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ITHAKA

As you set out for Ithaka
hope the voyage is a long one,
full of adventure, full of discovery.
Laistrygonians and Cyclops,
angry Poseidon-don't be afraid of them;
you'll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body.
Laistrygonians and Cyclops,
wild Poseidon-you won't encounter them
unless you bring them along inside your soul,
unless your soul sets them up in front of you.

Hope the voyage is a long one.
May there be many a summer morning when,
with what pleasure, what joy,
you come into harbors seen for the first time;
may you stop at Phoenician trading stations
to buy fine things,
mother of pearl and coral, amber and ebony,
sensual perfume of every kind-
as many sensual perfumes as you can;
and may you visit many Egyptian cities
to gather stores of knowledge from their scholars.

Keep Ithaka always in your mind.
Arriving there is what you are destined for.
But do not hurry the journey at all.
Better if it lasts for years,
so you are old by the time you reach the island,
wealthy with all you have gained on the way,
not expecting Ithaka to make you rich.

Ithaka gave you the marvellous journey.
Without her you would not have set out.
She has nothing left to give you now.

And if you find her poor, Ithaka won't have fooled you.
Wise as you will have become, so full of experience,
you will have understood by then what these Ithakas mean.

The poem Ithaka by C.P.Cavafy, Collected Poems;translated by Edmund Keely and Philip
Sherrard; edited by George Savidis, Rev. Ed.1992, Princeton Press, pp.36-37.
One of my favourite poems and one that I often recited to keep me going during these three
years.
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Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that has been associated over the past forty

years with a number of malignancies both of lymphoid and epithelial origin. These include

Burkitt's lymphoma (BL), Hodgkin's disease (HD) and nasopharyngeal carcinoma (NPC) to

name only a few. One of the latent proteins of the virus, latent membrane protein 1 (LMPl)

has been frequently detected in NPC biopsies and it plays a role in the initiation and

development of the disease. Various strains of LMP1 have beed detected, but the LMP1CAO

strain is the one most often encountered in endemic NPC cases. NPC tumours also show a

deletion across chromosome 9p21which leads to loss of the tumour suppressor locus INK4a as

well as deletion or hypermethylation of 3p21.3 that leads to loss of another tumour suppressor

the Rassfl. The aim of the work presented in this thesis is to investigate the exact role LMPI

plays both in the genesis and the development of epithelial malignancies such as NPC.

In order to investigate this, transgenic mouse models expressing two different strains ofLMPl

at their epithelium were used. Use of other transgenic and knock out mice was also involved,

in order to investigate cooperative relationships that LMP1may have with other oncogenes or

tumour suppressor genes. Minimal skin chemical carcinogenesis was employed in order to

determine the role of LMPI in initiation or progression of the tumourigenic process.

LMPI CAO was found to be expressed in a wide variety of tissues in the transgenic mice,

including both tissues of the epithelium as well as lymphoid tissues. LMPI CAO is a weak

initiator as LMPI CAO transgenic mice develop lesions spontaneously and in some cases the

ears of these mice progress from benign keratoacanthomas to malignant squamous cell

carcinomas. LMPlcAO cooperates with loss ofINK4a locus to give an increased lesion load.

Signalling pathways that were found to be activated by LMPI in lymphoid, epithelial cells or

fibroblasts in previous studies, were investigated by Western blotting in order to determine

whether they are activated by LMPI CAO in the epithelium in vivo. LMPI CAO in the epithelium

in vivo, leads to activation of the p38, NF-KB, AP-I and MAPK pathways. Other proteins

were shown to be upregulated or stabilised by LMPI including pS3, pI6INNK4a,caspase-J and

MMP9. Whether this is a direct effect of LMPI CAO or it is a secondary event due to the

phenotype that LMPI causes is still unclear.
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The similarity between the LMPI transgenic mice and TGFa transgenic mice, as well as

increased levels of the epidermal growth factor receptor (EGFR) in NPC biopsies and NPC

cells in vitro, led us to investigate the possibility that LMPI may be acting via the

TGFalEGFR pathway. Indeed, TGFa levels were found to be upregulated in transgenic

affected tissues when compared to wild type sibling tissues. EGFR activates many signalling

pathways including MAPK. Investigation of the MAPK pathway showed that LMPI does

lead to its activation. In order to determine whether LMPI acts via upregulation of TGFa,

LMPI transgenic mice were cross bred with TGFa null mice to create LMPI transgenic /

TGFa null mice. The phenotype of these mice was observed and it was discovered that

paradoxically, loss ofTGFa- a known oncogene- leads to a worsening of the phenotype.

Further studies into the signalling pathways that may be affected by loss of TGFa showed that

TGFa in this system may be acting as a tumour suppressor by upregulating Rassfl and also

may be acting as a control of some of the signalling pathways activated by LMPI.

The results show that LMP 1CAD is a weak initiator of proliferation but other cooperative

events such as loss of tumour suppressors INK4a and/or Rassfl are needed for progression.

This is consistent with previous studies performed in this laboratory as well as the facts that

are currently known for NPC.
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Chapter 1: Introduction

1.1 Epstein Barr Virus (EBV)
EBV is a human gammaherpesvirus that is associated with several lymphoid and epithelial

malignancies. It was first discovered in 1964 by Epstein, Achong and Barr when an endemic

Burkitt's lymphoma (eBL) biopsy viewed under an electron microscope showed what looked

like herpesvirus particles present in those cells. EBV was subsequently shown to transform

resting B cells and induce tumours in non human primates thus providing evidence for the role

of EBV in tumourigenesis (Henle and Henle, 1967; Miller and Heston, 1974; Pope et aI.,

1968).

EBV is a very successful virus as more than 90% of the world population is seropositive.

Primary infection with EBV takes place early in life, especially in developing countries, and

infection is usually asymptomatic. In developed countries with higher hygiene standards,

infection in a proportion of individuals is delayed to puberty or early adulthood. Delayed

infection can lead to manifestation of infectious mononucleosis (1M).

Malignancies associated with EBV include BL, nasopharyngeal carcinoma (NPC), Hodgkin's

disease (HD), Acquired Immunodeficiency Syndrome (AIDS) associated and post transplant

lymphomas and others that will be discussed later.

Viral structure and genome
Within the viral particle, the linear EBV genome is complexed with various DNA binding

proteins and is enclosed within an icosahedral nucleocapsid made up of 162 capsomeres.

Surrounding the viral capsid is a protein tegument that is enclosed in the outer viral envelope.

The viral envelope is made up of glycoproteins (gp) that mediate entry of the virus into the

host cell. Initially viral encoded gp350/220 in the envelope can attach to the host cell via the

cellular complement receptor (CR) CD21/CR2 present on B cells. Other viral envelope

glycoproteins such as gp25(gL) and gp42/38 are complexed with gp85(gH) and can associate

with the major histocompatibility' complex class IImolecules of the host cell, HLA-DR, DP

and DQ for viral entry into the host cell (Knox and Young, 1995). After entry into the cell via

a cytoplasmic vesicle, the virus envelope fuses with the vesicle membrane and the

nucleocapsid along with the tegument is released into the cytoplasm.

The EBV genome consists of double stranded (ds) DNA of approximately 172kb, comprising

O.5kbterminal direct repeats (TR) and 3kb internal direct repeats (IR) that divide the genome
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into short and long unique regions. Once infection takes place, the TR fuse, to form a circular

DNA. Cleavage occurs randomly in the TR to produce linear genomes that will have a

different number of TR unique to each genome. When those linear genomes circularise each

will have a unique number of TR. Thus TR are a useful tool in determining whether latent

infection is clonal or not.

EBV was the first herpesvirus to be cloned in E.coli and sequenced in 1984 (Arrand et al.,

1981; Baer et al., 1984; Hatfull et al., 1988; Parker et al., 1990). Since a DNA BamHI

fragment library was used in the first genome analysis, each gene is given a name according to

where transcription of its open reading frame (ORF) maps. For example, BZLFI refers to

BamHI Z fragment left (direction according to linear map) open reading frame number 1. As

such all the EBV genes have a BamHI map name, but several are also named according to

function or protein localisation as described below. EBV can encode 87 genes, 10 of which

are latent genes and are described later.

EBVtypes
There are two main strain types of EBV, EBVI (or A, prototypes are: B95-8 and W91) and

EBV2 (or B, prototypes are: Jijoye and AG876). The main differences between these two viral

strain types lie in the sequence differences of the Epstein Barr Nuclear Antigen (EBNA) 2,

EBNA3s and EBNA leader protein (LP) genes (Dambaugh et al., 1984; Rowe et al., 1989;

Sample et al., 1990). The two variants ofEBNA2 show 50% homology at the amino acid (aa)

sequence level, and the two EBNA3 variants show 70-80% homology (Adldinger et al., 1985).

EBVI is more prevalent in developed countries whereas EBV2 is more prevalent in Africa and

Caucasian male homosexual AIDS patients (Yao et al., 1998).

Initial experiments where B cells were transformed in vitro with either EBVI or 2, showed

that EBV2 transformed cells had a lower growth rate than B cells transformed with EBVI

implying that EBV2 is not as potent in transformation as EBVI (Rickinson et al., 1987).

However, the finding that Caucasian male homosexual AIDS patients show a 30% increase in

the EBV2 infection as compared to the healthy Caucasian population, as well as the fact that

the Caucasian AIDS patients are coinfected with EBVl, implies that EBV2 may be prevalent

in the Caucasian population but not be readily detected in non immunocompromised

individuals. Despite the fact that there are only two main EBV types, sequence variation

between EBV strains of individual proteins such as LMPI is quite common with as many as 9

different LMP1 strains (Miller et al., 1994b).
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A further EBV type has been identified called the "f variant". This type of EBV is mostly

isolated from Southern Chinese NPCs. This strain has an extra BamHI restriction site in the F

region. This "f variant" has affinity for epithelial cells and is very rarely detected in

lymphoblastoid cell lines (LCLs) from South Chinese healthy individuals, thus implying that it

may be more potent in NPC formation (Lung and Chang, 1992; Lung et al., 1994).

1.2 Natural History of EBV
EBV is an orally transmitted virus. It is still unclear how it infects humans but the currently

favoured hypothesis is that the primary site of infection is the circulating B cells that are found

in the oral epithelia (Anagnostopoulos et al., 1995; Niedobitek et al., 1997). The virus enters

the B cell via the glycoproteins as described before. Once in the B cell the viral presence

leads to an initial T cell response. After this response, the number of B cells carrying EBV

drops to about one in every 105 or 106 cells. In most B cells the virus exists in the latent state

but in some it can be reactivated and enter the lytic phase. This leads to the apoptosis of the B

cell and the release of new virions that are constantly shed into the saliva of infected

individuals. Epithelial cells can also be infected with EBV and it is believed that this could

happen independently of CD21 (Yoshiyama et al., 1997), via another receptor unique to the

epithelial cells (Molesworth et al., 2000; Sixbey and Yao, 1992), or via very low CD21

expression (Fingeroth et aI., 1999; Li et al., 1992) or simply via cell to cell contact with B cells

that have a high viral load (lmai et aI., 1998; Speck et al., 2000).

There is extensive evidence that the infection is maintained in B cells. This has been shown in

patients that have received bone marrow transplants. Their own bone marrow was destroyed,

and after transplant the EBV virus they harboured was that of the donor. Also patients

suffering from the condition X-linked agammaglobulinemea leading to the absence of mature

B cells, show no EBV infection whatsoever, while throat washings of healthy individuals

showed that 94% were infected with EBV (Faulkner et al., 1999).

Lytic Cycle
The lytic cycle has been studied primarily in latently infected B cells that have been induced

by chemicals such as phorbol esters to enter the lytic cycle. The first genes to be expressed

are the immediate early genes BZLFI and BRLFI. Initially the promoter of BZLFI is

activated by a physiologic change in the cell, BZLFI is transcribed and translated. The Z

protein then goes into the nucleus where it binds to activating protein I (API) DNA sites

upstream of both BZLFI and BRLFI, increasing BZLFI transcription and activating BRLFI.

These immediate early genes transactivate the early lytic genes. About 30 mRNAs are
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transcribed from early lytic genes and these include genes that are responsible for structural

viral proteins or proteins that allow the virus envelopment and viral exit from the host cell.

These include genes that encode for viral DNA polymerase (BALFS), the major DNA binding

protein (BALF2), ribonucleotide reductase (BORF2 and BaRF1), thymidine kinase (BXLF1),

BHRFI (homologous to the anti-apoptotic bcl-2), BXRFI (the EBV basic core protein) and

among others the BCRFI which is homologous to human interleukin (IL) 10 and is believed to

attenuate macrophage and natural killer (NK) cell function so as to prevent the host cell

interferon response and allow for successful viral production and also genes needed for the

viral replication. Some of the latent genes such as EBNAI and latent membrane protein

(LMP) 1 and LMP2AIB are present in the lytic cycle as the FQp promoter and the LMP

promoters are active(Rickinson and Kieff, 1996).

Latent Cycle
EBV persists in human B cells in the latent state, as an episome, expressing only a limited

subset of its genes, the latent genes. Latent genes were first identified in LCLs that are resting

B cells that have been transformed by EBV and are permanently infected. These latent genes

include EBNAI, 2, 3A, 3B, 3C, LP, LMPI, 2A and 2B as well as some Bam HI RNA

transcripts which may encode proteins of important biological function. Note that an

alternative nomenclature exists for some of the latent genes, for example EBNALP can also be

called EBNA5. I will use the former nomenclature in this thesis. The ORF name, gene

product, alternative nomenclature and cellular localisation are summarised on table 1.1 and the

position of the latent genes is shown on fig. I. I.

After 12-16hrs post infection, EBV circularises in the infected cell nucleus and the Wp

promoter initiates rightwards transcription. The first latent proteins to be expressed are

EBNALP and EBNA2. EBNA2 can transactivate cellular genes and viral genes (eg. Latent

membrane (LMP) 1 and LMP2) and also leads to promoter switching from Wp to Cp. The Cp

promoter is upstream of Wp and leads to transcription of the longer EBNA mRNA thus

leading to transcription of the other EBNA proteins. LMPI and LMP2A and B are transcribed

in opposite directions (LMP1 is leftforward) from two different unigue to them promoters.

32hrs post infection all the latent proteins are made and EBNAI can bind to the origin of

replication (Ori) P and facilitate the episomal replication at S phase.
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Figure 1.1: The EBV Genome

Figure from Young and Murray, 2003, Oncogene (22):5108-5121.
(a) is a diagrammatic representation showing the position and the transcriptional
direction of the latent genes ofEBV on the circular viral genome. The arrows show
the direction in which the latent genes are transcribed. The latent genes represented
are the EBNA1, 2, 3A, 3B, 3C, LP, LMP I, 2A and B and the EBERs. LMP2A and
B are transcribed from different promoters and their transcripts are positioned across
the terminal repeats (TR). LMPI is transcribed in the opposite direction to the rest
of the latent genes. EBNALP is transcribed from several W repeat exons the
number of which is variable.
(b) is a linear representation of the BamHI map of EBV and the location of the
ORFs of the latent genes. The fragments are named according to their size, with A
being the largest. The Nhet represents the area over which the LMP2s are
transcribed. Since they are transcribed over the terminal repeats which differ in
number from one EBV strain to another the fragment is called Nhet to represent the
heterogeneity that can occur.
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ORF Gene product Alternative nomenclature Cellular Location

BKRFI EBNAI Nuclear

BYRFI EBNA2 Nuclear

BLRF3-BERFl EBNA3A EBNA3 Nuclear

BERF2a-BERF2b EBNA3B EBNA4 Nuclear

BWRFI EBNALP EBNA5 Nuclear

BERF3-BERF4 EBNA3C EBNA6 Nuclear

BNLFI LMPI LMP Membrane

BARFIIBNRFI LMP2A TPI Membrane

BNRF2 LMP2B TP2 Membrane

BCRFI EBERl,2 Cytoplasm and nucleus

BARFO BamHI transcripts Cytoplasm
. .

Table 1.1: ORF, gene product, alternative nomenclature and cellular localisation of the
product of EBV latent genes.

Latent genes are expressed variably in different subsets of B cells in healthy EBV carriers and

also in all the EBV associated malignancies. Based on the variable expression, three major

latency programs have been identified and the genes expressed and their disease association is

given in table 1.2. Naive tonsillar B cells of healthy EBV carriers show expression of all

latent genes corresponding to latency III, whereas memory tonsillar B cells of healthy carriers

show latency II pattern. Peripheral B cells express a very restricted pattern of latent genes

possibly expressing only LMP2 (Babcock et al., 2000; Babcock and Thorley-Lawson, 2000;

Joseph et al., 2000).

Latency pattern Latent genes expressed

Latency I EBNAl, EBERs, Bam A RNAs

Latency II EBNAl, LMP1, 2A, 2B, EBERs, Bam A RNAs
Latency III EBNAl, 2, 3A, 3B, 3C, LP, LMP1, 2A, 2B, EBERs, Bam A

RNAs

Table 1.2: The latency patterns of EBV

The focus of my thesis is LMP1, however a brief description of the other latent genes is given

below.
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EBNA1

EBNAI is 641 aa long and encodes a 65-94kDa protein. EBNAI is expressed in all the EBV

associated diseases and is one of the few latent proteins expressed in the lytic cycle of the

virus. EBNAI is made up of three distinct domains with further subdomains; the basic amino

terminus (l-89aa), the glycine-alanine (Gly-Ala) repeats region (90-328aa), and the carboxy

terminus (328-641aa). The Gly-Ala repeats give the virus the ability to evade the host immune

response by preventing protein processing by ubiquitination, proteasomal degradation and

presentation and also limit self expression (Levitskaya et al., 1995; Levitskaya et al., 1997).

Flanking the Gly-Ala repeats are Arg-Gly motifs that resemble RGG motifs and allow EBNAI

to bind RNA (Snudden et al., 1994). The first region within the carboxy terminus is a Pro-Arg

rich region (327-377aa) that mediates interactions between EBNAI molecules bound to

distant DNA binding sites mediating linking and looping (Goldsmith et al., 1993; Mackey et

al., 1995; Su et al., 1991). Between residues 379-387 lies the nuclear localisation signal,

followed by a serine rich region (375-400aa) which becomes phosphorylated but the

importance of this phosphorylation is still unknown (Hearing and Levine, 1985; Polvino-
Bodnar et al., 1988). Between residues 459-607 is the DNA binding and homodimerisation

region of EBNAI (Ambinder et al., 1990). At the carboxy terminus is an acidic rich region

that plays a role in the episomal segregation into daughter cells during cell division.

The primary role ofEBNAI is the maintainance of the viral episome during cell division (Lee

et al., 1999; Yates et al., 1984). To perform this function, EBNAI binds as a dimer to two

regions in the OriP of EBV. OriP has a region of 20 tandem direct 30bp repeats called the

family of repeats (FR), each capable of binding an EBNA 1 dimer. An EBNAI dimer can also

bind at 4 sites in the dyad symmetry element (DS) lkb downstream ofFR. Binding ofEBNAI

to FR allows FR to function as a transcriptional enhancer for RNA polymerase II transcribed

genes thus allowing for EBNAI autoregulation and regulation of the other latent EBV genes

(Reisman and Sugden, 1986). The DS is essential for episomal replication but without the FR,

DS is inefficient in maintaining transcription, plasmid replication or maintenance. EBNAI

can also bind the nuclear matrix attachment region in the host chromosomes (Jankelevich et

al., 1992).

EBNAI is the only viral protein that can associate with cellular chromosomes during mitosis

and this is thought to be essential for the maintenance of the viral episome. EBNA 1 also binds

cellular proteins, EBP2 (EBNAI binding protein 2) and P32/TAP. EBP2 binds to both mitotic

chromosomes and EBNAI thus mediating the interaction of EBNAI with chromosomes and
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facilitating the segregation of the viral episome into daughter cells (Kapoor and Frappier,

2003).

EBNAI may also playa role in the oncogenicity of the virus, since transgenic animals that

express EBNAI in B cells succumb to malignant B cell lymphomas (Wilson et al., 1996;

Wilson and Levine, 1992). Further, EBNAI is essential in the survival of BL cells as its

inhibition leads to apoptosis and it is necessary for efficient LCL formation, supporting an

EBNAI role in cell survival (Humme et al., 2003; Kennedy et al., 2003). Consistent with

these, are the results obtained from transgenic EBNAI mice premalignant B cells that show

increased Bel-XL(an anti-apoptotic protein), RAG1 and RAG2 levels (Tsimbouri et al., 2002).

Recent data from these mice also show that there is a dependancy for survival on IL-2

signalling that is induced via EBNAI (Tsimbouri et al., in preparation).

EBNA2

EBNA2 is a 487 aa nuclear protein that along with EBNALP are the first to be expressed after

B cell infection with the virus in vitro (Allday et al., 1989; Rooney et al., 1989). EBNA2

cooperates with EBNALP to induce transition of the infected cells from GOto GI (Sinelair et

aI., 1994). EBNA2 is essential for the initiation and maintenance ofEBV transformation ofB

cells in vitro (Cohen and Kieff, 1991; Cohen et al., 1991; Hammerschmidt and Sugden, 1989;

Kempkes et al., 1995). EBNA2 acts as a transcriptional regulator by binding to the cellular

transcriptional repressor RBP-h: (involved in the Notch signalling pathway), which binds to

DNA. By binding to RBP-JK, the repression function is alleviated and transcription of viral

and cellular genes can take place. By binding to recombination binding protein JK (RBP-JK),

EBNA2 can transactivate the LMP2A promoter, the Cp promoter, the LMPI promoter and the

CD23 promoter (Abbot et al., 1990; Fahraeus et al., 1990; Laux et al., 1994; Ling et al., 1994;

Ling et al., 1993; Sung et al., 1991; Wang et al., 1990; Zimber-Strobl et al., 1993; Zimber-

Strobl et al., 1991). EBNA2 regulates expression of some cellular genes such as CD21, CD23,

c-myc, c-fgr, EBIlIBLR2 and the immunoglobulin heavy chain gene (Burgstahler et al., 1995;

Calender et al., 1987; Cordier et al., 1990; Jochner et al., 1996; Kaiser et al., 1999; Knutson,

1990; Wang et al., 1987). Binding of EBNA2 to RBP-JK is necessary but not sufficient for

gene expression induction. EBNA2 requires binding of other cellular proteins such as PU.l

and AUFl.

EBNA2 competes with EBNA3A and 3C for RBP-JKbinding (Johannsen et al., 1996;

Robertson et al., 1995; Waltzer et al., 1996; Zhao et al., 1996).
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EBNA 3A,B,C

The three EBNA3 genes are tandemly located in the EBV genome. They encode nuclear,

hydrophilic proteins with heptad repeats of leucine, isoleucine or valine. EBNA3A and 3C are

essential for B cell transformation in culture whereas EBNA3B is not (Tomkinson et aI.,

1993). The EBNA3s can bind to RBP-JK and compete with EBNA2 for binding to it and also

transcriptionally regulate genes with RBP-JK binding sites (Allday and Farrell, 1994;

Robertson et aI., 1995; Robertson et aI., 1996; Wang et aI., 1990). EBNA3s can block the

EBNA2 activation of the LMP2 promoter (Le Roux et aI., 1994). EBNA3C can block EBNA2

mediated LMP 1 promoter activation via repression of the Cp promoter or cooperate with

EBNA2 and activate the LMPI promoter under different conditions (Allday et al., 1993;Lin et

aI., 2002; Marshall and Sample, 1995). It is thought that since LMPI levels are important for

viral survival, EBNA3C activation or repression of the LMPI promoter is essential in

maintaining proper LMPI levels and inhibiting uncontrolled expression. EBNA3C has been

shown to cooperate with Ras and transform rodent fibroblasts in culture, to weakly interact

with retinoblastoma (Rb) and remove the block induced by p16INK4ain cycle progression

(Parker et aI., 1996; Parker et aI., 2000). EBNA3C can also interact with cellular proteins

including SUM01l3, nonmetastatic protein 23- homologue l(Nm23-Hl) (Subramanian and

Robertson, 2002), histone deacetylase (HDACI) (Radkov et aI., 1999) that are controlling

transcription and also associate with CyclinA (Knight and Robertson, 2004) thus mediating

progression through S phase and entry into mitosis. Despite the above role of EBNA3C in

transformation and cell cycle progression, EBNA3s are not expressed in any of the EBV

associated malignancies or in memory B cells from healthy carriers therefore their role in

malignant disease is not clear. EBNA3s are the latent proteins for which the host cytotoxic T

lymphocytes (CTL) elicit the strongest reaction to, both in healthy virus carriers and upon

primary B cell viral infection and thus their downregulation permits viral persistence

(reviewed in (Khanna and Burrows, 2000; Rickinson and Moss, 1997).

EBNALP

EBNALP is encoded by the leader of each of the bicistronic EBNA mRNAs and its size varies

between the various EBV isolates. It is made up of repeating 22 or 44 aa exons called WI

and W2, two unique exons YI and Y2 and a 45 amino acid carboxy terminus. EBNALP and

EBNA2 are the first proteins to be expressed in the latent infection of primary B cells in

culture and even though EBNALP is not essential for B cell transformation it is required for
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efficient transformation (Allan et al., 1992) mediated by the Yl and Y2 exons (Mannick et al.,

1991). EBNALP and EBNA2 show cooperating effects in stimulating the increase in the

expression ofLMPI and this is mapped to the WI and W2 repeats ofEBNALP (Harada and

Kieff, 1997; Nitsche et al., 1997). EBNALP and EBNA2 also cooperate in activating cellular

genes such as CD23 and CyclinD2 in resting B cells (Sinclair et al., 1994). EBNALP has been

shown to have a weak interaction with p53 and Rb in in vitro biochemical studies but these

results have not been confirmed in vivo (Jiang et al., 1991; Szekely et al., 1993). More

recently other cellular proteins that interact with EBNALP have been identified. These

include the heat shock protein 70 family (hsp72/hsc73) (Mannick et al., 1995), DNA-PK,

HA95, hsp27, u-tubulin and ~-tubulin (Han et al., 2001). The exact role played by these

interactions is still unclear. EBNALP transgenic mice were created showing a phenotype of

premature death due to heart failure (Huen et al., 1993). However, expression of the transgene

was directed to cardiac and other tissue by using the cytomegalovirus (CMV) promoter and as

such the relevance to EBV associated disease is difficult to determine.

LMP2Aand B

The LMP2 gene is transcribed only from the circular EBV genome as the transcription unit

crosses the TR. Two different promoters (3kb apart) are used which give rise to transcripts

differing in length at the 5' end. The translation product of the longer 9 exon transcript is

LMP2A and the shorter 8 exon product (effectively 119aa N-terminal deletion ofLMP2A) is

termed LMP2B. Both LMP2 proteins are transmembrane, consisting of twelve

transmembrane spanning domains (Sample et al., 1989). LMP2A and B have been detected in

LCLs, and in NPC biopsies. In epithelial cells LMP2A may be involved in transformation by

activating the PI3K1Akt pathway (Fukuda and Longnecker, 2004; Scholle et al., 2000). It is

thought that LMP2A plays a role in the survival and persistence of infected B cells in vivo.

LMP2 forms patches at the cell membrane and LMP2A is thought to act like a constitutively

active B cell receptor (BCR) to promote B cell survival in vivo, demonstrated in transgenic

mice (Caldwell et al., 1998). Phosphorylation of its amino terminal domain recruits members

of the src family of tyrosine kinases, specifically fyn and lyn (Longnecker, 2000; Longnecker

et al., 1991). By this recruitment LMP2A activates BCR signal transduction such as calcium

mobilisation and may thus act to block the switch from the latent to the lytic cycle (Fruehling

and Longnecker, 1997; Fruehling et al., 1998; Miller et al., 1994a; Miller et al., 1993). Due to

its lack of the amino terminus LMP2B does not mimick or block BCR signalling but may act

to control the effects of LMP2A (Longnecker, 2000). Therefore, LMP2s playa role in
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maintaining the virus in its latent form, inhibiting reactivation and thus possible recognition by

the host immune system.

Epstein Barr Virus small RNAs (EBERS) 1 and 2

EBERs I and 2 are non polyadenylated, untranslated RNAs that are expressed in all latency

types apart from a new latency type discovered in liver tumour cells (Sugawara et al., 1999).

EBERs are highly expressed in all other EBV associated tumours and thus used in in situ

hybridisations as a marker for the presence of the EBV genome (Khan et al., 1992; Wu et al.,

1991).

EBER genes can be deleted from the EBV genome without affecting the viral ability to infect,

transform B cells in culture, remain latent or switch to the lytic cycle. However, they may

play an important role in maintaining the immortalised phenotype of EBV infected cells

(Greifenegger et al., 1998; Swami nathan et al., 1991).

The two EBERs are expressed from the Eco RI J fragment of the EBV genome, separated by

160 bp and they are transcribed by RNA polymerase III. Expression of the EBERs varies as in

some BL cells EBERl is detected at a 10 fold higher level than EBER2 (Lerner et al., 1981).

Studies have suggested that the difference seen is because EBERl has a longer half life than

EBER 2 (Clarke et al., 1992).

EBERl is 167 nucleotides, EBER2 is 172 nucleotides and they are 54% homologous at the

primary sequence. Their primary sequence is highly conserved among different EBV strains

(Arrand et al., 1989). Both show an extensive and similar predicted secondary structure

(Glickman et al., 1988). Studies in which the predicted secondary structure was disrupted by

replacement of inosine residues for guanosine resulted in complete inhibition of binding of

EBERl to one of the protein targets of EBERs, interferon inducible double stranded RNA

activated protein kinase R (PKR) (Clarke et al., 1991). Thus the secondary structure is

important for the EBER function. In the cell, EBERs are associated with the rough

endoplasmic reticulum and can also associate with chromosomes during metaphase

(Schwemmle et al., 1992).

EBERs can associate with three cellular proteins; the La antigen, the ribosomal protein L22

(or EAP) and PKR.

EBERs compete with viral generated dsRNA in binding to PKR. Usually, PKR is activated by

viral dsRNA thus activating the interferon response leading to apoptosis and growth
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inhibition, protecting the host from viral agents (Nanbo et al., 2002). Binding of EBERs to

PKR thus prevents PKR activation therefore allowing survival of the virus infected cell (Katze

etal., 1991).

An oncogenic property of EBERs has been suggested by transfection of EBERs into Akata

(EBV negative) cells which induced cell growth in soft agar, tumour formation in SCID mice,

conferred apoptosis resistance to the cells and upregulated levels of bcl-Z (Komano et al.,

1999; Komano et al., 1998; Ruf et al., 2000). Similar effects were shown when EBERs were

transfected into Bjab cells (EBV negative BL cell line), NIH3T3 cells and cord blood

lymphocytes (Laing et al., 1995; Zeuthen, 1983). Recently, a binding site in the EBERl

promoter for c-myc was discovered (Niller et al., 2003). This opens up a new scenario for the

involvement of EBERs in the development of BL. Translocation of c-myc in BL could lead to

activation of the anti-apoptotic effect of EBERs in an EBV positive cell, thereby contributing

to the transformation process.

Bam HI A RNA transcripts (BARTs)

BARTs have been identified in NPC, HD, BL, nasal TI natural killer (TINK) cell lymphoma,

post-transplant lymphoproliferative disorders (PTLDs), and the peripheral blood of healthy

individuals (Chen et al., 1999; Deacon et al., 1993; Hitt et al., 1989) but the protein products

have been poorly characterised. RPMSI ORF product binds to nuclear CBFl (a component of

the Notch signalling), preventing transcriptional activation and thus inhibiting NotchlEBNA2

action. Another ORF encodes the A73 protein that interacts with the cellular RACKI that

controls PKC and Src signalling, thus implying that A73 may play a role in growth regulation

(Smith et al., 2000). BARFO was one of the first products identified and is described below.

BARFO

BARFO transcripts have been implicated in NPC but the BARFO protein which is 16-20kDa

has not yet been detected. Experiments using EBV virus deleted for 58kb including BARFO,

transfected into B lymphocytes, led to B cell transformation showing that BARFO does not

play a role in this process (Robertson et al., 1994).

BARF1

BARFI is a 31kDa protein that is secreted from infected B cells and has been detected in EBV

associated NPC. Its gene transcript has been detected in EBV associated gastric carcinoma
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(Decaussin et al., 2000; zur Hausen et al., 2000). It has an immortalising effect when

expressed in primary simian epithelial cells and can transform rodent fibroblasts or human B

cells and can act as a growth factor when added in culture (SaIl et al., 2004; Sheng et al., 2003;

Wei et al., 1997). BARF 1 has been identified to be a receptor of human colony-stimulating

factor 1 (CSF-I) and share homology with the CSF-I receptor, the protooncogene c-fms.

Since CSF-l is a cytokine involved in macrophage differentiation it is possible that BARFI

plays a role in attenuating the host immune response to viral infection (Strockbine et al.,

1998). It has also been discovered that BARFI can activate Bcl-2 (an anti-apoptotic protein)

via its N-terminal region.

1.3 LMP1

Structure of LMP1
The LMPI gene consists of three exons and is read from the right end (as usually depicted) of

the linear virus genome in the reverse orientation to the EBNAs. LMPI is a 63kDa protein of

386 aa. LMPI is a transmembrane protein that is located in cellular membranes including the

plasma membrane where it associates with vimentin in B cells and the cytoskeleton. It has

been recently shown to be located in intracellular lipid rafts and primarily signal from there

(Lam and Sugden, 2003). Once in the membrane LMPI can undergo several post-

translational modifications including cleavage at the carboxy terminus (at Leu 242) to release

a 25kDa C-terminal fragment and phosphorylation on serine (Ser313) and threonine (Thr324)

(Baichwal and Sugden, 1987; Moorthy and Thorley-Lawson, 1993). The half life ofLMPI

varies from 2-15hrs depending on whether it is associated with the cytoskeleton or not and

depending on LMPI strain and cell type.

LMPI comprises three distinct regions; a positively charged short amino terminus (1-24aa)

followed by six transmembrane domains (2S-186aa) and a long effector carboxy terminus

(187-386aa) (Fennewald et al., 1984). The carboxy terminus can be further divided into three

domains, termed carboxy terminus activating regions (CTAR) 1-3 that mediate binding of

several cellular proteins and activate downstream signalling pathways. Within the carboxy

terminus is an 11aa repeat motif, the number of repeats varies among the different LMP1

strain variants (fig.l.2).
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Cell membrane

Figure 1.2: The structure ofLMPl (Not to scale)

LMPI oligomerises at the membrane. LMPI comprises a short amino
terminus (orange), six transmembrane domains (green), and a long
carboxy terminus. There are three regions within the carboxy terminus;
CTARI (red), CTAR3 (blue) and CTAR2 (black) which associate with
cellular proteins to mediate the signalling activity ofLMPl.



Deletion studies have been used as a means to determine the function of the various domains

of LMP!. It was shown that the amino terminus of LMPI is essential for efficient

transformation, orienting LMPI within the cell membrane (Coffin et aI., 2001) and ubiquitin

targeted degradation of LMPI. Deletion of the first 44aa of LMPI - including the amino

terminus and the first transmembrane domain - led to accumulation ofLMPI at the membrane

but failed to induce aggregation of LMP 1 and B cell transformation, showing that

oligomerisation is needed for LMPI to exert its function and that proper orientation and

anchoring in the plasma membrane is essential for LMPI aggregation (Izumi et aI., 1994;

Kaye et al., 1993). A mutant LMPI that had a 12aa acid deletion within the amino terminus,

failed to bind to ubiquitin and thus the LMPI molecule was not degraded (Aviel et aI., 2000).

The transmembrane domains of LMP1 are required for oligomerisation of LMP1 (Kaykas and

Sugden, 2000; Kaykas et aI., 2001) which is essential for its transforming and other functions

(Baichwal and Sugden, 1989; Kaye et al., 1993; Liebowitz et aI., 1992). The transmembrane

domains are required for activating caspase-3 and inducing cell death (Nitta et aI., 2004), are

needed for protein stabilisation (Blake et al., 2001), for efficient signalling and for activating

the small GTPase Cdc42, inducing cytoskeletal reorganisation and phosphorylating the

eukaryotic translation initiation factor 2 (eIF2a) thus inhibiting gene expression (Lam et al.,

2004). Expression of a dominant negative Cdc42 in fibroblasts and B cells, inhibited

cytoskeletal reorganisation and deletion studies mapped the Cdc42 activation site in the LMP1

transmembrane domains (Puls et al., 1999; Wang et al., 1988). The first and second

transmembrane domains are required for the cytostatic effects observed as a result of LMP1

overexpression and for LMPI association with lipid rafts as demonstrated by deletion studies

in epithelial, BL and T cells (Coffin et al., 2003; Kaykas and Sugden, 2000; Sandberg et al.,

2000).

The carboxy terminus is responsible for mediating activation of several signalling pathways

via interaction with cellular proteins and is essential for B cell transformation (Kaye et al.,

1995; Peng-Pilon et al., 1995) (fig!.3). CTARI spans aa 194-232 and contains a PXQXXD

motif that allows binding of tumour necrosis factor receptor-associated factors (TRAFs)

1,2,3,5 (Devergne et al., 1997; Devergne et al., 1996; Devergne et al., 1998; Kaye et al., 1996;

Mosialos et al., 1995; Sandberg et al., 1997). The TRAF binding domain in CTARI is

essential for B cell transformation as shown by a deletion mutant that lacks aa 185-211 (Izumi

et al., 1997). CTAR2 spans aa 351-386 and contains a YYD motif that allows tumour necrosis

factor associated death domain (TRADD) and bone morphogenic protein receptor associated
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Figure 1.3: Signalling pathways activated by LMPI

The diagram shows the signalling pathways activated by LMPI. The
amino terminus and the transmembrane domains of LMPI can lead to
Cdc42 activation which leads to cytoskeletal reorganisation. CTARI
recruits the p85 subunit of PI3K leading to activation of the PI3K1Akt
pathway. CTARI also recruits a TRAF complex consisting of TRAFs
112/3/5. This complex leads to p38 and JNKIAPI activation directly and
via TRAF6 to NF-lCBactivation. Similarly, CTAR2leads via recruitment
of RIP and TRADD and their association with TRAF2 to activation of the
same pathways. CTAR2 can also lead via an as yet unidentified molecule
to ERKll2 activation. CTAR2 associates with BRAM which plays a role
in negatively regulating NF-KB activation. CTAR3 associates with JAK3
leading to activation ofSTAT1I3. Note that activation is indicated by a red
outline, whilst inhibition is indicated by a thick black outline. Pathways
which involve other unknown molecules are shown as dotted arrows.
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molecule (BRAM) binding. The CTAR2 region is essential for maintaining the outgrowth of

LCLs as a mutant lacking the last 155 residues can initiate B cell proliferation but cannot

maintain the growth of LCLs. It is believed that CTAR2 enables this by its ability to bind

TRADD and activating the downstream signalling pathways (Izumi and Kieff, 1997; Kaye et

aI., 1995). It was shown by yeast-two-hybrid experiments that the carboxy terminus ofLMPl

can directly interact with TRAFs 1-4 and TRADD (Brodeur et aI., 1997; Devergne et al.,

1996). Both CTARI and 2 are essential for B cell immortalisation and they are also known as

the transformation effector sites (TES) 1 and 2 (Izumi et aI., 1999). In epithelial cells,

presence of either of these domains enhances TNFa. mediated apoptosis (Kawanishi, 2000).

CTAR3 spans aa275-330 (between CTARsl and 2) and contains two box 1 regions

(PXXPXP) and a box 2 region that mediates binding of Janus kinase (JAK) 3. CTAR3 is not

essential for B cell transformation (Izumi et al., 1999). Its ability to bind JAK3 may be

affected by CTARsl and 2 as use ofa dominant negative LMPI that inhibited CTARI and 2

signalling, led to inhibition of STAT signalling as well (Brennan et aI., 2001).

LMP1 signalling
LMPI is a pleiotropic protein playing a role in cell proliferation, inhibition of apoptosis, cell

cytostasis, control of cell cycle and angiogenesis. It mediates its functions by activating

several signalling pathways and this has very different, sometimes opposite outcomes in

different cell types. The pathways shown to be impacted by LMPI are:

(1) the nuclear factor KB (NF-KB) pathway

NF-KB is a transcription factor usually found in the cytosol as an inactive homolheterodimer

bound to the inhibitory proteins (IKBs). There are five members in the mammalian NF-KB

family; p65, c-Rel, RelB, p50/p105 (when unprocessed) and p52/pl00 (when unprocessed).

Binding of ligands to IL-l receptors, TNF receptors, lysophospholipid (LPL) receptors and

other extracellular signals activate the IKB regulatory kinases (IKK) activating kinases (NIK

or MEKK1) that can phosphorylate and activate IKKs. Activated IKKs, phosphorylate IKBs.

IKB phosphorylation leads to the release of the bound NF-KB that can now translocate to the

nucleus and activate various genes by binding to NF-KB sites in their promoters (reviewed in

(May and Ghosh, 1998).

The NF-KB pathway is activated by both CTAR 1 and CTAR2 of LMPI. CTARI is

responsible for about 20-30% of the total NF-KB LMPI mediated activation whilst CTAR2 is

responsible for the rest (Floettmann and Rowe, 1997; Huen et aI., 1995; Mitchell and Sugden,
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1995; Paine et al., 1995). CTARI associates with the TRAF1,2,3,5 complex recruiting NIK,

phosphorylating hill and releasing NF-KB (Luftig et al., 2003; Luftig et al., 2004; Sylla et al.,

1998). CTAR2 associates with TRADD, recruiting TRAF2 or associates with receptor

interacting protein (RIP), both routes activating NF-KB. Overexpression of LMPI CTAR2

domain and either TRADD or RIP in 293 cells led to the conclusion that TRADD cooperates

with CTAR2 in activating NF-KBbut RIP has only an additive effect on this activation (Izumi

et al., 1999).

NF-KB signalling is essential for the transforming properties of LMPI both in Band Rat-l

cells (Cahir et al., 1999, He et al., 2000). Anti-apoptotic genes (bel-2, A20, Mel-1, c-IAP2),

genes involved in angiogenesis, invasion and metastasis (MMP9, COX-2, VEGF, IL-8, Id-I)

are activated by binding of NF-KB to binding sites in their promoters (D'Souza et al., 2004; Li

et al., 2004; Murono et al., 2001; Yoshizaki, 2002; Yoshizaki et al., 1998). EGFR is

upregulated by NF-KB in HNE2 cells in a similar way (Tao et al., 2004b). In a C33A (a

cervical carcinoma line) cell line NF-KB activity was not sufficient for EGFR upregulation

(Miller et al., 1995; Miller et al., 1997) but both studies concluded that CTARI was essential

for this activation.

NF-KB activity can be modulated by binding of BRAMI to CTAR2. This interaction, inhibits

IKBa phosphorylation leading to inhibition of NF-KB activation (Chung et al., 2002).

BRAMI is therefore acting as a negative regulator of the LMPI mediated functions. LMPI

also modulates NF-KB activity via the A20 protein which is upregulated by activated NF-KB.

Upregulation of A20 leads to A20 interacting with LMPI and competing with TRADD and

TRAFI for binding to the LMPlffRAF1I2ffRADD complex. Displacement of TRADD and

TRAFI from LMPI binding complexes leads to inhibition of CTAR2 mediated NF-KB

activation and CTARI mediated JNK activation. Decreased NF-KB activity, leads to

decreased A20 levels and so TRADD and TRAFI can bind CTAR2 and CTARI respectively,

activating NF-KB and JNK signalling (Fries et al., 1999). In this way LMPI negatively

regulates its own biological functions.

(2) the c-Jun N-terminal kinase (JNK pathway)

CTAR2 mediates the activation of the JNK pathway. It has been revealed with mutational

studies that the last 8aa of CTAR2 are important for this activation. However, a recent study

using mouse embryo fibroblasts (MEFs) from knock out mice (RIP, TRAF6, TRAF2, IRAK4,

TAB2 null) and small interfering RNA (siRNA), challenges the belief that JNK activation was
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dependent on recruitment of TRADD and TRAF2 to CTAR2 and stress enhanced kinase

(SEK) activation. The latter suggests that an unidentified linker leads to TRAF6 association

with CTAR2linking it to a TABI/fAKI complex that then activates JNKKI/2 that will then

lead to INK activation (Eliopoulos et al., 1999; Eliopoulos and Young, 1998; Kieser et al.,

1997; Wan et al., 2004). Active JNK phosphorylates c-Jun leading to homo/heterodimer

formation with other members of the Jun or Fos family thus producing an active API

complex. The TRAF 2,3,5 complex associates with CTARI and recruits TRAFI which also

leads to JNKlAPI activation. A new heterodimer fomation between c-Jun and JunB mediated

by LMPI in the HNE2 cell line, can expand the signalling pathways affected by LMPI (Song

et al., 2004b).

(3) the p38MAPK pathway

The p38MAPK pathway is activated in epithelial cells via the same regions and cellular

effector proteins as for NF-KB but the two pathways separate downstream of TRAF2 as

chemical inhibitors and dominant negative TRAF2 expression studies have shown (Eliopoulos

et al., 1999). Activation of p38MAPK leads to IL-6 and IL-8 upregulation that play a role in

cell survival.

(4) the IAKISTAT pathway

The CTAR3 region contains 2 boxl elements and a box 2 that contain binding elements for

JAK3. Binding of JAK3 to CTAR3 leads to its auto/transphosphorylation leading to

activation of signal transducer and activation of transcription (STAT) 1 and 3, transcription

factors in B and epithelial cells (Gires et al., 1999). Further, LMPI expression in CNE-2 cells

led to activation of STAT3 and 5 and STAT3 activation was shown to lead to the upregulation

of the c-myc gene (Chen et al., 2003). A dominant negative form of LMPI in which the

PXQXXD motif was substituted for alanine (AXAXXA), and the first tyrosine of the YYD

motif in CTAR2 region was replaced by glycine inhibited NF-KB and API signalling by

preventing binding of TRAF2 to LMPI. Surprisingly, even though the CTAR3 region was

intact, STAT signalling was inhibited, implying that intact CTARI and 2 domains playa role

in CTAR3 mediated signalling (Brennan et al., 2001).

(5) the PI3K1Akt pathway

The CTARI region of LMPI can lead to activation of the PI3K1Akt cascade in epithelial cells

by recruiting the p85 subunit of the PI3K either directly or via a linker (Dawson et al., 2003).
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Activation of Akt can lead to growth proliferation, decreased apoptosis and actin cytoskeleton

reorganisation.

(6) the ERK1I2 pathway.

In rat fibroblasts LMPI has been shown to increase ERK1I2 phosphorylation and this is Ras

dependent. Where this activity maps on the LMPI protein is not known. However, this study

shows that LMPI can possibly transform cells via activation of the Ras pathway (Roberts and

Cooper, 1998). Activation of ERK1I2 can lead to transcription of genes involved in

proliferation, angiogenesis and metastasis. One such factor that is upregulated by LMPI via

the ERK1I2 activation in human epithelial nasopharyngeal cells, is HIF-la which upregulates

the vascular endothelial growth factor (VEGF), and RECK, a metastasis suppressor gene

(Wakisaka et al., 2004). Transfection of an LMPI expressing vector into an EBV negative

NPC cell line (TW04) led to decrease of RECK protein and inhibition of its promoter (Liu et

al., 2003). LMPI transformed MDCK cells show increased levels of Etsl - an ERKI/2 target

- that contributes to metastatic invasion by upregulating c-Met (Horikawa et al., 2001). LMPI

mediated activation of ERK1I2 not only plays a role in proliferation but also in metastasis.

Constitutive LMPI mediated, ERK1I2 activation in gastric epithelial cells leads to TGF~

inhibition thus releasing the cells from the TGF~ mediated growth arrest (Fukuda et al., 2002).

The TGF~/Smad pathway can also be inhibited in an NF-KBmediated way in HEK293 cells

and COS-7 fibroblasts (Prokova et al., 2002).

The role of LMPI in cell cycle control has been investigated in murine and human fibroblasts

where LMPI expression led to their proliferation, downregulation of pI6INK4a and inhibition of

Ras induced senescence (Yang et al., 2000a; Yang et al., 2000b). This LMPI induced pI6INK4a

inhibition, was found to be due to LMPI promoting the nuclear export of Ets2 (transcriptional

activator of p16) and E2F4/5 (downstream mediators of pI6)(Ohtani et al., 2003). Even

though LMPI alone did not lead to transformation, its cooperation with an oncogene (mutant

CDK4, that cannot be pl6lNK4a inhibited) did.

LMPI via CTARI leads to increased epithelial cell sensitivity to DNA damaging factors

leading to micronucleus formation. Accumulation of unrepaired DNA can cause genomic

instability (Liu et al., 2004). LMPI also inhibits p53-mediated apoptosis in both BL and

epithelial cells (Fries et al., 1996). LMPI can also activate DNA methyltransferases via

CTARl, leading to hypermethylation of the E-cadherin promoter, enhancing invasiveness in

epithelial cells.
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LMPI exerts different effects in different cell types but collectively all point to a very

complex molecule that activates pathways associated with tumourigenesis.

LMP1 Function
Even though LMPI has no primary sequence homology with any known proteins it shares

functional similarities and core motifs to the TNFR family of receptors especially CD40.

LMPI has been shown to be constitutively active and be independent of ligand dependency

(Gires et aI., 1997; Hatzivassiliou et aI., 1998). Expression of LMPI independent of ligand

allows for continual proliferation of human B cells infected with EBV. This proliferation is

also possible with CD40 signalling. However, both LMPI and CD40 induced proliferation

was found to be EBNA2 dependent. In experiments where EBNA2 expression was inhibited,

B cells did not maintain proliferation either in the presence of LMPI or in the presence of

CD40 (Kilger et aI., 1998; Zimber-Strobl et aI., 1996). Even though LMPI signals in the

absence of a ligand, it can regulate its activity. Increased levels of LMPI can lead to

cytostasis thus protecting the host cell from excessive signalling and can lead to inhibition of

gene products transcribed from the Cp and LMPI promoters thus regulating its own

expression as well as inhibiting cellular protein synthesis (Hammerschmidt et al., 1989;

Sandberg et al., 2000).

Another role that LMPI may have in the viral context is that it activates interferon regulatory

factor (IRF) 7 that regulates latency via preferred promoter usage and also activates the

cytotoxic T cells, enabling the host's immune system to kill cells that are undergoing

uncontrolled proliferation induced by EBV. This agrees with the role LMPI has in inducing

cytostasis and inhibition of gene expression as described above and with the role it plays in

inhibiting viral lytic cycle induction. Inhibition of lytic cycle prevents massive amounts of

new virus being presented to the host immune system and also prevents extensive cell damage

to the host (Adler et al., 2002). In B cells LMPI expression can upregulate cell activation and

cell adhesion factors such as CD23, CD39, CD40, CD44, CD83, MLH II, IL-I0(Nakagomi et

aI., 1994), LFA-l, ICAM-l, LFA3 and can downregulate CDI0 leading to cell growth and

also elimination of transformed B cells to protect the host. It can also protect B cells from

apoptosis via upregulation of bcl-2 and A20 , both anti-apoptotic proteins (D'Souza et aI.,

2000; Henderson et aI., 1991; Rowe et aI., 1994).

LMP I has been classified as a classical oncogene since it can transform rodent fibroblasts and

Balb/3T3 cells in culture (Baichwal and Sugden, 1988; Wang et aI., 1985) and is essential for

B cell immortalisation by EBV as shown by recombinant virus genetics (Kaye et aI., 1993).
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When LMPI expression is directed under a polyoma virus (Py) early promoter to the skin

epithelium of mice it causes skin hyperplasia (Wilson et al., 1990) and sensitises mice to

chemical carcinogens (Curran et al., 2001). When LMPI expression is directed to the B cell

compartment of transgenic mice it predisposes the mice to B cell lymphomas (Kulwichit et al.,

1998)( Wilson JB unpublished data).

In some epithelial cell lines (SCC12F, RHEK-l) LMPI inhibits differentiation and alters

keratinocyte morphology and keratins expression patterns (Dawson et al., 1990; Fahraeus et

al., 1990) whereas in others (HaCat) LMPI expression led to tumour formation in SCID mice

and (in HaCat, SCC12F and murine epithelial cells of transgenic mice) no inhibition of

differentiation was observed (Nicholson et al., 1997; Wilson et al., 1990) showing that the

genetic backround of the cell used and LMPI levels are important in determining function.

LMPI can also upregulate levels of EGFR protein and mRNA in C33A epithelial cells (Miller

et al., 1995).

1.4 EBV related diseases
EBV was first postulated to play a role in disease in the 1960s when its presence was

discovered in a BL cell line. Since then it has been associated with many other malignancies

and has been classified as a class I carcinogen by the World Health Organisation (WHO).

EBV infection is usually asymptomatic if the individual is infected early in life. However,

immunocompromise due to genetic, iatrogenic or other reasons as well as environmental

agents lead to EBV acting as a tumour promoting agent. Usually when EBV acts in

tumourigenesis it is in its latent phase and there are several latency programs expressed with

each type of malignancy.

Latency Program Tumour

Latency I BL,

Gastric Carcinoma
Latency II NPC, HD, TINK cell lymphomas
Latency III PTDL

Table 1.3: Latency programs and tumour association.

A brief description of the main diseases associated with EBV are given below:
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EBV Associated Diseases

Infectious Mononucleosis (1M)
About 50% of people who contract EBV between the ages of 17 and 25 will develop 1M. It is

more common in developed countries where higher sanitary conditions and a decreased

tendency to breastfeed lead to late EBV infection (reviewed in (Papesch and Watkins, 2001).

The connection between 1Mand EBV came in the 1960s when a known EBV negative worker

in the Henle lab developed 1M. After recovering EBV was detected in her serum.

Primary infection occurs via the saliva and sexual contact as EBV virions have been detected

in the sperm and the squamous epithelial uterine cells. 1M shows a variety of symptoms

including mild fever, headache, pharyngitis, lymphadenopathy, malaise and fatigue. EBV is

detectable at high levels in the oropharynx of 1M individuals. It is usually a self limiting

disease. The prevalence of 1M in adolescence compared to childhood may not be due to the

age but due to the dose of the virus. It is more likely that an individual receives larger

amounts of virus in adolescence through the more expanded social and sexual interactions and

this can increase the initial pool of infected B cells. Once a threshold level of infected B cells

is exceeded the immune system starts work and the T cells respond, producing the symptoms

described above. The course of the disease follows the level of activated T cells in the blood.

Acyclovir (ACV), a nucleoside analog that inhibits lytic EBV infection by inhibiting viral

DNA polymerase, was shown to decrease the EBV shedding but did not alleviate any of the

disease symptoms. This therefore indicates that the symptoms follow the nonproductive EBV

infection in lymphocytes.

In acute 1M B cells resemble EBV infected LCLs in vitro and show a latency III type

expression pattern. Eventually, the disease resolves naturally (Papesch and Watkins, 2001).

Oral Hairy Leukoplakia (OHL)
OHL is almost exclusively found in AIDS patients. Raised white lesions develop in the

tongue epithelium of these patients and EBV particles are found in those cells undergoing lytic

infection. No latent EBV infection is detected (Webster-Cyriaque et al., 2000).

X-Linked lymphQproliferative syndrome (XPLS)
XLPS affects males who inherit the mutated XLPS gene. The gene is located on the X

chromosome and it normally encodes for a protein (SLAM associated protein) that limits B

and T cell proliferation. The mutated gene cannot produce such a protein so upon primary

infection with EBV, a massive tissue destruction probably due to uncontrolled T cell
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proliferation is seen and the patient dies within 2-3 weeks of fatal 1M. Those who survive are

likely to later develop other EBV associated lymphomas in 2 or 3 years (Hsu and Glaser,

2000).

Lymphoid Tumours:
Burkitt's Lymphoma (BL)

BL was the first tumour to be associated with EBV and from which the virus was first isolated.

All BLs are characterised pathologically, by a mass of small noncleaved malignant B cells

interfused with non-neoplastic macrophages giving rise to a "starry sky" appearance. There

are three types of BL. eBL is predominantly a childhood cancer of the jaw that is most

common in Africa and Papua New Guinea, areas that coincide with the Plasmodium

Falciparum malarial zone. Incidence rates are about 6-15/100,000/year and occur in young

children of 5-7years old. Males are more likely to be affected than females in a 3:1 ratio. The

EBV episome has been detected in more than 95% of eBL cases and is monoclonal (Magrath,

1991). Increased IgA antibody titers to viral capsid antigen (VCA) were linked to a 30 fold

increased risk in 42,000 African children (de-The et aI., 1978). There is a possible genetic

component to the disease in that certain carriers of HLA locus (DR7) are found to be more

susceptible to developing the disease (Jones et aI., 1985).

Sporadic BL (sBL), which occurs worldwide, is at least 50 times rarer than eBL. Only about

15-88% ofsBL are associated with EBV. The tumour in sBL is localised in the abdomen and

affects Caucasian children and older adults. The incidence rate is about OJ/I00 OOO/yearand

males are more susceptible than females in a rate of3-4:1.

The third category, AIDS-related BL, occurs in non endemic regions and is an abdomen

tumour affecting people of all ages. Latent EBV infection occurs in about 30-40% of the

tumours and the EBV episome is monoclonal (Ballerini et aI., 1993).

In all three classes of BL, there are common chromosomal translocations. These occur at the

long arm of chromosome 8 (where the c-myc locus lies) and either chromosome 14 (the

immunoglobulin heavy chain region) or with less frequency chromosomes 2 or 22 (in the

region of the immunoglobulin light chain loci). The effect is deregulation of the c-myc

protooncogene (Gutierrez et aI., 1992). Along with these translocations EBV acts to stimulate

B-cell proliferation. In eBL patients the immunosuppressive action of malaria is thought to

make it easier for EBV to escape immune surveillance and infect B cells.
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Despite the fact that EBV is not so common in sBL, one study showed that in a few sBL

tumours, the EBNAI gene may be absent but they still contain a defective EBV genome

(Razzouk et al., 1996). This could imply that the virus was essential for the tumourigenesis

but during malignant progression its presence became non essential and the genome was

reaaranged or lost in what is known as a "hit and run" scenario. If this is the case maybe EBV

is associated with sBL at a much higher rate than that detected in presented tumours.

Viral expression in BL shows a latency I pattern.

Hodgkin's Disease (HO)

HD is a lymphoma that morphologically is presented as Reed-Sternberg cells among other

inflammatory cells. HD has at least five pathological subtypes, all composed of different

proportions of different cell types. It is a tumour of the lymph nodes and even though seen

worldwide, is particularly common in the Western World where it comprises 20% of the

lymphomas. HD affects mostly young adults. The EBV association with HD is strongest in

HDs from developing countries compared to HDs from developed countries. For example,

only 40-50% of the tumours in the Western World are EBV positive but 90% of the tumours

in Honduras and Peru are EBV positive. Some of the first evidence that EBV was associated

with HD came from the fact that individuals who had suffered from 1Mwere 3-5 times more

likely to subsequently develop HD. Also serological studies showed that there was an increase

of IgA titers to VeA and EA years before the development of the disease and those

individuals had 3-4 times higher risk to develop HD. The EBV episome in the EBV positive

tumours is monoclonal. All Reed-Sternberg cells of EBV positive tumors express latency II

(Dolcetti and Boiocchi, 1998).

T/NK cell lymphoma

TINK cell lymphoma is a midline facial necrotic disease. More than 90% of the NK cell

lymphoma cases present with monoclonal EBV episome in the tumour cells. This disease is

rarely seen in the Western World but is more common in Asia and Peru where it constitutes

8% of the lymphomas of those regions.

Post-transplant lymphoproliferative Disorder (PTlD)

PTLD occurs in about 10% of iatrogenically immunosuppressed individuals. The dose of the

immunosuppressive agent and a primary EBV infection are risk factors. Seronegative
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individuals who contract EBV after transplant have higher risks of developing PTLD. The

tumour is more often presented in the central nervous system (CNS) or the brain. More than

95% of the cases show EBV episome in the tumour cells exhibiting latency III (Hopwood and

Crawford,2000).

AIDS-associated immunoblastic and primary central nervous system

lymphomas

These AIDS-associated lymphomas occur at the later stages of the disease. About 90% of the

primary CNS lymphomas and 70% of the immunoblastic lymphomas contain monoclonal

EBV sequences. These lack HIV sequences implying that EBV and not HIV is the causal

factor although HIV induced lack of T cell response must play a major role. The tumours

express latency I or III, depending on the kind of tumour (Hsu and Glaser, 2000).

Epithelial tumours:
Gastric Adenocarcinoma

Gastric carcinoma is common worldwide. About 4-18% of gastric carcinomas are EBV

positive, the percentage depending on geographic location. For example in Japan, 7% of

gastric carcinoma tumours are EBV positive whilst only 4% is reported in the UK and 16% in

the USA. Increased IgA antibody titers to VCA are seen years before the manifestation of the

disease. Salted and certain preserved food consumption along with the infection of the

Helicobacter pylori are potential cofactors for the development of the disease.

The Bam HI A RNAs and the EBERs are always expressed whilst LMP1 and LMP2B are not

expressed. Of the latent proteins, EBNAI and LMP2A or only EBNAI are expressed. EBV

positive gastric adenocarcinomas have a better prognosis and they all share genetic

characteristics such as the loss of p161NK4a.Premalignant gastric adenocarcinomas do not

show EBV infection suggesting that EBV infection is a late event in the process of

carcinogenesis in this tissue (Fukayama et al., 1994; Luo et al., 2005).

Breast Cancer

There is great controversy as to whether EBV plays any role in breast cancer (reviewed in

(Magrath and Bhatia, 1999). Initial studies on medullary breast carcinoma that is

morphologically similar to NPC showed that some cells within a subset of aggressive breast

tumours were positive for expression of the EBNAI gene (Bonnet et al., 1999) but only 50%
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of the tumours examined showed presence of EBERs (Labrecque et al., 1995) and in the EBV

positive cases, the viral DNA was only detected in a subset of the tumour cells suggesting that

either infection took place after tumour initiation or that the virus was no longer required for

cell growth and was lost. The whole story was confounded with several reports showing no

detection of EBV DNA in breast cancer cells (Chu et al., 1998; Dadmanesh et al., 2001;

Glaser et al., 1998; Herrmann and Niedobitek, 2003; Horiuchi et al., 1994; Lespagnard et al.,

1995). This could be due to the methods used. For example, EBER in situs are used as a

standard method for indicating the presence of EBV virus in a tumour. However there have

been EBV positive tumour cases that do not show EBER expression (Sugawara et al., 1999).

Furthermore, the way the tissue is fixed can affect detection of viral proteins. It is also

important to be able to show presence of EBV in tumour cells only. Further doubt arose when

the anti-EBNAI antibody used in the positive breast cancer study was found to cross react

with a tumour specific cellular protein (Murray et al., 2003). Based on these technical

restrictions, weight of evidence is currently against EBV having a role in breast cancer, but

this is not conclusive.

Nasopharyngeal Carcinoma (NPC)

Nasopharyngeal carcinoma is a tumour of the epithelium of the nasopharynx arising from the

Rosenmuller fossa. The WHO has classified NPCs into three distinct categories depending on

their histopathology. Type I NPCs are keratinising, well differentiated squamous cell

carcinomas (SCC), type II are non-keratinising SCC and type III are undifferentiated

carcinomas of the nasopharyngeal type. Type III carcinoma was also described as

lymphoepithelioma due to the infiltration of the primary tumour with T cells.

One of the characteristics of NPC, is its significant geographical variation in incidence. The

highest incidence ofNPC is seen in S. China and South East Asia with intermediate incidence

levels in Arctic and North African populations, Characteristically 80% of all new NPC cases

in year 2000 were in S.China. Even in the high incidence areas there is variation. For

example, in S.China the Kwangtung, Kwangsi, Hunan and Fukin regions have a much higher

incidence than other areas of S.China. The incidence in high risk areas is about 30-50/100,000

cases per year, in intermediate risk areas the incidence is between 8-12/100,000 cases per year

and in the Western world where NPC is a rare malignancy the incidence rate is about 0.5-

21100,000 cases per year. More males are affected than females independent of geographic

location. The ratio of male to female is between 2.5-3:1. The age of onset is between 55-65
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years for Caucasians but it drops to 40-45 for Chinese. In North African populations there is a

bimodal age distribution ofNPC with cases seen between 10-20 and at 55-65.

Symptoms of NPC include blood tinged sputum, a neck mass, nasal obstruction and aural

symptoms such as hearing loss, frequent headaches and neurological symptoms. However,

most often the only clinical manifestation ofNPC is cervical lymph node metastasis.

The aetiology of NPC is multifactorial including environmental, genetic and viral (EBV)

factors. Studies on high risk individuals who emigrated to low risk areas show clearly the

genetic and environmental connection. Studies on Cantonese Chinese who emigrated to

California showed that they had an increased incidence of NPC compared to Caucasians and

that the risk was much higher if they were born outside the US. However their risk was lower

compared to Chinese in S.China. Also second and third generation Cantonese Chinese living

in low risk areas still developed NPC at a higher incidence than the local population

suggesting that NPC has a genetic association or that the environmental factor is diet and

maintained in the subsequent populations (Buell, 1974; Hildesheim and Levine, 1993). A

recent study in Hong Kong showed that there was a 30% decrease in NPC cases over a period

of20 years (1980-1999) implying environmental changes are responsible forNPC (Lee AW,

2003). Sib-pair analysis of affected siblings showed that in high risk populations HLA.A2 ,

B46 and B14 alleles confer susceptibility to NPC whereas in US Caucasians the HLA.A2

allele (which is more common in Caucasians) confers protection (Burt et aI., 1994). Similarly,

the HLA-A*0207 allele was associated with NPC in Chinese but not Caucasians. It is thought

that a gene linked to the HLA loci could be responsible for the NPC susceptibility. Such a

gene could be the cytochrome P450 2El enzyme (CYP2El) that can metabolise nitrosamines

and it was shown that CYP2E 1 c2 allele and NPC show a strong association in Chinese

(Hildesheim et al., 1997). Polymorphisms at other genes such as GSTMI (involved in

detoxification) and XRCCI and hOGGI (involved in DNA repair) are also associated with

increased risk ofNPC (Nazar-Stewart et al., 1999).

The strongest environmental factor associated with NPC is the traditional foods of the high

risk areas (eg. traditional Cantonese style salted fish and spiced meat) that contain volatile

nitrosamines which are known carcinogens. Rats and mice fed with Cantonese style salted

fish developed tumours (Huang et al., 1978). The nitrosamines could be acting as chemical

carcinogens, predisposing the nasopharyngeal epithelium to genetic damage and latent

infection with EBV.
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EBV has been detected in 100% ofNPC lesions. All the type II and III NPCs show increased

IgG and IgA titers to VCA and EA. All tumour cells contain clonal EBV DNA implying that

infection of the cell with EBV took place before the cell acquired its proliferative capacity and

that EBV plays a role in tumour progression (Raab-Traub, 2002; Raab-Traub and Flynn,

1986). There is a controversy as to whether type I NPC is EBV associated or not (Krueger et

al., 1981; Pearson et al., 1983; Sam et al., 1989). Several studies have shown by in situ

hybridisation of EBERs or by EBV expression that there is EBV in all NPC types

(Pathmanathan et al., 1995; Raab-Traub et al., 1987; Vasef et al., 1997). Others however,

reported presence of EBV only in type II and III but not type INPC by using EBER in situs
and polymerase chain reaction (PCR) (Hording et al., 1993; Niedobitek et al., 1991). This

controversy could be explained with the observation that all NPCs from endemic regions

contain EBV whereas only 33% of NPC type I from low risk areas have shown any EBV

association (Nicholls et al., 2004). Other factors such as smoking may also be involved in

NPC type I pathogenesis but not in type II or III.

In the tumour, EBV expresses latency II in which EBNA1, LMP1, LMP2, EBERs and Bam

HI A RNA transcripts are expressed. EBNAI expression has been detected in all the NPC

cases analysed and EBERs have been detected at high levels. LMP 1 expression is more

variable and depends on the detection method used. By RT-PCR 100% of primary NPC

tumours (18 samples) showed LMPI expression (Brooks et al., 1992). Only 60% of the

tumours analysed led to LMPI detection by protein in situ (Niedobitek et al., 1992; Sheen et

al., 1999; Stewart and Arrand, 1993; Young et al., 1988) but 100% of premalignant NPC

lesions showed LMPI expression (Pathmanathan et al., 1995). S. Chinese NPCs that showed

LMPI protein expression grew faster and were larger than LMPI negative NPCs. However,

the LMPI negative NPCs, had greater chances of recurring and metastasising.

LMP2A mRNA was detected in most primary NPC tumours analysed whilst LMP2B mRNA

was detectable at low levels in only a subset of the tumours (Brooks et al., 1992). Using new

antibodies for LMP2A, another group showed that 45.7% of the tumours analysed expressed

LMP2A (Heussinger et al., 2004).

Barn HI RNA transcripts are also implicated in NPC (Gilligan et al., 1991) but protein

detection is unclear. Older studies (Fries et al., 1997) detecting BARFO protein in NPC

biopsies used an antibody that cross reacts with a cellular protein (Schroder et al., 2002). This

issue needs further clarification. BARF 1 transcripts and protein have been detected in 85 % of
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a sample range of Algerian NPC biopsies. Aside from LMPl, BARFI may be another

oncogenic protein playing a role in NPC formation and development.

Expression of the early lytic gene BZLFIIZEBRA has been detected in 100% ofNPC biopsies

analysed by RNA in situs whereas the protein has been detected in 90% of the samples

analysed showing that there is EBV reactivation in these tissues (Cochet et aI., 1993).

In NPC tumour cells several chromosomal rearrangements have been described. Loss of 3p, 9,

11q, 13q, 14q, 16q and gain of 12 are some of the commonest chromosomal abnormalities

observed in NPCs. A number of tumour suppressor genes map to the chromosomes that are

lost and are therefore possible candidates in tumourigenesis. RASSFla maps to 3p, pl4ARF

and p 16INK4a map to 9p, TSLC-l, MLL and ATM map to 11q and loss of 13q, 14q and 16q

lead to loss of EDNRB and changes in E-Cadherin expression. Aberrant promoter

hypermethylation in NPC is another way by which tumour suppressors are not expressed (Lo

et al., 1996).

No p53 mutations have been detected in NPC biopsies to date (Effert et al., 1992; Spruck et

aI., 1992). However, consistent pS3 overexpression of the wild type form has been reported

(Murono et aI., 1999; Niedobitek et al., 1993). There are two theories to explain this

observation; one is that due to loss ofpl4ARF, the MDM2 protein is free to bind and target pS3

for destruction however this is not the case as there is pS3 overexpression and levels of

MDM2 detected in NPCs are low (Kouvidou et aI., 1997). The other more likely theory is that

overexpression of a dominant negative homolog of p53- Delta Np63- may bind to pS3 and

block its function (Crook et al., 2000).

Precancerous lesions and invasive tumours show upregulation of Bc1-2 but there is no

indication that there is any relationship between LMPI expression and Bcl-2 upregulation.

Other factors that are upregulated and may contribute to inhibition of apoptosis are

upregulated metallotheionein (MT), inhibitors of differentiation 1 (Id) and loss of death

associated protein kinase (DAPK) (Jayasurya et aI., 2000; Kwong et aI., 2002). Further

factors that are found to be upregulated in NPC are epidermal growth factor receptor (EGFR),

matrix metalloproteases (MMPs), hypoxia factors (HIF-Ia and CAlX), Cox-2 (Murono et aI.,

2001; Thornburg et aI., 2003) and for some this upregulation is due to LMPI.

Whether ras mutations occur in NPC is still unclear. Immunohistochemistry studies to detect

Ras overexpression in NPC biopsies gave conflicting results (Porter et al., 1994a; Yung et al.,

1995).
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The proposed mechanism for NPC onset and progression is that chemical carcinogens in food

lead to accumulation of mutations that together with genetic predisposition and EBV infection

lead to NPC onset. For example, pre-invasive dysplastic lesions both low and high grade

show 3p and 9p deletions. EBV infection is only seen in high grade dysplasias implying that

the genetic changes happen first and then EBV infection takes place. Loss of 3p and 9p could

lead to clonal expansion of the epithelial cell population leading to low grade dysplasias.

When an EBV latent infection is established in the epithelium, this leads to high grade

dysplasia. Loss of other tumour suppressors such as ENDBR, TSLC 1 leads to invasive

carcinoma. Changes in E-Cadherin expression, MMP9 and other metastatic factors contribute

to invasion and metastasis.

Other carcinomas that have similarities to undifferentiated NPC have been described and these

include carcinomas of the thymus, stomach, lungs, tonsils, skin and cervix and are known as

lymphoepitheliomas but are EBV negative.

LMPl strains
LMPI genes from the different EBV strains are relatively well conserved and are almost

identical in amino acid sequence. There are several LMPI strains and here Iwill describe the

prototype B95-8 and CAO, 1510 and CIS which have been associated with NPC. The B95-8

strain of EBV was isolated from an 1M case and the LMP1895-8 is 386aa, 63kDa. It has 4.5

repeats of the llaa repeat in the C-terminus. LMPI CAD was isolated from a S.Chinese NPC

biopsy (Hu, 1991). It is 404aa, 66kDa and has three extra l1aa repeats. In total it has 7 llaa

repeats. LMPI CAD has a point mutation in its first exon that leads to the loss of an Xhol

restriction site that is present in LMPI895-8• LMPI CAD has several point mutations in the

transmembrane domains, a point mutation in the CTARI (0212 to S) and three point

mutations in the CTAR2 region relative to LMPI895-8• LMPI CAD has a 10aa deletion (343-352)

just N-terminal to the CTAR2 region and a further 5aa deletion in the carboxy terminus (Hu,

1991). The LMP11510 comes from an Asian NPC biopsy and is 95% homologous in sequence

to LMP1895-8• LMP1IS10
, has 5 llaa repeats and has a 10aa deletion in the carboxy terminus

(Chen et al., 1992). LMPIC1.5 comes from a Mediterranean NPC that has been passaged in

nude mice. This strain also has the lOaa deletion seen in CAO and 1510 strains.

Both CAO and 1510 variants when transformed in rodent fibroblasts, showed increased

transforming ability (formed larger and more colonies) compared to B95-8. The transforming

ability of LMPI 895-8 was increased when aa343-352 were deleted. The opposite was true when

those aa were substituted in LMPlislO thus implying that the 10aa deletion renders the protein
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more tumourigenic (Hu, 1991; Li et al., 1996; Zheng et al., 1994b). Since the lOaa deletion

maps in a domain necessary for NF-KB activation (Mitchell and Sugden, 1995), the ability of

deletion variants isolated from lID to affect the NF-lCB pathway was examined with negative

results (Rothenberger et al., 1997). ThelOaa deletion LMPI variants were isolated from other

malignancies such as lID and peripheral T cell lymphoma thus leading to the hypothesis that

the lOaa deletion plays an important role in transformation but more recent studies suggest not

(Brousset et al., 1994; Knecht et al., 1995). Furthermore, LMP1 CAO was shown to be less

immunogenic than LMPIB95-8• The latter could convert a non immunogenic mammary

carcinoma cell line (S6C) into an immunogenic tumour rejected by the immune system

whereas LMPlcAO could not (Trivedi et al., 1994) implying that LMPlcAO is less

immunogenic. Further experiments using LMPI proteins isolated from LMPI positive NPC

and LMPI negative (LMPI gene is hypermethylated) showed that LMPI proteins from LMPI

positive NPCs were less immunogenic (Hu et al., 2000). However, the lOaa deletion was not

responsible for this as LMP1 proteins that were not deleted for the 10aa were also less

immunogenic.

From the above results, it is not clear if the lOaa deletion is playing a role in increased

tumourigenicity or immunogenicity of the deletion variants; CAD, 1510 or C15. Instead,

studies have focused on the transmembrane domains of the protein which show point

mutations from one strain to another. Transfection of LMPlcAo, LMPlcI5, or LMP1895-8 in

epithelial cells, showed that LMPlcAO and LMPlc1S could lead to increased NF-KB and API

signalling when compared to LMP1895-8 and this was proposed to be due to the increased half

life ofLMP1cAO (7.25hrs) compared to LMPIB95-8 (2.9hrs) (Blake et al., 2001; Dawson et al.,

2000; Miller et al., 1998a). Use of chimeras, led to the conclusion that the transmembrane

domains of LMP1cAO and LMPlcI5 are responsible for the increased stability and thus the

increased signalling. Transfection of B cells with either LMPI CAO or LMP1 B95-8, showed that

LMP1cAO leads to decreased CD40 and CD54 induction but it increases NF-KB signalling two-

fold when compared to LMP1895-8• Removal of the lOaa from LMP1 B95-8 and replacement of

the lOaa on LMPI CAO, showed that the 10aa deletion was not important for these functional

changes (Johnson et al., 1998). Similarly in epithelial cells, stable transfection of LMP1895-8

led to growth inhibition, block of differentiation, morphological changes and production of
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CD40, 54,44, IL-6 and -8 whereas LMPlcAO did not induce any of these effects (Dawson et

al., 2000)1.

It has also been shown that LMPI B95-8 can induce cell death via activation of caspase-3 in an

NF-KB dependant manner whereas LMPI CAO does not (Nitta et aI., 2003; Sheu LF, 1998).

Chimeras were created by swapping the amino, transmembrane and carboxy domains of

LMPI CAO and LMPI B95-8 in order to identify the domain responsible for apoptosis. The

transmembrane domain of LMPI B95-8 was responsible for apoptosis induction and this was due

to the presence of lIe the 85th aa and Phe at 106th aa. LMPlcAO has Leu at 85th aa and Tyr at

106th aa. The LMPI B95-8 pattern is seen in LMPI from healthy EBV carriers whilst the

LMPlcAO pattern is seen in LMPI from NPC patients. When the two aa were interchanged

between the two variants, it was shown that they were critical for cell death but not

responsible for affecting NF-KB activation levels. Since LMPI CAO leads to increased

signalling of factors such as NF-KB and possibly API that activate genes involved in

proliferation and metastasis and at the same time inhibits apoptosis, it has an additive

advantage over LMPI B95-8 in leading to tumourigenesis. An extensi ve analysis of 9 different

srtains of LMPI including LMPI B95-8, LMPI CAO and other European NPC strains showed that

there are differences between them in NF-KB and API signalling but these differences do not

correlate with a particular sequence variation (Fielding et al., 2001).

An interesting idea that has been examined by Hu et. al., is that initially all cells leading to an

NPC express LMPI. Due to hypermethylation of the LMPI regulatory sequence (LRS) in the

LMPI negative NPC, the LMPI protein is no longer expressed. The LMPI protein that

mutates to avoid immune recognition does not need to be switched off by hypermethylation.

This supplies a reason why LMPI positive NPCs express LMPI protein that is highly mutated

but less immunogenic whereas LMPI negative NPCs, have extensive LMPI

hypermethylation, LMPI gene has fewer mutations and the protein is more immunogenic (Hu

et aI., 2000). This theory is compatible with what is observed with LMPI positive and

negative NPCs. LMPI positive NPCs are larger and grow faster than negative NPCs, but

negative NPCs have an increased risk of metastasis (Hu et aI., 1995).

1 Note that API activity of LMPI CAO was shown not to have any significant difference from
LMP1B95-8 by Dawson et al, 2000. This is the same laboratory that published Blake et. al.,
2001 indicating that different cell types respond differently to LMPI CAO and the response it
has on API signalling.
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1.5 Ras
Ras proteins are members of a superfamily of low-molecular weight guanine nucleotide

binding proteins. The other members are Rho and Rae. There are three mammalian Ras

proteins, Harvey-ras (H-ras), Kirsten- ras (K-ras) and N-ras. These proteins are 21kDa, are

highly conserved among different species and show about 85% homology between them.

They are all expressed in all mammalian cells at low basal levels and under normal conditions

they control cell proliferation and cell terminal differentiation (Barbacid, 1987). K-ras is

expressed in almost all cell types and knock out studies have shown that K-ras is essential for

proper development (Johnson et al., 1997).

Ras proteins bind guanine nucleotides (GTP and GDP) and have a very low intrinsic GTPase

activity. GTPase activating proteins (GAPs) catalyse hydrolysis of GTP from Ras while

guanine nucleotide exchange factors (GEFs) catalyse the replacement of GDP for GTP

(fig.1.4). Initially Ras proteins are released in the cytosol but post-translational modification

by farnesylation is needed to make them functional. Famesylation, enables Ras to be localised

to the inner plasma membrane and thus recruit its appropriate target enzymes. Failure to

localise to the plasma membrane leads to non functional Ras proteins.

Ras activation results from activation of receptor tyrosine kinases such as EGFR. The

activated (tyrosine phosphorylated) receptor binds the src homology domain (SH) 2 of growth

factor receptor bound protein 2 (GRB2) and GRB2 via its SH3 domain binds son of sevenless

(SOS) (Buday and Downward, 1993). This brings SOS to close physical proximity with Ras

leading to an increased nucleotide exchange on Ras (fig.1.4). Ras oscillates from GDP bound

and thus inactive to GTP bound and activated. This dynamic equilibrium is vital to keep Ras

activation under control. When it is disturbed by having Ras constitutively GTP bound and

thus constitutively active, it can lead to aberrant proliferation.

Activated Ras can activate four downstream signalling pathways: the RafIMAPK, the PI3K

pathway, the RALGDS and the PLeE pathways (fig.1.5). Effects of the activation of these

pathways include cell cycle progression, transcriptional activation, cytoskeletal signalling,

vesicle transport and calcium signalling control. Some of these pathways will be described

later.

All three Ras proteins (H, K,and N) have been found to be activated in different human

tumours. About 25% of all human tumours have a Ras activating mutation. Usually K-ras

mutations are found in pancreatic cancers whereas epithelial type cancers show H-ras

mutations. 85% of human tumours with Ras mutation show a mutation in K-ras, 14% in N-ras

and about 1% in H-ras. All mutations prevent hydrolysis of GTP from Ras thus locking it in
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its active state. Mostly mutations in codons 12,13 and 61 are responsible for activating Ras

(Downward,2oo3).

Activated Ras can transform rodent cell lines in culture (Barbacid, 1987; Varmus, 1984). In

mouse skin chemical carcinogenesis studies, application of the tumour inititiator 7,12-

dirnethylbenzanthracene (DMBA) led to 99.5% of the tumours developed, to have an activated

H-ras gene. Activation of Ras genes is an early event during tumour development (Bizub et

al., 1986).
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Activation Signals..

Tyrosine
kinase
receptor

Figure 1.4: Ras Activation

External stimuli such as growth factors bind to and activate tyrosine kinase
receptors. Activated receptors such as EGFR, can recruit effector proteins
such as GRB2 and SOS that can activate Ras. GAPs catalyse hydrolysis of
the GTP from Ras in order to return it to its inactive GDP bound state. GEFs
catalyse hydrolysis of GDP to allow GTP to bind to Ras and activate it. Note
that Ras proteins are connected to the plasma membrane via an isoprenoid
chain represented by a disconnected line.
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Figure 1.5: SignaDing pathways activated by RaJ

The figure shows the four main pathways that are activated by Ras. Ras
leads to activation of the MAPKIERK 112 pathway and the PI3K1Akt
pathway which are involved in gene trascription, survival and cell cycle
progression. The PLCE and RALGDS pathways are involved in vesicle
transport, calcium signalling and cytoskeJetal signalling. (Figure adapted
from Downward et. al., 2003).



RAS transgenic mouse models
Several Ras transegic mouse models have been created. Here I will discuss only the ones that

are relevant for skin carcinogenesis.

Overexpression of oncogenic H-ras to the skin under the direction of different promoters has

given different results. Directing H-ras to the suprabasal epidermal layer (using the bovine

KI0 promoter) gave rise to skin hyperkeratosis and papilloma formation at sites of mechanical

irritation (Bailleul et al., 1990), whereas directing expression to the basal layer (using a

truncated human Kl promoter) led to epidermal hyperplasia and hyperkeratosis in the

neonates and juveniles that regressed by 5 weeks of age. Adults developed papillomas over

time and their Kl and K13 staining patterns were consistent with benign lesion formation.

This shows that an activated Ras by itself is not enough to lead to malignant conversion and

that a secondary event is needed (Greenhalgh et al., 1993a). However directing expression of

H-ras to the follicular and interfollicular cells of neonates and to the hair follicles of adults

(using a truncated K5 promoter) gave newborn mice acanthotic areas that progressed to

carcinomas and spontaneous papillomas and keratoacanthomas in adults (Brown et al., 1998).

Similar results were obtained when the v-If-ras oncogene was directed for expression to the

hair follicles (using the zeta-globin promoter). Spontaneous papilloma formation was seen at

sites of mechanical irritation and when the mice were treated with a chemical promoter 4 beta-

phorbol 12-myristate 13-acetate (PMA) more than 90% of the mice developed multiple

papillomas that went on to form sec and sarcomas. This study demonstrated that an activated

Ras can replace the need for an initiation step in a chemical carcinogen treatment (Leder et al.,

1990). These mice also develop a variety of tumours including squamous cell carcinomas,

odontogenic tumours and dermal spindle cell tumours. Use of the native Ras promoter to

direct expression of the human H-ras gene led to 50% of the offspring developing tumours

within 18 months and those tumours had mutations at codon 61 (A-T transversion) and codon

12 showing that overexpression of somatic Ras does not necessarily lead to tumourigenesis

but it is the activation of Ras that causes proliferation (Saitoh et al., 1990).

From the above studies, it is clear that the cell context in which activated Ras is found plays a

very important role as to whether there will be a malignant conversion or not. From the

transgenic animal work, it is concluded that benign tumours are more likely to show malignant

conversion if they originated from the hair follicle cells or from the basal proliferating layer.

Use of dominant negative Ras transgenic animals showed that spatial expression of Ras alters

its effects and that normally Ras functions in the basal layer of the epidermis and its primary
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role is in epidermal cell renewal and inhibition of differentiation of cells early in the

differentiating pathway. Ras function divides the epidermis into two segments; the basal

proliferating segment and the differentiating segment (Dajee et al., 2002). In the Dajee et.al.,

study, two sets of transgenic mice harboring a dominant negative form of Ras (RasNI7)

directed for expression at the basal layer (using the K14 promoter) or at the suprabasallayer

(using the truncated human KI0 promoter) were created. A control transgenic mouse

harboring activated Ras (RasVI2) in the basal layer (K14 promoter) was also created.

Whereas HKlO.RasNI7 mice were normal, KI4.RasNI7 mice showed hypoplasia with

widespread skin erosion by 6 weeks of age and non healing loss of epidermis. This is

consistent with a role for Ras in cell proliferation and epidermal self renewal. The

KI4.RasVI2 mice showed massive epidermal hyperplasia with no differentiating epidermal

layers and all mice died at birth. Further in vitro experiments using primary epithelial cells

and modulating doses of active Ras showed that Ras regulates epidermal proliferation and

inhibits differentiation. Where a transgene is expressed is therefore, of the utmost importance

when interpreting what the gene's normal function may be.

Due to the fact that the different Ras proteins can compensate for each other null animals for

H-ras, K-ras and N-ras showed no skin defects (Esteban et al., 2001; Ise et al., 2000; Johnson

et al., 1997; Umanoff et al., 1995). Triple null animals however, could not be created as the

N-ras -/- / K-ras -/- combination is embryonic lethal (Johnson et al., 1997).

Ras and chemical carcinogenesis
A classical chemical carcinogenesis regime in the mouse involves a single topical application

(usually on the back) of a chemical initiator followed by repeated applications of chemical

promoters. An initiator, is a chemical that can change the structure of DNA in such a way that

will lead to an irreversible mutation thus creating a population of "primed" cells. One of the

most common chemical initiators used is DMBA, a polycyclic aromatic hydrocarbon. DMBA

is metabolised to diol epoxides that are reactive electrophiles and covalently interact with

DNA causing mutations (Dipple et al., 1984). About 99.5% of DMBA initiated mouse skin

tumours have a mutation that activates the H-ras gene (Balmain et al., 1988; Balmain et al.,

1984; Bizub et al., 1986; Brown et al., 1990). 95% of these activating H-ras mutations are an

A-T transversion in codon 61. The rest are mutations at codon 61,60,12 and 13. Thus if an H-

ras mutation is involved in the initiation of mouse skin tumours, then by overexpressing a gene

that affects the Ras pathway in vivo in the epithelium, this will make experimental use of a

chemical initiator such as DMBA redundant (Quintanilla et al., 1986). Promoters do not alter
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DNA structure but can activate proliferative pathways. A promoter can stimulate those

"primed" cells to clonally proliferate and form premalignant lesions. Other genetic or

environmental events are then needed for these premalignant lesions to convert to malignant

carcinomas. A common tumour promoter is 12-0-tetradecanoyl phorbol-l B-acetate (TPA)

which is a phorbol ester and a structural homolog of diacylglycerol (DAG). One of the targets

of TPA is Protein Kinase C (PKC). PKC is a ser/thr protein kinase that is activated by Ca2+.

DAG increases the affinity of PKC for Ca2+ thus activating it. TPA is a structural homolog of

DAG and can activate PKC in the same way (Nishizuka, 1984). Activation of PKC leads to

activation of several downstream pathways such as MAPK, JNK, PI3K and downstream

targets include API, cyclic AMP-binding protein (CREB), NF-KB and more. Thus the first

event of promotion is a general epidermal hyperplasia that occurs about 24hrs after first

promoter application, peaks 48-72hrs and disappears 7 days after application.

Relationship between Ras. LMP1 and NPC
There is no clear evidence for association of activated Ras and NPC. There is however a

single report suggesting that LMPI acts in a similar way as activated Ras, producing similar

phenotypes in transfected cells (Dawson et al., 1990). SCC12F cells (derived from an

immortalised non-tumorigenic subclone of the squamous cell carcinoma line SCCI2) were

transfected with either LMPI or activated H-ras. Both cell populations showed similar levels

of CD40 and ICAM-l (markers elevated in NPC) which were increased when compared to

control cells, both populations failed to form stratified epithelia when grown on collagen rafts

and were impaired in their ability to undergo terminal differentiation as they failed to form

cross-linked envelopes. These experiments suggest that LMPI and Ras can cause similar

effects. On the contrary, when NIH3T3 cells transfected with NPC DNA were analysed, H-

ras mutations were evident suggesting that activation of ras is a way by which some NPCs

may gain their malignant properties (Hu et al., 1986). Staining primary NPC for Ras showed

that only 19% of the samples gave intense staining suggesting that Ras is expressed, however

this reflects only whether there is Ras present or upregulated and not whether ras is activated

(Porter et al., 1994b; Yung et al., 1995).

Ras mutations are not common in Western head and neck tumours or nasopharyngeal

angiofibroma. Only 5% of head and neck tumours show any correlation with activated Ras

and it may be that upregulation of Ras protein plays a role in these kinds of cancers and not its

activation (Coutinho et al., 1999; Sheng et al., 1990; Yarbrough et al., 1994).
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Ras. apoptosis and senescence
Overexpression of activated Ras can lead cells to senesce (eg. human and rodent fibroblasts)

(Feig and Buchsbaum, 2002) to differentiate (eg.pheochrocytoma rat ce311s (PC12) into

neuron-like cells) (Bar-Sagi and Feramisco, 1985) or apoptose (eg. rat embryo fibroblasts)

(Joneson and Bar-Sagi, 1999).

Ras induced senescence is mediated by Rafand MEK1I2 leading to accumulation ofpl6, pS3

and p21(Lin et al., 1998; Lin and Lowe, 2001; Serrano et al., 1997; Sewing et al., 1997; Zhu et

al., 1998). Cells lacking p53 or p 16INNK4aare readily transformed by Ras suggesting that pS3

16INNK4a. . hanior p overexpression may serve as a cancer protective mec arusm.

Recently, other Ras effectors (RASSFI and NOREIA) have been discovered that may mediate

Ras induced apoptosis. In 293 cells, RASSFlc could bind activated Ras and induce apoptosis

(Vos et al., 2000), however most studies argue that RASSFI cannot directly bind Ras but

instead it heterodimerises with NOREIA or mammalian sterile20-like (MST)1I2 that can both

bind Ras and induce apoptosis (Khokhlatchev et aI., 2002; Ortiz-Vega et al., 2002).

Initially activated Ras overexpression leads to proliferation but its excessive and prolonged

activation leads to cell cycle arrest, senescence, differentiation or apoptosis as a means of

controlling aberrant proliferation. Already immortalised cell lines can be readily transfomed

by activated Ras whereas primary cell lines with an activated Ras require a secondary genetic

mutation in order to become immortalised and transformed. This can also explain why so

many human tumours have mutated or non functional p53 and p16INK43products.

1.6 Ras Association Domain Family (RASSF)
The RASSF family of proteins consists of six members; RASSF 1-6. The founding member of

this family was RASSF5A or NOREIA (Hesson et al., 2003; Tommasi et al., 2002; Vavvas et

al., 1998). RASSFI has several splice variants; RASSFla-e. Only RASSFla along with

NOREla have been characterised as tumour supressors. Their role as tumour suppressors was

unveiled when several studies pointed to the fact that hypermethylation of their promoters led

to their silencing in a variety of human tumours such as NPC (Chow LS, 2004; Chow et al.,

2004), pancreatic carcinoma (Dammann et al., 2003), neuroblastoma and non-small cell lung

carcinoma (Agathanggelou et al., 2003), melanomas (Spugnardi et al., 2003), oesophageal

carcinoma (Kuroki et aI., 2003), HD, myeloma, gliomas (Hesson et aI., 2004), brain

(Horiguchi et aI., 2003) breast and kidney. RASSFla - which is located on chromosome

3p21- is thought to playa role in NPC onset and development as its expression is lost by

deletion or by hypermethylation. To support the hypothesised role of RASSFla as a tumour
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suppressor, RASSFla was reintroduced into a human lung cancer cell line where the promoter

of the endogenous RASSFla was hypermethylated. Re-expression led to a reduction in cell

proliferation, decrease in the number of transformed cells and inhibition of tumour formation

when these cells were introduced into nude mice (Burbee et al., 2001; Dammann et al., 2000).

A single report indicated that RASSFlc may be a tumour suppressor but this has not been

confirmed as yet (Vos et al., 2000).

Both RASSFla and NOREIA proteins contain a Ras association domain (RA) and a

conserved carboxy terminus. Despite having an RA, RASSFla cannot directly bind to Ras.

Instead it has to heterodimerise with NORElA which can bind activated Ras and

simultaneously bind to MST1I2 (a pro-apoptotic kinase) and induce apoptosis (Khokhlatchev

et al., 2002; Ortiz-Vega et al., 2002). RASSFla can also lead to cell cycle arrest at Gl

(Shivakumar et al., 2002), microtubule stabilisation and protection from inappropriate spindle

formation and genomic translocation. Its association with Cdc20 ensures that the cells do not

enter metaphase until the spindle apparatus is properly in place (Song et al., 2004a).

RASSFla interacts with pl20E4F (an ElA regulated transcription factor). Transfection of

NIH3T3 cells with both RASSFla and p120E4F led to increased S phase inhibition (Fenton et

al.,2004). It is also important to note that p120E4F can associate simoultaneously with pl4ARF

(the human homolog of pI9ARF) and p53 and induce growth arrest (Rizos et al., 2003). A

further interaction of RASSFla is with the scaffold protein CNKI. Both NORElA and

RASSFla can associate with CNKI. Coexpression of RASSFla and CNKI in HEK293 cells

leads to an increase in apoptosis. It is thought that CNKI binds the RASSFla-MSTI complex

and brings it in touch with activated Ras (Rabizadeh et al., 2004).

To conclude, RASSFla protects from aberrant proliferation by activating apoptosis and

inducing cell cycle arrest. The exact mechanisms involved in these processes are not clear yet.

1.7 TGFa and EGFR signalling

Epidermal Growth Factor Receptor (EGER)
Epidermal growth factor receptor (EGFR) belongs to the EOFR family of receptors. The other

three members of the family are HER2(ErbB2), HER3(ErbB3) and HER4(ErbB4) (Carpenter

and Cohen, 1990). They are all transmembrane receptors with an extracellular ligand binding

domain and a cytoplasmic domain containing a tyrosine kinase activity region. EGFR has at

least seven ligands including EOF, TOFu and amphiregulin (AR) (that preferentially bind

EGFR), heparin binding EGF (HB-EGF), epiregulin, epigen and betacellulin (fig.l.6). The
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ligands are all produced as transmembrane forms and after proteolytic cleavage by

metalloproteases, they are released as the mature soluble growth factor. The mature forms

contain six conserved cysteine residues that make up the EGF motif, via which they can bind

to EGFR members. Although the ligands are similar in sequence they have distinct roles as

animal knock out models have shown. The one ligand that has been shown to have an effect

on the role EGFR has in the epithelium is TGFa which is described in more detail later.

The classical route of activation of EGFR is binding of growth factors such as EGF and others,

to the extracellular domain causing receptor homolheterodimerisation and activation of the

tyrosine kinase domain by autophosphorylation. Activation of the tyrosine kinase domain

enables transfer of the y phosphate ATP group to tyrosine kinase domains of both the receptor

and other downstream substrates. Tyrosine phosphorylation leads to activation of several

signalling pathways via downstream adaptor molecules and also to receptor internalization and

recycling allowing modulation of downstream signalling pathways (Cohen et al., 1982; Wiley

et al., 1991). Other stimuli apart from growth factors can activate EGFR (reviewed in

(Carpenter, 1999). These other stimuli include G protein-coupled receptor (GPCR) agonists

(working via c-Src), cytokine receptors (via Jak2), adhesion receptors, membrane

depolarization (increased flux of calcium that brings about EGFR activation via c-Src) and

stress response.

EGFR is a 170kDa protein initially produced from cleavage of the N terminus of a 1210

residue precursor followed by insertion of the 1186-residue protein in the cell membrane.

20% of the size of the mature EGFR is due to glysocylation of the N terminus. This

glysosylation is necessary for protein translocation to the cell membrane (Slieker et al., 1986).

An EGFR molecule consists of two ligand binding and two cysteine rich extracellular domains

and an intracellular tyrosine kinase. EGFR sequence is about 64% similar to the other

receptors of the family and can form heterodimers with them upon activation, thus expanding

the possible pathways that it can activate.
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Figure 1.6: Ligands of the EGFR family

There are six ligands binding to members of the EGFR family.
These are shown on the left column and are EGFR, TGFa, AR, HB-
EGF, betacellulin and epiregulin. EGF, TGFa and AR bind
preferentially EGFR leading to its homolheterodimeri sation. The
rest of the ligands are not EGFR specific but can bind to ErbB4 as
well. The arrows are colour coded according to their respective
ligand and show with which receptors the ligands can associate.
Figure adapted from Olayioye et. al., 2000, Oncogenel9(13):3159-
3167.
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There are several pathways activated by EGFR (fig!.7):

I. The She, Grb2, RaslMAPK pathway

2. c-Src

3. JAKISTATs

4. PLCy, PLD and PI3K

In the epidermis, EGFR signaling plays a major role in normal epithelial development. Some

of the EGFR growth factors are synthesized by normal epithelial cells. EGFR is strongly

expressed in the basal layer of the epidermis and the outer root sheath of hair follicles.

Moving on to the suprabasal layer where less proliferation takes place, the number of EGFR

receptors decreases. EGFR signalling regulates keratinocyte survival and protects them

against apoptosis. Several animal models of EGFR ligands as well as dominant negative

EGFR animal models show impaired epidermal and hair follicle development, implicating the

EGFR pathway in the normal development of epithelial cell proliferation and differentiation.

Which pathway(s) downstream ofEGFR are important in this function is still unclear.

The Shc, Grb2, Ras/MAPK pathway

Upon ligand binding, EGFR is activated by phosphorylation and as a result the SH2 domain of

Grb2 binds EGFR either directly via yl068 or yl086 or indirectly by first binding She that is

associated to EGFR (Sasaoka et al., 1994a; Sasaoka et al., 1994b). The Grb2 association with

EGFR leads to the association of SOS with Ras which leads to GTP binding on Ras thus

leading to Ras activation. Usually, Grb2 is constitutively bound to SOS and localized in the

cytosol preventing SOS from releasing active Ras. Activation of Ras leads to activation of

downstream pathways as described in section 1.5.

The Src pathway

Src is both contributing to EGFR activation and acting as a downstream effector.

Overexpression of Src proteins in fibroblasts or epithelial cells, leads to increased proliferation

and transformation that is EGF mediated. Inhibition of Src, leads to decreased proliferation

and to reversal of the transformed phenotype observed in cells overexpressing EGFR.

Phosphorylation of y845 of EGFR by Src leads to receptor activation. Src phosphorylates

EGFR on other tyrosine residues and allows EGFR mediated activation of STAT5b and PI3K

(Kloth et aI., 2003).
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Figure 1.7: EGFR signalling pathways

Binding of an EGFR ligand such as TGFu, leads to EGFR
homodimerisation and activation by phosphorylation (indicated by a
red star). Activated EGFR can recruit Pill and PLCy, activating
them and thus enabling them to carry their function in phospholipid
metabolism. Physical interaction of activated EGFR and PI3K
leads to activation of the latter which leads via other intermediate
molecules to activation of Akt that plays a role in apoptosis
inhibition. Association of activated EGFR and Grb2 via their SH2
domains and SOS recruitment leads to Ras activation by
preferential binding to GTP. Activated Ras, phosphorylates and
activates Raf, which in turn phosphorylates and activates MEKll2,
which leads to phosphsorylation and activation of ERK1I2.
Activated ERK1I2 leads to transcriptional activation of several
downstream genes. Activated EGFR leads to
homolheterodimerisation of STATs 113/5and their translocation to
the nucleus where they play a role in transcriptional activation of
downstream genes.
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TheJAKlSTA T pathway

Mammals have seven STAT genes (1-4,5a,5b,6). STATs are inactive transcription factors

when in the cytosol but translocate to the nucleus upon activation. STATs 1, 3 and 5 are

usually constitutively associated with inactive EGFR via their SH2 domains. Activation of

EGFR leads to homolheterodimerisation of STATs. This association activates them and leads

to their nuclear translocation. Activation of STAT by EGFR is independent of JAK activation

which is the standard for STAT activation in cytokine signalling.

PLO, PLCyand PI3-K

EGFR directly activates three enzymes involved in phospholipid metabolism; phospholipase-

Cy(PLCy), phosphatidylinositol-3-kinase (PI3K) and phospholipase D (PLD). Upon EGFR

activation, PLD physically associates with EGFR and gets activated by phosphorylation. PLD

hydrolyses phosphatidylcholine to create choline and phosphatidic acid.

PLCy binds to phosphorylated EGFR via yI173 or y 992 and gets activated. Activation ofPLCy

leads to hydrolysis of Ptd Ins(4,5)-P2 to give 1,2 diacylglycerol (DAG) and inositol 1,3,5-

triphosphate (IP3). IP3 can release Ca+2 from intracellular compartments and DAG plays a

role in activation of PKC.

PI3K phoshorylates phosphatidylinositol at the 3' position. There are three classes of PI3

Kinases depending on structure but only PI3K class la gets activated by tyrosine kinase

receptors. Phosphorylated ErbB receptors physically interact with the PI3K p85 subunit via its

SH2 domain. p85 preferentially binds ErbB3, so it is believed that there is heterodimer

formation of EGFRJErbB3 that mediates this interaction. Also Src phosphorylation of EGFR

can lead to activation of PI3K. PI3K la leads to phosphatidylinositol-3, 4, 5-triphosphate

(PIP3) formation which plays a role in Akt translocation to the plasma membrane and its

activation via phosphorylation by phosphoinositide-dependent kinase 1 (PDKl). Akt could be

the major route by which EGFR exerts its antiapoptotic effects. PI3Ky also binds Ras via its

catalytic subunit p 11O. Maybe via this association EGFR can activate and control both the

MAPK and PI3K pathways.
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EGFR and Cancer

Several studies have shown that alterations in EGFR such as amplification, rearrangements

and overexpression occur at high frequencies in human squamous cell carcinomas,

glioblastomas, breast, pancreatic, liver and colorectal cancers (Derynck, 1992; Libermann et

aI., 1985; McKay et aI., 2002). It has been shown that about 30% of human cancers express

elevated levels of EGFR and it has been correlated with poor prognosis and decreased disease-

free and overall survival rate. A natural mutant of EGFR, EGFRvIII, has a deletion of exons

2-7 and lacks the extracellular domain therefore it is constitutively active and is not

internalized thus being capable of long term signalling. This is the most common mutation in

human cancers and is detected in 50% of glioblactomas and 70% of medulloblastomas.

Transfection of EGFRvIII in glioma cell lines increases their tumorigenicity in nude mice.

EGFRvIII action is also linked to the anti-apoptotic protein Bcl-xL. In vivo expression of

EGFRvIII in inhibitors of CDK4 (INK4a) knock out mice, led to glioma formation. This

shows that EGFRvIII on its own is not enough for tumor formation but promotes proliferation.

EGFR animal models

Several knock out EGFR mice have been developed but their phenotype is strain dependent

and they do not reach weaning age. They show peri-implantation, mid-gestational death, skin,

lung, brain, liver and gastrointestinal tract abnormalities as well as disorganized hair follicles

and curly coats. Fetal death is due to placental defects or failure of epithelium maturation in

several tissues (Miettinen et aI., 1995; Sibilia and Wagner, 1995; Threadgill et aI., 1995).

Dominant negative EGFR models have been created to overcome the premature death

observed in EGFR null animals. One of these models where the transgene under control ofK5

promoter is directed for expression at the basal layer and the outer root sheath of hair follicles,

the animals that develop are smaller with short, waved hair and curly whiskers initially,

progressing to atrophic and sparse hair and finally to alopecia. Absence of EGFR has thus

prevented entry of the hair follicles into the catagen stage leading to follicle necrosis,

infiltration of the epidermis with inflammatory elements and epidermal hyperplasia (Murillas
et aI., 1995).

Inducible expression of ErbB2 in the K14-rtTA/TetRE-ErbB2 mouse led to skin hyperplasia

after 2 days of doxycycline exposure that regressed upon withdrawal of the chemical. In

prolonged induction of ErbB2, hyperplasia of the corneas, eyelids, tongue and oesophagus
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developed and the animals showed increased TGFaexpression, implying that ErbB2

cooperates with EGFR in the regulation of hair follicle and skin architecture (Xie et al., 1999).

EGFR and LMP1

Human epithelial cells (C33A and HNE2) showed upregulation of EGFR at the protein and

mRNA level upon transient or stable expression of LMPI (Miller et al., 1995). CTARI is

essential for EGFR induction but not CTAR2. Overexpression of TRAF3 (a negative

regulator of the TRAF pathway) or an amino truncated TRAF3 that inhibits NF-KB activation

from the CTAR1, led to inhibition ofEGFR expression. Since the CTAR2 mediated NF-K8 is

still active, this implies that the LMPI mediated EGFR activation may involve the TRAF

signalling pathway and not NF-KBsignalling only (Miller et al., 1998b; Miller et al., 1997). A

recent study confirms that CTARI is essential for EGFR induction and showed that LMPI can

modulate the EGFR promoter activation via NF-KB (Tao et al., 2004b). When 60 NPC

specimens were studied by means of immunohistochemistry (IHC), 41 of the samples tested

positive for LMPI and 44 tested positive for EGFR upregulation. The EGFR upregulation

was closely correlated with LMPI expression, implicating LMPI in the control of EGFR

expression in NPC (Sheen et al., 1999). Also Zheng et. al., showed that positive LMPI NPC

specimens expressed EGFR strongly and that there was an increase of EGFR expression in the

later stages ofNPC (Zheng et al., 1994a).

Regulators of EGFR ligand shedding

Metalloproteases with a disintegrin domain (ADAMs) are responsible for regulating the

cleavage of EGFR ligands and thus regulating EGFR activation and the effects this has on

tumour progression (reviewed in (Gee and Knowlden, 2003). TNFa.-converting enzyme

(TACE or ADAMI7) has been shown to be necessary for TGFa. shedding. Absence of TACE

or non functional TACE leads to defective TGFa. shedding. It has been shown that TACE is

upregulated in human breast cancer, indicating it plays a regulatory role in activating EGFR

(Borrell-Pages et al., 2003). It was thought that GPCR activated EGFR independently of its

ligands but it has been shown that ADAMlO and ADAM17 regulate cleavage of HB-EGF and

AR respectively activating the MAPK cascade and Akt signalling (Yan et al., 2002).
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TGFa
TGFa. is a mammalian growth factor that was first isolated from the culture medium of

growing retrovirally transformed fibroblasts. It is first synthesized as a 160aa transmembrane

presursor (proTGFa.). The extracellular domain ofTGFa. contains the receptor binding motifs

and is cleaved by ADAM 17 to produce the mature soluble form of TGFa. that is 50aa and

other TGFa. molecules of different sizes. Usually, TGFa. is detected as a polypeptide between

5kDa -20 kDa (reviewed in (Derynck, 1988). The difference in size its due to differences in

glycosylation. The membrane bound forms of TGFa. are biologically active but act on

adjacent cells rather than at cells at a distance. (Anklesaria et al., 1990)(reviewed in

(Massague, 1990). An experiment in which the two cleavage sites that release soluble TGFa.

were modified so that no soluble TGFa. could be released showed that transmembrane TGFa

could still activate EGFR. The transmembrane form is about 50-100 times less active than

soluble TGFa. (Brachmann et al., 1989). Defective cleavage of TGFa. in two human colon

cancer cell lines, led to the transmembrane form inducing increased phosphorylation of EGFR,

a slower EGFR internalization and transmembrane TGFa was more resistant to tyrosine

phosphatases thus enhancing activation of EGFR and giving a growth advantage to the cells.

It has been shown that TGFa. can be synthesized by various oncogenically transformed

fibroblasts and by tumour cells such as renal, squamous carcinoma, melanomas etc. There is

evidence showing that TGFa may contribute to the conversion of a normal cell to a malignant

one. However, TGFa. plays an important role in normal embryonic development. It is

normally expressed in the unfertilized oocyte, the developing embryo and tissues such as the

placenta, the kidney and the oral cavity of the developing mouse. In adult mice TGFa is

expressed in skin, brain, breast and the gastrointestinal mucosa among other organs. TGFa

also plays a role in wound healing, angiogenesis and keratinocyte proliferation and migration.

It has been suggested that TGFa. can promote skin tumorigenesis and there are several animal

models that support this as well as other experiments, for example, elevated TGFa levels have

been detected in DMBA/TP A treated mice skin tumours. Furthermore, papilloma cells

transfected with human TGFa, when grafted to nude mice produce larger tumours than

untransfected papilloma cells. In addition, there is evidence that TGFa and TPA synergise in

enhancing epithelial proliferation.
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EGFR ligands animal models

Several animal models have been created to determine the action of each of the EGFR ligands

and clarify whether they complement each other or have distinct functions.

Gain of function models

Overexpression ofTGFa. to the stratified squamous epithelia (using the human K14 promoter)

led to ear, scrotum, tail, foodpad and body skin hyperplasia, stunded hair growth, localised

psoriasis symptoms and spontaneous papilloma formation at sites of mechanical irritation.

Upon TPA treatment papillomas were formed that did not display any Ras mutations, showing

that overexpression of TGFa. in the epidermis can act as an initiator in tumorigenesis (Vassar

and Fuchs, 1991; Vassar et al., 1992). Increased expression levels of EGFR (in the olfactory

epithelium), cyclin D1, retinoblastoma, cyclin E and E2F-1 was observed suggesting a

response due to increased levels ofTGFa. (Getchell et aI., 2000). Similarly, when TGFa. was

expressed in the basal epidermal layer (human Kl promoter), epidermal hyperplasia and

hyperkeratosis was evident in the newborn mice as well as spontaneous papilloma formation

in the young adult, mostly at wounding sites. Upon TPA treatment papillomas formed that

had no H-ras mutations. However when these mice were crossed with HK1.v-fos mice, the

resulting bitransgenic animals showed a severe hyperplastic neonatal epidermis and developed

spontaneous papillomas as adults much faster. TPA treatment of these mice led to a rapid

onset of papillomas that progressed to squamous cell carcinomas that had H-ras mutations,

suggesting that v-fos and TGFa. cooperate in tumorigenesis but need an additional genetic

event such as H-ras mutation for progression (Dominey et al., 1993; Greenhalgh et al., 1993b;

Wang et al., 1994; Wang et al., 1995; Wang et al., 1999).

Other TGFa transgenic mice under the control of the MT promoter were created (Shibata et

al., 1997). Without any treatment these mice showed no phenotype, however,

bromodeoxyuridine (BrdU) treated mice showed increased DNA synthesis indicative of

increased proliferation. In DMBAITPA treated transgenic mice, the tumour load and volume

was higher than that of wild type mice. Application of only DMBA or TPA was not enough to

promote tumour formation but TPA alone, produced epidermal hyperplasia in 63% of

transgenic mice as opposed to only 20% of wild type mice. Western analysis of tumours and

skin, led to detection of EGFR downregulation in transgenic papillomas as opposed to wild

type skin tumours suggesting that a tight homeostatic control is in place to compensate for

ligand overexpression. Western analysis also led to detection of the phosphorylated forms of
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EGFR only in transgenic skin tumours and not in wild type tumours showing that TGFa

overepression led to the activation ofEGFR. There were no inactivating pS3 mutations in any

of the lesions but there were ras codon 61 mutations in both transgenic and wild type skin

tumours.

Overexpression of EGF under the direction of p-actin, gave mice that were smaller than wild

type littermates and had necrotic regions in some regions of their liver. No lesions were

observed. However to be able to directly compare these mice to the TGFa overexpressing

mice, the EGF has to be under the direction of a promoter specifically leading to its expression

in the epithelium (Chan and Wong, 2000).

Mice overexpressing AR under the K14 promoter showed a proriasis like phenotype with

reddening, scaly skin, alopecia and rare spontaneous papilloma formation. AR overxpressing

mice using the involucrin enhancer/promoter to direct expression of the transgene to the

suprabasal epidermal layer, also showed a psoriasis like phenotype and synovial inflammation

(Cook et aI., 2004; Cook et aI., 1997).

Loss of function models

Two groups have developed TGFa null mice (Luetteke et aI., 1993; Mann et aI., 1993). The

resulting mice from both groups, were viable and fertile and it was shown by radioassay that

they had no detectable TGFa levels in skin, small bowel or kidney. Phenotypically, the mice,

showed waviness of fur and whiskers evident from day 1, more pronounced after day 12 and

less evident beyond 8 weeks of age. The null mice showed eye abnormalities such as

precocious eyelid opening and corneal inflammation in older animals. There was no

diminished wound healing ability in those mice as seen by examination of the tail stamps after

tail clipping. By cross breeding experiments it was shown that waved-I recessive mutation

and TGFa are allelic. These mice have been used in cross breeding experiments in this study

and are referred to as line 125 in this thesis.

EGF null mice have no phenotype. AR null mice show no phenotype but when crossed with

EGF null (EGF/AR null) or TGFa null mice (ARlTGFa null) or with both EGF and TGFa

null mice (EGF/ARlTGFa null) an essential role of AR in mammary ductal morphogenesis

was revealed. The triple null mice also show eye defects, dermatitis and skin ulcerations.
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1.81NK4a Locus
The INK4a locus encodes two distinct proteins that are both involved in cell cycle arrest and

growth inhibition (QueUe et al., 1995). These overlapping genes are transcribed from different

promoters and have different first 5' exons. Even though they share their second and third

exons, these are read in different frames so the two gene products p 16INK4aand p 19ARF (p14ARF

is the human homolog) have no amino acid similarity (fig1.8). The locus is highly conserved

among species thus showing its importance.

p19ARF has been implicated in the regulation of the p53 tumour suppressor and p16INK4ahas

been implicated in the cyclin-D dependent kinase (CDK4)/CyclinDIlRb pathway.

The INK4 family

The INK4 family of proteins includes; the p16INK4a,p15INK4b,p18INK4Cand pI9INK4d. The first

two are located on human chromosome 9p21 and share 40% homology, p 18INK4cis located on

1p32 and p 19INK4dis located on 19p 13. The mouse and the human proteins are 90%

homologous showing how well the INK4 family members have been conserved among

species. They all have characteristic ankyrin repeat motifs. Ankyrin motifs mediate protein-

protein interactions. p 161NK4aand p 15INK4bhave four ankyrin repeats whilst p 18INK4cand

p19INK4dhave five ankyrin like repeats. All of the INK4 family members have a similar

structure as shown by X-ray crystallography and similar biochemical functions. They all bind

and inhibit CDK 4 or 6. Initially p16INK4awas discovered because of its binding to CDK4.

Crystallography data have shown that the third ankyrin repeat is crucial for the interaction of

p 16INK4awith CDK4/6 (Koh et al., 1995; Noh et al., 1999).

Many human tumours carry mutations affecting p 16INK4a. These range from homozygous

deletions (14% of all human tumours), intragenic mutations (5% of all human tumours) and

promoter silencing by methylation (19% of all human tumours). Mutations of the other family

members in human cancers are rare suggesting that p 16INK4ais the member of the family with

the major tumour suppressive role. Most human tumours show inactivation of p 161NK4aby one

of the three ways described above with a frequency between 25-70%. About 98% of

spontaneous pancreatic tumours have p 16INK4ainactivation and cases of familial melanoma

and pancreatic cancer also show p 16INK4ainactivation.

Each of the four family members are regulated by different signals and show different

expression patterns during development. Normally p 16INK4aexpression is kept at very low

levels but during senescence or oncogenic stress p16INK48levels increase. The p15INK4bis
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specifically upregulated by TGF{3. The other two members, p lSINK4c and p 191NK4d show a

cyclic pattern of expression with maximum expression in the S phase. So far studies have

indicated that the four family members are not functionally redundant.
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Figure 1.8: The INK4a locus (not to scale)

The diagram depicts the organisation of the two genes and their encoded products,
p161NK4a and p19ARF• p16INK4a is encoded by exons la, 2 and 3 (ORF in purple). p19ARF is
encoded from exons I fl, 2 and 3 (ORF in pink). Introns are indicated by angled lines. The
two promoters are indicated by arrows and are separated by approximately 13kb.



The p16INK4a/CDK4/CyclinD1/Rb pathway

Under normal conditions, Rb is unphosphorylated and bound to E2F transcription factors

preventing them from activating their downstream target genes. Rb can be phosphorylated by

the CyclinD/CDK4/6 complex. Phosphorylation releases E2F that can now activate

downstream signalling pathways and allow progression of the cell cycle from 00/01 to the S

phase (fig.1.9). p16INK4apreferentiallybinds CDK4/6, forcing the CDK4/6/CyclinD complex

to dissociate. Unbound CyclinD is then degraded by the ubiquitin dependent proteasome

degradation pathway. In this way CyclinD cannot activate CDK4/6 which cannot

phosphorylate Rb thus inhibiting E2F from activating its targets and thus arresting the cells in

00/01. Most of the inactivating mutations of the p161NK4agene are found in the third ankyrin

repeat thereby preventing p16INK4afrom binding CDK4/6 (fig.l.9). Release of E2F also plays

a role in the control of the p19ARFIMDM2/p53 pathway and this will be discussed later.
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Figure 1.9: The p161NK4a role in inhibiting S phase entry

In GO/G 1, Rb binds E2F factors preventing them from transcribing genes that
would promote S phase entry. On mitogenic signals, Cyclin D complexes with
eDK4/6 to phosphorylate Rb and release E2Fs that can promote S phase entry.
Abnormal mitogenic signals lead to activation of p161NK4a that prevents
association of Cyclin D and eDK4/6 thus inhibiting Rb phosphorylation and
inhibiting S phase progression leading to G 1 arrest.



The p19ARF protein

The p19ARF protein was discovered after p16INK4awhen it was realised that the INK4a locus

could encode a further protein in another reading frame (ARF). It was shown early on that the

ectopic expression of p 19ARF could also inhibit cell cycle progression both at Gland G2 via

the p53 pathway (Kamijo et al., 1997).

The p 19ARF gene has been identified in only four species; human, mouse, rat and opossum.

The human and mouse genes have 49% homology whereas the human and mouse p16INK4a

genes show 63% homology thus showing that the p 19ARF gene is less well conserved among

species.

The p19ARF protein acts in the MDM2/p53 pathway as well as having other pS3 independent

functions. For example triple null mice for pI9ARF,MDM2 and p53 develop a wider variety

of tumours than mice null for p 19ARF or p53 alone, implying that the p 19ARF IMDM2/p53

pathway is not entirely linear. There is evidence that p 19ARF exerts its tumour suppressor

function not only by stabilising pS3 but also by leading to regression of vessels as suggested

by the finding that p 19ARF null mice become blinded soon after birth due to the persistence of

blood vessels in the vitreous of the eye. Normally expression of p 19ARF would lead to

regression of these blood vessels thus preventing any damage to the eye from the subsequent

proliferation of neighbouring cells (McKeller et al., 2002).

The p19ARF/MDM2/p53 pathway

The tumour suppressor p53 is found inactivated in about 50% of human cancers. The levels of

p53 are determined by ubiquitination and subsequent proteolytic cleavage. pS3 can negatively

regulate itself by activating the ubiquitin ligase MDM2 (HDM2 is the human homologue).

MDM2 can target p53 for proteolytic cleavage. p19ARF can prevent this cleavage in two ways;

by binding to MDM2 and preventing it from targeting p53 for degradation and by actively

sequestering MDM2 into the nucleolus thus physically separating it from p53. In this way

p19ARF leads to stabilisation ofp53 levels. Usually the levels ofp19ARF are very low. This is

believed to be the result of repression of p 19ARF by E2F3 (Aslanian et al., 2004) or by E2F 1

(Bates et al., 1998). Oncogenic stimuli such as activated Ras, c-myc, E2F, EIA and v-Abl (de

Stanchina et al., 1998; Dimri et al., 2000; Kamijo et al., 1998; Palmero et al., 1998; Radfar et

al., 1998; Serrano et al., 1997; Zindy et al., 1998) lead to increased levels of p19ARF thus

ensuring that p53 is unbound. The tumour suppressor p53 exerts its anti-oncogenic function in
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two ways; first it can induce cell cycle arrest and second it can induce apoptosis. Unbound

pS3 can act as a transcriptional activator of genes such as the cell cycle inhibitor p21c1P1and

the pro-apoptotic gene bax.

The two pathways p19ARF/MDM2/p53 and p16INK4a/CDK4/6/CyclinD/Rb do not act in

isolation but in a synergistic way. Interaction is at two levels, the first being E2F factors

activating or repressing p 19ARF and the second being pS3 activating p21 Cipl that can inhibit

Cyclins ElA interaction with CDK2 thus inhibiting entry into the Sphase. p 161NK4aalso

mobilises p27kip1 that can inhibit the activity of CDK2 (fig. I. I 0). Using siRNA against either

p16 or p19 in MEFs, Camero et. al., showed that p161NK4aand p19ARF have overlapping roles.

siRNA against p 16 or p 19 only, led to colony formation, no senescence and immortalisation.

Restoration of function ofp16INK4ain MEFs that were treated with siRNA against p16INK4aand

subsequent treatment with siRNA against p19ARF, led to continuous proliferation. When the

p19ARF function was restored in MEFs treated with p19ARF siRNA and their subsequent

treatment with p 16INK4asiRNA led to growth arrest. These results show that p 19ARF

suppression of immortalisation overlaps with the function of p 16INK4abut that p 19ARF has also

another role in suppressing immortalisation that is independent of p 16INK4afunction.
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Figure 1.10: pl9ARF signalling and p161NK4a adapted from Lowe and Sherr,
Curro Opio. Genet. Dev., 2003,13(1): 77-83

Activation of pl~RF leads to the inhibition of MDM2 mediated degradation of
p53. Active p53 can induce apoptosis. Ras activated CyclinD/CDK leads to Rh
phosphorylation and release of E2F allowing for progression of cell cycle and at
the same time reinforcing pl~RF activation.



Transgenic Mouse Models of INK4a locus

The first mouse model to be developed was the INK4a null model where exons 2 and 3 of the

INK4a locus were replaced with a neomycin cassette (Serrano et al., 1996). The mice lack

p16INK4aprotein. It is not clear whether they lack p19ARF completely since there is an intact

exon 1f3, and these mice may express a truncated p19ARF product. The mice are viable and

fertile. However, 69% of the mice spontaneously show tumour formation by 29 weeks of age,

mostly lymphomas. When these mice are carcinogen treated almost all of them succumb to

tumours such as sarcomas and lymphomas. When MEFs from these mice were compared to

wild type MEFs or heterozygous MEFs, they showed an increase in growth rate, higher

cellular densities, higher efficiency in colony formation and they could also escape

senescence. They could also form foci in culture when Ras but not c-myc was introduced and

these cells could form tumours in nude mice. These experiments showed that the INK4a locus

is powerful in tumour suppression. (Note these mice have been used in the studies described in

this thesis and are referred to as line 113).

Subsequently, mice lacking specifically the p19ARF gene were created (Kamijo et al., 1997).

These mice become blind soon after birth but they are viable and fertile. They develop

sarcomas, T-cell lymphomas, carcinomas and neurological tumours and about 80% of them

are dead within a year of birth2(Sharpless et al., 2004). Since the phenotype between INK4a

null and p19ARF mice was quite similar it was suggested that p 19ARF maybe more important in

tumour suppression in mice.

More recent models include one that leads to production of an unstable form of p16INK4a

protein (due to a stop codon insertion in exon 2) (Krimpenfort et al., 2001) and mice that are

null only for p16INK4a( due to exon If3 deletion) (Sharpless et aI., 2001). MEFs from both of

these models had the same growth rate, same Rb phosphorylation and same pattern of growth

arrest when serum starved as wild type MEFs but p19ARF null MEFs were very susceptible to

transformation and could escape growth arrest whilst p16INK4anull MEFs were not acting in

this manner.

2 Sharpless et aI, 2004, reported the generation of p19ARF null mice. These mice were created
onl~t~r com~arison reasons with the pI6INK4a null mice (Sharpless et al., 2001). These new
p19 null mice were also more prone to tumours than wild type animals.

84



Both mouse models showed increased tumour load after chemical carcinogen treatment when

compared to wild type siblings but the mice harboring the mutant p161NK4ashowed no

difference in spontaneous tumour formation unlike the INK4a null mice.

Comparing these results between p 161NK4anull or mutated protein and p 19ARFnull mice it is

shown that both p 161NK4aand p 19ARFare important as tumour suppressors but they play a

different role in different tumour types. A recent study argues that in humans the most

important tumour suppressor is p 16INK4aand not p 19ARF. This is consistent with

epidemiological studies that have shown point mutations, deletions and promoter

hypermethylation affecting only p16INK4aand not p14ARF (the human homolog of pI9ARF)

(Ruas and Peters, 1998). In the study by Voorhoeve and Agami, 2003, human primary

fibroblasts were used along with siRNAs against Rb, p53, p14ARFor p161NKN4a.It was shown

that inhibition of p14ARFleads to fibroblast increased growth only in the presence of p53 but

these cells do not readily form tumours in nude mice (Voorhoeve and Agami, 2003). In

contrast inhibition of p 16INK4adoes not play a role on fibroblast growth rate but instead

cooperates with the loss of p53 to increase growth rate and cause transformation, thus

suggesting that loss of p 16INK4ais more important for human tumours.

LMP1 , NPC and p161NK4a

NPC primary tumours and xenografts show homozygous deletion of the INK4a locus as well

as silencing of p 16INK4adue to promoter hypermethylation (Lo et al., 1996; Lo et al., 1995).

When NPC cell lines were treated with 5' -aza-2' -deoxycytidine that reverses

hypermethylation, p161NK4aprotein levels increased. It was therefore implied that p 161NK4a

could be involved in the development ofNPC.

As described in section 1.3, LMP 1 inhibits p 16INK4aexpression in rodent fibroblasts by

relocalising its effectors (Ohtani et al., 2003; Yang et al., 2000a; Yang et al., 2000b).

However, inhibition ofp161NK4awas not observed in LeLs, implying that either LMPI cannot

inhibit p 161NK4aor it is not sufficient for p 161NK4ainhibition (Hayes et al., 2004). Data

generated from chemical carcinogenesis treatment of mice expressing LMPI in the epidermis

but with INK4a null mutation, showed that INK4a locus products (either p161NK4aor pI9ARF)

inhibit lesion growth. Heterozygous loss of INK4a leads to intermediate growth, therefore a

cell with an INK4a mutation (ie.heterozygous) and EBV infection with LMPI expression will

grow faster than an EBV infected cell with no mutation. Also loss of INK4a in the absence of
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EBV shows reduced risk of lesion outgrowth. It is therefore the specific combination of loss

ofINK4a and EBVILMPI that leads to increased risk (Macdiarmid et al., 2003).

1.9 Mouse models of LMP1 expression in the epithelium
In order to investigate the role LMP1 plays in the formation and the development of EBV

associated carcinoma in vivo, mouse models were developed that would express LMP1 in the

epithelium. There are many advantages to using an in vivo model to study a disease. An in

vivo model enables the researcher to gain access to affected tissues and study the different

stages of the disease from the outset. Directing expression to epidermis allows ready

observation and monitoring of a developing phenotype. Moreover, carcinogenesis in the

mouse skin has been extensively characterised as described in section 1.5.

The Structure of the Skin
Epidermis is a type of stratified epithelium. Epithelia line all the cavities and free surfaces of

the body. Cells in epithelia are tightly bound together and provide a barrier to environmental

agents and bacteria as well as regulating water, solute and cell movement. All epithelia are

avascular and depend on the underlying connective tissue for nutrients. Simple epithelia are

single sheets of cells while stratified epithelia consist of layers of multiple cells usually of

different types. Pseudo stratified epithelia appear to consist of different layers whereas in

reality they consist of a single layer of cells. Epithelia are categorised according to the shape

of the cells that make them up. There are cuboidal epithelia where the cells are cubed shaped,

columnar epithelia where the cells are rectangular and squamous epithelia where the cells are

flat. Epithelia can contain cells that can form keratins or not. The epidermis is a stratified

keratinising epithelium whilst the epithelium lining the mouth, the nasopharynx and the

gastrointestinal tract consists of simple squamous or columnar non keratinising epithelium.

NPC arises from the simple squamous non keratinising epithelium of the nasopharynx. In the

transgenic mice, we are modelling EBV associated disease in the stratified keratinising

epithelium of the skin and the gastrointestinal tract.

The skin consists of the epidermis, the underlying dermis and the skin appendages which

include hair follicles and sweat glands (fig. I. II). Its purpose is to protect internal organs from

injury, infectious agents and dehydration and serve for insulation, vitamin D production,

sensation and excretion (Fuchs and Byrne, 1994; Fuchs and Raghavan, 2002).

The dermis is developmentally derived from the mesoderm and is usually much thicker than

the epidermis. It consists of two layers; the innermost thicker layer is the reticular dermis and
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Figure 1.11: Structure of the skin

The diagram shows the structure of the skin; consisting of the epidermis the
dermis and the basement membrane. The skin appendages like hair follicles
and sweat glands are not shown. The different epidermal layers are depicted.
The proliferating basal layer is shown in pink, the differentiating suprabasal
layer in purple, the granular layer in peach and the cornified layer in brown.



the outermost thinner layer is the papillary dermis. The dermis consists mainly of collagen

and elastic fibers, capillaries and blood vessels. It is in the reticular dermis that all the

epidermal appendages such as hair follicles and sweat glands lie. The dermis main cell type is

the fibroblast which is responsible for producing collagen elastic fibers. Other cell types

found in the dermis include macrophages and mast cells that playa role in immunity.

Dermis is separated from the epidermis by the basement membrane which is made up of

extracellular matrix proteins including laminins, collagen and proteoglycans. The epidermal

cells are attached to the basement membrane via special adherens junctions called

hemidesmosomes and the basement membrane is attached to the dermis via anchoring fibrils.

The basement membrane separates the dermis from the epidermis but at the same time allows

communication between these two layers. For example, signalling molecules, lymphocytes

and Lagerhans cells can pass from the dermis to the epidermis.

The epidermis is much thinner than the dermis ranging from O.Imm to Irnm. The soles of the

feet and the palms of the hand have thicker epidermis whereas the eyelids have very thin

epidermis. Developmentally the epidermis is derived from the ectoderm. In fury mammals

like the mouse the epidermis is much thinner than the human epidermis. The epidermis

consists of mainly of keratinocytes (85%), Lagerhans cells, Merckel cells and melanocytes.

The primary role of keratinocytes is to produce keratins. Melanocytes produce melanin which

protects the keratinocytes from UV light. Lagerhans cells can present foreign antigens to the

immune system. Merckel cells are found in certain parts of the epidermis and allow pressure

to be felt. The epidermis is a stratified keratinised squamous epithelium that is replaced every

3-4 weeks and is made up of five distinct layers. These are:

• Stratum basale (basal cell layer)

Startum basale (the innermost layer of the epidermis) is composed of a single layer of

columnar or cuboidal keratinocytes that are attached to the basement membrane via

hemidesmosomes. These keratinocytes are mitotically active and can proliferate. These

cells detach from the basement membrane and move further up the surface of the skin to

the spinous layer where they are terminally differentiated. In the stratum basale one can

find melanocytes, Lagerhans and Merckel cells.
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• Stratum Spinosum (spinous layer or suprabasallayer)

Stratum spinosum consists of 8-10 layers (humans, 1-2 layers in the mouse) of irregularly

polygonal flattened cells. These cells are alive and are separated by clefts that are spanned

by spine like cytoplasmic extensions of cells.

• Sratum Granulosum (granular layer)

Stratum granulosum consists of 3-5 layers (humans, 1-2 layers in mouse) of flattened

polygonal cells with disintegrating nuclei. These cells accumulate keratohyalin granules.

They also contain lamellar granules that shed their lipid contents into the interstitial space

and form a seal that prevents entry of water or foreign objects in the skin. The cells of this

layer are not dividing.

• Stratum Lucidum

Stratum lucidum is a translucent, thin layer of extremely flattened dead cells. In some

cells the nuclear outline may be slightly visible but most of these cells are enucleated.

Only the intermediate filaments and desmosomes are retained.

• Stratum Corneum (cornified layer)

The stratum corneum consists of 25-30 (human,IO layers in mouse) layers of dead,

enucleated, flattened, keratinised cells. The cells closer to the surface of the epidermis are

loosely connected to each other and are constantly shed from the skin in a process called

desquamation.

The epidermis is constantly in a state of dynamic equilibrium and growth and differentiation

must be tightly regulated in order for this equilibrium to function properly. Increase in the

number of dividing cells can lead to epidermal hyperproliferation and disorders such as

psoriasis, and basal- and squamous-cell carcinomas. On the other hand, premature

differentiation can lead to very thin skin. The epidermis is also receiving signals that affect its

homeostatic control from the underlying dermis. Therefore, when one studies epithelial

abnormalities all these factors must be taken into account.

One of the important roles of keratinocytes within the epidermis is to produce different

keratins. There are two types of keratins; type I are acidic (pKi = 4.5-5.5) and small (40-

56.5kDa) whilst type II are basic (pKi = 5.5-7.5) and larger (53-67kDa). The keratins form

heterodimers of these two types. About 20,000 pairs assemble into an intermediate filament

that give the epidermis its structure. At the different layers of the epidermis different keratin

89



pairs are expressed. In the basal layer only keratins 5,14 and 15 are expressed. As the cells

enter the suprabasallayer, expression of these keratin pairs is downregulated and other keratin

pairs such as keratins I, 10 and 11 are expressed. In response to injury, retinoic acid treatment

or hyperproliferative diseases like cancer, the subrabasallayer can produce keratins 6 and 16

(K16 has no murine homologue). Therefore keratin pairs can serve as markers of proliferation

or differentiation (Fuchs, 1995; Fuchs and Byrne, 1994; Fuchs and Raghavan, 2002).

The other components of the skin are the epidermal appendages which are derived from the

epidermis and include hair follicles, sebaceous glands, eccrine, apocrine glands, nails and

teeth. Their function is to protect the skin and to regulate skin homeostasis.

LMP1 transgenic models
With the above in mind, several transgenic mice were created in order to study the role of

LMPI in carcinoma genesis and progression.

The first series of mice were created using the Py promoter to direct expression of the

LMP1895•8 to the epidermis. 12 founders were created that gave rise to 9 lines. Out of these, 2

lines expressed the LMPI in the epidermis and these were lines 5 and 53 (Wilson et al., 1990).

Line 5 showed high levels of LMPI expression but also showed insertional mutation that led

to line extinction. Line 53 showed a lower LMPI expression and was viable and therefore

subsequent studies were performed using line 53. Transgenic pups of this line are slightly

smaller initially than their wild type siblings and also show an epidermal hyperplasia that is

most evident from day 3 to day 7 (fig.1.12). They also show a delay in eye opening and fur

growth. These phenotypes resolve as the mouse matures and are not evident in adults of the

line. The adults show a progressive increase in claw growth and in the C57BU6 strain, a

colour coat change from black to patches of ginger as they age. Expression analysis

performed on tissues of mice of this line and line 5 showed that the transgene was expressed in

the skin both at the mRNA and protein level and at low levels in the tongue. Consistent with

hyperplasia, keratin 6 and 14levels (proliferation markers) in the skin of transgenic mice were

upregulated by 2.5 times compared to wild type sibling skin in line 53 (higher in line 5)

(Curran et al., 2001; Wilson et al., 1990). In further studies in which these mice (in FVB

strain) were treated with topical chemical carcinogens, the transgenic mice developed more

papillomas than the wild type siblings and it was shown that LMPI could augment the activity

of TPA (Curran et al., 2001). However, growth expansion of these small papillomas into

larger lesions was inhibited in the LMPI expressing mice. When these mice were bred into an
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Py LMPIB95-8 EBV-L2

Figure 1.12a: Construct used to generate line 53

The purple rectangle and diamond represent the polyoma enhancer and
promoter, the turquoise coloured area represents EBV sequence, the blue area
represents the LMP 1B95-8sequence. The black bars represent the two introns
found in the LMPI gene. The pink oval represents the EBV -L2 promoter.

Figure 1.12b: Phenotype of line 53 pups

In the above picture, 4 pups offine 53 are shown. The two on the left are
wild type (-) whilst the two on the right are transgenic (+) for LMPIB95-8, as
indicated. The pups shown above are 3-7days old and the transgenic ones
are smaller than their wild type siblings, showing epidermal hyperplasia.



INK4a null background, the growth inhibition was removed, demonstrating that the LMPI

induced inhibition of lesion growth was mediated by products of the INK4a locus (p161NK4lI

andlor pI9ARF
). Loss of INK4a also promoted carcinoma progression (Macdiarmid et al.,

2003). This study showed that LMPI plays a role in the early stages of tumourigenesis, acts

as a promoter and exerts a growth inhibitory effect via p16INK4lI andlor p19ARF and therefore

implies that LMPI is not sufficient to inhibit expression of one or both of these products.

Since the LMPI CAO strain was isolated from an NPC and has been postulated to be more

oncogenic, this form of LMPI was used to create further transgenic lines in order to explore

its activity in vivo. The LMPI CAO gene (Hu, 1991) was expressed under the control of the

EBV ED-L2 promoter to drive expression of LMPlcAO in the epithelium (Stevenson et al, in

press)(fig.l.13). 5 lines of mice were created. These were lines 104, 117, 105B, 105A and

106, the strength of phenotype indicated according to their order. For example, line 104

showed the strongest expression and more intense phenotype and all the mice of this line died

before further breeding. Line 106 had little or no phenotype. Here I wiII describe only the

lines that have been used in this PhD study: lines 117, 105A and 105B. Line 117 and 105B

transgenic animals show extensive epidermal hyperplasia on the ears and the tail with evident

vascularisation as adults. The ear phenotype progressively worsens with age. For the purpose

of the study described in this thesis, the progressive phenotype was categorised in stages

(fig.1.14). When line 117 and 105B were bred into the FVB background, the transgenic

animals started developing dorsal papillomas spontaneously (see fig.1.15).

Line 105A animals do not show any hyperplastic epidermal phenotype but develop a wasting

phenotype starting at around 1 year or older.

Note that due to the importance of the strain variation in epithelial carcinogenesis, all line 117

animals used in the chemical carcinogenesis experiments and the spontaneous papilloma

studies were mostly in FVB strain (backcross 5 or 6, the original strain being C57BL/6).

However, the cross of line 117 to 125 mice was in a mixed strain background (FVB/129/C57)

as the line 125 animals were in a mixed 125/C57 strain.
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EBV-L2 LMPICAO EBV-L2

Figure 1.13: Construct used to generate lines 117, 105A and 105B

The pink oval represents the EBV-L2 promoter. The blue rectangle
represents EBV sequence. The green rectangle represents LMPlcAO
sequence. The black bars in the green rectangle represent the two
introns of the LMPlcAO gene.



Figure 1.14: Ear phenotype ofliDe 117mice

The top left comer shows an ear from a wild type
mouse of same age and strain to the L2LMPI CAO

transgenic ear shown on the top right comer. Stage 1
transgenic ear, is showing vascularisation when
compared to the wild type ear, whereas stage 2
shows hyperplasia, stage 3 ear shows the beginning
of necrosis and stages 4 and 5 transgenic ears show
extensive ulceration and necrosis like a
keratoacanthoma and can progress to carcinoma.
The approximate age at which the specific phenotype
is observed is given.



wild type ear

stage 2 ear (8 weeks old)

stage 4 ear (7-12 months old)

stage 1 ear (4 weeks old)

stage 3 ear (4-6 months old)

stage 5 ear (10 months or older)



Figure 1.15: Phenotype of a 117 mouse bred into the FVB background

This mouse is backcross 3 into FVB background (87.5% FVB). At least 6
spontaneous papillomas have developed on its back at sites not related with
mechanical irritation (figure from Stevenson et. al., in press).



1.10 Aims

The purpose of my thesis was to investigate the role LMPI plays in the onset and progression

of carcinoma in vivo, using the transgenic mouse models. The investigation was subdivided

into the following analyses:

(1) To characterise the expression patterns of LMP1CAO in the transgenic lines generated

and evaluate whether the observed phenotypes correlate with the expression patterns.

(2) To investigate the action ofLMPI in conjuction with loss of the INK4a locus in order

to explore cooperative effects.

(3) To test the hypothesis that LMPI exerts its oncogenic action via upregulation of

TGFu, a ligand ofEGFR. It is known that EGFR is upregulated by LMPI in epithelial

cells and that it is also found upregulated in NPC biopsies. Upregulation of an EGFR

ligand could lead to faster cycling of the receptor and thus increased activation of the

pathways affected by EGFR. One such pathway is the RaslMAPK pathway. The

effect LMPI has on this pathway was explored.

(4) To examine the status of other signalling pathways known to be affected by LMPI in

B cells. LMPI plays a role in many cellular processes and it was important to dissect

which pathways are impacted in the tissues and therefore which may be responsible for

the induced phenotype and thus which might be implicated in NPC development.
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Chapter 2: Materials and Methods

2.1 Materials
Chemicals were purchased from Sigma except where stated otherwise. Tissue culture reagents

were from GibcoBRL.

2.1.1 Antisera
Table 2.1: Primary Antibodies Used

Antibody/ControVHybridoma Supplier/ref. Catalogue Species Dilution Protein
Cell Supernatant Number used size

kDa
Phospho-Akt (Thr308) Cell 9275 Rabbit 1:1000 60

Signaling
Phospho-Akt (Ser473) Cell 9271 Rabbit 1:1000 60

Signaling
Total Akt Cell 9272 Rabbit 1:1000 60

signaling
Cleaved caspase-3 Cell 9661 Rabbit 1:1000 17,19

Signalling
Total caspase-3 Cell 9662 Rabbit 1:1000 35,17,

Signalling (Western) 19
1:50 (IHC)

Phospho-p38 Promega V121A Rabbit 1:1000 38

Cyclin A Santa Cruz sc-751 Rabbit 1:1000 50

Cyclin Bl Santa Cruz sc-752 Rabbit 1:1000 50-55

Cyclin Dl Cell 2926 Rabbit 1:1000 36
Signalling

Elk-l Santa Cruz sc-355 Rabbit 1:1000 62

Phospho-EGFR (Tyr845) Cell 2231 Rabbit 1:1000 170

Signaling
Phospho-EGFR (Tyrl068) Cell 2234 Rabbit 1:1000 170

Signaling
Total EGFR Cell 2232 Rabbit 1:1000 170

Signaling
Phospho-ERKl/2 Cell 9101 Rabbit 1:1000 44,42

(Thr202/Tyr204 ) Signaling
Total ERK1I2 Cell 9102 Rabbit 1:1000 44,42

Signaling
Fra-l Santa Cruz sc-183 Rabbit 1:1000 42
Fra-2 Santa Cruz sc-604 Rabbit 1:1000 43
c-fos Santa Cruz sc-253-G Rabbit 1:1000 62
FosB Santa Cruz sc-48X Rabbit 1:1000 36
Phospho-GSK3(3 Cell 9336 Rabbit 1:1000 46

Signaling
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Phospho-HER2 (Tyrl112) Cell 2245 Rabbit 1:1000 185
Signaling

JunB Santa Cruz sc-46X Rabbit 1:1000 45
c-Jun Santa Cruz sc-45X Rabbit 1:1000 39
LMPI (IG6) (Nicholls et Rat 1:100 60

al.,2oo4)
LMPI (S12) (Mann et al., Mouse 2ooJ.11(JP) 63

1985) 1:500
(Western)

LMPI (CAO) cocktail (Nicholls et Rat 1:100 66
al.,2004)

Phospho-MEKl/2 Cell 9121 Rabbit 1:1000 45
(Ser217/221) Signaling
Total MEK1/2 Cell 9122 Rabbit 1:1000 44,42

Signaling
NF-KB p50 SantaCruz sc-U90 Goat 1:1000 50
NF-KB p65 Santa Cruz sc-372 Rabbit 1:1000 65
PCNA Novocastra NCL-PCNA 1:50 (IRC) 36
Phospho-PTEN Cell 9551 Rabbit 1:1000 54

Signaling
p53 Santa Cruz se-1312 Goat 1:1000 53
p16 Santa Cruz se-1207 Rabbit 1:1000 16
B-Raf Santa Cruz sc-9002 Rabbit 1:1000 95
Phospho-c-Raf Cell 9421 Rabbit 1:1000 74

Signaling
c-Raf-l Santa Cruz sc-227 Rabbit 1:1000 74
Rassf 1 Santa Cruz sc-18724 Goat 1:1000 43
Total Rb Santa Cruz se-50 Rabbit 1:1000 110
Phospho-Rb Cell 9307 Rabbit 1:1000 110

Signaling
Phospho-SAPKlJNK Cell 9251 Rabbit 1:1000 54,46

Signaling
Phospho-SEKIIMKK4 Cell 9151 Rabbit 1:1000 46

Signaling
J3 tubulin Santa Cruz sc-9935 Rabbit 1:500 54
TACE Santa Cruz sc-13973 Rabbit 1:1000 74
TGFa. Santa Cruz sc-9043 Rabbit 1:1000 11

Table 2.2: Secondary Antibodies used

Goat anti-rabbit JgG-HRP Santa Cruz se-2030 1:4000
Donkey anti-goat IgG-RRP Santa Cruz se-2020 1:4000
Goat anti-mouse IgG-HRP Santa Cruz sc-2031 1:4000
Goat anti-rat IgG-RRP Santa Cruz sc-2032 1:4000
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2.1.2 Oligonucleotides
Table 2.3: Factor Binding Sites

OLIGONUCLEOTIDE NAME SEQUENCE
AND COMPANY

ETS (Santa Cruz) 5'-GGG CTG CIT GAG GAA GTA TAA GAA
T-3'

NF-KBForward (Sigma Genosys) 5'-G AGC AGT TGA GGG GAC TTT CCC
AGGC-3'

NF-KBReverse (Sigma Genosys) 3' -TCA ACT CCC CTG AAA GGG TCC

GGA TG-5'

SRE Forward (Sigma Genosys) 5' -GAG CGG ATG TCC ATA ITA GGA

CATCT-3'

SRE Reverse (Sigma Genosys) 3'-CCT ACA GGT ATA ATC CTG TAG

AGATG-5'

SRE (Santa Cruz) 5'-GGA TGTCCA TAl TAG GAC ATCT-3'

TRE Forward (Sigma Genosys) 5'-G AGC CGC TTG ATG ACl CAG CCG
GAA-3'

TRE Reverse (Sigma Genosys) 3'-GCG AAC TAC TGA GTC GGC CIT GAT
C-5'
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Table 2.4: PCR oligos

PCR PRIMER PRIMER SEQUENCE
FRAGMENT NAME
Neomycin NeoForward 5'- TGA ATG AAC TGC AGG ACG AGG- 3'

Neo Reverse 5'- AAG GTG AGA TGA CAG GAG ATC- 3'
p16 p16 Forward 5'- GTG ATG ATG ATG GGC AAC GT- 3'
exon 2

p16 Reverse 5'- CTG GGC GAC GTI CCC AGC GG- 3'
TGFu TGFuKOl 5' -GAC TAG CCT GGG CTA CAC GT G- 3'
exon 3

TGFuK02 5' -CCG err CCT CGT GCT rrA CGG T- 3'

TGFuK03 5' - ACA TGC TGG err CTC TIC CTG C- 3'

v-H-ras v-H-ras Forward 5'- GGA TCC GAT GAC AGA ATA CAA GC- 3'

v-H-ras Reverse 5'- ATC GAT CAG GAC AGC ACA CTI GCA- 3'

c-H-Ras c-H-ras Ex2A 5' - CTA AGC CTO ITG TOT TTT GCA GGA C- 3'

c-H-ras Ex2B 5'- GCT AGC CAT AGO TGG CTC ACC GT- 3'
LMPI DSI 5'- ATG GAA CAC GAC err OAG AG- 3'

DS2 5'- TAG GCC ITO CTC TCC TIC TC- 3'

DS3 5'- AGA TGG TGG CAC CAA GTC GC- 3'

DS4 5'- GAA GAA GGC TAG GAA GAA GG- 3'

2.1.3 Cell Lines
All cell lines were developed from carcinomas following topical DMBA/TP A carcinogen

treatment of transgenic positive and negative mice as listed.
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Table 2.5: Cell lines and their transgenic status

Cell Line Description LMPI Transgenic status

CarB Spindle (NIH mouse carcinoma) -
53.217 Cuboidal -
117.30 Spindle -
105.60 Spindle -
105.113 Spindle -
53.278a Spindle +
53.278b Spindle +
53.279 Cuboidal +
53.234a Cuboidal +
53.191 Cuboidal +
53.220 Cuboidal +
53.226a Cuboidal +
105.92 Cuboidal +

2.1.4 Frequently used solutions
Church buffer (pH7.2) 1%(w/v) BSA

1mMEDTA
500mMNaP04

7%(w/v) SDS

Denaturing Solution 0.6MNaCI
O.4MNaOH

0.5% Dispase 0.5%(w/v) Dispase in PBS

lOx ETS binding buffer 10mM Tris-HCI pH7.5
50mMKCI
5mMMgCl2
1mMEDTA pH8.0
12.5% (v/v) glycerol
0.1% Triton X
1mMDTT

2FC 49.45%(v/v) Chloroform
0.1%(w/v) 8-hydroxyquinoline
1%(v/v) Isoamyl Alcohol
49.45% Buffer Saturated Phenol

4MGT 250g guanidium thiocyanate
293ml dH20
17.6ml 0.75M sodium citrate, pH 7.0
26.4ml 10% sarcosvl

High Salt buffer (EMS A) 20mM Hepes pH7.9
O.4MNaCI
1mM EDT A pH8.0
1mMDTT
1mMPMSF
Vanadate
Aprotinin
Protease inhibitor
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Bufferred Neutral Formalin 50ml of 40%(v/v) Formaldehyde
1.7Sg NaH2P04
3.25g NazHP04
dH20 up to SOOml

lOx Loading dye (DNA or RNA) 50%(v/v) Glycerol
0.1%(v/v) Bromophenol Blue
O.l%(w/v) Xylene Cyanol
in TB pH7.5 (DEPC-treated for RNA)

lOx Loading buffer (RNA) 100~llOx MOPS (O.OOlM)
500~1 pure deionised formamide
178~1 formaldehyde pH4.0
22~1 DEPC-treated H2O

lOx MOPS-E 200mMMOPS
10mMEDTA
50mM NaOAc pH7.0
in dH20 pH7.0 wrap in foil and autoclave

PBS 2.7mMKCI
1.4mM KH2P04
137mMNaCI
4.3mM Na"P04 pHlHCI17.3

Protein Blocking buffer 5%(w/v) milk powder
TBST

Protein Blotting buffer 25mMTris
192mM Glycine
20%(v/v) Methanol (analytical grade)

2x Protein Gel Sample buffer (GSB) 125mM Tris-HCI, pH6.8
20%(v/v) Glycerol
lO%(v/v) Sodium 2-Mercaptoethanol
4%(w/v) SDS
O.OO4%(w/v) Bromophenol Blue

4x Protein Gel Sample buffer (GSB) 200mM Tris-HCI, pH6.8
30%(v/v) Glycerol
S%(w/v) SDS
10%(v/v) Sodium 2-Mercaptoethanol
O.04%(w/v) Bromophenol Blue

Protein MENSA buffer 62.5mM Tris-HCI,pH6.S
2%(w/v) SDS
50mM Sodium 2-Mercaptoethanol

Protein extraction: NET-N buffer l50mMNaCI
5mMEDTA pHS.O
50mM Tris-HCI pHS.8
0.05%(v/v) NP40
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Protein extraction: Ripa buffer ISOmMNaCI
5mM EDT A pHB.O
20mM Tris-HCI pH7.5
O.S%(w/v) Deoxycholic Acid
l.S%(v/v) NP40
0.1% SDS

BM Urea buffer 8M urea
5% (v/v) Sodium 2-Mercaptoethanol
2SmM Tris, pH9.5

Protein SDS-PAGE Running buffer 50mMTris
3BOmM Glycine
O.I%(w/v) SDS

lOx Santa Cruz binding buffer 100mM Tris pH7.S
500mMNaCl
10mMDTI
lOmM EDT A pHB.O
SO%(vfv) glycerol

Southern Stripping Solution A O.lx SSC
0.5% SDS

Southern Stripping Solution B O.Ix SSC
0.1% SDS

Southern Washing Solution A 2xSSC
0.1% SDS

Southern Washing Solution B O.Ix SSC
0.1% SDS

Solution D 0.36ml Sodium 2-Mercaptoethanol
50ml4MGT

2x Sp 1 binding buffer 30mM Hepes pH7.5
BmMMgC12

1.2mMEDTA
20% (v/v) glycerol
dH,O

2/3x SRE binding buffer lOmM Hepes pH7.9
2mMEDTA pHB.O
1M NaCI
Irng/ml BSA
10%(v/v) glycerol

20x SSC 150mMNaCI
150mM Tri-Sodium Citrate

STE buffer ImMEDTA
lOmMNaCI
lOmM Tris-HCI pH7.S

TAE (SOx stock solution, I litre) 5.71 % (v/v) Glacial Acetic Acid
100mMEDTA
2000mM Tris-HCI pHB.S
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Tail Solution lOOmM EDT A pH8.0
150mMNaCI
l%(w/v) SDS
10mMTris-HCI pH7.5

TBE(lOx stock solution, llitre) 890mM boric acid
4% (V/V) 0.5M EDTA pH8.0
890mMTris

TBS 140mMNaCI
20mMTris

TBST 140mMNaCI
20mMTris
O.l%(v/v) Tween-20

TE ImM EDT A pH8.0
lOmM Tris-HCI pH8.0

Trypsin Solution 25%(v/v) Trypsin
0.02%(v/v) Versene

Versene 0.54mMEDTA
2.7mMKCI
1.4mM KH2P04
137mMNaCI
4.3mM Na2PO,t pH/HCV7.3

2.1.5 Frequently used growth media
Agar Plates 250m} dH20

109 Tryptone Oxoid L42
5g Yeast Extract (Oxoid)
109 NaCI
make up to lL with dlf.O pH7.54 (NaOH)

Luria-Bertani (LB) 1% (w/v) Bacto-tryptone
0.5% (w/v) Bacto-yeast extract
1% (w/v) NaCI

Complete Tissue Culture Medium DMEMmedium
5-20% (v/v) FCS
2% (v/v) L-glutamine (200mM stock)
2% (v/v) Penic ill i n/Streptomyci n
(lOOOOU/mL stock)

Freezing Medium Per ml of medium added
9201-11FCS
80~DMSO

2.2 Methods

2.2.1 Animal procedures
All mouse procedures were conducted in accordance with the Home Office regulations and as

detailed in the covering project licence. Unless otherwise stated, the procedures were

conducted by me, or the animal technicians (where indicated) as covered by my Horne Office
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personal licence. Where the use of brief anaesthesia was required, a halothane/oxygen

mixture was used in an anaesthesia chamber.

A) Breeding and record keeping of transgenic mice

All food, water and bedding requirements were handled by the animal technicians. Litters

were monitored by the animal technicians and all animals were regularly health checked.

Usually, at three weeks of age the mice were weaned and males and females separated. The

mice were given consecutive numbers for each line. The mice were anaesthetised using

halothane/oxygen before being numbered by ear punching. A small tail biopsy was taken (a

tail tip of O.Scm)and the mouse tail was causterised with a hot iron to prevent bleeding and

sterilize the wound. The tail tip was used to extract DNA and analyse the transgenic status of

the animal by Southern blotting or peR. In mice of several transgenic lines that developed a

serious ear phenotype the animals were not ear punched. Instead, the scruff of the neck was

shaved, the animal anaesthetized and a michochip was injected subcutaneously. The

microchip had a unique six-digit identification number that could be read with an appropriate

reader (microchips obtained from MID-FingerPrint Ltd cat. no: IDIOOtransponders).

B) Animal health

Animal health was monitored in accordance with procedures described in the Home Office

project licence. All animals were monitored regularly for signs of ill health and discomfort.

Animals which were subject to the development of lymphomas, hind paralysis and excessive

papilloma growth and conversion to carcinomas were monitored at least once a week. Any

animal suffering or deviating from the health status outlined in the UK guidelines for the use

of experimental animals was euthanised without delay.
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C) Mouse lines

Line Number Transgene Expression References
53 PyLMP1B9S-8 LMP1 expressed in the (Wilson et al., 1990)

epithelium
113 Neomycin cassette p16INK4a not expressed (Serrano et al., 1996)

has replaced exons 2 p19ARF truncated
and 3 of INK4a mRNA
locus

117 L2LMPlcAO LMPI CAO expressed in Stevenson et al., (in
the epithelium and press)
some lymphoid tissues

1205 HK1-H-ras H-ras expressed in the (Wang et al., 2000)
basal layer of the
epidermis

125 Neomycin cassette No TOFu expression (Mann et al., 1993)
replaced exon 3 of
TOFu gene

Table 2.6: Mouse lines used

Offspring from cross breeds are indicated ego as 117/113 indicating that line 117 has been

crossed to line 113.

D) Sample collection from mice

Animals were euthanased by a schedule 1method according to Horne Office guidelines.

DJ Dispase epidermis separation

Mouse pups 3-7 days old were euthanased, and immediately placed in a 7ml sterile plastic

Bijoux and stored on ice. The limbs and tail were amputated and stored for subsequent DNA

extraction and identification of transgene status. The body was rinsed in 70% ethanol and

dried with a tissue. The skin was removed in a single sheet by a ventrical longitudinal

excision. If total skin was needed, then it was snap frozen in liquid nitrogen. For epidermal

separation, the skin sample was floated dermis side down on a 0.5% dispase solution in a 5cm

petri dish (if samples were to be used for RNA extraction, ribonucleoside vanadyl complexes

(RVe) Sigma cat no: R3380, was added to the 0.5% dispase solution. RVe inhibits RNase A

activity but not DNase I). The sample was incubated at 4·e overnight. The skin was then

placed on a dry sterile petri dish epidermis side down, so that the epidermis could adhere to

the plastic. The thicker dermis was then removed from the epidermis with forceps leaving the
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thin, translucent epidermis on the plate. The separate epidermal and dermal samples were

placed in screw cap Nunc tubes and snap frozen in liquid nitrogen and stored indefinitely at

-70·C (Macdiarmid and Wilson, 2001).

0.11Removal of papillomas and carcinomas

The fur of the euthanased animal was wetted in 70% ethanol. Using surgical tweezers and

scissors the area around the lesion was cleared of fur and the lesion was excised removing any

excess skin. Part of the lesion was placed in 10% buffered neutral formalin fixative and the

remainder was placed immediately in a screw cap Nunc tube and snap frozen in liquid

nitrogen and stored at -70·C. A sample of tail tissue was also taken from each animal for

confirmation of transgene status if needed.

0.111Removal of internal tissues

Following incision of the abdomen, any peripheral lymph nodes were collected and the layer

of skin was pulled back and internal organs were revealed. The organ of interest was then

excised and if necessary washed in 1xPBS and snap frozen in liquid nitrogen and stored at

-70·C or fixed in 10%neutral buffered formalin for subsequent pathological analysis.

E) Chemical Carcinogen Treatment of mice

Mice that were treated with chemical carcinogens were dorsally shaved the day before

application of the agent. TPA was kept as a 40x stock (l.25mg/ml) dissolved in acetone at

-20°C. The working solution was Ix (31.25Ilg/ml) and was made by dissolving the 40x

solution in appropriate amounts of acetone. The Ix solution was also kept at -20°C in a glass

universal wrapped in aluminium foil. 200111of Ix TPA solution was applied to the shaved

back of each mouse. The procedure was performed in a ventilated sink, wearing all the

appropriate protective clothing and double gloves. The mice were left in their cage in the

ventilated sink for 45 min. after treatment so that the acetone would evaporate and were then

caged in a dedicated room for chemically treated animals in filter top cages. TPA application

was performed according to a minimal regime of twice a week for four weeks. The mice were

observed once every week and appearance and size of any papillomas or carcinomas was

recorded.
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F) Papilloma monitoring of mice

Lines 117, 117/113 and 117/113/1205 developed acanthomas or papillomas spontaneously in

the FVB strain. The lesion number and size was monitored usually by touch once every two

weeks. Lesions were observed from the start of the study until the animal was removed from

the study. A lesion was classified as papilloma if it was raised above the surface of the skin

(although several were later characterized as acanthomas). Visually papillomas look like

cauliflower-type warts. Carcinomas were classified by eye, since they have a smoother, firmer

appearance than papillomas and do not "wobble". Subsequently, lesions were examined by

histopathological analysis. Lesions were categorized subjectively by size according to the

following specifications:

Category Approximate Lesions Diameter
Size! <O.2cm
Size 2 O.2cm-O.5cm
Size 3 O.Scm-!.Ocm
Size 4 >1.0cm
Table 2.7: Lesion sizes

Mice were taken off the study and euthanased according to the project license, when their

lesion load reached a maximum, or when a single papilloma or carcinoma had reached a

diameter of 1cm, or had become ulcerated or when a lesion occurred at an orifice or a site of

irritation. Mice were also removed from the study if they were generally unhealthy.

G) Ear Monitoring of mice

The ear phenotype of line 117/125 was monitored once a week. The mice were visually

observed and their ear phenotype was compared to a chart containing the different stages of

ear phenotype as observed in line 117 (fig.1.14). The study was performed blind without

knowledge of the genotype of the animal.

2.2.2 Bacterial cell culture techniques
A) Bacterial cell culture

All plasmid propagation was performed in the E.coli strain DHS. Plasmids containing E.coli

clones were stored as viable glycerol stocks at -70·C. E.coli was cultured by taking about 1ml

of the relevant glycerol stock and adding it to 2.5ml of LB medium, supplemented with

50mg/ml ampicillin. The culture was incubated overnight at 3TC, with constant shaking. If a
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single sub-clone was required, the culture was then streaked onto an agar plate containing

50mg/ml ampicillin, and incubated overnight at 3TC. A single colony was then picked with a

sterile toothpick and used for subsequent propagation.

8) Transformation

DH5 competent cells as prepared by the laboratory technician were used. 200ml of competent

cells were thawed on ice for 10 min. IOOngplasmid DNA was added and the cells were

incubated on ice for 15min. They were heat shocked for 90 sec. at 42°C and left on ice for 1-

2 min. Warm (37°C) LB (500ml) with no antibiotics was added and the cells were incubated

at 37°C with gentle shaking for 20 minutes. This step allows for recovery of the bacteria and

plasmid gene expression. The cells were centrifuged at 9,000 xg for 1 min. and most of the

medium was removed. 10ml was plated on one agar plate and the remainder (about 90J.ll)on

another, which were incubated overnight at 37°C. The following day, distinct colonies from

each plate were picked and inoculated in 10ml of L-broth containing IOml ampicillin

overnight at 37°C with gentle shaking.

2.2.3 DNA techniques
A) Small scale extraction of plasmid DNA

The Sigma Plasmid Miniprep DNA purification kit was used for small scale plasmid DNA

isolation according to the manufacturer's protocol. It is based on a modified alkaline-SDS

lysis procedure (Birnboim and Doly, 1979) followed by adsorption of the DNA on silica in the

presence of high salts.

A colony of the desired plasmid containing bacteria was picked and inoculated overnight in

5ml of selective LB with vigorous shaking. The bacteria were then harvested in a pellet by

centrifugation at 12,000 xg for Imin. and resuspended in 200J.lIof resuspension buffer. After

that 200J.lIof lysis buffer, containing SDS-NaOH was added. The SDS solubilises the cell

membrane thus leading to lysis of the bacterial cell and release of the cell contents. The

NaOH denatures chromosomal and plasmid DNA. The mixture is neutralized by addition of

350J.lIof the neutralization solution containing acidic potassium acetate causing the covalently

closed plasmid to reanneal and remain in solution whilst the high salt concentration leads to

SDS, chromosomal and bacterial protein-salt complexes that precipitate and are removed by

centrifugation at 12,000 xg for 10min. The plasmid DNA is allowed to bind onto the silica

matrix of the column whilst debris is washed away by addition of 750J.lIof wash solution and

elution takes place in 100J.lIof water or Tris-EDTA buffer.
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B) Large scale extraction of plasmid DNA

The Quiagen Plasmid Maxiprep DNA purification kit was used for large scale plasmid DNA

isolation as per manufacturer's protocol. It is based on a modified alkaline-SDS lysis

procedure followed by adsorption of DNA on an anion-exchange resin under low salt and

appropriate pH conditions (Birnboim and Doly, 1979). The same principles apply as in

section 2.2.3A. As before, a colony with the plasmid containing bacteria was picked and

inoculated in Sml of selective LB. The 5ml culture was subsequently added to 200ml of

selective LB and inoculated overnight. The bacteria were harvested into a cell pellet in a

250ml Nalgene tube by centrifugation at 6,000 xg for 15min. at 4°C (in a Beckman JA-14

rotor). After centrifugation, the plasmid DNA was resuspended in 20ml of buffer PI (SOmM

Tris-HCI, pH 8.0, 10mM EDTA, 1001lg/mlRNase A) and lysed in 20ml of buffer P2 (200mM

NAOH, I%SDS (w/v» by inverting the Nalgene tube 4-6 times. The lysate was neutralized

by addition of 20ml of chilled buffer P3 (3.0M potassium acetate, pH S.5) and chilled on ice

for 20min. A fluffy, white precipitate consisting of genomic DNA, proteins, cell debris and

SDS was formed. The lysate was centrifuged at 20,000 xg for 30min. at 4°C and was then

passed through a column that had been equilibrated with buffer QBT (750 mM NaCl, SOmM

MOPS, pH 7.0, IS% isopropanol (v/v), O.IS% Triton-X (v/v». The lysate was allowed to

bind the Quiagen Resin whereas debris, cellular proteins and degraded RNA flowed through.

The column was washed twice with 30ml of buffer QC (I.OM NaCI, 50mM MOPS, pH7.0,

IS% isopropanol (v/v». 30ml of the high salt buffer QF (I.2SM NaCl, SOmMTris-HCI, pH

8.S, 15% isopropanol (v/vj), was used to elute the plasmid DNA from the column and the

plasmid was desalted by isopropanol precipitation (0.7 volumes ie 21ml). The DNA pellet

was washed with 10ml of 70% ethanol and dried by centrifugation at IS,OOOxg for 10min.

The DNA was air dried and resuspended in a suitable volume (usually 100JlI) of water, TE

pH, 8.0 or 10mM Tris-HCI, pH 8.S. The columns used contain positively charged

diethylaminoethanol (DEAE) groups that interact with the negatively charged phosphate

backbone of the DNA. Elution of plasmid DNA takes place in high salt buffers during which

the cations of the column are occupied by anions provided by the high salt buffer.

C) Purification of plasmid DNA by caesium chloride (CsCI) gradient

Plasmid DNA was added to a solution of CsCI and ethidium bromide (EtBr)(2.Iml plasmid

DNA, 270ml of ISmg/ml EtBr, Sg CsCI, 3ml TE buffer) and centrifuged for 20 hrs at 49K in a

Ti70 rotor. The EtBr forms a complex with protein that shows up as a red precipitate at the
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top of the tube. Supercoiled plasmid DNA forms a band in the middle of the tube, where its

density equals that of the CsCI gradient. Chromosomal DNA forms a band above the

supercoiled DNA band. The supercoiled DNA was extracted with a syringe, and if required

added to a second CsCI gradient, and further centrifuged for 20hrs. A clearer band was visible

in the middle of the tube which was extracted with a syringe. The EtBr was removed by

adding TElbutan-I-ol saturated. EtBr goes in the organic phase and can be removed. The

aqueous phase was repeatedly extracted in this way until there was no red colour indicating

that all the EtBr had been removed. The DNA was precipitated by adding 2 volumes of 100%

EtOH at room temperature.

D) Extraction of genomic DNA

Phase Lock Gel™ tubes (supplier VWR cat. no: 427353P) were used to extract protein from

mouse tissue, tail segments and cell pellets. Phase Lock Gel™ tubes contain a quantity of

Phase Lock GeJTMthat effectively separates organic phenol and interphase from the aqueous

layer. This is due to the density of the Phase Lock Gel™ which is higher than the aqueous

layer and lower than the organic layer. The tissue samples were digested by adding 700ml of

tail solution (2.1.4) and 35ml of Proteinase K (lOmg/ml), and shaking overnight at 55°C in an

Eppendorf thermomixer. The Phase Lock Gel™ tubes were briefly centrifuged and the

digested sample was added to them. The proteins were extracted by adding 750 ml of 2FC,

shaking the samples vigorously about 20 times and then centrifuging for 15min. at 18,000 xg

in a Beckman microcentrifuge. Phenol is used to extract proteins and chloroform to stabilise

the boundary between aqueous and organic layer. Phenol is trapped under the gel of the Phase

Lock Gel™ tubes and the aqueous solution was then transferred to a new Phase Lock GeITM

tube that had been briefly centrifuged and 750 ml of chloroform: isoamyl alcohol solution was

added, shaking the samples vigorously for about 20 times and then centrifuging for 15min. at

18,000 xg. Isoamyl alcohol aids the separation of the organic and aqueous layers. Chloroform

was trapped under the gel of the Phase Lock Gel™ tubes and the aqueous solution was

transferred to microfuge tubes and 100ml of 10M NH40Ac and 750ml of ice cold 100%

ethanol was added, shaking vigorously and centrifuging for 2 min. at 9,000 xg. A white

precipitate was visible. The ethanol was carefully decanted and 1ml of ice cold 70% ethanol

was added, shaken vigorously and the DNA was pelleted by centrifugation at 9,000 xg for 2

min. The supernatant was removed, the samples were left to air dry for 15 min. and

resuspended in 215ml ofTE pH8.0. The samples were then heated at 65°C for 30 min. with

gentle agitation and stored at 4°C indefinitely. Ethanol precipitation is used as a purification
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step for the DNA and to remove any residual phenol and chloroform. Washing the precipitate

with 70% ethanol removes any excess salts from the precipitation step.

E) Quantification of DNA

The concentration of DNA in a sample was obtained by measuring the optical density (Ofr) of

a dilution of the sample at 260nm. IOml of sample was added to 290ml of TE buffer,

thoroughly resuspended and transferred to a quartz cuvette measured in a spectrophotometer.

The concentration of the sample was calculated using the formula:

DNA concentration = OD26ox 50 x dilution factor (=30) x lIlight path (=0.5)

Genomic DNA samples were then adjusted to 0.33Jlg/ml and stored at 4°C. Plasmid DNA

samples were adjusted to 1Jlg/Jll (or appropriate concentration) and stored at -20°C.

F) Restriction Digestion of Genomic DNA for Southern blotting

5Jlg of genomic DNA was restriction digested in a total volume of 40ml. For the various

transgenic lines the enzymes listed in table 2.8 were used for the digest. A typical reaction

mixture consisted of 15JlIof DNA, 4Jll of IOxbuffer, 2-4Jll of restriction enzyme and 19m1of

dH20. The samples were mixed by brief centrifugation and incubated overnight at 3TC.

Next morning, the reaction was stopped by heating at 65°C for 5 minutes and 10% (v/v) of lOx

Loading Buffer was loaded to each sample.

G) Agarose Gel Electrophoresis of DNA

The restricted digested DNA samples were electrophoresed through an agarose gel in order to

separate the fragments by size. For high molecular weight genomic DNA 0.8% agarose gels

were used. To separate smaller fragments, for example PCR samples and plasmid DNA,

higher percentage of agarose gels, up to 3% (Nusieve gels), were used. 5JlI of 10mg/mi

EtBr/iOOml was added to the gel before it was poured to visualize the DNA. The gel was

placed in a horizontal electrophoresis tank and IxTAE was poured to cover it. DNA samples

that were prepared by adding IO%(v/v) lOx DNA loading buffer, were loaded into the slots

alongside Img of lkb DNA ladder as size control. The gel was run at 120V (0.8A) for 3.5 hrs

or 50V (0.3A) overnight (for genomic DNA) and at 100V (0.6A) for 1 hr (for low molecular

weight DNA). DNA was visualized on a short wave UV transilluminator and a photograph

was taken. The long wave UV transilluminator was used for visualising plasmid fragments

that would be collected and used for probe production.
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H) Southern blotting of DNA

The agarose gel was trimmed to remove the 1kb DNA ladder, the loading wells and any

excess gel. The gel was then soaked in denaturing solution for 30 min. on a shaking platform

to denature the dsDNA. The gel was then washed 2 x 15min. in a 1x TAE buffer. The DNA

was then transferred onto a Biodyne B membrane by electroblotting for 3 hrs at I.SA, (34V) in

O.SxTAE in a Hoeffer electroblotting tank. The DNA was then baked for 2 hrs at 80·C and

then cross linked onto the membrane using a Stratalinker. The blot was stored at room

temperature.

I) Generation of specific probe fragments

The DNA fragments used for generating probes for Southern blotting were derived from

recombinant plasmid vectors propagated in E.coli. To generate a probe fragment, the relevant

plasmid (see table 2.8) was propagated in E.coli ,a large scale plasmid prep was performed to

extract the plasmid DNA and then the plasmid DNA was restriction digested to isolate the

relevant fragment. The digested DNA was electrophoresed at 80V on a 1% low-gelling

temperature agarose (LGT-agarose) gel in lx TAE with Sml of IOmg/ml EtBr/lOOml. The gel

was run until the relevant fragment was well separated from other fragments and visualised on

a long wave transilluminator to prevent degradation of the DNA. The DNA quantity was

estimated by comparing the intensity of the band with that of a known standard. The fragment

was cut out, placed in a microfuge tube and melted at 70·C. The volume was estimated and

concentration was adjusted to Sng/ml with TE buffer and stored at -20·C.

Line Probe Plasmid# Genomic Plasmid Fragments Probe
DNA Digests Digests Generated Fragment

53 LMPI 139 BglII Bamffi+EcoRI 3.8kb 3.8kb
2.8kb

113 p16 454 Bam HI XhoI lkb lkb
3kb

1205 Ras 233 XbaI Sacl 3.Skb 2.4kb
2.4kb
2.Skb
1.6kb. .Table 2.8: Genomtc Digests and Probe Fragments
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J) 32p radioactive Labelling of probe fragment and hybridisation

The probe fragment generated was radioactive labelled with a32PdCTP using the Stratagene

Prime It II Random Primer Labelling Kit (cat. no: 300385).

The probe fragments were used as the template for Klenow polymerase with random

hexanucleotide primers and dATP, dGTP, dTTP and the a32PdCTP. The reaction was

incubated for at least 30 min. at 3TC, after which the reaction reaches a plateau and no more

new DNA strands are generated. The DNA probe was purified to remove any unincorporated

nucIeotides by passing it through a NucTrap®Probe purification column, (Stratagene cat. no:

400701). Unincorporated small nucleotides are trapped in the column resin whereas the probe

passes through the column with STE buffer (2.1.4) and is collected. lul of purified probe was

used to count the specific activity of the labelled DNA and the specific activity was calculated.

The probe was used for hybridisation only if the specific activity was greater than 5x108 cpm.

The blot was prehybridised by placing it in a hybridisation tube and adding 10mi of Church

buffer. The Bovine Serum Albumin (BSA) in Church buffer coats the membrane thus

inhibiting non specific binding of the probe. The tube was rotated in a hybridisation oven for

at least 2 hrs at 65°C. The purified probe was denatured at 95°C for 5 min. and was then

added to the hybridisation tube with the blot. The tube was rotated overnight in a

hybridisation oven at 68°C. The single stranded radioactively labelled probe will hybridise to

complementary DNA fragments on the blot.

K) Washing of Southern blots

After hybridisation the blot was washed to remove any probe that did not specifically bind to

the DNA and any non specific DNA that bound at low melting temperature. The blot was first

washed 4 x 10 min. at room temperature on a shaking platform in solution A. The blot was

then washed 2 x 30 min. in solution B at 68°C in a shaking water bath. The blot was then

wrapped in a polythene bag, placed in an autoradiography cassette with an intensifying screen

and exposed to Kodak XAR film at -70°C for the appropriate time and the film was developed

in a Kodak X-Omat developer.

L) Stripping of Southern blots

Southern blots were stripped of hybridised probe in order to re-hybridise with a different

probe. The blot was washed 2x 15 min. at 900 in southern stripping solution A (2.1.4). The
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blot was then washed lx30 min. in southern stripping solution B (2.1.4) at 65°e. The blot was

either prehybridised directly for reprobing or stored in a sealed bag at -200e until further use.

M) Amplification of DNA fragments using peR

peR was used to amplify short DNA fragments. peR 1.1x Reddy mix'" peR Master Mix

(Abgene cat. no: AB0575) was used as the master mix in all the peR reactions in order to

increase reliability and uniformity of the reactions. Reddy mix gives a final reaction

composition of 1.5mM Mgeh, 0.2mM of each of the 4 deoxynucleotide triphosphates

(dNTPs), 1.25 units of thermostable Taq DNA polymerase, 0.01% (v/v) Tween 20, 75mM

Tris-H'Cl pH8.8 and 20mM ammonium sulphate. Each reaction was set up with 45ml 1.1x

Reddy mix'" peR Master Mix, the two primers, DNA and water to a total volume of 50mI.

DNA and primer concentration for each amplified fragment is shown in tables 2.9 and 2.10.

The reactions were placed in a PTe200 thermocycler for 35 cycles of amplification. The first

step in any peR reaction is to denature the template strand and this is done at 95°e for 15sec.

to 2 min. The next step is annealing the primers to the two single stranded templates and this

is conducted at a reduced temperature of 40-60' (depending on the melting temperature of the

oligos) for 60sec. This step allows annealing of the oligos to the template. Polymerisation of

the new strand is conducted at an increased temperature of 72° for as long as needed to create

the size required (roughly 30 sec per 500bp). A final 72°e step is often included to allow

polymerisation reaction completion.

Each peR reaction was optimised depending on the length of the fragment that needed to be

amplified. 10 or 20 ~l of peR product was electrophoresed through a 1.5% TAE agarose gel

or a 2% NuSieve, 1% agarose TBE gel for very small fragments (eg. <200bp).
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PCRName

Table 2.9: Reverse transcribed (RT)-PCR programs

PCR reaction components PCRProeram
CDNA step RNA- 2J..llDNase treated

Anchored oligo dT-I,.11
dNTPs- 1,.11
RT (or water) - IJ..lI

1. 47°C for Ihr
2. 75°C for 10 min
3. 4°C unlimited

DNase step I. 42°C for 30min
2. 75°C for IOmin
3. O°C unlimited

LMPI
DSI andDS4

RNA -2J.lg
DNase- 5J.lI
DEPC H20- up to 100J.lI total
volume
DNA-300ng(IJ.lI)
dH20- IJ.lI
Forward primer DSI - IJ.lI
Reverse primer DS4 - IJ.lI

1. 94°C for 2min
2. 94°C for 30sec
3. 50°C for 30 sec
4. 72°C for Imin

Go to step 2-3, 4 times
5. 94°C for 30 sec
6. 55°C for 30sec
7. 72°C for 1 min

Go to step 6-7, 29 times
8. 72°C for 5 min
9. 4°C unlimited

LMPI NESTED
DS2 andDS3

I. 94°C for 2min
2. 94°C for 30sec
3. 50°C for 30 sec
4. 72°C for lrnin

Go to step 2-3, 4 times
5. 94°C for 30 sec
6. 55°C for 30sec
7. 72°C for Imin

Go to step 6-7, 29 times
8. 72°C for 5 min
9. 4°C unlimited

DNA-300ng(IJ.lI)
dH20- IJ.lI
Forward primer DS2 - 1J.ll
Reverse primer DS 3 - 1J.lI
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Table 2.10: rca programs

PCR Fragment PCR reaction components PCRProgram
NeomycinJp 16 DNA-300ng (l~l) 91°C 30s

dH20- 1~ 2. 53°C 30s
Forward primer - 1~ (lOpmoles) 3. 72°C 30s
Reverse primer- 1~ (lOpmoles) Go to step 2-3, 35 times
Reddy Mix- 45~1 4. 72°C lOmin

5. 4°C unlimited
TGFa-knock out DNA-300ng(1).1I) 1. 95°C 150s

dH20- 1).11 2. 95°C 50s
TGFaK01- 1).11(10pmoles) 3. 63°C for 50s
TGFaK02- 1).11(lOpmoles) 4. 72°C for 70s
Reddy Mix- 45~ Go to step 2-4 , 34 times

5. 4°C unlimited
TGFa-wild type DNA-300ng(I).11) 1. 95°C 150s

dH20- 1).11 2. 95°C 50s
TGFaK01- 1).11(lOpmoles) 3. 63°C for 50s
TGFaK03- 1).11(lOpmoles) 4. 72°C for 70s
Reddy Mix- 45~ Go to step 2-4 , 34 times

5. 4°C unlimited
v-H-ras (transgene) DNA-300ng (1).11) 1. 95°C for 5min

dH20- 1).11 2. 93°C for lmin
Forward primer- 1).11(25pmoles) 3. 50° for lmin
Reverse primer- 1).11(2Spmoles) 4. 72°C for 2min
Reddy Mix- 45~1 Go to step 2-4, 34 times

5. 72°C for 15 min
6. 4° unlimited

N) Purification of DNA for peR

Genomic DNA samples that were to be genotyped using the neomycinJp16 program were first

purified using the Bio-I 0 1 Geneclean kit as per manufacturer's instructions (Anachem, cat.

no: 1101-400). Briefly, DNA binds to a silica matrix in high concentrations of chaotropic salt

and is eluted in low salt. Removal of the salt and rehydration of the silica matrix breaks the

cation bridges that formed between the silica matrix and the negatively charged phosphate

backbone of the DNA thus allowing the DNA to be eluted. Using this method any impurities

can be removed and the purified DNA can be used in sensitive applications such as PCR.

Empirically, it was found that for these particular PCR reactions Genecleaning of the DNA

was needed for success.
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2.2.4 Protein techniques
A) Protein sample preparation from tissue

For most analyses, protein was extracted in Ripa buffer containing freshly added phosphatase

inhibitors (Sigma cat. no: P5726) and protease inhibitors (Sigma cat. no: P2714). Phosphatase

inhibitor cocktail contains sodium vanadate, sodium molybdate, sodium tartrate and imidazole

that can inhibit acid/alkaline and tyrosine protein phosphatases. The protease inhibitor

cocktail contains AEBSF, E-64, bestatin, leupeptin, aprotinin and sodium EDTA that can

inhibit serine/cysteine/aspartic and metalloproteases. lrnl of Ripa buffer and inhibitors was

added to the tissue sample in a 4ml Falcon tube. The sample was homogenised using a

Kinematica polytron homogeniser. Skin samples are tougher than soft tissues and need to be

homogenised at higher settings usually 8-10 and for longer. Before and after each sample was

processed, the polytron was washed with 1% (v/v) SDS, 3 washes of dH20 and finally 70%

(v/v) ethanol. Once homogenised, the samples were transferred to microfuge tubes, vortexed

and left to stand on ice for 5 min. The samples were then centrifuged at 18,000 xg in a

microfuge for 10 min. at 4·C. The supernatant was removed to new microfuge tubes and 5111

of it was used for protein quantification. Once concentration of the protein was known the

sample was aliquoted in IOOllgaliquots and stored at -70·C. The same process as above was

followed when samples were extracted in 8M urea buffer except that no protease or

phosphatase inhibitors were added and after homogenisation the samples were transferred to

microfuge tubes and heated at 55°C overnight with shaking. The rest of the procedure was the

same as for Ripa extracted samples.

B) Protein sample preparation from cultured mammalian cells

Mammalian adherent cells were grown on 100mm2plates. When confluent, the medium was

removed, the cells washed with ice cold 1x PBS and the cells were scraped off the plate using

a silicon cell scraper. The cells were collected in Ix PBS, washed, pelleted, PBS removed,

frozen in liquid nitrogen and stored at -70°C. 300ml of Ripa buffer with phosphatase and

protease inhibitors was added to the cell pellet and it was vortexed thoroughly until a

homogenate was formed and then left to stand on ice for 5 minutes. Then it was microfuged at

18,000 xg for 10 min. at 4·C. The supernatant was transferred to a new microfuge tube and

5ml of the supernatant was used for protein quantification. Once the sample concentration

was established, it was aliquoted in IOOllgaliquots and stored at -70·C.
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C) Protein Immunoprecipitation (IP)

Sepharose-G beads (Sigma cat. no: P3296 Protein G on Sepharose® 4B fast flow resuspended

in 20% ethanol, 45-165~m) were used for protein IP. The beads were rotated for Ihr at 4°C in

either Ripa buffer or Net-N at 50% (v/v) (50% beads, 50% buffer). The beads were

centrifuged at 18,000 xg for 5min. at 4°C and the supernatant discarded. This wash step was

repeated twice in order to completely remove the ethanol in which the beads were stored. The

beads were then resuspended in equal volume of the appropriate buffer (SO%(v/v» and stored

at 4°C for future use. If not immediate, prior to use, the beads were washed one more time.

Usually 500~g of protein was used for the IP per sample. If the sample was prepared in 8M

urea, the appropriate volume ofNET-N and protease inhibitors was added to dilute the urea to

IM and allow renaturation of proteins. Appropriate amounts of phosphatase inhibitors were

added to each sample and 70~1 of 50%Protein-G sepharose beads were added. The samples

were rotated for 2hrs at 4°C and were then centrifuged at 18,000 xg for lOmin. at 4°C. The

supernatants were transferred to fresh microfuge tubes. To the clarified samples, 30~1

SO%Protein-Gsepharose beads washed in Ripa buffer (or NET-N in the case of urea samples)

were added. The samples were rotated for 2hrs at 4°C and were then centrifuged at 18,000 xg

for 10min. at 4°C. The supernatants were transferred to fresh microfuge tubes and appropriate

amounts of antibody were added (in the case of S12 ascites 2~1 were added, for other

antibodies 200~1 were added). The samples were rotated overnight at 4°C. The next day,

30~1washed SO%Protein-G sepharose beads were added and rotated for 30min. at 4°C. The

samples were centrifuged at 18,000 xg for IOmin. at 4°C and the supernatants were discarded.

The precipitates were washed by vortexing in Iml ofNET-N, pH8.0 and centrifuged at 18,000

xg for 1min at 4°C. The supernatant was discarded and the wash step was repeated with 1ml

of TBS (table 2.1.4). To elute the protein from the beads, 30~1 of 2X GSB was added. The

samples were vortexed and heated for 5min. at 95°C. The samples were centrifuged at 18,000

xg for Imin. at room temperature. The sample supernatant was then either directly loaded

onto an acrylamide gel or frozen at -70°C for future use.

D) Quantification of protein concentration

Protein concentration was determined using the Bradford assay. A set of protein concentration

standard reactions was prepared using BSA as shown on table 2.11. S~l of the sample was

diluted in 795ul of the appropriate lysis buffer. 200~1 of Biorad dye was added, the samples

were vigorously mixed and left to stand for 5 minutes for the colour to develop. Then the
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protein concentration was read at A=595nm. A standard curve was drawn using the values

obtained from reading the set of standard protein concentration samples, and the concentration

of each test sample was determined.

BSA )lg BSA 100)lg/ml Lysis Buffer
added ()II) ()II)

16 160 635
8 80 715
4 40 755
2 20 775
1 10 785
0 0 795
Table 2.11: Standard Protein Curve Reactions

E) SOS Polyacrylamide Gel Electrophoresis of protein samples

Polyacrylamide gels were made up as shown on table 2.12. First the running gel was poured,

overlaid with saturated butan-l-ol and allowed to set. Then, the butan-I-ol was discarded,

washed off with dH20 and the stacking gel was poured and then the combs were placed. The

gels were 2mm thick and were made up of about 25ml running gel and 5ml stacking gel.

Reagents 5% Stack Gel 7.5% Running 10% Running 15% Running
Gel Gel Gel

Bis-Acrylamlde 2.4ml 9.4ml 12.5ml 18.75ml
Tris pH 6.8 2.5ml -------- ------- --------
Tris pH 8.8 -------- 12.5ml 12.5ml 12.5ml
10% SDS 0.2ml 0.5ml 0.5ml 0.5ml
H2O 14.8ml 27.35ml 24.25ml 18ml
TEMED 0.05ml 0.05ml 0.05ml 0.05ml
10% APS 0.500ml 0.250ml 0.250ml 0.250ml. .Table 2.12: The composltlon of running and stack gels for Western blotting

F) Western blotting of protein gel

Usually, 100mg of total protein extract was used per track. An equal volume of2xGSB or 115

of the final volume of the sample of 5xGSB was added to each extract. The samples were

heated for 5 mins at 95°C and placed on ice until loaded. 10ml of markers (Gibco BRL

BenchMarkTM pre-stained protein ladder cat.no: 10748-010, New England Biolabs Prestained

Protein Marker cat. no: P7708G) were loaded along with the samples and separated by

variable percentage SDS PAGE with 5% stacking gel at 200V for 3 V until the dye front

reached the bottom of the gel. The Immobilon-P membrane (Millipore cat.no: IPVH 00010)

was pre-wet in methanol for 15seconds, dH20 for 2 min. and transfer buffer for at least 5min.
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Following transfer, non-specific sites on the membrane were blocked in blocking buffer

containing TBST and 5% non-fat dried milk overnight at 4°C with gentle agitation. The

membrane was then incubated overnight with primary antibody (see table 2.1.1) at the

indicated dilution in blocking buffer at 4°C, usually overnight and then washed lx15min. and

3x5min. in TBST buffer. The secondary antibody (that is HRP conjugated - see table2.1.1)

was added, diluted in blocking buffer, for lhr at room temperature. The membrane was then

washed as for the primary antibody.

To visualise antibody binding, 8ml of Solution A (containing ECL + substrate in Tris buffer)

and 250ml of solution B (acridan solution in dioxane and ethanol) of the ECL+ System kit

(Amersham, cat.no: RPN 2132) were mixed and added to the membrane. This reaction

converts acridan with the use of peroxide and horseradish peroxidase in slightly alkaline

conditions, to acridinium esters that produce a high intensity chemiluminescence that can be

detected on a photographic film. The solution was left on for 5mins at room temperature. The

membrane was then drained of excess solution and was placed in a plastic bag and sealed.

The membrane was exposed to X-AR photographic film in cassette for the required time and

the film developed in an X-Omat developer. Densitometric analysis of the scanned autorads

was performed using the program Kodak ID 3.5.2 USB as described in the relevant chapters.

Note that once the film has been exposed, it cannot get any blacker so many of the high

intensities that were observed in certain autorads have been underestimated when calculating

the fold difference. Also since the densitometric analysis was performed on a computer image

and not the actual autorad the values obtained are not entirely accurate.

G) Stripping and reprobing of western blots

The membrane was incubated at 55°C with 20ml pre-heated MENSA buffer for 30mins. The

membrane was rinsed with SDS wash buffer to remove the excess stripping buffer, and it was

then washed 2x20mins with TBST at room temperature. The membrane was then blocked and

reprobed as described above. Membranes were stored in plastic wrap at 4°C.

H) Electrophoretic Mobility Shift Assay (EMSA)

H.I Protein sample preparation from tissues

Protein was extracted in high salt buffer containing fresh phosphatase and protease inhibitors.

O.5ml of the high salt buffer plus inhibitors was added to the frozen tissue sample in a 4ml
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Falcon tube. The sample was homogenised in a Kinematica polytron homogeniser. Before

and after each sample was processed the polytron was washed with 1% (v/v) SDS, 3 washes of

dH20 and finally 70% (v/v) ethanol. Once homogenised the samples were transferred to

microfuge tubes, vortexed and let to stand on ice for 5 min. The samples were then

centrifuged at 14,000 xg in a microfuge for 10 min. at 4·C. The supernatant was removed to

fresh microfuge tubes and 5J.lIof it was used for protein quantification. Once concentration of

the protein was known the sample was aliquoted in 10J.lgaliquots and stored at -70·C.

HJI Labeling Oligonucleotide and probe purification

For annealing single stranded sticky ended oligos to create the double stranded oligo, 2ml

(200pmoles) each of forward and reverse oligos, 10J.lISM NaCI (2S0mM) and 186J.lITE were

added and heated at 80°C for 10min. They were allowed to cool down at room temperature,

aliquoted 10J.lIper tube and frozen at -20°C. Two different labelling reactions were performed

for probe preparation depending on whether the double stranded oligos were blunt or sticky

ended. Blunt ended oligos were kinase labelled, SOng of oligos were mixed with 2J..LIof lOx

T4 Polynucleotide kinase (PNK) buffer and dH20 up to 20J.l1.20mCi ofy 32pdATP and IJ.lIof

T4 PNK was added to the reaction. The reaction was incubated at 37°C for 45min. To prepare

the probe using the annealed sticky ended oligos, Ipmol annealed oligo (l ul) was mixed with

33J.ll dH20, 10J.lldCTP buffer, 50J.lCi a32pdCTP and IIII Klenow and incubated at 37°C for

30min. For both types of oligo the same procedure was followed for probe purification. A

NICKTM Column (Amersham, cat. no: 17-0855-01) was equilibrated with 3ml TE that was

allowed to run through the column but without allowing the matrix to dry. The labelled probe

was added to the column. 400lli TE was added and allowed to run through the column. A

further 400J.lI TE was added and this time the eluent was collected in a microfuge tube. The

purified probe was stored in a lead container at -20°C. NICKTM columns are packed with

Sephadex® 0-50 and are used for the separation of oligonucleotides from unincorporated

nucleotides.

H.l1I Polyacrylamide Gel preparation for EMSAs

A 6% non-denaturing polyacrylamide gel was used for electrophoresing EMSA samples.

7.5ml of 40%(v/v) acrylamide was mixed with 2.5ml10xTBE, 39.625ml dH20, 350ml (v/v)

10%APS and 25ml TEMED. The gel was 2mm thick and its volume was 30ml. The gel was

polymerised for an hour and then pre-run with 0.5xTBE buffer at 200V for 30minutes to warm

the gel.
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H.lV Sample Preparation for EMSAs

dH20 was added to each sample to bring them all to the same volume of 10111.Then for each

sample 20111of the appropriate binding buffer was added along with 2111 of polydLdC

(2mg/reaction) or 0.2111 salmon sperm (Zug/reaction) according to the protocols used.

Competitor (unlabelled oligo) was added to one aliquot of each test sample (usually between

50 to 200x in excess of hot oligo was needed for successful competition) and the samples were

left to incubate on ice for lOmin. The probe (0.2-lng) was added and the samples were left to

incubate on ice for a further 30min. (For the SRE oligo, samples were incubated on ice

15min., and a further 15min. at room temperature.) The samples were loaded on the gel that

had been pre-run (H.IIl). 10111of dye was loaded in the first well to visualise a dye front

during running. The samples were run at 150V for about 2hrs until the dye was about 5cm

from the bottom of the gel. The buffer was discarded in the "radioactive sink" and the plates

were separated. Using double thickness 3MM paper, the gel was carefully lifted, wrapped in

saran wrap and dried for 2 hrs at 80°C. The dried gel was exposed to X-AR Kodak film for

the required time and developed in an X-Omat developer.

2.2.5 RNA techniques
RNA extraction

To avoid RNA degradation all solutions were made up using diethyl-polycarbonate (DEPC)-

treated and autoclaved water. DEPC inactivates ribonucleases by covalent modifications.

Microfuge tubes and tips were autoclaved. All surfaces and equipment to be used were

washed with 1% (w/v) SDS and then 75% (v/v) ethanol made with DEPC-treated water.

Gloves were worn and frequently changed to avoid contamination with RNAses.

A) Total RNA Extraction

Two methods were used by me for extracting RNA; the Chomczynski and Sacchi method and

the Tri-Reagent ™method. For the first method, the sample was vortexed or homogenised

using a polytron as appropriate in 1.5 ml of solution D (0.36ml 2ME, SOml4M GT). The

sample was kept on ice and 0.1 volume (150111) of 2M NaOAc, pH4.0 in acetic acid, was

added and thoroughly mixed. Then 1 volume (I.Sml) of H20 saturated pure grade phenol was

added and thoroughly mixed. Finally, 0.2 volumes (300111) of chloroform:isoamyl alcohol

(49: 1) were added and thoroughly mixed. The sample was microfuged at 10,000 xg for

20min. at 4°C and the acqeous phase was transferred to fresh tubes. 1 volume of isopropanol
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(1.5mL) was added and kept at 4°C overnight. The sample was microfuged at 10,000 xg for

20min at 4°C and the supernatant was discarded. The wet pellet was resuspended in 300J.lIof

solution D and vortexed. 600J.ll of 100% ethanol was added and the solution was kept at

-20°C for 2hrs or overnight if needed. The sample was microfuged at 10,000 xg and the pellet

washed twice in 1ml of 75% ethanol. The pellet was allowed to air dry and was resuspended

in 220J.ll of 0.5%TE, 1% SDS or dH20. The sample was heated at 65°C for 10min. with

vortexing. The RNA was stored at -70°C for subsequent use (Chomczynski and Sacchi,

1987).

The second method used to extract RNA was using the Tri-Reagent ™ (Sigma cat. no: T-

9424). This is a kit form modification of the Chomczynski and Sacchi method. Use of Tri-

Reagent ™which is a phenol and guanidine thiocyanate solution, enables RNA, DNA and

protein to be extracted and isolated after tissue homogenisation simoultaneously. In this case

only the RNA was used. Chloroform addition, separates RNA and DNA into the aqueous

layer and proteins in the organic layer. In subsequent steps only the aqueous phase was

collected. To frozen tissues of 50-100mg or cell pellets, 1ml of Tri-Reagentt" was added and

the tissue or cell pellet was homogenised in a Kinematika polytron homogeniser. The sample

was kept at room temperature for five min. to ensure dissociation of all nucleoproteins.

Chloroform, 0.2ml for every lrnl of Tri-Reagentl'" used, was added to the sample, mixed for

15 sec. and the sample was left at room temperature for 15min. Chloroform allows separation

of RNA, DNA and proteins into different phases. The sample was centrifuged at 8,000 xg for

15 min. at 4·C in a Beckman JA-14 rotor. The sample was separated into an upper aqueous

layer containing the RNA, a middle fatty layer and an organic layer containing proteins. The

aqueous layer was transferred to a new Falcon tube and isopropanol (0.5ml for every 1ml Tri-

Reagentr» used) was added. The sample was mixed and left at room temperature for 10min.

It was then centrifuged at 8,000 xg for 10 min. at 4· in a Beckman JA-14 rotor. The

supernatant was discarded and the pellet was washed and suspended in 1ml 75% ethanol for

every 1ml Tri-Reagent'< used and transferred to 1.5ml microfuge tubes. The sample was

centrifuged in a microguge at 14,000 xg for 5 min. at 4·C. The pellet was allowed to dry and

resuspended in 300J.llTE/O.l%SDS at 65·C for about 10 min. Lithium chloride (lOOJ.lIfrom

10M stock) was added and the sample left at 4·C overnight to selectively precipitate RNA.

The following day, the sample was centrifuged at 16,000 xg for 30 min. at 4·C. The pellet

was then washed in lrnl 75% ethanol and microfuged at 16,000 xg for 10 min. at 4·C. The

pellet was allowed to dry at room temperature and resuspended in an appropriate volume of

TE/O.1%SDS and stored at -70°C.
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B) Quantification of RNA

The concentration of RNA in a sample is obtained by measuring the OD of a dilution of a

sample at 260nm. SJ.lIof sample was added to 29SJ.lIof TE/O.l %SDS buffer and transferred to

a quartz cuvette where its concentration was measured in a spectrophotometer. The

concentration of the sample was calculated using the formula:

RNA concentration = 00260 X 40 x dilution factor (=60) x l/light path

To determine the purity of RNA the optical density of a sample was also measured at 280nm.

The ratio between OD260/0D280 gives the purity of RNA or DNA, ie whether there are any

proteins in the sample. Pure RNA or DNA samples give a ratio of OD26010D280 of 2.0 while

proteins increase the 00280 reading.

C) Formaldehyde gel electrophoresis of RNA

To determine quality of RNA samples are run on an agarose gel. Pure RNA samples show the

28, 18 and SS bands. The RNA samples that were extracted were electrophoresed in a mini

1% agarose gel containing formaldehyde in order to check the integrity of RNA (presence of

three ribosomal bands). 10mg/mlEtBr/l00ml was added to the gel before it was poured to

visualize the RNA. For a 100mi gel, 10ml lOxMOPS-E, 84.Sml water and 1.0g of agarose

were mixed and melted. When the temperature was 60°C, 5.2ml formaldehyde was added and

allowed to set. The gel was placed in a horizontal electrophoresis tank and lxMOPS-E was

poured to cover it. lug RNA samples were prepared by adding 16ml of RNA loading buffer,

mixed and heated at 6SoC for 10 minutes to denature any secondary structure. Then 2111of

lOx loading dye (RNA) was added, the samples were briefly centrifuged and loaded on the gel

along with lkb DNA ladder and run at 100V for 30 minutes. RNA was visualized on a short

wave UV transilluminator and a photograph was taken.

D) Electrophoresis and Northern blotting of RNA gels

The gel tank and combs were washed in 1% SDS overnight and rinsed with DEPC-treated

water and ethanol before use. 20llg of total RNA was precipitated with 3M NaOAc. The

RNA pellet was resuspended in 4111DEPC-treated water by heating at 6SoC and vortexing

well. 16J.lIof lOx loading buffer (RNA) was added and the sample was heated to 68°C for

10minutes and then placed on ice. 2111of lOxRNA loading dye was added and the samples

loaded on a formaldehyde gel. 1% (w/w) agarose in 95ml lx MOPS was melted and cooled to
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60°C before adding 17.8% (v/v) formaldehyde (of the 38% stock solution) and poured. The

gel was electrophoresed in 1x MOPS buffer at 100V for 1hr in the cold room.

The gel was then viewed on a UV transilluminator, trimmed and soaked 3x20mins in IxTAE

and electroblotted onto a Biodyne B membrane as described for Southern blotting in section

2.2.3H but using only RNase free solutions. The membrane was then hybridised exactly as

described previously for Southems.

2.2.6 Cell culture techniques
All culture techniques were performed either by myself or by Liz Hill, the laboratory technical

manager.

A) Explantation of papillomas and carcinomas

The explantation of papillomas and carcinomas was performed under sterile conditions with

all the surfaces washed with 100%(v/v) ethanol. Part of the papilloma or carcinoma was

washed with 100%(v/v) ethanol allowed to dry briefly and placed in transfer medium on ice.

The rest of the lesion was snap frozen in liquid nitrogen or fixed in formalin for

histopathological analysis.

The lesion was transferred to a Petri dish, cut in small pieces with a sterile scalpel and

trypsinised in IOml trypsin solution with agitation, for 30 minutes at room temperature. Then

the sample was centrifuged at 194 xg for 5min. and the cells resuspended in 10ml of 20%FCS

and plated in a Petri dish where it was incubated for 5-10 days. Cell growth was monitored

and when the cells were confluent they were sub-cultured and later frozen in 10% DMSO in

FBS.

8) Sub-culturing of mammalian cells

When the adherent cell cultures reached 90% confluence, they were sub-cultured onto fresh

tissue culture plates. The medium was aspirated from the cells, and the cells were washed

once in versene, which removes residual serum, and the EDTA chelates calcium and

magnesium ions. Trypsin, a protease, was then layered on the cells and the plate was agitated

to dislodge the cells. The cells were resuspended in fresh complete tissue culture medium

(serum aids to inactivate the trypsin) and transferred to new plates at the required density,

Cells were incubated at 3TC and 5% CO2•
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C) Freezing viable cells in liquid nitrogen

Cells were cultured on 5cm2 plate. One plate of cells (about 2x106cells) was stored per

cryotube. The medium was aspirated from a confluent plate. The cells were washed once in

cold PBS. Using a cell scraper most of the cells were dislodged from the plate. The cells

were collected in cold PBS, transferred in a Falcon tube and pelleted in a Heraeus 400

centrifuge at 194 xg for 5 min. The cell pellet was resuspended in 1ml freezing medium

(10%DMSO, 90% FBS) and the cells transferred to a cryotube and frozen in a cryoflask at -

70'C overnight. The cryoflask ensures gradual (l 'Czmin.) chilling of the cells. The vials were

then transferred to liquid nitrogen for long term storage.

D) Revival of frozen stocks

Cells were stored in liquid nitrogen tanks. When cells were required, they were brought up

from liquid nitrogen then quickly defrosted in the tube at 37'C in a water bath. The cells were

then washed in complete tissue culture medium to remove DMSO and were pelleted by

centrifugation in a Heraeus 400 centrifuge at 194 xg for 5 min. The cells were resuspended in

6ml of complete tisuue culture medium and transferred to a 25cm2 tissue culture flask. Cells

were incubated at 37'C and 5% CO2•

E) Transfection of cells with plasmid and selection

Cells were grown on tissue culture dishes until they were about 70% confluent. 51lg of

linearised plasmid DNA (in TE) was diluted in medium without serum or antibiotics to a

maximum volume of 150lli. The solution was mixed and spun briefly. 20111of Superfect®

transfection reagent (Quiagen cat.no:30 1305), was mixed with the DNA solution. The

Superfect® transfection reagent is an activated dendrimer that has a spherical shape with

branches coming out from a central core and terminating at charged amino groups. In this

way, the DNA is assembled into compact structures thus making it easier for DNA to enter the

cell. The Superfect-DNA complex is positively charged and this enables binding to negatively

charged receptors on the cell surface thus enabling entry. Superfect has a second property,

that upon entry into the cell it can buffer the lysosome thus inhibiting lysosomal nucleases

from working and allowing greater stability of the Superfect-DNA complex.

The solution was incubated for 10 minutes at room temperature to allow for Superfect-DNA

complex formation to take place. Meanwhile, the growth medium was removed from the cells

and the cells were washed with 4ml PBS. After incubation, 1ml of medium containing serum
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and antibiotics was added to the DNA solution, mixed and transferred to the cells. The cells

were incubated at 37C and 5% C02 for 2hrs. Then the medium was removed and the cells

were washed 4 times with PBS. Fresh medium was added with serum and antibiotics and the

cells were left to incubate for 48hrs. Then they were passaged with the appropriate selection

reagent (depending on what antibiotic the transfected plasmid was resistant to, usually

geneticin or hygromycin) and clones were picked as they appeared.

Before, proceeding with the transfection, a death assay was performed on each cell line that

was to be transfected in order to determine what concentration of the selection agent would be

used after transfection. In that assay, cells were allowed to grow in tissue culture dishes until

they were approximately 70% confluent. Different antibiotic concentrations (usually from

50llg/ml to 400llg/ml in 50llg/ml increments) were added to each plate. The antibiotic and

medium was refreshed every three days. Every day, the cell population was counted by using

Trypan Blue. This was repeated every day for fifteen days. The number of viable cells was

plotted against the number of days and the lowest antibiotic concentration at which all the

cells were dead at the end of the fifteen days was chosen to be used later

F) Viable Cell Counting with Trypan Blue

Adherent cells were brought into suspension using trypsin and resuspended in a volume of

complete media as described in section 2.2.6B. 20111of the cell suspension was removed and

added to 80111of Trypan Blue (0.4% Trypan Blue stain in 0.85% saline, from Gibco BRL cat.

no: 15250-061). The haemocytometer was cleaned with 70% ethanol and the coverslip was

moistened and placed over the chamber of the haemocytometer until Newton's refraction rings

appeared. IOll1of the cell suspension in trypan blue was loaded onto the chamber and the

cells were viewed under a light microscope at x20 eyepiece magnification. The number of

viable cells that do not take up the stain (bright cells) was counted. Dead cells absorb trypan

blue and are stained blue. Usually the cells in 5 squares were counted. The total number of

viable cells per ml was calculated in the following way:

Cells/ml = (Total viable cells counted! number of squares) x dilution factor xl 04

2.2.7 Immunohistochemistry

Tissue collection was performed by myself whereas tissue sectioning and staining was

performed by Mr Colin Nixon, a trained histotechnologist. Pathological analysis was

performed by Dr Adrian Phelby, a trained pathologist. Tissue was collected and fixed in 10%

neutral buffered formalin and embedded in paraffin wax. Paraffin sections of Zum were cut
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from the tissue block and placed onto coated slides. The immunohistochemical analysis used

an indirect two-step technique that was performed using DakoCytomation EnVision kits (cat

no:K400? for mouse monoclonal antibodies and K4011 for rabbit polyclonal antibodies). The

sections were placed in Histo-clear to remove excess paraffin wax and then through a series of

decreasing graded alcohols to water before starting the staining procedure. The antibodies that

were used were the proliferating nuclear cell antigen (PCNA) and total caspase-3. For antigen

retrieval, the sections were heated in O.OIMSodium Citrate (pH6.0) buffer in a microwaveable

pressure cooker for 2 min. in order to allow exposure of the antigen site. The buffer was

allowed to cool down for 20 min. and the sections were placed in dH20. The endogenous

peroxidase activity of the sections was blocked using the peroxidase block solution (0.03%

hydrogen peroxide) of the DakoCytomation kit. This buffer was washed with O.OIMTBST

(pH7.5) for 5 min. After the wash step the primary antibody (PCNA or total caspase-3) was

applied on the sections in the appropriate dilution (1:50) which was determined before hand.

The antibody was diluted in O.OIMTBS (pH?5). The sections were incubated with the

antibody for an hour at room temperature. After incubation, the samples were washed with

TBST (pH?5) for 5 min. The secondary antibody, as supplied in the DakoCytomation kit,

was applied to the samples for 30 min. at room temperature. Application of the secondary

antibody allows complex formation between primary and secondary antibody that will enable

subsequent visualisation of the staining pattern of the primary antibody. The secondary

antibody is either a goat anti-mouse polyclonal (in the case of PCNA) or rabbit polyclonal (in

the case of total caspase-3) and is HRP conjugated. To visualise the complex, 3,3

diaminobenzidine (DAB) chromogen solution and the DAB substrate buffer (in hydrogen

peroxide, pH? .5), supplied in the DakoCytomation kit were mixed and used as per

manufacturer's instructions. DAB is applied on the sections for ten minutes at room

temperature. The sections are microscopically monitored to allow for the desired staining to

develop. DAB allows formation of a brown insoluble complex (the complex cannot dissolve

in alcohol or other organic solvents) and allows the antibody-antigen complex to be visualised.

The sections were counterstained with Gills Haematoxylin (cat no: 261103G, BDH) and

mounted in DPX mountant for microscopy (cat no: 360294H, BDH). A negative control (ie.

no primary antibody was applied) was run in parallel. For each antibody a known positive

control was run beforehand to confirm that the primary antibody was working and to optimise
the dilution of the antibody.
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Chapter 3: Characterisation of LMP1 transgenic
mouse lines

The aim of the work presented in this chapter was to characterise the expression patterns of

LMP1 in the transgenic mouse lines 117, 105A and 105B and determine if this correlates with

the observed phenotype.

These mouse lines harbour the transgene LMPI CAO under the L2 EBV promoter (as described

in section 1.9). When the PyLMP1895-8 mice were created (Wilson et al., 1990), it was evident

from Northern blots that a transcript derived from the ED-L2 promoter was showing relatively

high expression in epithelial tissues including skin. Given the epithelial specificity of the ED-

L2 promoter in those mice, ED-L2 was used to drive expression of the Cyclin Dl gene to

mucosal stratified squamous epithelia such as tongue, oesophagus and forestomach

(Nakagawa et al., 1997). As such, a similar pattern of expression may be predicted for the

L2LMPI CAO mice, but transgene expression patterns and levels cannot be precisely

predetermined and must be characterised for each line.

Elucidating trans gene expression is important as it will allow an understanding of the

phenotype observed in these lines and enable the design of further relevant experiments.

3.1 Outline of approach

For the expression analyses three techniques were employed: RT-peR, Northern and Western

blotting. RT-peR can be used to detect low levels of RNA. Northern blotting is not so

sensitive as RT-peR but can reveal the full size transcript and Western blotting shows whether

there is any translation of the transgene message to produce the protein.

Tissues were collected from transgenic and wild type siblings from each line investigated and

stored at -70oe until processed for the technique employed.

The purpose of these experiments was to answer the following questions:

1. In which tissues of the transgenic mice is LMPlcAO expressed?

2. What is the pathology/phenotype of tissues from these transgenic lines and does it

correlate with transgene expression?
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3. Does LMPI CAO lead to a similar response in the tissue as LMPI B95-8 does after

chemical carcinogen treatment of the mice? In this context can it replace the need for

an activated ras in a chemical carcinogenesis setting?

4. Does loss of the INK4a locus cooperates with LMPlcAO in a similar fashion to

LMPIB95-8?

For the phenotypic studies of LMPI transgenic lines three approaches were taken:

1. In order to examine tissue pathology, tissues were collected and stained for

histological examination.

2. In order to monitor the incidence of spontaneous papilloma formation on lines 117

and 117/113, mice were monitored once every two weeks and lesion load was

recorded.

3. In order to determine ifLMPIcAO acts as a tumour initiator, a minimal carcinogen

treatment was performed on line 117 animals.

3.2 Histopathology AnalYSis

Tissues were collected, fixed in formalin, paraffin embedded and stained for histological

examination. Dr Adrian W. Philbey, a trained pathologist, performed the pathological

examination and interpretation of the sections.

Following histological examination, it was deduced that ears of 117 wild type mice showed a

normal pathology whereas ears of line 117 transgenic mice showed a variety of phenotypes

ranging from epidermal hyperplasia (stage 1-3, see fig.l.14 for staging) to keratoacanthomas

(stage 3-5) to squamous cell carcinomas (stage 5)(fig.3.I). Keratoacanthomas are rapidly

growing spontaneous lesions that resemble inverted papillomas that can regress

spontaneously, whilst a squamous cell carcinoma is a neoplastic tumour of the squamous cells

(flat, thin cells found on the outer layer of the skin). An ear classified as keratoacanthoma was

described by the pathologist "as a proliferative epidermal mass consisting of a large irregular

central crateriform depression, lined by hyperplastic stratified squamous epithelium and filled

with keratin laminae, along with degenerate cells and scattered colonies of bacteria. Shallow

islands of stratified squamous epithelium with central keratinisation extent into the

surrounding dermis. Rupture of these islands with release of keratin into the dermis is

associated with locally extensive infiltrates of neutrophils, macrophages, lymphocytes and
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Figure 3.1: A Haematoxylin & Eosin staining of an ear
of a transgenic mouse of line 117

An ear from a trasgenic mouse of line 117 was fixed in
formalin, embedded in paraffin, sectioned (211m) and stained
with haematoxylin and eosin. This section shows a
squamous cell carcinoma. For example, the black arrow is
indicating rupture of a keratin island indicative of
progression to carcinoma.



plasma cells, along with fibrovascular hyperplasia and fibrosis." Many of the ears also

showed ulcerative dermatitis accompanied by necrosis. The phenotype resembles trauma to

the ear with secondary bacterial infection, as there is fibrovascular hyperplasia of the dermis

along with neutrophils and other inflammatory cells. Lesions that spontaneously developed on

the dorsal skin of transgenic mice of line 117were classified as acanthomas.

By 8 months of age, all line 117 transgenic mice had at least one enlarged cervical lymph

node, usually the right one. This was not observed in the wild type siblings. When several

samples of swollen cervical lymph nodes were histologically examined it was shown that they

were mildly or moderately reactive indicating hyperplasia but none of them were classified as

a lymphosarcoma (figJ.2). Whether they would progress to lymphomas in older mice is not

known as most mice of the line were sacrificed at 16 months due to the extent of the ear

phenotype. Most of these lymph nodes examined contained pseudocysts, which consist of

expanded spaces within the lymphoid tissue that contain small amounts of eosinophilic

proteinaceous fluid, fibrin strands and scattered degenerate lymphocytes.

Oesophagus, forestomach, glandular stomach, trachea, pancreas and spleen of line 117

transgenic animals were described as normal.

Tongue, oesophagus, forestomach, glandular stomach and liver, of line 105B transgenic

animals also showed no pathology.

Tongue, trachea, oesophagus, salivary gland, stomach and pancreas of one transgenic mouse

of line 105A showing the wasting phenotype, were described as normal. However, lymph

nodes, thymus, spleen, liver, glandular stomach and the junction of forestomach and glandular

stomach of another transgenic mouse of line 105A exhibiting the wasting phenotype, were

described as showing evidence of lymphosarcoma. The architecture of the tissues was

replaced by dense sheets of large neoplastic lymphocytes that had large round nuclei, a high

ratio of nucleus to cytoplasm and 10-20 mitoses per high power field. Macrophages were also

seen that gave rise to a "starry sky" appearance. This was an individual case and the

phenotype has not been followed for mice of this line as yet.

Most of the dorsal lesions collected and examined from line 117/113 were described as

keratoacanthomas but on a single instance out of 5 cases examined, one of the larger lesions

(size >4) was classified as a squamous cell carcinoma (Appendix 1).

134



200 "m

Figure 3.2: A Haematoxylin & Eosin stained section through
an enlarged cervical lymph node of a transgenic mouse of line
117.

An enlarged cervical lymph node from a transgenic mouse of line
117 was fixed in formalin, paraffin embedded, sectioned (2Jlm)
and stained with haematoxylin and eosin. The staining reveal s
lymphoid follicles with active germinal centers. There is mild
expansion of lymphocytes in the paracortical zone and a moderate
number of plasma cells in medullary cords. This lymph node is
mildly hyperplastic.



3.3 LMP1 expression patterns in transgenic lines 117, 10SA and
1058 mice

3.3A RNA Expression

RNA was extracted from frozen tissue using Tri-Reagent'P' or according to the method of

Chomczynski and Sacchi (Chomczynski and Sacchi, 1987) (see section 2.2.5) using

guanidium thiocyanate and acid phenol.

Initially the RT-PCR technique was employed to examine LMPI specific RNA expression.

Briefly, RNA obtained from the tissues was DNase I treated and used to make complememnt

DNA (cDNA) using a polydT primer. The cDNA was used in a PCR reaction using primers

DSI and DS4 (fig. 3.3). These two primers span the second exon of LMPI and the small

introns 1 and 2 and allow amplified genomic DNA and processed RNA to be distinguished by

the size of the product. The product expected from genomic DNA using these primers is

S99bp and the cDNA product is 439bp. After repeated assays with this primer pair, no visible

products were detected on EtBr stained agarose gels. Consequently, a further amplification

step was included using nested primers (DS2 and DS3, figJJ). The genomic DNA product

expected from this primer pair is 492bp and the RNA derived product is 332bp. To further

control for genomic DNA derived versus RNA derived products, replicate samples were

assayed with and without reverse transcriptase (RT). Also as a further control, samples from

wild type animals were used with or without RI and in those samples no bands of the

appropriate size either from DNA or RNA products were observed. It was repeatedly

observed that a 492bp band was seen in the RT samples but not in the no RT samples (eg. fig.

3.4 tongue). Despite the size, this suggested the product was derived from RNA and not from

DNA contamination of the samples. It is possible that the 492bp band is derived from

unprocessed nuclear LMPI RNA. If this is the case, the transgene is expressed in these tissues

but it is not clear to what degree the RNA is processed or translated. Some tissues yielded

RT-PCR products of the expected size from an LMPI RNA transcript (332bp). These include

line 117 ears, heart, (fig. 3.4) and line 10SA heart (fig. 3.5). The 492bp product was seen in

line 117 tongue, lymph node, forestomach, lung and heart; line 105A ear, oesophagus

(fig.3.5); line 10SB thymus, spleen, forestomach, lymph node, ear, heart, lung, trachea, brain,

glandular stomach and liver (fig.3.6). Due to DNA contamination in the samples from line

117 testicle, liver; line I05A lymph node, tongue, kidney, lung, testicle and liver no

conclusion could be drawn for LMPlcAO expression in these tissues. Blotting some of the gels

and probing with an LMPI probe did not reveal any other bands of the RNA product size.
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Figure 3.3: Diagram depicting the three exons of LMPI and where the primer
pairs used for RT-peR correspond

Primers DS1 and 4 start at nucleotide 169474 and 168876 of exons 1 and 3 respectively.
The DNA product expected from this pair is 599bp where as the cDNA product is
439bp. Nested primers DS2 and 3 start at nuleotide 169400 and 168909 of exons 1 and
3. The expected genomic DNA product from this pair is 492bp and the cDNA product
is 332bp. The respective positions of the three LMPI promoters are shown as EDL-1,
lA and 2. Note that the diagram is not to scale.
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Figure 3.4: A nested RT-peR of tissues from line 117

2% Nuseve, 1% agarose TBE gels stained with EtBr, showing the
products of nested RT-peR. Tissues from a transgenic animal of line 117
were used. RNA was extracted and DNase! treated. A first round of
amplification with primers DS1 and 4 was conducted, followed by a
second round of amplification using nested primers DS2 and 3. A
positive control (Raji) was included. RNA samples were incubated with
(+) or without (-) RT. The RNA derived product should be seen at 332bp
whilst any genomic DNA product should be seen at 492bp. Note that
testes and liver samples show clear evidence of DNA contamination
within the RNA sample as bands are evident in the no RT (-) tracks.
tng. =tongue, l.n. = lymph node, fst. = forestomach, g.st. = glandular
stomach, s.gld = salivary gland, test. = testes
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Figure 3.5: A nested RT-PCR of tissues from line l05A

2% Nuseve, 1% agarose TBE gels stained with EtBr, showing the products
of nested RT-PCR. Tissues from a transgenic animal of line l05A were
used. RNA was extracted and DNase! treated. A first round of
amplification with primers DS1 and 4 did not give any visible products on
an EtBr stained gel. A second round of amplification using nested primers
DS2 and 3 gave the products shown. A positive control (Raji) was included.
RNA samples were incubated with (+) or without (-) RT. The RNA derived
product should be seen at 332bp whilst the genomic DNA product band
should be seen at about 492bp. Note that lymph node, tongue, kidney, lung,
testicle and liver samples show clear evidence of DNA contamination within
the RNA sample as bands are evident in the no RT (-) tracks.
oes. = oesophagus, In.= lymph node, tng. = tongue, cln. = cervical lymph
node, thy. = thymus, kid.= kidney, fst. = forestomach, gst. = glandular
stomach.



Figure 3.6: A nested RT-PCR of tissues from line 105B

2% Nuseve, 1% agarose TBE gels stained with EtBr, showing the
products of nested RT -peR. Tissues from a transgenic animal of
line 105B were used. Two rounds of amplification as for lines 117
and 105A were used. RNA samples were incubated with (+) or
without (-) RT. The RNA derived product should be seen at
332bp whilst the genomic DNA product band should be seen at
about 492bp. Note that ear sample shows clear evidence of DNA
contamination within the RNA sample as bands are evident in the
no RT (-) tracks.
sal. gland = salivary gland, fst. = forstomach, In.= lymph node,
gst.= glandular stomach.
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While this approach gave some indication ofLMPl CAD expression, due to persistent DNA

contamination and the possibility of detecting unprocessed RNA it was not conclusive.

Therefore, it was decided to investigate LMPI CAD expression using Northern and Western

blotting, to determine whether the unprocessed RNA was finally processed and translated.

Northern blotting is not as sensitive as RT-PCR. However, it was thought important to use it

as RT-PCR was giving inconclusive results. Using Northern blotting, LMPI expression is

evident in the Raji positive control but not in Ramos negative control as expected. From the

tissues examined, ear, tongue, forestomach, swollen lymph node, glandular stomach,

heart, oesophagus and kidney show the 2.5kbp transcript corresponding to full length

LMPI CAD (fig.3.7). Lung, salivary gland and testicle show a smaller transcript. Note, that it

was repeatedly observed in this lab that the Chomczynski and Sacchi method gave more and

better quality RNA than the Tri-reagent'" for Northern blotting.

3.3B Protein expression

Standard protein extraction buffers such as Ripa buffer or boiling mix (see section 2.2.4) failed

to yield detectable epidermal LMP1 as was seen from initial Western blotting experiments,

even though these methods were efficient in extracting LMP 1 from B cells. It is known that

LMPI co-localises with vimentin and possibly does so with the keratins of keratinocytes

(Liebowitz et al., 1987). Keratins in skin become cornified and are difficult to solubilise,

requiring denaturing extraction buffers. This may also be true of epidermal LMPI. Given

these difficulties, it was decided to use extraction buffers that are used to detect keratins.

Initially, three different buffers were used in a trial. The conventional keratin extraction buffer

(8M urea, 5%2ME, 25mM Tris, pH9.5), Shindai buffer (5M urea, 2.6M thiourea, 5% 2ME,

25mM Tris, pH 8.5) and a "New" buffer (9M urea, 2M thiourea, 2%CHAPS) (Nakamura et

al., 2002) were used. Proteins were extracted from the samples in these buffers at 55°C

overnight as detailed in section 2.2.4. Extracts were separated by SDS-PAGE, Western

blotted and probed with anti-LMPI antibodies.

Extracting LMPI using the "New" buffer was the most successful in terms of specific versus

non specific band detection (Le. transgenic versus wild type tissue)(fig.3.8). However, the

"New" buffer extracted the least amount of specific protein compared to the other two buffers

used. Since the aim of these experiments was to detect LMPI CAD expression in tissues, the

buffer that extracted the most LMPI CAO was chosen for further experiments and this was the

conventional buffer.
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Figure 3.7: A Northern OD tissues from a 117 transgenic mouse

20!lg of total RNA extracted using the Chomczynski and Sacchi method,
were electrophoresed through a 1% formaldehyde gel, transferred onto a
nylon membrane and probed with an LMPI specific probe (probe 139). A
film was exposed to the blot for varying time periods and developed through
an X-Omat developer. Raji positive control and Ramos negative for LMPI
control were included. Autorad A was underexposed whilst autorad B was
overexposed. As can be seen, the 2.5 kb LMPI transcript is observed in the
Raji, ear, forestomach, glandular stomach, oesophagus, lymph node, heart,
tongue, kidney. Lung, salivary gland and testicle show a smaller product.
tng= tongue, fst= forestomach, In= lymph node, gst= glandular stomach, 19=
lung, sg= salivary gland, hrt= heart, sI = spleen, tes= testicle, th= thymus,
oes= oesophagus, tr= trachea, kd= kidney.



Figure l.IA aDd B: Western blot of trial extraction buffen
probed with aDti-LMPl 812 (A) aDd IG6 (B) aDtibodies

l00Jl8 of protein extract was separated by 10010SDS-PAGE and
blotted. A Raji (EBV+ BL cell line) positive control, a Ramos
(EBV - BL cell line) negative control, a 117 transgenic ear sample
(tg.e) and a wild type ear sample (wt.e) were extracted with three
different buffers; conventional, Shindai and "new" buffers were
tested. Blot A was probed with the primary antibody S12 (1:500).
The secondary antibody used was goat anti-mouse IgG-HRP
(1:4000) and visualised with ECL+. The Western blot was
stripped and reprobed with the IG6 antibody (1:100)(B). The
secondary antibody used was goat anti-rat IgG-HRP (I :4000) and
visualised with ECL+. Transgenic and wild type tissue samples
were electrophoresed in adjacent tracks to allow direct
comparison. The Raji positive control gives an LMPIB9S.a specific
band at 63kDa whilst the transgenic ear sample gives a band at
66kDa corresponding to LMPICAO. Smaller bands of about 50,
40 and 35kDa are also observed in the transgenic ear sample.
Note, that there is a cross reacting band of about 67kDa observed
in the transgenic and wild type ears irrespective of the method or
antibody used for detection.
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In order to confirm the results obtained from this Western blotting analysis, three different

antibodies directed against LMPI were used. These were S12 (Hennessy et al., 1984;Mann et

al., 1985), 106 and the CAO cocktail (Nicholls et al., 2004). S12 is a mouse monoclonal

Ig02a antibody directed towards the carboxy terminus of LMP1, recognising both LMP1CAO

and LMPI 895-8. 106 is a rat monoclonal Ig02a antibody that recognises both the B95.8 and

CAO version ofLMPI. The CAO cocktail antibody consists of the rat monoclonal antibodies

505, 7F8 and 7D7. This cocktail does not recognise the B95.8 version of LMPI but

recognises CAO.

LMPlcAO is larger than LMPIB95-8, comprising 404 amino acids instead of 386 (Hu, 1991).

As seen from fig.3.9, a band at about 66kDa, predicted for LMPI CAO, is seen in transgenic

ears, larger than the 63kDa band seen in the Raji positive control cell line extract. However,

there is also a cross reacting band at about 67kDa that is observed in all samples (compare to

wild type tracks) albeit at lower intensity. LMP1CAO migrates very slightly faster than this

band. Smaller products, a predominant one of 50kDa and minor bands at 40,35 and 25kDa

are observed with the S12, 106 and CAO cocktail antibodies. Bands at about 45kDa are

observed with the 106 and the CAO cocktail. These smaller bands are seen only in the

transgenic samples. As such they could either be cleaved products of LMP1, in vitro

breakdown products or products derived from transcripts from the ED-LIA promoter of

LMPI. Moorthy and Thorley-Lawson (Moorthy and Thorley-Lawson, 1990), detected a

25kDa cytoplasmic product that they demonstrated to be a cleaved product of LMPI. They

also detected a 35kDa cell membrane product that was not always extracted. Since in these

experiments 8M urea was used, this 35kDa product is likely to be extracted. Products derived

from LMPI CAO may be larger than LMPI B95-8 and therefore migrate slower through an SDS

gel. Further reports (Baichwal and Sugden, 1987; Wang et al., 1985) describe breakdown

products of 54kDa, 43kDa and 49kDa whereas a 52kDa product is described as the product

derived from the ED-LIA promoter. Hudson et al., also predicted LMPI size to be 42kDa and

the ED-LIA product to be 28kDa (Hudson et al., 1985). Given that subsequent experiments

showed that LMP1CAO migrates slower through an SDS gel it is possible that the LMP1CAO

ED-LIA product migrates at about 50kDa.

A prominent band of about 50kDa is observed in 117 transgenic ears (fig. 3.9). Identification

of the 66kDa band was difficult at times due to the cross-reacting bands seen in both

transgenic and wild type samples with the different antibodies used. However, reprobing blots

with all3 antibodies allowed the LMPI CAO, 66kDa band, to be unequivocally identified. The
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Figure 3.9A and B: Western blot of line 117 tissues using 812
(A) and CAO cocktaH (B) antibodies

100J,lgof protein extract was separated by 10010SDS-PAGE and
blotted. The primary antibody used in A was S12 ascites (1:500).
The secondary antibody used was goat anti-mouse IgG-HRP
(1:4000). The Western blot was stripped and reprobed with the
CAO cocktail antibody (1:100) (B). The secondary antibody used
was goat anti-rat IgG-HRP (I :4000). A positive control for LMPI
(Raji) and a negative control (Ramos) were used. Transgenic tissue
samples (+) and wild type tissue samples (-) were electrophoresed
in adjacent tracks to allow direct comparison. The 63kDa
LMPI895-Bband is seen in the Raji sample in A. The LMPlcAO
66kDa band as well as further smaller products are seen in the
transgenic ear extract but not in the wild type ear extract. The
LMPlcAO band is detected in nasopharyngeal area (npa), tongue
(tng.), oesophagus (oes.) and focestomach (fst). There is also a
prominent 50IDa band that is present only in transgenic tissue
extracts. A smaller product of about 40kDa is observed in the
transgenic ears, npa and tng (A). No LMPI specific band is
observed in the Raji positive control in B as the CAO cocktail
antibody does not recognise the LMPI895-B.A band at about 66kDa
is clearly seen in transgenic tongue (tng.) and oesophagus (oes.)
but not in wild type tissue. An extensive cross reacting band in ear
sample does not allow ready detection of the LMPICAOband.
Smaller bands of about 40kDa are clearly seen in transgenic ear,
npa, tng. and oes. Note, that 812 cross reacts with a non specific
protein at about 67kDa that is present in all tracks making it hard to
identify the LMPlcAO band in A. The CAO cocktail also cross
reacts with non specific bands seen in the wild type samples (-) in
B.
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smaller products observed are possibly products of transcription of the lytic ED-LIA promoter

or proteolytic products of LMPI CAO, were much easier to identify and were only present in

transgenic samples thus indicating that in that tissue LMPlcAO or derivatives were expressed.

First tissues from line 117 were examined. The LMPlcAO specific band at 66kDa is detected

in transgenic ears, nasopharyngeal area, tongue, oesophagus, forestomach (fig.3.9), dorsal

skin, swollen lymph node (fig.3.10B), testicle, thymus, kidney and small intestine (data not

shown). Smaller LMPI specific products are detected in transgenic ear, nasopharyngeal area,

tongue, oesophagus, forestomach (fig.3.9), dorsal skin (fig.3.10A), trachea (data not shown),

lung and heart (fig.3.1OB). The strongest expression of LMPI CAO 66kDa band was observed

in transgenic ears. In order to examine if this expression varied with age and phenotypic

stage, ear extracts of phenotypic stages 1-3 were examined (fig.3.11). From that examination,

it was concluded that LMPlcAO expression is strong irrespective of phenotypic stage.

Tissues from lines 105A and B were also examined. In line 105B, the LMPlcAO 66kDa band

was observed in transgenic ears, trachea, oesophagus, tongue, glandular stomach (fig.3.12)

forestomach, nasopharyngeal area and testicle (data not shown). Smaller LMPI specific

products were observed in transgenic ears, trachea, oesophagus, tongue, glandular stomach,

forestomach (fig3.l2), dorsal skin, kidney, heart and thymus (data not shown). In line 105A,

the LMP 1CAO 66kDa band was detected in transgenic oesophagus, forestomach, tongue

(fig.3.l3) and nasopharyngeal area (data not shown). Smaller LMPI specific products were

observed in transgenic trachea, lung, kidney and heart (data not shown). Table 3.1 summarises

the expression patterns of the tissues of the different lines that show expression of LMP1CAO

and related products by using all three antibodies (fig3.9, 10, 12, 13). The expression pattern

shows consistency with the phenotype. For example, line 117 and 105B animals show a

hyperplastic ear phenotype whereas line 105A animals do not. This is consistent with

LMPI CAO expression as only ears of 117 and 105B transgenic animals show LMPI CAO

expression whereas line 105A ears do not. Line 117 transgenic animals consistently show

enlarged cervical lymph nodes and this is in agreement with LMPI CAO expression in the

expanded lymph nodes. Also line 117 animals show spontaneous papilloma formation and

this is consistent with expression of LMPlcAO in the dorsal skin. Line 105B animals show

spontaneous papilloma formation but to a lesser extent and much later in life and this is

consistent with the lower level of LMP1CAO expression in this line compared to line 117. Note

that the western blots shown are representative samples of several repetitions with all

transgenic positive samples showing the specific pattern of expression.
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Figure 3.10A and B: Western blot or line 117 tissues using
anti-LMPI 812 antibody.

lOOt'g of protein extract was separated by 10010 8D8-PAGE and
blotted. The primary antibody used was rabbit anti-mouse LMPI
812 ascites (1:500). The secondary antibody used was goat anti-
mouse IgG-HRP (1:4000). A positive for LMPI control (Raji)
and a negative control (Ramos) were used. Transgenic tissue
samples (+) and wild type tissue samples (-) were
electrophoresed in adjacent tracks to allow direct comparison.
The 63kDa LMPIB9S-1band is seen in the Raji samples. The
LMPlcAO 66kDa band as well as further smaller products are
seen in the transgenic ear extract but not in the wild type ear
extract. The LMPlcAO band is detected in ear, dorsal skin
(d.skin), trachea (tr). lung (lng.) and heart (hrt.). There are also
smaller breakdown products of about 50kDa and 45kDa observed
in transgenic ear, d.skin, oesophagus (008.) and forestomach (fst.)
tissue extracts. An extensive cross reacting band that runs at
about 67kDa makes identification of the 66kDa LMPI CAOband
extremely hard.
Tng, = tongue. npa.= nasopharyngeal area, sint.= small intestine,
s.gl.= salivary gland, sl. = spleen, Iv.= liver, th.= thymus. Ln. =
lymph node, br. = brain, kd. = kidney.
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Figure 3.11: A Western blot for LMP1cAO on ear
extracts of line 117 mice of different phenotypic stages

LMPICAO transgenic ears are indicated according to their
phenotypic stage (stl-3) . Wild type age matched controls
are indicated with c.
Protein extracts were prepared using the conventional
method. 100llg of extract/track were separated by lO%SDS-
PAGE and the gel was blotted. The blot was probed with
S12 primal)' antibody (1:500) and a secondary antibody goat
anti-mouse IgG-HRP (1:4000) and visualised with ECL+.
The 66 kDa LMPI CAO band is indicated.
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Figure 3.12: Western blot of line l05B tissues using 812
antibody

Protein was extracted using the conventional extraction buffer.
100llg of protein from both transgenic (+) and wild type (-)
tissues was separated by 10% SDS-PAGE and blotted. Primary
antibody used was rabbit anti-mouse 812 ascites (1:500). The
secondary antibody was goat anti-mouse IgG-HRP (1:4000). A
band at 66kDa corresponding to LMPI CAO is detected in the
transgenic ears, trachea, oesopUflguS (oes.), tongue (tng;)-.and
faintly in the glandular stomach (gl.st.) and forestomach "'(fst.).
There is also a 50kDa b~f;) present in trasgenic ears, trachea,
oesophagus, tongue and faintly in transgenic glandular stomach
and forestomach.
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Figure 3.13: Western blot of line I05A tissues using Sl2 antibody

Protein was extracted using the conventional extraction. 100flg of
protein from both transgenic (+) and wild type (-) tissues were
separated by 1O%SDS-P AGE and blotted. The primary antibody used
was rabbit anti-mouse S12 ascites (1:500). The secondary antibody
used was goat anti-mouse IgG-HRP (1:4000). A positive control (Raji)
and a negative control (Ramos) were included. The 63kDa LMP 1B95-8
band is seen in the positive control. No 66kDa LMPlcAO can be
detected in transgenic ears and this is consistent with the phenotype of
this line. The 66kDa LMPI CAO is clearly detected in transgenic
oesophagus (oes.), forestomach (fst.) and tongue (tng.).



Tissue 117 105A 105B
Ear V - V
Dorsal skin V - s
'I'ongue V V V
Nasopharyngeal area v v v
Salivary gland - - -
Oesophagus v v v
Trachea s s v
Forestomach v v v
Small intestine v - -
Lung s s -
Kidney v s s
Heart s s s
Liver - - -
Spleen - - -
Thymus v nt s
Brain - - -
Testes/ovary v nt v
Expanded lymph node (I17 onlv) v

Table 3.1: Table sbowing presence oftbe LMPlCAO 66kDa product in tissues from lines
117, 105A and 105B.

This table gives a summary of all the LMPI products either fullength or smaller that have
been detected using the various antibodies.
The symbol (Y) indicates presence of the LMPlcAO 66kDa product. The letter (s) indicates
expression of smaller LMPI specific products detected in the absence of detection of the
66kDa product. The symbol (-) indicates that no LMPI expression was detected.
(nt) = not tested.



3.4 Spontaneous papilloma formation on lines 117, 117/113 and
117/113/1205

It has been well documented that mice from different genetic backgrounds have a different

susceptibility to developing lesions after topical chemical carcinogen treatment and have

different resistances to malignant conversion of such lesions. Studies have indicated that FVB

strain mice that developed cutaneous papillomas following chemical carcinogen treatment

were much more prone to show malignant conversion to carcinomas than C57BLl6 mice

(DiGiovanni et aI., 1991; Hennings et aI., 1993). In our lab, it was noted that when line 117

mice were brought into an FVB background (backcross 2, approx. 75% FVB), 40% of the

mice spontaneously developed cutaneous papillomas. Initially the line 117 colony was

maintained in a C57BLl6 background and no papilloma formation was observed.

In order to characterise this observation further, a cohort of 21 transgenic and 10wild type 117

mice at backcross 3 (87.5% FVB) were monitored from 6 weeks of age up to 65 weeks of age

for spontaneous papilloma formation. The mice were monitored once every fortnight and the

lesion load was recorded in size categories as shown in table 3.2. Note that this categorisation

is subjective, however it should be internally consistent.

Category Lesion
diameter

Size 1 <0.2 cm

Size 2 0.2-0.5 cm

Size 3 0.5- 1.0 cm

Size4 >l.Ocm

Table 3.2 Categorisation of lesions by size

Of the 21 transgenic mice in the study, a total of 12 (57.14%) transgenic mice had developed

papillomas by the end of the study (fig.3.14A). No papillomas developed on the wild type

siblings throughout the study period. Of these 12 mice that did develop papillomas the

average maximum number of papillomas per mouse was 2.58. The first onset of papillomas

was at 6 weeks of age. The papillomas that formed remained small, mostly in category 1 (fig.

3.14B,C). Note that the severity of the ear phenotype, necessitated removal of animals from

the study at different time points. Sudden drops on the curve indicate that papillomas
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Figure 3.14: Development of spontaneous cutaneous lesions in
mice ofline 117

2 1 transgenic and 10 wild type siblings of line 117 mice, were
monitored for 59 weeks (from 6 weeks old) for the appearance of
cutaneous lesions.
A) The percentage of mice developing a lesion through the study

period is shown, at the age of first lesion appearance. Transgenic
mice are shown by a blue line and wild type mice are shown by a
pink line.

B) A graph showing the average (mean) number of lesions per
mouse alive at each weekly count according to lesion size; size 1
(purple), size 2 (pink), size 3 (light blue), size 4 (dark blue). Note
that sudden drops indicate papilloma regression or removal of a
moouse bearing lesions from the study.
C) A graph showing the cumulative average (mean) number of all

lesions that developed on all transgenic mice during the study
according to size; size 1 (purple), size 2 (pink), size 3 (light blue),
size 4 (dark blue). In this representation, if a mouse was removed
from the study, its lesion load is shown as a constant to the end of the
study period. As such, drops in the average lesion load represent
lesion regression.
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regressed or changed size category or that a mouse that had papillomas was withdrawn from

the study. In order to allow for this, the cumulative lesion load is shown in the graph in

fig.3.14e in which the lesion load of a mouse at the time of removal from study is shown as a

constant to the end of the study period. As seen from this graph (fig. 3.14e) some lesions

regressed. However, some fluctuation in the count can also be attributed to experimental error

in missing some small papillomas and to the subjectivity of categorisation of a lesion

particularly at the border between categories from one week to the next.

It is seen that LMP 1CAO alone can pre-dispose to papilloma formation as no papillomas

developed on the wild type sibling control mice. However, LMPlcAO on its own is not

sufficient to lead to a large number of papillomas per mouse or to many large papillomas. The

maximum number of papillomas that a mouse on this study ever developed was 4 (although

more have been noted on some mice not in this cohort). Most of the papillomas formed were

size 1 or 2 with the exception of a few size 4 papillomas that developed towards the later

stages of the study. Finally, no papillomas from the ones sent for pathological examination

showed evidence of conversion to carcinomas but larger lesions (size>4) were not examined.

Further details about the animals used in this study can be found in Appendix 2.

These results suggest that LMP 1CAO can initiate a proliferation pathway that leads to

papilloma formation. However, this proliferation pathway must be limited as only a few small

papillomas develop per mouse that do not readily progress.

In order to investigate whether the pathway that limits this proliferation is acting via INK4a

locus products (p16INK4aand p19ARF ), line 117 mice were crossed with INK4a null, line 113

mice (see section 1.8). In order to determine the genotype of the mice at the INK4a locus two

techniques were used, peR and Southern blotting. For the peR reaction, two sets of primers

recognising either a pl61NK4afragment or the neomycin insertion cassette, were used (figJ.15).

There were persistent problems with the neomycin peR, since a false positive band was

frequently seen in samples, so it was decided to use Southern blotting as an alternative

genotyping method. After digesting genomic DNA with several enzymes, and probing with

an INK4a containing probe, it was shown that BamHI digest gave the clearest results. A band

at about 2.8kbp is observed in wild type samples, this band is observed in heterozygotes at half

the intensity and no band is seen in the null (figJ.l6). However, due to unequal loading and

the fact that distinguishing wild type from heterozygote was based on band intensity, it
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Figure 3.15: Genotyping of line 117/113 mice using peR

300 ng of genomic DNA are used along with p16 (A) or neomycin
(B) primers for peR assays. lOll] of the product were run on a
1.5%Eillr stained agarose gel. Gel A shows the DNA ladder along
with peR samples using p16 primers for wild type (wt),
heterozygous (het) or knock out (ko) mice for the INK4a locus.
The 306bp product of the p16 primers is indicated and is observed
in wt and het samples only.
Gel B shows the peR samples with neomycin primers for wt and
ko mice for the INK4a locus. The 150bp product of the neomycin
primers is indicated and is observed in the ko sample only.
Presence of the p16 band only indicates wt, presence of both bands
indicates het and presence of the neomycin band only indicates ko
genotype.



kb ko hetwt

Figure 3.16: Southern blot genotyping of line 117/113

Genomic DNA (Sug) was digested with BamHI overnight and
separated by electrophoresis on a 0.8% agarose gel. A probe
comprising exon 2 of the INK4a locus genes was used to
detect wild type (wt), or heterozygous (het) samples. The wt
or het band was observed at about 2.8kb. The knock out (ko)
sample showed no such band. Note that the intensity of the
band observed in the het sample, is less than the intensity of
the band observed in the wt sample. This banding pattern was
repeatedly observed on a number of known control samples.
The Southern gel showed equal DNA loading of similar
quality in all tracks shown in this figure.



was quite hard to reliably determine whether genomic DNA displaying that band

corresponded to a wild type or a heterozygous mouse. As a consequence it was decided to

group wild type and heterozygous for INK4a mice together in order to observe the effects of

the null on lesion formation. Although this approach is not optimal, as there may be a

heterozygous effect, it was the only approach that could reasonable be taken with this data set.

6 LMP 1CAO / INK4a null, 40 LMP 1CAO / INK4a heterozygous or wild type, 17 LMP 1CAO wild

type / INK4a null and 40 LMPlcAO / INK4a heterozygous or wild type mice, were monitored

for spontaneous papilloma formation from 5 weeks of age to 70 weeks old.

No papillomatous lesions were formed on any of the mice that were wild type. The

papillomatous lesions formed on LMPI transgenic mice were grouped according to size as

previously (table 3.2). As seen from figure 3.17, the average number oflesions developing on

LMPlcAO / INK4a null mice is always higher than the average number of lesions developing

on LMPI CAO 1 INK4a heterozygous or wild type mice. With the small number of mice in the

null group it is difficult to conduct a meaningful statistical significance test at single time

points. Using the nonparametric Mann-Whitney Confidence Interval and Test to compare the

lesions that developed on all INK4a null and all INK4a heterozygous and wild type mice at

weeks 9 and 28, no statistical significant difference between the two groups was found

(P=0.5123 and 0.1262 respectively). However, as can be seen from the graph (fig.3.17), the

average number of lesions that developed on the INK4 null mice was always more than the

average number of lesions that developed on the INK4a heterozygous and wild type mice,

throughout the study period (over 42 weeks while INK4a null were on study). If the values

between the two groups were randomly distributed, it would be expected that from one

sampling (week) to the next, either group could show the higher average. This is clearly not

the case. In order to show this statistically a Runs Test was used comparing the distribution of

a pattern over time. If the values in one group are consistently higher (or lower) than the other

group, the Runs Test will evaluate the probability that this pattern can happen by chance.

When a Runs Test was performed on the difference between the average number of lesions

developed on INK4 null and INK4 heterozygous and wild type mice from week 5 to week 47

it is evident that there is a "single Run". That is, at no time did the average for the INK4a null

group fall below the average for the INK4a heterozygous and wild type group. As such P=O

and therefore the pattern between the two groups shows very high statistical significant

difference. Only one of the 6 INK4a null mice did not develop any papillomas but was

removed from study (due to lymphoma) early in the study at week 26. By contrast 8/40 (20%)
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Figure 3.17: Development of spontaneous cutaneous lesions in mice
of line 117/113 and line 117

6 INK4a locus null (-1-)(blue line) and 40 INK4a locus wild type (+1+)
or heterozygous (+I-)(pink line) mice were monitored for 65 weeks
(from 5 weeks old) for the appearance of spontaneous cutaneous lesions.
Note that all the mice shown here are LMP1CAO transgenic.
The graph shows the average number of lesions per mouse alive at each
weekly count. The yellow line shows the data derived from the line 117
mice, transgenic for LMP1CAO and wild type for the INK4a locus
(previously shown in figure 3.14). Note that sudden drops indicate
papilloma regression or removal of a mouse from the study.



mice in the INK4a heterozygous and wild type group never developed a lesion throughout the

study period. The highest lesion load on a single mouse in the study was recorded on an

INK4a null mouse which developed a maximum of 9 papillomas. By comparison the highest

lesion load on a single INK4a heterozygous and wild type mouse was 6. The maximum

number of papillomas developed on a mouse that were equal to or greater than size 2 was 7

and they developed on a null mouse. The earliest time point that papillomas could be detected

on mice from line 117/113 was 5 weeks. Since observation started at 5 weeks, it is possible

that some mice developed papillomas earlier. One out of five of the lesions of line 117/113

that were collected and pathologically examined was shown to be a squamous carcinoma.

This lesion came from a LMPlcAO transgenic I INK4a null mouse. Taken together, these data

demonstrate that papilloma load in the INK4a null background is always larger than the

papilloma load in the presence ofINK4a (either one or both alleles).

In order to assess if the INK4a heterozygous genotype was affecting the data in the

heterozygous and wild type group, the data derived from the previously described cohort of

mice, line 117 transgenic INK4a wild type have been plotted on the graph in figure 3.17.

Since these data are very similar, to the data from the wild type and heterozygous grouped

mice of the cross 117/113 it suggests that the heterozygous genotype is not affecting the

observed phenotype.

Figure 3.l8A shows no obvious differences between INK4a null or heterozygous and wild

type in size 1 lesions that developed except at one time point between weeks 43-49. The most

striking difference is observed when the lesions equal or greater than size 2 for the INK4a

null, heterozygous and wild type mice are plotted. The INK4a null mice appear to show

development of more larger (>size 2) lesions than the heterozygous and wild type mice

(fig.3.l8B). Lesions greater than size 2 presented a similar picture as the total number of

lesions. Also at the beginning of the study when the mice are 5 weeks old, the null mice have

a higher average number of papillomas (0.67) that are equal to or greater than size 2, whereas

the wild type and heterozygous mice start with fewer lesions equal to or greater than size 2

(0.05). Note that at 49 weeks all the null mice have been removed from the study due to the

incidence of lymphoma in this strain. Sudden drops in the curve represent the removal of a
mouse bearing lesions from the study.
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Figure 3.18: Development of spontaDeous
cutaneous lesions in mice of line 117/113

A graph showing the average (mean) number of
lesions size 1 (A) or equal to size 2 or greater (B) per
mouse alive at each weekly count. INK4a null mice
are shown by a blue line and wild type and
heterozygous for INK4a locus mice are shown by a
pink line. All the mice included in this graph are
LMP 1CAO transgenic positive. Note that sudden
drops indicate papilloma regression or removal of a
mouse from the study.
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In order to investigate whether LMPI CAO can activate Ras, an indirect approach was taken to

cross mice of line 117/113 to line 1205 mice. Line 1205 mice bear an activated H-ras

transgene under the control of the HKl promoter, directing oncogenic Ras expression to the

skin epithelium (see section 1.8). As a result of this preliminary study, 4 LMPlcAO +1H-ras +
(Group A), 15 LMPlcAO + 1H-Ras - (Group B), 4 LMPlcAO - 1H-Ras + (Group C) all of

which were in a heterozygous or wild type INK4a background and 7 LMPI CAO +1 INK4a -1- 1
B-Ras - (Group D) were produced. 2 out of 4 mice of Group A (number of lesions developed

on each mouse: 2, 6), 0 out of 15 mice of Group B, lout of 4 mice in Group C (number of

lesions: 6) and 2 out of7 mice in Group D (number of lesions developed on each mouse: 2,3),

developed lesions. In summary, a few lesions formed on mice that were transgenic for

LMPI CAO, or H-ras or both, but there was no obvious difference between the bitransgenic or

the single transgene lesion load. However, the number of mice in each group is too small to

draw any conclusions.

3.5 Does L2LMP1 CAO act as a chemical initiator?

Mice of line 117 show spontaneous papilloma formation when in an FVB strain background.

It was therefore hypothesised, that LMPI CAO could act as a weak tumour initiator. Previous

studies using PyLMP1B95-8 mice demonstrated that LMPI activity augmented chemical

promotion but could not substitute for chemical initiation. To explore this further, a cohort of

mice from line 117 was treated using a minimal chemical carcinogen treatment without

carcinogen initiator and monitored for papilloma or carcinoma formation.

DMBA initiation leads to activation of the H-ras gene as described in the introduction (section

1.5). If overexpression of an oncogene can functionally replace activated H-ras this will make

the use of a chemical initiator redundant (Quintanilla et al., 1986). Since line 117 mice

develop papillomas, the hypothesis is that LMP1cAO can act as an initiator in chemical

carcinogenesis and substitute for an activated H-ras.

A complete topical carcinogenesis regime involves a single application of DMBA followed by

20 biweekly applications of TPA. Different minimal regimes were previously used with line

53 (PyLMP1B95-8) mice showing that LMP1 can partially substitute for the promotion stage

(Curran et al., 2001). In order to test if LMP1CAO in line 117 can act as an initiator, a minimal

regime was followed ofTPA treatment without initial application ofDMBA. IfLMPlcAO can

indeed act as an initiator, then the transgenic mice treated with TPA would show a larger

papilloma load than wild type siblings treated with TPA (section 1.5). In total, 23 animals of
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FVB backcross four (93.75%) and five (96.88%) at 5-6 months old were included in the study.

10 animals were transgenic positive and 13 wild type. The lesion load was monitored from

week 1 after the first TPA application up to week 43 and lesions were recorded according to

their size as previously described (section 3.4).

It was observed that upon TPA application the transgenic mice developed a rough, red and

raised surface to the skin, described as papillomatosis. The papillomatosis phenotype was

persistent throughout the TPA treatment and only evident on transgenic animals (fig.3.19.C).

60% of the transgenic mice in this study developed papillomas by the end of the study period

and the average number oflesions developed was very small (fig.3.19.A, B). None of the wild

type mice developed papillomas. This is not statistically significant (P= >0.25 X2 = 0.033

df=I)' when compared to the percentage of mice that spontaneously developed papillomas.

This implies that minimal TPA treatment did not promote increased papilloma formation and

suggests that LMPlcAO is not acting as a powerful initiator able to replace the activation of the

Il-ras gene in chemical carcinogenesis. However, as seen from fig.3.19.C only the transgenic

mice showed this papillomatosis upon TPA treatment. The last day of the TPA application

was day 25 and 9/10 of the transgenic mice showed this hyperplastic response. A week later

on day 32, 4/10 of the transgenic mice still showed this hyperplasia. Three weeks after the

treatment had stopped (day 46) this phenotype had regressed completely. None of the wild

type mice showed this phenotype so this cannot be a TPA effect alone. It implies that

LMP 1CAO is augmenting the action of TPA as shown in previous studies using PyLMP 1B95-8

(Curran et aI., 2001). At this point, it is not clear why papillomatous lesions form on the

L2LMPIcAO mice and not on PyLMPIB9s-8•

3 The chi-squared test investigates whether a variance in a normal distribution has a specified
value. The formula is :X2=l: [Co-eifel. In this case observed (0) value was 6 and expected (e)
value was 5.714 (since 57.14% of line 117 spontaneously developed lesions and the trangenic
size of this group is 10). This value is later compared on a table with P values at the
appropriate degrees of freedom (df) to determine whether the P value is less than 0.05 and thus
of statistical significance.
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Figure 3.19A, Band C: Development of cutaneous lesions in mice of line 117
that have been TPA treated

10 transgenic and 13wild type siblings of line 117 mice, were monitored for 43
weeks after the first TPA treatment for the appearance of cutaneous lesions.
A) The percentage of mice developing a lesion through the study period is shown,
at the days following the first TPA treatment. Transgenic mice are shown by a blue
line and wild type mice are shown by a pink line.
B) A graph showing the average (mean) number oflesions per mouse alive at each
weekly count. Transgenic mice are shown by a blue line and wild type mice are
shown by a pink line. Note that sudden drops indicate papilloma regression or
removal of a mouse from the study.
C) A graph showing the percentage of mice that showed papillomatosis upon TPA
treatment. Transgenic mice are shown by a blue line and wild type mice are shown
by a pink line.



3.6 Conclusions and Discussion

From the above studies, it is shown that LMPlcAO under the ED-L2 promoter, is expressed in

a wide variety of tissues in the transgenic animals created and this is not restricted only to

epithelial tissues. Lymphoid organs such as cervical lymph nodes and thymus show

expression of the 66kDa LMPICAD at least in line 117. In line 105A and 105B lymph nodes

were not tested for LMPI expression and in line 105B the thymus shows expression of a

smaller product of LMP1 and the full 66kDa LMPICAD was not detected. Other tissues (heart,

kidney and lungs) made up of epithelial cells showed expression of either the 66kDa

LMPI CAD or smaller products. The significance of LMPI expression in these tissues has not

yet been established.

It is not yet clear whether the smaller products observed in the transgenic samples are actually

derived from expression of truncated LMPI or whether this has an effect on the function of

full length LMPl. For example,the 50kDa product observed in the transgenic tissues by

Western blotting could be the lytic LMPI protein or a breakdown product of full length LMPI

or a product of another LMPI promoter other than L2. To date this has not been clarified.

There are at least three promoters associated with LMPI. The first to be detected was ED-Ll

which is 5' upstream of exon 1 ofLMPl and gives rise to 2.8kbp mRNA and the 63kDa full

length LMPI polypeptide. ED-LIA is an internal promoter in intron 1 giving rise to a 2.6 kbp

mRNA and a 50kDa polypeptide (Chen et al., 1995). Also a promoter 5' upstream ofED-Ll

and situated into the first terminal repeat was discovered (LI-TR) that gives rise to a 3.5kbp

mRNA that is preferentially detected in NPC cell lines rather than LCLs (Sadler and Raab-
Traub,1995). Another group has discovered another 5' ofED-Ll promoter, the ED-LIE, that

gives rise to a 3.5kbp mRNA and is specifically activated in epithelial cells. This promoter

has about 5x increased activity when compared to ED-Ll (Chang et al., 1997). An early lytic

cycle promoter that is found 3' of the LMPI gene and just 5' of the LMP2A gene- the ED-L2,

and gives rise to a 0.6kbp mRNA was used to generate the LMPlcAO transgenic mice.

A recent study (Pandya and Walling, 2004) has revealed that presence of the 50kDa lytic

LMPI protein along with full length LMPI leads to decreased half life of the latter and also

decreased LMPI induced activation ofNF-KB, API and STAT in RHEK-l epithelial cells. It

is therefore possible that this occurs in the transgenic tissues of line 117. If the 50kDa band

observed is the lytic form, then the ratio between full length LMPI and lytic LMPI protein

may playa role as to whether there is an observed phenotype in a tissue or not. For example,

both ears and tissues of the gastrointestinal (01) tract of transgenic animals of line 117 show

171



the 66kDa LMPlcAO protein. However, a phenotype is observed only in ears and not in the

GI. It could be that this has to do with the fact that in ears the 66kDa protein is expressed at

much higher levels than the GI tract tissues or it could be that a smaller ratio between 66kDa

and SOkDaprotein leads to decreased LMPI CAD function. Note however, that the SOkDais not

seen strongly in 10SA or B transgenic tissues and this argues against any role that the SOkDa

may have.

The expression patterns of LMPI CAD, is consistent with the observed phenotype. Line 117

transgenic mice show hyperplastic ears and enlarged lymph nodes. This is consistent with the

observation that LMPI CAD is expressed at high levels in the ears and it is also expressed in the

lymph nodes. Similarly, line 10SB transgenic animals show the hyperplastic ear phenotype

whereas I05A transgenic animals do not. LMPlcAO is expressed in ears of line 10SB but not

in ears of line 10SA.

Some line 10SA transgenic animals show a wasting phenotype as they grow older. Organs of

the GI tract of transgenic animals of this line show LMPI CAD expression. One hypothesis is

that LMP ICAO expression can lead to aberrant proliferation in those tissues disrupting the

differentiation pattern of the lining of the digestive system leading to problems in nutrient

absorption. However, this is not apparent from the pathological examination of those tissues

and the GI tract tissues of transgenic animals of lines 117 and 10SB also show LMPICAD

expression but no wasting phenotype. An alternative explanation could be that the transgene

in line 10SA has disrupted a cellular gene and the observed phenotype is unrelated to the

LMPI CAO expression. Also, in one case, a lymphoma was observed in these tissues. Perhaps

this interferes with GI function in other wasted animals but this has not been examined.

The appearance of spontaneous papillomas on line 117 prompted the investigation as to

whether LMPI CAO is acting as an initiator or as a promoter. It was subsequently shown that

LMPI CAO cannot act as an initiator in the context of chemical carcinogenesis but rather acts as

a tumour promoter and replaces TPA. This is in agreement with previous data obtained in this

laboratory using LMPI895-8 transgenic animals in chemical carcinogen studies (Curran et al.,

2001). However, the observed phenotype of line 117 mice where S7.14% of the mice

spontaneously develop papillomas, shows that LMPI CAD can lead to activation of signalling

pathways that initiate the process of carcinogenesis but that LMPI CAO does this to a low level,

since only a few and small spontaneous papillomas develop per mouse and few ears go on to

become squamous cell carcinomas.
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From the data described here and published (Curran et aI., 2001; Macdiarmid et aI., 2003), it

was found that the two LMPI strains - B95-8 and CAO - show no significant differences in

terms of initiation in the context of chemical carcinogenesis. A more progressed phenotype is

observed on the LMPI CAO animals when compared to the LMPI B95·8 animals. Even though

we cannot at the moment exclude the hypothesis that LMP 1CAO may be more tumourigenic, as

has been suggested by several groups in the past, we cannot confirm it either. The expression

of the transgene in lines 53 and 117 is still not known. Initial studies performed in this

laboratory using the LMP1895•8 (line 53) transgenic animals indicated that the transgene

expression is probably localised to the suprabasal layer. This is the non proliferative

differentiating layer of the epidermis. Despite repeated attempts of mine to investigate

expression patterns by RNA in situ, on tissues from line 117 these proved unsuccessful. It is

possible however, that the LMP 1CAO transgene is expressed in the basal epidermal layer. This

is the proliferating layer of the epidermis and so it is expected that if LMP 1 plays any effects

on proliferation, differentiation or apoptosis that these could be magnified just by the fact that

the transgene is expressed in a proliferating compartment. This can be seen in other transgenic

mouse models, for example the TGFatransgenic animals. As has already been discussed,

suprabasal expression of TGFa leads to hyperkeratotic skin (Dominey et al., 1993) whilst

basal TGFa expression leads to ear thickening and spontaneous papilloma formation (Vassar

and Fuchs, 1991). Similarly, Ras transgenic animals show an increase in the severity of the

phenotype when the transgene expression is in the basal layer than if the trans gene expression

is in the suprabasal layer (Bailleul et al., 1990; Brown et al., 1998; Dajee et aI., 2002;

Greenhalgh et aI., 1993a). Elucitating the spatial expression ofLMP1 transgene in lines 53 and

117 is of utmost importance as this will allow direct comparison of the effects of the two

strains in the epithelium in vivo.

Upon removal of the INK4a locus (i.e. no p 16INK4a or p 19ARF expression), an increased lesion

load both in terms of numbers and size is observed on the transgenic for LMP1 CAO mice.

Furthermore, a spontaneous lesion that appeared on an LMPI CAO+ 1 INK4a null mouse of line

117/113 was described as a squamous cell carcinoma rather than as a keratoacanthoma which

was what was usually observed on mice of line 117. These results are in agreement with

previous results obtained in the laboratory with mice of line 53 (PyLMPI B95.8) crossed to an

INK4a null strain (Macdiarmid et aI., 2003). When the 53/113 mice were chemically treated

and the lesion load recorded, it was observed that LMPI895-8+ 1 INK4a null mice developed

more lesions faster that became larger in size and progressed to carcinoma. Taken together,

these data show that there is a cooperation between the effects ofLMPlcAO and loss ofINK4a
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locus in vivo. This would explain what is observed in NPC where the INK4a locus is deleted

or hypermethylated during the development of the lesion. The data presented here with

respect to LMP 1CAO are in accord with published data from this laboratory concerning

LMPI 895-8 indicating that LMPI mediates a lesion growth inhibition effect through products of

the INK4a locus (pI6INK4aor p I9ARF
). However, this seems to be contrary to the published

reports that LMPI inhibits both pI6INK4aexpression and function (Ohtani et al., 2003; Yang et

al., 2000a). Nevertheless, it has been found that in LCLs, LMPI does not lead to pI6INK4a

inhibition, or its not sufficient for its inhibition (Hayes et al., 2004).

It is not clear if ras activation is part of tumourigenesis in line 117 mice. To examine this,

sequencing of lesions that spontaneously developed on line 117 transgenic mice, with the

focus on codons 12, 13, 60 and 61 of the ras gene that are known to develop spontaneous

activating mutations, is needed.

Another phenotype observed is that of the reactive cervical lymph node. These lymph nodes

do not show evidence of neoplasia at the stage analysed but appear to be reactive. This

phenotype is not observed in the transgenic negative and is observed in 100% of the transgenic

mice. Since LMPI CAO is not a foreign protein to these mice, it could be that it leads to "fake"

CD40 signalling thus simulating the interaction between B- and T-cells and showing this

phenotype. It would be interesting to investigate this further by identifying whether it is the B

or T cell compartments that are expanded in those lymph nodes and in which LMP1 IS

expressed.

To conclude, expression of LMPI CAO in the transgenic animals, is predominantly directed to

epithelial tissues as well as some lymphoid tissues. Its expression leads to hyperplasia and

spontaneous papilloma formation when in a genetically susceptible strain background.

However, LMP1CAO expression is not sufficient to replace the need for a chemical initiator in

the context of chemical carcinogenesis. Nevertheless, lesions developing in the ear can

progress to carcinoma.
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Chapter 4: Signalling Pathways Activated by LMP1

The primary aim of the work described in this chapter was to examine signalling pathways

affected by LMPICAOin the epithelium in vivo, with an emphasis on the RaslMAPK pathway.

Previous studies showed upregulation of EGFR levels in both NPC biopsies and epithelial

cells (C33A) in vitro in response to LMPI expression (Miller et al., 1998a; Miller et al., 1997;

Sheen et al., 1999; Zheng et al., 1994a). Given these facts and the similarity in phenotype

between LMPI transgenic mice and TGFa transgenic mice (see 1.7), it was hypothesised that

LMPI may act via upregulating TGFa. Among the pathways activated by EGFR is the

Ras/MAPK cascade. A previous report showed LMPI activation of MAPK in a Ras-

dependent way in Rat-I fibroblasts (Roberts and Cooper, 1998), therefore, it was decided to

investigate this pathway using the affected tissues from the transgenic mouse lines generated

in the laboratory.

The aims of this chapter were:

1. Does LMPI cAolB9s-sleadto upregulation ofTGFa?

2. Does LMPI CAOlead to upregulation or increased activation ofEGFR?

3. Does LMPI CAOaffect the RaslMAPK in any way?

4. Does LMPlcAO activate the PI3K1Akt pathway? (another major pathway activated by

EGFR)

5. What other pathways are activated by LMPI CAO in the epithelium in vivo?

4.1 Outline of Approach

In order to explore the status of several signalling pathways, affected tissues (ears) from mice

of line 117 and (adult skin, pup epidermis, pup dermis) from line 53, both transgenic and age

matched sibling controls were collected. The transgenic ears were staged according to their

phenotype (see fig.1.14). Skin from 3-7 day old pups from mice of line 53 was collected and

separated into the epidermal and dermal components. In order to detect the levels of total or

activated protein, protein extracts were prepared using Ripa buffer and analysed by Western

blotting. In order to examine DNA binding activity whole protein extracts from affected

tissues were prepared as described previously (see 2.2.4H) and used in EMSA experiments.
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Results

4.2 LMP1 CAO and the TGFaJEGFRIRasIMAPK Signalling Pathway

Initially, expression levels of TGFu were examined. Figure 4.1 shows that TOFu is found

upregulated in the phenotypic transgenic pup epidermis (5 days old) of mice of line 53 but not

in transgenic dermis or adult skin or when compared to control samples. The cleaved soluble

product of TOFu ranges from 5-20kDa depending on the degree of glycosylation. The 10kDa

product observed in fig.4.1, could therefore be a soluble product ofTGFu. Similarly, TOFu

was also detected in ear protein extracts of line 117mice (Stevenson et. al., in press). Protein

was also extracted from cell pellets derived from carcinomas that developed after chemical

carcinogen treatment on transgenic and wild type mice of lines 53 and 117. When these

samples were separated by SDS-PAGE, the gel blotted and probed with anti-TOFu antibody,

there was no evidence of either the uncleaved or the cleaved form of TOFu (fig.4.2). It is

possible that in these cell pellets the TOFu soluble form is secreted into the cell culture

medium or it has a very fast turnover. In order to test this, cell culture medium from these

cells could be examined for the presence of TGFu using an enzyme linked immunosorbent

assay (ELISA) approach or by an IP followed by a Western blot. It is also possible that since

these cells are established immortalised cell lines, that overexpression of TOFu is not selected

for.

The next logical target was to investigate whether EGFR, the receptor for TOFu, was affected

in any way as a result of increased expression of its ligand. Total EGFR levels were slightly

higher in transgenic ears (fig.4.3). However, levels of total EOFR decreased as the phenotype

progressed (stage 1: 1.36 fold, stage 2: 1.1 fold, stage 3: 0.85 fold when compared to controls

normalised against ~ tubulin, see table 5.3). In contrast, smaller EGFR products (sizes

approximately 70, 66 and 50kDa) were observed in transgenic ears of increasing phenotype

severity (stage 1: 1.13, stage 2: 1.60, stage 3: 3 fold when compared to controls normalised

against ~ tubulin, see table 5.3). Similar results were obtained when using line 53 tissues

(fig.4.4). Total EOFR levels are higher in the wild type epidermis as compared to transgenic

epidermis whilst using an antibody specific for the phosphorylated EOFR form, led to

detection of increased possible breakdown products of EGFR (50, 45, 40kDa) in the

transgenic epidermis as compared to the wild type epidermis. It is of interest that when cell

pellet protein extracts were probed with anti-total EGFR, the 170kDa band did not show any
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Figure 4.1: TGFa expression in the skin of line 53 mice
(PyLMPI B95-~.

5 day old pup skins were collected and separated into
epidermal and dermal components. Whole adult skin was also
collected. Protein was extracted using Ripa buffer. 75J.lgof
protein extract/track was separated by 15% SDS-PAGE and
the gel was blotted. The blot was probed with a rabbit anti-
mouse TGFa primary antibody (1:1000) and a goat anti-rabbit
IgG-HRP secondary antibody (1:4000) and visualised with
ECL+. The lOkDa band corresponding to TGFa is indicated.
Molecular weights according to the marker track are shown.
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Figure 4.2: TGFa expression in LMPI transgenic and
control carcinoma derived cell lines.

Protein was extracted from 5 day old pup epidermis (epi.)
and from cell pellets using ripa buffer. 100llg of protein
extract/track was separated by 15% SDS-P AGE and the
gel was blotted. The blot was probed with a rabbit anti-
mouse TGFa primary antibody (1: 1000) and a goat anti-
rabbit IgG-HRP secondary antibody (1 :4000) and
visualised with ECL+. The lOkDa band corresponding to
TGFa is indicated. Molecular weights according to the
marker track are shown.
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Figure 4.3: EGFR expression in the ears of line 117 (L2LMPlcA<»
mice.

Protein extracts were prepared from ear samples of increasing
phenotypic stage, stage 1(st1), stage 2(s12), stage 3(s13) along with a
stage 1 aged matched control (cl).
100~g of protein extract/track was separated by 7.5% SDS-PAGE and
the gel was blotted. The blot was probed with a rabbit anti-mouse total
EGFR primary antibody (1:1000) and a goat anti-rabbit IgG-HRP
secondary antibody (1:4000) and visualised with ECL+. The 170kDa
band corresponding to total EGFR is indicated. Molecular weights
according to the marker track are shown.
The blot was stripped and re-probed with f3 tubulin as a loading control
(shown below).
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Figure 4.4: Total EGFR and phospho-EGFR (TyrS45)
expression in the epidermis of 5 day old pups of line 53
(PyLMPI B95-,,).

Protein extracts were prepared from epidermis samples of 5 day
old pups both transgenic (+) and wild type siblings (C).
100J,lgof protein extract/track was separated by 7.5% SDS-
PAGE and the gel was blotted. The blot was probed with a
rabbit anti-mouse total EGFR primary antibody (1:1000) or
after stripping with a rabbit anti-mouse phospho-EGFR (Tyr
845) antibody (1: 1000) as indicated and a goat anti-rabbit IgG-
HRP secondary antibody (1:4000) and visualised with ECL+.
The 170kDa band corresponding to total EGFR is indicated.
Molecular weights according to the marker track are shown.



decrease in transgenic samples, instead levels of total EGFR were shown to be equivalent or

higher in cell pellets derived from transgenic animals. The smaller products of EGFR are

prominent in the cell pellets obtained from transgenic positive carcinomas (fig.4.5a) and when

an antibody against the phosphorylated EGFR was used, it was shown that some of the smaller

products are phosphorylated forms ofEGFR (fig.4.5.b).

If the breakdown products observed reflect faster turnover of activated EGFR in the transgenic

tissues, then this would suggest that this is due to an increase in EGFR activation and hence

activation of downstream pathways. The first of the EGFR pathways that was investigated

was the Ras/MAPK pathway (fig.4.6). Levels of total and phosphorylated c-Raf-I were

examined using antibodies against the total or phosphorylated form of the protein. However,

the specific 74kDa band corresponding to c-Raf-I was not detected on the blot (data not

shown). Use of a positive control for c-Raf-I would have clarified this.

The next target examined in the pathway was MEK1I2. Levels of total MEK1I2 and

phosphorylated MEKI/2 were examined in line 117 tissues (fig.4.7). In order to quantify the

difference in the levels of MEKI/2 and phosphorylated MEKI/2 expression in ear samples,

the respective autorads were scanned and using the Kodak ID 3.5.2 program, the bands of

interest were manually selected and analysed. The background sum intensity value was

subtracted from the total sum intensity value of each of the bands to give the net sum intensity.

The ratio of phosphorylated MEKI/2 band net intensity over total MEKI/2 band net intensity

was calculated for each of the samples. For example the phosphorylated MEK1/2 net intensity

of control lover the total MEK1I2 net intensity of control I gave a value of 0.173. For each

of the transgenic phenotypic stages, this value was compared to the value of the corresponding

control. For example transgenic stage 1 to control 1 ratio is 4.40 (0.762/0.173) (Table 4.1). In

this way the levels of phosphorylated MEK1I2 to total MEK1I2 were calculated.

Sample Ratio Phospho-MEKl/2: total Stage x: control
MEK1/2 x

Cl 0.173
C2 0.264
C3 0.226
Stl 0.762 4.40
St2 0.789 3.00
St3 0.167 0.74
Table 4.1: Densitometric analysis of phospho-MEK1I2 to total MEK1I2.
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Figure 4.5: EGFR and pbospbo-EGFR expression in cell
pellets derived from line 53, lt7 and 100B carcinomas.

Protein was extracted from cell pellets and lOOJlg of protein
extract/track was separated by 10010 SOS-PAGE and the gel
blotted. The blot was probed with a rabbit anti-mouse total
EGFR primary antibody (1: 1000) stripped and reprobed with a
rabbit anti-mouse phospho-EGFR (Tyr 845) primary antibody
(1:1000) and a goat anti-rabbit IgG-HRP secondary antibody
(1:4000) and visualised with ECL+. The 170kDa band
corresponding to total EGFR is indicated. Molecular weights
according to the marker track are shown. The blot was tripped
and reprobed with IJ tubulin to indicate loading levels (shown
below).
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Figure 4.6: EGFR activates the RaslMAPK cascade

A simplified pathway diagram indicates TGFa binding to EGFR
causing the receptor to homolheterodimerise. This leads to its
autophosphorylation and activation. The activated receptor can
recruit GRB and SOS that allow exchange of GDP for GTP thus
activating Ras. Activated Ras leads to Raf activation by
phosphorylation (indicated by a red star). Activated Raf can lead to
phosphorylation and activation of MEK1I2 which in tum leads to
phosphorylation and activation of ERKI12. Downstream targets of
ERKI12 include transcriptional factors Elk-I, C-Myc, C-Jun, C-Fos
and Sap-I.



Figure 4.7: Total MEKll2 and phospho-MEKll2 of
ean of line lt7 mice (L2LMPlcA~

Protein extracts were produced from ear samples of
increasing phenotypic stage, stage I(stl), stage 2(st2),
stage 3(stJ) and stage 1-3 age matched controls (cl-J).
lOOJ.lgof protein extract/track was separated by 10010SDS-
PAGE and the gel blotted. The blot was probed with a
rabbit anti-mouse phosphorylated MEK 1/2 primary
antibody (1:1000) (A) and a goat anti-rabbit IgG-HRP
secondary antibody (1:4000) and visualised with ECL+.
The blot was stripped and reprobed with a rabbit anti-
mouse total MEKII2 (1:1000), followed by a goat anti-
rabbit IgG-HRP secondary antibody (l:4000). The 45kDa
doublet corresponding to MEl< 112 is indicated. Molecular
weights as per marker track are shown. The blot was
stained with Ponceau's stain to indicate loading levels (C).
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It was found that the levels of phosphorylated MEK1I2 were higher in stages 1 and 2 of

phenotypic ears (stage 1: 4.4 fold, stage 2: 3 fold, compared to controls normalised against

total MEK 112) but stage 3 phenotypic ears showed a decrease in levels of phosphorylated

MEK1I2 down to control levels (stage 3: 0.74 fold). Levels of total MEKI/2 were relatively

equal in all samples (fig.4.7). This suggests that MEK1/2 is activated in the phenotypic tissue

to a greater extent than controls but that this activation is "turned off' as the phenotype

progresses over time, perhaps by a negative feedback loop.

In cell pellets once again, using total MEK showed no difference among transgenic and wild

type samples (fig.4.8).

Levels of total and phosphorylated ERK1I2 (the downstream target of MEK1I2) were

examined by using an antibody against anti-phospho-ERK1I2, stripping and reprobing the blot

with an antibody against total ERK1I2. Densitometric analysis of these data was performed as

described earlier. Whereas total ERKI/2 levels are relatively constant across the control and

transgenic samples (fig.4.9b), the levels of activated ERK1I2 increase from stages 1 to 3 of the

transgenic ears (fig.4.9a). Lanes corresponding to cl and c2 which are the age matched wild

type controls of transgenic stages 1 and 2 are clearly relatively underloaded as seen from the

Ponceau stain (fig.4.9c). The ratio of phosphorylated to total ERK2 for stage 1-3 ears was

1.49, 1.80 and 1.30 fold respectively when compared to controls normalised against total
ERK1I2 (table 4.2).

Sample Phospho-ERK1I2: total ERK1I2 Stage x: control x Phospho-ERK1I2
(stage x):
phospho ERK1I2
(control x)

Cl ERK2 0.296
C2 ERK2 0.344
C3 ERK2 0.465
Stl ERK2 0.440 1.49 0.94
St2 ERK2 0.621 1.80 1.46
St3 ERK2 0.605 1.30 1.57
CIERKI 0.666
C2 ERKI 0.475
C3 ERK.l 0.600
Stl ERKI 0.626 0.94 1.10
St2 ERKI 1.160 2.44 2.02
St3 ERKI 0.500 0.83 2.17. .Table 4.2: Densitometric analysis ofphospho-ERK1I2 to total ERK1I2 •
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Figure 4.8: Total MEKI/2 expression in LMPI and
control carcinoma derived cell lines.

Protein extracts were produced from cell pellets. LMP 1
status is indicated by wt =wild type; tg= transgenic.
100llg of protein extract/track was separated by 10% SDS-
PAGE and the gel was blotted. The blot was probed with a
rabbit anti-mouse total MEK1I2 primary antibody (1: 1000)
and a goat anti-rabbit secondary antibody (1:4000) and
visualised with EeL+. The 45kDa doublet corresponding
to MEKI12 is indicated. Molecular weights according to the
marker track are shown.



Figure 4.9: Total aDd pbospho-ERKlIl expressioD ia the
un ofIDe tt7 (L2LMPtCA~mice.

Protein extracts were prepared from ears of increasing phenotype
stages 1-3 and age matched controls cl-3. lOOpg of protein
extract/track was separated by lOOAlSDS-PAGE and the gel was
blotted. The blot was probed with a rabbit anti-moose phospho-
ERKII2 (A) primary antibody (1:1000) and a goat anti-rabbit
IgG-HRP secondary antibody (1:4000) and visualised with
ECL+. Subsequently, the blot was stripped and reprobed with a
rabbit anti-mouse total ERKII2 (8) primal)' antibody (1:1000).
The 44 and 42kDa bands correspooding to ERK1I2 are shown.
Molecular weights according to the marker track are indicated.
The lower panel (C) is a Ponceau staining of part of the blot to
indicate loading levels. Note that eland c2 are underloaded but
c3 and stl-3 are equally loaded.
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The ratio of phosphorylated to total ERKI for stage 1-3 ears was 0.94, 2.44 and 0.83 fold

respectively. This suggests that ERK1I2 is activated in the transgenic tissues compared to

controls. For both ERKI and ERK2 the activation is higher at stage 2 than at stage 1. From

these data it is not clear if this activation is reduced again in real terms at stage 3, since

(compared to the Ponceau stain) there may be more total ERK1/2 at stage 3. Comparing the

levels of phospho-ERKI and 2 at stage 3 to stage 2, suggests that ERK remains active in the

transgenic samples compared to controls. It is possible that MEKl/2 is activating ERKI

directly since they are both activated in the transgenic samples but ERK2 must be activated by

another kinase independent ofMEK1I2 at later stages when MEK1I2 is no longer activated.

ERK1I2 can activate several downstream transcription factors including Elk-l , c-Myc, c-Jun,

c-Fos and CIEBP beta. In order to investigate whether activated ERK1I2 could activate

downstream transcription factors, the levels of Elk-l protein in control and transgenic ear

samples, were examined using an antibody against Elk-I. This failed to reveal any bands that

correspond to correct Elk-I size (data not shown). Elk-l is a transcription factor that can bind

the sequences of the serum response element (SRE) and activate transcription of linked genes.

SRE is an AIT rich DNA sequence found upstream of many genes including genes of the los
family. Serum response factor (SRF) is one of the factors that bind to the SRE along with

other transcription factors such as Elk-l to form the ternary complex factor (TCF). SRF binds

and activates transcription by binding to SRE sequences in a TCF dependent and TeF

independent way. Activation of TCF can be achieved through the RasIMAPK, p38 MAPK

and the JNK pathways.

In order to examine the transgenic and control extracts for the presence of activated factors

which can bind to specific DNA elements, an EMSA using an oligo containing the SRE site

was performed.

Whole protein extracts from transgenic ears and age matched sibling controls, were incubated

with a labelled SRE oligo. Specific binding was competed out using an excess (SOx) of

unlabelled oligo. A positive control extract from NIH3T3 cells, known to show SRE binding

activity was used. A band (A) representing specific binding was detected in transgenic

extracts (fig.4.IO). This band was barely visible or not apparent in control samples.
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Animal ID 347 349 351 353

Figure 4.10: An EMSA showing specific binding of ear extracts
of line 117 (L2LMP1 CAO) to SRE binding oligo.

Protein was extracted from transgenic (+) and wild type ears (-)
(Iuug/track) incubated with labelled SRE oligo and then separated
by 6% PAGE. IOug ofNIH3T3 cell extracts were used as positive
control (c). No extract is indicated by (0). 50x competitor
(unlabelled oligo) was added to the samples indicated (+). The
transgenic samples (mouse numbers: 347 and 349) show specific
binding to the SRE sequence while the wild type samples (mouse
numbers: 351 and 353) show comparatively little binding activity.
The specific SRE binding band is indicated (A).



In order to ascertain if these extracts were of equal quality and quantity, binding to the

recognition sequence for Sp1, a ubiquitous transcription factor, was conducted in parallel

(fig.4.II). From this it can be seen that control extract 353 may be of lower quality and/or

quantity than the transgenic extracts. However, control extracts 351, 375 and 362 (used in

subsequent assays) show equal if not stronger Sp1 oligo binding activity compared to the

transgenic samples. Therefore, the transgenic positive extracts shown in figure 4.10, show a

greater SRE binding activity than controls.

Binding levels of protein extracts of control and transgenic ears to an oligo containing the

ETSI binding site were also investigated. Some of the ETS family members such as Elk-I and

SAP-I are activated by ERK1I2. From the EMSA results, there seems to be no significant

differences between transgenic and wild type samples (fig. 4.12). These results are not

entirely clear as in the wild type samples the ETS1 specific band and other non specific bands

are not clearly observed, so ETSI remains a possible ERKI/2 target in this system.

In conclusion, LMPI CAO can upregulate TGFa. expression in these tissues, possibly leading to

faster EGFR turnover and MEK1I2 activation. MEK1I2 activation may be countered by a

negative feedback loop that prevents the increased activation as the phenotype worsens.

LMPlcAO can lead to activation ofERK1I2 and in the advancing stages of the phenotype this

activation is independent of MEKl/2 activation. Downstream targets of activated ERK1I2

such as transcriptional factor Elk-I may then be activated leading to increased binding to SRE.

As seen from these results, LMPlcAO can activate the Ras/MAPK pathway in the epithelium

in vivo, possibly via TGFa. upregulation and EGFR activation.
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Figure 4.11: An EMSA showing specifIC binding of ear
extracts ofline 117 (L2LMPlcA<» to Spt binding oligo.

Protein was extracted from transgenic (+) and wild type ears (-)
and 5J1WU"ackwere separated by 6% PAGE. 5J1g of A431 cell
extracts were used as positive control (c). Labelled oligo
without extract (0) was also added as an extra control. lOOx
competitor (unlabelled oligo) was added to the samples
indicated (+). The transgenic samples (mouse numbers:
347,349,359) show specific binding to Spl sequence as
indicated by the specific bands A and B and these are competed
out upon addition of the competitor. The same is true for wild
type samples (moose numbers: 367,375,351, 353,362. Sample
numbers 367 and 353 show weaker specific binding and this
may reflect lower quality or quantity of these two samples. The
non specific band C, is seen in all the samples.
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Figure 4.12: An EMSA showing specific binding of ear extracts of line
117 (L2LMPlcA<» to ETSI binding oligo.

Protein was extracted from transgenic ears (+) and wild type ears (-) and
5Jlg/track were separated by 6% PAGE. 5Jlg ofNIH3T3 cell extracts were
used as positive control (c). Labelled oligo without extract (0) was also
added as an extra control. lOOx competitor (unlabelled oligo) was added to
the samples indicated (+). The ETSl specific band A that is partially
competed out upon addition of the competitor is seen in sample numbers 347,
349 and 359. Band A is not seen in samples 367 and 375 but these samples
also show weaker bands Band C. The non specific bands Band Care
indicated.



4.3 LMP1cAO and P13K1Aktpathway

Another target ofEGFR signalling that plays a role in oncogenesis is the PI3K1Akt pathway.

Ligand binding to EGFR, can activate PI3K by phosphorylation. Active PI3K can generate

PIP3s that go on to activate PDKI, by phosphorylation. Active PDKI and PIP3s together

activate Akt by binding to its plekstrin homology domain and phosphorylating it at Thr308.

Phosphorylation at Ser473 is also needed but it is still unclear whether PDKI can

phosphorylate Ser473 or whether another protein kinase specifically phosphorylates Ser473

(Hill et aI., 2002). A negative regulator of PI3K and PDKI is protein phosphatase and tensin

homologue deleted on chromosome 10 (PTEN) that catalyses the dephosphorylation of PIP3s.

Activated Akt, translocates to the cytosol where it is dephosphorylated and inactivated by

PP2A. Activation of Akt affects several pathways. Active Akt inactivates Caspase-9 and Bad

thus inhibiting apoptosis, it can activate NF-KB and destabilise p53. It can also inhibit

p211cipllwafl and p27/kipl from inducing cell cycle arrest by directly phosphorylating them

thus leading to the release of cyclins. It also phosphorylates and inactivates glycogen synthase

kinase 3 ~ (GSK3~) thus inhibiting CyclinDI degradation. Akt can also activate endothelial

nitric oxide synthase (eNOS) that increases blood supply to tumour cells and increases

metalloprotease production.

In order to investigate the activation status of this pathway in LMP 1CAO tissues, antibodies

against activated Akt (Ser473 and Thr308), total Akt, PTEN and phosphorylated GSK3~ were

used with both tissue and cell pellet extracts. Protein extracts from transgenic ears of

increasing phenotype stages (stl-3) of line 117 and transgenic pup epidermis of line 53

alongside age matched sibling controls (c1-3) were separated by SDS-PAGE and the gels were

blotted and incubated with the appropriate antibodies. Levels of phosphorylated Akt (Ser

473) in line 117 ear protein extracts, possibly show a slight decrease in stages 2 and 3

(fig4.13). Levels of phosphorylated Akt (thr) also show a decrease in transgenic ears from

stages 1-3 (fig.4.I4). Levels of total Akt (fig.4.14) may be slightly reduced in stages 1-3, as

the Ponceau staining of the blot suggests that each track is equally loaded, however, this is not

unequivocal. Levels of total Akt show no difference among wild type and transgenic samples

when further samples were analysed (fig.4.15).
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Figure 4.13: Phospho-Akt (ser) expression in the ears of Hne1l7
(L2LMPI CA<» mice.

Protein extracts were prepared from ears of line 117 of increasing
phenotypic stages 1-3 (stI-3) alongside age matched controls (cI-3).
IOOJlg of protein extract/track was separated by 10% SDS-PAGE and
the gel was blotted. The blot (A) was probed with a rabbit anti-mouse
phospho-Akt (ser) primary antibody (1:1000) and a goat anti-rabbit
IgG-HRP secondary antibody (1 :4000) and visualised with ECL+. The
60kDa band corresponding to phospho-Akt is indicated. Molecular
weights according to the the marker track are shown. A Ponceau's
staining of the blot to indicate loading levels is shown (B).



Figure 4.14: Phospbo-Ald (dlr) od total Akt expression in
ean of line 117 (LlLMPlcA,,) mice.

Protein extracts were prepared from ears of line 117 of
increasing phenotypic stages 1-3 (stl-3) alongside age matched
controls (cl-3). l00~g of protein extract/track was separated by
loolo SDS-PAGE and the gel was blotted. The blot (A) was
probed with a rabbit anti-mouse phospho-Ala (tbr) primary
antibody (1:1000) and a goat anti-rabbit IgG-HRP secondary
antibody (1:4000) and visualised with ECL+. The blot was
stripped and reprobed with rabbit anti-mousetotal Akt (1:1000)
primal)' antibody (B) and secondary antibody as before. The
60kDa band corresponding to Akt is indicated. Molecular
weights according to the marker track are shown. A Ponceau's
staining of the blot (C) used as a loading control is shown.
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Figure 4.15: Total Akt expression in the skin or ears of
lines 53, 105A, 105B, 104, 106 and 117 mice.

Protein extracts were prepared from epidermis (epi.) and/or
ears oflines 53, 105A, 105B, 104, 106 and 117 mice. 100Jig
of protein extract/track was separated by 10% SDS-PAGE
and the gel was blotted. The blot was probed with a rabbit
anti-mouse total Akt primary antibody (1:1000) and a goat
anti-rabbit IgG-HRP secondary antibody (1:4000) and
visualised with EeL +. The 60kDa band corresponding to
total Akt is indicated. Note that samples 104 and 106, have
been shown from previous experiments to be degraded.
Molecular weights according to the marker track are shown.



Densitometric analysis on the two blots shown in fig.4.14, showed that when the ratio of

phosphoAkt (thr) to total Akt from stage 1 was compared to the corresponding ratio for

control 1 there was a slight decrease as this comparison gave a value of 0.82 fold. Similarly,

stage 2 and stage 3 ears when compared to their corresponding controls showed a reduced Akt

(thr) activation (0.68 and 0.85 fold respectively)(Table 4.3).

Sample Ratio Phospho-Akt (thr) : total Akt Sta2e x: control x
Cl 0.097
C2 0.096
C3 0.096
Stl 0.079 0.82
St2 0.065 0.68
St3 0.081 0.85
Table 4.3: Densitometric analysis of phospho-Akt to total Akt.

In support of this result, analysis of further samples from phenotypic transgenic ears of lines

105B and 117, show a decrease in the levels of phosphorylated Akt both at serine and

threonine residues (fig.4.16). As a control, transgenic ears of line 105A that are not

phenotypic and do not express LMPI CAO, show no difference when compared to non

transgenic sibling ears of line 105A. This indicates that the change in activation of Akt is due

to the expression of LMP I and phenotypic consequences. Levels of total Akt were

investigated in cell pellets and were found to be comparable between transgenic positive and

transgenic negative cell lines (data not shown). One of the effects activated Akt has is to

induce an anti-apoptotic effect. The above results suggest that in transgenic tissues, apoptosis

in not inhibited through the Akt pathway.

An inhibitor of Akt activation is PTEN. In order to investigate PTEN status in these tissues, a

panel of tissue extracts from several LMPI transgenic mouse lines generated in the laboratory

was examined. Levels of PTEN appear to be equivalent in the control and the transgenic

tissues examined (fig4.17a).

One of the downstream targets of Akt is GSK3~. In order to investigate the status of

phosphorylated GSK3~, the same panel of tissue extracts from the LMPI lines were

examined. In the epidermis, both wild type and transgenic, phosphorylated GSK3~ is absent

or below detection. In the ears examined, there is no difference in the levels of

phosphorylated GSK3~ between wild type and transgenic samples (fig4.17b). Levels of

phosphorylated GSK3~ in cell pellet extracts showed no difference (fig.4.l8).
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In conclusion, it seems that LMPI leads to a reduction in the activation status of Akt in

transgenic phenotypic tissues. This appears to be independent of the upstream inhibitor of

Akt, PTEN and does not show any measured effect on the downstream factor GSK3~.
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Figure 4.16: Phospho-Akt (ser) and (thr) expression in
the ears of lines 105A, 105Band 117mice.

Protein was extracted from ears of both wild type and
transgenic mice. 100llg of protein extract/track was separated
by 10% SDS-PAGE and the gel was blotted. The blot was
probed with a rabbit anti-mouse phospho-Akt (ser for A and
thr for B) primary antibody (1:1000) and a goat anti-rabbit
secondary antibody (1:4000) and visualised with ECL+. The
60kDa band corresponding to phospho-Akt is indicated.
Molecular weights as per marker track are shown.



Figure 4.17: PTEN and pliospho-GSK3fS expression in skiD
aDd earsofliaa 53, l05A, 105B, 113 aDd 117 Blice.

Protein was extracted from 5 day old pup epidermis (line 53) and
ears both wild type and transgenic (lines 105A, 105B, 113 and
117). l00",g of protein extractJtrack was separated by 10010
SDS-PAGE and the gel was blotted. The blot was probed
initially with a rabbit anti-mouse pbospbo-PTEN primary
antibody (l:1000) and a goat anti-rabbit secondary antibody
(1:4000) and visualised with ECL+ (A). The blot was stripped
and reprobed with a rabbit anti-mouse pbospbo-GSlOJ\ primary
antibody (1:1000) and a goat anti-rabbit secondary antibody
(1:4000) and visualised with ECL+ (B). The 54kDa PTEN and
46kDa band corresponding to GSlOp are indicated. Molecular
weights according to the marker track are shown. The bid was
stripped and reprobed with a goat anti-mouse actin primary
antibody (l:1000) and a donkey anti-goat secondary antibody
(1:4000) and visualised with ECL + in order to determine loading
levels (C).
Note that the wild type line 53 ear track and the transgenic line
53 epidemnis samples are underloaded as seen by the actin blot.
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Figure 4.18: Pbospbo-GSK3Jl expression in LMPI and
control carcinoma derived cell lines.

Protein was extracted from cell pellets derived from
carcinomas of both wild type (wt) and transgenic (tg) mice
of lines 53, 105B, 113 and 117. 100J,lg of protein
extract/track was separated by 10% SDS-PAGE and the
gel was blotted. The blot was probed with a rabbit anti-
mouse phospho-GSK3f3primary antibody (1:1000) and a
goat anti-rabbit secondary antibody (1:4000) and
visualised with ECL+. The 46kDa band corresponding to
GSK3f3is indicated. Molecular weights according to the
marker track are shown.



4.4 LMP1 CAO and the p38 MAPK pathway

Several other pathways apart from MAPK and PI3KJ Akt have been shown to be activated by

LMPI in epithelial cells, B cells and rat fibroblasts in culture. These include the p38MAPK

pathway, the JNKJAPI, the NF-KB pathway and the JAKISTAT pathway. In order to

investigate whether LMPI CAO could activate these other pathways in the epithelium in vivo,

control and transgenic ear extracts from line 117 were examined by Western blotting.

The first of these pathways to be investigated was p38MAPK. An antibody specifically

directed against activated p38 was used. Levels of activated p38MAPK are increased in

transgenic samples (fig.4.19). This is evident from stage 1 but the difference becomes more

intense in stages 2 and 3. This pathway was not investigated any further as the main focus of

the thesis was the MEKIERK pathway.
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Figure 4.19: p38 activation in ears of line 117 (L2LMPlcA~
mice.

Protein extracts were produced from ears of line 117 mice of
increasing phenotypic stage, stages 1-3 (stl-3) alongside age
matched stage 1-3 controls (cl-3). 100J-lg of protein
extract/track was analysed on a 10% SDS-PAGE and the gel
blotted. The blot was probed with a rabbit anti-mouse phospho
p38 primary antibody (1:1000) and a goat anti-rabbit IgG-HRP
secondary antibody (1:4000) and visualised with ECL+. The
38kDa band corresponding to phospho-p38 is indicated.
Molecular weights according to the marker track are shown.



4.5 LMP1cAO and the AP1 family

API is a transcription factor complex, composed of Jun family homodimers or heterodimers

between Jun and Fos family proteins or heterodimers between Fos or Jun and ATF/CREB

proteins. The Jun family consists of c-Jun, JunB and JunD. The Fos family consists of c-Fos,

FosB, Fra-I and Fra-2. API can become activated by phosphorylation of these components.

AP 1 regulates the expression of genes involved in proliferation, differentiation, apoptosis,

immunity and inflammation and regulates genes such as the tumour suppressors p16, P19, p53,

p2I and cell cycle protein Cyclin D1. Activation of AP1 leads to its binding at TPA response

element (TRE) sites and transcriptional activation or sometimes repression of its target genes.

Growth factors, TPA and oncogenes are among some of the factors that can activate AP1.

Several pathways have been involved in API activation including Ras/MAPK, JNK and

p38MAPK.

Using a pan-fos antibody that recognises all four members of the Fos family, it was possible to

detect upregulation of FosB and Fra-I and/or-2 in the transgenic tissues of line 117 when

compared to their wild type sibling controls in contrast to c-fos with equivalent expression

levels across the samples (figA.20a). Line 53 epidermal tissues do not show any difference in

the low level of the Fos family proteins between control and transgenic samples. When levels

of Fra-I and Fra-2 were specifically examined, it was found that Fra-l is upregulated in line

117 transgenic tissues whereas Fra-2levels are unchanged (fig.4.21.a, b). Examining levels of

c-Jun, it was found that there is no apparent difference between transgenic and wild type

samples of lines 53 and 117 (figA.20b). On the other hand, JunB is strongly upregulated in

transgenic samples from line 117 at all three stages examined (fig.4.22) (stage 1: 1.98 fold,

stage 2: 2.44 fold, stage 3: 1.43 fold compared to controls).
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Figure 4.20: Pan Fos and c-Jun expression in the skin and
ean of lines 53 (PyLMPl~ and 117(L2LMPlcAO) mice.

Protein extracts were produced from epidermis of 5 day old
pups of line 53 both transgenic (+) and wild type siblings (-)
and ears of mice of line 117. The protein extracts from ears
were produced from increasing phenotypic ears of stages 1-3
(stl-3) and age matched sibling controls (cl-3). Extracts from
NlH3T3 and A431 cell pellets were used as positive controls
for fos family members and c-Jun. lOOJ1g of protein
extract/track was separated by 100/0SDS-PAGE and the gel was
blotted. The blot (A) was probed initially with a rabbit anti-
mouse pan fos primary antibody (1:1000) and a goat anti-rabbit
IgG-HRP secondary antibody (1:4000) and visualised with
ECL+. The blot was then stripped and reprobed with a rabbit
anti-mouse c-Jun primary antibody (1:1000) and a goat anti-
rabbit IgG-HRP secondary antibody (1:4000) and visualised
with ECL+ (B). Molecular weights according to the marker
track are shown. The 62kDa band corresponding to c-fos, the
42kDa and 43kDa bands corresponding to fra-I and -2 and the
36kDa band corresponding to fos B are indicated in A. The
39kDa band corresponding to c-Jun is indicated in B. The
bottom picture ( C ) is a Ponceau' s staining that was used to
show loading.
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Figure 4.21: Fra-l and -2 expression in ears of line 117
(L2LMPlcA<» miee.

Protein was extracted from ears of increasing phenotypic stages;
stagesl-3 (stl-3) alongside age matched controls (cl-3). lOOJlg
of protein extract/track was separated through a 10010SDS-
PAGE and the gel was blotted. The blot (A) was probed with a
rabbit anti-mouse Fra-l primary antibody (1:1000) and a goat
anti-rabbit IgG-HRP secondary antibody (1:4000) and
visualised with ECL+. B was probed with a rabbit anti-mouse
Fra-2 primary antibody (1:1000) and a goat anti-rabbit IgG-
HRP secondary antibody (1:4000) and visualised with ECL+.
The bands corresponding to Fra-l (43kDa) or Fra-2 (42kDa) are
indicated. Molecular weights according to the marker track are
shown.
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Figure 4.22: JunB expression in ears of line 117
(L2LMPI CA~ mice.

Protein was extracted from ears of increasing phenotypic
stage (stl-3) and their aged matched sibling controls (cl-3).
100J-lgof protein extract/track was separated through a 10%
SDS-P AGE and the gel was blotted. The blot is a reprobe
of the Fra-2 probed blot shown in fig.4.21. In this case it has
been stripped and reprobed with goat anti-mouse JunB
primary antibody (LlOOO) and a donkey anti-goat
secondary antibody (1 :4000) and visualised with ECL+. The
doublet (45kDa) corresponding to JunB is indicated.
Molecular weights according to marker track are shown.



In order to assess the DNA binding activity of API factor in line 117 ear tissues an EMSA was

performed using the oligo containing the TRE binding site (figA.23). The control A43I cell

extract showed a specific band A that was competed with excess (200x) unlabelled oligo.

Transgenic samples 347, 349 and 359 showed enhanced specific binding compared to wild

type tissues 367 and 375 that show little or no binding. When an Spl EMSA was performed

on these samples to check for sample quality and quantity (figA.ll) it was shown that sample

367 may be of poorer quality. However, sample 375 is of equal if not better quality and

quantity than the transgenic samples. Given this, it is concluded that there is enhanced API

activity in transgenic samples as compared to control samples. Several trials using specific

antibodies to Fos and Jun family members to supershift the API specific band in order to

determine which components of each family make up the API factor have failed.
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347 349 359 367 375
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Figure 4.23: An EMSA showing specific binding of ear extracts of line
117 (L2LMPl CAO) to TRE binding oligo.

Protein was extracted from transgenic (+) and wild type ears (-) and
5Jlg/track were separated by 5% PAGE. Sug of A431 cell extracts were
used as positive control (c). Labelled oligo without extract (0) was added
as an extra control. 200x competitor (unlabelled oligo) was added to the
samples indicated (+). The transgenic samples (mouse numbers: 347, 349
and 359) show specific binding to the TRE sequence while the wild type
samples (mouse numbers: 367 and 375) show comparatively little binding
activity (see band A). The specific TRE binding band is indicated with an
arrow (A) and non specific indicated by B. Spl binding by these extracts
was shown in fig.4.11. Sample 367 showed weak binding while sample
375 showed as strong binding as 359, which was stronger than 347 and
349.



4.6 LMP1 CAO and NF-KB

The final pathway that was investigated, in this study was the NF-KBpathway. Levels ofNF-

KBwere initially investigated using Western blotting and antibodies against p50 or p65; two

of the components of NF-KB. However, no specific bands corresponding to either of these

components could be clearly identified. The DNA binding activity of NF-KB in transgenic

and control samples was assayed by an EMSA using an oligo containing the NF-KB binding

site. NIH3T3 control extracts show two specific bands A and B which are competed away

using excess of unlabelled oligo (figA.24) while band C is non specific. Transgenic samples

also show specific bands A and B. In order to determine which components of the NF-KB

family are involved in complex formation, a supershift analysis was performed (figA.25).

Upon addition of antibody specific to the p50 component of the NF-KB complex, a band

migrating more slowly is readily detected in NIH3T3 controls and possibly in the transgenic

sample (mouse number 347). Upon addition of the antibody specific to p65, a band even more

slowly migrating is readily detected in both NIH3T3 controls and the transgenic sample,

concominant with a reduction in the intensity of band A. This demonstrates that the NF-KB

complex activated in transgenic samples contain p65 and may also contain p50. Further

components have not been assayed.

The above studies show that LMPI CAO can activate at least p38MAPK and NF-KB in the

epithelium in vivo. It probably can activate the JNK pathway but this has not been specifically

shown in these sets of experiments although members of the API family are upregulated and

AP 1 is activated.
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NIIBT3 347 349 359 367 362
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transgene
competitor
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Figure 4.24: An EMSA showing specific binding of ear extracts of
line 117 (L2LMPlcA<» to NF-ICB binding oligo.

Protein was extracted from transgenic (+) and wild type ears (-) and
IOug/track were separated on a 6% PAGE. l Oug ofNllI3T3 cell
extracts were used as positive control (c). 50x competitor (unlabelled
oligo) was added to the samples indicated (+). The control cells and
transgenic samples (mouse numbers:347, 349, 359) show specific
binding to NF-KB sequence while the wild type samples (mouse
numbers: 367, 362) show no binding activity (bands A and B). Non
specific band C is seen in all samples.
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Figure 4.25: An EMSA showing supershifting in ear extracts of line 117
(L2LMPlcA<» to NF-lCB binding oligo.

Protein was extracted from transgenic (+) and wild type ears (-) and Iuug/track
were separated on a 6% PAGE. l Oug of NIH3T3 cell extracts were used as
positive control (c). 50x competitor (unlabelled oligo) was added to the samples
indicated (+). The control and transgenic sample (mouse number:347) show
specific binding to NF-KB sequence while the wild type sample (mouse number:
375) shows no binding activity (bands A and B). Non specific band C is seen
in all samples. Upon addition of 0.6 ug of p50 antibody, a slower migrating
band (d) appears in the control and transgenic sample. Upon addition ofO.6llg
of p65 antibody an even slower migrating band (e) appears in the control and
transgenic sample. There is no evidence of bands d and e in the wild type
sample.



4.7 Conclusion and Discussion (summary in table 4.4)

The phenotypic similarity between LMPlcAO and TGFa transgenic mice prompted an

investigation of the levels of TGFa in the affected tissues of LMPlcAO mice. Indeed as

shown, TGFa levels are upregulated in affected tissues. This upregulation in TGFa

expression appears to be a direct effect ofLMPl as it is observed early in the phenotype and is

consistent at all stages and in line 53 expression was limited to phenotypic epidermis.

EGFR is activated as a response to its ligand upregulation. Initially levels of total full length

EGFR are increased in comparison to the wild type control but the levels decrease as the

phenotype progresses. This is consistent with what has been previously observed in

TGFa transgenic animals that showed decreased levels of total EGFR (Shibata et al., 1997).

This reflects the tight homeostatic control at work in the skin and as a response to increased

ligand binding, the tissue is recycling the receptor and downregulating its expression. This is

partially in agreement with previous studies that have shown upregulation of EGFR (in C33A

cells) as a response to LMP1 expression (Miller et al., 1998a; Miller et al., 1997). NPC tissue

also shows upregulation in the expression of EGFR (Zheng et al., 1994a). The difference that

is observed with these studies is that as the phenotype worsens levels of full length EGFR

decrease. This is possibly due to the loss of homeostatic controls or negative feedback loops

that exist in a preneoplastic tissue, upon carcinogenic progression. In agreement with these

studies, cells obtained from carcinomas that developed on LMPI transgenic mice, were shown

to have equal if not higher EGFR expression to transgenic negative cell lines.

Levels of phosphorylated smaller EGFR products increase as the phenotype worsens,

suggesting that EGFR is activated and recycled. It is possible that these smaller products

represent EGFR that has translocated to the nucleus. In a recent study using breast cancer

cells, it was shown that the intracellular part of ErbB4 - a member of the EGFR family -

could get cleaved and translocate to the nucleus where it controlled activation of its

transcriptional target STAT5 (Williams et al., 2004). It is not yet known if EGFR can go

through a similar procedure.

Two of the downstream pathways that can be activated by EGFR are the Ras/MAPK cascade

and PI3K1Aktpathway. Previous reports have shown that LMPI in rodent fibroblasts leads to

ERKI/2 activation. In our system, there is initial activation of MEKl/2 which decreases as

the phenotype worsens, while there is constant activation of ERK2 in transgenic positive

samples. There may be a negative feedback loop in place, downregulating aberrant MEKI/2
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activation, with an as yet unidentified kinase activating ERK2 in a MEKl/2 independent

fashion. Direction of activated MEKI to the suprabasal layers of transgenic mice led to

increased proliferation and disruption of proper terminal differentiation leading to a

hyperplastic epidermal phenotype along with skin inflammation and spontaneous papilloma

formation on older animals (Hobbs et al., 2004). This phenotype greatly resembles what has

been seen in the LMPI CAO mice consistent with the finding that MEKI is active in the

transgenic LMP1CAD system.

It is interesting that no activation of c-Raf was observed in these tissues when MEKl/2

activation was observed. It could be that other homologs of c-Raf are activated in this system,

for example BRaf or Araf. When a variant of E6 of the human papilloma virus (HPV) was

studied, it was shown that it preferentially led to BRaf activation (Chakrabarti et al., 2004). It

could be that this is true in the LMPICAD system and this needs further investigation.

Akt is deactivated as a consequence ofLMPI expression in trangenic tissues. Others (Dawson

et al., 2003) have shown that LMPI leads to activation of Akt in epithelial cells again

highlighting possible differences between a precancerous tissue and carcinoma cells. Other

groups have concluded that there is a cross talk between the RaslMAPK and the PI3K1Akt

pathways. For example, in HEK293 epithelial cells, Akt can downregulate ERK1I2 activity

thus leading to a decrease in the activity of the MAPK pathway (Galetic et al., 2003). It is not

known if ERK112similarly affects Akt activation. In fact when Ras inducible mice were

generated, it was found that the MAPK pathway was activated whereas the PI3K1Aktwas not

(Tarutani et al., 2003). The lack of change in PTEN levels when there is an Akt deactivation,

implies the presence of other Akt effectors. A downstream effector of Akt, GSK3~, showed

no change in phosphorylation levels. Akt has many other downstream targets and it is

possible that in this system, deactivation of Akt impacts other targets. Further study is needed

to clarify this.

NF-KB components p65 and possibly p50, were found to form the NF-KB complex that shows

increased binding in the transgenic samples compared to controls. This is consistent with

previous studies that identified increased activation ofNF-KB as a direct LMPI consequence

and identified p50 and p65 as the members of the NF-KB complex (Thornburg et al., 2003).

Also the API complex showed increased DNA binding in the transgenic samples compared to

controls, consistent with previous studies that have demonstrated activation of API as an

effect of LMPI expression (Eliopoulos and Young, 1998). Even though the supershift

analysis, was not successful, Western blot analysis showed that there were higher levels of
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JunB, Fra-I and FosB in transgenic samples compared to controls making these possible

candidates for being the components of the active AP 1 complex. A recent study has described

a new heterodimer formation between JunB and c-Jun induced by LMPI (Song et al., 2004b).

In these tissues, increased expression of JunB, Fra-I and FosB results from LMPI expression

and not a consequence of the phenotypic progression as their upregulation is evident from the

youngest samples studied (phenotypic stage 1). Similarly, p38MAPK activation is also

observed from stage 1, but increasing phenotypic stages show further increase in p38MAPK

activation levels, implying that progression of the phenotype increases the effect. Activation

of both NF-KB and API is consistent with TGFa upregulation, as the TGFa promoter

contains AP! and NF-KB binding sites.

In conclusion, LMP! leads to TOFu upregulation possibly via activation ofNF-KB and API.

TGFu upregulation leads to activation of EGFR and its faster turnover. Activated EGFR in

vivo, probably leads to activation of the MAPK pathway, however it is not clear what leads to

deactivation of the PI3K1Akt pathway. The apparent opposing effects that LMPI has on these

two pathways may reflect mechanisms within the epidermis to control aberrant proliferation.
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Chapter 5: Does LMP1 induce hyperplasia by
upregulating TGFa?

As described in the introduction, several transgenic models overexpressing TGFa showed a

phenotype of epidermal hyperplasia, ear thickening and spontaneous papilloma formation that

resembles the phenotype observed in PyLMPI895-8 and L2LMPI CAO transgenic lines. Given

the results described in Chapter 4, where TGFa upregulation and activation of the RaslMAPK

pathway was shown in tissues from line 117, it was hypothesised that LMPICAO may exert its

proliferative effects via upregulation of TGFa. In order to test this hypothesis it was decided

to entirely remove TGFa from the system by crossing LMPI expressing animals to TGFa null

animals and examine the resulting phenotype and the signalling pathways involved.

Testing of this hypothesis will extend the understanding of the role of LMP 1 In

turnourigenesis and could contribute to the design of targeted interventions.

5.1 Outline of approach

Mice of lines 53 (PyLMPI895-8) and 117 (L2LMPI CAO) were separately crossbred with TGFa

null animals. A detailed description of the TGFa null animals used can be found in section

1.7. These animals are referred to in this work as line 125. Line 125 mice were crossed with

lines 53 or 117 to produce mice heterozygous for TGFa. These progeny were crossed

together to generate TGFa null, heterozygous or wild type. The TGFa genotype was tested

by PCR as described in figure.5.l and section 2.2.3M.

Subsequently the animals produced were monitored for any phenotypic changes. Affected

tissues from animals that expressed the LMPlcAO transgene in a TGFa null background were

examined by Western blotting to determine if absence of TGFa affects any of the pathways

already analysed in Chapter 4.

Further analyses included examination by histopathological staining of affected tissues from

both LMPI CAO transgenic animals in wild type and null TGFa background with markers of

proliferation and apoptosis.

These studies were aimed at answering the following questions:

1. Does LMPI induce hyperplasia primarily by upregulating TGFa?
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2. What effect does absence of TOFa have on the signalling pathways deregulated by

LMPI?

3. Does LMPI in a TOFa null background playa role in proliferation or apoptosis of

epithelial cells?

Results

5.2 Phenotypic examination of LMP1/TGFa null mice

The first cross conducted was between line 53 (PyLMPIB95-8) and line 125 (TOFa null). In

total 84 pups were produced from the 53/125 cross. All pups were euthanased between days

3-5 and the skin and whisker phenotype was observed and noted (fig.5.2A and 5.3). Genomic

DNA extracted from the tissues was used to confirm their genotype compared to the observed

phenotypes. 7 LMPI B95-81TOFa null, 34 LMPI B95-81TOFa heterozygous, 3 LMPI B95-81TOFa

wild type, 26 LMP1895-8 negative/ TOFa null and 14 LMP1895-8 negativelTOFa heterozygous

mice were produced and observed. It is observed that the expected Mendelian inheritance

pattern is not followed with respect to the number of LMPI B95-8 positive mice in a TOFa null

background. Whereas the expected number of LMPI transgenic offspring that are TOFa

heterozygous or null is 18.5 respectively, 30 of the offspring are TOFa heterozygous and only

7 are TOFa null. Conducting a X2 test on these data shows that the numbers deviate from the

expected ratios with statistical significance (P=O.0005). This might suggest that LMPI in a

TOFa null background leads to reduced embryonic fitness (table 5.1).

Out of the 7 LMPIB95-8/TOFa null animals produced, 4 showed the scaly skin phenotype

(57.14%) (table 5.2). Although this is less than LMPI in a heterozygous TOFa background

(29/34)(85.29%) the numbers are too few to be able to conduct a meaningful statistical

analysis. In the LMP1 negative mice, a few mice are noted on having a scaly skin irrespective

of TOFa status (table5.2). While this study was subjective and too few mice used for a

meaningful statistical comparison, it did reveal that absence of TOFa did not abolish the

LMP 1 induced scaly pup skin phenotype, or increase it in a marked way.
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Figure 5. 1: Genotyping of line 125 by peR

Primers TGFa KOl and 2 were used to detect the 1300bp band
corresponding to TGFa disrupted by the neomycin cassette. A
control band at 500bp is routinely observed, whereas a non specific
band of 1000bp is also observed in some of the reactions. Use of the
primer pair TGFa KOl and 2 leads to identifiation of mice that are
either heterozygous (het) or null (ko) for TGFa.
Primers TGFa KO} and 3 are used to detect a lOOObp band
corresponding to exon 3 of the TGFa gene which is disrupted by the
neomycin cassette. This pair of primers leads to identification of mice
that are wild type (wt) or het for TGFa.
Simoultaneous use of these two primer pairs leads to identification of
all three genotypes of mice for the TGFa gene.



Figure 5.2: Whisker phenotype of 53/125 pups (A) and 1171125
adult (B and C) mice.

A shows two 53/125 pups. The one on the left is heterozygous for
TGFa ( +1-) and the one on the right is TGFa null (-1-). As indicated
by the red arrows, the TGFa -1- pup has markedly curly whiskers,
whereas the TGFa +1- has relatively straight whiskers
indistinguishable from wild type. Note that the coat colour (albino
on the left and agouti on the right) is independent of TGFa status
reflecting the FVB/C57/129 mixed strain background.
Band C show the ear and whisker phenotype of 117/125 adult mice
that are LMPlcAO transgenic and TGFa null (B) or heterozygous
(C). B has curly whiskers whereas C has straight whiskers.
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Figure 5.3: Skin and tail phenotype of 53/125 pups

The three pups shown above come from the 53/125 cross. The one on the
left is LMPIB95-8 transgenic (+) and the two on the right are LMPIB95-8
negative (-). Wrinkly tail and scaly skin is observed on the transgenic
pups and not the wild type pups.



Parental Litter No No No No No No
genotype Size of of of of of of
(LMPI I pups pups pups pups pups pups
TGFa) LMPI TGFa TGFa TGFa LMPI LMPI

+ +1+ +1- -1- + +
and and
TGFa TGFa
+1- -1-

- / .}: x + / +/- 10 5 0 6 4 5 0
- / .t: x + / +/- 12 4 0 6 6 4 0
- / -/- x + / +/- 12 8 0 8 4 7 1
+/ +/ - x - / +/- 11 7 3 6 2 4 0
- / -/- x + / +/- 2 1 0 1 1 1 0
- / .t: x + / +/- 13 10 0 9 4 7 3
- / -/- x + / +/- 10 4 0 5 5 3 1
- / .t: x + / +/- 14 5 0 7 7 3 2

Cross
- I -1-x + 1+1-
Total no of No of No of No of No of No of
pups born: 73 LMPI TGFa TGFa LMPl+ LMP1+

+ +1- -1- andTGFa and TGFa
+1- -1-

Observed 37 42 31 30 7
Expected 36.5 36.5 36.5 18.5 18.5
df 1 1 1 2 2

xl 0.01 1.658 1.658 14.43 14.43
P value >0.25 >0.25 >0.25 0.0005 0.0005

Cross
+ I +1- x - 1+1-
Total no of No of No of No of No of No of No of No of
pups born: LMPI TGFa TGFa TGFa LMPl+ LMPl+ LMPl+
11 + +1+ +1- -l- and and andTGFa

TGFa TGFa -1-
+1+ +1-

Observed 7 3 6 2 3 4 0
Expected 5.5 2.75 5.5 2.75 1.75 3.5 1.75
df 1 1 1 1 2 2 2
)(;2 0.82 0.273 0.273 0.273 2.71 2.71 2.71
P value >0.25 >0.25 >0.25 >0.25 >0.25 >0.25 >0.25

Table 5.1: 531125 litter genotyping and Mendelian inheritance

The top table shows the various litters produced and the pup genotype along with the totals of
the different genotypes from two genotypic crosses: TGFa null x TGFa heterozygous cross
(black) and a TGFa heterozygous x TGFa heterozygous cross (blue). The following two tables
show the totals observed and expected proportions of each genotype and the chi squared
analyses for the specific crosses shown.



LMPIIJ9S.8 + ffGFa -1- LMPIIJ95.8+ LMPIIJ95.8+
ffGFa+l- ffGFa+l+

Total number of 7 34 3
pups
Number of pups 4 (57.14%) 29(85.29%) 2 (66.66%)
with scaly skin
Number of pups 3 (42.86%) 4 (11.76%) 1 (33.33%)
without a scaly
skin
No phenotype 0 1 (2.94%) 0
Dead at birth

LMPIBll5-8- ffGFa -1- LMPIBll5-8- LMPIB95-8_
ffGFa+l- ffGFa+l+

Total number of 26 14 0
pups
Number of pups 2 (7.69%) 4 (28.6%) 0
with scaly skin
Number of pups 23(88.46%) 10 (71.43%) 0
without a scaly
skin
No phenotype 1 (3.85%) 0 0
Dead at birth

Table S.2: Correlation of genotype and observed phenotype of cross S3/125 pups

The above tables show the number of LMPlcAO transgenic positive (top) and transgenic

negative (bottom) in each TGFa genotypic group. The number of animals in each group

showing a specific phenotype is given. The percentage values (%) shown are out of the total

number of animals in each specific genotypic group.



A more informative experiment was provided by the second cross between line 117

(L2LMPlcAO) and line 125 (TGFa null). In total60 animals were monitored from 4 weeks of

age to about 30 weeks. Of these, 8 were LMPlcAO/TGFa null, 9 LMPlcAolTGFa

heterozygous, 7 LMPI cAo/TGFa wild type and 36 mice were negative for LMPI CAO, the

latter did not show any ear phenotype. These ratios do not suggest any loss of LMPI CAol

TGFa null genotype group. The animals were monitored once a week and the ear phenotype

was visually categorised according to the ear stages figure (fig.1.14). The dorsal skin of these

mice was also monitored for spontaneous papilloma formation. No papilloma formation was

detected in any of the animals. However, it should be noted that the strain background of

these mice differs from the 117 line under study in chapter 3 which was largely FVB. The

introduction of the TOFa null strain also introduced a 129/C57 mouse strain component and

papilloma formation is strain sensitive. In monitoring the ear phenotype it was observed that

the LMPlcAo/TGFa null mice developed an ear phenotype that was more progressed than the

LMPlcAO/TOFa heterozygous or wild type ear phenotype (fig.5.2B and C).

In order to quantify this, the proportion of mice with ears at the phenotypic stages have been

plotted against age (fig.5.4). As seen from the graphs (fig. 5.4), at about 5 weeks of age all the

TGFa heterozygous or wild type animals show a stage 1 ear phenotype whereas 80% of the

TGFa null mice show stage 1 ear phenotype and 20% exhibit a progressed ear phenotype of

stage 2. At 7 weeks of age, 100% of the TOFa heterozygous and wild type mice show stage 1

ear phenotype whereas only 50% ofTGFa null mice show stage 1 ear phenotype. By 9 weeks

all null and wild type ears show a stage 2 phenotype, while 50% of the heterozygous ears

show stage 2. A more consistent difference between TGFa null and the heterozygous or wild

type groups becomes apparent at the later stages, 4 and 5 of the phenotype. By 15 weeks 50%

of the null mice developed a stage 4 phenotype and by 20 weeks some mice began to develop

a stage 5 phenotype. By contrast, the TOFa heterozygote and wild type mice did not start to

develop the stage 4 phenotype until 22 and 20 weeks respectively and in the time frame of this

study this phenotype did not progress to stage 5. The phenotype progression in heterozygous

and wild type mice follows largely the same pattern.

There is a general trend apparent that the null mice ear phenotype progresses faster than the

heterozygous and wild type mice. This is contrary to what would be expected if the

hypothesis was correct in that the LMPI induced ear phenotype is mediated via upregulation

of TGFa alone. While the data is subjective in nature it was absolutely clear that loss of

TGFadid not negate the LMPI induced phenotype. However, upregulation of other EGFR
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ligands has not been examined in this system and it is possible that upon withdrawal ofTGFa,

other EGFR ligands can compensate.
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Figure 5.4: Graphs showing the phenotypie
progression of ears of mice from line 1171125.

Ears from LMPI CAO transgenic animals that were null (A),
heterozygous (B) or wild type (C) for TGFa were
observed once every two weeks for 22 weeks and
categorised into phenotypic stages. Phenotypic stage 1
ears are represented by purple colour, stage 2 are magenta,
stage 3 are yellow, stage 4 are light blue and stage 5 are
dark purple. The percentage of mice from each genotypic
group that showed the particular ear phenotype stage is
indicated on the Y-axis of each graph. Note that a mouse
was categorised according to the ear of worse (higher
number) stage if its ears were different.
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5.3 Analysis of signalling pathways activation in LMP1cAO/TGFa null
mice

A. TGFaJEGFBlRas/MAPK pathway

Initially, the status of the receptor for TGFu was investigated. Protein extracts using Ripa

buffer were prepared from transgenic ears of line 117 mice of different phenotypic stages

along with age matched transgenic negative controls. Protein extracts using Ripa buffer, were

also prepared from transgenic ears of line 117/125 mice both null and heterozygous for TGFu

along with age matched transgenic negative controls. Details of the animals used in these and

subsequent studies are given in Appendix 3. 100llg (unless otherwise stated) of protein extract

per track was separated by SDS-PAGE, the gel was blotted and the appropriate antibodies

were used to detect the desired proteins. Densitometric analysis was routinely performed

where needed, to compare levels of the detected protein under study to its non-phosphorylated

form or to P tubulin, which was used to indicate loading levels. These analyses were

performed as was previously described (chapter 4.2).

Expression of total EGFR was examined (fig.5.5). It is apparent that the antibody to total

EGFR not only can detect the 170kDa EGFR but also smaller EGFR products at 75,65 and

50kDa. It is observed that levels of total full length EGFR are increased at stage 1 in the

LMPlcAO ITGFu null ears (1.36 fold compared to controls, normalised against ~

tubulin)(table 5.3) but this decreases with advancing phenotype (stage 2: 1.1 fold, stage 3: 0.91

fold) and this is concomitant with the appearance of smaller EGFR products (as reported in

chapter 4). This decrease in the 170kDa EGFR and the increase in the smaller EGFR products

appears to be independent of TGFu loss. Some of these smaller products react with two

antibodies that specifically recognise phosphorylated EGFR at specific tyrosine residues

(tyrosine 845 (fig.S.6) and tyrosine 1068 (fig.5.7». Phosphorylation ofEGFR at tyrosine 1068

is a result of autophosphorylation of the receptor and can lead to GRB2 recruitment whilst

phosphorylation of EGFR at tyrosine 845 is a result of Src phosphorylation. Using anti-

phosphorylated EGFR (tyr 845), it was shown that levels of the smaller phosphorylated

products initially decrease at stages 1 and 2 in the LMPI CAolTGFuwild type ears but increase

at stage 3 by 3 fold compared to controls normalised against p tubulin. In the LMPlcAO 1

TGFu null ears, levels increase from stages 2 to 4 (stage 2: 1.23 fold, stage 3: 2.32 fold, stage

4: 4.36 fold when compared to controls) (table 5.4). The increase in phosphorylated products

detected with the antibodies to tyrl068 EGFR mirrors the results
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TGFa
LMPlcAO

+/+ +/+ +/+ +/+ +/+ -/- -/- -/- -/- -/- -/- +/- +/-

++ + + + + + + +

c4 4

~ tubulin

Figure 5.5: Total EGFR western blot of protein
extracts from ears of mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears,
stages 1-3 (stl-3) from mice that were transgenic for
LMP1(+) and wild type (+1+), heterozygous (+1-) or null
(-1-) for TGFa. Age matched control extracts from ears
of LMPlcAO transgenic negative siblings (-) were also
prepared. 100Jlg of protein extract/track was separated
by 7.5% SDS-PAGE and the gel was blotted. The blot
was probed with a rabbit anti-mouse total EGFR
primal)' antibody (1:1000) and a goat anti-rabbit IgG-
HRP secondary antibody (1:4000) and visualised with
ECL+. The] 70kDa corresponding to total EGFR is
indicated. Molecular weights according to marker track
are shown. The bottom picture shows the ~ tubulin
reprobing of the blot to show relative loading levels.



Genotype A B C
LMPI TGFa Phenotypic EGFR (170kDa): tJ LMPlcAo: Null to wild

stage tubulin wild type type in
EGFR smaller respect of
bands: tJ tubulin TGFa

- +1+ Cl 0.11 10.02 1
+ +1+ 1 0.15 10.02 1.36 I 1.13

+ +1+ 2 0.12 I 0.04 1.10 I 1.60

+ +1+ 3 0.10 10.06 0.85 I 3

+ +1+ 3 (average)
- -1- Cl 0.11 10.03
- -1- C4 (average)
+ -I- I 0.10 10.03 0.96 I 0.98 0.68 I 1.23

+ -1- 2 0.13 I 0.03 1.17 11.01 1.02 10.80

+ -1- 4 0.07 I 0.13 0.68 I 4.34 0.70 I 2.17

+ -1- 3 0.05 I 0.05 0.44 I 1.72 0.50 I 0.83

Table 5.3: Densitometric analysis on the levels of total full length EGFR I smaller EGFR
products respective to tJ tubulin loading control.

Wild type (-) and transgenic (+) mice for LMP ICAO, wild type (+1+) and null (-1-) for TGFa

are shown. The phenotypic stage of the ears used is also shown. Note that LMPlcAO negative

mice do not have an ear phenotype but animals that were aged matched controls ofLMPlcAO

+ mice of a particular phenotypic stage were used and that stage is indicated.

Values given are after the deduction of the background intensity.

Column A : Total EGFR: f3 tubulin (black), smaller EGFR products: f3 tubulin (blue)

Column B: LMPlcAo: control (TGFa wild type are black for full length EGFR, blue for

smaller products, TGFa null are pink for full length EGFR, green for smaller products)

Column C: LMPlcAO / TGFa null: LMPlcAO / TGFa wild type (black for full length EGFR,

blue for smaller EGFR products).

Note that LMPI CAOnegative in a TGFa null or wild type background give some reading.



Figure S.6: Pbospborylated EGFR (tyr 84S) western blot of
protein extracts from ean ofmiee oflines117 and 117/125.

Protein extracts were prepared fran phenotypic ears, stages 1-3
(stl-3) from mice that were transgenic for LMP1(+) and wild
type (+1+), heterozygous (+1-) or null (-1-) for TGFa. Age
matched control extracts from ears of LMPlcAO transgenic
negative siblings (-) were also prepared. lOOJ.lgof protein
extract/track was separated by 7.5% SDS-PAGE and the gel was
blotted. The blot was probed with a rabbit anti-mouse phospho-
EGFR (tyr845) primary antibody (I: 1000) and a goat anti-rabbit
IgG-HRP secondary antibody (l :4000) and visualised with
ECL+. Molecular weights according to marker track are shown.
The blot was stripped and reprobed with total EGFR and fl
tubulin to show relative loading levels.
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stage
c4 1 2

~ tubulin

Figure 5.7: Phosphorylated EGFR (tyr 1068) western blot of
protein extracts from ears of mice oflines 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages 1-3 (stl-
3) from mice that were transgenic for LMP1(+) and wild type (+1+),
heterozygous (+1-) or null (-1-) for TGFa. Age matched control
extracts from ears ofLMPlcAO transgenic negative siblings (-) were
also prepared. 100Jlgof protein extract/track was separated by 7.5%
SDS-PAGE and the gel was blotted. The blot was probed with a
rabbit anti-mouse phospho-EGFR (tyr1068) primary antibody
(1:1000) and a goat anti-rabbit IgG-HRP secondary antibody
(1:4000) and visualised with ECL+. Molecular weights according to
marker track are shown. The blot was stripped and reprobed with ~
tubulin to show relative loading levels.



Genotype A B C
LMPI TGFa Phenotypic pEGFR LMPlcAo: wild Null or

stage (tyr845) : type hetto
ptubulin wild type

in
respect
ofTGFa

- +1+ Cl 0.16 1
+ +1+ 1 0.11 0.66
+ +1+ 2 0.07 0.45
+ +1+ 3 0.48 3.00
+ +1+ 3 (average)
- -1- Cl 0.22
- -1- C4 (average)
+ -I- I 0.16 0.73 1.45
+ -1- 2 0.27 1.23 3.59
+ -1- 4 0.96 4.36 2
+ -1- 3 0.51 2.32 1.06

Table 5.4: Densitometric analysis on phosphorylated EGFR (tyr845) levels

Wild type (-) and transgenic (+) mice for LMPlcAO , wild type (+1+) and null (-1-) for TGFa

are shown. The phenotypic stage of the ears used is also shown. Note that LMPI CAO- mice

do not have an ear phenotype but animals that were aged matched controls of LMPlcAO +

mice of a particular phenotypic stage were used and that stage is indicated.

Values given are after the deduction of the background intensity.

Column A: Phosphorylated EGFR (tyr845): f3 tubulin
Column B: LMPlcAo: control (TGFa wild type are black, TGFa null are pink)

Column C: LMPlcAO I TGFa null: LMP ICAOI TGFa wild type

Note that LMPlcAO negative in a TGFa null or wild type background give some reading.



obtained with tyr845 EOFR. This indicates that removal of TOFa does not lead to reduced

signalling through EOFR and suggests instead that it may lead to over-compensation by other

EOFR ligands thus leading to increased EOFR activation.

In order to examine whether other EGFR family members are involved in LMPI signalling, a

HER2/ErbB2 antibody that recognises phosphorylated HER2/ErbB2 (tyr 1112) was used to

probe a western blot of lines 117 and 117/125 ear extracts (fig.5.8). As with EOFR, there is

increase in the levels of phosphorylated smaller HER2lErbB2 products in the LMpCAO 1TGFa

wild type ears when compared to the LMPlcAO negative 1 TGFa wild type ears and this

increase seems to be even higher in the LMP1CAO transgenic ears in a TOFa null background.

The blot could not be reprobed for f3 tubulin in order to ascertain loading levels. Note that a

smaller product at about 66kDa, recognised by the phosphorylated HER2/ErbB2 antibody, is

observed only in LMPI CAO transgenic ears of phenotypic stages 3 in the TGFa wild type

background and at stages 4 in the TOFa null background. The identity of this protein is

unknown.

In order to investigate whether TGFa upregulation and faster EGFR cycling playa role in

Ras/MAPK signalling, the levels of total c-Raf, BRaf, MEKl/2, ERK1/2 and their

phosphorylated forms were examined by probing Western blots, with the appropriate

antibody. Levels of total and phosphorylated c-Raf could not be clearly detected from the

experiments as the specific antibodies did not show any bands of the appropriate size

corresponding to c-Raf (data not shown). Total BRaf was used to probe a western blot

(fig.5.9). Levels of BRaf are equivalent in LMPI CAO 1 TGFa wild type stage 1 and stage 3

ears compared to wild type controls (stage I: 1.03 fold compared to controls normalised

against f3 tubulin, stage 3: 1.02 fold) but are slightly reduced in stage 2 ears (stage 2: 0.74

fold). This slight decrease observed in BRaf levels is also observed in LMPI CAol

TGFanull ears. This effect seems to be an LMPI effect and not an effect of the absence of

TGFa. However, the values obtained are not markedly different from the LMPI CAO negative I

TGFa wild type control ears so it is not clear if this observed decrease is artifactual or not

(table 5.5).
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TGFa +/+
LMP1cAO

+/+ +/+ +/+ -/- -/- -/- -/- -/- -/- +/- +/- +/+

+ + + + + + + + +
stage cl 1 3 3 cl 4 2

66kDa_.

Figure 5.8: Phosphorylated HER2lErbB2 western blot of
protein extracts from ears of mice of lines 117 and 117/125.

This is a reprobe of the blot shown in figure 5.18. The blot was
stripped and reprobed with rabbit anti-mouse phosphorylated
HER2 primary antibody (1:1000), a goat anti-rabbit IgG-HRP
secondary antibody (1:4000) and visualised with ECL+. The
80kDa band corresponding to phosphorylated smaller HER2
product is indicated. Molecular weights according to the marker
track are shown.



stage
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Figure 5.9: BRAF western blot of protein extracts from ears of
mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages 1-3 (stl-3)
from mice that were transgenic for LMP1(+) and wild type (+1+),
heterozygous (+1-) or null (-1-) for TGFa. Age matched control extracts
from ears of LMPlcAO transgenic negative siblings (-) were also
prepared. 100J.Lgof protein extract/track was separated by 7.5% SDS-
PAGE and the gel was blotted. The blot was probed with a rabbit anti-
mouse BRAF primary antibody (1: 1000) and a goat anti-rabbit IgG-
HRP secondary antibody (1 :4000) and visualised with ECL+. The
95kDa band corresponding to BRAF is indicated. Molecular weights
according to marker track are shown. The bottom blot shows ~ tubulin
probing used as a loading control. This blot is a reprobe of the blot
probed with phospho-EGFR (tyr 1068) shown in figure 5.7.



Genotype A B C
LMPI TGFa Phenotypic BRAF: p LMPI CAO : wild Null or

stage tubulin type het to
wild type
in
respect
ofTGFa

- +1+ Cl 0.61 1
+ +1+ 1 0.67 1.03
+ +1+ 2 0.45 0.74
+ +1+ 3 0.62 1.02
+ +1+ 3 (average)
- -1- Cl 0.71
- -1- C4 (average)
+ -I- I 0.55 0.77 0.82
+ -1- 2 0.43 0.61 0.96
+ -1- 4 0.51 0.72 0.82
+ -1- 3 0.36 0.51 0.58

Table 5.5: Densitometric analysis on BRAF levels

Wild type (-) and transgenic (+) mice for LMP1cAO , wild type (+1+) and null (-1-) for TGFa

are shown. The phenotypic stage of the ears used is also shown. Note that LMPlcAO - mice

do not have an ear phenotype but animals that were aged matched controls of LMPlcAO +

mice of a particular phenotypic stage were used and that stage is indicated.

Values given are after the deduction of the background intensity.

Column A: BRAF: ~ tubulin

Column B: LMPlcAO: control (TGFa wild type are black, TGFa null are pink)

Column C: LMPlcAO ITGFa null: LMPlcAO I TGFa wild type

Note that LMPI CAO negative in a TGFa null or wild type background give some reading.



Confirming the observations in chapter 4, levels of total MEK1I2 were equivalent throughout

the sample panel (fig.5.10B). Once again, levels of the phosphorylated form ofMEKI/2 show

differences according to phenotypic stage (fig.5.10A). As the densitometric analysis shows

(table 5.6), there is an initial increase in activated MEK 1/2 in LMP1CAO transgenic ears stages

1 and 2 (stage I: 8.19 fold compared to controls normalised against total MEK1I2, stage 2:

4.67 fold). As the ear phenotype progresses to stage 3, this activation is decreased (stage 3:

2.57 fold) returning to control levels. A similar pattern is observed in the LMPI CAO 1TOFu

null ears (stage 1: 3.28 fold, stage 2: 2.83 fold, stage 3: 1.43 fold, stage 4: 1.57 fold). It is

evident that MEK1I2 is activated to a lesser extent in the TOFu null LMPI CAO transgenic ears.

Note that stage 4 ears in LMPlcAO 1TOFu wild type were not examined.

It can also be seen from this western blot (fig.S.IO) that there are a number of proteins cross

reactive to this phospho-specific antiserum that show expression or activation changes in

respect to phenotypic stage. Note a band at approximately 60kDa present only in non

transgenic samples, a series of bands in the IOO-200kDarange that are strong in controls at

stage I, decreasing though at stages 2-4. A band at approximately 25kDa similarly strong in

controls and decreasing with increasing phenotypic stage. The bands may represent phospho-

proteins that are activated or deactivated in response to LMP1 signalling, effectors or targets.

What is clear from these studies is that only a small fraction of the changes induced by LMPI

can be examined in this approach.

Levels of total ERK1I2 were equivalent in all samples (fig.5.IlB). Levels of phosphorylated

ERK1I2 show a modest increase in LMPlcAO transgenic ears that is more evident as the ear

phenotype worsens (stage 1: 1.59 fold, stage 2: 1.26 fold. stage 3: 2.18 fold compared to

controls normalised against total ERK1I2) (table5.7). This increase is not observed in the

LMPlcAO / TGFu null ears. This might suggest that the increase in activated ERKl/2 is

mediated by TOFu. However as the increase noted in the wild type background is modest the

consistency of this result should be tested in further samples of both wild type and null

background. Note that cross reactive bands at 66kDa and at 35kDa are observed in LMPI CAO

irrespective of TOFu status in stage 2, 3 and 4 ears.
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Figure 5.10: Phosphorylated MEKlI2 (A) and total MEK1/2
(8) western blot of proteiD extracts from an of mice of line
117 and 1171125.

Protein extracts were prepared from phenotypic ears, stages 1-3
(stl-3) from mice that were transgenic for LMPl(+) and wild
type (+1+), heterozygous (+1-) or null (-1-) for TGFa. Age
matched control extracts from ears of siblings (-) were also
prepared. l00llg of protein extract/track was separated by 10%
SDS-PAGE and the gel was blotted. The blot was probed with a
rabbit anti-moose phospho-MEKl12 (A) and a goat anti-rabbit
IgG-HRP secondary antibody (1:4000) and visualised with
ECL+. The blot was stripped and reprobed with rabbit anti-
mouse total MEK 112 (B) primary antibody (1:1000) and a goat
anti-rabbit IgG-HRP secondary antibody (1:4000) and visualised
with ECL+. The 45kDa band corresponding to MEK1I2 is
indicated. Molecular weights according to marker track are
shown.
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Genotype A B C
LMPI TGFa Phenotypic PMEK: LMPI CAO : wild Null or

stage totalMEK type hetto
wild type
in
respect
ofTGFa

- +1+ Cl 0.05 1
+ +1+ 1 0.42 8.19
+ +1+ 2 0.24 4.67
+ +1+ 3 0.10 2.57
+ +1+ 3 (average)
- -1- Cl 0.07
- -1- C4 (average)
+ -I- I 0.23 3.28 0.55
+ -1- 2 0.20 2.83 0.83
+ -/- 4 0.11 1.57 1.10
+ -/- 3 0.10 1.43 1.00

Table 5.6: Densitometric analysis on the levels of pMEK to total MEK1I2 loading
control.

Wild type (-) and transgenic (+) mice for LMPlcAO , wild type (+1+) and null (-1-) for TGFa

are shown. The phenotypic stage of the ears used is also shown. Note that LMP ICAOnegative

mice do not have an ear phenotype but animals that were aged matched controls ofLMPlcAO

+ mice of a particular phenotypic stage were used and that stage is indicated.

Values given are after the deduction of the background intensity.

Column A: Phosphorylated MEKl/2 : total MEKl/2

Column B: LMPlcAo: control (TGFa wild type are black, TGFa null are pink)

Column C: LMPlcAO I TGFa null: LMPlcAO I TGFa wild type

Note that LMPlcAO negative in a TGFa null or wild type background give some reading.



Figure 5.11: Phospho-ERKlI2 and total ERKII2 western blot of
protein extracts from ean of mice of line It7 and tt7/l15.

Protein extracts were prepared from phenotypic ears, stages 1-3 (stl-3)
from mice that were transgenic for LMP1(+) and wild type (+1+),
heterozygous (+1-) or null (-1-) for TGFa. Age matched control extracts
from ears of LMPlcAO transgenic negative siblings (-) were also prepared.
l00J.lg of protein extract/track was separated by 10010 SDS-PAGE and the
gel was blotted. The blot was probed with a rabbit anti-mouse phospho-
ERK1/2 (A) and a goat anti-rabbitlgG-HRP secondary antibody (1:4000)
and visualised with ECL+. The blot was stripped and reprobed with rabbit
anti-mouse total ERKII2 (B) primary antibody (1:1000) and a goat anti-
rabbit IgG-HRP secondary antibody (1:4000) and visualised with ECL+.
The 44 and 42kDa bands corresponding to ERKII2 are indicated.
Molecular weights according to the marker track are shown.
Note cross reacting bands at approximately 66kDa and 35kDa are
detected stroogly in stage 3/4 LMPlcAO transgenic samples in wild type,
heterozygous and null TGFa background. The identity of these proteins
is not known.
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Genotype A B C
LMPI TGFa Phenotypic pERK: LMPI CAD: wild Null or

stage totalERK type hetto
wild type
in
respect
ofTGFa

- +1+ Cl 0.50 1
+ +1+ 1 0.79 1.59
+ +1+ 2 0.63 1.26
+ +1+ 3 1.09 2.18
+ +1+ 3 (average)
- -1- Cl 0.87
- -1- C4 (average)
+ -I- I 0.63 0.73 0.80
+ -1- 2 0.85 0.98 1.35
+ -/- 4 1.09 1.25 1
+ -/- 3 0.62 0.71 0.57

Table 5.7: Densitometric analysis on ERK1I2 levels

Wild type (-) and transgenic (+) mice for LMPlcAO , wild type (+1+) and null (-1-) for TGFa

are shown. The phenotypic stage of the ears used is also shown. Note that LMPlcAO - mice

do not have an ear phenotype but animals that were aged matched controls of LMPlcAO +

mice of a particular phenotypic stage were used and that stage is indicated.

Values given are after the deduction of the background intensity.

Column A: Phosphorylated ERK 112:total ERK 112

Column B: LMPlcAo: control (TGFa wild type are black, TGFa null are pink)

Column C: LMP 1CAOI TGF a null : LMP 1CAO/ TGFa wild type

Note that LMPIcAO negative in a TGFa null or wild type background give some reading.



Other MAPKs that were investigated was the phosphorylated forms of SEKlMKK4 and

SAPKlJNK. The western blot for phosphorylated SEKlMKK4 is not very clear and even

though the 46kDa band corresponding to phosphorylated SEKlMKK4 is observed, no reliable

comparison can be made to the ~ tubulin reprobe to determine if there is a difference in

activation levels or not (fig.5.I2). For the SAPKlJNK, there may seem to be an initial

upregulation of the 54kDa phosphorylated JNK2/3 at stage 1 of the LMPI CAOtransgenic ears

(fig.5.13). What is apparent is that the levels of phosphorylated JNK2/3 decrease as the ear

phenotype progresses. However, levels of the 46kDa band corresponding to phosphorylated

JNKI seem to be constant throughout irrespective ofLMPI or TOFu background. Itwas not

possible to reprobe this blot with f3 tubulin to allow an accurate comparison to be made,

however, a cross reacting band at about 40kDajust below the phosphorylated JNKI complex,

seems to equivalent in all tracks suggesting equal loading.

B. Apoptotic and Progression proteins

The ear phenotype progression in LMPI CAo/TOFu null animals appeared faster than in

LMPI CAOtransgenic animals that are in the heterozygous or wild type TOFu background as

presented in section 5.1. This progression in phenotype is accompanied by increased

ulceration and necrosis. In order to investigate this phenotype and to determine whether

apoptotic proteins play a role, levels of caspase- 3 and anti-apoptotic protein Akt were

investigated. Levels ofMMP9, a progression marker were also investigated.

Levels of full length and cleaved caspase-3 were examined using the respective antibodies

(fig.5.14A, B). Full length caspase-3 (35kDa) levels increase in LMpCAOtransgenic ears as

the phenotype progresses (stage 1: 2.23 fold, stage 2: 4.80 fold, stage 3: 4.50 fold compared to

controls, normalised against ~ tubulin) and this is irrespective of TGFu background as the

levels in LMPI CAo/TOFunull ears show (stage 1: 1.90 fold, stage 2: 4.27 fold, stage 3: 1.16

fold, stage 4: 4.63 fold) (table5.8). The 17 and 19kDa corresponding to cleaved caspase-3 can

be seen in LMPIcAO/ TOFu wild type stage 3 ears and in LMPIcAO/ TOFu null stage 3 and 4

ears when the blots are probed with either the full length caspase-3 antibody (fig.5.14A) or the

antibody to cleaved caspase-3 (fig.5.14B). Note that there are bands at about 60 and 40kDa

recognised by the full length and the cleaved caspase-3 antibodies that are evident only in the
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Figure 5.12: Phosphorylated SEKlMKK4 western blot of protein
extracts from ears of mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages 1-3 (stl-3)
from mice that were transgenic for LMP1(+) and wild type (+1+),
heterozygous (+1-) or null (-1-) for TGFa. Age matched control
extracts from ears of LMP1cAO transgenic negative siblings (-) were
also prepared. 100f,lgof protein extract/track was separated by 10%
SDS-PAGE and the gel was blotted. The blot was probed with a rabbit
anti-mouse phospho-SEKlMKK4 primary antibody (1:1000) and a
goat anti-rabbit IgG-HRP secondary antibody (1:4000) and visualised
with ECL+. The 46kDa corresponding to pSEK!MKK4 is indicated.
Molecular weights according to marker track are shown. The bottom
picture shows the ~ tubulin reprobing of the blot to show relative
loading levels.
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Figure 5.13: SAPKlJNK western blot of protein extracts
from ears of mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages 1-3
(stl-3) from mice that were transgenic for LMPl(+) and wild
type (+/+), heterozygous (+/-) or null (-/-) for TGFu. Age
matched control extracts from ears of siblings (-) were also
prepared. IOOllg of protein extract/track was separated by 10%
SDS-PAGE. The blot was probed with a rabbit anti-mouse total
SAPKlJNK (Thr183/Tyrl85) primary antibody (1:1000) and a
goat anti-rabbit secondary antibody (1:4000) and visualised
with ECL+. The 46kDa doublet corresponding to
phosphorylated JNK1 and the 54kDa doublet corresponding to
phosphorylated JNK2/3 are indicated. Molecular weights as per
marker track are shown.



Figure 5.14: Total and activated easpase-3 western
blots of proteiD extracts from ean of mice of liDes
117 and 117/125.

Protein extracts were prepared from phenotypic ears,
stages 1-3 (stl-3) from mice that were transgenic fa-
LMP1(+) and wild type (+1+), heterozygous (+1-) or
null (-1-)for TGFu. Age matched control extracts from
ears of siblings (-) were also prepared. l00JIg of protein
extract/track was analysed on a 10010 SDS-PAGE. The
blot was prcoed with a rabbit anti-mouse total caspase-
3 (1:1000) and a goat anti-rabbit secmdary antibody
(1:4000) and visualised wi1h ECL+. The activated
caspase- 3 bl« is a reprobe of the pS3 blot shown in
figure 5.21. After stripping, it was reprobed with a
rabbit anti-mouse activated caspase-3 (1:1000) primary
antibody and a goat anti-rabbit secondary antibody
(1:4000) and visualised with ECL+. Molecularweights
according to the marker track are shown.
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Genotype A B C
LMPI TGFa Phenotypic Total Transgenic: Null to

stage caspase-3: fl Wild type in wild type
tubulin respect to in

LMPI respect
ofTGFa

- +1+ Cl 0.11 1
+ +1+ 1 0.24 2.23
+ +1+ 2 0.53 4.80
+ +1+ 3 0.50 4.50
+ +1+ 3 (average)
- -1- Cl 0.40
- -1- C4 (average)
+ -I- I 0.50 1.90 2.06
+ -/- 2 1.13 4.27 2.14
+ -1- 4 1.22 4.63 1.67
+ -1- 3 0.31 1.16 1.24

Table 5.8: Densitometric analysis on full length caspase-3 levels

Wild type (-) and transgenic (+) mice for LMPlcAO , wild type (+/+) and null (-1-) for

TGFa are shown. The phenotypic stage of the ears used is also shown. Note that

LMPI CAO - mice do not have an ear phenotype but animals that were aged matched

controls of LMP1CAO + mice of a particular phenotypic stage were used and that stage is

indicated.

Values given are after the deduction of the background intensity.

Column A: Full length caspase-3: (3 tubulin

Column B: LMPI CAO : control (TGFa wild type are black, TGFa null are pink)

Column C: LMPlcAO I TGFa null: LMPlcAO I TGFa wild type

Note that LMPlcAO negative in a TGFa null or wild type background give some reading.



LMPICAO/TOFu wild type samples stage 3 and in the LMPlcAO/TOFu null samples stage 4

only. The identity of these proteins is unknown.

It is obvious that both levels and activation of caspase-3 is affected by the increase in the

severity of the ear phenotype and corellates with the observed necrosis and ulceration at stages

3 and4.

In order to further examine this ear phenotype and whether TOFu plays a role in proliferation

or apoptosis, ears ofLMPlcAo/ TOFu wild type or null and LMPlcAOnegative / TOFu wild

type or null were collected, fixed in 10% neutral buffered formalin, paraffin embedded,

sectioned (2J.1m)and stained with PCNA to assess for proliferation levels or full length

caspase-3 antibody to assess for apoptosis. Sectioning of the tissues and antibody staining was

performed by Mr. Colin Nixon, a trained histotechnologist. A number of other staining trials

using the antibodies to cleaved caspase-3, total and phosphorylated EOFR were not

successful.

From the PCNA staining, it can be seen that LMPlcAOtransgenic ears irrespective of TOFu

background show an extensive proliferation that takes place in the basal layer of the epidermis

and extends into the thickened suprabasal layers (fig.5.l5). Normal epidermis has a one cell

thick basal layer (as indicated by a red arrow on fig.5.15.B) to which proliferation is confined.

It was not possible to accurately quantify the degree of proliferation and deduce whether the

presence or absence of TOFu, in an LMPlcAO transgenic animal leads to an increase in

proliferation or not.

Staining the sections with an antibody to full length caspase-3, gave similar results as PCNA

staining. Whereas little or no staining, was observed on wild type ear sections irrespective of

TOFu background, the basal layer of both TOFu wild type and null LMPlcAOtransgenic ears

was stained. This staining was not limited to individual cells but to the whole of the basal

layer (fig.5.l6). It was not possible to quantify whether TOFu leads to increased apoptosis or

not although the staining does appear stronger in the wild type background.

Total levels of Akt may show some decrease, with increasing phenotypic stage as was seen in

fig. 4.14 but this is not clear (fig.5.l7B). However, levels of phosphorylated Akt (Thr) in

LMPI CAOtransgenic samples show a dramatic reduction with increasing phenotype (stage I:

0.76 fold, stage 2: 0.09 fold, stage 3: 0 (equals the background level), when compared to

controls, normalised to total Akt)(table 5.9) confirming the observation made previously in

chapter 4.
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Figure 5.15: PCNA !taiDiDl ODan froBlIi_ 117 .Dd
1171125

Ears from LMPI negative (-) 1 TGFu wild type (+1+)
(A,B), LMPI transgenic (+) 1 TGFu +1+ (C,D), LMPI
negative !TGFu null (-1-) (E) and LMPI transgenic 1
TGFu null (F, G) stage 3 ears were collected, fixed in
10010neutral bufferred formalin and paraffin embedded.
Sections of 2J1m thickness were cut and stained with
PCNA primary antibody (1:50). The secondary antibody
of the DakoCytomation EnVision kit was used and
visualised with DAB which stains specific antibody
recognition sites brown. The lens magnification used to
take the pictures is indicated on the right bottom comer.
On picture B, the red arrow indicates the one cell thick
basal layer, u indicates the other layers of the epidermis
and f\ the dennis layer.
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Figure 5.16: FuH leugtll caspase-3 staiRiDg OD ean
from IiDe 117 aDd 1171125

Ears from LMPI negative (-) I TGFa wild type (+1+)
(A,B), LMPI transgenic (+) 1TGFa +1+ (C,D), LMPI -I
TGFa null (-1-) (E.F) and LMPI+ 1TGFa-l- (G,H)were
collected, fixed in loeA neutral bufferred formalin and
paraffin embedded. Sections of 2pm thickness were cut
and stained with total caspase 3 primary antibody (l:50).
The secondary antibody of the DakoCytomation
EnVision kit was used and visualised with DAB which
stains specific antibody recognition sites brown. The
lens magnifICation used to take the pictures is indicated
on the right bottom comer.
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Figure 5.17: Phosphorylated Akt (thr) aad total
Akt westem blot of proteiD extradl froDl ean of
Dliee ofliDe 117 and 117l125.

Protein extracts were prepared from phenotypic ears,
stages 1-3 (stl-3) from mice that were transgenic for
LMPI(+) and wild type (+1+), heterozygous (+1-) or
null (-1-) for TGFa. Age matched control extracts
from ears of LMPlcAO transgenic negative siblings
(-) were also prepared. lOOpg of protein
extractltmck was separated by loolo SDS-PAGE and
the gel was blotted. The blot was probed with a
rabbit anti-mouse phospho Akt (thr) (A) primary
antibody or a rabbit anti-mouse total Akt (B)
(1:1000) and a goat anti-rabbit 19G-HRP secondary
antibody (1:4000) and visualised with ECL+. The
60kDa corresponding to Akt is indicated. Molecular
weights according to marker track are shown.
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Genotype A B C
LMPI TGFa Phenotypic Akt (thr): Transgenic: Null or

stage total Akt Wild type in het to
respect to wild type
LMPI in

respect
ofTGFa

- +1+ Cl 0.87 1
+ +/+ 1 0.67 0.76
+ +1+ 2 0.09 0.09
+ +1+ 3 0 0
+ +1+ 3 (average)
- -1- Cl 0.93
- -1- C4 (average)
+ -I- I 0.24 0.26 0.36
+ -1- 2 0.28 0.31 3.32
+ -1- 3 0.14 0.15 0
+ -1- 3 0.06 0.07 0

Table 5.9: Densitometric analysis on the levels of AId (thr) to total Ald.

Wild type (-) and transgenic (+) mice for LMPlcAD ,wild type (+/+) and null (-1-) for TGFa

are shown. The phenotypic stage of the ears used is also shown. Note that LMPI CAD - mice

do not have an ear phenotype but animals that were aged matched controls of LMPI CAO + mice

of a particular phenotypic stage were used and that stage is indicated.

Values given are after the deduction of the background intensity.

Column A: Phosphorylated Akt (thr): total Akt

Column B: LMPlcAo: control (TGFa wild type are black, TGFa null are pink)

Column C: LMP ICAO I TGFa null: LMPlcAO I TGFa wild type

Note that LMPlcAO negative in a TGFa null or wild type background give some reading.



This decrease in Akt activation, implies that there is less protection against apoptosis in the

LMPICAD transgenic ears.

Levels of uncleaved MMP9 (92kDa) are higher in LMPI CAD transgenic ears irrespective of

TGFa background (fig.S.18). This increase is more evident as the ear phenotype worsens

comparable with MMP9 being a marker of progression. The cleaved MMP9 (84kDa) is seen

in LMPI CAO/ TGFa null ears stages I and 2 but is less apparent in the more progressed

phenotypic stages. MMP9 is a matrix metalloprotease, an enzyme that can degrade the

extracellular matrix allowing angiogenesis and tumour progression.

TNFa convert~ngenzyme (TACE) levels, a metalloprotease that cleaves the membrane bound

form of TNFa (and TGFa) to release soluble TNFa (and TGFa) was also investigated

(Borrell-Pages et al., 2003). Repeated probing proved unsuccessful to detect the 74kDa

product expected in the ear tissue.

C. Proliferation and Cell cycle suppression

In order to investigate how LMP}CAO affects cell cycle progression in the presence or absence

of TGFa, several cell cycle related proteins were examined.

Jun B (and not c-Jun) was seen to be upregulated in LMPl CAD transgenic ear tissue (fig.4.22).

The larger band (approximately 46kDa) was detected in control samples while both the larger

and the smaller (approximately 44kDa) JunB bands were detected in LMP} transgenic

samples upregulated compared to control, but relatively consistent across the phenotypic

stages. Comparison in a TGFa null background revealed that this strong upregulation is

independent of TGFa (fig.S.19). Also the upregulation observed in both the 44 and 46kDa

bands is constant across the stages (not increasing), suggesting that this is an early response of

the tissue to LMP}CAD.

JunB regulates the expression of the cell cycle suppressor p161NK4a, as the latter has upstream

API promoter elements (Passegue and Wagner, 2000). When pl61NK4aprotein expression was

examined this did not correlate with the consistently high levels of JunB observed in

LMPlcAO transgenic samples (fig.S.20). pl61NK4aexpression was detected in LMPlcAD/

TGFa null ears that are stage 3 or 4 only. Previous experiments in the laboratory by another

investigator, showed that LMPlcAO/ TGFa wild type ears of phenotypic stage 4/5 did show

p16INK4aexpression, confirming that p 16INK4aexpression is induced at later phenotypic stages

in both TGFa wild type and null samples (Stevenson et. al. in press). The levels ofp19ARF
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Figure 5.18: MMP9 western blot of protein extracts from
ears of mice oflines 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages 1-
3 (stl-3) from mice that were transgenic for LMP1(+) and
wild type (+1+), heterozygous (+1-) or null (-1-) for TGFu.
Age matched control extracts from ears of LMP1CAO

transgenic negative siblings (-) were also prepared. IOOllg of
protein extract/track was separated by 10% SDS-PAGE and
the gel was blotted. The blot was probed with a goat anti-
mouse MMP9 primary antibody (1:1000) and a donkey anti-
goat IgG-HRP secondary antibody (1:4000) and visualised
with ECL+. The 92kDa corresponding to MMP9 is indicated.
The cleaved 84kDa MMP9 band is also shown.
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Figure 5.19: Jun B western blot of protein extracts from
ears of mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages 1-3
(stl-3) from mice that were transgenic for LMP1(+) and wild
type (+1+), heterozygous (+1-) or null (-1-) for TGFa. Age
matched control extracts from ears of LMP1cAO transgenic
negative siblings (-) were also prepared. 100llg of protein
extract/track was separated on 10010 SDS-PAGE. The blot was
probed with a rabbit anti-mouse Jun B primary antibody
(1:1000) and a goat anti-rabbit secondary antibody (1:4000) and
visualised with ECL+. The bands (46 and 44kDa)
corresponding to Jun B are indicated. Molecular weights
according to the marker track are shown.
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Figure 5.20: p16INK4awestern blot of protein extracts
from ears of mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears,
stages 1-3 (s11-3) from mice that were transgenic for
LMPI(+) and wild type (+1+), heterozygous (+1-) or null
(-1-) for TGFu. Age matched control extracts from ears
of LMPlcAO transgenic negative siblings (-) were also
prepared. 100llg of protein extract/track was separated
on 10% SDS-PAGE and the gel was blotted. The blot
was probed with a rabbit anti-mouse p16INK4a primary
antibody (1:1000) and a goat anti-rabbit secondary
antibody (1:4000) and visualised with ECL+. The
16kDa band corresponding to p16INK4a is indicated.
Molecular weights according to the marker track are
shown.

p16



protein were also investigated but the 19kDa band corresponding to p19ARF could not be

detected by Western analysis of those tissues, despite repeated efforts and using O.05%SDSin

the transfer buffer to aid transfer of p19ARF due to its neutral charge.

The cell cycle protein p53 was also investigated. Levels of p53 are upregulated in LMPI CAO

transgenic ears irrespective of TGFa background (fig.5.21). Note that there is a cross reacting

band at approximately 30kDa that is detected strongly in the stages 2, 3 and 4 of LMPI CAO

transgenic ears irrespective of TGFa background. The identity of this protein is unknown.

Also the band at 45kDa is relatively constant by comparison suggesting that the increase

observed is not due to a loading error.

Levels of total Rb and phosphorylated Rb were examined (fig.5.22, 5.23). There is a group of

reactive bands at the 11OkDaregion (fig.5.22). Without a definitive positive control for Rb it

is difficult to determine which band corresponds to total Rb and therefore no conclusions can

be drawn. However, using an antibody to phosphorylated Rb, the 110kDa product is clear

(fig.5.23). LMPI CAO negative 1TGFa wild type ears show low levels ofphospho-Rb. Stage I

LMPI CAO transgenic ITGFa wild type ears show an initial increase but stage 2 and 3 levels are

lower. The phospho-Rb band is apparent in all the TGFa null samples, whether LMPlcAO

transgenic or not. Maybe Rb phosphorylation is independent of LMPl, or TGFa loss may

cause the phosphorylation of Rb consistent with the increased severity in the phenotype of

117/125 mice. However, two samples (stage 4 LMPlcAO/ TGFa null and stage 3

LMPI cAolTGFa wild type) contradict the above hypothesis. It could be that the two samples

have been mixed up or that the above hypothesis is wrong and a larger number of samples

needs to be examined. Note that there is a cross reacting band at approximately 220kDa that

parallels the phosphorylated Rb levels and it could possibly be an Rb complex (fig5.23). Also

another cross reacting band at about 50kDa is observed predominantly in stages 3 and 4 of

LMP1CAO transgenic ears irrespective of TGFa background. The identity of this protein is not

known.

Rassfl is a mediator of apoptosis from Ras signalling and has been observed to be

downregulated by promoter methylation or deletion in NPC lesions. In order to investigate the

Rassfl levels in the LMPI transgenic tissues, a specific antibody detecting Rassfl protein was

used to probe a Western blot of lines 117 and 117/125 ear extracts (fig.5.24). Rassfl levels

are higher in all the LMPI CAO 1 TGFa wild type samples (stage 1: 6.59 fold, stage 2: 12.53

fold, stage 3: 4.33 fold compared to controls, normalised against ~ tubulin)(table5.IO).

However, in the absence of TGFa in LMPI CAO transgenic ears, Rassfl remains at the level
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detected in control samples suggesting that LMPI CAOupregulates Rassfl via TGFa. Note that

a stage 3 LMPICAOj TGFa wild type sample does not show this increase. It is possible that

this sample is not of the best quality. Also a TGFa heterozygous sample shows low level

expression. Further samples need to be examined in order to confirm the observation.
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Figure 5.21: pS3 western blot of protein extracts from
ears of mice ofline 117and 117/125.

Protein extracts were prepared from phenotypic ears, stages
1-3 (stl-3) from mice that were transgenic for LMP1(+) and
wild type (+1+), heterozygous (+1-) or null (-1-) for TGFa.
Age matched control extracts from ears of siblings (-) were
also prepared. lOOllgof protein extract/track was separated
through a 10% SDS-PAGE and the gel was blotted. The blot
was probed with a goat anti-mouse pS3 primary antibody
(1:1000) and a donkey anti-goat IgG-HRP secondary
antibody (1:4000) and visualised with ECL+. The doublet
corresponding to pS3 is indicated. Mol ecular weights
according to markers track are shown. Note that there is a
cross reacting band at 30kDa which is more prominent in the
stages 2,3 and 4 of LMPlcAO + ears irrespective of TGFa
background. The identity of this protein is not known.
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Figure 5.22: Total Rb western blot of protein extracts
from ears of mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages
1-3 (stl-3) from mice that were transgenic for LMP1(+) and
wild type (+1+), heterozygous (+1-) or null (-1-) for TGFa.
Age matched control extracts from ears of siblings (-) were
also prepared. 100Jlg of protein extract/track was analysed
on a 10% SDS-PAGE. The blot was probed with a rabbit
anti-mouse total Rb (1:1000) primary antibody and a goat
anti-rabbit secondary antibody and visualised with ECL+.
The 11OkDadoublet corresponding to total Rb is indicated.
Molecular weights according to the markers track are
shown.
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Figure 5.23: Phosphorylated Rb Western blot of protein
extracts from ears of mice ofline 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages 1-3
(stl-3) from mice that were transgenic for LMPl(+) and wild
type (+1+), heterozygous (+1-) or null (-1-) fer TGFa. Age
matched control extracts from ears of siblings (-) were also
prepared. 100J.1gof protein extract/track was separated through a
10% SDS-PAGE and the gel was blotted. The blot was probed
with a rabbit anti-mouse phospho-Rb primary antibody (1: 1000)
and a goat anti-rabbit IgG-HRP secondary antibody (1:4000) and
visualised with ECL+. The 110kDa corresponding to pRb is
indicated. Molecular weights according to markers track are
shown. This blot is a reprobe of the blot probed with phospho-
and total MEK shown on figure 5.10. Note that there is a cross
reacting band at about 220kDa that mirrors the phosphorylated
Rb expression levels and it could possibly be an Rb complex.
Also a cross reacting band at about 50kDa is detected strongly in
the stages 3 and 4 of LMP1cAo+ ears irrespective of TGFa
background.
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Figure 5.24: Rassfl western blot of protein extracts
from ears of mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears,
stages 1-3 (stl-3) from mice that were transgenic fer
LMP I(+) and wild type (+1+), heterozygous (+1-) or null
(-1-) for TGFa. Age matched control extracts from ears
of LMP1cAO transgenic negative siblings (-) were also
prepared. 100llg of protein extract/track was separated
by 7.5% SDS-PAGE and the gel was blotted. The blot
was probed with a goat anti-mouse Rassfl primary
antibody (1:1000) and a donkey anti -goat JgG-HRP
secondary antibody (1:4000) and visualised with ECL+.
The 43kDa corresponding to Rassfl is indicated.
Molecular weights according to markers track are shown.
The bottom picture shows the ~ tubulin reprobing of the
blot to show relative loading levels. This blot IS a
reprobe of the total EGFR blot shown in figure 5.5.



Genotype A B C
LMPI TGFa Phenotypic Rassfl (A): Transgenic: Null or

stage ~tubulin Wild type in hetto
respect to wild type
LMPI in

respect
ofTGFa

- +1+ Cl 0.03 1
+ +1+ 1 0.18 6.59
+ +1+ 2 0.34 12.53
+ +1+ 3 0.13 4.33
+ +1+ 3 (average)
- -1- Cl 0.07
- -1- C4 (average)
+ -I- I 0.01 0.16 0.06
+ -1- 2 0.12 1.67 0.35
+ -1- 4 0.06 0.83 0.46
+ -1- 3 0.07 1.00 0.54

Table 5.10: Densitometric analysis on the levels of Rassfl respective to ~ tubulin loading
control.

Wild type (-) and transgenic (+) mice for LMP ICAO , wild type (+1+) and null (-1-) for TGFa

are shown. The phenotypic stage of the ears used is also shown. Note that LMPlcAO - mice

do not have an ear phenotype but animals that were aged matched controls ofLMPlcAO +
mice of a particular phenotypic stage were used and that stage is indicated.

Values given are after the deduction of the background intensity.

Column A: Rassfl: f3 tubulin
Column B: LMPlcAO: control (TGFa wild type are black, TGFa null are pink)

Column C: LMPI CAO I TGFa null : LMPI CAO I TGFa wild type

Note that LMPlcAO negative in a TGFa null or wild type background give some reading.



In order to investigate the cell cycle arrest hypothesis further the levels of expression of

cyclins A, B and 01 were investigated in these tissues (fig.5.25, 5.26, 5.27). Cyclins are

proteins that playa role in the progression of the cell cycle. Analysis of the expression levels

ofCyclin A (fig.5.25), cyclin B (fig.5.26) and cyclin 01 (fig.5.27) did not reveal an obvious or

consistent pattern with respect to LMPI transgenic status or TOFa null status. Interpreting the

steady state levels in a whole tissue is complicated by the fact that higher levels may indicate

increased proliferation but might also be evidence of a block at a certain cell cycle stage. It is

therefore difficult to interpret these data. However, a cross reactive band with the antibody to

cyclin B at approximately 66kOa is observed in phenotypic stages 2, 3 and 4 of LMP 1CAO

transgenic ears in both wild type and null TOFa background. The identity of this protein is

not known.
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Figure 5.25: Cyclin A western blot of protein
extracts from ears of mice of line 117 and 117/125.

Protein extracts were prepared from phenotypic ears,
stages 1·3 (stl-3) from mice that were transgenic for
LMP1(+) and wild type (+1+), heterozygous (+1·) or null
(-1-) for TGFa. Age matched control extracts from ears
of siblings (-) were also prepared. 100JIg of protein
extract/track was separated through a 10% SDS-PAGE
and the gel was blotted. The blot was probed with a
rabbit anti-mouse Cyclin A primary antibody (1:1000)
and a goat anti-rabbit IgG-HRP secondary antibody
(1:4000) and visualised with ECL+. The 50-55kDa
corresponding to Cyclin A is indicated. Molecul ar
weights according to markers track are shown. The
bottom picture shows the ~ tubulin probing of the blot
used as a loading control.
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Figure 5.26: Cyelin B western blot of protein extracts
from ears of mice of line 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages
1-3 (stl-3) from mice that were transgenic for LMPl(+) and
wild type (+1+), heterozygous (+1-) or null (-1-) for TGFa.
Age matched control extracts from ears of siblings (-) were
also prepared. 100J.lgof protein extract/track was separated
through a 10% SDS-PAGE and the gel was blotted. The blot
was probed with a rabbit anti-mouse Cyclin B primary
antibody (1:1000) and a goat anti-rabbit IgG-HRP secondary
antibody (1 :4000) and visualised with ECL+. The 50kDa
corresponding to Cyelin B is indicated. Molecular weights
according to markers track are shown. The bottom picture
shows the f3 tubulin probing of the blot used as a loading
control. Note croos reacting band at approximately 66kDa is
detected in stages 2, 3 and 4 of LMPI CAO transgenic samples
in both wild type and null TGFa background. The identity
of this protein is not known.
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Figure 5~27: eyelin Dl western blot of protein extracts
from ears of mice of lines 117 and 117/125.

Protein extracts were prepared from phenotypic ears, stages 1-
3 (stl-3) from mice that were transgenic for LMP1(+) and
wild type (+1+), heterozygous (+1-) or null (-1-) for TGFa.
Age matched control extracts from ears of LMPlcAO
transgenic negative siblings (-) were also prepared. 100J.lgof
protein extract/track was analysed on a 10% SDS-PAGE. The
blot was probed with a rabbit anti-mouse cyelin Dl primary
antibody (1:1000) and a goat anti-rabbit secondary antibody
(1:4000) and visualised with ECL+. The 36 kDa band
corresponding to eyelin DI is indicated. Molecular weights
according to markers track are shown.



5.4 Conclusions and Discussion (summary in table 5.11)

Results presented in this chapter explore the impact of removal of a known oncogene (TGFu)

from the system on the phenotype and signalling pathways known to be affected by LMPI and

its downstream targets. The results presented show that this removal of TGFu did not lead to

alleviation of the observed phenotype. For example, 53/125 mice that were LMPI 895-8/ TOFu

null mice still exhibited the scaly skin phenotype and 117/125 mice that were LMP1CAO

transgenic in a TOFu null background still exhibited the hyperplastic ear phenotype. Both

phenotypes are LMPI induced. Contrary to the initial hypothesis that LMPlcAO may exert its

proliferative effects via TOFu, it was shown that complete removal of TOFu did not alleviate

the phenotype but instead led to its worsening in cross 117/125. Phenotypic examination of

the ears of 117/125 mice, revealed that the LMP ICAO / TOFu null ears show a faster

phenotypic progression than the LMPI CAO/ TOFu heterozygous or wild type ears. This study

therefore suggests that if TOFu upregulation is a mechanism whereby LMPI CAO exerts its

proliferative effects it is clearly not the only route since EOFR signalling is still active in the

transgenic tissue. Moreover, removal of TOFu seems to potentiate the EOFR signalling

further rather than reduce it.

When the EGFR signalling pathway was analysed using Western blotting, it was shown that in

LMPI CAO transgenic ears there is an increase in total EOFR levels when compared to

transgenic negative ears at an early phenotypic stage. However, this increase in levels of total

EOFR decreases as the phenotypic stage progresses. There was an increase in smaller -EOFR

related products- observed in LMPI CAO transgenic ears. These smaller products were shown

to be phosphorylated when phospho-specific EGFR antibodies were used. When activation of

a second receptor of the EGFR family was examined, it was shown that phosphorylated

HER2lErbB2 levels were increased in the LMPI CAO transgenic ears, more so in TGFu null

ears. These results collectively show that LMPI induction of EGFR is not TOFu dependent.

It is possible that other ligands such as EGF are compensating for TOFu loss by upregulating

their action. In an experiment using keratinocytes null for TOFu, other factors such as

amphiregulin, betacellulin and HB-EGF were found to be upregulated in squamous tumours

produced from grafting those keratinocytes onto nude mice (Dlugosz et aI., 1995). It is

possible that these other EOFR ligands are also upregulated by LMPI CAO in these transgenic

ears and possibly upregulated to a greater extent in the absence of TOFu. This needs to be
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explored in order to fully understand the route of EGFR activation along with an examination

of the status ofHER3 and 4.

The MAPK pathway was examined in this system as an EGFR target. Expression of c-Raf-I

was not detected and this could be either due to failure of the particular antibody to detect the

murine c-Raf-l or that c-Raf-I levels in these tissues are too low for reasonable detection. A

recent publication (Chakrabarti et al., 2004) showed that a variant of the E6 protein of HPV

preferentially led to BRaf and not c-Raf-I activation via Rap. When levels of BRaf were

investigated in 117 and 117/125 tissues the results were not conclusive.

MEKI/2 showed marked activation at the phenotypic stage I, which was possibly reduced in

the TGFa. null background. However, this activation decreased with increasing age and

phenotype of the mice. These results show that in order for the tissue to exert homeostatic

control on this aberrant MAPK signalling due to activated EGFR a negative feedback loop

acting directly on MEK1I2 is in place. This suggests that TGFa. contributes to MEK1I2

activation.

In contrast to MEKl/2 activation, levels of activated ERK1I2 increase slightly in LMPlcAO

transgenic tissues independent ofTGFa. background throughout all the phenotypic stages and

therefore ERK1I2 must be activated via another route and not only via MEK1I2 directly.

Conversely a decrease in phosphorylated JNK2/3 is observed in the later phenotypic stage of

LMPlcAO transgenic ears compared to controls independent of TGFa. background. Since

previous studies have shown that JNK3 expression is specific to the brain, heart and testicles,

it might be that the observed products are due to JNK2 alone (for review see (Bogoyevitch et

al.,2004). Knock out mice studies have revealed considerable information about the roles of

JNKs as have the studies concerned with mouse chemical carcinogenesis. It was shown that

mice that were JNKI null had an increased load of tumours when they had undergone a

chemical carcinogenesis regime whilst JNK2 null mice showed an inhibition of

tumourigenesis in a similar setting (Chen et aI., 2001; She et al., 2002). This would imply that

the loss of JNK2 activation would have a tumour inhibitory effect on these tissues and may

result from a tissue homeostatic response to the increase in proliferation. It is clearly not a

direct effect of LMPI as it is not seen in stage 1 tissue samples. Why JNK2 seems to be

decreasing in LMPI transgenic tissues when other studies have reported upregulation of JNK

by LMPI and in these tissues there is API activation is not clear. Possibly this decrease is due

to the tissue homeostatic control. It is possible that the API activation observed is solely due

to the upregulation of Fra-I and JunB that is observed in these tissues or due to activation of
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other pathways that lead to API activation such as p38. Another explanation for the reduced

JNK activation observed in the LMPI transgenic tissues is that maybe there is cross talk

between activated ERK and JNK. For example, a study using MDCK cells showed that

scatter factor/hepatocyte growth factor led to activation of ERK and inhibition of JNK. API

was still activated in those cells (Paumelle et aI., 2000). Also a second study using human

microvascular endothelial cells showed that VEGF led to activation ofERK 1/2 and inhibition

of JNK leading to apoptosis (Gupta K, 1999). It has been shown that VEGF is upregulated in

LMP1 transgenic ear samples and this may be a potential route via which JNK activation is

reduced (Stevenson et. al., in press). Further investigation of this hypothesis is needed in

order to ascertain which protein plays a role in this JNK deactivation.

Examination of pro- and anti-apoptotic proteins in line 117 and 117/125 tissues, has shown

that LMPI enhances apoptosis. Levels of full length caspase-3 were increased in LMPI CAO

transgenic ears and this increase was proportional to the phenotypic stage. The cleaved

caspase-3 was observed only in the more progressed ears consistent with the phenotype.

Furthermore, p53 - another mediator of apoptosis- levels in LMPI CAO transgenic ears are

increased. Levels of activated Akt (thr) are significantly decreased in LMPI CAO transgenic

ears in a way proportional to the phenotypic stage. The decrease in activated Akt (thr) and

possibly total Akt levels is consistent with an increase in caspase-3 levels and activation of

apoptosis in the transgenic tissues. Why activated EGFR does not lead to increased Akt

activation as would be expected is not clear. It could be that EGFR is translocated to the

nucleus and is therefore unavailable to activate the PI3K1Akt effectors. However, this is not

consistent as MEK1I2 activation is observed. Alternative since the p85 subunit of PI3K

preferably associates with ErbB3 and not EGFR it is possible that in the LMPI transgenic

mouse model ErbB3 is at reduced levels. Examination of the status of ErbB3 is needed. Also

even though EGFR phosphorylation at Tyrl068 can activate the PI3K1Akt pathway, it is

phosphorylation at Tyrl086 that preferentially leads to Akt activation. The phosphorylation

status of Tyrl086 has not been studied in the LMPI transgenic tissues. It could be that this

specific tyrosine is not phosphorylated in these tissues. Also other phosphatases leading to

Akt deactivation could be involved but this is not known.

The effect the phenotype has on the expression of proteins is more clearly demonstrated with

MMP9. Whereas uncleaved MMP9 accumulates at the more severe phenotypic stages of

LMPlcAO transgenic ears irrespective of I'Gf'c, the low level cleaved MMP9 form is observed
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at stages 1 and 2 only. Enhanced vascularisation is apparent from the early stages and the

activation of MMP9 may facilitate this process.

Levels of JunB are upregulated in LMP 1CAO transgenic ears irrespective of TGFo.. However,

pl6INK4alevels do not correlate with this upregulation, implying that in this system pl6INK4ais

either activated by another protein or is inhibited (overriding JunB) at the early stages.

Upregulation of p 16INK4ais observed in the later phenotypic stages and even though in this

study it is observed in stage 3/4 LMPlcAO / TGFo. null ears only, it has been also observed in

LMPI CAO / TGFo. wild type stage 4/5 ears as well (Stevenson et. al., in press). This effect

therefore results from the phenotypic progression and is not the direct consequence of LMPI

expression. Even though this result contradicts other studies that have shown that LMP 1

inhibits p l6INK4aexpression, it is consistent with what is observed in NPC progression and

chemical carcinogenesis studies. If LMP 1 did inhibit p l6INK4aexpression, there would be no

selective pressure to silence p 16INK4ain NPC development or cooperative effect in expression

ofLMPl and loss ofINK4a. It is important to examine levels ofp19ARF, the other product of

the INK4a locus, to determine its role in the LMPl expressing mice and in NPC development.

Another tumour suppressor gene that is often found silenced or deleted in NPC is Rassfla. In

this study, Rassfl expression was examined and it was observed that LMP 1 led to increased

Rassfl levels. It did so in both a wild type and null TGFo. background, however, removal of

TGFo. greatly decreased this LMPI induced Rassfl expression, implying that LMPI mediates

the increase in Rassfl expression via TGFo.. This observation discriminates between the

action of TGFo. and EGFR and the other receptors or ligands. Somehow TGFo. activates a

pathway that very specifically leads to Rassfl activation. It is still not known how Rassfl a

becomes activated. A recent study has revealed more about its role in mediating apoptosis. It

was shown that NOREllRASSFl complexes can associate with the pro-apoptotic protein

MSTl and inhibit its activation, but can also localise it close to activated Ras and increase its

activity thus selectively inducing apoptosis (Praskova et al., 2004). This would be consistent

with the apparent decrease in caspase-3 levels that is observed in TGFo. null ears. These ears

show reduced levels of Rassfl. This could possibly lead to a decrease in MSTl activation and

a decrease in apoptosis and this is confirmed by the reduced levels of total caspase-3 observed

in TGFo. null ears when compared to TGFo. wild type ears. Investigation of the status of

MST1I2 is needed.

LMP 1 led to the activation of Rb and this activation seems to be increased in the absence of

TGFo.from the tissues. This increase in Rb activation is not consistent with the increased
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p16INK4alevels observed in the LMPI transgenic ears. It could be that the p16INK4ais not

functional in these tissues, or that the spatial expression of pl6INK4aand Rb differ, or it could

be that Rb gets suppressed in the presence of TOFu. How TOFu could induce this is not

known. The effect that Rassfl may have on p16INK4aand Rb is still not known.

It can be concluded from the above that LMP1 expression leads to activation of the MAPK

pathway. It also leads to increased apoptosis and induction of several tumour suppressors

such as Rassfl and pS3. However, their expression is not enough to overcome the observed

proliferative effects. It could be that the aberrant proliferation signal is too strong for the

tumour suppressors to control or that spatial expression of the tumour suppressors is different

from the spatial expression of the aberrant signal. For example, in this study, whole skin was

examined. It could be that tumour suppressors were induced not directly via LMPI but due to

the phenotypic effect and it is possible that they were expressed in the dennis, for example or

in an epidermal compartment different from the proliferative pathway.

It is not clear from this study why TOFu loss does not seem to have any major effect on the

pathways activated by LMPI. It may be that in this system upon withdrawal of one of the

EOFR ligands, the other five EOFR ligands can compensate. Indeed, a recent study where

amphiregulin (one of the EOFR specific ligands) was overexpressed in the basal layer of

murine epidermis, showed that the transgenic mice generated had a hyperplastic epidermis

with thickened tail and ears (Cook et al., 2004). The phenotype of these animals greatly

resembles the phenotype of the L2LMPI CAO, PyLMP1895-8 animals and of transgenic TOFu

animals. When EOF transgenic animals were created EOF was not targeted towards an

epithelial compartment and so direct comparison with the LMPI mouse model or other EOFR

ligand transgenic animals cannot be made (Chan and Wong, 2000; Erwin et al., 1999;

Krakowski et al., 1999; Wong et al., 2000). No other transgenic mouse models have been

described overexpressing epiregulin, betacellulin or HB-EOF, the other ligands of EOFR.

However, from what is seen upon targeted overexpression of specific EOFR ligands to the

epithelium, one can conclude that the overexpression of EOFR specific ligands leads to similar

phenotypes. Oiven the similarity between the LMPI mouse model described here and the

EOFR ligand transgenic models a preferable therapeutic route would be to target inhibition of

the actual receptor and not its ligands. An approach to analyse this would be to cross breed

LMPlcAO mice to EOFR knock out animals however, EOFR knock out animals show either

embryonic or perinatal lethality (Miettinen et al., 1995; Sibilia and Wagner, 1995; Threadgill

et al., 1995). Another approach would be to cross breed mice harbouring dominant negative
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EGFR in the basal layer (these mice are viable and fertile), given that LMPlcAO expression in

line 117 is confirmed to be in the basal layer (Murillas et al., 1995). Indeed, a previous study

in which mice overexpressing TOFa in type II cells under the control of the human lung-

specific surfactant protein C eSp-C) were crossed to mice expressing dominant negative EGFR

under the human SP-C promoter, showed an improvement of the lung phenotype (Hardie et

al., 1996). A different approach would be topical application of chemical EOFR inhibitors or

even topical application of MEK and/or ERK inhibitors on the LMPI expressing mice as a

first step towards developing a therapeutic approach relevant to LMP1 expressing NPC.

The results presented in this chapter suggest that LMPI via TGFa may be signalling to the

tumour suppressor Rassfl possibly via the MAPK pathway. Further work is needed to unravel

the exact mechanism of action of TOFa on Rassfl. If in this system Rassfl acts as a tumour

suppressor, then its decrease in the TGFa null ears could explain the observed worsening in

the ear phenotype.

To summarise, in this system TOFa may act as a control for some of the LMPI mediated

signalling pathways. However, its withdrawal does not lead to any phenotypic alleviation,

instead it has quite opposite effects.
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Chapter 6: Final Discussion

The aim of this project was to investigate the role LMPI CAD plays in the genesis and

development of epithelial tumours such as NPC using transgenic mice as a model. A

considerable amount of information is known about the functions of LMP1, mostly from B

cell studies, whereas very little is known about its role in disease in the epithelium in vivo. A

series of transgenic mice that were generated in the laboratory expressing LMP 1CAD in the

epithelium, under the direction of the viral ED-L2 promoter were used for this study

(Stevenson et. al., in press). The expression pattern of the transgene and the occurring

phenotype was investigated. Signalling pathways activated by LMPI CAD, in the epithelium in

vivo, were examined with an emphasis on the RaslMAPK pathway. In order to deduce

whether LMPlcAO exerts its action via TGFa. upregulation, a TGFa. null mouse strain was

used.

6.1 LMP1cAO as a tumour promoter or initiator?

It has been shown in rat fibroblasts that LMPI acts as a classical oncogene inducing a

transformed phenotype. It has also been shown that LMP 1 expression in the murine

epithelium under the Py promoter leads to epidermal hyperplasia (Wilson et al., 1990). Using

the ED-L2 promoter to direct expression of LMPlcAO to the murine epithelium leads to a

hyperplastic ear phenotype which progresses from benign keratoacanthoma to squamous cell

carcinoma in some cases and leads to spontaneous formation of benign lesions in susceptible

mouse strains as described in this thesis (Stevenson et. al., in press). Genetic susceptibility is

thought to be a risk factor of NPC development. Certain ethnic backgrounds such as

S.Chinese, Alaskan and African Mediterranean populations show an increased risk for NPC.

In the transgenic mouse, the fact that LMP 1CAD led to spontaneous lesions only in a

genetically susceptible mouse strain demonstrates the importance of genetic background to the

action of the primary oncogene of EBV. A previous study in which PyLMP1895-8 mice were

chemically treated showed that LMP1895-8 acts to augment the action of TPA but cannot

replace DMBA in this model of carcinogenesis thus showing that LMP1895-8 is acting as a

tumour promoter (to induce proliferation) and not as an initiator (Curran et al., 2001). Given

the above, it was of interest to explore if LMP 1CAO acts differently to LMP1895-8 in this

respect. IfLMPI CAD could replace chemical initiation in this approach, supply ofLMPI in the
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form of a transgene would make use of a chemical initiator such as DMBA in the process of

chemical carcinogenesis redundant.

The results obtained from this thesis, confirmed that LMPI CAO is acting as a tumour promoter

and not as an initiator in the epithelium in vivo, just as LMPI B95-8. However, the fact that

lesions appear at all on untreated mice, implies that LMPI CAO is supplying a weak initiation

signal. Whether LMP1CAO is more tumourigenic than LMP 1B95-8 is still not clear from these

studies. When L2LMPl 895-8 mice were created, only two founders were born and those had a

severe phenotype and died early before establishing a line. However, the small number of

L2LMP 1895-8 mice generated does not allow for a formative comparison to be made.

Furthermore the fact that no spontaneous papillomas form on PyLMPI895-8 mice does not

necessarily show that LMPI CAO is more tumourigenic. Since the epidermal compartment

where the L2 and the Py transgenes are expressed is unknown, this could be a site specific

effect and not an LMP1 effect. Creating PyLMP1CAO or further L2LMP1895-8 mice would be a

way to directly compare these two LMPI strains in vivo.

6.2 LMP1cAO and INK4a locus

It has been shown in this study using 117/113 mice and in a previous study using 53/113 mice

(Macdiarmid et al., 2003) that loss of the INK4a locus in conjuction with LMPI expression

leads to increased lesion load, with larger lesions and progression to malignancy. These

results imply that there is cooperation between LMPI and loss of either p16INK4a and/or p19ARF

leading to both lesion expansion and conversion. In NPC and EBV associated gastric

carcinoma, loss of heterozygosity on chromosome 9 (a region encoding INK4a, INK4b and

ARF), is an early event that is thought to precede EBV infection. EBV infection has not yet

been identified in pre-malignant lesions of the nasopharynx or the gastric mucosa. This

suggests that loss of heterozygosity of INK4a and/or ARF is predisposing the affected area,

following EBV infection to malignant progression. Consistent with this, the above studies

using 53/113 and 117/113 mice have demonstrated a cooperation between EBV LMPI and

INK4a loss.

Other studies have shown using murine and human fibroblasts that LMPI leads to the

inhibition of p161NK4aexpression and action (Ohtani et al., 2003; Yang et al., 2000a).

However, in the LMPlcAO transgenic epithelium p16INK4a expression is upregulated at the later

phenotypic stages of the affected tissue. This would suggest that this is not a direct LMP1CAO

effect but rather a subsequent response to the developing phenotype. The apparent
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contradictory results described above, may be due to the nature of the studies. For example, it

is possible that in vivo the LMPI induced phenotype leads to pI6INK4a upregulation and thus

loss of p16lNK4ais advantageous in carcinogenic progression whereas in an established

fibroblast cell line in vitro, the growth status of the cell is very different and several

checkpoints have already been overcome by mutation.

In support of this premise, whereby the cellular environment determines the effect LMPI may

have on p16, it has been recently reported that LMPI is not sufficient to inhibit p16lNK4a

expression in LCLs (Hayes et al., 2004).

6.3 LMP1 CAO and the Ras/MAPK pathway

Activating ras mutations are a common feature of many human cancers (Bos, 1989). In NPC

ras mutations have not been found. One hypothesis for this observation is that LMP1 can lead

to activation of ras therefore, there would be no selective advantage for constitutive ras

mutation during tumour development or another hypothesis is that LMPI activation may lead

to ras pathway inhibition. The signalling pathways that were investigated in this thesis

showed that LMPlcAO leads to TGFa upregulation, EGFR activation and subsequent initial

activation of MEK1I2 that is then deactivated, and a continuous activation of ERK1I2 and

several downstream transcription factors. These results have confirmed a previous

observation showing that LMPI led to ERK activation in rat fibroblasts in vitro (Roberts and

Cooper, 1998) and is the first report to show that LMPI activates the EGFRlMAPK pathway

in the epithelium in vivo. It supports previous studies demonstrating that LMPI induced

upregulation of EGFR, correlated with EGFR expression in NPC biopsies and a study that

showed that LMPI regulates EGFR nuclear translocation and therefore its function in HNE2

epithelial cells (Tao et aI., 2005; Zheng et aI., 1994a). As can be deduced from the above,

even though the status of ras in this system has not been specifically investigated, one of its

upstream activators (EGFR) and one of its downstream pathways (MAPK) are activated by

LMPlcAO, possibly suggesting that ras or related protein (eg. Rap) can be activated by LMPI

signalling and thus activating mutations are not selected for in tumourigenesis. In order to test

this, papillomas that spontaneously develop on line 117 transgenic mice could be assayed in

order to identify any ras activating mutations by sequencing. Similar assays could be

performed using lesions that developed on LMP1 transgenic mice after chemical carcinogen

treatment. Absence of ras mutations in the spontaneous lesions, would imply that LMPI CAO
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overrides or inhibits any selection for activating ras mutations in the development of these

lesions.

Incidental evidence comes from the observation that LMPI CAO expression leads to

spontaneous papillomas in line 117mice. Appearance of these lesions suggests that LMP1CAO

could be activating ras or a parallel pathway to a degree even if this activation is not strong

enough to completely replace activated ras. However, not all lesions develop as a result of ras

activation so this is unequivoval. Also when line 53 mice were crossed with transgenic ras

mice the bitransgenic mice developed fewer lesions than the monotransgenic ras mice. Since

LMPI activates the MAPK pathway, supplying an extra proliferating signal by transgenic ras,

could lead to anti-proliferative responses such as upregulation ofp16lNK4a. For example, this

has been seen in line 117 ears where as the phenotype becomes worse, there is upregulation in

the expression ofpl61NK4a and this is mediated possibly via activation of ras. Also another

tumour suppressor that is found to be upregulated as the phenotype worsens is Rassfl. In both

NPC and EBV associated gastric carcinomas, loss of heterozygosity on chromosome 3 that

contains the gene that encodes Rassfl is an early event, prior to EBV infection. Extensive

hypermethylation of Rassfla and its subsequent silencing is also observed. Studies have

shown that activated ras can lead to upregulation of Rassfl. In this study, it was shown that

LMPI leads to Rassfl upregulation via TOFu. Taken together, these data suggest that LMPI

in the murine epithelium in vivo, is activating a key ras signalling pathway and that removal of

growth inhibitors activated by this pathway, such as p16 and Rassfl are critical in LMPI (and

thus EBV) associated carcinogenesis.

6.4 LMP1 CAO and Other Signalling pathways

Other MAPKs such as p38 were found to be activated by LMPI CAO, this being consistent with

the observation that LMPI leads to p38 activation in epithelial cells in vitro (Eliopoulos et al.,

1999). In contrast, even though EOFR was activated, Akt was found to be deactivated by

LMPlcAO, giving the opposite result from what was observed in epithelial cells in culture

(Dawson et al., 2003). It is possible that the PI3K1Akt pathway is not activated by EOFR as

the status of the specific tyrosine needed for Akt activation has not been studied and it may be

possible that activation of the MAPK pathway has opposing effects on PI3K1Aktactivation. It

is possible that in these tissues, EOFR may be sequestered away in a different compartment

and therefore not even basal level Akt activation is observed. Also the fact that Dawson et.
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al., are using carcinoma cells that have already surpassed all the control mechanisms that are

in place in a live, responsive tissue may explain this apparent contradictory observation.

API and NF-KB were found to be activated in the transgenic tissues and it was shown that

LMPIcAO leads to activation of apoptosis (increased caspase-3), activation of tumour

suppressors (p53, Rb and Rassfl) and activation of the invasion pathway (increased MMP9

levels). Activation of Rb by phosphorylation leads to release of E2F that can increase pI9

expression that leads to stabilisation of p53. Both stabilised pS3 and Rassfl activation can

lead to an increase in apoptosis.

A novel effect ofLMPI on the tumour suppressor Rassfl has been observed, showing that one

of the actions of LMP1 may be to keep the proliferation under control. Whereas at the same

time LMPI is activating proliferative pathways such as MAPK, it also leads to increased

expression of Rassfl that has been shown to inhibit proliferation by promoting apoptosis and

cell cycle arrest. This observation is consistent with the smaller size of lesions observed in

mice of line 53 compared to wild type that were chemically treated (Macdiarmid et al., 2003).

This is the first study that examines the action of LMPI CAO in the epithelium in vivo, and as

noted above some opposing results have been obtained highlighting the differences between a

carcinoma cell line that harbours multiple mutations in cellular oncogenes and tumour

suppressor genes and has lost several of its growth control mechanisms and a pre-cancerous

tissue that still has most of the negative feedback loops intact.

When TOFu is removed from this system, an increase in severity of the phenotype is

observed. However, this does not negate any significant changes in the signalling pathways

studied. For example, there is still LMP ICAO induced EOFRJHER2 and MEK 112 activation,

although the latter is to a lower degree. It is possible that TOFu loss is compensated for by

upregulation of other EOFR ligands. For example in a study using murine keratinocytes,

activation of ras was not affected by TOFu loss and other ligands were found to be

upregulated (Dlugosz et al., 1995). In the transgenic tissue it is possible that TOFu is acting

as a regulator of LMPI action, since its removal leads to a worsening of phenotype. By

overexpression of an oncogene such as TOFu, it is possible that cell cycle arrest or apoptotic

pathways are activated. Alternatively removal of TOFu may lead to overcompensation of

other EOFR ligands leading to a stronger proliferative signal. In either scenario TOFu

appears to dampen the consequences of LMP I action indicating that as well as its known

oncogenic role in proliferation it may also serve as a regulator of this activity.
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The exact role EGFR activation plays in murine carcinogenesis is still not very clear. A recent

study has suggested that its role is more important in tumour invasion than in cellular

proliferation (Scott et al., 2004). This would be consistent with the observed upregulation of

MMP9, VEGF (Stevenson et. al. in press) and Fra-l (which was shown to enhance

invasiveness in mammary epithelial cells) (Kustikova et aI., 1998) in the LMP1 transgenic

tissues.

The signalling mechanism that we propose is summarised in figure 6.1. LMPI, activates NF-

KB and API complexes that lead to TGFa upregulation which in tum activates EGFR.

Moreover, EGFR contains NF-KB binding sites in its promoter and it has been shown that

LMPl directly upregulates EGFR via NF-KB (Tao et al., 2004c). EGFR signalling leads to

activation of the MAPK cascade. A possible consequence of this is the observed induction of

JunB, p161NK4aand Fra-I. How this precisely impacts proliferation, apoptosis and invasion is

not clear. TGFa upregulation seems to playa role in controlling LMPI induced EGFR action.

In the viral context, it is possible that LMPI may promote growth pathways and differentiation

of cells in order to support viral production and release. Under normal circumstances, EBV

infected peripheral B cells express only LMP2 and possibly EBNA1but upon a cellular trigger

such as differentiation, EBV may switch into the lytic cycle and produce virions. LMPI is the

only latent protein to be expressed in the lytic cycle, so it may playa role in viral reproduction

in B cells. EBV epithelial infection is a rare event. It is possible that in an epithelial cell

context, LMPI activation of the EGFRlMAPK pathway leading to excessive proliferation of

the epithelium may be an inadvertent consequence of the signalling pathways activated by

LMPI designed to promote the viral life cycle in a B cell.
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Figure 6.1: Possible pathway of LMPI CAO action in line 117 ears.

In the line 117 ear tissue, LMP1CAO activates both NF-KBand AP1 to
increase factor binding to NF-KB and TRE sites (respectively). Binding
elements for both exist in the promoter of the TOFu gene. LMPI CAO
leads to TOFu upregulation probably via activation of the promoter.
NF-KB binding elements also exist in the EOFR promoter possibly
leading to direct upregulation of EOFR expression by LMPI. In
conjuction with TOFu upregulation (and possibly other EOFR ligands)
this leads to an increase in EOFR and HER2 activation. EOFR and
HER2 can form homolheterodimers with each other to activate
downstream pathways. (Other heterodimers with other receptors of the
EOFR family have not been investigated.) One of the pathways
examined was the MEKIERK pathway, where initial activation of
MEK1I2 followed by deactivation in the later phenotypic stage ears was
observed. This suggests that there is a negative feedback loop acting on
MEK1I2 (represented by a dotted line). ERK1I2 is activated by LMPI
and increased binding at SRE containing sites is observed. ERK1I2
activation can upregulate fra-I and p16INK4a• p16INK4a can block Rb
activation. Therefore it is not clear how Rb remains active when
p161NK4a is expressed. It is not known ifLMPl can directly activate Rb
at this stage. Rassfl is upregulated via TOFu but whether this is a Ras
mediated effect is not known. LMPI can activate other MAPKs such
as p38. Another pathway affected by EOFR signalling is the PI3K1Akt
pathway. In ear tissues deactivation of Akt is observed. Note that the
red star implies activation, the blue box deactivation and where the
pathway is not direct from one molecule to the next a dotted line was
used.
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6.5 Future Directions

It has not yet been clarified in exactly which epidermal layer the LMPI CAO and the LMP1895
-
8

transgenes are expressed. It is important to determine this either by IHC or by RNA in situs,

in order to allow a direct comparison of the effect of the two strains to be made. When

L2LMP 1895-8 mice were created, the 2 transgenic pups born died due to a severe phenotype

before a line could be established. This could imply that either the LMP1895-8 variant is more

potent in hyperplasia and apoptosis or that its expression in the specific epidermal layer alters

its effects. This would not be surprising since other oncogenes for example, ras and TOFu

when expressed in different epidermal layers have quite different effects. The small number

of pups created does not allow for a definitive comparison to be made.

It is also important to find out where (epidermal layer or dermis) the different upregulated and

activated products are expressed/present by IHC. For example, an increase in p16 expression

and activation of Rb may not be taking place in the same cells but in different cells of the

tissue. Also MMPs are typically expressed in mesenteric tissues such as dermis and the

observed MMP9 upregulation may not be occurring in the same cells as LMP1 is expressed

but upregulated in a responsive tissue (eg. TOFu can affect neighbouring cells and tissues).

Such a finding, could significantly impact the interpretation of these data.

Further investigation of pathways that could be activated by LMPI CAO is still pending. For

example, the JAKISTAT pathway has not been investigated in this study and is one of the

pathways known to be activated by LMPI in fibroblasts. During the preparation of this thesis,

Chan and co-workers reported that EOFR activation during murine skin chemical

carcinogenesis led to STAT activation, particularly STAT3 (Chan et al., 2004). Since the

STAT pathway is activated by both EOFR and LMPI it would be very interesting to examine

STAT3 levels and activation in the transgenic tissues.

The hypothesis that TOFu loss may be compensated for by the action of the other EOFR

specific ligands needs to be tested by Western blot analysis.

However, even if the other ligands are compensating, their functions are not completely

overlapping as some observations (such as Rassfllevels and Rb phosphorylation) are different

in the absence of TOFu, so it would be interesting to determine what effect the loss of TOFu

will have in spontaneous papilloma formation and how TOFu specifically causes these effects.

So far, the analysis of the effects of TOFu loss in cooperation with LMPlcAO expression, was

performed in tissues that came from mice of mixed strain C57BL/6IFVB and 129 background.
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It has been highlighted extensively in this thesis the effect that strain background can have on

the phenotype. It would therefore be interesting to bring the 117/125 mice into the FVB strain

and observe whether loss of TOFu leads to any changes in the spontaneous lesion formation.

It is predicted that possibly there would be an increase in the number of papillomas observed

compared to 117mice.

Examining the activity of ras and related proteins such as Rap in the 117 mice is important.

This could be done by sequencing of spontaneous papillomas as described before or by assays

measuring the ratio between Ras-OTP and Ras-ODP. For example, use of the Ras binding

domain of Raf-I preferentially binds Ras-OTP precipitating it from cell suspension (de Rooij

and Bos, 1997). Determining whether Raf-I, Braf or Araf is involved in MEK activation is

also of interest and this can be done by further controlled Western blots using the appropriate

antibodies. Mutated forms of Braf have been shown to lead to increased ERK activation from

Rap. It would be interesting to determine whether Braf in the transgenic tissues is activated.

Further examination of the PI3K1Akt pathway would be informative. For example only

OSK3f3 has been examined so far whereas other downstream targets such as Bad have not

been examined. Examining the status of the specific tyrosine of EOFR responsible for

activation of PI3K1Akt by Western blot would clarify whether the Akt deactivation observed

is due to the tyrosine not being activated. It would also be interesting to deduce in which

cellular compartment activated EOFR goes.

So far, the most striking difference observed between LMPI transgenic TOFu wild type and

null ears lies in the decreased levels of Rassfl observed in the TOFu null ears. It is known

that Rassfl a expression is silenced not only in NPC but in a variety of other human tumours.

The mechanism of action of Rassfl a is not entirely clear and it would be important to

investigate the relationship between TOFu expression and Rassfl. It has been recently

suggested that Rassfl is involved in the TOFf3/Smad signalling pathway and so investigation

of the status of this pathway in line 117 and 117/125 tissues would be informative. When

exogenous Rassfla was transfected into epithelial nasopharyngeal carcinoma cells lacking

Rassfla and an oligonucleotide array was performed. it was shown that expression of Rassfla

led to an increase in arrestin beta E - a TOFf3/Smadpathway effector, and downregulation of

inhibitor of differentiator (Id) 2 - a TOFf3/Smad downstream target (Lo KW Oral

presentation). Ids (1-4) bind to E proteins and prevent them from binding to DNA thus

inhibiting regulation of expression by E proteins. Ids are downstream targets of the MAPK

pathway as well and it will be very interesting to investigate Id levels in the transgenic tissues
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to see if these observations correlate in the epithelium in vivo (reviewed in (Ruzinova and

Benezra,2003). One might predict that Id2 may well be downregulated in the transgenic

tissues as they show overexpression of Rassfl. It has been shown by two groups that LMPI

leads to upregulation of Id1 and Id3 in epithelial cells in culture (Everly et al., 2004; Li et al.,

2004). It is possible that LMPI in the transgenic tissues, leads to Idl and 3 upregulation thus

preventing E2A binding to transcription factors and activating p 16. Inhibition of p16 allows

Rb phosphorylation.

With respect to potential therapeutic approaches the future plan is to treat mice of lines 117

and 117/125 with EGFR chemical inhibitors either by topical application or in drinking water

in order to assess the therapeutic potetial in targeting inhibition of the receptor.

Clearly, TGFa removal alone does not lead to an alleviation of the observed phenotype. On

the contrary it seems to accelerate the phenotype. It is therefore, important not to target

ligands with therapies without this kind of in vivo analysis. Moreover, targeting receptors

should be fully investigated before taken to clinical trials. For example, Iressa™ (an EGFR

inhibitor developed by AstraZeneca) is not increasing survival rate in non-small cell lung

cancer and its action in vivo models may not have been fully explored. However, it does show

some benefit such as tumour shrinkage and its efficacy in other types of cancer is still under

investigation. Therefore, caution needs to be taken before inhibiting a pathway as the opposite

results may be obtained.

In conclusion, the above study has highlighted the critical role that examination of an in vivo

model plays in order to correctly target a factor for therapy. As was concluded, complete

withdrawal of the ligand that was proposed to cause or contribute to the phenotypic effect not

only did not alleviate the phenotype but led to its worsening highlighting the fine tuning of the

homeostatic controls that are in place in a living tissue. As such, before any potential

therapies are taken to human trials, a thorough examination in suitable in vivo models would

be highly advisable.
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Appendices

Line, ID, Tissue Description
Transgenic
Status
105A.l74 Thymus Lymphosarcoma. The architecture of the thymus is
LMPlcAo+ replaced by dense sheets of large neoplastic
Wasting lymphocytes that have large round nuclei, a high
phneotype ratio of nucleus to cytoplasm and 10 to 20 mitoses

per high power field. Frequent apoptosis creates a
"starry sky" pattern.

Glandular Lymphosarcoma. The base of the lamina propria is
stomach infiltrated with large neoplastic lymphocytes similar

those infiltrating the thymus.
Tongue Unremarkable
Forestomach Bacteria are adherent to some segments of the

surface of the epithelium in the forestomach.
Trachea Unremarkable
Thyroid
gland
Muscle
Junction of Lymphosarcoma. The base of the lamina propria of
forestomach the glandular stomach is infiltrated with large
and neoplastic lymphocytes similar those infiltrating the
glandular thymus.
stomach
Liver Lymphosarcoma. Portal areas and sinusoids in all

areas of the liver are densely infiltrated with large
neoplastic lymphocytes similar those infiltrating the
thymus.

Spleen Lymphosarcoma. The white pulp and multifocal
locally extensive areas of the red pulp of the spleen
are infiltrated with large neoplastic lymphocytes
similar those infiltrating the thymus.

Lymph node Lymphosarcoma. The architecture of the lymph
node is effaced by sheets of large neoplastic
lymphocytes similar those infiltrating the thymus.
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117.44 Lymph node Reactive lymph node. The lymph node has
LMPlcAo+ multiple active lymphoid follicles with well-

defined mantles and germinal centres. There is
hyperplasia of the paracortical zone with frequent
apoptosis, producing a "starry sky" pattern.
Medullary cords are filled with plasma cells. The
lymph node is reactive. There is no evidence of
neoplasia.

117.30 Ear Keratoacanthoma and Squamous cell
LMPlcAO + carcinoma. A proliferative epidermal mass

consists of an irregular, central crateriform
depression lined by stratified squamous
epithelium and filled with keratin laminae,
degenerate cells and scattered colonies of
bacteria. Multiple islands and cords of squamous
epithelial cells with 1 to 3 mitoses per high
power field and central keratinisation extend into
the surrounding dermis. Microabscesses are
formed by exudation of neutrophils in the centre
of many epidermal islands. There are infiltrates
of neutrophils, lymphocytes and plasma cells in
the surrounding dermis, along with mild fibrosis.
Immunohistochemistry for cytokeratins 1 reveals
staining of spinous and granular layer epithelial
cells in proliferating islands and cords.
Immunohistochemistry for vimentin' is
uninformative.

117/113.31 Papilloma size> 4 Squamous cell carcinoma. There is
LMPlcAO + / downgrowth of cords and islands of stratified
INK4a -/- squamous epithelial cells with a prominent

granular cell layer and central keratinisation.
Intermixed with these moderately well-
differentiated cells, there is proliferation of cords
and sheets of poorly differentiated squamous
epithelial cells that have pleomorphic, ovoid
nuclei, open heterochromatic chromatin,
eosinophilic nuclei, variable amounts of
eosinophilic cytoplasm and 2 to 4 mitoses per
high power field. Proliferation of spindle-shaped
cells with a fibroblastic appearance is also
evident. Hyperkeratosis and serocellular crusting
is evident on the surface of the skin.
Immunohistochemistry for cytokeratins reveals
staining of spinous and granular layer epithelial
cells in the epidermis and proliferating islands
and cords of cells in the dermis, as well as poorly
differentiated sheets of spindle-shaped cells,
supporting a diagnosis of poorly differentiated
squamous cell carcinoma. Immunohistochemistry
for vimentin is uninformative.

345



117.23986 Skin: Ear A Keratoacanthoma. Early squamous cell
LMP1cAo+ carcinoma. Ulcerative dermatitis. The skin of

the ear has segmental acanthosis and marked
hyperkeratosis, with localized downgrowth of
cords and islands of epidermal cells that have
concentric foci of keratinisation. At one margin
of this proliferative lesion, there is shallow
downgrowth of irregular cords of squamous
epithelial cells into the underlying dermis. The
squamous epithelial cells have evidence of
keratinisation and there are 1 to 2 mitoses per
high power field. There is extensive segmental
ulceration, with necrosis, exudation of
neutrophils, formation of a serocellular crust and
proliferation of coccoid bacteria. Locally
extensive fibrovascular hyperplasia is evident in
the underlying dermis, along with diffuse
infiltration by neutrophils and lesser numbers of
lymphocytes, plasma cells and other
inflammatory cells. This lesion appears to be a
shallow keratoacanthoma that has been
traumatised, leading to extensive ulceration,
formation of granulation tissue and secondary
growth of bacteria. There is early transformation
to a squamous cell carcinoma.

Appendix 1: Histopathology analysis of tissues from lines 105A, 117 and 117/113 mice

The above table shows the results of histological examination obtained from tissues of several

transgenic mice from lines 105A, 117 and 1171113.
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MouseID Age in Age in weeks Week of first Max number of
weeks at of last count papilloma papillomas
start of
count

1 6 65 0 0
2 6 65 6 3

3 6 65 6 4
4 6 42 7 3

10 6 15 0 0
11 6 15 0 0
12 6 15 0 0
13 6 39 6 1
14 6 55 29 2
15 6 55 55 1
16 6 17 0 0
30 6 65 21 1

31 6 65 0 0
37 6 65 24 6
38 6 65 27 1

39 6 65 0 0
40 6 60 0 0
41 6 55 0 0
44 6 15 9 2
45 6 46 9 4
46 6 65 9 3

Appendix 2: Spontaneous lesion recording of transgenic mice of line 117

The table above is showing the identification number, the age of the mice, week of first

papilloma appearance and the maximum number of papillomas that each mouse developed

during the 59 weeks of observation.
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Mouse Id Genotype Ear phenotypic Age

LMPI TGFa stage (months)

117.22152 (BK6) - +1+ Cl 1

117.22151 (BK6) + +1+ 1 1

117.23549 (BK6) + +1+ 2 3

117.24882 (BK6) + +1+ 3 4

117/125.56 + +1+ 3 4

117/125.A404C - -1- Cl 1.5

117/125.M23277A - -1- C4 2.5

117/125.A404 + -I- I 1

117/125.24789A + -1- 2 2

117/125.23995A + -1- 4 2.5

117/125.55 + -1- 3 4

117/125.67 - +1- C4 4

117/125.58 + +1- 4 4

Appendix 3: Details of the mice used for the western blotting experiments in chapter S.

The table above is showing the mouse identification number or batch number, their genotype,

phenotypic ear stage and age at which they were sacrificed. Transgenic positive mice for

LMPlcAO are indicated by (+), transgenic negative by (-). Null mice for TOFu are indictaed

by (-1-),heterozygotes by (+1-) and wild type by (+1+).
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