

Glasgow Theses Service

http://theses.gla.ac.uk/

theses@gla.ac.uk

Marlow, Simon David (1995) Deforestation for higher-order functional

programs. PhD thesis.

http://theses.gla.ac.uk/4818/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/4817/

Department of
Computing Science

UNIVERSITY
of

GLASGOW

Deforestation
for

Higher-Order Functional Programs

Simon David Marlow

A thesis submitted for the degree of Doctor of Philosophy in
Computing Science at the University of Glasgow

September 1995

© Simon Marlow 1995

Abstract

Functional programming languages are an ideal medium for program optimisations based
on source-to-source transformation techniques. Referential transparency affords opportu-
nities for a wide range of correctness-preserving transformations leading to potent optimi-
sation strategies.

This thesis builds on deforestation, a program transformation technique due to Wadler
that removes intermediate data structures from first-order functional programs.

Our contribution is to reformulate deforestation for higher-order functional programming
languages, and to show that the resulting algorithm terminates given certain syntactic and
typing constraints on the input. These constraints are entirely reasonable, indeed it is
possible to translate any typed program into the required syntactic form. We show how
this translation can be performed automatically and optimally.

The higher-order deforestation algorithm is transparent. That is, it is possible to determine
by examination of the source program where the optimisation will be applicable.

We also investigate the relationship of deforestation to cut-elimination, the normalisation
property for the logic of sequent calculus. By combining a cut-elimination algorithm and
first-order deforestation, we derive an improved higher-order deforestation algorithm.

The higher-order deforestation algorithm has been implemented in the Glasgow Haskell
Compiler. We describe how deforestation fits into the framework of Haskell, and design
a model for the implementation that allows automatic list removal, with additional defor-
estation being performed on the basis of programmer supplied annotations. Results from
applying the deforestation implementation to several example Haskell programs are given.

Acknowledgements

First of all, I'd like to thank my supervisor Phil Wadler, whose constant supply of ideas
and encouragement made this possible. I'd also like to thank my Viva Committee: Dave
Sands, Simon Peyton Jones and David Watt who provided many useful comments and
suggestions during my Viva.

Thank you to everyone in the Functional Programming Group at Glasgow University, and
especially my roommates Andy Gill, Andre Santos, and David King, for providing a varied
and stimulating environment in which to do my research.

This work was supported by a grant from the Engineering and Physical Sciences Research
Council.

I'd like to express my thanks to the following companies and establishments who indi-
rectly supported me throughout my research and especially during the writing-up period:
Guinness Breweries Ltd., Benson & Hedges Ltd., Curlers, Little Italy, and the Ashoka
Restaurant, Ashton Lane.

Most of all, I'd like to thank Tinkerbell who gave me more encouragement and support
than I could ever need. Thoir mi mo ghraidh dhuit.

Cheers!

Contents

1 Optimisation by Transformation 1

1.1 Introduction 1
1.1.1 Transparency 2

1.2 Unfold/Fold Transformations 3
1.2.1 An Example 5

1.3 Removing Intermediate Data Structures 8
1.4 Deforestation 9

1.4.1 Extensions to deforestation. 12
1.4.2 foldr /build Deforestation 14

1.5 Contribution of Thesis 16
1.6 Structure of Thesis ... 18

2 Higher-Order Deforestation 21

2.1 History 22
2.2 Syntax and Semantics 22

2.2.1 Treeless Form . . 25
2.3 The Transformation Algorithm 27

11

2.4 Knot Tying

2.5 Example ..

2.6 Deforestation Theorem

2.7 Summary .

30

32

36

49

2.7.1 Transparency and Treeless Form. 49

2.7.2 Linearity.............. 50

2.7.3 Generalising the algorithm for real programming languages. 50

3 Cut Elimination

3.1 Introduction .

3.2 Natural Deduction

3.3 Sequent Calculus

3.4 Cut Elimination.

3.4.1 The Hybrid Language

3.4.2 Algorithm

3.4.3 Proof of termination

3.5 Interlude: Recursion

3.5.1 Cyclic Terms

3.5.2 Recursion equations

3.6 First-Order Deforestation.

3.6.1 Terms ..

3.6.2 Algorithm

3.7 Higher-Order Deforestation

3.7.1 Syntax

51

51

54

56

58

59

60

62

65

65

68
68
68

69

71

71

Contents III

3.7.2 Algorithm . 72

3.7.3 Knot Tying 72

3.7.4 Proposition of termination 74

4 Other Issues 77

4.1 Conversion to Treeless Form 77

4.1.1 Languages 79

4.1.2 Algorithm 79

4.2 Linearity 83

4.2.1 Duplication of work. 84

4.2.2 Full Laziness 85

4.2.3 Losing opportunities for full laziness 86

4.2.4 Loss of laziness 87

4.2.5 Static argument transformation 89

4.2.6 Summary 91

4.3 Transparency .. 92

5 Implementing Deforestation 97

5.1 Design Goals 98

5.2 A Model for a Deforestation Compiler Pass . 99

5.2.1 User annotations vs. Automatic compiler annotations - A compromise 99

5.2.2 The Module System

5.2.3 Summary .

5.3 Structure of the Deforestation Implementation.

5.4 Glasgow Haskell Core Language .

102

104

105

106

IV

5.4.1 Treeless form 110
5.4.2 Labelled terms 110

5.5 Conversion to Treeless Form 110
5.6 Algorithm 112

5.6.1 Transformation for expressions. 112
5.6.2 Nested letrec expressions 115
5.6.3 Top-level transformation 117

5.7 Knot-tyer 117

5.8 Improving the Knot- Tyer . 120

5.8.1 Back Loops 121

5.8.2 Boring expressions 123

5.8.3 Extracting lets 125

5.8.4 Loop merging . 126

5.8.5 Improving the performance of the knot-tyer 127

5.9 Avoiding Name-Capture ... 127

5.9.1 Unique Name Supplies 128

5.9.2 Debruijn Numbers .. 130

5.9.3 Splitting Name Supplies 131

5.9.4 Monadic Name Supplies 133

6 Results and Analysis 137

6.1 Description of Measurements. 137

6.2 Queens 141

6.2.1 Results. 143

Contents v

6.3 Life.

6.3.1

6.3.2

Deforesting Life .

Results ...

144
144
149
150
152

6.4 Pattern Matching .

6.4.1 Results ...

7 Conclusion

7.1 Summary .

7.1.1 Deforestation Algorithm

7.1.2 Implementation

7.1.3 Results ..

7.2 Future Research .

7.2.1 Deforestation Algorithm

7.2.2 Relationship to foldr/build deforestation.

7.2.3 Implementation

155
155
155
157
158
159
159
159
161

A Code Examples

A.l Queens

163
163

Chapter 1

Optimisation by Transformation

1.1 Introduction

The problem of productive software development is frustrated by three conflicting aims:
to develop software that is reliable, to develop software that is efficient, and to develop
software quickly. Developing reliable software entails an organised approach to software
engineering, making use of high level languages, constructs and abstractions. These tech-
niques are also essential if the software is to be portable and extensible. However, a general
rule is that the higher the level of generality or abstraction used, the greater the penalty
on the efficiency of the program.

Functional programming languages provide a high degree of flexibility and reliability to
program developers. Strong type systems give the programmer increased confidence in a
program's correctness. Features such as lazy evaluation, abstract datatypes and overload-
ing facilitate efficient software development. Unfortunately, all this imposes a burden on
the efficiency of functional programs.

In order to have fast programs while retaining these desirable language features, the onus
of optimisation falls to the compiler. We must build compilers that are capable of taking
programs written in a clear, abstract style and produce programs that run as efficiently as
possible. This raises the question of scope: it is obviously possible to build a compiler that
knows, for example, that x +0 is equivalent to x, but can a compiler conceivably translate

2 Chapter 1 : Optimisation by Transformation

an algorithm to improve its complexity?

The transformational approach to program optimisation takes the view that many program
improvements can be expressed as source-to-source mutations of the subject program. This
is a powerful technique: as we will show later in this chapter, a transformation system that
consists of a few simple correctness-preserving transformation rules is capable of providing
a framework in which many powerful optimisations can be expressed, including those which
alter the complexity of the original algorithm.

This thesis examines one aspect of global program optimisation through transformation:
that of the removal of intermediate data structures.

1.1.1 Transparency

Since program optimisation techniques are usually not generally applicable, it is imperative
that the programmer knows exactly when his program will be optimised. We call this
property transparency.

Many small low-level optimisations are generally not transparent, but this is regarded as
acceptable because the effect of the optimisation averages out as the size of the program
increases. But as specific optimisations become more powerful, the aspect of transparency
becomes more important. Non-transparent optimisations tend to produce unpredictable
results; a small change in the original program can produce wild variations in performance,
as the optimisation changes in applicability.

Because of its subjective nature, transparency is not subject to a rigorous definition; indeed,
many optimisations lie somewhere between the fully transparent and opaque extremes. A
rule-of-thumb definition is that if an optimisation guarantees to be applicable to programs
that meet a syntactic criterion, then it is transparent. This renders most optimisations
based on analysis techniques non-transparent, whereas optimisations based on program
transformation are often transparent.

There are exceptions to this rule-of-thumb: for example, binding time analysis as used in
partial evaluation is close to transparent, because the results of analysis can be used by
the programmer to restructure his program.

Chapter 1 : Optimisation by Transformation 3

Programmers are generally more comfortable with purely transformation-based optimisa-
tions, because the effect of the optimisation can be determined solely by examination of
the source program. For this reason, we consider transparency to be an important factor
in the design of optimisation techniques.

1.2 Unfold/Fold Transformations

The unfold/fold transformation system as devised by Burstall and Darlington [BD77] has
been the basis for most of the program transformation techniques developed for optimising

functional programs.

The system consists of six basic rules which are applied to a set of equations. The initial
set of equations will be the program to be transformed, but more equations may be added
as transformation takes place. Each equation has a left-hand side of the form v(el.· . en)
and a right-hand side which can be an arbitrary expression (this is similar to the pattern
matching function definitions seen in many functional programming languages). The rules
that can be applied to the program are as follows:

1. Definition. A new equation is introduced, with a left-hand side that overlaps with
no other equation already in the set.

2. Instantiation. A new equation is introduced which is a substitution instance of an

existing equation.

3. Unfolding. If e = e' and f = f' are equations and f' contains a substitution instance
of e, Se, then it may be replaced by Se'.

4. Folding. If e = e' and f = f' are equations and f' contains a substitution instance of
e', Se', then it may be replaced by Se.

5. Abstraction. Awhere clause may be introduced into any equation e = e' by replacing

the right-hand side with

4 Chapter 1 : Optimisation by Transformation

6. Laws. Any laws about primitives used in expressions may be used (for instance:
associativity, commutativity, etc.).

These six laws are sufficiently general to transform any program into almost any other.
The system is not entirely complete, since it cannot transform functions such as:

J(O) =0
f(x : xs) = f(xs)

into

f(xs) = 0

although an extra rule, called redefinition is suggested by Burstall and Darlington to allow

such transformations to be made.

It should also be noted that the transformation system is only partially correct. By this we
mean that the if the result of a transformation is a program that gives a result, this result
will be the same as the original program would have given. Unfortunately it is possible, by
transformation, to produce a program that is less defined than the original. This can only
happen if arbitrary use of the fold step is allowed; for example, if an equation f(n) = e
is in the set, then application of the fold rule can replace this with f (n) = f (n), which
is obviously a non-terminating function. Several people have proposed solutions to this.
Kott [Kot78] showed that correctness was guaranteed provided there the number of unfold
steps is always greater than or equal to the number of fold steps, given certain conditions
on the transformation. Also, Scherlis [Sch80] proposes a restriction on the use of the fold

step that can guarantee total correctness.

Sands [San95b] provides a general improvement theorem which can be used to guaran-
tee correctness of higher-order unfold/fold based program transformation schemes. His
theorem can also be used to verify that a particular transformation strictly improves the

program.

The generality of this system means that it is possible to obtain, by transformation, a
program which is less efficient than the original, as well as a program which is more

Chapter 1 : Optimisation by Transformation 5

efficient. This means that in order to transform a program profitably, the transformation
steps must be guided either by the user or by a well defined set of strategies (or tactics).

The examples presented by Burstall and Darlington are user guided in the sense that
they involve a central eureka step which allows the subsequent transformation process to
achieve the desired result. Some eureka steps can be classified by the type of optimisation
they achieve, and this fact can be used to specialise and hence automate a transformation
strategy. This is the basis of many proposed automatic transformation techniques [Chi90].
Feather shows how semi-automation of the unfold/fold system can ease the transformation

. of large systems [Fea79, Fea82].

Burstall and Darlington recognised that many transformations followed a similar style, so
they proposed a strategy for applying the rules. This goes as follows: make any necessary
definitions, instantiate, and unfold repeatedly while trying to apply laws, abstraction and
folding. Using this strategy they show that, for instance, the quadratic nfib function can
be transformed into an equivalent function with linear complexity, and that some list
processing functions can be transformed to avoid building intermediate structures.

1.2.1 An Example

Here we give an example of the unfold/fold transformation system in action. The particular
example we have chosen is a program fragment which performs a useful computation: find
the length of the initial segment of a sequence which specifies a certain predicate. The
following expression performs the required function:

length (takewhile p (iterate f 0))

Here we have broken the problem into three manageable sub-problems, and used a simple
combinator to perform each part. The length function takes a list and returns its length.
The takewhile function takes a list and returns the initial segment whose values all satisfy
the predicate p. The iterate function generates a list by repeatedly applying a function to
an initial value. The definitions of these combinators are given in Figure 1.1.

6 Chapter 1 : Optimisation by Transformation

iterate f x = x : iterate f (f x)

takewhile p (x : xs) = if (p x) then (x : takewhile p xs) else []

length []
length (x : xs)

=0
= 1+ length xs

Figure 1.1: Some Definitions

The above program clearly expresses the intention of the programmer, but unfortunately in
doing this a serious inefficiency has been introduced. The expression as written generates
two intermediate data structures: the list generated by iterate which is consumed by
takewhile, and the result of takewhile which is in turn consumed by length. The aim of the
transformation will be to derive a program that performs the same computation without

manipulating intermediate lists.

Figure 1.2 gives a transformation sequence that achieves the desired result. We begin by
defining a function 9 to be equal to our expression. We will explain each step in turn:

1. Define a new function h, which is identical to 9 except that the second argument to
iterate has been abstracted. This is the eureka step in the sequence.

2. Fold the original expression with respect to h. Our program is now represented by a
single call to the new function h.

3. Unfold the call to iterate on the right-hand side of h.

4. Unfold the call to takewhile on the right-hand side of h.

5. Use the following law of if:

f (if e then el else e2) ~ if e then f el else f e2

Chapter 1 : Optimisation by Transformation 7

gIp = length (takewhile p (iterate I 0)) (1)
define hlpx = length (takewhile p (iterate I x)) (2)
fold gIp =hlpO (3)
unfold hfpx = length (takewhile p (x : iterate I (J x))) (4)
unfold = length (if (p x) then (5)

(x : takewhile p (iterate I (J x)))
else

m
law if - if (p x) then (6)

(length (x : takewhile p (iterate I (J x))))
else

(length 0)
unfold x 2 - if (p x) then (7)

(1 +' length (takewhile p (iterate I (J x))))
else

0
fold - if (p x) then (8)

(1+hl p (J x))
else

0

Figure 1.2: Unfold/Fold Example

, ,

which is valid provided the function I is strict (i.e., I ..L = ..L). Using this law we can
push the call to length inside the branches of the if (because length is strict).

6. Unfold each call to length.

7. Now we have an instance of the original right-hand side of h, so we can apply the
fold rule.

The program fragment has been transformed into a recursive function that performs the
function of the combinator composition used in the original expression. Rather than using
general components, the program is now specialised to the task in hand, and gains a benefit
from this: there are no longer any intermediate structures, and the program will use less

8 Chapter 1 : Optimisation by Transformation

store than before. This will translate to real improvements in the observed run-time of the
program.

1.3 Removing Intermediate Data Structures

Algorithms which involve many intermediate data structures are common in programs
written in a declarative style. Expressions are built up using components or combinators,

each of which performs a particular function. The example in the previous section is an
illustration of this methodology.

This kind of modularity in program design is seen not just at the lowest level demonstrated
in the example, but throughout the structure of many programs. Each part of a program
is built using smaller components, which aids readability, extensibility and software re-
use but is detrimental to performance. By rewriting a program in order to remove the
inefficiencies imposed by its modularity, the programmer is likely to degrade the clarity
and maintainability of his program. As modern software engineering techniques dictate
that programs are developed so as to be easily maintainable, the burden falls to the compiler
writer to lessen the impact on efficiency.

Methods to automatically remove intermediate data structures (especially lists) have been
proposed by several researchers. Wadler [Wad81] proposed a small set of list combina-
tors (equivalent to map, foldl etc.) and showed that any composition of these combinators
could be effectively reduced to a single function application which wouldn't build any inter-
mediate structure. Augustsson [Aug87] describes a method to eliminate the intermediate
sequence of values in list comprehensions [Tur82] of the following common form:

[e I p +- [n ... m]]

It is also well known that by abstracting over the nil component of a list we can achieve
constant time list append [Hug84], effectively removing intermediate lists from chains of
appends. Wadler [Wad87] uses this technique to suggest a systematic transformation that
can remove calls to append in functional programs (for example, he shows how to transform

Chapter 1 : Optimisation by Transformation 9

tt x
f Xl··· Xn

C ttl,,' ttn
case tt of {PI -+ ttl ; ... ; Pn -+ ttn}

Figure 1.3: Treeless Form

a quadratic-time reverse function into a linear version). Burge [Bur77] goes one step further
by abstracting over both cons and nil, allowing simple list processing functions to be fused
together (a similar technique has been used to perform intermediate list removal by Gill
et.al., see Section 1.4.2).

1.4 Deforestation

. Wadler's deforestation algorithm grew from his work on Listlessness [Wad84, Wad85]. It
is a transformation system based on the unfold/fold strategy of Burstall and Darlington,
designed to automatically remove intermediate data structures ("trees") from functional
programs. It can be viewed as a strategy for applying the unfold/fold rules that can be
performed automatically, repackaged as a stand-alone transformation algorithm.

Deforestation applies to first order functional programs composed of functions written in
a certain form, called treeless form, shown in Figure 1.3. As suggested by the name, a
function in treeless form is guaranteed never to generate any intermediate data structures
(Le. trees). An additional restriction on functions in treeless form is that function argu-
ments must be linear (no argument can be referred to more than once in the body of the

function).

The deforestation theorem can be expressed thus: the deforestation algorithm can remove
all intermediate data structures from an expression involving only calls to treeless func-
tions with definitions in treeless form. The algorithm therefore takes as input a program
consisting of treeless functions and a non-treeless term, and yields a program consisting of
treeless functions and a treeless term.

10 Chapter 1 : Optimisation by Transformation

Tx
T (C tl tn)
T (f tl tn)

x

T (t[tdXI,"" tn/xnD
where f is defined by f Xl ••• xn = t

T (case X of {PI -+ tl ; ... ; Pn -+ tn})
= case X of {PI -+ T tl ; ... ; Pn -+ T tn}

T (case (f tl·.· tn) of {PI -+ t~; ... ; »« -+ t~})
= T (case t[tdXl!"" tn/Xn] of {PI -+ t~; ... ; Pn -+ t~})

where f is defined by f Xl ••• Xn = t
T (case (C tl . .. tn) of {... ; C Xl • • • Xn -+ t ; ... })

= T (t[tdXl!"" tn/xnD
T (case (case to of {p~ -+ t~; ... ; P~ -+ t~}) of {PI-+ tl;"'; Pn -+ tn})

T (case to of
P~ -+ case t~ of {PJ -+ tJ ; ; Pn -+ tn}
P~ -+ case t~ of {PJ -+ tJ ; ; Pn -+ tn})

Figure 1.4: Deforestation Algorithm

Informally, the algorithm works as follows. The transformation function (shown in Figure
1.4) is applied to the initial composition of functions, which continuously unfolds function
calls while applying reduction and commuting conversion transformations to the expression.
If at any time a sub-expression occurs which is a renaming of an expression previously
transformed, then the fold step is triggered. The fold step generates a new recursive
function (which is guaranteed to be in treeless form). The algorithm continues until no
more sub-expressions can be transformed, when there will exist an expression in treeless
form and a new set of treeless functions. By the definition of treeless form, this means that
the result must include no intermediate data structures.

Termination of the algorithm is based solely on the fact that the fold step will always occur
eventually. Treeless form is formulated in such a way that this will always happen, and
Wadler provides an outline of a proof of termination in his paper. A more complete proof

of termination is presented by Ferguson and Wadler [FW89].

Chapter 1 : Optimisation by Transformation 11

Unfortunately treeless form is a very restrictive language, both in its form and expressive-
ness. It is first-order only, whereas most modern functional programming languages are
higher order. The two other restrictions, that arguments to a function application can only
be variables, and that function arguments must be linear, mean that it isn't possible to
write any arbitrary function in treeless form.

Wadler goes some way to removing these restrictions in his paper, using two methods:

• Blazing relaxes the restriction on variable-only arguments by allowing expressions
of numeric (or other non-recursive) type in argument positions. These expressions
can only generate a simple result, and as such don't really count as intermediate
data structures. In the blazed deforestation algorithm (an extension of the basic
algorithm) expressions that are blazed minus are not transformed further, but ex-
pressions blazed plus are processed as normal. Blazing extends the range of functions
that can be used as input to the deforestation algorithm, but still fails to encompass
all possible functions .

• A well-known technique called higher order macros enables certain functions with
arguments of function type to be represented as macros by abstracting the offending
arguments. This enables higher order functions such as map to be represented in first
order treeless form.

The remaining restriction, that all function arguments must be linear, is present to ensure
that the deforestation algorithm cannot produce a program that is less efficient than the
original. This can happen during the unfold phase, where a function application is replaced
by an instance of the function definition. If an argument were allowed to occur multiple
times in the body of the function, then expression duplication could occur as a result of
unfolding. This can cause an arbitrarily large computation to be duplicated at run-time,

thus the restriction.

The prospect of lifting these restrictions further, and obtaining an algorithm that performs
deforestation on a wider variety of programs, is the subject of much of the work that has
been inspired by Wadler's deforestation, which is discussed in the next section.

12 Chapter 1 : Optimisation by Transformation

An attractive property of the deforestation algorithm is that it is completely transparent.
By a syntactic restriction on the input, deforestation ensures that intermediate data struc-
tures can always be removed. As deforestation is generalised, this property is difficult to
maintain, a concern which has so far not been addressed acceptably.

Example

Without going into the details of the transformation, deforestation produces the following
result given the example program presented in Section 1.2.1 (with suitable redefinitions of
the functions in blazed treeless form):

hfpO

where h f p x = case p x of
True -+ 1+ h f p (f x)
False -+ 0

which is equivalent to the result derived by the unfold/fold style transformation.

Although the result of optimisation is a program that is obviously more efficient than
the original, the overall complexity of the algorithm remains the same. This is true for
deforestation in general, which can only achieve constant factor speedups. However, as we
will show later in this thesis, the constant factor can be large enough for the optimisation
to produce significant increases in efficiency.

1.4.1 Extensions to deforestation

Chin recognised in his thesis that Wadler's deforestation could be generalised to cover a
wider range of functions by extending the definition of treeless form and modifying the

algorithm to accommodate these changes [Chi90].

Firstly, the definition of treeless form was changed to allow functions that had one or
more non-linear arguments. Chin extended the concept of blazing to function parameters,

Chapter 1 : Optimisation by Transformation 13

blazing a parameter minus if it was non-linear. He also relaxes the restriction on variable-
only function arguments by blazing a parameter minus if a call to the function exists with
a non-variable expression in the same position.

The textual linearity criterion of treeless form is replaced in Chin's extended treeless form
by a definition based on Sharing Analysis [HG85]. Non-linear arguments are subject to
substitution if and only if the argument can only be evaluated once at execution time.
This particular extension means that the algorithm gains some power at the expense of

transparency.

Finally, Chin extends deforestation to cover all first order functions by introducing the let
construct to his language, to indicate the presence of an intermediate data structure that
the deforestation algorithm should not attempt to remove. Thus all functions can be con-
verted into treeless form by the introduction of let. Chin doesn't attempt to identify how
lets should be added to functions. An intermediate structure that is normally removable
by the deforestation algorithm can become residual without proper control on the use of

the let construct.

Chin also extends his deforestation algorithm to higher-order functions by a process of
higher-order removal combined with some extensions to the algorithm (which essentially
ignore residual higher-order features in the input). We consider this method, while valid, to
be unacceptable for several reasons: it increases the size of the program, adds complexity
to the deforestation algorithm, and results in a loss of transparency.

Chin further extends his ideas giving a generalised annotation scheme for first-order defor-
estation that uses a producer-consumer model to determine when a certain fusion is safe

(Le. will terminate). A proof of termination is given.

Chin doesn't comment on the scope of his technique as a whole, nor on the effect of his
generalised deforestation on real example programs.

Hamilton [Ham93] also extends first order deforestation by relaxing the definition of treeless
form. Like Chin, he recognises that textual linearity is too strong a criteria to avoid
duplication of work, and introduces a sharing analysis to more accurately detect non-

·linearity.

Hamilton also relaxes treeless form by showing that not all non-variable function argu-

14 Chapter 1 : Optimisation by Transformation

ments represent intermediate data structures, and indeed some of these can be deforested

successfully. The impact of this is that function arguments can be non-variable provided

that the called function doesn't decompose the structure in the equivalent argument po-

sition. An example is the second argument to append, and this renders the definition of

concat in treeless form. Hamilton's usage analysis also performs the function of detecting

these non-intermediate structures.

Hamilton also adds the let construct to his language in order to be able to express all

functions in treeless form. His let construct is identical to Chin'S, in that it indicates

the presence of an intermediate structure which will not be removed by the deforestation

algorithm.

Hamilton attempts only the theoretical study of his extended deforestation, without com-

menting on the practicalities. Some recent work by Hamilton [Ham95] gives a new defor-

estation algorithm for a higher-order language, and gives a termination proof. Hamilton's

work influenced the author in formulating the material presented in Chapter 2 (see Section

2.1).

Sorenson, Gliick and Jones [SGJ94], extended deforestation in order to be able to derive

optimal Knuth-Morris-Pratt [KMP77] specialised pattern matchers from a general match-

ing algorithm. Their extension involves adding a rule to the basic deforestation algorithm

to enable this partial-evaluation style optimisation to take place.

Sands provides some insight into proving the semantic correctness of unfold/fold style

transformations, and uses his method to prove that a higher-order variant of deforestation

is correct [San95b, San95a].

1.4.2 foldr/build Deforestation

Gill, Launchbury and Peyton Jones [GLJ93, Gil95] take an entirely different approach

to deforestation. The motivation of their approach is to achieve deforestation through a

minimum of effort, sacrificing some generality along the way.

The technique is based around two combinators. The first is the all-purpose list reducing

function foldr, which encapsulates a standard way in which lists are consumed (incidentally,

Chapter 1 : Optimisation by Transformation 15

foldr has nothing to do with the fold rule of Burstall and Darlington!). It can be defined

as follows:

foldr f c [] = c

foldr f c (x: xs) = f x (foldr f c xs)

Many list consuming functions can be written using foldr, including sum, append, and map.
The second combinator is in some ways the partner of foldr, called build, with the following

definition:

build 9 = 9 (:) []

Many list producing functions can be abstracted over cons and nil by redefining them as

applications of build. For example, map can be defined as follows:

map f zs = buildt)«, >.n.foldr{>.a. Xb. c (f a) b) n xs

The advantage of this is that lists built using build and consumed using foldr can be removed

using the foldr /build rule:

foldr f c (build g) = 9 f c

The foldr/build rule by itself isn't valid for all values of g. It is only valid for those lists

which are truly abstracted over their list constructors, that is only values of 9 that satisfy

the following polymorphic type:

9 'VfJ.(a ~ fJ ~ fJ) ~ fJ ~ fJ

This restriction is enough to show that the foldr /build rule is valid, using the "free theorem"

concept [Rey83, Wad89].

16 Chapter 1 : Optimisation by Transformation

The foldr / build rule embodies the essence of removing intermediate lists. Whenever an
instance of the left-hand side of the foldr/build rule occurs in a program, it indicates that
an intermediate list can be eliminated, by replacing it with the right-hand side.

The main argument in favour of using this method for deforestation is its simplicity. There
is no need for the unfold/transform/fold strategy of classical deforestation, and the associ-
ated complex termination proofs. The disadvantage is the loss of generality. All functions
to be deforested must be defined in terms of foldr and build (although some work has been
done on performing this transformation automatically [LS95,Gil95]). Difficulties arise with
functions such as zip which take multiple list arguments, all of which can be deforested
successfully with classical deforestation. Other difficulties are presented by functions such
as foldrl (a version of foldr which takes a list of at least length one), which treat certain
cells in the list differently from others.

A more detailed comparison of foldr/build deforestation with classical deforestation is left

until Section 7.2.2.

1.5 Contribution of Thesis

This work should be viewed as an exploration into the topic of deforestation. In this section
we list the main contributions of the thesis.

• The major contribution of the thesis is to show how deforestation can be performed
for arbitrary higher order functional programs. We give a deforestation algorithm
for programs written in a language based on the lambda calculus, which satisfies the

transparency property.

• We identify the conditions which must be satisfied by the input to the deforestation
algorithm, and show how these conditions ensure termination of the algorithm.

• We relate deforestation to the cut-elimination principle of logic. By merging a cut-
elimination algorithm and simple first-order deforestation, we obtain a new higher-
order deforestation algorithm that has advantages in generality over the previous

algorithm.

Chapter 1 : Optimisation by Transformation 17

• We show how arbitrary functions can be converted automatically into the form re-
quired by deforestation. The conversion process is optimal in the sense that converted
functions allow the greatest amount of intermediate data structure removal.

• We describe the problem of ensuring that transformed programs are no less efficient
than the original. Several rules are given concerning the form of the input to de-
forestation and other transformations performed both before and after deforestation
that must be adhered to to ensure safety.

• The transparency property of our deforestation algorithm is described in detail. We
show how to identify which intermediate structures will be removed for any given
input program.

• We design a model for implementing the deforestation optimisation on a real func-
tional language, in this case Haskell. The model involves a compromise between
user intervention and automatic optimisation that allows certain classes of inter-
mediate lists to be removed automatically, with more deforestation being possible
if the programmer explicitly directs the deforestation algorithm through the use of
annotations.

• We implement the deforestation implementation in the Glasgow Haskell Compiler.
The details of the implementation are given, many of which are independent of the
compiler and language used.

• We propose (and implement) certain extensions to the basic deforestation scheme
that were discovered through experimentation to be essential when applying the
deforestation implementation to larger programs.

• We apply the prototype implementation to several example programs. Results are
given, and we also show how to maximise the benefit of deforestation by annotating

the program.

• Finally, we identify several avenues for future research.

18 Chapter 1 : Optimisation by Transformation

1.6 Structure of Thesis

Chapter 2

In Chapter 2 we describe a complete deforestation algorithm for a lambda-calculus based
language. The transformation and knot-tying (new function generation) algorithms are
described separately, and we provide a proof of termination for the algorithm as a whole.
The algorithm presented in this chapter has some shortcomings, which are dealt with in

the rest of the thesis.

Chapter 3

In Chapter 3 we take a principle from logic, namely cut elimination, and show how it relates
to deforestation. We propose a new language formulation derived from both sequential
calculus and natural deduction, give a cut elimination algorithm for this language, and
prove termination for it. We then present a deforestation algorithm for a simple first order
recursive language, formulated in the same style as the cut elimination algorithm. Finally,
these two languages and algorithms are combined to yield a higher order deforestation
algorithm. We provide a proposition of termination, arguing that given certain restrictions
on the input (which are less restrictive than those of the algorithm in Chapter 2), the

algorithm will terminate.

Chapter 4

Chapter 4 looks at some issues related to deforestation that are necessary for deforestation
to be put into practice. The first, automatic conversion to treeless form, enables arbi-
trary recursive functions to be automatically translated into the treeless form language
required for deforestation. This translation involves the introduction of some residual data
structures (intermediate data that will not be removed by the deforestation). Because our
transformation is transparent, the residual data structures introduced by this process are

easily identified, should this be required.

The second issue treated in this chapter is that of linearity. The linearity criterion is
required to ensure that deforestation does not generate a program that is less efficient

Chapter 1 : Optimisation by Transformation 19

than the original: this can happen if expressions are duplicated during transformation,

for example. This subject is treated as a separate issue, since it has no impact on the

operation or termination of the deforestation algorithm itself.

Finally, we examine the transparency properties of our deforestation algorithm. We show

how the programmer can identify which parts of a program will be optimised, and in

particular, exactly which data structures will be removed by deforestation.

Chapter 5

In Chapter 5 we give a detailed description of our prototype deforestation implementation

in the Glasgow Haskell Compiler, showing how each part of the system can be implemented

practically and efficiently. We also provide some optimisations and improvements to the

basic scheme that were developed as a result of experimenting with early versions of the

prototype.

Chapter 6

In Chapter 6 we give the results obtained from applying deforestation to a number of

example programs, each displaying a different facet of the scope of deforestation as an

optimisation strategy. We also provide a discussion of the practicalities of deforestation

in a real-world compiler, and give some suggestions for improvements to the optimisation

scheme.

Chapter 7

In Chapter 7 we give our conclusions, and describe some topics for future research.

20 Chapter 1 : Optimisation by Transformation

Chapter 2

Higher-Order Deforestation

.In this chapter we will present a new deforestation algorithm that removes intermediate
data structures from arbitrary higher-order functional programs. The approach taken
is to start from scratch: instead of extending the first-order deforestation algorithm to
accommodate higher-order constructs, we take the view that the lambda calculus is the
core of a higher-order programming language, and not simply an extension of first-order

recursion equations.

Our goal can be stated thus: to develop an algorithm for removing intermediate data
structures from arbitrary higher-order, lazy, purely functional programs. The decision
to apply the algorithm to lazy functional languages (Le. languages where the evaluation
strategy is normal order, and the values of subexpressions are updated once evaluated) is
motivated mainly by preference, whereas the requirement for pure functionality is essential:
transformation techniques become significantly more complicated in the presence of non-

referentially transparent language features.

The above goal leads to a number of subgoals:

• The algorithm should be generally applicable. That is, it should apply to all pro-
grams, including those that contain data structures which cannot be removed by the

deforestation process .

• The algorithm should be transparent. It should be obvious by examining the subject

22 Chapter 2 : Higher-Order Deforestation

program which data structures will be removed by the deforestation process and

which will be left in place .

• The algorithm should lead naturally to an implementation with acceptable efficiency

(suitable for an optimising compiler).

The algorithm presented in this chapter meets all three of these goals, but nevertheless has
a number of shortcomings which will be addressed in the rest of this thesis.

2.1 History

The work presented in this chapter is inspired to some extent by Hamilton, whose recent
work on deforestation [Ham95] provoked the author to re-evaluate some old research in a

new light.

The deforestation algorithm given in this chapter had been discovered some time earlier,
but had been dismissed as having no great advantages over the algorithm we had previously
been using [MW92]. Hamilton discovered a similar algorithm independently, and it was
his work that inspired us to go back to our algorithm and attempt the termination proof.
The resulting proof was somewhat simpler than for the algorithm we had previously been

working with.

The main difference between our algorithm and Hamilton's is that Hamilton uses blazing
to indicate residual data structures and non-linear function arguments, whereas we use the
let construct (see Section 2.2.1). Modulo this difference, our definition of treeless form is

identical to that of Hamilton.

2.2 Syntax and Semantics

We now introduce the syntax and semantics of the language that our deforestation algo-
rithm will apply to (Figure 2.1). The language we have chosen is the lambda calculus
with some straightforward extensions: explicit recursion at the top level using letrec,

Chapter 2 : Higher-Order Deforestation 23

t, u, v ..- x variable
>.x.u lambda abstraction
t ts application
C ts constructor application
case u of alts case expression
let X = t in u let expression

xs Xl ... Xn sequence of variables
ts ,,- tl ... tn sequence of terms

alts {Cl XSI -t VI;"'; Cn XSn -t vn} alternatives
defs ,,- UI = t1; •••• ; fn = tn} declarations"

prog ,,- letrec defs in u program

Figure 2.1: The Language

non-recursive let expressions (these have a special meaning to our algorithm, see later),
and constructs for building and examining algebraic data structures. This language also
represents the smallest subset of functional languages such as Haskell [HPW+92], that the
rest of the language can be translated into.

Algebraic data structures are identical to the user definable data structures of Haskell. An
, algebraic datatype is a sum-of-products; in general, an algebraic datatype consists of a
number of constructors, each with a number of arguments. Enumerated types are a special
case of algebraic datatypes-a set of constructors with no arguments. Similarly, product
types consist of a single constructor with an argument for each element of the product.
For example, the list type can be defined thus:

List a - Nil
Cons a (List a)

where Nil and Cons are the constructors. Nil has no arguments, and Cons has two: the
list element (of type a), and the rest of the list (of type List a).

24 Chapter 2 : Higher-Order Deforestation

A structure is built by applying a constructor to the correct number of arguments. Partially

applied constructors can be simulated with functions:

cons = AX. AXS. Cons X xs

Data structures are deconstructed and examined with a case expression. A case expression
consists of a selector (an arbitrary expression) and a set of alternatives, one for each
constructor in the datatype. Each alternative consists of a simple pattern (a constructor
fully applied to variables) and an expression. The semantics can be expressed informally as
follows: the selector is evaluated to weak head normal form, and the top level constructor is
matched with the correct alternative. Each of the variables in the pattern is bound to the
corresponding field of the data structure, and the expression on the right of the alternative

is evaluated in the presence of these new bindings.

We also require that programs are well typed, and that any recursive types in the program
are defined using algebraic data types, as in the list example above. These type restrictions
correspond to the type system of Haskell and similar functional languages.

There are some constructs missing from this simple language that one would expect to find
in a real programming language. Firstly, primitive objects such as integers and operations
over them. These can be simulated using algebraic data types, so we do not include in
the basic language. Secondly, nested letrec: the deforestation algorithm can be extended
quite straightforwardly to handle programs with nested letrecs, as we have done for our
prototype implementation. Nested letrec expressions are treated in Section 5.6.2.

The denotational semantics of the language are specified by the following reduction rules:

(AX. u) (t : ts) => u[t/x] ts
case C tl ... t« of {... ; C Xl." Xn -t U; ... } => U[tdXI,"" tn/xn]
let X = t in u => u[t/x]
letrec {il = tl;'" ;fn = tn} in u => u[tUfl!"" t~/fn]

where t~ = tl[tUil]

Chapter 2 : Higher-Order Deforestation 25

The operational semantics of the language is call-by-need (or lazy evaluation). In the rest
of this chapter we will use the terms normal form and weak head normal form. A term
in normal form is one where none of the above reduction rules can be applied. A term in
weak head normal form is either a lambda expression or a constructor application.

2.2.1 Treeless Form

Treeless form is a subset of the full language presented in the previous section. That is,
any term which is in treeless form is also a term in the full language, but not vice-versa.

The essential property of a term in treeless form is that evaluating it will not use any
intermediate storage except in certain well defined cases. We define intermediate storage
as those structures generated (and possibly also consumed) by a computation, that do not
appear directly in the result.

In order to define treeless form we need to distinguish two types of variable: those bound
by a definition in the top-level Ietrec, and all others. These two types of variables are
. distinguished because they are treated separately by the algorithm to follow. When this
distinction is relevant, we will refer to the letrec bound variables by the identifiers f 9 h
and the others by x y z.

There are two forms of application in the treeless form syntax: application of a letrec-
bound variable, and application of a normal variable. The argument list in both cases must
consist of variables only, but it can be empty.

Consider the definition of treeless form in Figure 2.2, but ignore for now the let construct.
Terms in this form are in normal form with respect to the reduction rules for the language.
Hence, evaluating a term in this form would succeed immediately returning the original
term, using no intermediate storage. Now add the let construct, and we have removed the
normal-form property. The essential concept captured here is that the only intermediate
structures built by a term in treeless form are those indicated explicitly by the let construct.

In contrast to the treeless form of Wadler [Wad90b], our treeless form allows intermediate
data structures, but we are making it clear exactly where these intermediate structures

exist.

26 Chapter 2 : Higher-Order Deforestation

tt, tu, tv ..- z xs application..
f xs recursive function application
AX. tu lambda
case X of ialts case expression
C tts constructor application
let X = tt in tu let expression

xs ..- Xl'" Xn sequence of variables (n >= 0)..
tts ..- ttl' .. ttn sequence of terms (n >= 0)..

talts ..- {Cl XSI -t tVI;"'; C; XSn -t tvn} alternatives (n > 0)..
tdefs ..- {Il = ttl;t« = ttn} declarations (n > 0)

tprog ..- letrec tdefs in u program..

Figure 2.2: Syntax of Treeless Terms

Also, our treeless form is sufficiently general that any term in the full language can be
rewritten in treeless form, usually by the judicious addition of let to ensure that the
argument to any application is a variable. This raises another important point: there is
normally more that one way that a term may be converted into treeless form, but is one
way better in any sense than another? And if so, is there an optimal translation? Well, the
purpose of the let construct is to allow intermediate data structures that cannot be removed
by deforestation to be present in the program. Thus, the deforestation algorithm presented
later will not remove data structures protected by the let construct (it will remove all
others, with one exception that is discussed later). It is entirely possible to prevent all
useful deforestation from taking place by over-use of the let construct. However, as we will
show in Section 4.1, there is an optimal translation that can be performed automatically.

A program in treeless form is precisely the input that our transformation system will
expect. It consists of a set of treeless recursive definitions and an arbitrary (non-treeless)
expression. The only restriction on the expression is that it must be obtainable by repeated
substitutions of treeless terms for the free variables of an initially treeless term (Le. the
term must have an order, see Section 2.6). It is straightforward to check that a given term

satisfies this restriction.

Chapter 2 : Higher-Order Deforestation 27

This criteria covers the majority of terms including all terms composed of just applications
and variables. However, it disallows terms such as

AX.! (x x)

We cannot express this term as a treeless substitution without making use of name-capture,
so this term is ruled out as input to the deforestation algorithm. However, if we rewrite
the term using a let expression, as

AX. let y = x x in! y

then it is admissible (although we have lost the possibility of eliminating the intermediate
structure between! and its argument by introducing the residual let). It is always possible
to transform expressions that cannot be represented as treeless substitutions into valid
ones by addition of suitable let expressions. A possible algorithm would be to identify
non-variable function arguments and case selectors in which bound variables appear, and
rebind these expressions using a let as above.

2.3 The Transformation Algorithm

We will describe the higher-order deforestation algorithm in two stages: this section de-
scribes the transformation process, while the next section describes the termination con-
ditions and the generation of new recursive definitions.

The transformation is given in Figure 2.3. It is a recursive operation 7 from terms to
treeless terms. The recursive definitions bound by the top-level letrec are represented
by a mapping D, from variables to expressions. Strictly speaking, we should write 7D,
since 7 also depends on D, but the subscript has been omitted for readability. The only
rules which use Dare 71 and 77, which replace recursive function variables with their

definitions.

The 7 operation examines the head of the applicative expression on its input. If the head

28 Chapter 2 : Higher-Order Deforestation

7 (J ts)
7(xt1 ••• tn)
7 (AX. u)

7 ((AX. u) t1 ••• tn)
7 (C t1 ••• tn)

= 7(u ts) where (J = u) ED
= let Zl = 7 tl in ... let Zn = 7 tn in X Zl ••• Zn

= AX. T'u
=7(u [td x] i:2 .•. tn)
= C (7td ... (7tn)

7 ((let X = u in v) ts) = let X = 7 u in 7 (v ts)
7 ((case (J us) of alts) ts)

= 7((case (v us) of alts) ts) where (J = v) E D

7 ((case (x Ul ••• un) of {Ci XSi --+ Vi}) tS)

- let Zl = 7 Ul in

let Zn = 7 Un in
let Zo = X Zl ••• Zn in
case Zo of {Cj XSi --+ 7 (Vi ts)}

7((case ((Ax. v) Ul ••• Un) of alts) ts)
= 7((case (v[uI/x] tv.! .•• Un) of alts) ts)

7 ((case (C us) of {... ; C xs --+ v; }) ts)
=7(v [us / xs] ts)

7 ((case (case v of {Cj XSj --+ Vi}) us of alts) ts)
= 7 ((case v of {Cj XSi --+ case Vi us of alts}) ts)

7 ((case ((let x = u in v) us) of alts) ts)
= let x = 7 u in 7 ((case (v us) of alts) ts)

Figure 2.3: Transformation Scheme

(71)

(72)

(73)
(74)
(75)
(76)
(77)

(78)

(79)

(710)

(711)

(712)

Chapter 2 : Higher-Order Deforestation 29

of this term is found to be a case expression, then further pattern matching is performed
on the head of the applicative expression in the selector of the case. This makes the
7 operation comparatively complex, as it must delve deeply into the input term to find
the next reduction to perform. However, compared to an approach which has simpler
transformation steps [MW92], this scheme has no nested calls to 7. This makes for not
only a more efficient implementation, but also an algorithm that has a simpler termination

proof.

All the rules in the algorithm consider applicative terms; note that the argument list in
each case can be empty (the exceptions are rules 74 and 79 which perform ,B-reduction).
This enables the algorithm to be presented in a concise manner, as we do not have to
consider applicative and non-applicative terms separately.

There is an implicit argument list flattening operation in the algorithm: it is assumed that
((t us) vs) is automatically replaced by (t (us -1+ vs)).

There are a number of places in the transformation where name-capture can occur (a
- '

binding can 'capture' a free variable of the same name in an expression if the binding
moves outside that expression). We have avoided this problem by assuming that all variable
names are unique, again to retain clarity in the rules. This is an implementation problem
that is by no means trivial, and will be discussed further in Chapter 5.

Two rules in the algorithm introduce lets into the output, namely rules T2 and T8. This is
contrary to our intuition, which says that all intermediate data structures except for those
bound by let in the input will be removed by deforestation. However, the cases where let
is introduced are always places where we cannot hope to remove the intermediate structure
in question, because the variable at the head of the application is bound elsewhere by a
lambda or case expression, and hence its value is not known. Nevertheless, we consider
this introduction of lets to be a deficiency in the algorithm. This subject is discussed
further in Section 2.7.1, and we propose a solution in the next chapter.

30 Chapter 2 : Higher-Order Deforestation

2.4 Knot Tying

The transformation algorithm terminates when a call to I is made with an argument
that is a renaming of one that has occurred before. When this happens, a new recursive
definition is made and the looping transformation is replaced by a call to the new function.
In the terminology introduced by Burstall and Darlington [BD77], we are defining new
functions and folding with respect to these new functions. We call this process knot tying.

This explanation will be made more concrete by considering one possible implementation
of the procedure. In order to simplify matters, note that it isn't necessary to remember
every single call to I in order to detect renamings. A subset of the rules for I, namely all
rules except 1 and 7, terminate all by themselves. It is only application of the unfolding
rules which can lead to non-terminating transformations, so calls which invoke these rules
need to be memorised and compared against future calls to detect loops.

We can separate the transformation and knot tying stages of deforestation by having the
transformation generate an infinite, annotated output, and the knot tying process exam-
ining the output to discover loops and making new recursive definitions. This formulation
requires the algorithm to be implemented using a lazy functional language, because of the
infinite intermediate structure between the two stages.

\Ve need a way to annotate the output from transformation with the history of calls to I.
This is done by introducing a new term form, label, which has two fields: the first cannot
contain any further label terms, and the second can contain labels but must be treeless.
The terms in both fields are semantically identical, and furthermore, the free variables of
the second field are a subset of the free variables of the first field (the label concept was

first proposed in [MW92]).

The idea is to annotate the output by depositing a label with the argument to I in the
first field, and the result of transformation in the second. The knot tying process will
then descend the output term, collecting the first field of each label term and continue by
descending into the second field, looking for labels that are renamings of those encountered

so far.

The transformation algorithm can now be modified to annotate its output. The new rules

are:

Chapter 2 : Higher-Order Deforestation ' 31

7 l@(j ts) = label I (7(u ts)) where (j = u) ED (71)

7 l@«case (j us) of alts) ts) (77)
= label I (7«case (v us) of alts) ts)) where (j = v) E D

where the syntax l@t is used to provide a single identifier 1 that refers to the term t, to
avoid having to duplicate t on each right-hand side.

Each of the unfolding and reduction rules now annotates the output with a record of the
call. To complete the knot tying process, we need to define what we mean by a loop, and
how loops are used to generate new recursive definitions.

Definition 1 An expression t is a renaming of expression u if and only if there exists
a substitution a from variables to variables (excluding letrec bound variables) such that

au = t.

Note that the renaming substitution a may possibly map several different variables to the
same result. Now, recall that the first field of a label term is identical in meaning to its
second field, and contains no other labels . We can now define what we mean by a loop:

Definition 2 A loop is defined as a term of the form label t u where u has at least one
subterm of the form label t' u', where t' is a renaming of t.

To generate a new set of mutually recursive functions, we first identify loops in the output
from the transformer. Each loop is replaced with a new recursive function call as follows:
let Xl ••• xn be the free variables (excluding those in D) of the loop label t u. The new

expression takes the form f Xl

top-level definitions:

Xn, and the following function is added to the list of

where u' is the expression u with each looping subterm (label t' v where t' is a renaming
of t) replaced by f YI ••. Yn, where the Yi are the free variables of t'. The Yi must be

32 Chapter 2: Higher-Order Deforestation

in the same order as the Xi: that is, if a is the substitution renaming t to t', then each

Yi = a(xi).

Note that u' may contain further knots to be tied, leading to nested recursion in the output.

The above definition suffices for our proof of termination in Section 2.6, but note that an
implementation can perform several optimisations to this simple scheme. For example,
similar loops may occur in several branches of the transformed expression and it makes
sense to combine these into a single new recursive definition rather than create several that
are identical modulo renaming. Additionally, it can sometimes be beneficial to cache all

calls to T instead of just those that unfold definitions, because this enables the algorithm
to terminate earlier and generate smaller output. An example of this is provided in the
next section. The topic of optimising the knot tying process is discussed further in Chapter

5.

2.5 Example

In this section we will examine a particular example of the application of the deforestation
algorithm in detail, to provide an insight into how it can be used to remove intermediate

data structures from higher-order programs.

Our goal will be to deforest the expression:

AXS. concat (map (map 1) xs)

using the definitions in Figure 2.4. The intermediate data structure we wish to remove is
the entire list of lists produced by map (map f) xs and consumed by concat.

Looking at the definitions in Figure 2.4, we can see that two of them are not in treeless
form: foldr, because the application of f has a non-variable argument, and concat, because

append occurs to the right of an application.

We can render foldr in treeless form by the addition of a let:

Chapter 2 : Higher-Order Deforestation 33

append = Xzs,Ays. case xs of
Nil -+ ys
Cons x xs -+ Cons x (append xs ys)

[old» = AI. Xc,Axs. case xs of
Nil -+ C

Cons x xs -+ I x (foldr I c xs)
map = AI. Axs. case xs of .

Nil -+ Nil
Cons x xs -+ Cons (f x) imap] xs)

concat = [oldr append Nil

Figure 2.4: Example Definitions

[oldr = AI. AC. Axs. case xs of
Nil -+ C

Cons x xs -+ let z = [oldr I c xs in I x z

Because we had to add a let to make the function treeless, there must exist a residual
data structure (an intermediate structure that is not removed by deforestation) in this
definition of [oldr .. In this case, it is part of the result from the function; this topic is
discussed further in Section 4.3.

We could use the same technique to write a treeless version of concat, but this is not ideal:
it would involve rebinding append with a let, which we'd rather not do since append would
be residual, and calls to it could never be reduced.

Another technique for taking non-treeless expressions and making them treeless is staring
us in the face: apply the deforestation algorithm! To obtain a treeless version of concat,
we can deforest [oldr append Nil using a set of definitions D that contains append and the
treeless version of [oldr, The transformation in shown in Figure 2.5.

At this point, we can knot-tie and make some new definitions. The first call to T has

34 Chapter 2 : Higher-Order Deforestation

T ifoldr append Nil)

= T ((Af. AC. AXS. case xs of
Nil -t C

Cons x xs -t let z = [oldr f C xs in f x z) append Nil)

= T (AXS. case xs of
Nil -+ Nil
Cons x xs -t let z = [oldr append Nil xs in append x z)

= AXS. T(case xs of
Nil -+ Nil
Cons x xs -+ let z = [oldr append Nil xs in append x z)

= AXS. case xs of
Nil -+ T Nil
Cons x xs -+ T (let z = [oldr append Nil xs in append x z)

= AXS. case xs of
Nil -+ Nil
Cons x xs -+ T (let z = [oldr append Nil xs in append x z)

= AXS. case xs of
Nil -t Nil
Cons z xs -+ let z = T((Af.Ac.)..xs) append Nil xs) in T(append x z)

= AXS. case xs of
Nil -+ Nil
Cons x xs -+ let z = T (case xs of

Nil -+ Nil
Cons x xs -+ let z = [oldr append Nil xs

in append x z)
in T (append x z)

Figure 2.5: Converting concat to treeless form

Chapter 2 : Higher-Order Deforestation 35

occurred before, and we can generate a new function from this. The call T (append x z)
will simply yield an identical definition of append modulo renaming, since it is applied to
only variables and no intermediate data structure removal can take place. Thus, we won't
bother to expand this any further, and just leave the call to append in place.

After knot tying, we have the following definition of concat:

h = AXS. case xs of
Nil -+ Nil
Cons x xs -+ let z = h xs in append x z

concat = AXS. h xs

This is an almost optimal definition of concat, save for the residual let that prevents the
output from concat being deforestable. The let is there as a result of the definition of foldr,
which required a let to be represented in treeless form. However, there is an alternative
definition of concat that has no let, so this can be considered a failure, albeit one which
is easily rectified. In fact, since append doesn't call h, we can deforest the expression
append x (h xs) and substitute the result for the subexpression (let z = h xs in append x z)
in the definition of h, to remove this intermediate structure. This yields the optimal
definition of concat. The details are omitted here, since the above definition suffices for

our example.

As an aside, note that if we don't cache all calls to T then the call which we used to tie
the knot above wouldn't be recognised, but a later call would be. This is an example of
the tradeoff between the amount of caching performed and the size of the resulting code

mentioned in the last section.

Also, note that we could have used this technique for finding the treeless version of fol~r,
and it would have yielded the same result that we achieved above by the manual insertion of
a let. In order to do this, we would have to treat foldr as a free variable when transforming

the body of foldr itself.

The technique cannot be used in general, however, because between the stages of applying
the deforestation algorithm to the non-treeless function and using the new definition for
further deforestation, we need to modify the contents of D, which may render the definition

36 Chapter 2 : Higher-Order Deforestation

non-treeless again. A separate treeless-form conversion process is required (more about this
later).

Now, let's go ahead and deforest our goal expression, using the new definition of concat
and its subsidiary function h. The steps in the transformation are given in Figures 2.6 and
2.7. At this point, we have two calls to T that have occurred before. Knot tying produces
the following program:

letrec
g1 = >'1.>.xs. case xs of

Nil -+ Nil

Cons x xs -+ let z = g1 I xs in g2 I x z
g2 = >'I.>.xs.>.z.case xs of

Nil -+ z
Cons x xs -+ Cons (I x) (g2 I xs z)

in AXS. gl I xs

The result is a treeless program, and hence it builds no intermediate structure. We can
see by examining the code that the only list built is the result of the computation itself.

In this example we have demonstrated the power of the higher-order deforestation algo-
rithm by showing how non-treeless functions can be made treeless by application of the
deforestation algorithm, and how deforestation can be performed on expressions that use
generic higher-order functions such as map and [oldr,

2.6 Deforestation Theorem

In order to prove that our deforestation algorithm terminates, we shall show that the size of
terms occurring in recursive invocations of the T operation is a bounded quantity. If the size
of these terms is bounded, then because we only have a finite number of recursive function
variables, constructors and case alternatives available, the T operation will eventually
discover a renaming of a previous call and terminate.

Chapter 2 : Higher-Order Deforestation 37

T (AXS. concat (map (map f) zs])

= AXS. T(concat (map (map J) xs))
= AXS. T(h (map (map J) xs))
= AXS. T (case map (map f) xs of

Nil -4 Nil
Cons x xs -4 let z = h xs in append x z)

= AXS. T (case (case xs of
Nil -4 Nil
Cons x xs -4 Cons (map f x) (map (map f) xs)) of

Nil -4 Nil
Cons z zs -4 let z = h xs in append x z)

= AXS. T (case xs of
Nil -4 case Nil of

Nil -4 Nil
Cons x xs -4 let z . h xs in append x z

Cons x xs -4 case Cons (map f x) (map (map f) xs) of
Nil -4 Nil
Cons x xs -4 let z = hxs in append x z)

= AXS. case xs of
Nil -4 Nil
Cons x zs -4 T (case Cons (map f x) (map (map f) xs) of

Nil -4 Nil
Cons x xs -4 let z = h xs in append x z)

= AXS. case xs of
Nil -4 Nil
Cons x xs -4 T (let z = h (map (map 1) xs) in append (map f x) z)

= AXS. case xs of
Nil -4 Nil
Cons x xs -4let z = T(h (map (map J) xs)) in T(append (map f x) z)

Figure 2.6: Deforestation of concat 0 map (map f)

38 Chapter 2 : Higher-Order Deforestation

= AXS. case xs of
Nil -+ Nil
Cons x xs -+ let z = 7(h (map (map 1) xs))

in 7 (case (map f x) of
Nil -+ z
Cons x xs -+ Cons x (append xs z))

= AXS. case xs of
Nil -+ Nil
Cons x xs -+ let z = 7(h (map (map 1) xs))

in 7 (case (case xs of
Nil -+ Nil
Cons x xs -+ Cons (J x) (map f x)) of

Nil -+ z
Cons x xs -+ Cons x (append xs z))

= AXS. case xs of
Nil -+ Nil
Cons x xs -+ let z = 7(h (map (map 1) xs))

in 7 (case xs of
Nil -+ z
Cons x xs -+ Cons (J x) (append (map f x) z))

= AXS. case xs of
Nil -+ Nil
Cons x xs -+ let z = 7(h (map (map 1) xs))

in case xs of
Nil -+ z
Cons x xs -+ Cons (J x) (7 (append (map f x) z))

Figure 2.7: Deforestation of concat 0 map (map 1), continued

Chapter 2 : Higher-Order Deforestation 39

The proof will be similar in structure to Wadler's proof of termination for first-order
deforestation [Wad90b]. It is separated into two parts: firstly, we will show that there is
a bound on the nesting of treeless terms in any given input, and secondly that the actual
size of these terms is bounded.

Definition 3 An expression is said to be of order 0 (denoted by a superscript 0) if it
can be formed from an o-fold substitution of treeless terms. A term of order zero is a
(non-letrec-bound) variable. A term of order 0 + 1 is formed from a term u of order 0 as
follows:

where the Xi are the free variables of u, and the tt, are arbitrary treeless terms.

Lemma 1 A term of order 0 + m can be formed from a term u of order 0 and terms
tl ... tn each of order m as follows:

where the Xi are free variables of u-.

Proof By induction on m.

Case 1: given by definition of order.

Case m + 1: Taking n to be 1,

we can decompose t according to the definition of order:

40 Chapter 2 : Higher-Order Deforestation

where YI ... YP are free variables of t. If we assume that VI ... Vp do not occur in u (this
can be achieved by simply choosing YI." YP to be unique), then the expression can be

rewritten:

By the induction hypothesis, this can be rewritten

which, by the definition of order, is a term of order 0 + m + 1 as required. This proof
extends in a straightforward way to values of n > 1. 0

Because the syntax of treeless terms includes variables, we have the following relation
(using to to refer to the set of all terms with order 0):

Therefore it is not possible to assign a unique order to any given term; a term has only a
minimum order (the minimum number of substitutions of treeless terms required to obtain
the given term). By placing a bound on the minimum order of a term, we have a bound
on the nesting of treeless terms within the term.

One small syntactic convenience: an order superscript on a sequence (zs", for example)
means that all terms in the sequence have the specified order.

Using this definition of order, we can formulate some useful lemmas:

Lemma 2 An applicative expression f tl t« of order 0 + 1 has subterms tl ... tn each
of order o. An applicative expression tl tn (where tl is not a letrec-bound variable) of

order 0 + 1 has subterms tl ..• tn each of order o.

Proof Because treeless form permits only variables in an applicative term, the term

(tI •.. tn)O+l must be formed by one of the substitutions:

Chapter 2 : Higher-Order Deforestation 41

(Xl' •• Xn)[tt/ X}, .•. , t-J Xn]
(J Xl .. • Xn)[tt/Xt, ... , tn/Xn]

By Lemma 1, the terms tt, .•• , tn must have order 0 for the term as a whole to have order
0+1. 0

An equivalent version of the above lemma applies to case selectors: we can extract the
selector from a case term of order 0 + 1 as a term of order o.

Lemma 3 Given a term AX. u of order 0 + 1 and a term t with order 0, then the term
u[t] xl also has order 0 + 1.

Proof We can decompose the term u using Lemma 1 as follows:

where the Xi are the free variables of tt. Since the lambda expression AX. u must be
derived from AX. tt by the substitution above, we can deduce that X can only be free in tt.
Therefore, the term u[t/x] can be rewritten:

which is a term of order 0 + 1. 0

Lemma 4 Given a term of the form (case t of {Gixil ... Xij --* Vi}) of order 0 and a term
u of order 0 - 1 then each expression Vi[U/Xin] has order o.

The proof of this lemma is similar to the proof of lemma 3.

42 Chapter 2 : Higher-Order Deforestation

Definition 4 A term of order (m, 0), where 0 < m :::;0, is of the form

case vm us(m-l) of {Ci XSi -t vi(m+l,o)}, if 0 :::;m < 0

to, if m = 0

In the case where m is zero, the argument list us is empty.

In other words, a term of order (m, 0) is a sequence of 0 - m case expressions, ending in
a term of order o. The orders in the selector of the cases increase, starting with a selector
o"' us(m-l) of order m.

Lemma 5 A term of order (m, 0) also has order 0 + 1.

Proof By induction on m, with the base case when m = o.

When m = 0, we have a term of order 0 which also has order 0 + 1.

Given that a term of order (m + 1,0) has order 0 + 1, we will show that a term of order

(m, 0) also has order 0 + 1:

By the induction hypothesis, we have that the Vi have order 0 + 1. In order for the term
as a whole to have order 0 + 1 we need to show that the selector vm us(m-l) has order o.
Since m is at most 0 - 1, this term has order 0 by Lemma 2. 0

Definition 5 A term of order 0 is a term of order (m, 0) for any m such that 0 :::;m :::;o.

Note that terms of order 0 are also terms of order 0, and therefore any term with order
less than 0 is also a term of order 0. Also, by Lemma 5, all terms of order 0 have order

0+1.

We are now in a position to state the main lemma in the proof of termination:

Chapter 2 : Higher-Order Deforestation 43

Lemma 6 Given a mapping of variables to treeless terms D, for any invocation of the oper-
ation 7 of the form 7 (1..£0 tso-1), all recursive invocations will be of the form 7 (Ufo ts,o-I).

Proof By examining each rule of 7 in turn, assuming the input is in the form above, we
will show that all recursive calls are also of the correct form.

For rules 77-712which deal with case expressions, we give the case where the input term
is of the form (t(m,o) tso-I), where m < o. The case where m = 0 (i.e. the term t has

order 0) is a subset of the more general case given.

Rule 71

Here, we replace the recursive function variable with its definition, both terms are order 1
so this is safe.

Rule 72

7(to-l to-I) 1 t 7to-1 • 1 t 7to-1 •Xl' •• n = e Zl = 1 ID. .. e Zn = n In x Zl ..• Zn

Rule 73

Rule 74

The term u[ttfx] has order 0 by lemma 3.

Rule 75

7 (C tf ... t~) = C (7 tf) ... (7 t~)

44 Chapter 2 : Higher-Order Deforestation

Rule 76

Rule 77

7 ((case (11 usm-1) of altsCm+1,o») tsO-1)
= 7((case (VI usm-1) of altsCm+1,o») tso-1) where (I = v) E D

Rule 78

I t 7 m-I'e Zn = Ul In

let Zo = x ZI ••• Zn in
case Zo of {Ci XSi -+ 7 (Vi(m+1,o) tsO-1)}

Rule 79

7((case ((Ax. v)m ur-1 ... U;:,-I) of altsCm+1,o») tsO-I)
= 7((case (v[ut/x]m ~m-I ... U;:,-l) of alts(m+1,o») tso-I)

Again, Lemma 3 gives us that v[ut/x] has order m.

Rule 710

7((case (C usm) of {... ; C xs -+ vCm+1,o); }) tsO-I) = 7(v[us/xs](m+1,o) tso-I)

The term v[us/xs] has order (m + 1, 0) by Lemma 4.

Rule 711

Chapter 2 : Higher-Order Deforestation 45

,((case (case vm-1 of {Gj XSj ~ vt}) usm-1 of alts(m+l,o») tsO-1)
= 'T((case vm-1 of {Gj XSj ~ case vt usm-1 of alts(m+l,o)}) tsO-1)

The recursive call on the right here is of the form 'T (u(m-l,o) ts°-:-l), which is in the required

form. When m = 0 (Le. the input term has order 0) a special case of the above rule applies:
for the input term to have order 0, us must be empty.

This rule lengthens the string of case terms in the input. It cannot be applied indefinitely,
because the length of the case sequence is limited by o.

Rule 712

'T((case ((let x = um in vm) usm-1) of alts(m+l,o») tso-1)
= let x = 'Tum in ,((case (vm usm-1) of alts(m+l,o») tso-1)

o

Having shown that there is a bound on the nesting of treeless terms in the input to any
invocation of 'T, we can use this lemma to show that the size of these terms is bounded.

We first define a more stringent measure of the size of a term:

Definition 6 The depth of an expression is zero for a variable, and one plus the maximum
depth of its sub expressions otherwise.

Note that application is not a binary operator, so the applicative expression tl ... tn has
depth one plus the maximum depth of the ti. Also, applicative expressions are implicitly
flattened so tl cannot itself be an applicative term.

Lemma 7 Given a term t with order 0, where the treeless terms used to construct t have
a maximum depth d, the depth of t is no more than 0 x d.

Proof By induction on o. For the zero case, t is a variable and therefore has depth zero
as required. For 0 + 1, t is of the form

46 Chapter 2 : Higher-Order Deforestation

By the inductive hypothesis, we have that the maximum depth to any variable in to is
o x d. The substitution will replace this variable with a term of depth at most d, so the

depth of the new expression is (0 x d) + d, or (0 + 1) x d. 0

Lemma 8 For a given call to 7 of the form 7 to, there exists a bound on the depth of

the argument to all recursive calls of 7 generated by this initial call.

Proof First, we define a constant depth d to be the maximum depth of any treeless term
occurring in the input to the transformation. This includes all recursive definitions in D,

and the treeless terms used to construct the initial term.

We know from lemma 6 that all recursive calls to 7 are of the form 7 (UO tso-1), so we now
need to show that the terms in calls of this form have a bounded depth. The maximum
depth of any term in ts is (0 - 1) x d, since they all have order 0 - 1. The maximum
depth of u is 0 + (0 x d) (since a term of order 75 is a nested sequence of at most 0 case

expressions, ending in a term of order 0).

Now, assuming that the expression passed to an invocation of 7 satisfies the above depth
properties, we can show that all recursive calls to 7 also satisfy these properties. The

proof is by rule-by-rule inspection of 7:

• Rules T2, T3, T5, T6, T8, and TI2 simply invoke 7 on subterms of the input, so

depth properties are preserved.

• Rules TI and T7 replace a call to a recursive function by its definition. The function

call has order 1, and its definition has maximum depth d.

• Rules T4, T9, and TID apply substitutions to make new terms. By lemma 7, using
substitution to make a new term in this way yields a new term of depth 0 x d.

Chapter 2 : Higher-Order Deforestation 47

• • Rule Tll flattens out a case expression, possibly increasing the depth of the argument
to the recursive call of 7. However, it generates a term of order (m - 1,0) from a
term of order (m, 0). The depth of the original term is therefore (0 - m) + (0 x d),
and the new term has depth (0 - (m -1)) + (0 x d), which is still within our bound

. above because m has a lower bound of 1.

So, given a term of the form (UO tsO-l), the operation 7 can never be invoked on a term
of depth greater than

1+ 0 + (0 x d)

Since the initial call to 7 is on a term of order 0 (which is also in the form (UO tsO-1)),

then there exists a bound on the depth of terms which can occur in recursive calls to 7. 0

We have shown that there is a bound on the depth of terms that occur in the input to 7.
We still do not have a proof of termination, however: we have not established a bound on
the width of applicative terms (Le. what is the limit on n in tl ... tn?). One example that'
illustrates why this is a problem is:

. j where j = AX. f x x

If we apply 7 to j, it will encounter ever increasing terms on the input (even though
the terms .have bounded depth!). For this reason, we have placed a restriction on the
recursive types that can occur in the input terms and functions. Recursive types must be '
defined using algebraic data types, and therefore any recursive type must pass through a
constructor argument (the above function j does not satisfy this restriction).

Lemma 9 There exists a bound on the width of applicative terms that can occur during
transformation.

Proof. We first make the assumption that our transformation algorithm preserves the
well-typedness of the original program (this can be verified by simple examination of the

48 Chapter 2 : Higher-Order Deforestation

algorithm). Given this, infinitely-wide applicative expressions cannot occur because they
would be ill-typed. Considering the term at the head of the application, there are two

possibilities:

• The term cannot have a recursive type, since recursive types are defined using alge-
braic data types and the value of any expression with a recursive type is a constructor
application; the applicative term would therefore be ill-typed.

• The term cannot have an infinitely large type of the form T, -+ T2 -+ ... , since
infinitely large types cannot occur in a well-typed program. Even if we consider
polymorphism, in a well-typed program each type variable in a polymorphic type
can only be instantiated to a finite type.

o

Theorem 1 The Deforestation Theorem. When the transformation 7 and the knot-tying
algorithm are applied to a term t with an order 0 and a set of treeless definitions D, the
process terminates and yields a treeless term together with a new set of treeless functions.

Proof Follows from lemma 8 and 9. To summarise, the structure of the proof is as follows:

• Establish a measure of treeless term nesting, order.

• Extend order to cover sequences of case-terms that occur during transformation.

• Show that given an input term of a certain order, all recursive calls to the transfor-
mation function will be on expressions of the same order.

• Relate order to the actual depth of terms.

• Show that the more stringent depth property is preserved; that is, there is a bound
on the depth of any term occurring as an argument to the transformation function.

• Show how the restriction on the well-typedness of the input term guarantees that
infinitely-wide applicative terms cannot occur during transformation. This completes

the proof.

Chapter 2 : Higher-Order Deforestation 49

o

One implication of this termination proof is that the size of the resulting code is related to
. the number of permutations of the label expressions, and is therefore not linear in the size

,J

of the input expressions. The size of the result of deforestation, although bounded, can be
far larger than the size of its inputs.

2.7 Summary

In this chapter we have described a new algorithm for performing deforestation of ,higher-
order functional programs. The key insight in formulating a deforestation algorithm for
a higher order language was designing treeless form in such a way that the algorithm is
guaranteed to terminate. In our proof of termination, we identified the invariant measure
on the size of terms that occur during transformation, and used this to show that the size
of terms is bounded.

The approach described in this chapter here has a number of shortcomings and areas which
remain to be resolved. These issues will be summarised here and addressed in the rest of
the thesis.

2.7.1 Transparency and Treeless Form

The deforestation algorithm presented in this chapter is not entirely transparent. It re-
moves most of the intermediate data structures that are not denoted by let terms in
the input, but some cannot be removed and are therefore placed in let bindings by the
transformation (see rules 72 and 78).

The extra lets are required to keep the output in treeless form, but it is not immediately
clear why we should be adding more residual data structures to the output. In fact, this is
a consequence of our formulation of treeless form, which doesn't correspond directly to the

normal form of the language. It differs in the terms allowed to the right of an application
(normal form would allow arbitrary terms to the right of an application whose head is
a variable), and the terms allowed in the selector of a case (normal form would allow

50 Chapter 2 : Higher-Order Deforestation

a variable applied to a number of terms). If treeless form were generalised in this way,
then we would have no need for the additional lets introduced during the transformation.
Additionally, our treeless form would correspond to the normal form of the language,
meaning that evaluation of a term in treeless form would still use no intermediate storage,
which is the key property of treeless form. Unfortunately, making this generalisation would
also render our proof of termination invalid, since Lemma 2 would not be true.

In the next chapter, we will derive a new deforestation algorithm with a generalised treeless
form by using properties of the logics of natural deduction and sequent calculus.

2.7.2 Linearity

So"far in this chapter we have not mentioned the efficiency of a program generated by
deforestation. Ideally, we would like to guarantee that the program is no less efficient
than the original, and when intermediate structure is removed, that the program will be
more efficient (given a suitable operational semantics). Unfortunately, in the world of lazy
evaluation this property is hard to guarantee. This topic will be discussed fully in Section

4.2.

2.7.3 Generalising the algorithm for real programming languages

Some other issues remain to be solved before the deforestation algorithm described in this
chapter can be applied to programs written in a practical programming language, such as
Haskell. The first problem is that of how to convert user-written functions into treeless
form. There is an optimal translation from general terms to treeless terms (optimal in the
sense that the translated function keeps the largest subset of eliminable structure in the
original as possible), which is described in Section 4.1.

The remainder of the issues of applying deforestation to real-world programming languages
are dealt with in Chapter 5, where we describe our own prototype implementation in the

Glasgow Haskell Compiler.

•

Chapter 3

Cut Elimination

3.1 Introduction

In this chapter we borrow a fundamental principle from logic and use it to derive a higher-
order deforestation algorithm. The particular principle we are interested in, cut elimina-
tion, is concerned with the simplification of logical proofs. The Curry-Howard isomorphism
links proofs in the logic of natural deduction to terms in the simply typed lambda calculus,
where simplification of proofs by cut elimination corresponds to normalisation of lambda
calculus terms-exactly the goal of deforestation, for normalising 'a term is equivalent to
eliminating its intermediate data structures.

Cut elimination was invented by Gentzen in the 1930s [Gen35] when he wrote down the
logics of natural deduction and sequent calculus: He showed that any proposition in sequent
calculus can be restructured in such a way that the resulting proof contains no uses of the
cut rule. Furthermore, this can be done automatically and on any proof containing cuts.
Gentzen, however, had no similar theorem for natural deduction. The strong normalisation
property of natural deduction proofs was discovered by Prawitz [Pra65] some 30 years later.

The Curry-Howard isomorphism firmly bonds the mathematics of logic to the science of

programming languages. Curry [CF58] noticed the relationship between natural deduction
and combinatory logic, and Howard [How80] showed that there is an equivalent one-to-
one correspondence between natural deduction and the simply typed lambda calculus.

52 Chapter 3 : Cut Elimination

Propositions in the logic can be viewed as types, and proofs as terms in the lambda
calculus. In addition, simplifying a proof corresponds to reduction of terms. In the same
way that lambda calculus terms are strongly normalising, natural deduction proofs have a
simplest form.

There exists another isomorphism analogous to Curry-Howard, which relates the logic of
sequent calculus to its equivalent programming language. The programming language of
sequent calculus appears similar to the lambda calculus, with some important differences.
The most important difference is that sequent calculus contains a cut rule. Another dif-
ference is the syntax for application, which we will discuss in Section 3.4.

The term form corresponding to the cut rule in the logic is the cut construct.

r f- t : A r, x : A f- u : B
Cut--------------------

r f- cut x = t in u : B

Without cut, it is only possible to write proofs (and hence terms) in normal form. Contrast
this to natural deduction, where it is possible to write arbitrary terms using only the
introduction and elimination rules for the various logical constructs. The theorem of cut
elimination states that any sequent calculus proof using cut has an equivalent proof with
no cuts, i.e. any program in the sequent calculus language written using cut can be
transformed into one with no cuts, which is in normal form.

We distinguish cut and let for an important reason: by convention, we use let to represent
residual data structures, those that will not be removed during transformation, and use
cut to represent eliminabledata structures, those that will.

Cut elimination is similar to normalisation in natural deduction, a process which we view
as the essence of computation. Reducing a term in the lambda calculus is a step-by-step
process of removing the intermediate structures yielding a term in normal form. Not only
is this the essence of computation, it is also the essence of deforestation.

Cut elimination as a program transformation scheme possesses an important property, one

that is missing in the normalisation of terms in the lambda calculus. This property is
transparency-in a sequent calculus term, each intermediate structure is marked by a cut,
all of which are removed by cut elimination. To base a deforestation algorithm on cut

Chapter 3 : Cut Elimination 53

elimination would mean that the algorithm is not only based on a sound logical principle,
but is also truly transparent.

There are some important problems to be surmounted before this is possible, though.
Firstly, we must apply cut elimination to a language that is similar enough to the lambda
calculus such that we can apply it to modern programming languages based on that system.
Secondly, and this is certainly the largest mountain to climb, deforestation is only useful
when applied to recursive programs, while cut elimination applies only to non-recursive
terms.

The approach we take to the first problem is to define a hybrid language, which draws on
features from both the language of natural deduction and the language of sequent calculus.
The language describes the subset of terms in the lambda calculus that are in normal
form. By adding the cut term to this language we regain the full power of the simply
typed lambda calculus, with the benefit that the cut terms can be removed by our cut
elimination algorithm.

For the second problem, we take simple first-order recursion for which we already have,
a deforestation algorithm that is known to terminate. We reformulate first-order defor-
estation in a form that is similar to the formulation of cut elimination. Then, taking the
non-recursive cut elimination algorithm and first-order deforestation we amalgamate the
two, yielding a fully transparent higher-order deforestation algorithm. It should be said
that the termination properties of the resulting algorithm are not fully known, but we
do give a conjecture as to the conditions under which the algorithm terminates and some
convincing arguments as to why these should be sufficient.

The remainder of this chapter is organised as follows.' The next two Sections, 3.2 and 3.3,
give a brief overview of natural deduction and sequent calculus. Section 3.4 presents our
cut elimination algorithm for the hybrid sequent calculus/natural deduction style language,
and gives a proof of termination. Section 3.5 discusses two ways in which explicit recursion
may be added to the lambda calculus, and explains why we decided to use first-order
recursion equations to represent the recursion in our language. Section 3.6 describes the

first-order deforestation algorithm. Section 3.7 describes the merged algorithm, and goes on
to give a version in which the loop creation is explicit. Then our arguments for termination
are given, with some examples.

54 Chapter 3 : Cut Elimination

Id --------r, x: A I- x: A

-tI r, X : A I- u : B
r I- AX. u : A -t B

rl-t:A-tB rl-u:A
-t E -----=r:-7l--t -u----

r I- ts : As;C-I some j E [1..n]r I- C; ts : {Cl Asl; .•• ; Cn Asn}

r I- t: {Cl Asl; ... ;c; Asn}
C-E r, XSI : ASI I- VI : B ... r, XSn: ASn I- Vn: B

r I- case t of {Cl XSl -t VI;... ;Cn XSn-t Vn} : B

Multi r I- tl : Al ... r I- tn : An
r I- tl ... t« : Al ... An

Figure 3.1: Natural Deduction

3.2 Natural Deduction

Figure 3.1 shows the logic of natural deduction with its associated programming language,
the simply typed lambda calculus. Pure natural deduction can be obtained by simply
removing all the terms in the typing rules; i.e. everything to the left of (and including) the

'.'

The syntax of types is given by:

A,B
As

..- X I A -t B I {Cl AsI; ... ; c; Asn}
AI .. ·An..-

where A, B range over types, X, Y, Z range over type variables, C ranges over construc-

tors, and As ranges over sequences of types. Terms are given by:

Chapter 3 : Cut Elimination 55

t

t, u, v
alts
ts

X I ,xX. tit u I C ts I case t of alts
{Cl XSI --+ VI; ••• ; C; XSn --+ Vn}
tl ... tn

xs Xl··· Xn

where t, u, V range over terms', x, y, z range over variables, alts ranges over lists of case
alternatives, ts ranges over sequences of terms, and xs ranges over sequences of variables.

We use a single sum-of-products type modelled after the system of constructed datatypes
in languages such as Haskell. The type {Cl Asl; ... ; Cn Asn} is the datatype containing
constructors Ci each with a type argument list Asi, for all i from 1 to n. An object of this
type is built with the expression q ts where 1 ::;j ::;n, and ts is a sequence of terms with
the same length as ASj and where each term in the sequence ts has the corresponding type
in Asj• Objects of this type are deconstructed using the case term form. In the following
chapter we will use the notation {Ci Asi} as an abbreviation for {Cl Asl; ... ; Cn Asn},
and {Ci XSi --+ Vi} as an abbreviation for {Cl XSI --+ VI;' •• ; en XSn --+ Vn}.

Apart from the Multi rule, which is merely a syntactic convenience, all the rules in the
system correspond to the introduction or elimination of one logical construct. Our presen-
tation of natural deduction does not include explicit weakening and contraction rules (also
called the structural rules), rather we incorporate weakening into the Id rule and allow
assumptions to be freely duplicated.

Simplification of natural deduction proofs is equivalent to reduction in the lambda calculus.
The two basic reduction rules are:

(,xX.u) t --+ u[t/x]

The expressions on the left of the reduction rules correspond to proofs in which an intro-

duction rule appears next to an elimination rule. Such proofs can always be simplified by
applying the above reduction rules. However, the introduction rule does not always appear
.next to the elimination rule, requiring that we also apply commuting conversions to the

56 Chapter 3 : Cut Elimination

proof to fully simplify it. The additional rules involved are:

(case t of {Cj XSj -+ Vi}) t' -+ case t of {Cj XSj -+ Vi t'}
case (case t of {Cj XSj -+ Vj}) of alts -+ case t of {Cj XSj -+ case Vi of alts}

Note we are assuming that variables are named such that capture does not occur during

any of these rewrite rules.

The four rewrite rules given above are sufficient to reduce to normal form any expression
in the language. Hence, the equivalent transformations on proof trees reduce any proof to

normal form.

3.3 Sequent Calculus

In Figure 3.2 we give the logic of sequent calculus as a programming language. The
grammar of types is identical to that given above, and the grammar of terms is given by:

z I AX. t I apply z to t as Y in V

I C ts I case z of alts
I cut z = t in u

alts {Cl XS1 -+ V1; ••• ; Cn XSn -+ Vn}

t, u, V ..-

In the sequent calculus language, application takes the form:

apply z to t as y in V

The above term is similar in meaning to the natural deduction term (AY· v) (z t). The
difference is that the sequent calculus term is always strict in z, whereas the natural
deduction term may not be (for example, if y does not appear in v). Put more precisely,
if the value of z in the sequent calculus form of application is ..l, then the value of the

Chapter 3: Cut Elimination 57

Id -=----;-~-~r, x: A I- x: A

-+R r, X : A I- u : B
r I- AX. u : A -+ B

L r I- t : A· r, y : B I- V : B'
-+ r, z : A -+ B I- apply z to t as y in V : B'

C-R . . r I- ts : ASj . some j E [1 n]
r I- q ts: {Cl Asl; ... ; Cn Asn} ..

C- L r, XSI : ASI I- VI : B ... r, XSn : ASn I- Vn : B
r, z : {Cl AsI; ... ; Cn Asn} I- case z of {Cl XSI -+ VI; ... ; Cn XSn -+ Vn} : B

Cut r I- t : A r, x : A I- u : B
r I- cut X = t in u : B

Multi r I- tl :Al ... r I- tn : An
r I- tl ... tn : Al ... An

Figure 3.2: Sequent Calculus

term as a whole is always .1.. Of course, this is only true if the semantics of our language
includes j_ (which ours does).

The grammar for sequent calculus describes' terms in normal form if the cut term form
is removed. This is an attractive representation of terms for our purposes, since it gives
complete transparency to the normalisation process: normalising a term in the language
of sequent calculus takes a term involving cuts and yields a term containing no cuts.
Equivalently, a proof involving cuts becomes a proof with no cuts. Full explanations of
cut elimination can be found in Girard, Lafont and Taylor's book [GLT89] and Gallier's
tutorial [GaI93].:

To a logician, the important property of sequent calculus is that in all the rules in the logic

except cut, the formulas appearing above the line are proper subformulas of those below
it. While natural deduction is more intuitive as a proof methodology, sequent calculus is
more interesting from a proof theoretic point of view. From our point of view, however,

58 Chapter 3 : Cut Elimination

we wish to have the best of both worlds: the transparency of cut elimination applied to

the familiar language of the lambda calculus.

3.4 Cut Elimination

In this section we present our hybrid language. We then give an algorithm for cut elimina-
tion, and prove termination for it. Our eventual goal, an algorithm to remove intermediate
data structures from programs written in a lambda-calculus based programming language,
leads us to formulate cut elimination in a way that has some important differences from

that of Gentzen.

As noted above, the language that corresponds to sequent calculus has a different syntax
for application than the lambda calculus. An applicative expression in a normal form
lambda calculus term takes the form Z tl ... t«. a variable applied to any number of other

terms in normal form.

There is a simple translation between the lambda calculus form of application and the

sequent calculus form. The term equivalent to z tl ... t« looks like this:

apply z to tl as Zl in
apply Zl to ~ as Z2 in

apply Zn-l to tn as Zn in Zn

However, there is no translation in the other direction in general. The closest we can get
is to translate apply Z to t as Y in v as (AY. v) (z t), but the first is strict in Z while the

second is not.

The strictness property means that the sequent calculus form of application is in some
sense more expressive than the natural deduction form. This extra flexibility is however
superfluous to our needs, and in fact this turns out to be important when we add recursion

to the language.

The second difference between the cut elimination of Gentzen and that given here is that we
present the algorithm as the transformation of terms in the programming language rather

Chapter 3 : Cut Elimination 59

t, u, v ..- AX. t lambda abstraction

"

C ts constructor application
I z ts application
I case z ts of alts case expression

ts ..- tl ••• tn sequence of terms
xs ..- Xl'" Xn, sequence of variables

alts ..- {Cl XSI -t VI;':'; Cn XSn-t Vn} case alternatives

, Figure 3.3: The Syntax of Terms

than the manipulation of proofs in the logic. Since each rule in the logic corresponds to a
term form in the programming language the two styles are necessarily dual. However, we
chose the program transformation style because it more clearly shows the relationship to
deforestation.

The third and final difference is that our cut elimination algorithm removes an arbitrary
number of cuts simultaneously; it is a multi-cut elimination algorithm. This extension
occurs naturally as a consequence of using the case construct to examine data structures:
the case reduction step gives rise to several cuts, which may all be removed simultaneously.
Of course, being able to remove multiple cuts in a single pass also leadsto a more efficient
implementation. There is one restriction, however: the cuts cannot be interdependent.

I

That is, the intermediate values being removed cannot depend on each other. This is not
a serious restriction, since we can always order a set of cuts according to dependence and
recursively remove the inner ones first.

In our cut elimination algorithm we do not make use of explicit cut terms; the algorithm
begins with a term in normal form and a list of variable bindings in the form of an envi-
ronment, and yields a new term in normal form.

3.4.1 The Hybrid Language

The' grammar of types is as in Section 3.2.

60 Chapter 3 : Cut Elimination

-+1 r, X : A f- u : B
r f- AX. u : A -+ B

r f- ts : As-+E~--~--~~----~r, z : As -+ B f- z ts : B

C-I r f- ts: ASj somej E [1 n]r f- Cj ts : {Cl Asl; ... ; Cn Asn} ..

r f- z ts : {Cl Asl; ... ; Cn A sn}
C-E r, XSI : ASI f- VI : B ... r, XSn : ASn f- Vn : B

r f- case z ts of {Cl XSI -+ VI; ... ; Cn XSn -+ Vn} : B

Figure 3.4: Type System

In our treatment of types we use a syntactic abbreviation for long function types. If As is

a sequence of types Al ... An then As -+ B stands for Al -+ ... -+ An -+ B.

The language around which the cut elimination algorithm is based (Figure 3.3) is a lambda
calculus based language in which only terms in normal form can be represented.

We assume a straightforward non-strict semantics for the language, given by an evaluator,
E: The evaluator takes a term t and a value environment 1] and returns the value of t. The
value environment must be complete; that is, it must map all the free variables of t.

The type system for the language is given in Figure 3.4. There is one rule associated with
each term form, as we would expect. By the Curry-Howard isomorphism, removing the
terms (everything to the left of a I:') from the type system gives us a natural deduction

logic, albeit only for proofs in normal form.

3.4.2 Algorithm

The algorithm for multi-cut elimination is shown in Figure 3.5. It consists of three mutually
recursive operations, Qr, QA, and QC. Both Qr and QC require an environment p, which

Chapter 3 : Cut Elimination 61

Q7 p (Ax. u) = Ax.Q7 p u (I)
Q7 p (C ts) = C (QTs p ts) (2)
Q7 p (z ts) = QA p{z) (QTs p ts) (3)
Q7 p (case z ts of alts) . = QC p (QA p{z) (QTs p ts)) alts (4)

QTs p (tl ... tn) = (Q7 p tl) ••. (Q7 p tn) (5)

QA t [] =t (6)
QA (Ax. u) (t : ts) = QA (Q7 [t/x] u) ts (7)
QA (z ts) ts' = z (ts *ts') (8)
QA (case z ts 'of {Cj XSi -+ Vi}) ts' = case z ts of {Ci YSi -+QA Vi ts'} (9)

QC p (C ts) { ... ; C zs -+ V; •.. }

QC p (z ts) {Ci XSi -+ Vi}
= Q7 p[ts/xs] V
= case z ts of {Ci YSi -+ Q7 P Vi}

(10)
(11)
(12)QC p {case z ts of {Ci XSi -+ Vi}) alts = case z ts of {Cj YSi -+ QC P Vi alts}

Figure 3.5: Multi Cut Elimination

is an idempotent mapping from variables to terms. Idempotence in this context means
that none of the terms in p refer to variables in the domain of p. The assumption that the
environment is idempotent is pervasive in the cut-elimination algorithm; we never attempt
to substitute within terms that originate in the environment.

We use a substitution syntax for environments. An environment is a list of the form
[tt/XlI'" I tn/xn] where each of the elements ti/Xi represents a mapping from Xi to tj.
Write p(x) for the term associated with X in the environment p. The notation p[t/x] refers
to an environment that maps X to t and maps Y (where Y =1= x) to p{y).

We also use some abbreviations related to environments for compactness in the repre-

sentation of the algorithm. If xs = Xl •• •Xnl YS = YI ... Ynl and ts = t1 ••• tnl then
the notation [ts/xs] is short for [tt/Xl!'" I tn/xn], and the notation [p{xs)/ys] is short

62 Chapter 3 : Cut Elimination

The meanings of each of the three operations can be expressed in terms of the evaluator,

£:

£ (Q7 p t) 7] = £ t (7]+ p)
£ (QA t ts) 7] = £ (z ts) (7][(£ t 7])/z]
E (QC p t alts) 7] = £ (case Z of alts) (7][(£ t 7])/z] + p)

where the notation 7]+ P is shorthand for [VI,"" Vn, (£ tl 7])/ZI,"" (£ t« 7])/zn] if 7] =
[VI,"'Vn] and p= [tt/Zl, ... ,tn/zn].

As an aside, it is possible to merge the functionality of QA into QC, enabling the call to QA
in rule 4 to be omitted. This takes the recursive calls in rule 4 from being triple-nested
to being double-nested in exchange for some additional complexity in QC. However, the
nesting turns out not to be a factor in the proof of termination for this rule, so we opted

for the clearer form.

3.4.3 Proof of termination

Lemma 10 Given a typed term t and an environment p binding free variables of t to

typed terms, the call Q7 p t terminates.

Proof. To prove termination of the cut elimination algorithm, we make use of the multiset
ordering. A multiset is a finite set of tokens. The tokens support a well-founded partial
ordering <, and a equivalence =. A multiset can contain multiple copies of the same token,
so it is not a set in the strict sense of the word. The partial ordering on tokens is extended

to multisets as follows:

if YI < x, ... , Ym < X then {YI,"" Ym, Xl, ... , Xn} < {X, Xl, ... , Xn}

Informally, one multiset is smaller than another if it can be derived from the first by
repeatedly removing a token and replacing it with any number of smaller tokens. It is

Chapter 3 : Cut Elimination 63

• this property of multisets that is the key to proving termination of our algorithm: in two
cases (namely, beta reduction and case reduction) the transformation exchanges one large
object for a number of smaller objects. By the ordering we have defined, this amounts to
a decrease in the size of the multiset.

The size of a term, written siz(t), is defined as one for a variable and one plus the sum of
the sizes of its subterms otherwise. The size of a type, written siz(A) is defined as one for
a type variables and one plus the sum of the sizes of its subtypes otherwise. The operation
occ(x, t) gives the number of occurrences of the variable x in the term t. The type of a
term t is given by typ(t). The set of variables in the domain of an environment p is written
dom(p).

We now define a multiset index for each of the operations Q7, QC and~. The index for an
, operation is pair of multisets; the first multiset contains the types of some of the expressions
in the call, and the second multiset contains the sizes of some of the expressions in the call.
The partial order on types is 'subtype of' and on sizes is 'less than'. The notation n x t is
shorthand for n copies of t.

index(Q7 pt) = ({occ(x, t) x typ(p(x)) I x E dom(p)},
{occ(x, t) x siz(p(x)) I x E dom(p)} U {siz(t)})

index(QCp t {Ci XSi -+ Vi}) = ({occ(x,v) x typ(p(x))1 x E dom(p)} U {typ(t)},
{occ(x, t) x siz(p(x)) I z E dom(p)} U {siz(t)}
UU(SiZ(Vi)))

index(~ t ts) = ({type t)}, {siz(t)})

Indices are ordered lexicographically: one index is smaller than another if either the type
index (the first component) is smaller, or the type index remains the same while the size
index (the second component) is smaller. Note that provided the type index gets smaller,
the size index may be larger and the ordering still holds.

Our goal in this proof is to show that, for each rule in the cut elimination algorithm, the
index of each recursive call on the right is smaller than the index of the call on the left. By
this argument, the algorithm is guaranteed to terminate because, by the well-foundedness
of the ordering, the indices of recursive calls cannot continue to decrease indefinitely.

64 Chapter 3 : Cut Elimination

We now examine each rule in the algorithm that has recursive calls and show that the

indices are decreasing as required.

Rules 1 and 2. The size index of each recursive call is smaller (since each call is on a
subterm of the original), and because each recursive call has the same environment p as

the original the type indices are equal.

Rule 3. The inner calls to Qr each have smaller size indices and equal type indices. The
call to QA has a smaller size index (since the size of p(z) is one element of the size index
for the original call), and the type index is no larger (because the mapping for z may be
the only mapping in p, otherwise the type index is smaller).

Rule 4. The inner calls to Qr are all on subterms, and thus have identical type indices
and smaller size indices. The call of QA has a type index that is definitely no larger than
the original (and will be equal if the only binding in p is for z), and a size index that is
smaller. The call to QC has a smaller type index: the type z : As -+ B is replaced by a

term of type B (the result of the QA call).

Rule 7. Suppose the expression AX. u has the type A -+ B, this is the only element in the
type index for the call on the left. The inner call to Qr has a type index that contains the
element A (possibly many times). Because of the multiset ordering, this index is smaller
than the original. The call to QA has a type index containing only the element B, which is
smaller than A -+ B. Note that in both cases the size index could be larger, but thanks to
our ordering on indices this is irrelevant. Also note that if the type A -+ B were recursive,
we could not guarantee that the type indices here would be smaller, which is one reason
why we insist on the input to the algorithm being well-typed.

Rule 9. The recursive call is on a subterm, therefore the size index is smaller. The type

index remains the same.

Rule 10. The size index is smaller due to the multiset ordering. The size of C tl ... tn is
replaced by possibly multiple elements each with the size of one of the terms tl ... tn. The
type index gets smaller by the multiset ordering, since we replace the type {Cj Asj} on

the left by possibly multiple items of the types Asj•

Rules 11 and 12. Each recursive call is on a subterm, and therefore has an identical type

index and smaller size index. 0

Chapter 3 : Cut Elimination 65

Note that we cannot allow any recursively typed terms, for doing so would mean that the
reasoning for rules 7 and 10 would be invalid. However, since one can embed positive
recursive datatypes in the polymorphic lambda calculus, which is known to be strongly
normalising, we believe there is a proof of termination for this algorithm that enables the
sum-of-product types to be positively recursive.

Another proof of termination for cut elimination provided by Girard, Lafont and Taylor
[GLT89].

3.5 Interlude: Recursion

In this Section we describe two methods for adding recursion to a typed lambda calculus
based language. The goal is to find a suitable framework for extending cut elimination to
recursive programs.

3.5.1 Cyclic Terms

The first method is strikingly simple: we just allow terms to be infinite in size. Now,
infinite terms have a number of advantages over other methods of introducing recursion
into a language.

• There are no recursive types involved. One way to a~d recursion to a language is
to allow recursively typed expressions; this permits the definition of the fixpoint
combinator, Y, which can then be used to define arbitrary recursive functions.

• Few modifications are required to a transformation algorithm in order for it to operate
on infinite terms. The tricky bit is when you try to make the algorithm terminate,
but we will come to this later.

• Infinite terms can have a regular structure, and those that do have a finite repre-
sentation. It is only infinite terms with a regular structure that we are interested
in, since (obviously) we cannot guarantee termination of our transformations if the
input is infinite and irregular.

66 Chapter 3 : Cut Elimination

One way to represent regular infinite terms (or cyclic terms) is to use a system of labels.
We add two extra term forms to the grammar of the language: a labelled cyclic term and
a label reference. A labelled cyclic term takes the form L: t, where L is a label name and
t is a term. The term t may then contain label references to the label L. For example,

here is how the function map would be represented as a cyclic term:

map =)..1.)..xs. L : case zs of
Nil -+ Nil
Cons x xs -+ Cons (J x) L

Looking closely at this definition, we realise that there is something slightly strange going
on: some of the variables are being rebound in the cycle, in this case x and xs, while some
variables (just 1in this example) scope over the entire infinite term. In fact, the cyclic term
bears a striking resemblance to the for loop construct of many imperative languages: some
variables are updated each time around the loop, while others remain constant. With the
labelled cyclic term syntax, we are making use of shadowing to provide an infinite number

of different variables each with the same name.

The nature of the variable rebinding in a cyclic term is not just a curiosity, though; it
actually complicates matters for substitution. Imagine taking the right hand side of the
map definition above and substituting for 1. That is easy, a textual substitution works
fine. However, now try substituting for xs. If we do a textual substitution (substituting t
for xs), we get:

map =)..1.)..xs. L: case t of
Nil -+ Nil
Cons x xs -+ Cons (J x) L

Something is clearly wrong. Now, each time around the loop the case analyses t, which is
not what we intended. The correct answer is to "unroll" the loop once:

Chapter 3 : Cut Elimination 67

map = A/. AXS. case t of
Nil -+ Nil

Cons x xs -+ Cons (f x) (L: case xs of

Nil -+ Nil
Cons x xs -+ Cons (f x) L)

Another way to write down a cyclic term is as a recursive system of equations, each one
defining part of the term. This method was proposed by Mark Hopkins [Hop94]. Hopkins
showed that free-variable and bound-variable operators could be defined for regular infinite
terms by taking the least fixed point of the operator for the equation system defining the
term. Hopkins then formalised the idea of substitution for regular infinite' terms and
finally proved that regular infinite terms were related to ordinary lambda terms by beta-
equivalence. In Hopkins' system, the definition of map would look like this:

map = A/. AXS. map'
map' = case xs of

Nil -+ Nil
Cons x xs -+ Cons (f x) map'

..
It is of course possible to define a cyclic term that has an infinite type. For example
L : AX. L has a positive recursive type and L : / L has a negative recursive type.

Cyclic terms are a simple and elegant way to introduce recursion into the lambda calculus.
However the subtleties introduced by the rebinding/shadowing technique used to define
them can mean practical problems for an implementation. After some experience with an
implementation of cut elimination for cyclic terms, we rejected the method in favour of
recursion equations.

68 Chapter 3 : Cut Elimination

3.5.2 Recursion equations

The more normal approach is to specify a recursive function using recursion equations, in
the style of Burstall and Darlington in their work on program transformation [BD77]. The

definition of map is the more familiar:

map f xs = case t of
Nil -+ Nil

Cons x xs -+ Cons (f x) (map f xs)

The rebinding is now explicit, in the form of arguments to the function.

We will use first-order recursion equations, in which all recursive function calls must be
fully applied, to define a simple first-order deforestation algorithm. Then, by defining a
,language based on the lambda calculus language of Section 3.4.1 with first-order recursion
equations, we will merge the simple deforestation algorithm and cut elimination to yield

higher-order deforestation.

3.6 First-Order Deforestation

We now present a simple first-order deforestation algorithm. The algorithm is equivalent to
the first-order deforestation of Wadler [Wad88, Wad90b], in the sense that given identical
inputs both algorithms will produce identical output. However, the formulation is some-
what different. As we shall see, the deforestation algorithm here has been restructured
to fit into the framework of cut-elimination, and is in some ways simpler than Wadler's

algorithm.

3.6.1 Terms

Treeless terms are described by the language in Figure 3.6. We do not need a definition
for non-treeless terms, because these never occur in the algorithm that follows. We have
included residual let expressions in the language - these denote intermediate values that

Chapter 3 : Cut Elimination 69

t, U, v ..- x variable
C ts constructor application
case X of alts case expression
let X = t in U let expression
f xs recursive function call

ts ..- tl ... tn sequence of terms
xs "- Xl ... Xn sequence of variables..

alts ..- {Cl XSI -+ VI;.·.; C; XSn -+ Vn} case alternatives

Figure 3.6:·Treeless Terms for the Simple Deforester

will not be removed by the algorithm, in the same way that let was used in Chapter
2. By the addition of this term form, it is possible to represent any first-order recursive
function in this language. An important point here is that the term treeless here does not
correspond to normal form: this is thanks to the addition of the let construct. We shall
tackle the problem of optimal conversion to treeless form in a later chapter.

Implicit with any operation on a term is a global set of recursive function definitions D.
Each definition is of the form fxs = t where the free variables of t are a subset of XS.

We assume a straight-forward semantics for the language, embodied by an evaluator, S:
The evaluator takes a term t and a value environment n, and returns the value of t where
its free variables are given by 'fJ. The evaluator must of course also depend on D, but this
value is global so we opt to omit it in most places. When we wish to be explicit about D,
we will use a subscript as in £D.

3.6.2 Algorithm

The algorithm for fir~t-order deforestation is shown in Figure 3.7. The VT operation
takes a term t and a value environment p and returns a term u. The environment p is an
idempotent mapping from free variables of t to terms. Idempotence for an environment is
defined in the same way as before (Section 3.4.2). Using the evaluator E, the semantics of

70 Chapter 3 : Cut Elimination

D'T x p

trr (f xs) p
trr (C ts) p

D'T (case x of alts) p
D'T (let x = t in u) p

=p(x)
= D'T' u [p(xs)/ys]where (f ys = u) E D
= C ('DTs ts p)
= 'DC (p(x)) alts p
= let x = ('Di t p) in ('Di u p)

'DC x {Ci XSi ~ Vi} p

'DC (f xs) alts p

= case x of {Ci XSi ~ D'T Vi p}
= 'DC u[xs/ys] alts p

where f ys = u
= D'T V p[ts/xs]'DC (C ts) { ... ; C xs ~ V; ... } p

'DC (case x of {Ct XSi ~ Vi}) alts p = case x of {Ci XSi ~ 'DC Vi alts p}
'DC (let z = t in u) alts p = let x = t in ('DC u alts p)

Figure 3.7: Simple Deforester

'D'T can be expressed thus:

CD ('DiD t p) TJ= CD t (P+TJ)

where p + TJis defined in the same way as before (Section 3.4.2).

Because p is restricted to being idempotent, each invocation of D'T performs one level of
substitution. For example, to simplify the expression f (g (h x)) two invocations of'Di
are required: D'T (fy) [y/('Di (g z) [z/(h x)])]. This is a major difference between the
algorithm presented here and the original deforestation algorithm of Wadler. This formu-
lation is justified by the analogy to cut elimination, since our goal is to merge deforestation

of recursive functions with cut elimination itself.

Termination of this algorithm is straightforward; a possible proof methodology is co-

Chapter 3 : Cut Elimination 71

induction. The proof is not included here.

3.7 Higher-Order Deforestation

So far we have an algorithm that removes intermediate data structures from arbitrary
typed lambda calculus terms, and an algorithm that removes intermediate data structures
from compositions of calls to first-order recursive functions. By combining the two, we will
have a higher-order deforestation algorithm.

The higher-order deforestation algorithm is a conservative extension of the first-order algo-
~ !

rithm; that is, it yields the same results for first order terms and functions as the first-order
algorithm.

By applying cut elimination to recursive programs we lose the strongly normalising property
of cut elimination, but this should be replaced by a general termination property for the
combined algorithm. We have so far been unable to prove that the resulting algorithm
terminates, but in Section 3.7.4 we give some necessary conditions for termination and
conjecture that these are sufficient.

3.7.1 Syntax

The grammar of treeless terms in our hybrid language is given in Figure 3.8. Note that
the domain of recursive function names is separate from the domain of variable names,
and that recursive functions must be fully applied. This restriction is not serious, however,
since it is now possible to write a recursive function that can be partially applied by using
a lambda expression, for example:

AX. Ay. Xz.] X y z

As before, we note that the grammar describes terms in normal form, save for the let
construct. The intermediate structures to be removed are those present in the environment
given to the transformation process.

72 Chapter 3 : Cut Elimination

t, U, v "- AX.a lambda abstraction..
C tl ... tn constructor application
z ts function application
case z ts of alts case expression
let X = t in U let expression
! xs recursive function call

ts ..- tl ... tn sequence of terms..
xs "- Xl··· Xn sequence of variables..

alts "- {Cl XSI ~ VI; ... ; Cn XSn ~ Vn} case alternatives..

Figure 3.8: Treeless Terms for the Higher Order Deforester

As in the simple deforestation algorithm we assume a global set of recursive function
definitions, D, in which each definition has the form! xs = t. We also assume an evaluation
function for the language, E.

3.7.2 Algorithm

The algorithm combining cut elimination with deforestation is shown in Figure 3.9. The
environment p must be idempotent, as in the earlier algorithms.

The meanings of the three constituent operations can be defined in terms of our evaluation
function, E, as follows:

E (Q7 p t) TJ

E (QA t ts) TJ

= E t (TJ + p)
= E (z ts) (TJ[(E t TJ)jz]

E (QC P t alts) TJ = E (case z of alts) (TJ[(E t TJ)jz] + p)

3.7.3 Knot Tying

Knot-tying for this algorithm can be achieved in two ways: knot-tying can be merged into
the transformation algorithm itself, or we can adopt a two stage process where the trans-

Chapter 3 : Cut Elimination 73

97 p (Ax. u)
97 p (C ts)
97 p (z ts)
97 p (case z ts of alts)
97 p (let x = t in u)

97 p (J xs)

Wt t []
Wt (Ax. u) (t : ts)
Wt (z ts) ts'
Wt (case z ts of {Ci XSj -* Vi}) ts'
Wt (let x = t in u) ts
Wt (J xs) ts

9C p (C ts) { ... j C ys -*Vj •.. }

9C p(z ts) {Ci zs, -* Vi}

9C p (case z ts of {Ci XSi -* Vi}) alts
9C p (let x = t in u) alts
9C p (J xs) alts

= Ax.97 p u

= C (QTs p ts)
=Wt p(z) (9Ts p ts)
= 9C p (Wt p(z) (9Ts p ts)) alts
= let x = 97 p t in 97 p u

= 97 [p(xs)/ys] u
where (J ys = u) E D

=t
= Wt (97 ft/x] u) ts
= z (ts *ts')
= case z ts of {Ci ySj -* Wt Vi ts'}
= let x = t in Wt u ts
= Wt u[xs/ys] ts

where (J ys = u) E D

= 97 p[ts/ys] V
= case z ts of {Cj YSi -* 97 P Vi}
= case z ts of {Ci YSi -* 9C P Vi alts}
= let x = t in 9C p u alts
= 9C p u[xs/ys] alts

where (J ys = u) E D

Figure 3.9: Multi Cut Elimination With Loops

74 Chapter 3 : Cut Elimination

formation generates labelled expressions and the subsequent knot-tying process analyses
the labels and makes new function definitions appropriately, as in the algorithm presented
in Chapter 2 and indeed in the algorithm we implemented, Chapter 5. We believe the first
method may better facilitate a proof of termination.

3.7.4 Proposition of termination

Our claim is that, given terms with finite application depth and no negative recursive
types, the above algorithm will terminate. We will now give arguments as to why these
two restrictions should be necessary to guarantee termination.

The guiding principle that we use in formulating the restrictions on the input is that the
user should not be able to define a general fixpoint operator and present it as input to the
deforestation algorithm. To allow this would surely invalidate the termination property,
since the user could define arbitrary recursive functions using only the fixpoint operator
applied to non-recursive lambda expressions. Since it cannot be possible to guarantee
termination of the algorithm given arbitrary recursive functions, it seems reasonable to
restrict the input to the algorithm in such a way that a general fixpoint combinator cannot
be formulated. It will still be possible to define the Y combinator, but the resulting
definition will involve let and therefore residual data structures; because of this it will be

safe to transform.

There are two ways in which the fixpoint operator may be defined. Firstly, using a recur-

sively typed expression:

fix = X], ()..x.! (x x)) ()..x.! (x x))

This definition is already outlawed according to the grammar we gave for the input to the
algorithm, but it can be reformulated using let. The property of the definition we are
interested in is the type of x: it has a cyclic type given by ul.l -+ A. This is known as
a negative recursive type. The rank of a cyclic type is given by the number of times the
cycle passes through the argument position of an arrow. If the rank is even, the type is
positive, otherwise it is negative. Terms involving only positive types are known to be

Chapter 3 : Cut Elimination 75

• strongly normalising, but those involving negative types do not possess this property. This
is supported by the fact that negative types are required to define a fixpoint combinator, as
above (the type of x has a type with rank 1). It is insufficient to just Dis-sallow recursive
types unless the cycle passes through a sum-of-products type (a common practice in the
Hindley Minler type systems used in modern programming languages such as Haskell and
ML), since this still allows a fixpoint combinator to be defined. Instead, we simply outlaw
all negatively recursive types.

The second way to define a fixpoint combinator is to make use of the recursion mechanism
provided by the language:

fix = Af·f (fix f)

which doesn't involve any recursive types. However, the definition does possess infinite
application depth, which means that if the definition were fully expanded, a descent of the
expression tree would pass through an infinite number of application nodes. We outlaw
this by requiring that all terms have a finite application depth. It is straightforward to
determine whether a given set of recursive functions has infinite application depth by
descending the expression tree for each function, expanding function calls, until a call to a
function that has previously been expanded is encountered. If the descent required passing
through an application node then the application depth is infinite.

Note that it seems sensible to impose a slightly stronger restriction, namely that recursive
calls cannot appear in the argument to an application. This would appear to be a useful
property on which to base a termination proof, but we have so far been unsuccessful in
finding such a proof, although we believe one exists. In any case, there seems no reason
why the more lenient criteria given above should not be sufficient to guarantee termination.

We have provided two restrictions on the input to the deforestation algorithm, and argued
that they are necessary to ensure termination. Why, however, should these two restrictions
alone be sufficient for termination? We have not been able to find a counter example, nor
have we succeeded in finding a proof. This is a topic for future work.

76 Chapter 3 : Cut Elimination

Chapter 4

Other Issues

4.1 Conversion to Treeless Form

The deforestation algorithm presented in the previous chapter took as input recursive
function definitions in treeless form. Treeless form includes the let construct, which renders
it complete in the sense that any function can be represented in this language, by the
addition of appropriate lets. However, the let construct acts as a barrier to deforestation:
it introduces a residual data structure, one that will not be removed by the transformation.
The danger in converting an arbitrary function int~ treeless form is that data structures
which areeliminable will be rendered residual by the addition of a superfluous let.

For example, the fundamental list processing function foldr can be written like this:

foldr f c xs = case xs of
Nil --+ C

Cons x zs' --+ f x (Joldr f c xs')

This term has infinite application depth, so the addition of a let is required to represent
it in treeless form:

78 Chapter 4 : Other Issues

foldr f c xs = case xs of
Nil -t c

Cons x zs' -t let y = foldr f c zs' in f x y

which enables elimination of the input list xs, but makes the result of the recursive call
to foldr residual. However, by the insertion of an extra let, we can make the input list

residual too, preventing any removal of this data structure:

foldr f c xs = let ys = xs in case ys of
Nil -t c
Cons x xs' -t let y = foldr f c xs' in f x y

In this section we show that there is an optimal conversion from an arbitrary expression in
our extended lambda calculus language into the treeless form of the previous chapter. By
"optimal" we mean that the largest subset of data structures in the resulting expression

will be eliminable by the deforestation algorithm.

As an aside, note that if the definition of treeless form is relaxed, in some cases more
data structures can be removed by the deforestation algorithm, but in other cases the
algorithm may fail to terminate. For instance, if the original definition of foldr above is
admitted as treeless form (and the deforestation algorithm adjusted accordingly-this is
straightforward), then the call foldr f c xs where f is bound to AX. Axs. Cons x xs yields a
list that is eliminable. This is the standard append function, which is an instance of foldr.
However, if f is bound to AX. Axs.foldr g x xs, then the algorithm will fail to terminate as
it encounters an ever increasing nesting of calls to foldr.

A somewhat lower-level description of a conversion-to-treeless-form algorithm can be found
in Section 5.5 where we apply the principles from this section to the language used in our

deforestation implementation.

Chapter 4 : Other Issues 79

·4.1.1 Languages

The grammar for the full language is shown in Figure 4.1, and the grammar for the treeless
subset of this language is shown in Figure 4.2.

The domains of function symbols and ordinary variables are distinct, and we use x, y, z
to range over variables and f, g, h to range over recursive functions. As in the previous
chapter, we assume a global set of recursive function definitions D. In the full language,
there is no restriction on how a recursive function symbol is used, but in treeless form it
may only be applied to a sequence of variables.

The grammar of treeless form also prohibits terms with infinite application depth. In fact,
it is even more restrictive than this: a recursive function application cannot appear to the
right of an application. The restriction is formulated in this way so that treeless form can
be easily specified as a grammar.

Strictly speaking, because of this difference in the way treeless form is defined in this
section, the algorithm here is not optimal with respect to the definition of treeless form in
Chapter 3. However, the additional restriction is purely to enable a clearer presentation,
and the algorithm presented can easily be extended to the treeless form of Chapter 3 (and
indeed restricted to the treeless form of Chapter 2).

4.1.2 Algorithm

The algorithm to translate an expression in the full language into treeless form consists of
two stages. Firstly, the expression is translated into normal form (such that applicative
expressions have only variables at the head, and case expressions have only applicative
expressions as the selector). This stage involves no addition of let terms. The second
stage enforces the rules concerning recursive function calls, namely that calls must have
variable-only arguments and not appear in the argument of an application or in the selector
of a case expression. During this stage, certain expressions may be made residual.

Terms in the full language can be converted to normal form using the cut-elimination algo-
rithm presented in the previous chapter, and this constitutes the first stage of conversion
to treeless form.

80 Chapter 4 : Other Issues

t, U, v x variable
I f recursive function identifier
I AX. t lambda abstraction
I C ts constructor application
I t ts application
I case t of alts case expression
I let X = t in U residual let expression

ts tl, ... , t« sequence of terms

xs XI,···, Xn sequence of variables

alts ..- {Cl XSI --+ VI;· .. ; C; XSn --+ Vn} case alternatives..

Figure 4.1: The Full Language

t, u, V ..- AX. t lambda abstraction..
C ts constructor application
z ts' application
f xs recursive function application
case z ts' of alts case expression
let X = t in U residual let expression

t' u' v' ..- AX. t' lambda abstraction, , ..
C ts' constructor application
z ts' application
case z ts' of alts' case expression
let X = t' in u' residual let expression

ts ..- tll ... , tn sequence of terms

ts' ..- t~, ... , t~ sequence of terms..
xs ..- XI,···, Xn sequence of variables..

alts ..- {Cl XSI --+ VI; ... ; Cn XSn --+ Vn} case alternatives

alts' ..- {Cl XSI --+ vf; ... ; Cn XSn --+ v~} case alternatives

Figure 4.2: Treeless Form

Chapter 4 : Other Issues 81

• The second stage consists of three key transformations. These transformations are applied
to the term repeatedly until it is in treeless form, and they may be applied in any order.

The first transformation enforces the variable-only argument rule for recursive function
calls, and consists of two rules, the first of which applies to function calls where one or
more arguments are non-variables:

f ts => let Xl = tl in ... let Xn = tn in f xs.

let X = yin t . => t[y/x],if X occurs at most once in t

Here we extract all the non-variable arguments to a recursive function application and make
them residual. This transformation is optimal in the sense that there is no alternative way
to translate the call into treeless form that would introduce fewer residual expressions.
The reason for the side condition on the second rule above is that let expressions binding
variables that occur multiple times are used to enforce linearity constraints, see Section
4.2.

The remaining two transformation rules extract recursive function calls that appear in the
argument of an application. The grammar for treeless terms provides two places where
applicative terms may appear: at the ground level, or in the selector of a case expression.
The following rule extracts recursive function calls from ground level applicative terms:

X tl ••. t« > let Xl = UI in ... let Xk = Uk in X t~ ... t~

where {Ub"" Uk} are the minimal free expressions of
tl ... t« containing recursive calls.

s

t~... t~ is the sequence of expressions such that
s(tD = tl, ... , s(t~) = tn .

where the "minimal free expressions containing recursive calls" is the set of smallest sub ex-
pressions of an expression that contain recursive calls, with the additional constraint that
each expression in the set cannot contain free instances of any variables bound within the
original expression.· The reason for extracting this set is that we wish to remove all the

82 Chapter 4 : Other Issues

recursive calls from the arguments to the application, and bind them outside the applica-
tion with let expressions. Hence, the terms we extract cannot contain any free instances
of variables that will become unbound once they are lifted from the application.

More formally, the minimal free expressions containing recursive calls for an expression t
is the set of the smallest subexpressions of t satisfying the following criteria:

• Each subexpression contains at least one recursive call.

• No expression in the set contains any other as a subexpression.

• The set of free variables of each expression in the set is a subset of the free variables

of t.

For example, for each of the following expressions we give the minimal free sets:

! ts
! (g ts)
AZ.! x
AX.! x
let Z =! x in 9 Z

let Z =! x in 9 y
(AX.! x) (g us)

{J ts}
{! (g ts)}
{J x}
{AX.! x}
{let Z =! x in 9 z}
{(f x), (g y)}
{(AX.! x),(g us)}

By extracting only the minimal free expressions, instead of simply extracting each argu-
ment to an application that contains recursive calls, we ensure that the maximum pos-
sible number of reductions can be performed during deforestation. For example, if we
translated (x (Cons y (f z))) as (let x' = Cons y (f z) in x x') instead of (let x' =
! z in x (Cons y x')), we would inhibit the elimination of the Cons should x be instanti-

ated by a case expression during deforestation.

The third and final transformation is applied to case selectors and is similar to the second

transformation:

Chapter 4 : Other Issues 83

case X tl ••• tn of alts => let Xl = UI in ... let Xk = Uk in case X tf ... t~ of alts

where UI ••• Uk are the minimal free expressions of
tl ••• tn containing recursive calls

tf ... t~ are the expressions tl ••• tn

with UI ••• Uk replaced by Xl ••• Xn

Here we extract the maximal free expressions from the arguments to the application as
before, but they are placed outside the case selector.

Applying the conversion to normal form followed by repeated application of the three rules
above yields an optimal translation to treeless form. The algorithm we use to perform
automatic conversion to treeless form in our deforestation implementation is described in
Section 5.5.

4.2 Linearity

Blindly applying the deforestation algorithm to arbitrary programs carries an inherent risk:
the resulting program may be less efficient than the original. This surprising result is due
to non-linear features of the input program. We use the terms linear and non-linear here
informally, with no direct connection to linear logic.

We shall discuss three problems that can cause degradation of performance. In each case,
we give a solution to the problem involving either the addition of let bindings to the
expression or the use of some additional transformations to recover sharing. We conjecture
that by following the rules given in this section, no loss of performance will be incurred
by applying the deforestation algorithm to a given program (defining performance to be
'number of reductions performed').

The techniques presented here are relevant to the deforestation algorithms presented in the
previous two chapters, and also the algorithm which we have implemented, Section 5.6.

84 Chapter 4 : Other Issues

4.2.1 Duplication of work

A loss of efficiency can arise as the result of an expression being duplicated during trans-
formation. Expressions can be duplicated when applying one of the reduction rules in the
algorithm: case reduction, ,B-reduction, and recursive function unfolding. If a variable in a
case pattern, a recursive function argument, or a lambda-abstracted variable appears more
than once in the body of the construct then we say that the variable is non-linear. Non-
linear variables are a potential source of duplication of expressions, and thus duplication
of work when the resulting program is executed.

Perhaps the most obvious example of a function with a non-linear argument is square:

square x = x x x

Deforesting the expression square t, where t is a possibly large and expensive-to-compute
term, would yield the result txt. The problem is now evident: the time taken to evalu-
ate the transformed expression is roughly double the time taken to evaluate the original,
because the result of evaluating t is no longer shared.

Now consider this alternative definition of square:

square' x = let x' = x in x' x x'

Now, deforesting the expression square' t, we get let x' = t in x' x x', which is no worse
(or better) than the original. The difference is that the non-linear argument x has been
protected by a residual let expression. After unfolding, the argument to the function was
captured by the let, and not allowed to duplicate itself.

Note however that even if it was previously possible to eliminate the data structure repre-
sented by t when passed to a non-linear function, by forcing it to be residual this oppor-
tunity has been lost. It is not possible to determine statically when this is the case, so we
must assume the worst and make all non-linear variables residual.

So, we have established that to prevent expressions being duplicated we must add a let
construct for each non-linear variable in a function definition. Unfortunately, this is not

Chapter 4 : Other Issues 85

sufficient to guarantee that the result of deforesting a program is no less efficient than the
original.

4.2.2 Full Laziness

When a program is executed using a fully-lazy evaluation strategy [Hug83, Pey87], all
expressions are updated with their value once computed. This ensures that an expression
whose value is required several times will only be evaluated once, the expression being
replaced by its value after the first evaluation. To illustrate the difference between full
laziness and the semi-lazy evaluation strategy of most modern compilers (including the
Glasgow Haskell Compiler), consider the following simple function:

f = AX. X + square z

each time'the function f is applied, the value of the expression square z is required. Since
this value does not depend on the argument x, its value could be evaluated once and cached
for all future calls to f. This behaviour is characteristic of a fully-lazy evaluation strategy,
but ordinary laziness loses this sharing.

~
With a non-fully-lazy implementation, every time a function is applied its definition is
copied to the call site, replicating any subexpressions that may in fact be independent of
the argument that the function was applied to.

However, a transformation scheme called the full-laziness transformation can transform a
program such that it will have fully-lazy operational semantics, even though the evaluation
strategy is not fully lazy. The full-laziness transformation modifies a program such that

maximum sharing occurs during execution. The process consists of recursively extracting
from each lambda binding the maximally free expressions, i.e. the largest sub expressions
that contain no variables referred to by the binding.

86 Chapter 4 : Other Issues

4.2.3 Losing opportunities for full laziness

It is possible that performing the deforestation optimisation on a program can affect the
behaviour of a subsequent full-laziness transformation. This is a serious problem, since
many optimising compilers perform the full-laziness transformation as part of the optimi-
sation process, and removing opportunities for full-laziness would impair the transparency

of the full-laziness transformation.

The following program exhibits the problem described:

let f =)..g. map g (map h xs) in sum (f hI) + sum (f h2)

The program contains a function f which takes an argument g, and returns the result of
applying h followed by g to every element of the list xs. An intermediate data structure
exists between the nested calls to map in the definition of I, which can be removed by
deforestation. However, the expression map h xs is independent of g, and could therefore
be shared across multiple calls to f. The full-laziness transformation would yield

let ys = map h xs in let f =)..g. map g ys in sum (f hI) + sum (f h2)

If h is an expensive function to apply, then this transformation can have dramatic effects
on the execution time of the program for a non-fully-lazy compiler.

However, if we perform deforestation before the full-laziness transformation, the result

would be

let f = ss.I' g h xs in sum (f hI) + sum (f h2)
where
,!'=)..g.Xh,)..xs. case xs of

Nil -t Nil
Cons x xs -t Cons (g (h x)) (f' g h xs)

The opportunity to extract the second call to map from the definition of f has been lost,

Chapter 4 : Other Issues 87

• as the two calls to map are merged to remove the intermediate list.

Although removing the intermediate list provides some benefit, this is limited compared
to the benefit of sharing this list between calls to I.

The following table compares the effect of deforestation with that of full laziness, taking n

to be the number of times that 1 is called, and m to be the length of the list xs.

Deforestation
Removes construction of n lists.

Full laziness

Replaces construction of n lists with
one list.

Removes deconstruction of n lists. Has no effect on the deconstruction.

Has no effect on the calls to h. Replaces n x m calls to h with m
calls.

If we assume that calls to h are arbitrarily expensive, then deforestation can only be
beneficial in the case where n is one. For all other values of n, full laziness is better. Since
we cannot decide in general what the exact value of n is, the safest option is to perform
the full-laziness transformation before deforestation.

4.2.4 Loss of laziness

Not only can deforestation remove opportunities for full laziness to provide a benefit, it
can also remove sharing opportunities for ordinary laziness. This phenomenon is called
loss 01 laziness.

To illustrate the problem, suppose the input to-deforestation contains the following:

plus = AX. Ay. X + y
1 = Ag.let g' = gin Ax.Ay.g' i +g' y

Notice that the non-linear argument to I, namely g, has been protected. Ifwe now deforest
the expression 1 (plus t) 1 2 (where t is another arbitrarily large term), we get the following
term:

88 Chapter 4 : Other Issues

let g' = Ay. t + y in g' 1+ g' 2 (1)

In the original expression, t would have been updated with its value, once computed, and
the second demand of t would have yielded the cached result. With the expression after
deforestation, this is no longer the case.

How could we have detected the problem? Well, the cause stems from pushing an expression
(namely t) inside a lambda term, which happened in this example when the argument x
to plus was substituted. The result of this substitution, Ay. t + y is now a normal form,
and t will be recalculated every time it is applied. One sure way to avoid the problem
is never to substitute expressions inside a lambda term; however this would hamper the
process of deforestation, since we might miss some opportunities to remove intermediate
data structures.

Can we force arguments to be residual, as before? If we inserted a let:

plus = AX. let x' = x in Ay. x + y

this captures t before it is pushed inside the lambda. However, there seems to be no
justification for such a change, since the function plus might be used in a non-linear fashion
elsewhere in the program, where there is no danger of losing laziness, and we do not wish
to introduce residual data structures unnecessarily. In fact, the correct place to insert the
let is in the original application of plus: replacing plus t with let x = t in plus x. The
problem is how to decide in general

• that a particular expression/function can cause loss of laziness, and

• where to place the let to ensure that updatability for the expression in danger is

maintained.

The answer is that we don't have to. Notice that a valid transformation of the deforestation
result (1) above is the following:

Chapter4 : Other Issues 89

•

let x = t in let g' = Ay. x + y in g' 1+ g' 2

since t cannot contain y or g' as free variables. This is just the full-laziness transformation.

Any expression that is unfolded inside a lambda will automatically be a candidate for the
full-laziness transformation. S6, provided our compiler implements full laziness then our
transformations are safe, because any loss of laziness that results from substitution will be
reversed by the full-laziness transformation.

Combining this result with the conclusion of the previous section, we discover that in
order to guarantee that deforestation does not impair the efficiency of the program, we must
perform the full-laziness transformation on the program both before and after deforestation.
We have used this strategy successfully in our implementation of deforestation described
in Chapter 5.

4.2.5 Static argument transformation

To enable the full-laziness transformation to extract all the free expressions in the result
from deforestation, it is sometimes necessary to employ an extra transformation stage.

Consider the following example, involving the function map:

map = Af'.let f = f' in Axs.
case xs of

Nil -+ Nil
Cons x xs -+ Cons (J x) (map f xs)

The function f is applied to each element of the list. Thus, any computation which is
performed when f is applied will be duplicated for each element of the list that is subse-
quently demanded. If we deforest the expression map (plus t) xs where t is an expensive
expression to compute, and using the definition of plus from above, we obtain the following
result:

90 Chapter 4 : Other Issues

h Xl'" Xn xs

where
h = AXI .•.. Axn.let f = Ay. t + y in AXS.

case xs of
Nil -+ Nil

Cons X xs -+ Cons (J x) (h Xl •.. Xn xs)

(where Xl ••. Xn are the free variables of t). Now, the expression t will be recomputed for
each element of the list whereas previously the value of t would have been cached on the
first evaluation. However, we can reverse this state of affairs by using some well-known

transformation techniques.

The first task is to remove the arguments Xl" • Xn to h that have been introduced by the
knot-tying process. These arguments prevent the expression t from being extracted by
the full-laziness transformation. Fortunately, these arguments are the same every time h is
called, and h is therefore subject to the static argument transformation [San95c]. Applying

this optimisation to h, we get

h = AXI Axn.let f = Ay. t + y in
letrec

hi = AXS. case zs of
Nil -+ Nil

Cons X xs -+ Cons (J x) (hi xs)
in hi

Now, by inlining the function h at the call site (it can only occur once), we have

Chapter 4 : Other Issues 91

•

let f = Ay. t + y in letrec
h' = Axs. case xs of

Nil -t Nil

Cons x xs -t Cons (j x) (h' xs)
in h'

Next, we can apply the full-laziness transformation to extract the expression t from the
function I, since it cannot contain instances of the bound variable y:

let z = t in
let f = Ay. z + y in,
letrec

h' = Axs. case xs of
Nil -t Nil
Cons x xs -t Cons (j x) (h' xs)

in h' xs

Now t is evaluated exactly once each time this expression is evaluated, which is identical
to the situation before deforestation was applied.

4.2.6 Summary

To summarise, the following rules should be applied to ensure that deforestation does not
impair the efficiency of a program.

• To avoid duplication of expressions, non-linear bindings must be protected by let.

• The full-laziness transformation must be applied to the program prior to deforesta-
tion, so that opportunities to increase sharing are not lost during transformation.

• After deforestation, the static argument transformation should be applied to all new
function definitions to enable free expressions to be extracted.

92 Chapter 4 : Other Issues

• The full-laziness transformation should then be performed again, to recover any shar-
ing that was lost by inlining expressions inside bindings.

We conjecture that by following these rules, the deforestation algorithm will not make a
program less efficient than before.

An alternative and perhaps simpler solution to the problem is to make use of a linear type
system. Traditional linear type systems are not suitable for two reasons: they consider
expressions which are not required at all to be non-linear, and they also assign non-linear
types to expressions which are required more than once, but will be shared by lazy evalua-
tion. However, the type system proposed by Turner/Wadler/Mossin [TWM95] solves both
of these problems, and could provide a suitable framework on which to base a deforestation
algorithm that guarantees not to lose efficiency in the transformed program. Investigation
of this alternative technique is planned as future work.

4.3 Transparency

Much of the motivation for formulating the deforestation algorithm from cut-elimination
in the previous chapter came from the desire for the optimisation to be transparent. This
we have achieved: there is a syntactic constraint on the program that guarantees that
all intermediate data structures will be removed. Furthermore, we have a construct that
enables the program to contain residual data structures, thus making treeless form ex-
pressive enough such that any function can be represented. The effects of transformation
(that is, which data structures will be eliminated by the algorithm) are obvious by simply
examining the source program.

The construct that makes this possible is residual let. By binding an expression with let
we put in place a barrier to deforestation; no elimination of the structure represented by
the expression bound by the let can take place. In some cases, it is obvious what effect
this will have on deforestation. For example, consider the following standard definitions of
map and sum:

Chapter 4 : Other Issues 93

,

sum = AXS. case xs of
Nil -+ 0

Cons x zs' -+ let y = sum zs' in x + y
map = A/. AXS. case xs of

Nil -+ Nil

Cons x zs' -+ Cons (f x) (map / xs')

We can see by observation that the only residual data structure in these definitions is
the integer result of the recursive call to sum, so we know that all other structures are
eliminable. For example, we can deduce that the intermediate list in sum (map / xs) will
be removed by deforestation.

However, we can prevent removal of this list by insertion of a let, like this:

let ys = map / xs in sum ys

It is clear from the placement of the let that the data structure represented by map / zs
is residual. In fact, when the deforestation algorithm is applied to this new expression, the
result will be simply a renaming of the original program.

In some cases, it can be more difficult to assess the impact of inserting a residual let in a
program. Consider the following altered definition of map:

map = A/. AXS. case xs of
Nil ~ Nil

Cons z zs' -+ let ys = map / zs' in Cons (f x) ys

Which data structure is being made residual here? Well, if we expand the result of a: call
to this version of map, we get

94 Chapter 4 : Other Issues

From this representation it is clear that all elements of the result list are residual, except
for the head. Now, if we deforest the expression sum (map I xs) using this definition of
map, the head element of the intermediate list between the applications of sum and map
is removed, but the rest of the list is left in place. The result is:

case xs of
Nil -+ 0
Cons x zs' -+ let ys = g I zs' in (f x) + (h ys)

where g = AI. AXS. case xs of
Nil -+ Nil
Cons x xs' -+ let ys = g I xs' in Cons (f x) ys

h = AXS. case xs of
Nil -+ 0
Cons x xs' -+ x + (h xs')

Knowing the effect of adding a let construct to a function definition is useful when it is
necessary to convert a function to treeless form, or to assess the result of an automatic
conversion (Section 4.1). For example, the treeless form version of the [oldr function looks

like this:

[oldr I c xs = case xs of
Nil -+ c

Cons x zs' -+ let y = [oldr I c zs' in I x y

Here the result of the recursive call to [oldr is residual. Thus, if the result of this call is a
data structure of some kind, then it cannot be removed during deforestation. An example
of this is when the argument I to loldr is AX. AXS. Cons x X8, yielding the list append
function. Because the recursive call to [oldr is residual, only the head of the resulting list

could be eliminated.

Another function which requires addition of a let to render it in treeless form is iterate:

iterate = AI. AX. Cons x (iterate I (f x))

Chapter 4 : Other Issues 95

which can be written in treeless form as follows:

iterate = X]:)..x. Cons x (let y = / x in iterate / y)

Here the elements of the result list are residual, although the list itself is not.

To summarise, the residual let construct gives the programmer precise control over which
data structures in the program should be removed by deforestation. With some thought,
it is also possible to examine a function definition that has been converted to treeless form
and decide which parts of the result are residual.

96 Chapter 4 : Other Issues

Chapter 5

Implementing Deforestation

This chapter will present an approach to implementing higher order deforestation in a
functional language compiler. We cover the design of the optimisation pass, showing how
the higher order deforestation algorithm works in the context of a real compiler.

We chos~ the Glasgow Haskell Compiler [Pey93] as the basis for our implementation, since
it is designed in such a way that implementors can 'plug in' their own optimisation passes.
It also provides a number of features that we found particularly helpful, including the
ability to pass compiler specific optimisation details between the modules of a program
in a separate-compilation situation. However, many of the techniques that are described
in this chapter are not specific to the Glasgow Haskell Compiler, or even to Haskell. An
implementation of deforestation can be constructed along these lines for any functional
language compiler.

The next section describes the design goals for the implementation of deforestation, and is
entirely language-independent. Section 5.2 describes how we resolved the design goals into
a real deforestation model, and contains some details of how we mapped the design on to
Haskell and the Glasgow Haskell Compiler. From Section 5.3 we go into more detail about
the structure of the implementation, describing the algorithm used and some solutions to
the problems facing a practical realisation of deforestation.

98 Chapter 5 : Implementing Deforestation

5.1 Design Goals

The main concern in the design of the optimisation pass is transparency. How much control
should we give to the user? With the higher order deforestation algorithm, we have the
ability to provide the programmer with complete control, by allowing him or her to augment
the program with lets to indicate residual data structures. Of course, the programmer is
then burdened with the task of making sure that recursive functions are in treeless form.

This is often an unwelcome burden.

In many cases, the programmer will want to simply instruct the compiler to perform
deforestation during the compilation process, and have the compiler remove as many in-
termediate data structures as possible. It would also be useful if we could deforest existing

programs without needing to alter the code in any way.

We have already shown that there is an optimal conversion from an arbitrary higher order
language into treeless form, so this stage can be automated. In fact, there is no problem
in theory with applying the deforestation algorithm to all parts of the program that meet
the criteria for a legal input to the algorithm.

However, there is a pragmatic problem with the fully automatic scheme. If the deforestation
algorithm is allowed to run unchecked on the whole program it can create code explosion
(an ungainly increase in code size). Informally, the reason for this is that recursive functions
are always expanded at the call site, creating one copy of the function for each call. In
some cases, the unfolded function will be subject to deforestation, combining with other
unfolded functions to produce new specialised functions that use less intermediate store.
In other cases, the function call will not be in a suitable position for deforestation to occur,
and the result will be a copy of the original function at the call site (possibly specialised
with respect to its higher order arguments - a small additional benefit). Although the
unnecessary unfolding of functions does not in theory adversely affect the efficiency of the
program, in practice the increase in code size can be a problem-both at compilation and
run-time. Later stages of the compiler will have to deal with an unduly large program,
resulting in longer compilation times. An unreasonably large executable can put extra
strain on the virtual memory system of the computer, leading to large increases in the
perceived execution time of the program.

Chapter 5 : Implementing Deforestation 99

So, while the fully automatic scheme is desirable, compromises will have to be made in
order for it to be practical. Section 5.2 will present one solution to this problem.

5.2 A Model for a Deforestation Compiler Pass

In this section we detail the decisions that were made before implementing the deforestation
optimisation in the Glasgow Haskell Compiler, including our solutions to the problems
outlined in the previous section.

5.2.1 User annotations .vs, Automatic. compiler annotations - A
compromise

The solution we chose to this problem allows existing programs to be deforested (to a
certain extent) without programmer intervention, but also allows the programmer full
control over the deforestation process if he is prepared to provide annotations to guide the
deforester.

The choice of which recursive functions to unfold is left to the programmer. To indicate
to the deforester that a particular function is to be unfolded during deforestation, the
programmer places a special annotation, or pragma, in the program. For example,

{-# DEFOREST f #-}

. . .
indicates that the function f is to be unfolded. Since the syntax {- ... - } normally denotes
a comment in Haskell, a compiler that does not understand this form of annotation will
ignore it.

Converting function definitions to treeless form is done automatically, with the programmer
having the option of forcing some expressions ~o be residual. A residual expression will
be converted into a let-expression at transformation time 1, and the intermediate data
structure that it represents will not be removed by deforestation. To indicate that an
expression is to be residual, the programmer applies the pseudo-function _residual to it.

lThe let term form has a special meaning to the deforestation algorithm, in that it always represents
a residual data structure. See Section 5.4

100 Chapter 5 : Implementing Deforestation

The Standard Prelude

It appears from the description above that, in order for any deforestation to be performed,
the programmer must place some annotations in his program. However, this is not the case:
in Haskell, there are a large number of functions that are built in to the language, and
must be available to all programs. This set of functions is collectively called the Standard

Prelude.

The Standard Prelude (or Prelude for short) includes a wide range of list-processing func-
tions, such as map, filter, sum, and foldr. Since the definitions of these functions are
invisible to the programmer (although their semantics are specified by the language defi-
nition), we as compiler writers are free to annotate them for deforestation.

The approach taken in our implementation is to annotate for unfolding all Prelude list-
processing functions that can be successfully used during deforestation. This has been
found to yield a modest increase in code size (see Chapter 6) while allowing the maximum
amount of intermediate data to be removed without user annotations.

Enumerated Lists

Enumerated lists in Haskell take four forms: [n ..], [no .m}, [n,m ..], and [n,m .. 0]. At
compile time, these enumerated list constructs are converted into calls to the Prelude list
generating functions enumFrom, enumFromTo, enumFromThen and enumFromThenTo
respectively. Accordingly, all we need to do to make these lists deforestable is to annotate

the corresponding functions in the Prelude for deforestation.

List Comprehensions

There are a number of conversions from list comprehension syntax into an equivalent
expression without list comprehensions [Pey87, HPW+92, GLJ93]. The Glasgow Haskell
Compiler uses two: the conversion into recursive function definitions of Wadler [Pey87]
and the foldr/build conversion of Gill/Launchbury /Peyton-Jones [GLJ93]. The latter
strategy permits deforestation based on the foldr/build method.

Chapter 5 : Implementing Deforestation 101

t ' We use the former method, and automatically annotate any function definitions introduced
to be unfolded during deforestation. This enables any lists consumed or produced by a list
comprehension to be removed by deforestation.

For instance, we can always remove the intermediate list in expressions of the form

[f x I x <- In .. m]]

because the translation inside the compiler produces an expression similar to

letrec
h = \xs -> case xs of

Nil -> Nil

Cons x xs -> Cons (f x) (h xs)
in

h (enumFromTo n m)

and since the function h is annotated as deforestable, the intermediate enumerated list 'can
be removed during deforestation. Note that the function generated is in treeless form; this
is true for all functions produced by the list comprehension translator.

Other common uses of list comprehensions which are a source of intermediate lists include
expressions like

[f x y I (x,y) <- zip xs ys]

where we can eliminate the list of pairs produced by zip.

Arrays

In Haskell, an array is built using the array function, which has the following type:

array (Ix a) => (a,a) -> [Assoc a b] -> Array a b

102 Chapter 5 : Implementing Deforestation

The construction of an array requires an upper and lower bound for the index (the type of
the index can be any member of the Ix class), and a list of association pairs to initialise
the array. The association pairs are defined by the Assoc datatype:

data Assoc a b = a := b

Each association pair in the list passed to array initialises one element of the array, by
placing value b at index a.

For example, suppose we would like to construct a lookup table for the sin operation. We
will construct an array with indices 0 ... 180, where the value at each index z is sin(7rxj180).
The following Haskell expression builds such an array:

array (0,180) [x := sin (pi * x / 180) I x <- [0..180]]

The above definition, while clear and abstract, suffers from some serious inefficiencies.
There are two intermediate lists:

• The list [0..180] is built and immediately consumed by the list comprehension. The
previous Section describes how this list will be removed by deforestation .

• The list of association pairs produced by the list comprehension is consumed by
array during construction of the final array.

The second list can be removed by unfolding the definition of array during deforestation.
This may present problems with some implementations of Haskell, since array is often a
primitive operation without its own Haskell definition. However, in Glasgow Haskell, the
array function is defined in terms of lower level primitive array operations, and we can
unfold its definition as normal.

5.2.2 The Module System

Separate compilation often presents a barrier to global optimisation techniques. Without a -
means by which information can be propagated between modules, many optimisations can

Chapter 5 : Implementing Deforestation 103

be lost. For example, it is desirable to have available information regarding the strictness of
functions in one module whilst compiling a separate module that refers to those functions.

The Haskell module system defines interface files that allow information to be passed
between modules of a program. Each module has an associated interface which gives the
types of functions defined in that module. The interface for a module is consulted when
compiling further modules that use functions from the first module. Interface files may be
written by the programmer (in fact, this is required when modules are mutually recursive),
but more commonly the interface for a module is generated automatically whilst compiling
the module itself .

.The Glasgow Haskell Compiler makes additional use of this form of inter-module commu-
nication by placing optimisation information in the interface file, in the form of pragmas.
There is normally one pragma for each function defined in the module, and it takes the
following form:

{-# GHC_PRAGMA ... #-}

where the ... is replaced by a large amount of optimisation information, including the
strictness, arity, and update behaviour of the function.

In some cases, the pragma can contain the definition of the function itself, so that importing
modules can inline the function at call sites. This is typically used for small functions,
where the speed advantage outweighs the small increase in code size that can result from

, -
inlining.

Our deforestation implementation also makes use of this facility by forcing the definition
of any function annotated for deforestation to be placed in the interface pragma for that
function. Thus, any module that imports an annotated function will have its definition
available during the deforestation phase, and compositions involving the imported function
will be deforested as norm_al.This technique essentially bridges the module gap, such that
there is no penalty for spreading a program across several modules.

Since the Prelude itself is just a collection of Haskell modules (bar some primitive objects
that' are built-in to the compiler), the definitions for our annotated functions appear in
the interface for the Prelude, and are available to the compiler when compiling any user
program.

104 Chapter 5 : Implementing Deforestation

5.2.3 Summary

We have shown how our implementation of deforestation will work from the user's point of
view, including which standard Haskell functions and constructs will be deforested without

the need for special annotations.

The advantages of the scheme we have outlined can be summarised as follows:

• The programmer has full control over the deforestation of his program through the

use of optional annotations in his program.

• If the annotations are omitted, some removal of intermediate lists may still take place
where the programmer has made use of enumerated lists, list comprehensions, array

constructions and Prelude list-processing functions.

• There are no compromises to be made in the deforestation transformation itself-it
simply picks expressions that fit the input criteria and transforms them, unfolding

only functions that have been annotated beforehand.

The disadvantages are:

• No deforestation of user-written functions and data structures will take place unless
the user annotates his program. For example, if the user writes tree-processing func-
tions that he wishes to be deforest able, they must be annotated as such. Probably the
most common problem occurs when the user writes his own list-processing functions
(or his own versions of Prelude list-processing functions), which will not be unfolded

by the deforester unless specifically annotated.

• The deforestation pass will unfold all annotated functions, whether any intermediate
structures can be removed or not. This can result in an increase in the size of the
object code, but we have typically fO)lnd this increase to be small (this is quantified
in Chapter 6). In fact, the Glasgow Haskell Compiler already inlines a number of
functions for speed, including map, append, and foldr.

The scheme is somewhat limited, in that we only attempt to remove intermediate lists and

ignore all user-defined data structures, but it is an effective compromise. After all, the pro-
grammer is still free to annotate his program to gain maximum benefit from deforestation.

Chapter 5 : Implementing Deforestation 105

• 5.3 Structure of the Deforestation Implementation

The algorithm used in our implementation is a variant of the higher-order deforestation
algorithm described in Chapter 2. This algorithm was chosen over the improved algorithm
in Chapter 3 for two reasons:

• It has a termination proof, which is essential for an optimisation to be included in a
production compiler .

• It is more efficient than the cut-elimination algorithm. This is due to there being no
nested calls to the transformer (the algorithm never transforms code twice).

The disadvantage of using this algorithm is that we have to obey the slightly more restric-
tive definition of treeless form, which does not correspond exactly to the normal form of
our language .. We avoid the problem of the extra introduction of let bindings (Section
2.7.1), by requiring only that the result is in normal form, not treeless form. This may
sound like we are abandoning transparency, but in fact as noted in Chapter 2, the inter-
mediate structures which would be rebound with let during transformation are not in fact
removable.

Opting for a separate knot-tying pass requires that the implementation of the transforma-
tion system is lazy, which in itself presents some problems for avoiding name capture. The
difficulties and our solutions are described in Section 5.9.

The next section describes the Core language. This is the small functional language used
internally by the Glasgow Haskell Compiler. The Haskell source code passes through a
dependency analyser and type checker before being translated into Core. All the optimi-
sation passes in the compiler take a program in Core and yield a result in Core; these are
the so-called Core-to-Core passes, of which our deforestation implementation is one.

Section 5.4.1 describes the subset of Core which we define as treeless form. As noted
above, we use the definition of treeless form from Chapter 2, but extended with the extra
constructs found in the Core language.

Section 5.5 gives our algorithm for automatic conversion of arbitrary Core expressions
into treeless form. We use a conversion process which is a simplification of the algorithm

106 Chapter 5 : Implementing Deforestation

described in Section 4.1, adapted for the treeless-form definition in Section 5.4.1. This is
applied to all functions which are annotated by the user for deforestation, before they are

used in transformation.

Section 5.6 gives the algorithm used by our deforestation implementation in three parts:
the transformation scheme for Core expressions (except letrec), the transformation scheme
for Core programs, and the transformation scheme for letrec expressions.

Section 5.9 describes our method for avoiding name capture during the transformation

process. Section 5.7 gives the algorithm for knot-tying.

5.4 Glasgow Haskell Core Language

The Glasgow Haskell Core language which forms the input to our deforestation imple-
mentation is shown in Figure 5.1. The Core language is derived from the second-order
polymorphic lambda calculus, with additional constructs for manipulation of primitive
values (integers, floating-point numbers etc.), and algebraic data types similar to those

used in earlier chapters.

We use x, y, z, I, g, h to range over variables, l to range over literals, t, u, v to range over
terms, xs, ys, zs to range over sequences of variables, ts, us, vs to range over sequences of
terms, alts to range over lists of algebraic or primitive case alternatives, and dels to range

over lists of recursive definitions.

There are two types of variables: those that are annotated as deforestable (Le. have an
associated function definition that was annotated as deforestable by either the user or the
compiler) and those that are not. When we wish to distinguish the two types, we will use

I, g, h to represent deforestable variables and x, y, z for all others.

The language includes explicit type abstraction and application. Additionally, each variable
in a Core program (variable instances and bindings) has an associated type, which is
stored along with the program. All this type information must be kept consistent during

transformation through type substitutions.

We use T and U to range over types and Ts to range over sequences of types. The actual
grammar of types is not given here because it has little bearing on the algorithm to be

Chapter 5 : Implementing Deforestation 107

t, u, v ..- I literal
x variable
AX.U lambda abstraction
AX.u type abstraction
C ts constructor application
EB ts primitive application
t ts application
t Ts type application.
case t of alts case expression
let X = t in u residual let expression
letrec defs in t letrec expression

ts ..- (tl, ... ,tn) sequence of terms

Ts ..- (Tb"" Tn) sequence of types

xs ..- (Xl,"" Xn) sequence of variables
alts ..- {Cl XSI ~ VI; ... ; Cn XSn ~ Vn; X ~ V} algebraic case alternatives

{it ~ VI; ... ; In ~ Vn; X ~ V} primitive case alternatives
defs ..- (Xl = tl"",Xn = tn) recursive function definitions

.Figure 5.1: The Core Language

presented; however, we do assume two operations involving types: U[T / Xl denotes the
type given by substituting the type T for the type variable X in the type U, and t[T/ Xl
denotes the term given by substituting the type T for the variable X in all the types
contained in the term t, including those associated with each variable instance.

Constructor applications and primitive applications in Core are always saturated; construc-
tor applications always yield an algebraic type, and primitive applications yield a primitive
type.

There are two kinds of case expression in Core: one for algebraic datatypes and one for
primitive types. These case constructs are slightly different than those we have encountered
before: it is not necessary for a complete set of alternatives to be present, but if the list is
incomplete then a default case must be included. The default case takes the form X ~ V

108 Chapter 5 : Implementing Deforestation

and binds the value of the selector expression to x in the term v, if none of the other cases
match. The default case may be omitted for algebraic case expressions when alternatives
for all of the constructor in the datatype are provided, but it may not be omitted for
primitive case expressions. It is worth noting that the Core expression

case t of {x -+ v}

is not equivalent to a Haskell case expression of the same form, because the Core version
has a strict semantics. That is, if the value of t is .1, then the value of the expression as a
whole is .1, but this is not necessarily true for the equivalent Haskell expression. The Core
expression equivalent to a Haskell expression in the above form is let x = t in v.

In the following chapter we will use the abbreviation {Ci XSi -+ Vi; x -+ V} for {Cl XSI -+

VI; ... ; Cn XSn -+ Vn; X -+ V}, and {Ii -+ Vi; X -+ V} for {II -+ VI; ... ; In -+ Vn; X -+ V}.

With regard to the typing of Core expressions, we require that all terms in the input to
the deforestation algorithm be well-typed according to the Hindley/Milner type system.
This is enforced by the type checker in the compiler, so any code that is passed to the

deforestation algorithm automatically satisfies the restriction.

The Core language given here differs slightly from the Core language used in the rest of the
Glasgow Haskell Compiler-for other transformations in the compiler it was found more
convenient to restrict expressions in the argument position of an application to be atomic
(variables and primitive values only). In our implementation we use a simple transforma-
tion between standard Glasgow Haskell Core and our modified form, which involves the
inlining of certain let expressions. The transformation is careful not to duplicate expres-
sions or expand a let expression where this would cause duplication of work at run-time.

We assume a straightforward non-strict semantics for Core embodied by an evaluator E.
The evaluator takes a Core term t and an environment TJ mapping free variables of t to
values, and returns the value of the term. The exact domain of values is not important to
us, but suffice to say it includes all the base types in Haskell together with the algebraic
datatypes defined in the program and the Standard Prelude.

Chapter 5 : Implementing Deforestation 109

t, u, v ..- I literal
AX.U lambda abstraction
AX.u type abstraction
C ts constructor application
E!1 ts primitive application
f ps deforestable function application
z ps normal function application
case z of alts case expression
let X = t in u residual let expression
letrec defs in t letrec expression

a,b,c ..- t term argument
T type argument

p ..- x variable argument
T type argument

ps ..- (PI, ... , Pn) sequence of variable arguments
ts ..- (tl' ... , tn) sequence of terms
xs ..- (Xl!"" xn) sequence of variables

alts ..- {Cl XSI -+ VI; ... ; Cn XSn -+ Vn; X -+ V} algebraic case alternatives
{II -+ VI; ... ; In -+ Vn; X -+ V} primitive case alternatives

defs ..- (Xl = tl, ... , Xn = tn) recursive function definitions

Figure 5.2: Core Treeless Terms

110 Chapter 5 : Implementing Deforestation

5.4.1 Treeless form

The grammar for Core terms in treeless form is given in Figure 5.2. It is essentially the
subset of terms in Core that are in normal form, with the exceptions that we use let to
indicate residual data structures, function arguments must be variables or types, and case

selectors must be variables.

5.4.2 Labelled terms

The transformation scheme we will present shortly takes a Core term and some treeless
recursive Core functions and yields an infinite labelled term. The knot-tying process takes
the infinite result of transformation and produces a finite treeless term and some new
treeless recursive functions. The intermediate language is Core augmented with a label
construct, which takes the form label t u. There are four restrictions on terms of this

form:

• Semantically, the two subterms must be identical.

• u is a labelled term and t is an unlabelled term.

• t may contain references to deforest able functions, but u may not (except in the first

component of label subterms).

• The set of free variables in u is always a subset of the free variables in t.

5.5 Conversion to Treeless Form

Before function definitions are used for deforestation, they are converted from Core to
treeless form. This is a two stage process. The first stage is to convert the Core term
to normal form (Le. applicative expressions are of the form variable applied to list of
terms/types, and case selectors are applicative expressions). An arbitrary Core term can
be reduced to this form by applying the deforestation transformation (Section 5.6.1) with

o equal to O.

Chapter 5 : Implementing Deforestation 111

F Is 1 1
F Is (Ax. u) Ax.F Is u
F Is (AX. t) AX.F Is t
F Is (C ts) - C (Fs Is ts)
F Is (EB ts) - EB (Fs Is ts)
F Is (x as) - Fapp Is x as ()
F Is (case x as of alts) let z = Fapp Is x as () in case ,z of (Falts Is alts)
F Is (let x = t in u) - let x = F Is t in F Is u

Fs Is (tIl .. · 1 tn) (F Is til· .. 1F Is tn)

Fapp Is x () bs x bs
Fapp Is x (T : as) bs Fapp Is x as (bs* (T»)
Fapp Is x (z : as) bs - Fapp Is x as (bs * (z»)
Fapp Is x (t : as) bs - let z = F Is t in Fapp Is z as (bs * (z»)

Faits Is {Ci XSi -+ Vi; X -+ V} -

Faits Is {li -+ Vi; X -+ V}

{Ci XSi -+ F Is Vi; X -+ F Is v}
{li -+ F Is Vi; X -+ F Is as}

Figure 5.3: Conversion to Treeless Form

112 Chapter 5 : Implementing Deforestation

The second stage converts the normal form term to treeless form, taking into account the
set of variables which will be unfolded in the subsequent deforestation transformation. The
algorithm for this stage is given in Figure 5.3. The set of variables which will be unfolded
changes during deforestation, so the conversion procedure takes as an argument the list of
variables currently considered to be deforestable (Is).

The conversion to treeless form given here is optimal, in the sense that there is no other
way to convert a term to treeless form that would allow more intermediate structures to
be removed (see Section 4.1).

5.6 Algorithm

Volenow describe the deforestation algorithm implemented in the Glasgow Haskell Com-
piler. In Section 5.6.1 we give the basic transformation scheme for Core expressions without
letrec. Section 5.6.2 gives the transformation scheme for letrec expressions, and Section
5.6.3 describes how the deforestation algorithm is applied to whole programs. The knot-
tying algorithm (which is required by both the letrec and the top-level transformation
schemes) is described in detail in Section 5.7.

5.6.1 Transformation for expressions

The transformation scheme for Core expressions (except letrec) is shown in Figures 5.4
and 5.5. It consists of two mutually-recursive operations, T and C, and two support
operations, Is and faits. The T operation transforms a term applied to a number of
arguments (where the list of arguments may be empty, and can contain both terms and
types), and C transforms a case expression applied to a list of arguments, with a selector
that is also applied to a list of arguments. The Is operation transforms a sequence of
terms, and faits transforms lists of case alternatives.

Note that the transformation scheme is split into two functions for clarity alone; it is
certainly possible to have a single function that performs all the transformation, but to
avoid duplicating case terms on the left we opted for the two-operation approach.

Chapter 5 : Implementing Deforestation 113

7 a I 0
7 a x as
7a f as
7 a (Ax. u) 0
7 a (Ax. u) (t : as)
7 a (AX. t) 0
7 a (AX. t) (T : as)
7a(Cts)O
7a(EBts)O
7 a(t ts) as
7 a (t Ts) as

=1

=X (78 a as)
= label (J as) (7 a (a(J)) as)
= AX. 7 au 0
= T:o u[t/x] as
=AX. (7 a t 0)
=7 a t[T/X] as
= C (78 a ts)
= EB (78 a ts)
=7 a t (ts * as)
= 7 a t (Ts * as)

7 a (case t of alts) as = Cat 0 alts as
7 a (let X = t in u) as - let X = (7 a t ()) in (7 a u as)

= (7a tl 0,···, 7 a tn 0)

Figure 5.4: Transformation for Core Expressions

114 Chapter 5 : Implementing Deforestation

Cal 0 alts as = case 1 of (Talts a alts as)
C a x as alts bs = case x (Ts a as) of (Talts a alts bs)

Ca f as alts bs = label (case f as of alts) (C a a(J) as alts bs)

C a (Ax. u) (t : as) alts bs = C a u[t/x] as alts bs

C a (AX. t) (T: as) alts bs = Ca t[T/X] as alts bs

C a (C ts) 0 {... ;C xs -+ V; ••• } as
= 7 a v[ts/xs] as

Ca (C ts) 0 {... ;x -+ v} as = 7 a v[(C ts)/x] as

C a (Efl ts) () alts as

C a (t ts) as alts bs
Ca (t Ts) as alts bs

= case (Efl (Ts a ts)) of (Talts a alts as)

= Cat (ts *as) alts bs

= Cat (Ts *as) alts bs
C a (case t of {Ci XSi -+ Vi; X -+ V}) as alts bs

= Cat () { c. XSi -+ (case Vi of alts) as; } bs
x -+ (case V of alts) as

C a (case t of {li -+ Vi; X -+ V}) as alts bs
= Cat () {li -+ (case Vi of alts) as; } bs

x -+ (case V of alts) as

C a (let x = t in u) as alts bs = let x = (7 a to) in (C a u as alts bs)

Talts a {Cj XSj -+ Vi; X -+ V} as = {Ci XSi -+ 7 a Vi as; x -+ 7 a V as}

Talts a {li -+ Vi; X -+ V} as = {Zi -+ 7 a Vi as; x -+ 7 a V as}

Figure 5.5: Transformation for case expressions

Chapter 5 : Implementing Deforestation 115

Each of the transformation operations depends on an environment a which contains the
definitions of all the functions which are to be unfolded during transformation. The envi-
ronment a is only updated when a letrec subterm is transformed (see Section 5.6.2).

The transformation scheme has no nested recursive calls to the transformation operations,
although it does have explicit substitution in arguments to recursive calls. The substitution
can be implemented by an extra environment argument to the transformation operations,
which yields a transformation scheme with linear complexity.

The meanings of the transformation operations can be expressed in terms of the Core
evaluator, E, as follows:

E (7 a t as) p = E (letrec a in t as) p

E (C a t as alts bs) p = E (letrec a in ((case (t as) of alts) bs)) p

5.6.2 Nested letrec expressions

In this section we deal with letrec expressions present in the the expression being defor-
ested. This is the first time we have presented a solution to this problem, although the
techniques described here can be adapted without much difficulty to the algorithms of

Chapters 2 and 3.

The transformation for letrec expressions requires the knot-tying function /C, which we
will describe in Section 5.7. An invocation of /C takes the form /C t, where t is a labelled
Core term, The result is of the form (t', defs), where t' is a treeless term and defs is a
sequence of treeless definitions extracted from t.

Any of the functions defined by a letrec may be annotated as deforestable; this can occur
as the result of automatic recursive function generation and tagging by the compiler, for
example when list comprehension expressions are translated into Core (Section 5.2.1). A
nested list comprehension is translated into deforestable recursive functions which them-
selves contain letrecs defining deforest able recursive functions.

Since the recursive functions themselves may contain expressions that we wish to defor-
est, it is desirable to apply the transformation algorithm and knot-tyer to each recursive
function definition before it is placed in the environment a for further unfolding during

116 Chapter 5 : Implementing Deforestation

7 a (letrec (de/s * de/s') in t) as = letrec defs" in (7 a' t as)
where (11 = UI, ••. , /n = Un) = deis

(Xl = VI, .•• , Xn = Vn) = defs'
(Vf, ... , V~) = (7 a VI 0,···, 7 a Vn 0)
defs" = (Xl = vf, ... , Xn = V~)

((u~,gsd, ... ,(u~,gsn)) = (IC (7 a UI O),.··,IC (7 a Un 0))
hs = dom(a} *(lb'" ,In)
(u~', ... , u~) = (F hs u~, ... ,F hs u~)
a' = a * (11 = u~', ... ,In = u~) * gSI*...* gSn

Figure 5.6: Transformation scheme for letrec expressions

transformation of the rest of the program. The right hand side of each recursive defini-
tion is therefore transformed using the current environment, a. This has the side-effect of
leaving the definition in normal form, which makes the job of converting to treeless form
somewhat easier.

The transformation scheme for letrec functions is shown in Figure 5.6. First, we split the
definitions into deforestable and normal functions, and transform the right hand side of
each definition. We then apply the knot-tyer to the transformed right hand sides of the
deforest able functions, and collect all the new definitions that result. The new definitions
are converted to treeless form with respect to a new a, which is built from the original a
augmented with the extracted functions from knot-tying along with the new deforest able
functions from the letrec expression. The body of the letrec is then transformed in
this new environment. We leave behind a letrec binding just the non-tagged function

definitions.

Using this scheme, function definitions in the environment may contain letrec expres-
sions, but they will contain no deforest able functions, thus avoiding the possibility of the
transformation getting into an infinite loop processing deforestable functions.

Chapter 5 : Implementing Deforestation 117

TPa() =()
TP a ((de/s * de/s') : de/ss) = defs" : TP a' de/ss

where (/1= UI,.·.,1n = Un) - def«
(Xl = VI,.··, Xn = Vn) - defs'
((u~,gsd, .. ·,(u~,gsn) - (K'- (7 a UI O), ,K'- (7 a Un (»))
((v{, hsd, ... , (V~, hsn» (K'- (7 a VI (»), , K'- (7 a Vn (»))
hs - dom(a) * (/11'" ,In)
(u~', ... , U~) (F hs u~, ,F hs U~)
defs" - (Xl = v{, , Xn = V~)*

(/1 = u~', .I« = u~)*
gSI *...* gSn* hs, *...* hs.,
a* (/1 = u~,... .I« :_ U~)*a'

gSI *...*gSn

Figure 5.7: Top-Level Transformation Scheme

5.6.3 ,Top-level transformation

A Core program is a sequence of mutually-recursive function groups arranged in depen-
dency order, such that earlier function groups do not refer to later ones. The top-level
transformation scheme simply treats the program as a nested letrec expression with no
body, see Figure 5.7. The transformation scheme for each group of definitions is similar
to that for a letrec expression, and we split the definitions into deforestable and non-
deforest able as before. The transformed deforest able functions and the extracted functions
from the knot-tyer are placed in the new environment for transforming the rest of the
program as before, but we also keep all the transformed definitions in case any of them are
exported from the module ..

5.7 Knot-tyer

. ,

The knot-tying process takes the infinite labelled output from transformation and yields a
finite treeless term and some treeless recursive functions. In order to do this it must search

118 Chapter 5 : Implementing Deforestation

K, t = (t', dels)
where (t', used, dels) = JCT () t

JCT ls (label tu) =
if loops = ()

then if I E used
then (J (Xs * xs), used, (J = AXs. AXS. u'))
else (u', used, dels)

where I is fresh, tagged deforestable
xs freeVars(t)
Xs freeTypeVars(t)
(u', used, dels) JCT ((t,l, xs, Xs) : ls) u

else (J (Xs * s(xs)), (/), ())
where ((J, xs, Xs, s) : ...) = loops

where loops = {(J,xs, Xs, s) I (t',I,xs,Xs) ~ ls,s(t') = t}

Figure 5.8: Knot- Tyer

for loops in the input term.

A loop is defined as follows: the term label t u is a looping term if it is a subterm of
label t' u' and t is a strict renaming of t', One term is a strict renaming of another if only
the untagged variables (Le. the non-deforestable variables) are renamed. Renamings must
also be consistent; for example, the term (x y) is not a renaming of the term (z z), but

the reverse is true.

Our algorithm for knot-tying is shown in Figure 5.8. Given an infinite labelled term, the
algorithm K, will return a finite term and a list of new function definitions. The new
definitions are closed; that is, they have no free variables, provided that the free variable
property of labels is true for the input (Section 5.4.2).

The algorithm makes use of two auxiliary functions: freeVars(t) is the set of free variables
in t, freeTypeVars(t) is the set of free type variables in the type of t. If s is a mapping
from variables to variables, then s (t) is the term t with the mapping s applied to all its
free variables. Hence if s (u) = t then the term t is a consistent strict renaming of the term

Chapter 5 : Implementing Deforestation 119

u, and the substitution that expresses that renaming is s.

The function K:T forms the heart of the knot-tying process. It takes a list of tuples and
the current term. There is one tuple in the list for each label term of which the current
term is a subterm of the second component. Each tuple takes the form (t, I, IS, Xs), where

• t is the first component of the label term,

• / is a function name allocated to this label,

• IS is the list of free variables of the label, and

• Xs is the list of free type variables in the type of the label.

A call to K:T returns a tuple of the form (t', used, de/s), where

• t' is the result term,

• used is the list of function names for which we found loops,

• defs is the list of new function definitions referred to in the result.

When a term of the form label t u is encountered in the input, it is checked against all the
elements of the list of tuples Is. For each of the elements of ls (of the form (t',J, IS, Xs)),
if t is a renaming of t' then we have found a loop. A call to the function / is generated
at this point, with Xs *S(IS) as the argument list, where s is a substitution such that

, ,

s(t') = t. To indicate that a loop was found for this particular label, we return the list
(J) in the second component of the result.

If t is not a renaming of any t', then we construct a new tuple (t, I, IS, Xs), where / is a
fresh function name, IS is the list of free variables of t with duplicates removed, and Xs is
the list of free type variables in the type of t. The new tuple is added to Is before invoking
K:T on u .: If a match for this label is found in a subterm of u (indicated by / being present
in the second component of the result of the recursive call), then a new definition needs to
be extracted at this point. The right hand side of the definition is simply the result term

120 Chapter 5 : Implementing Deforestation

from applying JCT to u. We then construct a call to the new function and return this as
the result.

We have described only the case of JCT for label terms here, as the rest of the cases form
a straightforward traversal of the input term. Where a term form has more than one
subterm, the lists of bindings and used function names from applying JCT to the subterms
are concatenated to produce the result of knot-tying the whole term.

When generating new function definitions, the knot-tyer must abstract both the free vari-
ables and the free type variables from the function, in order to keep the type information
in the program consistent. Note also that any functions generated by the knot-tyer are
themselves marked deforestable: there is no reason not to do this, provided that we also
convert the definitions to treeless form before using them. The conversion to treeless form
is necessary because the definition of treeless form depends on the set of functions in the
domain of 0"; thus when a new set of function definitions are added to 0", they must be
converted to treeless form with respect to the new 0".

5.8 Improving the Knot-Tyer

We now consider a number of improvements to the basic knot-tying algorithm given in
the previous section. The improvements are all related to the quality of the output from
the deforestation algorithm: in a number of cases, we have found by experimentation
that the simple knot-tyer is inefficient in finding loops, which leads to an increase in the
size of the code being generated. Since the output from the knot-tyer is used as further
input to deforestation (for example when transforming deforestable functions before they
are unfolded), then any unnecessary increase in code size is amplified when the code is
re-transformed.

We consider several cases where unnecessary code explosion occurs, and propose solutions
to each one. Most of these techniques have been implemented, as noted below.

Finally, in Section 5.8.5 we consider a technique for improving the performance of the knot-
tyer, which is by definition an expensive computation. The technique described reduces
the complexity of the average case, leading to important improvements in the efficiency of

Chapter 5 : Implementing Deforestation 121

the deforestation optimisation.

5.8.1 Back Loops

Through experimentation with the knot-tyer as described above, we discovered that in
certain cases the output was larger than expected. In particular, the knot-tyer appeared
to have skipped a few labels before finding a loop and generating the new function. While
the intermediate structure had been removed as expected, the resulting program was much
larger than necessary.

The problem can be illustrated with the append function, defined as follows:

append = ;Xxs. ;Xys. case xs of
Nil --+ ys
Cons x xs' --+ Cons x (append zs' ys)

Suppose the deforestation algorithm is required to transform the expression f zs zs (there
are no intermediate data structures here, but we would expect the transformation/knot-
tyer to ~ield a function isomorphic to append).

The output from 7 a (append zs zs) will be:

label (append zs zs)
. (case zs of

Nil --+ zs
Cons x xs' --+ label (append xs' zs)

(case zs' of
Nil --+ zs
Cons x' zs" --+ label (append zs" zs)

(...)))

The first attempt at finding a renaming will attempt to match the label (append XS' zs)
against (append zs zs). This is an invalid renaming, because it is inconsistent: zs is

122 Chapter 5 : Implementing Deforestation

renamed to both zs' and zs. However, the next match does succeed: (append zs" zs) is
a valid renaming of (append zs' zs) and a new function is generated at the point of this
label. The result is therefore (ignoring free type variables):

case zs of
Nil -+ zs
Cons x zs' -+ 9 XS' zs

where 9 = AXS'. AZS. case XS' of
Nil -+ zs
Cons x' XS" -+ 9 XS" zs

Although no loss of efficiency has occurred in terms of extra computation, the size of the
code is needlessly larger than we would expect, and this imposes its own penalty on the
execution speed of the program.

The above observations led us to develop a simple principle that allows the extra code
in examples such as the above to be eliminated. The key idea is that if the term t is

an inconsistent renaming of u, it may be the case that u is a valid renaming of t. This
situation is called a back-loop. When a call to cr finds a back loop, the original label in
the outer call can be replaced by the result of the inner call, after applying the substitution
that arises from the renaming.

Operationally, when a call to cr finds a previous expression that is a renaming of the cur-
rent expression, it applies the substitution to the result of the current call and returns the
new expression as a back-loop (this requires an extra field in the tuple returned from cr,
containing a list of function name/back-loop expression pairs). The outer call checks for
any back-loops in the result of the recursive call, and returns the corresponding expression

if one is found.

We found that the extra complexity this adds to the knot-tyer is compensated for by the
reduction in code size that results from the implementation of back-loops.

Chapter 5 : Implementing Deforestation 123

5.8.2 Boring expressions

Another source of superfluous code in the output from the knot-tyer is failure to detect
a loop early enough when the original expression in the input contains expressions where
future labels have variables. For example, consider an input to the deforester of the form
map f t, where t represents a data structure that cannot be eliminated (such as a call to an
external function). With map defined in the usual way, the output from the transformation

will be

label (map f t)
(case t of

Nil -+ Nil

Cons x zs -+
Cons (J x) (label (map f xs)

(case xs of
Nil -+ Nil

Cons(J x') (label (map f XS')

(...)))))

Cons x' XS' -+

The first attempt to find a loop tries to match map f t with map f xs, which is not a
renaming. The loop is found on the second iteration, however, because map f XS' is a
renaming of map l xs, yielding the result

case t of
Nil -+ Nil

Cons x xs -+ Cons (J x) (g xs)
where 9 = AXS. case xs of

Nil -+ Nil

Cons x' XS' -+ Cons (J x) (g XS')

As in the back-loop example above, the body of the function appears to have been unrolled
once, effectively doubling the size of the result.

124 Chapter 5 : Implementing Deforestation

m .._ x
m as
case m of balts

variable (non-deforestable)
application
case expression

balts .._ {Cl XS1 -+ m1;"'; Cn XSn -+ Vm; X -+ m} algebraic case alternatives
{l1 -+ m1;' •• ; In -+ Vm; z -+ m} primitive case alternatives

Figure 5.9: Boring Expressions

The solution to this problem that we have adopted in our implementation is to extract any
expressions that cannot be involved in the removal of intermediate data structures, and
rebind them using the let construct. For instance, the term map f t in the above example
becomes let x = t in map f x, and the knot-tying will succeed on the first iteration.

The subclass of Core terms that are boring, i.e. cannot represent eliminable data structures,
is given by the grammar in Figure 5.9. Although we can also consider let expressions to be
boring, we do not include them in the grammar. Instead, they are dealt with differently,
as described in the following section.

The extraction can be implemented simply by adding two new transformation rules dealing
with application:

T a (t (ts * (m))) as = let z = m in Tat (x : as)
C a (t (ts *(m))) as alts bs = let x = m in Cat (x : as) alts bs

Because the boring expressions are extracted before the application is transformed (when
the head is examined), they do not appear in any label expressions that may be generated
as a result of unfolding the head of the application, and thus do not impair the knot-tying
process from identifying renamings on the first iteration.

Extracting expressions using let may introduce residual data structures and hence impair
transparency. This could happen if we are transforming the body of a deforestable recursive
definition in order to unfold it later-the expressions that we are extracting are boring with

Chapter 5 : Implementing Deforestation 125

respect to this transformation, but on unfolding later they may represent eliminable data

structures.

The solution to this problem is to remove the lets we have generated after transformation,
and before the conversion to treeless form. Each expression that has been extracted in this
way can be safely inlined after transformation, because there is no risk of duplicating the
expression provided that the linearity rules given in Section 4.2 have been adhered to. In
order to remember which let expressions appear in the output as a result of extraction, we
simply use a special class of variable names when generating the new binding.

5.8.3 Extracting lets

Extracting the boring expressions is often not enough to make labels match: another
situation that arises is a label of the form (t (let x = u in v)),· which is required to
match against (t' v'), where t is a renaming of t' and v of v'. If v is not a boring
expression, we cannot use the extraction technique described above. However, the following
transformation is valid, and achieves the required effect:

7 a (t (ts * (let x = u in v))) as = let x = 7 a u in 7 a (ts * (v)) as

This transformation alone is not sufficient to extract all the let expressions from the ar-
gument to an application. There may be more deeply nested let terms in v, which we
also wish to extract. We found by experimentation that it is not necessary to extract as
many lets as possible from the argument, only those that are found by descending the term
through the left side of applications and into the selector of case expressions. Further lets
occurring in the argument will be extracted later in the transformation process.

We define the more general let extraction scheme as follows. The idea is to float let terms
towards the top level, so they may be extracted using a similar rule to that given above.
In order to do this, we use a term-rewriting scheme, and define precisely the subterms of
the subject term to which the rewrite rules are applicable.

An extraction context (an expression with a hole, represented by []) is given by the definition

126 Chapter 5 : Implementing Deforestation

E .._ []

E ts
case E of alts

A context E with the hole replaced by a term t is written E[t]. Three rewrite rules now

define the let extraction:

E[t]
(let X = U in t) ts

-+ E[t']
-+ let X = U in t ts

if t -+ t'

case (let X = U in t) of alts -+ let X = U in case t of alts

The above rules are applied as much as possible to each application argument before it is
transformed. If we call this transformation £, then the new rule expressing let extraction

during transformation is given by

T a (t (ts -# (v)) as = let Xl = T a UI in let Xn = T a Un in Tats (u : as)
where let Xl = UI in let Xn = Un in U = £ v

Note that let extraction cannot be done in advance, it must be done during transformation.
This is because substitution operations can cause lets to appear in the argument position
of applicative terms, where there were previously none.

These extensions to the transformation algorithm have been found to improve the com-
pactness of the code generated by our deforestation implementation, and also improve its

efficiency.

5.8.4 Loop merging

It is common after deforestation of a module to have several new functions that are es-

sentially identical modulo renaming. This can occur, for example, when the program has
several calls to the function map, none of which result in the elimination of an intermediate

Chapter 5 : Implementing Deforestation 127

t list. The knot-tying process will extract a new function in each case that is identical to
map. It is beneficial in these cases to merge the definitions into one, updating all calls to
the old functions to point to the new one.

This is achieved after deforesting the module, by comparing the definitions of all the newly
created functions to find duplicates, and merging them as described above. Although we
have not implemented this technique as yet, we believe it would further reduce the code-size
penalty for deforestation in certain cases.

5.8.5 Improving the performance of the knot-tyer

The knot-tying algorithm as presented is quadratic in the number of labels deep the se~rch
must progress before a loop is found, because each new label is compared with all previous
labels. A full label comparison is linear in the size of the labels being compared. We
can reduce the complexity of the average case by improving the method by which labels
are compared. The standard approach to comparing many treelike data structures is to
apply a hash function to each tree, and compare the hash values, which is a constant time
operation. If the hash values are identical, then a full comparison of the trees is required
to establish equivalence.

The approach we take is to apply a hash function to each label placed in the history. As a
new label is found, it is hashed and the value compared to the hash values of each of the
previous labels. When a match is found, the labels are compared as before. In the worst
case, all the hash values will be identical and the complexity is unchanged. However, in
the average case, all the comparisons will be constant time hash-value comparisons until a

match is found.

Implementing this optimisation has a dramatic effect on the efficiency of the knot-tying
algorithm in expressions where many label comparisons are required to find the loop.

5.9 Avoiding Name-Capture

Ensuring that name capture can never occur presents real problems for an implementation
of the deforestation algorithm. The goal is to make sure that no variable becomes acci-

128 Chapter 5 : Implementing Deforestation

dentally 'captured' by a binding of the same name. For example, suppose the following
subexpression occurs during transformation:

(let x = t in u) x

Deforestation transforms this into

let x = t in (u x)

where the variable x has moved inside the let binding of the same name. This is clearly
an invalid transformation, and cannot be allowed to take place.

We have so far circumvented the problem of name capture in our treatment of deforestation
by making the assumption that all variable names are unique. This approach is fine for a
theoretical treatment, but ensuring that the assumption holds at all times is problematic
for an implementation. It is not enough to rename all the variables in the original program
to be distinct: deforestation replaces function calls with their definitions, so if a function
is unfolded multiple times several bindings that refer to variables of the same name can

arise.

Several methods for avoiding name capture will now be described, leading to our final
solution which is implemented in the Glasgow Haskell Compiler.

5.9.1 Unique Name Supplies

The simplest programming technique to avoid name capture involves the use of a name
supply. The name supply is an object that represents an infinite sequence of unique vari-
able names. The name supply must be used in a single-threaded manner throughout the
program (Le. it must never be duplicated) so that the variables generated are always

guaranteed to be unique.

Transformation then proceeds as follows. Begin with an expression in which no two bind- .
ings refer to variables of the same name. Each time an expression is duplicated, replace

Chapter 5 : Implementing Deforestation 129

all the bound variables within it with new unique names. Thus, name capture can never

occur.

A simple name supply can be implemented as an integer that is increased by one for each
fresh variable that is requested. For example, if we are representing variables as strings:

type NameSupply = Integer

initialNameSupply NameSupply
initialNameSupply = 0

freshVariable NameSupply -> (String,NameSupply)
freshVariable ns = ("_" ++ show ns, -ns + 1)

Fresh variables are of the form .n where n is an integer, different for each new variable.

A minor problem with this implementation is that all variables become _1, _2 etc. and the
original mnemonic names are lost. This could be avoided by keeping track of the original

names and including them after the II .," •

The real problem with this technique becomes clear when we try to adapt the deforesta-
tion algorithm to include the name supply. Suppose that we implement the deforestation

transformation with a function trans that has the following type:

trans Expression -> Expression

In order to make the straightforward translation from the specification of the algorithm,
T, into a function of this type, we must use a language with lazy evaluation. The reason
is that the transformation sequence is likely to be infinite, but we would like to be able to
examine the result and prune it to produce a finite expression using a separate knot-tying

process.

Unfortunately, when a name supply is introduced, the fragile balance of laziness is upset.

The type of the trans function would become:

130 Chapter 5 : Implementing Deforestation

trans Expression -> NameSupply -> (Expression,NameSupply)

In order to return the name supply, the trans function must have completed transformation
of its expression argument. Because any call to trans is likely to generate an infinite
expression as output, which will require an infinite number of fresh variables, the name
supply will never be returned. To see why this is a problem, consider the following fragment
of a hypothetical implementation of trans:

trans ns (Let (x,t) u)
= (Let (x,t ") u' ,ns',)
where (t',ns') = trans ns t

(u',ns") = trans ns' u

To transform a let expression, we recursively transform each of the branches. Transforma-
tion of the body of the let, u, requires the name supply ns' returned by transformation
of the right-hand side of the let binding, t. Suppose that transformation of t yields an
infinite expression, then ns' will be 1-, and the second recursive call to trans will be
trans 1- u. As soon as this call to trans requires the name supply, the result will be 1-,
and hence the result of the transformation as a whole will be an expression in which some
branches are 1-.

To avoid this problem, we could merge the knot-tying process with the transformation
such that the result of all calls to trans were finite. In fact, this would be essential if we
were working in a language with strict evaluation. However, we would like to retain the
modularity provided by splitting the algorithm in this way, so it is desirable to find another
way to avoid name capture without introducing errant strictness into the implementation.

5.9.2 Debruijn Numbers

The Debruijn numbering method is an alternative naming scheme for the lambda calcu-
lus that inherently prevents name capture from occurring. The idea is simple: replace
each variable name with a number obtained by counting the intervening bindings between
the variable occurrence and the binding that it refers to. For example, the expression

Chapter 5 : Implementing Deforestation 131

X]: Ag. AX.! (g x) turns into A.A.A.2 (1 0). The scheme can be extended to include other
constructs such as case and let in the natural way.

The Debruijn numbering scheme is a simple and elegant way to avoid name capture during
transformation, but it presents its own problems. The main disadvantage is that substi-
tution becomes much more complex: the term being substituted must be kept consistent
with the term in which substitution is taking place. That is, the free variables of the term
being substituted must be increased by the number of bindings between the substitution
site and the original instance of the term. In addition, if the act of substitution removes a
binding (a common occurrence during beta- or case-reduction), then the free variables of
any subterms must be adjusted accordingly. In fact, with these additional manipulations
it emerges that using the Debruijn numbering method for our purposes creates as many
problems as it solves. For this reason, it was rejected as a method for avoiding name
capture.

5.9.3 Splitting Name Supplies

A splitting name supply is a modification to the original name supply idea which copes
neatly with the strictness issues introduced. The idea is to treat a name supply as a single
threaded object with two operations. Firstly, a name supply can produce a new unique
name. Secondly, a name supply can split itself into two new name supply objects. An
easy way to understand a splitting name supply is to associate a (possibly infinite) set
with each supply, from which unique names are drawn. A splitting operation on the name
supply also splits this set, yielding two disjoint sets. Each split always yields disjoint name
supplies, so the new supplies can be safely used by different parts of the transformation
with no danger of name clashes. The behaviour of a splitting name supply can be specified
thus: the names produced by any individual supply are different from the names produced
by all supplies that have a common ancestor.

To simplify matters, we can restrict the number of names produced by any given supply to
one. This is not a serious restriction since we can perform a number of splits to generate
several unique names from one supply. A simple splitting name supply of this type can be
implemented by representing names as lists of booleans:

132 Chapter 5 : Implementing Deforestation

type NameSupply = [Bool]

initialNameSupply
initialNameSupply

NameSupply
= []

fresh Variable
freshVariable ns

NameSupply -> String
= showNamens

split
split ns

.. NameSupply -> (NameSupply,NameSupply)
= (False:ns, True:ns)

This implementation simulates a binary tree: the splitting operation prep ends a new item
onto the current supply, False for the left branch and True for the right branch. The
resulting names can be interpreted as binary numbers for the purpose of printing names.

The small excerpt of code from the transformation process in Section 5.9.1 now becomes:

trans NameSupply -> Expression -> Expression

trans ns (Let (x ,t) u)

= Let (x,t') u'
where t' = trans nsl t

u' = trans ns2 u
(nsl,ns2) = split ns

Because of the name supply split, the dependency of the second recursive call to trans on

the first has been removed.

One disadvantage of this technique is that the names generated by a splittable name supply
can become large, because splits are performed often and not all the names are used. The
names do not often map easily into strings, because even treating the names as binary
numbers we found can yield extremely large numbers. One solution is to rename the pro-
gram after transformation, another is to use imperative techniques in the implementation.

of the name supply as we shall see in the next Section.

Chapter 5 : Implementing Deforestation 133

5.9.4 Monadic Name Supplies

Since a name supply must be used in a single-threaded manner, it makes sense to force this
through the use of a monad. The use of monads [Mog89], a concept from category theory,
is becoming popular in functional programming [Wad90a, Wad92] because they allow a
wide variety of programming paradigms to be expressed within a single framework.

A monad encapsulates a particular kind of computation. The kind we are interested in
here is the single-threaded use of an object, that is the object is to be treated as state.
The state monad provides exactly the capabilities we require: the state (in this case the
name supply) is held in the monad, and can only be manipulated by monadic operations.
The monad itself enforces single-threaded access to the state. The following is a sample
implementation of a monadic name supply, using the basic name supply type and functions
given in Section 5.9.1:

type NS a = NameSupply -> CNameSupply,a)

returnNS a -> NS a
returnNS a ns = Ca,ns)

thenNS NS a -> Ca -> NS b) -> NS b
thenNS a k ns = case a ns of

Ca',ns') -> k a' ns'

getNameNS·
getNameNS

NS String
= freshVariable

Using the same techniques as the 10 system o~ the Glasgow Haskell Compiler (which
is based on monadic 10 [PW93]) we can represent the name supply as a global integer
variable, which yields an increase in performance.

However, as we explained before, a single name supply is not good enough for the Defor-
estation algorithm; we need a splitt able name supply in order to retain sufficient laziness
for the algorithm to terminate. Fortunately, the splittable name supply can also be embod-
ied in a monad. The idea is that the bind (or then) operation of the monad also performs

134 Chapter 5 : Implementing Deforestation

a split operation on the name supply, and a new name supply is passed to each argument

of the bind. For example:

type NS a = NameSupply -> a

returnNS a -> NS a
returnNS a ns = a

thenNS NS a -> (a -> NS b) -> NS b
thenNS a k ns = k (a nsl) ns2

where (nsl, ns2) = split ns

getNameNS NS String
getNameNS ns = freshVariable ns

There is no danger of ever duplicating a name supply, since multiple computations must be
joined by thenNS and thus receive different name supplies as a result of the call to split in
the definition of thenNS. There is also no danger of two calls to getNameNS ever returning
the same name, since the two calls must be separated by a thenNS and therefore receive

different name supplies.

With some clever programming we can still represent the name supply as a global integer
variable. The idea (due to Augustsson, Rittri and Synek [ARS94], and described in some
detail by Launchbury and Peyton Jones [LJ95]) is to implement the underlying name

supply as follows:

data NameSupply = Splittable Name NameSupply NameSupply

split (Splittable n sl 52) = (sl, s2)

freshVariable (Splittable n sl s2) = n

initialNameSupply = mk_supply

Chapter 5 : Implementing Deforestation 135

where
mk_supply

= unsafelnterleavePrimIO (
ccall genName 'thenPrimIO' \ n ->
mk_supply 'thenPrimIO' \ s1 ->
mk_supply 'thenPrimIO' \ s2 ->
returnPrimIO (MkSplitUniqSupply n s1 s2)
)

This code (in non-standard Glasgow Haskell) calls a C function which increments a global
variable each time a new name supply is generated (Le. each time the supply is split). To
change this such that new names are generated only when needed, it is possible to wrap the
C call itself in a call to unsafelnterleavePrimIO so that the call will only be made when
the name is required. This code is only referentially transparent because we are using it
within the monad; it is possible by nefarious means to use the Glasgow Haskell extensions
to write code that is not referentially transparent.

Another advantage of placing the name supply under monadic control is that our code is
likely to be written in a monadic style anyway-the book-keeping required for the name
supply will therefore have very little impact on the rest of the program, which is an im-
provement over the rather cluttered style of the example in Section 5.9.1.

136 Chapter 5 : Implementing Deforestation

Chapter 6

Results and Analysis

In this chapter, we examine the effect of applying the deforestation implementation de-
i scribed in the previous chapter to several small functional programs. In each case, we show
that by examining the source program it is possible to predict which intermediate data
structures will be eliminated by deforestation. We also give some evidence that these data
structures have been eliminated, by giving the output from the deforestation transforma-
tion, and some measurements of memory usage and execution time made by running the
transformed program. We also compare the code size of the deforested program against
the original to assess the impact of unfolding functions during deforestation.

The examples programs are chosen to illustrate several situations in which deforestation
can be effective.

6.1 Description of Measurements

We compiled each example program twice using our modified version of the Glasgow Haskell
Compiler derived from version 0.23. The first compilation was made with the default set of
optimisations, by requesting normal optimisation from the compiler; the alternatives are no
optimisation and extra optimisation. The second compilation was made with additional
deforestation and full-laziness passes inserted at appropriate points in the compilation
cycle.

138 Chapter 6 : Results and Analysis

The set of normal Core-to-Core optimisations includes the following:

• General simplification. This consists of a large number of small local transforma-
. tions designed to improve the overall quality of the code [San95c]. Examples are
,B-reduction and case-reduction. The simplification pass is typically invoked at sev-
eral stages during the compilation cycle, to clean up after each major optimisation
pass.

• Specialisation. This optimisation generates versions of overloaded functions instan-
tiated at a particular type.

• Strictness Analysis. The strictness analyser in the Glasgow Haskell Compiler [PJ93]
is primarily useful for removing the repeated boxing and unboxing of primitive data
types (such as integers and characters) in recursive functions. It also applies to other
product (single-constructor) datatypes, but its usefulness for sum (multi-constructor)
datatypes is limited, due to the difficulty in utilising strictness information for these
types.

• Full-laziness. The full-laziness pass extracts maximally free expressions by a tech-
nique known as let-floating [San95c]. It is required after deforestation as described
in Section 4.2.2.

• The Static Argument Transformation, which is the opposite of lambda-lifting. This
optimisation transforms a function with a number of arguments which are identical
in each recursive call into a local function definition with these arguments as free
variables. These functions are implemented more efficiently by the Glasgow Haskell
Compiler than their lambda-lifted equivalents, as the Spineless Tagless G-Machine
(the abstract machine on which GHC is based) doesn't require lambda-lifted input.
Functions which respond to the static argument transformation occur frequently in
the output from deforestation.

The exact order in which these passes are performed is critical, due to subtle interactions
between different optimisations. In the current version of the Glasgow Haskell Compiler,
they are performed in the following order:

Chapter 6 : Results and Analysis 139

1. Specialisation

2. Simplification

3. Full-laziness

4. Strictness Analysis

5. Simplification

6. Static Argument Transformation

When we insert deforestation into the compilation cycle, the order of passes is as follows:

1. Specialisation

2. Simplification

3. Full-laziness

4. Deforestation

5. Simplification

6. Full-laziness

7. Strictness Analysis

8. Simplification

9. Static Argument Transformation

The full-laziness optimisation is actually performed twice when we have deforestation, once
before the deforestation pass and once after. The reason for this is that applying deforesta-
tion to the program before full-laziness can remove opportunities for full-laziness, which
decreases the efficiency of the deforested program as compared to the version compiled
without deforestation.

The measurements were made on an unloaded SparcStation 10. For each program we
measured the wall-clock execution time, the total heap allocation, and the code-size of the

140 Chapter 6 : Results and Analysis

object program. The most useful of these is ultimately the execution time, since the goal
of any optimisation strategy is to reduce this figure. By measuring the actual elapsed time
we implicitly take into account several factors:

• Mutator time, which is the time spent in actual computation by the program. This
includes heap allocation, updates, and all other elements of the execution of lazy
functional programs. The mutator time is reduced by deforestation because fewer
references to the heap are made, both for allocation and examination of existing
data. Reducing heap accesses has a significant impact on modern architectures where
memory references impose a larger penalty on execution time than purely register-
based computation.

• Garbage collection time. The number of garbage collections performed during ex-
ecution is dependent not only on the amount of heap allocation, but also on the
amount of live data present in the heap at garbage collection time. The time spent
in each garbage collection is typically dependent only on the amount of live data,
since the garbage collector must traverse the tree of reachable data on each collection
to determine what to keep. Deforestation tends to reduce the total heap allocation
made by the program, but the data it eliminates is short-lived in the case of simple
list-processing computations, which constitute the majority of situations in which

deforestation is effective.

• Input/Output, and other system operations such as paging. Because we are measur-
ing the execution time of both versions of the program with a fixed heap size, which
fits in the real memory of the hardware, paging is not a factor. Deforestation can of
course have no effect on the time spent performing input/output.

The relationship between the amount of computation performed by the program (where
computation can be defined as the actual number of instructions executed) and the wall-
clock execution time is tenuous at best, due to memory cache effects [HBH93]. It has been
argued that to provide realistic comparisons of functional programs one should first find
the optimal heap size for the program, to maximise the cache hits and minimise cache
misses caused by interaction between heap and stack accesses. We did not do this in

Chapter 6 : Results and Analysis 141

our measurements, due to the large number of timed runs required to find the optimal
configuration.

The elapsed execution time for each program was measured by taking the best result
from several runs. The total heap allocation is provided by the Glasgow Haskell run-time
system on request. The code size for each version is actually the size of the compiled
object produced, before linking takes place-this is to eliminate the large constant factor
of prelude/library code linked in to the final program.

We did not include the time taken ,to compile each program in the results, since the
compilation time was not affected significantly by the inclusion of deforestation in the
compilation process.

6.2 Queens

Our first example is the traditional ID-queens problem: find the number of ways in which
10 queens can be placed on a IOxlO chessboard such that no queen is on the same row,
column, or diagonal as any other queen.

The program (given in Figure 6.1) is written in a listful style: it makes heavy use of lists
and standard list operators as convenient programming tools to express the problem.

The algorithm itself is implemented using backtracking, by means of a common lazy func-
tional programming technique known as the list of solutions technique [BW88]. Backtrack-
ing is achieved by defining the list of all solutions to the problem, recursively finding all
the solutions to n-queens starting with n = 1, and expanding each solution to n + 1 by
appending all the possible positions for another queen and filtering out all the resulting
positions which aren't valid. Because the list of solutions is evaluated lazily, a demand for
the first element of the list will search the solution space depth-first, backtracking until it
finds a valid solution. The backtracking aspect is not important here, however, since we
require the total number of solutions which necessitates evaluation of the entire list.

There are several intermediate lists which can be removed by deforestation, without any
additional annotations to the program.

142 Chapter 6 : Results and Analysis

safe :: [Int] -> Int -> Bool
safe p n = and' [(j /= n) && (i + j /= m + n)

&& (i - j /= m - n)
I (i,j) <- zip [1..] pl

where m = length p + 1

queens :: Int -> [[Int]]
queens 0 = [[]]
queens m = [p ++ [n] I p <- queens (m-1),

n <- [1. .10],
safe p n]

main = (print.sum.concat.queens) 10

Figure 6.1: Haskell code for n-queens

• The enumerated list [1..10] in the queens function is consumed by a list compre-

hension, so this will be removed automatically be deforestation.

• The enumerated list [1..] in the safe function is consumed by the standard prelude

list processing function zip, and this can be eliminated .

.• The list of pairs produced by zip is consumed by a list comprehension, so this can

be removed.

• The list of booleans produced by the list comprehension in the safe function is

consumed by the prelude function and, this can also be removed.

The intermediate Core program generated by the Glasgow Haskell compiler, for the 10-

queens program is given in Appendix A.l, along with the Core output from the Deforesta-

tion transformation. As can be seen by examining the code, the four intermediate lists

above have all been eliminated.

The code shown is the direct output from deforestation, before any further simplifications

Chapter 6 : Results and Analysis 143

Code size (bytes) Heap Allocations (bytes) Execution time (s)
Before unknown 140,522,924 16.51
After unknown 20,337,924 6.16

Figure 6.2: Deforestation results for Queens

have been applied. There are several optimisations that will be applied by the compiler

post-deforestation. These include:

• The removal of multiple unboxing of integer variables. FDr example, the variable i

in the deforested safe function, This is performed by the general simplifier.

• Strictness analysis will remove the boxing and unboxing of integer arguments to'

functions. In the queens example, both safe and the local recursive functions in

queens recurse over integer variables, and strictness analysis can have a profound

effect on the efficiency of these functions,

• The static argument transformation is useful in removing the static arguments nand

m to' the local recursive function f in safe, and the argument j to' h in queens.

6.2.1 Results

The results from applying deforestation to' ID-queens (we performed the tests with n = 10)

. are shown in Figure 6.2. Looking at the results, we see a large reduction in total memory

allocations made by the program: the heap usage of the transformed program is roughly

one seventh of the original, This is reflected in the time taken to' execute the program, the

transformed program executes in about 40% of the time of the original. In general, there

is no direct relationship between reduction in heap usage and increase in efficiency; this

depends on hDWmuch time is spent by the program doing non-heap-intensive computation,

One intermediate list in the queens program that is not eliminable by our deforestation

technique is the list generated and consumed by the queens function itself. A· technique

144 Chapter 6 : Results and Analysis

termed Worker-wrapper deforestation, developed by Gill as part of his foldr /build defor-
estation scheme, is capable of removing this type of intermediate structure. Adapting this
technique to our deforestation scheme is planned as future work.

This example is somewhat pathological, in that we can never expect to see such dramatic
improvements in larger programs, unless the program spends a great deal of time working
with intermediate structures which can be eliminated by deforestation, which is unlikely.
However, the example serves to illustrate the upper bound on the improvements that can
be achieved, and the relation of memory allocation behaviour to overall execution time.

6.3 Life

In this section we examine a Haskell implementation of Conway's Life written by John
Launchbury, taken from the nofib benchmark suite [Par92]. The game of Life is very
simple: played on a fixed grid, each cell begins as either alive or dead. Each successive
generation is evolved from the previous using one simple rule: if a cell has 2 or 3 live
neighbours it is alive in the next generation, otherwise it is dead.

This implementation of life has a fixed starting position, and evolves the pattern until a
stable configuration is reached. Each generation is printed on the standard output stream
with live cells represented by 0, and dead cells by a blank space.

The program (given in Figure 6.3) is written in a listful style, as before. However, this time
we will have to make use of explicit programmer annotations to obtain the maximum benefit
from deforestation. The reason annotations are required is that a trade-off between code
size and speed is involved, and the compiler leaves these decisions up to the programmer.

6.3.1 Deforesting Life

By examining the code (and the definitions of the prelude functions used therein), we can
see that the following intermediate structures will be removed by deforestation:

• In function disp:

Chapter 6 : Results and Analysis 145

module Main where

main inp = [AppendChan stdout ("\FF" ++ life 30 start)]

start [[rnt]]
start = [[],[],[],[],[],[],[J , [] , [] , [] , [] , [] , [] , [] ,

[0,0,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0]]

gen n board = map row (shift (copy n 0) board)
where

row (last,this,next)
= zipWith3 elt (shift ° last) (shift ° this) (shift ° next)
where
elt (a,b,c) (d,e,f) (g,h,i) tot < 2 I I tot> 3 = °

tot == 3
otherwise

= 1
= e

where tot = a+b+c+d+f+g+h+i

shiftr x xs = append [x] (init ~s)
shift I x xs = append (tail xs) [x]
shift x xs= zip3 (shiftr x xs) xs (shiftl x xs)

copy :: Int -> a -> [a]
copy Ox"; []
copy n x = x : copy (n-1) x

disp (gen,xss) =
gen ++ "\n\n" ++ (foldr (glue "\n") 1111 • map (concat . map star» xss

star ° = II
II

star 1 = II 0"
glue s xs ys = xs ++ s ++ ys

life n = foldr1 (glue (copy (n+2) '\VT'»
. zip (map show [0..]) . limit

map disp
iterate (gen n) initial n

initial n xss = take n (map (take n.(++(copy nO») xss ++
copy n (copy nO»

limit (x:y: xs) x==y = [x]
otherwise = x : limit (y:xs)

Figure 6.3: Haskell implementation of Conway's Life

146 Chapter 6 : Results and Analysis

- The list between concat and the second call to map

- The list between foldr and the first call to map

- The constant string "\n\n" (it is consumed by ++)

• In function life:

- The list between foldrl and map

- The list between map disp and zip

- The list between zip and map show [0 ..]

- The list between map and [0 ..]

• In function initial:

- The list between the first call of take and map

- The list between the second call of take and ++

Although we can remove a large number of intermediate lists without any annotations at
all, none of these lists are part of the inner loop of the program (the part of the program
that performs the majority of computation during a run). The inner loop in this case is
the function gen, which computes the next generation of the Life universe. We can see the
somewhat disappointing results from performing deforestation on this program without
annotations in Figure 6.4 (under Ver.1 with and without deforestation).

Looking again at the program, we can see a number of opportunities for deforestation which
are being missed, because the intermediate structure in question arises as the result of a
top-level function. For example, shiftr and shiftl both produce deforestable lists, which
are consumed by the shift function. If shiftr and shiftl were inlined at the call-site,
the calls to append would be fused with the call to zip3, removing the intermediate lists.

There are two ways in which top-level functions may be inlined at the call-site:

• The compiler does this automatically, provided:

1. The function is not recursive,

2. it is called once only,

Chapter 6 : Results and Analysis 147

3. inlining it cannot result in duplication of work, and

4. the function is not exported from the module.

• By providing a DEFOREST annotation for a function, we instruct the deforestation
phase of the compiler to unfold the definition at each place where it is called. This
option should be used for functions which are called multiple times, but where we
believe the benefit of deforestation will outweigh the increase in code-size that results
from unfolding the, definition several times.

In the Life program as given above, all the functions are by default exported, so none of
them satisfy the criteria for automatic inlining. However, since this is a single module
program we can safely change the module header to

module Main(main) where

so that only the function main is exported. This gives the compiler the freedom to inline the
following functions: start, gen, shiftr, shiftl, disp, initial, and star. The following
intermediate structures are now removed by deforestation:

• The lists generated by shiftr and shiftl

• The pairs in the list between mapdisp and zip in life.

The results from applying deforestation to the modified program are given in Figure 6.4
(under Ver.2 with and without deforestation). We have now removed some important lists:
the lists generated by shiftr and shiftl were in the inner loop.

We can do still better than this: by annotating some of the functions for deforestation we
can remove all the important intermediate lists and greatly improve the space consumption
of the program.

Firstly, we can annotate limit, and thus remove two more lists from the function life:

• The list generated by iterate and consumed by limit

148 Chapter 6 : Results and Analysis

• The list generated by limit and consumed by zip

Next, we can annotate shift, the function most heavily used in calculating the next
generation, and remove the following structures:

• In row, the lists of triples produced by all three calls to shift and consumed by
zipWith3 elt.

• In gen, the list of triples produced by shift and consumed by map row.

Finally, by annotating glue and copy, we can remove the following lists:

• The lists generated by disp and copy, and consumed by glue in life

• The lists generated by copy in initial.

With these annotations alone, the deforestation process can have a more dramatic effect
on the total heap allocation made by the Life program during execution (See Figure 6.4,
Ver.3). We do not provide the Core output from deforestation here as it is too large, but
we have verified that the structures which we have indicated above as removable are in
fact removed. In particular, the resulting program contains no references to 3-tuples at
all, although the original program uses them extensively during the calculation of each
generation.

It is worth mentioning that the Life program demonstrates some of the advantages of
our higher order deforestation algorithm over short-cut deforestation schemes such as
foldr/build [GLJ93]. Short-cut deforestation cannot remove all the intermediate lists in
functions which consume multiple lists simultaneously, such as zip. It also requires the pro-
grammer to rewrite recursive list-processing functions in terms of the combinators foldr
and build; this technique would need to be used to remove the lists involving copy and
limi t in the Life program, which we eliminated by simply annotating these functions for
deforestation.

Chapter 6 : Results and Analysis 149

Code size (bytes) Heap Allocations (bytes) Run time (s)
Ver.1 (no deforestation) 303104 254,647,484 78
Ver.1 (wi deforestation) 311296 238,684,128 77
Ver.2 (no deforestation) 278528 253,555,692 76
Ver.2 (wi deforestation) 286720 201,633,604 73
Ver.3 (wi deforestation) 442368 157,128,460 61

Figure 6.4: Deforestation results for Life

6.3.2 Results

, .
The final results from applying deforestation to the annotated Life program are given in
Figure 6.4. The heap usage of the program is about 60% of the original and the execution
time has decreased by about 20%.

The program still uses a large amount of heap. This is due to two factors:

• The list of lists produced for each generation is built from closures which contain a
large number of free variables. Consider for example, the closure for each new cell,
which must contain at least eight free variables, one for each neighbour. These clo-
sures are evaluated immediately as the generation is printed to the output device. A
powerful strictness analyser would be able to detect the strictness in the program and
avoid creating these large closures, although the strictness analyser in the Glasgow
Haskell Compiler is not currently able to detect strictness in lists.

• The program prints out each generation to the standard output, after converting it to
printable form. Converting the internal representation of the generation to a string
consumes a large amount of heap, and printing it takes time. We cannot expect
deforestation' to remove the intermediate representation, because the internal form is
used to determine when a stable state has been reached.

We also notice that the code size of Version 3 is much higher than the others. This is due

to a code explosion created by the deforester while it was deforesting gen (which involved
unfolding shift four times). This is partly to be expected, since shift is by no means a

150 Chapter 6 : Results and Analysis

trivial function, but the code size is still larger than necessary (inspection of the output
from deforestation revealed some duplicated code). It seems that further improvements to
the algorithm are required to reduce code explosions of this kind, along the lines of the
enhancements made in Chapter 5 (back loops and the boring expression transformation).

6.4 Pattern Matching

To illustrate the usefulness of deforestation for eliminating data structures other than lists
and tuples, we chose a program for performing simple pattern matching on strings.

The pattern matcher (Figure 6.5) is an implementation of Unix™ filename matching, in
which a pattern is a sequence of pattern elements. A pattern element is of one of the
following forms:

• [Cl'" Cn], where the c, are characters, matches a single instance of anyone of the Cj.

• ? matches any single character.

• * matches a sequence of zero or more characters.

Single character exact matches can be represented by [c], where C is the character to match.

The pattern matching function match takes a pattern and a string and returns True if the
pattern matches the string, and False otherwise.

By deforesting an application of the pattern matcher to a known pattern, the intermediate
structure representing the pattern will be removed and a version of the pattern matcher
specialised to the given pattern will be generated. In this guise, the deforestation algorithm
is acting as a restricted form of partial evaluation, albeit one that always terminates and
will always eliminate the static pattern argument.

This is also an example where eliminating a small intermediate data structure can have
profound effects on the execution time of the program. This is because we are eliminating
a structure that is repeatedly deconstructed and examined. Deforestation performs this
deconstruction work once and for all at compile time.

Chapter 6 : Results and Analysis 151

module Main (main) where

data Pat
= PatChars [Char]

PatAny
PatStar

match [] []
match [] (c r cs)
match ps<O(p:ps')

PatChars

= True= False
cs = case p of
chars ->

case cs of
[] -> False
(c:cs') -> c 'elem' chars && match ps' cs'

PatAny ->
case cs of

[] -> False
(c r cs ") -> match ps' cs '

PatStar ->
case cs of

[] -> match ps' []
(c:cs') -> if match ps' cs then True else match ps cs'

main = readFile "/usr/dict/words" abort $ \datafile ->
print (length (filter (match pat) (lines datafile»)

pat = [PatStar J PatChars "abc" J PatStar J PatChars "def" J PatStar J

PatChars "ghi"]

Figure 6.5: Haskell implementation of Unix filename matching

152 Chapter 6 : Results and Analysis

For our experiments, we chose the sufficiently complicated pattern *[abc] * [de!] * [ghi]*,
and counted the number of matching lines in a dictionary containing some 200,000 words.

6.4.1 Results

In order to deforest the application of match to the static pattern pat, we must annotate
both of these definitions as deforestable. Therefore, we added the following two annotations
to the program:

{-# DEFORESTmatch #-}

{-# DEFORESTpat #-}

With these annotations, the deforestation algorithm transforms the call match pat into a
specialised matcher for pat.

After simplifications, the new matching function consists of four mutually recursive func-
tions, one for each occurrence of * in the pattern. Recursive functions are generated because
one of the calls to match in the case for PatStar is passed the input pattern, so termina-
tion in this case is via the knot-tying process discovering a renaming, and generating a new
recursive definition. All the other recursive calls in match are passed a subexpression of
the original pattern, so they are simply expanded until the end of the pattern is reached.

It is also worth noting that because the if expression in the case for PatStar in match is
equivalent to a boolean case expression with a call to match as its selector, this expression
is not in treeless form:

case match ps' cs of

True -> True

False -> match ps cs'

The automatic conversion process extracts this call to match making its result, and hence
the whole if expression, residual:

Chapter 6 : Results and Analysis 153

Code size (bytes) Heap·Allocations (bytes) Run time (s)
Before 8640 33,470,720 6.6
After 7888 33,470,796 5.8

Figure 6.6: Deforestation results for Match

let z = match ps' cs in
case z of

True -> True
False -> match ps cs'

Because of the treeless form restriction we are prevented from generating the optimal
specialised pattern matcher, although the transformer will eliminate the static pattern
data structure.

The results are given in Figure 6.6. We can see that the execution time of the program is
improved by 12%, accompanied by a small reduction in code size and a miniscule increase
in heap usage. We attribute the relatively small improvement in efficiency to the slow
character input/output in Haskell.

This example demonstrates that the advantages of deforestation are not always through
the removal of as much intermediate structure as possible.

Some similarity can be drawn between this example and the work of Sorenson, Gluck and
Jones [SGJ94], who extend deforestation in order to be able to derive optimal Knuth-
Morris-Pratt [KMP77] specialised pattern matchers from a general matching algorithm.

154 Chapter 6 : Results and Analysis

Chapter 7

Conclusion

7.1 Summary

7.1.1 Deforestation Algorithm

In Chapter 2 we presented a deforestation algorithm for a higher-order language. This is
a significant generalisation ofWadler's first-order deforestation scheme, not only because
it applies to higher-order programs and is therefore applicable to the majority of modern
programming languages based on the lambda calculus, but also because it incorporates a
mechanism whereby residual data structures can be present in the program to be deforested.
This enables any function to be presented as input to the deforestation algorithm, given a
suitable translation of the function to treeless form.

One of our goals was to formulate higher-order deforestation as a transparent optimisation
,

strategy. We had to ensure that if the optimisation is not applicable everywhere in the
program (as indeed it isn't; we cannot expect to remove all intermediate data structures
from the program) then the programm~r is aware, by means of a syntactic specification,
exactly where deforestation is applicable. This was achieved by introducing the let con-
struct as a means of indicating residual data structures, those which will be left in place
. by the deforestation process.

The let construct is also used to ensure that expressions are not duplicated by deforest a-

156 Chapter 7: Conclusion

tion, by protecting non-linear bindings. To further ensure that a deforested program is
no less efficient than the original, we employed the full-laziness transformation which ex-

tracts expressions by rebinding them, again with let. The let construct turns out to be
a universally useful way to indicate residual structures, both to ensure termination of the
algorithm and to prevent a loss of efficiency in the transformed program.

Having formulated the original algorithm we recognised a deficiency, namely that treeless
form did not correspond exactly to the normal form of the language, and consequently
the algorithm had to insert lets in the output to keep it in treeless form. This is counter-
intuitive, and overly restrictive in most cases. We wanted to generalise treeless form so
that it corresponded to normal form, modulo calls to the recursive functions that we were
using for the transformation, since extra restrictions must be placed on these to ensure
termination.

To this end, we used principles from logic to formulate a new deforestation algorithm.
The logic of sequent calculus has an important property, that of cut elimination. Cut
elimination is a reduction process for proof-trees that renders the proof in normal form
by eliminating applications of one rule: the cut rule. If the logic is translated into a
programming language, we have a language that is in normal form save for a single con-
struct, which we call the cut construct (identical in meaning to let, but we used cut to
avoid confusion). This situation is exactly what is required for deforestation, which also
reduces terms to normal form (albeit using recursive functions, which are not covered by
cut-elimination). We merged the languages of natural deduction and sequent calculus to
obtain a new normal-form language, and defined cut-elimination for this language, and
proved that the algorithm terminated. We also defined a simple first-order language with
recursion and formulated a deforestation algorithm for it. By merging the two, we have a
transparent deforestation algorithm with a sound logical basis and a generalised treeless
form.

Unfortunately, our efforts to find a termination proof for this algorithm were unsuccessful,
although we provide some convincing arguments for termination given certain restrictions
on the input terms. The restrictions are less intrusive than those imposed on treeless
form terms in the first algorithm, because arbitrary terms are allowed to the right of an
application in many cases.

Chapter 7: Conclusion 157

In Chapter 4 we tackled several issues closely related to the deforestation algorithm itself.
Firstly, we examined the subject of automatic conversion of general terms to treeless form,
and found that this can be performed optimally for both definitions of treeless form, 'and
gave an algorithm for this process.

Secondly, the topic of linearity was covered and we showed that there are several situations
in which the basic deforestation scheme could impair the efficiency of the program. To
remedy the matter, we provide a set of rules which must be adhered to to ensure safety,
and conjecture that they are sufficient.

Finally, we discussed the transparency property of deforestation, and demonstrated that it
is possible to predetermine the effects of deforestation by examining the subject program.
Because conversion to treeless form is a syntax-directed (and therefore transparent) process,
the programmer' can determine even by examining the original definitions of recursive
functions to be used during deforestation which data structures will be removed and which
will be residual.

7.1.2 Implementation

Having found a suitable deforestation algorithm we constructed a prototype in the Glasgow
Haskell Compiler, to demonstrate that our algorithm fits into a real compilation setting.

We designed the implementation such that it can be used with varying amounts of pro-
grammer intervention. With no intervention at all, the algorithm will attempt to perform
as much deforestation as possible without making any dangerous trade-offs between code-
size and speed or memory usage. This was found to be a worthwhile approach, since there
are a large number of functions in the standard Haskell prelude which operate on lists, as
well as features such as list comprehensions which can all be used for deforestation trans-
parently to the programmer. This involves a modest increase in code size as the functions
involved are all unfolded at the call site, but the benefit in terms of reduced memory usage
was found to outweigh the code bloat for the small functions involved.

If the programmer wishes to intervene in the deforestation process, then a greater amount
of flexibility is available, and a more potent optimisation strategy is available. The major

158 Chapter 7: Conclusion

technique here is the annotation of functions to be used during deforestation. By annotat-
ing a function, the programmer indicates that it should be unfolded at each call site and
any intermediate structures which it creates or consumes should be eliminated if possible.
This enables not only user-defined list processing functions to be applicable to intermediate
list removal, but also functions that manipulate other datatypes such as trees.

We also devised a scheme whereby annotated function definitions can be communicated
between Haskell modules at compilation time. This enables deforestation to be performed
using function definitions from another module in the same program, or the standard
prelude.

The deforestation algorithm of Chapter 2 was extended to use the Glasgow Haskell Core
language. This required modifying the algorithm to transform expressions that involve
arbitrarily nested letrecs. We also incorporated a version of the treeless form conver-
sion algorithm described in Chapter 4. We also gave a full description of the knot-tying
algorithm used.

In experimenting with earlier versions of the implementation we discovered several situ-
ations where the simple knot-tying algorithm could be improved in order to reduce the
size of the generated code. These techniques, which are described in Chapter 5, turned
out to be vitally important when we applied the algorithm to larger examples. We found
that without the additional techniques described, the code size could explode dramatically,
increasing both the compilation time and the size of the resulting binary. In extreme cases
this could hamper the execution time of the program, cancelling the beneficial effects of
deforestation, even though intermediate structures had been removed.

7.1.3 Results

In Chapter 6 we applied the prototype deforestation implementation to several non-trivial
example programs. We found that the algorithm would remove all the intermediate data
structures that were predicted as removable by the transparency property. The effects on
the memory usage and run time of the program were sometimes dramatic, especially when
the intermediate structure removed was part of the inner loop.

We also found that when the functions and expressions being deforested were complex,

Chapter 7 : Conclusion 159

the resulting code size was larger than expected. This prevented any larger examples
from being deforested successfully, and we concluded that further techniques along the
lines of those presented in Chapter 5 were necessary to reduce the size of the output from
deforestation.

7.2 Future Research

7.2.1 Deforestation Algorithm

We intend to continue to generalise the deforestation algorithm. This will begin with
. further investigation of the termination properties of the improved algorithm of Chapter 3,
hopefully leading to a termination proof. This would be a significant improvement,' allowing

, ,

our implementation to use the new algorithm and generalised definition of treeless form.

We also aim to investigate the linearity restrictions on deforestation, and develop a scheme
.,. where they may be relaxed under certain conditions. One possible avenue for research lies
with linear type systems such as that of Turner/Wadler/Mossin [TWM95], which would
assign linearity annotations to bound variables providing more information to deforestation
about which expressions are in danger of being duplicated.

7.2.2 Relationship to foldr/build deforestation

In Section 1.4.2 we outlined the combinator deforestation of Gill/Launchbury /Peyton Jones
[GLJ93, Gil95]. In this section we will give a detailed description of the relative power of
the two systems, and propose a possible avenue for future research based on our findings.

We searched for a long time to find a clear relationship between our deforestation scheme
and the foldr/build rule, believing deforestation to be a superset of this scheme. It

appears that this is not the case, and there is no obvious theorem relating the two [GM95].
We can, however, informally describe the differences:

• foldr/build deforestation cannot express the removal of intermediate lists between
a consumer and several producers. The reason for this is that the translation into

160 Chapter 7: Conclusion

foldr only allows a single argument to be deforested using the foldr/build rule.
The zip function is a classic example:

zip zs ys = foldr f (A_. []) zs ys

where f x g [] = []
f x g (y : ys) = (x, y) : g ys

Our deforestation scheme can remove intermediate lists between a multiple-list con-
sumer and several producers without problems.

• It is cumbersome to express irregular list consumers using foldr. The term irregular
is somewhat subjective, but in general it applies to functions that treat some elements
of a list differently from others. Examples are foldri, tail, and halve (the function
which makes a new list consisting of every other element of its input). Deforestation,
however, has no difficulty eliminating intermediate lists consumed by these functions.

• Some list consuming functions are naturally expressed using foldl rather than foldr.
Examples include sum and reverse. The translation of foldl into foldr necessary
for foldr/build introduces some inefficiency, which must be removed by additional
transformations once the intermediate lists have been eliminated.

• In foldr/build a list producer is represented by simply abstracting an existing
function over Cons and Nil, whereas in deforestation we must adhere to treeless form
for our list producers. This facilitates the removal of some intermediate lists using
foldr/build that are residual with respect to deforestation. The classic example is
reverse, where treeless form forces the list produced to be residual:

reverse = AXS. AyS. case xs of

Nil -+ ys
Cons x xs -+ let z = Cons x ys in reverse xs z

The reverse function can instead be defined using build by simply abstracting over

the Cons and Nil used to build the output list, incurring no penalty and allowing
this list to be removed by foldr/build deforestation.

Chapter 7: Conclusion 161

• Deforestation natively handles arbitrary data structures, whereas foldr/build is
defined only over lists. We believe, however, that equivalent foldr and build defi-
nitions and the corresponding combination rules can be defined in a straightforward
way for some other algebraic data structures. To our knowledge, this technique has
not been implemented.

To summarise the important points: foldr/build has problems with irregular list con-
sumers and functions that consume multiple lists, whereas deforestation has problems with
some irregular list producers.

We plan to assess the possibility of a hybrid scheme that would draw on both deforestation
methods, to remove more intermediate data structures than is possible with either system
alone.

7.2.3 Implementation

The higher-order deforestation prototype is already distributed along with the Glasgow
Haskell Compiler, but it requires a number of improvements before it can be used In

production situations.

Code size

There is no inherent bound on the size of the code generated by the deforestation transfor-
mation, and this has turned out to be a major stumbling block. Although the system will
always keep its promises, in that intermediate structures which are indicated as removable
by the transparency property will be removed, the resulting code can be far larger than
necessary in cases where several complex functions are being combined. This is illustrated
in the Life example of Chapter 6, where we removed as much intermediate structure as
possible through annotations, and ended up with a program that was nearly twice as large
as the original. This code explosion also has a significant impact on compilation time and
the perceived usability of the system.

We incorporated several additional techniques to address the code size issue in Chapter 5,
. in the form of extra rules for the transformation system and improvements to the knot-

162 Chapter 7: Conclusion

tying process. Although these techniques were essential, it appears that more investigation
into the problem is required to enable deforestation to be used in practice.

A possible approach is to define the maximum size of the resulting code given the initial
function definitions and expression to be deforested. This is a known quantity since we
have a termination proof for the algorithm, and we can take the worst case. However, we
believe the worst case would be far too large to be of any use in practice. For example, the
maximum depth of the result of transformation could be found by determining the maxi-
mum depth between labels and the number of possible permutations of label expressions.
In most examples the algorithm terminates much earlier than this, but there is no guar-
antee. Techniques such as those in Chapter 5 help to reduce the number of permutations
(extracting lets from applicative terms, for example), and it may be the case that more
sophisticated techniques could reduce the maximum code size to an acceptable level.

Another minor code size issue is that of unfolding each deforest able function at the call
site. This is wasteful in situations where no deforestation can be performed. Although this
is impossible to determine in general, there are several specialised cases where a useless
unfolding can be detected and prevented.

More automation

In order to perform more deforestation than simple intermediate list removal, the program-
mer must employ explicit annotations to direct the transformation. This situation could
be improved, and it should be possible to derive safe annotations in several circumstances.

Functions that are useful for deforestation can be identified using some simple criteria:
they have non-residual inputs and/or outputs, and operate recursively on inputs having
recursive datatypes. It would also be necessary to impose a size restriction on functions to
be annotated, to avoid dangerous code size/speed tradeoffs.

Some work has been performed for short-cut deforestation on identifying functions which
can be translated automatically into applications of the combinators foldr and build [LS95].
Similar techniques can be applied in the deforestation setting, although no translation
would be required, just an annotation of suitable functions.

Appendix A

Code Examples

A.I Queens

The following code is the Glasgow Haskell Core intermediate output from the n-queens
program given in Section 6.2.

safe = \ p n ->
let {

m = case (length Int p) of
I# u# -> case (pluslnt#! u# 1#) of

v# -> I# v#
} in
let { a =

letrec {
f = \ ijs ->

case ijs of {
Nil -> Nil
(:) 1J ijs'->

case ij of {
Tup2 i j ->

let {
b =

case j of
I# j# ->

case n of
I# n# ->

163

164 Chapter 1 : Conclusion

case (neInt#! j# n#) of {
True ->

case i of
I# i# ->

case (plusInt#! i# j#) of
k# ->

case m of
I# m# ->

case (plusInt#! m# n#) of
1# ->

case (neInt#! k# 1#) of {
True ->

case (minusInt#! i# j#) of
u# ->

case (minusInt#! m# n#) of
v# ->

neInt#! u# v#
False -> False

}
False -> False

}
} in

Cons b (f ijs')
}

}
} in

f (zip Int Int (enumFrom (I# 1#)) p)
} in

and a

queens = \ n ->
case n of {

I# n# ->
case n# of {

0# -> Cons Nil Nil
->
letrec {
g = \ ps ->

case ps of {
Nil -> Nil
Cons pps' ->

letrec {

Appendix A : Code Examples 165

h = \ is ->
case is of {

Nil -> g ps'
Cons i is' ->

case (safe p i)
of {

True ->
Cons

(++ 1nt p (Cons i Nil»
(h is')

False -> his'
}

}

} in h (enumFromTo (1# 1#) (1# 10#»
}

} in
let {

n' =
case (minus1nt#! n# 1#) of {

u# -> queens (1# u#)
}

} in g n'
}

}

main = print 1nt dfun.Text.1nt (sum.1nt (concat 1nt (queens (1# 10#»»

safe =
letrec {
f = \ i P n m ->

case p of {
Cons j p'->

case j of,
1# j# ->

case n of
1# n# ->

case (ne1nt#! j# n#) of {
True ->

case i of
1# i# ->

case (pluslnt#! i# j#) of
k# ->

166 Chapter 1 : Conclusion

case m of
I# m# ->

case (p1usInt#! m# n#) of
1# ->

case (neInt#! k# 1#) of {
True ->

case (minusInt#! i# j#) of {
u# ->

case (minusInt#! m# n#) of {
v# ->

case (neInt#! u# v#) of {
False -> False
True ->

let {
w = case i of

I# i# ->
case (p1usInt#! i# 1#) of

x# -> I# x#
} in
f w p' n m

}
False ->

False
}

False -> False
}

Nil -> True
}

} in
\ p n ->

let {
m = case (length Int p) of {

I# u# ->
case (p1usInt#! u# 1#) of {

v# -> I# v#
}

}
} in f (I# 1#) P n m

queens =
1etrec {

g = \ ps ->

Appendix A : Code Examples 167

case ps of {
Nil -> Nil
Cons pps' ->

h (1# 1#) (1# 10#) ps' p
}

h = \ i j ps P ->
case i of

1# i# ->
case j of

1# j# ->
case (gt1nt#! i# j#) of {

True -> g ps
False ->

case (safe p i) of {
True ->

let { a = (++ 1nt p (Cons i Nil)
} in
let { b =

case (plus1nt#! i# 1#) of
u# -> h (1# u#) j ps p

} in
Cons a b

False ->
case (plus1nt#! i# 1#) of

u# -> h (1# u#) j ps P
}

}
} in

\ n ->
case n of

1# n# ->
case n# of

0# -> Cons Nil Nil
->
let {

ps = case (minus1nt#! n# 1#) of
u# -> queens (1# u#)

} in g ps

main = print 1nt dfun.Text.1nt (sum.1nt (concat 1nt (queens (1# 10#»)

168 Chapter 1 : Conclusion

Bibliography

[ARS94] L.Augustsson, M. Rittri, and D. Synek. On generating unique names. Journal
of Functional Programming, 4(1):117-123, Jan 1994.

[Aug87] L. Augustsson. Compiling Lazy Functional Languages, Part II. PhD thesis,
Department of Computer Science, Chalmers University of Technology, S-412 96
G6teborg, November 1987.

[BD77]

[Bur77]

[BW88]

[CF58]

[Chi90]

[Fea79]

[Fea82]

[FW89]

R. M. Burstall and J. Darlington. A transformational system for developing
recursive programs. Journal of the ACM, 24(1):44-67, January 1977.

W. H. Burge. Examples of program optimisation. Technical report, RC 6531,
IBM Thomas J Watson Research Centre, Oct 1977.

Richard S. Bird and Philip Wadler. Introduction to Functional Programming.
International Series in Computer Science. Prentice-Hall, 1988.

H. B. Curry and R. Feys. Combina~ory Logic, volume 1. North Holland, 1958.

W. N. Chin. Automatic Methods for Program Transformation. PhD thesis,
University of London, March 1990.

M. S. Feather. A System for Developing Programs by Transformations. PhD
thesis, University of Edinburgh, 1979.

M. S. Feather. A system for assisting program transformation. ACM Transac-
tions on Programming Languages and Systems, 4(1):1-20, Jan 1982.

A. B. Ferguson and P. Wadler. When will deforestation stop. In Functional Pro-
gramming, Glasgow,Workshops in Computing. Springer-Verlag, August 1989.

169

170 Chapter 1 : Conclusion

[Ga193]

[Gen35]

[Gi195]

J. Gallier. Constructive logics part i: A tutorial on proof systems and typed
A-calculi. Theoretical Computer Science, 110(2):249-339, March 1993.

G. Gentzen. Investigations into logical deduction. Mathematische Zeitschrijt,
39:176-210,405-431, 1935.

Andrew Gill. Cheap Deforestation for Non-Strict Functional Languages. PhD
thesis, Department of Computing Science, Glasgow University, September
1995.

[GLJ93] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation.
In Functional Programming Languages and Computer Architecture, pages 223-
232. ACM, 1993.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 1989.

[GM95] Andrew Gill and Simon Marlow. Personal communication. Curlers, Byres
Road, Glasgow, 1995.

[Ham93] G. W. Hamilton. Compile-Time Optimisation of Store Usage in Lazy Func-
tional Programs. PhD thesis, University of Stirling, October 1993.

[Ham95] G. W. Hamilton. Higher order deforestation. Technical Report 95-07, Univer-
sity of Keele, 1995.

[HBH93] K. Hammond, G.L. Burn, and D.B. Howe. Spiking your caches. In Functional
Programming, Glasgow, Ayr, Scotland, 1993. Springer-Verlag.

[HG85] P. Hudak and B. Goldberg. Serial combinators - optimal grains of parallelism.
In Proc IFIP Conf on Functional Programming and Computer Architecture,
volume 201 of LNCS, pages 382-389, Nancy, Aug 1985.

[Hop94] Mark Hopkins. The regular infinite lambda calculus. Note distributed to the
usenet group comp.lang.functional, October 1994.

[How80] W. Howard. The formulas-as-types notion of construction. In J.P. Seldin and
J .R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda-.
Calculus and Formalism, pages 479-490. Academic Press, 1980.

Bibliography 171

[HPW+92] P. Hudak, S. L. Peyton Jones, P. Wadler, et al. Report on the functional
programming language haskell. ACM SIGPLAN Notices, 27(5), May 1992.
Version 1.2.

[Hug83]

[Hug84]

J. Hughes. The design and implementation of programming languages. PhD
thesis, Programming Research Group, Oxford, July 1983.

R. J. M. Hughes. A novel representation of lists and its application to the func-
tion "reverse". Technical report, Programming Methodology Group, Chalmers
Inst, Sweden, 1984.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323-350, 1977.

[Kot78] L. Kott. About a transformation system: A theoretical study. In Proc. 3rd

Symposium on Programming, pages 232-267, Paris, 1978.

[LJ95] J. Launchbury and S. L. Peyton Jones. State in haskell. In Lisp and Symbolic

Computation, volume 8, pages 293-342, Dec 1995.

[LS95]

[Mar93]

John Launchbury and T. Sheard. Warm fusion. In Simon L. Peyton Jones,
editor, Functional Programming Languages and Computer Architecture, San
Diego, California, June 1995. ACM SIGPLANjSIGARCH, ACM.

Simon Marlow. Update avoidance analysis by abstract interpretation. In Func-

tional Programming, Glasgow, Ayr, Scotland, 1993. Springer-Verlag.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Symposium on

.. Logic in Computer Science, Asilomar, California, June 1989. IEEE.

[MW92] S. Marlow and P. Wadler. Deforestation for higher order functions. In Func-

tional Programming, Glasgow, Workshops in Computing, Ayr, Scotland, 1992.
Springer Verlag, Workshops in Computing.

[Par92] W. D. Partain. The nofib benchmarking suite. In J. Launchbury and P. M.

Sansom, editors, Functional Programming, Glasgow 1992, Ayr, Scotland, 1992.
Springer Verlag, Workshops in Computing.

172 Chapter 1 : Conclusion

[Pey87]

[Pey93]

[PJ93]

[Pra65]

[PW93]

S. L. Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice Hall, 1987.

S. L. Peyton Jones. The glasgow haskell compiler: a technical overview. In
Joint Framework for Information Technology Conference, Keele, 1993.

Will Partain and Simon Peyton Jones. On the effectiveness of a simple strict-
ness analyser. In Functional Programming, Glasgow, Ayr, Scotland, 1993.
Springer- Verlag.

D. Prawitz. Natural Deduction, A Proof-Theoretical Study. Almquist & Wisell,
Stockholm, 1965.

S. L. Peyton Jones and P. L. Wadler. Imperative functional programming. In
Symposium on Principles of Programming Languages, pages 71-84, Charleston,
Jan 1993.

[Rey83] J.C. Reynolds. Types, abstraction and parametric polymorphism. In Informa-

tion Processing, volume 83, pages 513-523. North-Holland, 1983.

[San95a] D. Sands. Proving the correctness of recursion-based automatic program trans-
formations. In P. Mosses, M. Nielsen, and M. Schwartz bach, editors, Sixth

International Joint Conference on Theory and Practice of Software Develop-

ment (TAPSOFT), volume 915 of Lecture Notes in Computer Science, pages
681-695. Springer-Verlag, 1995.

[San95b] D. Sands. Total correctness by local improvement in program transformation.
In Symposium on Principles of Programming Languages, San Francisco, Cali-
fornia, January 1995.

[San95c] Andre Santos. Compilation by Transformation in Non-Strict Functional Lan-

guages. PhD thesis, Department of Computing Science, Glasgow University,
1995.

[Sch80] W. L. Scherlis. Expression Procedures and Program Derivations. PhD thesis,
Stanford University, Aug 1980.

Bibliography 173

[SGJ94] M. H. Sorenson, R. Gluck, and N. D. Jones. Towards unifying partial evalua-
tion, deforestation, supercompilation and gpc. In Programming Languages and

Systems, volume 788 of Lecture Notes in Computer Science, pages 485-500.
Springer-Verlag, April 1994.

[Tur82] D.A. Turner. Recursion equations as a programming language. In Darlington,
Henderson, and Turner, editors, Functional programming and its applications.

Cambridge University Press, 1982.

[TWM95] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In
Simon L. Peyton Jones, editor, Functional Programming and Computer Archi-

tecture, San Diego, California, June 1995. ACM SIGPLAN/SIGARCH, ACM.

[Wad81] P. Wadler. Applicative style programming, program transformation and list
operators, 1981.

[Wad84] P. Wadler. Listlessness is better than laziness: Lazy evaluation and garbage
collection at compile time. In A CM Symposium on Lisp and Functional Pro-

gramming, pages 45-52, 1984.

[Wad85] P. Wadler. Listlessness is better than laziness II: composing listless functions.
In Proc. Workshop on Programs as Data Objects, volume 217 of LNCS, Copen-
hagen, 1985. Springer-Verlag.

[Wad87] P. Wadler. The concatenate vanishes. Technical report, Dept of Computing
Science, Glasgow University, 1987.

[Wad88] . P. Wadler. Deforestation: Transforming programs to eliminate trees. In Euro-

pean Symposium on Programming, volume 300 of LNCS, Nancy, 1988.

[Wad89] P. Wadler. Theorems for free! In Functional Programming Languages and

Computer Architecture. Addison Wesley, 1989.

[Wad90a] P. Wadler. Comprehending monads. In ACM Symposium on Lisp and Func-

tional Programming, Nice, June 1990. Later version to appear in Mathematical
Structures in Computer Science.

174 Chapter 1 : Conclusion

[Wad90b] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoret-

ical Computer Science, 73:231-248, 1990.

[Wad92] P. Wadler. The essence offunctional programming. In Symposium on Principles

of Programming Languages, 1992.

