196.33±3.45 199.13±5.10 206.95±11.91 

00 182.26±5.28 198.18±4.00 192.42±3.88 208.03±14.44 

450 227.27±10.44 264.64±20.66 227.16±10.70 286.38±72.13 

0.005 

900 893.60±26.85 957.87±16.48 969.53±24.45 1006.30±58.04 

00 890.83±24.88 966.42±19.84 937.68±18.76 1010.50±69.55 

450 1027.50±38.48 1077.60±14.23 1068.40±26.09 1149.40±63.48 

0.01 

900 1742.20±51.28 1858.90±31.18 2052.70±47.16 1944.70±114.07 

00 1733.40±46.25 1873.80±39.03 1817.80±36.01 1952.50±133.27 

450 1977.10±73.94 2047.20±38.60 2050.70±48.77 2161.90±86.85 

0.05 900 7264.20±204.85 7495.20±107.63 7446.60±185.10 7650.0±442.62 
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00 7181.00±139.95 7544.60±166.48 7280.80±126.29 7547.20±445.80 

450 7898.70±277.22 8120.10±127.44 7849.60±162.70 8079.60±281.56 

0.1 

900 11932±326.91 11600±193.40 11387±334.03 11376±547.33 

00 11776±133.78 11771±253.13 11179±184.84 11305±398.22 

450 12447±378.43 12610±404.53 12070±108.43 11925±359.84 

 

 

Figure 4-29: Average Poisson’s ratio versus compressive strain for compression in 
the transverse and perpendicular directions, for the case when γ=0.1. Both curve 
are almost identical to each other. 

 

Stress-strain curves in Figures 4-25 to 4-28 and the poisson’s ratio – strain curve of 

Figure 4-29 suggest that 2-d beam-based RVEs produce an almost isotropic 

response in the transverse and perpendicular directions. At θ0=450, the stress 

values are on average about 5% larger than in the θ0= 0o and 900 directions. As 

discussed in Chapter 2, the unmodifed Drop and Roll method does not generate 

fully periodic patterns if the balls are all dropped in the same directions due to the 

influence of the flat ground surface. To overcome this problem, circular disks were 

randomly dropped in both the perpendicular or transverse directions (i.e. the 

direction of gravity was changed to up/down, left/right directions) to fulfil 
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periodicity requirements at the boundaries. In general, it can be said that the Drop 

and Roll method produces fairly isotropic RVEs in all directions. The results of 

Table 4-5 tend to confirm the findings of Zhu et al. (2001) and Fazekas et al. 

(2002), namely, as the microstructural irregularity increases, the Young’s modulus 

also increases however, the yield stress decreases  

 

To investigate the possible relationship between the Poisson’s ratio and the 

mechanism of deformation, an averaged Poisson’ ratio curve for case γ=0.1 is 

produced since it has an averaged poly-dispersity compared to other cases (see 

Figure 4-26). By comparing the stress-strain curve of Figure 4-26 with the 

deformed microstructure of several cells in the RVE, it can be concluded that 

unlike honeycomb (compressed at perpendicular direction) for structures with high 

degree of poly-dispersity, there is not a sudden transition between linear and 

plateau regimes.  

 

4.9 Conclusions of Chapter 4  

By considering the compressive response of RVEs using various modelling and 

evaluation techniques, it is found that microstructural irregularity has a significant 

effect on the averaged response of the RVE. It has been shown that the 

microstructure generation algorithm influences the average mechanical response 

and in some cases can result in un-intentional anisotropy in the resulting RVE. 

Methods to overcome this issue have been devised, including use of the Lloyds 

relaxation algorithm for mono-disperse RVEs and modification of the Drop and Roll 

method for poly-disperse RVEs.  

 

Analysis of deformed cellular structures under compression shows that the 

dominance of beam-bending or buckling is highly dependent on the type of 

structure and loading direction.  
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Chapter 5 . Analysis of 2-d RVE 

microstructural morphologies 

 

5.1 Introduction 

In Chapter 1 it was explained that one of the most important characteristics of 

porous materials, is their ability to absorb compressive energy under almost 

constant stress due to the plateau region of their uniaxial compressive stress 

versus strain curve. Understanding the micromechanics occurring during this 

plateau region could potentially lead to improved macro-mechanical behaviour 

through optimisation of the microstructural morphology created during the foam 

manufacture process [Scarpa et al. 2004]. To do this effectively, a clear 

understanding of the influence of microstructural morphology on the macroscale 

response (e.g. mechanical isotropy, yield behaviour, form of the stress-strain 

curve, Poisson’s ratio etc), is essential. To develop such an understanding, a 

sensitivity analysis relating microstructural morphology, micromechanics and 

macroscale response is required. Another important reason behind studying the 

micromechanics of the plateau region is to validate the microstructure generated 

by numerical algorithms, by comparing cellular deformation and mechanical 

behaviour against similar data obtained using microCT.  

 

The remainder of this chapter is structured as follows. Section 5.2 is a review of 

the relevant literature foam characterisation approaches during and prior to 

deformation. In section 5.3, by using a passive approach, the geometrical 

properties of 2-d beam-based RVEs are studied by considering some important 

morphological parameters such as cellular orientation, area and strut length 

distributions. Section 5.4 uses an active approach and analyses the in-situ 

deformation of mono and poly-disperse 2-d beam-based RVEs under uniaxial 

compression. Finally, in Section 5.5 conclusions are provided.  
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5.2 Literature Review 

Methods of conveniently quantifying the microstructural morphology are necessary. 

A large body of research has been undertaken previously to do this for real cellular 

materials. The methods can be grouped into two categories, passive and active 

characterisation. The term ‘passive’ implies characterisation of the foam 

microstructure in a rest state while the term ‘active’ implies characterisation of 

the foam microstructure while the foam is subject to stress and strain. 

5.2.1 Passive characterisation  

Historically, this was the first characterisation method to be developed. In 1982 

Dawson and Shortall (1982) used optical and scanning electron microscopy to 

evaluate the microstructure of closed-cellular polyurethane foams, considering 

parameters such as individual cell elongation and face (window) shape (individual 

cell surface geometry). Montminy et al. (2001, 2004) later used Nuclear Magnetic 

Resonance and x-ray microCT with open-cell polymeric foams to evaluate the 

distribution of geometrical parameters such as strut length, strut intersection 

angles and windows area (individual cell surface area). Comparison of 

experimental data with predictions from existing microstructure theories for foams 

[Plateau, 1873; Matzke, 1946] revealed that the 3-d network of some types of 

polyurethane foams significantly differed (e.g. cell geometries, struts length, cell 

surface area, etc) from those predicted using equilibrium and aqueous based 

modelling approaches that are currently available in the literature [Montminy et 

al. 2004]. Grosse et al. (2009), recently performed a volume image analysis of 

ceramic sponges using MRI and x-ray microCT techniques. By measuring face and 

strut diameter it was found that the structure of ceramic sponges exhibit 

preferential microcellular orientation and therefore the cells are better fitted 

using ellipsoidal rather than spherical shapes. Benouali et al. (2005), studied the 

influence of cell shape anisotropy on the mechanical behaviour of closed-cell 

aluminium foams using x-ray microCT. The main parameters to be investigated 

included cell size distribution and cell shape anisotropy, determined using an 

ellipsoidal fitting algorithm. By applying compression on the same specimen in 

different directions it was confirmed that the anisotropic compressive response of 

the aluminium foam was the direct result of its initial cellular anisotropy. 
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5.2.2 Active characterisation 

Increases in computational power have made it possible to study in-situ changes of 

the microstructural morphology during mechanical deformation. Using x-ray 

microCT, Elliot et al. (2002) characterised the micromechanics of an open-cell 

polyurethane foam under compression. Real 3D images were converted into beam-

based structures. By extracting nodal displacements, the deformation mechanisms 

of the compressed foam was studied using the FEM, however due to the non-

periodic geometry of specimen a robust comparison with existing foam mechanical 

theories was not established. In contrast to previous studies, which suggested 

buckling to be the dominant deformation mechanism under large strains [Gibson 

and Ashby, 1997, Mills, 2007], Elliot concluded that a cooperative severe bending 

and reorientation of struts was the main reason behind the structural collapse and 

sudden reduction of stiffness of the foam microstructure. Dillard et al. (2005), 

performed quantitative image analysis on an open-cell nickel foam, under both 

tension and compression. Parameters such as cell volume distribution, number of 

faces per cell, number of sides per face and strut length distribution were all 

measured prior to deformation. By fitting each cell with an equivalent ellipsoid at 

different stages of compression, it was found that struts clearly buckled in the 

compressive loading direction, a result that apparently contradicts the conclusion 

of Elliot et al. (2002). Other investigations have been conducted using numerically 

generated microstructures, due to the difficulties associated with image-based 

approaches such as absence of geometrical periodicity, very high computation and 

memory requirements to convert pixel- to structural-based models, the difficulty 

of resolving individual elements in high compressive strain modes. Hardenacke and 

Hohe (2009), studied the effect of microstructural disorder on foam 

micromechanics using 2-d beam-based RVEs generated using classical Voronoi and 

Laguerre methods where a strong link between cellular morphology and scatter of 

mechanical responses were found. 

5.3 Passive Morphological Characterisation of 2-d Beam-Based RVEs 

Following a similar methodology to that reported in previous investigations 

[Montminy et al. 2001; 2004], several codes have been developed using the 

MATLAB programming environment, to automatically calculate microstructural-

morphology parameters from the 2-d RVEs generated using the algorithms reported 
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in Chapters 2 and 4. Parameters of interest include cell anisotropy and area 

distribution as well as strut intersection angle, number of struts per cell and strut 

length distributions. The cell anisotropy and area distribution are determined using 

ellipse-fitting methods [e.g. Dillard et al. 2005; Benouali et al. 2005]. These fitting 

techniques are described in detail in the following section. 

5.3.1 Quantification of cellular anisotropy 

Several approaches can be used to fit ellipses (or ellipsoids in 3-d) to cells within 

the numerically generated RVEs. These include a linear least squares method [e.g. 

Hart and Rudman, 1997] or a method involving calculation of the second moment 

of area of the entire polygonal surface [Mebatsion et al. 2006]. However, for the 

case of irregular closed polygons, Green’s theorem has been found to be one of the 

most efficient approaches [Mulchrone and Choudhury, 2004, Mebatsion et al. 2006] 

and has therefore been adopted in this investigation. For the purpose of the 

current chapter, to evaluate the individual cellular geometrical properties such as 

orientation, aspect ratio and area, by considering each cell as a closed polygonal 

geometry (for 2-d case), the governing equations used in fitting an ellipse to an 

arbitrary polygon with n nodes are described in this section.  

Consider nodal coordinates as x and y, the area of a given cell (closed polygonal 

surface with n number of elements) is calculated as [Mulchrone and Choudhury, 

2004]: 
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By applying Green’s transformation, the first moment of inertia is calculated and is 

equivalent to the centroid of the polygon, 
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The second moment of inertia is calculated as: 

 



5—108 

 

 

( )( )
12

1 11
2

11
2

∑
= +−+++++

=

n

i iyixiyixiyiyiyiy

xxI                                                                 Equation 5-4 

( )( )
12

1 11
2

11
2

∑
= +−+++++

=

n

i iyixiyixixixixix

yyI                                                                 Equation 5-5 

( )( )
24

1 11112112∑
= +−++++++++

=

n

i iyixiyixiyixiyixiyixiyix

xyI                                Equation 5-6 

 

By using the above equations, it is possible to construct a matrix for the second 

moments of inertia, Π: 
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Eq. 5-10 can be represented as an inertia ellipse. By finding the eigenvalues and 

eigenvectors of Eq. 5-10, we can obtain the principal orientations of the ellipse, 

i.e. the orientations of the semi-major and semi-minor axes. However, since the 

eigenvalue method could potentially produces two solutions, and therefore two 

different orientations, it was decided to use another approach to calculate the 

axes of the semi-major and semi-minor orientation. Consider an arbitrary polygon 

with centroid, C, and area Ap, by calculating the distance from the centroid to 

each node, it is possible to produce a reasonably accurate estimation of the ellipse 

orientation. This value can be directly compared with the eigenvalue solutions in 

order to choose the right orientation: 
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Figure 5-1: Example of the shortest (Ls) and longest (Ll) polygon nodal distances 
from centroid. 

 

Figure 5.2 shows and example of how this simple fitting procedure can be used to 

fit ellipses to random polygonal cells, in this case generated using a Voronoi 

algorithm (see Section 2.8). 

 

 

Figure 5-2: Example of ellipse fitting for a random Voronoi structure. 

 

5.3.2 Morphological Analysis of RVEs Generated using the Enhanced Method of 

Zhu 

Given the ultimate goal is to generate realistic RVEs, it is useful to be able to 

characterise the microstructural morphology as accurately as possible. To this end, 

various characteristic microstructural morphological parameters can be calculated, 

and are analysed in this and the following sections. Note that in this chapter only 

2-d RVEs are considered, consequently no data on microstructural statistical 
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distributions from real foams are available for comparison, i.e. comparison of 2-d 

and 3-d data is not particularly useful and could be misleading. Nevertheless, the 

techniques demonstrated in this chapter are designed as a first step towards 

analysis of 3-d RVEs, a topic address in Chapter 6.  

 

By using the enhanced method of Zhu, explained in Section 2.1.2, the cellular 

anisotropy and poly-dispersity of RVEs with five different degrees of irregularity (α 

= 5, 10, 15, 20 and 25) has been investigated. For each degree of irregularity, over 

50 RVEs, each containing about 550 cells, were generated and ellipses were fitted 

to the cells within the RVE. Example RVEs with progressively increasing irregularity 

are shown in Figure 5-3 together with the fitted ellipses.  
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Figure 5-3: An example of RVEs with five different degrees of irregularities: (a) 
α=5, (b) α=10, (c) α=15, (d) α=20, (e) α=25. By employing Green’s theorem, an 
ellipse is fitted in each cell (black lines). 

 

To investigate the cellular orientation and poly-dispersity in the undeformed RVEs, 

a convenient method of visualising the information in a concise and clear way has 

been devised. Since each individual cell is elongated in the direction of its semi-

major axis, the orientation of this axis about the centre of polygon (or equivalent 
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fitted ellipse) is used to show the overall cellular orientation in a polar graph. 

Also, to capture the cellular area variations, the area of each individual polygon is 

multiplied by the sine and cosine of semi-major axis orientation (see Figure 5-4). 

 



5—113 

 

 

 

Figure 5-4: Polar representation of cellular orientation multiplied by area of each 
individual cell (black dots) for microstructures with different degrees of 
irregularity: (a) α=5, (b) α=10, (c) α=15, (d) α=20, (e) α=25. The radius of the circle 
with red dots represents an average value of the data (black dots). 

 



5—114 

 

 

Figure 5-4a, shows that for RVEs with very slight irregularity (α = 5) almost all the 

cells are orientated close to the angles 300, 900 and 1500. This is to be expected as 

the structure is close to that of a regular honeycomb structure. The area of the 

cells is almost constant, i.e. mono-disperse, as indicated by the fact that the 

points lie close to the red circle. As the degree of irregularity increases from 5 to 

25, the data becomes progressively more scattered around those angles and the 

points (distance from origin indicates area of the cells) shows increasing scatter 

away from the red circle (radius indicates the average value of cell area), 

indicating that the cell microstructure becomes progressively more poly-disperse 

as microstructural irregularity increases. The same cellular orientation and poly-

dispersity information, for each degree of irregularity, can be represented using 

probability histograms, see Figure 5-5 and 5-6. In the following histograms, for the 

purpose of clarity, the data are represented in 10 ‘bins’. In each figure the bin 

width is constant but changes between figures. 
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Figure 5-5: Probability distribution of cellular orientation for undeformed state of 
microstructure and different degrees of irregularity: (a) α=5, (b) α=10, (c) α=15, 
(d) α=20, (e) α=25. Each column has almost 10 degree width. 
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Figure 5-6: Probability distribution for cellular area obtained from procedure 
explained in Figure 5-8; for different degrees of irregularity: (a) α=5, (b) α=10, (c) 
α=15, (d) α=20, (e) α=25. 

 

As discussed in Chapter 4, a realistic and isotropic RVE should have no preferred 

directional orientation, i.e. in terms of Figures 5-4 and 5-5 there should be no 

concentration of the points in any particular direction. By increasing the degree of 

irregularity, α, the cellular orientations tend to become less concentrated in any 

particular direction and the RVE tends to become more isotropic. This result is in 

agreement with the mechanical investigation of Chapter 4 and therefore clearly 

demonstrates the link between cellular and mechanical anisotropy. However, a 

side effect of generating this isotropy in the RVE is a much more poly-disperse 

microstructure, see Figures 5-4 and 5-6. For the case with the lowest degree of 
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irregularity the RVE cells have very similar areas and the probability distribution 

can be fitted using a normal distribution function. When α increases the band of 

probability distribution of the normalised cell area increases as well. Thus, if the 

target morphology of the foam to be modelled is both isotropic and mono-disperse 

then further modification to the microstructure is required, as demonstrated in 

Section 4.6 and discussed further in Section 5.3. 

 

The effect of increasing the degree of irregularity, α, on the strut intersection 

angle, the number of struts within each cell and the normalised strut length are all 

investigated, results are shown in Figures 5-7, 5-8 and 5-10. The distribution of 

strut intersection angles and the number of struts within each cell is shown in 

Figures 5-7 and 5-8, results reveal the majority of cells contain 6 struts and the 

internal angel is close to 1200, similar to a honeycomb hexagonal structure. As the 

degree of irregularity increases the distribution of intersection angles becomes 

much wider, with a slight skew developing towards larger angles. A few cells 

containing either 5 or 7 struts are also generated, i.e. in addition to the 

predominantly hexagonal cells a few pentagons and heptagons are generated. 

Closer visual inspection of several cells produced using a high degree of irregularity 

often reveals very short strut elements within each cell, these short strut lengths 

do not exist in 2-d image slices of real mono-disperse foam microstructures (see 

Figure 4-23). 
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Figure 5-7: Probability distribution for strut intersection angle within each cell for 
undeformed microstructures using different degrees of irregularity: (a) α=5, (b) 
α=10, (c) α=15, (d) α=20, (e) α=25. 
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Figure 5-8: Probability distribution for number of struts within each cell for 
undeformed state of microstructure for different degrees of irregularity: (a) α=5, 
(b) α=10, (c) α=15, (d) α=20, (e) α=25. 

 

To understand the distribution of the strut element lengths, probability 

distribution histograms have been generated using the following procedure: 
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Figure 5-9: Strut length probability distribution procedure.  A MATLAB function 
hist (histogram) is used in this procedure. 

 

Figure 5-10 shows the probability distribution of normalised struts lengths, it can 

be seen that as α increases the number of very small elements also increases. 

Thus, when using this technique, i.e. the enhanced method of Zhu described in 

detail in Section 2.1.2, it can be concluded that increasing α causes the cell shape 

to deviate away from that of a perfect hexagon and a growing number of very 

short struts are generated within the microstructure. Referring to Chapter 4, 

idealising open-cell foam as a beam-based network, is valid for small beam 

thickness to length ratios (1/8th), therefore increasing the number of small length 

struts will affect the mechanical response obtained from FE analysis. However, to 

define the geometrical irregularity of the microstructure, the average cell shape 

(number of struts per cell) cannot be considered as the primary consideration. For 

example, as it is possible to have five or six sided polygons with one or two very 

sharp angles (see Figure 5-2) which have very different geometries compared to 

regular pentagons or hexagons. Therefore, another dominant factor determining 
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the degree of irregularity is the strut intersection angle distribution.  It should be 

noted that in the case of real, predominantly mono-disperse foams, the fraction of 

short struts is very low [Kraynik et al. 2003] (according to Plateau’s law – see 

Section 6.2.1) due to foam relaxation processes. As a result of surface area 

(energy) minimisation, the majority of short struts vanish, this point will be 

discussed further in Chapter 6. 

 

 

Figure 5-10: Probability distribution for strut length obtained from procedure 
explained in Figure 5-8; for different degrees of irregularity: (a) α=5, (b) α=10, (c) 
α=15, (d) α=20, (e) α=25. 

 



5—122 

 

 

5.3.3 Morphological Analysis of RVEs Generated using a combination of the 

Enhanced Method of Zhu and the Lloyd’s Relaxation Algorithm 

In Section 4.6 it was shown how the Lloyd’s relaxation algorithm can be used to 

alter the microstructure generated using the enhanced method of Zhu, effectively 

creating an RVE with a much more isotropic mechanical response. Here, over 50 

RVEs, each containing 550 cells generated using the enhanced method of Zhu have 

been altered by employing the Lloyd’s relaxation algorithm. The same analysis 

methods described in Section 5.3.2 and 5.3.3 are used to characterise the resulting 

relaxed RVE microstructural morphology. Figure 5-11 shows a relaxed RVE 

generated by first employing the enhanced Zhu method with a degree of 

irregularity of 25, followed by application of the Lloyds relaxation algorithm. 

Figure 5-12 shows the cellular orientation and area distribution. 

 

 

Figure 5-11: An example of structure generated by Lloyd’s algorithm. By 
employing Green’s theorem, an ellipse is fitted in each cell (black lines). Example 
pentagonal (grey colour), hexagonal (light blue colour) and heptagonal (light green 
colour) cells are highlighted in the figure. 
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Figure 5-12: Polar representation of cellular orientation multiplied by area of 
each individual cell (black dots) for microstructures generated by Lloyd’s 
relaxation The radius of the circle with red dots represents an average value of 
data (black dots). 

 

Figure 5-13 is a direct comparison of two examples of the initial and relaxed RVE 

microstructures.  

 

 

Figure 5-13: Cellular orientation of microstructure: (a) before Lloyd’s relaxation 
(b) after Lloyd’s relaxation. 
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Notably, it is difficult to see any obvious difference in the two RVE microstructures 

when comparing the RVEs by eye. However, comparison between Figures 5-4e and 

5-12 clearly reveals a significant difference between the two structures before and 

after application of the Lloyds algorithm. Thus the latter appears to show good 

potential to generate Voronoi-based RVEs with cell orientations completely 

randomised, while keeping the cell area distribution width extremely low. As in 

Section 5.3.3, the same information can be represented as probability density 

distribution histograms, see Figures 5-14 and 5-15. 

 

 

Figure 5-14: Probability distribution of cellular orientation for undeformed state 
of microstructure generated using Lloyd’s algorithm. 
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Figure 5-15: Probability distribution for cellular area obtained from procedure 
explained in Figure 5-9, using Lloyd’s relaxation algorithm. 

 

The probability distribution histograms of strut intersection angle and strut length 

distributions are also given in Figures 5-16 and 5-17. They indicate that the 

majority of cells have internal angles close to 1200.  
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Figure 5-16: Probability distribution for struts intersection angle within each cell 
for undeformed state of microstructure generated using Lloyd’s relaxation 

algorithm. 

 

However, unlike RVEs generated using the enhanced method of Zhu alone, the 

number of cells that have internal angles close to 1200 (two struts that make with 

intersection angle close to 1200 inside each cell) is larger through considering PD 

peaks (less than 0.3 for modified Zhu method and near 0.4 for Lloyd’s algorithm ) 

at Figures 5-7 and 5-16. By comparing Figures 5-10e and 5-17, it can be seen that 

the Lloyd’s relaxation algorithm generates RVE microstructures with less short 

struts, compared to the modified method of Zhu.  
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Figure 5-17: Probability distribution for struts length obtained from procedure 
explained in Figure 5-9, using Lloyd’s relaxation algorithm. 

 

Visual inspection of several RVEs generated using the Lloyd’s relaxation algorithm, 

shows that a considerable numbers of pentagonal and heptagonal cells have been 

generated without small elements. The increased proportion of such cells is also 

indicated in Figure 5-18.   
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Figure 5-18: Probability distribution for number of struts within each cell for 
undeformed state of microstructure generated using Lloyd’s algorithm. 

 

5.3.4 Analysis of the Microstructural Morphology generated using the Drop and 

Roll method 

In Sections 5.3.2 to 5.3.3 it was shown that morphologically mono-disperse and 

isotropic RVEs could be generated using a combination of the enhanced method of 

Zhu and the Lloyd’s relaxation algorithm. In this section, similar morphological 

analysis methods are used to characterise the RVE microstructures created using 

an alternative microstructure generation algorithm; the Drop and Roll method (see 

Section 2.1.3). This alternative method can generate isotropic RVEs while also 

producing a high degree of poly-dispersity within the RVE microstructure. Using 

this method RVEs with four different degrees of poly-dispersity have been 

generated, see Figure 5-19. 
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Figure 5-19: An example of RVEs with four different degrees of poly-dispersity: (a) 
γ=0.05, (b) γ=0.10, (c) γ=0.15, (d) γ=0.20. By employing Green’s theorem, an 
ellipse is fitted in each cell (black lines). For each case 50 RVEs are generated, 
each containing 550 cells (on average). 
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Figure 5-20: Polar representation of cellular orientation multiplied by area of 
each individual cell (black dots) for microstructures with different degrees of 
polydispersity: (a) γ=0.05, (b) γ=0.10, (c) γ=0.15, (d) γ=0.20. The radius of the 
circle with red dots represents an average value of data (black dots). 

 

As discussed in Chapter 3, the most efficient way to produce a hard disk seeding 

for a poly-disperse foam-like microstructure is by using log-normal [Evans et al. 

1993] or gamma [Cody, 1976] distributions to randomly generate hard disk radii 

and then use the modified Drop and Roll technique to efficiently pack the disks 

within a minimum area (by shooting the discs from randomised orthogonal 

directions). In this investigation a log-normal distribution has been applied, the 

resulting distribution of cell orientations and areas are shown in Figure 5-20. The 
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cell orientation shows no obvious preferred direction for all cases and the cell 

areas are highly variable, the scatter increases with increasing γ, i.e. the poly-

dispersity is increases with increasing γ.  

 

 

Figure 5-21: Probability distribution of cellular orientation for undeformed state 
of microstructure with different degrees of poly-dispersity: (a) γ=5, (b) γ=10, (c) 
γ=15, (d) γ=20. 
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Figure 5-22: Probability distribution for cellular area obtained from procedure 
explained in Figure 5-9 for different degrees of poly-dispersity: (a) γ=5, (b) γ=10, 
(c) γ=15, (d) γ=20. 

 

Again, the same information can be plotted in probability distribution histograms, 

see Figures 5-21 and 5-22. The cells are fairly randomly orientated. However, due 

to a limitation in generating 2-d periodic microstructures using the Drop and Roll 

method (as explained in Section 3.3), there is always some small boundary effect 

on the RVE. Since hard disks are only allowed to enter perpendicularly or 

transversely into the RVE box when generating the seeding, this induces a 

boundary effect that can be noticed in Figure 5-21. Slight peaks in the probability 

distribution occur at 00, 900 and 1800 i.e. perpendicular to the boundaries of the 

RVE. Nevertheless, as shown in Section 4.7, this boundary effect becomes less 

significant with an increasing number of cells within the RVE and is negligible for 

RVEs containing over 500 cells. In this case the mechanical behaviour was shown to 

be almost completely isotropic (see Figure 4.29).  Figure 5-22 shows that the shape 

of the distribution of cell areas is very different to that shown in Figure 5-6 and 

can be well fitted using a log-normal distribution. This is to be expected given that 

the same type of function was used to generate the seeding discs using the Drop 
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and Roll method. As γ increases, the probability of generating smaller cells is seen 

to increase. This can also be seen in Figure 5-20 which shows a denser clustering of 

points within the red circle at higher values of γ and a shrinking of the radius of 

the circle. 

 

Turning again to analysis of the strut intersection angle, strut number and strut 

length distributions reveals a very different morphology to the RVEs generated 

using either the enhanced method of Zhu and the combined Zhu/Lloyds approach. 

Figure 5-23 shows a relatively skewed distribution of intersection angles (compare 

with Figure 5-7) with a longer tail of the distribution towards smaller intersection 

angles. The majority of cells have hexagonal and pentagonal shapes due to the 

presence of 6 and 5 struts in each cell (see Figure 5-24). However, there is now a 

much more significant number of cells containing a different number of struts, i.e. 

the number of quadrilateral, pentagonal, heptagonal and octagonal cells is 

significant, especially for cases with higher degrees of poly-dispersity, γ. Visual 

inspection of several microstructures with different γ and also the probability 

distribution histograms of strut length (Figure 5-25) reveals a significant number of 

short struts within almost all types of cell, but particularly in quadrilateral cells. 
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Figure 5-23: Probability distribution of struts intersection angles in undeformed 
state and with different degrees of poly-dispersity: (a) γ=5, (b) γ=10, (c) γ=15, (d) 
γ=20. 
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Figure 5-24: Probability distribution of number of struts within each cell in 
undeformed state and with different degrees of poly-dispersity: (a) γ=5, (b) γ=10, 

(c) γ=15, (d) γ=20. 
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Figure 5-25: Probability distribution for struts length obtained from procedure 
explained in Figure 5-9 for different degrees of polydispersity: (a) γ=5, (b) γ=10, (c) 

γ=15, (d) γ=20. 
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It is also worth noting that some of the cells are of unusual and perhaps unrealistic 

shape, e.g. triangles or containing very sharp angles (usually less than 900). These 

are due to use of the Apollonius method involved in conducting the Laguerre-

Voronoi RVE generation using hard disks. Although the number of these unusual 

and unrealistic geometries is small, in Chapter 7 an attempt to further reduce 

their presence is described.     

5.4 Active Morphological Characterisation of 2-d Beam-Based RVEs 

In Section 5.2, 2-d beam-based microstructures of mono- and poly-disperse RVEs 

were characterised. Important morphological information such as distribution of 

cell orientation and area, strut intersection angle, strut length and the number of 

struts per cell were all considered. All the RVEs considered in Section 5.3 were 

analysed in the undeformed state. The aim of current section is to study the in-situ 

deformation (i.e. activated RVE geometry) of 2-d foam-like microstructural RVEs 

under uniaxial compression, while imposing a PBC. Based on the results of Section 

5.3, RVEs generated using the Lloyd’s relaxation algorithm and the Drop and Roll 

method have been used, i.e. isotropic mono- and poly-disperse RVE 

microstructures. By using morphologically and mechanically isotropic RVEs the 

subsequent morphological/mechanical investigation should be independent of the 

applied loading direction.  Due to the importance of the plateau region when 

designing products for protective and cushioning applications, compressive strains 

of up to 40% have been considered, i.e. well beyond the likely elastic yield strain 

of the foam. It should also be noted that the contact strain (see Section 3.2.5) for 

mono-disperse RVEs was determined to be around 0.5 (see Figure 3-14) whereas 

for poly-disperse RVEs the contact strain was determined to be around 0.35 (see 

Figure 3-13). Therefore, it is convenient to use beam elements to analyse RVE 

generated using Lloyd’s relaxation algorithm where in the case of polydisperse RVE 

due to initiation of contact, the shell-based modelling is employed.  

5.4.1 Morphological Evaluation of Mono-disperse Beam-Based RVE under 

Compressive Loading  

Over 50 beam-based RVEs, each containing more than 500 cells, have been 

generated using the Lloyd’s relaxation algorithm. As each RVE contains over 500 

cells it is assumed that there is no requirement to consider larger RVE sizes (i.e. 
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size effects are negligible at such large RVE size – see Chapter 3). Since the 

contact strain of mono-disperse RVEs is around 0.5, the effect of self-contact 

within the RVE should be negligible. For this reason, the Abaqus Dynamic Implicit 

solver has been used (self-contact is not modelled). To characterise the evolution 

of microstructure morphology during deformation, probability distributions of the 

cellular orientation and area have been computed at different stages of 

compression, see Figure 5-26 and 5-27. The rate of change data of cell area are 

obtained in a similar fashion as Figure 5-9 based on ratio of each cell area in its 

deformed and undeformed states. 
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Figure 5-26: Probability distribution for cellular orientations evaluated in different 
compressive strains: (o) ε=0.00 (a) ε=0.05 (b) ε=0.10 (c) ε=0.15 (d) ε=0.20 (e) ε=0.25 
(f) ε=0.30 (g) ε=0.35 (h) ε=0.40. 
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Figure 5-27: Probability distribution for cellular area evaluated in different 
compressive strains: (a) ε=0.05 (b) ε=0.10 (c) ε=0.15 (d) ε=0.20 (e) ε=0.25 (f) ε=0.30 
(g) ε=0.35 (h) ε=0.40. 
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Figure 5-28: Illustrative example of visual inspection of deformed cellular 
structures evaluated in different compressive strains: (a) ε=0.05 (b) ε=0.10 (c) 
ε=0.15 (d) ε=0.20 (e) ε=0.25 (f) ε=0.30 (g) ε=0.35 (h) ε=0.40. The different texture 
colors are used to follow the different deformation states of selected cells during 
compression. 
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Figure 5-29: Mean normalised cellular area at different stages of compression. 
Error bars indicate the standard deviation of each data. 
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Figure 5-30: Normalised cellular area for perfect honeycomb compressed at 
perpendicular direction. 

 

From Figure 5-26 it can be seen that when the load is applied on the RVE, 60% of 

the cells are immediately deformed such that the direction of the major-axis of 

the ellipses fitted to the cells are orientated in a direction transverse to the 

loading direction, i.e. at 00 and 1800. The shapes of the resulting probability 

distribution histograms shown in Figure 5-26 do not vary significantly with 

increasing strain, from 0.05 to 0.40. This indicates that the cells continue to 

deform in the same manner without any subsequent rotation of their principal 

directions, as might be expected.  

 

In Figure 5-27 the change in the cellular area distribution is shown to be quite 

dramatic and can be understood by comparing this data with the microstructure 

shown in Figure 5-28. If the cells all reduced in area at the same rate then the 

distribution shown in Figure 5-27 would remain unchanged. However, contrary to 

this, the distribution is seen to rapidly spread out, indicating that some cells 

compress at a much faster rate than others. This is confirmed by visual analysis of 

Figure 5-28. To illustrate, cells marked in blue are examples of those cells that 

tend to resist compression whereas those marked in red tend to collapse. The grey 
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cells show compressive behaviour somewhere between these two extremes. Note 

that all the elements in the RVE have identical material stiffness (linear-elastic) 

and cross section.  

 

In Section 5.3.3 it was also shown that that the RVE microstructure, generated 

using the Lloyd’s relaxation algorithm, consists of fairly constant strut length and 

cell shape, in this respect it is similar to a honeycomb microstructure. It is 

therefore interesting to compare the evolution of these two microstructures under 

increasing compression, see Figures 5-29 and 5-30. Comparison shows that both 

microstructures undergo fairly similar average cell compression rates. However, 

the honeycomb microstructure demonstrates a slight kink in the curve just after 

10% compressive strain. Furthermore, after passing about 20% strain, the 

increasing scatter in the randomised Lloyd’s RVE suggests that while some cells in 

this microstructure resist collapse, this is at the expense of other cells that 

undergo large buckling and compression in order to accommodate the bulk 

compressive strain across the RVE. 

 

 

Figure 5-31: Reduced stress-strain curves for honeycomb and Lloyd's generated 
RVE under uniaxial compression in perpendicular direction. 
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Referring back to the mechanical response of the two RVEs (see Figure 5-31, 

repeated here from Figure 4.12 for convenience), the kink in the cellular area 

versus compressive strain curve of the honeycomb RVE (see Figure 5-30) is seen to 

occur soon after the kink in the corresponding stress-strain curve (see Figure 4.14), 

i.e. the cells begin to uniformly collapse at this strain. 

 

Based on the stress-strain curves of two cases (see Figure 5-31), the Lloyd’s 

generated RVE has more stiffness than honeycomb after about 17% compressive 

strain and less before 12%. Based on the work of the current study, it is believed 

that based on structural geometry of RVE, the combination of both beam-bending 

and buckling mechanisms controls the deformation and mechanical response in 

plateau region, where the dominancy of each mechanism depends to the cellular 

morphology within the RVE and also stage of compressive strain. 

5.4.2 Morphological Evaluation of Poly-Disperse Shell-Based RVE under 

Compressive Loading  

To study the evolution of cellular morphology of poly-disperse microstructures, 

RVEs with a degree of poly-dispersity of 0.1 have been generated. These RVEs have 

similar morphologies to those of higher poly-dispersity and are therefore assumed 

to be representative of this generic class of RVE, i.e those generated by the 

modified Drop and Roll method.  

 

As discussed in Section 5.3, the contact strain for poly-disperse RVEs is around 

0.35. This means that in order to achieve strains of 40%, to permit direct 

comparison with the results of Section 5.4.1, self-contact within the 

microstructure must be considered. For this reason, instead of employing a beam-

based RVE, an equivalent shell-based RVE is used, using the technique described in 

Chapter 3.  

 

In order to fully understand the evolution of the microstructural morphology of 

these poly-disperse RVEs, the evolution of cells within three distinct size 
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categories (small, medium and large) have been monitored where. The separate 

categories for small, medium and large cells correspond to 1-32.9%, 33%-65.9% and 

66%-100% of initial normalised cellular area. To allow direct comparison of how the 

areas of these small, medium and large cells evolve with compressive strain, their 

areas have been normalised by dividing by the area of the largest cell in the same 

RVE within the same size grouping, e.g. the areas of all medium sized cells are 

divided by the area of the largest cell within the medium sized grouping, 

consequently all cell areas in all size grouping range up to 100%. The resultant cell 

area probability distribution histograms have been generated and compared at 

increasing compressive strains in Figures 5-33 to 5-40.  
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Figure 5-32: Probability distribution for cellular orientations evaluated in different 
compressive strains: (a) ε=0.05 (b) ε=0.10 (c) ε=0.15 (d) ε=0.20 (e) ε=0.25 (f) ε=0.30 
(g) ε=0.35 (h) ε=0.40. 
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Figure 5-33: Probability distribution for normalised cellular area evaluated at 5% 
compressive strain. 

 

 

Figure 5-34: Probability distribution for normalised cellular area evaluated at 10% 
compressive strain. 
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Figure 5-35: Probability distribution for normalised cellular area evaluated at 15% 
compressive strain. 

 

 

Figure 5-36: Probability distribution for normalised cellular area evaluated at 20% 
compressive strain. 
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Figure 5-37: Probability distribution for normalised cellular area evaluated at 25% 
compressive strain. 

 

 

Figure 5-38: Probability distribution for normalised cellular area evaluated at 30% 
compressive strain. 
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Figure 5-39: Probability distribution for normalised cellular area evaluated at 35% 
compressive strain. 

 

 

Figure 5-40: Probability distribution for normalised cellular area evaluated at 40% 
compressive strain. 

 



5—152 

 

 

 

Figure 5-41: Illustrative example of visual inspection of deformed cellular 
structures evaluated in different compressive strains: (a) ε=0.05 (b) ε=0.10 (c) 
ε=0.15 (d) ε=0.20 (e) ε=0.25 (f) ε=0.30 (g) ε=0.35 (h) ε=0.40. Grey cells correspond 
to the large-size cells, red to the medium-sized cells and blue to small-sized cells. 
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Looking first at the probability distribution histograms of cellular orientation (see 

Figure 5-32), as with the mono-disperse RVEs of Section 5.4.1, the majority of cells 

are re-orientated with their longest axis aligned in the direction perpendicular to 

the loading direction at an early stage of compression. The distribution 

subsequently shows little change with increasing compressive strain, indicating 

that the same cells that eventually undergo collapse at large compressive strains 

are probably the those that are most susceptible to re-orientation at small strains. 

However, in comparison with the mono-disperse RVEs (see Figure 5-26), a larger 

proportion of the cells resist reorientation. This behaviour can be explained by 

analysing the cell area probability distribution histograms of Figures 5-33 to 5-40. 

These show that the change in cell area distribution is much smaller for the small 

cells than the larger cells, i.e. the small cells are much more resistant to 

deformation and therefore re-orientation during compression of the RVE, than the 

large cells. Since the majority of cells are contained in this small size grouping 

(see Figure 5-22) this reduces the proportion of cells susceptible to re-orientation 

within the RVE compared to the mono-disperse RVEs of Section 5.4.1.  

 

Figure 5-42 shows the normalised area versus compressive strain for the three size 

groups. A clear difference in behaviour is observed with the smallest cells 

compressing by only about 15% (at 40% compressive strain), compared to the 

largest and mid-sized groups that each compress by about 50% and 40% 

respectively. The reason for the greater compressibility of the largest cells is due 

to the longer struts which have a much lower resistance to buckling than the 

shorter struts in the smaller cells [Timoshenko and Gere, 1961]. 
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Figure 5-42: Normalised cellular area at different stages of compression for three 
different groups of cells. 

 

5.5 Conclusions of Chapter 5 

Statistical analysis has been performed on the undeformed microstructural 

morphology of RVEs generated using a variety of methods. With regards to the 

mono-disperse structure, it was found that using different modelling methods will 

result in RVEs with different geometrical features and hence mechanical response 

(see Chapter 3). RVEs that are produced using the enhanced method of Zhu are in 

general unintentionally anisotropic. On the other hand, by employing the Lloyd’s 

relaxation algorithm it is possible to generate isotropic microstructures with all the 

cells randomly orientated in different directions and with the cell shapes 

reasonably similar to those observed using microCT in real foam (e.g. Figure 4-23). 

RVEs generated using the Drop and Roll method are also fairly isotropic though do 

show slight preferential orientations towards the perpendicular and the transverse 

directions. 

 

Similar morphological characterisation methods were employed to study the 

changing morphology of 2-d beam-based microstructures under uniaxial 

compression using Isotropic RVEs generated using the Lloyd’s relaxation algorithm 
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and Drop and Roll method. Due to importance of the plateau regime in many foam 

large strain engineering applications such as cushioning and impact energy 

absorption, the focus of this investigation was on the deformation mechanisms 

governing mechanical response of the foam in this region.  
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Chapter 6 . Characterisation and 

Modelling of 3-d Foam 

Microstructures 

 

6.1 Introduction 

As mentioned in Chapter 1 and elsewhere in subsequent chapters, 2-d modelling of 

porous materials such as foams, is a dramatic over-simplification of the real 

situation. However, it is nevertheless good practice to use 2-d modelling to 

develop the required microstructure generation algorithms and associated analysis 

methods necessary for the study of more complex 3-d microstructures. This 

chapter represents the beginning of an investigation focusing on the 

characterisation and modelling of 3-d open-cell foams. By extending the methods 

established previously for 2-d foams (see Chapters 2 to 5) the work begins to 

address the wider and more challenging topic of modelling 3-d microstructures.   

 

The structure of the rest of this chapter is as follows, in the next section a 

literature review on the microstructure of real foam microstructure and relevant 

modelling techniques are presented. In Section 6.3 by using both mono and poly-

disperse foam-like modelling techniques 3-d beam-based RVEs are generated and 

their morphological properties are analysed and compared to real foam data 

presented initially in Section 6.2. Final conclusions are given in Section 6.4. 

6.2 Literature review 

6.2.1 Plateau’s law 

By studying soap film networks, Plateau (1873) established some basic rules to 

explain the 3-d morphology of bubbles in an equilibrium state [Neimark and 

Vignes-Adler, 1995]: 
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• Three liquid soap plates generate an angle equal to 1200. This region is 

known as Plateau border 

• Each four Plateau borders make a tetrahedral angular configuration 

(≈109.470) 

 

Taylor (1976) proved that when unstable geometrical networks settle in an 

equilibrium state, the final structure tends to minimise its surface area according 

to Plateau’s rules. However, despite the simplicity of Plateau’s rules, it was set up 

based on observational examination for liquid bubbles geometry in equilibrium 

state.  

6.2.2 Euler’s law for convex polyhedral 

In 18th century, Euler (1707-1783) proposed a simple mathematical rule to relate 

the number of vertices, Vn, edges, En, and surfaces, Fn, of 3-d convex polyhedral in 

the following manner [Abigail, 2011]: 

�� − �� + �� = 2                                                                                                                     Equation 6-1 

Coxeter [Weaire and Hutzler, 1999] extended the above formula to relate the 

average number of polyhedral faces, <f> , to the average number of edges per 

face, <n> : 

〈�〉 = 12/�6 − 〈�〉	�                                                                                                                     Equation 6-2 

 

The above relationships are based on 3-d geometries in a cellular network of 

polyhedral in an equilibrium state, consequently, they can be used as a rule of 

thumb to study the morphological characteristics of foam materials produced and 

prepared by fulfilling the stability and equilibrium criteria.     

6.2.3 Characterisation of Micro-Structure of Real 3-d Foams 

In 1946 Matzke [Matzke, 1946] presented the first systematic study of cellular 

network morphologies. By constructing a uniform soap bubble network and using 

dissecting microscopy, Matzke managed to measure some geometrical features of 

single bubble cells, such as volume and face shape. About 98% of cell faces were 

reported to have quadrilateral, pentagonal and hexagonal configurations. 
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Although, this novel work was considered to be a fundamental reference in 

understanding foam geometry, there are several limitations when applying the 

results to understand metallic and polymeric foams, namely: (i) soap bubbles were 

the base of this study and these can have very different morphological 

characteristics compared to metallic and polymeric foams (ii) as stated by Matzke, 

the surface force has a significant influence on the cell geometry which varies 

significantly between different types of foam (iii) a 3-d network of soap bubbles is 

usually considered to be a mono-disperse cellular structure and so is not 

particularly applicable for the study of poly-disperse foam.  

 

Advances in imaging technology have made it possible to perform more accurate 

geometrical studies of real foam microstructures. Dawson and Shortall (1982) 

performed scanning electron microscopy on closed-cell polyurethane foam and 

concluded that a 3-d network of pentagonal dodecahedron is a suitable model for 

representing low-density foam. By employing nuclear magnetic resonance and x-

ray microCT Montminy et al. (2001) characterised a 3-d network of polydisperse 

open-cell polyurethane foam and found that about 60% of faces were pentagonal, 

23% were quadrilateral and 17% were hexagonal. Distribution graphs of strut 

length, strut intersection angle and face area were produced for statistical 

investigation. Later, Montminy et al. (2004) continued their investigations on a 

more poly-disperse polyurethane foam, extracting further important geometrical 

parameters. Unlike the previous investigation on aqueous foam by Matzke (1946), 

where almost 70% of cell faces were found to be pentagonal, in this case only 

about 55% of faces were found to have pentagonal configurations. Shortly 

afterwards, Dillard et al. (2005) used x-ray microCT to investigate the 

microstructure of an open-cell nickel-metal foam. In some ways the results were 

similar to those found by Montminy et al. (2004), i.e. about 57% of cell faces had 

pentagonal geometry and the rest were of quadrilateral and hexagonal shapes. The 

most commonly occurring cell in the investigation by Dillard was found to contain 

12 faces including two quadrilateral, eight pentagonal and two hexagonal faces. 

However, the different material and cell volume distributions of the two foams 

meant that the distribution of cell shapes and the number of struts per face was 
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found to be significantly different. Figure 6-1 shows examples of the 

microstructures of the two different foams. 

 

 

Figure 6-1: Different volume size distributions (degree of poly-dispersity) for 
foams investigated by (a) polyurethane foam, Montminy et al. (2004) and (b) nickel 
foam, Dillard et al. (2005). 

 

6.2.4 Previous numerical-based modelling of 3-d foam microstructures  

The first 3-d foam model was proposed by Lord Kelvin, [Thomson, 1887] based on 

surface minimisation theory. A regular truncated octahedron (8 hexagonal and 6 

square faces) was proposed as the most efficient method of filling a volume of 

space by cells with the smallest possible surface area (see Figure 6-2). It also 

should be mentioned that the space filling Kelvin cell contains non-straight edges 

and non-planar surfaces with small curvature which is directly results from area 

surface minimisation boundary constrains. 
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Figure 6-2: Space filling Kelvin cell [Brakke, 2009]. 

 

Later, by examining soap froth rheology [Weaire, 1992; 2008] methodologies for 

modelling an equivalent 2-d structure of soft condensed matter (such as foam in 

the early stages of its evolution) were studied. A new 3-d space-filling 

arrangement of cells consisting of irregular dodecahedron (5 pentagonal faces) and 

tetrakaidecahedron (2 hexagonal and 12 pentagonal faces was proposed [Weaire 

and Phelan, 1994], see for example Figure 6-3: 
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Figure 6-3:3-d space filing Weaire-Phelan partition [Brakke, 2009]. 

 

Several attempts to generate universal foam models by solving partial differential 

equations of pattern formation problems have been proposed [e.g. Gabbrielli, 

2009]. All aim to produce modelling methodologies that suit all types of foam 

microstructure. However, recent studies have shown that these methodologies do 

not fully capture the geometrical variability of foam microstructure [Redenbach, 

2009]. In the investigation presented so far in Chapters 2 to 5, variability has been 

found to have a significant impact on the final micro-macro response, particularly 

at large-strains, see Chapters 3 and 4. This suggests that capturing realistic 

variability may be an important step in accurately modelling the mechanical 

response of foam microstructures. 

 

Zhu et al. (2000) proposed a method of generating 3-d foam microstructures, 

based on the Voronoi tessellation technique, using a special Voronoi seed 

distribution scheme. The 2-d version of Zhu’s modelling technique was explained 



6—162 

 

 

previously in Chapter 2. In the 3-d method proposed by Zhu, the regularity of the 

structure is controlled by the following parameter 
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Where 
z
α′  is the ‘degree of irregularity’ and if set to 0, the final structure will bea 

fully random Voronoi geometry whereas if 
z
α′ =1, in theory, a regular network of 

tetrakaidecahedron cells (i.e. Kelvin cells) should be achieved. In Eq. 6-3, 0d′  is 

the minimum distance between any adjacent seed (or nuclei) and is defined as  
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where, V0, is the volume of 3-d RVE and N is the number of seeds (or nuclei) inside 

the volume used to generate the Voronoi cells.  

 

Later, by implementing the method proposed by Grenestedt and Tanaka (1999), Li 

et al. (2006a), proposed a body centred cubic seed distribution as the initial 

regular arrangement (by applying the Voronoi method a regular Kelvin cell 

arrangement is consequently generated). By adding a perturbation (see Eq. 6-5) to 

this initial regular arrangement of seed positions an irregular Voronoi-based 

microstructure was produced 
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Here xi
-k

 represents the initial body centred cubic seed distribution, Lt is the height 

of tetrakaidecahedron, φi
-k

 is a random variable generated from a uniform 

distribution and a′  is the degree of irregularity. By comparing Eq. 6-4 and 6-3 

similarities are evident, namely the use of a controlled perturbation to generate 

the randomised seeding. However, the power of Zhu’s method is in generating N 
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cells, with a defined degree of irregularity, within a specified volume, V0. In 

contrast, the method proposed by Li [Li et al. 2006a], provides no control over the 

final RVE volume. This becomes particularly problematic for cases with a higher 

degree of irregularity (i.e. when a′  approaches 1), since the number of seeds 

randomly placed outside the cubic RVE will increase, which in turn also increase 

the total surface area of RVE. Nevertheless, the method proposed by Zhu has its 

own issues and suffers from the same problem as its 2-d counterpart (see Section 

2.1.2). Namely, for cases with a high degree of regularity (i.e. when 
z
α′  

approaches 1) the method is computationally demanding (at least from this 

author’s experience) and is therefore time consuming.  For example, to fit 300 

randomly-generated seeds within a specified volume the algorithm requires 200 

minutes for an RVE comprised of 300 seeds (for 
z
α′ = 0.85), when using a PC of the 

following specification (64 bit Windows with intel(R)Xeon(R) CPU @ 2.66 GHz and 

12 GB RAM).  

 

Inspired by the experimental results of Matzke (1946), Kraynik et al. (2003) 

developed a procedure to generate random mono-disperse 3-d foam-like 

microstructures with similar morphologies to real mono-disperse foams. Molecular 

dynamics were used to create the initial seeding (see Section 6.3.2) and the 

Voronoi -Laguerre method (see Section 2.1.3) was then used to create a Voronoi-

Laguerre based cellular network. A relaxation algorithm, ‘Surface Evolver’ [Brakke, 

1992] was applied to further modify the microstructure. This code (currently 

available as an open source software [Brakke, 2009]) is designed to minimise the 

surface energy (and therefore the area) based on pre-defined volume and body 

constraints as well as initial structural morphology. The algorithm is applied while 

being accompanied by cyclic tension-compression loading in a so-called ‘annealing 

process’, designed to provoke further microstructural relaxation. The annealing 

process is continued until Plateau’s laws for foam microstructural morphology 

[Taylor, 1976] (see Section 6.2.1) are satisfied and a minimum surface area (or 

minimum strut length) is achieved. Kraynik et al. (2003) made a comparative study 

on foam-like microstructures by using several algorithms (see Table 6-2): 
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Table 6-1: Short description of modelling techniques used by Kraynik et al. (2003). 
See Section 6.3 for definition of the acronyms used in this table. 

Method Description 

RA-RCP Sphere packing generated by random closed packing method, subjected to 
both Relaxation and Annealing process 

RA-RSA Sphere packing generated by random sequential adsorption method, 
subjected to both Relaxation and Annealing process 

R-RCP Sphere packing generated by random closed packing method, subjected to 
Relaxation process, only 

R-RSA Sphere packing generated by random sequential adsorption method, 
subjected to Relaxation process, only 

V-RCP Sphere packing generated by random closed packing method, subjected to 
Voronoi modelling, only 

V-RSA Sphere packing generated by random sequential adsorption method, 
subjected to Voronoi modelling, only 

 

It should be noted that RA-RCP, R-RCP,RA-RSA and R-RSA microstructures are 

achieved by subjecting initial V-RCP and V-RSA models to relaxation and 

relaxation-annealing process.  Both RA-RSA and RA-RCP microstructure were shown 

to have very similar geometrical patterns to Matzke’s results, both in terms of the 

average number of faces per cell (<f>≈13.70) and the average number of struts per 

face (<n>≈5) (see Figure 6-4): 
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Figure 6-4: (a) distribution of cells with f faces (b) distribution of faces with n 
struts (from Kraynik et al. 2003). 

 

By applying the same procedure, Kraynik et al. (2004) studied random poly-

disperse 3-d microstructures. In that work, rather than using the Random 

Sequential Adsorption method (see Chapter 2), molecular dynamics was employed 

to generate a random packing of hard spheres. Next, using the Laguerre-Voronoi 

technique, an initial 3-d microstructure was generated for subsequent modification 

using Surface Evolver. The average strut length and number of faces per cell was 

found to decrease with increasing poly-dispersity. In yet another investigation, 

Kraynik (2006) advised against the use of unmodified (or un-relaxed) Voronoi-type 

microstructures in representing foam. The results of that paper showed such 

microstructures are unrepresentative of the actual geometrical features contained 

in real foams. In contrast, the relaxed microstructures generated using Surface 

Evolver were found to compare much more favourably with real mono-disperse 

foam microstructures (see Figure 6-4). 
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Figure 6-5: The probability distribution of the normalised strut length, λ, for 
different microstructures generated using various methods [Kraynik, 2006]. λ is 

scaled by cube root of average cell volume 

 

6.2.5 Mechanical evaluation of numerically generated microstructures  

Zhu et al. (2000) analysed 3-d beam-based Voronoi structures with a range of 

microstructural degrees of regularity,
z
α′ , (see Eq. 6-3). Slender beams with 

constant cross-sectional area were employed, consequently the work was 

applicable to foam of low relative density (<0.09). Using a PBC, small strain uni-

axial compression was applied to a cubic RVE in a vertical direction. Finding were 

very similar to the 2-d beam-based Voronoi investigation [Zhu et al. 2001], namely, 

an decreasing degree of irregularity (approaching towards regular kelvin-based 

structure) resulted in decreasing Young’s and shear moduli and decreasing bulk 

modulus. The Poisson’s ratio was relatively insensitive to the degree of irregularity 

compared to the 2-d case. This insensitivity of the Poisson’s ratio for the 3-d RVE 

microstructure was assumed to be due to the symmetric geometry of the 

tetrakaidecahedron-like unit cell microstructure in the perpendicular and 

transverse directions. In contrast, the geometry of the 2-d RVE is more akin to a 

honeycomb-based network, a microstructure that is known to be asymmetric in the 

orthogonal directions (see Section 4.4). Zhu and Windle (2002), extended the 

previous study to high strain compression of periodic 3-d beam-based Voronoi 

RVEs. Straight beam elements with circular cross section and elastic constituent 
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material were used within the microstructure and uni-axial compression was 

applied. The investigation revealed that a lower degree of irregularity (i.e. a more 

regular microstructure) resulted in a lower tangential modulus at low strains but a 

higher reduced-stress at high compression. By treating each individual cell using a 

spring-based model [Zhu et al. 2000], Zhu found that for an irregular structure, the 

main deformation mechanism under small strain was beam-bending and twisting, 

whereas for larger strains beam buckling was the more dominant deformation 

mechanism. Li et al. (2006) employed a perturbed Kelvin’s cell microstructure to 

seed their RVE (see Eq. 6-5). Using different strut cross-sectional geometries and 

variable beam thicknesses, the mechanical response of 3-d beam-based RVEs under 

uni-axial compression were studied. For microstructures of low relative density, 

findings were very similar to those of Zhu et al. (2000). Namely a higher degree of 

irregularity resulted in an increasing Young’s modulus. However, increasing the 

non-uniformity of strut cross-sectional areas reduced the Young’s modulus.  

 

Using x-ray microCT Jang et al. (2008) analysed the geometrical parameters of 

open-cell polyurethane and aluminium foams, including cell size, strut length and 

anisotropy ratio distributions. These parameters were then used to construct three 

models: (i) a regular network of Kelvin-cells, (ii) an irregular network of perturbed 

Kelvin cells and (iii) a random foam-like network created using Surface Evolver 

similar to those produced by Kraynik et al. (2003). Their final results suggested 

that both random and regular Kelvin-cell microstructures produce very reasonable 

predictions for the elastic mechanical response of polyurethane and aluminium 

foams. However, a key factor in achieving this success was the use of shear 

deformable beam elements and non-uniform strut area distributions. These 

parameters were found to be influential for higher relative densities. (The 

polyurethane foam used in the investigation had relative densities in the range 2.2-

2.8%, whereas the aluminium foam had a relative density was about 8%. By 

considering foams with relative densities less than 0.5% the effect of strut area 

distribution and resultant shear effect became less important). Jang et al. (2010) 

extended the previous investigation on the mechanical response of numerically 

generated microstructures under high compressive strains, considering open-cell 
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aluminium foam. Again their results demonstrated that a Kelvin-cell based 

microstructure produced a fairly reasonable mechanical prediction compared to 

experimental results, equally as good as predictions produced using RVEs 

generated using Surface Evolver. Note however that there were some differences 

in the post-limit elastic response and the deformation localisation patterns within 

the microstructure when comparing the two methods. 

 

These studies provide some of the best examples of work focussing on the 

mechanical response of 3D beam-based RVE foam microstructures. However, the 

main limitation with all these efforts is in ignoring the self-contact within the RVE 

microstructure that, in reality, must occur at large compressive strains. In Chapter 

4, it was shown that, particularly for cases with high degrees of irregularity, it is 

very important to model self-contact since the deformation mechanism and 

consequently the mechanical response are strongly influenced after the RVE is 

compressed beyond the contact strain (see Section 3.2.5).   

6.3 Morphological characterisation of 3-d beam-based RVEs 

As discussed by Kraynik (2006), Voronoi-based structures are a very approximate 

method of modelling foam-like microstructures. The aim of the work in this section 

is to generate periodic mono- and poly-disperse RVEs and examine their 

geometrical parameters, such as cell volume distribution, number of faces per 

cell, number of struts per face and strut length distribution. These are then 

compared to experimental data measured from mono-disperse foams by Matzke 

(1946) and from poly-disperse foams by Montminy et al. (2004). To do this the 2-d 

microstructure generation algorithms described in Section 2.1.1 have been 

extended to the 3-d case (see Section 2.1.1) and are used to generate the results 

in this chapter. 
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6.3.1 Geometrical Study of 3-d RVEs 

According to Plateau’s law of surface energy minimisation for mono-disperse foams 

[Plateau, 1873; Kraynik et al. 2003] (see Section 6.2.1), the probability distribution 

graph of cell volume should obey a normal distribution with a reasonably small 

variance. Employing the Lloyd’s relaxation algorithm (on any fully irregular 

Voronoi-based 3-d microstructure, see Section 2.1.2) and also using a 3-d version 

of the method proposed by Zhu with a range of degrees of irregularity (
z
α′ =0.5, 

0.6, 0.7, 0.8), 20 periodic RVEs for each case have been generated (periodic RVEs 

with 512 cells). The reduced cell volume distribution (normalised by RVE volume) 

is calculated and shown in Figure 6-6. The results show that the Lloyd’s relaxation 

algorithm generates a very mono-disperse cell volume distribution with a small 

normalised standard deviation. In contrast the enhanced method of Zhu produces 

cell volume distributions that are normally distributed but have much larger PD 

curve band (i.e. higher volume variance), i.e. they are much more poly-disperse. 

 

 

Figure 6-6: Probability distribution of cellular volumes generated by Lloyd’s 
algorithm and Zhu method. The cell volumes are linearised by cubic RVE volume, 

equal to unit 1. 

In order to make a further direct comparisons with the results reported by Matzke 

(1946), the number of struts per cell face and the number of faces per cell have 

also been determined, see Figures 6-7 and 6-8. 
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Figure 6-7: Number of struts per cellular faces for RVEs generated by the Lloyd’s 
relaxation algorithm and modified method of Zhu. To make a direct comparison, 
the result measured by Matzke (1946) from a mono-disperse soap froth is also 
included. 

 

 

Figure 6-8: Number of faces per cell for RVEs generated by the Lloyd’s relaxation 
algorithm and the modified method of Zhu. To make a direct comparison, the 
result measured by Matzke (1946) from a mono-disperse soap froth is also 
included. 
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From Figures 6-7 and 6-8 it can be seen that the 3-d version of the enhanced 

method of Zhu does not produce a realistic mono-disperse foam-like 

microstructure. In contrast, the Lloyd’s relaxation algorithm, produces a much 

more favourable comparison with experimental data measured from a mono-

disperse foam, both in terms of face shape and cell topology. RVEs generated by 

the Lloyd’s relaxation algorithm, on average, contain about 3% triangular, 18% 

quadrilateral, 46% pentagonal, 28% hexagonal and 4% heptagonal faces (see Figure 

6-7). About 6%, 23%, 36%, 25%, 8% and 1.5% of cells generated using the Lloyd’s 

relaxation algorithm  have 12, 13, 14, 15, 16, 17 faces, respectively (see Figure 6-

8). 

 

Since mono-disperse foams have a polygonal space-filling structure, it is possible to 

use Euler’s formula [Mills, 2007] to check whether RVEs generated using the 

Lloyd’s relaxation algorithm have a satisfactory space-filling geometry. The 

average number of struts per face is determined to be, nL = 5.1476 and the average 

number of faces per cell, fL = 14.0755. Here the subscript, L, indicates values 

generated using the Lloyd’s relaxation algorithm. Consider Eq. 6-6 and 6-5, the 

resultant nE and fE computed using Euler’s formulae are in very close agreement 

with their counterpart values obtained using the Lloyd’s relaxation algorithm, i.e. 

14745
12

6075514 .
f

n.for f
L

EL =−=⇒=                                                                Equation 6-6 

077814
6

12
14765 .

L
n

f.for n EL =
−

=⇒=                                                              Equation 6-7 

 

In Chapters 4 and 5 it was shown that 2-d RVE microstructures with isotropic 

cellular orientations also have isotropic mechanical properties. It follows that the 

microstructural morphology of 3-d RVEs can likewise be used to anticipate their 

mechanical response. Using a similar procedure to that used in Chapter 5, though 

here fitting ellipsoids to the cells within the RVE rather than ellipses, the cellular 

orientation and size distribution in RVEs generated using the Lloyd’s relaxation 
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algorithm can be obtained. In a similar fashion as with the 2-d Lloyd’s angular 

distribution graph (see Chapter 5), here angles between 00 to 3600 are considered, 

and then multiplied by the length of the semi-major axis of ellipsoid. All results 

are then normalised by the mean length of the semi-major axis of all the cells in 

each RVE. The resulting data are shown in Figure 6-9. 

 

 

Figure 6-9: Polar representation of cellular orientation multiplied by fitted 
ellipsoid semi-major axis of each individual cell (black dots) for microstructures 
generated by Lloyd’s relaxation The radius of the pink sphere represents an 
average value of data (black dots). 

 

From Figure 6-9, it is evident that, as with the 2-d counterpart, the 3-d 

microstructure is fairly isotropic, with cells evenly orientated across the full range 

of directions. 
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Struts length distribution within the microstructure is another key geometrical 

parameter and, as with the cell volume distribution, this should follow a normal 

distribution with a small relative standard deviation [Kraynik et al. 2003]. By using 

Surface Evolver and the annealing process, Kraynik et al. (2003) performed 

extensive studies on mono-disperse foam-like geometries finally suggesting the 

following criteria for a realistic strut distribution for a relaxed mono-disperse 

foam. 

λ.λ 250min ≈                                                                                                     Equation 6-8 

Here λ represents the normalised strut length and the <>  bracket indicates the 

average value.  The data are shown in Figure 6-10, all strut lengths are normalised 

by the cube root of the cellular volume 

 

Figure 6-10: Distribution of strut lengths for RVEs generated using the Lloyd’s 
relaxation algorithm and using the method proposed by Kraynik et al. (2003). 

 

Comparison of the strut length probability distribution curves generated by the 

Lloyd’s relaxation algorithm and by Kraynik using Surface Evolver for mono-

disperse microstructures [Kraynik et al. 2003], indicates that about 30% of struts 

lie outside the ‘realistic’ length distribution predicted by Kraynik [Kraynik et al. 

2003]. Nevertheless, the average value of strut length is reasonably close for both 
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cases, i.e. <λK>=0.46, from Kraynik et al. (2003_ and <λL>=0.53 from the Lloyd’s 

relaxation algorithm. The reason behind this difference is mainly due to the lower 

fraction of pentagonal faces generated using the Lloyd’s relaxation method, i.e. 

about 46% of total faces compared to around 67%, measured by Matzke (1946) and 

predicted by Kraynik (see Figure 6-4). Also the number of quadrilateral and 

hexagonal faces generated by the Lloyds relaxation algorithm is about 14% higher 

than that measured by Matzke (1946) and predicted by Kraynik. 

 

 

Figure 6-11: Examples of cell face geometries generated using the Lloyd's 
relaxation algorithm. Red, black and blue indicates quadrilateral and pentagonal, 
hexagonal faces, respectively. 

 

 

Visual inspection of the cells generated using the Lloyd’s relaxation algorithm show 

that a large numbers of quadrilateral faces (red faces in Figure 6-11) have small 

surface areas and very small strut lengths. Also, the majority of hexagonal faces 

(blue faces in Figure 6-11) contain small strut lengths, usually shared with 

quadrilateral faces. As a result of these unrealistic struts there is a lower number 

of pentagonal faces and a greater fraction of small struts. Nevertheless, those 
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quadrilateral surfaces with internal angles at around 900 and of reasonably large 

area, lying adjacent to pentagonal and hexagonal faces, will also have a realistic 

geometry (see bottom-right cell in Figure 6-11). 

6.3.2 Geometrical Study of Poly-Disperse RVEs 

The modified Drop and Roll method was employed in Chapters 4 and 5 to generate 

2-d isotropic RVEs with poly-disperse cell-size distributions. However, the 

algorithm is much less computationally efficient when extended to the generation 

of 3-d RVEs. In the 2-d version, hard-circular disks have the option to roll only left 

or right following contact with another disk (see Section 2.1.3). In the 3-d version, 

there are an infinite numbers of planes in which hard-spheres can fall. In order to 

obtain an isotropic and homogenous distribution of spheres in different planes, a 

much greater amount of computation time is required and the algorithm is much 

more complex.  

In Chapter 2, several algorithms to generate the packing of 3-d spheres were 

reviewed. In the author’s opinion after comparing all those methods, classical 

molecular dynamics appears to be the best method to generate an isotropic and 

poly-disperse 3-d sphere-packing arrangement, especially because it can be viewed 

as an idealised foam rheological process corresponding to manufacture using gas-

injection techniques [Kraynik, 1981, 1988]. The aim of current section is therefore 

to study the general topological features of 3-d isotropic, poly-disperse foam-like 

structures, generated using Molecular Dynamics (MD), rather than using a 3-d 

version of the Drop and Roll method, and compare these results with statistical 

data obtained from real materials using 3-d imaging techniques. 

 

In 1990 Lubachevsky and Stillinger proposed a non-equilibrium MD algorithm to 

generate 2-d mono-disperse hard-circular disks with a periodic boundary condition. 

In their method, seeds or nuclei of particles are first distributed in the square 

lattice and in random non-overlapping locations. Next, initial velocity components 

(in the x and y plane) are applied to each particle, again with randomised values. 

In order to obtain a fairly mono-disperse packing, constant seed growth rates are 

used together with a small time step. Particles are allowed to move along their 
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individual trajectories until impact with another particle. In the case of particle 

impact, a classical elastic-collision protocol is used to update the new velocity and 

trajectory of particles. The Lubachevsky and Stillinger algorithm or ‘L-S 

algorithm’, has since been used by others, to generate random 3-d poly-disperse 

hard-sphere packings by controlling particle growth rate and the size of the time 

step [e.g. Kansal et al. 2002]. 

 

In the current research, a very similar algorithm to the L-S algorithm has been 

implemented with one main modification. In the L-S algorithm, if particles leave 

the square lattice, another particle of exactly the same size and velocity enters 

the lattice from the counterpart boundary. However, this requires the application 

of a very small time step and also affects the final RVE geometry at the 

boundaries. In the modified L-S algorithm, as with the method proposed by Zhu for 

periodic modelling of 3-d foam microstructures, a square cube containing initial 

particle seeds is considered. 26 identical cubes with the same local seed positions 

are repeated around its sides. Based on desired volume size distribution, all seeds 

are subjected to individual growth rates (usually following a log-normal or gamma 

function for poly-disperse volume distributions [Kraynik et al. 2006]). When the 

simulation starts, all the particles in the neighbouring cubes move and grow in 

exactly the same way as the corresponding seeds in the central cube. In so doing, 

any boundary effects in the final RVE are eliminated. The simulation terminates 

when the sphere packing fraction (total volume of spheres divided by the cubic 

RVE volume) exceeds a specified limit which can be defined a-priori by the 

operator. A flowchart of the modified L-S algorithm is shown in Figure 6-12.   
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Figure 6-12: Flowchart of the modified L-S molecular dynamics algorithm, 
designed to generate a periodic poly-disperse random sphere-packing. 
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The new enhanced L-S MD algorithm proposed in this investigation does have some 

limitations. The first problem is due to ‘sphere escape’ from the cubic RVE 

container. This  can frequently occur when a growing sphere continues to move in 

its original trajectory without colliding with other spheres. The second problem 

with this method is the requirement of performing several trial and error 

simulations in order to understand the effect of seed velocity and growth rate on 

the final microstructural morphology. Repeating such simulations requires a 

considerable amount of time and computational power. Due to these limitations 

only two successful simulations were achieved (out of a total of 30 simulations 

where each one takes about 2 hours to complete).  Each simulation involved 125 

particles, the initial growth rate of the particles follows a log-normal distribution 

which is generally considered a good method to generate foam-like poly-disperse 

volume arrangements [Kraynik et al. 2006]. 

 

 

Figure 6-13: Two poly-disperse samples, containing 125 spheres, generated using 
the enhanced L-S algorithm. The packing density fraction before termination of 
the simulation was Φ=0.64. The hard spheres are shown in different colours for 
easier for viewing. 
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Figure 6-14: 3-d beam-based representation of spheres with poly-disperse volume 
generated using the 3-d Voronoi-Laguerre method. 

 

The final cellular volume distributions of both RVE microstructures are reasonably 

well-described using log-normal distributions (see Figure 6-15). Unlike mono-

disperse foam microstructures, poly-disperse foams are more challenging to 

characterise, as they tend to have a very wide range of cellular morphologies, 

determined by their manufacture and preparation conditions. As mentioned in 

Section 6.2, Montminy et al. (2004) performed detailed studies on the 

microstructure of open-cell polyurethane foam and measured a variety of 

microstructural morphological parameters including cell volume fraction 

distribution, number of struts per cell, face area fraction, strut length and strut 

intersection angle distributions. The data provide a means of evaluating the 

predictions of the modified L-S algorithm.  

 

The comparison presented here begins with the cell volume distribution, (see 

Figure 6-15). The data show that the modified L-S algorithm is able to generate 

hard sphere packing with volume size poly-dispersity following a log-normal 

cellular volume distribution (see Figure 6-15a and b). The main parameters that 

control the cellular volume distribution in the modified L-S algorithm are growth 

rate and time step. Therefore, one of the main fundamental steps towards 
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generating microstructures similar to real foam materials, is to apply a parametric 

analysis to determine how growth rate and time step can be manipulated to 

generate the required hard sphere packing in order to produce microstructures 

with statistically similar volume distributions as real data. 

 

 

Figure 6-15: (a) and (b) Cellular volume fraction of the two poly-disperse RVEs. 
Cell volumes are normalised by the total volume of the RVEs. (c) Results from the 
investigation by Montminy et al. (2004) on an open-cell polymeric foam. 

 

Histograms showing the face frequency versus the number of struts per cell face 

(also called ‘windows’ in some texts) within the two RVEs generated using the 

modified L-S algorithm are presented in Figure 6-16. Table 6-2 shows the 

frequency of the different types of polygon within the microstructure. 
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Figure 6-16: Number of struts per face for the two RVEs generated from seedings 
created using molecular dynamics. 

 

Table 6-2: Comparison between the frequency of face geometry for the two RVEs, 
generated from seedings created using the enhanced L-S MD algorithm and 
experimental measurements made by Montminy et al. (2004). In the last column, 
the area fraction for each window (or face) shape in the numerical RVE is also 
generated. 

Type of Window Shape 
Fraction of cells 

(MD) [%] 

Fraction of cells 

(Montminy et al. 

2004) [%] 

Area Fraction 

(MD) [%] 

Triangular 32 1 6.50 

Quadrilateral 18 24 13.20 

Pentagonal 30 55 40.10 

Hexagonal 16 19 31.83 

Heptagonal 3 1 7.90 

 

Referring to see Table 6-2, the results from Montminy et al. (2004) reveal 

pentagonal geometries contributed 55% of the overall number of measured faces, 

this fraction is lower at 30% in the numerical RVEs. The fraction of quadrilateral 

and hexagonal faces are in reasonably good agreement with the Montminy data, 

however, the fraction of triangular faces is significantly higher in the numerical 

RVEs. Again, as with the mono-disperse case, visual inspection of several cells (see 

Figure 6-17), shows that even though the total surface area of the triangular faces 
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is small (6.50%) compared to the other face geometries, due to their large number, 

there are many unrealistically small struts inside the RVE microstructure. 
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Figure 6-17: Example of poly-disperse cells with different topologies. 



6—184 

 

 

The average number of faces per cell for each numerical RVE is 17.82 and 18.40. These 

figures are significantly higher than those determined by Montminy et al. (2004), i.e. 

13.01 (see Figure 6-18 and Table 6-3).  

 

 

Figure 6-18: Distribution of number of faces per cell, for the two numerically 
generated RVEs. 

 

Table 6-3: Comparison between the numbers of faces in the numerical RVEs and 
from Montminy et al. (2004). 

Number of faces per cell Frequency (MD) [%] 
Frequency (Montminy et 

al. 2004) [%] 

7 - 3 

8 - 4 

9 - 4 

10 4 7 

11 5 18 

12 6 11 

13 13 12 

14 9 13 

15 9 9 

16 8 4 
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17 12 8 

18 5 5 

19 7 - 

20 11 - 

21 7 1 

22 6 - 

23 7 - 

24 5 1 

25 3 - 

26 2 - 

27 2 - 

28 1 - 

29 3 - 

 

 

Comparing the fraction of different cellular morphologies, using Table 6-3, it is 

seen that the RVEs generated using MD have a large number of cells containing a 

very large number of faces, most of these faces tend to be triangular, which 

according to the data of Montminy et al. (2004) is not the case for real foam 

microstructures. Unlike a real poly-disperse foam where face area distribution 

closely follows a log-normal distribution (see Figure 6-19c), the two numerical 

RVEs have very different face area distributions. Figure 6-19 shows two peaks in 

the distribution of the numerical data. The first higher peak has a relatively 

narrow distribution and is associated with the triangular faces.  
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Figure 6-19: (a) and (b) Face area fraction distribution for two numerical RVEs. All 
areas are normalised by the total surface area within the microstructure. (c) 
Results from the investigation by Montminy et al. 2004 on an open-cell polymeric 
foam. 

 

Both visual inspection and direct calculation of strut length for different types of 

face shape, reveals a strong correlation between small struts and triangular faces 

(e.g. see Figures 6-20a, and b). As a result, the strut length distributions in the 

two numerical RVEs are not in very good agreement with those of real poly-

disperse foam, compare figure 6-21a, b and c. 
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Figure 6-20: (a) Cell without triangular surfaces (b) cell with triangular surfaces. 
The majority of triangular surfaces have very sharp internal angles resulting in 
generation of very small struts (highlighted red struts). 
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Figure 6-21: (a) and (b) normalised strut length for two MD samples. All lengths 
are normalised by total microstructure volume. (c) Results from the investigation 
by Montminy et al. 2004 on an open-cell polymeric foam. 
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The mean value of the strut intersection angle measured by Montminy et al. (2004) 

was 106.7±17.78 degrees. In comparison the values measured within the two 

numerical RVEs is 90.29±37.48 and 90.36±36.95, respectively.   

 

 

Figure 6-22: Strut intersection angular distribution for two MD samples. 

 

In the case of real poly-disperse foam, the strut intersection angles are distributed 

from 45 to 160 degrees, with a modal value at about 120 degrees. The distribution 

bound for the numerical RVEs is much wider, from 5 to 175 degrees with modal 

values at just under 120 degree. The majority of the small intersection angles (less 

than 450) are a direct results of the triangular faces, which contain at least one 

very sharp angle.    
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6.4 Conclusions of Chapter 6 

 

The microstructural morphology of real foams obtained from imaging experiments, 

has been compared with 3-d numerically generated RVEs for foam-like materials. A 

3-d version of the enhanced method of Zhu and the Lloyd’s relaxation algorithm 

have been used to generate predominantly mono-disperse 3-d microstructures, 

while a new enhanced L-S MD algorithm has been used to generate poly-disperse 3-

d microstructures.  

 

RVEs generated using the enhanced 3-d method of Zhu method were found to have 

relatively poor morphlogical characteristics compared to experimental data 

obtained by analysing mono-disperse soap froth in the investigation by Matzke 

(1946) . Mono-disperse microstructures generated using the Lloyd’s relaxation 

algorithm were found to have much better correspondence of parameters including 

cellular volume distribution, number of struts per face and number of faces per 

cell. However, due to presence of triangular surfaces (or quadrilateral surfaces 

with one very small strut) the numbers of pentagonal faces was found to be about 

23% less than the data produced by Matzke (1946). The presence of a large number 

of triangular surfaces in the numerical RVE also resulted in a large fraction of small 

and unrealistic struts that affect the strut length distribution (see Figure 6-7).  

 

Unlike the mono-disperse case, poly-disperse RVEs generated using the new 

enhanced L-S MD algorithm had very different geometrical parameters compared 

to data measured by Montminy et al. (2004) from a real 3-d poly-disperse foam. 

The main reason behind this discrepancy was due to the presence of unrealistic 

triangular surfaces or quadrilateral surfaces containing one very small strut. It is 

worth noting that in the mono-disperse case only about 10% of surfaces had poor 

triangular-like geometries (3% triangular+7% quadrilateral with one very small 

strut) whereas for the poly-disperse case this effect was about 4 times larger. One 

of the steps that Kraynik et al. (2003) used to modify RVEs was a relaxation 
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process involved the use of Surface Evolver to eliminate such triangular surfaces by 

applying a morphological transition method [Fortes and Ferro, 1985]. 

 

Another important factor affecting the L-S MD generated RVEs is the packing 

density of hard-spheres which was about 64%. Therefore, by even applying 

Voronoi-Laguerre method, the resultant cell volume will be significantly larger 

than the sphere volume that Laguerre-Voronoi cell is constructed around it.   

 

It can be concluded that a method of eliminating triangular surfaces and improving 

the sphere packing density could potentially lead to much more realistic foam-like 

microstructural morphologies particularly for the poly-disperse case.         
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Chapter 7 . Conclusions and Future 

Work 

 

7.1 Conclusions 

 

Chapter 1 contained a general overview of the different types of porous materials 

that are considered in this research, with brief descriptions of their mechanical 

properties and internal morphologies. The modelling and mechanical evaluation 

approaches used in this investigation are also addressed.   

 

In Chapter 2 various modelling methodologies to generate 2-d periodic RVEs for 

foam- and aerogel-like microstructures were reviewed. These methods were 

adapted in creating new algorithms, designed to be more effective in generating 2-

d beam-based RVEs with periodic microstructures. A detailed description of these 

new algorithms was provided. 

 

In Chapter 3, using the 2-d modelling techniques described in Chapter 2, beam-

based RVEs were generated for both mono- and poly-disperse foam-like 

microstructures. RVEs were subjected to large compressive strains using a PBC. 

Internal self-contact within the RVE was modelled. The influence of this self-

contact on the RVE’s large-strain mechanical response was examined. The effect 

of geometrical irregularity on the RVE’s large strain response was also 

investigated. Results suggested that as geometrical irregularity increases the 

contact strain (CS) will shift to lower strains. The comparison between contact 

strain (CS) and onset strain of densification (OSD) suggests that the efficiency 

method of determining the onset strain of densification is relatively insensitive to 

the degree of irregularity of the of RVE. 
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Chapter 4 is an investigation into the isotropy (or possible lack of isotropy) in the 

mechanical response of 2-d RVEs generated using the modelling techniques 

described in Chapter 2. The mechanical response of 2-d beam-based RVEs 

employing a PBC, under compressive loading in arbitrary directions was 

investigated. Results indicated that hexagonal honeycomb microstructures produce 

an anisotropic mechanical response. This is also true for RVEs generated using the 

enhanced method of Zhu with low to moderate degrees of irregularity. However, 

as α increases the mechanical response of the RVE tends to be more isotropic but 

at the cost of generating an increasingly unrealistic microstructure. In contrast, 

RVEs generated using the Lloyd’s relaxation algorithms were found to be 

mechanically isotropic while having a realistic morphology. It should also be 

mentioned that the Lloyd’s algorithm can effectively produces final regular and 

isotropic geometry when the initial microstructure configuration (before the 

relaxation) contains very random and irregular geometries (e.g. Poisson Voronoi). 

The Drop and Roll method was shown to have a good potential for generating poly-

disperse microstructures with fairly isotropic mechanical response. 

 

The intention of Chapter 5 was to: (i) establish the link between the internal 

morphology and the mechanical response of the RVEs and (ii) to evaluate the 

modelling techniques used to generate 2-d foam-like microstructures in terms of 

their ability to create realistic morphologies. As expected, RVEs with an isotropic 

cellular orientation distribution produced an isotropic mechanical response when 

compressed in arbitrary loading directions and RVEs with an anisotropic cellular 

orientation distribution produced a corresponding anisotropic mechanical 

response. The influence of cellular orientation distribution was found to increase 

at higher compressive strains, particularly in the plateau region of the stress-strain 

curves. It was also shown that the cell-collapse rate strongly depends on the 

cellular size distribution. Larger cells tended to collapse and deform faster than 

smaller cells. With regards to the mono-disperse case, such as RVEs generated 

using the Lloyd’s relaxation algorithm, although the cells have almost equal sizes 

and morphologies, some of the cells were found to collapse and deform faster than 
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others, an effect possibly related to the cell’s orientation with respect to the 

loading direction. 

 

Chapter 6 focuses on the more challenging problem of 3-d modelling. A literature 

review of numerical techniques for 3-d modelling is provided together with a 

review of image-based investigations. Modelling and characterisation techniques 

employed in previous chapters are adapted to generate 3-d foam-like RVEs with 

periodic microstructures. The morphologies within RVEs generated using the 

Lloyd’s relaxation algorithm were found to correspond closely with real mono-

disperse foams microstructures. However, poly-disperse microstructures produced 

using a modified MD technique failed to generate realistic foam-like morphologies 

due to the presence of a large number of sharp triangular surfaces within the RVEs.     

 

7.2 Future work 

 

The work conducted so far in this investigation has successfully achieved many of 

the objectives outlines in Section 1.5. Nevertheless, multi-scale modelling of 

porous, randomly organised microstructures is a challenging topic and there is 

ample scope for future work. In this section a few ideas to further progress the 

research are outlined. Ideas include investigations into: 

   

• the mechanical response of 3-d foam-like microstructures when compressed 

in arbitrary loading directions. 

• the effect of both material and geometrical anisotropy on the mechanical 

response of both 2-d and 3-d RVEs, i.e. the investigation could be extended 

to consider anisotropy of the constituent material behaviour (due to higher 

elongation in a preferred direction) in addition to the geometrical 

anisotropy of the RVE already considered in this investigation. 
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• the effect of self-contact within 3-d RVEs of foam-like periodic 

microstructures on the mechanical response. Some preliminary steps in this 

direction have already been taken and are briefly described here. Due to 

the 3-d connectivity of beam elements in 3-d RVEs, it is not possible to use 

the equivalent shell-based microstructures, as with the 2-d case (see 

Chapter 3). To overcome this problem, two RVEs can be generated.  The 

innovative method involves combining beam and shell elements to generate 

mutually constrained prism-like constructions, representing the individual 

ribs (struts) within the RVE, see Figure 7-1. 

 

 

Figure 7-1: Beam to shell-based prism conversion. 

 

The periodic beam-based RVE, see Figure 7.2a, can be compressed. To 

model self-contact within the RVE, a second RVE based on the shell-based 

prism structure is generated, with same structural configuration as that of 

the beam-based RVE, e.g. see Figure 7.2b. The deformation of the shell-

based RVE is constrained to counterpart beam elements. The mechanical 

properties of the shell elements are set to be very much lower than those of 

the beam elements and therefore make a negligible contribution to the 

mechanical response of the RVE due to deformation. However the shell 

elements do make a significant contribution when self-contact within the 

RVE occurs.  
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Figure 7-2: (a) 3-d periodic beam-based RVE. (b) 3-d prism shell-based RVE. 

 

• Improvements of the morphological accuracy of 3-d RVEs. In Chapter 6 it 

was stated that the problem with 3D RVEs generated using a combination of 

MD and the Laguerre-Voronoi method was the high portion of sharp 

triangular surfaces within the resulting RVE. An algorithm to automatically 

eliminate these triangular surfaces could potentially lead to much more 

reasonable, morphologically-enhanced poly-disperse foam-like 

microstructures. One of the main steps of the Surface Evolver software 

[Brakke, 2009] is detection and elimination of such unrealistic surfaces. 

Thus, direct comparison of enhanced 3-d morphologies with those generated 

using both Surface Evolver and also those created from real image-based 

models would be an interesting next step for the research. 
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Appendix 1: Uni-axial compression of 

periodic honeycomb structure in an 

arbitrary direction 

To apply deformation in arbitrary directions with respect to the orientation of the 

RVE other than in the perpendicular and transverse directions, a two dummy node 

set-up is not useful and an alternative method is required.  

 

Considering uniaxial compression in the vertical direction, the deformation 

gradient tensor, F, can be written as follows  
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Now, if F is to be calculated for uniaxial compression at an arbitrary angle, θ, then 

this is equivalent to rotating the reference system. So in rotated system RFRF 11 =

where R  is a rotation matrix: 
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Therefore, dummy nodes displacements (indicated as d1 and d2) can be re-written 

based on a new frame of reference that is shown in Eq. A1-4 as the following: 
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By setting a value of only one component of the third dummy node, d3, it is 

possible for the FE solver to obtain the other dummy nodes values for uniaxial 

compression in the desired direction. 
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