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SUMMARY 

A number of new numerical "panel" methods have been developed 

which form the basis of a design and analysis package that is 

particularly applicable to aerofoils undergoing unsteady motion in 

incompressible flow. One such application is to the retreating 

blade of a helicopter rotor and the often associated phenomenon of 

dynamic stall. 

All of the methods are of the inviscid type, hence the flowfield 

is governed by the Laplace equation for the velocity potential and 

the pressure is obtained from the Bernoulli equation. This enables 

the use of singularity distributions, and in all cases the aerofoil 

is represented by a piecewise linear variation of vorticity which is 

continuous at the panel corners. Solutions are obtained by 

applying the appropriate boundary conditions at a specified number 

of control points and by implementing the relevant "Kutta" condition. 

The presentation of the models is preceded by a survey of 

existing numerical methods which are applicable to the prediction of 

dynamiC stall. The methods are split up into four categories, and 

a large number of factors have been considered when assessing the 

degree to which the models have successfully reproduced the physical 

phenomena. For ease of assimilation, the survey information is 

also presented in tabular form. 

An inverse method was first developed for the design of an 

aerofoil with a specific pressure distribution. Originally two 

methods were proposed: the first was based on the hypothesis that 

the greater is the obstruction offered by a body in a uniform 

stream, the greater are the resulting suctions over the surface of 

the body, and vice versa; the second used the governing flow 

equations when determining the modified profile ordinates. Both of 

these methods are iterative, but the latter exhibited superior 

stability, accuracy and efficiency. 

(i 1) 



The main research effort has been directed towards the 

development of methods for predicting unsteady flows about an 

aerofoil. A new method is presented for modelling unsteady, 

attached, potential flow. A solution is obtained at prescribed 

times from a linear system of equations, and circulation is shed 

from the trailing-edge in accordance with Kelvin's theorem. The 

vortex wake is represented by a system of discrete vortices which 

conVect with the fluid particles to which they are attached. 

Results are presented which illustrate certain characteristics of 

unsteady, attached flow. 

The inviscid formulation has been applied to the case of 

unsteady separation from the upper surface of an aerofoil. The 

appropriate "Kutta" relation is derived from the dynamical boundary 

conditions at the prescribed separation points, and the shear layers 

are represented by discrete vortices with finite cores. A solution 

is obtained at specified times from a linear system of equations, 

and results are presented first, for cases where the separation 

point is fixed, and second, with moving separation. These results 

highlight a number of interesting features associated with unsteady 

separation, in particular dynamic stall. 

Finally, conclusions are drawn concerning the usefulness of the 

methods presented herein, with particular regard to the modelling of 

dynamiC stall, and recommendations are made for a future program of 

work which would further enhance their predictive capability. 

(i i i) 
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CIfAP'l'ER. 1 

Introductory 

1.1 Introduction 

Aerodynamicists have studied unsteady aerofoils for most of the 

twentieth century, motivated by the desire to predict such effects 

as flutter, vibrations, buffeting, gust response and dynamic 

stall. A meaningful study incorporates the prediction of the 

magnitude and phase of the unsteady fluid dynamic loads experienced 

by the lifting surface based on an understanding of the mechanisms 

that produce such unsteady effects. Moreover, the knowledge gained 

from these studies is being utilised in a variety of fields, e.g. to 

improve the performance of turbomachinery, wind turbines and 

helicopter rotors. 

Dynamic stall can occur, as explained more fully in chapter 2, 

when an aerofoil oscillates around an angle of incidence close to 

the static stall value. It is important to understand this 

phenomenon so that beneficial effects can be harnessed and 

undesirable effects avoided. To this end a dynamic stall facility 

was developed and commissioned at Glasgow University (Leishman, 

1984), the main aim of experimentation being the consideration of 

detailed surface pressure measurements. Such a facility required 

that an aerofoil design package and a dynamic stall prediction code 

be developed for testing the suitability of any proposed 

hypothesis. In this way experimental research can be carried out 

more efficiently and effectively by the avoidance of any fruitless 

expenditure of both time and money. Suitable codes have been 

developed with the aim of fulfilling these requirements. 

Although much of the knowledge about dynamic stall has resulted 

from experimental studies, a number of numerical methods exist for 

the prediction of its component features, and their merits are 

discussed in chapter 2. After due consideration was given to the 

existent models and having taken into account other factors, such as 



the requirement to predict a number of aerofoil characteristics 

(e.g. CL. CM, Cp ) and the limited computing power available, it was 

concluded that a useful way to proceed was to develop a discrete 

vortex method. 

1.2 Scope 

As mentioned in section 1.1 the intention when undertaking the 

program of research presented in this dissertation was to produce a 

design and analysis package 'to complement the experimental research 

into dynamic stall within the department. The first stage of this 

program was to conduct a literature survey of the current numerical 

methods that are applicable to the phenomenon of unsteady stall. 

This forms the subject matter of chapter 2. In particular, the 

state of the art in this field is summarised in table 1, which 

provides a readily accessible means of assessing the advantages and 

disadvantages of each method, as well as the future research needs. 

The next stage was to develop the required numerical methods. 

All are of the inviscid type with no boundary layer corrections -

this addition forms the basis of a current research program within 

the department. In some cases it is desirable to carry out 

unsteady tests on an aerofoil with a specific static pressure 

distribution over part or all of its surface, therefore a design 

method has been developed to produce such an aerofoil, the details 

of which are presented in chapter 3. This algorithm has already 

been used successfully within the department to design a modified 

NACA 23012 aerofoil, a model of which was subsesequently constructed 

and tested (Niven and Galbraith, 1984). 

Details of the analysis part of the package are presented in 

chapters 4 and 5. In chapter 4, the case of attached flow only is 

considered. A method in the same class as that of Basu and Hancock 

(1978b) has been developed, however, because of the manner of 

specifying the Kutta condition, the non-linearity in the system of 

simultaneous equations has been removed. The applicability of this 

method to a variety of cases is illustrated in the results presented. 
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Chapter 5 describes. in detail. the final stage of development 

of the analysis code. incorporating the presence of upper surface 

separation. Initially this separation point was fixed in position 

and a number of numerical constraints were implemented to improve 

both the stability of the model and the accuracy of the 

predictions. The results presented for the case of a step change 

in incidence illustrate that the time-dependent solution tends 

towards the correct steady-state condition. Further developments 

have enabled predictions to be made whereby the separation point is 

moving. e.g. when dynamic stall occurs. Few experimental 

comparisons can be made at this stage because the model does not 

incorporate sufficient details of the stalling mechanism. however 

qualitative agreement with the experimentally determined features of 

dynamic stall has been obtained. 

Chapter 6 outlines the major conclusions of chapters 2 to 5 and 

offers suggestions as to the nature of future research. In the 

concluding discussion. the achievements of the work are concisely 

stated and it is considered that the numerical package is at a 

sufficient level of development to be used on a production basis. 
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1.3 Symbol Glossary 

A 

B 

C 

CN 

c 

D 

e 

f 

G 

h,6h 

1:, j 

k 

L 

M 

N 

N v 

n 

total influence coefficient of surface vorticity 

part influence coefficient of Yj 

part influence coefficient of Yj+l 

lift coefficient 

moment coefficient 

normal lift coefficient 

static pressure coefficient 

correction factor 

aerofoil chord 

part influence coefficient of Ys 

distance parameters associated with coalescence 

velocity error 

error estimate of coalescence 

filtering factor 

discrete vortex influence coefficient 

total head 

integrals associated with vortex panel method 

unit vectors 

reduced frequency of oscillation (Oc/2U oo ) 

aerofoil panel length 

Mach number 

number of aerofoil panels 

number of recently shed vortices not involved in 
coalescence 

number of discrete vortices 

unit normal vector 
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p 

q 

R 1 ,R" 

Re 

r 

s, s' 

t ,~t 

x,y 

z 

0:: 

n 

A 

p 

o 

w 

static pressure 

fluid velocity 

velocity of separation point along aerofoil surface 

regions with different total head 

Reynolds number 

distance between two pOints 

arc length along aerofoil surface 

time 

free stream velocity 

velocity of point fixed to aerofoil 

cartesian coordinates 

complex number 

angle of incidence 

angular velocity 

aerofoil circulation 

vorticity strength 

length of vortex wake panels 

regulating function associated with vortex core 

wake panel angles 

length dimension 

fluid density 

radius of vortex core 

velocity potential 

stream function 

frequency of oscillation 

vorticity 
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Subscripts 

a,a' ,b,b' 

c 

i,j 

m 

n 

p 

s 

tp 

u,l 

v 

w 

Superscripts 

a 

d 

r 

positions either side of vortex sheet 

panel control point 

index of aerofoil panels 

time step counter 

normal direction 

index of wake panels 

conditions at separation point 

trailing point 

upper/lower surface 

discrete vortex 

vortex wake panel 

actual value 

iteration counter 

required value 
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CHAPTER 2. 

A survey of dyna.dc stall pred~ct~on ~thods. 

2.1 Introduction 

As mentioned in chapter 1. a program of experimental work has 

been initiated within the department (Leishman, 1984) to investigate 

the nature of the flow past aerofoils undergoing dynamic stall. 

This phenomenon occurs when the angle of attack of an aerofoil is 

changed at a finite rate, and should this motion be of an 

oscillatory nature, around a mean angle approximately equal to that 

of the static stall. large hystereses develop in the fluid dynamic 

loads, as indicated in fig. 2.1. The behaviour of lift, drag and 

pitching moment under dynamic conditions differ significantly from 

the static case. having greater maximum values, or overshoot. Such 

conditions are likely to be present in the case of the helicopter 

rotor in forward flight, where the retreating blade encounters lower 

velocities than those on the advancing blade (see fig. 2.2). and to 

maintain roll control the angle of attack of the retreating blade is 

increased. The fundamental motion for one complete revolution of a 

blade is therefore of an oscillatory nature. In optimising the 

rotor performance, the angle of attack of the retreating blade often 

exceeds the static stall angle but returns to a lower value before 

the stall has time to develop (Wilby, 1980). The increased lift 

coefficient for the dynamic case may therefore be utilized, but the 

assessment of how much has proven to be a most difficult task. 

Virtually everything that is known today about dynamic stall has 

been acquired through experimentation (see, for example, McCroskey 

et al., 1976; MCCroskey et al., 1981; McCroskey and Pucci, 

1981). These investigations have shown that its occurrence is 

characterised by the shedding of a leading edge vortex which 

traverses the upper surface of the aerofoil at a speed somewhat less 

than 1/2 Uoo • resulting in the aforementioned hystereses in lift, 

pitching moment and drag (see fig. 2.1). There is also evidence 
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(McCroskey et al., 1976) to suggest that the initiation of this 

vortex is marked by a tongue of reverse flow reaching the leading 

edge from an initial downstream location, and other data (McCroskey 

et al., 1981) have also shown that dynamic stall events, once they 

are underway, are relatively independent of the aerofoil motion. 

One important physical consequence of these events, in addition to 

the load hystereses, is the presence of aerodynamic damping, i.e. 

the net cyclic work done on the fluid by the body due to its motion 

which, if negative, results in an increase in the pitch oscillations 

unless the body is restrained~ If these oscillations coincide with 

a natural frequency of the system, stall flutter results. 

The specification of light stall and deep stall regimes, 

illustrated in fig. 2.1, has been another major observation of the 

experimentors. The stall onset condition, where limited separation 

occurs, marks the maximum amount of lift that can be obtained 

without a high pitching moment penalty. Light stall occurs for a 

maximum angle slightly above that for stall onset, and shows some of 

the general features of classical static stall such as loss of lift 

and significant increase in drag and nose-down pitching moment 

compared with the theoretical inviscid values. The main 

distinguishing feature of this regime, however, is that the width 

scale of the viscous zone remains of the order of the aerofoil 

thickness, normally less than that for static stall. The general 

characteristics of light stall are known to be particularly 

sensitive to aerofoil geometry, reduced frequency, maximUM 

incidence, Mach number and probably three-dimensional effects, 

whereas the detailed behaviour depends to a large extent on the type 

of boundary layer separation present, for example leading edge or 

trailing edge, and to changes in the nature of this separation with 

maximum angle, reduced frequency and Mach number. Figure 2.3a 

illustrates the extent of the viscous zone during light stall. 

Deep stall occurs as a result of increasing the maximum angle of 

attack to values well in excess of the static stall value during 

large amplitude oscillations. Flow breakdown is signified by the 

formation of a strong vortex in the leading edge region which is 
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subsequently shed from the boundary layer over the upper surface of 

the aerofoil. producing a viscous zone. the width scale of which is 

of the order of the aerofoil chord, as illustrated in fig. 2.3b. 

The general characteristics of deep stall are fairly insensitive to 

aerofoil motion and geometry, Reynolds number and Mach number, 

providing this latter parameter is low enough to prevent leading 

edge shock waves from forming, whereas the detailed behaviour is 

dependent upon the angle of attack time history after the static 

stall angle has been exceeded. 

To complement the experimental investigations much effort has 

gone into developing computational techniques for predicting dynamic 

stall in the hope of produCing a sound numerical procedure for use 

in aerofoil design. The main problem encountered, however, has 

been one of correct theoretical modelling which has led to different 

approaches in the treatment of this phenomenon. All of the methods 

incorporate simplifying assumptions, but this does not detract from 

the advance which has been made, especially over the last fifteen 

years, as outlined in the following sections. 

2.2 Categorisation of the methods 

The various models to be considered have been grouped under 

similar headings to those used in other surveys (e.g. Philippe, 

1977; Beddoes, 1980; McCroskey, 1981; Vezza and Galbraith, 

1983a). However, in this case, a concise version of the survey is 

presented in tabular form (table 1) from which the strengths and 

weaknesses of the models can be seen more readily. The model 

categories are as follows : 

(a) Navier-Stokes methods 

(b) Discrete vortex methods 

(c) Zonal methods 

(d) Predominantly empirical methods 

The Navier-Stokes methods attempt to solve the fundamental 

equations of fluid motion, by the use of numerical techniques, in 
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both laminar and turbulent flows. The discrete vortex approach was 

originally proposed as a means of directly modelling the regions of 

concentrated vorticity which are present during stall, e.g. when 

vortex shedding occurs. 

The viscous nature of the flow is taken account of by the 

generation and subsequent transport of discrete vortices, which have 

been used both in purely inviscid formulations and also within a 

viscous framework. The zonal methods include the class of model 

where a predicted dividing boundary marks the border between the 

external potential flow and an inner separated or viscous region. 

In the numerical procedure these zones interact, normally in an 

iterative manner. 

The last category, containing the predominantly empirical 

methods, considers models in which little, or no, direct account is 

taken of the equations of fluid motion. Reliance is placed on 

obtaining good quality empirical data from which correlations are 

made in order to estimate the unsteady airloads during dynamic 

stall. Due to the dependence of the stall on time and pitch rate, 

all of the methods incorporate these two parameters in 

non-dimensional form. 

From table 1 it can be seen that various categories have also 

been employed for the assessment of the predictive capabilities of 

the methods. The headings cover most of the relevant features of 

dynamic stall (Young, 1981) and the main ones are five in number: 

(a) To stall onset 

(b) stall onset 

(c) post stall 

(d) motion 

(e) other factors 

These headings have been further subdivided so that more 

detailed consideration could be given to such things as 

laminar-turbulent transition, wake modelling, etc. All of the 

10 



methods are capable of providing CN and CM predictions and so these 

parameters have been omitted from the table. 

In order to assess the methods, the following symbols have been 

used to grade the appropriate feature : 

* 
+ 

o 

good consideration 

approximate 

very approximate 

being developed 

not modelled 

The allocation of these symbols was based on the relevant 

published work and should not be considered as being an exact 

process. Nevertheless, it is thought that the tabular presentation 

provides an easily digesttble means of assessing the present state 

of the art in numerical studies of dynamic stall, as well as the 

future research needs. 

2.3 Navier-Stokes methods 

The complex flowfield around an aerofoil experiencing dynamic 

stall could, theoretically, be accurately predicted by solving the 

full Navier-Stokes equations. However, problems are associated 

with this approach, and these are discussed in section 2.7. The 

two most notable works are considered, one being a purely laminar 

calculation and the other taking account of the turbulent flow. 

In the first method, the Navier-Stokes equations were solved 

numerically by Mehta (1977) in terms of vorticity and stream 

function for laminar, unsteady, incompressible flow around an 

oscillating modified NACA 0012 aerofoil. This method used an 

extension of the approach of Mehta and Lavan (1975), who considered 

stationary aerofoils, to treat the unsteady problem. The 

theoretical formulation involved mapping the aerofoil on to a unit 

circle using the Joukowski transformation adapted to control the 

shape of the trailing edge. The governing equations were developed 
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for the rotating system with the appropriate boundary, and initial, 

conditions implemented, and the lift, drag and pitching moment were 

calculated from the computed pressure and vorticity values. 

The computation was carried out using an implicit, factored 

algorithm for the vorticity equation and a direct solution procedure 

for the stream function equation. Also a higher order technique 

than the more usual second order schemes was developed to eradicate 

spurious results due to unresolved scales of fluid motion. Figure 

2.4 illustrates some of the results obtained at a Reynolds number of 

10,000 and a reduced frequency of 0.25, and shows a sequence of 

pictures of streamlines and equi-vorticity lines synchronised with 

the pressure distribution. The bubble and vortex formation are 

represented in great detail and correlate well with flow 

visualisation pictures obtained under dynamically similar conditions 

by Werle at ONERA (1976). Also shown in fig. 2.4 are the CL, CM 

and CD values for this case. Due to the fundamental nature of this 

approach it is thought that a good consideration has been given to 

appropriate factors in table 1, although the Reynolds number 

variation is assessed as approximate due to the laminar flow 

restriction. 

A compressible, time-dependent, full Navier-Stokes calculation 

procedure which includes a model of the transition from laminar to 

turbulent flow was developed by Shamroth and Gibeling (1981), using 

the consistently split linearised block implicit method of Briley 

and McDonald (1977). To account for the three regimes of laminar, 

transitional and turbulent flow present in the flow field of an 

aerofoil, the proposed model was based on the turbulence energy 

equation with an algebraic length scale. A body coordinate system 

was used in which the aerofoil surface is a coordinate line and the 

grid point placement is specified by the user, a procedure described 

by Shamroth and Levy (1980) and originally developed by Gibeling et 

ale (1978). Figure 2.5 illustrates the pressure distributions 

obtained during a ramp of the NACA 0012 aerofoil from 6' to 19' 

which, although no lift or moment values were presented, are 

encouraging. Again it is felt that a good consideration has been 
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given to many of the features of dynamic stall in table 1 due to the 

fundamental nature of the model. 

2.4 Discrete vortex methods 

Only three of the methods in this section will be discussed and 

are attributable to Baudu et al. (1973), Spalart et a1. (1983) and 

Lewis and Porthouse (1983). The usefulness of the other methods 

can be assessed from table 1 with further details available in the 

given references. 

The method of Vezza and Galbraith is the subject of chapters 

four and five and so is omitted here. 

Baudu et a1. (1973) adapted the potential flow method of Giesing 

(1968) to the modelling of dynamic stall. The stall was accounted 

for by the shedding of discrete vortices from a leading edge 

separation point which was calculated by the laminar boundary layer 

method of Thwaites (1949), and the strength of the shed vorticity 

was determined by following a similar approach to that in the study 

of flows around circular cylinders (e.g. Sarpkaya, 1968). Figure 

2.6 illustrates the results obtained when oscillating the NACA 0012 

aerofoil about an angle of fifteen degrees and at a reduced 

frequency of 0.24. Also shown are comparisons with flow 

visualisation results and normal lift data obtained by Martin et al. 

(1973). 

The method of Spalart et a1. (1983) is well developed and 

attempts to model the Navier-Stokes equations in the viscous region 

around the aerofoi1 by the use of discrete vortices with finite 

cores. These vortices are positioned at a small distance from the 

surface and the no slip condition invoked. For the case of dynamic 

stall the separation point is specified by a quasi-steady integral 

boundary layer calculation, although the incorporation of a truly, 

unsteady, implicit finite difference boundary layer solver is in 

progress. Figure 2.7 illustrates the results obtained when the 

NACA 0012 aerofoil is oscillated in pitch about the quarter chord. 
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From fig. 2.7a the passage of a vortex over the aerofoil upper 

surface can be discerned along with the associated pressure 

disturbance, and the magnitude and axis of application of the force 

is represented by the arrow emanating from the aerofoil. Figure 

2.7b shows a comparison between the calculated lift and moment and 

the experimental observations of McCroskey et ale (1982). The 

results are encouraging and should improve with further developments. 

In a similar manner Lewis and Porthouse (1983) attempted to 

model directly the Navier-Stokes equations by an adapt ion of the 

surface vorticity method of Martensen (1959). Following the 

potential flow calculation the vortex elements are repositioned a 

small distance from the aerofoil surface, simulating the presence of 

the boundary layer. The method includes an interesting model of 

viscous diffusion which involves randomly displacing the vortices 

after they have been convected. Application to the case of the 

NACA 0012 aerofoil at a fixed incidence of 20' has been attempted 

and the results are shown in fig. 2.8. The characteristic features 

of massive separation have been reproduced although it is 

questionable whether the pure vortex method applied in this manner, 

as noted by Spalart et ale (1983), could model successfully the case 

of limited separation because of the chaotic motions of the 

vortices. The various features of all of the vortex methods are 

further illustrated in table 1. 

2.5 Zonal methods 

Attempts have been made to duplicate the complexity of 

developing separation by coupling the external flow to the inner 

viscous flow via regional boundaries whose locations are to be 

found, usually as a result of an iterative process. The 

quasi-steady method of Rao et ale (1978) represents the aerofoil 

surface by a distribution of constant strength doublet panels and a 

uniform source sheet, and the free shear layers by vortex sheets. 

The computational procedure consists of an outer loop for the 

viscous-inviscid flow and an inner loop to determine the wake shape, 

calculated at a modified angle of attack to account for the delay in 
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unsteady separation relative to the steady case. The outer loop 

takes the potential flow pressure distribution over to the boundary 

layer analysis where the separation points and source distribution 

are calculated using an integral method. This information is 

passed to the inner loop where the new wake shape is determined, 

iteratively, by ensuring that the free shear layers remain aligned 

with the local stream direction. The process is stopped when the 

change in lift coefficient falls below one percent, or when the 

iteration number limit has been reached. Results obtained for the 

lift and moment coefficients after the NACA 0012 aerofoil had 

undergone sinusoidal motion are presented in fig. 2.9. The 

recognisable features of dynamic stall, i.e. hystereses loops and 

aerodynamic damping are illustrated, although the predictive 

accuracy of this method is limited by the omission of the laminar 

bubble bursting process. the dynamics of the separated wake and the 

unsteady boundary conditions on the aerofoil surface. These 

limitations have been tackled more recently by Maskew and Dvorak 

(1985), who have incorporated unsteady integral boundary layer 

calculations into their method as well as a dynamic wake model with 

vortex core amalgamation. They hope to extend the method to the 

modelling of three-dimensional flows; however, improvements to the 

two-dimensional case are continuing and preliminary results from a 

ramp test on the NACA 0012, illustrated in fig. 2.10, are 

encouraging. 

The method of Crimi and Reeves (1972) incorporates a number of 

flow elements. The potential flow calculation invokes a thin 

aerofoil analysis with source and vortex singularities being 

distributed along, and the boundary conditions satisfied on, the 

x-axis. The method of finite differences is used in the analysis 

of both the laminar and turbulent boundary layers, incorporating the 

van Driest and Blumer (1963) transition model and the Smith-Cebeci 

(1967) eddy-viscosity model. The separated shear layer is split up 

into three regions, where applicable; the laminar mixing, the 

turbulent mixing and the reattachment regions, and these are 

analysed to determine the position of the shear layer and the 

pressure of the dead air. A leading-edge bubble criterion is also 
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included which determines whether or not the aerofoil is undergoing 

leading-edge stall. Both ramp and sinusoidal motions were 

considered for tests on the NACA 0012 aerofoil at a Reynolds number 

of two million. An example of the latter is illustrated in fig. 

2.11, from which the gross features of dynamic stall can be 

discerned with the exception of the vortex induced lift. 

The method of Scruggs et al. (1974) is not a pure dynamic stall 

method but rather an analysis of the effects of time dependence, in 

both the potential flow and boundary layer, on the delay in the 

forward movement of the flow reversal point at the surface of the 

aerofoil. The unsteady potential flow is calculated by the method 

of Giesing (1968) and the unsteady boundary layer by an adaption of 

the approach of Patel and Nash (1971). It was shown that this 

delay is not only affected by the alleviation of the gradients in 

the potential flow but also by the effects of unsteadiness in the 

boundary layer itself, a result which calls into question the 

accuracy of the quaSi-steady methods. This work was an important 

contribution and the results have been used, for example, by Beddoes 

(1982). Further appreciation of the zonal methods can be gained 

from table 1. 

2.6 Predominantly empirical methods 

At present a host of empirical methods exist for estimating the 

unsteady airloads on oscillating aerofoils. All of the methods 

rely heaVily on correlations with experimental data so that the 

effect of relevant parameters, such as the pitch rate, can be 

discerned. 

The time delay method of Beddoes (1982) is based on the use of 

indicial functions for the modelling of various dynamiC stall 

phenomena. The attached flow airloads are calculated via a 

generalised indicial lift function, incorporating compressibility 

effects, based on the Wagner function, with the angle of attack time 

history being represented by a superposition of step functions. 

The dynamic stall process is modelled via two time delays; one 
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between the onset of separation. obtained from a leading edge 

pressure criterion, and moment divergence, and one for the vortex 

passage. during which the lift is maintained at its attached 

level. Reattachment occurs when the angle of attack falls below 

the angle of static moment break. Shock wave interaction has also 

been taken into account via a correlation between the critical shock 

pressure rise and the pressure ahead of the shock, and a model of 

trailing edge separation has been included which uses correlations 

between Kirchhoff's theory and the numerical data of Scruggs et al. 

(1974). 

2.12. 

The accuracy of this approach can be appreciated from fig. 

The method of Gangwani (1984) is highly empirical and invokes 

curve fitting techniques, applied to experimental data, to determine 

the values of a number of parameters that are used in expressions to 

predict certain dynamic stall events. The three basic variables of 

the method are the instantaneous angle of attack, the 

non-dimensional pitch rate and a decay parameter that is based upon 

the Wagner function. A three stage procedure is followed whereby a 

data set is initially prepared for the required flow conditions, the 

empirical coefficients determined through least squares fitting and 

the original data reconstructed from the empirical relations for 

comparison purposes. The method calculates the angles at which 

dynamic moment stall is initiated, the vortex leaves the aerofoil 

trailing edge, and reattachment occurs, the three being used in the 

expressions for the loads. Whilst fig. 2.13 illustrates the high 

degree of accuracy of this approach, it is still limited, however, 

by the inability to predict results significantly outwith the range 

of the original test data. 

A system of differential equations is employed in the method of 

Tran and Petot (1980) to simulate the time delay effects of the 

flow. The identification of the coefficients of the model's 

equations requires experimental tests to be carried out on aerofoils 

in static conditions and in small amplitude harmonic oscillations or 

random vibrations. The dynamic loads are calculated by first 

splitting them up into two parts, one part governed by a first order 
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linear equation and the other by a second order non-linear 

equation. Below the angle of static stall the non-linear part 

vanishes and the solution is similar to that given by classical 

linear theory. Above the static stall angle the coefficients of 

the non-linear equation must also be identified and the two parts 

added to give the required value of the loads. Although the 

equations were derived for small amplitude oscillations, the model's 

applicability to the larger oscillatory motions characteristic of 

helicopter rotors can be seen from fig. 2.14. This model has 

recently been used by McAlister et ale (1984) who indicated, 

however, that its accuracy is diminished when both the reduced 

frequency and amplitude of oscillation are large. Further details 

of the predominantly empirical methods can be obtained from table 1 

and the references supplied therein. 

2.7 Discussion 

When consideration is given to table 1 it should be noted that 

the models have been assessed by their ability to reproduce the 

various flow phenomena relevant to dynamic stall rather than just by 

the accuracy with which they predict the resultant loads. It is 

not surprising, then, that the Navier-Stokes methods seem to provide 

the most comprehensive details of the flow field, as they utilise 

the fundamental equations of fluid motion. This approach, 

therefore, would initially appear to have the brightest future, 

although the computational expenditure required may prove 

prohibitive for many researchers. The main problem to be overcome, 

however, is that of turbulence modelling, the quality of the 

solution being dependent on the chosen hypothesis. Nevertheless, 

the excellent analySiS of Mehta (1977), although restricted to 

laminar flow, is an illustration of the accuracy which may be 

achieved in future studies. 

In contrast to the above approach, the predominantly empirical 

methods take very little direct account of the phySical flow field 

but, rather, rely heavily on correlations with experimental data. 

As a result their standing in table 1 does not appear to be very 
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high, although they are almost exclusively used in the helicopter 

industry because of their ability to accurately predict rotor 

loads. In theory, as noted for example by Gangwani (1984), the 

more comprehensive the correlation studies the more accurate should 

be the predictions, although this would require more good quality 

empirical data, the collection of which is expensive and time 

consuming. 

It could be argued that both the discrete vortex and zonal 

methods provide a compromise between the above two approaches, the 

relevant models being based on more simplified theory than that used 

in the Navier-Stokes methods but incorporating much more of the flow 

physics than do the empirical methods. The discrete vortex methods 

are particularly useful at modelling regions of concentrated 

vorticity, for example the dynamic stall vortex, but tend to be 

lacking when it comes to the boundary layer. although the method of 

Spalart et al. (1983) may change this. Alternatively, the zonal 

methods can predict the viscous effects adequately but are still 

generally poor at modeling the unsteady wake dynamics, although the 

recent work of Maskew and Dvorak (1985) is encouraging in this 

area. Recalling that dynamic stall is characterised by the 

shedding and subsequent transport of a vortex over the upper surface 

of an aerofoil, the discrete vortex approach should provide a useful 

method for incorporation into a design and analysis package. 

Throughout the table there are areas which correspond to phenomena 

not modelled and it is hoped that this will provide an indication of 

future research needs. 

2.8 Conclusions 

The purpose of this chapter has been to briefly describe the 

phenomenon of dynamic stall and to review the computational methods 

that are available for its prediction, with the aim of proposing a 

suitable field of research. The tabular form of presentation used 

in conjunction with the survey, table 1, provides an easily 

digestable means of assessing both the capabilities of the various 

methods and the future research needs. As developments appear, so 
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the table can be augmented accordingly. 

In the long term the Navier-Stokes methods offer the most accurate 

analysis; however. at present both the computational expense 

required and the sensitivity of the results to the turbulence model 

used are prohibitive factors for many researchers to consider. The 

empirical methods. although being the main analytical tools within 

the helicopter industry. provide little detailed information about 

the flow field and require expensive data acquisition for 

correlation purposes. 

A useful approach would be to develop a simplified model which 

incorporated the major features of dynamic stall. for example. the 

shed vortex and. for this purpose. a discrete vortex model is 

outlined in chapters 4 and 5. 
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CHAPTER. 3. 

A co~arison of two new inverse .ethods for the design of aerofoils 

with specific pressure distributions. 

3.1 Introduction 

The need for an accurate, efficient method of designing 

aerofoils with specific pressure distributions has been mentioned in 

chapter 1. This is especially true today as sections are required 

that are optimised for their specific task, e.g. the improved 

performance of helicopter rotors during dynamic stall. The inverse 

problem, stated simply, is: to find the geometry of an aerofoil 

which produces a required velocity (or pressure) distribution. 

Care must be exercised, however, when defining a velocity 

distribution so that a corresponding geometry is obtainable, a 

problem not encountered during the reverse ("forward") process. 

Two major categories of inverse method exist at present: exact 

transformation methods and surface singularity methods. Although 

some work has been done on the former, e.g. James (1977), these 

methods tend to be cumbersome and hence uneconomic in terms of 

computer time. The increase in the use of singularity methods to 

predict the pressure distribution over an aerofoil has been due to 

the rapid solutions of large systems of equations, characteristic of 

these methods, made possible by the use of modern computers. 

Generally, the singularity distribution consists of sources and 

sinks (e.g. Hess and Smith, 1967), vortices (e.g. Martensen, 1959; 

Kennedy and Marsden, 

and Bradley, 1972). 

1976) or a combination of both (e.g. Bhately 

However, 

in an iterative-direct manner, 

when inverting the equations to use 

the methods employing sources and 

sinks must be excluded, as the required surface velocities cannot be 

converted to required Singularity strengths. This is not the case 

for methods employing a distribution of surface vorticity which are, 

therefore, more widely used. 
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The remainder of this chapter describes the development and 

application of two vortex design methods, following a brief survey 

of other work in this field. From the results presented 

comparisons are made between the respective approaches, and 

conclusions drawn regarding their relative stability, accuracy and 

efficiency. For further details, see Vezza and Galbraith (1983b). 

3.2 Survey of past work 

Goldstein and Jerison (1947) were pioneers in the use of a 

surface vortex design method for both isolated aerofoils and 

aerofoils in cascade. Their method sought to locate vortices of 

known strength, such that the resultant shape was a streamline of 

the flow. In the modification process, however, the pressure 

surface vortices were altered so that only the suction surface 

velocities could be specified. The characteristics of the designed 

section were determined by the use of a conformal transformation 

method, as surface singularity techniques were not available then. 

A later method developed by Wilkinson (1967) employed a direct 

vortex singularity method to calculate the aerofoil surface 

velocities. A camber line vorticity distribution, which removed 

the difference between these velocities and the desired velocities, 

was then determined and the camber line adjusted so that it again 

became a streamline of the combined flow. The original thickness 

distribution was imposed on the modified camber line and a check for 

convergence made after each iteration by computing the new 

velocities on the aerofoil surface. Two major limitations of this 

method were that only the upper surface velocities could be 

specified, and the required thickness distribution had to be known 

in advance. 

An improvement in the accuracy of aerofoil design would be 

expected by employing the method of Kennedy and Marsden (1978). 

This method was similar to those developed by Chen (1971) and 

Mavriplis (1974), but utilised a more accurate forward algorithm 
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(Kennedy and Marsden, 1976), the governing equations of which were 

rearranged and used directly in the design process. The particular 

potential flow analysis that was employed had been developed by 

Dellers (1962) and required that the stream function produced by the 

superposition of a uniform stream and a vortex sheet of varying 

strength on the aerofoil surface, be constant on the surface. The 

resulting Fredholm integral equation of the first kind was : 

UooY(s) cos« -U x(s)sin« 
I 
2rr 

Is'Y(S') lnr(s,s')ds' 3.1 
00 

where sand s' represent two points on the aerofoil surface (see 

fig. 3.1). 

A numerical representation of equation 3.1 was obtained by 

replacing the aerofoil surface with an inscribed polygon having N 

panels and implementing the constant stream function condition at 

the mid-point of each panel. The discrete analogue of equation 3.1 

was then as follows : 

sin« -
N 
E A· . y. 

j=i 1J J 
i 1,2, ••• ,N 

where the vorticity was constant across each panel. 

The relation 3.2 represented a linear system of N equations in 

N+l unknowns, therefore another equation was required and this was 

obtained from the Kutta condition. The use of a trailing point 

3.2 

Kutta condition by Kennedy and Marsden (1976) was a development over 

previous methods since it enabled accurate results to be obtained 

using a reduced number of panels. It involved the use of an extra 

control point which was located a short distance downstream from the 

trailing edge along the bisector of the trailing edge angle. The 

extra equation was, therefore: 

UooYtp cos~ - Uoo Xtp sin~ 
N 
E 

j=l 



Equations 3.2, along with the above Kutta condition, were 

adapted to obtain, using an iterative procedure, the modified 

geometry of an aerofoil. Kennedy and Marsden (1978) inserted the 

required values of v and Yj while retaining the Aij from the 

previous iteration so that the iterative equations were as follows 

Yci d 
N d-l 

Yjr J , 1 , 2 , ••••• (Uooxc is ina: + vr + E Aij i 
Uoocosa: j= 1 

d 
N d-l 

and Ytp (Uooxtpsina: + ".r + E Atpj Yjr] 
U 00 CO"S"O: jel 

N 

3.3 

Adjustments to the profile shape were made along lines xci = 

constant, but could have been made along any other direction except 

one parallel to the uniform stream. The choice of ~r was arbitrary 

as this only determined the position of the aerofoil in the 

coordinate plane, but for the multi-component design process ~"., the 

volume flow rate through the slot, had to be specified to maintain 

the correct slot width. After each iteration the corner points had 

to be obtained from the control points and this was achieved by the 

so called 'shooting' or 'smoothing' methods, both of which are 

described in more detail in section 5 of this chapter. Figure 3.2 

is a flow-chart of the design procedure with optional steps 

indicated. 

Application of the above method to incorporate viscous effects 

was attempted by Dutt and Sreekanth (1980), who took account of the 

laminar flow near the leading edge, the transition region, the 

turbulent flow and the turbulent wake. The design process 

consisted of constructing an intermediate aerofoil by adding the 

displacement thicknesses computed in successive iterations to an 

initial aerofoil until a suitable convergence criterion was 

satisfied. The required viscous velocity distribution was then 

used to calculate a new set of control points from which the 

modified aerofoil coordinates were obtained by subtracting the 

previous displacement thicknesses. This procedure required 

repetition until an optimum design was achieved. The method was 

limited in the angle of attack at which a design could be prodllcpd 
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by the requirement for attached flow, and the Kutta condition used 

by Kennedy and Marsden (1978) was replaced by the specificat~on of 

zero net circulation on the first and last panels (i.e. at the 

trailing edge). 

The inverse methods presented in the following sections have 

been developed from the forward algorithm of Leishman and Galbraith 

(1981a), who also made use of a distribution of vorticity around the 

aerofoil surface. In this case, however, the Neumann boundary 

condition of zero net flow normal to the surface was used, resulting 

in the following Fredholm integral equation of the first kind : 

J 
)'(s') -

rn·n res,s') 
ds' = 0 

The discrete analogue of equation 3.4 was obtained by, first, 

using a polygonal representation of the aerofoil surface and, 

second, implementing the boundary conditions at the panel 

mid-points, to get: 

N+l 
E 

j=l 
0, i 1,2, •• , N 

where the vorticity varied linearly across each panel and was 

continuous at the panel corners. The mathematics associated with 

equations 3.5 are presented in Appendix 1. 

3.4 

3.5 

System 3.5 also yielded N linear equations in N+l unknowns and, 

as previously, a solution was obtained by implementing an 

appropriate Kutta condition at the trailing edge, namely 

)' 1 + )'N+l 0 

The properties of this algorithm are discussed elsewhere (Leishman 

and Galbraith, 1981a and 1981b), but its adaption to the inverse 

problem is presented in the following sections of this chapter. 
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3.3 Method 1: 

(c.Cp method). 

profile modification based on pressure difference 

3.3.1. Development of the model 

This method is based on the hypotheSis that the greater is 

the obstruction offered by a body in a uniform, inviscid, 

incompressible stream, the greater are the resulting suctions over 

the surface of the body, and vice versa. Applying this to the 

inverse problem of aerofoil design, the following modification at 

each corner point, along lines Xj = constant, has been proposed: 

1, 2, ••• , N+ 1 3.7 

The correction, CNj is obtained from the difference between the 

required and actual pressure coefficients at the jth corner point. 

Initially a divisor equal to the maximum required pressure 

coefficient was incorporated into this parameter, however this was 

latterly removed due to ineffective modifications at high angles of 

attack. 

A represents some length dimension and three ways of specifying 

this were considered : 

(i) a standard value such as the aerofoil chord 

the absolute value of yjd-l (ii) 

(iii) the absolute value of the initial aerofoil coordinate 

at point j. 

(i) was rejected from the outset as this would lead to massive 

modifications at the leading and trailing edges. (ii) was 

implemented during a number of tests but it was realised that this 

specification of A would result in an asymptotical approach to the 

x-axis by all points whenever CN < 1. As this would always be the 

case, no point could ever pass across the x-axis, if required. 
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These problems ar~ surmountable by applying (iii), providing that 

the initial ordinates do not approach zero anywhere other than at 

the leading or trailing edges. As most standard aerofoil sections 

possess this characteristic, this is the specification that has been 

finally implemented. 

The plus and minus signs in equation 3.6 refer to the lower and 

upper surfaces respectively, the change occurring at the required 

stagnation point. Initially the change of sign was to occur at the 

origin, but this was altered'to achieve more accurate modifications 

in the leading edge region. 

An iterative inverse procedure has been formulated by 

incorporating equation 3.6 into the forward algorithm mentioned in 

the last section (Leishman and Galbraith 1981a). This involves 

calculating the latest pressure distribution around the aerofoil, 

from which an array of corrections can be obtained and thus a 

modified profile derived. The stability of this approach had 

always been in question from the start due to the arbitrariness in 

the correction, CN, therefore it was decided that a limiting value 

would have to be imposed on this parameter. All the tests 

mentioned below, used to develop the model, relate to the design of 

the NACA 23012 aerofoil from the NACA 0012 aerofoil. using fifty 

panels unless otherwise stated. 

Figure 3.3 is a plot of Cpr and Cpa versus x/c after the sixth 

iteration at cr = 5° and CN limited to 0.1. This is a clear 

illustration of an inherent instability, the origin of which can be 

more fully understood by referring to fig. 3.4. Unstable 

modifictions to the profile would arise in this situation because 

point b has previously passed across the required pressure curve 

whereas points a and c have not, thereby setting up corrections of 

opposite sign. The corresponding profile modifications would 

result in points x, y and z Laking up new positions at x', y' and 

z'. and the formation of a sharp 'dip' which would give rise to a 

more unstable pressure distribllLion, and so on. 



Attempts to control the instability by smoothing the profile 

after each iteration did not produce acceptable results (Vezza and 

Galbraith, 1983b), however a process whereby the array of pressure 

corrections are smoothed, or filtered, provided a means of 

controlling this undesirable phenomenon. Figure 3.5 illustrates 

the effect of this filtering process, and the cause of previous 

problems is apparent if one examines the sample of initial 

corrections. The underlying trend is represented by the filtered 

values, and the filtering used was similar to that used for profile 

smoothing (Vezza and Galbraith, 1983b). 

A series of tests were carried out to obtain an optimum 

combination of correction limit and number of filterings. It was 

found that by successively and jointly reducing both of these in a 

step fashion, after a number of iterations, a reduction in the 

amplitude and wavelength of the oscillating pressure distribution on 

the modified profile could be achieved. With the above scheme 

implemented, limited results were obtainable and these are presented 

below. 

3.3.2 Results 

Figures 3.6 to 3.9 display the results obtained from a test 

carried out at a = 5° with two step reductions in the correction 

limit and filtering factor. The effect on the modified pressure 

distribution mentioned at the end of the last section is illustrated 

in figs. 3.6 to 3.8, the final distribution being almost 

non-oscillatory and reasonably close to the required one. Figure 

3.9 is a plot of the average velocity error versus iteration number, 

and from this the points at which the parameters changed can be 

identified. The velocity error at a point is defined thus : 
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The largest errors occurred around the leading edge where the 

pressure distribution was highly sensitive to the change in the 

local geometry. The designed aerofoil shape is illustrated in fig. 

3.8 and represents a reasonably accurate solution when compared with 

the profile which produced the required pressure distribution. 

Unfortunately, the applicability of this method to the design of 

non-standard ae~foils and to aerofoils at large angles of attack is 

severely limited, as the simple assumptions on which the method is 

based tend to break down. Various difficult designs were 

attempted, but acceptable results could not be obtained in these 

cases. 

3.4 Method 2: profile modification using an adapted analysis 

technique (A.A. method) 

3.4.1. Development of the model 

This method was developed in an attempt to provide an 

efficient, stable and accurate means of designing arbitrary 

aerofoils in incompressible, potential flow. It was hoped that 

this could be achieved by incorporating an adapted form of the 

forward method of Leishman and Galbraith (1981a) directly into the 

design phase of the iterative procedure. Recalling the first term 

in equation 3.5, we have: 

where Li 

(iUoocos~ + jUoosin~) (Yi - Yi+l)!+ (Xi+l- xi)j) 

Li 

(Yi - Yi+l) cos~ + (Xi+l-X~) sin~J 
Li 

ith panel length. 
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Equation 3.5 can then be rearranged as follows 

N+I 

. D.v =.D.>f.. tano: 
1~1+1 1~1+1 -­

Uco 

+ Li ~ Al i j )' j 1· 
J= 1,2, ••• ,N 3.7 

21TUooCOSO: 

From this equation it can be seen that if the arrays of ~x's, 

influence coefficients, vorticity values and panel lengths can be 

specified at a particular angle of attack, then the ~y values can be 

calculated which, along with the ~x values, would define the 

aerofoil shape. Such a solution in one step is not possible as 

both the influence coefficients and panel lengths require the y 

components for their evaluation. Progress can be made, however, by 

examining the term in equation 3.7 which is causing the problem. 

The values of the Li and Aij are, in general, small, each taking 

values in the range of orders from 10- 3 to 10- 1
, therefore a change 

in the J'j values by an order of 1 

small amount. 

would only alter this term by a 

An iterative scheme is set up whereby the J'j'S are replaced by 

their respective required values, these being identical to the 

desired velocity distribution, and the influence coefficients and 

panel lengths are those of a starting aerofoil, The principle 

behind this procedure is that small changes in the ~y's give rise to 

a different set of influence coefficients and panel lengths, these 

being closer to the designed values than their initial 

counterparts. 

The iterative equation is then, as follows 

N+l d-l r A·· J' . 
j= 1 1 J J 

r 
tano: 

U oo 

+ i=1,2, ••• ,N 3.8 

with the ~X'S retaining their initial values. 
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Every time a modified array of Ay's are obtained the panel 

corner points have to be located, and this is easily achieved by 

projecting back over the upper and lower surfaces from the leading 

to the trailing edge. The iterative process is stopped when a 

convergence criterion is satisfied, in this case when the change in 

average velocity error falls below one percent of the initial 

error. Figure 3.10 is a flowchart of the A.A. method. 

A series of tests were carried out to determine the 

characteristics of this inverse routine and the results obtained are 

presented in the next section. 

3.4.2. Results 

Figures 3.11 and 3.12 illustrate the results obtained when 

the A.A. method was applied to the design of the NACA 23012 aerofoil 

from the initially supplied NACA 0012 aerofoil, at a = 5' and using 

fifty panels. The accuracy of the final design is highlighted, in 

fig. 3.11, by the excellent agreement between the required and 

designed geometric profiles and pressure distributions. Figure 

3.12 illustrates the nature of convergence, i.e. a large initial 

drop in error followed by increasingly more gradual reductions 

until, after eight iterations, the criterion was satisfied. This 

inherent stability is one of the major advantages of this method 

over the ACp method. 

To ensure that this method is applicable at higher angles of 

attack, a similar test to that described above was carried out at 

a = 10·. Figure 3.13 shows the designed profile along with the 

corresponding pressure distribution, and the close agreement with 

their required counterparts is evident. From fig. 3.14 it can be 

seen that convergence was achieved after only six iterations, fewer 

than was required at a = 5'; however, the slightly larger resultant 

error, along with the faster solution time, were representative of a 

trend when employing this method at higher angles of incidence. 

31 



The results from a relatively difficult test case are presented 

in figs. 3.15 and 3.16 and correspond to the design of the NASA 

GA(W)-l aerofoil from the NACA 23015 aerofoil at 10', using fifty 

panels. This was a difficult case because of the changes that were 

required in thickness and camber distributions around the trailing 

edge. The acceptable accuracy of the final design, however, is 

apparent from fig. 3.15. From fig. 3.16 it will be observed that 

the method converged to a solution after ten iterations with a 

resultant average velocity error of about one percent. 

The most difficult test case that was considered was the design 

of the GU2S-S(11)8 aerofoil, one of a series of low drag aerofoils 

developed by Nonweiler (1968) and investigated by Kelling (1968), 

from the NACA 0018 aerofoil at ~ = 10' using fifty panels. The 

results are presented in figs. 3.17 and 3.18. The difficulty is 

represented by the parts of the required pressure distribution, in 

fig. 3.17, which are flat on the upper surface and deflected at the 

trailing edge but, despite this, the results show good agreement 

between the designed and desired characteristics. From fig. 3.18 

it can be seen that the method converged after six iterations with a 

resultant error of about five percent, reducing from an initial 

value of over twenty-one percent. 

In some cases, when this method was employed, acceptable designs 

could not be obtained, and this tended to occur when large changes 

in the thickness distribution of the initial profile were 

required. Although this limitation detracts from the arbitrariness 

of the method, difficult sections can still be designed, as the 

results show, if reasonable care is taken when choosing the initial 

aerofoil. 

3.5 Discussion and comparison of the methods 

When consideration is given to the two inverse methods described 

previously, stark contrasts can be made between their respective 

features. The superior stability of the A.A. method, apparent if 
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one compares fig. 3.11 with figs. 3.6 to 3.8. comes from the use of 

the analysis equations in the design process, whereas the ~Cp method 

is based on an arbitrary multiplier and only takes into account the 

effect of the surrounding panels by filtering the corrections. The 

method of Kennedy and Marsden (1978) appears also to be very stable, 

but this is not surprising when one considers that they, again, 

approached the design problem by adapting an accurate analysis 

method. 

An appreciation of the relative accuracy of the ~Cp and A.A. 

methods can be gained by comparing fig. 3.9 with fig. 3.12, both of 

which refer to the same test, i.e., the design of the NACA 23012 

from the NACA 0012 at ~ = 5°. These graphs clearly illustrate the 

greater accuracy, represented by the smaller resultant average 

velocity error, that was achieved by the A.A. method. The decisive 

factor, however, is the unsuitability of the ~Cp method to the 

design of profiles which either have unusual geometries or are 

oriented at high angles of attack. 

Kennedy and Marsden (1978) also seem to have achieved accurate 

results when applying their method to the design problem. The main 

advantage which their method appears to have over the A.A. method is 

that it is more applicable where relatively large changes in the 

thickness distribution are required between the initial and final 

aerofoils. One disadvantage, however, is that inaccuracies can 

arise when determining the panel corner points from the designed 

control points. They proposed two methods for locating these 

points (see fig. 3.19). The first consists of passing a cubic 

spline through the control points and interpolating. However, as 

shown in fig. 3.19a, large errors would occur in regions of high 

curvature and would have to be corrected by rotation about a fixed 

point, e.g. the trailing edge. The second locates the trailing 

edge at the trailing point (see section 3.2) so that the corner 

points can be found by projection through successive control points, 

as shown in fig. 3.19b. However, this could lead to the 

development of a saw-tooth surface shape, which again would have to 

be smoothed. 
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This problem in locating the corner points was further 

highlighted by Dutt and Sreekanth (1980), who found that the use of 

the projection method caused program shutdown due to rapid 

oscillations in the aerofoil coordinates. The A.A. method is 

considered less complex and more reliable in this matter in the 

sense that the corner points are directly obtainable from the array 

of computed ~y's, and the starting point in itself does not 

introduce any errors. 

In terms of efficiency,'the A.A. method aeain has proved its 

superiority over the ~Cp method. Comparing the graphs of error 

versus iteration number illustrated in figs. 3.9 to 3.12, both 

corresponding to the design of the NACA 23012 from the NACA 0012 at 

~ = 5·, it can be seen that fifteen iterations were required for 

convergence using the ~Cp method whereas only eight were required 

using the A.A. method. 

3.6 Conclusions 

Two new inverse methods have been presented in this chapter and 

comparisons have been made in order to ascertain the relevant 

characteristics of each one. 

From the previous discussion it may be concluded that the A.A. 

method is superior to the ~Cp method in the three categories of 

stability, accuracy and efficiency. This method compares 

favourably with that of Kennedy and Marsden (1978) but care must be 

taken when choosing an initial aerofoil, so that drastic changes in 

thickness distribution are avoided. Although this detracts from 

the generaliCy of the method, fast, accurate results were 

obtained for difficult test cases and this has resulted in its 

application, within the department, to the design of an aerofoil 

section (see Niven and Galbraith, 1984) which has been tested as 

part of an experimental research programme concerned with certain 

phenomena associated with the dynamiC sta11 of helicopter rotors. 
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CHAPTER 4. 

A new method for predicting unsteady potential flow about an 

aerofoil. 

4.1 Introduction 

In the previous chapter the first part of the numerical package 

mentioned in chapter I, a design model, was presented. In the 

following two chapters, i.e: chapters 4 and 5, a description is 

given of the unsteady analysis part of the package. 

For some time aerodynamicists have recognised that unsteady flow 

over lifting bodies can produce beneficial effects, e.g. the 

phenomenon of stall delay (Carta, 1971), therefore it is important 

to have a method which is capable of predicting these effects. 

Presented in this chapter is a model for the calculation of the 

incompressible, inviscid flow around an aerofoil undergoing unsteady 

motion. Only attached flow is considered; however, the 

incorporation of upper surface separation is described in chapter 

5. The model was developed from the steady flow algorithm of 

Leishman and Galbraith (1981a), in which the aerofoil surface was 

replaced by a linear distribution of panel vorticity. The 

procedure is in the same class as that of Basu and Hancock (1978b), 

but involves a simpler specification of the Kutta condition. 

In the next section a survey of existing unsteady potential flow 

models is presented, followed by details of the new model. Results 

are presented and discussed for a number of cases which clearly 

illustrate relevant characteristics of unsteady flow, and 

conclusions drawn concerning the usefulness and applicability of the 

model. Information can also be obtained from Vezza and Galbraith 

(1984a and 1985a). 

4.2 Survey of past work 

Among the first unsteady potential theories were those developed 
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by von Karman and Sears (1938) and Theodorsen (1935), who considered 

a thin flat plate executing small amplitude, simple harmonic 

motions. Solutions for these linear problems were expressed in 

terms of combinations of standard Bessel functions with argument k 

(the reduced frequency of oscillation). Flat plate solutions for 

transient motions were developed by Wagner (1925) and Kussner 

(1940), but again second order effects were omitted. Thickness 

effects were considered for small amplitude oscillations by Kussner 

(1960), van de Vooren and van de Vel (1964) and Hewson-Browne 

(1963); however, these methods were based on conformal mapping 

techniques and thus were limited in application by the use of 

specific transformation equations. 

In recent years, the availability of greater computational power 

has encouraged the development of numerical panel methods for the 

assessment of unsteady flows. The most fundamental was developed 

by Giesing (1968) from the steady model of Hess and Smith (1967). 

This general, non-linear potential flow method was applied step by 

step in time along the aerofoil flight path, starting from an 

initial position and orientation, and the distortion of the vortex 

wake evolved naturally in the solution. The Kutta condition 

implemented in this method was the specification of equal velocities 

on the upper and lower trailing edge panels. This implies that a 

pressure discontinuity existed across the shedding vortex sheet, 

which would call into question its 'free' nature. 

Basu and Hancock (1978b) adapted and simplified Giesing's method 

and applied it to a number of different cases which illustrated the 

characteristics of unsteady flow. In their method the aerofoil 

contour is replaced by N panels, across which are placed a 

distribution of sources and vortices. The source strength has a 

unique constant value on each panel whereas the vorticity strength 

is the same on all panels (see fig. 4.1) and is directly related to 

the aerofoil circulation. The vortex sheet comprising the free 

wake is represented by discrete potential vortices; however, the 

nascent wake vorticity takes the form of a vortex panel of unknown 

strength, length and orientation such that D.m )'wm = r m- 1 ·- rM • The 
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Kutta condition, which ensures that there is no pressure 

discontinuity at the trailing edge, is ; 

2(lm - 1 m-l) 
(tm-tm- 1 ) 

4.1 

where the velocities are tangential to the surface. 

The implementation of the Neumann boundary condition at each of 

the panel control points, along with equation 4.1, leads to a system 

of N+l equations in the N+3'unknowns (N+l singularity values, ~ and 

Sm) which are solved via an iterative scheme, as described below, 

Initial values are ascribed to 6 m and em; however, a 

straightforward matrix solution is still unobtainable due to the 

non-linear quadratic equation 4.1. It is necessary to determine, 

from the N linear equations, the source strengths in terms of the 

one vorticity value Ym, and substitute these relations into equation 

4.1 which is then solved for Ym. Once the singularity strengths 

have been evaluated, the velocity at the mid-point of the shedding 

panel is calculated and a new value for ~ obtained as follows 

~ q6t 

A new value for Sm is found by ensuring that the panel is 

tangential to the local stream direction, and the complete process 

is repeated until satisfactory convergence has been achieved. The 

pressure distribution is obtained from the unsteady Bernoulli 

equation and the loads by subsequent integration. 

The model presented in this chapter is based on the steady flow 

algorithm of Leishman and Galbraith (1981a) and is in the same class 

as the method of Basu and Hancock (1978b). However, because of the 

different approach taken, resulting in a simplification of the Kutta 

condition, only a set of linear simultaneous equations have to be 

solved, unlike the above method (Basu and Hancock, 1978b) which is 

complicated by the necessary solution of a quadratic. The 

theoretical details of the new model are presented in the next 
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section. 

4.3 Development of the model 

4.3.1 Theoretical description 

The non-linear problem is one of finding the time-dependent 

wake and aerofoil vorticity distributions that result from applying 

the Neumann boundary condition on the aerofoil surface and Kelvin's 

theorem of constancy of total circulation. The governing integral 

equation is : 

+ 
1 
21T 

)'w( sw. t) 
rw(s,Sw) 

, 
)'(s,t) 
r(s,s') 

with L + LW constant. 

~ ~ 
Vr(s,t).n(s,t) 

(see fig. 4.2). 

In order to obtain a solution to equation 4.2, the unsteady 

4.2 

problem is solved at successive intervals of time starting with the 

steady solution at time t = O. The aerofoil is represented by N 

panels, from upper to lower trailing edge, across which there is a 

linear distribution of vorticity, and the circulation around the 

surface, is : 

Lm, where Lm Is )'(s)ds. 

The vorticity shed at earlier times is represented by discrete 

vortices which convect downstream according to the induced velocity 

pertaining to each. 

The shed vorticity at time tm manifests i..tself as an extra 

panel attached to the trailing edge of length 6 m, inclination em and 

a constant strength which is specified by making use of Helmholtz's 

theorem of continuity of vorticity. This is related, via Kelvin's 
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theorem, to the change in aerofoil circulation as follows 

4.3 

At time tm the panels and shed vortices are as illustrated in 

fig. 4.3. 

The discrete analogue of equation 4.2 provides N equations which 

satisfy the Neumann condition at the panel mid-points : 

~ N+l 
Uoo·ni + [ 

j=l 

m-l ~ _ 
AijYj + g~l GigKg +(Yl+YN+l)Awi=Vr·ni, i l,2, ••• N 

where the relevant components are due to the uniform stream, the 

4.4 

bound vortex sheet. the wake vortices. the extra trailing edge panel 

and the moving boundary, respectively. The mathematical details 

associated with equatioru4.3 and 4.4 are presented in Appendices 1 

and 2. 

There are, therefore, at time t m• N+3 unknowns. i.e. N+l values 

of vorticity, em and ~m' but only N+l equations. 4.3 and 4.4. 

governing the flow. To obtain a solution em and ~m are obtained by 

iteration from an initial guess. The iterative scheme employed 

involves the application of the unsteady Bernoulli equation across 

the emanating wake vortex sheet, and the details of the derivation 

are given in Appendix 3. 

Once ~m and em have been assumed, a solution is obtained by 

solving the N+l linear simultaneous equations for the vorticity 

values Yl ~ YN+l. A new value of ~ is obtained by ensuring that 

the condition of zero loading is satisfied (see Appendix 3): 

and em is adjusted so that the wake panel lies along the local 

stream direction. The above procedure is repeated until em and ~m 

39 



converge. 

The unsteady pressure coefficient. calculated with respect to 

the moving frame, follows from the unsteady Bernoulli equation (see 

Milne-Thomson, 1949): 

a <I> 
The time derivative, dt" is approximated by (<I>m - <l>m-l)/(tm-tm-l), 

where the potential function is obtained by integrating the velocity 

field, as viewed in the moving frame, from upstream of the aerofoil 

to the leading edge, and then around the surface. 

Once the calculation at time tm has converged, the model is then 

set up for time tm+l. The wake vortices and the extra trailing 

edge panel are convected to their new positions by determining the 

velocities at their centres and employing the first order Euler 

scheme : 

~ 

rvm+l 
~ ~ 

rvm + qvm (tm+l - t m) 

Normally the aerofoil would be rotated, if necessary, to its new 

position at time tm+l; however, in the present model the stream is 

rotated along with any wake vortices and upstream reference point, 

so that the influence coefficients due to the bound vortex sheet 

need only be calculated once at the start and thereafter remain 

unchanged. 

4.3.2 Numerical implementation 

The decision on the number of panels that should be used to 

represent an aerofoil was based on a compromise between accuracy on 

the one hand and time to perform the task on the other. In general 

the size of panel to be used is inversely proportional to the 
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surface curvature which means, for the aerofoils used here, 

concentration of panels around the leading edge. This was achieved 

by using the following analytic expression for the corner points: 

" N 
(i-1). i 1.2 •••• N/2+1. N even 

The y coordinates were then calculated from the available 

analytic functions for the respective NACA profiles. It has been 

shown (Leishman and Galbraith. 1981a) that when less than thirty 

panels are employed, the results obtained start to become 

significantly dependent on the number of panels used. Therefore, 

bearing in mind that the time taken to solve the matrix of 

coefficients is proportional to N3 , a thirty panel representation 

was used for the tests presented in this chapter. 

The reference potential point is initially located three chord 

lengths upstream from the leading edge and the change in potential 

calculated across each of thirty equal length panels up to this 

edge. The choice of what time step value. ~tUoo/c. to employ was 

made by balancing the computational time incurred with the accuracy 

of the results. Larger time steps were used in the lower frequency 

tests. where the induced velocities were not as great as occurred at 

higher frequencies. 

Only four wake iterations were carried out per time step as 

thereafter both the length and orientation of the extra trailing 

edge panel showed little change. Figure 4.4 is a flowchart of the 

numerical procedure. Note that the details of the coding of the 

equivalent Basu and Hancock model are presented elsewhere (Vezza and 

Galbraith, 1983c). 

4.4 Results and discussion 

4.4.1 Step change in incidence 

The method described in section 4.3 was applied to the case 
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of the NACA 0012 aerofoil undergoing a sudden change in incidence . 
form 0 to 5 • This problem represents the particular case of the 

time-dependent build up in lift as well as the phenomenon of the 

starting vortex. 

The solution was obtained with short time intervals of 0.01 

for 0<tUoo/c~0.3, intervals of 0.05 for 0.3<tUoo/c~0.5, 0.1 

for 0.5<tUoo/c~2.0 and finally intervals of 0.2 for 2.0<tUoo /c<20.0. 

Figure 4.5a illustrates the results obtained for the build up in 

pressure. The evident approach to the steady state condition is 

further highlighted in fig. 4.5b, which illustrates the behaviour of 

the time dependent lift, i.e. very rapid increase over a short 

period followed by a more gradual increase towards the steady-state 

value. Figure 4.5c shows how the starting vortex comes off the 

trailing edge, convects downstream and rolls up in the 

characteristic way. Although this is not a true representation of 

that which actually happens, i.e. the vortex originating on the 

upper surface, its subsequent development is good. 

4.4.2 Sinusoidal oscillations 

Again using the NACA 0012 aerofoil, a solution was obtained 

for sinusoidal oscillations about the leading edge at a reduced 

frequency k = 10, a mean angle of 0 and amplitude 0.573 using a 

time step ~tUooc~ 0.04, from zero to a time tUoo/c~ 1.9. 

Figure 4.6a illustrates the behaviour of the lift after the 

initial transients had faded and the response was repeatable. The 

very large values of this parameter were due to the high oscillation 

frequency, not unlike that encountered during aerofoil 'flutter'. 

However, not only is there a magnification of the load over the 

steady case, but a large lag exists of more than 180 as is shown by 

the initially decreasing lift values. This may be attributed to 

the large rates of change of the potential as well as to the 

magnitude of boundary velocity. The lift variations attributable 

to the Basu and Hancock model (1978b), to an earlier linearised 

model by the same authors (1978a), and to the standard linearised 
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solution, are also illustrated. 

At high frequencies a very strong vortex sheet is shed from the 

trailing edge, as can be seen from the highly deformed wake pattern 

shown in fig. 4.6b. Also shown are the resulting wakes of similar 

tests carried out by both Basu and Hancock (1978b) and Giesing 

(1968), which further illustrate the highly non-linear nature of the 

problem. 

Other sinusoidal tests of particular interest are low frequency, 

large mean angle and amplitude oscillations about the quarter chord, 

which are typical of helicopter rotor motions. 

Figure 4.7a illustrates some results obtained from experiment 

(Galbraith and Leishman, 1983) and theory for a test carried out on 

a NACA 23012 aerofoil at a reduced frequency of 0.2, an amplitude of 

6 and a mean angle of 10'. The Reynolds number and freest ream 

Mach number of the test were 1.027 x 10 6 and 0.076 respectively, and 

the data were averaged over ten cycles. The theoretical 

computation was carried out using a time step ~tUoo/c = 0.3141 from 

zero to a time tUoo/c = 31.41, which corresponds to two complete 

cycles of oscillation, the second of which is shown. Although 

there appears to be poor agreement between the two results, this may 

be attributed to the relatively low Reynolds number at which the 

experiment was carried out. As may be seen from fig. 4.7b this 

particular aerofoi1 exhibits a marked variation of CL with Reynolds 

number. Taking account of this variation, the results presented in 

fig. 4.7a are very encouraging in that the experimental lift loop 

has been reproduced theoretically, as has the relative orientation 

to the static line. 

The above comparison illustrates how the unsteady potential 

model reproduces the characteristic lift behaviour when viscous 

effects are not of first order in magnitude. However, when the 

aerofoi1 motion induces the classic effects of dynamic stall then 

few recognisable features can be reproduced. Figure 4.8 

illustrates this with results obtained from a test carried out, 
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again on the NACA 23012, at a reduced frequency of 0.2, amplitude of 

10 and a mean angle of 13°. The experimental Reynolds number and 

freestream Mach number were 1.036 x 106 and 0.077 respectively, and 

the same time step and limit that were used in the sub-stall test 

were used in the theoretical model. It can be seen that the 

omission of unsteady separation from the model limits its 

applicability, although the lift variation during the upstroke has 

been reproduced fairly well (taking account of the Reynolds number 

effect). 

4.4.3 Ramp motions 

The ramp tests consisted of rotating an aerofoil, about the 

quarter chord position, at a constant angular velocity. The 

experimental tests incorporated angular acceleration up to the 

constant rate, whereas for the present calculation an 'ideal' ramp 

was used. Figure 4.9 illustrates the experimental (A.R.A, 1983) 

and theoretical results obtained from tests carried out on the NACA 

0012 aerofoil at reduced ramp rates ~c/2Uoo = 0.0016 and 0.0065. 

The experimental Reynolds number and freestream Mach number were 2.6 

X 10 6 and 0.3 respectively. This Mach number represents 

approximately the upper limit of applicability of incompressible 

theory without significant error being incurred. The theoretical 

tests were carried out using time steps ~tUoo/c~ 0.32 for the test at 

~c/2Uoo = 0.0065. 

For ease of comparison the experimental results represent 

smoothed values of CN and as can be seen the correlation with the 

predicted values is very good. Analogous to the sinusoidal tests 

mentioned in the previous section, the effect of increasing the 

reduced ramp rate is to modify the slopes of the lift curves, 

representing an increase in the lag of the response. 

Also shown in fig. 4.9 are the predicted and experimental 

(Re=3xl0 6
) static curves. The agreement in this case is much 

better than that obtained with the 23012 and may be attributed to 

the observed insensitivity of this profile to the Reynolds number 
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over the given range (Loftin and Smith, 1949). 

4.5 Conclusions 

A successful method for calculating the unsteady, incompressible 

potential flow around an arbitrary aerofoil has been developed. 

The method differs from that of Basu and Hancock (1978b) in three 

main ways : 

(i) 

(ii) 

(iii) 

the singularity distribution used, i.e. a linear 

distribution of panel vorticity on the aerofoil 

surface; 

the implementation of the Kutta condition, in 

particular the use of Helmholtz's theorem, to relate 

the shedding and net trailing edge vorticity values; 

the resultant system of equations which, because of 

their linearity, exclude any quadratic terms. 

It is points (ii) and (iii) in particular which lead to this 

algorithm being simpler than that of Basu and Hancock (1978b). 

It may be concluded also, from the preceeding discussion in 

section 4.4., that the method predicts fully attached potential flow 

about an aerofoil, but is inappropriate where significant viscous 

effects, e.g. marked Reynolds number dependence and separation, or 

compressibility effects are present. 
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CHAPTER 5. 

An i.nvi.sci.d .adel o:f unst:eady, separat:ed, aero:foi.l :flow. 

5.1 Introduction 

In chapter 4 an attached potential flow model was described, 

forming the first part of the dynamic stall analysis code. Details 

of the second part are provided in this chapter, which describes the 

development of a new method 'for the prediction of unsteady, 

incompressible, separated flow over a two-dimensional aerofoil. 

The model makes use of an inviscid formulation for the flowfield and 

discrete vortices with finite cores are used to model the separating 

shear layers. 

The discrete vortex method has been applied to unsteady aerofoil 

problems for some time (see chapter 2). Clements and Maull (1975) 

provided an early history of the method, and subsequently made use 

of it to model vortex shedding from a square based body. Other, 

more recent, uses of the method have been the asymptotically steady 

analyses of Sarpkaya (1975) and Katz (1981), who considered a flat 

plate and thin cambered aerofoil respectively. These efforts 

highlight the attempts that have been made to reproduce what are 

essentially viscous phenomena by the use of inviscid algorithms, 

i.e. they incorporate the assumption that the flow is irrotational 

over the entire region except at the body and its wake elements. 

In such schemes the magnitude of the vortiCity shed from the body is 

usually determined from velocities sampled at the edge of the shear 

layer, an approach validated by the experiments of Fage and Johansen 

(1927) and by the analysis of boundary layer separation on aerofoils 

by Sears (1956 and 1976). 

Recently the detailed mathematical and numerical techniques 

associated with discrete vortex methods were reviewed by Leonard 

(1980). Application of the point vortex, vortex blob and newer 

contour dynamiCS methods to two-dimensional vortical flows were 

discussed as well as developments in three-dimensional vortex 
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methods. Leonard subsequently was part of a team who incorporated 

the vortex core method into a new numerical scheme for the 

prediction of separated flows (Spalart et al.; see chapter 2). 

In the following two sections, details of an unsteady, separated 

flow model are provided. The method is of the inviscid type and 

employs vortices with finite cores; however, reliance is not placed 

on the explicit evaluation of the shear velocities for the shed 

vorticity which is, rather, one of the variables in a 'Kutta' 

condition. The location of the separation point is a necessary 

input into the algorithm. 

Results are presented and discussed for the cases of static and 

moving separation and conclusions drawn concerning the sUitability 

and level of development of the method with regard to its 

applicability to the prediction of dynamic stall. Further details 

can be obtained from Vezza and Galbraith (1984b and 1985b). 

5.2 Theoretical description of the model 

The model at time tm is set up as shown in fig. 5.1. The 

aerofoil is represented by N panels from upper to lower 

trailing-edge over which there is placed ~ vortex sheet of varying 

strength that is piecewise linear and continuous at the panel corner 

points. With upper surface separation present, the distribution of 

vorticity within the separated zone is constrained to take starting 

and finishing values of zero. 

is : 

The circulation around the aerofoil 

L m , where Lm = I~dS, 

and the vorticity shed at previous times is represented by discrete 

vortices except in the region close to the upper surface separation 

point, where it takes the form of Np - 1 constant strength vortex 

panels. Two additional constant strength vortex panels appear at 

time t m, one at each separation point, to account for the latest 

change in aerofoil circulation, in accordance with Kelvin's theorem 

47 



(Milne-Thomson, 1949). The strengths of the emanating sheets are 

determined by making use of Helmholtz's theorem of continuity of 

vorticity (Milne-Thomson, 1973) which, when applied with the former 

theorem, results in the following condition 

5.1 

where ~1 and A are the lengths of the respective panels. 

In order to obtain a solution for the unknown bound vortex sheet 

strengths, the Neumann boundary condition specifying the flow normal 

to the surface is applied at the control points of the aerofoil 

panels, resulting in the following system of equations 

i = 1, 2, •• N 5.2 

The second, third and fourth terms in equation 5.2 are the 

normal induced velocities at the ith control point due to the bound 

vortex sheet and the two separating panels at time t m• 

respectively. These terms contain the unknown vortex strengths, 

whereas the first, fifth, sixth and seventh terms can be completely 

evaluated and are the normal induced velocities at the i th control 

point due to the free stream, the remaining wake panels, all wake 

vortices and the moving boundary respectively. The theoretical 

details associated with equations 5.1 and 5.2 are considered in 

Appendices 1 and 2. 

The expressions 5.1 and 5.2 amount to a system of N+1 

simultaneous equations that are linear in the N+1 unknown y 

values. However, as ~1 and A are also unknown, a solution can be 

obtained only by iteration from initial values assigned to both of 

these variables. It follows that the iterative scheme must 

incorporate some means of assigning new values to ~1 and A, and this 

is achieved by considering the Bernoulli equation as it applies to 

vortex sheets. 
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If we assume that a separated wake, as illustrated in fig. 5.2. 

gives rise to two isolated regions Rl and Rz with total heads hi and 

h z respectively, then the Bernoulli equation can be applied across 

each separation point (see Appendix 3). 

scheme for .0. 1 and ~ is: 

)'N+l 
-2-

The resultant iterative 

.o.t 

.o.t 

Within the iterative cycle, the trailing edge panel is aligned 

with the local stream direction but, for numerical reasons which 

will be discussed later, this is not the case for the upper surface 

panels. 

Once a converged solution has been obtained, the unsteady 

pressure coefficient is determined from Bernoulli's equation in the 

moving frame. In region Rl (see fig. 5.2) this is 

Cp 

In region Rz the equation becomes 

Vr 2 )'2 2 a <I> 2 
Cp 1 + .o.h 

U00
2 U00

2 U00
2 at Uoo

z 

Vr z )'z 2 [ a <I> a a.o.<I> a a 
+ .o.h ] 1 + 

Uoo
z U",,2 U",,2 + --- + (<I> - <l>a') 

at at at 

Vrz )'z 2 a<l>c )'s z 
1 + Uoo

z U""z Uoo
z Uoo

z + 2),s qs 
at U! 

Cp 
Vrz ()'2 -t )'S2) 

2)'s 
2 a<l>c i.e. + 

U00
2 2 + qs Uoo

z 
u"" U,! 

at 

where <l>c continuous potential in region R 2 • 

The potential function is approximated by integrating the 

velocity field, as viewed in the moving frame, from upstream of the 
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aerofoil to the leading edge and then around the surface, proceeding 

through the upper surface separation point in a continuous manner. 

The term a~/at is taken as (~m - ~m-l)/~t. and the loads are 

determined by integrating the pressure distribution. 

Once a complete solution has been obtained at time t m• the model 

is then set up for time tm+l. Existing vortices are convected to 

their new positions by calculating the velocities of their centres 

and using the first order Euler scheme 

-+ 
rvm+l 

~ ~ 

rvm + qvm (tm+l - t m) 

The vortices are then rotated, along with the upstream reference 

point, through the appropriate angular increment for the time step. 

The same scheme as above is used to convect the extra trailing 

edge panel to its new position as a discrete vortex. The upper 

surface panels, however, are treated differently, as detailed in 

section 5.3. 

5.3 Numerical implementation 

5.3.1 Model with fixed upper surface separation 

(i) Upper surface separation 

As illustrated in fig. 5.1, the separation point is located 

on one of the aerofoil panels between two corner points, as this 

positioning is essential if a solution is to be obtained. 

Restrictions which follow from this are : 

(i) the separation point must be kept away from the corner 

points, otherwise there is one less unknown and a solution 

cannot be obtained. 
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(ii) the separation point must be kept away from the control 

points, otherwise infinite velocity components arise and 

the solution is meaningless. 

Positioning the separation point at a distance of one quarter of 

the panel length to the right of the control point has yielded the 

most stable results. If separation occurs on the first panel a 

fully attached potential flow solution is obtained via an existing 

model (Vezza and Galbraith, 1984a). 

At the end of each time step, the vorticity emanating from the 

upper surface does not immediately take the form of a discrete 

vortex but remains as a sheet for a number of time steps. The 

reason for this is illustrated in fig. 5.3, where the velocity 

components of a constant strength vortex panel and an equivalent 

point vortex. placed at the centre of the panel are plotted at 

various stations. From this figure it may be seen that the 

discrete vortex approximation to a vortex sheet is very poor close 

to the sheet which leads, in this case, to an erroneous solution in 

the wake immediately downstream of the separation point. In 

arriving at a method of convecting this vorticity, various schemes 

were tried; however, greatest stabilitv was achieved with a scheme 

which convects panels as a whole, i.e. ~ew = ~ld' Ynew Yold· 

This is due to the fact that any fluctuations in Ys only propagate 

one panel at a time, thereby avoiding massive instantaneous changes 

in the local velocity field. 

Unlike the trailing edge panel. geometric restrictions have been 

introduced to control the separated upper surface panels. The 

angle between the first panel and the local surface tangent, e p ' is 

fixed and the angular deflection of each subsequent panel has an 

upper limit of Aep • 

Once the panels have been convected as described above, the 

outermost panel becomes a discrete vortex, except at the start when 

the wake contains fewer than Np panels. 
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(ii) Discrete vortex modelling 

Initially point vortices were used to represent the shear 

layers. However. it was soon realised that stable solutions would 

not be obtained. owing to the singular nature of the flow in the 

vicinity of such vortices along with their proximity to the aerofoil 

surface. To overcome this problem. and obtain acceptable 

solutions. vortices with finite cores have been used. The 

resulting vorticity field can be written as follows : 

~ 
w(r) 5.3 

where the function Yv describes the distribution of vorticity within 

the core and satisfies the normalising condition. 

J: Yv rdr = 1. 

The velocity field is obtained by inserting equation 5.3 into the 

Biot-Savart equation to obtain (see Spalart et al •• 1983): 

1 
211" [ yg y] 

x - Xg 

where n is a function which makes the velocity regular throughout 

the core and is defined by the equation : 

d 

dr 
(rln) = r Yv 

All of the results presented herein have been obtained using a 

constant vorticity core. 

i.e. Yv 
1 
211" 

inside the core. 

Once the vortices have been released into the stream they 

convect according to the induced velocities at their centres. It 

has been found necessary. however. to impose restrictions whenever 

unacceptable motions occur. These motions are due to an 

52 



inappropriate time step for vortices close to the surface of the 

aerofoil which, if left unhindered, can cross over this surface. 

Initially such vortices were eliminated from the computation, but 

this produced unacceptable peaks in circulation and lift and so a 

different scheme was developed whereby they were reflected from the 

surface. This was an improvement but did not stop the problem of 

some vortices settling very near to the surface, and hence not 

convecting downstream. This problem has been resolved by further 

ensuring that all vortices are kept outwith a given distance from 

the surface. At present this distance has been taken to be equal 

to the core radius, 0, and any vortex found within this region is 

relocated at the limiting boundary along the normal to the 

surface. Figure 5.4 illustrates these restrictions. Vortices 

that are close to the upper surface separation point very often do 

not reach this boundary for a few time steps and in such cases the 

temporary limiting distance used is the maximum normal distance to 

the surface yet achieved. 

The large amount of time expended when vortex methods are used 

in computations usually dictates that a limit be placed on the total 

number of vortices contained in the wake. This is achieved by 

suitable coalescence. In the model described herein, two methods 

of coalescing vortices were used, one for each of two regions : 

(i) within a distance Do of the aerofoil surface, vortices of 

opposite sign which come closer than a distance Dv are 

coalesced into a single equivalent vortex. The total 

circulation is conserved but not the first moment of 

vorticity as this could result in the combined vortex being 

far removed from the immediate vicinity. Instead the 

location is calculated as if both vortices were of the same 

sign, i.e., 

Z3 = (IK1Iz1+IKzlzz)/(IK11+IKzl) where Z3 is the new 

position and Zl and Zz are the respective positions of the 

original two vortices. 
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(ii) Outwith a distance Do of the aerofoil surface, any two 

vortices are coalesced if an error criterion is 

satisfied. The total circulation and the first moment of 

vorticity are conserved in the combination, which is 

carried out only if the error produced at the surface is 

less than a certain value, e v . The expression used to 

calculate this error is similar to that used by Spalart et 

al. (1983) 

< 

It should be noted that the most recent Nc vortices to be shed 

are not involved in coalescence, so that the shear layer can 

initially remain relatively undisturbed. 

5.3.2 Model with moving upper surface separation 

The numerical details associated with the modelling of 

moving upper surface separation are essentially the same as those 

outlined in section 5.3.1; however, a few significant differences 

do exist and these are explained below. 

(i) Separation panel geometry 

When the separation point moves it is desirable that it 

does so in a smooth, continuous manner in order to 

eliminate large fluctuations in qs. However, its movement 

along the separation panel, for the given geometry, would 

have to be restricted for the reasons mentioned in section 

5.3.1. To accommodate both of the above conditions, the 

control point is repositioned, in the manner illustrated in 

fig. 5.5, to allow smooth passage of the separation point 

over the panel. The control point is located mid-way 

between the separation point and a corner pOint, the 

particular one dependent upon which side of the panel 
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mid-point the separation point lies. In addition, the 

separation point is not allowed to approach within a 

specified fraction of the panel length of either corner 

point. 

(ii) Retardation of the separation point during reattachment 

As a result of using empirical data for the location of the 

separation point there exists the possibility that 

reattachment. if it'occurs. may proceed in an inappropriate 

manner, this being dependent upon the accuracy of the data 

used. The problem. illustrated in fig. 5.6, is associated 

with the speed at which reattachment occurs, which cannot 

be faster than the convection velocities of local wake 

vortices. In such cases the separation point is relocated 

so that the outermost wake panel does not encroach on these 

vortices, with the limiting condition that it cannot be 

positioned further upstream than the location of the 

previous separation point. 

(iii) Additional modifications 

In some instances, in particular when leading edge 

separation occurs, a strong vortex sheet is shed from the 

upper surface resulting in fairly large wake panels which 

can protrude for a significant distance into the near 

wake. Since this was not the purpose of introducing these 

panels, which was to provide a more regular velocity field 

in the neighbourhood of the separation point than was 

obtainable with discrete vortices, the number of wake 

panels is temporarily reduced until the remainder lie 

within a given limiting distance from the aerofoil 

surface. The discarded panels are replaced by equivalent 

discrete vortices and the limiting distance implemented to 

date has been the vortex core radius, o. 
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5.3.3 

As mentioned in section 5.2, an iterative procedure is 

invoked at each time step in order to obtain a converged 

solution for the unknown surface vorticity distribution. 

The error will normally be at a minimum after the final 

iteration; however, if this is not the case the results 

from the iteration which produced the minimum error are 

carried forward and used in subsequent calculations. 

Miscellaneous points 

All of the results presented in the next section were 

obtained using a thirty panel representation of the aerofoil. as 

this number has been found to be satisfactory (see Leishman and 

Galbraith. 1981a and 1981b). To calculate the velocity potential, 

a reference point is located three chord lengths upstream from the 

leading edge and the change in potential calculated across each of 

thirty equal length panels which form a line between both points. 

The choice of what time step to use is a balance between the cost of 

the computation, the flow resolution required and the desire to 

generate a relatively stable solution. 

Four iterations are carried out per time step, as this number 

was found to be sufficient for acceptable convergence. The 

numerical parameters that were assigned the same value in all of the 

o -4 test cases were: Np=4, Nc =20, 6 p=10 , 0=0.05, Dv=O.l, e v =5xlO • 

Others are mentioned in the next section. A flowchart of the 

numerical procedure for the model with moving separation is provided 

in fig. 5.7. 

5.4 Results and discussion 

5.4.1 Step change in incidence 

Figure 5.8 illustrates the results obtained following a 

step change in incidence from 0 - 18.25 for the NASA GA(W)-1 
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aerofoil. For this test ~tUoo/c = 0.05, ~ep=o·, 0 0 =1 and 

xs/c =0.575. From fig. 5.8a it may be seen that the wake at 

tUoo/c = 15 consists of two well defined shear layers which come 

together a short distance downstream followed by a thin region which 

extends far downstream while gradually opening out. This 

representation compares well with other wake models (e.g. Maskew and 

Dvorak, 1977), and there is no need to make initial assumptions 

concerning the wake shape. Figures 5.8b and 5.8c show the time 

dependent behaviour of the normal force and quarter chord moment. 

Although the initial response will not be physically accurate, as 

the fixed separation point does not correctly model the true initial 

conditions, the approach to a steady value can be observed. The 

build up in pressure near the leading edge to the steady state is 

particularly evident in fig. 5.8d and the settled chordwise pressure 

distribution shown in fig. 5.8e compares very favourably with the 

experimental data of McGhee and Beasley (1973), 

(Re=6.3xl0 6 ,M=O.15). An isometric projection of the pressure-time 

history is presented in fig. 5.8f, and illustrates well the constant 

pressure region downstream of the separation point. 

Figure 5.9 illustrates the results obtained from a test where 

separation occurs near to the leading edge after a step change in 

incidence from 0 - 21.14 was applied to the same aerofoil. In 

this case 6tUoo /c=O.05, 6ep=3°, 0 0 =1 and x s /c=O.125. From fig. 5.9a 

it can be seen that the shear layer emanating from the upper surface 

starts to break up soon after it is shed and this is due. to the more 

severe flow field perturbations which accompany increasing amounts 

of separation. The result of this is that the near wake is wide 

and the far wake is no longer thin, exhibiting a periodic structure 

composed of alternately signed vortex clusters. The initial 

response of the normal force and quarter chord moment in figs. 5.9b 

and 5.9c corresponds to the passage of the first vortex cluster, 

although the forward movement of the separation point has not been 

modelled. The moment exhibits more of the OSCillatory nature of 

the flow whereas the normal force is not unduly perturbed in its 

approach to a steady value. Owing to massive upper surface 

separation the behaviour of the leading edge pressure, illustrated 
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in fig. 5.9d, is markedly different from the previous cases, and the 

computed pressure distribution compares very favourably, fig. 5.ge, 

with the measured data of McGhee and Beasley (1973). The wake 

pressure is not always constant, owing to the passage of vortices 

over the aerofoil; however, for comparison purposes, a computed 

pressure distribution has been chosen, near tU oo /c=20, that exhibits 

the closest approximation to a uniform wake pressure. The 

pressure-time history is shown in fig. 5.9f. which illustrates well 

the vortex shedding and subsequent passage over the aerofoil. 

5.4.2 Ramp motions 

A ramp test was carried out whereby the NACA 0012 aerofoil 

was rotated, at a constant angular velocity about the quarter chord 

position, through a change in incidence from 0 For this 

test the reduced ramp rate crc/U oo=0.02, ~tUoo/c=0.0545, 6ep=l and 

Do =(1-xs /c)/0.875. Do is evaluated in the above manner to take 

account of the varying size of the near wake as the location of the 

separation point changes. The prescribed values for the separation 

point were obtained from the data of Scruggs et ale (1974). The 

direct application of their results is not strictly correct, as they 

presented the history of the boundary layer flow reversal point, 

which leads the ocurrence of flow separation under unsteady 

conditions. However, their data provides a useful means of 

examining the model's capability of reproducing various features of 

unsteady, separated flow with moving separation. 

Figure 5.10 illustrates the vortex wake produced at increasing 

angles of attack, ranging from fully attached flow, as illustrated 

in fig. 5.10a, to fully separated flow, i.e. from the leading edge 

of the aerofoil, as illustrated in fig. 5.10d. The moving position 

of the separation point can be observed from figs. 5.10b and 5.10c, 

and results initially in the formation of a relatively thin 

separating sheet which merges into a narrow far wake. However, as 

the separation point approaches closer to the leading edge, fig. 

5.10d, strong, oppositely signed vortex clusters form immediately 

downstream of the aerofoil, producing a broad and highly distorted 
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far wake. 

Figure 5.11 provides further details of the above test. 

Figures 5.1la and 5.llb are spline-fitted graphs of normal lift 

coefficient and moment coefficient versus incidence; fig. 5.11c 

shows the variation of the separation point location with incidence, 

taken from Scruggs et al. (1974), and fig. S.IId illustrates the 

behaviour of the upper surface pressure coefficient with time. The 

post-stall oscillatory behaviour of the normal lift and moment is 

characteristic of flow with massive separation past a body at high 

incidence, e.g. a bluff body; and is associated with strong, 

alternate vortex shedding. This oscillatory feature is further 

highlighted by the spline-fitted pressure-time history within the 

separated zone, fig. S.lId. 

S.4.3 Sinusoidal oscillations 

A test was carried out on the NACA 0012 aerofoil to obtain 

a solution for the case of sinusoidal oscillations in pitch about 

the quarter chord position at a reduced frequency k = 0.125, a mean 

angle of 12 and amplitude of 12·. This low frequency, high 

amplitude and mean angle combination is typical of the conditions 

which induce aerofoil dynamic stall, and so is of particular 

interest. For this test 6tUoo /c=0.OS03, 68p =1 and 

Do =(1-xs /c)/0.87S. The prescribed values for the separation point 

were obtained, again, from the data of Scruggs et al. (1974), 

although these were modified during reattachment as described in 

section S.3.2. As mentioned in the previous section (i.e. 5.4.2) 

the application of this data is not strictly correct, in this case 

also because a ramp is not being performed; however, it enables a 

qualitative assessment of the model to be made. 

Figure S.12 illustrates the wake produced as the aerofoil 

executes its prescribed oscillation, the arrows indicating whether 

the instantaneous motion is pitch-up or pitch-down. The results 

are presented for the second oscillatory cycle, when the solution is 

virtually repeatable, and illustrate well the whole process of 
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moving separation and vortex shedding. Figures 5.12a to 5.12d show 

how the wake develops from fully attached flow, at the mean 

incidence of 12<, to fully separated flow, at the maximum incidence 

of 24·. The wake remains thin, as can be observed in figs 5.12b 

and 5.12c, during the phase when the separation point moves forward 

rapidly, after which significant vortex shedding begins to occur. 

Figures 5.12e to 5.12h illustrate the process of reattachment, from 

maSSively separated flow, at an incidence of 19.17·, to fully 

attached flow, at an incidence of O· • The wake is highly distorted 

during this phase due to the' presence of strong, oppositely signed 

vortex clusters. The process of vortex shedding and passage over 

the upper surface of the aerofoil is particularly well illustrated 

in figs. 5.12f and 5.12g. 

More results for the above test are presented in fig. 5.13. 

The behaviour of the spline-fitted normal lift and quarter chord 

moment in figs. 5.13a and 5.13b are qualitatively in agreement with 

the loads produced during aerofoil dynamic stall under similar 

conditions. When moment stall begins at about 19·, the normal lift 

continues to increase due to the extra suction produced by the shed 

vortices, the peak near the maximum incidence being usually referred 

to as the 'vortex-induced lift'. The pitch-down moment increases 

during this period due to the movement aft of the centre of 

pressure; however, after the passage of the major vortex the lift 

collapses and the centre of pressure moves forward reducing the 

negative moment. Subsequent oscillations in the normal lift and 

moment are due to the passage of smaller, secondary vortices, e.g. 

as illustrated in figs. 5.12f and 5.l2g. 

Figure 5.13c shows the variation of the prescribed separation 

point location with incidence. The most important feature of this 

diagram is the extent to which the separation point is retarded, 

compared with the prescribed values, during reattachment. The 

corresponding maximum speed of reattachment is modified from a 

prescribed value of approximately three quarters of the free stream 

speed to under one half of the free stream speed. It is 

interesting to note that this latter figure agrees with the result 
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of experiments that have been carried out (McCroskey, 1981). 

The characteristic pressure disturbances associated with vortex 

shedding are illustrated in fig. 5.13d, which shows the 

spline-fitted pressure-time history during the second cycle of 

oscillaton. 

5.5 Conclusions 

A new method has been presented in this chapter for the 

prediction of unsteady, incompressible, separated flow with moving 

separation around an arbitrary aerofoil. An inviscid formulation 

is used for the flow field and the shear layers are represented by 

discrete vortices with finite cores. 

Although a number of numerical restraints have been imposed on 

the model, the results presented in figs. 5.8 to 5.13 are most 

encouraging in that many of the significant features of unsteady, 

separated flow have been reproduced. In relation to the work being 

carried out within the department of Aeronautics and Fluid 

Mechanics, the most interesting results are those which illustrate 

the typical features of dynamic stall, i.e. the ramp and sinusoidal 

tests. The process of vortex shedding and transport has been 

reproduced, as has the behaviour of the lift and moment. 

This algorithm is thus regarded as being very useful, despite 

the fact that the moving location of the separation point has to be 

prescribed in advance. and forms an integral part of the design and 

analysis package presented in this dissertation. 
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CHAPTER 6. 

Conclusions and suggestions for future research. 

6.1 Introduction 

Presented in this chapter is a summary of the major conclusions 

of the work detailed in chapters 2 to 5. In addition, a number of 

areas requiring further study are highlighted so that future 

research may produce improvements. The dissertation is then 

completed in a closing discussion on the overall merit of the work. 

It is worth reiterating the purpose of carrying out this body of 

work. As mentioned in chapter I, the program of research was 

undertaken to develop an aerofoil design and analysis package which 

would complement the experimental work carried out at the Glasgow 

University dynamic stall facility. 

The program can be written down in concise form as follows 

(i) conduct and present a survey of unsteady numerical methods 

applicable to the prediction of aerofoil dynamic stall; 

( iO 

(iii ) 

(iv) 

develop a design method capable of producing an aerofoil 

with a desired pressure distribution around its surface; 

develop the first part of the dynamic stall prediction 

code, i.e. an unsteady, attached flow algorithm; 

complete the dynamiC stall prediction code by developing 

part 2, i.e. an unsteady, separated flow algorithm. 

The extent to which this program has been carried out 

successfully can be determined from the summarised conclusions of 

the next section. 
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6.2 Summary of conclusions 

6.2.1 Dynamic stall prediction methods 

The empirical methods are used extensively within the 

helicopter industry but provide little detailed information about 

the flow field and require expensive data acquisition for 

correlation purposes. In the longer term the Navier-Stokes methods 

offer the most accurate analysis; however, at present both the 

computational expense and the present state of turbulence modelling 

could be prohibitive. The simplified models which incorporate the 

major features of dynamic stall, e.g. the stall vortex, utilise a 

mix of empiricism and theory, and are an attractive alternative for 

many researchers to consider. The tabular form of presentation, 

table 1, provides a readily available means of assessing the various 

models. 

6.2.2. A comparison of two new inverse methods 

The adapted analysis method is superior to the ~Cp method 

in the three categories of stability, accuracy and efficiency. 

This method also compares favourably with that of Kennedy and 

Marsden (1978), but drastic changes in the thickness distribution 

should be avoided. Despite this limitation, accurate designs were 

obtained for a number of test cases, and the method was used within 

the department to design a modified NACA 23012 aerofoil which has 

been tested on the dynamic stall rig. 

6.2.3. Modelling of unsteady, potential flow about an aerofoil 

A successful method for calculating the unsteady, 

incompressible, potential flow about an aerofoil has been 

developed. The method is in the same class as that of Basu and 

Hancock (1978b) but differs in the singularity distribution used, 

the implementation of the Kutta condition and the linearity of the 

system of equations solved. From the variety of test cases 

presented it can be concluded that the method predicts fully 
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attached potential flow but is inappropriate where significant 

viscous or compressibility effects are present. 

6.2.4. Modelling of unsteady, separated flow about an aerofoil 

An inviscid numerical method has been developed for the 

prediction of unsteady, incompressible flow with moving separation 

around an aerofoil. Due to the inherent instability of the model a 

number of numerical restraints have been imposed; however, the 

results presented provide encouragement in that many of the 

significant features of unsteady, separated flow have been 

reproduced. The dynamic stall tests are of particular interest, 

with the significant features of the vortex shedding and transport 

process, as well as the behaviour of the unsteady loads, being 

reproduced. Although the location of the moving separation point 

has to be specified in advance, the algorithm is considered suitable 

for use on a production basis. 

6.3 Suggestions for future research 

6.3.1 Improvements in the aerofoil design model 

As mentioned in chapter 3, the A.A. design method produces 

accurate results as long as drastic changes in thickness 

distribution between the initial and final aerofoils are avoided. 

Removal of this restriction would increase the generality of 

application of the model and make the choice of initial aerofoil 

less important. This could be achieved, perhaps, by producing step 

by step designs, in such difficult cases, corresponding to a number 

of intermediate velocity (or pressure) distributions, thereby 

reducing the severity of the modifications during any particular 

step. Additional improvements would result from the inclusion of a 

boundary layer displacement thickness distribution around the 

aerofoil during the design calculations, as this would produce a 

design with the required pressure distribution in "real" flow. 
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6.3.2 Mathematical study of the unstable nature of the unsteady 

flow model with separation 

A mathematical study should be carried out on the nature of 

the instability occurring in the model incorporating moving 

separation. Any improvements could mean loosening some of the 

numerical constraints, e.g. vortex core radius, restrictions around 

the upper surface separation point. When major separation occurs, 

the vorticity value at the separation point can fluctuate 

considerably, and since this 'has a significant effect on the wake 

pressure, its control would stabilise the behaviour of the unsteady 

loads. This value is linked to the value at the trailing edge via 

the Kutta condition, and it is interesting to note that the latter 

value is very stable. This stability is not automatically 

transferred to the separation value, however, as it is in the steady 

model where the two values are equal in magnitude (see Leishman and 

Galbraith, 1981a), therefore a more rigorous link between the two, 

if possible, would be desirable. 

6.3.3 Modifications to enhance the predictive capability of the 

unsteady flow models 

The areas in which the models described in chapters 4 and 5 

could be improved can be determined from table 1. Up to stall 

onset both models would benefit from the incorporation of viscous 

effects, e.g. an unsteady boundary layer calculation coupled with a 

laminar to turbulent transition model to determine the displacement 

thickness distribution, and compressibility effects, i.e. velocity 

corrections for compressible subsonic flow. 

For the separated flow model, the conditions at stall onset 

could be reproduced more accurately by invoking an unstady boundary 

layer calculation for predicting the location of the separation 

point. Some aerofoils, however, e.g. the NACA 23012, can 

experience sudden separation from a point in the neighbourhood of 

the leading edge. It is thought that this occurrence is due to the 

formulation of a leading edge bubble which contracts as the angle of 
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attack is increased, and finally ruptures, releasing vorticity into 

the stream. A criterion which takes account of this phenomenon 

could also be developed. 

The prediction of the post-stall process of reattachment would 

be enhanced by including viscous influences, and other important 

factors, such as the effects of sweep and blade vortex interaction, 

could be given consideration in the longer term. 

6.4 Concluding discussion 

In response to the aims of the body of work presented in this 

dissertation, and outlined in section 6.1, the following conclusions 

can be drawn: 

(i) a detailed survey of numerical methods applicable to the 

prediction of dynamiC stall has been carried out, the 

informative nature being greatly enhanced by the tabular 

presentation; 

(ii) 

(iii) 

(iv) 

a method for the design of an aerofoil with a specific 

static pressure distribution has been developed and is 

generally applicable if drastic changes in thickness 

distribution between the initial and final geometries are 

avoided; 

an unsteady, incompressible, potential aerofoil flow model 

has been developed which predicts fully attached flow when 

significant viscous and compressibility effects are not 

present; 

an inviscid numerical method has been developed for the 

prediction of unsteady, incompressible, aerofoil flow with 

moving separation and is particularly applicable, when the 

location of the separation point can be prescribed, to the 

case of dynamic stall originating from the trailing edge. 
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The methods are at a sufficient level of development to be used 

as part of an integrated research program within the department, in 

fact the design method has already been of use (see Niven and 

Galbraith, 1984). However, further improvements, e.g. those 

suggested in section 6.3, would, no doubt, enhance the predictive 

capabilities of the methods and therefore some consideration should 

be given to this in the future. 
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APPENDIX 1 

Vortex panel ~thod-derivation of the influence coefficient at the 

ith control point due to the jth panel. 

J s 

The vorticity at any point along the panel is 

(YJ"+l - Y") 
Yj + J s 

Lj 

(0 i f j 
L' L 

(X~f':f~) 

ith pafl-d , 

velocity component normal to ith panel induced by element of 

vorticity across 6s 

(~ 
--~-- nij. 
21rlqjl 

n ) 
i 

total normal velocity component can be written: 
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where ni "" 

-+ 
rnij 

where b 

And so 

where 

11 

(Yi+l - Yi).!. + (xi - Xi+l ).L 
Li 

(y - Yci) .!. + (xci - x)j 

L. 
J 

o S2 + bs + C 

[Lj(Yj-Yci) + (Yj+1-2Yj+Yci)S - (Yj+l-Yj)S2] 
L j 

S2 + bs + C 

[(Yj-Yci)S + (Yj+l-Yj)S2] 
L j 

S2 + bs + c 
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ds 

'I: 

ds 

(Al. 1) 

ds 



I
Loj [(Xci-Xj)Lj - (Xj+l - ~Xj + Xci)s + (Xj+l - Xj)S2] 

Lj 
----------------------------------------------~-------- ds 

52 + bs + C 

- Xj)5 - (Xj+l - Xj)5 2
] 

L j 

S2 + bs + C 

d5 

The evaluation of the integrals I 1-I 4 is given in Leishman and 

Galbraith (1981a) 

From equation Al we can~btain the coefficients of Yj and Yj+l 

~ 

!qnij! BijYj + CijY j+l 
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(Il.!:. I 3 ;p·;:\i where Bij 211Lj 
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(Iz.!:. I 4 j)·;:\i Cij 211Lj 
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(ii) i j t:---
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[Yj + (Yj+l - Y .) ] 
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L j 
ds 

L· J - s 
2"" 
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where 

1 
2fT 

1 
(YJ" - YJ"+1) 2fT 

1 

2fT • 

1 
2fT 

(iii) i j and separation occurs on panel 

~.,~ Ls 
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----qnjj 
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.Ls I ] - "'s Y j 1 + 2ts - 1 ln / 
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where - 1 ] In I 1 -

Cjj 
[ 1 + G: ~:l In ILj~;LSI 1 

OJ j 1 - [~:-J. In ILj~~LSI 

(iv) i ~ j and separation occurs on panel j 

,--------- f" . " . ) "7~1"t-1' 1,+/ 
\ 

\ 
~. L~ 

I , 
f~ ~J 

.l:....... .. 

(J(C:~/'L)~~-____ ~Sr--'L' ________ ~~ 

')1"~ ~ L . pCLf\-e. 

This case involves the same integrals derived in (i) (see Leishman 

et a1. 1982) 

The value of the coefficient Aij in Appendix 2 for cases (i)-(iv) 

is given by : 
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APPENDIX 2. 

Matrix of coefficients 

After the boundary conditions have been applied at each of the 

control points there are N equations in N + 1 unknowns 

The necessary extra equation comes from specifying the shed 

circulation 

(i) attached flow 

lm-l - 1m 

N 
=> 6(Yl + YN+l) + -2 [ (Yj + Yj+t) Lj 

j=l 
1m-t 

( Ll) (Ll+ L~) => A + + < + u __ Yl Yz ••• + 
2 2 

(LN-t + LN) (LN ] ----=-----Y
N 

+ __ + 6 Y = 1 m-l 
2 2 N+l 

(ii) separated flow (Yl=O, replaced by Y s in column 1) 

1m-t - I'm 

N 
E (y. +y . + 1 ) L . 

j=l J J J 
1m-l 

j#:Ns 
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(LN -1 +Ls) 
)' 2 + •••• + _----'6"-----=-__ _ 

2 
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APPENDIX 3. 

Derivation of the iterative relations governing the shed vorticity. 

(i) Attached flow 

Bernoulli equation applied across the free vortex sheet 

emanating from the trailing edge yields : 

Z 
)'1 

z 
a(~N+l $1) PI-PN+l 0 )'N+l -

+ 
P 2 2 at 

i. e. a($N+l - $1 ) 1 
()'1 

Z z arm - )'N+l ) as rm $N+l-$l 
2 -- , 

at at 

r m- 1 - rm 

we must have 
Z 2 

~ (7N+l - 71 ) ~t ()'l + 7N+l) ~ 

and a new value of ~m is obtained from 

(ii ) Separated flow (see fig. 5.2) 

Bernoulli equation applied across the free vortex sheet 

emanating from the upper surface yields : 

~
' Ys 

(x", y~) "--

~ 
~, 

o ~h + [a:;' - ya'qs) - [a:: - 7 a qS) + )'~ 
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(A3.1) 

Bernoulli equation applied across the free vortex sheet 

emanating from the trailing edge yields : 

Pb Pb 
I 

:>'b 12 :>'b
Z - a\Db a~b = 0 ~h + + 

p at at -2- -2-

)'N+l z 
a~~N+l => = ~ + -2- at 

(A3.2) 

Combining equations A3.1 and A3.2, we get 

(A3.3) 

Simplifying the right hand side of equation A3.3, we get 

=> I'm 

:>'s Z YN+1 2 

- Ys qs --2- 2 

However, 

I'm - Lm-l 
6.t 

Lm-l - I'm 

(A3.4) 

and by examining equations A3.l, A3.2 and A3.4, it will become 

apparent that the relevant iterative scheme for ~1 and ~, consistent 

with continuity of vorticity at the separation points, is 

I:>'~+ll M 
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FIG 3.1 VORTEX REPRESENTATION OF AN AEROFOIL 
(From KENNEDY and MARSDEN, 1978) 

r 
I 
I 
I 
I 
I 
I 

-+ 
I 
I 
I 
I 
I 
I 
I 
L 

Input bllsic lirfoil ~tion, 
required velocities, and oJ!'s. 

Construct coefficient mltrix 
Kij of this ~tion. 

Analyse ~tion. check • 
....... (1------1 agreement with requirements. 

Design new control points 
and trailing edge. 

~Iculate geometry of new 
airfoil ~tion. 

If designer is satisfied, 
output designed airfoil section. 

Alter geometry to suit • 
geometric constraints. 

• Optional steps 

FIG 3.2 FLOW CHART OF DESIGN PROCEDURE 
(From KENNEDY and MARSDEN, 1978) 



-4 . 

-3 

Cp 

-2 " 
" , . 

, 

-1 

o 

1 

I 

000 

. 

. , 

. 
, 

, .. .. , . 

.. . . 
" 
" 

I 

020 
I 

040 

-----ACTUAL PRESSURE COEFFICIENT 
- REQUIRED PRESSURE COEFFICIENT 

I I 

eGO 080 

X/C 

FIG 3.3 PRESSURE DISTRIBUTION AFTER 6TH ITERATION; 
o(=5~ ICNU 0.1 

J I , , X"- 1 JC 
~~/I 

~..-- "- I ~C 

~I 

FIG 3.4 ORIGIN OF INSTABILITY (UPPER SURFACE) 

I 

1000 



.10 

eN 
~J 

.OO#-~~~~~~+---~~----~----. 
• 0 • 0 .80 1.00 

X/C 

--- INITIAL CORRECTIONS 

-.10 - - - .. F IL TEREO CORRECT IONS 

FIG 3.5 PRINCIPLE OF CORRECTION FILTERING 

-J 

-2 
- - .. - ACTUAL PRESSURE COEFFICIENT 

- REQUIRED PRESSURE COEFFICIENT 

o 

1 

j I I , , , 
.00 .20 .LO .GO .RO 1.00 

x/c 

FIG 3.5 PRESSURE DISTRIBUTION AT END O~ ]ST STAGE; 
Fy =10, fi=2,ICNI~0.1 

-3 

----- ACTUAL PRESSURE COEFFICIENT 

-- REQU I REO PRESSURE COEFF I C lENT 

-1 

o 

, , , 
.00 .20 • lHl 1 " (I() 

x/c 

FIG 3.7 PRESSURE DISTRIBUTION AT ENO Or: r p STAGE; 
F.. =2, ~ =2, ICNI~0.01 



~ ACTUAL PRESSURE COEFFICIENT 
-----REOUIREO PRESSURE COEFFICIENT 
-- ... INITIAL PRESSURE COEFFICIENT 

: : 

. , , 
.00 .20 .LO .60 .80 1.00 

x/c. 

.... DESIGNED AEROFOIL 
,"10, _ NACA 23012 

--_ X~ - - - - -------

-.10 

FIG 3.8 DESIGN OF THE NACA 23012 FROM THE NACA 0012 AT END 
OF 3 ... 0 S TAG E ; F.. = ~ = 0, I C N I -{ 0 . 0005, 0( = 5 0 

~ 
0 
~ 
~ 
w 

>-
t-

u 
0 
-1 
w 
> 

w 
l.') 

< 
~ 
W 
> 
< 

.06 

.os 

.04-

.03 

.02 

.01 1ST STAG-E 

~ 
I 

I I 
I 1 

I 
'wi 
1 I!JI 

1 1 «I 
I 2 .... C' 5TACrf'}-1 
I 1 "11 

t~ I 
1t<")1 
I I 

o ,..---,---, _ I , , , I ,---,--,----l--i 
1 3 5 1 9 11 13 15 

ITERATION NUMBER 

FIG 3.9 CONVERGENCE OF 3-STAGE DESIGN 



CALCULA TE A Y VALUES 
AND DETERMINE NE~ 

CORNER POINTS 

INPUT ANGLE OF ATTACK, 
INITIAL AEROFOIL COORDINATES 

AND REQUIRED VELOCITIES 

SET UP INFLUENCE COEFFICIENTS 
FOR LA TEST GEOMETRY AND 

GENERATE MATRIX 

OBTAIN SOLUTION FOR 
N~ VELOCITIES 

CALCULATE AVERAGE VELOCITY 
ERROR 

FIG 3.10 FLOW CHART OF A.A. METHOD 



1 

• ACTUAL PRESSURE COEFFICIENT 

-- REOUIRED PRESSURE COEFFICIENT 

----. INITIAL PRESSURE COEFFICIENT 

.nooo------.~2~0--------~'L~0~------~16~-------~I-----------, • • 0 .80 1. CO 
x/c 

- --- DESIGNED AEROFOIL 
.10 - NACA 23812 

- - - - ------- --NACA 0012 Y/c. 

.OO~ ______________________ ~ __________________ ~~~ 

.50 ------- - - - -----------

1.00 ---
x/c 

FIG 3.11 DESIGN OF THE NACA 23012 FROM THE NACA 0012;0(=5° 

.06 

.05 
cz: 
0 
cz: 
a:: 
w .04 
>-
~ 

u 
0 .03 -1 \ w 
> 
W 
1CJ 
< .02 cz: 
w 
> 
< 

.01 

o.l~ 
1 2 

t ' I f 1---" 
3 L 5 G 1 8 
ITERATION NUMBER 

FIG 3.12 CONVERGENCE OF DESIGN PROCESS 



-1 

-5 
Cp 

-] 

-I 

.00 

.10 

y/c 

.20 .LQ 

----- -----

.. ACTUAL PRESSLRE COEFF I C lENT 

--- REOUIRED PRESSURE COEFFICIENT 

•• ". INITIAL PRESSURE COEFFICIENT 

I I 

.60 .80 
x/c 

I 

'1.00 

•• ,. DESIGNED AEROFOIL 

- NACA 23012 

--NACA 0012 

.OO~ ________________________ ~ ____________________ ~~~ 

__ ~~~~~~~~~.~S~0~~~~~_~-~~~_~~~~·1.00 
_______________ - X/c 

FIG 3.13 DESIGN OF THE NACA 23012 FROM THE NACA 0012;0(=10° 

.06 

.05 
a::: 
0 
cr 
cr 
w 

.04-
>-
t--U 
0 
..J .03 w 
> 
W 
19 
< .01.. a::: 
w 
> 
< 

.01 

0 , , , , 
1 2 3 L 5 G 

lTERA T I ON NUMBER 

FIG 3.14 CONVERGENCE O~ DESIGN PROCESS 



-s 
-l. 

C. -3 
P 

-2 

.co 
, 

.20 .l.0 

- - ---- --- --

• ACTUAL PRESSURE COEFFICIENT 

-- REOU I RED PRESSURE COEFF I C lENT 

----- INITIAL PRESSURE COEFFICIENT 

.60 .8e "l.00 
x/c 

----DESIGNED AEROFOIL 

- NASA 6A( W )-1 

- - NACA 23e15 

.00 

x/c 

FIG 3.15 DESIGN OF THE NASA GA(W)-l FROM THE NACA 23015; 
0( = 10° 

.n 

a:: .10 
0 
a:: 
a:: 
w 
r- .os 
t-

U 
0 
-1 
W 
> 
W 
t:) 

< 
a:: .04 
w 
> 
< 

.02 -----
0 

• , i-'-----' 

1 2 J L 5 G 1 8 9 10 
ITERATION NUMBER 

FIG 3.16 CONVERGENCE OF DESIGN PROCESS 



-5 

-4 

-3 

, 
.00 .LO 

.20 

Y/C 

.60 

... ACTUAL PRESSIJi'E COEFF I C lENT 
----- REQUIRED PRESSURE COEFFICIENT 
----. INITIAL PRESSURE COEFFICIENT 

, , 
.80 1.00 

x/c 

----DESIGNED AEROFOIL 

-6U 2S-S( 11)8 

--NACA BB18 

---
-.O~~; .. ~.~_~.~.~.~.:.::::::========~~==============~~~~~1.00 ----- - - - ------------- X/C. 

-,20 

FIG 3.17 DESIGN OF THE GU 25-5(11)8 FROM THE NACA 0018; 
eX. = 10° 

Ct: 
o 
Ct: 
Ct: 
w 
r 

.,25 

;: .15 
u 
o 
..J 
W 
> 
w .10 
19 
< 
Ct: 
W 
> 
< 

o .:--_-., ___ ,..---_--,.-, --~-----" 
1 2 3 L 5 5 

ITER"TION NUMBER 

FIG 3.18 CONVERGENCF OF DESIGN PROCESS 



(a) SMOOTHIN6 METHOD 

• EIiN lXIITIIl. POOOS 

• lXltR'!U TBl 8Cl POINTS 

A lXIITIIl. POOOS IIflIEl BT 8Cl POINTS 
- Ollie SI'UIE ~ 

OJ!IC RIlE ~ l1i<!l.&i 8Cl POOOS 

f"ROJEtT8l 8Cl POlIlT J 

(b) SHOOTING METHOD 

FIG 3.19 TWO METHODS OF DETERMINING AEROFOIL ORDINATES 
(from KENNEDY and MARSDEN, 1978) 



v. 

x 

FIG 4. 1 

[lemellt i 
Source d,~t"I'ut,,>n (6,), 

Vorticity d,,, "DlltlOn (rJ, 

v ... 

METHOD OF BASU AND HANCOCK(1978b) 

FIG 4.2 UNSTEADY POTENTIAL FLOW PROBLEM 

'- 5. 



I< 111.1 

....., 
I ! , , ! 91 ttl I d ' ~m-' 

Y
1 

Yi+l F=2. K y Y, +'YN+ 1 mooJ 

'Y ="1 (c( I +l-Y') 'YN
+

1
" (e) 

1+ LI Sj " 
WAKE ELEMENT 

/ 
~6m~ 
~ 

FIG 4.3 UNSTEADY MODEL AT TIME l~ 



READ IN INITIAL VALUES OF 
TIME. ANGLE. AEROFOIL MOTION 

AND COORDINATES 

COMPUTE POLYGONAL GEOMETRT 
AND INITIALISE ~_._ PARAMETERS 

SET UP IN~LUENCE COE~FICIENTS 

FOR LINEAR VORTEX SHEETS ON 
AERQFOIL SURFACE. ANO GENERATE 

MATRIX 

COMPUTE UPSTREAM COOROINATES 

START INNER ITERATION 
111l:8 

MOOIFY MATRIX TO INClUDE 
IN~LUENCE OF ~AKE PANEL 

OBTAIN SOLUTION FOR UNKNO~N 
SIN5U~ARITT OISTRIBUTION 

COMPUTE YELOCITY conpONENTS 
AT nID-POINT 0' ~AKE PANEL 

YU 

NO 

OBTAIN NE~ LENGTH ANO 
ORIENTATION FOR ~AKE PANEL 

C~CULAT[ AER~OIL CIRCULATION 

CALCULATE INCREA&E IN 
POTENTIAL FROM UPGrREAM TO 

l ••• OF AEROFOIL 

OBTAIN POTENTIAL AROUND 
AERO~OIL GURFACE 

COMPUTE UNSTEADT SURFACE 
PRESSURE DISTRIBUTION AND 

.. RITE TO A FILE 

AIfOTHER NO 
TInE-STEP? ~--~--~~~ 

YE5 

READ NE~ VALUES OF TIME. 
ANGLE AND AEROFDIL MOTION 

CONVECT WAKE VORTICES TO NEW 
POSITIONS 

LOCATE EXTRA t ••. PANEL IN 
~AKE AS DISCRETE VORTEX 

WRITE POSITION AND STRENGTH 
O~ ~AKE VORTICES TO A FILE 

STOP 

FIG .q .q FLOW CHART O~ NUMERICAL PROCEDURE 



-2'00 

-1'60 

-1·20~' 
\ 

-·8 ". 

tl..kxJ.c = O· 2 
tl..!cJC=2·0 
tL6:/c_co 

°t
" \, 

',"-. , 

.... ~. , Cp ... .::::--. ~ 
-'1.0 "''::::..,; 

x/c 

·80 

(0) PRESSURE BUILD UP 

t u,.,fi: = O· 5 

co: ==-- .. --' 
t U-/C=2·Q 
c ----........ \i~ ..................... 

tuoo/c = 1 Q. 0 
c: ~ 

1·00 

'j ·50 
~ 

...J 
U 

.00 1 I I I , 

·00 ·50 1·00 1·50 2·00 
tUxJC 

I b I BEHAVIOUR OF TIME DEPENDENT LIFT 

ot', • 
',', .. 

-11'-- . . . . . . . .. . ., .' 
:·,· ... 1 • . .... : 

.' .. 
'" I.e 

(c I WN<E VORTEX CDNFIGURATIONS 

FIG 4.5 RESULTS OBTAINED FOLLOWING A STEP CHANGE IN INCIDENCE 
USING THE NACA 0012 AEROFOIL 



3,0 

2,0 

-2'0 

-3,0 

Si21T 
1 

10 ) BEHAVIOUR OF TIME DEPENDENT 
LI FT; 0< = 0.573° Sin 20 t ABOUT .f.e. 

- -- PRESENT METHOD 
-- BASU AND HANCOCK ( 1978b ) 
--- BASU AND HANCOCK ( 19780.) 
-- --- LlNEARISED THEORY 

c: ::>=~ 
o<=0,573°Sin 20t ABOUT LEADING EDGE OF NACA 0012 
AEROFOIL. 

c ;::-~~ 
0(=0·573° Sin 20t ABOUT LEADING EDGE OF B't. % 
SYMMETRICAL VON MISES AEROFOIL (BASU AND HANCOCK, 1978b ) 

c ':;:sa.~ 

\)'=0'3105COS 17t FOR NACA 0015 AEROFOIL (GIESING, 1968) 

I b) WAKE VORTEX CONFIGURATIONS. 

FIG 4.6 RESULTS OBTAINED FROM HIGH FREQUENCY CALCULATIONS 



CL 

3 

2 

\ 
\ '., 

l-, " , 
."~-Jj -~ \..- .., ... 

-,.... ..,:: ... _ _ .... ~1' ... - .. 1 

--- STEADY POTENTIAL 
--:sv- UNSTEADY POTENTIAL 6 
------ STEADY EXPERIMENTAL }Re:1-027X10 
-- UNSTEADY EXPERIMENTAL M : 0-076 

o 
o 5 10 15 20 025 30 

<X 
(0) NORMAL LIFT CHARACTERISTlCS FOR OSCILLATION ABOUT TI-£ 

Y4C OF THE NACA23012 AEROFOIL; k: 0-2, 0;::10°+6° Sin rtt 

2-0 

...... , 
- I 

1-50 
, 
I 
\ -, 
I ., ." .... ..... ,. , 

1-00 , 
---- Re: 1-0x10 6 

-- Re: g-Ox106 
-50 - POTENTIAL 

-OO~----~------~------~----~ 

o 5 10 15 0 20 
oc 

( b) VARIATION OF CL vs CI:: wrrH REYNOLDS NlJv1BER FOR THE NACA 23012 
AEROFOIL. 

FIG 4.7 COMPARISON OF RESULTS OBTAINED FROM A LOW FREQUENCY 
SUB-STALL TEST ON THE NACA 23012 AEROFOIL 



3 ----_ STEADY EXPERIMENTAL }Re.= l036 = 106 

- UNSTEADY EXPERIMENTAL M= 0·077 ." 
--- STEADY POTENTIAL /" 
~ UNSTEADY POTENTiAl /' 

2 

1 

15 20 30 

FIG 1.8 COMPARISON OF NORMAL LIFT ON THE NACA 23012 
AEROFOIL WHEN OPERATING IN THE STALL REGIME: 
k =0 .2, 0( = 1 3° + 1 0° S I NCD t ) 

2-00 

1- 60 

1- 20 

-80 

-1.0 

1. 8 

POTENTIAL EXPERIMENTAL 

STEADY 

~~0c>=0-0016 
&.c 
2U= =0-0065 

12 16 0 20 
~ 

+++ 
000 

000 

FIG 1.9 RESULTING NORMAL LIFT WHEN RAMP MOTIONS ARE APPLIED 
TO THE NACA 0012 AEROFOIL (FOR EXPERIMENTS: 
Re=2.6x10*, M=0.3) 



• CONTROL POINT 

!J 01 SCRETE VORTEX 

Yj ~ Yi+ 1 

Yj+ 1- Y1 ) 

Y= )j + ( I. S 
I 

'--{ 
\ 
\ 

Yj+1 

\ 

\ 

\ 

\ 

\ 

\ ., 

y=o 

Ic--Lj ~I 

~ e) 

, 

FIG 5.1 UNSrFAOY SEPARATlm~ MODEL AT TIME lM 

~ 
e) ~ 

~ 
~ 

~ 
., 



x 

Vl 
f­
Z 
LW 

~ 2 
0... 
::£ 

R, 

Yb = YN+ 1 

Yb'= 0 
Db = Pb, 

FIG 5.2 INVISCID FORMULATION 

L 

oL bL K = yL 

x ~I?-
Vl 

x 

Vl 4 
f-i: 4 
Z 
LW 2 z 
~ 

8 o~-=~~-=--~~ 

LLJ 
Z o 
0... 
E 
o 
u E 

0 

qy 
0 

u 
o 
L:3 -4 
> 

Q = 0-01 

u 
o 
~-4 
> 

u 

~ -2 
u 

:3 -4 
LW 
> 

Q= 0-25 

-- vELOCITY DUE TO VORTEX PANEL 

q~ 

- - -- -- VELOCITY DUE TO 01 SC RETE VORTE X 

Q = , 

FIG 5.3 COMPARISON BETWEEN THE LOCAL VELOCITY FIELDS INDUCED BY 
A VORTEX PANEL AND AN EQUIVALENT DISCRETE VORTEX 



1 

, 
In I 6t '-
r \ /~ Y -2 

(o).REFLECTION 

1.-INITIAL VORTEX POSITION 
2~ILLEGAL VORTEX POSITION 

ACROSS SURFACE 
3.-FINAL VORTEX POSITION 

FROM SURFAC E 

1.-INITIAL VORTEX POSITION 
2:-ILLEGAL 'vDRTE X POSI T ION 

WITHI N BOUNDARY 
3.-F INAL VORTEX POSI TION 

(b.l RELOCATION AT BOUNDARY 

FIG 5. 4 R[STRICTIONS ON VORTEX MOTION 



• o~ 

x SEPARATION POINT 
o ORIGINAL CONTROL POINT 
• MODIFIED CONTROL POINT 

FIG 5.5 TWO CONF I GURA'T IONS OF SEP ARA T ION PANEL GEOMETRY 

r. <- t. 

" <-
" <- [, 

" l' 
<-

" " 
" " t. 

" 6 

.. 

-------------------. _ .. ----
(m) MODEL WITHOUT RETARDATION 

A 

" 

C 
. 

========- . ----
(b) MODEL WITH RETARDATION 

FIG 5.5 EFFECT OF SEPARATION POINT RETARDATION DURING 
REATTACHMENT 



START 

READ IN INITIAL TIME. ANGLE. 
MOTION AND SEPARATION POINT. 

AND AEROFOIL COORDINATES 

GENERATE INFLUENCE COEFFICIENT 
MATRIX FOR VORTICITY V~LUES 

~---------------------~---.----~ 

INFLUENCE OF SEP~R~TION PANEL 

ST~RT 

ITW=0 

MODIFY M~rRIX TO INCLUDE 
INFLUENCE OF WAKE PANELS 

08T~IN SOLUTION FOR UNKNOWN 
VORTICITY DISTRI8UTION 

COMPUTE VELOCITY COMPONENTS 
~T MID-POINT OF WAKE PANELS 

STORE SOLUTION V~LUES 
FOR THIS ITERATION 

1-10 

08T~IN NEW GEOMETRY 
FOR W~KE PANELS 

CALCULATE POTENTIAL AT POINTS 
AROUND THE AEROFOIL SURF~CE 

COMPUTE UNSTE~DY SURFACE 
PRESSURE DISTRI8UTION AND 

WRITE TO A FILE 

NO 

READ NEW VALUES OF TIME. ANGLE. 
MOTION ~ND SEPARATION POINT 

CONVECT AND ROTATE WAKE 
VORTICES TO NEW POSITIONS ~ND 

CHECK FOR ILLEGAL MOTION 

RELOCATE W~KE PANELS AS 
DISCRETE VORTICES 

FLOW 
SEPARA TI ON? 

YES 

NO 

08TAiN NEW GEOMETRY FOR WAKe 
PANELS, INVOKE QESTRiCrrONS 

AND EVALUATE PARAMETERS 

COALLESCE VORTICES 

WRITE DATA ASSOCiATED WITH 
WAKE VORTICES TO A FILE 

STOP 

FIG 5.7 FLOW CHART OF THE MODEL WITH MOVING SEPARATION 



e" J 

~'~.I . .. ., . ., . . . 

( 0 ) )JAkE- "T tU/C 15 

a CLOCKWISE CIRCULATION 
+ ANTI-CLOCK~ISE CIRCULATION 

I. 

···r _________ ~~--------~I.~------~" 

-.n 

CM 

(F) PRESSURE-TI~E HISTORY 

.. 

., 

Co -&: 

.. ~ 
-2 

Co \ ., . 
-2 

•• ., 
<lYe 

- CO~PUTED 

tJ. EXPERIMENT 

.be .... .."" 
(~) COMPARISON 8E~WEEN COMPUTED AND 

STEADT EXPERIMENTAL Cp 

FIG 5.8 RESULTS OBTAINED FOLLOWING A STEP CHANGf 
FROM 0-18.25 DEG. USING THE NASA GA(W)-l 

IN INCIDENCE 
AEROFOIL 



eN l 

.... " 

-.~ 

C", 

·.~e 

FfG 5.9 

(b) 

(C) 

.. . ' 

(0) WAKE AT ~U/c = 20 
A CLOCKWISE CIRCULATION 
+ ANTI-CLOCKWISE CIRCULATION 

I. I' 2. 

t.U"( 

CN vs u)/< 

cU-'~ 

I • 15 ze 

eM ys '-u 'c 

(F) PRESSURE-TIME HISTORY 

. . 

-a 

Co -G 

-2 

-8 

CO 
-:\ 

... 

5.' 

3.' 

I.' 

, Ie 15 2. 

'lU"'< 

(0 0 CD vs '-u/c Af :r.JC = <J.e25 

CO!1PUTED 
D. EXPERInENT 

1 • .. Ge .8e 1.&0 

v< 

(~ ) CQnPARISQN BEf~E::N conPUTEO AND 
STEADY EXPERiMENr~L Cp 

RESULTS OBTAINED FOLLOWING A STEP CHANGE 
FROM 0-21 .14 DEG. US I NG THE NASA GAO/)- t 

IN INCIDENCE 
AEROFOIL 

11; 



FIG 5.10 

+ + + + + 

+ + + 

.... 

6. CLOCKIWISE CIRCULATION 

.... IINTl-CLOCKlirSE CIRCuLATION 

WAKE PRODUCED BY THE NAc/\ 0012 ;\t=RC]FOIL DURING A ~AMP 
FROM 0-35 OEG.: l:':C/U = 0.02 



3
l 

2 

eN 

1 I 

B 
B 

.OOB 

- .25..j 

! 
e" I 
-. 5\l~ 

1.00 

~/\/\I .Be 

xs/e 
// ,,;, v .52 

/ ~ 

.11l 

I , I 

6 12 18 21 31l 36 .~ 

( Q) C
N 

vs 0< 

0< 

.00 

0< B 6 12 18 21 3e 36 

6 12 21 3\l 36 
(c) Xs/C vs a 

a 

(b) eM vs ex 

1.1 

.S 

1.1 

.5 

1.0 

(~) PRESSURE-TIME HISTORY 

FIG 5.1 1 RESUL is U8T A I NED AFTER A RAMP FROM 0-35 DEG. IS 
APPLIED TO THE NACA 0012 AEROFOIL: ~c/U = 0.02 



~++++++ + + + + + + '+ 4 

(Cl) DC = 12° 1" 

~ ..... ++ .. 

+ 
+ 

+++++ + + + + + + 

(b) DC= 17.91° 't 

( c) DC = I 8 . 93° 1" 

4 
+ 

AA + 44 

A ... A A 

A't A ... + ... ... + + 
A 

a = 2tO 
+ A 

+ (d) + + ... 

FIG 5.12 WAKE PRODUCED BY THE NACA 0012 A~ROFO!~ DURING 
SINUSOIDAL MOTIONS: k=0 .125, eX =12 0 +12°SINC Ol) 

+ 



v 

v + .. 
v 

• + v 
V v 

• v 
·v • 

.. 
v v v • 

.. • 
+ 

v v 

.. 
• v 

+ 

.. 
v - + 

+ 

+ 
v + .. + 

+ 
v v 

v v " + + 
v v 

" 
v 

+ • 
" • • v 

+ 
v 

v 

.. v v v 
• 

v V" 

v + v 
v 

v 
v 

v 

+ v • 
+ + + • 

v 
j 

v .. 

v • 

(P1 UO J 2:l°S; :JI:J 

NOI1VlnJ~IJ 3SI~~JOlJ-l1NY + 

NOI1VlnJ~IJ 3SIA~JOlJ v 

v 

v 

v 

+ 
v 

v V 

v v 

+ 

v 

v 

.. v 
v v 

+ .. 

v 

013 ='" (4) 

v v An;; ; wi ==== ::> 

or o~~' t t ='" (0 ) 

++"".,; ..... +++~ 
+ '\.~ 

.. +v + 

+ +++V+.." VJ.. ~ 

+ 
v 

v 

v 
• 

v 
v 

"+ 

v 

v 

v 

v 

v \+ + ++.. .. ~V vV v 
+ + 9 ¥ 

v 

v vV ... v+ vVv 
V 

v+ 

.. + 
+ v v 
+ + 

or OlV9l ='" (:l) 

• ++ 
+. v 
+ v .. ~ 

+ + 
• • 

•• + 
+ 

+ + 

.,.,: 
V t 1++ 
::;.« '1.~~ V vv~Vq. yo .. ~ 

.++ 

v 

v 

V vv v. 

or oLl'6 t 

+ +++++ ... 
+ +++ V vr ++ + v .,vvJ+ 

='" (a) 

v 

+ ••• t v .... «:t ,m~ 
•••• + .. v.v3¥'+~'; 
++.+. • ".r vtt.f., .~ 
• + +v v ~""v: v v 

v v + ++.v v vvl 

v .. 
v v 

., 
v ., v 



3 

P'IGCII11IBI I9TTJ.Qf9T 

1.00 - ..... , 
\ 

.89 \ CN XS/C It-

.bO~ \ I 
I \ i 

.113 

\ 
5 18 15 20 , 25 .20 

, 

(a.) C
N 

VS ex 
C< 

.00 

'" 
8 5 18 15 20 25 

.OOB 2S 
( c) Xs"C vs a 

or 

-.25 

-.50 

1.1 

1.0 .09 

(~) PRESSURE-TInE HISTORI 

FIG 5.13 RESULTS OBTAINED AFTER SINUSOIDAL MOTIONS A~E APPLIED 
TOT ~ E N /\ C A 0 Cj 1 2 : k;: 0 . 1 25, d..;: 1 20 

+- 1 20 SIN ( ot.. ) 


	380385_0001
	380385_0001a
	380385_0002
	380385_0003
	380385_0004
	380385_0005
	380385_0006
	380385_0007
	380385_0008
	380385_0009
	380385_0010
	380385_0011
	380385_0012
	380385_0013
	380385_0014
	380385_0015
	380385_0016
	380385_0017
	380385_0018
	380385_0019
	380385_0020
	380385_0021
	380385_0022
	380385_0023
	380385_0024
	380385_0025
	380385_0026
	380385_0027
	380385_0028
	380385_0029
	380385_0030
	380385_0031
	380385_0032
	380385_0033
	380385_0034
	380385_0035
	380385_0036
	380385_0037
	380385_0038
	380385_0039
	380385_0040
	380385_0041
	380385_0042
	380385_0043
	380385_0044
	380385_0045
	380385_0046
	380385_0047
	380385_0048
	380385_0049
	380385_0050
	380385_0051
	380385_0052
	380385_0053
	380385_0054
	380385_0055
	380385_0056
	380385_0057
	380385_0058
	380385_0059
	380385_0060
	380385_0061
	380385_0062
	380385_0063
	380385_0064
	380385_0065
	380385_0066
	380385_0067
	380385_0068
	380385_0069
	380385_0070
	380385_0071
	380385_0072
	380385_0073
	380385_0074
	380385_0075
	380385_0076
	380385_0077
	380385_0078
	380385_0079
	380385_0080
	380385_0081
	380385_0082
	380385_0083
	380385_0084
	380385_0085
	380385_0086
	380385_0087
	380385_0088
	380385_0089
	380385_0090
	380385_0091
	380385_0092
	380385_0093
	380385_0094
	380385_0095
	380385_0096
	380385_0097
	380385_0098
	380385_0099
	380385_0100
	380385_0101
	380385_0102
	380385_0103
	380385_0104
	380385_0105
	380385_0106
	380385_0107
	380385_0108
	380385_0109
	380385_0110
	380385_0111
	380385_0112
	380385_0113
	380385_0114
	380385_0115
	380385_0116
	380385_0117
	380385_0118
	380385_0119
	380385_0120
	380385_0121
	380385_0122
	380385_0123
	380385_0124
	380385_0125
	380385_0126
	380385_0127
	380385_0128
	380385_0129
	380385_0130
	380385_0131
	380385_0132
	380385_0133
	380385_0134
	380385_0135
	380385_0136



