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“If knowledge can create problems, it is
not through ignorance that we can solve
them.”

ISAAC ASIMOV

(1920 - 1992)
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Abstract

The context of this thesis surrounds the development and study of the effectiveness of

three mechanical-to-electrical energy converter concepts that are based upon oscillatory

systems with a view of discovering techniques to enhance their normal functioning

throughputs.

The field of energy harvesting has experienced significant growth over recent years

with the increased popularity of portable electronic devices and wireless sensors.

However, with demand, so too rises the need for increased operating lifetimes not

only for extended use for some personal devices, but also to reduce the frequency of

periodic battery replacements for remote sensors that may be deployed in potentially

hazardous environments.

In light of this need, the proceeding chapters will discuss the development of three

conceptual energy harvesters. The first is based upon a simple Euler strut that

is intended to harvest known steady-state periodic vibrations applied axially to the

beam. The assumption here is that the periodic vibrations would arise from ambient

conditions, whether naturally occurring or as a form of waste energy from man-made

structures. This concept has built into it the facility to apply a static axial pre-load

with which, it will be shown, can be used to passively enhance the energy throughput

of the device.

However, it will also be shown that the periodic concept has an inherent sensitivity

to excitation frequencies, where even minor shifts can result in significantly reduce

outputs. To this end, the second harvester was proposed to relieve this limitation

by instead harvesting stochastic inputs. With this in mind, the new concept is again

based upon a simple and realisable Euler strut but with the stochastic input applied

laterally to the supporting structure. By retaining the facility to apply both static and
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dynamic axial loads, it will be shown that the cumulative effects of the deterministic

and stochastic input can be manipulated to actively enhance the throughput of this

system also. However, given the active nature of this form of control that will consume

work during its implementation, an approach for ensuring that the net energy will be

reduced by this additional work will be discussed. In this way, a conservative estimate

of the harvestable energy may be made.

The final energy harvester to be discussed is based upon a planar pendulum that can

integrate mechanical accelerations out of the full three degrees of freedom realisable by

planar constructs. This begins with the development of a suitable approach to applying

rotational excitations to the device, followed by the development of a set of loading

terms used to represent the resistive torque that would be exerted upon the system by a

suitable power take-off device. This is followed by a comprehensive parameter study of

the proposed concept with a mindset towards optimising the operational performance

of the device.
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f(0) = 0.00001m, ḟ(0) = 0rad/s and 37 ≤ t ≤ 40s. . . . . . . . . . . . . 49

2.8 Instantaneous power dissipated by βḟ 2 where Pcrit = 0.055N, Pdynamic =
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Nomenclature

a static displacement
A cross sectional area
c linear viscous damping
E Young’s modulus
E(t) instantaneous energy
Eacc accumulated energy
Etotal(t) total energy
f dynamic displacement
g gravity
I second moment of area
k fundamental stiffness
l length
LFourier external load
Lsquare external load
m mass
M bending moment
N(t) stochastic input
OXZ absolute frame of reference
P (t) instantaneous power
Pcrit critical buckling load
Pdynamic(t) dynamic axial load
Pnet(t) instantaneous net power
Pstatic static axial load
pxz body frame of reference
p′x′z′ secondary body frame of reference
q additional load per unit length
Qφ generalised force
t time
tn end time
t0 start time
T kinetic energy
T0 external torque
T1 external torque
Tp external torque
u(t) horizontal translation
U potential energy
U0 magnitude of horizontal excitation
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v(t) dynamic lateral displacement as measured from initial
unstressed pre-curvature

vstatic unstressed pre-curvature position
V (f) effective potential
w(t) vertical translation
W0 magnitude of vertical excitation
x longitudinal position
α phase angle
δ user quantity selecting work done
δa definition of δ by McInnes et al (2008)
δa definition of δ by the author
ζ damping ratio
λ(t) rotational excitation
λ0 magnitude of rotational excitation
ξ damping ratio
ρ density
τ torque generated by gravity acting upon an end mass
φ(t) angular displacement

φ̇(t) average angular velocity
ψnoise average magnitude of white noise
ωn fundamental natural frequency
Ω modulating/excitation frequency
Ωu horizontal excitation frequency
Ωw vertical excitation frequency
Ωλ rotational excitation frequency
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Chapter 1

Introduction

Modern conjecture reserves the use of the term energy harvesting or energy scavenging

to describe the process by which energy is harvested from ambient resources such as

wind, solar radiation, thermal gradients and vibrations/motions to be either stored

or used directly to power low-energy electronics (typically in the microwatt region).

This field has seen considerable interest in recent years due to advances in wireless and

micro electro-mechanical systems (MEMS ) technology that has driven the demand

for a new age of portable electronics and wireless sensors. However, the conventional

power supply for such devices has thus far typically come from batteries which have

to be incorporated into the design of said device. Batteries present a number of

fundamental problems that researchers have long sought to overcome, namely, they

restrict miniaturisation and have an inherent finite lifespan that once consumed,

requires either recharging or disposal (leading often to the release of toxic chemicals

into landfill sites).

To put this into perspective, consider batteries as the power supply for a wireless

sensor node that is deployed in a remote, possibly hostile location. Once the stored

energy within the battery has been depleted, there is often no option but to recover

the device physically to replace the power supply, often at great inconvenience and

significant costs [1–4]. Consider also the rising consumer trend to produce portable

devices that are smaller and lighter with increased battery lives. It is often the battery

power supply for these devices that accounts for the majority of the volume and mass [5]

and still, with each technological iteration that inevitably supports greater processing
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powers (consuming more power) the demand for extended battery life increases also [3].

Addressing these concerns, modern energy harvesting techniques now offer a method

for autonomous battery recharging and in some situations even eliminate the need for

batteries altogether, thus indefinitely extending the lifetime of these devices [6].

Strictly speaking however, energy harvesting on the macro-scale (or energy

conversion as it shall be referred to as) has been exploited by humans for centuries if one

considers the use of watermills and windmills [5,7]. In these situations the mechanical

energy from the flow of water in a river, or the wind across a field, was captured

and put to serviceable use for simple tasks such as the grinding of flour and crushing

ore that would normally required considerable physical effort. Today, this practice

has advanced considerably to include devices capable of harnessing natural renewable

resources such as biomass, wind, geothermal, solar, hydropower etc. [8] to be converted

into useful electrical power typically in the range of kilowatts to gigawatts [8–10]. These

are usually referred to as renewable energy devices and are considered vital in the effort

to address the effects that carbon emissions from burning fossil fuels is having upon

the CO2 levels within the atmosphere (whilst providing an alternative power supply in

light of ever increasing fuel and energy prices) [11,12].

The following thesis will explore and develop a number of energy harvesting

strategies aimed at converting mechanical accelerations from ambient conditions. To

this end, the first body of work deals with the proposal and development of an Euler

strut based energy harvester that can be excited axially by known steady-state periodic

vibrations. Initially this system exists in a uni-stable state, but it will be shown that

with the careful application of a static axial load, a pre-curvature can be applied to the

beam. The result of this is a bistable system that, if controlled properly, can cause the

periodic vibrations to initiate regular jumps between both potential wells such that the

response will be greatly enhanced. This would be considered a form of passive control

and would not therefore require continual power to maintain the enhanced state of

performance.

However, as will be shown, such a device will be inherently sensitive to excitation

frequencies, and if these were prone to drift then the response of the system may

become compromised. This effectively limits the potential application of the harvester
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to scenarios with known and stable vibrations. In an attempt to relive this limiting

sensitivity, effort is then focussed upon the concept of a stochastically resonating

device. This is an attractive solution because stochastic vibrations may be more

readily available from ambient conditions. Furthermore, the concept only requires

minor modifications to the periodically excited Euler strut, where instead the periodic

forcing terms are used to actively modulate the beam as it is excited laterally by the

stochastic input. It will be demonstrated that by forcing the system into a bistable

state again with the application of a static pre-load, the coupling behaviour can be

manipulated such that the deterministic and stochastic inputs will culminate in a

stochastically resonant oscillator. Under such conditions the response of the system

is enhanced and the net available energy for harvesting can be greatly offset from the

energy required to actively modulate the beam.

The final body of work of the thesis focusses on the development of a novel

pendulum-based energy harvester aimed at harvesting the rectified output produced by

accelerated motion acting upon the concentrated end mass from the realisable degrees of

freedom. This study focusses upon the planar pendulum with the understanding that it

can be later expanded into a full spherical pendulum system. First, various approaches

for accurately describing rotational excitations of the pendulum are examined, followed

by the introduction of a suitable set of external loading terms to represent the resistive

torque of a generated by a power take-off device. This is then concluded with a

comprehensive parameter study aimed at optimising the energy throughput of the

system.

However, prior to the actual thesis research material, it is appropriate to provide an

understanding of the broader field of energy harvesting in order to establish a context

for the greater discussion. Therefore, the proceeding chapter will briefly explore the

fascinating history behind some of the fundamental principles of energy harvesting.

This will be followed by a discussion of available energy resources with a review of the

state-of-the-art technologies for exploiting these. An emphasis upon vibration/motion

based techniques will be given to reflect the topic of this thesis.
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1.1 A Brief History of the Origins of Energy Har-

vesting

If we consider the use of energy harvesting to harvest energy in the form of useful

electrical power from a natural resource, then the first documented observation of this

dates back to 1826 when Thomas Johann Seebeck discovered that a current would be

induced in a circuit made of two dissimilar metals which are maintained at different

temperatures [7, 13]. This suitably became known as the Seebeck effect. Without

this discovery and the subsequent development of the thermoelectric effect in the

proceeding three decades, the field of thermometry, aspects of power generation and

even alternative refrigeration (for which thermoelectric cooling is the most established

method) may have been setback years. Then in 1911 E. Altenkirch derived the

thermoelectric efficiency that paved the way for decades of scientific and technological

progress [14].

Not long after Seebeck’s discovery, Edmund Becquerel discovered the photovoltaic

effect in 1839 whilst experimenting with an electrolytic cell comprising of two metal

electrodes [7,15,16]. But it was not until 1883 that Charles Fritts had the mind to melt

selenium into a thin sheet on a metal substrate and press an silver-leaf on as the top

contact. By doing so, Fritts noted that “the current, if not wanted immediately, could

be either stored where produced, in storage batteries...or transmitted a distance and

there used” [17]. This was perhaps the earliest example of PV technology applied to

energy harvesting. The modern era of PV technology arose in 1940 when Russell

Ohl at Bell Telephone Laboratories in New Jersey, discovered by accident that a

piece of selenium generated a voltage when a flash light was shone onto it [18].

Further investigation led to the development of the p-n junction that, together with

improvements made in the techniques for preparing selenium material, allowed for huge

advancements to be made in solar cell performance throughout the 1950s [7, 17,18].

Hans Christian Oersted made a discovery in 1820 that an electric current flowing

through a wire could exert a influence upon a neighbouring compass needle [19].

This was an early demonstration that an electric current possessed the properties

of magnetism and was the driving force behind a decade of rapid research into the
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phenomenon by individuals such as Michael Faraday, André-Marie Ampére and James

Clerk Maxwell [20]. However, it was not until 1831 that Faraday made the discovered

that a moving magnet is also capable of producing an electric current [21] and hence

the principle of producing electricity from magnetism, or electromagnetism, was born.

The discovery that energy could also be harvested in the form of charge was made

in 1880 by the Curie brothers who predicted and proved experimentally that when

particular crystals are subjected to a mechanical stress, they exhibit a surface charge

[7]. This effect became known as piezoelectricity. However, with electromagnetism

dominating the markets at the time, it was not until 1921 with the development of

quartz crystal stabilised electrical oscillators that major improvements in piezoelectric

devices were made. In 1924 radio transmitters with crystal stabilised oscillators were

placed into service and by the end of the 1930s all high frequency radio transmitters

were built with this technology [22, 23]. However, the strength of piezoelectric devices

was made clear in 1946 after the demonstration that barium titanate ceramics, a

ferroelectric, could be easily fabricated at low costs and be made piezoelectric via

an electrical poling process [23].

Electrostatic generators are another method for producing electrical charge, the

principles of which we are all made aware of as children with simple experiments

involving nylon rods and synthetic cloths (and dare I say it, rubbing a balloon against

ones head). Otto von Guericke can be credited as the inventor of the first electrostatic

generator in 1663 who achieved charge separation by friction on a rotating sulphur

sphere [24]. Variations of his machine were produced throughout the 18th and early

19th century, but in 1775 Alessandro Volta invented a device based upon electrostatic

induction. This was the principle that later superseded friction based electrostatic

generators in the 1860s when August Toepler and Wilhelm Holtz invented plate

induction machines [25]. Then in 1883 James Wimshurst built a new generator that was

considered the culmination of all induction-based electrostatic generators and played an

important role in producing electrical discharges in vacuums and X-rays for radiography

and electrotherapy [24,25].
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1.2 Resourcing and Exploiting Energy Harvesting

The principles of piezoelectricity, electromagnetism, photovoltaic and thermoelectric

effects have all played their part throughout history and yet, still today in their more

advanced forms they remain vital to the understanding and advancement of modern

energy harvesting. It is the inherent mechanisms behind these principles that have

allowed scientists and engineers to developed more effective approaches capable of

capturing energy from ambient resources to be transduced into the more useful form of

electrical power for either storage or direct exploitation. From Table 1.1, Roundy et al

(2005) [1] demonstrate how these types of energy harvesting devices compare to other

perhaps more established power sources, and provides an indication of the available

power there is to be captured from various ambient conditions.

Power Source Power
(µW)/cm3

Energy
(Joules)/cm3

Power
(µW)/cm3/yr

Secondary
Storage
Required?

Voltage
Regula-
tion?

Primary Battery N/A 2880 90 No No
Secondary
Battery

N/A 1080 34 N/A No

Micro Fuel Cell N/A 3500 110 Maybe Maybe
Ultracapacitor N/A 50-100 1.6-3.2 No Yes
Heat Engine 1x106 3346 106 Yes Yes
Radioactive
(63Ni)

0.52 1640 0.52 Yes Yes

Solar (outside) 15000A N/A N/A Usually Maybe
Solar (inside) 10A N/A N/A Usually Maybe
Temperature 40A,B N/A N/A Usually Maybe
Human Power 330 N/A N/A Yes Yes
Air Flow 380C N/A N/A Yes Yes
Pressure
Variation

17D N/A N/A Yes Yes

Vibrations 375 N/A N/A Yes Yes

Table 1.1: Comparisons of energy and power sources as originally reported by Roundy
et al (2005) [1];
A Measured in power per cm2 instead of power per cm3,
B Demonstrated from a 5◦C temperature differential,
C Assuming an air velocity of 5m/s and 5% conversion efficiency,
D Based on 1 cm3 closed volume of He undergoing a 10◦C change once a day.
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1.3 Energy Harvesting from Temperature Gradi-

ents

Thermoelectric generators (TEGs) possess several distinct advantages over other

technologies for energy harvesting purposes, including:

• Possess no moving parts (therefore low maintenance and silent in operation).

• High operating life (known to exceed 100,000 hours of steady-state operation).

• Can function in severe environments.

• Do not require any periodic replenishment of materials during operation.

These devices operate in the Seebeck mode where thermoelectric circuits convert

thermal energy into electrical energy [26, 27]. A simple construct of a thermocouple

is shown in Fig. 1.1, consisting of two pillars made of a thermoelement connected in

series by a metallic conducting strip (typically copper) [13, 28]. When a temperature

gradient exists between the top and the bottom of the pillars a voltage will develop

across points (a) and (b), given by:

V = α1∆T− α2∆T (1.1)

where α1 and α2 are the Seebeck coefficients.

In the case where the pillars are made of p-type and n-type semiconductors in light

of their large Seebeck coefficients, opposing doping can be used to make the Seebeck

coefficients for each of the pillars themselves opposing. From Eq. 1.1 it can be seen

that the effect of this would be to sum the contributions from both pillars to the voltage

produced across (a) and (b) [13].

In situations where thermoelectric generators are used for energy harvesting, a

large number of thermocouples will be connected electrically in series and thermally
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Figure 1.1: Schematics of a simple thermocouple capable of producing voltages in the
presence of temperature gradients.

in parallel in order to create a multicouple thermoelectric module, or for applications

in calorimetry, a thermopile [13, 27, 29]. Unfortunately, the relatively low efficiency

of typical thermoelectric generators of approximately 5% [27, 30, 31] has limited their

use to specialised fields such as the military, medical, remote power and even space

applications. However, as cited by Thacher et al (2007) [32], interest has been revived

in recent years with the development of thin-film quantum well materials used to

manufacture thermocouples which boast potential efficiencies of approximately 22-24%.

This, together with the realisation that in situations where energy in the form of heat is

usually wasted, the low operating efficiency of these devices is no longer an overriding

factor.

Yang (2005) [33] goes on to report that for typical gasoline internal combustion

engine vehicles, only about 25% of the energy released by the fuel is used for the actual

vehicle mobility and accessories, with the remainder lost by waste heat, friction and

parasitic losses. An example of the waste heat generated by specific components of a

large US army truck diesel engine was reported in [31], originally compiled by Bass et

al (1991), and which is reproduced in Table 1.2.
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Source Max’ Temp’ ◦C Power Available kW Fluid Flow Rate
Radiator 95.6 144 Coolant 369 L/min
Inter-cooler 134.4 89 Air 39 Kg/min
Lubricant Oil 118.3 29 Oil 123 L/min
Turbo Exhaust 460.0 315 Gas 40 Kg/min

Table 1.2: Waste heat inventory of a US Army truck diesel engine (Bass et al (1991)).

Recent studies by Thacher et al (2007) [32] demonstrated promise in increasing the

overall efficiency of automotive engines by harvesting the waste heat of exhausts, but

they found this to be highly dependent upon a number of factors including thermal

management where insulating the exhaust and lowering the coolant temperature

dramatically affected power production. Other limitations include the availabilty of

space in the underbody of the vehicle. Indeed, this observation was corroborated by

Karri et al (2011) [34] who employed a modeling approach in their research and were

only able to report 5.3-5.8kW power production under optimised conditions, resulting

in fuel savings of approximately 3%.

Of course, it is possible to apply a similar approach for harvesting waste heat,

but instead on an industrial scale where available space is not an overriding factor. A

review by Riffat et al (2003) [27] cited studies undertaken by Yodovard et al (2001) [35]

to assess the potential to harvest the waste heat generated by diesel cycle and gas

turbine cogeneration in factories across Thailand. It was estimated that the diesel

cycle and gas turbine cogeneration systems produced electricity at 40% and 30%

efficiency, respectively. The useful waste heat from the stack exhaust of these systems

was estimated to be approximately 20% for the gas turbines and 10% for the diesel

cycles, resulting in a potential net power generation of approximately 100MW.

Riffat et al (2003) [27] also highlight the fact that despite advancements in ther-

moelectric design, these generators still dissipate significant amounts of unconverted

heat. The concept of symbiotic generation has the potential to address this and fulfil

dual purposes; power generation and heat exchanging. A schematic of a symbiotic

thermoelectric generator is shown in Fig. 1.2 and works on the premise that the heat

which is not transduced into electricity due to inherently low conversion efficiencies, is

diverted and used as a preheat instead of simply being discharged to the environment.
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In the example of a central heating system in a domestic home, the diverted heat could

be used to preheat radiator fluid, thus reducing the work needed by the conventional

system to bring the fluid to the desired temperature. This concept of energy-harvesting

devices being able to provide multiple functions is an increasing trend, where normally

low conversion efficiencies are offset by an increase in functionality.

Figure 1.2: An example of a symbiotic thermoelectric generator operating as a

fluid preheating/parasitic generation device. Dissipated heat for the thermoelectric

generator is used to preheat the fluid [27].

1.4 Energy Harvesting of Solar Power

Solar cells are devices that convert solar radiation, or light energy, into electrical energy

[36]. In fact, in the realm of renewable energies, the sun possesses the greatest potential

of all by delivering approximately 124PW (PW= 1015Watts) globally to the surface of

the Earth. Put into context, this is approximately eight thousand times greater than

the total world energy consumed in 2004 [37].

The term used for solar radiation striking a surface is insolation, and does of course

vary over time across the Earth’s surface due to multiple factors; geographical locations

(longitude and latitude), localised weather conditions, the distance between the sun

and the Earth, and the availability of daylight are to name but a few [36,38–41].

A photovoltaic (PV) solar electric system can be used to harness this abundant

energy source, and in its basic form is made up of individual solar cells. When photons

strike a solar cell like the semiconductor P-N junction in Fig. 1.3, they are either

reflected, absorbed, or pass straight through the cell. Any absorption of the photon

will result in the generation of an electron-hole pair that when separated across the

P-N junction, will result in an electric potential difference across the interface [16, 43]
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Figure 1.3: A typical solar cell arrangement as originally depicted by Gordon, J. &
Society, I. S. E. (2001) [42], with a thin sheet semiconducting material into which the
P-N junction has been formed.

and hence is the mechanism by which energy is converted. Each individual PV cell

will typically produce half a volt of energy, but by connecting them together in series

on the solar panel higher voltages may be generated [44,45].

A comprehensive review of PV technologies conducted by Chaar et al (2011) [45]

discussed four current major types of photovoltaic technologies, which are:

• Crystalline

• Thin film

• Compound

• Nanotechnology

The first generation of PVs were made of crystalline structures, the most dominant

of which was arguably silicon [36, 37, 43]. Rather than becoming obsolete over the

years, Chaar et al (2011) [45] report that instead the technology was constantly being

developed to increased its capabilities and ultimately its efficiency. This has led to the

development of mono-crystalline, poly-crystalline and emitter wrap through cells, all

of which fall under the category of silicon based PVs [45].

Thin film technologies are considered as the second generation of PV cells, and are

based upon thin layers (< 10µm thick) of semiconducting materials backed onto a solid

material such as glass or stainless steel using sputtering techniques. This has allowed

for the amount of semiconducting material to be greatly reduced as compared to silicon
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based cells, and so reduces production costs [45,46] and even opened up the capability

of producing flexible PV modules.

Whilst it is true that the thinner layers used in these technologies does lead to less

photovoltaic material available to absorb the incoming photons, the ability to deposit

on many different materials can in fact lead to improved efficiencies [45]. Barnett et al

(2001) [47] managed to produce thin film devices with power conversion efficiencies >

19%, which at the time of publication were considered to be the highest independently

recorded performances for a thin film silicon layer on a ceramic substrates by utilising

light trapping and back-surface passivation approaches [47].

Figure 1.4: Schematic of a multi-junction (dual) solar cell stacked in the P-I-N
configuration with two electrical terminals as produced by McEvoy et al (2012) [48],
where light first enters the top sub-cell and any light remaining enters the below
sub-cell. With the two sub-cells being electrically in series, the same current will
subsequently circulate through each of them.

Compound solar cells (also know as tandem or multi-junction solar cells) are the

evolutionary next step of single-junction cells that have been developed to overcome the

relatively low efficiencies and poor stability problems of previous technologies [49]. By

stacking crystalline layers with different band gaps in a manner similar to that shown

in Fig. 1.4, such devices can be tailored to absorb most of the solar radiation present

at the site of deployment. Using this approach, efficiencies as high as 39% have been

recorded with gallium arsenide (GaAs)/indium gallium phosphide (InGaP) multiple-

junction devices [45]. However, due to the increased complexity of these devices in
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both design and manufacture, the associated costs are appropriately increased, but

often this will be offset by the gains in operating efficiencies [50].

The inclusion of nanotechnology in PV cells provides methods for enhancing the

effective optical paths for photons and decreases the likelihood of charge recombination

events (a process that results in the annihilation of free charge carriers in the

semiconductor) [51]. They also afford the ability to control the energy band-gap thus

providing both flexibility and interchangeability [45] in design. Two types of nano-

technologies that are receiving significant interest are: carbon nanotubes that can be

used to increase the surface area able to produce electricity [45]; and quantum dots

that are very effective light emitters and can subsequently increase the device efficiency

by adapting to the incoming light spectrum [51]. Other branches of nanotechnology

are dye-sensitized cells which include photoelectrochemical cells [43], polymer cells and

nanocrystal cells, which together with quantum dot technologies are broadly considered

as the third generation of photovoltaics [51]. This demonstrates the growing interest

in the field of solar energy harvesting and should lead to the technology being adopted

for more and more applications.

1.5 Energy Harvesting of Vibrations and Motion

Mechanical vibrations are considered by many to be one of the most effective methods

for implementing energy harvesting devices [4]. As an ambient energy source, these

vibrations and accelerated motions are widely available, easily accessible and often

have need of portable or wireless devices. An example of this could be bridges, tunnels

or buildings where autonomous structural sensors are required to assess continually

the vibration levels and the integrity of the structure whilst at the same time, being

powered by those same vibrations, and transmitting data via wireless link for processing

[4, 52,53].
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1.5.1 Vibration-Based Transducers

A means to recharge or replace batteries that have up until now been the primary

power supply for wireless sensors and portable electronics has long been searched for.

By employing suitable transducer technology, researchers have been able to build and

test mechanical vibration-based generators capable of harvesting ambient vibrations to

generate more useful electrical energy. As concluded by Roundy et al (2005) [1], the

most effective transducer will often depend on the specific application and researchers

will often compare these transducers based upon their inherent energy storage density.

The three basic types of vibration based transducers have been compared by this

method in Table 1.3, and typical characteristics of each of these are listed in Table 1.4.

Type Mechanisms Involved Practical
MaximumA

(mJ/cm3)

Aggressive
MaximumB

(mJ/cm3)
Electromagnetic A magnet acting as a proof

mass passing a coil to induce
a voltage.

24.8 400

Piezoelectric Employs piezoelectric mate-
rials capable of converting
induced strain into electricity.

35.4 335

Electrostatic Induces a voltage when the
distance or overlap of two
electrodes of a polarized ca-
pacitor changes as a result of
vibrations to the device.

4 44

Table 1.3: Vibration-based transducers and their energy storage densities [13,54,55];
A what was achievable at time of original publication (2004),
B what was considered theoretically possible at time of original publication (2004).
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Transduction
Method

Characteristics

Electromagnetic Well established commercially.
High output currents (at the expense of low AC voltages).
Output voltage scales down with size.
Can be used in a wide variety of spring/mass configurations.
Can be made with various materials that have been proven in
cyclically stressed applications.
Difficult to construct sub-millimetre and wafer scaled devices.

Piezoelectric Considered simplest approach for vibration based applications.
Can be used in force and impact-coupled applications.
Typically high output impedance levels (>100kΩ).
The latter produces high voltages (but with low currents).
Current scales down with size.
Wide range of available piezoelectric materials.
Well suited to microengineering.

Electrostatic Well suited to MEMS applications.
Energy density can be increased by decreasing the capacitor
spacing.
Energy density is decreased by reducing the capacitor surface
area.
At low frequencies, high transduction damping is achievable with
small capacitor gaps and high voltages.
Requires the device to oscillate at a magnitude in the region of
microns whilst maintaining a minimum capacitive air gap of ≤
0.5µm.
Requires initial polarising voltage or charge.
Very high output impedance.
High output voltage (>100 V).
Risk of stiction or electrode shorting in wafer-scaled applications.

Table 1.4: Characteristics of the three methods of transduction compiled from studies
by S. Roundy (2005) [1] and Beeby et al (2006) [56].
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1.5.2 General Theory of a Resonant Generator

The majority of cases for vibration energy harvesting employ the principle of inertia,

irrespective of the chosen transducer. Demonstrating this principle, Fig. 1.5 shows a

simple scheme discussed by Williams and Yates (1996) [55], and which is continually

referenced throughout the literature including Stephen (2006) [52] and Beeby et al

(2006) [56]. It depicts a second-order, spring-mass system with a proof mass, m

(also referred to as the seismic mass) suspended by a spring of stiffness, k, inside

a frame. The frame itself may be fixed to a vibrating source and any displacement

of this frame, denoted by y(t) that we assume to be of the form y(t) = Y0 sin(ωt),

will result in relative motion z(t) of the mass with respect to its static equilibrium

position. This displacement will be sinusoidal in amplitude and can be used to drive

a transducer to convert the kinetic energy into electrical energy. In this scenario the

energy losses within the system may comprise of parasitic losses, cp, and the electrical

energy extracted by the transducer, ce, which are together represented by a dashpot,

ct.

Figure 1.5: Schematic of a vibration based generator.

By assuming that the mass of the vibrating source is significantly greater than the

proof mass in Fig. 1.5, and therefore not influenced by its presence, it is possible to

derive the differential equation used to describe the motion of the proof mass with

respect to the surrounding frame:

mz̈(t) + dż(t) + kz(t) = −mÿ(t) (1.2)
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The standard steady-state solution for the displacement of the proof mass for this

simple linear system can be given by:

z(t) =
ω2√(

k
m
− ω2

)2
+
(
ctω
m

)
2

Y0 sin(ωt− φ) (1.3)

where φ is the phase angle given by:

φ = tan−1

(
ctω

(k − ω2m)

)
(1.4)

The force on the proof mass must also be equal to the force, F exerted on the mass-

spring-damper, such that:

F = −mÿ(t) (1.5)

Next, Williams and Yates (1996) [55] show that the instantaneous power transfer in

the proof mass, p(t) is the product of the force acting upon the mass and its velocity:

p(t) = −mÿ(t) [ẏ(t) + ż(t)] (1.6)

As a consequence of the damping created by the electrical transducer and the

parasitic losses, there is a net transfer of mechanical power into electrical power within

the system, which is given by [55,56]:

Pd =
mζtY

2
0

(
ω
ωn

)3

ω3[
1−

(
ω
ωn

)2
]2

+
[
2ζt

(
ω
ωn

)]2 (1.7)

where ζt is the total damping ratio (ζt = ct/ 2mωn), ωn is natural frequency of the

system measured in radians per second (ωn =
√

k
m

), ω is the forcing frequency and Y0

the amplitude of this forcing.

Fig. 1.6 depicts the typical traits of a linear system where maximum power is

generated at resonance, which is to say, when the undamped natural frequency of the

mass-spring-damper system is equal to the frequency of vibrations applied to the frame,

(ωn = ω). It can be seen that even marginal deviations from ωn may result in dramatic
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Figure 1.6: Frequency spectrum of power generation for the system in Fig. 1.5 around
resonance for various ζt, produced by Williams and Yates (1996) [55].

decreases in the throughput of the system.

Perhaps even more telling of observations of Fig. 1.6 is that peak power is achieved

with lower damping factors, but with narrower operating bandwidths. Conversely, for

higher damping factors the power generated is lower, but the operating bandwidth

is extended. Therefore, if the spectra of the vibrating source is well understood

and concentrated around a particular frequency, then a low damping ratio will yield

optimum performances, whereas if the excitation frequency varies with time, a higher

damping ratio would be better suited [52,55,56]. Based upon this observation that the

maximum power generated occurs at resonance, Eq. 1.7 can be simplified such that:

Pd =
mωn

3Y0
2

4ζt
(1.8)

As these are steady-state solutions the generated power will not tend towards

infinity as the damping ratio tends towards zero. The maximum power that can be

extracted by the transducer, Pe, can be expressed by including both the parasitic

damping ratio and the transducer damping ratio [56]:

Pe =
mζeA

2

4ωn (ζp + ζe) 2
(1.9)

where A is an expression for the excitation acceleration levels, and can be derived from

A = ωn
2Y0. Note that Pe is maximised when ζp = ζe.
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Beeby et al (2006) [56] make the observation in their review of general resonant

generator theory that since the power output is inversely proportional to the natural

frequency of the system for a given acceleration, as shown in Eq. 1.9, it will be

preferable to operate the generator at the lowest fundamental frequency. This is

supported by the fact that acceleration levels of ambient vibration sources tend

to reduce with ever increasing frequencies [56]. However, subsequent studies by

DuToit and Wardle (2007) [57] have shown that essential features of the coupled

electromechanical responses have previously been neglected and that operating at both

resonance and antiresonance can result in near identical generated powers. Renno

et al (2009) [58] developed this further and discovered that for damping ratios well

below the bifurcation damping ratio there will exist two power maxima (at resonance

and antiresonance) and one minima. Beyond the bifurcation damping ratio only one

maxima exists.

1.5.3 Tunable Vibration-Based Energy Harvesting

Of course, the ultimate goal of any energy harvester is to transfer as much of the

generated power to the electrical load. However, based upon previous observations of

linear resonant systems, they all share one common limitation: that truly effective

power generation is only really possible when operated at resonance (or in some

situations, antiresonance). It has also been shown that the bandwidth of such systems

may be very narrow and hence typical harvesters will be particularly sensitive to even

minor deviations in excitation frequency that move away from the natural frequency

of the device. Therefore, the idea of controlling design parameters has received much

attention from many researchers as a way to optimise energy harvesters [58], and

indeed to provide some kind of tuning element. However, tuning a generator is only a

viable option if the procedure used to actually adjust the resonant frequency consumes

less than the average power the device is capable of generating so that a net gain is

produced [59,60].

Continuous tuning (or active tuning as it is sometimes known as), operates under

a continuous power supply in order to achieve the required resonance change by
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controlling the effective stiffness, mass or damping. Roundy et al (2005) [61] have

assessed the feasibility of tuning the resonant frequency of vibration-based generators

with this method using actuators and concluded that the continuous tuning mechanism

could never prove effective because the continuous power required to tune the resonant

frequency will always exceed any resulting increase in output power. However, Zhu

et al (2010) [62] showed that the approach employed by Roundy et al (2005) did not

apply to all cases because the maximum power for actuation was used rather than

the average power. In addition to this, only the situation where the tuning force was

proportional to the displacement or acceleration of the generator was studied.

Examples of continuous tuning come from Adams et al (1998) [63] where electro-

static actuators that behaved analogously to mechanical springs were used to control

stiffness of their harvester. Wu et al (2006) [64] demonstrated the effect of impedance

matching (when the load matches the impedance of the generator to achieve maximum

power transfer [65]) by using a variable capacitive load that shifted the gain curve of a

cantilever beam to match the external vibration frequency in real time.

Conversely, many consider intermittent or passive tuning to be a more effective

approach because it requires only an initial power supply (or some other disturbance)

to achieve resonance change [61], thus no continuous power is consumed to maintain

a tuned state. This may involve moveable clamps which can change the length (and

stiffness) of a flexible structure, a moveable mass, or tensioning of the structure. An

approach where axial loads are applied for intermittent tuning have been investigated

by many, including Leland and Wright (2006) [66], Hu et al (2007) [67] and Zhu et al

(2010) [68]. Masana and Daqaq (2011) [69] present a particularly interesting example

of an intermittently tunable harvester that is relevant to the studies presented in the

current thesis. They demonstrated that by applying a static axial load, P , to an Euler

strut that was clamped on both sides in order to alter the stiffness of the flexural beam

(see Fig. 1.7), it was possible to tune the resonant frequency to resonance up to 65%

about the untuned frequency. In this particular instance, piezoelectric (PZT) patches

were used as the electrical transduction devices whereby the induced mechanical strain

would be converted into electricity.

The current thesis will investigate in depth enhanced vibration using a similar Euler
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strut setup and it is speculated that the two approaches could perhaps be incorporated

in an effective manner.

Figure 1.7: Schematic of an axially loaded intermittent tunable vibrational energy
harvester proposed by Masana and Daqaq (2011) [69].

Semi-active tuning approaches have also been explored, such as that proposed by

Challa et al (2008) [70], shown in Fig. 1.8. Here, repulsive and attractive forces

from permanent magnets are used to alter the stiffness of the cantilevered structure by

varying the separation distance between the respective magnets and the tip mass. This

approach was shown to provide an operating bandwidth of ±20% about the untuned

resonant frequency, producing powers of 240–280 µW from low level vibrations over

the frequency range 22–32 Hz. Later, Challa et al (2011) [71] developed their concept

further to develop a similar construct capable of tuning autonomously and increased

the operating bandwidth from -27% to +22% of the untuned resonant frequency,

producing powers peaking at 1mW at 0.1g accelerations for a beam of length=480mm,

width=20mm, thickness=0.6mm with an effective mass of 0.0256kg.
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Figure 1.8: Experimental setup for a semi-active tunable energy harvesting device by
Challa et al (2008) [70].

1.5.4 Broadband Vibration-Based Energy Harvesting

Although the approaches developed to tune vibration-based energy harvesters have

been shown to be effective, they remain limited by the inherent characteristics of

linear systems which exhibit resonance typically only within a narrow frequency range.

Therefore, if the excitation frequencies are out with the tunable range of the harvester,

or of a time-varying nature (such as noise), then the magnitude of generated power will

drop significantly. A solution to this problem has been studied by Sari et al (2008) [72]

who proposed to extend the bandwidth of their harvester by implementing a number

of cantilevered beams of varying lengths that are connected in series to produce a

device with an array of natural frequencies. With this approach they have been able

to generate energy effectively across a wide range of excitation frequencies (including

a bandwidth of 800Hz for the device reported in [72]).

However, research in nonlinear systems has demonstrated that by intentionally

introducing nonlinearities into the design of a harvester, the short-comings typical of

linear systems can be overcome [73–78]. To explain, consider a uni-modal Duffing-type

oscillator whose equation of motion may be defined as:

ẍ+ 2ζtωẋ+ ω2x+ αx3 = F (t) (1.10)

where ζt is the total coefficient of damping, α is a coefficient of stiffness nonlinearity
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and F (t) is an external excitation, possibly of the form F (t) = F0 cosωt.

When α > 0, a hardening nonlinearity is applied to the system which has the effect

of bending the steady-state frequency response to the right when excited by a fixed

frequency in resonance [79]. When α < 0, softening nonlinearities will be dominant

and are manifested by the steady-state frequency response bending to the left.

Nayfeh and Mook (2008) [80] demonstrate these effects in Fig. 1.9 for a similar

Duffing-type oscillator, where again α is the nonlinearity coefficient and σ is the

excitation frequency. It can be seen that the coupling effect between the excitations

and the harvester result in a broadening of the effective bandwidth when under the

influence of either forms of stiffness nonlinearity (highlighted in Fig. 1.9(b) and Fig.

1.9(c) by the region with superimposed arrows). A potentially unwelcome by-product

of this is that regions where multiple solutions exist are created that can lead to a

jump-phenomenon [80].

(a) Linear response. (b) Hardening nonlinear
response.

(c) Softening nonlinear
response.

Figure 1.9: Frequency response curves depicting the effects of nonlinearities in a
Duffing-type oscillator, where α is the nonlinearity coefficient and σ is the excitation
frequency. Originally produced by Nayfeh and Mook (2008) [80].

Several recent studies [76, 81–83] have investigated the effects of deliberately

incorporating nonlinearities in statically uni-stable Duffing-type oscillators (a uni-

stable device possess only a single potential energy well). Incredibly, Staton et al

(2009) [82] demonstrated that by introducing softening to a cantilevered harvester,

the response was actually able to outperform the linear response of the same system.

This observation was conflicting with previous notions that linearly resonating systems

represented the upper bound of generated energy. A limitation to this approach is that
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it is only suited for excitations that have a slow frequency drift and it has been shown

by F. and Daqaq (2010) [79] and Barton et al (2010) [84] that, in fact, nonlinearities

in uni-stable systems can have an adverse effect when excited by random coloured

vibrations with different bandwidths and center frequencies. Barton et al (2010) [84]

observe that in such instances, the existence of low-level and high-level energy states

began to average out and that sudden drops in vibrations occurred when the harvester

fell into one of these low-level states (requiring some form of disturbance to put it back

into a higher energy state).

Lim et al (2004) [85] took a different approach to exploiting the effects of

nonlinearities. They modelled the dynamics of two coupled oscillators with opposing

forms of nonlinearities (softening and hardening) and showed that controlled variation

of the softening stiffness in a predominately hard system can mitigate the effects of

both nonlinearities to give rise to an approximately linear response with enhanced

performances.

Harvesters with a bistable energy potential have also been highlighted as a means

to enhance the bandwidth and performance of harvesters [69, 83, 86–88]. A bistable

system possess two potential energy wells separated by one unstable saddle (potential

barrier), see Fig. 1.10(a). Inter-well oscillations can be activated when sufficient

energy is supplied that allows for the system to jump from one stable energy state to

the other [73, 86]. This behaviour can have the effect of extending the bandwidth of

the device and to produce large amplitude responses. This is understood for steady-

state fixed-frequency excitations, but the performance of such systems when exposed to

random excitations of a stochastic nature is still in its infancy and may provide a more

realistic representation for numerous naturally occurring environmental vibrations, and

indeed will form a topic of discussion within the present thesis.

McInnes et al (2008) [90] are considered the first to exploit the role of stochastic

resonance (SR) as a way to enhance the available power from a bistable vibrational

energy harvester. Somewhat counter-intuitive, SR may manifest itself in nonlinear

systems where a normally weak signal may be amplified by the assistance of noise.

There are three prerequisites to achieving this [89]:

1. Some form of energetic activation barrier such as the potential barrier between
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(a) Shape of the potential energy func-
tion for a bistable system.

(b) Demonstration of transitions be-
tween energy states during stochastic
resonance.

Figure 1.10: Shape of the potential energy function in a bistable system suitable for
stochastic resonance, originally produced by Gammaitoni et al (1998) [89].

two potential wells in a bistable system (see Fig. 1.10(a)).

2. A normally weak but coherent signal (such as a periodic forcing term).

3. A source of noise that is added to the coherent signal (this can be white Gaussian

noise, coloured noise and even non-Gaussian noise [91]).

If the system is trapped within one of the potential wells, then the effect of the noise

input will excite the dynamics locally with the likelihood of transitions between wells

determined by the Kramers rate (1940) [89,92]:

rK =
ω0ωb
2πγ

exp

(
−∆V

D

)
(1.11)

where ω0 is the angular frequency of the potential one of the potential minima, ±xm,

ωb is the angular frequency at the top of the potential barrier, xb, γ is the viscous

friction, D is the strength of the noise and ∆V is the height of the potential barrier.

From Eq. 1.11 it can be deduced that with large potential barriers, the likelihood

of the system being able to jump from one potential well to the other as a result of

noise is reduced. However, if a periodic force is introduced then the bistable wells will

be modulated such that the height of the potential barrier will be oscillated (see Fig.

1.10(b)). If the same forcing that is normally too weak to induce a transition between

wells on its own has a period equal to the mean time between transitions (inverse
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of the Kramers rate) [90], then it will become synchronised with the noise induced

hoping events, and thus achieve SR. This will produce large amplitude responses and

significantly increase the generated power.

Figure 1.11: Conceptual model of a periodically forced stochastic resonator, proposed
by McInnes et al (2008) [90].

McInnes et al (2008) [90] demonstrated the effectiveness of this approach using a

simple conceptual model of a bistable clamped-clamped beam, shown in Fig. 1.11.

Since then, many studies have been made into the concept, including by Gammaitoni

et al (2009) [93], Cottone et al (2009) [94] and F. Daqaq (2011) [75], and indeed by

the present author as is to be discussed in proceeding chapters.

1.6 Summarising Remarks

Now that an overview of energy harvesting has been given, it can be understood that

their is great interest in the field the world over. Various techniques to enhance the

throughput of vibrational-based devices have been explored, which included a review of

stochastically resonant systems in which the response of a system may be significantly

improved via the coupling behaviour between a stochastic input and periodic forcing.
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Similarly, tuned systems have also been developed that require manipulation of the

system to maintain optimum performance, but the main limitation of these approaches

lie in that even minor deviations away from resonance can result in significant drops

in performance. This is a condition that is difficult to avoid in practice without

implementing complicated active or passive tuning techniques.

The proceeding chapters will seek to explore the use of a simple and realisable

parametric mechanical construct under two separate regimes for harvesting the ambient

vibrational energy from external sources. Firstly, the effectiveness of a parametric

Euler strut for harvesting known steady-state periodic vibrations will be explored that

will discuss methods for passively tuning the system by applying a static pre-load.

This concept was inspired by the early work of Watt and Cartmell (1994) [95] which

was pivotal because, to the knowledge of the author, it was the first to demonstrate

successfully that a parametric system undergoing principle parametric resonance (PPR)

is in fact capable of producing useful work. PPR is a resonance phenomenon that is

seen in parametric systems whereby some parameter varies periodically in time. In such

systems, and assuming linearity, then PPR occurs at twice the fundamental natural

frequency of the system. However, when nonlinearities are introduced, it was suggested

by Watt and Cartmell (1994) [95] that the work done by the system would only be

bounded by the nonlinearities themselves. Following this, an external load should not

be simply considered as a form of remote damping, but given that the damping within

the system is low enough and the necessary resonant conditions are maintained, then

such a system can indeed be capable of maintaining oscillatory motion. This was

experimentally validated in [95] using a mechanical ratchet system as a power take-off

that lifted a known mass during positive half-cycles, and with recovery half-cycles in

between.
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Chapter 2

Periodic Vibrational Energy

Harvesting

This first harvester model explained in this chpater is to act as a precursor to the

second proposed harvesting scheme which involves a similar Euler strut concept. This

approach relieves the requirement for tuned conditions by exploiting the cumulative

effects of both deterministic and stochastic inputs of the parametric system in such a

way that significantly enhances the net harvestable energy. Furthermore, this concept

will explore the requirement to apply an initial pre-curvature that satisfies, and exploits,

the conditions for stochastic resonance.

2.1 Description of the Proposed System for Har-

vesting Known Periodic Vibrations

Fig. 2.1 shows a schematic of the proposed energy harvester in the form of a fully

realisable Euler strut. The construct comprises a parametric oscillator that can be

excited axially by periodic vibrations emanating freely from the environment. With the

facility to apply an initial pre-curvature using a static pre-load, the inherent bistability

of the system causes the beam to buckle to either side of the unstressed zero reference

line.

The Euler strut harvester itself is simple in construction. The beam is hinged at

both ends with the facility to apply both static and dynamic axial loads. By applying
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Figure 2.1: A buckling beam of length, l, with lumped mass, m, hinged at both ends,
with static and dynamic loads applied axially, Pstatic and Pdynamic respectively.
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a static load that exceeds the buckling capacity of the beam an initial pre-curvature

may be formed. This has the effect of transitioning the system from a uni-stable state

to a bistable state, the benefits of which will be discussed. The externally applied

dynamic loads are what are to be considered as the harvestable vibrations that will

excite the system. This will cause the potential barrier that separates the two basins

of attraction in the bistable system to oscillate. By controlling the depth of the two

basins of attraction via the static pre-load, the dynamic force will be able to force the

system to jump from one basin of attraction to the other, thus potentially increasing

the throughput of the system. The beam itself will be considered as a lumped mass

system which will capture the essential behaviour of the responses.

Note that the response of the system will be measured as a lateral displacement of

the lumped mass centre measured relative to the unstressed zero reference line.

2.2 Governing Equation of Motion of the Periodi-

cally Excited Euler Strut

The equation of motion for an Euler strut is well known and is based upon the Euler-

Bernoulli partial differential equation. Using this, the provision for the initial pre-

curvature, axial loads and inherent inertia and damping can then be built in. Two

assumptions are made: that the longitudinal force in the beam is constant throughout

its length, and that both the pre-curvature in the beam due to the static load and the

lateral response of the beam are definable by half sine waves.

Therefore, by considering the equilibrium of an element within the beam, the basic

equation of motion is [96,97]:

∂2M

∂x2
+

P − EA

2l

l∫
0

(
∂v0

∂x

)2

dx

 ∂2v0

∂x2
+

P − EA

2l

l∫
0

(
∂v

∂x

)2

dx

 ∂2v

∂x2
− q = 0

(2.1)

where x is a longitudinal position coordinate, M the total inertial bending moment, P

the total axial load acting upon the beam where P = Pstatic + Pdynamic cos Ωt, E is the

Young’s modulus, A the cross-sectional area, l the length of the beam, v0 and v are
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the unstressed lateral displacement and dynamic lateral displacement as measured the

from the unstressed zero reference line, and q is included as a potential additional load

acting laterally upon the beam. Also, note that EA
2l

l∫
0

(
∂v0
∂x

)2
dx represents the axial

stiffness within the beam.

The usual bending moment expression based upon the moment curvature relationship

can be inserted:

−M = EI (v′′) (2.2)

Also, forces due to inertia and damping are taken into account as additional forces,

such that:

q(x, t) = −mv̈ − cv̇ (2.3)

Note that the mass and damping terms are measured per metre i.e. kg
m

and

Ns/m
m

= Ns
m2 as q is the additional load per unit length of the beam acting laterally

that is required to satisfy the form of q = q(x, t).

To begin the dimensional modelling of Eq. 2.1, first the following half sine wave

solution forms are assumed [96]:

vstatic = a sin
(πx
l

)
v(t) = f sin

(πx
l

)
v̇(t) = ḟ sin

(πx
l

)
v′static =

aπ

l
cos
(πx
l

)
v′(t) =

fπ

l
cos
(πx
l

)
v̈(t) = f̈ sin

(πx
l

)
v′′static = −aπ

2

l2
sin
(πx
l

)
v′′(t) = −fπ

2

l2
sin
(πx
l

)
v′′′′static =

aπ4

l4
sin
(πx
l

)
v′′′′(t) =

fπ4

l4
sin
(πx
l

)
(2.4)

where a is the initial displacement of the midspan of the beam due to the static load

Pstatic, and f is a dimensionless time dependent displacement, also at midspan.

By substituting these solutions, together with Eq. 2.2 and 2.3 into Eq. 2.1, the
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equation of motion now becomes:

mf̈ sin
(πx
l

)
+ cḟ sin

(πx
l

)
+
EIπ4

l4
f sin

(πx
l

)
− Pstaticπ

2

l2
a sin

(πx
l

)
− Pdynamic cos Ωtπ2

l2
a sin

(πx
l

)
+
EA

2l

(
π2a2

2l

)
a
π2

l2
sin
(πx
l

)
− Pstaticπ

2

l2
f sin

(πx
l

)
− Pdynamic cos Ωtπ2

l2
f sin

(πx
l

)
+
EA

2l

(
π2f 2

2l

)
f
π2

l2
sin
(πx
l

)
= 0

(2.5)

For simplification, the condition that sin
(
πx
l

)
6= 0 for x ∈ (0, l) is used. Hence Eq. 2.5

may be reduced to:

mf̈ + cḟ +
EIπ4

l4
f − Pstaticπ

2

l2
a− Pdynamic cos Ωtπ2

l2
a+

EAπ4

4l4
a3

− Pstaticπ
2

l2
f − Pdynamic cos Ωtπ2

l2
f +

EAπ4

4l4
f 3 = 0 (2.6)

After which, dividing through by m leads to:

f̈ +
c

m
ḟ +

EIπ4

ml4
f − Pstaticπ

2

ml2
a− Pdynamic cos Ωtπ2

ml2
a+

EAπ4

4ml4
a3

− Pstaticπ
2

ml2
f − Pdynamic cos Ωtπ2

ml2
f +

EAπ4

4ml4
f 3 = 0 (2.7)

In the current configuration all terms should be in acceleration units. By creating

definitions and grouping terms together, the complete equation of motion for the beam

in Fig. 2.1 can be described as:

f̈ + βḟ +
π2

ml2
[Pcrit − Pstatic − Pdynamic cos Ωt] f +

EAπ4

4ml4
f 3

− π2

ml2
[Pstatic + Pdynamic cos Ωt] a+

EAπ4

4ml4
a3 = 0 (2.8)

where β = c
m

, with typical linear viscous damping defined by c = 2ζmωn. The critical

buckling load of the beam is Pcrit = EIπ2

l2
.

Upon further inspection of Eq. 2.8 it can be seen that both the static and the

dynamic responses of the system are governed by sets of terms containing a and f
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respectively. Hence the static response, a, of the beam is described by:

EAπ4

4ml4
a3 − π2

ml2
[Pstatic] a = 0 (2.9)

where Pstatic is the load relevant to the static displacement of the mid-span, a, and the

dynamic loading term Pdynamic cos Ωt has been ignored due to its time-varying nature.

Whereas the dynamic response, f is described by:

f̈ + βḟ +
π2

ml2
[Pcrit − Pstatic − Pdynamic cos Ωt] f +

EAπ4

4ml4
f 3 = 0 (2.10)

where it can be seen that Pcrit has an effect upon f , and so subsequently Pstatic will also.

It is the dynamic response of the system that is of most interest for the purposes

of energy harvesting, and so this forms the focus of the remaining analysis.

2.2.1 Expressing for the Fundamental Natural Frequency

Defining the natural frequency of the beam is essential for exploring the behaviour of

the response when subjected to various forms of excitation, especially if attempting to

achieve resonant conditions. To obtain the terms to describe ωn, Eq. 2.10 must first

be multiplied back through by m, such that:

mf̈ + cḟ +
π2

l2
[Pcrit − Pstatic − Pdynamic cos Ωt] f +

EAπ4

4l4
f 3 = (2.11)

Now consider that Pstatic and Pdynamic can be both zero and nonzero. If

(Pstatic, Pdynamic) = (0, 0), then only the fundamental stiffness of the beam remains

which is given by k = Pcritπ
2

l2
. Hence an expression for ωn can be derived for unloaded

conditions using this fundamental stiffness and dividing back through by m:

ωn =

√
k

m
=

√
π2

ml2
Pcrit, ; (Pstatic, Pdynamic) = (0, 0) (2.12)

When (Pstatic, Pdynamic) 6= (0, 0), there are additional terms to include in the
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derivation of ωn. Complications begin to arise because of the time-variant nature

of Pdynamic included in the parametric excitation terms that will lead to a time-varying

expression for ωn. Therefore, for simplicity, the analysis will continue under the

assumption that Pdynamic will not be used in the computation of ωn, thus:

ωn =

√
π2

ml2
[Pcrit − Pstatic], ; Pcrit > Pstatic (2.13)

Eq. 2.13 describes the natural frequency of the system for conditions where Pcrit >

Pstatic. However, it is known that to satisfy the conditions required by a bistable system,

the overall linear stiffness must be negative, such that Pcrit < Pstatic. This condition

gives rise to a complex number that can be difficult to compute in practice. Therefore,

in order to avoid this, the terms in Eq. 2.10 can be manipulated in such a way

that all the prerequisites required by the system, including a negative linear stiffness

and Pstatic > Pcrit, can be achieved without the formation of complex numbers. The

approach is as follows:

f̈ + βḟ −
(
π2

ml2
[Pstatic − Pcrit]−

π2

ml2
[Pdynamic cos Ωt]

)
f +

EAπ4

4ml4
f 3 = 0 (2.14)

where the minus sign applied to the bracketed 3rd set of terms has been introduced to

ensure that the resulting sign of Pcrit and Pstatic remain consistent with that shown in

Eq. 2.10. Also, note that the sign of the dynamic forcing terms, Pdynamic is unimportant

because of the oscillating cosine operator.

Now the natural frequency in loaded conditions can now be defined as:

ωn =

√
π2

ml2
[Pstatic − Pcrit], ; Pstatic > Pcrit (2.15)

In this way, a negative linear stiffness can be defined so that real values for the

natural frequency are obtained whilst continuing to neglect the dynamic component.

In order for the system to be computed when Pstatic is both less and greater than

Pcrit, it is proposed to use piecewise functions to define which form the the equation

of motion takes depending on the instantaneous condition of Pstatic. Therefore the full
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behaviour of the system could be analysed numerically by the following:

0 =


f̈ + βḟ +

(
ωn

2 − π2

ml2
[Pdynamic cos Ωt]

)
f +

EAπ4

4ml4
f 3 ; Pstatic < Pcrit

f̈ + βḟ −
(
ωn

2 − π2

ml2
[Pdynamic cos Ωt]

)
f +

EAπ4

4ml4
f 3 ; Pstatic > Pcrit

(2.16)

where:

ωn =


√

π2

ml2
[Pcrit − Pstatic] ; Pstatic < Pcrit√

π2

ml2
[Pstatic − Pcrit] ; Pstatic > Pcrit

(2.17)

It is interesting to observe the relationship ωn has with other constituents of its

defining terms, particularly l and Pstatic since they may be considered as the simplest

parameters through which to affect control upon the system in practice. Fig. 2.2(a)

is a 3-dimensional plot that has been hued to convey height and depth to show the

combined influence that both l and Pstatic have upon ωn. A trough of ωn = 0 is clearly

evident sweeping across the l, Pstatic plane and is explained by the ‘snap-through’

behaviour as the system transitions from one static bistable well to the other. By

superimposing the relationship of Pcrit vs. l on top of a contour plot of Pstatic vs. l (see

Fig. 2.2(b)) it can be seen that this curve matches the trough precisely. The nature of

this can also be deduced from Eq. 2.17 where it can be seen that if Pstatic = Pcrit then

ωn = 0, which is precisely at the onset of a snap-through.
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(a) 3-Dimensional plot showing the response of
ωn vs. l & Pstatic.

(b) Contour plot of Pstatic vs. l that has
been hued to indicate magnitude of ωn, with
relationship between Pcrit vs. l superimposed.

Figure 2.2: Relationship of ωn for a fibre glass epoxy beam with l and Pstatic when
cross-sectional area, A = 2.5 × 10−6m2, Young’s modulus, E = 13GPa and density,
ρ = 1900kg/m3.

2.3 Expressing the Effective Potential of the Peri-

odically Excited System

Some of the qualitative behaviour of the system described by Eq. 2.16 and Eq. 2.17

can be observed by examining the complete effective potential of the system, V (f),

such that f ′′ = −∂V (f)
∂f

is defined as:

V (f) =


−1

2

(
ωn

2 − Pdynamicπ
2

ml2
cos Ωt

)
f 2 +

1

4

(
EAπ4

4ml4

)
f 4 ; Pstatic < Pcrit

1

2

(
ωn

2 − Pdynamicπ
2

ml2
cos Ωt

)
f 2 +

1

4

(
EAπ4

4ml4

)
f 4 ; Pstatic > Pcrit

(2.18)

where again, ωn is defined by Eq. 2.17.

First, by examining the system under static loading conditions the transition

between a uni-stable system and a bistable system may be observed. When Pstatic 6= 0
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and Pdynamic = 0, Eq. 2.18 is reduced to:

V (f) =


−ωn

2

2
f 2 +

1

4

(
EAπ4

4ml4

)
f 4 ; Pstatic < Pcrit

ωn
2

2
f 2 +

1

4

(
EAπ4

4ml4

)
f 4 ; Pstatic > Pcrit

(2.19)

Fig. 2.3(a) depicts the resulting behaviour for various Pstatic. When Pstatic = 0,

the system exists with only one stable well such that the beam will be unbuckled at

rest with zero initial conditions. And indeed, if Pstatic < 0, then a tensile force will

be applied axially to the beam that manifests itself with a narrower single well. The

result of this is that the beam becomes more stable in its pre-tensioned state, making

it more difficult for lateral oscillations to generate a displacement. This is precisely the

behaviour that should be discouraged in the context of an energy harvester.

When Pstatic > 0, i.e. when a compressive load is applied axially to the beam,

there begins the formation of a bistable system which is evident from the presence

of a double well potential. Therefore the beam will be attracted to either well which

manifests itself by buckling to either respective side of the unstressed zero reference

line. By increasing Pstatic even further the bistable wells become deeper still.

However, in terms of increasing the throughput of the energy harvester, a system

with deeper potential wells would required larger magnitudes of excitation from Pdynamic

to increase the likelihood of the response jumping from one well to the other. If the

system is able to regularly jump between both wells, then the displacement of the

response will be greatly enhanced. Hence, it may be the objective for the energy

harvesting approach to select a suitable value for Pstatic so that bistability is achieved.

To demonstrate this approach, Fig. 2.3(b) is a plot of the effective potentials described

by Eq. 2.18 for given conditions.

This shows that Pdynamic can produce a similar effect as Pstatic, such that the

configuration of the system may be changed to a bistable system depending upon

the magnitude of the applied force. The difference here is that the depth of bistability

is time varying. It can be that certain values of Pstatic may facilitate this process, and

as such, the relationship between Pstatic and Pdynamic will be further explored later.

Of course, the effectiveness of the dynamic forcing terms is highly dependent upon
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(a) Effective potential of the beam described by Eq. 2.19 when length, l = 0.35m,
cross-sectional area, A = 2.5×10−6m2, Young’s modulus, E = 13GPa and density,
ρ = 1900kg/m3.

(b) Effective potential of the beam described by Eq. 2.18 when length, l = 0.35m,
cross-sectional area, A = 2.5 × 10−6m2, Young’s modulus, E = 13GPa, density,
ρ = 1900kg/m3, Pstatic = 0.5N and modulating frequency, Ω = πrad/s.

(c) Effective potential of the beam described by Eq. 2.18 when length, l = 0.35m,
cross-sectional area, A = 2.5 × 10−6m2, Young’s modulus, E = 13GPa, density,
ρ = 1900kg/m3, Pstatic = 0.5N and Pdynamic = 0.1N.

Figure 2.3: Effective potential plots for various loading scenarios.
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the modulating frequency, as will also be explored further on. For a preliminary

understanding, Fig. 2.3(c) shows how the potential barrier can be oscillated by Pdynamic

at a frequency of Ω. What must also be considered here is that the response of the

system to the dynamic forcing will be always be at its greatest at resonance. In the

case of parametrically excited systems such as the Euler strut, PPR occurs at Ω ≈ 2ωn

when the system is linear. However, as previously mentioned, inherent nonlinearities

will prevail in the current system since full nonlinearity has been maintained throughout

the derivation. This will cause the precise location of PPR to shift depending on the

nature of the governing nonlinear stiffnesses. In soft systems the shift occurs towards

the left of 2ωn, and to the right in hard systems.
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2.4 Defining the Energy Throughput of the Peri-

odically Excited System

To be able to assess the performance of the harvester and observe the influences that

particular system parameters have, it is desirable to express this in the terms of the

energy able to be harvested. To this end, an expression that describes the net energy

dissipated through the system must be derived. To do this, a similar approach used

by Stephen (2006) [52], and subsequently McInnes et al (2008) [90], is adopted.

Firstly, an expression for the total energy of the system is obtained by multiplying

Eq. 2.16 through by ḟ :

ḟ f̈ − ωn2ḟf +
EAπ4

4ml4
ḟf 3 = −βḟ 2 − Pdynamicπ

2

ml2
cos Ωtḟf (2.20)

Note that only the condition where Pstatic > Pcrit is being considered for now in the

derivation process. Following this, it will then be shown how the resulting expression

is applicable to both conditions of Pstatic > Pcrit and Pstatic < Pcrit.

Rewriting the left hand side terms as a total derivative will produce expressions for

both the kinetic and potential energies, such that:

d

dt

[
1

2
ḟ 2 − 1

2
ωn

2f 2 +
1

4

(
EAπ4

4ml4

)
f 4

]
= −βḟ 2 − Pdynamicπ

2

ml2
cos Ωtḟf (2.21)

where the system kinetic energies and potential energies are defined as:

T =
1

2
ḟ 2 (2.22)

U = V (f) = −1

2
ωn

2f 2 +
1

4

(
EAπ4

4ml4

)
f 4 (2.23)

Eq. 2.19 and Eq. 2.23 are of the same form, and the total energy, Etotal of the system

may be described as:

Etotal(t) =
1

2
ḟ 2 + V (f) (2.24)
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Eq. 2.21 represents the conservation of power in the system [52], not withstanding

the accepted premise of a strictly conservative system, showing that the instantaneous

power being dissipated by the damper plus the time rate of change of the kinetic and

potential energies must be equal to the instantaneous power in the system, hence:

Ė(t) = −βḟ 2 − Pdynamicπ
2

ml2
cos Ωtḟf (2.25)

When considering the instantaneous power that there is available to be harvested,

it will be assumed that only the power dissipated via damping, βḟ 2 can in fact be

harvested. In this way, the damping terms are being used to represent some form of

power take-off device. This approach is sufficient for the current analysis because it

will still fully capture changes in performance through the system as it is attempted

to enhance the response. Future studies could improve this approach by modelling the

physical characteristic of an actual power take-off device, but the analysis will proceed

under the assumption that βḟ 2 will be positive to represent the total available power.

Studies by many researchers have investigated the use of piezoelectric strips attached to

vibrating beam structures to convert mechanical energy into electrical energy [3,98–102]

and it is envisioned that this too would be the most appropriate transducer type.

The sign of the rate of work done in modulating the beam,
Pdynamicπ

2

ml2
cos Ωtḟf will

oscillate due to the cosine function. However, as the periodic force, Pdynamic is to be

considered as freely harvestable from the environment, it should not be included as

contributing to the available instantaneous power to be harvested. Moreover, this is

the instantaneous power being delivered into the system. Therefore, the net available

instantaneous power, Pnet(t) that is available to be harvested can be expressed as:

Pnet(t) = βḟ 2 (2.26)

As only the power dissipated via damping is to be available for harvesting, and

because the nature of these terms is the same for both static loading conditions where

Pstatic < Pcrit & Pstatic > Pcrit, it can be accepted that Eq. 2.26 is applicable in both

conditions. Therefore, there is no requirement to repeat the same derivation process

for when Pstatic < Pcrit.
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2.5 System Response in the Time Domain and

Phase Space

Now that a method for measuring the performance of the system has been developed, it

is possible to begin numerical simulations of the periodically excited Euler strut system

described by Eq. 2.16. This can be done using different computational software,

including Mathematica which is popular in the fields of science, mathematics and

engineering. This is the preferred software used throughout these studies and makes

use of the NDSolve command that finds numerical solutions to differential equations.

Whilst the precise operation of this function is a closely guarded secret within Wolfram,

it will employ a range of integrating routines in order to gain convergence, and is also

capable of changing between them when calculations appear to be inexorably heading

towards a numerical instability or singularity. Typically, such integrators make use

of Runge-Kutta calculations, with Gear and Merson variants for systems where the

dynamics are highly nonlinear, and many more that NDSolve may well call upon,

and it is this degree of robustness that makes it a popular choice.

Note that within Eq. 2.16, it is possible to define the material properties and

geometry of the Euler strut. Whilst many materials are realisable in practice, the

proceeding analysis have all been based upon a fibre glass epoxy material of Young’s

modulus, E = 13GPa and density, ρ = 1900kg/m3 for simplicity. This beam has an

arbitrarily chosen cross-sectional area of A = 2.5 × 10−6m2 and length, l = 0.35m,

unless otherwise stated.

First the response of the system under static forcing conditions only will be explored,

where Pstatic 6= 0N and Pdynamic = 0N. The rationale behind this is to be able to observe

the response as it moves from a uni-stable state to a bistable state. As previously

noted, the system will only be forced into a bistable state when Pstatic ≥ Pcrit, where

Pcrit =
EIπ2

l2
. In this case the static response of the beam will be attracted to either

potential well manifested by the beam physically buckling into the respective side of

the unstressed zero reference line.
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2.5.1 Responses to Static Forcing Conditions

Shown in Fig. 2.4 is the response f within the given time domain under static loading

conditions. It is often found in systems that are axially forced that the beam may be

unable to escape its zero position without being initially perturbed in some way. A

simple method by which to achieve this without significantly influencing the behaviour

is to use non-zero initial conditions. In Fig. 2.4 the initial conditions of f(0) =

1× 10−5m, ḟ(0) = 0rad/s, were shown to perform well and are used throughout.

Whilst not immediately clear within Fig. 2.4(a), the initial conditions produce a

transient response immediately from t = 0 that quickly settles to the static steady-state

shown by each respective Pstatic curve. Under the given conditions Pcrit = 0.055N, it

can be seen in Fig. 2.4(b) that when Pstatic < Pcrit the response remains at zero. Only

when Pstatic > Pcrit does a response register as the beam buckles to either side (into the

positive domain in these examples due to the positive sign of f(0)) measured laterally

from the unstressed zero reference line. As Pstatic is increased, so too does the lateral

displacement, and it can seen that this happens at a much greater rate immediately

after Pcrit is exceeded.

(a) (b)

Figure 2.4: Responses to static loading conditions where Pcrit = 0.055N, A = 2.5 ×
10−6m 2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3, Pdynamic = 0.0N, ζ = 0.3, Ω =
0rad/s, f(0) = 1× 10−5m, ḟ(0) = 0rad/s and 0 ≤ t ≤ 30s.
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2.5.2 Responses to Dynamic Forcing Conditions

Now the response of the system will be observed under dynamic forcing conditions

only. In this sense, it could be said that this is how the harvester would perform in

its most fundamental form, and later it will be seen how the throughput of the system

can be improved by introducing Pstatic. Also, as it is intended that the harvester will

collect energy from the Pdynamic terms that are considered to be available freely from

the environment, it will be possible to make predictions via Eq. 2.26 as to how much

energy can be harvested.

To begin with, the excitation frequency has been arbitrarily set to Ω = 100rad/s

without any attempt to achieve resonance at this stage. It is important to note that

because it has been shown that Pstatic intrinsically affects the location of ωn, defining

Ω with a fixed frequency for now (as opposed to the approach as a ratio of ωn) will

ensure that simulations where Pstatic is varied will not subsequently affect Ω.

Fig. 2.5 shows the responses of the system to small values of Pdynamic and shows the

onset of bistable behaviour in the beam. In order to be able to see the precise details

of the oscillatory responses, only a very short time domain of three seconds has been

plotted because of the high frequencies.

As shown by Fig. 2.5(a) there is a zero response when Pdynamic < Pcrit which was

to be expected. As Pdynamic increases it reaches the point where Pdynamic > Pcrit and

the beam begins to oscillate to either side of the unstressed zero reference line. By

observing the responses in phase space, the underlying characteristics of this may be

observed. In Fig. 2.5(e) it can be seen that the trajectory of the response primarily

orbits an attractor located at the origin, but with evidence of two outer potential wells

beginning to form (note the skewed shapes). The attractor at the origin is located in

the unstressed position, but the two outer wells are forming as the state of the beam

approaches some form of bistability. As demonstrated previously, bistable conditions

would be manifested in practice by the beam buckling to one side and remaining there.

The key difference now is that the motion is oscillatory and the response may instead

orbit about numerous attractors as opposed to becoming trapped and governed by a

single one.

It is shown that when Pdynamic = 0.55N, the trajectory becomes very unstable with
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evidence of multiple periods occurring at different points in time. It could be said that

the system is oscillating in and out of a bistable state here. However, when Pdynamic

is increased to 0.8N, a stable response is again seen, but with the trajectory primarily

orbiting about the unstressed position and the positive bistable attractor (see Fig.

2.5(k)).

Continuing to increase Pdynamic and observing the response at much higher values

of Pdynamic shows that again multiple periods of attraction form. This demonstrates

the complicated and unpredictable responses these systems are capable of in such

configurations. The greatest evidence of this is in Fig. 2.6(l) where the response

is shown to orbit multiple attractors at irregular periods in time. Such behaviour

would result in continually fluctuating instantaneous powers being dissipated through

the system and is something to be avoided unless some external form of external

rectification process can be performed.

It could be thought that the greatest throughput would be achieved if the trajectory

could be manipulated to orbit the two outermost bistable attractors in a steady-state

because this would result in the greatest displacement f of the beam. Without making

any definitive conclusions about this at this stage, it is observed in Fig. 2.6 that

the commonality between simulations has been an attractor located at the unstressed

position. This is explained by the fact that as Pdynamic modulates it will oscillate above

and below the value of Pcrit, thus transitioning between a uni-stable and a bistable

state. However, as demonstrated in Section 2.5.1, Pstatic can be used to force the beam

into an initial bistable state, and by doing so, it is possible to remove the formation of

this attractor at the origin. The advantage of doing so would be that the response of

the beam could potentially oscillate directly between both outermost attractors, which

would result in the enhanced lateral displacements which are sought.
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(a) Pdynamic = 0.05N. (b) Pdynamic = 0.05N. (c) Pdynamic = 0.05N.

(d) Pdynamic = 0.3N. (e) Pdynamic = 0.3N. (f) Pdynamic = 0.3N.

(g) Pdynamic = 0.55N. (h) Pdynamic = 0.55N. (i) Pdynamic = 0.55N.

(j) Pdynamic = 0.8N. (k) Pdynamic = 0.8N. (l) Pdynamic = 0.8N.

Figure 2.5: Time domain and phase space responses to small dynamic loading
conditions where Pcrit = 0.055N, Pstatic = 0.0N, A = 2.5 × 10−6m 2, l = 0.35m,
E = 13GPa, ρ = 1900kg/m3, ζ = 0.3, Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s
and 37 ≤ t ≤ 40s.
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(a) Pdynamic = 1.0N. (b) Pdynamic = 1.0N. (c) Pdynamic = 1.0N.

(d) Pdynamic = 2.0N. (e) Pdynamic = 2.0N. (f) Pdynamic = 2.0N.

(g) Pdynamic = 3.0N. (h) Pdynamic = 3.0N. (i) Pdynamic = 3.0N.

(j) Pdynamic = 4N. (k) Pdynamic = 4N. (l) Pdynamic = 4N.

Figure 2.6: Time domain and phase space responses to large dynamic loading conditions
where Pcrit = 0.055N, Pstatic = 0.0N, A = 2.5× 10−6m 2, l = 0.35m, E = 13GPa, ρ =
1900kg/m3, ζ = 0.3, Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s and 37 ≤ t ≤ 40s.
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2.5.3 Responses to Static and Dynamic Forcing Conditions

To demonstrate that Pstatic may be used to enhance the f response of the system by

preventing the formation of the uni-stable attractor at the unstressed position and

creating a bistable state, simulations were performed for various values of Pstatic with

an arbitrarily chosen Pdynamic = 0.2N and Ω = 100rad/s.

In the first loading case where Pstatic = 0.05N, the trajectory of the response remains

trapped within the uni-stable attractor because the coupling effect with Pdynamic = 0.2N

is not enough to generate bistability. The measured f for this condition barely registers

a response at all. However, by only increasing Pstatic to 0.15N where Pstatic > Pcrit, it

can be seen that bistability has been achieved and a measurable response is generated.

Interestingly, the responses here orbit either attractor for a number of periods before

crossing to the other (see Fig. 2.7(d)).

When Pstatic = 0.25N it can be seen from Fig. 2.7(h) that the desired behaviour

is achieved where the response periodically orbits about both bistable attractors in a

steady-state, thus f could be considered as greatly enhanced. It should be noted that

this form of enhancement has been achieved passively and that no power is required to

maintain this level of static preload. This behaviour is not enough to conclude that the

energy throughput of the system will also be enhanced. Actual measurements of the

energy available for harvesting will have to be taken in order to form such opinions.

Fig. 2.7(j) demonstrates that with further increases to Pstatic, the response can

begin to oscillate about a single attractor again. When Pstatic = 0.35N, it can be

seen that the potential difference between the two attractors is approaching too great

for Pdynamic to overcome the potential barrier between wells consistently, hence the

trajectory orbits either attractor for a number of periods once more. If Pstatic were to be

increased even further still, then the response would eventually become trapped within

a single attractor of the bistable system and would require significantly more energy

from Pdynamic in order to cross the potential barrier. Clearly then, there must exist an

optimum value of Pstatic that can be applied to system under the given conditions to

achieve the greatest displacement, f . In order to find this point, it is perhaps more

useful to observe the response in terms of the energy being dissipated by power take-off

terms.
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(a) Pstatic = 0.05N. (b) Pstatic = 0.05N. (c) Pstatic = 0.05N.

(d) Pstatic = 0.15N. (e) Pstatic = 0.15N. (f) Pstatic = 0.15N.

(g) Pstatic = 0.25N. (h) Pstatic = 0.25N. (i) Pstatic = 0.25N.

(j) Pstatic = 0.35N. (k) Pstatic = 0.35N. (l) Pstatic = 0.35N.

Figure 2.7: Time domain and phase space responses to static and dynamic loading
conditions where Pcrit = 0.055N, Pdynamic = 0.2N, A = 2.5 × 10−6m 2, l = 0.35m,
E = 13GPa, ρ = 1900kg/m3, ζ = 0.3, Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s
and 37 ≤ t ≤ 40s.
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2.6 Energy Available for Harvesting from the Pe-

riodic Harvester

The previous time domain and phase space simulations alluded to the potential benefits

that careful manipulation of various system parameters could have. However, to focus

on the context of energy harvesting, a more appropriate way in which to assess the

performance of harvester would be in terms of the energy dissipated, and hence the

energy that the harvester will be able to collect from the ambient vibrational sources.

As discussed in Section 2.4, the instantaneous power dissipated by the system can

be described by Eq. 2.26, repeated below:

Pnet(t) = βḟ 2

In this situation the damping terms are used to represent some form of mechanical

take-off device, such as a piezoelectric strip for example. Note that as the energy

consumed in forcing the system is considered to be harvested freely from the

environment, it is not necessary subtract this from Pnet. This will still achieve a

conservative estimate. For simplicity, and neglecting any other forms of mechanical

losses, it will be assumed that all energy dissipated via the damping can be available

for harvesting.

Fig. 2.8 shows simulations measuring the instantaneous power, Pnet(t) that repeats

the conditions from Fig. 2.7 in Section 2.5.3. This corroborates the previous

observation that when Pstatic = 0.05N barely any response is registered. This is shown

by barely any power being dissipated through the system under these conditions. Then

as Pstatic is increased, a marked improvement in Pnet(t) is seen. This improvement has

been achieved passively since no power is required to maintain the value of Pstatic. It

can be seen that the only steady-state response is generated when Pstatic = 0.25N in

Fig. 2.8(c). This also appears to provide the greatest peak Pnet(t) of approximately

0.068W, and is associated with the trajectory that orbited the two outer attractors

that produced the greatest f in Fig. 2.7(h).

However, actually drawing definitive conclusions from observations of the instan-

taneous power dissipated is difficult, and a more improved method by which to assess
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(a) Pstatic = 0.05N. (b) Pstatic = 0.15N.

(c) Pstatic = 0.25N. (d) Pstatic = 0.35N.

Figure 2.8: Instantaneous power dissipated by βḟ 2 where Pcrit = 0.055N, Pdynamic =
0.2N, A = 2.5 × 10−6m 2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3, ζ = 0.3, Ω =
100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s and 37 ≤ t ≤ 40s.

Figure 2.9: Accumulated energy, E(t) via βḟ 2 where Pcrit = 0.107N, Pdynamic = 0.1N,
A = 2.5 × 10−6m 2, l = 0.25m, E = 13GPa, ρ = 1900kg/m3, ζ = 0.3, Ω = 100 rad

s
,

f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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the performance of the harvester would be by the amount of energy that has been

collected over a given time period. This can be done by simply integrating Pnet(t)

over the time period in order to produce a plot like that in Fig. 2.9 where energy has

been accumulated over a sixty second period which would be more practical should

any future experimental measurements be taken.

This plot clearly shows the relationship Pstatic has with the energy throughput of the

harvester, where positive gradients refer to positive rates of energy being available for

harvesting. Clearly the greatest energy throughput does occur when Pstatic = 0.25N for

the measured range of Pstatic only. This confirms previously made observations. Note

that no negative gradients exist because in the present scenario, no energy is being

consumed in forcing the system. Pstatic is a form of passive manipulation and Pdynamic

is freely sourced from ambient conditions.

Now that the previous methods for observing the response of the system have all

alluded to a peak response being generated somewhere in the region of Pstatic = 0.25N,

it would be more useful to be able to perform parameter sweeps to observe the true

nature of the responses. With an approach such as this, the performance of the system

can be measured by the energy that is available for harvesting, Eacc at the end of a

given time period, where:

Eacc =

∫ tn

t0

[Pnet(t)] dt (2.27)

where t0 and tn are the upper and lower limits of the time period respectively.

This is the equivalent of measuring the area under the Pnet(t) curves from Fig2.8

and each data point represents the measured energy accumulated from each such

curve. Repeating this process across a range of the chosen parameter being studied will

produce a swept plot. It must be noted that each simulation must be performed over

the same time period for all subsequent parameter sweeps in order to produce results

that may be fairly compared.
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2.6.1 Parameter Sweeps of Static Axial Loads

First, a Pstatic sweep is performed in the hope to observe a peak response in the region of

Pstatic = 0.25N which would corroborate with previous simulations, see Fig. 2.10. Note

that the same conditions of Pdynamic = 0.2N and Ω = 100rad/s have been maintained.

Figure 2.10: Accumulated energy, Eacc available across Pstatic where Pcrit = 0.055N,
Pdynamic = 0.2N, A = 2.5× 10−6m 2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3, ζ = 0.3,
Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.

(a) Pstatic = 0.55N. (b) Pstatic = 0.55N. (c) Pstatic = 0.55N.

Figure 2.11: Time domain and phase space responses to static and dynamic loading
conditions where Pcrit = 0.055N, Pdynamic = 0.2N, A = 2.5 × 10−6m 2, l = 0.35m,
E = 13GPa, ρ = 1900kg/m3, ζ = 0.3, Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s
and 37 ≤ t ≤ 40s.

This is a very interesting response because it in fact shows evidence of two peaks in

performance; one at the suspected location of approximately Pstatic ≈ 0.25N, and the

second at Pstatic ≈ 0.55N. The time domain responses in Fig. 2.11 at the location of

the second peak shed some light how this second peak may be forming. Despite this

only showing a trajectory that orbits about a single bistable attractor, it appears that

the velocity response, ḟ is greater than it is when Pstatic = 0.25N. By referring back
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to Eq. 2.26 it can be seen that it is ḟ 2 that contributes to Pnet(t) and so response like

this would have a much greater influences of the energy throughput.

Therefore, it must be concluded that it may not always be the case that greater

displacements in response will lead to greater performances, albeit the first peak is

located at the site of greatest displacement in the shown simulations. Moreover it is

the velocity of the response that should be of primary concern when optimising the

throughput of the harvester as this contributes more towards the instantaneous power

being dissipated.

2.6.2 Excitation Sweeps of the Periodically Excited System

Up until now, all previous simulations have been performed with a fixed excitation

frequency of Ω = 100rad/s such that the excitation frequency does not track resonant

conditions as constituents are varied. Typically for linear parametric systems, PPR

occurs at Ω = 2ωn, but knowing that full nonlinearity has been maintained for

the current system, this location may have been shifted somewhat. Based upon

the conditions at the location of the larger 2nd peak response in Fig. 2.10 where

Pstatic = 0.55N, Pcrit = 0.055N, l = 0.35m and m = 0.00475kg, then the associated

fundamental natural frequency is equal to ωn = 91.67rad/s, or Ω
ωn

= 1.09. This is clearly

far removed from the linear location of PPR and is evidence of stiffness nonlinearities

within the system.

By performing an excitation ratio sweep, the underlying characteristics governing

this behaviour are revealed.

Fig. 2.12 does indeed show evidence of softening nonlinearities present within the

system, evident by the response curve leaning towards the left of the plot. It also shows

the peak response generated in the approximate location of Pstatic that was expected

by previous results. Further to this, Fig. 2.13 shows that for increasing values of Pstatic

in this range, the effect upon the nonlinear behaviour is minimal. This is observed by

the peak responses occurring at approximately the same location for the simulations

in Fig. 2.13.

Another feature to be noted from this is that provided resonant conditions are

maintained, then increasing Pstatic has the effect of increasing the throughput of the
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Figure 2.12: Excitation frequency sweeps at location of second peak, where Pcrit =
0.055N, Pstatic = 0.55N, Pdynamic = 0.2N, A = 2.5 × 10−6m 2, l = 0.35m, E = 13GPa,
ρ = 1900kg/m3, ζ = 0.3, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.

(a) Pstatic = 0.5N. (b) Pstatic = 1.0N.

(c) Pstatic = 1.5N. (d) Pstatic = 2.0N.

Figure 2.13: Excitation frequency sweeps for increasing values of Pstatic, where Pcrit =
0.055N, Pdynamic = 0.2N, A = 2.5× 10−6m 2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3,
ζ = 0.3, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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system. This is because ωn is a function of Pstatic and so this acts as a tuning mechanism.

Given that in this form of sweep where the excitation is a ratio of the natural frequency,

then higher values of Pstatic will result in the excitation frequency at resonance being

higher too, hence more energy becomes available for harvesting.

However, given that the excitations that the harvester will be collecting in practice

will be sourced from ambient conditions, it is unlikely that they will be controllable

without some form of active tuning (which in itself would consume power). In this study

it will be the harvester that will have to be passively tuned to the source vibrations

and hence there will remain a peak value of Pstatic for the given fixed excitation.

To further explore the nonlinear influences that Pstatic may have, the behaviour as

the system changes from a uni-stable state to a bistable state is observed. This is done

by repeating the previous simulation for values of Pstatic in the region of Pcrit, where

Pcrit = EIπ2

l2
.

Fig. 2.14 shows that at low values of Pstatic in the region of Pcrit the system response

moves from one that is governed by hardening stiffnesses, to one that is governed by

softening stiffnesses. In practice, this means that when the beam has no initial pre-

curvature applied to it, it exists as a hard system with much higher frequencies required

to generate peak responses. But as Pstatic is made much greater than Pcrit and a pre-

curvature is formed, the system softens with resonance occurring at lower frequencies.

It is interesting to observe that the greatest throughput of the harvester only seems

to be seen when the system is predominately soft, such as in Fig. 2.13, and that the

extent of the softening appears to approach the approximate location of Ω
ωn

= 1.0.
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(a) Pstatic = 0.05N. (b) Pstatic = 0.2N.

(c) Pstatic = 0.3N. (d) Pstatic = 0.4N.

Figure 2.14: Excitation frequency sweeps for increasing values of Pstatic in the region of
Pcrit, where Pcrit = 0.055N, Pdynamic = 0.2N,A = 2.5×10−6m 2, l = 0.35m, E = 13GPa,
ρ = 1900kg/m3, ζ = 0.3, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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2.6.3 Influences of Amplitude of Dynamic Forcing

Next the effects of Pdynamic are assessed to see if there exists a peak value when operated

at a fixed frequency. Ω = 100rad/s has been used again for consistency with previous

simulations. Clearly Fig. 2.15 shows starkly different behaviour to that seen before,

where now increasing values of Pdynamic lead to ever increasing values of Eacc. However,

such behaviour is perhaps not unexpected. It is known that Pdyanmic terms have not

been included within the derivation of ωn and is therefore independent of the location

of resonance. But more importantly, the excitation frequency Ω itself remains fixed

during the course of the simulation and therefore by increasing the amplitude at this

fixed frequency, the amount of energy being fed into the system can only increases

too. Considering that the power take-off terms are represented by the damping within

the system, if more power is fed into the system then more power will be available

for harvesting. From observed time domain responses, chaotic motions are evident for

some values of Pdynamic, and these can be attributed to the fluctuations in Eacc across

the shown plot. However, the predominant trend appears to be approximate linear

between Pdynamic and Eacc as seen in Fig. 2.15.

Figure 2.15: Accumulated energy, Eacc available across Pdynamic where Pcrit = 0.055N,
Pstatic = 0.55N, A = 2.5 × 10−6m 2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3, ζ = 0.3,
Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.

The same conclusions made about the control of the excitation frequencies, Ω, can

again be made with Pdynamic in that this is sourced from the environment and as a

result is likely non-controllable. Even if effort was made to control the amplitude of

the harvestable vibrations, this would consume energy in the active process, whilst also

wasting the maximum potential of the source.
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It is for these reasons that the study will now explore methods for optimising the

response of the harvester subjected to particular excitation conditions. There exist

three readily modifiable parameters for the given design:

• Pstatic, the effects of which have already been discussed.

• ζ, which is used to control the level of damping within the system that

subsequently affects the strength of the energy dissipation of the representative

power take-off.

• l, which controls the length of the harvester that subsequently affects the location

of resonance.

2.6.4 The Effects of Damping within the Harvester

The response may also be affected via the level of damping within the system, which

may be controlled by the damping ratio, ζ where βḟ 2 and β = 2ζmωn. As previously

discussed, these terms have been defined to represent some form of power-take off

device. Increasing ζ would allow the damper to dissipate more of the energy fed into

the system by the harvestable source, but crucially at the cost of inherently affecting the

resulting response. This could be likened to increasing the thickness of a piezoelectric

strip attached to the beam of the harvester. Therefore, one may expect there to be an

optimum level of damping through which to dissipate energy from the system.

Figure 2.16: Accumulated energy, Eacc available across ζ where Pcrit = 0.055N, Pstatic =
0.55N, Pdynamic = 0.2N, A = 2.5 × 10−6m 2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3,
ζ = 0.3, Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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In fact, two peak values of ζ are presented in Fig. 2.16. The first, when Pstatic =

0.55N, Pdynamic = 0.2N and Ω = 100rad/s, appears to be located at ζ ≈ 0.15 and

from time domain responses is shown to orbit about both bistable attractors, see Fig.

2.17(a). The second peak response is shown to be when ζ ≈ 0.275, and is associated

with trajectory orbiting about a single attractor in a similar manner as observed in

Section 2.6.1, only now the peak velocity is lower and accounts for the lower peak Eacc,

see Fig. 2.17(b).

(a) ζ = 0.15N. (b) ζ = 0.275N.

Figure 2.17: Time domain and phase space responses to static and dynamic loading
conditions where Pcrit = 0.055N, Pstatic = 0.55N, Pdynamic = 0.2N, A = 2.5 × 10−6m
2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3, Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) =
0rad/s and 37 ≤ t ≤ 40s.

To assess whether ζ imparts any nonlinear effects upon the system, numerous

sweeps were performed in Fig. 2.18. All the simulations shown look very similar

in nature with the peak response occurring within the same region, suggesting that the

effects of damping are independent of the inherent nonlinear stiffnesses in the system.

However, what is clear is that ζ is capable of increasing the operational bandwidth of

the harvester. This can be a very beneficial feature because in the event that Ω may

fluctuate over time, it would be advisable to have a wide bandwidth, and hence select

a higher value of ζ in order to maintain increased performance. This would of course

be at the cost of a lower peak operating response, and so this would have to be judged

upon the excitation conditions in practice.
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(a) ζ = 0.0N. (b) ζ = 0.2N.

(c) ζ = 0.4N. (d) ζ = 0.6N.

(e) ζ = 0.8N. (f) ζ = 1.0N.

Figure 2.18: Excitation frequency sweeps for increasing values of ζ, where Pcrit =
0.055N, Pstatic = 0.55N, Pdynamic = 0.2N, A = 2.5 × 10−6m 2, l = 0.35m, E = 13GPa,
ρ = 1900kg/m3, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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2.6.5 The Effects of the Length of the Harvester

The effective length, l of the harvester beam is another property that will affect the

response of the system. So too will varying the cross-sectional area, A, but given that

the length of the beam could be considered a more viable mechanism by which to affect

the system in practice, attention is given to this. It has already been shown by Eq.

2.17, and depicted in Fig. 2.2 that manipulation of l will affect the value of ωn and so

it is again expected that a peak value of l will exist.

Figure 2.19: Accumulated energy, Eacc available across l where Pcrit = 0.055N, Pstatic =
0.55N, Pdynamic = 0.2N, A = 2.5 × 10−6m 2, E = 13GPa, ρ = 1900kg/m3, ζ = 0.275,
Ω = 100rad/s, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.

Following the same processes used with the previous parameter studies, a sweep of

l is performed first where Pstatic = 0.55N, Pdynamic = 0.2N, Ω = 100rad/s together with

the new optimum value of ζ = 0.275 that was discovered in Section 2.6.4.

Fig. 2.19 shows a peak value of l = 0.35m for the given conditions, which is the

value that has been used in all the previous simulations. This result was perhaps to be

expected if one considers that processes up to this point may have acted as an informal

optimisation process. This in itself is very encouraging.

However, the multiple excitation sweeps in Fig. 2.20 do suggest some effect of the

nonlinearities of the system at low values of l. It can be seen in Fig. 2.20(c) that

the system response is governed by hardening stiffnesses when l = 0.1m. However,

by increasing l by as little as 0.1m so that l = 0.2m, it can be seen that the system

response becomes soft. From this point on the location of resonance remains more or

less unaffected in the position that has come to be expected. This is very interesting

and closely resembles behaviour seen when Pstatic is within the region of Pcrit. In fact,
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this is precisely what is happening because when l = 0.1m, the associated Pcrit = 0.69N

where Pcrit = EIπ2

l2
. Now consider that in the simulation Pstatic = 0.55N, the result

is that the beam possesses no initial pre-curvature and thus manifests itself as a hard

system. However, when l = 0.2m and the associated Pcrit = 0.17N, then Pstatic is now

large enough to apply an initial pre-curvature in the beam and the system becomes

predominately soft.

This is the same effect that has been shown to be brought about by varying Pstatic

within the region of Pcrit (see Section 2.6.1). It must still be concluded that from all

previous simulations, including this one, the peak performance of the harvester occurs

when the system is governed by softening nonlinearities, and that these conditions

should be sought after in practice. Once more, it appears that the location of peak

performance is tending towards Ω
ωn

= 1.0.

This is certainly a very interesting feature, and certainly one that warrants further

investigation. To this end, the author does suggest doing so, but that this will take

place at a future date. As such, suggestions towards this body of work will be discussed

in Chapter 7, to which the reader is referred.
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(a) l = 0.1m. (b) l = 0.2m.

(c) l = 0.3m. (d) l = 0.4m.

(e) l = 0.5m. (f) l = 0.6m.

Figure 2.20: Excitation frequency sweeps for increasing values of l, where Pcrit =
0.055N, Pstatic = 0.55N, Pdynamic = 0.2N, A = 2.5 × 10−6m 2, E = 13GPa, ρ =
1900kg/m3, ζ = 0.275, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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2.7 Summarising Remarks for the Periodic Euler

Strut Energy Harvester

An Euler strut based energy harvester has been proposed that could be used to harvest

known steady-state periodic vibrations from ambient conditions in the environment.

The performance of the system was assessed in numerous capacities. Firstly, the

response of the system was observed under static loading conditions and it was shown

that no lateral displacements were generated when Pstatic < Pcrit. This was to be

expected and it was shown that a response only formed when the critical buckling

capacity in the beam was exceeded. This lent credit that the governing equation of

motion that was derived was functioning correctly.

Following this, it was shown that under dynamic loading conditions only, Pdynamic

could be used to oscillate the system in and out of a bistable state, but that a basin

of attraction always existed at the unstressed position. By applying an initial pre-

load to the beam in the form of Pstatic, this unstressed attractor could be removed.

Provided that Pdynamic was large enough to surmount the potential barrier between the

two potential wells in the now bistable system, the response would be able to oscillate

between the bistable attractors resulting in an increased lateral displacement. However,

if Pstatic was made larger yet, then the response of the system was shown to become

trapped within a single potential well, but that this could generate a response with

greater velocity responses.

By observing the energy throughput of the system it was shown that a Pstatic sweep

would produce a curve with two peaks; one located at the site of greatest displacement

response, f , and the other at the site of greatest velocity response, ḟ . The peak

associated with the greater velocity response was shown to be the largest for the given

conditions, and therefore this would be the optimum operating value of Pstatic. This

successfully showed that the response of the harvester could be enhanced passively

considering that no power was required to maintain this response.

It was also shown that the inherent nonlinearity of the system could be controlled

via Pstatic. When Pstatic < Pcrit, the beam would have no initial pre-curvature and the

system was governed by hardening stiffnesses. However, as Pstatic was increased above
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Pcrit, softening nonlinearities would become dominant and the peak response appeared

to tend towards a resonant condition of Ω
ωn

= 1.0. Further investigations are required

to conclusively state this, but the results are indicative.

Considering that the power take-off of the harvester was being represented by

damping, numerous simulations were performed to assess the influence that the

damping ratio would have upon the performance of the system. This could be

considered equivalent to increasing the thickness of a piezoelectric strip attached to

the beam if this was the chosen power take-off device. A peak value was noted, and

also that increased values of ζ were able to increase the operational bandwidth of the

harvester. This of course came at the cost of producing lower peak responses and it

was suggested that a compromise would have to be reached based upon the actual

excitation conditions in practice.

Finally, the effects that the length of the beam had upon the system were also

explored. Once again, a peak value of l existed for the given conditions, but further to

this, similar behaviours were seen to that when Pstatic was applied within the region

of Pcrit. When l was set low, hardening stiffnesses governed the system response. But

when l increased, the response become predominately soft again, once more tending

towards the peak location of Ω
ωn

= 1.0. This was because varying l has the subsequent

effect of varying Pcrit. Therefore, when l was low enough so that the applied Pstatic was

less than Pcrit, the same behaviour as previously noted occurred. And of course, as l

was increased, Pcrit subsequently decreased until Pstatic was able to buckle the beam

and the system became soft.

The most promising observation from the parameter study of l was that the peak

value occurred almost precisely at the value that had been applied in all previous

simulations. This was because within all the earlier parameter studies, the system was

been continually optimised until the point where the final parameter of l was explored,

the system was already in an optimised condition. This was achieved passively and

showed that indeed the energy throughput of the periodically excited Euler strut

harvester could be greatly enhanced using the discussed techniques.
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Chapter 3

Stochastic Vibrational Energy

Harvestering

In Chapter 2 the concept of harvesting vibrational energy using an Euler strut based

harvester was explored. This particular harvester was periodically excited axially and

had the facility to apply an initial pre-curvature to the beam using a static axial load

which was demonstrated to be able to enhance the response passively. However, the

underlying restriction of the system was that it was excited by steady-state ‘known’

vibrations, and albeit methods were explored that would enable the user to control the

operational bandwidth, the harvester was ultimately restricted to excitations of this

form. Furthermore, such stable vibrations could be difficult to find naturally occurring

in practice, and therefore the application of the harvester itself would be limited. If

non-steady-state vibrations were the intended target of the energy harvester, then it

would be desirable to seek an alternative approach that was able to circumvent this

particular restriction altogether.

To this end, this chapter will now seek to propose a new concept of harvester

that has the potential to benefit from the cumulative effects of both deterministic

and stochastic inputs into a parametric system. Not only would this form of active

manipulation relieve the requirement for stable frequencies of excitation because the

source vibrations would be stochastic in nature, but by conditioning the system to

become bistable in a similar way as previously shown, the enhancing effects of stochastic

resonance (SR) may possibly be exploited.
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However it must be noted that it was during this particular phase of study that

the author was presented the opportunity to collaborate with industry on two funded

feasibility studies (see Appendix D for details) of a completely separate and novel

form of pendulum based energy harvesting system, of which will be discussed fully in

following chapters. It is for this reason that the scope of work in the current chapter

does not entail as a comprehensive analysis of the stochastic Euler strut harvester as

previously undertaken in Chapter 2. Moreover, it presents and details the derivation of

the system inclusive of a preliminary study of the time domain responses sought after.

This is followed by a discussion regarding possible methods for measuring the energy

throughput with a number of potential future works that would be of high interest to

pursue.

The proposed energy harvester is in fact a modified version of the previous

periodically excited Euler strut, which in itself was inspired by the early work of Watt

and Cartmell (1994) [95] as was discussed. However, both Chapter 2 and the original

work by Watt and Cartmell (1994) [95] highlight the sensitivity that all externally

loaded parametric systems have to excitation frequencies, where even minor shifts may

result in significant drops in response. This presents a practical limitation in the field

of energy harvesting unless the excitation frequency of the harvestable source vibration

is well known and understood to be steady; the conditions required by the previously

discussed periodic harvester.

Unfortunately this set of requirements limits the functionality and flexibility of the

device itself and therefore, in an attempt to circumvent the strict limitation for a very

narrow band or deterministic source of excitation, the use of stochastically resonant

systems was investigated.

The underlying mechanisms involved in the phenomena observed by McInnes et al

(2008) is a subtle coupling between PPR and SR, and it is precisely this that inspired

the paradigm shift in the present study for using a bistable parametric system for

harvesting energy from stochastic sources. The rationale behind this was that instead

of being limited to harvesting vibrations at a known frequency, a parametric system

with its potential to produce large responses could instead be subjected to stochastic

vibrations in a mutually beneficial approach. Hence, the parametric oscillations would
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no longer be the subject of harvested vibrations, but would instead be used as a

potential well modifier to enhance the throughput of the system excited by stochastic

vibrations. The objective was to observe a similar coupling effect seen by McInnes et al

(2008), where the net gain in throughput can be greatly offset by the power consumed

in artificially forcing the parametric system periodically.

3.1 Description of the Proposed System for Har-

vesting Stochastic Excitations

As shown by Fig. 3.1, the proposed stochastically excited vibrational energy harvester

is very similar to the periodically excited Euler strut based energy harvester discussed in

Chapter 2, but instead of harvesting axially applied steady-state vibrations, now lateral

stochastic vibrations are harvested from ambient environmental conditions. Again, the

system has the facility to apply both a static and a dynamic load axially, where the

static load can once more be used to apply an initial pre-curvature to the beam to force

a bistable state, whilst the dynamic load is now used to modulate the potential barrier

between the two stable states. The intention is that by modulating the potential barrier

separating the two potential wells, the likelihood of transitions may be increased in a

mutually beneficial manner. This is known as SR and the reader is referred to Section

1.5.4, which discusses this phenomena in greater detail.

In Fig. 3.1, the Euler strut is constrained within a structure free to move laterally

with respect to the beam and is hinged at both ends with static and dynamic loads

applied axially. The beam itself is modelled as having a lumped mass at the centre

to capture the essential behaviour of the harvester. As discussed, the static axial load

is used to exceed the inherent buckling point of the beam to produce a pre-curvature.

As the beam (planar in this example) must buckle to either one of two sides of the

unstressed zero reference line, bistability can thus be achieved. The dynamic load

can also be applied in the form of parametric oscillations to modulate the potential

barrier between the two stable states. Finally, the encasing structure is excited by

stochastic vibrations acting laterally to the beam (whether orientated vertically as

shown, or horizontally). These stochastic vibrations are to be considered as sourced
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Figure 3.1: An encased buckled beam of length, l, with lumped mass, m, hinged at both
ends, with static and dynamic loads applied axially, Pstatic and Pdynamic respectively.
The stochastic element, N(t) is also applied laterally to the encasing structure itself,
and is considered to be sourced from the environment.
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freely from the environment and are the subject of the harvestable energy. Once more,

the response of the system is measured as lateral displacements of the lumped mass

centre of the beam relative to the unstressed zero reference line, and hence in this sense

the displacement of the casing due to the stochastic input is not measured directly, only

its influence upon the response of the beam.

3.2 Governing Equation of Motion of the Stochas-

tically Excited Euler Strut

It has been mentioned that the stochastically excited energy harvester is very similar

in construct to the periodically excited harvester described in Chapter 2. The result is

that the derivation of the equation of motion follows mostly the same form. In fact the

only addition to the derivation is the inclusion of the lateral stochastic term. Therefore,

for simplicity only the key steps of the derivation will now be repeated, but the reader

is referred to Chapter 2 for a more detailed derivation process. The crucial addition

here when compared to the harvester form Chapter 2 is N(t), which is the function

used to represent the stochastic noise input.

By applying Newtons 2nd Law, the system can be described by:

∂2M

∂x2
+

P − EA

2l

l∫
0

(
∂v0

∂x

)2

dx

 ∂2v0

∂x2
+

P − EA

2l

l∫
0

(
∂v

∂x

)2

dx

 ∂2v

∂x2
− q = −mN̈

(3.1)

The dynamic response of the system, f is only form that is of interest for the following

analysis again, which is governed by:

f̈ + βḟ +
π2

ml2
[Pcrit − Pstatic − Pdynamic cos Ωt] f +

EAπ4

4ml4
f 3 = −N̈(t) (3.2)
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3.2.1 Obtaining an Expression Describing the Natural Fre-

quency of the Stochastically Excited Energy Harvester

Of course, an expression describing the natural frequency of the system must be derived

in order to perform any comprehensive analysis.

As can be seen by Eq. 3.2, the natural frequency of the system is not in any

way governed by the additional terms used to define the stochastic input, N̈(t), and

therefore the operations by which an expression for ωn was obtained in Chapter 2 stands

true for the present harvester. Of the loading conditions, the natural frequency is only

to be a affected by Pstatic in order to avoid a complicated time-varying expression.

For a more complete understanding of how the following was obtained, the reader

is referred to Section 2.2.1. Accepting this, the final equation of motion and natural

frequency for the stochastically excited energy harvester are described by:

−N̈(t) =



f̈ + βḟ +
(
ωn

2 − π2

ml2
[Pdynamic cos Ωt]

)
f ; Pstatic < Pcrit

+EAπ4

4ml4
f 3

f̈ + βḟ −
(
ωn

2 − π2

ml2
[Pdynamic cos Ωt]

)
f ; Pstatic > Pcrit

+EAπ4

4ml4
f 3

(3.3)

where:

ωn =


√

π2

ml2
[Pcrit − Pstatic] ; Pstatic < Pcrit√

π2

ml2
[Pstatic − Pcrit] ; Pstatic > Pcrit

(3.4)

In Eq. 3.4, Pdynamic has again been excluded to avoid complications that would

arise from a time varying expression for ωn. The equation of motion has also been

suitably manipulated to satisfy the requirements for a negative overall linear stiffness

under both conditions where Pstatic > Pcrit & Pstatic < Pcrit. This has been captured

with the implementation of the piecewise conditions shown.
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3.3 Expressing the Effective Potential of the Stochas-

tically Excited System

An important feature of a bistable stochastic resonator, such as the one being modelled,

is the ability to modulate the potential barrier between the two stable states (where

Pstatic > Pcrit). In the present system, Pdynamic is used to provide this actively controlled

modulation to the barrier to effectively increase the likelihood of transitions between

these two states. The actual ability for Pdynamic to modulate the potential barrier

was observed in Section 2.3 by computations of the expression describing the effective

potential, V (f), such that f ′′ = −∂V (f)
∂f

is defined as:

V (f) =


−1

2

(
ωn

2 − Pdynamicπ
2

ml2
cos Ωt

)
f 2 +

1

4

(
EAπ4

4ml4

)
f 4 ; Pstatic < Pcrit

1

2

(
ωn

2 − Pdynamicπ
2

ml2
cos Ωt

)
f 2 +

1

4

(
EAπ4

4ml4

)
f 4 ; Pstatic > Pcrit

(3.5)

It can be seen that Eq. 3.5 is identical to that discussed in Section 2.3, and so the

reader is again referred to Fig. 2.3 for a visual demonstration of how the potential

barrier may be manipulated.

However, as Pdyanmic is being used as an active method by which to modulate

the system, it will require work to do so that should be subtracted from the energy

dissipated via the power take-off device to obtain a conservative estimate for the net

harvestable energy. It is considered likely that the peak performance of the dynamic

forcing terms will be located at the site of resonance associated with the current system

that will be a complicated coupling between deterministic and stochastic inputs.

3.4 Defining the Stochastic Input

Given that an understanding of how the effective potential can be modulated by

the artificial axial loads, the derivation is almost at the point where time domain

simulations can be performed to assess how these modulations can be controlled to

affect changes in response that effectively enhance the displacement of the mass centre

of the beam. It remains to define the stochastic input N(t).



CHAPTER 3. STOCHASTIC VIBRATIONAL ENERGY HARVESTERING 74

White noise shall be used for the stochastic vibrations in the proposed scenario.

This is defined as a sequence of random number with normal distribution with zero

mean and unit variance. An interpolated function can be created to satisfy these

conditions using numerical approaches. To this end a Mathematica code has been

developed that defines and implements the random white noise as a function:

N̈(t) =Interpolation[Table[{t, (ψnoise(RandomReal@NormalDistribution[0,1]))},

{t,t0, tn}]]; (3.6)

where t is time, t0 is the start time, tn the end time and ψnoise is a user defined quantity

inserted to control the average magnitude of the applied white noise.

The Mathematica ‘Interpolation’ command, as suggested, interpolates the data

collected by the random normal distribution with zero mean and unit variance across

the given time domain and creates a function that may be called upon in subsequent

numerical integrations. If the time domain for the white noise function is ensured to

always match the time limits of subsequent numerical integrations performed upon Eq.

3.3, then the interpolated function may be directly applied as N̈(t). An example plot

of the white noise function, N̈(t) within a given time domain is shown in Fig. 3.2.

100 200 300 400 500
Time, t
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0.002
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Figure 3.2: Time domain plot of white noise excitation when ψnoise = 0.5 which has
no units because is it a user defined quantity and 0 ≤ t ≤ 180s.

Normally the inherent nature of the random normal distribution used to define

N̈(t) can make it difficult to present response data in various forms if doing so requires

repeated simulations. Whilst it is possible to statistically predict certain qualities of a

random distribution such as the mean and standard deviation for example, the precise
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details within the statistical norm remain random. Hence, each time the command for

the interpolated white noise function is performed, a unique distribution is created. It

is possible to store the random function for a chosen time period in order to reuse it

if necessary. However, it is important that the same t0 and tn limits are used in both

the normal distribution and any subsequent numerical integrations in order for this to

function properly. This is because the random nature of the selected values within the

limits of the distribution will produce a new interpolated function for N̈(t) during each

call of the script.

3.5 Typical Unforced and Forced Time Domain

Responses

Now that the stochastically excited Euler strut harvester concept has been presented

and the accompanying equation of motion derived, it is possible to observe time

domain responses under various loading conditions. The purpose of this exercise is

to demonstrate the typical behaviour that is sought after in a stochastically resonant

system. Following this, and given that the extent of this chapter will only be to

establish the concept of the particular harvester, approaches to measuring the energy

throughput of the system will be developed but with the knowledge and intent that

further investigation is required. What is hope for, however, is that this study may

open the topic to discussion.

Time domain and phase space plots from numerical integrations performed upon Eq.

3.3 can be useful tools for understanding the characteristic behaviour of an oscillatory

system. These can be used to visualise the response of the system subject to stochastic

inputs, and subsequently the changes in response when the axial static pre-load or the

dynamic forcing terms, or indeed a combination of the two, are added to the system.

Chapter 2 explored a similar system whereby axial periodic vibrations were

harvested, whereby in this scenario they are being used to modulate and enhance

the response of the system as it is excited laterally by N̈(t). To maintain some form of

consistency between the two different forms of harvester, they are both based upon a

fibre glass epoxy Euler strut of Young’s modulus, E = 13GPa, density, ρ = 1900kg/m3
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and length, l = 0.35m, unless specifically stated otherwise.

It must be noted that a direct comparison of the accumulated energies of the two

harvesters cannot be made since the two harvest different forms of source vibrations,

and that in the current harvester the periodic forcing is a form of active modulation

that must be subtracted from the net available energy. This will be discussed in

greater detail later. However, given that when N̈(t) = 0 the equation of motion

reduces to exactly that of the previous periodic harvester, under this condition only

the observations made in Chapter 2 would apply to both systems if the material and

geometric properties remain the same. If this is indeed accepted, then the following

analysis is limited to the performance of the system when N̈(t) 6= 0 since only under

this condition will there be any energy actually available to be harvested.

3.5.1 Stochastically Excited Only Harvester

The harvester could be said to be operating in its most basic form when it is excited

by N(t) only. This shows how the system would perform prior to any form of active

or passive control targeted at enhancing the throughput. In this form with no initial

pre-loads applied in the form of Pstatic the system exists in a uni-stable state with a

single basin of attraction that the trajectory of the response will orbit about when

excited laterally by N(t).

Fig. 3.3 demonstrates typical time domain and phase space responses to increasing

values of ψnoise which is used to control the magnitude of the stochastic excitations.

The stochastic nature of the response is clearly evident by the random oscillations that

never reach a steady-state within the 60 second period, and orbit mostly about the

uni-stable attractor located in the unstressed position. In practice, this is manifested

as oscillations back and forth across the unstressed zero reference line shown in Fig.

3.1.

However, there do exist periods where the response actually oscillates to either side

of the unstressed position for a number of periods. This suggests the sporadic formation

of additional attractors in which the trajectory of the response becomes briefly trapped

within. This is more clearly viewed in the phase space responses of Fig. 3.3 where it

can be seen that when ψnoise = 6.0 the velocity responses within these outer attractors
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(a) when ψnoise = 0.0. (b) when ψnoise = 0.0. (c) when ψnoise = 0.0.

(d) when ψnoise = 2.0. (e) when ψnoise = 2.0. (f) when ψnoise = 2.0.

(g) when ψnoise = 4.0. (h) when ψnoise = 4.0. (i) when ψnoise = 4.0.

(j) when ψnoise = 6.0. (k) when ψnoise = 6.0. (l) when ψnoise = 6.0.

Figure 3.3: Time domain responses of the uni-stable Euler strut to increasing
magnitudes of ψnoise, where A = 2.5×10−6m 2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3,
Pstatic = 0.0N, Pdynamic = 0.0N, Pcrit = 0.055N, ζ = 0.1, Ω = 0.0, f(0) = 0.00001m,
ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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is very high compared to their relatively short physical displacements.

These additional attractors seem to be forming in the locations that one would

typically expect of a bistable system. The conclusion therefore is that the momentum

generated by the higher velocities of the mass centre must be intermittently exceeding

the buckling capacity of the beam and resulting in the observed behaviour. However,

the duration of these trapped oscillations is very short and clearly the trajectory of the

response primarily orbits the unstressed position attractor.

It is also interesting to observe the actual shape of the trajectory as it orbits the

unstressed attractor. Again choosing to observe Fig. 3.3(k), the response is skewed

somewhat with positive domain trajectories favouring towards the right, and negative

domain responses towards the left. This is the result of much greater decelerations in

the beam as it reaches its maximum lateral displacement and the restoring forces begin

to take precedence, than there are accelerations when the direction of travel reverses.

This is expected of such systems and lends confidence to the derived model.

3.5.2 Stochastically Excited System Only With Applied Static

Preload

Knowing that a bistable system is a prerequisite for the system to achieve stochastic

resonance, Pstatic can be used to apply the necessary pre-curvature to the beam when

Pstatic > Pcrit in a similar way to Section 2.5.1. However, now Pstatic is introduced when

the beam is excited by N(t) at ψnoise = 1.0. Note that in the current configuration of

the beam Pcrit = 0.055N.

Fig. 3.4(a), 3.4(b), 3.4(c) show the base response when Pstatic = 0N where the

response primarily orbits the unstressed position attractor with only intermittent

oscillations about the additional attractors according to previous observations. In Fig.

3.4(d), 3.4(e), 3.4(f) when Pstatic = 0.1N, Pcrit is exceeded and a bistable system is

formed. This manifests itself in the way that has come to be expected, by a number of

oscillations trapped within either bistable state, with intermittent jumps in between.

However, these transitions do remain irregular, but it is important to note that the

unstressed position attractor has been removed. Therefore the trajectory must exist in

either bistable state which if controlled correctly can be beneficial.
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(a) when Pstatic = 0.0N. (b) when Pstatic = 0.0N. (c) when Pstatic = 0.0N.

(d) when Pstatic = 0.1N. (e) when Pstatic = 0.1N. (f) when Pstatic = 0.1N.

(g) when Pstatic = 0.3N. (h) when Pstatic = 0.3N. (i) when Pstatic = 0.3N.

(j) when Pstatic = 0.5N. (k) when Pstatic = 0.5N. (l) when Pstatic = 0.5N.

Figure 3.4: Time domain responses of the uni-stable Euler strut to increasing
magnitudes of Pstatic, where A = 2.5×10−6m 2, l = 0.35m, E = 13GPa, ρ = 1900kg/m3,
Pdynamic = 0.0N, Pcrit = 0.055N, ζ = 0.1, Ω = 0.0, ψnoise = 1.0, f(0) = 0.00001m,
ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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When Pstatic is increased to 0.3N, the duration at which the trajectory oscillates

within a single outer well increases, and thus the number of jumps between decreases.

This is a direct result of Pstatic increasing the depth of the potential wells in the system.

However, it should be remembered that if jumps between states can be maintained,

the larger values of Pstatic will increase the extent to which the beam displaces to either

side of the unstressed zero reference line. Clearly in this case where the number of

transitions does decrease, the net effect would be a reduction in total displacement,

f . However, Fig. 3.4(g), 3.4(h), 3.4(i) do clearly show that the velocity response, ḟ(t)

during the actual transitions has dramatically increased under this magnitude of Pstatic

and from conclusions drawn in Section 2.6 of Chapter 2, it is known that this may

not necessarily result in a decreased energy throughput, but could in fact enhance the

energy performance.

Of course, there will become a point at which values of Pstatic will increase the depth

of the potential wells in the system to such an extent that the amplitude of N(t) will

no longer be larger enough to instigate transitions at all. This behaviour is seen in Fig.

3.4(j),3.4(k), 3.4(l) when Pstatic = 0.5N. The resulting reduction in velocity response

is remarkable and clearly the total displacement has been significantly reduced too.

There is no question at all that under such conditions the performance of the system

will be greatly affected for the worse. Increasing the value of Pstatic any further from

this point would only exaggerate the situation further.

These particular simulations have up to this point involved only a passive form of

control. Clearly the approach of manipulating Pstatic can affect either a positive or a

negative response with respect to the performance of the harvester, but rather than

pursuing this approach further, the actual intention now is to introduce Pdynamic as a

form of active control to enhance the response. First though, the cumulative effects of

the system that is excited by N(t) and modulated by Pdynamic only are observed.

3.5.3 Stochastically Excited System With Forced Modula-

tions

It has been necessary to plot across a 10 second time domain in Fig. 3.5 in order to

better observe the modulating process that Pdynamic has upon the system response.



CHAPTER 3. STOCHASTIC VIBRATIONAL ENERGY HARVESTERING 81

The modulating frequency, Ω, has been arbitrarily chosen to be 25rad/s. Note that

various other frequencies were also simulated, including 17rad/s, 75rad/s, 125rad/s

and 230rad/s, and that the characteristics of the responses were very similar to that

produced by Ω = 25rad/s. Therefore, it can be accepted that the following is indicative

of the generic behaviour produced under such excitation and loading conditions. It

must also be noted that no attempt to seek resonant conditions has been made here.

Such will be explored at a later point.

The effect is quite clear when Fig. 3.5(a) (in which Pdynamic = 0N) is compared

to the responses generated when Pdynamic 6= 0N. It can be seen that the response

typically generated by N(t) alone is in fact modulated as it oscillates along its own

course trajectory that in the current loading conditions of Pstatic = 0N is primarily

about the unstressed attractor. As Pdynamic is increased, so too does the amplitude

of these inherent modulations and it can be seen that these themselves can lead to

the formation of additional attractors about which the dominant response oscillates

intermittently.

Viewing this behaviour in phase space reveals the complicated nature of this type

of system, making it clear that a steady-state response is never likely to be reached.

It is not possible to discern from these simulations alone whether any gain in energy

throughput may have been achieved. However, given that this form of modulation

is achieved actively, in that power is consumed to force the system physically in

this way, it seems unlikely that any will have from this approach alone. This does

however demonstrate how the modulation of the potential barrier is manifested, and

so it remains to observe the time domain responses when both Pstatic and Pdynamic are

applied together in the stochastically excited harvester to assess whether any net gains

can be achieved this way.



CHAPTER 3. STOCHASTIC VIBRATIONAL ENERGY HARVESTERING 82

(a) when Pdynamic = 0.0N. (b) when Pdynamic = 0.0N. (c) when Pdynamic = 0.0N.

(d) when Pdynamic = 0.05N. (e) when Pdynamic = 0.05N. (f) when Pdynamic = 0.05N.

(g) when Pdynamic = 0.1N. (h) when Pdynamic = 0.1N. (i) when Pdynamic = 0.1N.

(j) when Pdynamic = 0.15N. (k) when Pdynamic = 0.15N. (l) when Pdynamic = 0.15N.

Figure 3.5: Time domain responses of the uni-stable Euler strut to increasing
magnitudes of Pdynamic, where A = 2.5 × 10−6m 2, l = 0.35m, E = 13GPa,
ρ = 1900kg/m3, Pstatic = 0.0N, Pcrit = 0.055N, ζ = 0.1, Ω = 25rad/s, ψnoise = 1.0,
f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 40s.
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3.5.4 Enhanced Response of the Stochastically Excited Sys-

tem

By applying both Pstatic and Pdynamic to the system, it is hoped to exploit their

cumulative effects to enhance the response of the harvester. In this way, Pstatic is

used to provide an initial pre-curvature to the beam to produce a bistable system,

whilst Pdynamic is used to modulate the potential barrier to increase the likelihood that

the lateral excitation N(t) could bring about regular transitions between both stable

states. It is expected that this would greatly enhance the displacement of the mass

centre, but more importantly that this, that it would lead to an increase in net available

energy able to be harvested.

Before developing an approach to measure the actual energy throughput, the time

domain responses to static and axial loading is observed. To begin with, the simulations

are performed when Pstatic = 0.5N since it was shown in Fig. 3.4 that this value

results in the system just initially oscillating within a single state as a result of N(t)

alone. Following this, it is hoped that increases in Pdynamic will induce more regular

jumps between states and thus increase the total displacement of the beam. Crucially,

when Pstatic = 0.5N it is just on the the verge of beginning transitions, and therefore

only small values of Pdynamic should be required. This is important because one must

remember that the work of Pdynamic must be subtracted from the net harvestable energy.

Fig. 3.6 demonstrates this concept by increasing Pdynamic to the harvester which

has the initial pre-curvature resulting form Pstatic = 0.5N applied to it. Note that in all

the simulations of Fig. 3.6 the frequency of Pdynamic has arbitrarily been made equal to

Ω = 25rad/s again to maintain consistency with Section 3.5.3 and therefore no claim

is being made yet that the applied modulation to the beam is operating at its greatest

effectiveness. The effects of the modulating frequency, Ω will be explored shortly.

Even when Pdynamic = 0.2N in Fig. 3.6 it can be seen that the modulation has

a positive effect and that a total of six transitional jumps has occurred within the 60

second time period alone. By increasing Pdynamic further it can be seen that the number

of transitions continues to increase. This trend could of course be continued further, but

at some point the response will be dominated not by the harvestable excitations from

N(t), but instead by the active modulations of Pdynamic, which as discussed requires
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(a) when Pdynamic = 0.0N. (b) when Pdynamic = 0.0N. (c) when Pdynamic = 0.0N.

(d) when Pdynamic = 0.2N. (e) when Pdynamic = 0.2N. (f) when Pdynamic = 0.2N.

(g) when Pdynamic = 0.4N. (h) when Pdynamic = 0.4N. (i) when Pdynamic = 0.4N.

(j) when Pdynamic = 0.6N. (k) when Pdynamic = 0.6N. (l) when Pdynamic = 0.6N.

Figure 3.6: Time domain responses of the uni-stable Euler strut to increasing
magnitudes of Pdynamic with static axial load, where A = 2.5 × 10−6m 2, l = 0.35m,
E = 13GPa, ρ = 1900kg/m3, Pstatic = 0.5N, Pcrit = 0.055N, ζ = 0.1, Ω = 25rad/s,
ψnoise = 1.0, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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work to apply.

It is therefore paramount that the use of Pdynamic always remains energy efficient,

and the obvious route to achieving this is to operate at resonant frequencies. In

respect to the current stochastic oscillating system, stochastic resonance will occur as a

cumulative result of principle parametric resonance from the parametric modulations,

and the increase in transitions this would subsequently cause. Given that the full

nonlinear description of the system has been maintained during the derivation process,

it is known that the precise location of resonance may be shifted from the linear location

of PPR ( Ω
ωn

= 2.0) typically seen in parametric systems. Therefore, using the value of

Pdynamic = 0.6N, Fig. 3.7 shows the effect of various modulating frequencies, Ω.

The differences that Ω brings about are immediately clear. Even operating at

Ω
ωn

= 1.0 results in a marked increase in transitional jumps, but there still remains

periods of oscillations within a single well. This is known from the phase space plot

in Fig. 3.7(b) which still appears to orbit about individual outer attractors at points,

hence there is no formation of an open loop about the origin.

By increasing the frequency of modulation to Ω
ωn

= 2.0 it can be seen that such a

loop does indeed form. This would be manifested in practice by the beam continually

oscillating from one buckled extreme to the other with no periods of oscillation in a

single well at all. However, when Ω
ωn

= 3.0 the performance of the system is seen

to increase further still with the loop widening and the distance between the inside

and outside thinning. Clearly this corresponds with much more stable and complete

transitions from one state to the other and could be considered as the peak displacement

operating point. It is also shown that the velocity response at this condition has also

increased. Further evidence that this is in fact the location of stochastic resonance

within the system under the given conditions can be seen when Ω
ωn

= 4.0 where the

response has begun to deteriorate such that the peak location has been passed.

Hence from these simulations alone, one may deduce that for a beam of the given

geometrical and material properties with the stochastic input defined in Section 3.4,

stochastic resonance has be achieved with a static pre-load of Pstatic = 0.5N and a

dynamic modulation of Pdynamic = 0.6N operated at a frequency of Ω
ωn

= 3.0. Note

that at this point no claim has been made that a net gain in harvestable energy would
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(a) when Ω/Ωn = 1.0. (b) when Ω/Ωn = 1.0. (c) when Ω/Ωn = 1.0.

(d) when Ω/Ωn = 2.0. (e) when Ω/Ωn = 2.0. (f) when Ω/Ωn = 2.0.

(g) when Ω/Ωn = 3.0. (h) when Ω/Ωn = 3.0. (i) when Ω/Ωn = 3.0.

(j) when Ω/Ωn = 4.0. (k) when Ω/Ωn = 4.0. (l) when Ω/Ωn = 4.0.

Figure 3.7: Time domain responses of the uni-stable Euler strut to excitation
frequencies with static and dynamic axial loads, where A = 2.5× 10−6m 2, l = 0.35m,
E = 13GPa, ρ = 1900kg/m3, Pstatic = 0.5N, Pdynamic = 0.6N, Pcrit = 0.055N, ζ = 0.1,
ψnoise = 1.0, f(0) = 0.00001m, ḟ(0) = 0rad/s and 30 ≤ t ≤ 90s.
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be obtained under such conditions. It is more likely that this is the type of time domain

behaviour that would be likely to do so.

To properly gain insight upon the energy performance at these peak operating

conditions, an expression for measuring the harvestable energy from the system would

be required. Unfortunately it was at this point in the process that the author was

required to begin work on two separate feasibility studies in collaboration with industry,

details of which can be found in Appendix D. This was an excellent opportunity that

justified concluding the current work for future investigation, but the author considers

the work produced to this point as evidence that the concept is viable.

3.6 Summarising Remarks for the Stochastically

Excited Euler Strut Harvester

An energy harvester has been proposed that has been shown to be capable of harvesting

stochastic vibrations from ambient conditions. The purpose of this concept, which is

again based upon an Euler strut, is that it effectively relives the dependency seen by

the previous periodically excited harvester to known steady-state vibrations which may

normally limit the potential applications of the device.

The actual construct of the harvester is very similar to that discussed in Chapter 2

where the beam has the facility to apply both a static and a dynamic axial load, but

in this situation the system is excited laterally by an applied stochastic input. It was

hoped, and indeed later validated, that the performance of the system could be greatly

enhanced via the cumulative effects from both the deterministic and stochastic inputs.

In effect, the static pre-load, Pstatic was used to passively force a bistable state which is

a prerequisite for stochastic resonance, whilst the dynamic load, Pdynamic was used to

actively modulate the potential barrier separating the two states at a frequency of Ω.

This was to encourage transitional jumps. By doing so, the displacement of the mass

centre of the beam could be greatly enhanced whilst the beam was excited laterally by

the stochastic vibrations, N(t).

In order to determine the effectiveness of the approach, and to understand how

the various combinations of loading and excitation conditions could affect the response
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of the system, an iterative analysis was performed. First, by defining the stochastic

input as white noise with a zero mean and unit variance, the response to N(t) alone

was observed as a base-line condition. It was shown here that the trajectory of the

response within time domain simulations would oscillate primarily about the attractor

located at the unstressed position, but with sporadic formations of additional attractors

resembling that typically seen in bistable systems. It was suggested that this could

be a result of increased momentum generated by N(t) acting upon the mass centre

intermittently exceeding the buckling capacity, Pcrit of the beam.

By applying Pstatic such that Pstatic > Pcrit, a pre-curvature in the beam could be

formed and the system was forced into a bistable state. This had the effect of removing

the uni-stable attractor at the unstressed position such that the beam was able to

oscillate between both stable states at lower values of Pstatic. This in effect provided

the ability to enhance the response of the system passively in a similar manner to that

discussed in Chapter 2. However, the same care had to be taken not to increase Pstatic

to the extent that the depth of the potential wells was so deep that the stochastic

excitations were not great enough to initiate jumps. In this case the application of

Pstatic would be detrimental to the performance of the harvester.

Given that the purpose of the concept is to attempt to achieve stochastic resonance

to enhance the energy throughput, the effect Pdynamic had upon N(t) was observed.

This was able to show the modulation process quite clearly within the time domain

plots and provided indications of how this would increase the likelihood of transitions.

Unfortunately, it was not possible to discern from this alone whether any increase in

throughput would be seen. Note that in this condition the system was uni-stable.

However, by coupling the effects imparted by both Pstatic and Pdynamic, the

improvement in response became immediately clear. Even when the modulation

frequency was untuned from the fundamental natural frequency of the beam, the

number of transitions would be greatly increased. By gradually varying the modulation

frequency, it was shown that the peak displacement and velocity responses, f and ḟ(t)

respectively, occurred at Ω
ωn

= 3.0 and resulted in complete and continuous jumps from

one stable state to the other. It was therefore concluded that this was in fact the

location of stochastic resonance under the given loading and excitation conditions of
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the simulated beam.

It was at this point in the study that the author was required to conclude the

research, to progress onto the collaborative feasibility studies that were previously

mentioned. Therefore, the current chapter concludes with the understanding that

stochastic resonance can indeed be achieved with the proposed harvester concept and

that this will result in an enhanced energy throughput of the system.

For note, McInnes et al (2008) developed an approach to providing a conservative

estimate of the energy throughput of a similar system, whereby the energy dissipated

by damping, and hence available to be harvested, is reduced by the work done in

compressing the beam by an active dynamic load. A similar approach would be required

for the concept discussed in this chapter and it is suggested that this possibly be

adapted to for use in this system in any future investigation.
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Chapter 4

Dynamics of a Planar Pendulum

Harvester

The remaining chapters will explore a planar pendulum based energy harvester device

that may have potential for application in a number of real life scenarios. The principle,

as with the previous chapters, is to convert mechanical accelerations emanating from

ambient sources into a more useful form of electrical energy. With respect to the

pendulum harvester, this would be realised with a suitable power take-off device

mounted at the pivot point of the pendulum arm.

The scope of such a device is huge if one considers a similar concept using a spherical

pendulum, where accelerations in the full six degrees of freedom could potentially be

harvested. In this respect, such a device could be used to harvest the accelerating

motion of sea-waves, either as a dedicated device mounted within a buoy, or like,

structure deployed at sea. It could even be deployed as a secondary generator mounted

within the hull of a vessel. One could even imagine similar purposes in vehicles and

aeroplanes and like structures subject to accelerated motions. Personal devices may

also be realisable to harness energy lost in human motion to charge portable electronic

devices.

The versatility of such a device is evident, and as such, the following study of

the planar concept is considered a preliminary effort to what could become a much

larger body of work. The study will encompass excitations in the form of accelerations

applied in the full three degrees of freedom that may be experienced by the planar
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structure; horizontal translation of the absolute frame of reference, vertical translation

of the absolute frame of reference and rotation about the origin of the absolute frame

of reference. By deriving an equation of motion to describe this system, a detailed

understanding of loading characteristics and achievable powers my be compiled.

The first hurdle to overcome within this study is how to adequately describe

excitation by rotations of the pendulum. The normally simple derivation is somewhat

complicated in such a situation as one must consider carefully how to affect this

rotation; be that by introducing torque terms to force rotation about the pendulum

pivot point, or by describing the rotation geometrically. Even a geometrical approach

introduces questions as to where this rotation originates. The two prominent choices

are either about the origin of the absolute frame of reference, or possibly by rotating a

second pendulum body frame about the original.

Each approach possess their own merits. The torque induced approach is rather

simple in its implementation and easily decoupled from the translational forms of

excitation, but one would have to consider how this rotational torque may actually

be obtained in reality. This would clearly be dependent on the precise mechanical

configuration of the planar pendulum versus what the environment in which it is

situated in is capable of providing. These dependencies could either be assumed (as

they shall be in the forthcoming analysis) or defined from actual observations and scaled

to suit individual applications. Either approach is likely to introduce uncertainties.

The geometrically approaches both have the advantage of showing exactly how the

excitation rotations arise and affect the system in practice. But as it will be shown,

coupling behaviour between the three forms of excitation may arise if the system is not

carefully defined. Whilst not necessarily affecting the behaviour of the response that

will intrinsically arise from the geometry of the system, it does limit the level of control

the user has over the composition of the excitations themselves. Such complexities are

to be discussed in details.
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4.1 Derivation of Planar Pendulum Device Ex-

citable in Horizontal and Vertical Translations

with Torque Induced Rotations

The analysis begins with the derivation of the equation of motion describing a planar

pendulum that is excitable in the full three planar degrees of freedom. Typically, the

derivation of a pendulum that is excited in translation only is very straightforward.

However, as previously eluded to, this derivation is somewhat complicated with the

inclusion of terms that introduce rotational excitations to the system. The first

approach to this problem is to introduce a torque terms to induce rotations of the

pendulum about its pivot point.
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Figure 4.1: Deflected pendulum defining φ as the permissible degree of freedom with
excitations translating in u and w and torque induced rotations about p.

Fig. 4.1 depicts a deflected pendulum with constant length, l and concentrated end
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mass, m. The generalised coordinate φ represents the permissible degree of freedom

for the pendulum arm to swing through where the φ plane is vertical with respect to

the absolute frame OXZ. The pendulum may experience rotations through φ as a

result of the excitations in the form of horizontal and vertical translations, denoted

by u and w respectively, and by direct rotations of the pendulum that are induced

by an externally applied torque about the pendulum pivot point, p. The tangential

velocity associated with the displacements through φ is lφ̇(t), which have horizontal

and vertical components of lφ̇(t) cosφ(t) and lφ̇(t) sinφ(t) respectively.

The equations of motion is derived using the preferred method of Lagranges’s

equations that are:

d

dt

(
∂T

∂φ̇(t)

)
− ∂T

∂φ(t)
+

∂U

∂φ(t)
= Qφ (4.1)

where Qφ is some generalised force.

To begin formulating the Lagrange’s equations for the given system the kinetic and

potential energies must first be in the correct form. From Figure.4.1 the kinetic energy

can be described as:

T =
1

2
m
(
l2φ̇(t)2 + 2lu̇(t)φ̇(t) cosφ(t) + 2lẇ(t)φ̇(t) sinφ(t) + u̇(t)2 + ẇ(t)2

)
(4.2)

The potential energy of the system is:

U = mgw(t) +mgl −mgl cosφ(t) (4.3)

Next the kinetic energy is differentiated with respect to φ̇(t):

∂T

∂φ̇(t)
=

1

2
m
(

2l2φ̇(t) + 2lu̇(t) cosφ(t) + 2lẇ(t) sinφ(t)
)

(4.4)
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This is now differentiated with respect to time to become:

d

dt

(
∂T

∂φ̇(t)

)
=

1

2
m
(

2l2φ̈(t) + 2lü(t) cosφ(t)− 2lu̇(t)φ̇(t) sinφ(t) + 2lẅ(t) sinφ(t)

+2lẇφ̇(t) cosφ(t)
)

(4.5)

Returning to Eq. 4.2 and differentiating with respect to φ(t) gives:

∂T

∂φ(t)
=

1

2
m
(

2lẇ(t)φ̇(t) cosφ(t)− 2lu̇(t)φ̇(t) sinφ(t)
)

(4.6)

Finally, differentiating the potential energy with respect to φ(t) gives:

∂U

∂φ(t)
= mgl sinφ(t) (4.7)

Hence, the kinetic and potential energies of the system are now in a suitable form for

Lagrange’s equations to be applied as so:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sinφ(t) +

ü(t)

l
cosφ(t) +

ẅ(t)

l
sinφ(t) = Qφ (4.8)

where linear viscous damping terms, 2ξωnφ̇(t) have been included for a more realistic

system and ωn =
√
g/l.

Currently Eq. 4.8 describes a system that can be excited by both horizontal and

vertical translations only. The next step is to introduce torque terms to induce rotations

of the pendulum about p. The reason that this external torque does not arise naturally

during the course of the derivation is that it is to be applied as an assumed external

load to force rotations, but the precise nature of which are to be assumed. This is a fair

assumption to make when one considers that it is the effect that the excitations have

upon the system response that is of most interest, but care must be given to ensure

that the externally applied torque is practical and achievable in practice.

To ensure that the externally torque is in fact a torque when applied, the inertial

units in Eq. 4.8 are multiplied by ml2 to obtain a torque, and Qφ = −λ0 cos Ωλt is

inserted directly. Harmonic expressions are then assumed for the translation terms,
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which are:

u(t) = U0 cos Ωut w(t) = W0 cos Ωwt

u̇(t) = −U0Ωu sin Ωut ẇ(t) = −W0Ωw sin Ωwt

ü(t) = −U0Ωu
2 cos Ωut ẅ(t) = −W0Ωw

2 cos Ωwt (4.9)

By substituting the solutions from Eq. 4.9 into Eq. 4.8, the final form of the equation

of motion used to described to the motions of the planar pendulum from Figure.4.1 is:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sinφ(t) =

U0Ωu
2 cos Ωut

l
cosφ(t) +

W0Ωw
2 cos Ωwt

l
sinφ(t)

− λ0 cos Ωλt

ml2
(4.10)

where λ0 and Ωλ are the magnitude and frequency of applied torque respectively.

4.2 Numerical Analysis of Torque Induced Rota-

tions System

An initial numerical analysis of the system described by Eq. 4.10 will focus primarily

upon the effectiveness of the torque terms used to induce rotations. This is because

the dynamics of planar pendulums excited horizontally and vertically are academic and

well understood, and it can be seen that Eq. 4.10 contains terms in the usual form

used to describe such translating systems. This is demonstrated by the following:

Simple Planar Pendulum:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sinφ(t) = 0

when U0, W0 and λ0 are equal to zero.
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Planar Pendulum Excited Horizontally and Vertically:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sinφ(t) =

U0Ωu
2 cos Ωut

l
cosφ(t) +

W0Ωw
2 cos Ωwt

l
sinφ(t)

when λ0 is equal to zero.

Pendulum Excited by Torque Induced Rotations:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sinφ(t) = −λ0 cos Ωλt

ml2

when U0 and W0 are equal to zero.

Thus, it will be more effective to observe the response of the pendulum system from

torque induced rotations only at first in order to ascertain whether the derived terms

are functional. This will be conducted in an iterative process.

4.2.1 Static Rotations Induced by a Static Torque Load

Mathematica has again been used to perform numerical integrations upon the system

equation of motion. For simplicity, the analysis begins with static torque loads applied

to the system, such that λ0 6= 0 and Ωλ = 0.

Under such conditions, the torque load will remain active under no oscillations

since cos 0 = 1. Therefore one could expect the resulting response itself to be static

but displaced by some angle φ(t). A peculiarity of this system is that at t = 0, the

pendulum is initially unperturbed even when λ0 6= 0, and is only displaced by the

torque when t > 0. This behaviour is demonstrated in Fig. 4.2 which shows an initial

transient phase before the response settles to a steady-state at some particular angle

dependent upon the actual value of λ0. The cause of this is the chosen initial condition

of φ(0) = 0rad which overrides any initial angular displacement induced by λ0 at t = 0.

Hence when t > 0s, the response quickly rises to the static response generated by λ0,

but is preceded by a transient phase. This is typical of a classic step response.

This transient phase may be undesirable depending upon the particular excitation

conditions being modelled and can only be mitigated with prior knowledge of the
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steady-state response. For example, if one were attempting to simulate the pendulum

being held at an initial angle φ = 11.76◦ at t = 0s when λ0 = −1.0Nm (see Fig4.2(a))

with no transient phase at all, then the closest approximation to this would be to set

the initial condition φ(0) = 11.76◦. This has been attempted in Fig. 4.3, but still

some initial transient persists despite been greatly reduced in amplitude. Of course, it

is possible to reduce the transient phase further by increasing the value of ξ to move

from a system that is underdamped to one that is critically, or overdamped. However,

this may not be appropriate for all scenarios. This is therefore of limitation of the

torque induced approach, and one that does not arise in the geometrically described

approach as shall be demonstrated later.

(a) λ0 = −1.0Nm. (b) λ0 = −2.0Nm.

(c) λ0 = −3.0Nm. (d) λ0 = −4.5Nm.

Figure 4.2: Time domain responses of the pendulum to increasing magnitudes of λ0,
where l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0m, W0 = 0m, Ωu = 0rad/s, Ωw = 0rad/s,
Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 0 ≤ t ≤ 60s.

Despite this issue with an initial transient phase, Fig. 4.2(d) shows a more critical

fallacy. It appears that a particular threshold exists after which larger values of λ0 cause

the response of the system to transition into a full rotational mode, thus becoming a
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Figure 4.3: Time domain responses of the pendulum when λ0 = −1.0Nm, where l =
0.5m, m = 1kg, ξ = 0.1, U0 = 0m, W0 = 0m, Ωu = 0rad/s, Ωw = 0rad/s, Ωλ = 0rad/s,
φ(0) = 11.76◦, φ̇(0) = 0rad/s and 0 ≤ t ≤ 60s.

forced-damped rotator instead. This can be explained if one considers a torque arising

from gravity acting upon the end mass, m of the pendulum versus the artificially

applied torque, λ0 used to induced rotations. From Fig. 4.4, the torque generated

by gravity, τ is equal to mgl sinφ(t). This will be at its maximum when φ = 90◦ or

φ = 270◦, lowering in amplitude at angular displacements to either side of these points.

Therefore, if λ0 > τ then the pendulum arm will overcome the torque generated by

gravity and move into a full rotational mode.

Fig. 4.5 shows how τ varies with φ for the pendulum construct shown in Fig. 4.4

and indicates a maximum torque generated by gravity of τ ≈ −4.9Nm. However,

from Fig. 4.2(d) when λ0 = −4.5Nm it shows that still a rotational mode has been

achieved. This can be explained by momentum generated during the initial swing of the

pendulum starting from φ(0) = 0rad being great enough to cross the before mentioned

threshold.

To observe if this is indeed what is happening and to clearly identify the angular

displacement φ beyond which the system enters a rotational mode, a larger value of

ξ can be applied to the system to prevent overshoot in the system response. When

ξ = 1.0 and the system is critically damped, the transition from one mode to the other

is very abrupt. When λ0 = −4.9Nm (Fig. 4.6(a)) the response φ tends towards 90◦

and represents the upper limit at which λ0 can be applied. However, by increasing the

applied torque by only −0.1Nm so that λ0 = −5.0Nm, the system enters the rotational

mode as predicted. This confirms the assumption that the rotational mode is entered

when λ0 exceeds the naturally occurring torque from gravity in the system.
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Figure 4.4: Schematic of torque generated by gravity acting upon the end mass of a
pendulum.

Figure 4.5: Torque generate by gravity acting upon the pendulum end mass versus
angular displacement, φ where l = 0.5m and m = 1kg.
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(a) λ0 = −4.9Nm. (b) λ0 = −5.0Nm.

Figure 4.6: Time domain responses of the pendulum to increasing magnitudes of λ0,
where l = 0.5m, m = 1kg, ξ = 1.0, U0 = 0m, W0 = 0m, Ωu = 0rad/s, Ωw = 0rad/s,
Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 0 ≤ t ≤ 90s.

4.2.2 Summarising Remarks of the Torque Induced Rotations

Method

It has been shown that the torque induced rotations approach has a number of critical

limitations. Even under statically loaded conditions the formation of a transient phase

reduces the effectiveness with which a user may be able to replicate certain conditions

seen in practice. It was shown that this transient phase can be reduced by matching

the initial displacement, φ(0) to that of the steady-state response, but this act itself

requires prior knowledge of the response of the system to its environment. Also, the

approach of increasing damping within the system may again force one to move away

from a realistic system where a lower value of ξ is more appropriate.

Furthermore, it has been demonstrated that an upper λ0 threshold exists beyond

which the system transitions into a full rotational mode. The angular displacement

threshold generated by λ0 is shown to be approximately 90◦ depending on the precise

damping conditions. This feature alone renders the approach obsolete since one should

be able to exceed this value in practice to cause the system to seize.

It is therefore concluded that this particular approach in its present form should

be abandoned for the remainder of the study. Instead the method of the geometrically

described rotational excitations will be discussed with the aim of overcoming these

limitations in performance.
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4.3 Derivation of Planar Pendulum Device with

Geometrically Described Rotations (Coupled

System)

It will be shown how it is possible to define rotational excitations of a pendulum

geometrically, which has the advantage of showing exactly how the rotations arise

within the system. This differs from the previous torque induced approach where an

external torque was assumed to be acting about the pivot point of the pendulum.

Whilst this may have been acceptable for analysis purposes only, it remains more

desirable to develop an approach where the rotations are fully understood.

There are two perceived methods by which to introduce these rotations geomet-

rically; the first may be to rotate the pendulum body pxz frame about the absolute

frame of reference OXZ (see Fig. 4.7), or to rotate a second pendulum body axis

about the origin of the principle body frame (see Fig. 4.9).

4.3.1 Rotation of the Pendulum Body Frame about the

Absolute Frame of Reference

Whilst it may be that the method of rotating the body axis appears the most intuitive,

Fig. 4.7 shows that the resulting three forms of excitation will be heavily coupled

together. Here, the horizontal, vertical and rotational excitations of pxz about the

absolute frame are defined by u, w and λ respectively. Again φ represents the

permissible degree of freedom through which the pendulum may swing. Note that

in this configuration the tangential velocity associated with displacements through φ

is l
(
φ̇(t) + λ̇(t)

)
so that an inertial term for the λ coordinate will arise to include

the influence that rotations through λ have upon the system. This has horizontal and

vertical components of l(φ̇(t)+ λ̇(t)) cos (φ(t) + λ(t)) and l(φ̇(t)+ λ̇(t)) sin (φ(t) + λ(t))

respectively.

The following derivation of the equation of motion of the system highlights precisely

how intrinsically coupled the three excitations are. First, the kinetic, T and potential,
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Figure 4.7: Deflected pendulum with horizontal and vertical translating excitations, u
and w respectively, and geometrically described rotational excitations about the pivot
point, p with φ as the permissible degree of freedom.
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U energies of the system are described by:

T =
1

2
m
[
2l2λ̇(t)φ̇(t) + l2λ̇(t)2 + l2φ̇(t)2

+ 2u̇(t)
(
λ̇(t)(l cos(φ(t))− w(t)) + lφ̇(t) cos(φ(t))

)
+ 2lu(t)λ̇(t)φ̇(t) sin(φ(t)) + 2lu(t)λ̇(t)2 sin(φ(t))

+ 2ẇ(t)
(
λ̇(t)(l sin(φ(t)) + u(t)) + lφ̇(t) sin(φ(t))

)
− 2lw(t)λ̇(t)φ̇(t) cos(φ(t))− 2lw(t)λ̇(t)2 cos(φ(t))1

+u̇(t)2 + u(t)2λ̇(t)2 + ẇ(t)2 + w(t)2λ̇(t)2
]

(4.11)

U = −mgl cos(λ(t) + φ(t)) +mgl + gmw(t) (4.12)

Differentiating the kinetic energy with respect to φ̇(t) gives:

∂T

∂φ̇(t)
=

1

2
m
[
2l2λ̇(t) + 2l2φ̇(t) + 2lu̇(t) cosφ(t) + 2lu(t)λ̇(t) sinφ(t)

+2lẇ(t) sinφ(t)− 2lw(t)λ̇(t) cosφ(t)
]

(4.13)

which, after differentiating with respect to time becomes:

d

dt

(
∂T

∂φ̇(t)

)
=

1

2
m
[
2l2λ̈(t) + 2l2φ̈(t) + 2lü(t) cosφ(t)

+ 2lλ̇(t)u̇(t) sinφ(t)− 2lu̇(t)φ̇(t) sinφ(t)

+ 2lu(t)λ̈(t) sinφ(t) + 2lu(t)λ̇(t)φ̇(t) cosφ(t)

+ 2lẅ(t) sinφ(t)− 2lλ̇(t)ẇ(t) cosφ(t)

+ 2lẇ(t)φ̇(t) cosφ(t)− 2lw(t)λ̈(t) cosφ(t)

+2lw(t)λ̇(t)φ̇(t) sinφ(t)
]

(4.14)
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Differentiating the kinetic and potential energies with respect to φ(t) now gives:

∂T

∂φ(t)
=

1

2
m
[
2u̇(t)

(
−lλ̇(t) sinφ(t)− lφ̇(t) sinφ(t)

)
+ 2lu(t)λ̇(t)φ̇(t) cosφ(t)

+ 2lu(t)λ̇(t)2 cosφ(t) + 2ẇ(t)
(
lλ̇(t) cosφ(t) + lφ̇(t) cosφ(t)

)
+2lw(t)λ̇(t)φ̇(t) sinφ(t) + 2lw(t)λ̇(t)2 sinφ(t)

]
(4.15)

∂U

∂φ(t)
= mgl sin(λ(t) + φ(t)) (4.16)

Therefore, by substituting Eq. 4.14,4.15 and 4.16 into the Lagrange’s equations shown

in Eq. 4.1, the following equation of motion is found:

φ̈(t) +
g

l
sin(φ(t) + λ(t)) + 2ωnξφ̇(t)− λ̇(t)2u(t)

l
cosφ(t) +

λ̈(t)u(t)

l
sinφ(t)

+
2λ̇(t)u̇(t)

l
sinφ(t) +

ü(t)

l
cosφ(t)− λ(t)2w(t)

l
sinφ(t)− λ̈(t)w(t)

l
cosφ(t)

− 2λ̇(t)ẇ(t)

l
cosφ(t) +

ẅ(t)

l
sinφ(t)− λ̈(t) = Qφ (4.17)

where, again Qφ allows for the provision of some generalised force if required and linear

viscous damping terms have been included.

Finally, the following harmonic expressions are again assumed for the excitation terms:

u(t) = U0 cos Ωut w(t) = W0 cos Ωwt λ(t) = λ0 cos Ωλt

u̇(t) = −U0Ωu sin Ωut ẇ(t) = −W0Ωw sin Ωwt λ̇(t) = −λ0Ωλ sin Ωλt

ü(t) = −U0Ωu
2 cos Ωut ẅ(t) = −W0Ωw

2 cos Ωwt λ̈(t) = −λ0Ωλ
2 cos Ωλt (4.18)

Hence, with appropriate substitution, the final form of the equation of motion may be
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arrived at:

φ̈(t) +
g

l
sin (φ(t) + λ0 cos Ωλt) + 2ωnξφ̇(t) =

λ0
2Ωλ

2 sin2 (Ωλt)U0 cos (Ωut)

l
cosφ(t)

+
λ0Ωλ

2 cos (Ωλt)U0 cos (Ωut)

l
sinφ(t)− 2λ0Ωλ sin (Ωλt)U0Ωu sin (Ωut)

l
sinφ(t)

+
U0Ωu

2 cos (Ωut)

l
cosφ(t) +

λ0
2Ωλ

2 sin2 (Ωλt)W0 cos (Ωwt)

l
sinφ(t)

− λ0Ωλ
2 cos (Ωλt)W0 cos (Ωwt)

l
cosφ(t) +

2λ0Ωλ sin (Ωλt)W0Ωw sin (Ωwt)

l
cosφ(t)

+
W0Ωw

2 cos (Ωwt)

l
sinφ(t)− λ0Ωλ

2 cos Ωλt (4.19)

This highlights the resulting severity of coupling between all three forms of

excitation U0, W0 and λ0. The consequences of this are that any rotation affected

by λ0 will invariably also affect a displacement in U and W when measured from

OXZ, provided that either U0 or W0 are nonzero. This is further demonstrated in Fig.

4.8 where various combinations of horizontal or vertical excitations are coupled with

nonzero rotational excitations. In Fig. 4.8(a) the horizontal translation and rotation

introduces an additional vertical displacement despite W0 = 0, and visa versa in Fig.

4.8(b).

Only in the situation where both U0 or W0 are zero can rotational excitations to be

applied to the system without subsequently translating the pendulum body in either

u or w as demonstrated in Fig. 4.8(c). Eq. 4.19 shows how this condition is reduced

to Eq. 4.20 where translation terms are no longer present.

φ̈(t) +
g

l
sin (φ(t) + λ0 cos Ωλt) + 2ωnξφ̇(t) = −λ0Ωλ

2 cos Ωλt (4.20)

This presents a severe limitation of user control and it was for this reason that the

approach was abandoned. Ideally, a method where it would be possible to individually

control each excitation term without inherently affect the others is desirable for being

able to effectively define particular excitation conditions. Therefore the alternative

fully decoupled geometrical approach in which a second body frame of the pendulum

is rotated about the origin of the principal body frame will now be explored next.
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Figure 4.8: Schematics highlighting the inherent coupling between the three forms of
excitation for various translation and rotation combinations.
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4.4 Derivation of Planar Pendulum Device with

Geometrically Described Rotations (Decoupled

System)

It has been established that it is desirable to fully decouple all three forms of excitation

that are realisable for a planar pendulum. By doing so, one provides full control to

the user to be able to individually define the excitations without intrinsically affecting

the others. This is especially useful when attempting to assess the influence each

individually, or in combination, has upon the response of the system. Complications

have arisen when attempting to model the rotational excitations in particular where

previously these terms have generated heavy coupling with the other two forms of

excitation. A new approach to tackle this problem will now be explored.

4.4.1 Rotation of a Second Pendulum Body Frame about the

Origin of the Principal Body Frame

The deflected planar pendulum shown in Fig. 4.9 is intended to address the issue of

coupling between the excitation terms within the system. Again the horizontal and

vertical translations and the rotations are defined by u,w and λ respectively. In this

scenario however, λ causes a rotation of a second body frame p′, x′, z′ about p of the

original pendulum body frame pxz. Both body frames may still be translated by u

and w with respect to the absolute frame of reference OXZ.

The response of the pendulum remains measured as a displacement through φ with

tangential velocities of l
(
φ̇(t) + λ̇(t)

)
.

Again, utilising Lagrange’s equations, the kinetic, T and potential, U energies of

the decoupled system are defined as:

T =
1

2
m

[
l2
(
λ̇(t) + φ̇(t)

)2

+ 2lu̇(t)
(
λ̇(t) + φ̇(t)

)
cos(λ(t) + φ(t))

+ 2lẇ(t)
(
λ̇(t) + φ̇(t)

)
sin(λ(t) + φ(t)) + u̇(t)2 + ẇ(t)2

]
(4.21)
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Figure 4.9: Deflected pendulum with fully decoupled forms of excitation of translation
in u and w and rotations of λ about p, with φ as the permissible degree of freedom in
which the swing of the pendulum arm is measured.
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U = −mgl cos(λ(t) + φ(t)) +mgl +mgw(t) (4.22)

Hence, differentiating Eq. 4.21 with respect to φ̇(t) yields:

∂T

∂φ̇(t)
=

1

2
m
[
2l2
(
λ̇(t) + φ̇(t)

)
+ 2lu̇(t) cos (λ(t) + φ(t)) + 2lẇ(t) sin (λ(t) + φ(t))

]
(4.23)

which, after differentiating with respect to time becomes:

d

dt

(
∂T

∂φ̇(t)

)
=

1

2
m
[
2l2
(
λ̈(t) + φ̈(t)

)
+ 2lü(t) cos(λ(t) + φ(t))

− 2lu̇(t)
(
λ̇(t) + φ̇(t)

)
sin(λ(t) + φ(t)) + 2lẅ(t) sin(λ(t)

+ φ(t)) + 2lẇ(t)
(
λ̇(t) + φ̇(t)

)
cos(λ(t) + φ(t))

]
(4.24)

Now, differentiating Eq. 4.21 and 4.22 with respect to φ(t) gives:

∂T

∂φ(t)
=

1

2
m
[
2lẇ(t)

(
λ̇(t) + φ̇(t)

)
cos(λ(t) + φ(t))− 2lu̇(t)

(
λ̇(t)

+φ̇(t)
)

sin(λ(t) + φ(t))
]

(4.25)

∂U

∂φ(t)
= mgl sin(λ(t) + φ(t)) (4.26)

And with appropriate substitution into Lagranges equations, shown in Eq. 4.1, the

following equation of motion is obtained:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sin(λ(t) + φ(t)) +

ü(t)

l
cos(λ(t) + φ(t))

+
ẅ(t)

l
sin(λ(t) + φ(t)) + λ̈(t) = Qφ (4.27)

where linear viscous damping terms, 2ξωnφ̇(t) have been inserted.



CHAPTER 4. DYNAMICS OF A PLANAR PENDULUM HARVESTER 110

Finally, by assuming and substituting the harmonic solutions for the excitation

terms, shown in Eq. 4.18, the equation of motion may be rewritten as:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sin (φ(t) + λ0 cos (Ωλt)) =

U0Ωu
2 cos (Ωut)

l
cos (φ(t) + λ0 cos (Ωλt))

+
W0Ωw

2 cos (Ωwt)

l
sin (φ(t) + λ0 cos (Ωλt))

+ λ0Ωλ
2 cos (Ωλt) (4.28)

Immediately it is clear from the three sets of right hand excitation terms have been

successfully decoupled from one another. The equation of motion is also remarkably

simpler that that derived in Eq. 4.19 because of the way in which all the coupled terms

cancelled out with one another. This in itself is encouraging.

Furthermore, the schematics shown in Fig. 4.10 demonstrate typical behaviour

that these terms may produce under the various stated conditions. It now remains to

perform a numerical analysis based upon Eq. 4.28 to assess the actual performance of

the derived equation to confirm that the approach for introducing rotational excitations

is functional.

4.4.2 Static Rotations of the Decoupled System

To begin with, the pendulum will be subjected to static rotations at t = 0 such that

λ0 6= 0◦ and Ωλ = 0rad. It can be seen that this results in a similar response to those

reported in Fig. 4.2 when the torque induced rotations method was utilised. However,

despite appearances, the response here is actually very different. When λ0 = −45◦

the response in Fig. 4.11(a) shows that φ = 0◦ at t = 0. But immediately after this

when time is allowed to progress the trajectory enters into oscillatory motion within

the negative domain and eventually settles to a steady state at φ = 45◦.

This behaviour continues for increasing values of λ0 and is attributed to the

pendulum being deflected by the prescribed value of λ0 at t = 0 and subsequently

possessing potential energy. It will then fall from this point under the force of gravity

when t > 0. This results in a response in φ, which of course begins from φ = 0◦ at

t = 0. The final steady state value of φ is always equal to −λ0 when λ0 < 180◦.

This behaviour produced here is similar to specifying an initial condition such as
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Figure 4.10: Schematics demonstrating the decoupled behaviour between the three
forms of excitation.
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(a) λ0 = 45◦. (b) λ0 = 90◦.

(c) λ0 = 135◦. (d) λ0 = 180◦.

(e) λ0 = 180.001◦.

Figure 4.11: Time domain responses of the pendulum to increasing magnitudes of λ0,
where l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0m, W0 = 0m, Ωu = 0rad/s, Ωw = 0rad/s,
Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 0 ≤ t ≤ 60s.
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φ(0) 6= 0, except that here φ would begin from the defined condition and oscillate

before eventually coming to rest at φ(t > 0) = 0◦. Note that it is also possible to

initially displace the pendulum body frame from the absolute frame via u and w at

t = 0, but that this will not result in any measured response in φ since no differences

in potential energy will have been created.

An interesting feature is highlighted in Fig. 4.11(d) where it can be seen that no

response is produced. What has occurred under these conditions is that the pendulum

has initially been rotated through 180◦ so that it is pointing vertically upwards. This

results in gravity acting axially down upon m and with no transverse forces acting upon

the system, the pendulum remains stationary. By further increasing the value of λ0 by

as little as ±0.001◦, gravity will no longer be acting axially upon the pendulum and a

response is produced. Note that the response of φ in Fig. 4.11(d) is positive because

the pendulum was rotated by more than 180◦, causing it to rotate anticlockwise.

Figure 4.12: Time domain response of the critically damped pendulum where λ0 =
135◦, l = 0.5m, m = 1kg, ξ = 1.0, U0 = 0m, W0 = 0m, Ωu = 0rad/s, Ωw = 0rad/s,
Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 0 ≤ t ≤ 60s.

Of course, it is possible to reduce the transient phase of these responses by increasing

the level of damping within the system. To highlight this, Fig. 4.12 shows the response

of a critically damped (ξ = 1.0) system which is released from rest at λ0 = 135◦. Here

no overshoot is evident and the response of the system quickly settles to the appropriate

steady state value.

4.4.3 Oscillating Rotations of the Decoupled System

Oscillating rotation motion is introduced when Ωλ 6= 0 and initially the excitation is

equal to the natural frequency of the system (Ωλ = ωn). The influence of damping
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is observed in Fig. 4.13 and the majority of these simulations presents what may be

perceived as typical behaviour, with the exception of Fig. 4.13(a) where ξ = 0. Here

the response grows and declines in a periodic fashion. This is because at t = 0 the

pendulum arm is initially raised due to the nature of the cosine within the excitation

terms. Then after t = 0 the pendulum begins to fall under gravity whilst λ0 oscillates

at a frequency of (Ωλ = ωn). Because ξ = 0, no energy is dissipated through the system

and the pendulum will continue to swing endlessly between ±λ◦0. The result is that

φ(t) periodically moves in and out of sync with λ0 in the manner indicated by Fig.

4.13(a).

As ξ is increased the response in φ begins to reduce due to energy being dissipated

via the damping and so the response is able to achieve a more stable response after an

initial transient phase.

Also, as would be expected, increased values of ξ lead to reduced amplitudes of

response. This trend continues as ξ is increased to exaggerated values until in Fig.

4.13(d) the level damping is so large that the response is near zero.

The excitation frequency, Ωλ, also plays a very important role. Whereas previous

simulations have been performed at Ωλ = ωn, Fig. 4.14 shows the response of the

system to a frequency sweep. This sweep was performed by measuring the rectified

peak response in φ when 60 ≤ t ≤ 90s for each data point to give an indication of the

performance of the system. The specified time domain was to ensure that any transient

response was not included within the mean rectification process. This was repeated

over a range of damping, ξ values.

This has highlighted that in fact the transmittance of the system decays in the

region of Ωλ = ωn and therefore produces a negative effect on the application of energy

harvesting.

This behaviour has been confirmed over an extensive range of time domain

simulations, and whilst perhaps not intuitively obvious to begin with, it can be

explained by the fact that when Ωλ = ωn, the swinging motion of the pendulum

approaches synchronicity with λ(t). The repercussion of this is that the measured

displacement of φ will be greatly reduced and so in order to maximise the response

of the system, one must always attempt to ensure that the swinging motion of the
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(a) ξ = 0. (b) ξ = 0.1.

(c) ξ = 0.5. (d) ξ = 5.0.

Figure 4.13: Time domain responses of the oscillating pendulum to increasing
magnitudes of ξ, where λ0 = 45◦, l = 0.5m, m = 1kg, U0 = 0m, W0 = 0m, Ωu = 0rad/s,
Ωw = 0rad/s, Ωλ = ωn, φ(0) = 0rad, φ̇(0) = 0rad/s and 0 ≤ t ≤ 60s.
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Figure 4.14: Frequency sweep for a range of values of ξ, where λ0 = 45◦, l = 0.5m,
m = 1kg, U0 = 0m, W0 = 0m, Ωu = 0rad/s, Ωw = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s
and 60 ≤ t ≤ 90s.

pendulum and λ(t) are as near to 90 degrees out of phase with each other as possible.

4.4.4 Combined Translations and Rotations of the System

Whilst it is not the intention of the current study to fully investigate the dynamics of an

unloaded pendulum (where no terms describing some form of power take-off device have

been included), a brief investigation into the combined effects of both translational and

rotational excitations was appropriate to be confident that the full derived equation of

motion, and indeed the approach to introducing decoupled rotations, was performing

adequately. This was done by observing phase portraits of the system response to

various excitation combinations and profiles. These are shown in Fig. 4.15 and 4.16.

The trajectories seen when either U0 6= 0 or W0 6= 0 alone indicate typical responses

with no other significant observations to be made other than the excitations appear to

be functional. Note that with respect to vertical excitations Ωw = 2ωn because in this

configuration the system is parametric in nature and so this would be the appropriate

resonant condition. Perhaps the most interesting behaviour in these examples occurs

in Fig. 4.16 with the formation of additional periods when Ωλ is equal to 0.5ωn and
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1.5ωn. This is further evidence of interesting dynamics taking place within the system.

Unfortunately, as previously stated, investigations of this type do not fall within the

remit of the current study where the purpose is to assess the performance of a planar

pendulum as an energy harvesting device and how throughput can be improved.

From these responses no anomalous behaviour is evident, which is exactly what

was hoped and so it is assumed that the current approach to exciting the pendulum in

the full three degrees of freedom is functioning properly and with the desired level

of control afforded to the user. Effort will now be directed towards applying an

external load in order to be able to represent a suitable form of power take-off device to

convert the mechanical motion of the system into useful electrical energy, and to make

predictions of the expected harvestable powers for a given configuration. That said, it

is suggested that future research be conducted on the interesting dynamics hinted at

here to gain a better understanding of the complicated relationship between all three

forms of excitation. This is expected to be an extensive undertaking given the almost

limitless possible combinations.
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(a) U0 = 0.1m, W0 = 0m, λ0 = 0◦,
Ωu = ωnrad/s, Ωw = 0rad/s, Ωλ =
0rad/s.

(b) U0 = 0m, W0 = 0.1m, λ0 = 0◦,
Ωu = 0rad/s, Ωw = 2ωnrad/s, Ωλ =
0rad/s. (Note that φ(0) = 5◦ here
only).

(c) U0 = 0.1m, W0 = 0.1m, λ0 =
0◦, Ωu = ωnrad/s, Ωw = 2ωnrad/s,
Ωλ = 0rad/s.

(d) U0 = 0.1m, W0 = 0m, λ0 = 45◦,
Ωu = ωnrad/s, Ωw = 0rad/s, Ωλ =
ωnrad/s.

(e) U0 = 0m, W0 = 0.1m, λ0 = 45◦,
Ωu = 0rad/s, Ωw = 2ωnrad/s, Ωλ =
ωnrad/s.

(f) U0 = 0.1m, W0 = 0.1m, λ0 =
45◦, Ωu = ωnrad/s, Ωw = 2ωnrad/s,
Ωλ = ωnrad/s.

Figure 4.15: Phase portraits of the oscillating pendulum to various excitation
conditions where l = 0.5m, m = 1kg, φ(0) = 0rad, φ̇(0) = 0rad/s and 0 ≤ t ≤ 60s.
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(a) U0 = 0.1m, W0 = 0.1m, λ0 =
45◦, Ωu = ωnrad/s, Ωw = 2ωnrad/s,
Ωλ = 0.5ωnrad/s.

(b) U0 = 0.1m, W0 = 0.1m, λ0 =
45◦, Ωu = ωnrad/s, Ωw = 2ωnrad/s,
Ωλ = 1.5ωnrad/s.

Figure 4.16: Continued phase portraits of the oscillating pendulum to various excitation
conditions where l = 0.5m, m = 1kg, φ(0) = 0rad, φ̇(0) = 0rad/s and 0 ≤ t ≤ 60s.

4.5 Summarising Remarks for the Derivation of a

Geometrically Described Planar Pendulum

A planar pendulum that is excitable in the full three degrees of freedom has been

derived. The purpose was to be able to introduce rotations as excitations together

with horizontal and vertical translations. To do this two approaches were investigated;

firstly by rotating the pendulum body frame (pxz) about the absolute frame of reference

(OXZ), secondly by introducing a second body frame (p′x′z′) and rotating this about

the origin of (pxz). In both approaches pxz could be translated horizontally and

vertically with respect to OXZ.

The outcome of the first approach was an equation of motion that was very

complicated that resulted in heavily coupled terms. Given the lack of flexibility that

this would impart upon the user when designing or replicating particular excitation

environments, it was concluded that this approach was ineffective and therefore was

abandoned in favour of the second approach.

The second approach produced a very simple equation of motion in which the

excitation terms were fully decoupled from each other. Numerical simulations were

used to perform performance checks with specific attention given to the rotational

excitation terms. These were shown to produce behaviour that may be intuitively

predicted in practice. It was also highlighted the important role that damping plays in
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such systems where higher levels were shown to restrict the measured response in φ in

the usual manner. Because φ would be the harvestable response for energy harvesting

purposes, this would clearly reduce the throughput of the system and demonstrates the

importance of making every effort to reduce the inherent damping within any energy

harvesting system.

It was also shown that the response of φ when excited rotationally only is lowest at

resonant conditions when Ωλ ≈ ωn. This was attributed to the swing of the pendulum

synchronising with the excitation, thus leading to a lower measured response in φ. It

was therefore suggested that effort must be given to maintain an excitation frequency

that is 90◦ out of phase with ωn to maximise the response of the system.

Finally, a brief investigation highlighted the potentially interesting and complicated

behaviour when more than one form of excitation was introduced at same time. This

was a very brief study, but it is suggested that future effort be given to studying

these dynamics in greater depth. However, given the intended purpose of the planar

pendulum as a vibrational energy harvesting device, the performance of the system may

be better understood by measuring the harvestable energy. To this end, it is necessary

to define an external load by which to extract energy from the current system. This

external loading will be used to represent a suitable power take-off device that may be

realised in practice.
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Chapter 5

Response Based External Loading

Terms

A method has now been developed that is capable of exciting a planar pendulum in the

full three degrees of freedom realisable by such systems. It remains however, to develop

an approach for measuring the amount of energy that such a device would be capable

of harvesting from ambient conditions. By developing a set of appropriate external

loading terms representing a power take-off device, it would be possible to measure

the energy throughput of the system. Furthermore, the concept behind the pendulum-

based harvester is for it to be able to harvest accelerating motion in both directions of

swing of the pendulum arm about its pivot point, which requires the response to be

rectified in some way. Devices capable of performing this function are readily available

in practice, including those that mechanically rectify the instantaneous principal plane

of motion either from a single plane (planar pendulum), or indeed two principal planes

of motion mutually rotated 90 degrees from one another (spherical pendulum). The

present analysis focusses upon the external loading of a planar pendulum only.

Previous studies by Watt and Cartmell (1994) [95] developed an approach to model

the resistive torque produced by a ratchet and pawl mechanism that lifted a known

mass as a suitable power take-off device for a parametric oscillator in the form of a

torsional pendulum. The author investigated the possibility of developing this approach

for the pendulum energy harvester, of which is included in Appendix A for the readers

interest, but ultimately the method was proven unsuitable for the present application.
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It was shown that a pre-assigned frequency based set of loading terms, such as those

proposed in [95], are inherently difficult for maintaining synchronicity with the response

of a loaded system. In such circumstances, it can be that the intended loading terms

intermittently switch between acting as an energy sink, to an energy source, thereby at

times driving the system instead. This was shown in Appendix A to be more prominent

during non-resonant conditions, and was predicated to be further exaggerated when

additional excitation terms were introduced. It was also shown that a phase changed

would occur when the response of the system crossed zero, thereby again turning the

load into an energy source.

The clear solution to these problems would be to base the frequency of any external

loading terms used to represent a power take-off device directly upon the response itself,

such that the load always provides a resistance against the motion of the pendulum.

The following will attempt to develop loadings terms capable of this and explore the

resulting performance under various conditions.

5.1 Development of Square Wave Response Based

Loading Terms

In order to produce a torque that is always resistive to the motion of the pendulum,

it is essential to know the direction of said swing. To identify this Fig. 5.1 shows the

angular displacement, φ(t) and the angular velocity, φ̇(t) of a generic response of the

pendulum system that is excited horizontally only. From this it can be seen that as

expected φ̇(t) = 0 when φ(t) reaches a maximum in either domain. Therefore this

represents the point in which a change in direction occurs. Hence, the sign of φ̇(t)

reveals the direction of motion.

Not only does this provide information on the direction of motion, but it presents

the opportunity to produce a full square wave as opposed to the approximated square

wave defined by Eq. A.4. Therefore, a new square wave loading term may be defined

as:

Lsquare = −T0 × Sign
[
φ̇(t)

]
(5.1)
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Figure 5.1: Superimposed φ(t) and φ̇(t) responses, where l = 0.5m, m = 1kg, ξ = 0.1,
U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = ωnrad/s, Ωw = 0rad/s, Ωλ = 0rad/s, φ(0) = 0rad,
φ̇(0) = 0rad/s and 30 ≤ t ≤ 40s.

where again T0 is the magnitude of the applied torque with units, Nm.

Note the sign of T0 in Eq. 5.1. This is to ensure that it always acts as a resistance

to the direction of φ̇(t).

After inserting this into the physical form of the equation of motion of the planar

pendulum to ensure that torque units are maintained, and subsequently working

this back into the preferred form, the new equation of motion describing the loaded

pendulum is:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sin (φ(t) + λ0 cos (Ωλt)) =

U0Ωu
2 cos (Ωut)

l
cos (φ(t) + λ0 cos (Ωλt))

+
W0Ωw

2 cos (Ωwt)

l
sin (φ(t) + λ0 cos (Ωλt))

+ λ0Ωλ
2 cos (Ωλt)

− Sign
[
φ̇(t)

]
T0 (5.2)

Fig. 5.2 shows the resulting torque profile this new term produces. It shows that

the load approach does indeed match the frequency of the response and that a perfect

square waveform has been produced that is successful in reducing the response with

higher values of T0. Fig. 5.2(c) does show a skewing effect occurring to the response,

φ̇(t), and also evidence of erratic jumps in Lsquare as it appears to respond to small

oscillations of φ̇(t) about zero. Upon closer inspection, it is revealed that the response
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(a) T0 = 0.25Nm. (b) T0 = 0.5Nm.

(c) T0 = 0.75Nm. (d) T0 = 1.0Nm.

Figure 5.2: φ̇(t) responses to increasing values of T0 with Load superimposed, where
l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = ωnrad/s,
Ωw = 0rad/s, Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 40s.
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does oscillate very closely about zero for these short periods, and accounts for the

constant switching of the load.

Fig. 5.2(d) shows a response where the motion of the pendulum appears to have

seized. This is shown by the absence of responses in T0 and this is a very encouraging

result because the previous loading approaches were incapable of achieving this. Two

spikes in T0 do appear just towards the end of the shown time period that could be a

result of an integration error, but in the opinion of the author, it is more likely that a

response was attempting to grow again. This of course, would be immediately resisted

by the presence of T0 again and explains the presence of these spikes in load.

It should be noted that Fig. 5.2 has been plotted at resonant conditions for

horizontal excitations, such that Ωu = ωn. This means that the performance of the

loading approach discussed in Appendix A, LFourier can be directly compared to Lsquare

since it was shown that LFourier was functional under resonant condition provided that

Ω = Ωu = ωn.

(a) when the external load is defined by
LFourier.

(b) when the external load is defined by Lsquare.

Figure 5.3: T0 sweeps versus the average angular velocity, φ̇avg collected over the given
time frame, where l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.1m, W0 = 0m, λ0 = 0◦,
Ωu = ωnrad/s, Ωw = 0rad/s, Ωλ = 0rad/s, Ω = Ωu, φ(0) = 0rad, φ̇(0) = 0rad/s and
30 ≤ t ≤ 40s.

Data points have been collected in Fig. 5.3 by summing the absolute values of φ̇(t)

over the given time domain, and dividing this by the time period such that an average

angular velocity is obtained as follows:

φ̇avg =

∑tn
t0
|φ̇(t)|

tn − t0
(5.3)
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The results are very similar which in itself lends credence to both approaches when

employed in the given conditions. When T0 = 0Nm the average angular velocity, φ̇avg

is at its maximum. Then as T0 increases, both response decrease at similar rates until

a minimum is reached at T0 ≈ 0.8Nm.

What is important to note is that the point in Fig. 5.3(a) at which the response

begins to grow again, showing that there was a phase change in LFourier such that it

became an energy source, is not replicated in Fig. 5.3(b). Instead now the response

remains approximately at zero, suggesting that the pendulum has come more or less to

a complete halt because the energy fed into the system from the horizontal excitation

is no longer great enough to overcome the resistive load. In fact, observations of Fig.

5.4 show this to remain so at much higher values of T0 which confirms that Lsquareis

incapable of acting as an energy source.

Figure 5.4: T0 sweep versus the average angular velocity, φ̇avg collected over the given
time frame for the Lsquare loading approach, where l = 0.5m, m = 1kg, ξ = 0.1,
U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = ωnrad/s, Ωw = 0rad/s, Ωλ = 0rad/s, φ(0) = 0rad,
φ̇(0) = 0rad/s and 30 ≤ t ≤ 40s.
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5.2 Power Capacity of the Pendulum Energy Har-

vester

Now that a suitable set of terms representing the square waveform of the power

take-off have been developed, and appear to be sufficiently functional, it would be

appropriate to measure the energy that can be harvested by Loadsqaure. By doing so, a

parameter study could then be performed to assess the optimal conditions under which

the pendulum harvester can operate.

During the motion of the pendulum end mass, m, it is producing work in the form

of a torque travelling through an angular displacement, φ(t):

Work =

∫ φn

φ0

τdφ (5.4)

where τ is the torque produced by the end mass, m and φ0 and φn are the initial and

final angular positions of m between which the work has been produced.

A portion of this work will be consumed when acting against the externally applied

torque Lsquare, and it is this that will be harvestable. No mechanically or electrical

inefficiencies of the actual power take-off will be assumed at this point, and so the

full proportion of Lsquare contributes to the harvestable energy. Therefore, given that

power is work per unit time, then the power dissipated via the power take-off will be:

P (t) = |Lsquareφ̇(t)| (5.5)

where Load is the chosen loading scheme in torque units, Nm.

The modulus of P (t) is taken because power is harvested in both domains of motion

of the pendulum due to some external rectification process, be that a form of mechanical

or electrical rectification. Continuing to use the loading approach define by Lsquare, and

with further mathematical simplifications, Eq. 5.5 becomes:

P (t) =
∣∣∣T0φ̇(t)

∣∣∣ (5.6)
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Note that the above only applies in the context of a external square load waveform.

Fig. 5.5 shows simulations that repeat the conditions from Fig. 5.4 using Eq. 5.6.

The instantaneous power, P (t) has been plotted within the time domain and indicates

similar characteristics to Fig. 5.4 with P (t) → 0 as T0 increases. Once more the

response drops to zero when T0 ≈ 0.8Nm, see Fig. 5.5. Given that this is a measure of

the power being dissipated by the power take-off, it confirms that Lsquare only acts as an

energy sink because P (t) never crosses zero. Under these steady-state conditions it can

be seen that the peak power harvested is approximately 0.8 Watts when T0 = 0.4Nm.

Fig. 5.6 demonstrates another method to view this data. Here it is observed

how energy is collected over time and positive fitted gradients refer to energy being

harvested. The steeper the positive gradient relates to greater rates of energy being

dissipated, hence greater powers capacities. Note that no negative gradients are

present. It can be seen that trends in both Fig. 5.5 and Fig. 5.6 are in agreement with

one another.
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(a) T0 = 0Nm. (b) T0 = 0.2Nm.

(c) T0 = 0.4Nm. (d) T0 = 0.6Nm.

(e) T0 = 0.8Nm. (f) T0 = 1.0Nm.

Figure 5.5: Instantaneous power, P (t) dissipated by the power take-off terms, where
l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = ωnrad/s,
Ωw = 0rad/s, Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 40s.
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Figure 5.6: Accumulating energy, E(t) collected via the power take-off terms, where
l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = ωnrad/s,
Ωw = 0rad/s, Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 0 ≤ t ≤ 60s.

5.3 Parameter Sweeps for Optimisation of the Har-

vester

With a method for measuring the energy throughput of the harvester established, it

is perhaps more effective to observe the influence various parameters have upon the

performance of the system. By doing so, approaches for optimising the throughput

of the system may be devised and an understanding of the peak performance can be

found.

Firstly, it must be defined how to represent the measurable value of performance.

The method to measure the instantaneous power will not be appropriate since this is

dependent upon the instantaneous time in which the measurement is taken. It would

be better to measure the amount of energy accumulated over a given time period and

call it Eacc. This can be done in a similar way to that used in Chapters 2 and 3, such

that:

Eacc =

∫ tn

t0

[P (t)] dt (5.7)

This produces a value that can be compared between simulations without introduc-

ing errors due to differences in trajectories at instantaneous moments. However, to be

a fair comparison, all simulations should be of the same time period.

Fig. 5.7 is an example of a T0 sweep that was performed using the above approach.
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This clearly shows the characteristics in response that were before eluded to by Fig.

5.5 and Fig. 5.6. It can be seen that indeed the peak performance of the pendulum

with the given conditions does occur when T0 ≈ 0.4Nm with an associated Eacc ≈ 30J.

Figure 5.7: A sweep of T0 showing the Eacc produced, where l = 0.5m, m = 1kg,
ξ = 0.1, U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = ωn, Ωw = 0rad/s, Ωλ = 0rad/s,
φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 90s.

5.3.1 The Effects of the Frequency of Horizontal Excitation

Only

It is now known that for a pendulum with an end mass, m = 1kg, arm length, l = 0.5m

and damping ratio, ξ = 0.1 that is excited horizontally at resonance where U0 = 0.1m

and Ωu = ωn, the average energy accumulated by the system is Eacc ≈ 30J. One may

typically expect the greatest throughput of the system to occur at resonant conditions,

and that any deviation from the condition will result in a drop in response, and hence

power. However, Fig. 5.8(a) shows that this is not the case.

In fact, what is happening is very interesting. There is evidence of a peak in

Eacc in the region of Ωu = ωn = 1.0, and the fact that the response builds rapidly

immediately prior to this location suggests that resonant conditions do produce much

greater responses in such systems as one would expect. However, beyond this point it

can be seen that the response continues to grow steadily. It has been observed that

no transitions into full rotational modes occur within this region and so this is not the

cause of this behaviour. What does happen in fact is that as Ωu increases, the inertia
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(a) when T0 = 0.4Nm. (b) T0 = 0.4Nm.

U0

Φ

m

l

Φ

(c) Approximated displaced pendulum
when U0 = 0.1m and Ωu >> ωn

Figure 5.8: Sweep of excitation frequency, Ωu showing the Eacc produced and peak
φ(t), and a schematic of a displaced pendulum, where l = 0.5m, m = 1kg, ξ = 0.1,
U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωw = 0rad/s, Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s
and 30 ≤ t ≤ 90s.
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in the m must reach a point that the mass itself almost remains horizontally static and

the pivot point deflects to either side in the manner shown in Fig. 5.8(c). Knowing

that U0 = 0.1m and l = 0.5m, the angular displacement associated with such a scenario

is calculated using trigonometry as φ = 11.54◦. Comparing this to Fig. 5.8(b) that

shows an excitation sweep plotting the peak responses of φ(t), then it can be seen that

indeed the system does tends towards this angular displacement.

The consequence of this is that at higher frequencies when the inertia of m becomes

so great, then φ(t) is directly affected by the excitation displacement, U0, which in these

simulations remains fixed. However, if the Ωu continues to increase, then the frequency

of the response will also increase, thus more power becomes available for harvesting in

the way indicated by Fig. 5.8(a).

It may be that these increasingly large values of Ωu become unreasonable in practise.

5.3.2 The Effects of the Frequency of Vertical Excitation Only

Performing a similar method to that above will allow the influence of vertical excitations

to be understood. First, the peak value of T0 is determined under the assumption that

this will occur somewhere in the region of Ωw = 2ωn, since in this configuration the

system is parametric in nature. As shown before, the pendulum has to be initially

perturbed to initiate a response since to transverse forces act upon m when excited

axially only. φ(0) = 15◦ was arbitrarily chosen for this process. From Fig. 5.9(a) it

can be seen that an optimum value of T0 ≈ 0.16Nm exists for the given conditions.

Interestingly, beyond this point the response of the system drops almost immediately

to zero a likely result of inherent nonlinearities within the system that in the current

excitation configuration, is parametric in nature. Parametric systems are known to be

sensitive to loading conditions, as demonstrated by this figure.

Further insight into this behaviour is given by Fig. 5.9(b) where the effects of

softening nonlinearities that were alluded to are present, evident by the curve leaning

towards the left. The peak of this response when T0 = 0.16Nm exists at Ωw = 2ωn as

predicted, and at frequencies immediately prior to this the response is at approximately

zero. This supports the observations from Fig. 5.9(a).

To uncover the true sensitivity to the loading conditions, multiple sweeps were
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(a) Ωw = 2ωn. (b) T0 = 0.16Nm.

Figure 5.9: Sweeps of T0 and Ωw showing the Eacc produced, where l = 0.5m, m = 1kg,
ξ = 0.1, U0 = 0.0m, W0 = 0.1m, λ0 = 0◦, Ωu = 0rad/s, Ωλ = 0rad/s, φ(0) = 15◦,
φ̇(0) = 0rad/s and 30 ≤ t ≤ 90s.

performed under various values of T0 in Fig. 5.10. This shows that at low values

of T0, these softening nonlinearities have a greater influence upon the system. One

advantage of this is that it can be seen that the operating bandwidths of the peak

responses are increased. What is very peculiar however, is that it appears that this

system cannot exist when hardening nonlinearities are dominant. This is suggested

because it can be seen that when T0 = 0.2Nm the shape of the peak is approaching

that of a linear response. However, when T0 = 0.25Nm the system, which if the

observed trend continues, would be forced into a hard state. Instead of this however,

the response drops to zero, and is perhaps a consequence of the parametric system not

being able to exist in such a state, particularly when externally loaded.

Figure 5.10: Multiple sweeps of excitation frequency, Ωw showing the Eacc produced
for various values of T0, where l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.0m, W0 = 0.1m,
λ0 = 0◦, Ωu = 0rad/s, Ωλ = 0rad/s, φ(0) = 15◦, φ̇(0) = 0rad/s and 30 ≤ t ≤ 90s.
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5.3.3 The Effects of the Frequency of Rotational Excitation

Only

Simulations observing the influence of rotational excitations again reveals interesting

behaviour possibly akin to that seen where the pendulum was excited horizontally at

high frequencies. Firstly, the optimum value of T0 was determined from Fig. 5.11(a)

using an arbitrarily chosen value of λ0 = 10◦. The excitation frequency was set to

Ωλ = 2ωn because of the observations made in Fig. 4.14 which showed that the

response of a system excited rotationally was at it lowest when Ωλ = ωn, and so this

condition is avoided.

(a) Ωλ = 2ωn.

(b) T0 = 1.1Nm. (c) T0 = 1.1Nm.

Figure 5.11: Sweeps of T0 and Ωλ showing the Eacc produced and peak φ(t), where
l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.0m, W0 = 0.0m, λ0 = 10◦, Ωu = 0rad/s,
Ωw = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 90s.

The response in Fig. 5.11(a) shows consistent behaviour for 0 ≤ T0 ≤ 1.5Nm, where

the response increases to a peak and then begins to drop again. However, there is the
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appearance seemingly random spikes within the response when 1.5 ≤ T0 ≤ 2.3Nm that

could be attributed to integrations errors within the numerical computation process,

or even chaotic behaviour. However, given the regularity of the response up to and

including the peak located at T0 ≈ 1.1Nm, this value has been selected to perform an

excitation frequency sweep that reveals similar behaviour seen in Fig. 5.8(a). This

can once more possibly be attributed to the inertia of m becoming so large that the

response is purely generated by the excitation itself. Knowing that λ0 = 10◦, Fig.

5.11(c) reveals this to be the case since at higher frequencies of excitation, the peak

angular displacement of the response, φ(t) approaches 10◦ which is equal to the chosen

λ0. Therefore, as the value of λ0 remains fixed and Ωλ increases, there will be more

energy available for harvesting via Lsquare in the manner indicated by Fig. 5.11(b).

Once more, physically achieving such high excitation frequencies in practice may not

be practical.

5.3.4 The Effects of Magnitude of Excitation

It is important to also understand how the magnitude of the excitation terms will

affect the performance of the system. If it is accepted that the frequency of the

excitation remains constant across these simulations, then it would be expected that

larger displacements would result in more power available for harvesting. That is indeed

the behaviour suggested by the simulations in Fig. 5.12.

The response in Fig. 5.12(a) grows more rapidly at lower values of U0, but then does

continue to grow almost linearly as U0 is increased further. The response for vertical

excitations in Fig. 5.12(b) is somewhat different as there appears to be a large drop

in response in the region of W0 = 0.2m, which is followed by a short period of rapid

growth, further followed by a almost level response. There is also evidence of further

growth at the much higher values of W0. It is not immediately clear what the cause of

this response is, but it is likely due to complicated behaviour arising from the inherent

nonlinearities within the system.

The response of Fig. 5.12(c) is in itself very interesting because of the linear

appearance of the response. This suggests that λ0 and Eacc are directly proportional

to one another, and it is suggested the reason for this is because there is no horizontal
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or vertical translation of the system when it is excited in this way. Therefore there is

very little change in kinetic or potential energy of m other than that instigated by the

inherent damping of the system. Therefore, almost all of the energy being delivered

into the system by the excitation terms will be dissipated by the loading terms, and

hence Eacc increases this way. This is in keeping with the observations from Fig. 5.11

where above excitation frequencies of Ωλ > 2ωn the response in Eacc began to grow

linearly.

(a) T0 = 0.4Nm, Ωu = ωn, Ωw = 0rad/s and
Ωλ = 0rad/s.

(b) T0 = 0.16Nm, Ωu = 0rad/s, Ωw = 2ωn,
Ωλ = 0rad/s and φ(0) = 15◦.

(c) T0 = 1.1Nm, Ωu = 0rad/s, Ωw = 0rad/s and
Ωλ = 2ωn.

Figure 5.12: Sweeps of magnitude of excitation in different forms showing the Eacc
produced with the following conditions (unless otherwise stated), l = 0.5m, m = 1kg,
ξ = 0.1, φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 90s.

5.3.5 The Effects of Damping within the Harvester

The use of damping in the planar pendulum energy harvester plays a different role

than that used in previous chapters concerning the Euler strut based harvester where

the damping terms were used directly to dissipate energy for harvesting. Now damping
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is used purely to simulate mechanical losses such as friction and sound. In practice

one would attempt to limit the inherent damping within the system since any energy

dissipate this way is not available for harvesting. To briefly demonstrate how damping

affects the system, various scenarios are presented to assess the performance of the

system.

(a) T0 = 0.4Nm, U0 = 0.1m, Ωu = ωn, Ωw =
0rad/s and Ωλ = 0rad/s.

(b) T0 = 0.16Nm, W0 = 0.1m, Ωu = 0rad/s,
Ωw = 2ωn, Ωλ = 0rad/s and φ(0) = 15◦.

(c) T0 = 1.1Nm, λ0 = 10◦, Ωu = 0rad/s, Ωw =
0rad/s, Ωλ = 2ωn.

(d) T0 = 0.5Nm, U0 = 0.1m, W0 = 0.1m, λ0 =
10◦, Ωu = ωn, Ωw = 2ωn and Ωλ = 2ωn.

Figure 5.13: Sweeps of ξ showing the Eacc produced with the following conditions
(unless otherwise stated), l = 0.5m, m = 1kg, U0 = 0.0m, W0 = 0.0m, λ0 = 0◦,
Ωu = 0rad/s, Ωw = 0rad/s, Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 90s.

In all four simulations shown from Fig. 5.13 it can be seen that indeed larger values

of damping, as controlled by the damping ratio, ξ, do lead to lower values of Eacc. It

can be seen in Fig. 5.13(b) that a vertically excited system is far more sensitive to

damping effects compared to horizontal or rotational excitations, where the response

falls to zero as low as when ξ ≈ 0.17. Conversely, a system that is excited rotationally

only is by far the most tolerant to damping. The final simulation shows the coupled

behaviour when all three forms of excitation are applied simultaneously, each with the
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same conditions as used in their respective individual simulations.

The conclusion from these ξ sweeps is that, as would be typically expected,

significant throughput benefits can be afforded when the inherent damping within the

energy harvester, as indeed with all forms of energy harvesters, is kept at an absolute

minimum to prevent energy being dissipated as waste.

5.4 Optimisation of the System for Under Various

Scenarios

The parameters that have been studied so far are mostly related to the excitation

conditions. However, these parameters in practice would be determined by the

vibrations originating from the environment that are to be harvested, be they man-

made or naturally occurring. The fact is that these may not be controllable, and any

effort to do so would likely waste energy. It is therefore the harvester that should be

tuned to suit these excitation conditions, and not the other way about. A study will

now be performed where the controllable parameters of the pendulum will be identified

and a suitable method will be developed by which these can be used to maximise the

energy throughput of the harvester.

From inspection of the equation of motion of the system defined by Eq. 5.2, there

are three parameters that may in practice be controlled by the user to manipulate the

response of the system. These are:

• Length, l; can be used to manipulate the natural frequency to potentially tune

the system to frequencies of peak performance.

• Mass, m; will affect the inertial properties of the system.

• Externally applied torque, T0; will directly affect both the response of the system

and the amount of power that can be harvested. This value in practice will be

defined by the physical power take-off device and the effects that this term has

already been discussed.

In reality, all three of these parameters will have physical implications towards the

mass and volume that is feasible for the particular environment that the device is
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deployed within. For example, a end mass of 100kg would be impracticable for a 10cm

pendulum arm length without causing mechanical failure. This is an exaggerated

example, but the principle holds true. Actual engineering design implications are

not the focus for the current study, but an attempt at realism will be maintained

throughout.

5.4.1 Development of an Optimisation Process for Various

Excitation and Loading Conditions

Due to the shear scope of the number of variations possible from a system with three

decoupled forms of excitation; horizontal, vertical and rotational, a method will now

be detailed that will allow for the optimum operating conditions to be more easily

identified for each unique case. This will be applied to a number of arbitrarily chosen

excitation profiles to demonstrate its effectiveness.

The rational behind this approach is that in practice the actual excitation conditions

could be measured and understood, and therefore may be applied to this model for

optimisation. It is also suggested that the resistive torque of the power take-off device

would be known depending on the capacity of the device itself, and therefore applied

to this same model. Therefore, the optimisation method focuses on determining the

optimum values for the mass and length of the harvester.

The approach developed performs a dual sweep of both m and l under the ‘known’

conditions where Eacc is again measured to characterise the throughput. The suggestion

is that given the excitation conditions and the resistive torque of the power take-off,

the mass and length of the pendulum can be tailored to maximise throughput.

A number of examples are now presented to demonstrate this process, but are in

no way representative of a complete catalogue of possible configurations. It has also

been necessary to make a number of assumptions. These are that effort will have been

made to reduce the inherent damping as far as possible and so a value of ξ = 0.1 has

been chosen throughout, and also that the amplitudes and frequencies of excitations

are not prone to fluctuations. The last assumption is particularly important because

it means that the excitation frequencies will not track the varying natural frequency

of the system as l is itself varied. This means that l itself is used to track the natural
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frequency towards resonant conditions.

As mentioned, there are endless possibilities for sample simulations that could be

performed, but those shown in Fig. 5.14 demonstrate the technique for increasing the

performance of the harvester. It is interesting to observe the various shapes of the

responses, from those with tall but narrow bandwidths such as Fig. 5.14(a) & 5.14(b),

and those with much broader bandwidths such as Fig. 5.14(c).

The previous parameter studies have given insight into how such shapes are

produced by varying the value of T0, and therefore it becomes discretionary to the

user as to whether a wider bandwidth with lower throughput is preferred, or one that

is narrower but with higher achievable powers. Ultimately this would be dictated by

the relative stability of the excitation conditions. If the excitations are known to be

stable, then narrower bandwidths may be acceptable. However, if the excitations have

a tendency for drift then wider bandwidths would be the obvious solution.

What is shown across all simulations is that there is a saturation point with respect

to the mass where the relative gain for increasing m begins to level off. It is suggested

that there would have to be a compromise between the actual mass of the system

and the practicalities that come from implementing it in practice. There exists a point

where additional mass will compromise the integrity of the structure, or make it difficult

to deploy in its intended location.

It can be concluded from these simulations that the developed approach does

indicate preferable properties for increasing the throughput of the harvester.
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(a) T0 = 0.5Nm, U0 = 0.3m, W0 =
0.1m, λ0 = 15◦, Ωu = 4rad/s, Ωw =
1rad/s, and Ωλ = 0.5rad/s.

(b) T0 = 0.5Nm, U0 = 0.1m, W0 =
0.3m, λ0 = 30◦, Ωu = 2rad/s, Ωw =
4rad/s, and Ωλ = 2rad/s.

(c) T0 = 1.5Nm, U0 = 0.5m, W0 =
0m, λ0 = 10◦, Ωu = 1.5rad/s, Ωw =
0rad/s, and Ωλ = 3rad/s.

(d) T0 = 0.05Nm, U0 = 0.6m, W0 =
0.03m, λ0 = 0◦, Ωu = 5rad/s, Ωw =
1rad/s, and Ωλ = 0rad/s.

(e) T0 = 5Nm, U0 = 0.25m, W0 =
0.3m, λ0 = 25◦, Ωu = 4rad/s, Ωw =
2rad/s, and Ωλ = 0.25rad/s.

(f) T0 = 1.5Nm, U0 = 0.1m, W0 =
0m, λ0 = 0◦, Ωu = 4rad/s, Ωw =
0rad/s, and Ωλ = 0rad/s.

Figure 5.14: Dual sweeps of l and m showing the Eacc produced, where ξ = 0.1,
φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 90s.
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5.5 Summarising Remarks for the Response Based

Loading Approach

A response based square wave loading approach, Lsquare has been developed that is

capable of applying a resistive torque to the pendulum regardless of the frequency of

the response. This new approach is also capable of producing a fully square waveform

to better model the loading characteristics of the discussed ratchet and pawl mechanism

that could be used to lift a mass on a winding drum. A comparison of the angular

velocity response behaviour was made between the revised response based load and

the Fourier series based approximation developed in Chapter A. This was performed

at resonant conditions where the latter approach was shown only to be functional,

and the results were very comparable. This simulation also showed that the new

approach was not susceptible to the phase change anomaly where previously LFourier

could transition from acting as an energy sink to an energy source. Instead when the

magnitude of the Lsquare is increased high enough, the response will drop to zero and

remain there, simulating a seized system.

Confident that the new approach was functioning in the desired manner, a method

for measuring the harvested energy from the pendulum was developed. Using this it

was possible to perform a parameter study to show how behaviour is affected by various

properties. It was shown that there exists a peak value for T0 when all three forms

of excitation were studied individually. It was also shown that T0 could be directly

used to control the bandwidth of the system by varying the nonlinear properties of the

system.

It was also observed how the excitation frequency and magnitude of excitations

affected the system. This highlighted some interesting behaviour where in certain

conditions the response of the system would behave linearly with the excitation. It

was also shown how increased damping will dissipate more energy from the system as

expected, which would reduce the harvestable energy from the external load.

Finally, the effects of the mass and length of the system were observed in numerous

arbitrarily defined scenarios. The reason for the arbitrary scenarios was because

there exist endless possible combinations of excitation conditions, and so the shown
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simulations were used to demonstrate a technique that allows for the optimum mass

and length properties to be determined for each situation. The three-dimensional plots

were used to highlight peak operating conditions, and it was again shown how some of

these peaks were wider or narrower than others as a result of the applied T0 controlling

the bandwidth of the response.

It was also shown that at some point the increase in harvested energy from

increasing m would begin to level off. This therefore indicated that it may not always

be a simple case of applying as large a mass as possible to increase throughput of

the harvester. Finally, it was discussed how of course there would exist engineering

restrictions in practice with respect to both the mass and the length of the pendulum

harvester, but that this technique could be used as an indicator to improving the

response as far as possible.
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Chapter 6

Conclusions

During the course this thesis, the author has proposed and developed three forms

of vibrational energy harvester: a periodically excited Euler strut harvester, a

stochastically excited Euler strut harvester, and a planar pendulum harvester that is

excitable by both horizontal and vertical translations and rotations about its own pivot

point. All three have focussed upon the field of harvesting mechanical accelerations

from ambient conditions, with a view to increasing the normal throughput either by

enhancing the response of the system actively or passively, or by optimising the system

parameters to compliment the given excitation conditions. In all cases, the analytical

and numerical approaches used throughout this thesis have demonstrated the potential

of these concepts, and the conclusions made about each will now be summarised.

6.1 Periodically Excited Euler Strut Energy Har-

vesting

In Chapter 2, a parametric oscillator in the form of an Euler strut was proposed as

an energy harvesting device that would be capable of harvesting known steady-state

periodic vibrations applied axially to the beam. This design, whilst somewhat similar

in construction to the second proposed device, is intended for application where the

harvestable vibrations would not be prone to excessive drifts in frequency. Such drifts

were shown to lead to dramatically reduce the throughput of the system, and thus

would compromise its effectiveness in practice. As it was assumed that the periodic
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vibrations would be sourced freely from ambient conditions, the principal focus in

the development of the periodically excited harvester was to attempt to enhance its

normal functioning throughput, and also to identify a mechanism through which the

operational bandwidth could be broadened.

By providing the facility to apply an initial pre-curvature to the beam via an axially

applied static pre-load, the system could be switched between a uni-stable state to a

bistable one. Furthermore, application of this static load could be considered as a

passive form of control because no energy would be required to maintain it. This was

the mechanism by which it was proposed to enhance the energy throughput.

It was considered that in the absence of a static pre-load upon the Euler strut,

whilst simultaneously being excited by a dynamic axial force, the harvester would be

operating in its most basic form. It was observed that whilst the beam would oscillate

about a single basin of attraction for small dynamic forcing values, for larger values the

critical buckling load of the beam could be intermittently exceeded, and would result in

complicated and unpredictable responses. Such responses were presented with multiple

periods of attraction, including those that are associated with a bistable system. This

behaviour was discussed, but ultimately it could be concluded that such responses

would not produce an effective energy throughput for the intended application of the

harvester.

In light of this, it was shown that application of a static axial load that exceeded the

critical buckling point of the beam would force a pre-curvature and subsequently remove

the uni-stable basin of attraction normally located at the unstressed position of the

beam. By doing so, it was shown that it is possible to enhance both the displacement

and velocity response of the device by manipulating the trajectory to orbit about the

bistable basins of attraction in a steady-state. Furthermore, by measuring the energy

dissipated via damping within the system, it was possible estimate the energy that

would be available for harvesting from the source vibrations. This revealed somewhat

surprising behaviour where two peak responses in accumulated energy were prevalent.

Upon further analysis, it was concluded that this was a result of two distinct types of

response orbit trajectories; one at the point of peak displacement manifested by the

response orbiting around the two attractors in the bistable system, and the second that
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orbited about a single bistable attractor, but resulted in a peak velocity.

The second peak could be considered as more interesting surprising, because it

was manifested by the static pre-load upon the beam when it was sufficiently high

enough to force oscillations within a single basin of attraction only. This would be

present itself by the beam only oscillating to one side of the unstressed position, and

is a consequence of the potential barrier between the two bistable attractors being too

great for the dynamic load to surpass. However, observations concluded that despite the

effective displacement of this particular response being reduced, the resulting velocity

response peaked, and given that the measured power was function of the velocity

squared, this was shown to be able to result in a greater energy throughput under

particular conditions. Thus, a second energy throughput peak was observed.

A following parameter study was performed upon the periodically excited system,

and revealed that the static axial load could be used to control the nonlinearities within

the system. In situations where the static load was less than the critical buckling load,

the system would be governed by hardening stiffnesses. However, if the static load

is increased, then softening nonlinearities become prevalent and it was shown that

resonant frequency of the system would tend towards the location of the excitation

frequency being equal to the fundamental natural frequency. Whilst the true nature

behind this observed behaviour is not yet understood, it is concluded that it may be

a result of the precise configuration of the system, or perhaps due to the parametric

nature of the system being altered by the increasing dominance of bistability. Note

that the same behaviour was produced by varying the length of the beam because the

critical buckling load is a function of this parameter, and therefore in effect, varying

the length would vary the proximity of the critical buckling load to the static axial

load.

It was also shown that increasing the dynamic axial load applied to the beam

would result in ever increasing levels of available energy able to be harvested. This

was expected and was simply concluded to be a direct result of more energy being

introduced to the system, and thus more energy becoming available for harvesting.

The relationship between these two qualities is approximately linear.

Finally for the periodic system, it was demonstrated that the damping within
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the system could be used to effectively manipulate the operational bandwidth of

the harvester. It was observed that lower values of the damping ratio would result

in taller, narrower peaks in energy throughput, whilst higher damping values would

produce lower, but broader peaks. It was concluded that such a mechanism would

be especially useful for tailoring the harvester to particular excitation scenarios in

practice. If deployed in an environment that is know to produce vibrations with stable

frequencies, then a lower damping ratio would result in a more productive harvester.

However, in an situation where the excitation frequency is known to drift, then a

higher level of damping could be more effective, despite the subsequent decrease in

peak response.

Therefore, in conclusion of the periodically excited harvester, it is indeed possible

to both enhance the energy throughput of such a device using a passively applied axial

static pre-load, and also to increase the operational bandwidth by varying the inherent

damping within the system. In both cases, these improved states of performance may

not require energy to be maintained.

6.2 Stochastically Excited Euler Strut Energy Har-

vesting

Whilst the periodically excited energy harvester was shown to be a viable concept, the

analysis did highlight an underlying sensitivity to excitation frequencies. Given that

steady-state periodic vibrations from ambient conditions are perhaps limited, it became

desirable to seek alternatives to this approach that circumvented the requirement for

stable excitations if broadening of the operational bandwidth would not prove sufficient.

Therefore, another Euler strut energy harvester was proposed in Chapter 3 that is

very similar to that discussed in Chapter 2. The only modification was the inclusion of a

stochastic input that would now be the source of the harvestable vibrations. Again, the

static and dynamic axial loads were implemented, but instead now the dynamic load

was used to act as a active form of modulation to attempt to enhance the response

of the system. The key difference between the two Euler strut devices is that the

first harvests axial vibrations of stable known frequency, whereas the next harvester
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was to harvest lateral vibrations defined as a sequence of random values with normal

distribution with zero mean and unit variance. Hence, the second device is intended

for deployment in a more unpredictable environment.

It was shown from time domain responses that when the stochastically excited

system was excited by the stochastic input alone, such that the beam existed in an

uni-stable state, the response oscillated primarily about the single attractor located

at the unstressed position. However, evidence of the sporadic formation of additional

attractors was observed at the location typically expected by that of a bistable system.

Whilst the precise phase space shape of these trajectories was somewhat different from

that observed with the periodic energy harvester (see Chapter 2.5.2) that was excited

by the periodic dynamic load only, the underlying mechanism of the two is concluded

to be the same. That is that the increased momentum generated by the excitation was

enough to intermittently exceed the buckling capacity of the beam. The difference in

trajectory shape will be a consequence of the stochastic nature in the excitation of the

second harvester.

By introducing an axial static pre-load to the stochastically excited harvester,

the uni-stable attractor can again be removed as it was with the periodic harvester.

Observations of the effects of this were able to conclude it to be an effective method in

passively enhancing the response of the system in a very similar fashion as discussed

in Chapter 2, and would therefore be an effective approach to increasing the energy

throughput of such a system undergoing stochastic excitations.

However, the purpose of this particular device was to attempt to exploit, and

observe, the cumulative effects of both a deterministic and stochastic input, potentially

culminating in the enhancing qualities produced by stochastic resonance. This required

the inclusion of a dynamic axial load to effectively modulate the potential barrier

present in the system when forced into a bistable configuration via the static axial

load. This is a form of active control, and its benefits were immediately clear. Even in

the situation where the modulating frequency of the dynamic load was well away from

the location of principle parametric resonance (which occurs at twice the fundamental

natural frequency in linear systems), the result was an increase in transitions between

both bistable attractors. This would be manifested in practice by the beam buckling
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more often from one side of the unstressed position, to the other, thus increasing the

total distance travelled by the mass centre.

Furthermore, it was observed that careful control of the dynamic modulating

frequency could further enhance this effect by producing a resonant peak response that

was manifested by a steady-state open loop response trajectory about the two bistable

attractors. It was concluded that this was the location of stochastic resonance, and by

the fact that a steady-state response was produced in the presence of the stochastic

input, it can also be concluded that the energy throughput of such a system would also

be greatly enhanced and stable.

Unfortunately, it was at this point that research upon this particular harvester had

to be concluded so that the author could commence work upon two feasibility studies

that were in collaboration with industry. This was an exciting opportunity that merited

such a move, but despite this, the author believes that it has been shown that the

proposed concept of enhancing the throughput of a stochastically excited Euler strut

using active measures is very much plausible. The logical next stage of research for this

concept should be focussed upon estimating the net energy throughput of the device,

so that similar observations can be made to that of the previous periodic harvester.

The key difference between these two is, however, that the second harvester uses an

active form of control that will require energy to perform. Therefore, it is essential

that the work done in the compressive stroke of the axial dynamic modulating load

be subtracted from the total energy dissipated by the power take-off terms. This

would allow for the net available energy for harvesting from the stochastic source to be

estimated. The work of McInnes et al (2008) proposes a very attractive solution to this,

and it is suggested that this could be a logical starting point for future investigation.

6.3 Planar Pendulum Energy Harvesting

Following the conclusion of the Euler strut themed energy harvesting devices, the

focus of research was placed upon the development of a planar pendulum-based energy

harvester. The scope of this research was driven by the development of a novel

mechanically rectifying gearbox that by design, was able to rectify rotations out of the
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instantaneous plane of motion of a pendulum swing. Therefore, in effect, such a device

could replace the pivot point of said pendulum and be used to drive a power take-off

device (such as a generator) in a single angular direction to generate useful electrical

energy. This would be useful in harvesting mechanical accelerations from ambient

sources such as sea waves, vehicular motion and even human motion for example.

To optimise the effectiveness of the planar pendulum harvester, the device had

to be able to be excited in the full three degrees of freedom; horizontal translation,

vertical translation and rotational excitation. Whilst deriving the equation of motion

of a pendulum that is excited by both forms of translation is straight forward and

well understood, complications arise when attempting to introduce fully decoupled

rotational excitations too.

The first method approached was to introduce an external torque that would

effectively induce rotations about the pivot point. It was accepted that such an

approach somewhat lacked clarity because such an external torque would have to be

assumed or defined from actual measurements, and would clearly be dependent upon

what the environment in which the device was deployed would be capable of providing.

Accepting this, analysis ultimately showed the approach to be fundamentally flawed. In

the situation where initial static rotations were attempted, an initial transient response

would always prevail unless countered precisely with opposing initial conditions. Given

that this itself would require foreknowledge of the generated response, it was concluded

that this would provide inadequate control to the user.

Furthermore, it was demonstrated that it was possible for the rotational torque to

force the pendulum to change from a oscillatory mode, to that of a rotator. It was

determined that this was a result of the induced torque exceeding the resistive torque

generated by gravitational effects upon the end mass, and thus presented a limited

range of angles through which pendulum could effectively be rotationally excited.

Due to these limitations, it was ultimately decided to instead describe the rotational

excitations using a geometrically described approach. Two methods to achieving this

were explored; the first whereby rotations were described by rotating a translated

pendulum body axis about the absolute frame of reference, the second by rotating a

secondary body axis about the pivot point of an already translated principal pendulum
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body axis.

It was quickly concluded that the first approach led to highly coupled excitations

terms, such that applying a rotation together with a single translation would

intrinsically result in a displacement being affected in the other direction of translation.

Thus, this drastically reduces the flexibility for being able to replicate particular

excitation profiles (for example, a pendulum in which its axis is rotated as it

is simultaneously displaced horizontally would consequently result in an unwanted

vertical displacement also).

However, the second geometrical approach whereby a secondary body axis was

instead rotated about the principal pendulum body axis, was shown to produce a fully

decoupled system and resulted in a very elegant equation of motion. Various param-

eters were assessed under numerous excitation conditions, and the most important

conclusions that were made include: that the issue of achieving static rotations that

was reported for the torque induced rotations method was resolved, that some level

of damping is required to achieve a more stable response, and that higher levels of

damping would dissipate more energy and limit the response (thus demonstrating the

need to reduce damping as much as possible in practice). Most importantly however,

it was shown that in a system that is excited rotationally only, the measured response

from which energy could be extracted would be drastically reduced at resonance. It

was observed that this was a result of both the rotational excitation and the swinging

response of the pendulum arm entering into phase with one another, thus the measured

response approached zero. Therefore, it must be concluded that for a pendulum system

that is excited rotationally only, the user must attempt ensure that the system is excited

at at frequency as far from resonance as possible.

Following a further brief investigation into the responses generated from combined

excitations, which produced some interesting and complicated behaviour, it was

concluded that the decoupled geometrical approach was fully functional and suitable

for the intended application.

The study progressed to incorporate a set of external torque terms, but in this

instance, to model the resistive torque that would be generated by a power take-off

device. This differs from the power take-off method adopted with the periodically
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excited Euler strut-based harvester, where in that case the damping terms were used

to model the energy dissipated by an assumed power take-off device. Instead now it

was intended to model the load as an external set of loading terms in-line with the two

feasibility studies that this research was been conducted under.

A first approach, that is included in Appendix A, was adapted from earlier work

by Watt and Cartmell (1994) [95]. Here a pre-assigned frequency based set of loading

terms were used to model the resistance generated by a ratchet and pawl lifting a

known mass as a power take-off. This was proven to be ineffectual due the dependence

upon a pre-assigned frequency for the load, causing it to enter in and out of phase with

the response of the pendulum, thus continually switching between acting as an energy

sink and an energy source.

It was therefore concluded that a response based external loading approach would

be more appropriate, which was developed in Chapter 5. By measuring the sign of the

velocity response of the pendulum, it was possible to ascertain the direction of swing

in the pendulum arm. This was used to control the switching of a externally applied

torque constant that generated a perfect square wave load that always acted as a sink

in energy. With it been concluded that this approach was both elegant and effective,

estimates of the energy able to be harvested were subsequently made. This was done

by multiplying the modulus of the velocity response with the applied resistive torque

of the power take-off terms to produce an expression for instantaneous power.

Further parameter studies similar to that in previous chapters were performed,

and it was revealed that there existed a peak operating resistive torque for all free

forms of excitation, but also that the operational bandwidth could be controlled by

the magnitude of this torque via manipulation of the nonlinear characteristics of the

system. Interesting behaviour was noted when the pendulum was excited horizontally

only. It was shown that at higher excitation frequencies, the displacement of the end

mass of the pendulum could approach zero, such that it appeared static, even though

a measured response indicating swinging motion was noted. It was concluded that in

these situations with high excitation frequencies, the inertia of the end mass became

so large that it began to resist motion and the pendulum arm rotated instead about

it. Similar observations were made when the system was excited rotationally only with
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increasing magnitudes, but in this instance both the end mass and the pendulum arm

approached static behaviour and the pendulum axis now rotated about its pivot point.

Finally, the effects of mass and length in the system were observed together

under various arbitrarily defined excitation conditions. This was able to successfully

demonstrate that it is possible to optimise the response of the pendulum harvester

using these parameters, which could be considered as the most readily controllable in

practice. Furthermore, the control upon the operational bandwidth via the magnitude

of the resistive power take-off torque was again exhibited in the generated responses,

and also that the harvestable energy would begin to level-off with increasing values

of end mass. The important conclusion from this observation is that it indicates that

there will become a point beyond which very little gains are to be made in comparison

to the increased engineering complexity involved with adding additional mass to the

pendulum in reality. This would be compounded by the added complexity in physically

deploying the structure in location too.

These final observations concluded the study of the planar pendulum based energy

harvester, and indeed the thesis. It was shown quite clearly that such a planar device

possesses great potential, that could possibly be further increased by adapting the

concept to a three-dimensional construction. It is suggested that the loading approach

developed within this thesis could easily adapted to such a spherical pendulum, where a

different set of power take-off torque terms could be used to harvest energy out of each

plane of motion in a three-dimensional device. This will be discussed in the following

Chapter 7.

In final conclusion, three individual energy harvesting devices have been proposed

and studied. The first two, whilst very similar in construction, are targeted at

harvesting different types of vibrational energy, as is reflected throughout; one stable

known periodic vibrations, the other unpredictable stochastic vibrations. The Third

device is radically different still, both in concept and implementation, but the

commonality between all three systems is that it has been shown that with either

passive or active controls, or with careful manipulation of system parameters, it is

indeed possible to enhance their normal functioning response to benefit their ultimate

energy harvesting purposes.
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Chapter 7

Future Work

The scope of research that was conducted as part of the present thesis can essentially

be separated into three bodies of work; the periodically excited Euler strut energy

harvester, the stochastically excited Euler strut energy harvester, and the planar

pendulum based energy harvester. With this in mind, it is more appropriate to discuss

possible future work packages on the basis of each of these individually.

7.1 Periodically Excited Euler Strut Energy Har-

vester

An interesting feature was noted and discussed in relation to the periodically

excited Euler strut harvester, whereby it appeared that resonance (the point of peak

performance) tended towards Ω
ωn

= 1.0 as Pstatic was gradually increased. Similar

behaviour was also noted when the length of the beam was varied, which was likely

a result of the value of Pcrit being effectively shifted and so the same mechanism was

likely being observed. The author believes that it is both interesting and important to

investigate this behaviour further to properly ascertain whether this tending location

of Ω
ωn

= 1.0 was due to the precise configuration of the system at the time of

these simulations, or whether something more fundamental was occurring between

the relationship of Pstatic and Pcrit whereby the parametric nature of the system was

being effectively altered. It is this that requires clarification.

An effective approach to determining this would be to develop a Mathematica code
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(or similar software) whereby multiple Ω
ωn

sweeps are performed whilst logging the

peak value of the chosen performance measure and its location. Doing so across a

range of Pstatic would indicate quite clearly whether resonant conditions were indeed

tending towards Ω
ωn

= 1.0. Furthermore, by repeating this process for various system

configurations would show whether the tending location itself shifted. Such an outcome

would itself lead to further need for investigation to identify the underlying mechanism

driving this behaviour.

Of course, one of the most important future phases of work in relation to the periodic

harvester would be to experimentally validate the simulated data documented within

this thesis. To this end, it is strongly recommended that a technology demonstrator be

designed and built, preferably based upon the beam geometry and material properties

used throughout. The source of the excitations could be provided by a mechanical

shaker, whilst a compression spring integrated with a threaded bolt could be used to

apply a variable static pre-load to the beam to apply Pstatic.

However, such experiments would require a suitable method for measuring the

performance of the system, specifically the harvestable energy. In Chapter 2 the

performance was assessed by three measures; by the displacement f(t) of the response,

the velocity ḟ(t) of the response, and the energy dissipated via the chosen power take-off

terms.

In any future experimental set-up it would be comparably straightforward to

measure f(t) or ḟ(t) using an accelerometer mounted at the midpoint of the beam,

since it was here that the mass centre from which lateral responses were measured was

modelled. If available, it would be more effective to do this using laser vibrometers to

avoid the additional mass effects that accelerometers would impart (unless of course

this additional mass was suitably incorporated within the analytical model). In order

to measure the energy performance of the harvester it was suggested in Chapter 2 that

a piezoelectric strip could be physically attached to the beam. This same concept has

been proposed and tested by a number of researchers in the past [3, 98–102], and it

would be appropriate to implement a similar approach.

Using these three measures of performance, it is hoped that future experimental

tests could be used to validate the results presented within the current thesis, or indeed
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indicate areas requiring further investigation. In any event, such experiments would in

the very least compliment the studies performed up to this point.

7.2 Stochastically Excited Euler Strut Energy Har-

vester

Prior to any experimental tests being performed upon the stochastically excited Euler

strut based harvester, it remains to produce energy throughput estimates in order to

ascertain the potential effectiveness of the concept, beyond the indicative time domain

response discussed in Chapter 3. To this end, it was suggested that previous studies by

McInnes et al (2008) [90] could prove useful, in that they developed a means by which

the total energy available for harvesting from their stochastically enhanced harvester

was reduced by the work done from their active form of control. This is essential if a

conservative estimate is to be made, and it is suggested that this approach be adapted

to the stochastically excited Euler strut-based harvester investigated in this thesis.

Once a suitable method for reducing the net harvestable energy by the work done in

forcing the beam has been fully established, it would be then be appropriate to collecte

more comprehensive data regarding the effectiveness of the system, and this should

include a complete parameter study. Following this, similar experimental approaches

as proposed previously for the periodically excited harvester could then be used to

validate the acquired results.

In fact, it is envisioned that both experiments could be incorporated into a single

experimental apparatus. This is possible because the only additional feature within

the stochastically excited system is the lateral stochastic input itself. Therefore,

by supporting the Euler strut within a caged structure that also supports a small

mechanical shaker providing Pdynamic and a spring or known mass to provide Pstatic,

then the cage structure itself could be excited by a larger mechanical shaker mutually

orientated 90 degrees to the beam. A preliminary CAD model of this concept is

depicted in Fig.7.1.

It can be seen that this would require the cage structure to be mounted upon a

sliding bearing bed to allow the entire structure to translate laterally to the beam.
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Figure 7.1: Conceptual design for an experimental rig capable of testing both the
periodically excited and stochastically excited harvester concepts.

Then, in order to perform experiments testing the periodically excited harvester only,

the laterally movement of the rig need only be restrained and the smaller mechanical

shaker would then be used to provide the axial periodic excitations alone.

Of course, it is essential to be able to measure the amount of work done in

modulating the beam in respect to the stochastically excited harvester, but it would also

be useful to understand the energy fed into the system by the respective excitations

(of which are to be considered freely sourced from ambient conditions in practice).

Both can be measured using a force transducer to measure the applied force and an

accelerometer to measuring the displacement of the shaker aperture, thus work done

can be calculated. It is unlikely that laser vibrometers will be suitable in this particular

scenario due to possible line-of-sight issues.

At this point there should be enough information to form conclusive observations

as to whether the stochastically excited harvester is indeed capable of producing

net positive energy for harvesting in the way that the simulated data reported

within this thesis suggests. Expanding the research further from here would perhaps
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involve modelling the characteristics of the power take-off device (the piezoelectric

strip) electromechanically. This would provide a much greater level of detail into

the understanding of the complete system and subsequently the realisable energy

throughput that could be expected under particular conditions. The research by

Masana and Daqaq (2011) [69] and Goldschmidtboeing et al (2008) [101] would provide

useful resource material from which to begin this process from.

7.3 Pendulum Based Energy Harvester

The latter portion of this thesis was focussed upon the development of a planar

pendulum based energy harvester. The next step to evolving this concept further is to

adapt the model into a full spherical pendulum which would be capable of harvesting

accelerating motion from the full six degrees of freedom. The author has previously

derived the equations of motion of a spherical pendulum that can be excited in three

directions of translation, shown below:

ml2φ̈+ cφmφ̇+mgl sinφ−ml2 (sinφ cosφ) φ̇2 +ml (cosφ cos θ) ü

+ml (cosφ sin θ) v̈ +ml sinφẅ = Qφ (7.1)

ml2 sin2 φθ̈ + cθmθ̇ + 2ml2 (sinφ cosφ) θ̇φ̇−ml (sin θ sinφ) ü

+ml (cos θ sinφ) v̈ = Qθ (7.2)

The reader is referred to Appendix B in which the full derivation process of the above

is detailed, but it can be seen that the full swinging motion of the pendulum end mass

is captured by two generalised coordinates, φ(t) and θ(t) (see Fig.B.1 of AppendixB).

This makes it possible to harvest mechanical energy from these two permissible degrees

of freedom, but the facility to apply rotational excitations into this model remains to be

incorporated. The geometrically described decoupled approach developed in Chapter

4 would therefore have to be adapted into the three-dimensional system in accordance

with Euler’s rotation theorem.

Accepting this, the actual power take-off of the spherical harvester could be realised

in practice using two motor generators and a form of electronic rectification in the way
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Figure 7.2: Block diagram of the conceptual electrical rectification process of a spherical
pendulum energy harvester with two permissible degrees of freedom, φ(t) and θ(t).

indicated by Fig.7.2. It is suggested that the two motor generators be mutually rotated

90 degrees from each other and that each be responsible for collecting motion from

one of the permissible degrees of freedom, φ(t) and θ(t) respectively. By rectifying

the voltage produced by each motor individually with a diode bridge, such that only

positive voltages are summed, this device could be used to charge an electrical energy

storage device such as a battery placed in parallel with a capacitor. It would be

important to sum only rectified voltages from each motor to ensure that no positive

and negative signals cancel each other out since it would not be possible to ensure that

the responses in φ(t) and θ(t) remain in phase. A similar rectifying battery charging

circuit was used by Sodano et al (2005) [103] to rectify the output from a PZT that was

attached to an aluminium substrate (see Fig.7.3), and so suggests that the proposed

method is viable.

Figure 7.3: Schematic of a battery charging unit developed by Sodano et al (2005) [103].

What is elegant about this experimental solution is the fact that is does provide

the ability to harvest motion out of the two permissible degrees of freedom of the
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spherical pendulum and to integrate these together in a cumulative manner. Given

that swinging motion in φ(t) and θ(t) is itself generated by accelerations from the

six degrees of freedom, this form of harvester would have the potential to harvest the

full range of motion realisable in practice by a three-dimensional system in ambient

conditions such as sea-waves or vehicular motion for example. To this end, the external

loading approach developed in Chapter 5 could be directly integrated into the new

system for each generalised coordinate to represent appropriate power take-off devices.

Following this, it would be possible to produce energy throughput estimates for the

complete system.

Finally, the author proposes to investigate different external loading waveforms

aimed at representing different types of power take-off device. A square waveform

loading approach was developed in Chapter A and Chapter 5 to model the external

loading applied by a simple ratchet and pawl system that lifts a known mass. However,

it may be the case that a sinusoidal loading waveform may be more appropriate in some

situations. It was shown in this thesis that it is essential for any loading characteristic

to be intrinsically linked to the velocity response of the system so that the load only

ever acts as an energy sink, and never an energy source. Unfortunately the development

of a response based sinusoid can be more complicated to achieve, but the author does

suggest the possible use of an ArcTan operator implemented in the following way:

Qφ = T0

2ArcTan
(
φ̇(t)/ε

)
π

(7.3)

Qθ = T0

2ArcTan
(
θ̇(t)/ε

)
π

(7.4)

where T0 again is the value of the applied torque, and ε is a quantity used to control

the roundness of the desired loading waveform.

Fig.7.4 depicts numerous loading profiles generated by the above ArcTan based

loading approach when applied to the established planar pendulum system that is

excited horizontally only. Note that the properties of the planar pendulum are similar
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(a) where ε = 0.01. (b) where ε = 0.1.

(c) where ε = 0.5. (d) where ε = 1.0.

Figure 7.4: Loading profiles of ArcTan based waveform for increasing values of ε,
where length, l = 0.5m, mass, m = 1kg, ξ = 0.1, T0 = 0.01N, U0 = 0.1m, W0 = 0m,
λ0 = 0◦, Ωu = ωnrad/s, Ωw = 0rad/s, Ωλ = 0rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and
30 ≤ t ≤ 40s.
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to those used previously in the current thesis. It can be seen from this that when the

value of ε is very low, such as ε = 0.01, the resulting waveform approaches that of a

square wave and could be used in the same way discussed in Chapter 5. By increasing

ε, the roundness of the corners of the waveform can be exaggerated and the profile

begins to take a form similar to that of a traditional sinusoidal wave.

This is only a preliminary demonstration, but it does indicate the potential for an

ArcTan operator to produce a response based sinusoidal loading waveform if desired.

However, it is clear that further investigation is required before forming any definitive

conclusions on this, and that care should be given when selecting a value for ε. It

can be seen from Fig.7.4(d), where ε = 1.0, that the peak value of T0 has decreased

from the targeted value of T0 = 0.01N. However, if this loading approach is adopted

to make estimates of the energy available for harvesting, then by applying the product

of these terms for use in the estimation and not simply the value specified for T0, the

implications of this feature will be mitigated. It may be though that larger values of T0

would have to be specified to replicate the same resultant load of a square waveform.

The author strongly suggests further investigation into this to determine its

effectiveness, and to compare it with that of the square wave loading approach that

was developed within this thesis.
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Appendix A

External Loading of the Planar

Pendulum

A pendulum-based energy harvester was proposed in Chapter 4 that seeks to convert

mechanical accelerations sourced from the environment into more useful electrical

energy. With a suitable equation of motion having been derived that has the facility

to excite the system in the full three degrees of freedom that may be experienced by

the planar device, the following appendix chapter will discussed the derivation of an

external loading approach which was undertaken as an expansion upon earlier work by

Watt and Cartmell (1994) [95].

However, this approach used a pre-assigned load to model the resistive torque

applied by a ratchet and pawl power take-off torque that ultimately was not able

to provide the flexibility required by the planar pendulum energy harvesting device

that was proposed in Chapter 4. The following appendix chapter is therefore included

to provide an in-depth understanding behind this reasoning.

A.1 Derivation of Square Wave External Loading

Terms

Watt and Cartmell (1994) [95] previously developed a set of square wave loading terms

to model a ratchet and pawl power take-off device that was implemented in their novel

torsional pendulum. In this example, the ratchet was used to lift a mass on the end
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of a winding drum, and therefore the full cycle of the principal inertia comprised of

a power take-off stroke when the angular velocity of the pendulum was greater than

zero, and a recovery stroke when the angular velocity was equal to, or less than zero.

It was decided to adopt a similar square waveform loading approach for the planar

pendulum based harvester discussed within this thesis, and so the approach by Watt

and Cartmell (1994) [95] was investigated.

The equation of motion developed in Section.4.4 is repeated below for reference

before modifying it to include suitable loading terms:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sin (φ(t) + λ0 cos (Ωλt)) =

U0Ωu
2 cos (Ωut)

l
cos (φ(t) + λ0 cos (Ωλt))

+
W0Ωw

2 cos (Ωwt)

l
sin (φ(t) + λ0 cos (Ωλt))

+ λ0Ωλ
2 cos (Ωλt)

A generalised force Qφ term is used to represent a torque and is inserted after

the above equation of motion has been multiplied by ml2 so that the inertial terms

themselves are appropriately torques also. This external torque is to act on the

pendulum about the pivot point p and will be used to represent the resistive load

applied by the power take-off. First, it shall be assumed that Qφ contains both a static

and time dependent element such that Qφ = T0 + T1(t), where T0 and T1(t) can be

either positive or negative so that a Fourier series approximation may be applied at a

later stage. Therefore the physical form equation of motion then reduces to:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sin (φ(t) + λ0 cos (Ωλt)) =

U0Ωu
2 cos (Ωut)

l
cos (φ(t) + λ0 cos (Ωλt))

+
W0Ωw

2 cos (Ωwt)

l
sin (φ(t) + λ0 cos (Ωλt))

+ λ0Ωλ
2 cos (Ωλt) +

T0

ml2
+
T1(t)

ml2

(A.1)

Eq. A.1 is now dimensionally correct provided that T0 and T1(t) are torques. If the

approach developed by Watt and Cartmell (1994) [95] is applied further to produce a

square on/off waveform, then this may be approximated using the first two terms in

the Fourier series, those of the form Qφ = T0 + T1(t) with further details built in later.
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By setting T1 = −Tp sin (Ωt+ α), both an oscillating load function with frequency Ω

and phase angle α can be introduced. Therefore, Eq. A.1 may take the form of:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sin (φ(t) + λ0 cos (Ωλt)) =

U0Ωu
2 cos (Ωut)

l
cos (φ(t) + λ0 cos (Ωλt))

+
W0Ωw

2 cos (Ωwt)

l
sin (φ(t) + λ0 cos (Ωλt))

+ λ0Ωλ
2 cos (Ωλt)

+

[
T0

ml2
− 1

ml2
Tp sin (Ωt+ α)

]
(A.2)

Noting that α should be equal to 0 or π
2
.

In the original application of this approach by Watt and Cartmell (1994) [95] Tp

was made equal to2T0
π

, and the amplitude of the square wave dc offset was halved,

such that dc offset = T0/2, so that the approximating sinusoid fit exactly together.

Applying this method to Eq. A.2 leads to:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sin (φ(t) + λ0 cos (Ωλt)) =

U0Ωu
2 cos (Ωut)

l
cos (φ(t) + λ0 cos (Ωλt))

+
W0Ωw

2 cos (Ωwt)

l
sin (φ(t) + λ0 cos (Ωλt))

+ λ0Ωλ
2 cos (Ωλt)

+
1

ml2

[
T0

2
− 2T0

π
sin (Ωt+ α)

]
(A.3)

Fig. A.1 shows the behaviour of the loaded torque terms,
[
T0
2
− 2T0

π
sin (Ωt+ α)

]
,

where T0 = 5Nm and Ω = 1rad/s have been arbitrarily chosen and α = 0 and π
2
. A

number of features can be discerned from these loading profiles: that α successfully

controls the phase of the load, that a dc offset has been applied, that the measured

amplitude of the oscillating load is ≈ T0, the recovery cycle falls below 0Nm, and finally

that a sinusoidal oscillation has been generated.

It is of course possible to better approximate a square waveform by including more

terms from the Fourier series in the derivation. However, Watt and Cartmell (1994) [95]

observed that the resulting behaviour generated by the first two terms alone produced

very similar results to that generated by higher approximations, such as those used
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(a) α = 0. (b) α = π
2 .

Figure A.1: External loading characteristics simulating an approximated
(on/off)square wave torque with half amplitude dc offset, where T0 = 5Nm, Ω = 1rad/s
and 0 ≤ t ≤ 30s.

to produce the loading profiles illustrated in Fig. A.2. It is for this reason that the

proceeding analysis continues using the two term approximation shown in Eq. A.3.

One must also bear in mind the application with which Watt and Cartmell (1994)

[95] originally designed their loading terms. As discussed, these were intended to

simulate a half cycle positive power take-off stroke for lifting a mass, followed by a

recovery half cycle stroke, as follows:

f
(
φ̇
)

= T0 for φ̇(t) > 0

f
(
φ̇
)

= 0 for φ̇(t) ≤ 0

However, with respect to the currently proposed planar pendulum harvester, this

would have the effect of loading only one half of the cycle i.e. one direction of swing.

The repercussions of this would be that the pendulum would be asymmetrically loaded

which does not achieved the desired loading conditions. A numerical simulation shown

in Fig. A.3 confirms this behaviour. Note that in this simulation all forms of excitation

are equal to zero (U0 = 0,W0 = 0 and λ0 = 0) and the response is instead being driven

by the on/off load waveform. Clearly the pendulum response resides predominately

within the positive domain and it therefore becomes necessary to modify the square

wave approximation so that it acts as a symmetrical load with no recovery stroke in

between.
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(a) T0

2 −
2T0

π sin Ωt+ α− 2T0

3π sin 3Ωt− α (b) T0

2 −
2T0

π sin Ωt+ α − 2T0

3π sin 3Ωt− α −
2T0

5π sin 5Ωt+ α

(c) T0

2 − 2T0

π sin Ωt+ α − 2T0

3π sin 3Ωt− α −
2T0

5π sin 5Ωt+ α− 2T0

7π sin 7Ωt− α
(d) T0

2 −
2T0

π sin Ωt+ α − 2T0

3π sin 3Ωt− α −
2T0

5π sin 5Ωt+ α − 2T0

7π sin 7Ωt− α −
2T0

9π sin 9Ωt+ α

Figure A.2: External loading characteristics approaching greater approximation of a
square (on/off) wave torque with half amplitude dc offset, where T0 = 5Nm, Ω =
1rad/s, α = π

2
and 0 ≤ t ≤ 30s.

(a) (b)

Figure A.3: Numerical simulation based upon Eq. A.3 (a) pendulum time domain
response to (on/off) square wave loading, (b) (on/off) square wave loading profile,
where l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0m, W0 = 0m, λ0 = 0◦, Ωu = 0rad/s,
Ωw = 0rad/s, Ωλ = 0rad/s, T0 = 0.5Nm, Ω = 1rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and
30 ≤ t ≤ 60s.
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A.1.1 Modification of Square Wave Loading Terms

It is known that for the planar pendulum energy harvesting device, the power take-

off device should be able to harvest mechanical energy in both directions of swing.

Therefore, the loading conditions that any square wave approximated loading torque

should satisfy are:

f
(
φ̇
)

= −T0 for φ̇(t) > 0

f
(
φ̇
)

= 0 for φ̇(t) = 0

f
(
φ̇
)

= T0 for φ̇(t) < 0

A method by which to achieve this would be to simply sum two sets of the previous

square wave terms,
[
T0
2
− 2T0

π
sin (Ωt+ α)

]
such that their net effect would produce

a square waveform that resisted both directions of swing realised by the pendulum

through φ. This would be achieved by one set of the terms being ‘on’ in the positive

domain whilst the other is ‘off’, and visa verca for the negative domain response. This

is an attractive solution because it maintains fully the Fourier series approximation

without any modification beyond the summation of two sets of terms, and is therefore

mathematically more realistic. The modified square wave load may be defined as:

LFourier =

[
T0

2
− 2T0

π
sin (Ωt+ α)

]
−
[
T0

2
− 2T0

π
sin (Ωt− α)

]
(A.4)

Hence the new equation of motion used to describe the pendulum motion is:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sin (φ(t) + λ0 cos (Ωλt)) =

U0Ωu
2 cos (Ωut)

l
cos (φ(t) + λ0 cos (Ωλt))

+
W0Ωw

2 cos (Ωwt)

l
sin (φ(t) + λ0 cos (Ωλt))

+ λ0Ωλ
2 cos (Ωλt)

+
1

ml2

[
T0

2
− 2T0

π
sin (Ωt+ α)

]
− 1

ml2

[
T0

2
− 2T0

π
sin (Ωt− α)

]
(A.5)

Note that to better approximate a square waveform, additional terms from the Fourier
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series may once more be included where necessary in same manner demonstrated in

Fig. A.2.

(a) (b)

Figure A.4: External loading characteristics simulating an approximated (on/on)
square wave torque (a) solid line positive domain load, dashed line negative domain
load, (b) resulting summed loads, where T0 = 5Nm, Ω = 1rad/s, α = π

2
and

0 ≤ t ≤ 30s.

Fig. A.4 shows the resulting torque profile generated by Eq. A.4 that demonstrates

how the two sets of terms have been summed to produce the (on/on) square wave

approximation. Given that the only modification here is to sum two sets of terms

derived previously, the units remain dimensionally consistent. It is very important to

note that with LFourier, the phase angle must always be α = π
2

(or α = 3π
2

which would

produce the same effect). The reason for this is that it is necessary for the sign of α to

be opposing in either set of terms. Given that a domain sign for zero has no meaning,

the previous alternative where α = 0 leads to the summed terms cancelling one another

out.

By repeating the simulation from Fig. A.3, but instead based upon Eq. A.5, it

can be seen in that indeed a symmetrical response has been achieved (see Fig. A.6).

Again, the response has been generated by LFourier alone acting as an energy source as

opposed to an energy sink because they have been applied at an arbitrary value and

frequency with no other form of excitation and have no response to resist. This in itself

is a problem because it should never be the case that the load can act as an energy

source. If the pendulum is not being excited by u, w or λ such that no response should

be present, then no load should be experienced either. However, given that the LFourier



APPENDIX A. EXTERNAL LOADING OF THE PLANAR PENDULUM 171

(a) (b)

Figure A.5: External loading characteristics simulating an approximated (on/on)
square wave torque (a) solid line positive domain load, dashed line negative domain
load, (b) resulting summed loads, where T0 = 5Nm, Ω = 1rad/s, α = 0 and 0 ≤ t ≤ 30s.

(a) (b)

Figure A.6: Numerical simulation based upon Eq. A.5 (a) pendulum time domain
response to (on/on) square wave loading, (b) (on/on) square wave loading profile,
where l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0m, W0 = 0m, λ0 = 0◦, Ωu = 0rad/s,
Ωw = 0rad/s, Ωλ = 0rad/s, T0 = 0.5Nm, Ω = 1rad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and
30 ≤ t ≤ 60s.
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waveform is of the desired form, further numerical simulations will now be performed

to properly assess the effectiveness of the loading approach.

A.2 Simulations Assessing the Performance of the

(on/on) Square Wave Loading Approach

For simplicity, the planar pendulum will initially be excited in horizontal translation

only. The rational for this is to attempt to introduce as few unknowns as possible into

the simulation at first so that the true influence of the derived loading terms may be

fully understood. It is also easier to intuitively comprehend the response expected of

a pendulum excited this way. Therefore Eq. A.5 may be reduced to:

φ̈(t) + 2ξωnφ̇(t) +
g

l
sinφ(t) =

U0Ωu
2 cos (Ωut)

l
cosφ(t)

+
1

ml2

[
T0

2
− 2T0

π
sin (Ωt+ α)

]
− 1

ml2

[
T0

2
− 2T0

π
sin (Ωt− α)

]
(A.6)

Simulations based upon this equation reveal some interesting responses. In Fig. A.7

the system is excited by U0 = 0.1m at resonant conditions (Ωu = ωn) which generates

the response φ̇(t). With the introduction of LFourier it can be seen that this is correctly

90◦ out of phase with φ̇(t) and that the response does decrease up to a point as T0

increases. However, when T0 > 0.75Nm there is a phase change in the response such

that the load transitions from an energy sink to an energy source resulting in the

response increasing again as the load drives the pendulum.

This represents a significant design limitation, but it is to be expected with the

current configuration of the load since it is in no way respondent to the response. This

can be discerned by the terms themselves. Therefore, if the load is increased to the

point that the response approaches zero, φ̇(t) → 0, there is no facility for feedback to

the load and so one may continue to increase T0 and initiate this phase change. For

the present it may be considered enough the state that T0 should never exceed the

point at which this phase change occurs since the response would be approaching zero
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anyway and therefore there would be no energy available for harvesting. This is a weak

argument however, and not one to be relied upon.

However, this lack of response dependency gives rise to another fallacy within the

current loading approach. Fig. A.7 depicts the response when Ω = Ωu = ωn, thus the

system is being excited at resonance. Because resonant conditions have been achieved,

the response and the excitation are in phase with one another and therefore the load is

too with a phase shift of 90◦. However, if resonance is not achieved or maintained, then

the response and excitation move out of phase with one another and so ultimately the

performance of the load again breaks down. This is demonstrated in Fig. A.8, where

Ω = Ωu = 4
5
ωn which results in the load at times acting as an energy source again.

Further to this, if Ω 6= Ωu then this too renders the effectiveness of the load obsolete.

Fig. A.9 shows that when Ωu = ωn and Ω = 4
5
Ωu the response becomes erratic, and that

at high values of T0 the response becomes primarily driven by the loading terms. One

must also consider that matters would become further complicated when the additional

excitation terms are included because the frequency of response would be generated

by the coupling behaviour between the active excitations and so determining what

frequency to set Ω to would be very difficult and likely time varying. Therefore these

observations highlight the requirement for a set of loading terms that are capable of

responding to the response of the system directly such that the load always acts as

an energy sink and never an energy source. This suggests that the load should not

possess a user defined frequency and also be capable of reducing the response of the

pendulum to zero (whereby the system would be considered seized). This is the reason

and inspiration behind the loading approach developed in Chapter 5 which ultimately

proved to be far more effective in applying a resistive torque to the planar pendulum

energy harvester.
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(a) T0 = 0.5Nm. (b) T0 = 0.75Nm.

(c) T0 = 1.0Nm. (d) T0 = 1.25Nm.

Figure A.7: φ̇(t) responses to increasing values of T0 with Load superimposed, where
l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = ωnrad/s, Ωw =
0rad/s, Ωλ = 0rad/s, Ω = Ωurad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 40s.
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(a) T0 = 0.5Nm. (b) T0 = 0.75Nm.

(c) T0 = 1.0Nm. (d) T0 = 1.25Nm.

Figure A.8: φ̇(t) responses to increasing values of T0 with Load superimposed, where
l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = 4

5
ωnrad/s, Ωw =

0rad/s, Ωλ = 0rad/s, Ω = Ωurad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 40s.
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(a) T0 = 0.5Nm. (b) T0 = 0.75Nm.

(c) T0 = 1.0Nm. (d) T0 = 1.25Nm.

Figure A.9: φ̇(t) responses to increasing values of T0 with Load superimposed, where
l = 0.5m, m = 1kg, ξ = 0.1, U0 = 0.1m, W0 = 0m, λ0 = 0◦, Ωu = ωnrad/s, Ωw =
0rad/s, Ωλ = 0rad/s, Ω = 4

5
Ωurad/s, φ(0) = 0rad, φ̇(0) = 0rad/s and 30 ≤ t ≤ 40s.
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A.3 Summarising Remarks for the Square Wave

Loading Approaches

A method for representing an externally applied two term Fourier series approximated

square wave load has been developed that is capable of modelling model the resistive

torque applied to the pendulum system when a suitable power take-off device is used

to harvest mechanical accelerations arising from the environment.

First the loading approach developed by Watt and Cartmell (1994) [95] that

modelled the loading characteristics of a ratchet and pawl mechanism used to lift a

mass was adapted to suit the current application. This comprised of a single set of

loading terms derived from a Fourier series approximation to produce an approximated

square waveform with a dc offset so that the load resisted motion in one direction

only, with the other half cycle for recovery. It was also demonstrated that the square

waveform can be better approximated by including more terms from the Fourier series

approximation if required. However, given that the present application seeks to harvest

the rectified motion of the pendulum, the load terms required modifying to load both

directions of swing symmetrically. This led to the development of a modified loading

approach that included two sets of the previous terms, but arranged so that their net

effect produced a symmetrical load with the desired characteristics.

Initial simulations proved that this approach can successfully load the pendulum

in the way expected. However, it was shown that this approach is inherently flawed

such that when the response of the system reached zero, the phase between the load

and the response could be changed by continuing to increase the magnitude of the load

further. The consequence of this is that the load switched from acting as an energy

sink to an energy source, thus the response began to rise again. This is not what one

would expect in practice where under such conditions the system would normally seize.

Another highlighted fallacy was that the load could not always be maintained

in tune with the response of the system. When this occurred then the load would

intermittently change between acting as an energy sink, to an energy source. This

greatly limits the operating conditions of the loading terms to resonant frequencies

alone. Therefore it is proposed that a new robust set of loading terms be developed
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that are capable of responding to the response of the system directly in a way that the

frequency of the load and response are always matched but 90◦ out of phase with one

another. In this way, full motion of the pendulum could always be harvested even in

the event of multiple, or time varying excitation frequencies.
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Appendix B

Derivation of a Spherical Pendulum

As part of a RenewNet funded feasibility study that was performed by the author in

collaboration with industry during the course of this thesis research, the derivation of

a spherical pendulum system that could harvest mechanical accelerations out of three

directions of translation was performed. Details of this study can be found in Appendix

D, but for the purposes of completeness, the derivation process will now be repeated.

Fig.B.1 shows a deflected spherical pendulum with constant length, l and concen-

trated end mass, m that has been translated by u, v and w. The two generalised

coordinates φ and θ represent the two permissible degrees of freedom for the pendulum

arm to swing through respectively. Both these generalised coordinates lie on mutually

orthogonal planes where the φ plane is vertical and the θ plane horizontal. The

tangential velocity associated with displacements through φ is lφ̇, which has a vertical

component of lφ̇ sinφ and a vertical component of lφ̇ cosφ.

Whilst the vertical component is clearly vertical with respect to the absolute frame

of reference OXY Z, the horizontal is not directed along OX because of the coupling

with θ. Instead the components lying parallel to px and py of the pendulum body

frame, pxyz are taken, lφ̇ cosφ cos θ and lφ̇ cosφ sin θ respectively.

Fig.B.1(b) shows the components associated with the tangential velocity rθ̇ where

it should be noted that r is shown as Am in Fig.B.1(a), and that this is l sinφ.

The equations of motion of the spherical pendulum can be obtained using
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(a)

(b) (c)

Figure B.1: Isometric and plan views of a deflected spherical pendulum defining two
generalised coordinates as permissible degrees of freedom, φ and θ.
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Lagrange’s equations, and as such the kinetic energy of the system is defined by:

T =
1

2

[(
u̇− rθ̇ sin θ + lθ̇ cos θ cosφ

)2

+
(
v̇ − rθ̇ cos θ + lθ̇ cos θ sinφ

)2

+
(
ẇ + lθ̇ sin θ

)2
]

(B.1)

which after expansion and collection of the terms, the following simplified expression

can be reached:

T =
1

2

[
u̇2 + v̇2 + ẇ2 − 2lu̇θ̇ sin θ sinφ+ 2lu̇φ̇ cos θ cosφ+ l2θ̇2 sin2 φ+ l2φ̇2

+2lv̇θ̇ cos θ sinφ+ 2lv̇φ̇ sin θ cosφ+ 2lẇφ̇ sinφ
]

(B.2)

The expression for the potential energy in the system is simply:

U = mgw +mgl (1− cos θ) (B.3)

Eq.B.2 and Eq.B.3 are now prepared for insertion into Lagrange’s equations by

performing the following the necessary differentiations. First the equation of motion

describing the motion through φ will be derived. To do so, the kinetic energy of the

system is differentiated with respect to φ̇, such that:

∂T

∂φ̇
=

1

2
m
[
2lu̇ cosφ cos θ + 2l2θ̇ + 2lv̇ cosφ sin θ + 2lẇ sinφ

]
(B.4)

which after differentiating with respect to time becomes:

d

dt

(
∂T

∂φ̇

)
=

1

2
m
[
2lü cosφ cos θ − 2lu̇φ̇ sinφ cos θ − 2lu̇θ̇ cosφ sin θ + 2l2φ̈

+2lv̈ cosφ sin θ − 2lv̇φ̇ sinφ sin θ + 2lv̇θ̇ cosφ cos θ

+2lẅ sinφ+ 2lẇφ̇ cosφ
]

(B.5)
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Next, differentiating Eq.B.2 with respect to φ:

∂T

∂φ
=

1

2
m
[
−2lu̇θ̇ sin θ cosφ− 2lu̇φ̇ cos θ sinφ+ 2l2θ̇2 sinφ cosφ

+2lv̇θ̇ cos θ cosφ− 2lv̇φ̇ sin θ sinφ+ 2lẇφ̇ cosφ
]

(B.6)

Finally, differentiating the potential energy with respect to φ:

∂U

∂φ
= mgl sinφ (B.7)

The above expressions are now ready to be substituted into the appropriate Lagrange’s

equation for the generalised coordinate in question, which is:

d

dt

(
∂T

∂φ̇

)
− ∂T

∂φ
+
∂U

∂φ
= Qφ (B.8)

Therefore, the following equation of motion describing the motion of the system as it

swings through φ can be expressed by:

ml2φ̈+ cφmφ̇+mgl sinφ−ml2 (sinφ cosφ) φ̇2 +ml (cosφ cos θ) ü

+ml (cosφ sin θ) v̈ +ml sinφẅ = Qφ (B.9)

where damping terms, cφ have been introduced for a more realistic description.

It remains to repeat the same derivation process with the generalised coordinate θ

as the subject to be inserted into Lagrange’s equations. Thus, differentiating Eq.B.2

with respect to θ̇ produces:

∂T

∂θ̇
=

1

2
m
[
−2lu̇ sin θ sinφ+ 2l2θ̇ sin2 φ+ 2lv̇ cos θ sinφ

]
(B.10)
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that after differentiating with respect to time gives:

d

dt

(
∂T

∂θ̇

)
=

1

2
m
[
−2lü sin θ sinφ− 2lu̇θ̇ cos θ sinφ− 2lu̇φ̇ sin θ cosφ+ 2l2θ̈ sin2 φ

+4l2θ̇φ̇ sinφ cosφ+ 2lv̈ cos θ sinφ− 2lv̇θ̇ sin θ sinφ

+2lv̇φ̇ cos θ cosφ
]

(B.11)

Next, differentiating Eq.B.2 with respect to θ:

∂T

∂θ
=

1

2
m
[
−2lu̇θ̇ cos θ sinφ− 2lu̇φ̇ sin θ cosφ− 2lv̇θ̇ sin θ sinφ

+2lv̇φ̇ cos θ cosφ
]

(B.12)

Also, the differential of the potential energy with respect to θ is equal to:

∂U

∂θ
= 0 (B.13)

Finally, substituting the appropriate terms into the Lagrange’s equation describing

motion through θ, where:

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
+
∂U

∂θ
= Qθ (B.14)

produces the following equation of motion:

ml2 sin2 φθ̈ + cθmθ̇ + 2ml2 (sinφ cosφ) θ̇φ̇−ml (sin θ sinφ) ü

+ml (cos θ sinφ) v̈ = Qθ (B.15)

where once more, damping terms, cθ have been introduced for a more realistic

description.
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Appendix C

The Suaineadh Experiment

During the course of the thesis research that has been presented, the author was

also able to participate in an European Space Agency funded REXUS programme

as a member of the Suaineadh experiment. The REXUS (Rocket EXperiments

for University Students) programme is an unique opportunity that allows university

students from across Europe to fly scientific and technological experiments on sounding

rockets powered by an Improved Orion Motor to an altitude of approximately 90km.

It was on-board the REXUS-12 rocket that the ‘Suaineadh’ experiment flew in March

2012.

Figure C.1: REXUS standard configuration [104].

Suaineadh, so named for the Gaelic term for ‘twisting’, was a collaborative project

between the University of Glasgow, Strathclyde University and the Royal Institute of

Technology in Stockholm. The aim of the project was to design, produce and test the

deployment and stabilisation of a space web in a simulated micro-gravity environment

by exploiting the centrifugal forces generated by the spinning experiment assembly hub

post ejection from the nosecone REXUS-12 at apogee. Control of the web deployment
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was to be achieved using active control of an on-board reaction wheel within the hub

assembly. Data collected from cameras and inertial measurement units (IMU) was to

be transmitted back to the Data Storage Module (DSM) on-board the host REXUS-12

rocket (see Fig.C.1 and C.2) [105–109].

(a) Ejection of experiment from
REXUS-12 nosecone.

(b) Deployment and stabilisation of web.

Figure C.2: Conceptual deployment of the Suaineadh experiment from the REXUS
nosecone [105].

The main duty of the author within the team was as lead mechanical design engineer

and involved the mechanical design of the experiment hardware (shown in Fig.C.3) and

coordination of the manufacturing processes, with subsequent environmental testing

and validation performed to ESA standards, and also the integration with the electronic

architecture fabricated by the other participating universities. This represented a

significant workload between December 2010 and March 2012, involving many periods

of travel to both ESA and DLR (German Space Agency) facilities across Europe.

However, the experiences gained of a real life ESA launch campaign at post graduate

level was both unique and invaluable. Beyond just the expansion of engineering skills,

it also taught the author a great deal about how to successfully coordinate and manage

a multi-national team, to foresee and manage risk, and to deliver a project even under

the most demanding circumstances.

Shown in Fig.C.4 is just one of the many rewards from the Suaineadh experiment

that shows a selection of the recovered images captured post ejection form REXUS-12,

highlighting the curvature of the Earth with the void that is space as a back drop.

For more information regarding this project, the reader is referred to a number of

publications that were made about the experiment at various stages of development,

of which are listed in Appendix D that follows.
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(a) CHAD with sectional cut-out. (b) DSM housed within the REXUS-12
nosecone adapter.

Figure C.3: Rendered CAD images of the two sub assemblies of the Suaineadh
experiment; Central Hub and Daughter Sections (CHAD), and the Data Storage
Module (DSM).

Figure C.4: Images captured by the Suaineadh experiment on the edge of space prior
to a loss in wireless communication.
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Appendix D

List of Publications

• M. McRobb, M. P. Cartmell, C. Cossar, J. Malone, “Feasibility Study of the
WITT Power Transmission Device - A Novel Sea-Wave Energy Harvester,”
Funding awarded by RenewNet to the University of Glasgow and WITT Energy
Solutions Limited, 2011.

• M. McRobb, M. P. Cartmell, C. Cossar, “TToM Feasibility Report - A study of
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