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Abstract 

Abstract 

Identifying Pilot Model Parameters for 
an Initial Handling Qualities Assessment 

It is desirable to make an assessment of likely handling qualities to identify any 

deficiencies in a helicopter control system at an early stage in the design process 

before an expensive and potentially dangerous prototype is constructed. Inverse 

simulation offers a modelling technique that can be used for generating the data 

needed for such an assessment. Inverse simulation differs from conventional forward 

simulation in that the vehicle flight path is the input and the state and control time 

histories required for the task are generated. The inverse algorithm however, does not 

account for the pilot contribution to the flight data, thus the work herein demonstrates 

a method whereby this can be achieved. 

To incorporate pilot effect into the Helinv generated data, the latter is applied as the 

command signal to the Man-Machine Control System (MMCS), which is a closed 

loop system encompassing the helicopter vehicle dynamics and a model of the pilot 

known as the Precision Pilot Model (PPM). The PPM Human Equalisation 

Characteristics (REC) are determined via a constrained optimisation technique and 

the pilot effect is added in the system output. Validation of this technique is achieved 

through a case study whereby several operators, with different levels of experience, 

pilot a reduced order Puma helicopter model through a predefined mission task in a 

flight simulator constructed during the project. The equalisation characteristics are 

then determined for each pilot and compared with those generated using Helinv. A 

handling qualities assessment is presented for both sets of results and conclusions 

concerning the validity of Helinv with additional pilot effect finally drawn. 
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Chapter I Introduction, Main Aim & Objectives 

Chapter 1 

Introduction, Main Aim and Objectives 

1.1 Introduction 

Handling qualities ratings (HQR) were developed in the late 1960s as a means of 

quantifying the static and dynamic stability of fixed wing aircraft. Engineers 

attempted to measure the vehicle handling qualities subjectively by developing scales 

and measurement techniques to describe the perceived pilot workload. The static and 

dynamic stability of the helicopter also clearly influences the design and design 

process of the aircraft. As such, it is prudent to investigate the vehicle handling 

qualities and identify any major deficiencies before an expensive and potentially 

dangerous prototype is built for flight test trials. 

Cooper & Harper (1969) developed what is now the most widely recognised 

subjective handling qualities rating scale, which is illustrated in Figure 1.1. This scale, 

with the aid of the questionnaire in Figure 1.2, represents the decision process made 

by the pilot based on task perception. The scale spans three levels where the desired 

handling qualities are represented by a Level 1 rating, where little or no compensation 

is required by the pilot. Level 2 is acceptable only in emergency situations or a 

degraded visual environment, while a Level 3 rating suggests that the pilot cannot 

maintain the desired performance with a realisable workload. The questionnaire made 

available to the pilot after the flight test aids the pilot in determining the Handling 

Qualities Rating (HQR). However, additional comments by the pilot are required in 

order to further assess and understand the decision process involved in returning a 

rating. The rating returned by the pilot depends not only on personal opinion but the 
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nature of the task and the conditions it is to be performed under. Clearly the Cooper­

Harper scale is not a definitive measure of the handling qualities, but merely a 

measure of the pilot's perception of the vehicle's ability to perform a task. As a result, 

increasingly objective handling quality assessment techniques have been sought after, 

one of which is described by Padfield (1996). 

Padfield (1996) provides a quantitative method for assessing rotorcraft handling 

qualities by first considering whether the vehicle, performing a predefined task, 

exhibits the required Level 1 handling qualities characteristics. This is achieved by 

defining specific Mission Task Elements, where a MTE is defined as 

"An element of a mission that can be treated as a handling qualities task" 

This definition has significant ramifications for a rotorcraft handling qualities 

assessment. For example a helicopter operating close to the ground (nap-of-the-earth 

NOE) can be described as performing a series of tasks that may be defined and piloted 

as an individual task, enabling a handling qualities assessment for each individual 

MTE that defines the overall manoeuvre. The ratings described by ADS-33D (1994), 

and more recently ADS-33E (1996) also consider that the atmospheric conditions are 

not always constant, thus a different rating scale is applied in a Good Visual 

Environment (GVE) than is applied in a Degraded Visual Environment (DVE). 

The handling qualities assessment is carried out in two stages. First the flight data is 

subjected to an attitude quickness assessment to determine whether the helicopter, 

performing a predefined mission task achieves the required Level 1 attitude quickness 

rating. This is an objective method of determining whether the combination of vehicle 

and predefined task are suitable for a handling qualities assessment and can be 

directly related to the widely recognised subjective Cooper & Harper handling 

qualities scale. When it has been detennined that the flight data describes a Levell 

attitude quickness and is appropriate for use in a handling qualities assessment, the 

pilot workload, which provides an insight into the handling qualities, can be 

calculated using a parameter called pilot attack. 

2 
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1.2 Thesis Main Aim 

Any deficiencies in the helicopter system will inevitably present themselves during 

flight test trials although this is not without risk to the aircraft and more importantly, 

the pilot. Therefore, from the manufacturers' perspective, it is advantageous to 

simulate the aircraft during the initial stages of the design process, enabling a 

handling qualities assessment to identify any such deficiencies. Ordinarily designers 

have flight simulators available throughout an aircraft's design based on a non-linear 

helicopter model, where many also incorporate motion cues such as a moving base to 

further improve realism. However, designing and performing a set of experiments in a 

'full' flight simulator can be expensive both financially and time wise. Two PC based 

simulation techniques are therefore proposed to aid the designer in an initial handling 

qualities assessment, allowing the designer to adapt the helicopter model so that 

different vehicle configurations may be considered. The first is conventional forward 

simulation, where the pilot applies the control inputs that regulate the helicopter open 

(or even closed) loop response to a set of control inputs as illustrated in Figure 1.3. 

The second, inverse simulation, demonstrated in Figure 1.4, derives the state and 

control time histories necessary to follow a predefined flight path. In order for these 

simulation techniques to be fully representative, they must include the complete 

control system, which includes the human operator (pilot) and the vehicle, otherwise 

known as the Man-Machine Control System (MMCS) illustrated in Figure l.5, where 

the pilot model acts to reduce the error. Clearly, pilot effect is incorporated in the time 

histories recorded from an open loop, forward simulation scenario, for example, the 

data recorded from a flight simulator, because the human operator is required to apply 

the control inputs which regulate the helicopter states. 

To accurately replicate the open loop (forward simulation) man-machine system using 

inverse simulation however, the pilot effect must still be integrated into the recorded 

flight data because the inverse algoritlml does not employ a pilot model. The work 

undertaken throughout this project addresses this problem and demonstrates a method 

whereby pilot effect can be successfully integrated into the inverse simulation output 

for improved data realism. The proposed method for applying the pilot effect to the 

inverse simulation output as documented by Leacock (2000), is to first apply a 

primary state parameter, for example the attitude angle £jJ, as the command signal xlt) 

3 
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of the MMCS. The model depicted in Figure 1.5, then operates by comparing the 

system output xo(t) with the system input x;{t) and presents the resulting error e(t) to 

the pilot model. The pilot model then attempts to minimise this error by optimising its 

human equalisation characteristics (BEC) provided an appropriate pilot model has 

been selected, outputting the control time history 1J(t). This output is the same as the 

control output 1J(t) from the inverse algorithm, however the pilot effect has now been 

incorporated into the control time history. 1J(t) is then passed to the vehicle dynamics 

and the 'vehicle state plus pilot effect' xo(t) output. The whole process is repeated for 

a prescribed range of pilot characteristics until the combination producing the 

minimum error e(t) is found. The output xo(t) consists of the input and additional pilot 

effect and as a result is representative of the complete MMCS, allowing a valid 

handling qualities analysis to be performed. 

The question why is it necessary to assess helicopter handling qualities early in the 

design process and how pilot effect can be incorporated into the validated inverse 

simulation algorithm is to be the basis of this thesis. The main aim can therefore be 

summarised as the thesis title 

"Identifying pilot model parameters for an initial handling qualities assessment" 

The main aim and title have been carefully worded to reflect that the work aims to 

present a method whereby 'improved data realism' of the inverse simulation output is 

achieved. Although the work centres on helicopter handling qualities assessment, 

focus is actually on developing a desktop tool enabling this analysis. Handling 

qualities therefore are only included in the thesis to provide the reader with an overall 

understanding of the project and the design process to which it is aimed. 

Before further discussing each aspect of the work and the objective of each chapter, 

the author would like to make clear that although many of the principles considered 

herein are well established in the engineering community, each topic considered has 

been used or adapted to meet specific requirements in order to create a 'desktop' tool 

for analysing helicopter handling qualities which is entirely unique. The technique 

offered presents a method whereby no expensive and hazardous flight test trials are 

4 
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required early in the design process for an initial handling qualities assessment. The 

user can simply select a nap-of-the-earth (NOE) task to be flown and calculate the 

pilot effect on the vehicle response by determining the pilot characteristics. In order to 

create this handling qualities assessment tool the step-by-step process of describing 

each chapter begins with an introduction relating the relevant issues to helicopter 

handling qualities and finishes with a thesis overview. 

1.3 Objectives 

1.3.1 Selection of an Appropriate Helicopter Pilot Model 

The human operator, who applies control inputs to influence the vehicle response, is 

clearly an integral part of the helicopter system. It is therefore essential to model the 

pilot, in conjunction with the vehicle dynamics, to accurately represent the system 

[Hess & Zeyada (2001)]. Several types of model exist, from non-linear, quasi-linear, 

sampled data, optimal and adaptive pilot models. Each of these model types focuses 

on modelling specific behavioural or performance characteristics of the operator. 

Therefore, to select an appropriate model for this work, it is important to consider 

each model and ask whether or not it describes the pilot characteristics in a manner 

that is applicable to a handling qualities analysis [Hess (1987)]. This question is 

addressed in Chapter 3 by discussing each model type and considering how the 

selected model parameters can be calculated. 

1.3.2 Vehicle Dynamics - Multiple Control Representation 

It has been stated that it is of utmost importance to model the human operator 

correctly. However, the same is true of the system that the operator is controlling. If 

the model does not replicate the actual system under examination then any subsequent 

results will be wrong, thus invalid. The work introduces a non-linear Helicopter 

Generic Simulation (HGS) model and explains why this model hampers a flight 

dynamics investigation. Instead, a linear HGS version is proposed in which the state 

variables are calculated as a deviation from the trimmed reference condition, resulting 

5 
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in a state space representation. The appropriate vehicle dynamic transfer function can 

then be selected depending on the mission task being performed and the most 

influential control input. 

Helicopter control systems are complex where a combination of the four controls, 

longitudinal and lateral cyclic, main and tail rotor collective, is required to achieve 

even a simple manoeuvre. Likewise, when performing any task, a combination of all 

four control inputs is required and should be represented in the vehicle dynamics 

block of the MMCS accordingly, i.e. transfer functions relating the primary controlled 

state parameter to each of the control axes must be incorporated. The conventional 

transfer function representation of the vehicle dynamics does not allow for this, so a 

method whereby the full set of transfer functions is represented must be devised. 

1.4 Development of a Linear Inverse Simulation Algorithm 

The conventional approach to aircraft simulation is to develop a mathematical model 

of the vehicle then determine its response to a set of control inputs. Inverse simulation 

is essentially the opposite of this, generating the required state and control time 

histories for a prescribed flight path. The HELicopter INVerse simulation package 

Helinv, developed at the university of Glasgow by Thomson (1990), produces the 

ideal state and control time histories as the output because the inverse algorithm does 

not contain a pilot model. Thus to accurately model the MMCS, the pilot effect must 

be incorporated into the output. The results can then be validated via a handling 

qualities analysis by comparison with flight test data for the same MTE and vehicle. 

Inverse simulation and its application to handling qualities assessments has been 

widely recognised, especially when considering rotorcraft performing NOE Mission 

Task Elements. The MTEs under consideration generally involve precise 

manoeuvring and positioning, thus lending themselves well to mathematical 

modelling. The inverse algorithm exists in two forms, one employing a numerical 

integration technique while the second applies a differentiation routine to solve a 

series of differential equations. The helicopter inverse simulation algorithm (Helinv) 

developed by Thomson (1990) employs a full, non-linear helicopter model which has 
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found applications in several studies such as offshore manoeuvring simulation Taylor 

(1995) and previous pilot workload studies such as Padfield et al (1994) and Leacock 

(2000). The inverse algorithm employs a full non-linear helicopter model called the 

Helicopter Generic Simulation (HGS) model, however a linear version of HGS exists 

and can also be applied to a linear inverse simulation algorithm [Thomson & Bradley 

(1990)]. 

The pilot in the MMCS was selected to be represented by a quasi-linear pilot model 

with zero remnant, where the inherently non-linear operator is represented by a linear 

model and a remnant added to represent the non-linearities. It was decided that 

because the MMCS was constructed from a linear helicopter model and a linear pilot 

model with zero remnant, linear inverse simulation should also be used for modelling 

consistency. This is not to say that it is unsatisfactory to apply a non-linear command 

signal such as that calculated from the non-linear Helinv model, only that linear 

modelling is considered in this thesis for consistent results. It was therefore necessary 

to construct a linear inverse algorithm using Matlab® code similar to that developed 

by Thomson & Bradley (1990). The model discussed in Chapter 5 considers a 

constrained side slip condition which to the author's knowledge has not previously 

been documented. 

From the inverse simulation generated time histories, the dominant attitude parameter 

can be selected and applied as the command signal of the MMCS in conjunction with 

an appropriate vehicle model. The pilot model equalisation characteristics can then be 

estimated such that the chosen values result in the minimum possible error between 

the system command signal xlt) and the output xo(t). Once this has been achieved the 

system output can be described as being the system input with added pilot effect. The 

two time histories (the MMCS input and output) may then be compared via an attitude 

quickness assessment considered in Chapter 2, which illustrates whether the task 

achieves the desired Level 1 handling qualities and the pilot effect on the attitude 

quickness parameters. Finally a pilot attack calculation is performed to determine the 

helicopter handing qualities. 
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As a result of the inverse simulation generated state and control time histories being 

'ideal', the equalisation characteristics calculated from the selected pilot model are 

optimal, producing the minimum optimisation error achievable by any pilot. It is 

therefore important to compare the inverse simulation generated time histories for a 

given task with those recorded by a human operator piloting the same manoeuvre. 

Ideally this would take place with real flight test data, however if engineers wish to 

assess handling qualities at an early design stage, clearly flight test data is not 

available. Therefore, the only method currently available of analysing the time 

histories with additional pilot effect is to perform the task in a flight simulator. 

1.5 Development of a Linear, Mission Programmable Flight Simulator 

Examination of the adapted inverse simulation time histories requires real flight test 

data that already incorporates the pilot effect. This can be obtained through an open­

loop forward simulation where the human operator attempts to pilot a predefined 

mission task. Although many PC based flight simulators are available commercially, 

none allowed the adaptation of these primary parameters to the extent required. As a 

result, a flight simulator has been developed which places emphasis on modelling 

exactly the same vehicle dynamics and mission task elements as described in the 

inverse simulation package. 

1.6 Development of a Reduced Order Helicopter Model 

The linear state space model, due to the cross coupling between the longitudinal and 

lateral dynamic helicopter modes, will be shown to prove difficult to pilot in the flight 

simulator for reasons discussed in Chapters 6 & 7. One solution to this problem is to 

consider reducing the order of the model by neglecting the states that do not adversely 

affect the longitudinal or lateral task under consideration. Also, this suggests that the 

less influential controls can also be neglected from the helicopter model. 

It is then important to ensure that the selected reduced order model still accurately 

mimics the full system. This can be achieved not only by demonstrating that the 

8 



Chapter I Introduction, Main Aim & Objectives 

responses to a simple control input such as a step or a doublet are similar for the full 

and reduced order models, but that the reduced order model is still dynamically 

representative of the system. Each mode is therefore considered and if the remaining 

reduced order eigenvalues differ significantly from those representing the full system, 

that particular reduced order combination is discarded. The time histories generated 

from inverse simulation incorporating the reduced order model are validated and the 

helicopter model applied to the flight simulator to be flown by the human operators. 

1.7 Comparison of Simulation with added Pilot Effect and Flight Test Data 

When the state and control time histories have been obtained from the reduced order 

inverse algorithm and flight simulator for the same MTE, the data can be applied as 

the MMCS command signal and the pilot characteristics determined. This then allows 

a direct comparison of the pilot derived data with the inverse generated results. The 

optimum pilot characteristics are next incorporated into the pilot model and the pilot 

effect in turn, incorporated into the inverse data as the system output. Once this has 

been achieved, a handling qualities assessment can be performed on the two sets of 

data and the results compared. 

1.8 Thesis Structure 

The thesis begins with a handling qualities review, demonstrating how the attitude 

quickness parameter can be used to determine if a mission task displays the required 

Level 1 handling qualities rating. Helicopter pilot modelling is next introduced in 

Chapter 3, presenting various models such as the Precision Pilot Model and 

discussing how the model parameters can be estimated. As the work focuses on 

rotorcrafi, it seemed appropriate to include a discussion on rotorcrafi dynamics and 

helicopter modelling, therefore this discussion can be found in Chapter 4. Chapter 5 

and Chapter 6 are concerned with the actual flight data generation that is to be used as 

the command signal for the man-Machine Control System. Chapter 5 considers 

inverse simulation and its linear version while Chapter 6 describes the flight simulator 

developed during the work. Helicopter modelling is again considered in Chapter 7, 
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however here a reduced order linear model is presented to reduce the complexity of 

the system, making the linear model operable in the helicopter flight simulator. 

Chapter 8 then considers a longitudinal flight test case where the mission task 

suitability to a handling qualities assessment is examined via the techniques 

considered in Chapter 2. This chapter also considers how the task is to be 

implemented in the flight simulator and the instructions given to the pilot on how to 

complete the task. The Human Equalisation Characteristics from the linear inverse 

simulation and also for each sortie were calculated for each pilot. The corresponding 

attitude quickness and pilot attack charts were then found and illustrated in Chapter 9. 

The recorded time histories are also displayed and discussed in Chapter 9 and 

conclusions finally drawn in chapter 10. The thesis also contains five appendices that 

are of relevance to the work but based on previous research. These are included 

primarily as an immediate source of reference for the reader. 
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Chapter 2 

Helicopter Handling Qualities Assessment 

2.1 Introduction 

The following chapter introduces a subjective handling qualities assessment technique 

in the form of the Cooper & Harper scale and considers how this provides the basis 

for the development of a more rigorous assessment tool. This new 'objective' 

assessment tool functions in two distinct stages. Firstly an attitude quickness 

calculation is performed to ensure that the task is suitable for a handling qualities 

assessment. If a Level 1 rating is returned, a pilot attack calculation is carried out to 

determine the handling qualities. 

It is accepted that the manoeuvre definition is critical to the handling qualities 

analysis. Therefore an attitude quickness calculation is performed on a 'smooth global 

polynomial' slalom, where the task is represented by one polynomial equation, and a 

'piecewise polynomial' slalom, where a series of polynomial and linear equations are 

pieced together to represent the task, highlighting the characteristics of each task. 

Finally the pilot attack parameter is considered, which is primarily a measure of pilot 

workload as opposed to the vehicle performance driven attitude quickness rating. The 

term 'pilot attack' reiterates the importance of including a pilot model in the 

simulation derived data as the human operator, who applies the control inputs, may 

significantly alter the vehicle dynamics and response. 
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2.2 Handling Qualities 

Padfield (1996) highlights the consequences of poor handling qualities in a discussion 

relating to an incident where the pilot lost control of a helicopter. He was only able to 

regain control when, after a series of violent manoeuvres, the helicopter self-righted. 

A modern definition of handling qualities involves two components, the first being 

the vehicle response to a control input and the other with the external environment 

such as weather conditions. The handling qualities definition however originated from 

Cooper & Harper (1969) as 

"Those qualities or characteristics of an aircraft that govern the ease and preCision 

with which a pilot is able to perform the tasks reqUired in support of an aircraft role" 

Handling qualities criteria were developed in association with fixed wing aircraft by 

documents such as Military Specification 8785 [Anon (1969)] and updated in Defence 

Standard 00-970 (1984), and considered only the static and dynamic stability of the 

aircraft. These formal documents attempted to quantify the system characteristics by 

defining the limits of acceptable and unacceptable modes. They however failed to 

include atmospheric effects, basing their analysis solely on the vehicle i.e. flying 

qualities. Flying qualities according to Key (1988) can be perceived as a subset of 

handling qualities, referring to the aircraft stability and control characteristics, 

whereas handling qualities also relates to the task, visual and physical environments. 

This ultimately means that any handling quality analysis is specific only to the vehicle 

and manoeuvre under examination. Although the author has adopted this terminology 

other authors do not embrace this definition. Padfield (1996) states that he sees no 

reason to relegate flying qualities to be a subset of handling qualities and does not 

make a distinction between the two terms. 

At the time of publication of the military specifications, engineers attempted to 

develop appropriate handling quality scales and measurement techniques which 

captured the workload perceived by the pilot such as McDonnell (1968). The most 

widely recognised scale was the Cooper-Harper handling qualities scale [Cooper & 

Harper (1969)] as illustrated in Figure 1.1. The scale represents the decision process 
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made by the pilot based on their judgement of task performance, achieved and 

expected pilot workload. The decision tree is split into three main sections, each 

consisting of a range of pilot ratings. 

• Levell, Ratings 1 ~ 3 - The aircraft is satisfactory and requires minimal 

workload. 

• Level 2, Ratings 4~6 - Rating 4 requires some compensation to achieve the 

desired performance or deficiencies warrant improvement. Ratings 5 or 6 require 

considerable to extensive compensation. 

• Level 3, Ratings 7~9 - The pilot cannot achieve adequate performance from the 

aircraft with a tolerable workload. 

The Cooper-Harper scale also includes a rating 10 indicating that the pilot loses 

control of the vehicle at some point during the manoeuvre. The minimum required 

standard in terms of pilot workload and task performance assessed using the Cooper­

Harper scale is a Level 1 HQR throughout most of the operational flight envelope. 

Cooper & Harper (1969) also consider that although the Level 1 condition is 

satisfactory, it does not mean that the aircraft is perfect. It means that the aircraft is 

suitable for its intended use without further improvement. Level 2 is unsatisfactory 

but tolerable, where the aircraft adequate for the purpose required however 

improvements are desirable, whereas Level 3 describes an aircraft with major control 

deficiencies and is unacceptable. Clearly the HQR describes an aircraft's ability to 

perform a task. However, if the aircraft rating is described as unsatisfactory or 

inadequate (Level 2 or 3) there is no information available to examine the nature of 

the deficiencies. This is because the rating is essentially a summary of pilot opinion 

on the workload required to fly a task with a defined level of performance. For this 

reason many handling qualities assessments are accompanied by a pilot questionnaire 

which describes the flight test in detail. One such pilot questionnaire was developed 

by Howell & Charlton (1997) and can be seen in Figure 1.2. 

Although the rating represents the handling qualities specific to the vehicle and 

manoeuvre, it is dependent on the perceived pilot workload and is derived by the pilot 

following the decision tree illustrated in the Cooper-Harper scale. The scale is 
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subjective and non-uniform, meaning that a pilot returning a rating of 6 does not 

necessarily have to work twice as hard as when a rating of 3 is returned. It is 

universally accepted that pilots should return ratings which are whole numbers, 

however in some circumstances this may not be appropriate. For example, a pilot may 

decide that a vehicle describes neither Levell or Level 2 HQR, thus a value of 3.5 is 

returned. In the case of several test pilots performing a manoeuvre, the individual 

ratings may be averaged and a whole number may not be returned. Caution must be 

exercised when averaging the ratings because if the spread of ratings returned by the 

individual pilot spans across the three rating levels, the pilots are most likely to be 

flying different tasks. If the manoeuvre is not well defined, different operators may 

interpret the instructions in a dissimilar manner. If this does occur the pilots are not 

likely to perform the same task and consequently a spread of HQRs occurs. When the 

returned ratings are only spread over two levels but are still reasonably similar, it can 

be assumed that the pilots have understood the task definition and the differences in 

ratings can be put down to differences in individual piloting techniques. 

The Cooper-Harper scale does not give a strict definition of aircraft handling 

qualities. The scale represents only the pilot's opinion of how well the vehicle was 

able to perform the task, although the scale is still viewed as a good approximation to 

the vehicles handling qualities. Interest has been shown by many designers in 

developing modern handling quality assessments, such as techniques that can evaluate 

the vehicle characteristics using mathematical or simulation models. These are 

particularly beneficial in the field of rotorcraft as deficiencies may be identified in the 

system before the construction of an expensive prototype is undertaken. 

Helicopters are being used to accomplish more and more tasks which can be as 

diverse as search and rescue, fire fighting or for military applications. Inevitably the 

demands placed on the pilot to complete the task, other than simply applying controls 

to manoeuvre the vehicle along the desired flight path, are also increasing. This is 

because the pilot must focus not only on the flight path, but also the other assigned 

tasks such as weapon deployment, which increase workload. Consequently good 

handling qualities are vital if missions are to be completed satisfactorily. This is 

especially true of the helicopter, as this type of vehicle is often required to fly NOE 

manoeuvres. The United Kingdom published a set of handling qualities standards (UK 
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Def Stan 00-970) [Anon (1984)] for rotorcraft design and airworthiness, but this 

proved to be overshadowed by the U.S. equivalent Aeronautical Design Standard 

(ADS) due to the volume of rotorcraft in America. Although the author is aware that 

the latest version ADS-33E (1996) was recently published, its predecessor ADS-33D 

(1994) is referred to throughout this thesis. 

2.3 Aeronautical Design Standard ADS 

The pilot flying a specific manoeuvre, determines the handling quality ratings 

described by the Cooper-Harper scale based on their judgement of task performance 

and pilot workload. It is important at this point to define task performance 

requirements when considering the manoeuvre as they are fundamental to the HQR. 

As considered in the previous section, ADS-33D (1994) is widely recognised as the 

most authoritative requirement document for helicopter handling qualities. The 

document defines a list of mission tasks which include descriptions of the manoeuvre 

and suggestions on how to conduct the flight test as considered in the following 

section. ADS-33D goes on to define the vehicle response required to achieve Levell 

or 2 handling qualities for each MTE performed in different environments with 

varying pilot attention levels. One of the main advancements made from this 

publication over its predecessor [MIL-H-85 0 1 (1961)] is that there is no 

categorisation of aircraft into different size or role. The handling qualities are assessed 

solely on the helicopters ability to perform a MTE, emphasising the multi-role nature 

of the aircraft. 

2.3.1 Mission Task Elements 

ADS-33D defines a range of MTEs that can be used to assess helicopter handling 

qualities. The document details descriptions of how the manoeuvres should be flown 

and a set of guidelines as to how the task cues should be set up. It should be stressed 

that the task definition for a handling qualities assessment must be strictly adhered to 

by any rotorcraft acquired by the American armed forces. The requirements however 

may not be so rigorously applied to the rest of the world, as in Europe they are viewed 
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primarily as a set of guidelines open to interpretation. DERA for example, have found 

it beneficial to develop a variation on the slalom manoeuvre based on ADS-33D as 

described by Howell (1995). 

Although the mission task definition may not appear to be related directly to the 

vehicle handling qualities, careful task selection and definition are fundamental to the 

assessment. For example, Padfield (1996) defines the importance of task selection to a 

handling qualities assessment as 

"Task performance drives workload which drives pilot ratings" 

The final important feature of the manoeuvre is that it must be reproducible. This is 

important because, in order to adequately assess handling qualities, the manoeuvre 

must be flown by a minimum of three pilots where at least two return the same rating. 

Evidently, if more pilots are used then a higher number must again return the same 

rating to validate the task. If this is not the case it is likely that the pilots 

misunderstood the exact mission requirements and the test should be redefined to 

eliminate any misinterpretation. Pausder & Von Grunhagen (1990) summarised the 

mission requirements for a successful handling qualities evaluation as being 

• The task must be representative of the operational mission requirement 

• The task must be reproducible by different pilots 

• A low risk safety procedure must be adhered to for the flight test. 

This definition reiterates the importance of a well defined and duplicable mission 

task which ADS-33D addresses, from which two of the definitions are now listed. 

• Slalom "Initiate the maneuver in level unaccelerated flight and lined up with 

the centreline of the test course. Perform a series of smooth turns at 152 (500ft) 

metre intervals (at least twice to each side of the course). The turns shall be at 

least 15.2 (50ft) metres from the centreline, with a maximum lateral error of 15.2 

metres. The maneuver is to be accomplished below the reference altitude, 30.5 
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(J OOft) metres. Complete the maneuver on the centreline, in coordinated straight 

flight. " 

• Quick hop "Start from a stabilised hover. In the GVE, rapidly increase power to 

approximately maximum, maintain altitude constant with pitch attitude, and hold 

collective constant during the acceleration to an airspeed of 50 knots. Upon 

reaching the target airspeed, initiate a deceleration by aggressively reducing the 

power and holding altitude constant with pitch attitude. In the DVE, accelerate to 

a groundspeed of at least 50 knots, and immediately decelerate to hover over a 

defined point. The maximum nose down attitude should occur immediately after 

initiating the maneuver and the peak nose up pitch attitude should occur just 

before reaching the final stabilised hover. " 

Although ADS defines many more mission task elements such as the bob-up bob­

down, pirouette, side step and hover turn, this work is not concerned with validating 

these tasks. It would therefore be inappropriate to attempt to define them all so the 

reader is referred to ADS-33D (1994) for further task definitions. Once the mission 

task has been selected, it is necessary to verify that the task is flown to an appropriate 

standard to enable a qualitative handling qualities assessment. This is achieved by 

ADS-33D with the introduction of a new parameter called the 'attitude quickness 

parameter' which is given further consideration in the following section. 

2.3.2 Attitude Quickness 

The attitude quickness parameter provides an objective means of deriving a rating, 

granting the analyst the ability to assess the open loop performance of the aircraft. 

The attitude quickness defines the behaviour of the helicopter in the pitch, roll and 

yaw axes, however, other techniques can be employed to determine the cross coupling 

characteristics [Padfield (1996)]. The attitude quickness parameters for pitch and roll 

are defined in ADS-33D (1994), in the changes in moderate amplitude attitude section 

as 
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"The attitude qUickness parameter shall exceed the limits specified in Figure 2.1a & 

Figure 2.1b. The required attitude changes shall be made as rapidly as possible from 

one steady attitude to another without significant reversals in the sign of the control 

input relative to the trim position" 

Figure 2.la represents target acquisition and tracking manoeuvres for the roll axis 

while Figure 2.1b represents the roll attitude quickness for all other mission tasks. 

Before these plots can be clearly interpreted a definition of the attitude quickness is 

required. When applied to the roll axis this is 

Ppk 
Roll Attitude Quickness = Qrf> = ArjJ (2.1) 

where Ppk is the peak roll rate encountered and i1rjJ is the coincident change in roll 

attitude occurring between zero crossings. Figures 2.1a & 2.1b then illustrate how the 

roll attitude quickness parameter can be plotted against the minimum attitude change 

on the roll attitude quickness chart to ascertain the handling qualities level for a 

particular flight test manoeuvre. It is worth recalling when examining these plots that 

the requirements for adequate control are Levell, while Level 2 is acceptable only in 

emergency situations. The most appropriate method of demonstrating a roll attitude 

quickness chart is via an example, however, an appropriate mission task element must 

first be selected. 

2.4 Flight Test Data Acquisition and Attitude Quickness Example 

The final prerequisite according to Pausder & Von Griinhagen (1990) for the mission 

task is that the manoeuvre must be performed at a low risk status. In the case of a real 

flight test, this factor is strongly linked to a good manoeuvre definition. However, 

with the advances in technology, increasing amounts of flight test data are safely and 

cost effectively derived from flight simulators. Recently though, flight data for an 

aircraft performing a predefined manoeuvre can be obtained through Inverse 

Simulation. This topic in conjunction with manoeuvre modelling is considered in 
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detail in Chapter 5. However, to demonstrate the roll attitude quickness, the ADS-33D 

(1994) slalom mission task element has been modelled and applied to the Helinv 

algorithm to produce the manoeuvre time histories. The slalom manoeuvre was 

chosen as it is primarily a longitudinal tracking task, hence only p and rjJ are illustrated 

throughout the roll attitude quickness assessment, as the remaining state variables and 

controls are not required. 

2.4.1 Mathematical Modelling of the ADS-33D Slalom Manoeuvre 

Inverse Simulation can only be applied to specific mission task elements such as those 

defined in ADS-33D (1994) if the task can be represented mathematically. There are 

two techniques used at the University of Glasgow for defining flight test manoeuvres. 

The first uses a smooth global polynomial function [Thomson & Bradley (1996)] to 

represent the task whilst the other models individual sections of the task flight path 

with polynomial functions then concatenates them to represent the task [Leacock 

(2000)]. This section is concerned primarily with illustrating the difference between 

these two modelling techniques, using roll attitude quickness to demonstrate how the 

manoeuvre model effects the handling qualities, reinforcing the statement in Section 

2.3 "the manoeuvre definition is fundamental to the handling qualities assessment". 

2.4.2 Smooth Global Polynomial Manoeuvre Definition 

Thomson & Bradley (1997) developed a library of basic linear translational and 

turning manoeuvres, based on the mission task requirements specified by ADS-33D 

(1994). The first approach adopted was to fit a global polynomial function to the 

primary aircraft parameters by splitting the manoeuvre into its constituent parts to 

which specific mathematical boundary conditions can be rigorously applied. The 

boundary conditions for the smooth global polynomial slalom manoeuvre, which 

define the mission profile, are derived from the ADS-33D (1994) slalom 

recommendations stated in Section 2.3 and can be summarised as 
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• The helicopter initiates and terminates the task in a trimmed flight state on the 

manoeuvre centre line. 

• When the maximum lateral distance is attained, the lateral velocity is zero. 

• When crossing the manoeuvre centre line, the maximum velocity is attained. 

• When the minimum lateral distance is reached, the lateral velocity is zero. 

Using this set of boundary conditions for the slalom manoeuvre as depicted in Figure 

2.2, the lateral distance translated throughout the manoeuvre can be represented by the 

global polynomial 

yet) = {759S(-t J3 - 6220S(-t J4 + 21390S(-t J5 - 39291S(-t J6 
~ ~ ~ tm 

+ 40353S(~J7 - 21845S(~J8 + 4855S(~J9 }Ymax 
tm tm tm 

(2.2) 

where till is the time taken to perform the task, t is the time at any point during the 

manoeuvre and Ymax is the maximum lateral distance. Figure 2.2 also illustrates the 

smooth nature of the flight path when the global approximation is applied. Thomson 

& Bradley (1997) found that this manoeuvre flight path model compared favourably 

with how the pilot flies the task in a real flight test. 

2.4.3 Piecewise Polynomial Function Method 

A second modelling technique called piecewise modelling can be applied to the ADS-

33D (1994) slalom definition to generate the flight path. The piecewise model can be 

defined as either the flight path, velocity or acceleration required to perform the task 

then integrated or differentiated to give the unknown flight path, velocity or 

accelerations. This example defines the flight path by identifying five distinct sections 

in the slalom task. For the ADS-33D (1994) slalom, the five sections depicted in 

Figure 2.3 are 
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• A section that involves a rapid increase in the lateral distance from trimmed flight 

to a maximum distance after t1 seconds, ensuring a roll angle of at least 25 degrees 

is attained. 

• A constant lateral displacement section. 

• A section in which the lateral distance is rapidly decreased to the maximum 

negative distance. The period required to achieve this is 2t1. 

• A constant lateral displacement section. 

• A section in which there is an increase in lateral displacement to zero. 

The piecewise polynomial equations used to define the sections of the piecewise 

slalom task can be third, fifth or seventh order as considered by Leacock (2000). It is 

then important to realise that if specifying the flight path and then differentiating to 

ascertain the vehicle velocity and acceleration, the third order equation is not 

appropriate. This is because when it is differentiated twice, it describes a linear 

acceleration, which is uncharacteristic of the helicopter. 

When the piecewise polynomial flight path in Figure 2.3 is compared with that 

generated using the smooth global polynomial function, a distinct difference is 

noticeable in the flight path. Therefore, the following section aims to determine which 

mathematical manoeuvre model is more suitable for a handling qualities analysis by 

calculating the attitude quickness parameters. 

2.4.4 Attitude Quickness Calculation/or the Two Slaloms 

The purpose of comparing the two slalom manoeuvre models described previously is 

not to validate the modelling techniques as this has already been accomplished by 

Thomson & Bradley (1997). This exercise is simply to illustrate the modelling 

techniques, the method of calculating the roll attitude quickness parameters and how 

the model definition affects these parameters. In the following example the quickness 

parameters are calculated by hand to demonstrate how the calculation is performed, 

however, the actual technique is implemented using the Matlab® software package. 
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Both the global polynomial and piecewise polynomial manoeuvre flight paths have 

been applied to a linear inverse simulation algorithm and the state and control time 

histories calculated for the Puma helicopter flying at forty knots. The work presented 

in the thesis focuses on this helicopter and flight speed, thus it is prudent at this point 

to introduce the Puma helicopter depicted in Figure 2.4 with configuration data listed 

in Appendix 1. Figure 2.5 illustrates the roll angle rjJ and roll rate P for the forty knot 

global polynomial slalom case derived using the inverse simulation technique. The 

plot illustrates how the manoeuvre is initiated by a pulse of lateral cyclic, causing in 

increase in the roll rate to Ppkl. Once Ppkl has been reached, lateral cyclic is reversed to 

force the helicopter to reduce its roll rate, then roll in the opposite direction. This 

process is continued until all slalom gates have been negotiated. The plot also shows 

the peak roll rate between zero crossings, then demonstrates how the change in roll 

angle between the zero crossings is calculated. Consider the first roll attitude 

quickness parameter, the change in roll angle iJrjJl and roll rate peak Ppkl, can be 

extracted from Figure 2.5 to give the first attitude quickness as 

Q¢] = Ppk] = - 2.29 
I1rjJ] _ 5.00 = 0.458 (2.3) 

Likewise, Figure 2.6 illustrates the corresponding roll and roll rate time histories for 

the piecewise slalom. Comparison of these plots with the polynomial manoeuvre time 

histories in Figure 2.5 clearly indicates the very different manner in which the task is 

performed, where the piecewise slalom requires much larger changes in roll angle 

than the polynomial task. 

The remaining attitude parameters for the global polynomial slalom are calculated in 

the same manner as demonstrated in equation (2.3) and plotted on the attitude 

quickness chart in Figure 2.7. It should be noted here that at the end of the task, P 

does not reach zero, therefore only four quickness parameters are shown in Figure 2.7. 

If P did reach zero, a fifth parameter would be recorded at the end of the task. This 

chart shows that for the global polynomial slalom, none of the roll attitude parameters 

define Level 1 characteristics, suggesting that the manoeuvre definition is not suitable 

for use in a handling qualities assessment. Thomson & Bradley (1997) agree that this 
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flight path definition is representative of how the pilot flies the manoeuvre, however, 

the aggressive approach adopted by the ADS-33D (1994) slalom defined in Section 

2.4.2 for attaining Level 1 handling qualities is not captured in the task definition. 

Leacock (2000) when performing a similar experimental analysis, also found that the 

polynomial definition was not suitable for a Lynx helicopter performing the same 

mission task because the roll attitude necessary to meet the desired performance 

requirements was not achieved. This unsuitability can be traced to the small and slow 

stick displacements required to pilot the helicopter through the global polynomial 

defined task. The control inputs for the piecewise polynomial task however, can be 

controlled by the manoeuvre designer such that sufficiently large and fast control 

inputs are required in order to follow the desired flight path, resulting in Level 1 

attitude ratings. 

The attitude quickness parameters for the piecewise defined slalom are calculated 

from the linear inverse simulation generated state and control time histories in Figure 

2.6 using exactly the same technique as described previously. Again the calculation of 

the first attitude quickness parameter is demonstrated, where the change in roll angle 

iJ¢l and roll rate peak Ppkl can be extracted from Figure 2.6 to give 

Q¢l = Ppkl = - 46.11 
11¢1 - 31.56 = 1.461 (2.4) 

The attitude quickness parameters are plotted on Figure 2.7 to enable a direct 

comparison with the global polynomial defined slalom. It is evident from the chart 

that approximately half the roll attitude quickness parameters for this manoeuvre are 

Levell, while the remainder define Level 2 or Level 3 ratings. These results 

demonstrate that the piecewise polynomial manoeuvre definition is also unsuitable for 

use in a handling quality analysis. However, the attitude quickness assessment is only 

a measure of the task suitability to a handling qualities assessment, thus can only be 

used to validate the manoeuvre model for use in a handling qualities assessment. 

Another parameter is therefore introduced which is capable of identifying pilot 

workload based on the individual pilot, as opposed to the vehicle orientation. 
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2.5 Pilot Workload 

As considered previously, the pilot flying a manoeuvre determines the handling 

qualities rating based on judgement of the task performance and pilot workload. 

Although it is evident that there are many contributing factors to the pilot workload, it 

has until recently been difficult to define. When performing a mission task, the pilot 

will adopt a control strategy which maximises his performance thus minimising the 

required workload. The workload is affected by outside influences such as the 

Useable Cue Environment (UCE). This parameter was introduced by ADS-33D 

(1994) to quantify the visual environment in which the pilot must work and can be 

defined in a similar manner to the attitude quickness assessment with 1 representing a 

Good Visual Environment (GVE) and 3 representing a Degraded Visual Environment 

(DVE). This was an important development in assessing handling qualities ratings as 

the pilot performing a manoeuvre in a DVE may return a level 2 HQR. When 

performing the manoeuvre in a GVE however, the same pilot may suggest Levell 

handling qualities. Although pilot workload has been difficult to define, Charlton et al 

(1998) identify three key components affecting the pilot workload 

• Navigation - This is the least demanding exercise for the pilot as it requires large 

infrequent control inputs relating to a change in heading. 

• Guidance - Concerned with following a path when performing a nap of the earth 

task. The pilot is required to apply control inputs which will allow the safe 

navigation of a task. Navigation is concerned with major path changes whereas 

guidance can be perceived as obstacle avoidance throughout the manoeuvre. 

• Stabilisation - This is the most demanding workload component for the pilot, 

requiring frequent control inputs in order to maintain the preferred task attitude 

and altitude. 

Additional sources of workload come from other tasks such as communication and in 

the case of military aircraft, activating and deploying weapons. These secondary tasks 

introduce the concept of 'divided attention' as considered again by the ADS-33 

documents. This suggests that because pilot attention is frequently diverted to other 

tasks, it is assumed that the pilot is no longer able to perform the mission to the 
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highest standard. In the case of a co-pilot assisting the pilot, situations can arise where 

the task is not assigned to a specific crew member which again increases the pilot 

workload. Situations such as these can cause a spread in handling qualities ratings in 

conjunction with factors such as pilot fatigue. These can be compensated for in the 

handling qualities analysis by including a pilot calibration into the assessment. 

2.6 Pilot Attack 

Pilot workload is considered to consist of three main components, navigation, 

guidance and stabilisation. Although there is no specific definition of the workload it 

can be measured by a parameter called 'Pilot Attack', which is calculated in a similar 

way to the attitude quickness parameter as demonstrated by Charlton et al. (1998). 

Here however, focus is on the pilot stick displacement instead of roll attitude. The 

Pilot Attack parameter can be defined as 

( ) 
17pk 

Pilot Attack Qp = 817 (2.5) 

where iJpk is the peak value in the rate of change of stick displacement between zero 

crossings and LJ17 is the corresponding change in the net stick displacement. As the 

task requires the pilot to apply control inputs, each stick displacement can be viewed 

as an element of pilot workload identifiable by associating an attack parameter to each 

peak or trough. The global and piecewise polynomial ADS-33D (1994) slaloms, 

flown at forty knots in a Puma, have again been chosen to illustrate this technique 

even though both task definitions do not exhibit Level 1 qualities. Figure 2.8 

demonstrates the lateral cyclic control input and its derivative eta1cdot, which are 

required for determining the net stick displacement and the peak values in stick 

derivative respectively for the global polynomial slalom. Upon analysis of the stick 

displacement time history, it is evident that the pilot control action is characterised by 

a maximum stick rate and corresponding stick displacement, allowing the calculation 

of an aggression parameter or pilot attack. The corresponding stick and stick 

derivative time histories for the piecewise slalom are depicted in Figure 2.9 
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illustrating the much larger stick displacements required for the helicopter to follow 

the predefined flight path. The pilot attack parameters for both polynomial and 

piecewise slaloms are plotted on an attack chart in Figure 2.10 enabling a direct 

comparison between the two modelling techniques. 

Padfield et al (1994) stipulate that the attack parameters representing a large net stick 

displacement are associated with vehicle navigation while the parameters with a small 

stick displacement and small attack parameter describe helicopter stabilisation. 

Finally the parameters with small stick displacement and high attack parameters are 

related to the control inputs required for guidance through the task. The attack chart 

illustrated in Figure 2.10 clearly shows that aU the polynomial slalom attack 

parameters are gathered in the bottom left corner of the chart. This implies that the 

task does not require any large control inputs to change the vehicle heading through 

the task, only smaller faster inputs are required which relate to guidance and 

stabilisation. The more aggressive piecewise slalom which requires roll rates of up to 

two hundred degrees per second, as demonstrated in Figure 2.9, has a much wider 

spread of attack parameters however several of them are beyond the 1000 /s boundary. 

It has been shown that the slalom tasks analysed here are not suitable for a handling 

qualities assessment due to the unsuitable aggression levels of the task. This MTE, 

performed in a Puma helicopter at forty knots, is however still focused on in the 

following chapters while considering the MMCS and inverse simulation. A more 

appropriate task will be considered in Chapter 8 when the experiment set-up is 

presented. 

2.7 Conclusions 

An important handling qualities assessment technique is introduced from the ADS-

33D (1994) document and Padfield et al (1994), consisting of two calculations. These 

are the attitude quickness calculation, which is derived from the vehicle states, and the 

pilot attack calculation, which can be calculated from the pilot control inputs and their 

derivatives. Handling qualities rating are influenced by the mission task definition 

which is demonstrated for the ADS-33D (1994). Tthe importance of correctly 
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representing the MTE by defining the task using smooth global polynomial and 

piecewise modelling techniques was also discussed. 

The examples considered in this chapter, which were generated from the inverse 

simulation package, have not had the pilot effect incorporated into the state time 

histories. This problem is addressed in the following chapter where various pilot 

models are considered. 
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Chapter 3 

Helicopter Pilot Modelling 

3.1 Introduction 

Chapter 3 focuses on human operator modelling and introduces a set of key variables 

which effect the pilots' ability to control the helicopter. The most influential key 

variable is the set of 'Task Variables' encompassing the vehicle dynamics, the control 

input applied to the MMCS, the display technique adopted and finally the pilot model. 

The pilot model is arguably the most complex aspect of the MMCS to model as 

human operators perform at many levels, vary in adaptability and may be at different 

points on their learning curves. 

The development of pilot modelling, from classical to modern control theory is 

introduced, focusing on the Precision Pilot Model (PPM) which was developed to aid 

in the understanding of handling qualities ratings. In conjunction with the appropriate 

helicopter model, the PPM can be used to determine a set of 'Optimum Human 

Equalisation Characteristics' for any system input which may then be used to aid the 

helicopter handling qualities assessment. 

3.2 The Man-Machine Control System (MMCS) 

Effective engineering design often requires physical situations to be mathematically 

modelled. However, as industrial and military systems become increasingly complex, 

greater demands are being placed on human operators when performing a task, thus 
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they become an integral part of the overall system. Sheridan (1985), through studies 

into pilot behaviour in aerospace systems, considers the necessity to incorporate a 

model of the human operator as an element in the control system. Also in the case of 

aircraft studies, Automatic Flight Control Systems (AFCS) have given the designers 

the power to shape the response of any aircraft. Fundamentally though, it is still the 

pilot who is required to apply the control inputs in response to changing situations 

and, as a result, a model of the human operator is essential to the successful 

development of an AFCS. Figure 3.1 illustrates how a pilot model and vehicle 

dynamics are applied in a feedback loop. The error information can be presented to 

the pilot for either a compensatory or pursuit display, where the man-machine 

interaction was described by Sutton (1990) as "time varying with variable gain and 

non-linear". Employing a method such as this, where the human operator can be 

modelled as a single element in the MMCS, allows an insight into both the human 

operator behaviour and the task. This modelling technique also permits the 

experiment to be duplicated which cannot be guaranteed when depending on a human 

operator to close the loop. 

Although several pilot models exist, it is crucial to select a pilot model which yields 

information applicable to a handling qualities assessment. For this reason a summary 

of pilot modelling is presented, introducing a range of pilot models and discussing the 

suitability of each to assessing aircraft handling qualities. 

3.3 Variables in the Man-Machine Control System 

Before the pilot model and its associated characteristics are discussed, it is important 

to consider the four key variables effecting the pilots ability to control the vehicle 

according to McRuer and Jex (1967). The first of these four key sets is the 

'environment' external to the pilot. This set relates to the visual conditions such as the 

light conditions and visual environment, alongside physical factors such as 

temperature, vibration and loading on the vehicle. These environmental factors are 

superimposed on the pilot and are difficult to control, however, when applied to a 

flight simulator they can be easily constrained. The next set of variables is defined as 

'operator centred' and depend on operator training and other human characteristics 
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such as motivation and fatigue. This set of variables in conjunction with the 

'procedural' variables, encompass mission task instructions and practice, can be 

minimised by employing highly motivated and skilled operators to generate the 

command signal. Finally, the most important set of key variables are the 'task 

variables', comprising all the system inputs and controls which directly affect the 

pilot's control task. These parameters include the system input or command signal, 

the method used to display the information to the pilot, the controlled vehicle 

dynamics and finally the manipulator or pilot model which are now considered. 

3.3.1 The Command Signal 

The command signal or input for the MMCS would ordinarily be applied as real flight 

test data for a mission task such as the slalom manoeuvre. However, because flight 

test data is clearly not available at an early design stage, two aircraft simulation 

techniques have been employed to generate the required data. The first is to simulate 

the manoeuvre using the inverse simulation algorithm Helinv in both the non-linear 

and linear forms, which will be discussed in Chapter 5. Another method used to 

develop the relevant manoeuvre data was to perform the manoeuvre in a PC based 

flight simulator. Advances in computer technology have allowed designers to pilot 

and obtain information on numerous aircraft configurations, decreasing the potential 

risk involved in building an expensive test flight simulator or prototype at a later 

development stage. Helicopter models and tasks can be easily adjusted or even 

changed completely, depending on the design requirements and operational envelope. 

However, as a PC based flight simulator encompassing all the aspects required was 

not available commercially, a linear helicopter flight simulator was created as 

described in Chapter 6. 

3.3.2 The Display 

The MMCS display pictured in Figure 3.1 can be described as operating as either a 

compensatory or a pursuit tracking system, depending on how the information is input 

and displayed. A compensatory tracking task is one in which the output signal from 
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the system is fed back and compared with the input signal, resulting in an error which 

the operator is required to annul as demonstrated in Figure 3.2a. An example of a real 

compensatory system is the design of an aircraft glide-slope indicator, where the pilot 

attempts to reduce the error between the actual and the required glide-slope. It should 

be noted that the compensatory display provides relative information. When the 

operator is manually tracking a target, he cannot be certain if the displayed error is a 

result of his performance, target movement or a combination of both. In Pursuit 

tracking however, the human operator is presented with true information (both the 

input and output) from which he attempts to judge and account for the error [Wargo 

(1967)] as shown in Figure 3.2b. 

Kreifeldt (1965) considers the application of the two display types, suggesting that a 

compensatory display type, such as that considered herein, is the only method in 

which the human input/output characteristics can be directly measured. Sheridan & 

Ferrell (1974) state that this is because the operators continuous linear characteristics 

can be deduced from the closed loop system frequency response characteristics, which 

is not the case for the pursuit display, as the human operator is then a two input, single 

output operator. 

3.3.3 The Vehicle Dynamics 

The linear equations of motion can be calculated from the full non-linear HGS model 

discussed in Chapter 5 [Thomson (1989)], and can be expressed in state space form as 

x=Ax+Bu - - - (3.1) 

where A and B are the system and control matrices respectively which contain the 

aerodynamic, relevant gravitational and velocity terms. The state vector J: and the 

control vector y. are again given by 

:! = [u v w p q r tP 0 Iff n Oef (3.2) 

.Y = [ 00 Bls Ble BO/r r (3.3) 
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The state and control matrices A and B can be evaluated for any reference trim state, 

allowing the transfer function corresponding to any combination of state and control 

to be established from 

~(s) -1 
YH(s) = is) = (s1 - A) B (3.4) 

The vehicle transfer function relating the primary controlled variable to the control 

applied can then be implemented in the MMCS alongside the pilot model, which is 

used to determine the pilot behaviour for the given manoeuvre. 

3.3.4 Pilot Modelling 

The pilot model is the final task variable to be considered and also the focus of 

Chapter 3. Before further consideration is given to selecting an appropriate pilot 

model for the work, it is important to recollect the aims of this work and thus what 

information we require from the pilot model. As considered in the introductory 

chapter, the thesis aims to demonstrate how pilot effect can be incorporated into 

inverse simulation generated time histories for assessing helicopter handling qualities. 

A pilot model is therefore required which can provide an insight into what the 

operator does during the manoeuvre. This type of model is referred to as a 

behavioural model, where the control time history describes the behaviour of the 

human operator (i.e. what the human does), whereas a performance model describes 

how well the task was carried out. 

The various approaches used to develop human operator control models can be 

directly related to the advances in classical and modem control engineering [Sutton 

(1990)]. These models can be split into the following types 

• Quasi-linear or continuous describing function models. 

• Sampled data and discrete models. 

• Optimal control models. 
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• Adaptive models. 

• Simulation and non-linear models. 

Each type is now considered except non-linear models, as each element in the MMCS 

considered throughout this work is linear. 

3.4 Quasi-Linear Pilot Modelling 

The MMCS is inherently non-linear thus difficult to model. This complex problem 

was nevertheless solved previously by Tustin (1947) using a servomechanism theory 

to analyse gun control equipment. A summation of Tustins work was published by 

Wilde & Westcott (1962), showing that the quasi-linear system concept originally 

evolved from the observation that many non-linear systems have responses to simple 

control inputs that are similar to the responses of the equivalent linear system. It was 

observed that the system output contained higher frequencies than the input (a result 

uncharacteristic of a linear system), which Tustin called the 'remnant'. The basic 

quasi-linear Man-Machine Control System can be represented in block diagram form 

as shown in Figure 3.3, where the human operator is an integral part of the closed 

loop system performing a single axis tracking task. The model replicates the non­

linear response by applying a control input to the equivalent linear system. The output 

of this system then has the additional remnant applied, which represents the difference 

between the actual and linearised model. Sutton (1990) defines this quasi-linear model 

of the human operator as being 

"The approximate linear model Yp(s) of a non-linear system which minimises the 

remnant R(s), where R(s) is the portion of the human operators control output that is 

not linearly correlated with the system input" 

The work herein considers the quasi-linear model without remnant, representing only 

systems in which the pilot behaves linearly. Although Tustin recognised that the 

human pilot could be modelled linearly with the addition of a remnant, the quasi­

linear model he developed was very basic. His work however, paved the way for a 
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vast amount of research in this area resulting in the development of various pilot 

models, including sampled data, optimal and adaptive pilot models. 

3.4.1 Tile Precision Pilot Model 

Another such human operator model developed as a result of Tustin's work was the 

quasi-linear Precision Pilot Model (PPM), reviewed by McRuer and Krendel (1957), 

which models the response of a pilot performing a single axis tracking task. The 

model parameters are determined by minimising the mean square error between its 

response and actual human operator response, and can be described in the Laplace 

Domain as 

(1 + TIs) { e-1S 
} 

Yp(s)=Kp (1. "'_\ I+Tn s 
(3.5) 

where Kp is the 'Pilot Gain' representing the pilot's ability to respond to an error in 

the amplitude of a controlled variable. TI is the 'Lead Time Constant' illustrating the 

pilot's ability to predict a control input and T; is the 'Lag Time Constant' which 

describes the ease with which the pilot executes the required control input. These 

three terms are collectively known as the 'Human Equalisation Characteristics' 

(IlliC). The remaining two terms on the right can be defined as the 'Inherent Human 

Limitations', where e- 1S represents a 'Pure Time Delay or Transport Lag' where 'l'is 

the time delay constant. This parameter can be described as the period between the 

decision to change a control input and the act itself Finally 1;1 is the 'Neuromuscular 

lag Time Constant' portraying the time taken to trigger the muscle from when the 

signal is sent from the brain. These human limitations can be considered constant for 

any pilot flying a single axis-tracking task, leaving only the equalisation 

characteristics to be determined. The HEC are specific to individual pilots, reflecting 

their skill and ability, whereas the inherent limitations may be considered uniform 

across a group of pilots. 
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The PPM is widely recognised as a standard pilot model and has found applications in 

handling qualities studies, pilot rating evaluation and analysis of aircraft dynamic 

behaviour. Sutton (1990) also considers the PPM and more specifically, discusses 

how the size of the remnant can be used to help assess the handling qualities of 

proposed aircraft designs in the longitudinal plane. This example suggests that when 

the operator was forced to behave in a non-linear manner, for example if the man­

machine interface is unsuitable for the task or if the pilot is also required to perform 

secondary tasks, the handling qualities are poor or unacceptable (a further list of non­

linear characteristics are listed by Kelley (1968) in Table 3.1). Consequently the 

remnant was found to vary between large and very large as illustrated in Figure 3.4. 

Conversely when the handling qualities were acceptable, the remnant was small and 

the pilot could be modelled linearly. 

3.4.2 The Crossover Model 

The crossover model is a remarkably simple two parameter model which operates in 

the same manner as the PPM, by trying to annul the error between the input and the 

system output. McRuer (1965) demonstrates this model to be of the form 

Yo/(s) = YAs)Yc(s) = (j)c
e

-
rs 

s 
(3.6) 

where Yp(s) is the human operator transfer function, Yc(s) the system transfer 

function, {j)e is the crossover frequency and Tis the effective time delay (the pure time 

delay and the neuromuscular lag). McRuer & Jex (1967) demonstrate that any given 

set of vehicle dynamics resemble the characteristics dictated by the primary rule of 

thumb, defined by Sutton (1990) as 

itA rule of thumb due to Bode is that a system will be stable provided the slope of the 

Bode plot in the region of crossover is approximately -20dB" 

meaning that the open loop characteristics in the region of crossover should resemble 

an integrator. Although the PPM and the crossover model can adequately match the 
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gain and phase characteristics of the pilot, Kelley (1968) composed a list of criticisms 

of quasi-linear modelling in relation to the actual human operators, which are listed 

in Table 3.1. As a result, in recent years, model designers have focused on developing 

models which provide an insight into what the pilot is actually doing, as described in 

the PPM human equalisation characteristics. 

Table 3.1 Comparison of the Quasi-Linear Model With an Actual Human 

Operator (After Kelley (1968))(Reproduced From Sutton (1990)) 

Quasi-Linear Models 

Input Narrowness 
• Input has the same number of 

dimensions as output 
• One display. 
• Assumes impoverished display format 

(compensatory or pursuit tracking). 

Lacks Internal Task Representation 
• Does not include any explicit 

representation of task or environment. 
• Cannot adapt to changes in task save 

through arbitrary parameter adjustments. 

Point-In-Time Limitation 
• Restricted to present 

exponential weightings 
derivatives. 

error, fixed 
of past, and 

• Cannot remember; can only summarise 
signals via integration (lag). 

• Cannot predict input or output; response 
is an arbitrary weighting of error, lead 
and lag terms. 

3.5 Sampled Data Models 

Actual Human Operators 

• Input typically has more dimensions than 
multiple displays. 

• May use highly sophisticated multi­
dimensional displays (contact analogue, 
predictor display or direct view of 
environment). 

• Operation is virtually effected by 
understanding of task and environment. 

• Veridical changes in internal 
representation of task result in changed 
predictions, and hence, a different non­
arbitrarY form 01 adllptation. 

• Response based on remembered past and 
predicted future. 

• Can remember, modify response, or 
change internal task representation in 
consequence of past experience. 

• Can predict; response can be formed and 
modified to minimise future (predicted) 
error. Can preview or anticipate input as 
well as predict output, and plan response 
based on both of these "excursions from 
present time". 

Sampled Data Systems were developed in response to the hypothesis set out by Craik 

(1947). Craik hypothesised that the human operator's output when performing a 

continuous tracking task, consisted of a series of step responses, each triggered 

approximately every 0.5 seconds. The first sampled data description was proposed by 

Ward (1958), but was criticised by Bekey (1962) because, in the words of Be key 
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"Ward's study suffers from an almost complete lack of analytical work which makes 

quantitative evaluation of his model very difficult" 

Bekey proposed a new sampled data model based on criticisms of the quasi-linear 

model limitations. The model, illustrated in Figure 3.5, shows the human operator to 

be modelled by a sample and hold element in conjunction with a quasi-linear model 

Yp(s). The plant dynamics, in this case represented by a gain term, thus the quasi­

linear model was taken as 

Ke- Dss 

GHs = 1 + T,ls (3.7) 

where K is the model gain, Ds is the reaction time and Tn is the neuromuscular time 

constant. The input information, relayed to the operator's central nervous system, is 

supplied only once every T seconds and is controlled by the sampling switch. The 

human operator output, however, is continuous and therefore a 'data reconstruction' 

or 'hold' element must follow the sampler, which reconstructs the input on the 

information provided at the sampling points. 

Sampled Data Models are a widely accepted description of the pilot behaviour. 

However, intermittent control input (Craiks theorem) unnecessarily increases model 

complexity. Benefits are however attained when employing this approach in adaptive 

pilot modelling. 

3.6 Optimal Control Models 

Quasi-linear modelling is limited in that it only applies to single-input single-output 

linear systems. Chen (1971) further criticises quasi-linear modelling for being 

restricted to describing the relationship between the input and output of the system. In 

sharp contrast with this, the state space structure of the linear optimal control operator 

allows the model to be applied to linear multi-variable systems which not only 

describe the input-output relationship, but also the internal structure of the system. 

This type of model is optimal with respect to a given performance index provided the 
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operator is experienced, well motivated and will always perform in an optimal 

manner. 

The most famous optimal control model is that developed by Kleinman (1971) as 

illustrated in Figure 3.6, where the vehicle dynamics are represented in the standard 

state space form 

.x = Ax + Bu - - - (3.8) 

The model operates via the controller reacting to an information display showing the 

state and control variables in the form of 

y = C~+D!{ (3.9) 

where C and D are time variant. The model can be split into four sections, the first 

being a perceptual model which injects noise to represent operator randomness 

(equivalent to the remnant in the quasi-linear model). Next an information processor 

in the form of a Kalman filter and a least squares predictor estimates the system 

variables. A set of optimal gains is then chosen to minimise the quadratic cost 

function [Grace (1992)]. Finally an output model accounting for the inherent 

limitations is included, where the 'desired' operator control signal and additional 

noise vector are SUbjected to a neuromuscular lag. The actual control signal is then 

applied to the vehicle dynamics. 

The main problem with this type of model is that when the operator's limitations are 

described, a precise performance index must be specified. This can be overcome by 

solving the inverse optimal problem, where the control index and noise are selected to 

match the vehicle dynamics, neuromuscular lag and time delay. The solution 

however, is still only optimal in relation to the chosen performance index which the 

user must select, but may be sub-optimal in others. In addition, according to Sutton 

(1990), the model does not provide an insight into how the operator learns to behave 

as an optimal controller. 
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3.7 Adaptive Pilot Models 

Very often situations arise which require the human operator to apply control inputs 

to adjust and maintain the stability of the system, which are referred to as 'pilot 

adaptability'. Figure 3.7 illustrates the main adaptive characteristics of the pilot 

according to Young (1969) and are now summarised. 

• Learning Adaptation and Task Adaptation - As the human operator becomes 

more familiar with a system, they learn about the response characteristics, 

resulting in quicker detection of a problem. Nomoto (1977) suggests that learning 

adaptation, although closely linked to task adaptation, differs in that once an 

operator is trained in one system, they will be able to adapt to the handling 

qualities of another similar system much faster than a beginner will. 

• Input Adaptation - This is when the operator is able to predict patterns in the 

control input. As the operator becomes more experienced through learning 

adaptation, they will be able to examine the previous input histories thus allowing 

them to anticipate the following input. 

• Controlled Element Adaptation - This refers to the pilots' ability to change 

control strategies if and when the vehicle handling characteristics alter. Elkind, 

Kelly & Payne (1964) demonstrated the importance of this showing that the 

operator took a period of time to adapt to new system dynamics. 

• Programmed and Biological Adaptation - This describes the pilot response to a 

changing situation, whereby the pilot reacts to the altered system by implementing 

a taught control strategy as opposed to learning or controlled element adaptation. 

Biological adaptation is closely linked to this, representing the heightened state of 

awareness of the operator after sensing a change in the system. 

Although several adaptive pilot models have been developed, none of them 

incorporate all these adaptive characteristics. However a summary of these models 

follows. 

The first adaptive control model developed was by Costello (1968) as depicted in 

Figure 3.8. The model consists of a quasi-linear model, which is operational when the 
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input signal is continuous and when discontinuous an open loop surge model is 

switched on instead. Phatak & Bekey (1969) criticised the failure to identify the 

decision-control logic adopted by the pilot. They attempted to achieve this when 

considering autopilot failures in a simulated roll axis hover mode by employing a 

supervisory algorithm as illustrated in Figure 3.9. They postulated that the operator 

remembers the maximum values of error and error rate before failure. A decision 

region is then selected as twice the maximum error rate, where anything outside this 

region represents system failure. Gilstad & Fu (1971) adopted a different 2D approach 

as illustrated in Figure 3.10, where the gain could vary on each control axis. An 

algorithm for calculating the gain adaptability, similar to that employed by Phatak & 

Bekey, but with more than two modes is then used to determine the total system gain. 

The next contributor to the adaptive pilot model work was Hess (1980), who again 

criticised quasi-linear and optimal control modelling for the lack of explanation of the 

operator dynamics. Hess developed the compensatory Structural Pilot Model 

illustrated in Figure 3.11, where the model is composed of a central nervous and a 

neuromuscular system model, with model parameters listed in Table 3.1 [Sutton 

(1990)]. 

Table 3.1 Typical Parameter Values for the Structural Pilot Model [Hess (1980)] 

Plant K KI K2 K3 ~ PI 003 004 'tl 't2 S OOn 

Dynamics 

K 0 2.13 11.1 2 1 0.05 0.2 0.2 0.2 0.14 0.707 10 

Kls 1 3.42 22.2 2 1 0.05 -- 0.2 0.2 0.14 0.707 10 

KlS2 2 10.5 26.2 10 1 0.2 0.4 0.4 0.2 0.14 0.707 10 

The adaptive Structural pilot is presented with the error on the display and internally 

generates a displayed error rate, which is processed through a pUlsing logic transfer 

function. This is governed by the parameter Pi, representing the probability that the 

switch is in position 1. A further time delay T2 is then imposed to account for the time 

taken by the operator to process the display information. The signal is then processed 

by a second order neuromuscular delay, a remnant added, then presented to the 

vehicle dynamics block Ye. Table 3.1 demonstrates the pilot model parameters which 

depend on the pilot's adaptability to the plant dynamics. For example, when the plant 
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transfer function is an integrator, K = 1, (03 is not applicable, therefore the transfer 

function reduces to a simple gain K3. Also if (04 is much less than the crossover 

frequency, then the pilot acts as a pure gain. 

Since the development of the Structural Model, Hess has applied it to many situations 

such as the development of a preview control model [Hess & Chan (1988)], assessing 

aircraft handling qualities [Hess (1987)], [Hess & Yousefpor (1992)] and even 

adapted it to contain motion cues [Hess (1990)]. 

3.8 Pilot Model Selection 

This chapter has so far illustrated the wide variety of pilot models developed from 

servomechanism theory through to modem control theory. The task now is to choose 

a model that will provide the information required for this particular handling 

qualities study. As will be demonstrated in later chapters, the vehicle dynamics are 

linear, thus due to the 'small angle' rule, any mission task performed is restricted to 

being only a few seconds long. This means that the pilot characteristics can be 

assumed to be constant for the manoeuvre, therefore an evaluation of the manoeuvre 

as a whole is necessary so that the more complex adaptive pilot models are not 

required. Optimal control models have also been discarded for this study as they only 

guarantee the optimal pilot characteristics in relation to a performance index, where 

the theory does not aid the user in selecting such an index. This leaves sampled data 

models and quasi-linear modelling. Sutton (1990) however, reports that the operator 

intermittency still remains a theory and also overcomplicates the model. Quasi-linear 

modelling is therefore the final option. The PPM has been selected over the crossover 

model, as the latter does not give an insight into the pilot characteristics. 

3.9 Application of the Precision Pilot Model 

This type of quasi-linear model is not restricted to the case of an aircraft pilot. Again, 

Sutton (1990) refers on several occasions to how the PPM can be applied to a ships 
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helmsman to determine whether or not the helmsman performed in a linear fashion by 

analysing the remnant. For further background reading on the use of pilot models, 

Costello & Higgins (1966) composed a bibliography concerned specifically with 

modelling the human operator as an element in a control system. 

3.9.1 Precision Pilot Model Parameter Estimation 

As stated previously, the inherent human limitations can be considered constant for 

any given pilot, as obtained through observation from McRuer & Krendel (1974) and 

Pausder & Jordan (1976). The neuromuscular lag time constant is a parameter which 

can vary significantly as it depends on the dynamic characteristics of the limb in 

relation to the control strategy. However for the remainder of the work the 

neuromuscular lag time constant has been fixed at 0.1 seconds as observed by 

McRuer & Krendel (1974). The pure time delay was also found to vary depending on 

the tracking task being assessed. This was found to be of the order of 0.1 seconds and 

is modelled in the Laplace domain as a fourth order Pade approximation. 

The counterbalancing equalisation characteristic variables, considered in Section 

3.4.1, define the pilot response for the mission task. Therefore in order to determine 

the optimum pilot response for the manoeuvre, the optimum BEC must be 

determined. Sutton (1990) suggests that based on results found by Elkind (1956), the 

human operator gain is ordinarily between 0.1 and 1 second. He also noted that the 

ratio of gain to the operator lag time constant remained about 10 : 1. Finally the 

human operator lead constant, responsible for improving the tracking stability, varies 

between O. 1 and 2.5 seconds, although in extreme cases values of up to five seconds 

have been recorded by ~uer and Krendel (1957). These boundary conditions can 

be used to determine the optimum BEC utilising a constrained optimisation technique 

considered in Chapter 8. 
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3.10 Conclusions 

A review of pilot modelling is presented, ranging from classical servomechanism 

theory through to modem control theory. One such pilot model developed is the 

quasi-linear PPM, which simulates the behaviour of the inherently non-linear pilot 

with a combination of a linear pilot model plus a remnant. A low remnant indicates 

that the operator behaves in a linear fashion and conversely if a large remnant is 

required, the pilot is behaving non-linearly resulting in unacceptable handling 

qualities. Consideration has also been given on how to calculate PPM parameters, 

where the 'inherent human limitations' can be considered to be constant for any pilot 

allowing the 'human equalisation characteristics' to be determined by employing a 

constrained optimisation technique. The following chapters consider the remaining 

elements of the 'Task Variable' set, the helicopter model and the command signal, 

where the system under analysis employs a compensatory display. 
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Chapter 4 

Helicopter Modelling 

4.1 Introduction 

When simulating an aircraft, it is as important to model the vehicle dynamics as to 

represent the human operator. This chapter therefore focuses on the helicopter, 

discussing the fundamental differences between fixed wing and helicopter flight. 

Chapter 4 next considers the complex seven-degree of freedom helicopter model, 

which is incorporated in the non-linear Helicopter Generic Simulation (HGS). 

Although the methods of solving non-linear equations computationally are well 

established and understood, it is not possible to derive meaningful analytical solutions 

from them. Flight Dynamics tends to use a more analytical approach to determine the 

stability characteristics of an aircraft, involving a simplified linearised helicopter 

model. This simplified approach also means that the equations are much easier to 

manipulate making any investigation much more convenient. Finally the chapter 

considers how the linear state space model can be applied to the MMCS as a transfer 

function, representing the relationship between any combination of states and 

controls. 

4.2 The Basic Principles of Helicopter Flight 

An appropriate starting point to this chapter is to consider the differences and 

complexity of the helicopter in relation to the fixed wing aircraft, where there are two 

44 



Chapter 4 Helicopter Modelling 

fundamental differences. Firstly, the helicopter possesses the ability to fly at low 

speeds and even to hover. As a result of these unique abilities, the helicopter is able to 

precisely follow a planned trajectory. This low speed and hover capability can only be 

achieved at the expense of payload and operating cost [Thomson & Bradley (1998)J 

as low speed flight implies that there is less lift from the aerodynamic surfaces, hence 

the maximum payload is considerably less than that of a fixed wing aircraft. 

Secondly, the helicopter is controlled in a manner very different to that of the fixed 

wing aircraft, due not just to the vehicle configuration, but also because of the 

complex cross-coupling between the longitudinal and lateral states. 

4.2.1 Helicopter Control Principles 

The basic method of varying the direction and speed of the helicopter is to vary the 

magnitude and direction of the main rotor thrust vector [Johnson (1980)]. This is 

achieved using any or a combination of up to three control inputs. The first control is 

the 'main rotor collective', controlling the magnitude of the thrust vector and is 

denoted by 00. This collectively alters the pitch of all the rotor blades by means of a 

collective lever. The pilot is also able to control the pitch of each individual blade 

cyclically around a complete revolution by applying' longitudinal cyclic pitch Ols', by 

pushing the cyclic stick forwards. This causes the advancing blade to flap downwards 

while the retreating blade flaps upwards, producing the effect of tilting the main rotor 

forwards. The result of this rotor tilt is that the thrust vector is also tilted forward, 

pitching the helicopter nose down, while the component of the thrust vector on this 

axis allows accelerated flight. Similarly when 'lateral cyclic pitch Ole' is applied by 

moving the cyclic stick to the side, the blade pitch on the opposite side of the rotor 

increases while the pitch on the other side decreases. The resulting rotor tilt causes the 

helicopter to bank or roll to the same side as the control stick displacement. These 

three controls determine the orientation of the main rotor. However, the increased 

torque transmitted to the main rotor by the engine, must be balanced by an opposing 

moment. This opposing moment is applied through a tail rotor via 'tail rotor 

collective OOt:, controlled through pedal displacements altering the pitch of the blades. 

This control may also be used to adjust the heading 'P of the helicopter, by 
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collectively increasing or decreasing the amount of pitch applied to the tail rotor 

blades in a similar manner to the main rotor collective. 

In the case of the fixed wing aircraft, the longitudinal and lateral aircraft modes are 

controlled exclusively by the longitudinal and lateral aircraft controls respectively. In 

the case of the helicopter however, the main rotor collective and longitudinal cyclic 

influence 'primarily' the longitudinal helicopter modes which, in turn, are governed 

by the longitudinal and vertical velocities, pitch and pitch rates. The remaining two 

controls, lateral cyclic and tail rotor collective, therefore 'dominate' the lateral modes, 

which are governed by side velocity, roll and yaw headings and rates. 

4.2.2 Control Requirements for Trimmed Forward Flight 

One major drawback of the helicopter in relation to the fixed wing aircraft is the cross 

coupling between the longitudinal and lateral modes. This is best described when 

considering the control inputs required for transition from hover to accelerated flight, 

without changing altitude or heading [Thomson & Bradley (1997)]. First, longitudinal 

cyclic is applied to give the required acceleration, but as the main rotor is tilted 

forward, the thrust vector matching the weight of the aircraft is reduced. This can be 

compensated for by an increase in main rotor collective. However, as the blade 

pitching angle is increased, blade drag also increases, therefore to maintain rotor 

speed, the engine torque must be increased. As a result of the increased engine torque, 

an increase in tail rotor collective is thus required to maintain the required heading. 

Finally a change in lateral cyclic pitch is required to counteract the side force created 

by the increase in tailrotor collective. 

This example of the control inputs required to simply accelerate a helicopter from 

hover, illustrates the complexity of the system as inputs in all four control axes are 

necessary. The pilot workload however, can be reduced by incorporating a flight 

control system that compensates for a control input by altering the existing control 

inputs through a series of mechanical linkages. This automatic flight control system 

(AFCS) is discussed in more detail in Chapter 6 and Appendix 11, whereas the 

helicopter model in which the flight control system is applied is now considered. 
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4.3 Helicopter Generic Simulation (HGS) 

Given the complexity of the helicopter, modelling it proves to be a challenging task. 

The comprehensive Helicopter Generic Simulation (HGS) model, which includes the 

rotor blade flapping as a state variable and the dynamics of the rotor induced flow, has 

been employed in the inverse simulation routine Helinv but also exists outwith this 

algorithm. The HGS model considered herein and as outlined by Thomson & Bradley 

(1998), contains simplified rotor dynamics where only the fuselage and rotorspeed 

degrees of freedom are incorporated. This assumption can be made by assuming that 

these effects (blade flapping and lag) occur instantaneously and can be calculated 

independently. The non-linear HGS model is described in full in Appendix III 

however, a brief overview is now presented. 

With the assumption that only the fuselage and rotorspeed degrees of freedom are 

incorporated, the state vector becomes 

~ = [u V W P Q R ~ e lJf Q QE Y (4.1) 

where U, V, W, are the components of transitional velocity relative to a body fixed 

frame of reference, P, Q, R, are the angular velocities about the body axes, CP, e, P, 

are the Euler angles relating the body axes to the earth axes, n is the angular velocity 

of the main rotor and QE is the engine torque. The control vector can then be written 

as 

!{ = [eo e[s etc eOtrY (4.2) 

where the main rotor collective, longitudinal and lateral cyclic and tail rotor collective 

are the control inputs respectively. The fuselage can be considered to be symmetrical 

about the xz plane, therefore only the l.'(z product of inertia term is required by the 

familiar Euler rigid body equations 

(; =-(WQ-VR)+ X - gsine (4.3a) 
m 
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v =-(UR-WP)+!.+ gcosesin<P 
m 

TV =-(VP-UQ)+ Z +gcos8cosct> 
m 

Ix.tP=(I)~ -Izz)QR+I",,(R+PQ)+L 

IwQ=(Izz -Ixx)RP+lxz{R2 +P2)+M 

IzzR=(Ix.~ -IYJ,)PQ+I",,(P+QR)+N 

(4.3b) 

(4.3c) 

(4.3d) 

(4.3e) 

(4.3f) 

where m is the aircraft mass, lxx, Iyy and Izz are the moments of inertia and J'(z is the 

product of inertia. The rate of change of the attitude angles are related to the body 

axes angular velocities by the kinematic expressions 

cD = P + Q sin <I> tan 8 + R cos <I> tan 8 

e = Q cos <I> - R sin <I> 

tp = Q sin <I> sec8 + R cos <I> sec8 

Finally the rotor speed governor equations as given by Padfield (1981) are 

QE =~[-(Tel + Te3)QE - QE +K3(O-Oidle + Te2Q)] 
el e2 

. (QE - QR - gTRQTR - Qtr) . 
0= +R 

IR 

(4.3g) 

(4.3h) 

(4.3i) 

(4.3j) 

(4.3k) 

where Te ,Te ,Te ,K3 are the time constants and gains of the governor, .Qd/e is the 
1 2 3 

angular velocity of the rotor in idle, gTR is the main/tail rotor gearing ratio, QR, QTR, 

Qtr, are the torques required to drive the main rotor, tail rotor and transmission. 

Finally IR is the effective inertia of the whole rotor system. These equations of motion 

are widely recognised for any rigid body, however, to present them in the form 

required by the inverse simulation algorithm, P and R must be eliminated from the 

right hand side of equation (4.3d) and equation (4.3f). This is achieved simply by 
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substituting (4.3f) into (4.3d) to give P and vice versa for R, giving the following 

solutions 

. I zzL* + I.yzN* 
P= 2 

Ix.Jzz-Ixz 

. IxxN*+Ixz L* 
R= 2 

I.>:.J zz - I.yz 

where 

L* = (I y.v - I zz )QR + I.uPQ + L N* =(Ix.r -Iy'v)PQ+IxzQR+N 

The non-linear equations of motion in equations (4.3) apply to all rigid bodies, not 

just the helicopter. The determining factors in the modelling of the vehicle are the 

external forces and moments X, Y, Z, L, M, N, where for example, the rolling moment 

L of the helicopter can be defined as 

L = Lmr + Ltr + L f + Ltp + L fill (4.4) 

which includes components from the fuselage f, main and tail rotors mr and tr 

respectively, horizontal tail plane tp and the vertical fin fo. The HGS model is 

discussed by Thomson & Bradley (1997), therefore only a brief overview is presented 

here with a comprehensive review in Appendix III. 

4.3.1 Summary of HGS Model 

As considered previously, the non-linear equations are valid for all rigid bodies where 

the external forces and moments determine the vehicle being modelled. In the case of 

the helicopter, the external forces and moments on the fuselage are due entirely to 

aerodynamic loading and are calculated from look-up tables of appropriate wind 

tunnel data. The look-up tables give force and moment coefficients as functions of the 

incidence angles, the angle of attack a and sideslip fJ given by 

49 



Chapter 4 

W 
tan a = U 

V 
sinfJ=V­

I 

Helicopter Modelling 

VI =-JU2 +V2 +W2 

where Jif is the velocity of the aircraft. The external forces and moments produced by 

the rotor are found by 'blade element theory' where the aerodynamic loads are found 

for individual blade elements, then summed across the blade span. 

This complex helicopter model has been utilised in the non-linear inverse simulation 

algorithm and can also be used in a helicopter flight simulator. The differential 

equations can be solved numerically using a fourth order Runge-Kutta method to give 

the time histories of the state variables. The equations of motion are then solved 

simultaneously with the kinematic equations yielding the Euler angle time histories. 

Although the non-linear equations are well established, it is not possible to derive 

meaningful analytical solutions from them. In order to determine the stability 

characteristics of an aircraft, it is advantageous to employ a simplified linear model. 

This type of model is much easier to manipulate and when incorporated into a 

helicopter flight simulator, will be easier to control and will also run in real time on a 

desktop PC. 

4.4 The Linear HGS Model 

The need to understand the flight dynamics of helicopters and why they are so 

difficult to build with natural stability, has led to extensive research into analytical 

methods that can predict different phenomenon. Most understanding of stability and 

control has come from simple theoretical approximations such as the linear HGS 

model, which is not only necessary in establishing aircraft stability characteristics, but 

also proves easier to employ and pilot in a flight simulator. The linear, six degree of 

freedom model is however not valid in all scenarios. It is only valid for small 

perturbations from trim [Houston & Caldwell (1984)]. 
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The starting point for the linear model, which is applicable to all rigid bodies, is to 

understand that the aircraft states are calculated as deviations from the steady level 

flight state or 'trimmed flight'. This is achieved by considering the states to consist of 

two components 

U = U e + U 

P= Pe + P 

<D=<De +¢ 

v = Ve + V W = We + W 

Q = Qe + q R = Re + r 
o = 0 + B 'P = 'P + II' e e 'f' 

(4.5) 

where the subscript e represents the reference trim state and the lower case denotes 

the perturbation from trim. The trim values remain constant in the following dynamic 

analysis where any change in the flight state is described as a perturbation from trim. 

The aerodynamic forces and moments are central to the linearisation process and can 

also be expressed as a trim value and deviation from trim where 

X=Xe + til" 

L= Le +AL 

Y = Ye + ~Y Z=Ze +~ 

M = Me + ~ N = Ne + /).N 
(4.6) 

The linear trim condition can then be determined from the non-linear equations of 

motion by assuming that all accelerations and rates are zero and that any products of 

perturbations are small and therefore negligible. The resulting equations are then 

mit = -m{~q - Ver) - mgcos0e + til" 

mv = -m{Uer - WeP) + mg{¢cos0 e sin<D e - Bsin0 e sin<D e) + ~Y 

mw=-m(VeP- Ueq)-mg(Bsin0e cos <De +¢sin<De cos0e)+~Z 

AL = I.rxP - 1 xzr 

~=Iyyq 

/).N = Izzr - IxzP 

e = q cos <D e - r sin <D e 

¢ = P + q sin <D e tan 0 e + r cos <D e tan 0 e 

Ijf = r cos <D e sec 0 e + q sin <D e sec 0 e 
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The aerodynamic force and moment perturbations from trim can be represented in the 

form of a Taylor series. The perturbations are expressed as a summation of the 

instantaneous values of the disturbance velocities, control angles and their time 

derivatives. 

X=Xe + (OX) u+( ~) u+(OX) V+ ...... +(OX) 80 +..... (4.8) 
Ou e I3U e iN e 0'80 e 

Equation (4.8) demonstrates this only for the aerodynamic moment X, however, all six 

forces and moments can be expanded in this manner, where again e denotes that the 

derivative should be calculated from trim. Clearly, with a full set of derivatives in all 

six equations, the equations may become difficult to manipulate. However, for a wide 

range of flight states the acceleration derivatives are small and may be neglected from 

the Taylor series. It is worth noting that this assumption is specific to the helicopter 

and that a different set of assumptions must be made for a fixed wing aircraft. For 

example, AW. Babister (1980) demonstrates that in fixed wing aircraft, the derivative 

( ~J e is not negligible due to the lag in an up-gust reaching the tail-plane and 

therefore cannot be neglected from the equation. Other assumptions may be made for 

the fixed wing aircraft but are not considered here. 

Finally the aerodynamic force and moment perturbations such as that considered in 

equation (4.8), can be substituted into equations (4.7) to give the linearised equations 

of motion which, when divided by the aircraft mass, gives the semi-nonnalised state 

derivatives as 

Xu = ~(~J 
e 

Xv = ~(~) 
e 

Xe. =l(OX) o m 0'8
0 

etc. 
e 

which can be expressed in the state space fonn 

f=A~+B!{ (4.9) 
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where :! and ~ represent the state and differentiated state vectors and Y. is the control 

vector. A is the state matrix containing the stability derivatives which can be 

represented as 

A =[AII A12] 
A21 A22 

where 

Xu Xw-Q, Xq-w.; -gcosE>e 

Zu+Q, Zw Zq +rJ., - gcos<I> sinE> 
All =1 M 

e e 

~ ~ 0 u 
0 0 cos<I>e 0 

Xv +1\ Xp 0 Xr + v.; 
z,,-~ Zp -v.; - gsin <I>e cosE>e Zr 

AJ2 =/ 
M" Mp 

2P/.\Z + 1\{IX( - I}Y) 
0 

M,. + 21\1.\Z - ~(IX( - Izz) 
I}Y I}Y 

0 0 -0 cosE> a e -sin<I>e 

Y,;-1\ y,.+~ ~ - gsin<I> sinE> e e 
1,/ L.. Lq + IGI; -/s1\ 0 

~I=I 0 0 sin <I>e tan E>e Oa secE>e 

1'1" Nw Nq -1G1\ -ls~ 0 

~ ~+w.; gcos<I>e cosE>e y,. -Ue 

~=/4 Lp +1GQ, 0 4-/sQ, 
1 0 cos <I> tan E> 1 0 e e 

~ Np- kl2e 0 ~ -1GQ, 

where 

, IzzLp I.\ZNp 
Lp = 2 + 2 

Ixxlzz -Ixz Ixxlzz -Ixz 
~= ~~2+ ~4 

~~-~ ~~-~ 

I.\Z(Izz+IX( -I}y) 
kl =--'---­

I xxlzz - I xz 

Izz(Izz -I}Y)+I! 
k2 = 2 

Ixx(I}Y -Ixx)+I! 

I xxI zz - I.\Z Ixxlzz -I! 
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Matrix All represents the longitudinal modes of motion, An represents the lateral 

derivatives, while matrices AJ2 and A21 represent the cross coupling between the 

longitudinal and lateral modes. This 'modal' separation is not necessary when 

assessing aircraft dynamics, but has been included to further highlight the cross 

coupling between the longitudinal and lateral helicopter modes. For the case of a fixed 

wing aircraft, the cross coupling derivatives would be zero, showing that the aircraft 

longitudinal and lateral modes are decoupled. However, this is not the case for the 

helicopter as these cross-coupling terms influence the vehicle modes, hence the 

handling qualities. Finally, B is the control matrix, composed of the control 

derivatives shown in Equation 4.12. 

XOo X Ola X Olc X 00 .. 

Zoo Zl1a Zl1e Z 00 .. 

Moo M Ola M Ole M 
001r 

0 0 0 0 
B=I 

Yl1a Yl1e 
y (4.12) 

Yoo 001r 

M' 00 
M' Ola M' l1e M' 00 .. 

0 0 0 0 

N' 00 
N' Ola N' Ole N' 00 .. 

The heading If/, which is a perturbation from trim, can be calculated independently 

from the linearised version of Equation (4.7i) 

if! = r (4.13) 

The heading 'If has been neglected from the matrices, as the direction of the flight in 

the horizontal plane has no bearing on the aerodynamic forces and moments. 

However, it should be noted that the remaining attitude angles () and rp, cannot be 

treated in such a way as any change from the trim condition influences the 

gravitational terms and hence the aerodynamic moments in Equations 4.7a, 4.7b & 

4.7c. 

54 



Chapter 4 Helicopter Modelling 

4.4.1 The Stability Derivatives 

The state and control matrices containing the stability derivatives illustrated in 

equations (4.9) & (4.10) can be applied not just to the helicopter but to any vehicle. 

However, assumptions can be made to further reduce the order of systems which are 

decoupled, such as fixed wing aircraft. The state and control matrices illustrated in 

Figures 4.1 & 4.2 show that for the helicopter, there are 36 stability derivatives and 24 

control derivatives for which numerical values must be assigned. This can be 

achieved in one of three ways 

• Wind tunnel tests 

• Flight testing 

• Analytical techniques 

The correct derivation of these is essential to accurately represent the vehicle being 

modelled. This chapter however, is not concerned with the estimation of the 

derivatives via wind tunnel or flight testing methods, although Anon. AGARD (1991) 

comprehensively discusses these techniques. Instead the derivatives, calculated at the 

equilibrium state, are determined here by numerical differentiation of the non-linear 

equations as described by equation (4.14) 

x = ~(OX) = 1 X(Ue + &) - X(Ue - &) 
" moue m 2& 

(4.14) 

This numerical differentiation equation is explained when considering Figure 4.1, 

which illustrates the aerodynamic force X against the trim velocity Ue. The stability 

derivative Xu can be determined for a small change in trim velocity t5u according to 

equation (4.14). It should be noted that all the state and control derivatives can be 

determined in this way but only one is illustrated here because there are one hundred 

and eight stability derivatives defined in exactly the same manner as considered by 

Padfield (1996) who discusses in detail some of their characteristics. 
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4.4.2 The Normal Modes of Motion 

The stability and control derivatives contained in the linear equations of motion aid in 

the understanding of helicopter flight dynamics. Analysis of the model takes place by 

considering that for small deviations from trim, the helicopter model can be treated as 

a linear combination of normal modes. These modes can be determined from the 

system eigenvalues, which are calculated from the stability matrix A. The discussion 

so far has illustrated that many of the coupled longitudinal/lateral derivatives are 

strongly linked and have a major influence on the response characteristics. However, 

in the following discussion, the assumption that the modes are weakly coupled and 

can be treated in two distinctive sets, longitudinal and lateral, is made. 

• The Longitudinal Modes 

Phugoid Mode - This mode can be visualised in the form of a helicopter rotating 

about a virtual hinge. The distance from this virtual hinge to the cg of the helicopter 

determines the ratio of u to q in the mode eigenvector. Figure 4.2 shows this mode to 

be a naturally unstable (positive real part) oscillatory helicopter mode, which becomes 

increasingly less unstable as speed increases. 

Pitch and Heave Modes - These modes, in a full non-linear helicopter, would 

ordinarily be subsidence modes [Padfield (1996)]. However, Figure 4.2 demonstrates 

that for the linear helicopter model, these two longitudinal modes are coupled, 

suggesting that this complex conjugate eigenvalue actually represents the pitch short 

period mode. 

• The Lateral Modes 

Spiral Mode - In the case of the Puma helicopter, as demonstrated in Figure 4.2, this 

is a slow stable mode, influencing only the heading and roll angles. The mode can be 

considered as a banked turn of increasing radius and without sideslip. 
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Roll - This is a fast, stable mode, which is strongly influenced by the roll damping Lp, 

where the helicopter rotates only about the x-axis. 

Dutch Roll Mode - The final mode considered is arguably the most complex, 

consisting of a combination of sideslip, yaw and rolling motion. It tends to be stable. 

Occasionally however, the mode can be unstable creating severe handling problems, 

but the mode is generally characterised by the change in stability as illustrated in 

Figure 4.2. As the aircraft sideslips in one direction, it yaws in the other, maintaining 

an almost linear flight path. This motion then causes the helicopter to roll in the same 

direction as the yaw. 

The helicopter handling qualities are strongly influenced by the stability of the normal 

modes [padfield (1996)], where stability of the mode is determined by whether or not 

the real part of the eigenvalue is positive or negative (stable modes having a negative 

real eigenvalue). Emphasis will be placed on the handling qualities assessment in the 

following chapter, however, the final aspect of the helicopter model is now 

considered, which is to represent the vehicle dynamics in an appropriate form for the 

MMCS. 

4.4.3 Transfer Function Representation of the Helicopter Model 

Equation (4.9) represents the helicopter in state space form via a series of differential 

equations with constant stability and control derivatives, equations (4.11) & (4.12). 

Although this representation is extremely useful in determining the vehicle 

characteristics, the aim of this chapter is not only to present an overview of helicopter 

modelling, but also to restructure the model in a way that it can be used to represent 

the vehicle dynamics in the MMCS. This is achieved simply by taking the state space 

representation 

x=Ax+Bu 

and transforming it to the Laplace domain to give 
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4.6 Conclusions 

This chapter has presented a brief overview of helicopter modelling. Starting with an 

illustration of the complexity and the cross coupling of the system by discussing the 

control inputs required to perform a simple task. The linear HGS model is presented, 

illustrating the steps required to manipulate the linear equations of motion into the 

convenient state space form, allowing the vehicle dynamic modes to be assessed by 

determining the eigenvalues of the state matrix. 

The helicopter model can now be used in conjunction with the PPM considered in the 

previous chapter, to determine the HEC for a predefined task. Once this has been 

achieved in the inverse simulation case, the pilot effect can be added to the MMCS 

input to give the actual attitude time history. Clearly before this can happen the 

command signal for the MMCS must be generated as is considered in the following 

two chapters. Chapter 5 discusses how the helicopter can be simulated through 

inverse simulation, while Chapter 6 focuses on the forward simulation with the 

development of a helicopter flight simulator. 
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s:!(s) = A:!(s) + B~(s) 

Finally, rearranging to relate the state variables to the control inputs gives 

(s1 - Ah(s) = is)B 

~~;i = (s1 - AtlB (4.15) 

This basic fonnula can be used to define transfer functions illustrating the 

relationships between the states and controls. The appropriate vehicle dynamic 

transfer function can then be chosen, depending on the mission task being perfonned 

and which control is most influential as considered by Pausder & Jordan (1976). 

4.5 Multiple Control Axis Helicopter Model 

Although the helicopter can be represented by the change in the primary attitude angle 

and the most influential control input, it does not give an accurate description of the 

vehicle dynamics if more than one control input is applied. In order to represent 

multiple control inputs in the linear MMCS, a minimum of two transfer functions are 

required in parallel. For example, if the slalom task previously considered is flown 

using a combination of only lateral cyclic (Jlc and tail rotor collective (JOtr, the vehicle 

dynamics block YH(s) of the MMCS can be represented as illustrated in Figure 4.3. 

YH1(s) represents the relationship between the dominant attitude change, in this case 

the roll angle tjJ, and lateral cyclic. YH2(s) therefore represents the transfer function 

relating tjJ to the tail rotor collective. Clearly, if all four control inputs are required 

during a task, then transfer functions representing all four controls must be included in 

the vehicle dynamics block. 
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Chapter 5 

Inverse Simulation - Helinv 

5.1 Introduction 

The conventional approach to aircraft flight simulation is to develop a mathematical 

model of the vehicle, then determine its real time response to a set of control inputs 

applied by a pilot. However, very often simulation models are required to assess an 

aircraft's response to control inputs or examine its stability characteristics offline. 

This can be particularly difficult to achieve for a helicopter due to the unique 

operating requirements of the vehicle, such as performing precise tracking tasks. 

These NOE mission tasks are defined in the ADS-33 document series as single axis 

tracking tasks such as 

Tum to Target - "From a stabilized hover at an altitude of less than 20 ft, complete a 

180 degrees turn. Turns shall be completed in both directions. The final heading 

tolerance should be based on a sight mounted on the rotorcraft, preferably the same 

sight to be used for operational missions. " 

Sidestep - "Starting from a stabilised hover with the longitudinal axis of the 

rotorcraft oriented 90 degrees to a reference line marked on the ground, initiate a 

rapid and aggressive lateral acceleration, holding altitude constant with power. Hold 

target velocity for 5 seconds and then initiate an aggressive deceleration to hover at 

constant altitude. The peak bank angle during deceleration should occur just before 

the rotorcraft comes to a stop. Establish and maintain a stabilized hover for 5 

seconds. Immediately repeat the maneuver in the opposite direction." 
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and can be readily described by mathematical functions. Inverse simulation is a 

technique that lends itself very well to solving this type of problem, as it generates the 

required state and control time histories for a given flight path. This chapter presents 

two methods of inverse simulation, the first containing a full non-linear helicopter 

model and the second involving a simplified linear version of the model. Emphasis 

will be placed on the linear inverse simulation technique for consistency as the 

remaining blocks in the MMCS are generated using linear algorithms. 

5.2 Helicopter Inverse Simulation Helinv 

The Inverse Simulation package Helinv, developed at the University of Glasgow by 

Thomson (1990), can be used to predict a set of control inputs required to force a 

vehicle along a predefined flight path. By defining algebraically a mission task, the 

Helinv algorithm solves the equations of motion generating a unique time history of 

control inputs. This contrasts with conventional forward simulation, which determines 

the vehicle flight path for a given set of control inputs and can be expressed as the 

initial value problem 

x=f(x,u) x(O)=xo 

Y= g(x) 

(5.1) 

(5.2) 

where x is the state vector, u is the control vector and y is the output vector. Equation 

(5.1) shows how the model predicts the vehicle response to a given set of control 

inputs. Inverse simulation differs from this technique in that a predetermined output 

vector y is used to calculate the required control time histories u. To demonstrate this 

method, a statement of the inverse problem can be formed first by differentiating 

equation (5.2) to give 

. dg. = dgf(x,u) 
y=dx X dx 
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In the case where this equation is invertible with respect to u, it is possible to write 

U = h(x,y) (5.4) 

Substituting back into equation (5.1) gives 

x = J(x,h(x,y)) = F(x,y) (5.5) 

Equations (5.4) & (5.5) represent a complete statement of the inverse problem with Y 

as the input vector and u as the output vector. The input vector y, required to initiate 

the algorithm, defines the manoeuvre geometry for which the vehicles cg must 

precisely follow. Each manoeuvre must be defined in terms of the earth fixed axes, 

giving the input the initial form 

Y=[Xe Ye zef 

Specifying these three initial constraints is sufficient only for determining the aircraft 

position along the flight path. Subsequently the aircraft is free to point in any 

direction. Considering the four helicopter controls it is clear that the longitudinal and 

lateral cyclic inceptors control the x and y directions, while the main rotor collective 

governs the heave axis. The remaining control is then the tail rotor collective and it 

follows that the aircraft heading angle Iff is a suitable constraint giving the input 

vector as 

Y=[Xe Ye Ze vir 

The input vector containing the heading constraint is best suited to longitudinal 

manoeuvres such as the Quick-Hop or lateral manoeuvres such as the side step where 

turning or a change of heading is not required. If a manoeuvre does require a change 

in heading, such as the turn to target, it is more convenient to define the fourth 

constraint in terms of side slip p. 
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Y=[Xe Ye ze fir 

As the aim of this chapter is to show how inverse simulation can be used to generate 

the MMCS command signal and not the validation of the Helinv programme, a 

comprehensive discussion of the algorithm employed in Helinv is contained in 

Appendix IV and not the main text. 

5.3 Helicopter Model 

Like most complex inverse simulation models such as the Hess, Gao Wang algorithm 

[Hess, gao & Wang (1991)], Helinv is composed of two entities, the inverse algorithm 

and the helicopter model. The helicopter model applied in Helinv is known as 

Helicopter Generic Simulation (HGS), which employs a seven degree of freedom 

state vector alongside a conventional control vector 

! = [U V W P Q R <l> e \f' n QE t 
!{=[eo e[s etc eOtrY 

(5.6) 

(5.7) 

where U, V, Ware the axial velocities, P, Q, R the rotational velocities, (/J, 8, IPthe 

attitude angles, n is the engine rotorspeed and QE is the engine torque. The control 

vector in equation (5.7) represents the four helicopter controls, main rotor collective, 

longitudinal cyclic, lateral cyclic and tail rotor collective respectively. 

Although the inverse simulation algorithm employs the complex non-linear HGS 

model, the HGS model was not developed specifically for this package. The 

helicopter model also exists outwith Helinv in non-linear and linear versions. The 

discussion so far has considered how the output from Helinv is dependent on the 

mission task geometry although the helicopter model must also be able to adequately 

model the vehicle response. A full review of the validated HGS model can be found in 

Appendix III. The aim of inverse simulation in this context is to correctly generate the 

state and control time histories using the HGS model. Therefore emphasis here has 
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been placed on mathematically defining manoeuvres as the mission task geometry 

determines the generated output vector. 

5.4 Manoeuvre Modelling 

The successful application of Helinv depends on the mission task model being 

representative of the actual task to be flown. A library of mission task elements exists 

in the form of the Aeronautical Design Standard ADS-33D (1994) published by the 

United States Army. The document suggests guidelines for performing single axis 

tracking tasks which can be applied to the development of a manoeuvre mathematical 

mode1. It should however be noted that although ADS-33D constitutes one of the 

most comprehensive and important rotorcraft handling qualities guidelines, it does not 

encompass all manoeuvres such as the Climb-tum contained in the Helinv mission 

task library, which is similar to the 'tum to target task', however a vertical 

repositioning is also required. 

Figure 5.1 illustrates how the slalom manoeuvre, introduced in chapter 2, is to be 

flown with constrained heading ('P = 0). However the manoeuvre can also be 

executed by applying a different control strategy as considered in Figure 5.2, where 

the side slip (fJ= 0) is constrained instead of the heading. The task is then to replicate 

the flight path shown in Figure 5.1 and Figure 5.2 algebraically, allowing Helinv to 

determine the state and control time histories for the manoeuvre. This was achieved 

by Leacock (2000) by first assuming that the helicopter starts and finishes the 

manoeuvre in a fully trimmed flight state. The required flight path can then be split 

into various sections where the lateral translation is at a maximum or minimum and is 

expressed as a function of manoeuvre time till' 

1. At the start of the manoeuvre lateral distance, velocity and acceleration are zero 

t=O y=y=ji=O 

2. The minimum lateral distance is achieved when the lateral velocity is zero 
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1 
t--t y'-O y-y -4111 - -min 

3. The maximum lateral distance is achieved when the lateral velocity is zero 

3 
t = 4" tm Y = 0 y = Y max 

4. At the end of the manoeuvre lateral distance, velocity and acceleration are zero 

t=tm y=y=ji=O 

These boundary conditions can be used to develop a mathematical expression for the 

manoeuvre. In this case, as there are ten constraints, the resulting polynomial has the 

form 

yet) = {759S(-t J3 -6220S(-t J4 + 21390S(~J5 -39291S(~J6 
tm tm tl/l tm 

+ 40353s(1-J7 -21845S(~J8 + 4855S(~J9}ymax 
tm tm tl/l 

(5.8) 

where til/ is the manoeuvre time and s is the maximum (negative as initial 

displacement here is to the left) lateral distance travelled in the manoeuvre. The ADS-

33D slalom, as discussed, is to be performed over a distance of 608 metres with a 

lateral translation of ±15.2 metres. Clearly these geometric constraints determine the 

flight path and hence a change in speed will affect the manoeuvre time and not the 

flight path. Figure 5.2 illustrates the lateral displacement time histories for the forty 

and eighty knot cases, demonstrating the shorter period of time required to perform 

the task as the speed increases. 

Once the flight path has been established, Helinv can be used to predict the control 

inputs required for the helicopter to precisely follow the flight path. Figures 5.4 & 5.5 
present the Helinv generated state and control responses respectively for the Puma 
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helicopter model performing the ADS-33D slalom with constrained sideslip at forty 

and eighty knots. The first noticeable point from Figure 5.4 is that because this is a 

constrained side slip case, V does not change throughout the task. From this plot it is 

also clear that because the manoeuvre is a lateral one, the longitudinal variable time 

histories do not deviate significantly from their initial trimmed condition. Figure 5.5 

demonstrates that in the forty knot case, only small changes in all four controls are 

required to successfully fly the task. This is especially true for the 'longitudinal' 

controls, main rotor collective and longitudinal cyclic. Figures 5.4 & 5.5 demonstrate 

that for this example, a change (decrease) in lateral cyclic produces the effect of 

tilting the main rotor to the left, resulting in the aircraft rolling to the left and a change 

in heading. This one control input also causes a decrease in altitude due to a reduction 

in lift produced, which is counterbalanced by an increase in main rotor collective (to 

maintain the correct altitude) and engine torque. The increased engine torque must 

then be balanced by an increase in tail rotor collective to maintain heading. When the 

required roll rate is achieved, the lateral cyclic input is reversed in order to maintain 

the correct aircraft heading. As this control input is applied, the main rotor collective 

is slowly reduced to its trim value then, when the blade is tilted in the opposite 

direction, more collective, engine torque and tail rotor collective are again required. 

Analysis of the two flight speed time histories shows that because the higher speed 

manoeuvre is performed in a shorter time, the manoeuvre is flown in a much more 

aggressive manner. This requires larger control inputs which more than doubles the 

controlled roll angle (jj in relation to the forty knot case. It is also evident that the 

heading 'Ptime history does not vary in magnitude over the flight speed range. This is 

because the vehicle is following the same flight path, the same heading profile is 

required over different periods of time for the various flight speeds. 

As considered in section 5.2, Helinv can function in one of two ways, the first 

constraining sideslip and the second constraining the heading angle. Figures 5.6 & 5.7 

depict the predicted state and control results for the constrained heading slalom 

compared with the constrained side slip slalom at forty knots. Although each 

constrains a different parameter, the remaining state responses are similar. It is 

noticeable however, that the constrained sideslip technique requires smaller control 
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inputs in order to perform the manoeuvre, suggesting that it would be an easier task 

for a pilot to perform than with constrained heading. 

5.5 Linear Inverse Simulation 

Linearisation as described in chapter 4, is a standard way of analysing the behaviour 

of nonlinear dynamic systems. The linearised equations of motion, when expressed in 

state space form, can be used to describe the unconstrained response of the helicopter 

to a series of control inputs. More significantly, this technique can be used to analyse 

aircraft stability and to derive the vehicle dynamics as a transfer function. The 

requirement here however, is that a statement of the inverse problem be formed by 

rewriting the linearised equations such that the state and control time histories can be 

determined for a predefined flight path. The linearised equations of motion can be 

expressed in state space form as 

x=Ax+Bu - - - (5.9) 

where A and B are the system and control matrices respectively which contain the 

aerodynamic and relevant gravitational and velocity terms. The state vector ~ and the 

control vector y. are given by 

:! == [u v w p q r rp Or (5.10) 

y. = [ 00 Ols ~c OOlr r (5.11) 

The first stage is then to split the state vector into those variables strongly influenced 

by the constraints and those that are unconstrained. It follows that as considered in 

section 5.2, the longitudinal and lateral cyclic control the x and y directions 

influencing u and v respectively, whereas the main rotor collective controlling the 

heave axis primarily influences w. Finally as the tail rotor strongly influences the 

heading If/, the vector of constraint influenced states ~l and the vector of 

unconstrained states :!2 are 
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!, =[u v w rr !2 =[p q f) ¢r (5.12) 

which can be written as 

[~l]=[All A12][!l]+[B!][~] 
!2 A2! A22!2 B2 

(5.13) 

On expansion, Equation (5.13) gives 

~! = All!! + A!2!2 + Bl~ (5.14) 

~2 = A2!!! + A22!2 + B2~ (5.15) 

Solving equation (5.14) for the control vector assuming Bl to be non-singular 

H = B~'[il - All.!l - A12 !2] (5.16) 

Substituting (5.16) into (5.15) allows the unconstrained states to be expressed in terms 

of the constraint influenced states 

~2 = [A22 - (B2B~I)A12 ]!2 + [(A21 - (B2B~1)All)!1 +(B2B~lhl] (5.17) 

The linear solution requires the unconstrained states J.2 to be expressed in terms of the 

constraints !C. However the strongly influenced states !l are a function of both J.2 and 

!c as is apparent on examination of the linearised Euler transformation 

[:l=[~;: 
L20 

M20 

N20 

L3][Xl [Ll M:. ~ + M;, 
N3 z Nl o d 

where the direction cosines are given by 
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Ll =cosecos'¥ L2 = cos8 sin '¥ L3 = -sine 

M 1 sin <I> sin e cos'¥ - cos <I> sin'¥ M 2 = sin <I> sin e sin '¥ + cos <I> cos'¥ M 3 = sin <I> cos '¥ 

N 1 = cos <I> sin e cos'¥ + sin <I> sin'¥ N 2 = cos <I> sin e sin'¥ - sin <I> cos'¥ N 3 cos cD cos 8 

At this point it is important to note that the linear inverse simulation can be solved in 

one of two ways, depending on how the fourth constraint is specified. The first 

technique, discussed by Thomson and Bradley (1990), is to incorporate a yaw or 

heading constraint in conjunction with the flight path constraints. As this is a well 

documented routine, the algorithm has not been considered in the main text but can be 

found in Appendix V. Instead the second technique has been focused on, which is to 

specify constrained side slip given by 

v= Vsinp (S.19) 

Linearising this yields the constrained sideslip velocity 

vc = VopcosPo + V sin Po (S.20) 

where v, V and pare all perturbation values and Po represents the trimmed side slip p. 
The linearised equations (S.9) are nowexpressed in terms of the constraint influenced 

states. Hence from equation (S.20) and the linearised Euler transformation in equation 

(S.18), the yaw velocity is given by the kinematic expression 

'If = _1_ [v c - (ml X + m2 Y + m3 .i + m1 () + m2 r/J)] 
moo 0 d d 

3d 

(S.21) 

Substituting equation (S.21) back into the Euler transformation gives 

[:]=[J 

* 12 
o I; ][it] [I: I;] [I:] ~ V+ ~ ~ [:J+ I, [v,] 

n3 w n4 ns 16 
(S.22) 

* n2 
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where 

I; = 110 - m10 I: 
I; = 120 - m201: 

I; = 13
0 

- m301: 
* * 14 = lId - m1)6 

I; = 12d - m2d1: 
1 

l*-~ 6 -
m3

d 

* '" n1 = n1 - m1 n6 o 0 

* '" n2 = n20 - m20n6 
'" '" n3 = n30 - m30n6 
'" * n4 = n1d - m1dn6 
* '" ns = n2d - m1dn6 

* n3 _ d n6 ---
m3

d 

The linearised transformation of earth fixed to body fixed axes accelerations are 

expressed as 

[:l=[ ~~: 
L20 

M20 

N20 

L3
0 l[Xl [ w"q - Ve

r 
l M ji - U r-Wp 

N:: Z Veep_ U:q 
(A5.23) 

where the body fixed acceleration v can be rewritten as 

r = _1_ (ml X + m2 ji + m3 Z - v + w;, p) U 0 0 0 
e 

(5.24) 

Combining and rearranging (5.22) and (5.24) gives 

;!l = T1i + T2f + T3;!2 
-c -c 

(5.25) 

where 
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0 0 0 0 z* t t t 0 0 
1 2 3 6 

0 0 0 0 0 0 0 1 0 0 
Tl=1 0 0 0 0 T2 = T3 = 0 0 * * • • n1 n2 n3 n6 my; miu m(u -){ 0 0 0 0 Wiu 0 Ue Ue Ue Ue Ue 

Differentiating (5.24) gives the yaw rate acceleration 

f = ~ (m1o:k' + m20Y + m30z' - V + WeF) 
e 

(5.26) 

Combining and rearranging equation (5.26) and the linearised transformation of earth­

fixed to body-fixed axes accelerations in equation (A5.23) gives 

,!l = Tl j + T4 ,!2 + TS:!2 + T6 j 
-c -c 

(5.27) 

where 

0 0 0 0 U:Yu -u: 0 0 t t t -Yu Ue 7 8 9 Ue 0 0 0 0 
T4 =/ Ts = 

0 0 0 0 
T6 = 

0 0 0 1 
0 0 0 0 

'iu -Ve Ue 0 0 n10 n20 n3
0 

0 

Ue 
0 0 0 

0 0 0 0 0 0 0 0 

mV m V m V 
1*-1 ~ 1*-1 ~ 1*-1 ~ 7 - 1 + 8 - 2 + 9-30 + U o U o U 

e e e 

Equations (5.25) and (5.27) can be substituted into (5.17) giving 

!2 =[1- B2B~lT4r {A22 - B2B~1(A12 -Ts)+(A21 - B2B~lAl1)T3}:!2 + 

[I - B2B~lT4r {[B2B~lTlllc + [(A21 - B2B~lAll)Tl + B2B~lT61L} + 

[1- B2B~lT4 r {[(A21 - B2B~1 A ll )T21c} 
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The unconstrained states are now expressed in terms of the constraints. This solution 

can be simplified to 

where 

:!2 = Ae~2 + Belle 

Ae = [1 - B2B~IT4 r {A22 - B2B~1 (Al2 - TJ + [A2l - B2B~1 All ]T3} 

[ ]

T 

[1 - B2B~lT4 rB2B~lTl 

Be = [1 - B2B~lT4r_\(A2~1- B2B~IAll)_~1 + B2B~lT6) 
[1 -B2Bl T4] (A2l -B2Bl All)T2 

x p 

[/'l Y q 

~,= ~: f = 
Z 

:!2 = () -c 

Vc ¢ 

(5.28) 

Once the unconstrained matrix :!2 has been calculated, it can be substituted back into 

equation (5.25) to give the constrained parameter time histories J,.1. Finally, these 

results can be used to determine the control inputs from equation (5.16). 

As the ADS-33D slalom was considered for the non-linear HGS Helinv algorithm, 

Figures 5.8 & 5.9 compare the nonlinear and linear Helinv state and control time 

histories for the forty knot constrained sideslip manoeuvre, performed by a Puma 

helicopter. Analysis of these plots shows that although the linear inverse simulation 

technique requires a greater roll angle (¢) and greater control inputs in all four control 

axes, overall the linear inverse simulation is a good approximation to the full non­

linear algorithm. The oscillations and increases in control input can be explained 

when considering the stability characteristics of the aircraft. The constrained equation 

of motion in equation (5.28) contains the constrained system matrix Ac, allowing the 

dynamic properties of the constrained system to be calculated from its eigenvalues. 

Figure 5.10 shows the root locus plot of both modes. From the diagram, it is apparent 
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that over the low flight speed range, the eigenvalues and hence the period of 

oscillation are almost constant. One of the stable modes with period of 1.24 seconds 

represents the transient oscillation clearly seen in the longitudinal and lateral cyclic 

control inputs in Figure 5.9 and also the state variable p in Figure 5.8 with measured 

periods between 1.15 and 1.3 seconds. Even though measuring errors are apparent, the 

linear algorithm produces periods similar to the predicted values. The oscillatory 

control inputs are a result of the flight path being precisely followed by linear Helinv 

and, as considered by Bradley and Thomson (1990), pilots also display this oscillatory 

nature in their control strategies when attempting to perform a tracking task, but not to 

the same extent. This is because the pilot flies the manoeuvre within specified limits 

rather than following the exact flight path. 

5.5.1 Validation of Helinv Algorithm 

So far this chapter has considered the inverse simulation algorithm and validation of 

the linear simulation in relation to the non-linear model. However, if any meaningful 

information is to be produced, the inverse simulation must replicate the behaviour of 

the real helicopter. The conventional approach to this validation is simply to compare 

the Helinv output and the flight data for the same manoeuvre, speed and vehicle. 

The manoeuvre considered in this chapter is the ADS-33D slalom single axis tracking 

task, performed in a Puma Helicopter. However, as there is no flight data readily 

available for this project meeting these criteria, reference is made to Thomson & 

Bradley (1997). This paper considers the validation of non-linear Helinv via the 

Quick-Hop manoeuvre performed in a Westland Lynx Helicopter. Figure 5.11 

illustrates the comparison referred to between the actual flight data and the state and 

control time histories developed using inverse simulation for this manoeuvre. The 

plots demonstrate that the correct trend is being predicted in all controls, resulting in 

similar roll and pitch attitudes recorded from the flight test. These and other results, 

presented by Thomson & Bradley (1997), verify that the non-linear or linear inverse 

algorithm (as the linear algorithm has been proven in this chapter to replicate the non­

linear system) can be used to predict the vehicle parameter time histories. 
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5.6 Conclusions 

Flight testing is an expensive way of obtaining real flight data. However mission tasks 

can be easily simulated using the inverse simulation package Helinv if the mission 

task can be mathematically modelled. This chapter has considered one of many ADS-

33D (1994) mission task elements, the slalom manoeuvre, and how Helinv can predict 

the 'ideal' state and control time histories for the manoeuvre. The following chapter 

presents the development of a helicopter flight simulator incorporating a linear HGS 

model for creating real or 'non-ideal' flight data to aid in a handling qualities 

assessment. As this programme and the vehicle dynamics block discussed in Chapter 

6 are linear, it was necessary to generate a linear version of the inverse simulation 

technique for consistency. The linear version of Helinv operates using a numerical 

integration technique, described by Thomson and Bradley (1990), which calculates 

the deviation from steady level trimmed flight for the predefined manoeuvre 

geometry. This technique makes the common engineering assumption that any 

perturbations from trim are small, limiting the application of linear Helinv. 
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Chapter 6 

Development of a Mission Programmable Flight 

Simulator 

6.1 Introduction 

Inverse simulation has been presented as a valuable tool for generating the ideal state 

and control time histories used as the command signal for the MMCS. Chapter 6 

focuses on developing an alternative method for deriving actual pilot data, which can 

be used in a helicopter handling qualities assessment. This involves creating a real 

time helicopter flight simulator using Visual CIC++6, incorporating a flexible 

helicopter model with fully functional cockpit view and automatic flight control 

system. Finally, of equal importance, is the 3D environment in which the mission 

tasks are to be performed, which is translated and rotated around the stationary 

helicopter model, producing the effect of flight. 

6.2 Desktop Flight Simulator Requirements 

Using the PPM in conjunction with the MMCS to assess HQR, requires a mission task 

to be flown by numerous pilots in the same helicopter. The recorded flight data can 

then be applied to the MMCS as described in Chapter 2 to generate the optimum 

HEC. Inverse simulation, as discussed previously, is one method that can be applied 

to derive the input to the MMCS where the state and control time histories generated 

represent the ideal manoeuvre time history. Clearly, when the ideal manoeuvre time 

history is used as the command signal for the MMCS, the PPM will minimise the 
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error by calculating the optimum HEC. Other methods of attaining manoeuvre flight 

data must now be considered to compare with those generated from Helinv. Ideally, 

real flight test data would be used but as it is not available for this project, an 

alternative method of creating manoeuvre time histories, using a PC based flight 

simulator, is proposed. 

Before a PC based flight simulator is selected in which to create the command signal 

by piloting a selected mission task, it must adhere to certain criteria which are 

essential for creating realistic flight data. These requirements are as follows: 

• Operational Functionality - the main objective of developing a flight simulator is 

to obtain pilot data to be used as the input to the MMCS. Therefore, it is 

imperative that the state and control time histories are output to file during the 

flight. Although the manoeuvre may be correctly displayed in the 3D 

environment, the flight and recorded time histories only fully represent the 

manoeuvre flown by the pilot if the simulation runs in real time. 

• Helicopter Model - A valid helicopter model must be incorporated which 

calculates the state and control time histories, where the operator is able to select a 

reference trim speed to perform the chosen mission task. Deviation from the 

trimmed flight condition can then be achieved by applying control inputs to the 

system via joystick. These control inputs can govern directly the control inputs or 

can be applied through an automatic flight control system (AFCS). 

• 3D Environment - This is the 'world' viewed by the pilot from inside the 

stationary, fully functional helicopter cockpit. The 3D environment is where the 

mission task elements must be realised and manipulated to give the illusion of 

flight. 

Although there are many PC based flight simulators available commercially, one that 

allowed access to the programme code, in order to change the surrounding 

environment, task and vehicle model was not available commercially at the time. 

Therefore the task of developing a mission programmable flight simulator was 

undertaken. 
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6.3 Development of a Mission Programmable Flight Simulator 

Developing a real time helicopter flight simulator incorporating the elements 

described above is a complex and challenging task. Central to the simulator is the 

helicopter model describing the vehicle response to a control input. Attitude change 

and distance travelled by the helicopter are calculated, then used to manipulate a 

visual environment. As the requirements for creating the flight simulator are defined 

in the previous section, the helicopter model applied to obtain manoeuvre time 

histories is considered, followed by the construction of the three-dimensional 

environment and operator viewpoints. 

6.3.1 Helicopter Model 

As discussed in Chapter 5, the HGS model exists in a full non-linear version such as 

that employed in Helinv, but also in a simplified linear version. The flight simulator 

described herein incorporates the linearised six-degree of freedom HGS model, 

therefore it should be noted that the state and control vectors are calculated at a 

reference trim state. The linear model of a rigid aircraft is derived using the following 

assumptions at the trim condition 

• There are no resultant accelerations on the aircraft. 

• The aircraft has no angular velocity. 

• The aircraft is assumed to be in symmetric flight. 

It is also important to define the aircraft frame of reference. As illustrated in Figure 

6.1 the body axis frame of reference is measured from the cg of the aircraft where 

• The positive x-axis points along the nose of the vehicle. 

• The positive y-axis points to the right. 

• The z-axis points downwards. 
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The importance of defining this frame of reference will be demonstrated in Section 

6.5 as the OpenGL® axis is not specified in the same manner. 

The linear HGS model can be used to determine the helicopter dynamics by 

generating a state space representation of the vehicle dynamics about a reference trim 

condition 

~ = AJ+B!{ 

where the state and control vectors respectively are typically 

J = [u v w p q r ¢ 0 VIr 
Y: = [00 Ols Ole OOtr f 

(6.1) 

(6.2) 

(6.3) 

The state space representation shown in equation (6.1), can be integrated using a 

fourth order Runge-Kutta integration routine, as described by Teukolsky, Vetterling & 

Flannery (1994), to give the state variables as deviations from trim 

x 2 

.J.= fidt (6.4) 
x, 

where the time interval (X2-Xl ) is the integration step size. This technique can be 

verified by comparison with the established fourth order Runge-Kutta integration 

routine of Matlab® (1992). The Matlab® results are generated by calculating the 

response of the vehicle to a control input. The plant transfer functions are determined 

from the familiar matrix manipulation of the state and control matrices 

x(s) 
u/s) = (s1 - At' B (6.5) 
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Equation (6.5) may be used to obtain the transfer function relating a control input to a 

state parameter. For example, the transfer function relating pitch attitude to lateral 

cyclic, for the Puma helicopter flying at forty knots, was found to be 

8(s) 27.9s 6 +60.2 5 +97.54 + 74.3s 3 + 34.4s 2 +5.3s+3 

8 1C (s) - S8 +3.7s 7 +7.1s6 +9.2s 5 +7.3s4 +3.4s 3 +0.7s 2 +0.2s+0.1 
(6.6) 

The remaining thirty five transfer functions relating each state to each control input 

have not been presented here as this has been provided solely as an example. The 

reader is referred to Padfield (1996) for further reading. Figure 6.2 compares the state 

variables response to a one-degree step input in Ole at forty knots. The plots show that 

when the blade plane is 'tilted to the right (positive control input), the helicopter rolls 

to the right resulting in a lateral velocity component w. As a result of the blade plane 

changing, there is a decrease in lift thus the helicopter loses altitude (w decreases) and 

forward speed increases. Finally the pitch angle 0 can be seen to remain almost 

unchanged. It is also clear from the plots and the discussion above that cross-coupling 

between the longitudinal and lateral modes exists due to the lateral control input 

influencing the longitudinal aircraft state variables. The agreement between the flight 

simulator and the validated Matlab® integration routines confirm that the helicopter 

model functions correctly. 

6.3.1.1 Modal Analysis 

The denominator of the helicopter transfer function in equation (6.6) can be further 

considered for a modal analysis as demonstrated in Section 4.4.2 and Figure 4.2. The 

eigenvalues can be determined by factorising the characteristic equation for the forty 

knot case to give 

Roll = -1.5356 Spiral = -0.2308 Dutch Roll = -0.3375±1.2523i 

Phugoid = 0.0455±0.27i Pitch and Heave = -0.6837±0.7382i 
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which are plotted in Figure 4.2. It is also possible to illustrate which state variables 

influence each mode through an eigenvector analysis which illustrates the cross­

coupling between the longitudinal and lateral modes. For example, the spiral mode, 

which is a lateral mode, is strongly influenced by wand u. The longitudinal phugoid 

mode is represented by two complex eigenvalues, dominated by the longitudinal 

variables u and w, and the lateral parameters v, p and r. The cross-coupling between 

the two sets of state variables in the remaining modes, which is not presented here, 

also highlights the complex control nature of the aircraft. 

6.3.1.2 Linear Euler Transformation 

Once the state variables have been calculated, the final step is to convert from body 

axis velocities to earth axis velocities using the linearised Euler transformation 

where 

l
u J lilO 

1
20 

130 J lXJ ll; l~ l~ JleJ v = mlO m20 m30 ~ + m,; m,; m,; ¢ 
w nlO n20 n30 z n n2 n3 Ij/ 

110 = cos0 e cos 'Pe 

120 =cos0esin'Pe 

130 = -sin0e 

mlO = sin <l> e sin 0 e cos 'Pe - cos<l> e sin 'Pe 

m20 = sin <l> e sin 0 e sin 'Pe + cos <l> e cos 'Pe 

m30 = sin <l> e cos0 e 

nlO = cos <l> e sin 0 e cos 'Pe + sin <l> e sin 'Pe 

n20 = cos<l> e sin 0 e sin 'Pe - sin <l> e cos 'Pe 

n30 = cos <l> e cos 0 e 
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I; =/30(Xecos\}le +Yesin\}le)-Zecos0e 

I; = 0 

l~ = -Xe120 + Y)lO 

m; = m30 (Xe COS \}Ie + Ye sin \}Ie)+ Z)30 sin <l> e 

m; = XenlO + Yen20 + Zen20 

m; = -Xem20 + YemlO 

n; = n30 (X e cos \}Ie + Ye sin \}Ie )+ Z el30 cos <l> e 

n; = -(X emlO + Yem20 + Z em20 ) 

n; = -Xen20 + YenlO 

Again the earth axis velocities can be integrated using the fourth order Runge-Kutta 

integration routine to give the earth axis translations. These are then updated to the 

screen with the attitude angles, producing the effect of flight. In addition to the linear 

HGS model, the simulator includes an Automatic Flight Control System (AFCS) 

which is designed to ease the pilot workload. 

6.3.2 Automatic Flight Control System (AFCS) 

Helicopters are inherently unstable vehicles and consequently employ a stabilising 

system or Automatic Flight Control System (AFCS). This is usually made up from 

Stability and Control Augmentation System (SCAS) functions, applied through a 

series of actuators and autopilot functions applied through parallel actuators. 

The SCAS is initiated through pilot stick displacement, calculating the main and tail 

rotor deflection through a series of actuators and mechanical linkages as illustrated in 

Figures 6.4a & 6.4b. The cockpit controls are represented by displacements 11, with 

appropriate subscripts where 

O~11~l (6.8) 

with the positive sense defined by a positive increase in the corresponding rotor blade 

angle. The stick displacements can be assigned to the control axis as considered later 

in Section 6.6, then applied to a series of actuators as described in Appendix 11. 
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6.3.3 3D Environment 

This section discusses the 3D environment incorporating the HGS model in which the 

human operator performs a mission task. Created using Visual C\C++6 and utilising 

the OpenGL® graphics Libraries, described by Woo, Neider, Davis & Shreiner 

(1999), the basic 3D environment employs the same frame of reference as OpenGL® 

to generate the buildings and cloud effect. 

The starting point is to create a window in which the visual environment can be 

viewed. The OpenGL® libraries, however, contain only rendering commands and are 

designed to be independent of any window operating system. Consequently, it 

contains no commands for opening windows or external inputs from joystick or 

mouse. As it is essential to develop an interactive 3D environment for piloting 

mission task elements, a window must be created in which to view and interact with 

the surrounding environment. This can be achieved by incorporating the OpenGL® 

Utility Toolkit (GLUT), libraries as detailed by Kilgard (1996) which can be 

summarised as a window system independent toolkit, simplifying the implementation 

of OpenGL® on different windows systems. 

The visual environment created using computer graphics is simply a 2D image of the 

3D surroundings. To display the surroundings accurately, the environment must be 

drawn as if it is actually 3D and lying on a plane inside the computer. OpenGL® 

employs a fixed frame of reference as shown in Figure 6.5, which differs from the 

aircraft frame of reference and is as described below 

• The positive x-axis points to the right. 

• The positive y-axis points upwards. 

• The negative z-axis points into the computer screen. 

The 3D world is constructed as the inside of a cube about the origin, with pictures of 

clouds textured onto the four sides and top surfaces. A landscape image is also pasted 

to the bottom surface of the cube simulating the ground scenery. The backdrop has 

been enhanced from a 2D surface with cloud effect simply by adding 3D mountains 
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and buildings to portray an airport. This involves calculating the vertex co-ordinates 

of each object and joining them together using a series of coloured polygons or 

triangles. This technique can also be employed to represent the helicopter model as 

illustrated in Figure 6.6, to define the manoeuvre flight path as a series of gates using 

the 'line-loop' command. Once the visual environment in which the mission tasks are 

to be flown has been established, it is possible to consider the view from which the 

operator attempts to pilot the helicopter. 

6.4 Aircraft View 

For the helicopter flight simulator developed, the aircraft view has been fixed to the 

origin. The illusion of flight is then created by rotating the helicopter attitude angles 

about each axis. The earth axis velocities are then integrated, giving the distances 

travelled over each time step and translating each axis by the appropriate amount. The 

perception of flight could quite as easily have been created by holding the 

environment stationary and translating the camera view around the task. However, it 

was felt that the technique adopted is more representative of the task, as the position 

of the pilot relative to the cockpit does not change during the flight. This is evidently 

the case when considering the addition of a cockpit view. The pilot's view of the 

cockpit does not change throughout the flight, but if the cockpit were translated 

through the scenery, any attitude changes would have to be displayed as a rotation of 

the cockpit, altering the pilots visual perception of the display. 

6.5 Cockpit View 

As stated previously the cockpit is fixed to the 2D computer screen (i.e. constrained to 

be zero in the z-axis). The attitude angles and body axis velocities used to portray 

vehicle motion can also be relayed to the pilot in the cockpit via a series of five 

instruments: 

• Artificial horizon. 
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• Airspeed indicator. 

• Vertical airspeed indicator. 

• Turn indicator. 

• Compass. 

These instruments are constructed individually by laying a series of geometric 

shapes, such as polygons and circles, on top of each other until the desired effect is 

achieved [Giltrap (1995)]. However, for this application it was found that because 

many circles were required to produce the instrumentation, the procedure was 

computationally expensive. Each instrument was therefore drawn outwith Visual C 

using a Paintshop programme Paintshop Pro 6 (1999). The instrumentation could then 

be textured onto the cockpit frame using the same technique employed to include the 

cloud effect. The instrument needles are then drawn at the origin, the appropriate 

rotations indicating the vehicle response performed and finally translated to their 

respective instruments. It is imperative that these operations are carried out in this 

order or they will not represent the correct flight state or appear in the correct place. It 

is important again at this point to note the differing frames of reference in OpenGL® 

(Figure 6.1) and the helicopter body axis (Figure 6.5) as the instrument needle 

rotations and translations are considered. 

6.5.1 Instrument Needle Rotation and Translation 

Any change in control input results in a change in vehicle response, hence the 

instrument needles must change accordingly to update the recalculated vehicle states 

to the pilot. Due to the fact that the fourth order Runge-Kutta integration routine 

calculates the state response to a control input as a deviation from trim, each 

instrument needle must be calibrated to show the trim condition then any changes 

added to the initial state. The needles and rotations required for each instrument are 

now addressed 

• Airspeed indicator - This shows the forward velocity of the aircraft relative to the 

earth as no atmospheric model is included. Here the needle is simply a thick line, 
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drawn such that it points to zero on the indicator, then rotated about the z-axis to 

indicate the trim velocity xe' Any perturbations are added to the trim value at the 

beginning of each loop before the needle is rotated. The final step (for all needles 

but only discussed once) is to translate the needle, from where it is drawn at the 

origin, to the centre co-ordinate of the textured instrument. 

• Vertical airspeed indicator - This needle is constructed using the same process as 

described above, indicating the vertical airspeed ze' 
• Tum indicator - representing the roll attitude of the vehicle, the tum indicator 

needle is simply two perpendicular lines meeting at the origin. The needle can 

then be rotated by (/Je degrees to show the roll angle at trim, with any perturbations 

then being added. 

• Compass - In this case the needle is represented by the helicopter, where the 

initial heading is chosen to be North. The four headings drawn on the compass are 

then rotated about the stationary needle by the yaw angle IfI. 

• Artificial horizon - This was the most difficult needle to model as a sphere 

comprising two colours was required. The effect was achieved by representing 

one eighth of a semicircle by a series of polygons, rotating the shape 45° about the 

y-axis seven times, then changing colour and rotating once about the z-axis. 

Finally the needle is rotated about the x, y, z axes by the trim and deviation from 

trim angles e, If/, ¢ respectively. 

As considered throughout this chapter, the cockpit view or helicopter model are fixed 

to the stationary viewing window. The background environment is then rotated and 

translated around the operator viewpoint. The effect of roll, pitch and yaw about the z, 

x, y axes respectively is achieved via the same process described for rotating the 

artificial horizon, however, to update the distance travelled by the vehicle is more 

complex. 

The trim velocities [fe, Ve, We are added to the perturbation velocities u, v, W, then 

multiplied by the time interval (X2 - Xl) to give the distance travelled each time step. 

This in tum, is the distance the flight simulator environment must be translated. As 

the programme calculates only the distance flown each time step, an accurate visual 

simulation is only achieved by storing the distance translated at the end of each loop 
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and adding on the next perturbation. Once this has been achieved, another critical test 

can be performed on the flight simulator. 

6.6 Real Time Simulation 

The model to date has considered the linear HGS model and the environment in which 

the user can perform a chosen mission task. One of the many flight simulator criteria 

discussed in Section 6.2 is that the simulator must run in real time. If the output data 

does not represent a real time simulation, then any relation with Helinv generated 

results for the same mission task will be invalid. Real time simulation can be achieved 

by relating a user defined fixed time increment in the fourth order Runge-Kutta 

integration routine to the computer clock. It was found in this case that the flight 

simulator was running faster than real time and therefore needed to be slowed down. 

This was realised by creating a subroutine which held the timer in a loop until a time 

step of 0.04 seconds had elapsed, then the timer released, the next set of calculations 

performed and the graphics updated. 

Figure 6.7 shows a screen shot of the flight simulator being flown at the forty knot 

trim condition. As the helicopter is flying in trim the controls are also trimmed, 

therefore the pilot is not applying any control input. Clearly, if the pilot is to perform 

a tracking task in the flight simulator, control inputs are required to alter the state 

parameters accordingly. This interaction is achieved by assigning the controls to the 

various axes of a calibrated joystick. 

6.7 Control Input 

The control inputs necessary to vary the vehicle states are required to be implemented 

in a smooth and efficient manner. One method of applying control inputs is to assign 

the four controls to different keys on the keyboard. This means that each control can 

be applied only as a constant step, which is not representative of the real system. 

Hence an alternative method incorporating a joystick has been employed. 
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The joystick used is a 'Flightstick' consisting of three axes. The Longitudinal and 

lateral cyclic are controlled by stick position as illustrated in Figure 6.8. The stick 

range on the x and y axes are each calibrated from ± 1 000 and the control input range 

on each axis assigned to the stick positions. The z-axis, which is a dial, can be 

calibrated in a similar way and can be assigned to control either main or tail rotor 

collective directly or through the AFCS. When a mission task was flown in the flight 

simulator, it was found that there was a signal processing error in the joystick z-axis 

which resulted in a large momentary change in the control value. This is demonstrated 

in Figure 6.9, which illustrates the recorded tail rotor collective applied during the 

slalom task at forty knots compared with that generated using linear inverse 

simulation. The signalling fault in the data can be seen in the flight simulator recorded 

time history. Clearly, when a handling qualities analysis is undertaken and the pilot 

attack in the tail rotor axis is calculated. These spikes in the data will cause extremely 

large and unrepresentative pilot attack parameters to be calculated. This can be 

counteracted however by filtering the z-axis time history. As a result, all control time 

histories recorded from the z-axis of the joystick from the flight simulator are 

subjected to a filtering process to eliminate the spikes in the main or tail rotor 

collective time histories. This has been demonstrated in Figure 6.10, where the tail 

rotor collective from Figure 6.9 has been filtered. The plot illustrates that, although 

the spikes in the plot have been reduced, some still remain. The overall result 

however, is much more representative of the actual control inputs and thus applicable 

to a handling qualities analysis. 

Evidently the three joystick axes cannot fully simulate four helicopter controls. 

Although this is a model limitation, the problem can be overcome when selecting the 

desired mission task. For example, if the chosen manoeuvre were a longitudinal 

tracking task, the main rotor collective would be assigned to the z-axis of the 

controller. However if a lateral task is chosen tail rotor collective is required instead. 

Another solution to the problem presents itself in the following chapter when reduced 

order modelling is introduced. As the constrained and unconstrained matrices 

presented in Chapter 5 must be square, reduced order modelling will ensure the 

required number of controls is manageable by the three-axis joystick. 
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6.8 Conclusions 

By creating a PC based helicopter flight simulator, mission task elements can be 

flown by various pilots over a range of flight speeds in real time. The user can select 

the mission task and the trim flight speed at which they wish to perform. The flight 

simulator requirements have all been strictly adhered to and the written C code has 

been proven to function correctly by comparison with Matlab® generated results. 

Emphasis has been placed upon a linear helicopter model capable of reproducing the 

time histories predicted using Helinv, not creating a realistic, high fidelity visual 

environment and helicopter. This is again reinforced in the following chapter when 

considering reduced order modelling. Although model limitations have been stressed, 

the model has still proved to be valid for the task required i.e. deriving flight data for 

a mission task element flown by a human operator. Also considered, is that the 

joystick is capable of implementing only three of the four helicopter controls, 

however, this problem is addressed by considering reduced order modelling in the 

following chapter. 
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Chapter 7 

Reduced 

Dynamics 

Order Modelling of the Vehicle 

7.1 Introduction 

Linear inverse simulation was shown in Chapter 5 to produce similar state and control 

time histories for predefined manoeuvres as the full non-linear system. The 

correlation between the two models enabled the development of a helicopter flight 

simulator containing a linear HGS model. It was found in Chapter 6 that although the 

helicopter model incorporated in the flight simulator was linear, it was still difficult to 

pilot because of the unstable vehicle dynamics. Due to this, and also because the 

human operator is limited by the graphics libraries to applying only three out of the 

four controls in any manoeuvre, Chapter 7 considers a technique to further simplify 

the vehicle dynamics by reducing the number of states in the linear model. Naturally 

it is essential that the reduced order model can accurately reproduce the state and 

control time histories predominant in the manoeuvre while still representing the initial 

vehicle dynamics. This can be examined by analysing and comparing the eigenvalues 

of the two systems, along with the system responses to various control inputs such as 

a doublet. 

7.2 Derivation of a Reduced Order Model 

The full linear helicopter model, incorporated in the flight simulator, has proven 

difficult to pilot, thus Chapter 7 presents a method that can be used for deriving 
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reduced order dynamics of a helicopter. Employing a reduced order model instead of 

the full system can alleviate some of the workload on the pilot during the manoeuvre 

by discarding the unwanted vehicle modes. The reduced order model must however 

be derived according to the mission task being modelled, from the linearised 

equations of motions, which can be expressed as 

x=Ax+Bu - - - (7.1) 

where A and B are the system and control matrices respectively which contain the 

aerodynamic, relevant gravitational and velocity terms. The state vector J and the 

control vector y. are again given by 

,! = [ u v w p q r tjJ () 'fI Q Qe r (7.2) 

y. = [ (}o (}\s (}\c (}Otr r (7.3) 

A common simplification used in helicopter dynamics is to assume a constant rotor 

speed and engine torque, hence iland Qe may be removed from equation (7.2) giving 

~=[u v w p q r tjJ () 'fir (7.4) 

This state matrix is the basis for the reduced order model and is independent of the 

manoeuvre. Before discussing the effect of the chosen manoeuvre on the selection of 

state parameters for the reduced order model, it is worth noting that in many 

linearised models, 'fI can be determined independently by integrating the yaw rate r, 

Thus heading can be removed from the state matrix. Inverse simulation however, 

exists in two forms. The first requires the manoeuvre to be performed with 

constrained side slip and the second with constrained heading. The constrained side 

slip case does not require the yaw angle to be retained in the constraint vector and 

thus can be calculated as described previously. The constrained heading case does 

however require the yaw angle to be retained, as it is fundamental to the constrained 

inverse algorithm. For this reason the heading has been left in the state matrix until 

the inverse simulation technique is considered. 
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The state matrix in equation (7.4) is a combination of state parameters, dominant in 

either the longitudinal or lateral directions. To derive a reduced order model of the 

vehicle dynamics, the dominant state parameters must be found for that manoeuvre 

and separated from the others. In the case of a fixed wing aircraft, these could easily 

be separated into longitudinal and lateral terms, where the longitudinal states u, w, q, 

are controlled by the elevator and the longitudinal terms v, p, r, are influenced by 

rudder and aileron inputs. This separation is not so distinguishable for the helicopter 

due to the cross coupling between the longitudinal and lateral states. 

The reduced order model for the manoeuvre must be dynamically representative of 

the full linear system or the reduced order model is invalid. Clearly the same reduced 

order model cannot be applied to different manoeuvres such as the slalom which is a 

lateral manoeuvre, and the longitudinal quick-hop. This is again because each of these 

manoeuvres has different dominant states. Including these same states for each 

manoeuvre would result in dominant parameters being neglected, or a model which 

was not dynamically representative of the original. The solution therefore is to derive 

a unique reduced order model, specific to each manoeuvre. 

7.3 Reduced Order Modelling of the Vehicle Dynamics for the Slalom 

Recall the definition of the slalom manoeuvre defined by the Aeronautical Design 

Standard ADS-33D (1994) in Chapter 5, as illustrated in Figure 5.1. The results 

presented, generated using Helinv and linear Helinv, concentrated on the forty and 

eighty knot velocities and therefore for consistency, the results and analysis presented 

in this chapter will be for the same cases. 

An appropriate starting point in assessing the validity of the reduced order model is to 

determine the full system aircraft modes. This is achieved by determining the system 

eigenvalues from the state matrix A equation (7.1). Table 7.1 shows the full system 

eigenvalues and modes for the Puma helicopter flying at 40 knots. 
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Table 7.1 

Mode 

Phugoid 

Spiral 

Dutch Roll 

Short Period 

Roll 

Reduced Order Modelling of the Vehicle Dynamics 

Modes and Eigenvalues for the 40 Knot Full and Reduced Order 

Linear Helicopter Models 

Eigenvalues 

Full System Reduced A Reduced B 
(states 11 v W P q r ¢ f) (states 11 v p r rfj) (states 11 v p r rfj) 

0.042 ± 0.267i -0.0177 ----.-----

-0.212 -0.18 -0.186 

-0.344 ± 1.25i -0.31 ± 1.25i -0.308 ± 1.25i 

-0.683 ± 0.596i ---------- ----------

-1.54 -1.77 -1.77 
~~ ~~~ --~- ~---- - -------

Close inspection of the table reveals that the eigenvalue, representing the longitudinal 

phugoid mode, shows the mode and therefore the helicopter to be unstable, with a 

period of approximately 23.5 seconds and a time to double amplitude of 1.6 seconds. 

Thus providing an insight into why the helicopter flight simulator became 

increasingly difficult to pilot as the manoeuvre progressed. However as the slalom 

manoeuvre is primarily a lateral one, assumptions can be made which further reduce 

the complexity of the dynamic system, 

• It is assumed that the manoeuvre will be flown in a co-ordinated manner such that 

v is strongly controlled (constrained sideslip). It follows that Ij/ is no longer a 

degree of freedom and can be removed from the state vector. 

• As the slalom is essentially a lateral/directional manoeuvre, it can be assumed that 

pitch excursions will be slow and of small magnitude, hence q and () may be 

neglected. 
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• The slalom is performed at a constant height, therefore the change in vertical 

velocity w will be negligible. 

Applying these assumptions to the linearised model reduces the state vector to 

~ = [u v p r ¢r (7.5) 

The eigenvalues are again determined for the reduced order system and are found in 

the column Reduced A in Table 7.1. Clearly the lateral modes (spiral, dutch roll and 

roll modes) are still representative of the full order system while the longitudinal short 

period mode has been discarded. Finally, the phugoid mode has visibly altered in 

magnitude and is no longer representative of the full system eigenvalue. One solution 

to this is to disregard the final longitudinal term u from the state vector eliminating 

the phugoid mode. This solution is reinforced when reconsidering the structure of the 

linear inverse simulation algorithm presented in Chapter 5. The model is constructed 

such that the vector of constraint influenced states J:.l and the vector of unconstrained 

states J:.2 require square state matrices All, An A21 and A22 of equal size in order 

perform the necessary matrix calculations. The reduced order model therefore must 

also contain square state matrices of equal size. Examination of the reduced order 

model shows that J:.l currently is a Ix3 vector, while J:.2 is a Ix2 vector resulting in state 

matrices of varying magnitudes. As a result, matrix multiplication will not function 

correctly in the algorithm. Again, the solution is to further reduce the constrained 

vector by assuming that as the manoeuvre is to be flown at a constant speed, the 

deviation from trim in forward velocity u is zero, therefore this term may be discarded 

leaving the state matrix 

J:.=[v p r ¢r (7.6) 

which can be subdivided into the constrained and unconstrained vectors of equal size 

~l =[v rr ~2 =[p ¢r (7.7) 
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Reduced B in Table 7.1 shows the eigenvalues for this reduced order system from 

which favourable comparisons can be made with the full system lateral eigenvalues. 

From these comparisons it is also clear that the validated reduced order model for the 

slalom, has neglected the unstable phugoid mode. As a consequence, the reduced 

order linear flight simulator should prove to be easier to pilot through the manoeuvre. 

7.4 Reduced Order Model of Control Inputs 

The reduced order model of the vehicle dynamics for the ADS-33D slalom 

manoeuvre has provided a solution to another problem encountered in Chapter 6. 

Recall that the Open Graphics Libraries (OpenGL) allowed only three control inputs 

to be applied throughout anyone manoeuvre without alterations to the graphics 

libraries. This is insufficient to adequately control the helicopter model which requires 

four control axes. 

When the reduced order model is applied, the constrained and unconstrained state 

vectors must again be of equal size with square state matrices, therefore the control 

vector must also be reduced to the same magnitude due to the matrix algebra. The 

definition of the ADS-33D slalom and the assumptions discussed can again be used to 

determine which controls are not required in the reduced order model, 

• The slalom is essentially a lateral/directional manoeuvre, it can be assumed that 

pitch excursions will be slow and of small magnitude, hence longitudinal cyclic 

()ls may be neglected. 

• The slalom is performed at a constant height therefore the change in main rotor 

collective ()o will be negligible. 

The control time histories presented in Chapter 5, Figure 5.9, for the slalom show 

good agreement with these assumptions in that the manoeuvre is performed primarily 

using lateral cyclic and tail rotor collective, where the remaining controls do not 

significantly deviate from their reference trim value. The vehicle dynamics model has 

been validated by assessing the vehicle modes and eigenvalues. The control input 
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assumptions, and analysis of the control time histories, are not enough to verify the 

control input requirements. The results can be verified simply by applying a control 

input to the two models and comparing the state response. 

7.5 Reduced Order Model Response 

The reduced order vehicle dynamics have been derived in state space format, where 

the system response to a control input can be simulated and compared with the full 

system response. This is achieved by utilising the Simulink toolbox contained in 

Matlab®, where the vehicle dynamics for the linear and reduced order cases are 

required to be applied as transfer functions. The state and control matrices A and B 

can be evaluated for any reference trim state, allowing the transfer function 

corresponding to any combination of state and control to be established from 

~(s) _I 

YH(s) = is) = (sf - A) B (7.8) 

The tracking task under examination is a lateral manoeuvre controlling primarily the 

change in roll angle ¢, using lateral cyclic. Hence the corresponding transfer functions 

representing the full and reduced order systems respectively are as follows 

( 
¢ ) 27.94s6 + 60.l6s5 + 975s4 + 74.29s 3 + 34.39s2 + 5.25s + 2.99 

~c full - S8 + 3.72s 7 + 7.l2s 6 + 9.23s 5 + 7.26s 4 + 3.43s 3 + 0.72s2 + 0.2.1s + 0.033 

( 
¢ ) 27.95s2 + 28.l2s + 47.65 

~c reduced S4 + 2.58s3 + 3.20s2 + 3.46s + 0.55 
(7.9) 

These transfer functions portray the reduction in the complexity of the vehicle 

dynamics for this combination of states and controls and also for the remaining 

combinations which are not shown here. Before any conclusions are drawn about the 

validity of the reduced order model for this particular scenario, it would be useful to 
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consider the full linear system response to a doublet control input, such as that 

depicted in Figure 7.1 for a one degree doublet input in lateral cyclic. The positive 

one degree, stick displacement causes the helicopter to roll and yaw to the right, 

resulting in a lateral velocity component v. Due to the main rotor being 'tilted', lift is 

reduced causing the helicopter to pitch nose down, lose altitude and gain forward 

velocity. This figure illustrates the extent of the cross coupling of the helicopter, 

where a lateral cyclic input clearly influences the longitudinal parameters. These 

response plots help understand the necessity to neglect the state parameters which are 

not essential to the manoeuvre, which are ultimately responsible for triggering 

potentially unstable or unwanted aircraft modes. 

When a one degree doublet input in longitudinal cyclic is applied to the full and 

reduced order systems, the responses are as illustrated in Figure 7.2. The plots 

illustrate only the response of the key variables for the slalom manoeuvre and not the 

discarded parameters such as u and q. As the manoeuvre is performed with 

constrained sideslip, v is also neglected from Figure 7.2 as this response to a control 

input in the actual manoeuvre will be constrained to zero. The reduced order system is 

clearly a good approximation of the full system in all the key variables, resulting only 

in a slight increase in magnitude of the reduced order model response, reinforcing the 

model validation. Further weight is added to this validation in Figure 7.3, where the 

reduced order system response is again compared with the full order model for a one 

degree doublet input in tail rotor collective. Here the reduced order model compares 

favourably with the full system, although again there is a slight loss in the magnitude 

of the response. 

As the reduced order dynamics have been shown to be representative of the full 

system model, the reduced order state and control vectors can be applied to the linear 

inverse simulation algorithm and the helicopter flight simulator. The reduced state 

space representation employed in the flight simulator has been verified by the 

application of a doublet control input as described previously. However, the reduced 

order linear inverse simulation is still required to show that it will generate the same 

state and control time histories as the full system. 
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7.6 Reduced Order Linear Inverse Simulation 

The flight simulator has been shown to be difficult to pilot due to the linear nature of 

the model and the inherent instabilities of the helicopter. A reduced order model 

compliant with the selected MTE is therefore employed, thus the same assumptions 

are applicable to the reduced order inverse simulation helicopter model as in the flight 

simulator. Recall that in Section 7.3 equation (7.7), the constrained (~1) and 

unconstrained (,I2) state vectors for the slalom manoeuvre became 

~I =[v rr ~2 = [p ¢r 
Also from the assumption that the manoeuvre is performed at a constant speed and 

height, the control and constraint vectors respectively can be rewritten as 

u = [~e 00lr r Ie =[Y vcr 

When the vehicle dynamics have been recast from state space form to that required by 

linear inverse simulation, the same iteration process as described in Chapter 5 is 

applied to determine the state and control time histories for the predefined manoeuvre. 

Nevertheless, the equations incorporated in the algorithm are altered, hence the 

algorithm is described again for the constrained sideslip case. 

Recall that from equations (5.16) & (5.18) the yaw velocity is given by the kinematic 

expression in equation (5.19). When the assumptions about the reduced order model 

are applied equation (5.19) becomes 

Ij/ = _1_ [Ve - m2 Y + m2 ¢] 
n1 0 d 

3d 

(7.10) 

which when substituted back into the linearised Euler transformation gives 

V= ve (7.11) 
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From equation (A5.12) the body fixed acceleration can be recast to represent the yaw 

rate r, and when reduced can be written as 

r= ~ [m2oY-v+w.;p] 
e 

(7.12) 

Combining and rearranging (7.11) and (7.12) gives 

Xl = Tlic + T2fc + T3 X2 (7.13) 

Where 

T, ~[mia. -kJ T, ~[~ ~J T, ~h~. ~] (7.14) 

Differentiating equation (7.12) gives the yaw rate acceleration 

r= ~ [m 2oY-v+w.;p] 
e 

(7.15) 

where y and v are the absolute accelerations and governing the rate of change of 

acceleration at the start and end of each section. Combining and rearranging 

equations (7.15) and the linearised transformation of earth fixed to body fixed axis 

lateral acceleration in equation (A5.12), gives 

j:1 = Til + T4j:2 + Tsi 
-c -c 

(7.16) 

where 

T4 ~h~. ~] T, ~[~ ~] (7.17) 

98 



Chapter 7 Reduced Order Modelling of the Vehicle Dynamics 

Substituting ~I in equation (7.1) and ,!I in (7.16) into equation (AS.7) allows the 

unconstrained states to be expressed in terms of the constraint influenced states. 

Finally the solution can be simplified to the desired form as shown in equation 

(AS. 16) where the constrained state and control vectors are defined as 

Ac =[1 -B2B~lT4r{A22 -B2B~IA12 +[A21 -B2B~lAll]T3} 

[ ]

T 
[I - B2B~IT4rB2B~ITI 

Be = [1 - B2B~IT4 r~~(A2~1- B2B~1 AI1~~1 + B2B~IT5) 
[1-B2B1 T4] (A 21 -B2B1 AIl)T2 

Once the reduced order linear algorithm is constructed for the ADS-33D slalom MTE, 

the state and control time histories can be found. Figure 7.4 illustrates these compared 

with the full linear model for the forty knot case. As the manoeuvre is performed in 

this case with constrained sideslip, v has been neglected from the plots, as this 

parameter does not deviate from its initial trim value. Figure 7.4 demonstrates that the 

predicted state parameters are almost identical to those generated from the full linear 

model. This is achieved by applying different control inputs as can be viewed in the 

171c and 17p plots, which is necessary in order to compensate for the longitudinal cyclic 

and main rotor collective inputs which are no longer applied. 

Finally the damped oscillations contained in the control time histories, arising from 

the modes associated with the 'full' constrained state matrix are again considered, 

where the modes are calculated from the constrained matrix Ac. Clearly the single 

constrained mode of the reduced order model exhibits a transient oscillation similar to 

one represented in the full linear model and on close inspection, the eigenvalue shows 

the mode to be of the same period, approximately 1.2 seconds. This reinforces the 

conclusion that the reduced order vehicle dynamics are still representative of the full 

system. Table 7.2 demonstrates the constrained mode eigenvalues for the full and 

reduced linear models at 40 knots and also for a higher speed case of 80 knots. 
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Table 7.2 

Mode 

Model 

Mode 2 

Reduced Order Modelling of the Vehicle Dynamics 

Comparison of the Constrained State Matrix Modes at 

40 & 80 Knots 

Speed Eigenvalue Period Damping 

40kn Full -0.053 ± 5.05i 1.244 secs 1.5 % 

40kn Reduced -0.017±4.98i 1.262 sccs 

80kn Full -0.062 ± 4.98i 1.262 secs 1.26 % 

80kn Reduced -0.002±4.97i 1.264 secs 

40 knots -0.101 ± 2.62i 2.398 secs 3.83 % 

80knots -0.166 ± 2.73i 2.302 secs 6.07% 

These results demonstrate that even though the flight speed increases, the constrained 

modes do not deviate significantly from their low speed values. One noticeable point 

however is that in 'mode 2' for the full linear model (as this mode has been neglected 

in the reduced order system) the damping factor has almost doubled. This is also 

evident in Figure 7.5, which illustrates the slalom manoeuvre flown this time at 80 

knots, where again the state parameters are almost exactly the same as calculated in 

Chapter 5 using the full linear and non-linear models. The control time histories are 

seen to exhibit the same constrained modes of the same period in the input, however, 

the plots show that they are not as prominent because the damping factor has 

increased, suggesting the mode becomes less influential as the manoeuvre speed 

Increases. 

7.7 Conclusions 

Chapter 7 has considered a reduced order model of the vehicle dynamics which can be 

applied to both the helicopter flight simulator and the linear inverse simulation. This 

is because the helicopter flight simulator was difficult to pilot due to limitations of the 

linear helicopter model and the application of the controls in the flight simulator. The 

reduced order model is designed with careful consideration being given to the 

manoeuvre the user wishes to perform. The state parameters affected throughout the 
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duration of the manoeuvre are separated from those which will deviate little from 

their reference trim state, leaving a reduced order model which is still representative 

of the initial vehicle dynamics. The validity of the reduced order system is verified by 

considering the eigenvalues and periods of the remaining modes and comparing with 

the full system. An analysis of the ADS-33D slalom has been performed in Chapter 7, 

verifying that the reduced order linear inverse simulation, produces results consistent 

with the full system response. 
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Chapter 8 

Identifying Pilot Parameters by Experiment 

8.1 Introduction 

A reduced order linear helicopter model for a lateral task was derived in Chapter 7. 

This model can be applied to the flight simulator described in Chapter 6 and the linear 

inverse algorithm discussed in Chapter 5. The main aim of the work, which is to 

demonstrate the necessity to incorporate pilot effect into the helicopter simulation for 

an initial handling qualities assessment, can now be addressed by determining the 

state and control time histories for a predefined lateral task using both simulation 

techniques. Chapter 8 therefore describes the experimental set-up procedure required 

for generating the data necessary to enable a handling qualities study. This includes 

selecting and mathematically defining the mission task such that the required Level 1 

attitude quickness ratings are achieved and that the task can be replicated in the flight 

simulator. It is demonstrated that the slalom task considered to date does not exhibit 

Level 1 attitude quickness ratings and is unsuitable for a handling qualities analysis. 

The following section assesses variations of this task, illustrating how Level 1 attitude 

quickness ratings are unobtainable with a polynomial task definition but also 

highlights the problems which arise in the attitude quickness assessment when the 

task is defined using a piecewise modelling technique. 

The task is selected with the aid of a final criterion, which is that the task must be 

realisable in the flight simulator by the human operator. This can be examined by 

determining the equalisation characteristics of the human operator, relating the 

primary controlled state variable in the task to the control input for the inverse 

simulation derived time histories. The HEC determined from the PPM considered in 
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Chapter 2 also provide an insight into how the operator performs the task and can 

even show how the pilot adapts to a new task. The final discussion in Chapter 8 

relates again to the handling quality assessment by studying the pilot attack 

parameter. 

8.2 Defining and Selecting a Mission Task Element 

In order to attain meaningful results from the handling qualities analysis, a manoeuvre 

which portrays Level 1 handling characteristics, must first be defined according to the 

ADS-33 documents. As considered in Chapter 2, the slalom task performed over a 

distance of 608 metres with a maximum lateral distance of ±15.2 metres, when 

defined as either global or piecewise polynomial equation, does not yield the required 

Levell attitude quickness ratings. Consequently, the slalom task must be redefined 

mathematically so that the appropriate attitude quickness Levels are achieved or, a 

new task must be considered. 

The approach adopted in reassessing the task was first to consider that the helicopter 

model employed in the flight simulator and the inverse simulation algorithm is linear. 

Therefore, valid only for small perturbations from trim. The large perturbations from 

trim required to complete the task are too great to be consistent with use in a linear 

helicopter model. Thus the task must be performed over a shorter period of time, 

whilst maintaining the same speed. This can be achieved either by shortening the 

manoeuvre distance or by performing only the first half of the task called the 'Lateral 

Jink'. 

8.2.1 The Shortened Slalom Task 

This task is essentially the same as the slalom considered throughout the text, 

however, the manoeuvre time has been reduced by decreasing the longitudinal 

manoeuvre distance by half to 304 metres, while keeping the maximum lateral 

distance the same as illustrated in Figure 8.1. Not only does this step reduce the 
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manoeuvre time to comply with the 'small angle' rule, but it also increases the 

aggression Level of the task by requiring larger and faster changes in roll angle. 

Figure 8.2 demonstrates the roll angle ¢ and roll rate p, generated using the linear 

inverse simulation algorithm for the global polynomial defined shortened slalom task. 

The plot illustrating ¢, again demonstrates the smooth nature of the roll angle due to 

the smooth global polynomial manoeuvre definition, where the maximum roll angle 

has increased from five degrees in the 608xl5 metres slalom to over thirty degrees in 

the shortened task. The roll attitude quickness parameters can again be calculated 

using the technique described in Section 2.3.2 and plotted on a quickness chart as 

illustrated in Figure 8.3. The quickness parameters attained show that compared to the 

608x15 metre slalom, the attitude changes have increased as expected. However, the 

quickness parameters have remained approximately the same except for the first one 

which now exhibits Level 1 handling characteristics. The large change in the first 

quickness parameter is due to the fast roll rate required to give the initial roll angle for 

the task. The remaining parameters however are similar to those calculated for the 

original slalom because the increase in roll angle ¢ results in an increased roll rate. 

Thus the ratio of roll rate to roll angle has remained approximately the same. 

Clearly this manoeuvre definition is again not satisfactory for a handling qualities 

assessment, therefore a piecewise definition may also be considered. This modelling 

technique is advantageous in this situation because the initial roll rate can be 

controlled such that Levell handling qualities are achieved. Figure 8.4 depicts one 

such piecewise slalom, where five individual piecewise sections are applied as a 

series of seventh order equations and straight lines of equal length to represent the 

flight path. Figure 8.5 then illustrates the roll angle ¢ and roll rate p for the Puma 

helicopter performing this task as predicted by the linear inverse algorithm. The plot 

shows that if this task to be completed, roll angles exceeding one hundred and fifty 

degrees and roll rates approaching five hundred degrees per second must be achieved. 

Although these large roll angles and roll rates are clearly not feasible in a helicopter, it 

should be noted that these parameters were calculated using a numerical integration 

routine and are subject to change if a smaller time step is applied in the algorithm. 

Even so, the maximum roll angle and roll rate required to perform this task in the 

104 



Chapter 8 Identifying Pilot Parameters by Experiment 

Puma helicopter at the chosen speed still prove to be unachievable, thus the shortened 

piecewise slalom model was discarded. 

8.2.2 The Lateral Jink Manoeuvre 

The Lateral Jink manoeuvre definition considers only the first half of the slalom task 

where, in the global polynomial case, the flight path can be defined by a fifth order 

polynomial equation, generating the flight path depicted in Figure 8.6. The state and 

control parameters are calculated from the inverse algorithm and the key parameters ¢ 

and p, can be viewed in Figure 8.7. From these time histories, the attitude quickness 

parameters can be calculated and are plotted in Figure 8.8. 

This task can also be defined using a piecewise modelling technique. However, 

instead of attempting to define the flight path, the task this time is outlined by piecing 

together fifth order polynomial equations to represent the aircraft's lateral velocity. 

The maximum lateral velocity attained in the task is defined such that when integrated 

to give the flight path, the maximum lateral displacement required is found, in this 

case 15.2 metres, resulting in the piecewise flight path also depicted in Figure 8.6. An 

added advantage to the piecewise definition is that if the defined task does not yield 

Level 1 handling qualities, the time required to achieve the maximum or minimum 

acceleration, velocity or displacement, depending on how the task is defined, can be 

altered making the manoeuvre more or less aggressive as required. The velocity 

definition can be considered, as illustrated in Figure 8.9, to consist of five distinct 

phases 

• The time required to reach the maximum velocity. 

• The time required to slow down from the maximum velocity to zero. 

• The time taken to fly along a straight line through the gate with zero lateral 

velocity. 

• The time to reach the minimum (maximum negative) velocity. 

• The time for returning to zero lateral velocity. 
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where the change in velocity is represented by [Leacock(2000)] as 

v=[{J -t{J +to(J}." (81) 

where t I represents the time for the manoeuvre segment. The equation can also be 

adjusted to represent a change in direction by making v negative. 

Figure 8.7, which illustrates the state time histories for the polynomial defined lateral 

jink task also depicts the states ¢ and p for the velocity constrained piecewise task. 

The time taken to reach the maximum and negative maximum velocities has been 

selected such that the attitude quickness parameters are Level 1 as viewed in Figure 

8.8. This point highlights the difference between the two approaches to manoeuvre 

modelling, whereby, if the piecewise definition is selected correctly, Levell handling 

qualities will be yielded. On comparison of the two roll angle time histories the more 

aggressive approach which must be adopted to perform this Level 1 task in relation to 

the polynomial defined task is clearly visible, where the larger roll angle is reached 

within the first second of the manoeuvre. It can also be seen from these plots that 

during the sections with constant lateral velocity there are transient oscillations in the 

time histories for the piecewise task. These cause uncharacteristic attitude quickness 

ratings due to the linear definition of the respective manoeuvre sections. The attitude 

quickness parameters representing the transient oscillation are visible for small 

changes in roll angle within the Level 1 ratings section. Verifying the suitability of the 

manoeuvre for a handling quality analysis therefore focuses on the larger changes in 

roll angle associated with a change in velocity or acceleration. 

Although the piecewise lateral jink definition describes Levell handling qualities, a 

final test is performed before a task is flown in the flight simulator and further results 

presented. This is to ensure that the roll angle time history can be applied as the 

command signal of the MMCS and produce realistic HEC, i.e. the task is achievable 

by the pilot. 
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8.2.3 Calculation of Human Operator Equalisation Characteristics 

The state and control time histories derived using the inverse algorithm were 

described in Chapter 5 as being the ideal state and control time histories for a task. 

This is because the command signal generated using this technique is without human 

operator limitations. The human equalisation characteristics derived from the PPM for 

a Helinv generated command signal represent the optimum achievable HEC for the 

task being performed without a human operator. 

The lateral jink manoeuvre, like the slalom task described previously is primarily a 

single axis tracking task in the lateral axis, therefore the same assumptions can be 

used when deriving the transfer function representation of the vehicle dynamics by 

relating the roll angle to lateral cyclic. The vehicle dynamics are applied to the 

MMCS allowing the optimum pilot characteristics to be determined for the command 

signal time history, in this case the roll angle ¢. 

The optimisation technique applied for determining the HEC was chosen to be a 

constrained optimisation programme implemented in Matlab®. The form of the 

constrained optimisation utilised is known as Sequential Quadratic Programming 

(SQP) as discussed by Grace (1992). Each unknown parameter, in this case the 

equalisation characteristics (gain lead and lag), is assigned a range of values to be 

optimised, such as the range considered in Section 3.9.1 for each equalisation 

characteristic. Each range is then further split into a sequence of subsections. 

Essentially the process can be described as a method whereby the solution process 

proceeds by solving the sub-problem for each iteration. The unknown HEC are 

optimised for each iteration by finding the combination of equalisation characteristics 

that give the minimum mean square error between the system input and the system 

response. Table 8.1 demonstrates the human equalisation characteristics calculated for 

the polynomial and piecewise defined lateral jink and slalom manoeuvres at forty 

knots. 
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Table 8.1 

Polynomial 

Lateral Jink 

Piecewise 

Lateral J ink 

Polynomial 

Short Slalom 

Identifying Pilot Parameters by Experiment 

Comparison of the Optimal Human Equalisation Characteristics 

For The Polynomial and Piecewise Defined Lateral Jink Task 

Error Gain Lead Time Lag Time 

9.713 0.147 0.648 0.1 

53.02 0.0151 5.3 0.1 

50.47 0.148 0.857 0.1 

In the case of the piecewise lateral jink, the minimum error tended to the upper 

boundary of the lead time constant which was set at 5.3 seconds, suggesting that the 

lead time was still higher than this or possibly optimum equalisation characteristics 

could not be obtained. Although this large lead time exhibited Levell handling 

qualities, demonstrates that this highly aggressive task is beyond the limitations of the 

human operator when performed at forty knots in a Puma helicopter. According to 

McRuer & Krendel (1957), the operator gain should be between 0.1 and 2.5 seconds, 

although in extreme circumstances higher lead times have been recorded. 

Although Level 1 handling qualities can only be obtained for this task with a highly 

aggressive mathematical definition, this task is not considered further for a handling 

quality analysis, as the human operator cannot adequately perform it. This then leaves 

only the two polynomial defined tasks, the short slalom and the lateral jink, which 

from Table 8.1 can be seen to exhibit similar gains. The error for the global 

polynomial, short slalom task, as expected, is much larger than that found for the 

global polynomial lateral jink case, as much larger roll angles must be achieved in the 

same period of time. The higher pilot lead time in the more difficult short slalom task, 

suggests that because the task is more aggressive than the lateral jink, more control 

input prediction is required by the pilot. Finally, the optimised pilot gains, which are a 

measure of the operators ability to respond to an error in the amplitude of a controlled 

variable, are approximately the same for both tasks. This result implies that although 

both tasks are flown with different control strategies, the operator is equally capable 

of responding to an error in the controlled variable. 
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8.2.4 Selecting a Suitable Mission Task/or the Linear Helicopter Model 

The preliminary human equalisation characteristics and attitude quickness parameters 

calculated for the tasks considered thus far do not meet suggested requirements for the 

manoeuvre definition. ADS-33D (1994) handling qualities analysis stipulates that 

Level 1 ratings must be realised for the task to be valid. These ratings are achieved 

from quick control inputs, resulting in a high attitude rate and large change in roll 

angle, which is contradictory to the small angle approximation rule applied in the 

linear helicopter model. It has also been demonstrated that the piecewise task requires 

operator characteristics which are unattainable. Thus a smooth global polynomial 

mission task definition, which does not provide Level 1 attitude quickness ratings is 

required if realistic BEC are to be found from the MMCS. 

To achieve useable results, it is essential that the task can be piloted in the desktop 

flight simulator and operable human equalisation characteristics can be determined 

from the resulting time histories. The global polynomial shortened slalom task has 

been shown to be unsuitable for use in conjunction with a linear algorithm due to the 

small angle approximation. This is in sharp contrast with the level 1 HQR which 

require large changes in roll angle with a fast roll rate. The global polynomial lateral 

jink defined task however lends itself well to the stated requirements. Although it 

does not exhibit Level 1 HQR for all attitude quickness parameters, results are 

presented for this lateral task due to the unsuitable equalisation characteristics, or 

unsuitably large attitude changes of the other tasks considered. 

8.2.5 Real Roll Attitude Quickness Calculation 

Recall that the roll angle time history is applied as the command signal of the MMCS 

depicted in Figure 3.3 and the BEC then optimised. The output from the system can 

then be found which has the pilot effect on the command signal added as illustrated in 

Figure 8.10. If an attitude quickness assessment is to be accurately performed, the roll 

rate with added pilot effect is also required. This can be found simply by 

differentiating the roll angle time history with added pilot effect as illustrated in 

Figure 8.10. It is clear from these plots that the pilot model has introduced a delay into 
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the Helinv data, which is larger at the start of the task than in the middle and end 

sections. Figure 8.11 compares the roll attitude quickness parameters for the Helinv 

generated roll angle quickness chart in Figure 8.3, with the output from the MMCS 

for the same case. The effect of the optimal pilot limitations on the roll angle is 

evident, resulting in either a reduction in the net roll angle or a decrease in the attitude 

for the important 'navigation' quickness parameters. There is some discrepancy 

between the guidance parameters towards the top left of the graph, which can be 

explained by the different strategy adopted at the beginning of the task. This result 

suggests that although the main navigation quickness ratings for this task have 

remained approximately the same, smaller changes in roll angle are required by the 

pilot to achieve them due to the delay introduced at the beginning of the task. 

So far, this chapter has provided the first complete example of the thesis main aim, 

which is to demonstrate how pilot model parameters can be used in an initial handling 

qualities assessment. A technique has been presented whereby pilot effect can be 

added to the linear inverse simulation output for any given MTE or linear helicopter 

model. The pilot effect on the attitude quickness ratings has been presented, 

demonstrating that the delay introduced by the pilot results in a smaller roll angle time 

history being required to successfully perform the task. 

The next step in the analysis is the pilot attack calculation, however another problem 

arises at this point. Clearly two sets of control input time histories are required. Firstly 

the Helinv lateral cyclic and secondly, the MMCS output with additional pilot effect. 

This can only be achieved by finding the optimum BEC for the control input and the 

control input plus pilot effect. This is evidently not possible as different lead times 

will be forecast, rendering a pilot attack comparison invalid. Figure 8.12 however 

illustrates the lateral cyclic control and its derivative, calculated from Helinv, while 

Figure 8.13 shows the corresponding pilot attack chart. Due to the oscillatory nature 

of the control input predicted by Helinv, a series of attack parameters can be seen 

across the chart with rating 2.5. The main, first attack parameter however, can be seen 

at the top of the chart with rating 5 and eighteen percent stick displacement. It is also 

evident from Figure 8.12 that towards the end of the task lateral cyclic 'tails away' 

rather than returning to its trim position. This is because as the pilot nears the end of 

the task, lateral cyclic is applied in order to decrease the lateral velocity in meet the 
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specified end of manoeuvre criteria. The effect of this is also clearly visible in Figure 

8.10 where the roll rate (P) is increased in order to roll the helicopter out of the tum, 

hence reducing lateral velocity. 

8.3 Flight Simulator Set-up 

Chapter 6 focuses on the development criteria for building the helicopter flight 

simulator, but does not demonstrate how the task should be included in order for the 

pilot to close the loop. When flying a lateral task such as the slalom or lateral jink, 

ADS-33D recommends that the pilot uses the runway to aid in flying the task, where 

the edges are the required lateral distances and the centre markings also reresent the 

task centreline. However, in the flight simulator the required flight path, defined by 

the same polynomial equation in the inverse algorithm, is plotted in conjunction with 

a series of gates representing the start and finish of the task and where the maximum 

lateral translation occurs. The flight path is plotted in the simulator, such that the start 

and end of the flight path line coincide with the start and finishing gates respectively, 

as illustrated in Figure 8.14. The maximum lateral distance is then achieved at the 

middle of the gate representing the maximum lateral distance. The three gates are 

each two metres wide, representing the maximum tolerable flight path deviation at 

these points. The pilot then attempts to fly the task by following the manoeuvre flight 

path. 

8.4 The Reduced Order Helicopter Model Performing the Lateral Jink Task 

A reduced order model was described in Chapter 7 for the slalom mission task 

element consisting of four states and two controls 

!=[v p r ¢r 
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Like the slalom task, the lateral jink is primarily a lateral tracking task. Consequently, 

the same reduced order model may be applied in both the flight simulator and the 

inverse algorithm. It is not necessary at this point to reassess the reduced order 

helicopter model validation however, verification that the resulting time histories are 

still representative of the full linear model must be provided. Figure 8.15 compares 

the four states and two control time histories of the reduced order model with those of 

the full linear model. Clearly, as found previously with the slalom task, the reduced 

states are almost identical to the full system. As a result of the two longitudinal 

control inputs being constrained to their trim values there is a slight change in the 

control strategy, which again emphasises the cross coupling between the longitudinal 

and lateral helicopter modes, whereby in this case, a lag is introduced into the tail 

rotor collective. 

It was also found that when the reduced order roll angle time history was applied as 

the command signal for the MMCS, HEC similar to those calculated using the full 

linear model were obtained. These results again are not presented here due to the 

previous model validation and the similarity between the full and reduced order roll 

angle time histories. The mission task element and vehicle dynamics may now be 

applied to the flight simulator discussed in Chapter 6. 

8.S Pilot Control Input Strategies For Flying The Lateral Jink in the Flight 

Simulator 

"The single axis tracking task is to be performed by at least three pilots where at least 

two of the attitude quickness ratings must be similar if the task and results are to be 

valid" [ADS-33D (Anon.) 

Three human operators who could offer varying degrees of experience, were asked to 

take part in the experiment with pilot A being the least experienced operator. Pilot A 

however is an experienced engineer but had the least flying time in the flight 

simulator flying the reduced order helicopter model through the prescribed task. The 

results listed as pilot B and pilot C were actually recorded for the same human 

operator but the results recorded as pilot C where after the pilot had been exposed to 
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the task for a greater period of time than as pilot B. The results for these two cases 

were recorded from the author flying the tasks. Finally pilot D was considered to be 

the most experienced operator with hands on piloting experience. Each pilot was 

required to fly the single axis lateral jink manoeuvre at thirty, forty and fifty knots a 

minimum of five times for each flight speed in the reduced order Puma helicopter 

model. 

It is possible to perform this single axis tracking task using only lateral cyclic, tail 

rotor collective or indeed a combination of both as derived from the inverse 

algorithm. Clearly if the control strategy adopted by the pilot differs greatly from the 

optimal inverse simulation control time histories i.e. the pilot flies the task 

predominantly with one control, the results will not be comparable. This is 

demonstrated in Figure 8.16, which illustrates the forty knot roll angle time history 

recorded from linear inverse simulation when the task is performed using a 

combination of lateral cyclic and tail rotor collective, depicted in Figure 8.17. Also 

depicted in Figure 8.16 are the lateral cyclic and tail rotor collective roll angle time 

histories for a human operator performing the task using only one control and the 

control strategies plotted in Figure 8.17. From Figure 8.16 it is evident that the 

different control strategies adopted yield very different roll angle time histories. The 

lateral cyclic only task, where over eighty percent of the control is applied, is 

described as rolling to the left and then back to trim, whereas the tail rotor task 

produced roll angles in the opposite direction, requiring only small control inputs. 

This plot proves that if comparisons between the human operated flight simulator 

tasks and the inverse simulation generated time histories are to be made, the same 

control strategy must be adopted for both cases otherwise different tasks will have 

been flown. As Helinv cannot define tasks performed using only one control input, 

the task must be flown in the flight simulator using a combination of lateral cyclic and 

tail rotor collective. 

8.6 Conclusions 

Chapter 8 initially considered two tasks, the shortened slalom and the lateral jink, 

both of which may be defined mathematically using polynomial or piecewise 
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modelling techniques. The polynomial defined lateral jink task was chosen to be 

flown in the flight simulator, even though the task did not exhibit Level 1 handling 

qualities. This was simply because the piecewise defined tasks could not physically be 

flown by the pilot as uncharacteristically large roll angles and lead times are required. 

The shortened slalom task was realisable by the pilot in the flight simulator but was 

not selected due to the small angle approximation in the linear helicopter. Section 8.5 

then considered three control strategies that may be employed by the pilot when 

flying the lateral jink task and why both techniques must employ the same control 

strategy. It was found that because Helinv can only predict flight data for the task 

when flown using a minimum of two control inputs, that the strategy involving lateral 

cyclic and tail rotor collective should be employed in the flight simulator. 
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Comparison of Simulation Techniques - Pilot 

Model Parameters and Handling Qualities 

9.1 Introduction 

The aim of this chapter is to present an example of the work discussed throughout the 

thesis. A handling qualities study is performed on the data generated from the two 

simulation techniques, inverse simulation and a flight simulator, when flying the 

lateral jink task described in the previous chapter. The importance of correctly 

interpreting the task and how differences in control strategy effect the vehicle flight 

and HEC are considered, then the HEC derived for the range of pilots are presented. 

The handling qualities analysis then goes on to demonstrate the similarity between the 

results from the two simulation models, where conclusions can be drawn about the 

validity of the inverse model with incorporated pilot effect. The chapter finally 

reintroduces the multiple axis concept considered in Section 4.5, illustrating the 

difference between representing the vehicle dynamics in one control axis and two or 

more axes and the consequences for the handling qualities study. 

9.2 Single Axis Analysis of Flight Simulator Results 

The state and control time histories were recorded for each series of flights by all 

pilots throughout the prescribed flight speed range. The recorded roll angle time 

histories were then applied as the command signal to the MMCS to determine the 

pilot equalisation characteristics, where the vehicle dynamics are represented only by 

115 



Chapter 9 Comparison of Simulation Techniques:­
Pilot Model Parameters and Handling Qualities 

the transfer function ¢(s)/BJc(s). These results are presented in Table 9.1 for the series 

of flights performed by pilot C at forty knots. The corresponding flight paths are 

recorded in Figure 9.1 and the roll angle time histories in Figure 9.2. 

Table 9.1 

Flight 

Linear Helinv 

Cj 

C2 

C3 

C4 

C5 

Human Equalisation Characteristics for Pilot C Performing the 

Forty Knot Lateral Jink 

Error Gain Lead Lag 

8.888 0.129 0.771 0.1 

7.998 0.1674 0.654 0.1 

9.896 0.152 0.762 0.1 

12.293 0.126 1.099 0.1 

10.686 0.11 . 1.279 0.1 

9.766 0.14 0.968 0.1 

The first noticeable result from Table 9.1 is that the optimisation errors, gains and 

leads are all of the same magnitude respectively, no definitive conclusions can be 

drawn about the pilots' learning process because there is no distinct pattern in the 

HEC. (Pilot C however, is 'experienced at piloting the task and if a less experienced 

operators characteristics were considered, some insight into the learning process 

should be obtainable). Figure 9.1 illustrates this by showing that the flight path for 

task C j , where the first flight in the series, produces the most similar flight path and 

roll angle time histories to those generated from Helinv. The roll angle in Figure 9.2, 

however, shows that for this task, a large delay has been introduced in the first half of 

the task, which is not evident in the latter stages of the task, resulting in a high gain. 

The remaining attempts C2 to C5, all demonstrate similar flight paths and roll angle 

time histories for the first half of the task, where a large roll angle is required to reach 

the maximum lateral displacement. However, in the latter section different strategies 

are employed. This is clear in Figure 9.2, where, after the middle gate turn for C3 and 

C4, the pilot rolls back too early then attempts to correct this by slowing the roll rate 

reversal, resulting in high lead times. C2, like task C j however, roll back to the left 

(positive to negative roll angle) after the middle section faster than Helinv, resulting 

in a lower lead time and a higher gain. 
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9.2.1 Comparison of HEC Effect on Helinv Output 

Another interesting comparison that can be made between the optimum HEC and 

those calculated for an actual human operator, is to determine the effect of the actual 

human operators equalisation characteristics on the Helinv output. This has been 

illustrated in Figure 9.3, where the HEC for the first flight by pilot C were applied to 

the PPM in the MMCS to determine their effect on the output. The plot demonstrates 

that although the operators HEC differ from the optimum HEC, both the optimum and 

operator output produce similar roll angles. The operators HEC however, introduce an 

additional damped oscillation in the roll angle due to the decrease in the lead time 

constant. 

9.2.2 Handling Qualities Assessment For Each Task Flown By Pilot C 

The roll angle and roll rate time histories recorded from each task for pilot C can be 

subjected to a handling qualities assessment as described in Section 2.3.2, and plotted 

on an attitude quickness chart as illustrated in Figure 9.4. It is evident from this graph 

that each time pilot C flew the task, quickness parameters requiring larger attitude 

changes than those calculated for Helinv are recorded at the start of the task. This is in 

sharp contrast to the 'Helinv plus pilot effect' parameters presented in Chapter 8, 

Figure 8.10, however the remainder of the parameters follow the same predicted 

pattern. 

The final step in the handling qualities assessment is a pilot attack calculation as 

considered in Section 2.6, which can be used to determine a pilots strategy. Figure 9.5 

illustrates the attack parameters for Helinv and again for the series of missions 

recorded by pilot C. The attack parameters for the pilot tend to relate to vehicle 

guidance and stability rather than those predicted for Helinv, which suggest that the 

helicopter is 'navigated' through the task. It is also interesting to note that the pilot 

attitude changes, recorded in the quickness ratings which, are larger than Helinvs, 

result from small to medium stick displacements that are smaller than the Helinv 

control input. This is possibly due to the human operator controlling the task primarily 

with tail rotor as opposed to lateral cyclic as considered later in the chapter. 
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Although Table 9.1 and Figures 9.1 to 9.5 offer a great deal of insight into how the 

operator performed the series of flights, it is difficult to extract an overall assessment 

of the pilot skills or learning process. In this case no information can be extracted on 

the pilot learning process because there is no clear improvement on how the task was 

flown each time. Clearly though, differences in flight performance have been 

recorded making an overall pilot assessment difficult to achieve. As a result, it is not 

possible to represent the pilot by just one set ofHEC. Thus in Section 9.3, the pilot is 

represented by the average error, gain lead and lag times. It should however be 

stressed that if a particular result differs greatly from the others, it should be discarded 

from the average calculation. 

9.3 Single Axis Analysis of 'Averaged' Pilot Flight Simulator Results 

The average gain lead and lag times were found for each series of flights, for each 

pilot and are presented in Tables 9.2 to 9.4. 

Table 9.2 Human Equalisation Characteristics for 30 Knot Lateral Jink 

Pilot Error Gain Lead Lag 

Linear Helinv 3.191 0.141 0.702 0.1 

A 6.253 0.116 1.007 0.1 

B 5.255 0.1426 0.808 0.1 

C 6.98 0.133 0.895 0.1 

D 6.253 0.145 0.827 0.1 

Table 9.3 Human Equalisation Characteristics for 40 Knot Lateral Jink 

Pilot Error Gain Lead Lag 

Linear Helinv 8.888 0.129 0.771 0.1 

A 6.476 0.188 0.662 0.1 

B 14.34 0.122 1.0524 0.1 

C 10.127 0.139 0.952 0.1 

D 9.712 0.133 1.066 0.1 
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Table 9.4 

Pilot 

Linear Helinv 

A 

B 

C 

D 

Comparison of Simulation Techniqlles:­
Pilot Model Parameters and Handling Qualities 

Human Equalisation Characteristics for 50 Knot Lateral Jink 

Error Gain Lead Lag 

25.650 0.107 1.005 0.1 

11.048 0.175 0.754 0.1 

22.106 0.118 1.33 0.1 

20.279 0.111 1.304 0.1 

17.453 0.087 1.752 0.1 

Section 8.2.3 suggested that the HEC derived using inverse simulation were optimum. 

Hence the human operator gain should not exceed the Helinv gain, the lead time 

should not be less than that generated from inverse simulation and the pilot error 

should be greater than Helinv's. All the average pilot lead terms over the flight speed 

range examined for pilots B, C and D adhere to these criteria. The corresponding 

gains are generally the same as those calculated from Helinv. However, some cases 

such as pilot C at forty knots are slightly greater but still satisfactory, whereas the 

gains and lead times for pilot A clearly do not fit the previous definition. 

It is also clear from the tables that as flight speed increases for Helinv, so too does the 

operator lead time whilst the gain decreases. This is due to the fact that as flight speed 

increases, the operator has less time, thus is less able to respond to an error in the 

controlled variable. if the pilot is less able to respond to an error in the controlled 

variable with increasing speed, it follows that in order to successfully perform the 

task, an increased prediction of the required control inputs is necessary, hence an 

increase in lead time. Finally Tables 9.1 to 9.4 demonstrate that the lag time has 

tended to the minimum boundary in each case. This is simply because the operator 

has applied the control inputs with a smooth transition, i.e. no oscillatory inputs are 

applied, causing a lag time constant to be introduced. However, in a more vigorous 

manoeuvre such as the piecewise lateral jink, lag times will inevitable be introduced 

by the human operator. Clearly the roll angle time histories generated from the 

polynomial defined lateral jink mission task element in Helinv are smooth, thus no lag 

time is introduced, for example, Figure 9.2 demonstrates smooth roll angle time 
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histories by pilot C, hence no lag time constant is introduced and it tends to its 

minimum boundary in the optimisation routine 

It is interesting also at this point to assess the HEC relative to each other pilots 

assumed skill and experience. Pilot A, as stated, clearly does not fit into the 

hypothesis, as the operator gains are too high and the lead time too low. This suggests 

that the pilot adopts a control strategy that differs from Helinv. Pilot B is less 

experienced than pilot C, therefore it would be expected that C's gain should be 

greater. From Tables 9.2 to 9.4 however it is difficult to draw any definitive 

conclusions about this as only a narrow range of flight speeds has been considered, 

although the optimisation error has decreased across the flight speed range as 

expected because the pilot gains experience. Likewise, it is difficult to present 

statements about the 'assumed' most skilled operator, pilot D, simply because no clear 

patterns emerge in relation to increased flight speed or to the other pilots' results. It is 

therefore suggested that this could be further investigated by piloting the task over a 

wider flight speed envelope and also other tasks could be considered. 

9.3.1 Pilot Strategy 

A key parameter in assessing helicopter handling qualities is to be sure that each pilot 

fully understands the mission task under examination and how it is to be performed. 

In the case of an operator not fully comprehending the task requirements and 

constraints, the results generated may be akin to the pilot performing a completely 

different task. For this experiment the pilots were asked to fly the lateral jink task with 

the aid of visual cues, such as the required flight path actually being drawn in the 

simulator. Gates were also drawn representing points in the task which the pilot must 

pass through in order to reduce the risk of the pilot misinterpreting the instructions. 

Preliminary results suggested that even with these visual cues, in some cases the pilots 

still adopt different control strategies whilst performing the task. This was 

counteracted by showing the pilots the control time histories derived from Helinv, and 

asking them to perform the task by attempting to memorise and follow this specific 

control strategy. Figure 9.6 demonstrates this by illustrating the state and control time 
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histories for pilot C before this additional constraint was applied and how it helped the 

pilot to perform the task in the manner required. The plots show that when the pilot 

initially flew the task, the strategy adopted was to use lateral cyclic only. However, 

when shown how the task was required to be flown, the operators changed their 

control strategy to fit that predicted by Helinv. Pilot A, even when shown the control 

strategy adopted by Helinv, performed the task by employing a different strategy. 

Figure 9.7 demonstrates this by comparing the flight path, states and controls recorded 

during the third flight by Pilot A, with the data recorded from pilot C. Although pilot 

C and pilot A in Figure 9.7, both closely follow the suggested flight path, both 

operators clearly perform the task in different ways, resulting in dissimilar sets of 

REC. Pilot C applies almost exactly the same control strategy as Helinv, where a 

large pulse to the left in lateral cyclic is initially applied. Tail rotor collective then 

becomes the primary control input for the bulk of the task, where it is increased 

steadily for approximately one third of the manoeuvre. In order to decrease the lateral 

velocity of the helicopter, the tail rotor collective is decreased, then further reduced to 

bring the helicopter back to the task centreline. Finally, the tail rotor collective is 

returned to its trim position and a pulse in lateral cyclic applied to return the roll angle 

to its reference condition. It should be stressed that in the case under examination, 

heading is constrained to zero, thus application of the tail rotor would normally result 

in a change in heading If/. However, here the lateral velocity and roll angle are its 

primary influences. Pilot A chooses to fly the task by applying what can be 

considered as step inputs in both control axis. Initially a long step is applied in lateral 

cyclic followed by an even longer step in tail rotor collective. The lateral cyclic input 

is reversed for approximately two seconds then returned to zero, while the tail rotor 

collective is decreased in two stages. Figure 9.7 also displays the state variable time 

histories, which demonstrate the differences in the roll angle time histories as a result 

of the contrasting control strategies employed. When the roll angle time histories are 

then applied to the MMCS, pilot C produces pilot characteristics similar to those 

described by Helinv, whereas pilot A's control strategy gives errors less than those 

predicted by Helinv with very high gains and low lead times. 

This result can be interpreted in one of two ways. The first implies that for the lateral 

jink flight path defined in Helinv, the state and control time histories predicted by the 
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inverse algorithm are in fact not optimal. It must be remembered however, that the 

Helinv results are for the case of no human operator, i.e. theoretically the best 

possible strategy for piloting the task is implemented. It is therefore reasonable to 

suggest also that different operators will optimise their performance or equalisation 

characteristics by piloting the task using a control strategy which best suits that 

individual pilot, but which may not be the optimal control strategy predicted by 

inverse simulation. The gain and leads for pilot A also suggest that there is an optimal 

mission task flight speed for the human operator, where the gain reaches a maximum 

value and the lead time is minimised. 

9.3.2 Pilot Input Adaptation 

It was suggested in the introductory chapter that as the human operator becomes more 

proficient at flying a task, the pilot applies the control inputs with greater ease. This 

results in the optimisation error becoming smaller and the human equalisation 

characteristics therefore default towards those calculated for the Helinv derived time 

history. Figure 9.8 depicts the roll angle time history for pilot C for a flight that was 

included in the calculation of the average equalisation characteristics. Clearly this roll 

angle time history closely mimics that of the inverse simulation. However, an early 

attempt at performing the task by this operator as pilot B, with the same control 

strategy was recorded and is displayed with the latter manoeuvre time history as 

Figure 9.8. A sharp contrast between the control inputs and time histories is visible 

where the less experienced pilot did not accurately follow the predefined flight path 

due to a sub-optimal control strategy being adopted. In the early task the operator is 

seen to reach a peak roll angle twice as large as that recorded later by slowly 

increasing ¢ until the maximum lateral distance is almost reached. The inexperienced 

pilot then attempts to roll back to the other side, however, lateral cyclic is applied in 

the wrong direction and therefore a large tail rotor collective is required to maintain 

the required flight path. This inexperience causes the helicopter to have a negative roll 

angle throughout the task. 
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Table 9.S Human Equalisation Characteristics for an Inexperienced Operator 

Pilot Error Gain Lead Lag 

Later Flight 9.896 0.152 0.654 0.1 

Early Flight 16.94 0.092 1.947 0.151 

Table 9.5 compares the equalisation characteristics for an early flight as pilot B with 

the results obtained when the operator is more experienced in flying the task. As pilot 

B gains experience and knowledge of the task and vehicle, the minimum optimisation 

error decreases towards that calculated from Helinv. It is also clear that the less 

experienced pilot B has introduced a lag component due to the operator applying 

large, oscillatory control inputs. The pilot gain, or the pilot's ability to respond to an 

error in the controlled variable, can be seen in the early flight case, to be less than that 

predicted by Helinv in Table 9.3. However, as operator experience increases so too 

does the gain. Conversely, the lead time constant is high for the inexperienced pilot 

and decreases with practice. The manner in which these latter two parameters behave 

is described in Chapter 4 as learning adaptation and input adaptation. As the human 

operator becomes more familiar with the system, they will learn about the response 

characteristics resulting in quicker detection of a problem hence a higher gain. The 

operator will also learn the pattern and thus be able to anticipate the control inputs, 

where a better ability to predict the control inputs results in a lower lead time. 

9.4 Handling Qualities Assessment 

A handling qualities assessment is next performed on the flight data presented from 

both simulation techniques via an attitude quickness analysis, followed by a pilot 

attack calculation. First, an attitude quickness assessment is performed for the flight 

case with pilot equalisation characteristics closest to the average for each pilot. This is 

because a handling qualities assessment cannot be made from an average roll angle 

time history for the series of flights by the pilots. 

123 



Chapter 9 

9.4.1 Attitude Quickness Calculation 

Comparison of Simulation Techniques:­
Pilot Model Parameters and Handling Qualities 

Figure 9.9, Figure 9.10 and Figure 9.11 show the attitude quickness charts for the 

three speeds, thirty, forty and fifty knots respectively for the three pilots and the 

Helinv generated attitude quickness parameters. The first noticeable result from 

Figure 9.9 is the Helinv parameter in the top left corner of the chart. This attitude 

quickness parameter is due to the linear model resulting in a transient oscillation in 

the roll rate. The oscillation therefore corresponds to a very small change in the roll 

angle and thus gives an uncharacteristically large attitude quickness parameter. 

Further examination of the chart reveals that there are three distinguishable parameter 

groupings, each representing attitude quickness parameters for pilots B, C and D. The 

first grouping is in the bottom left hand corner of the chart relating to small changes in 

attitude. The second grouping defines slightly larger attitude changes between five 

and ten degrees. Finally, a third group can be differentiated in the bottom right of the 

chart, where the attitude change is greater than fifteen degrees per second which can 

be associated with larger or faster control inputs resulting in a large change in the 

vehicles flight path. It is also interesting to note that all the quickness parameter in 

each of the three groupings, for these three pilots, have approximately the same value. 

This suggests that the human operators piloted the task in a similar manner and that 

the recorded time histories are satisfactory for use in a handling qualities analysis. 

Pilot A, however, who has already been shown to adopt a different control strategy, 

again does not quite fit into the categorisation. It is evident from the chart that pilot A 

produces quickness parameters which fit into the second and third groupings, but 

none in the first set because larger roll angles are recorded throughout the task. 

Close inspection of Figure 9.10 and Figure 9.11 reveals that the attitude quickness 

parameters for the four pilots fall into similar categories as described for the thirty 

knot case, suggesting that these mission task time histories are again suitable for a 

handling qualities assessment. Comparison of the three quickness charts also 

demonstrate that as the flight speed increases, the required change in roll attitude also 

increases for all pilots. A noticeable feature of this increased attitude change is that 

the attitude quickness parameters have not increased, but remained approximately the 

same. This is because as the flight speed increases, the mission time decreases. 

Therefore, the required roll attitude change becomes larger and faster while the ratio 
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of roll attitude to roll rate remains much the same. It should again be reiterated that 

these results do not meet Level 1 handling quality requirements as specified by ADS-

33D. They only pass the attitude quickness assessment due to several constraints in 

the task definition as considered in Section 8.2. 

9.4.2 Pilot Attack Calculation 

The handling quality analysis may now be addressed using the pilot attack parameter 

introduced in Section 2.6, which relates the stick displacement to its derivative. The 

series of flights performed in the simulator, however, were performed using two 

control inputs, lateral cyclic and tail rotor collective. Thus, pilot attack can be 

calculated separately for both stick and pedal displacements. The analysis is 

performed again at forty knots for the reduced order linear inverse simulation result, 

in conjunction with each case for pilot C and also the task closest to the average for 

each pilot. 

Only the forty knot pilot attack is be presented here because the attitude quickness 

assessment yielded results describing three similar groupings for each flight speed, 

hence certifying the task validation. Figure 9.12 illustrates the lateral cyclic stick 

displacement and derivative for the Helinv task and also for pilot B, while Figure 9.13 

displays the corresponding lateral cyclic attack chart for the 'average' flight by all 

pilots. Section 2.6 considered that large net stick displacements were associated with 

vehicle navigation, large attack parameters and small stick displacements describe 

guidance, finally those in the bottom left hand comer simply represent vehicle 

stabilisation. Figure 9.13 demonstrates that none of the four pilots apply large stick 

displacements suggesting that the helicopter is guided through the task rather than 

navigated. For each pilot there are clearly some large attack parameters coincident 

with small stick displacements. As considered many of these are related to vehicle 

guidance however others are due to discontinuities in the linear model. These are 

especially evident in the case of pilot D. The lateral jink task may be described as a 

single axis tracking task, which in this case is not a highly aggressive manoeuvre. As 

a result, the human operator was expected to perform the task under the guidance 
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criteria rather than navigation, which is reserved for much more aggressive tasks 

requiring much larger changes in orientation. 

As the task requires two control inputs, the attack parameters relating to the tail rotor 

collective have also been included. Figure 9.14 pictures the pedal displacement and 

derivative again for Helinv and Pilot C. Figure 9.15 displays the corresponding tail 

rotor attack chart for the five tasks performed by pilot C while Figure 9.16 shows the 

attack parameters for the 'average' case for all pilots at forty knots. The first 

important point to make about these attack charts is that a problem with the tail rotor 

control axis in the flight simulator did not allow the control a smooth transition when 

increased or decreased. This resulted in uncharacteristic and unrepresentative peaks in 

17p and its derivative iJp which translated into attack parameters up to the value of 

three hundred. As these higher parameters are not a feature of the real system they 

have been omitted from the attack chart. Otherwise, the attack parameters for the pilot 

tail rotor input can be seen to be of the same order of magnitude as the lateral cyclic 

attack chart, confirming that for the flight, each control input influences the state time 

histories to the same extent and that no one control dominates the task. 

9.5 Multiple Axis Tracking Task Discussion 

The two control inputs required to perform the task, lateral cyclic and tail rotor 

collective, were considered in the previous section where pilot attack charts could be 

plotted separately for both controls. If the task is to be flown with two controls, a 

problem materialises when determining the HEC from the PPM. The problem is that 

the command signal, in this case the roll angle ¢, is optimised with respect to the 

control input which causes the change in the state parameters. The transfer function 

representation of the vehicle dynamics is also derived from this relationship and as 

two controls are applied for this task, two optimisations are required. The first relates 

roll angle to lateral cyclic and the second relates the roll angle to the tail rotor 

collective. The resulting sets of equalisation characteristics will clearly have different 

pilot gains and lead times for the different axis because, although both inputs 

contribute significantly to the vehicle control, they are applied with different 
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strategies. However, in order to analyse the overall task, it is necessary to model the 

helicopter such that only one set of HEC is produced, which describe the overall pilot 

contribution. 

Although the lateraljink, like the ADS-33D defined slalom task, can be described as a 

single axis tracking task, the operator is still required to apply more than one control 

input to perform the task due to the cross-coupling between the longitudinal and 

lateral axes of the helicopter. This is a widely recognised problem and has been 

tackled with innovations such as specially adapted automatic flight control systems 

which apply the control inputs from three axes, allowing the pilot to concentrate on 

the task at hand by applying only the primary control input. This type of AFCS has 

not been employed in the flight simulator thus another technique for representing the 

vehicle dynamics is considered as described in Section 4.5. Again as in Section 8.4, 

results are presented for each of the five tasks flown by pilot C and also the case 

nearest the average HEC parameters for each of the pilots. 

9.5.1 Estimation 0/ Multiple Control Vehicle Pilot Model Parameters/or Pilot C 

Table 9.6 presents the HEC for the multiple control representation of the vehicle 

dynamics, for each task flown by pilot C. 

Table 9.6 Optimum Equalisation Characteristics For the Flights by Pilot C 

Flight Error Gain Lead Lag 

Linear Helinv 11.359 0.132 0.598 0.1 

C1 10.4942 0.1499 0.7075 0.1 

C2 12.4874 0.1522 0.6058 0.1 

C3 13.4304 0.1409 0.8000 0.1 

C4 12.2586 0.1264 0.9094 0.1 

C5 12.6336 0.1436 0.7562 0.1 

The first noticeable result from Table 9.6 is that the errors are larger than for the 

single control axis optimisation, which is clearly as expected, as the pilot's attention is 
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divided between the two control inputs. The gains have remained approximately the 

same as expected as it was hypothesised at the beginning that the pilot operates with 

only one gain and a different lead time for each axis. This statement is reinforced 

when considering that the lead time constants have decreased for all cases other than 

C1. 

9.5.2 Estimation of Averaged Multiple Control Vehicle Pilot Model Parameters 

for All Pilots 

Tables 9.7, 9.8 and 9.9 present the average optimised equalisation characteristics for 

each of the pilots when the vehicle dynamics are represented as described in Section 

4.5. 

Table 9.7 

Pilot 

Linear Helinv 

A 

B 

C 

D 

Table 9.8 

Pilot 

Linear Helinv 

A 

B 

C 

D 

Multiple Control Human Equalisation Characteristics for 30 Knot 

Lateral Jink 

Error Gain Lead Lag 

3.397 0.138 0.578 0.1 

9.645 0.151 0.825 0.1 

8.263 0.136 0.676 0.1 

6.606 0.146 0.636 0.1 

7.638 0.147 0.629 0.1 

Multiple Control Human Equalisation Characteristics for 40 Knot 

Lateral Jink 

Error Gain Lead Lag 

11.359 0.132 0.598 0.1 

8.804 0.181 0.517 0.1 

17.754 0.139 0.738 0.1 

12.261 0.143 0.756 0.1 

11.743 0.155 0.689 0.1 
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Table 9.9 

Pilot 

Linear Helinv 

A 

B 

C 

D 

Comparison of Simulation Techniques:­
Pilot Model Parameters and Handling Qualities 

Multiple Control Human Equalisation Characteristics for 50 Knot 

Lateral Jink 

Error Gain Lead Lag 

32.875 0.120 0.684 0.1 

15.49 0.174 0.551 0.1 

28.665 0.158 0.529 0.1 

24.839 0.149 0.661 0.1 

21.088 0.135 0.706 0.1 

Again, the errors are larger than for the single control axis optimisation, which is 

clearly as expected. The gains on the whole have stayed approximately the same, 

however, the average lead time for each pilot has decreased. Different conclusions can 

thus be drawn from these tables compared with those in Section 9.3. Pilot A (least 

experienced) again produces results similar to those found previously except for the 

thirty knot case. Here the error and lead time are much higher than those recorded by 

any other operator, suggesting that A did in fact struggle to perform the task. This 

statement is reinforced when considering the gain and lead for the remaining flight 

speeds. As with the single axis case, pilot A's gain is seen to be larger and the lead 

smaller for the forty knot case than the other two presented. This suggests that instead 

of pilot A finding the task increasingly difficult to pilot, there is a preferred or optimal 

flight speed for this operator somewhere in the region of forty knots. Pilot D displays 

similar characteristics. 

Pilots C and B (same operator with different experience levels) again describe the 

suggested hypothesis that pilot C with more experience has a lower error than pilot B. 

Comparison of the gains calculated for these two pilots also reveals that throughout 

the flight speed range the gains are very similar. The Gain of pilot B (inexperienced 

pilot C) unlike pilot A, increases with flight speed, however, as the operator became 

more experienced and recorded data as pilot C, the gains remain similar. This 

therefore raises the question does a pilot operate with a constant gain when 

controlling a specific attitude angle? This question has not been addressed in this 

work but is suggested as being a possible topic for future work. 
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9.6 Conclusions 
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The handling qualities analysis performed using the pilot attack parameter 

demonstrates that each pilot performed the lateral jink manoeuvre simply by guiding 

the helicopter through the task. However, if the task was more aggressive, pilot attack 

parameters representing navigation rather than control would have been displayed. 

The attack charts also demonstrate that this task was flown using two controls and that 

the task was not monopolised by only either of the control inputs. It has also been 

demonstrated that it is imperative to include both in the equalisation pilot 

characteristics estimation or inaccurate results are attained. It should however be 

stressed that this does not affect the handling qualities analysis as only the dominant 

attitude angle or control inputs are required. 
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Chapter 10 

Research Conclusions 

10.1 Introduction 

The final chapter presents a summary not only of the main aims of the work described 

in Chapter 1, but also a review of individual objectives achieved throughout the 

project and recommendations for future work. Before this however, it is worthwhile 

reiterating the main aim stated in Chapter 1. The work presented aimed to develop a 

desktop tool, which allows pilot effect to be incorporated into the inverse simulation 

output to improve model fidelity for an initial helicopter handling qualities 

assessment. The remainder of the chapter is split into three sections. Firstly the 

individual objectives pertaining to the overall aim are presented followed by a 

discussion of the main aim. Finally a discussion on recommended future work is 

included. 

10.2 Thesis Objectives 

The addition of pilot effect to the inverse simulation output centres on the MMCS, 

where each element in the system is tailored to a specific set of requirements. Clearly 

one of the most critical aspects of the work is the pilot model selected for the 

assessment. As the human operator is the limiting factor in the control system, it was 

important to select a model which could provide pilot information when performing a 

tracking task. The quasi-linear model selected, the Precision Pilot Model, 

encompasses these requirements where the pilot can be described as a series of gain 
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and phase characteristics. The PPM has thus proven to be an invaluable tool for 

determining the pilot effect on the input command signal. 

Like the pilot, the vehicle must also be modelled to a high standard. If either pilot or 

helicopter model are not fully representative, the model becomes invalid. A linear 

HGS model was presented in Chapter 4 which is well established in the engineering 

community. The state space format of the model allows the vehicle dynamics to be 

determined as a transfer function, relating a controlled variable to the primary control 

input. This vehicle representation may be adequate for fixed wing aircraft however 

due to complex cross-coupling tenns between the longitudinal and lateral modes in 

the helicopter, this description proves to be inadequate for a handling qualities 

assessment as more than one control input is required. A method whereby this can be 

achieved was demonstrated whereby the transfer function relating each control to the 

dominant attitude are included in parallel to one another. 

The command signal is generated from two simulation techniques, inverse simulation 

and conventional forward simulation. Inverse simulation has been proven to generate 

state and control time histories that can be used in a handling qualities assessment, 

consisting of three components. A mathematical manoeuvre definition, split into equal 

time intervals, which initiates a time marching algorithm. This in tum calls a 

helicopter model to execute the predefined flight path. Chapter 5 demonstrates the 

non-linear algorithm, validated by Thomson & Bradley (1990), and a linearised 

version. The linear algorithm employs a linear helicopter model for generating the 

state and control time histories and functions in exactly the same manner as the non­

linear model. This algorithm has been validated by comparison with the full non­

linear Helinv package and was found to emulate almost exactly the non-linear results. 

Chapter 6 considered that to derive flight data using a helicopter flight simulator, a 

flight simulator incorporating all the features stated would have to be developed as an 

appropriate PC based simulator was not available commercially at the time. The 

criteria on which this flight simulator is based make the simulator 'unique', allowing 

exactly the same helicopter model as that employed in inverse simulation to be piloted 

through exactly the same task. The flight simulator, due to hardware limitations, was 
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restricted to three control inputs thus only a reduced order helicopter model could be 

simulated accurately. 

This is particularly important when assessing the vehicle response in anyone 

particular axis. It allows a dynamic analysis of the longitudinal or lateral modes 

without the complex cross-coupling terms, making it easier to identify the vehicle 

modes. The reduced order model is only applicable if representative of the full 

system. It was shown in the thesis that, for a longitudinal tracking task, the helicopter 

can be represented by four state variables and two control inputs when flown at a 

constant speed. This model may be applied to both the inverse algorithm and the 

flight simulator, again allowing a true comparison between simulation techniques. 

Before a mathematically defined mission task element is applied to either simulation 

technique, verification that the task exhibits Level 1 handling qualities is required. It 

was demonstrated that smooth global polynomial defined tasks tend to exhibit 

substandard handling qualities, whereas several piecewise models resulted in a 

transient oscillation in the flight path due to a numerical integration error. The co­

ordinates for the predefined mission task flight path, can be extracted from the inverse 

algorithm and applied to the helicopter flight simulator to ensure that the operator 

pilots exactly the same task as Helinv. 

10.3 General Conclusions 

A review of a questionnaire based, subjective handling qualities was presented, 

demonstrating the advantages of identifying any deficiencies early in the aircraft 

design stage. This work by Cooper & Harper led to the development of an objective 

assessment technique considered in the ADS document series through pilot attack 

ratings. The objective method was illustrated by demonstrating the compatibility of 

inverse simulation and forward simulation to a handling qualities assessment, 

suggesting that both are important in the early assessment of handling qualities. 

Inverse Simulation has been shown to be a powerful tool when replicating flight test 

data by manoeuvring precisely along a predefined flight path, suggesting that the 
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control time histories generated are in fact the ideal control inputs. Helinv however 

does not employ a pilot model thus the pilot workload calculation reveals that the 

Helinv outputs relate only to vehicle guidance. It is therefore advantageous to correct 

this data by adding the pilot effect to the control time histories, by optimising the 

equalisation characteristics in the PPM. The optimised HEC are a measure of pilot 

behaviour, however these parameters can be related to the pilot workload andlor 

optimal pilot equalisation characteristics to determine how well the manoeuvre was 

performed in relation to the optimal flight test case. 

With pilot effect being incorporated into the inverse simulation output, it is possible to 

determine the optimum pilot parameters for the task and compare with those 

calculated from the pilot based, flight simulator recorded results. The pilot parameters 

describe the pilot behaviour during the task but they can also be used to determine 

performance. In essence it has been demonstrated that it is possible to relate the 

optimum equalisation characteristics for each pilot to the corresponding attitude 

quickness and attack charts. 

10.4 Recommendations for Future Work 

i) Further Development o/the Linear Helicopter Flight Simulator 

It is evident that the application of the linear helicopter flight simulator is limited to 

cases where a maximum of only three control inputs can be applied. It would 

therefore be advantageous if this problem could be overcome allowing a full linear 

helicopter model to be implemented. Several more enhancements to the flight 

simulator could be made to increase realism such as the incorporation of noise and a 

higher fidelity automatic flight control system. 

ii) Incorporate Non-Linear Helicopter Model 

Although the linear helicopter model incorporated in the flight simulator has been 

proven to replicate the non-linear model, it is limited in the flight simulator to 

performing tasks at a constant velocity. If tasks such as the quick-hop are to be 
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accurately replicated a model that allows large changes in velocity and attitude are 

necessary. Therefore, a flight simulator based on the non-linear HGS model is 

required. 

iii) Consideration of Longitudinal Tasks 

The thesis only considers one lateral task, the slalomllateral-jink. However, a wide 

range of tasks have been defined in the Helinv algorithm which can also be flown in 

the flight simulator if the suggested improvements are made. A handling qualities 

assessment on the corresponding flight test data would then allow a catalogue of pilot 

ability and vehicle handling qualities over a range of mission tasks and flight speeds. 

iv) Pilot Effect on Different Tasks and Aircraft 

Although there is scope for analysis of further mission task elements, another 

approach would be to perform the same task or tasks in different helicopters to 

determine whether pilot characteristics varied for different vehicles, or if they remain 

approximately the same for any given pilot. This can also be applied to other tasks to 

find out if a pilots gain remains constant when controlling specific attitudes. 

v) Application a/Multi-Axis Pilot Models 

The man-machine control system with PPM is used to determine the optimum BEe 
relating the primary state variable to the dominant control input. A technique has also 

been demonstrated for relating the primary state parameter to two control inputs. 

However, although equalisation characteristics can be calculated for each state, the 

pilot operates with only one lead time and a gain for each control axis. This merits a 

further analysis of multiple axis pilot modelling to determine pilot characteristics for 

the task incorporating the full vehicle state matrix, rather than just the primary 

controlled variable. 
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10.5 Concluding Remarks 

The research described in this dissertation has demonstrated that linear modelling, of 

inverse simulation and a helicopter flight simulator, can be used to generate flight test 

data at an early design stage for use in a handling qualities assessment. As a result, the 

inverse simulation generated time histories with added pilot effect can be directly 

compared with flight test data recorded from the validated helicopter flight simulator. 

This primarily involves comparisons between pilot response and vehicle handling 

qualities. It should be reiterated that the aim was not to assess helicopter handling 

qualities, but to develop a desktop tool for including the pilot effect in inverse 

simulation models to increase the overall model fidelity. This has been successfully 

achieved enhancing the understanding of the pilot effect on the state and control time 

histories and pilot workload. 
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Appendix I 

Puma Data File 

Puma Airframe MasslInertia Information 

Aircraft mass 

Moments of Inertia 

Centre of Gravity location 

Rotor Data : Main Rotor 

Number of Blades 

Blade Radius 

Hinge Offset 

Lag Damper 

Nominal Rotorspeed 

m 

lx;x 

lyy 

lzz 

I.>:z 

Xcg 

Ycg 

Zcg 

N 

R 

e 

w 

137 

Puma Data File 

5806 kg 

9638 kgm2 

33240 kgm2 

25889 kgm2 

-2226 kgm2 

-0.2 m 

0 m 

-0.675 m 

4 

7.489 m 

3.87 % 

14.15 Nmlradls 

27 radfs 
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Rotor Data: Tail Rotor 

Number of Blades 

Blade Radius 

Hinge Offset 

Lag Damper 

Nominal Rotorspeed 

N 

R 

e 

w 
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Puma Data File 

5 

l.518 m 

7.2 % 

50 Nmlradls 

137 radls 
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Appendix II 

Stability and Control Augmentation System 

(SeAS) 

The Stability and Control Augmentation System (SCAS) is one part of the Automatic 

Flight Control System (AFCS) applied through a series of actuators alongside 

autopilot functions. The following mathematical description of the SCAS was first 

presented by Padfield (1981), where each of the controls is discussed in terms of the 

primary control linkage and the interlinks with main rotor collective. 

A2.1 Pitch and Roll Channels 

If a pilot wishes to achieve a manoeuvre in pure pitch or roll, coupled control inputs 

are required as the phase lag between cyclic pitch and blade flap is less than 90 

degrees. Although the phase lag varies throughout the flight speed envelope, a single 

mixing is usually selected as a compromise to all flight conditions, modelled by 

where, 

[
OlS] = [ co.s If/ f 
Ole - sm If/ f 

sin If/ f ][Ol:S] 
cos If/ f Ole 

(A2.1) 

{As and Ole are the longitudinal and lateral cyclic pitch after mixing, that is the 

actual rotor blade pitch displacements. 

0*1s and O*lc are the longitudinal and lateral cyclic pitch before mixing. 
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If/! is the cyclic mixing or phase angle (usually 8 ~ 1 0 degrees). 

Before mixing between the longitudinal and lateral cyclic occurs, the pilot and 

components of e*1s and e*1e are passed through an actuation element (such as 

hydraulic actuators) which can be represented as a first order lag. This however is a 

crude approximation to a complicated servo-elastic system and is in the form of 

where, 

~:p + Bl: a * 
~s = 1 + Tcl S 

(A2.2) 

* ~:p + o":a 
o"e = 1 + T

c2
S (A2.3) 

e*lsa and e*lea are the longitudinal and lateral flight control system inputs. 

e*ISp and e*1ep are the longitudinal and lateral pilot control inputs. 

Tel and Te2 are the longitudinal and lateral time constants. 

The longitudinal and lateral cyclic channel contribution from the pilot can be written 

in the form 

where, 

etsp = glsO + glsl1]ls + (gseo + gscl1]ls)1]e 

etcp = glcO + glcl1Jl c + (gcco + gccl1Jl c )1J c 

glso, glsl, gseO, gsel, are gains and offsets in the longitudinal channel. 

gleO, glel, gcco, geel, are gains and offsets in the lateral channel. 

(A2.4) 

(A2.5) 

11e, is the collective lever input and 111s, 111c, are the longitudinal and lateral 

cyclic inputs. 

Finally the stabiliser input can be written as: 

Bl*sa = kBB + kqq + (1]ls - 1]lsO )kls (A2.6) 
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where, 

e;ca == k¢¢ + kpp + (rJlc -rJlco)k 1c (A2.?) 

ko, kq, k 1s are the proportional feedback, derivative feedback and feedforward 

gains respectively and 

171s0 is the reference longitudinal trim position (0 ~ 171s ~ I); 

k~, kp,k1c are the proportional feedback, derivative feedback and feedforward 

gains respectively and 

1l1cO is the reference longitudinal trim position (0 ~ 171c ~ I); 

A2.2 Yaw Channel 

In a similar way the pilot and autostabiliser commands are passed through an actuator, 

giving the relationship: 

n* + ~;tra UOttp 

BO*tt = 1 + 'rc3 S 
(A2.8) 

The pilot contribution to the yaw channel is modelled using a coupling of the main 

and tail rotor collective: 

where, 

where 

e;trp g OttO + g gOtrlrJ ct (A2.9) 

gOM), gOtrl, are gearing constants 

17ct is the cable length which is a linear relationship between pedal and 

collective lever positions 

lJct = gcto(1-lJp ) + (1- 2gcto )lJc (A2.IO) 

17p is the pedal displacement by the pilot (O~ 17p ~ 1) 
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The autostabiliser contribution to the yaw channel can be written as 

>I< 

BOtra =krp(CP-CPh)+krr 

({Jh is the heading adjustable by the pilot. 

A2.3 Heave Channel 

Finally the main rotor collective input can be expressed as 

* Bo· + Boa * p 

Bo = 1 + 'f
c4

S 

where the pilot contribution to the collective channel is 

B;p = gco + gc117c 

and the stabiliser contribution is given by 

where, 

B;a =kgAn 

An = I+~ 
g 

kg is the accelerometer feedback gain, 

az is the heave axis acceleration measured by the accelerometer, 

g is the acceleration due to gravity. 
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Each initial control displacement can now be calculated for a given vehicle and 

trimmed flight speed from the SeAS, using Puma parameters and trim values derived 

by the linearised HGS model. 
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Appendix III 

Helicopter Generic Simulation (HGS) 

A3.1 Overview of Model 

The HGS model was derived by Thomson (1992) from a conventional simulation 

model developed by the Royal Aircraft Establishment [Padfield (1981)]. The model 

employs the well established non-linear rigid body equations as given in Chapter 4, 

equations (4.3 a ~ f), where the rate of change of the attitude angles are related to the 

body axes angular velocities by equations (4.3 g ~ i). 

The defining characteristics for any rigid body for which the Euler equations are 

applied are the aerodynamic forces and moments. These can be split into their 

constituent components, which for the helicopter, consists of the main rotor R, tail 

rotor TR, fuselage/, tailplane tp and the finJn, resulting in the following aerodynamic 

force and moment expressions 

X=XR +XTR +Xf +X,p +Xjh 

Y = YR + Y rn + Yf + YIP + Yjit 

Z=ZR +Zrn +Zf +Z,p +Zjil 

L=LR +LTR +Lf +L,p +LjiJ 

M=MR + Mrn +Mf +M,p +Mfll 

N=NR +Nrn +Nf +N,p +Nfll 

(A3.1) 

The complex aerodynamic forces and moments can be determined by considering 

each component starting here with the main rotor. 
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A3.2 The Main Rotor Model 

As HGS employs a rotor disc model, the assumption that only the steady components 

calculated effect the vehicle dynamics, allowing the rotor forces and moments to be 

determined over the entire rotor disc. The initial step in determining the forces and 

moments of the helicopter rotor blades is to calculate the aerodynamic and inertial 

loads on an individual blade element then integrate the elemental loads across the 

blade span. 

The external forces and moments applied to the helicopter causes the axes system 

(which is fixed to the aircraft cg) to move with varying translational (U, V, W) and 

rotational (P, Q, R) velocity components. If i, j, k are unit vectors along the x, y, z 

axes respectively then that the linear translational velocity and acceleration of the cg 

of the helicopter is given by 

VCg = Ut bod + V Lod + Wk bod (A3.2) 

acg = Ut bod + V Ibod + Wk bod (A3.3) 

The corresponding rotational velocity and acceleration in body axes are 

OJ bod = PL bod + Qlbod + Rkbod (A3.4) 

O{Qbod . . • . • 

a = it = Phod + Qlbod + Rkbod (A3.5) 

As the aim here is to determine the blade element velocity and acceleration relative to 

the blade, the rotor parameters must be found relative to the rotor hub and then 

transformed to the blade element axes via the following transformations 

• Body to hub axes (transformed through shaft angle 

• Hub to shaft axes (transformed through azimuth angle) 

• Shaft to blade element axes (transformed through flap angle) 

Where the velocity, acceleration and angular velocity in blade axes are given by 
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[/Illb/b/ = [- U"ub COS \fI + V,lIlb sin \fI - PW"ub ltbl 

+ [- U hub sin \fI - V,lIlb cos \fI]i 
-bl 

+ [p( - U/Illb cos \fI + V,mb sin '1') + W"ub ]k bl 

fl'lUb/b/ = [- fl hub /x cos \fI + fl"ub/y sin 'I' - Pfl"Ub/z ]ib! 

+ [- fl"ub/x sin \fI - fl hub/y cos 'I' Ubi 

+ [p\ - fl"ub/x cos \fI + flltub/y sin \fI) + flhub/z ]kbl 

OJ Imb/bl = [- P'lUb cos \fI + q "ub sin \fI - P(..,r'lUb - Q) ]£bl 

+ [/1 - P'lllb sin \fI - q hub cos'P]i 
-bl 

+ [ fJ( - P "ub cos \fI + q hub sin \fI) + (r"Ub - Q)]k bl 

(A3.6) 

(A3.7) 

(A3.8) 

The absolute velocity of a point P, a distance rb from the centre of rotation of the rotor 

blade can be written as 

[p/bl = ["ub/bl + (OJ bl x r p/B ) (A3.9) 

where 

'plB = rbi bl 

Substituting equation (A3.6) in to the above expression then gives the velocity at a 

point on the blade as 

v =V i +V J' +V k - p/bl -x/bl-bl - y/bl -bl -z/b1-bl (A3.1O) 
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The absolute acceleration of a point p in local blade axes can be defined in a similar 

manner as 

Qplbl = Qhublbl +(a b1 Xl'plH)+lU bl X (mbl Xl'pIH)+2m bl x ~rplH (A3.11) 

Again, equation (A3.6) can be substituted into this expression to yield 

a =a i +a J' +a k 
-~bl -~bl-bl -~bl_bl -dbl-bl (A3.12) 

Equation (A3.10) and equation (A3.12) are fundamental to the rotor model, as it is 

now possible to determine expressions for blade loads off which the HGS model 

assumes there are two of acting on a blade element. 

A3.2.1 Rotor Aerodynamic Forces 

The normal and tangential components of lift and drag can be expressed as 

fzlbl =-Lcos<I>-Dsin<I> 

fylb/ = D cos <I> - L sin <I> 

(A3.13) 

(A3.14) 

From the assumption that the tangential airflow over the blade element UT is much 

greater than the perpendicular velocity Up, the angle of attack of the blade element is 

small such that Lcos(fJ» Dsin(fJ, and from 2D aerodynamic theory the lift and drag 

coefficients are given by 

fzlbl = - ~ pcao( U;O + UpUr )dl'b (A3.15) 

fylbl = ~ p"ao(:' U; - UpUTB- uJ, ) dr. (A3.16) 
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The total forces acting on the rotor blade are then determined by integrating the 

elemental forces along the blade span. Assuming that the rotor blade of length R, with 

root cut out e, where e is expressed as a fraction of the blade span, the rotor forces and 

moments can be calculated from the normalised rotor coefficients 

1 l 1-e 

f( -2 - - ) -
Cz1bl = -2 sao b U rB+ Up U r drb 

o 

1 I
1f-e( 8 -2 - - -2)-

CYlbl=2saob 0 -;;;Ur-UpUrB-Up drb 

... be 
where the rotor sohd1ty 1S s = -

ffR 

- r - eR 
and the normalised radial blade position is given by r b =-.£ 

(A3.17) 

(A3.18) 

The integration of the coefficients in equations (A3 .17) & (A3 .18) with respect to r b 

are relatively simple as the equations can be arranged into polynomial functions of 

rb. The resulting expressions obtained in powers of eosljI and sinljl giving the 

following expressions for the total blade aerodynamic coefficients 

Cz =-l..-sao(cz + f(cz cosljl+Cz Sinljl)) 
A 2b AO 11=1 Anc Ans 

Cy =_1 sao(cy + f(cz COSljl+Cz sinljl)l 
A 2b AO 11=1 Aile AilS) 

(A3.19) 

A3.2.2 Rotor Inertial Forces 

The inertial forces acting on the blade element of length drb can be given by 

dXilbl = -moQxlbldrb d~!b1 = -moQy1b/drb dZ;Ib/ = -moQzlbidrb (A3.20) 

Making the relevant substitutions, equation (A3.12) gives the blade inertial forces as 
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X;lbl = (f:?JmbIX COS'P - f:?/lIIbly sin'P + Pf:?/mblz )mb + (lV~, + w~ )Mp 

Y;lbl = (f:?hublx sin'P + f:?/ltIbly cos 'P)mb - (dJ z + lV y lV z)M p (A3.21) 

Z;lb/ = [P(f:?hublx cos'P - f:?hubly sin 'P) - f:?hublz ]mb - (lV x lV z - OJ y )M p 

where 

R 

the blade mass is given by mb = f mOdrb 
eR 

R 

the blade moment of mass is given by Mp = f mOrbdrb 
eR 

and lV are the angular velocity components of the blade element in the blade axes. -x,y,z 

These equations can be expanded by including the blade angular velocities and 

accelerations, and the blade flap angle as functions of the heading angle. The resulting 

equations can then be non-dimensionalised by dividing through by the term 

p(nR) 2 1fR 2 to give the inertial coefficients 

C x = C r + C r cos'P + C x sin 'P 
I ~ iO .L itc ils 

Cy = Cy + Cy cos'P + Cy sin 'P 
i ;0 ilc ;Is 

(A3.22) 

Cz = Cz + Cz cos'P + Cz sin 'P 
i 10 ilc lIs 

A3.2.3 The Total Rotor Forces 

The total rotor blade forces can be obtained through the summation of the 

aerodynamic and inertial forces to give the coefficients in component form as 
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C X/hi = C Xo + CX1c/hl cos 'II + CXls/b/ sin 'II 

CY/b/ = CYo + Cne/hl cos 'II + Cns/hl sin 'II (A3.23) 

CZIbI = CZo + CZle/hl cos 'II + CZls/hI sin 'II 

where 
sao 

C:r = C X , Cy, = 2b Cy + Cy etc. 
'" 0 10 0 AO 10 

Recall that the vehicle equations of motion are defined with respect to the body axes 

while the blade element loading is determined with respect to the blade axes, therefore 

the blade element loading must be transformed back to the body axes. This is 

achieved in exactly the opposite manner of the previous transformation, that is, the 

blade forces are transformed from blade to shaft axes and from shaft to hub axes. 

During the transformation it is again assumed that only the steady terms contribute to 

the rotorcraft dynamics, hence the periodic terms that are a function of blade azimuth 

can be neglected. The final transformation is then from hub to body axes through the 

rotor shaft angle Ys. The main rotor contribution to the external forces can now be 

given by 

X R = Ji...nRY ffR2 [C X/huh cos Y s - CZl/lllh sin y s] 

YR = Ji...QR)2 ffR2[CY/hUb] (A3.24) 

ZR = Ji...QR)2 ffR2[CX/hl/b sinys + CZl/lllb cosYs] 

A3.2.4 Rotor Moments 

The flapping model incorporated in the HGS model assumes the rotor to consist of 

rigid blades hinged at the hub with a stiffness in flap, modelled by a torsional spring 

of stiffness KfJ. The total moments acting on a single rotor blade are determined by 

summing the elemental inertia and aerodynamic moments over the span and equating 
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them to the restoring moment at the hub due to blade flap, hence the roll, pitch and 

yaw hub moments acting at the cg in body axes form are 

LR = L'ltlb cosYs - N 'ltlb sinys + hRYR 

MR = M hub -hRXR +xcgZR (A3.25) 

NR = Limb sinys + N 'ltlb COSYs +XCgYR 

After some algebra manipulation as described by C. Taylor (1995) the blade flapping 

can be expressed as 

B;' + [ A~ + ~;R ( 17, cos '1'; - 17y sin '1'; ) ]p; = 

If-{ U~ e + U T U P )(~ + e)d ~ b 
4np 

o 

+ MpRn +2[(q;'ub + -P ) cos\{'o +(P;lIJb + -q )sin\{'.] 1 '/ Z 2 hub I 2 hub I 

P 

(A3.26) 

where expressions for the normalised flap frequency J..,p, the blade flapping moment 

of inertia 1 p and the blade inertia number N p are given by 

K 
J..,2 =--P-+1 

p 1 0 2 
P 

e 

1 p = f mOrb2drb 
eR 

Other terms evident in equation (A3.26) are given as 

B~I= d
2 

Pi 
I d\{I2 

q'H= qH 
0 2 
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This equation can be used to describe the flapping motion of an individual blade, 

however as the flapping model in HGS requires the flapping motion to be described in 

multi-blade co-ordinates. 

A3.2.S The Multi-blade Transform 

In HGS, equation (A3.26) is solved by applying the multi-blade transformation, which 

effectively converts the individual blade angles j3; (i=1 ~n) into a multi-blade co­

ordinates where Po is the coning angle, Pls and Plc are the longitudinal and lateral 

flapping angles and Pd is the differential coning angle. By applying the multi-blade 

transformation for a four blade rotor, the individual blade angles 

/3; = [A ~ A ~ r can be determined as follows 

A =bpPM (A3.27) 

where 

1 -1 cos<l> sin <l> 

1 1 sin <l> - cos<l> 
b p =11 -1 - cos<l> - sin <l> 

1 1 sin <l> cos<l> 

PM = [po Pd As Pic r 
Incorporating the multi-blade transformation into the flapping equation and 

expressing the resulting periodic equation in non-periodic form allows the flapping 

equation to be written as 

PiJ + CMo + Pil + DMoPM = hMo (A3.28) 

where the matricies CMo ' DMo and hMo are obtained by substituting for successive 

values of Vi for each blade from the equation 
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hence the resulting expressions are lengthy and the reader is referred to Thomson 

(1992) for the full set of equations. 

Equation (A3.28) can be solved for the multi-blade angles, however the solution is 

often simplified by assuming quasi-steady blade flapping. This assumption implies 

that the blade flapping dynamics are decoupled from the fuselage dynamics and 

therefore have little effect on the forces and moments applied to the rotor or fuselage. 

The quasi-linear blade flapping motion then becomes 

PM = D~}o hMo (A3.29) 

which can be solved for the vector PM due to its algebraic nature to give the blade 

flap angles at a discrete point in time. 

A3.3 HGS Tail Rotor Model 

The modelling of the tail rotor is essentially the same as for the main rotor, the 

exception being that the tail rotor hub is assumed to be rigid so that no blade flapping 

occurs. The rotor blades are assumed to be of constant chord, root cut out and vary 

linearly with blade twist. The rotor inflow representation is again of the same form 

however, the inertial forces and moments are assumed small and therefore neglected. 

The rotor force and moment coefficients were evaluated using Mathematica and 

neglecting terms higher than zero order and first harmonic terms are 
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C ZTR Itrbl = _1. STR a OTR (C Z TR I trbl + C Z TR I trbl COS \}I TR + C Z TTl I trbl sin \}I TR ) 2 0 Ie 1,'" 

CYTRltrbl = -~ STRaOTR (CYoTRltrbl + CY)cTRltrbl COS \}I TR + CY1JRltrbl sin \}ITR) (A3.30) 

CQTRltrbl = -1.sTRaOTR (CQ TRltrbl + CQ TRltrbl cos \}ITR + CQ TRltrbl sin \}ITR) 2 0 Ie is 

Neglecting periodic terms and de-normalising, the moment components due to the 

offset off the tail rotor hub forces can be added to the tail rotor moments to give the 

force and moment contribution of the tail rotor in body axes as 

X TR = p(nTR R rn)2 1rRiR C ATRltrh 

YTR = p(nTRRTRf 1rRiR C zTRltrh 

ZTR = p(nTRRTRf 1rRiR C YTRltrh 

LTR = hTRYTR 

Mrn = -p(nTRRTR)21rR~CQTRltrh + (XCg + Irn)ZTR - hrnXTR 

NTR =-(XCg +ltr)YTR 

(A3.31) 

(A3.32) 

where CJ,..TRJtrh, CYTRltrh, CZTRltrh and CQTRJtrh are the tail rotor force and moment 

coefficients in the tail rotor hub axes. The terms Xcg and h· are the distances to the 

centre of gravity and tail rotor hub from the fuselage reference point respectively. 

A3.4 The Fuselage Model 

The aerodynamic forces and moments generated by the fuselage are calculated from 

look-up tables of aerodynamic coefficients as functions of angle of attack a or 

sideslip angle p, which are derived from wind tunnel tests and are denoted by CXf, CYf, 

CZf, CLf, CMfand C N} 
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The force coefficients in the x and z-axes and the moment coefficient in the y-axis are 

functions of the angle of attack while the remainder are dependent on the sideslip 

angle. The wind tunnel data in the look-up tables is measured relative to the fuselage 

reference point just below the hub and therefore the moments due to this offset must 

be accounted for resulting in the following force and moment coefficients 

X f = ~QR)2 ;rR2CXf 

Yf = ~QR)2 ;rR2CYf 

Zf = ~QR)2 ;rR2CZf 

Lf =0 

M f = p(QR)2 ;rR3CMf + XcgZJ 

N f = p(QR)2 ;rR3CNf + xcgYf 

A3.5 The Fin and Tailplane Models 

(A3.33) 

(A3.34) 

The fin and tailplane coefficients are CYjil and CZlp respectively, where the coefficients 

are determined in a similar manner to the fuselage, although here as functions of the 

fin sideslip angle and the angle of incidence of the tail plane. The contribution of the 

fin surface area Sill and the tailplane surface area SIp are hence required in the overall 

force and moment expressions given by 

Fin 

X fll =0 

Yjil = p(QRy S jilCYji, 

Z jil = 0 (A3.35) 

L jil = Y jilh jil 

Mjil = 0 

N jil = Yjil (XCg + I ji,) 

155 

Tailplane 

X IP =0 

J;p = 0 

ZIP = p(QRy StpCZIP 

LIp = 0 

M IP = ZtP (XCg + liP) 

NIP =0 

(A3.36) 
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where lfn is the distance from the fuselage reference point to the fin centre of pressure, 

hfll is the height of the fin above the fuselage datum, lip is the distance of the tailplane 

behind the reference point and finally hlp is the height of the tailplane above the 

fuselage datum. 

156 



Appendix IV Inverse Simulation - The Helinv.Algorithm 

A; nn fl-.:~d;-v> TJ7 . rr(;'" tA A. " 

Inverse Simulation The Helinv Algorithm 

A4.1 Introduction 

This appendix aims to present a comprehensive discussion ofthe algorithm employed 

in the inverse simulation package (Helinv), where the dynamic system response for a 

predetermined flightpath is simulated as illustrated in equation (5.5). The output ofthe 

system y is specified by the trajectory of the vehicle cg in terms of the longitudinal, 

lateral and vertical position with respect to an earth fixed axes Xe, Ye and Ze. Using this 

rationale, it is clear that the inverse algorithm has the six rigid body non-linear 

equations of motion 

U· {U7Q Tn--,\ X . Do 
= -Vr -vj{)+-- gsm~ 

m 

. Y 
V = -( UR - WP) + - + g cos 0 sin <I> 

m 

w = -(Vp - UO) + Z - gcos0cos<I> -, m 

T,;;;:; TxxP- Tx/?+QR(Tzz - T>y)- PQTxz 

M == T yyQ + RP(lxx - TzJ + (p2 - R2)lxz 

N =] R' - T P + pnf] -] \ + nRT . zz ~ xz~ ~ ~.\ >y xx / ~. - xz 

in conjunction with a seventh rotor speed degree of freedom given by 
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Q = QE rel Te2 + (rei + Te3)QE + QE - K3(Q - Qidle + Te2n) (A4.1g) 

with which to solve the four unknown controls and three Euler attitude angles. ill 

order to obtain a unique solution a further constraint must be applied, which, when 

considering helicopter control, can be applied as either a heading or a side slip 

constraint, leaving the vector of unknowns as 

!{ = [$ e 0 0 ~s ~c 00lr Q] (A4.2) 

The teclmique focused on trJIoughout the thesis is the constrained side slip case and is 

again considered here for consistency, where the side slip velocity and acceleration 

are defined as 

v = VI sinfJ 

J7 = J7f sin fJ + /JVf cos fJ 

(A4.3) 

(AA.4) 

where Vj is the flight path velocity and fJ is the rate of change of side slip. The side 

slip velocity can also be determined from the transformation of the velocity 

components in the earth axes to the body axes given by 

v ~ [mix, m,Y, m,2:, r 
where 

ml sin <t> sin 0 cos 'lJ1 - cos <t> cos 'lJ1 

m2 = sin <I> sin0sin T + cos<ll cosT 

m3 = sin <P cos 0 

Equation (A4.5) can be rewritten in the form 
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where 

a cos 'P + b sin q; + c = 0 

a = Xe sin $ sine + Ye cos <1> 

b = - Xe cos<l> + i: sin <l> sine 

c ~ t c sin <l> cos 0 - V 

(A4.6) 

This equation can be solved for IJI using the Newton-Raphson method provided ([J and 

e are known. When all· the required flight parameters have been calculated from the 

input manoeuvre data, the inverse simuiation can proceed. 

A4.2 The Inverse Algorithm 

The basic problem of the Helinv algorithm is the solution of the six equations motion 

in conjunction with the rotorspeed equation. The seven equations of motion with 

seven unknowns in the llelinv algorithm can be rearranged to give 

ll(<1> e 0 00 Ols Ole n)= -m(U + WQ - VR) + X - mg sin e = 0 

f7( <1> e 0 00 ~s ~c n) = QFTel Te2 + (Tel + Te3 )QF + QF - K3(n - n idle + Te2n) = 0 

'T'ke ; .... .,""r""" al~Orl'+'hm ,,+r,rt" t'h"" "O'l"+;on "'roces" 'bv p"o'v;d;ng nn ;n;+l'al gue"" Of" the 1 Ii III V \".I ~\,.I 0 \. I -:)l..-U"'~ \,..I ~ Ul..l I P ,;) J -'1 I II al I ..... ,;),;) 1 

vector Y.. It then proceeds to calculate the rates of the unknown attitudes ci> and e by 

numerical differentiation. This allows the unsteady terms in the equations to be 

calculated, converting the vehicle equations of motion into a set of non-linear 

pqn!'lt1'on<: The "I\Tp,~rton-"RaphsCln l'tpratl've tp('hm'qnp l'S userl t'CI pr o"lrle !'l better ___ '" .L.LV. ........... ,,_.... .......... .&- '-' ... _ l' ", __ .I. _"-" ...... '" ..... ".......... "'" " 

estimate of the unknown vector y.. As the output vector J: expresses the desired flight 

path in the form of a manoeuvre time history, the inverse algorithm is cast in a time 

marching form and solves the equations of motion at each point on the flight path. 
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A4.2.1 EVlllulltion of body Attitude Angles lind Rlltes 

Initial guesses of the vehicle pitch and roll attitudes are made at the start of each 

iteration j of the Newton-Raphson iterative scheme. Considering only the pitch 

attitude e, the initial estimate is given by 

r Be 

r.<> -J~ 
'CI I,} -[ ~ ;-1 

B;,J-l 

m=l,k=l 

m=l (A4.7) 

m)l 

For the first iteration at each time point i in the trajectory, it is evident that the 

previous value i-I is used as an initial estimate. Also for the first iteration at time t=O, 

the estimate of pitch assumes a predetermined trim value ee, where the roll angle C[J 

and the rotorspeed n are treated in a similar manner. Using numerical differentiation 

it is then possible to determine the first and second derivatives of pitch attitude with 

respect to time 

e0;- -0 
I,J =.1 ;-1 

t - t / /-1 

(A4.8) 
;.;. - 2;';' - ;.;. 

~ _ 'CJ lj 'CJ ;-1 'CJ 1-2 
~I,j - .2 

(t; - t;_I) 

The roll attitude and rotorspeed derivatives can thus be evaluated in a simllar manner. 

A4.2.2 EVlllulltion of body Trllnsllltionlll Velocities lind Accelerlltions 

The vehicle body axes velocities are evaluated by a series of transformations of the 

earth fixed axes Xe, Ye and Ze, via the Euler attitude angles. This transformation is the 

transpose of that implied in chapter 5, equation (5.2) where the output y is related to 
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the system state vector J: via the function g, thus the vehicle translational velocities for 

the ill iteration of the time point i can be found from 

rn. ~r:: 
..... l,j 

12 13 T ~e 1 
m

3 JI Y
e J 

n3 L Ze i 

(A4.9) m2 

n2 

where I}, 12 and 13 are the direction cosines. The rotorcraft body axes accelerations can 

be found by differentiating equation (A4.9) to give 

lu1 III 

l ~ I =lm l 

WJj . nl ,) 

12 
m2 

"" "2 

13 JlXel r il 

m3 ~e + ml 

n3 Ze; L nl 

i2 
m2 

112 

i,3 Jr~J m3 Ye 

n3 Ltd; 

(A4.10) 

where (ii' i2, ..... , it3) are the derivatives of the direction cosines with respect to time 

and can be rewritten as 

i = -0 .. sin 0 .. sin 'P. + 'P cos 0 .. cos 'P. etc. I I,) I.) 1 j I,) 1 
(A4.11) 

A4.2.3 Evaluation of Body Rotational Velocities and Accelerations 

The vehicle rotational angular velocities about the body fixed axes set for the /It time 

point and /,1 iteration of the Newton-Raphson scheme can be determined by 

rearranging equation (5.2) to give 

Pi,} = cD i,} - 'Pi sinE">;,) 

q r:"" cos £h + tl, ~os r~' s;- £h . . = \7. . '¥.. T. I,; \7.. 111 '¥. . 
I,) I,) I,) 1 I,) I,) 

(A4.12) 

rj . = 'P .. cose .. cos<t> .. -0 .. sin<t> .. 
,) I,) I,) I,) I,) I,) 

Which can bc diffcrcntiated to give 
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P = CD -~. sin0- "f. Bsin 0 
I I 

Q = E>cos<l> - e<Dsin <l> + ~j cose sin <l> + ':Pj ( - e sin e sin <l> + <Dcosecos<l» (A4.13) 

R = Vij cos e cos <l> - E> sin <l> - e<D cos <l> + ':Pj (- e sin e cos <l> - <D cos e sin <l» 

where the subscript i,j has been neglected from j), Q, R, <I:> , <i>, 0, e, in equation 

(A4.13) for simplicity but its importance should not be forgotten. 

A4.2.4 Determination of vehicle Externa; Forces and lYioments 

With estimates of all the states, it is possible to determine the external forces and 

moments as considered in the following appendix. Once the net contribution of 

individual forces and moments generated by the components of the helicopter are 

found, all the information required to derive the latest error vector will have been 

obtained. 

A4.2.5 Updating the Control Estimate 

The Ne\\ton-Raphson iterative scheme employed in the inverse simulation algorithm 

has the following structure 

I( j ( j r iF., ...... iF., 

r~ _ ~l _' ~ 'J~ 'J rJ\(!H') ~ ~ Ije ~. o)l 
. _.j. . . (A4.14) 

l~ '1>' ~ 'J (a·h ...... (~ J;(<I> e ~ ~, 11, Ii. n)J 
81».. ..J I.J I,J 
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This allows new estimates of the unknown variables to be made whereby the Helinv 

"lgor~t"h1"V\ l'1-e"""t'"''' "",t1'1 the err"'r -/;unctl' "'n" """e "rl't"h~n " p""'"'sc""~<b'"'d to1e"""n"'"' 'T'he u J. .lllJ.J. ... J.(.I.. \.1.:1 U.1.U, U U 1i J.. v.l~ U.l \IV UllJ. U .Iv J..l '"' .1 .LU \..I,",. .J...J. 

Jacobian elements are calculated by numerical differentiation such that 

(
_OF._1 ) _ _ F._l (_<1>_+_5<1>_, <1>_,_, '_' ,_0_) i_,} _-_~ (<I> - 5<1>, <1>, .. , , 0) i,} 
.{~ .. 281> 

I,J 

(A4.15) 

for small perturbations of wand ow. Once the Jacobian has been evaluated it is 

inverted using a standard matrix inversion. Following this a better estimate of the 

unknowns can be determined from equation (A4.14) and the steps repeated until the 

desired convergence. When the control, attitude and rotorspeed parameters are 

determined for the /11 time point, the algorithm steps forwards one point, repeating the 

process for the duration of the manoeuvre. 
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Appendix V 

Linear Helinv Constrained Heading 

The linearised equations of motion when expressed in state space form 

x=Ax+Bu - - - (AS. 1) 

can be used to describe the unconstrained motion of the helicopter by rewriting them 

in such a way that they represent the inverse of the problem. The state vector is split 

into unconstrained parameters and those strongly influenced by the constraints. The 

flightpath is defined as a function of time therefore so are the velocities by 

differentiation, hence u, v, and w must be strongly influenced. Finally as the tail rotor 

strongly influences the heading If/ giving :J.l the vector of constraint influenced states 

and J.2 the vector of unconstrained states 

Jl = [u V w rf J2 = [p q B ¢f (AS.2) 

The linearised equation (AS. 1) can then be rewritten by restructuring the system and 

control matrices as suggested by Houston and Caldwell (1984a &1984b) 

[~l] = [All AJ2 ][J:l] + [Bl ][li] J:2 A2l A22 J2 B2 (AS.3) 

On expansion this gives 
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~! = All.!1 + A!2.!2 + B!~ (A5.4) 

i2 = A2!.!! + A22.!2 + B2!!. (A5.5) 

Solving equation (A5.4) for the control vector assumingBJ to be non-singular 

!{ = B~I [~1 - Al1~l - Al2 ~2] (A5.6) 

Substituting (A5.6) into (A5.5) allows the unconstrained states to be expressed in 

terms of the constraint influenced states 

i2 = [A22 -(B2B~1)AI2]~2 + [(A21 -(B2B~!)All)~1 +(B2B~!h!] (A5.7) 

The linear solution requires the unconstrained states :!2 to be expressed in terms of the 

constraints !C. However the strongly influenced states ~l are a function of both :!2 and 

!c as is apparent on examination of the linearised Euler transformation 

[
U] [L10 

: = ~~: 
L20 

M20 

N20 

~ l[i] [~ ~,+~ 
~z ~ 

L2d 

M2d 

N2d ~:J:l 
where the direction cosines are given by 

Ll = cose cos\f L2 = cose sin \f 

(A5.8) 

L3 = -sinE> 

M 1 sin <I> sin e cos \f - cos <I> sin \f M 2 = sin <I> sin E> sin \f + cos <I> cos \f M 3 = sin <I> cos \f 

N 1 = cos <I> sin e cos \f + sin <I> sin \f N 2 = cos <I> sin E> sin \f - sin <I> cos \f N 3 cos <I> cos E> 

The yaw velocity is given by the kinematic expression 

R = 'I' cosE> sec<D - Qtan <D (A5.9) 

Which when linearised gives 
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r = If cos ~ sec e - q tan <l> e (A5.1O) 

Combining and rearranging (A5.8) and (A5.la) gives 

J1=T1i +T2! +T3 J 2 -c -c 
(A5.11) 

where 

Llo L2 ~o a 
a a a L3d a a LI L2a 0 

d 
Mlo M20 M30 a 

a a a M3a a a Mid M2d 
~ =1 Nlo N2 N3 a T2 = 

a a a N3d 
T3 = 

a a Nld N2d 0 0 

a a a 
cosee 

a a a a a - tan<l> e a a 
cos<l> e 

The linearised transformation of Earth fixed to body fixed axis accelerations is given 

by 

[:l=[ ~:"" 
L20 

L3
0 lr~l r W"q - Ve

r l M3
0 

Y - Ve r - W"p 

N3 Z VeP- Veq o 

(A5.12) M20 

N20 

Differentiating (A5.1O) gives the yaw acceleration 

r = Ij/ cosE> e sec <l> e - q tan <l> e (A5.13) 

Combining and rearranging equations (A5.12) and (A5.13) gives 

,!I =T11 +T4'!2 + TsJ2 +T6J1 -c 
(A5.14) 

where 
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0 0 0 0 0 -w e 0 0 0 0 0 Ve 

0 0 0 0 ~ 0 0 0 0 0 0 -U 
T4 =1 Ts = T6 = e 

0 0 0 0 -V Ue 0 0 0 0 0 0 e 
0 - tan<l> e 0 0 0 0 0 0 0 0 0 0 

Substituting for J.l from (AS. 11) gives 

,!I = TIl e + T4,!2 + [Ts + T6 T3 ],!2 + T6 Tii e + T6 T2f e (AS. IS) 

Finally equations (AS. 11 ) and (AS. IS) can be substituted into (AS.7) giving 

i2 = [1 - B2B~IT4 r {A22 - B2B~I(A12 - T5) +(A21 - B2B~I(All - T6))T3 }:!2 + 

[1 - B2B~IT4 r {[B2B~IT411e + [(A21 - B2B~I(All - T6))TI]lJ + 

[I - B2B~IT4 r {[(A 21 - B2B~I(All - T6))T2 ]/ c} 

The unconstrained states are now expressed in terms of the constraints. This solution 

can be simplified to 

!2 = A cJ. 2 + Bc.!{e (AS.16) 

where 

Ac = [1- B2B~IT4r {A22 - B2B~I(AI2 - TJ + [A21 - B2B~I(All - T6)]T3} 

[ ]

T 
[1- B2B~IT4rlB2B~lTl 

Be = [1 - B2B~:T4 rll(A21 - B2B~:(A1l - T6))Tl 

[1 - B2Bl T4] (A21 - B2Bl (A1l - T6))T2 
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or required operation 

yes 

is it 
satisfactory 

without 
improvement? 

yes 

is adequate 
performance 

attainable with 
a tolerable 
workload? 

'+ yes 

no 

~ 

~ is it 
controllable? 

deficiencies 
warrant 

improvement 

deficiencies 
require 

improvement 

improvement 
mandatory 

Aircraft Characteristics and Pilot Demands 

Excellent, highly desirable - pilot compensation not a 
factor for desired performance 

Good, negligible deficiencies - pilot compensation not a 
factor for desired performance 

Fair, some mildly unpleasant deficiencies - minimal pilot 
compensation required for desired performance 

Minor but annoying deficiencies - desired performance 
requires moderate pilot compensation 

Moderately objectionable deficiencies - adequate 
performance requires considemble pilot compensation 

Very objectionable but tolerable deficiencies - adequate 
performance requires extensive pilot compensation 

Major deficiencies - adequate performance not obtainable 
with maximum tolerable pilot compensation 

Major deficiencies - considerable pilot compensation is 
required for control 

Major deficiencies - intense pilot compensation is 
required for control 

Major deficiencies - control will be lost during some 
portion of the required operation 

Figure 1.1 The Cooper-Harper Handling Qualities Rating Scale 

[Padfield 1998] 
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Pilot... .................... MTE...... ......... ....... Config ..................... -. -.-.~ - -I 
RATING 1 3 3 4 5 

I 

TASK CUES Excellent Good Fair Poor Inadequate I 

AGRESSION Minimal Low Moderate High Maximum 

TASK Clearly within Desired Clearly within Adequate Adequate 
I PERFORMANCE desired performance adequate performance performance 

performance marginally performance marginally not achieved 
limits limits 

TASK WORKLOAD Low Moderate Considerable Extensive Intolerable 

SYSTEM Satisfactory or Minor but Moderately Objectionable Major 
CHARACTERISTICS better annoying objectionable but tolerable deficiencies, I 

deficiencies deficiencies deficiencies controllable 

Hell + Control Law 1 2 3 4 5 

Inceptor 1 2 3 4 5 
-- --

HQR I 1 I 2 I 3 I 4 I 5 
6 I 7 18 J 9 

10 I 

HQRlSubphases I Transition/Acquisition I Tracking 
. 

Influencing factors -- - 0 + ++ 

Vehicle and Primary response, stability, Coupling effects due to inceptor 
control law or HlC, Vehicle limits 

Inceptor Ergonomics, Mechanical and Control char. Sensitivity 

Cues Outside visual cues, Instruments (HUD), Acceleration cues 

comments 
--- - -- -- - - - - - - - -- - -

Figure 1.2 Pilot Questionnaire [Leacock (2000)] 
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Control Input I Helicopte, ._] Vehicle State, 
17(t) .. Dynamics .. x(t) 

Figure 1.3 Forward Simulation 

Flight Path 
Constraints .. \ 

17(1) 

Helicopter & Actuator 
Dynamics 

Vehicle States x(t) 
......- Vehicle Controls 17(t) 

Figure 1.4 Inverse Simulation 

State parameter 
.------" Xi(t) 

Command 
Signal 

Figure 1.5 

Pilot 
Model 

Control input 
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Helicopter 
Model 

Man-Machine Control System 
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Figure 3.8 A Block Diagram of Costello's Surge Model (Costello 1968) 
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Figures Chapter 5 Inverse Simulation 
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Figures Chapter 6 Development of a Mission Programmable Flight Simulator 

Chapter 6 Figures 

+ve x-axis 

Figure 6.1 Aircraft Frame of Reference 
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Figures Chapter 6 Development of a Mission Programmable Flight Simulator 

.-----------------------------------------------j 
I I 
I Series I I RG Actuator I 
I I 
I I 
I I 
I I 
I I 
I ' I 
I \jJ 8 0Ta I 
I I L ______________ , I 

:-"-"-"-"-"-"-"-"-"-"-" I 
« IIp 8 OTp + 1 80T I 

Mechanical .. I 
Interlink 1 + 'f c3S I 

« I 
I 
I 
I 

: I 
Mechanicallinkage ~. I 

',-,,-,,-,,-,,1-,,-,,-,,-,,-,,-,,- Senes I 
.--~----------- ~r I 

Kg s 
+ 

&: , 
_~ __ ' 80p 

8 0a 

1 

1 + 'fc4 S 

80 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

To Pitch Channel AFCS I L ______________________________________________ _ 

Figure 6.3a Schematic of a Helicopter Flight Control System [Padfield (1996)] 

199 



Figures Chapter 6 Development of a Mission Programmable Flight Simulator 

,------------------------------------------------------1 
I r-:-l Series I 

iG\ q "'-I Kq I----, Actuator I 

Ke 

-----------, ----- - .. - .. - .. ..., I 
"-"-"-"-"-"-" . 

. - .. -. ~ --' . - 11c Mechanical 

~ c 1 Interlink 111s 0 I 

_ .. _ . .1 I - .. - .. - .. - .. - .. - .. - .. - .. ~~_.:. . .= .. - ___ -.I 
r-------
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Kp 

Kq, 

Series 
Actuator 

s 

elsa 

e'lea 

e Is Cyclic 
Mixer 

Is 

AFCS 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I : 111, + '1, , I 

I g" 1 + T ,2 S : 
I __ _ I 0 '1" ___ _ __ I __ _ I ___ _ L ______ _ 

Figure 6.3b Schematic of Pitch and Roll Control in a Helicopter Flight Control System 

[Padfield (1996)] 

200 



Figures Chapter 6 Development of a Mission Programmable Flight Simulator 
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Figure 6.4 Open Graphics Libraries and Aircraft Frames of Reference 

Figure 6.5 Lynx Helicopter Model 
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Figures Chapter 6 Development of a Mission Programmable Flight Simulator 

Figure 6.6 Screenshot from Helicopter Flight Simulator Cockpit 
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