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Abstract 

The formation of conjugates between the electrophilic reactive metabolites of 

drugs and nucleophilic protein sites is known to be associated with toxicological 

risk. At present there is no low cost and high throughput means of reliably 

detecting the presence of drug-protein adducts in vitro or in vivo. The 

development of a reliable high throughput methodology would facilitate the 

study of underlying mechanisms of toxicity and prove useful in early screening of 

potential drug molecules. Assays using liver microsomes and trapping agents 

such as glutathione are used to produce and detect a wide range of drug 

reactive metabolites which are then characterised by mass spectrometry. The 

glutathione trapping is effective for metabolite identifications but, the 

modification of proteins by means of electrophilic attack on nucleophilic centres 

often occurs in an enzyme independent manner and is unlikely to be analogous 

to the glutathione model. In order to create a more suitable model system, 

three short polypeptides were designed and synthesised. These peptides were 

incubated with clozapine and human liver microsomes. The resulting metabolite-

peptide conjugates were analysed by nanoLC-MS. Results indicated that a 

characteristic conjugate specific ion at 359.1 Da could be detected for each of 

the peptides. This data was used to create a precursor ion scan specific for the 

presence of this characteristic ion. 

Protein separation techniques including SCX, Offgel IEF and 1d-gel 

electrophoresis, in conjunction with LC-MS (with the precursor 359 scan), were 

applied to microsome prep samples in order to identify modified proteins. Using 

these approaches some 1700 protein identifications were made, more than 1000 

of these were unique hits. The precursor ion scan was found to have poor 

selectivity identifying roughly 1/3 as many proteins as the information 

dependant acquisition approach. No drug-protein adducts were identified. 

Further to this a novel application of saturation DIGE was applied in order to 

enrich for the presence of protein adducts. The DiGE approach was used to 

identify some 15 proteins with apparent change in abundance (fluorescence 

intensity) between clozapine treated and untreated samples. Spots were excised 

from the 2d gel digested and analysed by reversed phase liquid chromatography 

mass spectrometry. The IDA scans identified some 147 unique protein hits, the 

precursor ion scans identified 18. Again no drug-protein adducts were found. 

Biotinylated desmethyl clozapine was metabolised in the human liver microsome 

assay. Western blotting was carried out on a 2d gel run from an assay sample. 

The Western membrane was probed using an HRP-Streptavidin probe. Imaging of 

the membrane revealed the presence of several biotin bearing proteins, many of 

which were not present in the negative control sample. A print out of the image 

was used as a map for the excision of modified proteins from a duplicate gel. 

Digestion and LCMS analysis of the samples revealed the presence of several 

proteins but no protein-adducts were found.
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Chapter 1:  Introduction 
 

1.1 Drug Metabolism and Toxicity 
 

The production of pharmaceuticals is central to modern healthcare and is an 

enormous industry in which company‘s annual revenues generally measure into 

the billions of pounds (Adams and Brantner, 2006). These companies generate 

and develop chemical compounds, so called new chemical entities (NCEs), which 

go on to become commercially available pharmaceuticals for global consumption. 

Compound generation and testing is formulaic in nature and is carried out in a 

series of discreet stages including identification of biological targets, mass 

screening of compounds versus targets, iterative refinement of compounds and 

preclinical/clinical trials. 

 

Each of the stages represents an investment in time and money and at each 

stage compounds are eliminated. Classically, the elimination of compounds fits a 

pyramidal model with a steady loss of compounds and ultimately the emergence 

of very few successful drugs. The more advanced the stage at which a compound 

is eliminated, the higher the associated costs. Additionally, compounds 

eliminated during clinical trials are often flagged due to their toxic effects on 

human subjects.  

 

The total costs involved in developing a new chemical entity (novel drug) from 

inception to market regularly exceed $500 million (Adams and Brantner, 2006) 

and can be compounded by litigation filed by victims of adverse reactions. 

Ideally, testing should identify unsuitable compounds at the earliest stage 

possible thereby reducing development costs, laboratory time and 

human/animal exposure. 

 

In this short review, current methodologies for the early detection of potential 

drug molecules capable of causing toxicity in humans will be discussed. 

Particular attention will be given to techniques involving mass spectrometric 

detection of reactive metabolites of drug molecules.  
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1.1.1 Drug Development 
 

Much of drug development involves the screening of a library of compounds 

against relevant biological targets. Compounds that show activity are then 

subjected to iterations of combinatorial chemistry in which they are subtly 

modified in order to maximise the efficiency of target interaction. Inevitably, 

this process often leads to the formation of molecules with detrimental 

characteristics. 

Although structural knowledge can be used to guide compound development, we 

do not currently possess the knowledge to predict all possible associated 

toxicities.  Careful testing is required in order to identify the effects of a novel 

drug in vitro, and in vivo.   

 

 

Figure 1. Compounds are selected for their activity against a biological target 

and are optimised for maximum effect.  The clinically effective compounds 

are then put through pre-clinical and clinical testing in order to ensure their 

safety. 
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Adverse drug reactions (ADRs) have a variety of underlying causes; overdose, 

synergistic effects of drug treatment (polypharmacy) and genetic factors are 

commonly cited (Nguyen et al., 2006; Hersh et al., 2007). ADRs cover a wide 

spectrum of severity and can be very difficult to predict. In the United States 

ADRs are listed as the 4th most common cause of death (Lazarou et al., 1998). 

The identification of drugs capable of causing ADRs is paramount and begins 

early in the drug design process.  

 

Typically, adverse reactions are not to the drug molecule itself but to its 

bioactivated metabolites, further compounding an already complex situation.  

Drug metabolism is a process by which the body can facilitate the removal of a 

xenobiotic from circulation. The process typically results in the 

inactivation/detoxification by way of enzymatic modification. Metabolites of 

drug molecules, often numerous, must be characterised and included when 

attempting to define mechanisms for ADRs.  

 

1.1.2 Drug Metabolism 
 

 A vast array of xenobiotics can be found in the human body, these foreign 

molecules originate from sources such as dietary intake and the environment 

making their way into and through the respiratory tract, gastrointestinal tract 

and vascular system. These molecules, often with no nutritional value, must not 

be allowed to accumulate in the body, and therefore undergo elimination. The 

nature of xenobiotics dictates how they are distributed and partitioned within 

the body as well as their propensity for elimination. Lipid membranes form 

distinct compartments at the cellular and subcellular levels; lipid soluble 

molecules can pass freely through these membranes and gain access to cells and 

subcellular organelles making the job of regulating their location difficult. In 

order to combat this the body alters xenobiotics to a more hydrophilic state in 

which they cannot easily traverse lipid membranes without the aid of selective 

protein transporters. This allows a greater degree of selectivity regarding the 

location of the molecules, limiting their access to sensitive sites and making 

them more amenable to elimination. This process of chemical alteration is 

known as xenobiotic metabolism. 
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Metabolism of xenobiotics occurs in two discrete phases. Phase I, or 

bioactivation, occurs almost exclusively in the liver and is mediated by a range 

of enzymes, principally, the cytochrome P450 superfamily (CYP450). These 

monooxygenases can be found primarily in the endoplasmic reticulum of 

hepatocytes; they catalyze the oxidation of their substrates and require high 

energy electrons acquired from NADPH. Reactions catalyzed by these enzymes 

include hydroxylation, dealkylation, deamination, and epoxidation (Burka et al., 

1983; Bellec et al., 1996; Boor et al., 1990; Kedderis et al., 1993). The CYP450 

enzymes come in a variety of isoforms that are capable of reacting with various 

different drug types e.g. Zonisamide (1,2-benzisoxazole-3-methanesulfonamide) 

has been shown to be metabolized to SMAP (2-sulfamoylacetylphenol) by the 

CYP450 isoform 3A4 (Nakasa et al., 1993); CYP450 isoforms show interspecies 

variation, partially accounting for the disparity between animal and human drug 

trials (Jemnitz et al., 2008). Other enzymes including Flavin-containing 

monooxygenases, alcohol dehydrogenase, aldehydes dehydrogenase and 

monoamine oxidase are also involved in phase I reactions. 

Phase I metabolism acts to convert lipophilic xenobiotics into a more hydrophilic 

state in order to enhance their clearance from the organism or to make them 

more susceptible to phase II metabolic processes. This is achieved primarily 

through oxidation, but reduction and hydrolysis also play important roles (Ahr et 

al., 1982; Amunom et al., 2011). Reduction, like oxidation, is handled by the 

cytochrome P450 enzymes, as well as various reductases (Matsunaga et al., 

2006), but takes place under anaerobic conditions. Hydrolysis is catalyzed by 

esterases, amidases and epoxides hydrolases (Mentlein et al., 1980). No change 

to the oxidative state of the xenobiotic occurs, rather the molecule is cleaved 

via the uptake of a molecule of water. Hydrolytic reactions are not limited to 

the liver and occur in many other locations including skin, lung and blood 

(McCracken et al., 1993). 

Phase II reactions comprise the conjugation of glutathione, glucuronic acid, 

sulfonates or amino acids with the xenobiotics and involve enzymes such as 

glutathione-S-transferase, UDP glucuronosyltransferase, methylransferase and N-

acetyltransferase. Sites of conjugation include carboxyl (-COOH), hydroxyl (-OH), 

amino (NH2) and sulfhydral (-SH) groups (Booth et al., 1961; King et al., 2000; 

Lennard et al., 1997). Conjugation results in the production of more polar 
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molecules with increased amenability for elimination and is often carried out on 

species oxidized by phase I enzymes. The route or elimination is dependant on 

the molecular weight of the waste molecule. Higher molecular weights 

(glutathione conjugates and often glucuronide conjugates) are necessarily 

excreted in bile; lower molecular weight molecules are excreted in urine. Phase 

II metabolism also serves to lower the reactivity of metabolites and in some 

cases neutralises highly reactive metabolites generated during phase I (Dahlin et 

al., 1984). 

It is known that metabolism of drug molecules can be complex and involve the 

production of many metabolite species. In some cases the metabolites of drugs 

can have enhanced or altered activity, this is known as bioactivation (Kalgutkar 

et al., 2005).  Bioactivation can be taken advantage of when designing a new 

drug.  A so called pro-drug form with enhanced ADME (absorption, distribution, 

metabolism and elimination) characteristics can be produced which then relies 

on the body‘s metabolic pathways for activation.  However, it is also these same 

pathways that generate unexpected reactive metabolites that cause adverse 

effects to the organism (Attia, 2010). Highly reactive electrophiles arising from 

metabolism have been shown to covalently bind protein molecules. These 

protein-drug adducts, in comparison to native protein, can lose function and 

have altered routes of clearance (Ute et al., 2001; Jenkins et al., 2008; Crow et 

al., 2012). Although the products of both phase I and phase II reactions can be 

electrophilic in nature, phase I products have a greater tendency to be 

problematic. 
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Figure 2. Metabolism of xenobiotics can lead to the formation of undesirable 

reactive metabolites. 

 

1.1.3 Protein Modifications 
 

Modification of proteins by reactive intermediates is a proposed mechanism in 

many cases of adverse drug reactions (ADRs). The metabolism of Xenobiotics is 

responsible for the generation of electrophilic reactive species known to target 

the nucleophilic thiol group of cysteines, heterocyclic nitrogen atoms of 

histidine, amino and guanidine groups of lysine/arginine and the phenolic ring of 

tyrosines (Rubino et al., 2007). 

 

Adduct formation at critical sites can lead to the inactivation of enzymes or 

disruption of protein-protein interactions (Nelson and Pearson, 1990; Lin et al., 

2008). The impairment of some critical proteins could lead to cellular damage 

and or death. Good candidates for critical target proteins would be any of the 

detoxification enzymes (Jenkins et al., 2008). Loss of function in these proteins 

could conceivably lead to a loss of suppression of oxidative stress in the cell and 

a scenario of runaway damage.  

 

A large amount of work has been carried out on the subject and it has become 

increasingly obvious that routes of damage are complex and vary from drug to 

drug (Yukinaga et al., 2007). In many cases, levels of reactive metabolite in the 

cell dictate the extent of protein-adduct formation and as such the extent of 

physiological impairment.   
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1.1.3.1 Cellular Defences 
 

It appears that cellular defences have been acquired to counteract the 

production of reactive electrophilic species. The highly nucleophilic nature of 

the cysteine sulfhydral side group makes it a prime target for electrophilic 

molecules. The cytosolic protein, KEAP1, is rich in cysteine residues (27 with no 

disulfide bridge formation) and forms a complex with CUL3 and NRF2. In this 

complex, KEAP1 acts as a sensor of cellular electrophile levels and can either 

allow NRF2 to, or prevent it from, initiating the production of detoxifying 

enzymes such as glutathione-s-transferase, heme oxygenase I and CYP450s. 

(Zhang et al., 2004; Hong et al., 2006; Liu et al., 2005; Satoh et al., 1985). 

  

 

Figure 3. Binding of electrophilic species with keap1 prevents the 

degradation of Nrf2. Nrf2 can then go on to activate the production of 

detoxifying enzymes at the transcriptional level (Hong et al., 2006). 

 

In addition to this intracellular defence mechanism is the role played by cells of 

the acquired immune system.  Kupfer cells (KCs), a population of antigen 

presenting cells within the liver, are responsible for inducing tolerance to 

protein-drug adducts (Ju, 2009). Tolerance is mediated by KC cells acting as 

incompetent antigen-presenting cells and acting to suppress T cell activation 
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through the release of prostaglandins. Despite these measures drug toxicity 

continues to be problematic. 

 

 

1.1.3.2 Dose Related Reactions 
 

Adverse drug reactions (ADR), although poorly understood, can be attenuated 

through careful dosing. Indeed, dosing considerations are taken into account 

when deciding whether or not to progress a drug‘s development. A drug known 

to produce reactive metabolites but with a low therapeutic dose may be 

considered acceptable for further development (Evans et al., 2004). When 

considering dose however, it is necessary to take into account factors affecting 

the activity of Phase I enzymes such as the cyotochrome P450s. Increased 

activity, either through polypharmacy, genetic polymorphisms or physiological 

status can increase the formation of reactive metabolites and thus lower the 

level of dose required to cause toxicity (Sturgill and Lambert, 1997). The over 

the counter drug, N-acetyl-p-aminophenol (APAP), is a good example of this. 

 

 

1.1.3.3 APAP metabolism 
 

ADRs arising from APAP consumption are directly related to dose. At therapeutic 

doses APAP is detoxified mainly by glucuronidation (52-57%) and sulfation (30-

44%) (Patel et al., 1990, 1992). An overdose leads to the saturation of the 

sulfation pathway, diverting more detoxification toward glucuronidation (66-75%) 

and resulting in a greater formation of an oxidised species known as N-acetyl-p-

benzoquinoneimine (NAPQI) (7-15%)(Bessems and Vermeulen, 2001). NAPQI is 

electrophilic and readily reacts with cysteine sulfhydral groups; this metabolite 

is cleared from cells by its binding to glutathione and subsequent elimination in 

the urine. Upon depletion of cellular stores of glutathione, NAPQI begins to 

covalently bind to cellular protein and leading to severe disruption of normal 

calcium homeostasis (Tirmentstein and Nelson, 1989) and the subsequent 

associated necrosis of liver cells seen in APAP toxicity (Zhou et al., 2005; Rinaldi 

et al., 2002). APAP poisoning is mediated by several CP450 isoforms at low doses 

but at higher doses is mainly metabolised by CYP2A6 and CYP2E1 (Hazai, 2002). 
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Despite its hepatotoxicity, APAP remains available for OTC consumption due to 

its effectiveness and the disparity between its therapeutic dose and toxic dose. 

Unfortunately, for many other drugs this is not always the case. A very small yet 

significant number of patients show serious adverse effects with no apparent 

relation to dose.  

 

 

 

1.1.3.4 Idiosyncratic Drug Reactions (IDR) 
 

In contrast to the type of ADR mentioned previously, with a direct link between 

dose and toxicity and therefore a clear understanding of dose-risk, there exists 

what are known as idiosyncratic drug reactions (IDRs). The complexity of these 

often unpredictable adverse reactions is summarised in a review by Ulrich 

(Ulrich, 2007) in which many known risk factors including age, diet, genetic 

variation and repeated exposure are discussed.  In some cases, the formation of 

a protein-drug adduct is capable of eliciting an immune response in the patient‘s 

body (Gardner et al., 2005; Roychowdhury et al., 2007). This specific response is 

mediated by antibodies raised when the peptide fragment with a drug adduct 

(acting as a hapten) is presented. The major antigenic determinant can be either 

the hapten (drug adduct) or part of the protein to which it is attached.  As a 

consequence the immune system of the patient will begin to actively attack ‗self‘ 

proteins (Martin and Weltzien, 1994; Kalish, 1995; Weltzien et al., 1996). In 

order for haptenation to occur however, it is necessary that the reactive 

electrophilic molecule covalently binds to a protein nucleophilic group (Park et 

al., 1987). 

 

Generally hypersensitivity reactions involve the blood, liver and skin; presenting 

as signs such as rash, eosinophilia, fever and anaphylactic shock (Uetrecht, 1999; 

Smith and Schmid, 2006; Elahi et al., 2004). Agranulocytosis, depletion of 

granulocytes (basophils, neutrophils and eosinophils), is known to be caused by 

metabolites of the drugs Clozapine, Procainamide and Vesnarinone (Liu and 

Uetrecht., 1995). Each of these drugs yield different adduct profiles, although 

certain proteins are modified in all cases (Gardner et al., 2005). Major tissue 

targets of IDRs show a correlation to sites of reactive metabolite production 
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(Roychowdhury, 2007), likely due to the short lived presence of the highly 

reactive metabolites. There is strong evidence that bouts of inflammation play a 

major role in many cases of IDR. Exposure to an endotoxin or LPS during the 

course of treatment with an otherwise non-toxic drug can lead to liver toxicity 

(Roth et al., 1997). 

 

Drugs known to induce idiosyncratic immune mediated toxicity include the 

tetracyclic antidepressant Mirtazapine, antiplatelet agent Ticlopidine, diuretic 

Tienilic acid and the sulfonamide Sulfamethoxazole (Zhou et al., 2005).  

Sulfamethoxazole (SMX) is an antimicrobial agent and it has been demonstrated 

that the hydroxylamine- (SMX-HA) and the nitroso- (SMX-NO) derivatives of this 

drug  are capable of forming adducts with proteins. Both metabolites can do so 

at sub-toxic drug concentrations (Manchanda et al., 2001). Haptenation was 

shown to be inhibited by the presence of thiols and other antioxidants.  

 

Phenytoin, an anticonvulsant, is known to cause idiosyncratic adverse reactions 

in 5-10 % of patients (Zhou et al., 2005). Lupus, Steven-Johnson syndrome and 

toxic epidermal necrolysis are adverse reactions associated with phenytoin. The 

generation of reactive metabolites and subsequent binding to cellular proteins, 

several isoforms of CYP450s in particular, leads to the raising of autoantibodies 

against CYP450s both modified and in their native states. 

 

These examples are chosen to show the range of compounds and represent only 

a small number of drugs known to be problematic. It should be noted that a 

simple correlation between reactive metabolite production and pathology is 

insufficient. As seen previously in the cause of other types of ADR, the presence 

of drug-protein adducts does not always lead to toxicity or hypersensitivity (Gan 

et al., 2009; Obach et al., 2008).  In the case of acetaminophen no 

immunotoxicity is encountered despite formation of protein-adducts (Nelson and 

Pearson, 1990). 

 

Identification of drugs capable of eliciting immune response is compounded by 

the complexity of the immune system and by the physiological state of patients. 

An interesting explanation for the occurrence of IDRs has been posited and is 

known as the danger hypothesis. 
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1.1.3.5 The  Danger Hypothesis (Model) 
 

The danger model was put forward by Polly Matzinger in the early 1990s 

(Matzinger, 1994) and challenged the long standing SNS (self-nonself) model of 

immunology outlined by Burnet and Medawar in the 1960s. The SNS model 

asserts that the immune system actively engages any foreign, nonself, material 

whilst ignoring anything recognised as self. The danger model maintains that 

immune response is not mediated through this type of recognition but by 

activation of immune competent cells by a so called danger signal (Anderson and 

Matzinger, 2000) via toll-like receptors (Miyake, 2007). The mechanism results in 

the eliciting of an immune response in reply to the presentation of antigen (self 

or nonself) coupled with the presence of the danger signals.  If an antigen is 

presented without the danger signal then tolerance to the antigen will occur. 

Danger signals must be particular endogenous molecules present upon cell 

damage or death (Gallucci et al., 1999; Shi et al., 2000) whose presence may be 

elicited by exogenous molecules such as lipopolysaccharide associated with 

bacterial infection or so called PAMPs (Pathogen associated molecular patterns). 

Endogenous danger signal molecules identified so far include adenoside-5′-

triphosphate (ATP), Uric acid, hyaluronan breakdown products, transcription 

factors such as high-mobility group box 1 (HMGB-1) , the S100 protein family and 

Heat shock proteins (Shi et al., 2003; Rovere-Querini et al., 2004; Melcher et al., 

1998). The later 3 protein groups are collectively known as alarmins (Oppenheim, 

2007) and are translocated from the nucleus or cytosol to the extracellular space 

in the event of cell damage or death whereupon they stimulate an immune 

response. 

In the danger model, as applied to idiosyncratic drug reactions, a drug molecule 

or, more likely, a reactive metabolite acts as a hapten and is presented to 

helper T-cells via the MHCII receptor. Alarmins or other molecules 

representative of cellular damage then supply the danger signal and initiate a T-

cell mediated immune response. 

The capability of many drug molecules or their reactive metabolites to cause 

oxidative cell damage would make them potentially capable of eliciting an 
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immune response in line with the danger hypothesis. The oxidative damage and 

cell death coupled with drug-protein adducts could potentially supply both 

signals required. Immune tolerance when no danger signal is present would 

explain why many drugs known to form protein adducts do not go on to elicit 

immune response.  

The question remains as to why immune response in patients to protein-drug 

adducts is idiosyncratic in nature given the fact that the danger hypothesis only 

requires that there be antigen fragments and cellular danger signals. In any drug 

capable of causing an ADR these criteria would be met and therefore should 

bring about an immune response.  There is evidence of factors such as surgery 

and infection increasing the risk of IDRs, possible through production of danger 

signals in response to damage caused by physical trauma or there  however there 

is insufficient evidence to suggest that this type of danger stimulation is 

commonly associated with an increased risk of IDR (Uetrecht, 1999). This may 

suggest that the immune system has some way of determining the cause of 

danger signals, limiting the direction of an immune response against molecules 

directly responsible for cellular damage. 

 

1.1.3.6 Clearance of Protein-Drug Adducts 
 

It has been suggested that a potential indicator of toxicity is the clearance time 

of drug-protein adducts from the body.  A comparison of 1-biotinamido-4-(4′-

[maleimidoethylcyclohexane]-carboxamido) butane (BMCC) and N-iodoacetyl-N-

biotinylhexylenediamine (IAB), model electrophiles, was carried out by Lin et al 

(2008). IAB is known to cause apoptosis in HEK293 cells whereas BMCC does not 

(Wong and Liebler, 2008). Previous work had indicated that the two 

electrophiles had distinctly different adduction profiles with only 20% overlap; 

from this data the assumption was made that IAB must form an adduct with 

some critical protein in order to initiate apoptosis  (Wong and Liebler, 2008).  

 

Experiments revealed that BMCC levels decreases rapidly in cells after exposure, 

clearance occurs over a period of 4-6 hours. Additionally, the process occurs at a 

slower rate at lower temperatures suggesting a possible metabolic mechanism.  
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Enzymatic hydrolysis catalysed by an aminohydrolase is thought to either 

mediate the release of the adduct moiety or simply remove the means of 

detection. 

 

It is clear however, that the same mechanism may not apply to adducts formed 

from other reactive metabolites. 

 

1.1.4 Current Detection Methods 
 

The complex nature of drug metabolism, adduct formation and subsequent 

toxicity makes identification of diagnostic markers difficult. The identification of 

metabolites and their interaction with proteins and cellular detoxification 

molecules provides a great challenge even before the consideration of 

autoimmune reactions.  

Simply identifying proteins prone to adduct formation is a challenge in itself; the 

scarcity of modified relative to unmodified being a major barrier to detection 

(Zhou, 2003). Techniques such as radiolabelling or biotinylation of drug 

molecules, and where available, immunochemistry have been used in 

conjunction with mass spectrometry in order to identify the occurrence of drug-

protein adduct formation. Mass spectrometry is used as a gel based approach is 

not sensitive enough to detect the level of changes occurring (Tirumalai et al., 

2003). 

 

1.1.4.1 Radiolabelling of Drugs and Total Protein Binding 
 

Radiolabelling of drugs allows for a simple and sensitive method of adduct 

identification. A typical approach (Qiu et al., 1998), carried out in order to 

identify proteins targeted by reactive metabolites of APAP in liver cells, would 

follow the steps outlined in figure 4. 
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Figure 4. Identification of drug-protein adducts through the use of radio 

labelled drugs. 

 

When used by Qiu et al (1998), this technique allowed for the identification of 

23 adducted proteins but failed to identify others that were previously 

demonstrated to be present under these conditions (Qiu., 1998). 

 

A major advantage associated with radiolabelling is the ability to quantify the 

extent of protein adduct formation (Noort et al., 1999).This approach is applied 

by Merck & Co., Inc. in order to determine whether or not to progress the 

development of a drug candidate. A carbon-14 labelled analogue of the drug is 

synthesised and in vitro and in vivo testing is carried out to identify the amount 

of covalent binding.  An upper limit of 50 picomoles drug equivalent/milligram 

of protein is used to determine the suitability of drugs for progression. The 

figure comes from an analysis of covalent binding found in the livers of test 

animals subjected to prototypic hepatotoxic compounds (APAP, furosemide, 

bromobenzene or 4-ipomeanol) 50 picomoles/ milligram is 1/20th of the dose 

associated with hepatic necrosis. (Evans et al., 2004).  

 

The limit is not a strict cut-off point however; considerations including the 

therapeutic dose, term of dosing, severity of adverse effects and the need to fill 
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an unmet clinical requirement must be weighed before a decision for progression 

is made.  

 

Figure 5.  Decision tree regarding the progression of drug candidate as used 

by Merck. (Evans et al., 2004). 

 

However, drawbacks such as the dangers inherent in radiation handling and the 

prohibitive cost of synthesising radiolabelled drugs make the technique less 

appealing (Evans et al.,2004). The technique also lacks in the ability to clearly 

identify adducted proteins. Gel spots with a radiolabel undoubtedly harbour 

these adducts but are likely to contain many more proteins besides. In gel 

digestion of spots and subsequent MS analysis will result in identification of 

many possible false positives. Depending on the level of modification present it 

may not be possible to directly identify modified peptides.  

 

1.1.4.2 Biotinylation of Drugs 
 

Affinity tagging has been used in xenobiotic covalent binding studies in order to 

enrich modified peptides from complex samples. A study by Shin et al used 1-

biotinamido-4-(4′-[maleimidoethylcyclohexane]-carboxamido) butane (BMCC) and 
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N-iodoacetyl-N-biotinylhexylenediamine (IAB) labelled with biotin to identify 

electrophile sensitive proteins (Shin et al., 2007).  A shotgun proteomic 

approach allowed for the identification of specific residues forming adducts. 

Protein targets included xenobiotic metabolising enzymes, enzymes of lipid 

metabolism, chaperones and ion transporter proteins. 

 

Using this method it is possible to identify not only the proteins that are 

susceptible to modification but the site of adduct formation.  By comparing the 

adduction profiles of BMCC (associated with toxicity) and IAB (no toxicity) we 

can begin to see that many different proteins are adducted in each case with a 

small overlap.  From this the idea of so called ‗Critical proteins‘ emerges; the 

premise being that adduction of specific proteins will determine the toxicity of a 

particular reactive metabolite. Data obtained from experiments like this one can 

single out protein targets for further investigation allowing for the 

characterisation of mechanisms of toxicity. 

 

Additionally, work carried out by Dennehy et al demonstrated the affinity of 

cysteine thiol groups for electrophilic adduction using a biotin tagged 

electrophile system. They were able to identify 539 protein targets and 897 

peptide targets using this method. However, only 20% of these proteins were 

adducted by both electrophiles (Dennehy et al., 2006). This seems to indicate 

that the nature of the electrophile is more important than the high reactivity of 

thiols. It is possible that these proteins are sensitive to adduction as they play a 

role in cellular sensing of oxidative stress. 

 

 

Figure 6. (Dennehy et al., 2006) Known electrophilic molecules were tagged 

with biotin and allowed to react with cellular proteins. These proteins were 

then enriched, digested and subjected to LC-MS-MS. 
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Biotin tagging and subsequent affinity purification provides a valuable tool for 

the characterisation of selected electrophiles and their protein binding partners. 

In contrast to radiolabelling, biotinylation is much simpler and comparatively 

inexpensive. The false positives detected as a by-product of 2d gel separation 

are eliminated in this affinity purification based technique. This method is useful 

in its ability to identify large numbers of protein targets which may help in the 

elucidation of mechanisms behind covalent binding of particular targets and 

toxic outcome. However, as a screening tool it is limited. The addition of a 

biotin tag to a small molecule is highly likely to alter its natural passage through 

a complex biological system. Altered penetration, metabolism and elimination 

are likely to create substantial differences between tagged and untagged 

molecules. 

 

1.1.4.3 Immunoblotting of Protein-Drug Adducts 
 

This method has been employed in the identification of protein adducts formed 

by the reactive metabolites of many xenobiotics including diclofenac, APAP and 

halothane (Satoh et al., 1985; Witzmann et al., 1994; Hargus et al., 1994). 

Targeting can be specific to particular drug-protein adducts or simply a means of 

concentrating a particular protein known to be susceptible to adduct formation 

(Hoos et al., 2007). Immunoblotting requires the availability of antibodies with 

sufficient specificity and sensitivity, limiting its usefulness in the identification 

of the many and varying modifications associated with adduct formation. 

 

1.1.5 Model Systems 
 

It is generally accepted that there is no animal model that can be used for 

humans and that current knowledge cannot accurately correlate covalent 

binding of reactive metabolites to toxicity. At present the best approach is to 

eliminate potentially problematic compounds from development as early as 

possible. New molecules are tested against trapping agents such as glutathione 

(GSH) and cyanide in order to identify reactive intermediates by subsequent LC-

MS/MS or NMR (Evans et al., 2004). Modification of the chemical structure of the 
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molecule is made in the attempt to negate the production of these reactive 

metabolites. 

 

The application of mass spectrometric analysis to the problem of reactive 

metabolite formation and protein adduction has yielded the development of 

various highly useful techniques (Wen and Fitch., 2009).  

 

1.1.5.1 Chemical Oxidation of Drugs 
 

It is possible to simulate the bioactivation of drug molecules using an extremely 

simple chemical oxidation step. Silver (i) oxide has been used to generate N-

acetyl-p-benzoquinonimine (NAPQI), a reactive metabolite of APAP, in an in vitro 

setting which allowed for the subsequent detection of protein-drug adducts 

(Bessems et al., 1996; Damsten et al., 2007). Betalacotglobulin (BLG) was 

incubated with the NAPQI and the resulting adducts detected following tryptic 

digestion of the protein followed by liquid chromatographic separation and 

tandem mass spectrometric analysis. Adducts were identified by searching for 

known peptides associated with the tryptic digestion of BLG with the additional 

mass associated with the NAPQI adduct. This system provides a platform for 

basic study of adduct formation without the problems inherent in more complex 

biological systems. However, in order to be truly useful the complexities of a 

biological system must be incorporated into any model system. 

 

 

1.1.5.2 Liver Microsome Based Assays 
 

The liver carries out the vast majority of xenobiotic metabolism as well as vital 

functions including red blood cell degradation, glycogen storage and hormone 

production. It contains a wide range of enzymes responsible for drug metabolism 

which include the cytochrome p450 family, glutathione s-transferases, UDP-

glucuronosyltransferases, sulfotransferases and N-acetyltransferases. The organ 

is found in all vertebrates and its functions cannot yet be fully emulated. Liver 

microsomes, both human and animal, are used as an in vitro means of 

metabolising drugs. These preparations consist primarily of ER with lesser 



19 
 

contributions from lysosome, nuclear membrane, cytoplasm, peroxisomes and 

plasma membranes. They contain high amounts of cytochrome P450s, UGT, GST 

and other xenobiotic metabolising enzymes. Microsomes represent a simple and 

effective system for the metabolism of xenobiotics in vitro and are often used to 

analyse the metabolism of drugs. Testing of microsomes for specific activities of 

CYP450 isoforms is carried out in order to maintain control between lots. Drugs 

are typically incubated in a microsome preparation which is spiked with the 

tripeptide glutathione. The highly nucleophilic sulfhydral group found in reduced 

glutathione acts as a trap for electrophilic species. Electrophiles that bind to 

GSH molecules can then be identified and the metabolites characterised. 

 

The vast majority of work carried out currently on protein-drug adduct 

formation and reactive metabolites of drugs involves the use of human or animal 

liver microsomes for the metabolism of test compounds. 

 

1.1.5.3 Hard and Soft Electrophiles 
 

The nature of particular species of reactive metabolites effects their 

interactions with other molecules. Metabolites such as quinones, quinine imines, 

iminoquinone methides, epoxides, arene oxides, and nitrenium ions (Yan et al., 

2007) are termed soft i.e. molecules with functional groups that are 

characterized as having a large radius and are easily polarized. Hard 

electrophiles have functional groups with a small radius and are difficult to 

polarize, aldehydes are the most common metabolites of this type. Based on the 

―hard and soft acid and bases‖ concept, hard electrophiles react more strongly 

with hard nucleophiles and soft electrophiles react more strongly with soft 

nucleophiles (Pearson, 1963). 

 

Consideration must be given to this when attempting to identify reactive 

metabolites of a potential drug. Glutathione trapping preferentially identifies 

the production of soft metabolites as the sulfhydral group of cysteine, functional 

site, is a soft nucleophile. In an attempt to rectify this, and so allow for the 

detection of hard electrophiles, work was carried out using a ―bifunctional‖ 

trapping agent γ-glutamylcysteinlysine (γ GSK) (Yan et al., 2007). The amine of 
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lysine in this molecules acts as the ―hard‖ nucleophile to trap ―hard‖ 

electrophilic metabolites.  Using neutral loss scanning Yan et al., were able to 

demonstrate that this molecule was capable of simultaneously trapping both 

classes of reactive metabolites.  

 

 

 

 

 

 

Figure 7. (A) Detection of hard and soft electrophiles using GSK as a trapping 

agent.  (B) Verification of adduct identification through the use of GSK* (γ 

glutamylcystein-13C6-
15N2-lysine) to rule out false positives (Yan et al., 2007). 

 

The nucleophilic groups SH, NH and OH occur repeatedly in the biopolymers DNA 

and protein. These groups represent a spectrum of nucleophilicity ranging from 

soft SH to hard OH and intermediate NH. The terms soft and hard refer to the 

charge density of the nucleophiles but more specifically to their polarisability i.e. 

ability of their valence electron shells to deform.  The rate of adduct formation 
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between hard/hard nucleophiles/electrophiles or soft/soft 

nucleophiles/electrophiles is greater than that of hard/soft 

nucleophiles/electrophiles. Bonding between similar types produces an 

intermediate state with a much lower potential energy MO than bonding 

between dissimilar species thereby favouring the reaction (Coles, 1984; Pearson 

1963). 

The attack of nucleophilic sites by electrophilic metabolites leads to the 

formation of drug-protein adducts by way of a substitution or addition 

mechanism.  The nature of both electrophile and nucleophile are important in 

determining the formation of adducts. Protein modification is more likely to 

occur through attack by softer electrophilic species with favourable reactions 

with NH2 and SH groups (Parthasarathi, 2004). 

Adduct formation at critical sites can lead to the inactivation of enzymes or 

disruption of protein-protein interactions (Nelson and Pearson, 1990; Lin et al., 

2008). A large amount of work has been carried out on the subject and it has 

become increasingly obvious that routes of damage are complex and vary from 

drug to drug (Yukinaga et al., 2007). In many cases, levels of reactive metabolite 

in the cell dictate the extent of protein-adduct formation and as such the extent 

of physiological impairment. 

 

1.1.5.4 Synthetic Peptides 
 

Three short polypeptides were designed and synthesised, each peptide was N-

terminally biotinylated. The design of each met with the following criteria: 

i. Must contain a cysteine residue 

ii. Must be a tryptic digest fragment of a protein of interest 

iii. Must not contain a basic residue near to its midpoint 

iv. Must contain at least 6 residues 

v. At least one peptide should contain a lysine residue 

Protein sequence information for Cytochrome P450s and KEAP1, proteins 

involved in metabolism and cellular defences against oxidative stress and 

documented targets of electrophilic species, were subjected to theoretical 
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tryptic digests. It was from this data that the synthetic peptides were selected. 

Biotinylation of these peptides should allow for their recovery from a complex 

background i.e. the liver microsome assay. The use of biologically accurate 

polypeptides is useful for several reasons. The proteins selected all have 

important roles in metabolism and cellular redox (reduction-oxidation) 

regulation. If metabolite-synthetic peptide adducts are formed it may indicate 

that these particular proteins are susceptible to attack. Additionally it will be 

possible to automatically identify the conjugates using the Mascot server in 

combination with a genomic protein database such as Swissprot.  

1.2 Separation of Complex Protein Mixtures 
 

1.2.1 Liquid Chromatography 
 

 The separation of molecules within mixtures based on their physicochemical 

properties is known as chromatography.  A number of different techniques exist 

that allow for separation based on size (Dean, 1980; Dondi et al., 2002), 

hydrophobicity (Karger et al., 1976;Vailaya, 2005; Vailaya and Horvath, 1998), 

chiral conformation (Gholami et al., 2009; Narayana et al., 2003; Lipka et al., 

2005) and affinity binding(Santucci et al., 1990; Tseng et al., 2004; Verdoliva et 

al., 2002). Each of these techniques requires the interaction of an analyte-

containing mobile phase and an immiscible stationary phase with appropriate 

characteristics.  Interactions with the stationary phase alters the time taken for 

molecules to traverse the column, molecules with favourable interactions with 

the stationary phase take longer to pass through. The time taken for molecules 

to elute from the column is known as retention time. Good chromatographic 

separation requires that molecules within the mixture elute with sufficiently 

different retention times and that their elution profiles (peak areas) are distinct.  

Detection of analytes on elution from the column is routinely carried out by UV 

absorption measurements or mass spectrometry.  Ideally, analytes should have 

sharp, symmetrical peaks. Height equivalent theoretical plates are an abstract 

means of evaluating a column‘s efficiency. Plates represent hypothetical regions 

in which the mobile phase and solid phase are in equilibrium, the greater the 

number of these plates, i.e. the smaller the plate height, the greater the 
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efficiency of separation.  The number of theoretical plates can be calculated as 

follows: 

 

N = number of theoretical plates 

L = column length 

HETP = Plate height 

 

Column efficiency can be affected by factors including column length, particle 

size, packing quality, flow, dead volumes and retention factor. 

 

Plate height can be calculated using the Van Deemter equation (van Deemter et 

al., 1956): 

 

 

H = plate height (HETP) 

A= eddy  diffusion 

B= longitudinal  diffusion 

C=resistance to mass transfer coefficient 

u=linear velocity (flow) 

 

The Gaussian curve is created by a distribution of retention time within a single 

species passing through a column. This variance is described in the terms of the 

Van Deemter equation with a higher H value being indicative of greater 

variances and as such broader peak widths.  

 

Eddy diffusion (A) 

Eddy diffusion describes the movement of molecules through the column along 

different paths through the stationary phase. Packing of the column, particle 

size and morphology are the major contributors to path length of analyte. The 

smaller the particle sizes the less variance in path length.  Packing particles with 

smoother surfaces contribute less to differential path length than do those with 

rougher surfaces. 
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Longitudinal diffusion (B) 

Analyte molecules diffuse throughout the mobile phase setting up a 

concentration gradient independent of the flow direction.  Longitudinal diffusion 

is greatly affected by flow rate; as flow rate increases the effect of longitudinal 

diffusion (increases peak width) is diminished. Other factors affecting 

longitudinal diffusion include diffusion coefficient of the analyte in the mobile 

phase, mobile phase viscosity, temperature and the type of analyte (molecular 

mass). 

Mass transfer (C) 

Mass transfer occurs within each phase and between the two. Mass transfer in 

the mobile phase is effected by the differing velocities of analyte depending on 

their proximity to mobile phase or column wall. Analyte in close proximity to 

either of these moves with a lower velocity than analyte further away. In the 

stationary phase analyte is retained depending on its specific interactivity with 

that packing. As analyte travels the length of the column there is a constant 

exchange between mobile and stationary phase brought about by equilibration 

as the Gaussian profile of the analyte in the mobile phase. 

Mass transfer is dependent on the speed of the partition coefficient ( varies 

between molecules of the same analyte depending on their physical position). 

Using smaller packing particles results in decreasing the importance of mass 

transfer. 

 

1.2.1.1 Reversed Phase Chromatography 
 

Early chromatography columns, so called normal phase columns, were packed 

with unmodified silica or alumina resins, this type of stationary phase interacted 

strongly with hydrophilic molecules. In contrast, RP columns are packed with 

silica beads functionalised with alkyl chains of various lengths and separates 

molecules based on hydrophobic interactions. The more hydrophobic the 

molecule, the greater the retention time. Peptide separations are routinely 

carried out using octadecyl carbon chain (C18) bonded silica packed columns and 

a gradient of increasing polar mobile phase. The gradient of the mobile phase 
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can be tuned to enhance the separation of molecules with any given level of 

hydrophobicity. RP separation is typically used in direct conjunction with mass 

spectrometric analysis; samples loaded onto a high capacity C18 trap can be 

retained and thoroughly washed prior to separation and MS analysis, ionic salts 

in particular must be removed as they can cause a problematic level of ion 

suppression during electrospray ionisation (Annesley, 2003; Mallet et al., 2004). 

The compatibility of the mobile phases used in RP-chromatography with MS 

analysis confer a second advantage in the coupling of the techniques.  

 

1.2.2 Difference Gel Electrophoresis (DiGE) 
 

Differential gel electrophoresis allows for the direct comparison of multiple 

protein populations (samples) on a single 2 dimensional polyacrylamide gel. Up 

to three distinct samples can be loaded into a single gel; typically, a control 

sample, a treated sample and a pooled sample. The pooled sample contains an 

equal volume of both the control and treated and acts as a standard allowing for 

direct comparisons across multiple gels. 

Differentiation between multiple samples in a single gel is made possible by 

dying proteins with 3 spectrally distinct fluors. Cy2, Cy3 and Cy5 (cyanine dyes) 

are used to label the separate samples which are then combined and run on 

standard 2D gels. Importantly, the dyes are both mass and charge matched to 

ensure that labelled proteins migration along the 1st dimensional pH gradient 

and their subsequent travel through the 2nd dimension of acrylamide gel do not 

differ dependant on which dye is applied. 

Minimal labelling dyes are functionalised with an NHS ester group which reacts 

to form an amide linkage with the epsilon amino acid of lysine. As a 

consequence of the dye: protein ratio approximately 3% of proteins in the 

sample are labelled, each at a single lysine. The single positive charge of the 

dye replaces that of the lysine to which it binds; this ensures that the pI of the 

protein remains unaltered. 

Saturation labelling dyes are functionalised with a maleimide group which reacts 

to form a covalent bond with the thiol group of cysteine. The saturation dye: 
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protein ratio is designed to allow complete labelling of reactive cysteines on all 

proteins. As currently only two of the dyes (Cy3 and Cy5) are available with the 

maleimide reactive group it is only possible to run two distinct samples on a 

single saturation DIGE gel. In order to create inter-gel consistency a pooled 

sample must be run on each gel along with either a treated or untreated sample.  

In both cases the gels are then scanned using the appropriate wavelengths and 

the composite images subjected to software based spot matching. Differences in 

intensity between the dye pairs in each of the samples can then be normalised 

using the internal standards and a statistical analysis of changes can then be 

carried out.  

 

1.2.3 Ion Exchange Chromatography (IEX) 
 

Ion exchange chromatography can be divided into 4 categories; strong cation 

exchange (SCX), weak cation exchange (WCX),  strong anion exchange (SAX) and 

weak anion exchange (WAX). Separation is based on Coulombic interactions 

between a charged mobile phase and oppositely charged stationary phase (Paull 

and Nesterenko, 2005). The cation exchange based  columns utilise sulfonic acids 

(SCX) or carboxylic acids (WCX) functional groups to interact with positively 

charged proteins/peptides in a highly acidic (pH 2-3) and weakly ionic mobile 

phase. Anion exchange based columns utilise trimethylammonium groups (SAX) 

of primary, secondary or ternary amino groups (WAX) in a basic (pH 8.0) and 

weakly ionic solution. For both cation and anion exchange the elution of 

peptides/proteins is brought about by increasing the ionic strength of the mobile 

phase, molar amounts of sodium chloride, potassium chloride or ammonium 

sulphate are required. The extremely high levels of non-volatile ionic salts make 

the technique incompatible with mass spectrometry due to the potential for 

massive ion suppression.  
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Figure 8. A simplified  strong cation exchange gradient run involving 3 

peptide species each with a different charge state. As the ionic strength of 

the buffer increases the Coulombic interactions between peptides and the 

stationary phase are disrupted. The peptides bearing fewer charges are 

eluted first.  

 

1.2.4 MuDPIT (Multidimensional Protein Identification Technology) 
 

Ion exchange chromatography is orthogonal to reversed phase liquid 

chromatography and as such the two techniques can be used together to 

produce a combined high resolution method for separation of analytes 

(Mohammed and Heck, 2011).  MuDPIT (multidimensional protein identification 

technology) can be carried out online or offline with the reversed phase 

separation. In an online configuration analytes are eluted from the SCX column 

with multiple salt steps. At each step the analytes are loaded directly into the 

RP column and are separated by hydrophobic interactions before being 

introduced into the mass spectrometer for analysis. A two stage column with 

first stage SCX and second stage RP is often used in the online mode (Liu et al., 

2006; Kang et al., 2005). 
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In the offline mode the SCX separation is carried out using a mobile phase with a 

gradually increasing ionic strength. Fractions are collected and undergo buffer 

exchange prior to loading on a RP column and subsequent MS analysis. Offline 

MuDPIT affords higher resolution separations and has been shown to provide a 

superior degree of protein identifications (Gokce et al., 2011). 

 

1.2.5 Offgel Isoelectric Focussing  
 

Isoelectric focussing allows for the separation of proteins or peptides based on 

their isoelectric points (pIs)(White and Cordwell, 2005). The technique is 

commonly used as the first dimension of separation in a 2d-PAGE experiment and 

is orthogonal to the size based separation of PAGE. The Offgel apparatus allows 

for the same degree of separation but with enhanced recovery capability. The 

IPG strip is separated into a number of discrete reservoirs covering portions of 

the IPG strip pH gradient. Separation proceeds with the application of an 

electric current along the length of the IPG strip. Proteins/peptides migrate 

along its length until reaching the point on the pH gradient at which they are in 

their neutral (uncharged) form. At this point the lack of charge prevents further 

electrophoretic migration of the molecules. After separation each well contains 

proteins/peptides with pIs relating to the underlying portion of the IPG strip. A 

small current is maintained post-separation in order to prevent the diffusion of 

proteins/peptides along the length of the strip.  
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Figure 9. Offgel separation. Three protein species are shown before (top) and 
after (bottom) separation. Proteins (or peptides) can diffuse along the length 
of the IPG strip and accumulate in reservoirs above the point on the strip at 
which the pH causes the protein to lose all charge. 

 

1.3 Mass Spectrometry and the Identification of Proteins 
 

Mass spectrometry allows for the determination of a molecule‘s mass to charge 

ratio (m/z). All instruments share the same basic components; an ion source, a 

mass analyser and a detector. Ions are created and/or accelerated into the mass 

spectrometer via the ion source; ions with a particular m/z are selected by the 

mass analyser and accelerated towards the detector. In this study electrospray 

ionisation (ESI), pioneered by Fenn et al in the 1980s (Fenn et al., 1989) for the 

analysis of large macromolecules (e.g. proteins) was applied. This technique 

allows for the ionisation of macromolecules without necessarily causing their  
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fragmentation. In ESI, liquid phase analyte is converted to its gas phase by a 

process of desolvation and columbic explosion.  Desolvation is driven by 

evaporation of solvent due to heating and exposure to a nitrogen gas stream. A 

large potential difference between the emitter or sample stream and a grounded 

counter-electrode is used to convert the sample stream into a fine aerosol 

directed towards the mass spectrometers inlet orifice. The fine droplets 

produced are then thought to undergo Coulombic explosion as desolvation leads 

to an increasing surface charge. Eventually, single gas phase ions are produced 

and accelerated into the mass spectrometer for analysis (figure 10). 

 

Figure 10. The ESI process. Relatively large droplets of sample (solvent and 

solute) form and rapidly dry. As the surface area decreases the building 

charge density reaches a critical state (The Rayleigh limit). A Coulombic 

explosion causes fission of the droplet. Further drying yields single solute 

molecules of various charge states. 
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1.3.1 Mass Spectrometry and the Fragmentation of Ions 
 

The m/z of an intact protein holds useful information but in order to maximise 

the amount of data collected, fragmentation of the protein must be carried out. 

In this work, low energy (<100 eV) collision induced dissociation (CID) was used. 

CID generates so called b and y ions from the parent proteins (Johnson et al., 

1987). 

 

Figure 11. Fragmentation of parent ion (polypeptide) to form named 

daughter ions. Low energy CID produces b and y ions. 

From the m/z data produced it is then possible to obtain protein amino acid 

sequence information. 

 

1.3.2 Identification of proteins 
 

The goal of a typical proteomics based mass spectrometry analysis is to acquire 

protein identifications or information regarding post translation modifications. 

Mass spectrometric analysis affords a fast and reliable method for protein 

identification. The raw data from mass spectrometers contain information about 

ion masses, intensities and charge states. This so called ‗peak list‘ is submitted 

to a search engine for interrogation of genomic databases in order to identify 

which proteins best match the data. Commonly used search engines include 

Mascot (Perkins et al., 1999), SEQUEST (Eng et al., 1994) and OMSSA (Geer et al., 

2004). Each search engine can search a variety of protein databases, the most 
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commonly used being Swissprot, MSDB and NCBInr. Swissprot is well curated and 

cross linked with many other databases; protein sequences in Swissprot are non-

redundant rather than non-identical (MSDB and NCBInr) and as a consequence 

tandem MS searches may return fewer matches and fewer false positive errors. 

 

1.3.2.1 Peptide mass fingerprinting 
 

Proteins are typically subjected to a protease based digestion before being 

analysed by mass spectrometry. This process is highly specific, generating a set 

of peptide fragments based on cleavage rules known for each distinct protease. 

In the case of a trypsin based digestion, proteins are cleaved at the carboxyl side 

of the amino acids lysine and arginine, except when followed by a proline. Using 

this information an in-silico digestion of a protein database is carried out to 

yield all expected peptide fragments. It is then a matter of comparing 

experimental data with this modified database and matching observed masses 

with their predicted counterparts.  

The identification of proteins from their peptide fragments is known as peptide 

mass fingerprinting (PMF). The matching process is not trivial and should give 

some indication of the statistical relevance of a match. The various search 

engines employee different approaches (1.3.3). Tandem MS information can be 

used to further distinguish between peptides with identical masses.  
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Figure 12. A typical bottom up (shotgun) proteomics approach. Proteins are 
digested and separated by liquid chromatography before mass spectrometric 
detection, analysis and database searching for identification. Here Mascot 
represents a proteomic search engine and is one of many such search engines. 

 

1.3.3 Search Engines 
 

Due to the amount of experimental data, spectra, gathered in a high throughput 

mass spectrometric investigation manual interpretation is impractical. Data 

formats vary depending on the software used for acquisition; this is often 

proprietary and varies by instrument manufacturer. Information regarding 

peptide m/z values, intensities, ms/ms fragments etc are encoded in these files 

and can be used for protein identification. The file containing the data of 

interest is submitted to a suitable search engine for searching against a protein 

sequence database. There are a variety of both protein search engines and 

protein sequence databases and a more in depth explanation of search engines 

follows (databases are more fully discussed in section 1.3.4). 
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Search engines are used to correlate mass spectrometric data to peptide 

fragments typically produced by the in silico digestion of a protein database 

(Pappin et al., 1993; Geer et al., 2004; Eng et al., 1994) . As each individual 

protein yields a unique profile of peptide fragments, this data can then be used 

to assign protein matches. Post translational modifications can greatly change 

the mass of peptides and therefore it is necessary to include the potential 

modifications as terms in the database search. Other information required for 

database searching includes the enzyme used for digestion, peptide and MS/MS 

tolerance of the instrument (to help narrow the window for potential 

matches),the type of instrument used (to determine which type of ions series 

should be detected) and the number of missed cleavages (to allow for inefficient 

digestion of proteins). Identification of proteins in this manner is not a trivial 

task, fragmentation of peptides rarely yields clean, fully realised spectra with 

complete series of b and y ion masses present. Instead spectra tend to be 

confounded by the presence of many peaks not related to the peptide of interest 

and the absence of peaks that would be expected. Chemical noise, instrument 

accuracy, electronic noise and poorly understood physico-chemical processes 

contributing to peptide fragmentation are some causes of this phenomenon.  

Generally speaking search engines typically perform three general functions i) 

interpretation of data ii) filtering of data and iii) Scoring of matches.  

1.3.3.1 Algorithms 
 

There are many search engines currently available using a variety of search 

algorithms that can be grouped into the following four general categories, as 

suggested in the review by Sadygov et al (Sadygov et al., 2004):  i) Descriptive  ii) 

Statistical and probabilistic  iii) Stochastic  iv) Interpretive. Descriptive 

algorithms use predictions about how a given peptide would fragment on 

collision induced dissociation; this information is quantified and compared to 

experimental data using a correlation analysis to produce matches. Examples of 

programs that use descriptive algorithms include SEQUEST, SALSA and SONAR 

(Hansen et al., 2001; Colinge et al., 2003; Eng et al., 1994). 

Statistical and probability based algorithms compare experimental data to 

peptides produced from a theoretical protein database. The statistical nature of 



35 
 

the dataset is taken into account when determining the significance to any 

matches made. Two of the most popular programs using this approach are known 

as Mascot and OMSSA (Yu et al., 2010); OMSSA has been shown to outperform 

Mascot in terms of identifications (Yu et al., 2010) but has since been 

discontinued due to a lack of funding 

(http://pubchem.ncbi.nlm.nih.gov//omssa/). 

Stochastic models use empirical datasets to obtain statistical data on the 

fragmentation patterns of known peptides. This information allows probabilities 

to be assigned to each possible fragment ion pattern (a single fragmentation 

pattern would include all fragment ion series observed in a spectrum) this 

information along with known errors in the measurement of m/z associated with 

an instrument type are then used to generate theoretical spectra, for peptides 

in a given database, which are then compared to experimental data to find a 

best fit. 

Interpretive models determine partial (contiguous) amino acid sequence from an 

experimental tandem MS spectrum. The data is used to generate a construct of 

three parts;  i) the identified stretch of amino acids (tag)  ii) The mass from the 

C terminus to the tag iii) the mass from the N terminus to the tag.  The 

construct can then be searched against a protein database. The longer the tag 

sequence the more probable the match is correct. The determination of the 

amino acid tag sequence can be done manually or automatically.   

More detailed examples for each of the algorithms are discussed in the follow 

sections. 

1.3.3.2 Mascot  
 

The search engine used in this work is known as Mascot. It uses a probability 

based scoring algorithm known as MOWSE (Molecular weight search) that assigns 

a score to each protein identified. The MOWSE score, detailed in the paper by 

Pappin et al (Pappin et al., 1993), is a calculation of the probability that a 

match is a random event. A database of proteins separated into their component 

peptides based on the known rules of enzymatic digestion is used as the basis for 

matching. Experimentally generated, mass spectrometric, data is then searched 
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against the theoretical database for any matches within a defined mass 

tolerance (Pappin et al., 1993): 

 

Where DBMw is database molecular weight and PMw is peptide molecular weight 

(query mass). 

Proteins are sorted into 10kDa bins (e.g. 10 kDa to 20 kDa or 20 kDa to 30 kDa) 

and within each, theoretical peptide fragments are sorted into 100 Da bins. The 

frequency of occurrence for a given peptide mass within a particular protein bin 

is calculated by dividing the number of times it occurs by the total number of 

peptide fragments in the protein bin. These frequency values are then 

normalised to the largest value present within each 10 kDa protein bin. When an 

experimental fragment is matched to a theoretical fragment the normalised 

frequency value is looked up. In the case of multiple fragment matches to a 

single protein these values are multiplied together. The number is then inverted 

and normalised for  protein mass of 50 kDa in order to control for score 

accumulation in larger proteins. 

 

Where: (P) = score 

Protein mass = mass of matched protein 

W = the inverted and normalised peptide frequency score 

 

By scoring in this way the non-random distribution of peptide fragment masses in 

proteins of different sizes is taken into account. 

 

MOWSE scores are expressed as -10*log10(P) and therefore a probability of 10-5 

(that the match is random) thus becomes a score of 50. The protein with the 

best match may or may not be relevant, depending on the size of the database. 

If the probability of a match by chance is for example 10-5 and the database 

contains 106 sequences then we would expect several of these matches to occur 

randomly and therefore we can deem the score insignificant. A significance 

threshold is set by defining first a significance level, typically <0.05. The 

software then calculates the threshold MOWSE score at which a match is likely 
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to occur by chance with a frequency of <5%. Any match with a higher score is 

deemed significant. 

Tandem MS data (MS/MS ion search) is treated in much the same way; with the 

generation of expected fragment ions for each peptide fragment in the genomic 

database (or subset thereof e.g. species specific search) being compared with 

experimental data. The instrument type selected will define the type of ions 

generated with CID based instrumentation yielding mostly b and y ions. This 

approach has added accuracy as it can determine the difference between 

different peptides of the same mass. 

 

1.3.3.3 OMSSA (Open Mass Spectrometry Search Algorithm) 
 

An open source free search engine, OMSSA uses a statistical/probabilistic model 

for the interpretation of peptide matches. The basic assumption of OMSSA is that 

peptide matches follow a Poisson distribution. The results of a match are 

reported as an e-value which describes the chances of an equal or better quality 

match being made at random within the same database. A score of 1 would 

indicate that one other match of equal or better quality would be expected in a 

database of given size. In short, the lower the e-value the more statistically 

significant the match. 

Firstly, the charge state of the precursor ion is determined as OMSSA selects 

peptides from the library based on the neutral mass of the precursor ion. If more 

than 95% of peaks in a spectrum are below the precursor mass then it is assumed 

that the precursor is singly charged. If the number is less than 95% then charge 

state is assumed to be 2+ or 3+ and the library is searched for both resulting 

neutral ion masses.  Secondly, a noise reduction algorithm is applied to the data; 

any peaks with an intensity less than 2.5% of the maximum intensity are 

removed. Further noise reduction steps are applied depending on the charge 

state of the precursor and all with the intention of reducing the number of 

random matches and are detailed in the paper by Geer et al (Geer et al., 2004). 

Comparison of experimental and theoretical data is carried out in two stages: i) 

A precursor mass is compared to theoretical peptide masses including any 
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relevant fixed or variable modifications. ii) A theoretical mass ladder, a list of 

ion fragments expected by CID fragmentation, is generated for the peptide of 

interest for comparison to the experimental data. If a match is made within a 

user defined mass tolerance in step one then the algorithm proceeds to the next 

step. If no match is made then the algorithm moves on to the next precursor 

mass. Matching is carried out within a user defined tolerance with each 

experimental ion being allowed to match only one theoretical ion in order to 

reduce random matching, particularly in low resolution data. 

OMSSA reports expectation values (E-values) as its primary means of scoring 

matches (Geer et al., 2004). The E-values relate to the probability of the match 

being a false positive. This scoring method is also used for Blast local sequence 

alignment scoring. In detail: 

 

y = the number of successful product ion matches 

z= 1 or 2 depending on the ion sequence searched 

 

Like Mascot, OMSSA‘s probability based scoring is not based on the closeness of 

fit to a fragment model but on the probability that the match is a random event; 

the lower the E-score the more statistically relevant the result. 

1.3.3.4 SEQUEST 
 

SEQUEST is a commercially available search engine distributed by Thermo 

Scientific. It utilises a descriptive type algorithm. Initially, pre-processing of the 

MS/MS data is carried out; m/z values are converted to nominal masses, removal 

of low abundance ions and normalization of data is carried out along with the 

identification of immonium ions. These low m/z value ions are associated with 

particular amino acids (histidine, methionine, tryptophan and tyrosine) and are 

used in the identification process (Eng et al., 1994). Protein sequences present 

in the database are scanned for linear stretches of amino acids that match 

within a predefined tolerance the mass of the experimentally determined ions. 
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At this stage the masses of any modifications are also considered but are applied 

either to every occurrence of an amino acid or to none.   The following formula 

is used to provide a preliminary score: 

 

 : Preliminary score 

: Number of fragments that match experimental mass within tolerance 

: Abundances of ions matching the experimental mass 

: Incremental score for each ion present in the ion series (0.075) 

: Incremental score for each immonium ion present in the ion series (0.15) 

: Total number of ions in the theoretical ion series 

 

The top 500 scoring matches are then analysed by cross correlation. The 

theoretical fragment spectrum for a given peptide is predicted (for b- and y- 

ions) and the main sequence ions assigned an abundance of 50, a window of 1 

amu around these ions an abundance of 25 and water and ammonium losses an 

abundance of 10. The theoretical spectra are compared with experimental 

spectra using the following cross correlation function. 

 

 

: Correlation between theoretical data and experimental data  

: Theoretical spectrum construct 

: Experimental spectrum 

 

The function serves to translate one spectrum across the other and measure the 

degree of similarity; the value τ is the degree of translation and is varied. If two 

spectra are the same then the correlation score should maximise at τ=0. To 

produce the final score (XCorr) the value at τ=0 minus the mean of the cross 

correlation in the region 75 < τ < 75 is calculated. The scores are then 

normalised to 1.0 (Cn). A further measure known as Δ Cn compares the top 

scoring peptide to its nearest scoring neighbours. This helps to indicate how 

unique any given match might be. The XCorr score does not give any statistical 

indication as to the correctness of a match but only the degree of correlation 
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between theoretical and experimental peptides and as such database size has no 

bearing on statistical significance. The second score is however dependant on 

the database and reflects the uniqueness of a match. A weakness of the XCorr 

method is higher degrees of matching between longer peptides or noisy 

experimental data; this can be corrected for however using appropriate 

normalisation methods (MacCoss et al., 2002; Sadygov et al., 2004). 

1.3.3.5 Peptide Search  
 

Peptide search (Mann et al., 1993) examines a tandem mass spectrum and 

calculates the mass differences between peaks in order to infer partial peptide 

sequences. Once a contiguous partial sequence is identified the spectrum is 

divided into three regions. Region two includes only the inferred peptide 

sequence; regions one and three represent peptides of unknown length but 

known mass. The direction of the sequence (which ions are b series and which 

are y series) is not known and as such it is treated firstly as a b series and then 

again as a y series. The program searches the database using the data from the 

three regions as well as the intact peptide mass, enzyme specificity and mass 

accuracy. Criterion considered when scoring a match include N terminal 

cleavage (N), region one mass, peptide sequence tag, region three mass and C 

terminal cleavage. Each of these criteria are assigned a discrete probability 

based on the chances that a match is random. The N and C terminal cleavage for 

a tryptic peptide is limited to either Arginine of Lysine or 2/20 amino acids 

simplified to 1/10 for each. The region one mass is considered at unit resolution 

using the average mass of the 20 amino acids or 1/110. The sequence tag 

probability is dependent on the number of amino acids in the tag, each weighted 

with a probability of 1/20 and cumulatively scored so that a tag of length two 

amino acids has a probability of 1/400 (1/20 * 1/20), three a probability of 

1/8000 (1/20 *1/20 * 1/20) and so on. The region three mass is scored identically 

to the region one mass and as such is given the value 1/110 (Mann and Wilm, 

1994).  From these assumptions the probability of a match being made at 

random (false positive) is equal to: 

 

The probability of a non-random match in a database with N peptides is then  
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The size of a database relates directly to the likelihood of making a false 

positive match. As the size of a database increases the length of the peptide tag 

must also increase to keep the number of false positives below acceptable limits. 

An advantage of this type of algorithm is its error tolerance. If there is some 

anomaly in the mass of a measured peptide e.g. a mutation or post translational 

modification, then a search of all three regions would not yield a true match. By 

searching for any combination of two of the three regions it is then possible to 

identify matches and locate the region of altered mass. Other search engines 

that use this type of algorithm include MS-Seq and Guten Tag (Clauser et al., 

1999; Tabb et al., 2003). 

1.3.3.6 Scope 
 

Scope (Bafna et al., 2001) uses a two step stochastic process for identification. 

The first step uses, ideally, a large expertly curated empirical peptide database 

to predict which ions will be present in the MS/MS spectrum of a given peptide. 

The first part of the program computes the probability of a particular 

fragmentation pattern for a given peptide. The second part computes the 

probability of a particular spectrum for a given fragmentation pattern. The 

combining of these two steps allows for the probability of a spectrum being of 

any given peptide. 

 

: peptide  

: fragmentation pattern  

:Mass spectrum 

Pr(F|p): Probability of fragmentation pattern F from peptide P 

(S|F,p): Probability density function, the probability of seeing spectrum S 

for fragmentation pattern F 

): The fragment space containing all of the possible fragments for 

peptide p 
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The formula allows for the identification of the peptide that gives the maximum 

score for the spectrum being analysed along with the p-value. Another program 

that uses this kind of algorithm is known as OLAV (Colinge, 2003). 

1.3.4 Protein Sequence Databases 
 

Peptide and protein identifications from tandem MS data are realised in one of 

two ways. One option is to infer the sequence of a protein directly from the data 

i.e. measure the mass shifts between m/z values and use the data to identify 

particular amino acids (Liska and Shevchenko, 2003; Ma et al., 2005; Frank and 

Pevzner, 2005). This de novo sequencing approach is computationally expensive, 

requires high quality tandem MS data and the resulting peptide sequences must 

still be matched against some protein database using a modified version of the 

BLAST algorithm, MS-BLAST (Shevchenko et al., 2001). De novo sequencing 

difficulty is further compounded when applied to complex samples in which 

multiple peptides appear in the same tandem MS spectrum. Isobaric amino acids 

(Lysine and glutamine; leucine and isoleucine) offer further difficulties. 

The second method involves trying to match the MS data directly against a 

database of protein sequences. The selection of an appropriate protein sequence 

database is important and results will vary between databases. At present there 

are three main types: 

i) Non-identical and non-redundant manually curated databases such as 

Swiss-Prot and RefSeq (Partially): collapse together records with 

identical or near identical peptide sequences and have high quality 

manually reviewed information. 

ii) Machine curated databases such as TrEMBL and RefSeq (X series): in 

which data is extracted predominantly from genomic databases with 

machine based analysis to assign information. 

iii) Comprehensive databases such as NCBInr and OWL: contain a 

compilation of all publicly available sequences.  

 

Curated databases, both human and machine, have annotated protein sequences. 

Information such as: taxonomy of the organism, functions, cellular location, 

polymorphisms, isoforms, PTMs, domains, molecular weight and pI is recorded 
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with each entry. Machine curation is of course much faster than human curation 

but is considered less reliable and less complete. Information about protein 

families, functional sites and domains can be inferred by searching for groups of 

amino acids that are conserved, signatures, (Sigrist et al., 2002) or statistically 

assigned profiles (Krogh et al., 1994; Durbin et al., 1998). There are many 

publicly available databases that can be used to search for these signatures 

(Hulo et al., 2006; Attwood et al., 2003; Finn et al., 2006; Letunic et al., 2006). 

InterPro (Mulder et al., 2007) combines all of these databases into one and 

allows for more comprehensive and unambiguous results. Manually curated 

databases offer higher reliability with data obtained from scientific publications 

which, importantly, offer solid evidence based assertions. Information is handled 

by experts and undergoes validation before addition to the database. 

Data in comprehensive databases mainly comprises protein sequences directly 

translated from genomic data. In these types of database it is likely that a single 

gene will be represented by multiple gene products i.e. there is a degree of 

redundancy. Redundancies are introduced when compiling the primary databases 

when multiple records for a single protein are preserved. These databases are 

necessarily larger than the manually curated and automatically curated types 

that they comprise. 

The choice of database is an important one and should reflect the nature of the 

experimental work being carried out. In most cases manually curated compact 

databases are the best choice, providing manageable datasets and accurate and 

full information on potential matches. However, as the objective of some 

experiments be to specifically identify mutated or novel alternatively spliced 

forms of proteins it may become necessary to use a more comprehensive 

database. Genomic databases such as EST (expressed sequence tag) databases 

contain information on polymorphisms and alternative splice forms and are 

therefore an option if protein sequence databases do not provide results. 

However, data from genomic databases is known to be prone to sequencing 

errors brought about by incorrectly predicted open reading frames and frame 

shifts. Another problem associated with larger databases is the increased risk of 

getting high scoring random matches to proteins (false positives) and the 

increase in computational time required to perform searches.  
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Ideally, protein databases represent the current state of our knowledge for a 

given protein. A description of some commonly used databases follows. 

1.3.4.1 UniProt 
 

Uniprot consists of Swiss-Prot- a section containing manually-annotated records 

with information extracted from literature and curator-evaluated computational 

analysis and TrEMBL- a section with computationally analyzed records that await 

full manual annotation. 

1.3.4.2 Swiss-Prot 

Swiss-Prot is a non-redundant database, combining sequences of near identical 

composition into a single entry with differences recorded in the annotations. 

With search engines that only search explicit database entries, not reading from 

annotations, potential matches can be missed. A potential problem is the 

alternative splicing of proteins. Entries in databases are typical a single isoform 

(the longest) of a protein and when compared to an experimentally detected 

variant isoforms matching is less than optimal. However, a program known as 

VarSplic (Kersey et al., 2000) can be used to generate variants from the 

sequences in the database and add them as entries thereby making optimal 

matching possible. The data contained in Swiss-Prot is reviewed, any 

discrepancies noted and duplicate information reviewed. There is an ongoing 

collaboration between Swiss-Prot, NCBI and DDBJ (DNA Databank of Japan) 

meaning that the databases share their data. Swiss-Prot details protein 

functions, known interactions, sub cellular locations, domains, PTMs and 

variants. It is well integrated with more than 50 other databases via cross-

referencing. The Swiss-Prot database reflects the most up to date, manually 

curated collection of protein data available. 

1.3.4.3 TrEMBL 
 

TrEMBL is the automated counterpart to Swiss-Prot. This database contains 

translations of all of the coding nucleotide sequences in the DDBJ/EMBL 

(European molecular biology laboratory) /GenBank (Okubo et al., 2006; Kulikova 

et al., 2007; Benson et al., 2007) nucleotide databases along with sequences 
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found in literature and submitted to Uniprot. TrEMBL makes available these data 

for searching without adding them to Swiss-Prot. This prevents a lowering of the 

overall quality of notation in Swiss-Prot. TrEMBL entries are effectively queued 

for manual annotation, whilst this is pending relevant annotations from Swiss-

Prot are applied to TrEMBL entries, with the new information superseding the 

old.  

1.3.4.4 NCBI 
 

The National Centre for Biotechnology Information is world class information hub 

containing some 39 literature and molecular biology databases with entries 

totalling in the hundreds of millions (Sayers et al., 2010). Two relevant 

databases including protein sequence information are known as RefSeq and 

NCBInr. 

1.3.4.5 RefSeq 
 

The RefSeq database contains information on an organism‘s genomic, transcript 

and protein sequences. Data is annotated and sourced from publicly archived 

databases including DDBJ, European nucleotide sequence database and GenBank. 

Initially, the data is produced by automated analysis of genomic information. 

These entries have accession numbers prefixed with an X. Manual reviewing of 

records is carried out and the reviewed record replaces the automatically 

modelled record. RefSeq pays particular focus to species of research significance 

and as of 2011 91.5% of all human protein entries were manually curated (Pruitt 

et al., 2011). 

1.3.4.6 NCBInr 
 

NCBInr is misleadingly named as it is not a truly non-redundant database. It 

contains multiple entries for proteins with sequences that vary by as little as a 

single residue. NCBInr is comprised of protein compiled from GenBank CDS 

translations, PIR (protein information resource, RefSeq, Swiss-Prot, PRF (protein 

research foundation), and PDB (protein data bank) (Kouranov et al., 2006). Using 

this type of database means potentially more matches but at the price of 

duplications in the search results and an increased risk of false positive matches.  
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1.3.4.7 MSDB 
 

This database was run from Imperial College London. It was a compilation of 

Swiss-Prot, PIR, TrEMBL and GenBank. Sequences with 100% similarity were 

collapsed together to remove a degree of redundancy. The database was 

distributed with Mascot but as of 2006 it is no longer updated and should be 

considered obsolete. 

1.3.4.8 EST databases 
 

These databases look at the expressed sequence tags,single pass cDNA sequences, 

from organisms. The nucleic acid sequences are translated in all six reading 

frames to generate potential protein sequences. These databases contain a lot 

of information on polymorphisms and are typically very large. EMBL has 10 EST 

divisions including: Environmental_EST, Fungi_EST, Human_EST, 

Invertebrates_EST, Mammals_EST, Mus_EST, Plants_EST, Prokaryotes_EST, 

Rodents_EST, and Vertebrates_EST. 

1.3.5 Mass Spectrometers 
 

As previously stated, mass spectrometers at their most basic include only three 

basic components. An ion source, a mass analysed and a detector. In terms of 

mass analysers there are a wide range of options each with advantages and 

disadvantages that make them suitable for particular applications. The mass 

analysers used in this work, i.e. 3d and LIT ion trap and quadrupole, are all 

based on technology pioneered in the early 1950s by Woflgang Paul and his 

colleagues (Paul and Steinwedel., 1953). 

1.3.5.1 Spherical (3d) Ion Trap 
 

The spherical ion trap is composed of three hyperbolic electrodes designed to 

focus and trap ions through the formation of a 3 dimensional ion trapping field. 

Ions are allowed to enter the trap within which helium is present to a pressure 

of 1mTorr in order to reduce their kinetic energy. An oscillating potential, an AC 

voltage with periodicity in the RF range, is applied to the ring electrode and acts 

to focus and trap ions. Ions are affected by this so called fundamental RF voltage 

depending on their mass and charge. By altering the periodicity of the 
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fundamental RF it is possible to destabilise the trajectory of ions with a given 

mass and charge thereby eliminating them from the trap.  

 

The application of low amplitude waveforms to the end cap electrodes can 

destabilise ion trajectories between these electrodes thereby increasing their 

collisions with the helium dampening gas. These collisions are capable of 

fragmenting ions, in the case of peptides fragmentation typically occurs  along 

their backbones giving rise to b and y ions.  Following the isolation and 

fragmentation of an ion species it is possible to then isolate and fragment one of 

the daughter ions. This process, so called MS(n), has been repeated up to MS(12). 

A limitation inherent to these instruments is the inability to retain ions with an 

m/z of less than 0.3 of the parents mass.  A consequence of this  that with 

peptides the first several b and y ions may not be detected .  

 

Figure 13. A 3d ion trap schematic. Ions enter through an endcap electrode. 

The ring electrode produces an RF voltage which acts to trap the ions. 

Ejection of the ions can be achieved by applying a supplementary RF voltage 

to the endcaps.  
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1.3.5.2 Linear Quadrupole Ion Trap 
 

The linear quadrupole ion trap (LIT) comprises 4 parallel rods that use a 

combination of electrostatic DC fields to trap ions along their axis and an RF AC 

voltage to trap ions axially. Alteration of the RF field can lead to the 

destabilisation of ions causing them to collide with the quadrupole rods. Using 

this approach it is possible to eliminate all ions out with a range of interest from 

the trap. As with the spherical trap it is possible to apply low amplitude 

waveforms in order to bring about the fragmentation of ions and to perform 

MS(n) type experiments. 

 

 

1.3.5.3 Quadrupole 
 

This type of mass analyser comprises 4 parallel poles describing the corners of a 

square. Diagonally opposing corners are both either positively or negatively 

charged, this charge alternates at a predetermined frequency. Ions are 

accelerated along the length of the device by a DC field. The combination of the 

AC and DC fields cause ions to travel in a spiral along the device, a stable 

trajectory is held by ions of a particular m/z as determined by the AC frequency. 

Triple quadruple instruments are a linear arrangement of quadrupoles. In this 

configuration it is possible to utilise neutral loss, multiple reaction monitoring 

and precursor ion scanning modes which greatly increase selectivity. 
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Figure 14. Quadrupole mass analyser. The RF voltage applied to the 

quadrupole determines the m/z of ions that have stable trajectories. In the 

above diagram only m/z: y has the stability to pass through to the detector. 

Both x and z are destabilised and lost. The supplementary DC voltage supplies 

ions with lateral acceleration toward the detector. 

 

1.3.5.4 Hybrid Instruments 
 

Hybrid instruments make use of two or more different types of mass analyser.  

These types of instrument combine the advantages of the different mass 

analysers in order to obtain higher quality data. Instruments such as the Qstar, a 

quadrupole TOF (time of flight) combination; Q-trap triple quadrupole LIT; LTQ 

Orbitrap a LIT Orbitrap; FT-ICR (Fourier transform ion cyclotron resonance) LIT 

ICR and TripleTOF triple quadrupole TOF. 

 



50 
 

1.3.6 Scanning Techniques 
 

Owing to the various attributes of different instruments there are a wide variety 

of scanning techniques available. A brief summary of these follows. 

 

1.3.6.1 Neutral Loss Detection 
 

Detection of modified glutathione is routinely carried out using a constant 

neutral loss scan (NL) for 129 Da (Yu et al., 2005; Ma and Subramanian., 2006). 

Using a triple quadrupole instrument , quadrupole one is set to scan through a 

range of masses, quadrupole 2 fragments the selected ions and quadrupole three 

selects for a m/z of quadrupole 1 minus the 129 Da. This weight represents the 

loss of γ-pyroglutamic acid. This type of scan however is prone to ‗false positives‘ 

as endogenous biological compounds can give rise to the same neutral loss. 

 

 

Figure 15. Ions enter the instrument and allowed through Q1 by mass. Q2 

fragments ions and Q3  allows the detection of ions passed at Q1-129 Da. The 

mass of ions giving rise to neutral losses of 129 indicate GSH or GSH-RMs 
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In order to remove these results from the scan work by Yan and Caldwell focused 

on the use of heavy isotope labelled (13C2-15 stable isotope) GSH. An equimolar 

ratio of labelled/unlabelled GSH was added to the drug/microsome preparations 

in order to react with electrophilic species. Using this method allows for the 

identification of doublet isotopic peaks with a 3 Da mass difference. These 

represent the labelled and unlabelled GSH conjugates. 

 

Unfortunately not all test GSH adducts have the 129 Da neutral loss 

characteristic as part of a primary fragmentation pathway (Dieckhaus et al., 

2005).  In these cases adducts will escape detection and characterisation unless 

another method if detection is employed. 

 

1.3.6.2 Precursor Ion Scanning 
 

GSH can be detected by scanning in the negative ion mode for a 272 Da, a 

deprotonated ç-glutamyl-dehydroalanyl-glycine originating from the glutathionyl 

moiety. The abundance and uniqueness of this anion make it an excellent 

candidate for specific and sensitive detection of GSH-metabolite adducts. It has 

been shown capable of identifying previously unknown GSH conjugated 

metabolites such as those of meclofenamic acid (Wen et al., 2008).  
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Figure 16.  Precursor ion scans can identify ions giving rise to a characteristic 

fragment. 

Detection of the 272 Da anion in negative mode has been used to trigger the 

acquisition of CID MS/MS of the precursor ion in positive ion mode. Data from 

this single run high throughput capable experiment can be used to selectively 

identify and characterise the structures of GSH bound reactive metabolites with 

superior selectivity, sensitivity and range in comparison to the standard NL 129 

scan method. 

 

 

1.3.6.3 Single Reaction Monitoring 
 

Using a triple quadrupole mass spectrometer it is possible to operate in what is 

known as single reaction monitoring (SRM) mode.  So called transitions, 

descriptions of ions present before and after CID, are used to select for 

particular molecules with a complex sample. SRM experiments produce 

unequalled sensitivity and with the advent of the Q-trap, can be used to initiate 

enhanced product ion spectra. 
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Transitions are obtained either through data gleaned from earlier 

experimentation or through theoretically expected changes to specific molecules 

e.g. biotransformation of drugs and subsequent binding to GSH. Previous work 

has shown that through the use of a list of some 114 SRM transitions calculated 

from common biotransformations of particular drug molecules, it was possible to 

detect the presence of GSH-reactive metabolite adducts (Zheng et al., 2007). In 

comparison to NL and PI scans SRM is more sensitive, provides fewer false 

positives and is capable of producing high quality MS/MS data on the same run 

(Zheng et al., 2007). 

 

 

 

 

Figure 17. SRM experiments use known data to search for specific ions and 

products with a high degree of efficiency and sensitivity. Q1 is set to pass a 

specific mass, Q2 fragments them and q3 selects for a specific fragmentation 

product. 
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1.3.6.4 Post-Acquisition Data Mining 
 

Techniques previously mentioned such as SRM, PI and NL scanning all technically 

require that the instrument used be a triple quadrupole. Alternative methods 

have been developed for use with higher mass accuracy machines such as Q-TOFs, 

Orbitraps and FT-ICRs. Software based approaches allow for emulation of PI and 

NL scanning through the format of precursor ion filtering (PIF) and neutral loss 

filtering (NLF). MS/MS data is collected and systematically searched using known 

PI or NL filters in order to identify ions of interest.  

 

 

Figure 18. Schematic of common data mining techniques (Zhu and Ma, 2009). 

Full scan data can be utilised to identify metabolites by MDF, extracted ion 

chromatograms (EIC) and background subtraction (BS).  

 

Background subtraction involves the use of a control sample which undergoes an 

accurate full scan in order to obtain accurate masses of detected ions. Once the 

sample bearing reactive metabolites is scanned an algorithm is used to subtract 

all common ions from around the time frame of interest, with allowance made 

for differences in chromatography (inter run variation). The vast majority of 

remaining ions after subtraction of background should represent the presence of 

metabolites of interest. 
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1.4 The reactive metabolite target protein database 
 

A web based database has been created with the intent of mapping the 

―Adductome‖. Results from many different groups involved in researching 

protein-drug adduct formation have been compiled into what‘s known as The 

Reactive Metabolite Target Protein Database (TPDB) (Hanzlik et al., 2008). This 

freely available resource is an attempt to identify relationships between the 

formation of particular protein adducts and toxicity. As of yet no clear 

relationship between adduction and physiological effects has been uncovered. 

To date the database contains no information for any of the drugs used in the 

following work. 

1.5 Statistics in Proteomics 
 

Two of the workhorse techniques applied in the field or proteomics, 2D-

PAGE/DiGE and Mass spectrometric analysis, are capable of generating vast 

datasets in a single experiment. The high dimensionality of the experiments 

necessitates a careful approach to data analysis. It has been observed that the 

kind of data gathered from 2D-PAGE and DiGE is very similar in nature to data 

gathered in genomic investigations using DNA microarray technology. As a 

consequence, many of the statistical tools developed for data analysis e.g. 

multiple hypothesis testing, classification methods and cluster analysis can be 

assimilated for use in protein expression analysis (Urfer et al., 2006). Univariate 

statistical tests,  Student‘s t test and analysis of variation (ANOVA) are the most 

commonly used statistical tools for DIGE analysis (Meunier et al., 2007). Before 

data analysis takes place however, it is necessary to carry out some pre-

processing of the DiGE data. 

1.5.1 Data Pre-Processing 
 

Two major assumptions of many statistical methods is that the dataset must fit a 

normal distribution and that variance in the data be homogenous. Assumptions 

that don‘t reflect the nature of DiGE raw data which is in the form of gel images. 

A typical first step in pre-processing involves a log transformation (most 

commonly log2) which acts to homogenise variance in the data. It has been 

observed that spots with higher mean intensities usual have larger variation 
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(Gion et al., 2005; Karp and Lilley, 2005). Additionally, it has been shown that 

the different CyDyes can introduce bias to the experiment due to their differing 

background signals (Karp et al., 2004; Karp and Lilley, 2005). This bias can 

however be controlled for by making sure that each of the dyes is used in both 

or all experimental groups (Timms and Cramer, 2008). 

DiGE experiments include an internal standard, a mixture of all samples, which 

is run on each gel. A spot-wise division of each protein by its internal standard 

counterpart is carried out to control for experimentally introduced gel-gel 

variations. This normalisation across all gels, by accounting for technical 

variations, helps to identify biological variations. Technical replicates i.e. 

replicates produced using the same sample, must be included within any 

experiment for this purpose.  

Biological replicates are necessary in order to account for variation in protein 

expression levels in protein populations (biological diversity between subjects, 

tissue samples, cell cultures etc) that have been subjected to the same 

conditions (to the best of our knowledge)(Karp et al., 2005). The extent of this 

biological variation must be taken into account when attempting to determine 

the changes of protein expression between different groups brought about by 

changes in experimental conditions (i.e. treatment with a drug vs. no treatment). 

In order to characterise this, multiple measurements for each test condition 

must be taken from biologically non-identical samples. 

1.5.2 Type I and Type II Error 
 

When dealing with large datasets it is necessary to statistically validate results. 

A typical DiGE experiment can consist of multiple gels with each allowing the 

visualisation of 2000-4000 proteins. As the size of a dataset increases the 

chances of reaching a false conclusion about any given data points also increases. 

For a particular experimental question e.g. has protein expression changed? 

There can be four distinct outcomes.  

i. True positive: A change has been detected and corresponds to a real 

biological change. 
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ii. False positive: A change has been detected but does not correspond to a 

biological change. 

iii. True negative: No change has been detected and corresponds to no 

biological change. 

iv. False negative: No change has been detected but a biological change has 

occurred. 

From these four outcomes it is clear that ii and iv give erroneous results. The 

false positive, also known as a Type I error, can be controlled by choosing an 

appropriate significance level.  Firstly, a so called null hypothesis is generated 

and is represented by H0.  The null hypothesis is a statement of the question to 

be answered. In the case of a typical DiGE experiment, H0 = there is no change 

between the mean expression of an given protein in the DiGE experiment. Now 

Ha, or the alternate hypothesis, is defined as a refutation of the null hypothesis 

i.e. that there is a change in the mean expression. Whether we reject or accept 

the null hypothesis is then dependant on the experimental data and a predefined 

significance level (α). The significance level defines the number of false 

positives that would be expected to occur by chance within a particular dataset. 

It is normally set at 0.05 or 0.01 (representative of 1/20 and 1/100).  

The p-value is calculated from the experimental data and expressed as a real 

value between 0 and 1. The value represents the probability that the observed 

result (or more extreme result) would be observed given that the null hypothesis 

is correct. The p-value is directly compared to the significance level. A p-value 

lower than the predefined significance level compels us to reject the null 

hypothesis and thereby allows us to say that there is a significant difference in 

the mean protein expression between the two groups. 

In an experiment with thousands of proteins probability dictates that false 

positives be expected. In order to reduce the number encountered the 

significance value must be made more stringent or modified in some way. This  

can be achieved by considering either the family wise error rate (FWER) or the 

false discovery rate (FDR). 
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1.5.2.1 FWER (Family Wise Error Rate)  
 

FWER family wise error rate is defined as the probability of at least one false 

positive occurring amongst the whole dataset. A simple algorithm (the 

Bonferroni correction) is applied to alter p-values in such a way as to ensure that 

the probability of a false positive is kept below the previously defined 

significance level. The adjustment increases in severity as the number of 

hypotheses being tested increases. With the scale of many proteomics 

experiments it has been suggested that FWER based correction may not be the 

most useful approach as it introduces a higher probability for false negative, 

type II, errors. 

The FDR (false discovery rate) approach can also be used to adjust p-values and 

control the likelihood of making a type I error (Cairns et al., 2009; Fodor et al., 

2005; Dudoit et al., 2003). Two different algorithms are in use, a very 

conservative one which operates under the assumption that all hypotheses are 

independent (Benjamini and Yekutelli, 2001) and a less severe one that does not 

make this assumption (Benjamini and Hochberg, 1995).  

False negatives, or Type II errors, are controlled for by designing experiments 

with a particular power. The power of an experiment is defined as the 

probability of not making a Type II error.  

 

Where,     : Effect size 

      : significance level 

     standard deviation 

     number of replicates 

The effect size, the size of a particular difference that we would like to detect, 

must be determined experimentally by means of a small pilot study. From the 

equation we can see that a larger study is required to detect an effect of a 

smaller size. The power of the experiment is controlled by setting the sample 
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size. The power is the probability of rejecting the null hypothesis and is 

complimentary to type II error ( ) i.e.: 

 

An important consideration that must be taken into account is the fact that a 

DiGE experiment carried out in this thesis was simply a tool for identifying 

protein-drug adducts. Controlling the instance of type I errors is far less 

important than maintaining experimental power and not making type II errors. 

Following up on proteins identified as having altered expression did not bear a 

prohibitive cost in time or money, losing leads to type II errors however could 

very well render the experiment useless. 

1.5.2.2 FDR (False Discovery Rate) 
 

Due to the large number of protein spots being compared in a typical DiGE 

experiment (>2000) there is a considerable chance that type I, false positive, 

errors will occur. In order to control for this a false discovery rate (FDR) should 

be obtained. The false discovery rate indicates the number of random, incorrect, 

matches between experimental data and entries in the protein database and can 

be calculated as follows:  

 

Where FP is false positive and TP is true positive. 

There are several methods for obtaining a FDR and a commonly used method is 

known as the Benjamini-Hochberg approach. The Benjamini-Hochberg approach 

for controlling false discovery rates is much less conservative than FWER 

methods; rather than trying to control the chance of a single (i.e. any at all) 

false positive result, the Benjamin-Hochberg protocol (Benjamini and Hochberg, 

1995) is used to limit the number of false positive results to a chosen proportion 

of all results.  

By making the assumption that the p-values obtained follow a uniform 

distribution under the null hypothesis and arranging them into a sorted list it is 

possible to control for a desired false discovery rate.  Starting from the lowest 

value on the list each p-value (p(k)) is compared to a threshold value given by 
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multiplying the chosen false discovery rate by its location on the list (k) and 

dividing by the number of p-values being evaluated (m). For the following list of 

sorted p-values we accept a false discovery rate of 0.05 (α) (or 5%): 

1) 0.0012     1)  0.0083 

2) 0.0021     2)  0.0167 

3) 0.04      3)  0.025 

4) 0.071            4) 0.033 

5) 0.11     5) 0.416 

6) 0.36     6) 0.05 

 

The list on the left represents the p-values and the list on the right represents 

the computed thresholds for a false discovery rate of 0.05. Starting from the top 

of the list (1), it can be seen that by the third term (0.04) the p-value exceeds 

the threshold, p-values from here on are then discarded as being outside of the 

desired false discovery rate. 

1.5.3.3 FDR (Protein Identifications) 
 

In the field of protein identifications, in which experimental data is searched 

against huge genomic databases, false positive matches are a considerable 

problem. An experiment carried out by one group (Cargile et al., 2004) 

demonstrated that it was possible to match experimental data to proteins from a 

mythical creature (in actuality, false positives). This serves to highlight the 

problem and makes clear that any attempt to follow up on these proteins would 

be not only futile but a waste of resources. To help combat this type of result 

FDRs are obtained. 

A typical approach in protein identifications against a sequence database is to 

obtain an empirical measure of the FDR, in contrast to the calculation used in 

the Benjamini-Hochberg approach. This strategy would involve creating a copy 

of the database in which the protein sequences are reversed (Moore et al., 2002; 

Qian et al., 2005; Huttlin et al., 2007) or sequences retain the same frequency 

of amino acids but are randomised (Wang et al., 2009; Perkins et al., 1999; 

Higdon et al., 2005). The data is then searched against this new ―decoy‖ 

database, as it is extremely improbable that proteins exist with these reversed 
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or randomised sequences it can be surmised that any match between the data 

and the sequences must be attributable to chance. The number of positive 

identifications received when searching against this database indicates the 

extent of type I present. This is assuming that the rate of false positives 

between the genomic database and decoy database is the same. 

Yet another approach utilises tandem MS based peptide assignments along with 

their probabilities of being correct (Keller et al., 2002) to compute the 

probability that any given protein is present in the experimental data 

(Nesvizhskii et al., 2003; Sadygov and Yates, 2003). Software can be found that 

implements this statistical analysis and is known as Protein Prophet. However, 

assumptions made by the various models may not be applicable to all data sets 

nor be translatable to all proteomic instrument platforms.  

The problem of false positive identifications is not one associated with current 

databases or instruments but with the mathematics of finite sets and is 

exacerbated by homology between proteins and the large number of proteins in 

a given database. Researchers continue to pursue this interesting field and tools 

for FDR characterisation are likely to continue to improve. 

1.6 Future Work 
 

The study of adverse drug reactions is an immensely complex field. Much 

remains to be discovered regarding the metabolism of xenobiotics, their 

conjugation to proteins and subsequent toxicity. The endeavour has been 

likened to that of cancer research; progress has been slow and hard come by. It 

has been previously suggested that a multidisciplinary approach will be 

necessary with contributions from proteomics, genomics and metabolomics 

based approaches (Merrick, 2008).   

 

Work carried out has attempted to elucidate the mechanisms behind ADRs, to 

identify reactive metabolites with propensities to form covalent bonds with 

proteins, and to devise means with which to detect them at an early stage of 

drug development. Mass spectrometry will play an important role in unravelling 

these problems. Continued improvements in instruments leading to greater 
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accuracy, sensitivity and reduced scanning times as well as innovative ways to 

implement these technologies are key to future successes.  

The development of sensitive methods for the detection of particular drug-

protein adducts from complex biological backgrounds would provide an 

important step towards prevent human exposure to potentially toxic drugs. It 

has been noted that drugs withdrawn due to their toxicity are not often subject 

to further study (Park et al., 2006). This potentially rich source of data could be 

used to guide the design and development of future compounds. 

 

 

Chapter 2: Methods 
 

2.1 Methods 
 

2.1.1 Proteomics 
 

 

2.1.1.1 Protein concentration assay (Bradford) 
 

Protein concentrations were determined using the Bradford assay. A kit was 

obtained from ThermoFisher Scientific, Loughborough, UK.  Protein 

concentrations were measured as per the included instructions. Briefly, a series 

of known BSA concentrations (Final assay concentrations: 0.125, 0.25, 0.5, 0.75 

and 1mg/ml) were spiked with Bradford reagent and their absorption at 595 nm 

was measured. The data were used to create a reference curve; curves with an 

R2 value of at least 0.95 were accepted. Samples of unknown protein 

concentration were spiked with Bradford reagent and their absorptions 

measured at 595 nm. The reference curve was used to approximate a linear 

relationship between absorption and protein concentration. The data was used 

to interpolate the concentration of these unknown samples using the equation 

for a straight line: 
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2.1.1.2 Protein precipitation 
 

2.1.1.2.1 Acetone precipitation 
 

Protein solutions were brought up to 80% v/v acetone and stored at -80˚C 

overnight.  The samples were centrifuged at 14k rpm for 5 min and the 

supernatant discarded. Pellets were washed with 80% v/v acetone, 20% v/v 

ddH2O. After subsequent centrifugation the pellets were reconstituted at the 

desired concentration in SDS-PAGE loading buffer. 

 

2.1.1.2.2 TCA precipitation 
 

4 parts of 100% w/v trichloroacetic acid (TCA) solution was added to 1 part 

protein solution. The mixture was incubated at 10˚C for 10 min then centrifuged 

at 14,000 rpm for min. The supernatant was discarded and the pellet washed in 

acetone. The centrifugation and washing steps were repeated. The pellet was 

then dried at 95 ˚C and reconstituted at the desired concentration in SDS-PAGE 

loading buffer. 

2.1.1.3 In solution tryptic digestion 
 

50 µg of protein was suspended in 25 µl 50mM ammonium bicarbonate solution 

(pH 8.0).  5 µl of 50 mM DTT was added, followed by a 30 min incubation at 60˚C 

in order to break disulfide bonds. 5 µl of Iodoacetamide was added with a 

subsequent incubation at room temperature in darkness for 15 min to prevent 

disulfide bond formation.  12.5 µl of 0.1 µg/µl trypsin solution was added along 

with 30 µl of acetonitrile followed by a one hour incubation at 37 ˚C. A final 

addition of 12.5 µl of trypsin solution was made followed by an overnight 

incubation (18 hours) at 37 ˚C. The reaction was stopped by the addition of 1 µl 

of 1% v/v formic acid solution. It should be noted that the proteins were not 

denatured using this method, this was an oversight and a more efficient 

digestion would have been possible had it been implemented for more details 

see section (4.7 Discussion).  

2.1.1.4 1-dimensional polyacrylamide gel electrophoresis (1d-PAGE) 
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25 µg of protein dissolved in 24 µl of 50 mM AmBic was spiked with 6 µl of (5x) 

SDS-PAGE loading buffer ( 0.25 M Tris-HCL, pH6.8, 15% v/v SDS, 50% v/v glycerol, 

25% v/v β-mercaptoethanol and 0.01% w/v bromophenol blue) and loaded into a 

4-12% gradient mini NuPAGE® polyacrylamide gel (Invitrogen, Paisley, UK). The 

gel was loaded into an XCell SureLock™ Mini-Cell Electrophoresis System 

(Invitrogen, Paisley, UK), submerged in NuPAGE ® tris-acetate SDS running 

buffer (Invitrogen, Paisley, UK) and run for 35 min at 200 V and 120 mA. 

 

 

2.1.1.5 2-dimensional poly acrylamide gel electrophoresis (2d-PAGE) 
 

2d-PAGE allows for the separation of proteins by both isoelectric point and mass. 

The isoelectric focusing is performed first followed by an SDS gel step for mass 

separation. A 24cm IPG strip with a pH gradient from 4-7 was selected and 

allowed to thaw at room temperature.  Protein samples were re-dissolved in gel 

rehydration buffer solution (8M Urea, 4% w/v CHAPS, 0.0002% w/v bromophenol 

blue) spiked with DTT to a final concentration of 65 mM with a final volume of 

500 µl. The solution was carefully pipetted along the length of an IEF strip 

holder. The plastic covering of the IEF strip was removed and the strip placed 

exposed side down into the protein solution, making sure that the gel is properly 

aligned to receive the cathode and anode of the Ettan™ IPGphor™  3 system (GE 

healthcare, Little Chalfont, UK). Mineral oil was pipetted into the strip holder in 

sufficient quantity to immerse the gel strip and protein solution. The strip holder 

was then loaded into the Ettan™IPGphor™ 3 system and the appropriate program 

selected. The strips were allowed to accumulate 80,000 volt hours over a period 

of 24 hours. 

Gels into which the IPG strips were to be loaded were then cast. Cleaned plates 

(25.5 x 20.5 cm) were loaded into an Ettan™ Dalt II gel caster frame (GE 

healthcare, Little Chalfont, UK) which was then filled with 500ml of acrylamide 

gel solution. DdH2O saturated butanol was pipetted on top of the gel solution in 

order to ensure a level surface upon setting. After 1 hour the butanol was 

removed and replaced with running buffer and the top of the caster apparatus 

sealed with cling film to prevent evaporation. Gels were left overnight at room 
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temperature (around 21 ºC) to set, the following morning the plates containing 

the gels were removed from the caster washed with ddH2O then placed upside 

down in a rack to dry. 

The IPG strips were removed from the Ettan™IPGPhor™ 3 system and equilibrated 

in SDS equilibration buffer (SEB) containing 65 mM DTT. The strips were 

immersed in the solution and subjected to gentle rocking for 15 min.  The 

solution was poured off and replaced with SEB containing 135 mM  

iodoacetamide then the samples gently rocked for a further 15 min.  The IPG 

strips were loaded into the tops of the gels with the barcodes facing outwards 

and on the left hand side. The plates were placed in the ETTAN™ DALT II 

electrophoresis unit and the IPG strips fixed in place with molten agarose. About 

8 litres of SDS running buffer was added to the tank in order to fill the bottom 

compartment. A further 2-3 litres of 2x SDS running buffer was added to ensure 

that the top compartment was full. The lid was fixed in place and the power 

pack set up to deliver 1 watt per gel for a period of 24 hours.  

 

SDS electrophoresis buffer 1x concentration:       Sample Equilibration buffer 

(SEB) 1x concentration: 

25 mM Tris pH 8.8     25 mM Tris-Cl pH 8.8 

250 mM Glycine    30% Glycerol (v/v) 

0.1% SDS (w/v)    1% SDS (w/v) 

       0.01 mg/ml bromophenol blue 

       

Acrylamide gel solution 1x concentration: 

 

12.5% acrylamide 

375 mM tris pH 8.8 

0.1% SDS (w/v) 

1 mg/ml ammonium persulphate 

0.14 µl/ml TEMED 

2.1.1.5.1 Bind silane treatment 
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Gels to be stained were cast in bind silane treated plates. 4 ml of the bind silane 

solution was applied to the cleaned and dried plates. The solution was spread 

evenly over the surface using a lint free tissue lightly wetted with ethanol. 

Bind silane solution 1x concentration: 

     

20% ethanol (v/v) 

1% acetic acid (v/v) 

0.5% bind silane (v/v) 

2.1.1.6 Agilent OFFGEL 3100 Fractionation 
 

Samples from the liver microsome assay were tryptically digested (2.1.1.3) then 

reconstituted in 3.6 ml of OFFGEL buffer (Agilent technologies, Wokingham, UK). 

A 24 cm IPG strip with a gradient of pH 4-7 for each sample was thawed at room 

temperature, peeled then placed into the OFFGEL strip holder with the gel side 

face up. The 24 cm reservoirs were snapped into place and electrode pads 

wetted with OFFGEL buffer solution were put into place at the anode and 

cathode ends of the IPG strips. 40 µl of OFFGEL buffer solution added to each 

reservoir, once 15 min had elapsed the samples were loaded into their 

respective strips and spread equally among all reservoirs. The cover seals were 

put into place and 10 µl of distilled ddH2O was applied to all electrode pads. 

Mineral oil was used to immerse the electrode pads in order to prevent 

dehydration. The fixed and movable electrodes were applied and the assembly 

seated in the OFFGEL 3100 fractionator apparatus (Agilent Technologies, 

Wokingham, UK). The samples were subjected to an electric field of 8000 V at a 

maximum of 50 µA until 50 kVh were accumulated (program 24-PE00). Upon 

completion of the program samples were recovered from the individual 

reservoirs by pipette , dried in a vacuum centrifuge then stored at -20 ˚C until 

needed. 

2.1.1.7 SCX 
 

Separation was performed using a POROS 10S column (inner diameter 300 µm, 

length 15 cm)  (Dionex, Camberly, UK) and an UltiMate 3000® HPLC system 

(Dionex, Camberly , UK) in conjunction with an HTC PAL fraction collector 

(Bruker-Michrom, Auburn, CA, USA). A dual gradient pump supplied a 30 min salt 
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gradient (figure 23) from buffer A (5 mM KH2PO4, 5% v/v MeCN, pH 3.0) and 

Buffer B (5 mM KH2PO4, 5% v/v MeCN, 500mM KCl pH 3.0).  

After tryptic digestion (2.1.1.3) samples were first purified using a C18 SPE 

cartridge (2.1.1.19) in order to remove salt then were reconstituted in 20 µl 

buffer A and loaded into a 96 well plate for injection into the HPLC system. Each 

sample was run through a 60 min gradient at a flow rate of 15 µl/min 

 

Figure 19. 30 minute SCX gradient. 

Fractions were collected continuously into 96 well plates, limited to 3 min per 

well. UV data was collected at 214 nm, 280 nm and was used to characterise the 

complexity of fractions in order to select those amenable to pooling (low 

complexity). 

 

2.1.1.8 Biotin affinity purification 
 

A Softlink™ avidin column (Promega, Southampton, UK) was used for the 

recovery of biotinylated proteins from the microsome preparation. The column 

was first equilibrated with potassium phosphate buffer (pH 7.4). The sample was 

loaded into the column and allowed to flow through.  Once loaded the column 
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was washed with several volumes of equilibration buffer, the washes were 

discarded. A 5 mM biotin solution (in equilibration buffer) was used to elute the 

bound proteins. Recovered fractions were dried down and reconstituted in 25 

mM ammonium bicarbonate solution (pH 8.0) and subjected to a Bradford assay 

for protein concentration determination (2.1.1.1). 

Potassium phosphate buffer (pH 7.4): 

70 mM K2HPO4 

30 mM KH2PO4  

 

2.1.1.9 Delipidation 
 

Samples from the liver microsome assay were centrifuged at 10,000 xg for 10 

min and the supernatant stored. The pellets containing insoluble materials 

including proteins and lipids were resuspended in 1 ml of chloroform. The 

mixtures were shaken at 300 rpm for 1 hour at room temperature. 1 ml of 50% 

v/v methanol, 50% v/v ddH2O was added to each sample followed by 30 min of 

vigorous vortexing at room temperature. Samples were centrifuged at 2,000 rpm 

for 1 min and the lipid enriched chloroform fractions discarded. 1 ml of 

chloroform was added to each sample followed by a 30 min sonication step in an 

ultrasonic bath filled with ice cold water to prevent overheating. Samples were 

again centrifuged at 10,000 rpm and the chloroform layer discarded. Samples 

were then subjected to an acetone precipitation (2.1.1.2.1) step for further 

cleanup then were reconstituted in 2 M urea and 250 mM ammonium bicarbonate 

prior to tryptic digestion.  

 

2.1.1.10 In gel tryptic digestion and peptide extraction 
 

Gel bands were excised and chopped into small pieces. Gel pieces were washed 

for 1 hour in 25 mM ammonium bicarbonate (AmBic) solution (pH 8), after 

washing the solution was discarded. A further 1 hour washing step was carried 

out using a 50% v/v acetonitrile, 50% v/v 100 mM AmBic solution, the solution 

was discarded after washing. Proteins were reduced with the addition of 10 µl of 

45 mM DTT solution and a 30 min incubation at 60 ˚C. Alkylation was carried out 
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with the addition of 10 µl of 100 mM Iodoacetamide solution and a 1 hour 

incubation in darkness at room temperature. The solution was discarded and a 1 

hour wash was carried out using 50% v/v acetonitrile, 100 mM AmBic solution. 

The wash was discarded and 50 µl of acetonitrile was added in order to shrink 

gel pieces. After 10 min the solvent was removed and the pieces dried in a 

vacuum centrifuge. 0.2 µg/µl sequencing grade modified porcine trypsin 

(Promega V111) in 25 mM AmBic solution was added in sufficient volume to 

rehydrate the gel pieces. 25 mM AmBic solution was added, ensuring that the gel 

pieces were fully immersed. Digestion was carried out overnight a 37 ˚C.  

Acetonitrile was added to the digest to 50% v/v and a 20 min incubation was 

carried out. Samples were centrifuged and the supernatants transferred to clean 

tubes. A further extraction step was carried out using 1% v/v formic acid, 99% 

v/v ddH2O then a final extraction was carried out using acetonitrile. The 

supernatants from each extraction were added to those previously collected. 

Samples were dried down in a vacuum centrifuge and subsequently stored at -20 

˚C. 

 

2.1.1.11 Western blotting 
 

The samples of interest were run on 24 cm 2D gels using the protocol described 

(2.1.1.5). The gels were removed from the plates, washed in distilled ddH2O. For 

each of the gels 6 pieces of appropriately sized (equal in size to the gel) blotting 

paper and one piece of PVDF (polyvinylidene fluoride) membrane were 

equilibrated in methanol for 5 min the transferred to distilled ddH2O for 5 min. 

For each gel 3 pieces of blotting paper were placed inside the Amersham 

Pharmacia semi-dry blotter (GE healthcare, Little Chalfont, UK)  followed by the 

PVDF membrane then the final 3 pieces of blotting paper.  The lid of the transfer 

was locked in place and the power supply set to deliver 50 V at 400 mA for 2 

hours. 

Membranes were washed in PBST (0.05% v/v) solution for 5 min 3 times prior to 

blocking for 1 hour  in 500 ml of a powdered milk solution (5% w/v). A further 3 

PBST washes were carried out. The membrane was recovered and placed inside 

an A4 plastic pocket into which 70 ml of the blocking solution spiked with strep-
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HRP (1000:1). The pocket was heat sealed and a 1 hour incubation at room 

temperature on a shaker was carried out. Following this a final 3 5 min washes 

were carried out with the PBST solution. 

Pierce® enhanced chemiluminescence reagents (Thermo Scientific, Rockford, IL, 

USA)) were mixed at a 1:1 ratio, membranes were immersed in the solution for 3 

min. Imaging was carried out in a G:box (Syngene, Cambridge, UK) using the 

―Chem blot‖ program.  The settings allowed for the visualisation of each entire 

membrane and cumulative 30 second exposures (total exposure: 1 hour) were 

made in complete darkness. 

Images of the gels were analysed using the Syngene software. Full size images of 

the gels were printed out for later use. 

 

2.1.1.12 Colloidal Coomassie staining of 1d/2d gels 
 

The bind silane treated gels had their front cover plates removed. The exposed 

gels were then each immersed in 500 ml of colloidal coomassie stain and placed 

on a shaker at 70 rpm for several days. The gels were then washed in distilled 

ddH2O until the background staining had reduced enough to differentiate dyed 

protein spots. 

The coomassie gels were visualised in the G:BOX (Syngene, Cambridge, UK)using 

the standard settings for coomassie stained gels. 

Colloidal Coomassie dye stock: 

0.1% v/v Coomassie brilliant blue G-250 

76 mM  ammonium sulphate 

1.5 % w/v phosphoric acid 

 

Colloidal Coomassie stain:   

80 % v/v Colloidal Coomassie dye stock    

20 % v/v Methanol    
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2.1.1.12.1 Excision of Spots and Subsequent Tryptic Digestion 
 

The gels were stained using a colloidal Coomassie stain (2.1.1.11) The print-outs 

from 2.1.1.11 were used to fix the location of proteins of interest on the stained 

gels i.e. the stained gels were placed on top of the 1:1 scale print outs and the 

regions on interest were highlighted. A round cutting tool was used to extract 

the spots of interest. These spots were then tryptically digested as described in 

2.1.1.10. 

            

2.1.1.13 Saturation DIGE (Analytical) 
 

2.1.1.13.1 HLM assay (Clozapine) 
 

The assay consisted of a preparation of human liver microsomes (HLM), NADPH 

and suitable buffering system. Into this the drug of interest or an equivalent 

volume of DMSO was spiked. The mixture was incubated at 37 ˚C for 1 hour. 

Samples were cleaned up using 3 kDa spin filters. Proteins were recovered from 

the filter using pH 8.0 25 mM ammonium bicarbonate solution. The experimental 

design included 3 negative controls and 3 clozapine treatments with 3 biological 

replicates (batches) for a total of 6 samples. An equal aliquot from each of the 6 

samples was taken and pooled to create a 7th sample that would serve as the 

pooled internal standard. 

 

2.1.1.13.2 DIGE Labelling 
 

Protein concentration was determined by Bradford assay (2.1.1.1) for each of 

the 7 samples. A volume equivalent to 5 µg of protein was taken from each 

sample and dried down in a SpeedVac concentrator. Each of these was then 

made up to a concentration of 1 µg/µl in 25 mM ammonium bicarbonate solution 

at pH 8. 

Samples were labelled with 4 nmol of the appropriate CyDye™ solution, the 

aturation dyes used had maleimide reactive groups,  (GE healthcare, Little 

Chalfont, UK) at 37 °C for 30 min in the dark. The reaction was stopped by the 
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addition of 2x sample buffer (7 M urea, 2 M thiourea, 4% w/v CHAPS, 2% v/v 

pharmalytes and 130 mM DTT) equal to the reaction volume. 

 

2.1.1.13.3 IEF 

Samples were combined (Cy3 and Cy5 pairs), made up to volume in rehydration 

buffer and loaded onto the appropriate gel strips. The strips were loaded onto 

an Ettan™ IPGphor™ 3 system and a standard DIGE program was run. 

 

Table 1. Identification of experimental conditions in relation to IPG gel 

number. 

Gel No. (Sample) Pooled 

62244 (1) Cy 3 Cy 5 

62245 (2) Cy 3 Cy 5 

62246 (3) Cy 3 Cy 5 

62247 (4) Cy 3 Cy 5 

62248 (5) Cy 3 Cy 5 

62249 (6) Cy 3 Cy 5 

62250 (1) Cy 5 Cy 3 

62251 (2) Cy 5 Cy 3 

62252 (3) Cy 5 Cy 3 

62253 (4) Cy 5 Cy 3 

62254 (5) Cy 5 Cy 3 

62255 (6) Cy 5 Cy 3 

 

2.1.1.13.4 SDS-PAGE 
 

The IPG strips were recovered from the Ettan™ IPGphor™ 3 system and treated 

with SDS equilibration buffer (SEB) spiked with 65 mM DTT for 15 min. 

Subsequently the buffer was emptied and replaced with SEB spiked with 135 mM 

Iodoacetamide and incubated for 15 min. The IPG strips were removed and 
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loaded onto prepared 2d gels (2.1.1.5), the strips were fixed in place with 

agarose. The gels were loaded and run for 16 hours (1W per gel). 

 

2.1.1.13.5 Scanning of gels 
 

Gels were imaged using a 9400 Typhoon scanner (GE healthcare, Little Chalfont, 

UK) .  Each gel was scanned using the green laser (580 nm) for Cy3 and red laser 

(650 nm) for Cy5. The resolution was set to 100 microns/pixel. 

 

2.1.1.13.6 Analysis of DIGE images 
 

The 24 captured images (12 samples each with Cy3 and Cy5 images) were 

analysed using the proprietary DeCyder™ 7.0 software (GE healthcare, Little 

Chalfont, UK). Images were manually cropped in order to remove any obvious 

background noise at the extreme edges. The software matching algorithm was 

(DIA module) then applied in order to correlate spots across all of the different 

gel images. In order to ensure as complete matching as was possible some time 

was then spent in manually matching spots that had been missed by the software. 

The biological variance analysis (BVA) module of the DeCyder™ program was used 

to assign statistical values to changes in protein concentrations across the gels 

with Clozapine treated images being compared to untreated images. A table was 

compiled of any statistically significant (p<0.05) decreases in intensity in the 

treated samples vs. untreated. 

 

2.1.1.14 Preparative DIGE 
 

 

2.1.1.14.1 HLM assay 
 

The assay consisted of a preparation of human liver microsomes (HLM) (0.5ml 

Pooled human liver microsomes at a concentration of 20 mg/ml)(BD Biosciences, 

UK), NADPH and suitable buffering system. Into this the drug of interest was 
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spiked. The mixture was incubated at 37 ˚C for 1 hour. A sample was run with 

the inclusion of GSH as a positive control to ensure adduct formation, the 

sample to be run ion the preparative DiGE experiment did not contain GSH. The 

final assay concentrations were as follows: HLM 0.5g/ml, NADPH 1mM, MeOH 1.5% 

v/v, GSH 4mM (positive control only) and Clozapine 10µM. Samples were cleaned 

up using 3 kDa spin filters. Proteins were recovered from the filter using pH 8.0 

25 mM ammonium bicarbonate solution. 

2.1.1.14.2 DiGE  
 

The preparative CyDye™ (Cy3) was made up to a 20 mM working solution as 

specified in the supplied protocol (Amersham CyDye DIGE Fluor Libelling Kit for 

Scarce Samples). 250 µl of the 2 mg/ml sample was loaded into a fresh 

microfuge tube to which 20 µl of 20mM Cy3 saturation dye was added and mixed 

vigorously by pipetting. The sample was centrifuged briefly then incubated at 37 

˚C in the dark for 30 min. The reaction was stopped with the addition of 175.5 µl 

of 1x sample buffer (DTT/pharmalytes free) and vigorous mixing. 4.5 µl of pH 4-7 

pharmalytes were added followed by mixing. 4.5 mg of DTT was added and a 

final mixing was administered. IEF, SDS-PAGE and scanning of gels was carried 

out.  

 

2.1.1.14.8 Excision of spots from the preparatory DiGE gel 
 

Scanning of the preparatory gel was carried out as described in 2.1.1.13.5. The 

image was loaded into DeCyder‘s DIA module as both a Cy3 and Cy5 channel and 

spot identification carried out. The resulting data was then entered into the BVA 

module and spot identification was carried out against the gel images loaded 

from the analytical DiGE experiments. Spots were added to a pick list which was 

then exported to the Spot Handling Workstation (Amersham Biosciences, UK). 

The gel was loaded into the robot and spots were then picked automatically. The 

large picking head (2.0mm) was used. 

 

2.1.1.15 GSH trapping assay 
 



75 
 

Glutathione was used to trap the reactive metabolites produced from drugs 

using a human liver microsome (BD Biosciences) system. The reaction mixture 

comprised 200mM potassium phosphate buffer pH 7.4, 0.5mg/ml human hepatic 

microsomes, 10µM clozapine, 1mM NADPH, 4mM GSH, 1.5% v/v acetonitrile and 

0.1% v/v DMSO. Negative controls were run each without either clozapine, 

NADPH or GSH. The reaction mixtures were pre-heated to 37 ˚C for 10 min in a 

shaking water bath prior to the addition of NADPH. After an hour at 37 ˚C the 

reactions were terminated with the addition of ice cold acetonitrile to 50% v/v. 

The reaction mixtures were cooled on ice for 15 min then centrifuged at 

4000rpm for 10 min at 10 ˚C. The samples were cleaned up using a C18 solid 

phase extraction cartridge (detailed in 2.1.1.19) then dried down in a vacuum 

centrifuge for storage at -20˚C. 

Prior to use samples were reconstituted in buffer A (2% v/v acetonitrile, 98% v/v 

ddH2O, 0.1% v/v formic acid). 

 

0.5 M Potassium phosphate buffer pH 7.4  

359 mM    K2HPO4 

141 mM    KH2PO4 

 

2.1.1.16 Liver microsome assay with synthetic peptides 
 

The assay is carried out as described in 2.1.1.15 without the acetonitrile precipitation 

(with the exception of the positive control). The reaction mixtures contained 200mM 

potassium phosphate buffer pH 7.4, 0.5 mg/ml human hepatic microsomes, 10µM 

clozapine, 1 mM NADPH, 1 nM Synthetic peptide (1, 2 or 3), 1.5 % v/v acetonitrile and 

0.1 % v/v DMSO. The positive control was run with 4mM glutathione in place of the 

synthetic peptide. 

The sample supernatants were subjected to affinity purification as detailed in (2.1.1.8). 

  

2.1.1.17 Liver Microsome Assay for SCX, OFFGEL and GeLC 
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The assay is carried out as described in 2.1.1.16 without the acetonitrile precipitation, 

centrifugation and RP C18 cartridge clean up. Two reaction mixtures were run for each 

of the separation approaches one containing 200 mM potassium phosphate buffer pH 7.4, 

0.5 mg/ml human hepatic microsomes, 10 µM clozapine, 1 mM NADPH, 1.5 % v/v 

acetonitrile and 0.1 % v/v DMSO. The other contained the same minus the clozapine. 

The samples for GeLC were stored at -20 ˚C. The others were subjected to the 

delipidation protocol detailed in 2.1.1.9. 

 

2.1.1.18 Liver Microsome Assay With Other Drugs 
 

The drugs clozapine, imipramine, tacrine, naproxen and acetaminophen were 

metabolised and their metabolites subsequently trapped using the assay described in 

2.1.1.16. Two reaction mixtures were used for each drug, one containing 200 mM 

potassium phosphate buffer pH 7.4, 0.5 mg/ml human hepatic microsomes, 10 µM drug, 

1 mM NADPH, 1.5 % v/v acetonitrile and 0.1 % v/v DMSO. The other contained the same 

minus the clozapine. 

 

2.1.1.19 Solid phase extraction (SPE) 
 

Sep-Pak reverse phased C18 cartridges (Waters, Hertfordshire, UK) were wetted 

using 6 cartridge volumes of acetonitrile. The cartridges were then equilibrated 

with a further 6 cartridge volumes of a 5% v/v acetonitrile, 95% v/v ddH2O 

solution. Samples were then loaded onto the cartridge in buffer A (2% v/v MeCN, 

98% v/v ddH2O, 0.1% v/v Formic acid). Washing was achieved by flushing the 

cartridge with several volumes of the 5% v/v acetonitrile solution. 2 ml of an 80% 

v/v acetonitrile, 20% v/v ddH2O was then injected to elute proteins from the 

cartridge. The elutions were collected and dried in a vacuum centrifuge. The 

samples were reconstituted in 200 µl of buffer A. 

2.1.2 Mass Spectrometry and HPLC 
 

 

2.1.2.1 Direct Injection Optimization of Collision Energy for Precursor 
Ion Scanning 
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Peptides 1-3  were suspended in a 50% v/v methanol, 49.9% v/v ddH2O solution 

spiked with 0.1% v/v formic acid at a final concentration of 1pg/ul. 

Approximately 10 µl of sample was pipetted into a Proxeon direct injection 

needle (Thermo Scientific, UK) loaded into a centrifuge fitting and briefly spun. 

The needle was then removed from the fitting, the end removed using a 

diamond edged cutting tool and mounted in the API 2000™ (AB SCIEX, Warrington, 

UK) direct injection assembly. Backpressure was applied to the needle via a 

syringe fitting; the needle tip was carefully broken in order to allow for 

electrospraying of the sample. Data was gathered for each sample in both +EMS 

mode and +EPI mode at a range of collision energies (30 eV, 40 eV and 50 eV). 

The intensity of the fragment ion at 359.1 m/z was monitored, collision energies 

were adjusted down from 50 eV to 45 eV in increments of 1 eV. It was found that 

for all 3 peptides tested a collision energy of 47 eV related to the highest 

intensity in the target ion at 359.1 m/z. Automatic optimisation of other 

parameters were carried out using the Analyst software. The following values 

were used: 

CAD: -3, Curtain gas (CUR):  20, GS1: 10, GS2: 0, Interface heater temperature 

(IHT): 150, Collision cell exit potential (CXP): 12, Declustering potential (DP): 

100, Entrance potential (EP): 10 

 

2.1.2.2 Reversed phase liquid chromatography –UV-mass spectrometry 
 

Samples were reconstituted in buffer A (97.9% v/v ddH2O, 2% v/v MeCN, 0.1% v/v 

formic acid), loaded into 96 well plates or individual glass vials and mounted in 

the autosampler of an UltiMate® 3000 HPLC system. 2 µl of sample was injected 

into a 20 µl sample loop, from there onto a 300 µm i.d. x 5 mm  C18 guard 

column (5 µm, 100 Å)  at a flow rate of 30 µl/min using buffer C (97.9% v/v 

ddH2O, 2% v/v MeCN, 0.1% v/v trifluoroacetic acid) as a loading buffer, after 5 

min the valves were switched and a 30 min gradient was applied with a flow rate 

of 300 nl/min (a 1000:1 flow splitter was installed in the UltiMate® 3000 system). 

Buffer B composition was as follows: 80% v/v MeCN, 19.9% v/v ddH2O, 0.1% v/v 

formic acid. 
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Figure 20. The reversed phase 30 minute gradient used in HPLC experiments. 

A 75 µm i.d. x 15 cm Pepmap 100 C18 column (3 µm, 100 Å) was used for peptide 

separations. The column output was linked to an UltiMate® UV detector which in 

turn was connected to a PicoTip®(New Objective, Basingstoke, UK) fused silica 

emitter (i.d. 20 µm) connected to an API 2000™, 4000™ or 5500™ Q-trap via a 

nanospray source interface. The UltiMate® 3000 flow manager (FLM) unit 10 port 

switching valve was configured as shown in figure 25.  It should be noted that 

the re-equilibration time (from 55-60 min; 5 min total (Fig 24)) was too short, 

and a length of at least 10 min should be applied. 
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Figure 21. FLM 10 port switching valve configuration. In the 1-2 position 

samples is loaded onto the guard column. In the 10-1 position the sample is 

eluted from the guard column on to the column and subsequently the mass 

spectrometer. HF refers to high flow (30 µl/min), LF refers to low flow (300 

nl/min). 

UV data was collected on two channels at 214 nm and 280 nm. MS data was 

acquired using Analyst software package and a variety of acquisition methods 

detailed as follows. 

 

2.1.2.3 Information dependant acquisition (IDA) of MS/MS (API 5500™) 
 

An information dependant acquisition method was written to obtain data from 

samples based on the most intense peak as identified by a survey MS scan and 

fragmented by collision induced dissociation (CID) at a collision energy based on 

the mass and charge state of the ion based on data from an enhanced resolution 

(+ER) MS survey scan. The instrument‘s ion spray voltage was set to 2300 v, the 

collision gas to 20 and the interface heater to 150 ˚C. An EMS (enhanced mass 

spectrum) scan was set to analyse from 300-1000 m/z at a step size of 0.12 m/z. 
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An ER (enhanced resolution) scan was carried out with a step size of 0.02 m/z 

for the identification of charge states. An IDA (information dependant 

acquisition) step was added to allow for the exclusion of ions for 60 seconds 

after two subsequent MS/MS events.  Three EPI (enhanced precursor ion) 

experiments were carried out, each scanning from 50-1000 m/z with a step size 

of 0.12 m/z. The total cycle time was 1.5 seconds. 

 

2.1.2.4 NL129 scanning method (API 4000™) 
 

The neutral loss scanning approach looks for a characteristic loss of mass 

between the first and third quadrupoles. The instrument‘s ion spray voltage was 

set to 2000 v, curtain gas to 20 and the interface heater to 150 ˚C. Experiment 

one was set to a neutral loss of 129 m/z with a step size of 1 m/z covering the 

mass range 300-650 m/z with a collision energy of 40 eV. The second experiment 

was set to ER (enhanced resolution) with a step size of 0.03 m/z. Experiments 3-

5 were EPI (enhanced product ion) scans of ions identified in the ER experiment. 

The mass range covered was 50-1500 m/z with a step size of 0.12 m/z. The total 

cycle time was 4.3 seconds. 

 

2.1.2.5 Selective precursor ion scanning (API 4000™ and API 5500™) 
 

The precursor ion scanning approach is used to detect ions that upon CID 

produce a characteristic fragment of interest. Work was carried out using an API 

4000™ Q-trap instrument coupled to an UltiMate® 3000 HPLC system. The flow 

rate was 300 nl/min over a period of 40 min with a linear gradient. 6µl of sample 

was loaded onto the guard column, equilibrated there and washed with buffer A 

(2% v/v MeCN, 98% v/v ddH2O, 0.1% v/v Formic acid)for a period of 5 min prior 

to elution. Data acquisition was managed using the Analyst software (AB SCIEX, 

Warrington, UK). Briefly, the instrument was set to positive precursor scan for 

an m/z of 359 with a collision energy of 47 eV (2.1.2.1) and a curtain gas of 20; 

data was collected in peak hopping mode with a step size of 1 m/z unit over the 

range 450-1400 m/z. Subsequently the instrument was set to ER (enhanced 

resolution) mode to gather high resolution MS data at a step size of 0.03 m/z. 
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Three EPI (enhanced product ion) scans were then carried out with a step size of 

0.12 m/z from 100-1400 m/z. Each cycle lasted for 4.3 seconds allowing for 480 

cycles per LC run. 

These experiments were also run using the API 5500™ Q-trap. Settings were 

modified to better suit the characteristics of the instrument.  Briefly, the mass 

arrange scanned was changed to 400-1000 m/z and the EPI experiments were run 

at a faster scan rate allowing for a total cycle time of just 2.8 seconds. 

 

2.1.2.6 Selective precursor scanning in the negative ion mode 
 

Previous work has indicated that scanning for a precursor of 272 m/z in the 

negative ion mode is a sensitive method for the detection of glutathione-drug 

conjugates. In addition to the system specified in (2.1.2.2) an additional pump 

was used to introduce a 20% v/v methanol 80% v/v isopropyl alcohol (IPA) 

solution to the column output via a t-piece junction prior to electrospray 

ionisation.  The IPA solution was set to flow at 100 nl/min and is required in 

order to ensure a stable current during negative ion mode electrospray, an 

ACCURATE® flow splitter(LC Packings/Dionex, Camberly, UK)  was used to 

ensure a stable flow rate. A PicoTip™ fused silica emitter type FS360 75 xx 15 

(New Objective, Basingstoke, UK) was used to reduce arcing and allow for an 

increased needle lifespan.  

The instrument was set to –PI (negative precursor ion) mode with an ion spray 

voltage of -1750 v, curtain gas of 20 and a settle time of 700 ms. Subsequently a 

–ER (negative enhanced resolution) scan was carried out at a rate of 250 (m/z)/s 

at a resolution of 0.03 m/z. An IDA scan (information dependant acquisition) 

step was carried out to select ions for MS/MS experiments. Ions were allowed to 

be fragmented twice before being added to an exclusion list for 60 seconds. 

Three +EPI (enhanced product ion) experiments were carried out per cycle 

across the mass range 50-1500 m/z with a step size of 0.12 m/z and a scan rate 

of 4000 (m/z)/s. The total cycle length was 3 seconds, sufficient to sample data 

from a single peptide peak up to 10 times across a peak width of 30s (measured 

at 10% of full height. 
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2.1.2.7 Precursor ion scanning of 574 m/z (API 5500™) 
 

The method was identical to that described in 2.1.2.5 but with the product mass 

set to 574 m/z. 

 

2.1.3 Molecular biology 
 

 

2.1.3.1 Transformation of E.coli with plasmid 
 

E.coli BL21 (DE-3) cells were selected for transformation due to their high levels 

of protein expression. BL21 (DE-3) cells have an IPTG inducible T7 RNA 

polymerase gene which on induction leads to the processing of the plasmid gene 

of interest (His-ERK2). Cells were treated with 100 mM Calcium chloride (CaCl2) 

to increase membrane permeability. 1 µl of plasmid (His-ERK2 with ampicillin 

resistance) was added to 100 µl of the cells and allowed to incubate for 30 min 

on ice. The cells underwent heatshock at 42 ˚C for 90 seconds then were cooled 

on ice for a further 5 min.  0.5 ml of broth was added with an incubation period 

of 1 hour at 37 ˚C. The cells were then spread onto an agar plate and stored at 

37 ˚C until colonies became visible.  

 

Broth (pH 7.0) :                                           Agar plate: 

1 % w/v bacto-tryptone   Broth 

0.5 % w/v bacto-yeast extract   0.0001% v/v ampicillin solution 

171 mM  NaCl    1.5 % w/v agar 

 

 

2.1.3.2 Colony selection and protein expression 
 

Plates were inspected for signs of contamination. A suitable colony was selected 

and added to 5 ml of LB broth spiked with 5 µl of 100 mg/ml ampicillin. A 
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replicate of the LB solution minus the addition of BL21 cells was used to act as a 

control. The samples were placed in a shaking incubator and stored overnight at 

37 ˚C. The next morning the cultures were moved to the fridge if the control 

sample is negative, if it has growth then the work must be started over. The 

cells were stored in the fridge until noon then 1ml of the culture was extracted 

and used to inoculate 100 ml of overnight express™ medium containing 100 µl of 

ampicillin. A 4 hour incubation period at 37 ˚C in a shaking incubator was 

carried out. The temperature in the incubator was then lowered to 25 ˚C and 

the cells left to shake overnight. The culture was split into two 50 ml conical 

tubes and centrifuged at 4000 rpm at 4 ˚C for 30 min. The supernatant was 

discarded and the pellets stored at -80 ˚C. The Overnight Express™ system 

spontaneously induces protein expression in  IPTG-inducible bacterial expression 

systems. This occurs after cells have grown to a high density and does not 

require the addition of any further inducers. 

 

Overnight express™ medium: 

6% w/v overnight express medium (Millipore 

1 % w/v glycerol (sterile) 

0.0001% w/v ampicillin 

 

2.1.3.3 Recovery of protein 
 

The pellets were removed from the -80 ˚C and allowed to thaw at room 

temperature then were resuspended in 5 ml of resuspension buffer (20 mg 

lyzosyme/20 ml of lysis buffer, 2 protease tablets). Samples were cooled on ice 

for 30 min prior to short bursts of sonication interspersed with cooling on ice for 

a total of around 15 min. The tubes were centrifuged at 4000 rpm and the lysate 

filtered through a 0.22 µm filter. The lysate was then loaded onto a His-select 

nickel affinity gel (Sigma, Dorset, UK) packed column prewashed with 

equilibration buffer. A 1 hour incubation period was carried out at room 

temperature then the lysate was allowed to flow through the column. 3 10 ml 

washes were carried out using the wash buffer solution followed by 5 1 ml 

elutions were carried out using the elution buffer solution. All fractions were 
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collected and samples analysed by 1d PAGE. Fractions bearing the His-ERK2 

protein were pooled and protein concentration was determined by Bradford 

assay. 

1x TBS (pH 7.4):     His-tag elution buffer (pH 8.0): 

365 mM NaCl      250 mM imidazole in 1xTBS  

27 mM KCl     

248 mM tris Base 

 

HIS-tag wash buffer (pH 8.0):    Lysis buffer (pH 8.0): 

20 mM imidazole in 1xTBS    10 mM imidazole in 1xTBS  

       1mg/ml Lysozyme 

 

2.1.4 Bioinformatics 
 

 

2.1.4.1 In silico protein digestion 
 

The MS-DIGEST tool found at 

http://prospector.ucsf.edu/prospector/mshome.htm was used to carry out in-

silico digestion of proteins of interest.  

 

 

2.1.4.2 In silico collision induced dissociation 
 

The MS-Product tool at http://prospector.ucsf.edu/prospector/mshome.htm was 

used to simulate in-silico the collision induced dissociation fragments of the 

three synthetic peptides. The relevant amino acid sequences were entered along 

with an N-terminal biotinylation.  Ion types b and y were selected and the 

program run. The theoretical peak table was recorded for each synthetic 

polypeptide.  

http://prospector.ucsf.edu/prospector/mshome.htm
http://prospector.ucsf.edu/prospector/mshome.htm
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2.1.4.3 Mascot 
 

The  Mascot search engine (http://www.matrixscience.com/) installed in-house 

on a Glasgow University server was used to identify proteins and modifications 

from mass spectrometric data. MS/MS ion searches were carried out against the 

Swissprot (version 56.6; 405506 sequences; 146166984 residues) genomic protein 

database against the human (homo sapiens) taxon (20413 sequences), the file of 

interest was selected along with the fixed modification of Carbamidomethyl (C) 

and the variable modification of Oxidation (M). When searching files with 

suspected protein-drug adducts no fixed modifications were selected, both 

Carbamidomethyl  (C) and Oxidation (M) were selected as variable modifications 

along with relevant metabolite based modifications (Clozapine1 – 5 (C)). The 

enzyme used for digestion was set to trypsin and the possibility of 1 missed 

cleavage allowed for. Peptide tolerance was set to +/- 2 Da with MS/MS 

tolerance set to +/-0.6 Da. Peptide charge was set to 1+, 2+ and 3+ and 

monoisotopic mass was selected. The instrument type was set to ESI-QUAD. 

Data files from the SCX and OFFGEL separation experiments were combined 

using the peaklist conversion tool  (Proteomecommons.org IO framework 6.21) in 

order to improve protein identifications and sequence coverage. 

 

2.1.4.4 3D protein analysis (DEEPVIEW) 
 

The DeepView (Swiss-PdbViewer) software was downloaded from 

http://spdbv.vital-it.ch/ and installed. The proteins of interest were located in 

the Swissprot database and the most detailed x-ray crystallographic or NMR 

based 3d structural file (*.PDB) downloaded.  The image was loaded into 

DeepView, the cysteine residues highlighted and those not involved in disulfide 

bridge formation identified. Those unpaired residues located at the surface of 

the protein, and as such potentially reactive, were noted. 

 

http://www.matrixscience.com/
http://spdbv.vital-it.ch/
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2.1.4.5 Identification of membrane associated proteins 
 

Protein identifications obtained from the Mascot search provided 

UniProtKB/Swiss-Prot accession numbers. An exhaustive list for each separation 

type was compiled and their associated FASTA files recovered from Uniprot 

(http://www.uniprot.org/). The FASTA files were submitted to the TMHMM 

server (http://www.cbs.dtu.dk/services/TMHMM-2.0/) for analysis. 

 

2.1.4.6 Identification of potential electrophile binding motifs 
 

FASTA files of proteins of interest were uploaded to the program motif_HUNTER 

(http://proteotools.pharmacy.arizona.edu/proteotools/motif.jsp). The KK, K?K, 

CH, HC, CR, RC, KC, CK were submitted as search terms. K represents lysine, C 

cysteine, H histidine and R arginine. The ? represents a wild card operator which 

allows for the presence of any amino acid.  

 

2.1.5 Chemistry 
 

2.1.5.1 Biotinylation of N-desmethyl clozapine 
 

1 mg of N-desmethylclozapine and 6.6 mg of pentafluorophenyl biotin (PFP-

biotin) was added to 100 µl of anhydrous DMSO.  The solution was allowed to 

incubate overnight at room temperature. The unreacted PFP-biotin was 

quenched with the addition of lysine at an equimolar concentration. Anhydrous 

DMSO was added to the mixture to give a final concentration of biotinylated N-

desmethylclozapine of 10 mM. The resulting solution was then purified by HPLC 

in order to separate biotinylated and unbiotinylated drug. 

 

2.1.5.1  Purification of biotinylated desmethylclozapine (bDMC) 
 

Products of the reaction were separate using an HPLC system equipped with a 

C18 reverse phase column and a UV detector. Fractions were collected as called 

http://www.uniprot.org/
http://www.cbs.dtu.dk/services/TMHMM-2.0/
http://proteotools.pharmacy.arizona.edu/proteotools/motif.jsp


87 
 

for by the UV trace (channels: 214nm, 254nm) and were analysed by mass 

spectrometry. The fraction containing biotinylated desmethylclozapine was 

retained (this fraction had a m/z value DMC plus that of biotin) and dried in a 

SpeedVac evaporator. The bDMC was reconstituted in DMSO and stored at 4 ˚C. 

 

 

2.1.6 Materials 
 

Unless stated otherwise all chemicals and reagents were acquired from Sigma 

Aldrich, UK. 

 

 

Chapter 3:  Trapping of Reactive Metabolites 
 
3.1 Aims 
 

An important step in determining the potential toxicity of a given new chemical 

entity (NCE) is to identify its metabolites. Triple quadrupole instruments are 

uniquely suited to this task with their highly selective neutral loss and precursor 

ion scanning modes being able to identify low abundance ions against the 

background of complex samples.  

 

The following work focused on the identification of the metabolites of various 

drugs and the design of a selective precursor ion scan for the detection of said 

metabolites when conjugated with polypeptides. 

The aims of the work carried out in this chapter were as follows: 

1) The formation and trapping of drug metabolites in a liver microsome 

system spiked with glutathione. 

2) Recovery of metabolite-glutathione adducts and their subsequent analysis 

by LC-MS for the identification of potential precursor ions through 

examination of CID fragmentation patterns. 
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3) Formation of metabolite-peptide adducts and their detection by LC-MS 

using the precursor ion scan. 

 

3.2 Introduction 
 

The simplest method for the generation of reactive metabolites is a direct 

chemical synthesis. Work carried out by Damsten et al (2007) demonstrated the 

ability to synthesise NAPQI through the treatment of APAP with freshly prepared 

silver oxide. They went on to demonstrate that incubating NAPQI with human 

serum albumin lead to the formation of NAPQI-HSA conjugates. Detection of 

these conjugations was possible using liquid chromatography mass spectrometry 

following enzymatic digestion of the modified HSA. This system was found to 

generate biologically accurate metabolites and protein adducts whilst 

maintaining an extremely simple chemical background suitable for study and 

further method development.  

However it is not always the case that such a straightforward synthesis of 

reactive metabolites is possible. Phase I metabolism of  drug molecules typically 

results in a variety of structurally distinct metabolites (Linnet and Olesen, 1997; 

Davis et al., 1995; Hinson, 1983; Lemoine et al., 1993; Zheng et al., 2011). A 

single chemical synthetic pathway is not capable of producing the wide variety 

of biologically mediated metabolites; therefore a range of different reactions 

must be used to ensure similar diversity. More importantly metabolism of a drug 

will produce the various metabolites at differing concentrations (Lemoine et al., 

1993) which would most likely lead to particular protein modification profiles. In 

addition, the nature of a synthetic metabolite must be compared to a biological 

counterpart in order to verify its authenticity and usefulness as part of a model 

system. 

Another approach involved the use of an electrochemical cell to mimic 

cytochrome P450 activity and lead to the successful detection of various drug 

metabolites (Jurva et al., 2003). However it was found that only one-electron 

oxidations could be produced resulting in hydroxylation of aromatics, oxidation 

of alcohols to aldehydes, S- and P- oxidation and N-dealkylation of amines.  The 

strength of the technique is more limited to the identification of labile oxidation 
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sites of drug molecules rather than the accurate simulation of metabolism 

(Baumann and Karst, 2010). As such the system is not particularly useful for the 

identification of protein adducts.   

A liver microsome system can be used to produce a wide range of metabolites 

from a given xenobiotic molecule. And although metabolism in a liver microsome 

system cannot produce the full range of metabolites produced in vivo (Rufer et 

al., 2007; Di et al., 2012) it can produce a comparable range of cytochrome P450 

mediated metabolites (Di et al., 2012). The tripeptide glutathione (GSH) acts as 

a sink for a wide range of electrophilic metabolites (Jakoby, 1990; Boyland, 

2006). The reduced form of the molecule (GSH) possesses a cysteine residue with 

a reactive sulfhydral side group allowing for the formation of glutathione-

metabolite adduct formation. Glutathione adducts are readily formed in vitro 

using a simple assay and are easily recovered using an acetonitrile protein 

precipitation step.  Using a triple quadrupole instrument, it is possible to detect 

metabolite-glutathione adducts using a highly selective neutral loss scan (Baillie 

and Davis, 1993; Yan and Caldwell 2004), precursor ion scan (Wen et al., 2008) 

or multiple reaction monitoring (SRM) (Zheng et al., 2007) . MS/MS scans of 

candidate ions reveal CID fragmentation information that can be used to 

characterise metabolites.  

The formation of glutathione adducts is a highly efficient process mediated by 

the enzyme glutathione S-transferase (Coles, 1984; Booth et al., 

1961).Consequently a glutathione based system   can‘t accurately model the 

stochastic electrophilic attack of proteins . In order to more accurately model 

this process three synthetic peptides were designed (1.1.5.4). Data from the 

glutathione trapping assay was used to identify CID fragments of metabolite-

glutathione adducts, based on metabolite structural information,  that could be 

used to create a selective precursor ion scan. The selectivity of the precursor ion 

scan acts to distinguish modified from unmodified molecules and to isolate these 

from the highly complex background present in a liver microsome system (Annan 

et al., 2001; Zappacosta et al., 2002; Williamson et al., 2006). 

The workflow thus comprised (i) glutathione trapping of reactive metabolites; (ii) 

MS/MS based characterisation of metabolites; (iii) design of suitable synthetic 

peptides; (iv) identification of characteristic metabolite ions; (v) liver 
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microsome assay spiked with synthetic peptides then searched using the 

precursor ion scan. 

 

3.3 Methods and Materials 
 

3.3.1 Glutathione Trapping Assay 
 

Clozapine was incubated with glutathione and rat liver microsomes in order to 

generate and capture its reactive metabolites. After an incubation period of 1 

hour the reaction was stopped with the addition of ice cold acetonitrile. The 

resultant solution was centrifuged and the supernatant retained. Cleaning of the 

sample was carried out using C18 reverse phase Sep-Pak cartridges (2.1.1.19). 

After cleaning, the sample was evaporated to dryness using a rotaevaporator. 

400 µ l of buffer A was used to reconstitute the sample. For a more detailed 

account see (2.1.1.15). 

 

3.3.2 Analysis of Assay Products by LC-UV-MS (NL129) 
 

Samples were reconstituted in 1ml of buffer A (95% v/v ddH2O, 4.9% MeCN, 0.1% 

FA) and 1 µl  loaded into a 96 well plate with a further 19 µ l of buffer A. The 

plate was loaded into the autosampler of the UltiMate® 3000 HPLC system 

(Dionex) coupled to a Q-trap 4000™ (Applied Biosystems) mass spectrometer. A 

60 min reverse phase gradient was run (2.1.2.2) and mass spectrometric data 

was gathered using a combination of a NL129 scan and MS/MS 

experiments(2.1.2.3 and 2.1.2.4). The data was manually inspected for the 

presence of metabolite glutathione adducts and the presence of ions with 

potential for use as precursor ion scanning targets. 

 

3.3.3 Analysis of Assay Products by LC-UV-MS (PI272) 
 

The drugs clozapine, tacrine, naproxen and imipramine were spiked into the  

glutathione trapping assay as described in (2.1.1.18). The products of the assay 
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were analysed by LC-UV-MS (PI272) running the Q-trap in the negative ion mode 

(2.1.2.6). UV data and MS data were manually analysed in order to identify 

possible metabolite glutathione adducts. Tandem mass spectrometric (MS/MS) 

data from these experiments was used to characterise adducts and examine 

fragment ions for potentially useful precursors. 

 

3.3.4 Identification of Clozapine Glutathione Adducts Using a PI359 Scan 
 

Clozapine modified glutathione was analysed by LC-UV-MS using an MS program 

designed to identify precursor ions giving rise to fragments with m/z 359 

(2.1.2.5). The experiment was carried out on an API 4000™ model Q-trap.  

 

3.3.5 Design of Synthetic Peptides 
 

KEAP1 and two cytochrome P450 enzymes (isoforms A and B) were selected for 

the reasons previously detailed (1.1.5.4), the protein sequences were 

downloaded from the Swissprot database and subjected to an in silico tryptic 

digestion. The virtual digests were manually analysed and peptide fragments 

fitting the aforementioned criteria were selected for synthesis (Peptide 

Synthetics, Fareham, UK). In order to afford effective recovery from the 

complex background of the microsome assay the peptide sequences were N-

terminally biotinylated.  

 

3.3.6 Mass Spectrometric Characterisation of Synthetic Peptides  
 

Peptides were reconstituted in a 50% v/v methanol, 50% v/v distilled water 

solution spiked with 0.1% v/v formic acid. 100 µl of the solution was loaded into 

a glass syringe that was then placed in a syringe drive and interfaced to an HCT 

ion trap (Bruker Daltonics, Bremen, Germany) mass spectrometer. A Proxeon 

steel needle was used for the electrospraying of the solution supplied at a rate 

of 5 µl/min by the syringe pump. Data was accumulated using Bruker‘s Compass 

software. Mass spectrometric data and subsequent CID fragmentation based 



92 
 

MS/MS data was recorded and analysed. Samples were again analysed using the 

API 4000™ Q-trap in direct injection mode (2.1.2.1) in order to obtain data on 

the low mass ions that could not be observed in the ion trap. For 

 

3.3.7 Clozapine Synthetic Peptide Adducts Formation and Detection 
 

A variation on the standard glutathione trapping assay was run with synthetic 

peptides acting as a replacement for glutathione (2.1.1.16). The peptides were 

recovered from the assay by affinity purification using an avidin functionalised 

column (2.1.1.8). Once reconstituted in buffer A the samples were analysed by 

LC-MS as previously described. An API 4000™ (Applied Biosystems) was used for 

mass spectrometric analysis; the previously established PI359 scan (2.1.2.5) was 

selected.  Data obtained from these runs was manually analysed and de novo 

sequencing of the peptides was carried out and metabolite bearing fragments 

identified. 

 

3.3.8 Reduction and Alkylation of Modified Peptides 
 

Peptide samples recovered from the liver microsome assay by avidin purification 

were reconstituted into 50 µl of a 25 mM ammonium bicarbonate solution (pH 

8.0). 5 µl of 50 mM DTT solution was added to 25 µl of each of the peptide 

solutions. After a 30 min incubation period at 60 ˚C 5 µl of 100 mM 

Iodoacetamide solution was added. A further incubation was carried out at room 

temperature for 15 min in the dark. Samples were dried in a vacuum centrifuge 

before being reconstituted in 1 ml of buffer A. 2 µl of each sample was loaded 

into a 96 well plate before undergoing LC-MS analysis as described in (2.1.2.2). 

The instrument used for MS analysis (2.1.2.3 and 2.1.2.5) was an API 4000™ Q-

trap. 

 

3.4 Results 
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3.4.1 Characterisation of Metabolites by GSH Trapping and the NL129 Scan 
 

The Q-trap instrument offers the unique highly selective scanning modes, 

neutral loss/precursor ion/multiple reaction monitoring, of a triple quadrupole 

and combines them with the high sensitivity of an ion trap. This means that in a 

single duty cycle it is possible to identify a particular ion by a characteristic CID 

fragment or neutral loss, following this it is then possible to perform an 

enhanced resolution scan in order to gain a more accurate mass determination 

and thereby a more accurate charge state before initiating an MS/MS experiment. 

Collision induced dissociation of glutathione or a glutathione adduct can be 

detected by the presence of a characteristic neutral loss 129 Da (NL129) 

representative of cleavage of the gamma-glutamyl moiety (Baillie and Davis, 

1993). Ions producing this neutral loss were selected for and underwent CID in 

order to provide structural information on any metabolite adducts present.        

The work was carried out at nanoflow rates (300 nl/min) consistent with typical 

proteomics based LC-MS experimentation. At such flow rates the usage of 

material is minimised and sensitivity maximised through concentration of 

analytes (Cutillas, 2005). Examination of a typical total ion chromatograph (TIC) 

from a liver microsome sample spiked with glutathione and clozapine reveals the 

presence of a single high intensity peak eluting at 25.91 min (figure 22). Collision 

induced dissociation (CID) was carried out on the ion responsible for the peak 

and its fragmentation pattern analysed. The parent ion, 632.3 m/z, (figure 23) 

represents a glutathione-clozapine conjugate with a range of its fragment ions 

being identified in figure 26. This previously discovered adduct is produced via 

the interaction of a glutathione molecule and a nitrenium ion of clozapine (Wen 

et al., 2008).                      
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Figure 22. Total ion count chromatogram from a neutral loss of 129 (NL129) 

scan of clozapine treated GSH. A single intense peak is visible from around 

25-30 min. The peak has obvious shouldering ( i and ii). 
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Figure 23. An enhanced resolution scan taken from the centre of the 
shouldered peak from figure 22. Two ions are visible, a and b.  The mass of b 
is representative of a glutathione clozapine adduct (632.1 Da) as depicted in 
figure 26. The mass of “a” represents a fragment ion of “b”, i.e. a 
glutathione clozapine conjugate, minus glutamic acid. In both peaks the 
isotopic distribution unique to chlorine is clearly visible. 
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Figure 24. Enhanced resolution scan of shoulder (i) from figure 22. This ion 
with a mass of 618.3 Da is representative of a desmethylclozapine 
modification. The isotopic distribution is indicative of chlorine. 
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Figure 25. Enhanced resolution scan of the shoulder (ii) from figure 22. The 
ion at 650 Da likely represents the conjugation of a phase I metabolite of 
clozapine with glutathione (depicted in figure 28).
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Figure 26. Tandem MS data from the 632.1 Da ion detected by the NL129 scan. The ion present at 359.3 Da is consistent with 

fragment “a” depicted in the molecular formula graphic.  
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Figure 27. Tandem MS spectrum from the ion at 618 Da. The spectrum is 
consistent with the loss of a methyl group. Desmethylclozapine is a known 
metabolite of clozapine, with the methyl group lost from the piperazine ring. 
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Figure 28. Tandem MS spectrum from the ion at 650 Da. The spectrum is 
consistent with a conjugate of glutathione and a hydroxylated clozapine 
metabolite. 

 

The ion of 359 m/z identified in figure 26 is representative of the clozapine 

metabolite with the additional mass of a sulphur atom. Fragmentation of the 

clozapine-glutathione conjugate across the side group of cysteine is most likely 

to have created this ion. Using an instrument with higher resolution it would be 

possible to determine the exact mass for the fragment, this information could be 

used to work out the elemental composition and confirm the structure of the ion. 

In many of the spectra it is possible to see the distinct isotopic distribution 

associated with the presence of a chlorine (part of clozapine). The 35Cl isotope 

makes up 75% whereas 37Cl makes up about 25%, this fact makes it easy to spot 

molecules containing a chlorine from mass spectra as typically the second 

isotopic peak is greater than the third. This knowledge can be used to further 

confirm the identity of molecules. 
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3.4.2 UV Data for Clozapine Glutathione 
 

UV data was gathered on two channels, 214 nm and 280 nm, downstream of 

chromatographic separation prior to MS analysis. Comparison of the UV 

chromatograph and the TIC chromatograph reveals a discrepancy in complexity. 

The UV data comprises several distinct peaks eluting from around 22-32 min 

(figure 29) in contrast to the single somewhat shouldered peak of the TIC data.  

 Figure 29. Clozapine GSH UV absorbance at 214 nm. Multiple peaks are 
easily observable in contrast to the single predominant peak observed in the 
TIC of the NL129 experiment.



 

102 
 

 

 

Figure 30: Clozapine GSH 280 nm. As with the spectrum at 214 nm multiple 

peaks are clearly visible. 

 

Three potential adduct types were identified from the NL129 scanning method. 

It was noted however, that the UV data looked to have more features than did 

the TIC from the NL129 data. It is probable that these extra peaks represent 

unidentified adducts that did not appear in the NL129 data as the conjugates did 

not produce the neutral loss at 129 Da necessary for detection. Without this 

neutral loss these species would be absent from the TIC data and no tandem MS 

data would be gathered. 

A review of the literature uncovered an alternative method of glutathione 

adduct detection involving the use of a precursor ion scan at 272 in the negative 

ion mode (Dieckhaus et al., 2005). Using this alternative approach several 

previously undetected adducts were characterised. Work carried out by 

Dieckhaus et al showed that MS/MS data was superior in the positive ion mode 

thereby necessitating a polarity switch between precursor scanning and MS/MS 

experiments.  
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3.4.3 PI272 Scan (Negative Ion Mode) 
 

ESI instruments typically operate in the positive ion mode as maintaining a 

stable stream of negative ions requires additional care (Cech and Enke, 2001). 

Positive ion mode operation is well characterised and stable across typical 

gradients of organic solvent. In the negative ion mode the formation of corona 

discharge (Kebarle and Ho, 1997) and poor electrospraying of peptides is 

problematic (Williamson et al., 2006). It was found that low concentrations of 

organic solvent, such as those found at the early stages of a RP-LC gradient, 

were associated with these negative effects. In order to avoid these problems it 

was necessary to increase the concentration of organic solvent subsequent to 

elution from the column. The approach taken by Williamson et al was to infuse a 

solution of 80% v/v propan-2-ol,  20% v/v ddH2O at a flow rate of 100 nl/min, 

using a secondary pump, into the post-column (300 nl/min) stream via a 

microtee connection. The effect was to increase the organic solvent of the 

electrospray stream without affecting column separation of peptides. 

Scanning for a loss of 272 m/z is representative of the glutathione molecule 

minus the sulfhydral group. The propensity for aromatic thioesters, undergoing 

CID fragmentation, to cleave at the sulfhydral group of cysteine with the 

liberation of the xenobiotic and sulfhydral group has been previously noted 

(Baillie et al., 1993). This suggests interesting possibilities; firstly that rather 

than using the glutathione backbone as a product ion mass it would be possible 

to use the mass of the metabolite plus the sulphur. Obviously this would only be 

useful for downstream applications after which the primary metabolites have 

been identified. Secondly this same mechanism feasibly applies to the CID 

fragmentation of metabolites of other drugs. The prerequisites being that the 

metabolite be highly electrophilic in nature and possess the characteristics of a 

soft electrophile (tendency to react with soft nucleophiles i.e. SH group). 

 The mass of the SH group could be added to the mass of the known metabolites 

and used as selective precursor ion scans for the identification of peptide-

metabolite conjugates.  
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3.4.3.1 PI272 Scan with Clozapine 
 

Using the PI272 scan a more complete range of metabolite-glutathione adducts 

were detected and characterised (figures 31-38). In addition to those shown a 

further two adducts were identified and confirmed against independent studies. 

The masses of all five adducts were calculated in order to determine the mass 

shift associated with their conjugation to glutathione. These data along with the 

chemical composition and description of each adduct has been compiled in table 

2. 

 

Table 2. Clozapine metabolites. 

Modification 
Conjugate 
description 

Chemical 
formula 

Modification 
m/z 
(monoisotopic) 

 
 
Retention 
time (min) 

Clozapine Clozapine+GSH C18H18ClN4 325.1219 
25.5 

Clozapine 2 Clozapine+GSH+O C18H18ClN4O 341.1169 
21.3 

Clozapine 3 Clozapine+GSH+2O C18H16ClN4O2 355.1118 
34.2 

Clozapine 4 Clozapine+GSH-HCl C18H17N4 289.1453 

Not 
detected 

Clozapine 5 Clozapine+GSH-CH2 C17H16ClN4 311.1142 
24.2 

 

It has been shown that by using the PI272 scan it is possible to identify a greater 

range of metabolites captured in the trapping assay. With knowledge of the 

range of metabolites it is possible to design more effective strategies for their 

detection. Moving away from using the glutathione as means of identification to 

using the actual metabolite means that not only glutathione conjugates can be 

discovered.  

Modified peptides can then be detected based on analysis of their fragmentation 

patterns and identification of known metabolite fragment ions. From the work it 

was possible to identify a potential precursor ion, at 359 m/z, which could 

possibly be used to detected modified peptides. 
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In total five distinct metabolite adducts were identified and their associated 

masses added to the Mascot search engine to be available in the list of potential 

modifications.  

 

Figure 31. Precursor ion TIC spectrum from the PI272 experiment with 

clozapine-glutathione. All of these peaks present have been previously 

identified as clozapine metabolites conjugated to glutathione. (Wen et al., 

2008). The spectrum matches closely with that obtained in the UV analysis 

with the major peaks b, c, d, and e appearing in the same locations. 
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Figure 32. Precursor ion 272 scan for peak “a” from figure 31. The ion at 
648.2 Da has previously been identified (Wen et al., 2008). The ion at 611 Da 
appears to be some kind of contaminant. 
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Figure 33. Precursor ion 272 scan for peak “c” from figure 3. The ion at 
616.2 Da has previously been identified (Wen et al., 2008).  

 

 

Figure 34. Precursor ion 272 scan for peak “d” from figure 3. The ion at 
630.2 Da has previously been identified (Wen et al., 2008). 
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Figure 35. Precursor ion 272 scan for peak “e” from figure 3. The ion at 
662.2 Da has previously been identified (Wen et al., 2008). 
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Figure 36. EPI scan of ion at 648 m/z from clozapine treated glutathione 

sample. The peak at 648.1 m/z is consistent with a mono-oxidation product 

(Parent ion – 2H + O) of clozapine. The parent ion and the ions at 375.1 and 

519.1 match up with the data in the paper by Wen et al (Wen et al., 2008). 
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Figure 37. EPI of ion at 618 m/z consistent with a clozapine metabolite 

conjugate with glutathione. This mass indicates that the metabolite is the 

desmethyl form of clozapine. Additionally the ion at 345.2 represents the 

mass of the metabolite plus the SH group procured from a cysteine. The ions 

detected here fit well with those detected by Wen et al (Wen et al., 2008). 
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Figure 38. EPI spectrum of the ion at 664 Da (662 Da negative ion). „the poor 
signal is evident yet the ion at 535.2 is clear to see and correlates with what 
was observed by Wen et al. 

 

The MS/MS data gathered is of a very low signal due to an error in the 

experimental design. The MS/MS data was gathered for the peaks detected in 

the negative ion mode, meaning that the actual mass was off by 2 Da (the 

difference between [M-H]- and [M+H]+). The ion transmission window used for 

the precursor scan was wide enough that some ions were subjected to MS/MS but 

this number was extremely limited. This means that a minimum of fragments 

ions were observed. It is noted that the distinctive chlorine isotopic distribution 

cannot be determined from the tandem MS data. This is because the enhanced 

product ion scan (EPI) responsible for obtaining the tandem MS data has an 

narrow isolation window (0.1 m/z) this means that only a single isotopic peak is 

fragmented; this results in the production of a spectrum in which m/z values do 

not carry isotopic information beyond that of the product ion. 
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 3.4.3.2 Negative Ion Mode Scanning of Other Drugs 
 

The negative precursor of 272 scan was applied to several other drugs. The drugs 

were metabolised in the human liver microsome assay with glutathione trapping 

as previously described (2.1.1.19). Samples were then analysed by RP-LCMS as 

previously described (2.1.2.2 and 2.1.2.6). The resulting data was then analysed 

manually with potential metabolite glutathione conjugates identified and their 

MS/MS spectra examined. 

 

3.4.3.2.1 Imipramine (3-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)- N,N-
dimethylpropan-1-amine)     
 

Imipramine is a tricyclic antidepressant used in the treatment of depression and 

of enuresis. Phase I metabolism of imipramine is carried out by various CYP450 

enzymes including 2D6, 3A4, 2B6 and 3A7 (Koyama et al.,. 1997; Preissner et al.,. 

2010). Imipramine is thought to form a reactive arene-oxide  through its 

hydroxylation. The arene oxide is highly reactive and can go on to form a protein 

adduct, in some cases causing inhibition of CYP450 (Masubuchi et al., 1996). 

 

Figure 39. Metabolism of imipramine to hydroxyimipramine via a highly 

reactive arene oxide intermediate. The product is the most likely isomer 

with the opening of the arene oxide directed by the presence of the nitrogen. 

However, an isomer in which the location of the protein and the OH group 

are swapped is also possible. 

Three distinct metabolite-glutathione adducts were detected and characterised 

including a hydroxy imipramine adduct (figure 41) and a didesmethyl 

hydroxyimipramine adduct (figure 42).   
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Figure 40. Enhanced product ion spectrum of m/z 586.2. The spectrum 

represents an imipramine metabolite-glutathione conjugate. Inset is the 

chemical structure of the molecule along with 2 characteristic fragment ions 

present in the spectra. All fragment ions were also detected by Wen et al. 



 

114 
 

 

 

Figure 41. Hydroxy-imipramine-glutathione conjugate with m/z 602. The 

graphic depicts 2 characteristic fragments visible in the mass spectrum. 

These and an ion at 329 m/z (characteristic of the metabolite with the 

sulphur from glutathione) were detected by Wen et al. 

 



 

115 
 

 

 

 

Figure 42. Didesmethyl hydroxyimipramine-glutathione conjugate with m/z 

574.2. Characteristic ions from the mass spectrum are depicted in inset 

graphic. These ions as well as one at 301 m/z were detected by Wen et al.  

 

3.4.3.2.2 Naproxen  (Propanoic Acid) 
 

Naproxen is a non steroidal anti inflammatory drug (NSAID) that provides mild 

pain relief as well as a reduction of inflammation. It has been established that 

carboxylic acid drugs form acyl-Coenzyme A and acyl-glucuronide thioesters on 

metabolic activation (Olsen et al., 2002). These thioesters can go on to react 

with the nucleophilic groups of proteins; the acyl-coenzyme A molecules being 

some 70 times more reactive than the acyl-glucuronides (Olsen et al., 2002). 

The adduct O-desmethyl naproxen can be seen in figure 43.  Two more potential 

conjugates with parent masses of 602 and 618 m/z units were observed; it was 

not possible to assign these adducts as the masses were too great to be 
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explained by any typical phase I reaction. All of these fragments are consistent 

with glutathione conjugate molecules.  

 

 

 

 

Figure 43. Desmethyl naproxen-glutathione conjugate shown at 523.2 m/z. 

The signal was poor suggesting a low abundance ion. The ion at 411.8 m/z 

remains unassigned.  
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Figure 44. Naproxen glutathione conjugate 536 m/z EPI. Inset graphic shows 

2 characteristic fragment ions from the mass spectrum. 

 

3.4.3.2.3 PI272 Tacrine (1,2,3,4-tetrahydroacridin-9-amine) 
 

Tacrine is an anticholinesterase used in the treatment of Alzheimer‘s disease; 

due to adverse drug reactions possibly exacerbated by the high doses required 

for effectiveness the drug is no longer commonly used (Qizilbash et al., 1998).  

The formation of reactive metabolites has been shown to follow a two step 

process involving a 7 hydroxylation followed by a two electron oxidation 

resulting in a quinone methide (Madden et al., 1995; Park et al., 1994) mediated 

by CYP450 1A2 (Obach and Reed-Hagen, 2002). 
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Figure 45. Formation of tacrine-protein conjugates by way of the reactive 

quinone methide intermediate. 
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Figure 46. Tacrine glutathione adduct with m/z 520.2. 2 characteristic ions 

from the mass spectrum are identified in the inset graphic. 
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Figure 47. EPI scan of tacrine glutathione conjugate with m/z 562.2. It was 

not possible to assign a  specific adduct to this spectrum. The ion at 308 m/z 

does however indicate the presence of glutathione, meaning that this is 

indeed some kind of conjugate. The ion at 433 further supports this as it 

represents a loss of 129 from the parent ion (562-433=129) a common 

fragmentation route of glutathione. 

 

3.4.3.2.4 PI272 Summary 
 

Using the PI272 method it was possible to identify metabolite-glutathione 

adducts for all of the drugs tested. At least two metabolites were identified for 

each of the drugs and their characteristic CID fragmentation patterns were 

analysed. It was possible to identify ions in the tandem mass spectrometric data 
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relating to the fragmentation of metabolite glutathione adducts. An ion at 308 

Daltons, the mass of reduced glutathione, was identified in almost all samples.  

The data suggests that once the metabolite mass is known it can be used to 

create selective neutral loss scans for metabolite adducts. Interestingly, the CID 

fragmentation pattern of glutathione-hydroxyimipramine yielded an ion 

comparable to the one at 359 Daltons i.e. a drug metabolite plus the added mass 

of a sulphur acquired from glutathione. The precursor ion at 272 Da used for the 

triggering of MS/MS experiments, was not observed in any of the samples. This is 

explained by the fact that the fragment at 272 Da is in fact an anion whereas the 

MS/MS scan was performed in positive ion mode. 

On closer inspection of the results and comparison with molecular formulae it 

was noted that the adducts discovered were all mass shifted by 2 Da. This is 

consistent with the mass shift from a negative ion ([M-H]-)to a positive 

ion( [M+H]+)  and is due to the selection for this negative mass in the precursor 

scan. The subsequent EPI experiments targeting these masses resulted in the 

relatively low signals observed. It is highly probable that the data gathered is 

not optimal.  Indeed, work by Wen et al., showed that the CID fragmentation 

patterns of many drugs including APAP, imipramine and meclofenamic acid 

actually do yield an equivalent ion to the one at 359 m/z seen in clozapine. In 

order to correct for this it would simply be necessary to correct for the 2 Da 

mass shift when performing the MS/MS experiments. 

Additionally, the instrument used in these experiments was an API 2000™ Q-trap 

a now fairly outdated machine. When performing at optimum capacity the 

instrument is still at least an order of magnitude less sensitive than the newer 

API 4000™ and two orders of magnitude less sensitive than the latest API 5500™ 

model.  

 

3.4.4 Characterisation of Synthetic Peptides  
 

Three N-terminally biotinylated synthetic peptides were reconstituted in buffer 

A at a concentration of 25 nM. 20 µl of each (500 fmol) was injected into the 

UltiMate HPLC system for subsequent MS analysis on the API 2000™ (Applied 
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biosystems). The peptides were subjected to CID and their fragmentation 

patterns compared to the theoretical fragmentation patterns predicted using the 

protein prospector MS-Product software 

(http://prospector.ucsf.edu/prospector/mshome.htm). The peptides analysed 

were as follows: 

Peptide 1: biotin-LNSAECYYPER 

Peptide 2: biotin-LCVIPR 

Peptide 3: biotin-CIGEVLAK 

The primary structures of each of the three peptides were validated. A wide 

range of both b and y ions characteristic of CID fragmentation were observed in 

all cases (figures 43-45). The intensity of fragment ions depends on their 

prevalence and at present is not possible to accurately determine by means 

other than empirical observation. Some of the predicted fragments were not 

observed, this could suggest that the CID fragments  were not capable of holding 

a charge (ion formation) and as such were invisible to the detector. In all 3 cases 

fragment ions bearing the amino acid of interest, cysteine, were visible. This 

indicates that if they were to be modified they would likely be detectable by 

mass spectrometry. 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4.1 Synthetic Peptide 1 
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Figure  48. CID fragmentation of synthetic peptide 1 reveals the presence of most theoretical fragments along with ions at m/z 

227.2 and 312.1 that are characteristic of the biotin tag. 
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Table 3.  List of theoretical CID  fragmentations ions (b and y) for synthetic 

peptide 1. Ions in green were experimentally confirmed. 

Ion 

mass 

[MH]+ 

mass 

[MH]+2 Sequence 

Parent 1570.67 785.833 

b-

LNSAECYYPER 

b1 ---   --- 

b2 454.212 227.606 b-LN 

b3 541.244 271.122 b-LNS 

fb4 612.281 306.641 b-LNSA 

b5 741.324 371.162 b-LNSAE 

b6 844.333 422.666 b-LNSAEC 

b7 1007.4 504.198 b-LNSAECY 

b8 1170.46 585.73 b-LNSAECYY 

b9 1267.51 634.256 b-LNSAECYYP 

b10 1396.55 698.777 

b-

LNSAECYYPE 

b11 ---    --- 

y11 ---    --- 

y10 1231.5 616.252 NSAECYYPER 

y9 1117.46 559.231 SAECYYPER 

y8 1030.43 515.715 AECYYPER 

y7 959.393 480.196 ECYYPER 

y6 830.35 415.675 CYYPER 

y5 727.341 364.171 YYPER 

y4 564.278 282.639 YPER 

y3 401.214 201.107 PER 

y2 304.162 152.581 ER 

y1 175.119 88.0595 R 
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3.4.4.2 Synthetic Peptide 2 
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Figure 49. CID fragmentation of synthetic peptide 2 reveals the presence of most theoretical fragments along with an ion at m/z 

312.1 that are characteristic of the biotin tag. 
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Table 4.  List of theoretical CID fragmentation ions (b and y) for synthetic 

peptide 2. Ions in green were experimentally confirmed.  

Ion 

mass 

[MH]+ 

mass 

[MH]+2 Sequence 

Parent 926.495 463.7475 b-LCVIPR 

b1 ---    --- 

b2 443.178 222.089 b-LC 

b3 542.247 271.623 b-LCV 

b4 655.331 328.165 b-LCVI 

b5 752.383 376.692 b-LCVIP 

b6 ---    --- 

y6 ---    --- 

y5 587.333 294.167 CVIPR 

y4 484.324 242.662 VIPR 

y3 385.256 193.128 IPR 

y2 272.172 136.586 PR 

y1 175.119 88.0595 R 
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3.4.4.3 Synthetic Peptide 3 
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Figure 50. CID fragmentation of synthetic peptide 3 reveals the presence of most theoretical fragments along with ions at m/z 

227.3 and 312.1 that are characteristic of the biotin tag. 
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Table 5.  List of theoretical CID fragmentation ions (b and y) for synthetic 

peptide 3. Ions in green were experimentally confirmed. 

Ion 

mass 

[MH]+ 

mass 

[MH]+2 Sequence 

Parent 1058.54 529.7687 

b-

CIGEVLAK 

b1 ---    --- 

b2 443.178 222.0891 b-CI 

b3 500.2 250.5998 b-CIG 

b4 629.242 315.121 b-CIGE 

b5 728.311 364.655 b-CIGEV 

b6 841.395 421.1974 b-CIGEVL 

b7 912.432 456.7159 

b-

CIGEVLA 

b8 ---    --- 

y8 ---    --- 

y7 729.451 365.2253 IGEVLAK 

y6 616.367 308.6833 GEVLAK 

y5 559.345 280.1725 EVLAK 

y4 430.302 215.651 VLAK 

y3 331.234 166.117 LAK 

y2 218.15 109.575 AK 

y1 147.113 74.0564 K 

 

3.4.5 PI359 Based Detection of Synthetic Peptide Conjugates 
 

The synthetic peptides were spiked into the liver microsome assay with 

clozapine. The peptides were recovered from the complex mixture of the assay 

by avidin based affinity purification (2.1.1.8). Recovered peptides were then 

analysed by LC-MS using the previously designed precursor ion scan (PI359) for 

the identification of clozapine-peptide adducts.  
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The results were a number of intense well defined peaks as seen in figure 52. An 

IDA based scan was carried out for each of the samples in order to compare its 

effectiveness with the precursor ion method. The IDA method results in a TIC 

without any definable individual peaks (Figure 51). It was possible to identify the 

modified peptides by searching fthe MS/MS data for ions with the calculated 

mass but this data was obscured by a much greater amount of irrelevant ions. 

For the purposes of these experiments all non-modified peptides and other ions 

are essentially background noise. The modified ions are competeing against this 

noisy background for detection and discovery.  Whereas being able to identify 

modified peptides in a sample of this complexity is trivial, the next step would 

require that peptides be identified in a sample of far greater complexity and 

therefore greater background noise.  

 

Figure 51. Clozapine treated b-P3 TIC from an IDA MS/MS experiment. The 

complexity of the chromatogram is evident with no distinguishable or 

dominant peaks visible. 
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3.4.5.1  PI359 Scan for Peptide 1 
 

 

Figure 52. TIC of PI 359 scan of clozapine-P1. The complexity of the 

chromatogram is relatively low with 2 dominant peaks clearly visible. 
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Figure 53. Precursor ion scan of the major peaks seen in figure 52. Clozapine 

modified peptide is visible at 633.3 m/z ([M+H]3+) and 949.4 m/z ([M+H)2+]. 

The top image is from the peak at 20.7 min; the bottom from the peak at 

21.8 min. 
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Figure 54. XIC of some of the ions previously detailed in figure (m/z 633.3 

and 949.4) 53 and of the unmodified peptide (m/z 786). The triply charged 

modified ions dominates the spectrum. The doubly charged unmodified 

peptide is visible, the singly charged ion would fall outside the detection 

range used. 
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Figure 55. CID fragmentation of clozapine-P1. B and y ions bearing the modification are visible in red and marked with (c). 
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Figure 56. XIC of m/z 593.8 with a corresponding MS/MS spectrum. The ion is 
representative of a peptide with the sequence b-LNSAEC, a truncated version 
of the peptide b-LNSAECYYPER. 
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Table 6. Ions that were identified in MS/MS experiments are highlighted in 

red or green. Red signifies a clozapine modification bearing ion, green 

signifies an ion without an associated modification. 

Ion 

mass 

[MH]+ 

mass 

[MH]+2 

Adduct 

[MH]+3 Sequence 

Parent 1894.795 947.8975 632.265 

b-

LNSAECYYPER 

b1 --- --- --- --- 

b2 454.2119 227.606 --- b-LN 

b3 541.2439 271.122 --- b-LNS 

b4 612.281 306.6405 --- b-LNSA 

b5 741.3236 371.1618 --- b-LNSAE 

b6 1168.462 584.7309 --- b-LNSAEC 

b7 1331.525 666.2626 --- b-LNSAECY 

b8 1494.588 747.7942 --- b-LNSAECYY 

b9 1591.641 796.3206 --- b-LNSAECYYP 

b10 1720.684 860.8419 --- 

b-

LNSAECYYPE 

b11 --- --- --- --- 

y11 --- --- --- --- 

y10 1555.634 778.3169 --- NSAECYYPER 

y9 1441.591 721.2955 --- SAECYYPER 

y8 1354.559 677.7795 --- AECYYPER 

y7 1283.522 642.2609 --- ECYYPER 

y6 1154.479 577.7396 --- CYYPER 

y5 727.341 364.1705 --- YYPER 

y4 564.278 282.6388 --- YPER 

y3 401.214 201.1072 --- PER 

y2 304.162 152.5808 --- ER 

y1 175.119 88.0595 --- R 
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 3.4.5.2  PI359 Scan of Peptide 2 
 

 

Figure 57.  TIC of PI 359 scan of clozapine-P2. A higher number of peaks are 

visible in this sample. Some of which were identified as carry over 

contamination from P1 (24.6, 25.5). 
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Figure 58. PI359 scan data from the peaks at (top) 23.1 min and (bottom) 
23.8 min from figure 57. The ion at 626 m/z is dominant in both. 
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Figure 59. PI359 scan data from the peaks at (top) 24.6 min and (bottom) 
25.5 min from figure 57. The ion at  786.6 m/z is dominant. 
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Figure 60. Tandem MS data from the peak at 786.6 m/z seen in figure 59. 
The spectrum matches up extremely well with that of unmodified peptide 1. 
The b and y ion series matching peptide 1 is marked in red. 
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Figure 61. XIC of clozapine-P2 in the 2+ (625.8 m/z)  and 3+ (417.5 m/z) 

charge states. These ions have exactly the same elution profile as would be 

expected.  
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Figure 62. CID fragmentation of clozapine-P2 conjugate at m/z 625.8. Fragments bearing the metabolite adduct are marked in red 

with a (c). 
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Table 7. Detected ions are highlighted either red or green. Red signifies the 

detection of a modification bearing ion. 

Ion 

Adduct 

[MH]+ 

Adduct 

[MH]+2 

Adduct 

[MH]+3 Sequence 

Parent 1250.624 625.812 417.54 b-LCVIPR 

b1 --- --- --- --- 

b2 767.3071 384.1536 --- b-LC 

b3 866.3755 433.6878 --- b-LCV 

b4 979.4596 490.2298 --- b-LCVI 

b5 1076.512 538.7562 --- b-LCVIP 

b6 --- --- --- --- 

y6 --- --- --- --- 

y5 911.4624 456.2312 --- CVIPR 

y4 484.324 242.6621 --- VIPR 

y3 385.256 193.1279 --- IPR 

y2 272.172 136.5859 --- PR 

y1 175.119 88.0595 --- R 
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 3.4.5.3  PI359 Scan of Peptide 3 
 

 

Figure 63. TIC of PI 359 scan of clozapine-P3. 
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Figure 64. XIC of clozapine-P3 in the 2+ (691.8m/z)  and 3+ (461.5m/z) 

charge states.  
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Figure 65. XIC of m/z 536.7 with an MS/MS spectrum inset. This mass is 
consistent with a fragment of P3 with the sequence b-CIGEV. It represents a 
truncated form of the peptide b-CIGEVLAK. The ions identified in red 
represent clozapine modified fragments of the peptide b-CIGEV. 
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Figure 66. CID fragmentation of clozapine-peptide3 conjugate at m/z 691.9. Fragments bearing metabolite adducts are marked in 

red with a (c). 
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Table 8. Detected ions are highlighted either red or green. Red signifies the 

detection of a modification bearing ion. 

Ion 

Adduct 

[MH]+ 

Adduct 

[MH]+2 

Adduct 

[MH]+3 Sequence 

Parent 1382.666 691.8332 461.55 b-CIGEVLAK 

b1 ---  ---  --- --- 

b2 767.3071 384.1536 --- b-CI 

b3 824.3286 412.6643 --- b-CIG 

b4 953.3712 477.1856 --- b-CIGE 

b5 1052.44 526.7198 --- b-CIGEV 

b6 1165.524 583.2619 --- b-CIGEVL 

b7 1236.561 618.7804 --- b-CIGEVLA 

b8 ---  ---  --- --- 

y8 ---  ---  --- --- 

y7 729.451 365.2253 --- IGEVLAK 

y6 616.367 308.6833 --- GEVLAK 

y5 559.345 280.1725 --- EVLAK 

y4 430.302 215.6512 --- VLAK 

y3 331.234 166.117 --- LAK 

y2 218.15 109.575 --- AK 

y1 147.113 74.0564 --- K 

 

3.4.5.4 Synthetic Peptides 
 

The ability to detected modified synthetic peptides has been demonstrated. 

With all three of the synthetic peptides the modified peptides appeared as split 

peaks. MS/MS analysis revealed the ions in each split pair to have the same CID 

fragmentation patterns. Interestingly the unmodified peptide was detected 

between the split peak. This seems to suggest that the modification can alter 

the hydrophobicity of the peptide making it both more or less hydrophobic. 

Contamination of the C18 column was considered as a possible cause of the split 
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peak, testing of the column with other samples however did not produce similar 

effects. The column was cleaned with elevated levels of solvent for an extended 

period of time to remove any contamination. From figures 57, 59-60 it is clear 

that a contaminant is present that was identified as synthetic peptide 1. The 

presence of an analyte from a previously injected sample detected in 

subsequent runs is known as carryover. It is a complex problem with many 

underlying causes including interaction of analytes with surfaces within the HPLC 

system, poorly plumbed HPLC systems and scratches in the rotor/stator system 

of the injector or switching valves. Void volumes in a nanoflow LC system are 

problematic even at very low volumes. Poor connections between tubing and 

other components and by the volume of scratches on switching or injection 

valves provide sufficient voids to allow carry over. A method for eliminating void 

volumes within nanoflow HPLC systems is discussed in the paper by Mitulovic et 

al (Mitulovic et al, 2003). Additionally, TFE (2,2,2 Trifluoroethanol) was shown 

to be effective in washing out a nanoflow HPLC system when added to running 

buffers and used as a flushing solvent (Mitulovic et al, 2009). It was 

demonstrated that the addition of the solvent increased the number of peptide 

and protein Ids and that a user define program for flushing the HPLC system 

prevented carry over between runs. TFE is used to dissolve proteins prior to 

enzymatic digestion and is known to enhance solubility of peptides (Polverino et 

al, 1995; Craig et al, 2008). TFE is compatible with the materials that are used 

in typical HPLC systems and has even been shown to extend the useful lifespan 

of reversed phase columns (Bidlingmeyer and Wang, 2006). Application of these 

techniques to the nanoflow HPLC system used in these experiments could have 

eliminated the presence of carry over and should be utilised in any follow up 

work. 

 

3.4.6 Mascot Searching of Synthetic Peptides 
 

The Mascot search engine can be used to screen raw datafiles against large 

genomic databases. It is possible to allow for the presence of post translational 

modifications when submitting datafiles for searching. Typically 

carbamidomethylation of cysteine, representative of iodoacetamide based 

alkylation, is selected as a fixed (always present) modification and oxidation of 
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methionine as a variable modification. For the following searches 

carbamidomethylation was not selected as no alkylation of the peptides was 

performed. The five previously characterised metabolites of clozapine (3.4.3.1) 

were added to the Mascot servers modification list.  In all cases searching was 

carried out with all of these selected as variable modifications. Finally, a biotin 

modification (N-terminal) was selected as a fixed modification in order to allow 

for the N terminal biotin tags present on all of the synthetic peptides. 

 

3.4.6.1 Mascot Results 
 

The detection of a clozapine metabolite modified synthetic peptides using the 

selective PI359 scan has been clearly demonstrated. The data from the mass 

spectrometric analysis was then successfully searched and the clozapine 

metabolite modification identified using the Mascot search engine. Examination 

of the matched ion lists revealed the presence of many significantly scoring, high 

quality ions representative of clozapine modifications. Positive identifications 

were made for all 3 of the synthetic peptides, each with MOWSE scores well 

beyond the minimum required for statistical matching. 

 

 

 

3.4.6.1.1 Peptide 1 
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Figure 67. HLM P1 Mascot results MOWSE Score. A score of 288 is of high 

statistical significance. 

 

 

Figure 68. HLM P1 Mascot results protein hits. The modified peptide 

sequence was identified in both its 2+ and 3+ charge states.  
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Figure 69. Ion 80. -.LNSAECYYPER.- + Clozapine (C). A good quality spectrum 

is visible with a good representation of y ions and b ions. 

 



 

154 
 

 

 

Figure 70. HLM P1 Mascot results protein hits. The modified peptide 
sequence was identified in all 3 charge states. A truncated peptide 
LNSAEC.Y+Clozapine was identified. 

 



 

155 
 

 

 

Figure 71. Ion 33.    -.LNSAEC.Y + Clozapine (C). The figure depicts a full set 
of y ions  consistent with the peptide fragment described. 
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3.4.6.1.2 Peptide 2 

 

Figure 72.  HLM P2 Mascot results MOWSE score of 442, a highly significant 

statistical match. 

 

Figure 73. A view of a selection of ions detected and matched. The drug 
modified matches are not considered the best match for the data (they are 
not highlighted in red). This is a mistake caused by Mascot wrongly matching 
these ions to another peptide fragment not present in the sample.  
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Figure 74. Ion 623. -.LCVIPR.- + Clozapine (C). Several adduct bearing 

fragments are present in the data. 
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3.4.6.1.3 Peptide 3 

 

Figure 75.  HLM P3 Mascot MOWSE score. 

 

Figure 76. Ions matched to peptide fragments. A selection of modified and 
unmodified peptide is visible. These ion scores indicate very high quality 
spectra. 
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Figure 77. Ion 39. -.CIGEVLAK.- + Clozapine (C). The data contains several 

fragments bearing the clozapine modification. 
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Figure 78. HLM P3 Mascot protein hits. A truncated form of the peptide is 
detected. 

 

 

Figure 79. Ion 40. -.CIGEVLAK.- + Clozapine (C). 
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3.4.7 DTT and Iodoacetamide Treated Human Liver Microsome Peptide 3 
 

The next step in the project will be the detection of modified proteins the 

identification of which will be carried out using a bottom up shotgun proteomics 

approach. This type of approach necessitates an enzymatic digestion step. 

Tryptic digestion is a typical part of many proteomics workflows; in order to 

maximise digestion efficiency it is necessary to disrupt protein tertiary structure 

and to alkylate cysteine residues to prevent disulfide bridge formation. 

Reduction of already present disulfide bridges is carried out using dithiothreitol 

(DTT) and can potentially reduce metabolite bearing cysteine residues.  

In order to examine this, a sample containing modified P3 was subjected to the 

standard reduction and alkylation protocol used when carrying out tryptic 

digestion. Results indicate that the treatment does not prevent the detection of 

peptide adducts (Figure 80). It is possible however that any change in the level 

of modification may result in peptides falling out with the limit of detection. It 

would be appropriate that any further investigation to include experiments to 

determine i) the absolute level of modification and ii) any quantative change in 

modification caused by reduction and alkylation.  
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Figure 80. P3 exposed to clozapine in a human liver microsome assay 

followed by DTT and iodoacetamide treatment. The XIC of 461.5-462.5 is 

representative of the triply charged adduct of bCIGEVLAK. The DTT and 

iodoacetamide treated samples (Orange and Green) show marginally less 

intensity than the samples that were not exposed to DTT and iodoacetamide 

(Pink and Blue).  
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Figure 81. DTT and Iodoacetamide treated HLM P3. 
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3.5             Discussion 
 

The detection and characterisation of drug metabolites has been the subject of 

much study and numerous reviews (Zhang  et al., 2011; Ma et al., 2006; Prakash 

et al., 2007; Kostiainen et al., 2003; Holcapek et al., 2008), many approaches 

involved the use of the physiologically abundant tripeptide glutathione (Baillie 

and Davis, 1993; Dieckhaus et al., 2005, Zheng et al., 2007; Mutlib et al., 2005; 

Zhu et al., 2007; Gan et al., 2005).  The formation of glutathione metabolite 

adducts is an efficient and directed mechanism catalysed by the enzyme 

glutathione transferase which serves to deprotonated reduced glutathione 

molecules thereby rendering them reactive (Atkins et al., 1993).  The highly 

nucleophilic sulfhydral group makes glutathione a particularly effective trapping 

agent for the so called soft electrophiles; this class of drugs includes epoxides, 

quinone imines, quinone methides, quinones and imine methides as well as 

others (Tang and Lu, 2010; Ma and Subramanian, 2006). In addition to these soft 

electrophiles glutathione has been shown to form adducts with hard 

electrophiles which include nitrenium ions and carboxylic acids (Sidenius et al., 

2004). 

The drugs chosen in this study were metabolised to form both hard and soft 

electrophiles which were trapped with glutathione and characterised by mass 

spectrometry. Multiple metabolites were identified for each of the drugs tested, 

a more complete characterisation could have been carried out by including a 

hard nucleophilic target such as cyanide anion (Gorrod et al., 1991; Argoti et al., 

2005) or by using the more sensitive glutathione monoethyl ester (Wen and Fitch, 

2008) as trapping agents. The scope of the study was to identify proteins that 

form covalent adducts with proteins and as such glutathione was thought to be a 

more appropriate initial model system. 

The detection of modified synthetic peptides showed that the metabolites of 

clozapine were capable of forming conjugates with polypeptides without the 

intervention of the GST enzyme. Both glutathione and synthetic peptide 

conjugates were detected using the precursor ion, neutral loss and basic IDA 

type scans. The precursor ion scan was deliberately designed to be drug specific, 

the precursor ion was shown to be produced both by glutathione trapped 
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metabolites and synthetic peptide adducts. This should allow for the detection 

of previously uncharacterised adducts. i.e. modified proteins. 

 The relatively simple chemical composition of the metabolites limit the degree 

of selectivity that they can show. A similar principle applies to both glutathione 

and the synthetic peptides, as both short polypeptides are not complex enough 

to exhibit either secondary or tertiary structures. The interaction of metabolites 

and these short polypeptides would most likely proceed as simple stochiometric 

chemical reactions.  The interaction between metabolite and a fully formed 

protein with secondary, tertiary and potentially quaternary structure would 

presumably involve a more complex dynamic. It is well known that the 

interaction between enzyme and substrate is focused at the so called active site; 

typically the active site operates based on a highly specific physic-chemical 

interaction. Proteins are most likely attacked at sites with favourable physico-

chemical characteristics; important factors include the solvent accessibility of 

the cysteine residue and a favourable local pKA.  As previously mentioned 

enzymes are often targets of reactive metabolites, particularly those enzymes 

involved in metabolism. The active site can be the site of adduct formation 

when particularly reactive species are produced, leading to so called mechanism 

based inactivation of said enzyme (Massey et al., 1970; Almira et al., 2005). 

 

The pKA of a given cysteine sidechain influences its reactivity. The cysteine at 

the active site of the enzyme protein tyrosine phosphatase (PTP) was observed 

to have a pKa of 4.67, considerably lower than the 8.5 of a typically cysteine 

residue (Lundblad and Noyes, 1984). The stability of the thiolate anion at this 

lowered pH was shown to be dependent on neighbouring peptides (Zhang and 

Dixon, 1993), in this case a histidine residue and an arginine residue. Point 

mutations in either of these two flanking residues to non-basic alternatives lead 

to a notable increase in the pKa of the cysteine residue. 
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Figure 82. Proposed mechanism for the stabilisation of the thiolate anion 

(cysteine) by a neighbouring imidazole ring (histidine) (Zhang and Dixon, 

1993). The interaction involves the formation of a zwitterionic ion pair. This 

relationship leads to a drastic lowering of the apparent pKa of the thiol. 

In addition to the lowered pKa, the localised area of positive charge will affect 

the interaction of electrophiles via electrostatic interactions. These chemical 

and physical forces presumably come into play when considering the interaction 

of any given electrophile and protein. Obviously the pH of the environment and 

by extension the localisation of both protein and electrophile within a cell or 

organ will also affect the probability of adduct formation. Work carried out by 

Fisher et al managed to identify the presence of a putative electrophile binding 

motif in many proteins known to form adducts by nucleophilic/electrophilic 

attack (Fisher et al., 2007). Proteins with a higher than normal lysine content 

were reportedly at higher risk of adduct formation, in particular the motif KxK, 

KKx or xKK where K is lysine and x represents a nucleophilic amino acid was 

shown to further enhance the risk of adduct formation (Labenski et al., 2009).   

The motifs described represent local interactions based on protein primary 

structure, similar effects could feasibly be produced through higher order 

structure in native proteins. Identification of such proteins is much more 
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difficult, it should be possible to use a combination of previously determined 

structural conformation and homology modelling (Pitman and Menz, 2006). 

However direct structural information from NMR or x-ray crystallography would 

be required for confirmation.  

The primary structure of the synthetic peptides did not carry any such motifs but 

were still subjected to modification. These short linear peptide sequences do 

not possess the secondary or tertiary structure of native proteins and are not 

subjected to the same accessibility problems. In this respect the limitation of a 

synthetic peptide model becomes apparent. 

Mascot assigns scores to peptides based on the probability that the match could 

occur at random when a search is carried out against a particular database;  the 

higher the score the lower the match was made by chance. Peptides are grouped 

according to whichever protein they belong and protein score is calculated based 

on the contributions of its assigned peptides. A protein‘s score is the sum of its 

peptide scores, the highest scoring peptide is chosen in the case of duplicate 

ions, with a small correction to account for the contribution of multiple low 

scoring ions. A significance level is defined, p=0.05 by default, and an equivalent 

MOWSE score threshold is computed (Mascot is discussed in much greater detail 

in section 1.3.3.2). Proteins with a score greater than the threshold are reported 

as statistically significant matches (p>0.05). Peptides that do not contribute to 

proteins with a score exceeding the threshold are reported as unassigned.  As 

the score for a protein is basically the sum total of its peptide scores this means 

that peptides that are sole matches for a given protein become statistically less 

significant. Often the spectra associated with these peptides is of poor quality 

i.e. there is high background noise or uncharacteristic ions comprise most of the 

peaks;  in a CID based tandem mass spectrum one does not typical expect to find  

c or z ions which are typically associated with fragmentation by ETD. However, 

it can be the case that even relatively high scoring peptides, which may come 

close to passing the significance threshold alone, are included in a list of 

unmatched peptides at the end of the mascot report. These peptides, upon 

manual inspection, may derive from a high quality spectrum with several of the 

b and y ion series identified. To ensure completeness any of these unassigned 

ions that potentially contained a drug adduct (as identified by mascot) were 

manually examined and the quality of the data assessed. It was found that none 
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of the potentially modified peptides were of sufficient quality for further 

investigation. 

It was noted that peptides 1 and 3 had undergone fragmentation prior to MS 

analysis. Figures 52 and 56 show that there is a difference of 1.5 min in the 

elution HPLC elution of intact peptide 1 and the fragmented form.  Mascot 

search data shown in figures 70 and 71 initially called attention to this anomaly. 

Similar evidence of this was found in the experiments with peptide 3 (figures 65 

and 78). It is possible that the fragmentation is a product of the drug 

derivatisation of  the peptides. The clozapine adduct contains a diazepine ring 

which acts as a strong base and may be responsible for intramolecularly 

catalysing hydrolysis of the peptide bond. The fragmentation is not seen in 

peptide 2 suggesting that the structure of the peptide plays a role in this 

fragmentation process and the peptide 2 forms a more stable adduct. A review 

of literature uncovered little to shed light on this phenomenon and further work 

would need to be carried out in order to determine the underlying processes. 

DTT based reduction and Iodoacetamide based alkylation of modified synthetic 

peptides did not have a pronounced effect on the conjugation of metabolite and 

peptide. These experiments verify that these treatments, critical for efficient 

and effective tryptic digestion of proteins, can be carried out without undue loss 

of protein-drug adducts. This is important for the next stage in testing that 

relies on this method of digestion for a bottom up shotgun proteomics based 

search of the human liver microsome for protein-drug adducts. 

For the protein based work to follow the latest model of the Q-trap (API 5500™) 

will be used, this instrument has a sensitivity at least an order of magnitude 

greater than the API 4000™ model owing to enhanced ion optics and greatly 

improved linear ion trap. The increased performance does however come at the 

cost of a reduced m/z range. Predominantly designed for metabolomics based 

workflows the 5500 has a m/z maximum of 1000. This will effectively narrow the 

mass range of detectable peptides.  

It was demonstrated that the precursor ion scan at 359 m/z can be used to 

detected both clozapine-glutathione adducts and clozapine-synthetic peptide 

adducts. Reduction and alkylation did not markedly reduce the levels of adduct 

formation and using the Mascot search engine it was possible to automatically all 
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three clozapine-synthetic peptide adducts. All three adducts were correctly 

matched with their parent proteins indicating that even with limited sequence 

information it is possible to get an accurate protein identification. 

 

 

 

 

 

 

 

 

 

 

Chapter 4:  Protein Separations 
 

4.1 Aims 
 

The liver microsome fraction comprises a huge number of proteins (Peng et al., 

2012; Huang et al 2011). Proteolytic digestion of such a sample further increases 

complexity and thereby increases the challenge of identifying individual 

molecules. In order to maximise protein identifications, sequence coverage and 

the identification of post translational modifications it is necessary to separate 

the samples prior to mass spectrometric (MS) analysis. Three types of separation 

methodologies, orthogonal in nature to reversed phase liquid chromatography, 

were employed: 

1) Protein separation by 1d PAGE followed by tryptic digestion of small 

sections of the protein ladder. 

2) Separation of peptides, produced by the tryptic digestion of the liver 

microsome fraction, using the Offgel isoelectric focusing system. 
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3) Ion exchange (IEX) liquid chromatographic separation of peptides. 

Subsequent to these separation methods all samples were subjected to RP-LCMS 

and Mascot searches against the Swissprot protein database.  

4.2 Introduction 
 

The usefulness of reversed phase LC-MS for analysis of highly complex samples is 

limited by the peak capacity of a given chromatographic column (Giddings, 1967).  

Increasing the length of a single gradient run can improve the protein 

identifications attainable, peak capacity increases as the solvent gradient 

becomes more shallow  (Liu et al., 2007; Wang et al., 2006). Instrument 

availability sets limits on the maximum length of separation gradients that can 

be applied; overly long gradients result in a decrease in detection sensitivity due 

to a widening of chromatographic peaks. Analytes elute from the column over a 

particular range of physical conditions based on interactions between the 

analytes, the mobile phase and the stationary phase, in the case of RP 

separation, hydrophobic/hydrophilic interactions. A particularly shallow gradient 

leads to an increase in the time at which conditions favour analyte elution i.e. 

the hydrophobic conditions of the mobile phase are suitable for a longer period. 

The immediate effect is that analytes elute over a longer period, leading to peak 

widening and necessarily, a decrease in the concentration of analyte entering 

the mass spectrometer at any given time. Simply, the analyte elution occurs 

more gradually with the same total amount being eluted with negation of the 

concentrating effect normally observed during chromatographic separation. 

 In order to maximise dynamic range and proteome coverage it is necessary to 

use orthogonal methods of separation (Issaq et al 2002; Righetti et al., 2003) in 

so doing peak capacity can be increased dramatically (Giddings, 1987).  

Approaches including 1d PAGE, ion exchange chromatography and isoelectric 

focusing are both mature and suitably orthogonal technologies. Spreading the 

separation over two dimensions maximises the opportunity to detect poorly 

represented or poorly ionised peptide species otherwise lost using a single 

separation dimension.  That is to say that superior chromatographic separation 

works to increase the dynamic range of molecules detected by reducing the 

complexity of the ESI stream.  
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The combination of ion exchange and RP-LC-MS is known as MuDPIT 

(Multidimensional protein identification technology) and has the added 

advantage of being amenable to automation (Bailey et al., 2007; Jiang et al., 

2007). HPLC systems such as the UltiMate™ 3000 (Dionex) can be configured to 

operate both RP and IEX columns in serial, allowing for so called on-line 2D LC-

MS analysis (Washburn et al., 2001; Mohammed and Heck, 2011), the nature of 

the technique necessitates the presence of salt in droplets formed during  ESI 

causing ion suppression and reducing the sensitivity of the mass spectrometric 

analysis (Annesley, 2003). This is not the case with the offline method in which 

the eluent from the ion exchange column can be captured in a guard column and 

washed free of salt prior to RP separation giving superior sensitivity (Peng et al., 

2002). Additionally a superior peak capacity is attributed to the offline mode 

due to its use of a gradient separation in comparison to the step-wise elution of 

the online method (Wagner et al., 2003). As sensitivity takes precedent over 

automation at this stage of the project all work was carried out in the offline 

configuration.  

1d-PAGE (1 dimensional polyacrylamide gel electrophoresis) is a workhorse 

proteomics tool and as such is well characterised and robust. Non-native SDS-

PAGE (sodium dodecyl sulphate) allows for the processing of hydrophobic 

proteins  and primarily separates proteins based on their molecular masses 

(Laemmli, 1970). Migration of proteins through the gel depends on their 

molecular mass, the applied electric field and the gel matrix density. Within a 

single gel a concentration gradient can be used to vary the density of the gel 

along its length. The gradient allows for improved resolution due to the sieving 

effect created by the decreasing pore size of the gel (Rodbard and Chrambach, 

1970).  

Proteins are easily digested and recovered from gel bands (Rosenfeld et al., 1992) 

the resultant solution is then amenable to analysis by LC-MS. This coupling of 1d-

PAGE and LC-MS is most commonly described as GeLC-MS (Gel Liquid 

Chromatography Mass Spectrometry). Using this simple combination it is possible 

to identify hundreds to thousands of proteins; a group investigating rat 

pancreatic cells were able to identify some 1350 non-redundant proteins by 

GeLC-MS (Paulo et al., 2011) using only 10 gel sections per lane. 
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Offgel fractionation makes recovery of proteins or peptides from the IEF stage 

simpler by eliminating the need for gel extraction and the associated loss of 

proteins. Using a 24cm pH 4-7 IPG strip with a 24 well holder it has been shown 

that a resolution of 0.15 pH is attainable (Michel et al., 2006). The performance 

of Offgel fractionation is comparable to that of a MuDPIT based approach 

(Elschenbroich et al., 2009). 

The three techniques chosen represent different mechanisms of separation and 

are likely to give a synergistic overview of the human liver microsome proteome. 

An increase in the detectable peptide fragments clearly leads to an increase in 

the likelihood of detecting a metabolite-peptide adduct. 

 

 

4.3 Methods and Materials 
 

4.3.1 Metabolism of Drugs and Formation of Drug-Protein Adducts 
 

Clozapine was incubated with human liver microsomes as described in (2.1.1.17) 

without the addition of glutathione. After a 1 hour incubation samples, except 

for those to be separated by 1d-PAGE, were spun at 4000 rpm for 10 min, the 

acetonitrile precipitation step was foregone. The pellet fraction was subjected 

to delipidation (2.1.1.9). The supernatant fraction was stored at -20 ˚C until 

tryptic digestion could be carried out. 

 

4.3.2 1d SDS-PAGE 
 

For 1d PAGE analysis 24 µl of the assay solution (12.5 µg of protein) was spiked 

with 6µl of (5x) SDS-PAGE loading buffer and loaded into a 12 cm gradient 

polyacrylamide gel. The gel was submerged in SDS-PAGE running buffer and run 

for 35 min at 35 V and 120 mA.  

 

4.3.3 In solution tryptic digestion of proteins  
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Proteins were digested in solution as described in (2.1.1.3) prior to separation by 

either IEX liquid chromatography or the Offgel system. Briefly, samples were 

reduced using DTT and alkylated using Iodoacetamide in order to break down 

disulfide bonds and maximise digestion. It has been shown (3.4.7) that clozapine 

metabolite binding to peptides was not reversed by this particular treatment. 

 

4.3.4 In Gel Tryptic Digestion of Proteins 
 

Each gel lane was cut into 12 equally sized sections along their lengths. Each of 

these sections was chopped into smaller pieces before undergoing washing, 

tryptic digestion and recovery. For details see (2.1.1.10). Samples were stored 

at -20 ˚C until LCMS was carried out. 

 

4.3.5 Offgel Separation of Peptides 
 

After tryptic digestion samples were reconstituted in Offgel buffer and 

separated by their isoelectric points along a pH gradient gel strip. Recovery of 

separated peptides from each of the 24 regularly sized reservoirs along the strip 

consisted of a simple pipetting step. Samples were dried in a vacuum centrifuge 

and stored at -20 ˚C until analysis by LC-MS. Full details can be found at 

(2.1.1.6). 

 

4.3.6 Ion Exchange Liquid Chromatography 
 

Peptides from the tryptic digestion step were loaded into an appropriate buffer 

and injected into an LC system equipped with a strong cation exchange column. 

An increasing salt gradient was applied over the course of 1 hour and fractions of 

equal length were collected using an HTC pal robotic fraction collector. For full 

details see (2.1.1.7). 

 

4.3.7 Reversed Phase Liquid Chromatography 
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All samples were reconstituted in buffer and loaded into 96 well plates or glass 

vials for mounting in the UltiMate® 3000 HPLC system and autosampler.  

Separation was carried out by applying a gradient with increasing concentration 

of organic solvent (acetonitrile) over a period of 60 min. Full details at (2.1.2.2). 

 

4.3.8 Mass Spectrometric Analysis of Peptides 
 

All analysis in this chapter was carried out using an API 5500™ series Q-trap (AB 

SCIEX) data was acquired using a standardised information dependant acquisition 

(IDA) approach (2.1.2.3) and a more selective precursor ion of 359 (PI359) based 

approach (2.1.2.5).  

 

4.3.9 Identification of Peptides Modified by Clozapine Metabolites 
 

The five known clozapine metabolites were added to the Mascot database. Data 

from each of the files obtained from both the IDA and PI359 scans of all samples, 

including the negative controls, were uploaded to the Mascot server and 

searched against the Swissprot database (The version of Swissprot used was not 

noted; searching was carried out in 2012) against the human taxon Swissprot was 

used at it is a high quality, manually curated non-redundant database. No fixed 

modifications were selected, oxidation of methionine, carbamidomethylation of 

cysteine and the five clozapine metabolite adducts of cysteine were selected as 

possible variable modifications. False discovery rates were automatically 

calculated by Mascot and are based on searching the mass spectrometric data 

against a decoy database in order to quantify the extent of matches. The decoy 

database was generated to have the same average amino acid composition, and 

number of proteins (of the same lengths) as those in the  target database being 

searched. The number of hits detected in the target database is compared to 

the number of hits from the decoy database (assumed to be false positives) in 

order to give the false discovery rate for the experiment. This process is more 

fully explained in section 1.5.2.2. 
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4.3.10 Identification of Membrane Associated Proteins 
Protein identifications obtained from the Mascot search were in the 

UniProtKB/Swiss-Prot format. An exhaustive list for each separation type was 

compiled and their associated FASTA files recovered from Uniprot 

(http://www.uniprot.org/). The FASTA files were submitted to the TMHMM 

server (http://www.cbs.dtu.dk/services/TMHMM-2.0/) for analysis. 

 

4.4 Protein Modification and Separation Techniques 
 

Due to the extreme complexity of the liver microsome sample robust 

protein/peptide separation techniques orthogonal to reversed phase 

chromatography were applied. There exist many well established and robust 

proteomics techniques for the separation of peptides and proteins Issaq et al., 

2002; Giddings, 1987; Mitulovic, 2004). Separations based on physical size, 

isoelectric point, Coulombic interaction and affinity interaction allowed for an in 

depth exploration of the liver microsome protein complement. Each of the 

approaches was coupled to RP-LCMS analysis using both IDA and PI359 based 

methods to determine MS/MS acquisition 

 

4.4.1 LC-MS Analysis of Modified Protein 
 

All samples were submitted to the same reversed phase liquid chromatography 

under the same conditions (2.1.2.2).  

 

4.4.1.1 LC-MS Analysis 1d Gel Samples 
 

SDS PAGE has the advantage of solubilising membrane associated and otherwise 

hydrophobic proteins. Separation takes place at the protein level thus ensuring 

that all digestion products from any particular protein are present within the 

fraction. This means that subsequent LC-MS analysis has the potential to provide 

high levels of protein coverage within single samples when compared to 

techniques that separate proteolytic digestion products. 

http://www.uniprot.org/
http://www.cbs.dtu.dk/services/TMHMM-2.0/
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Figure 83.  1d PAGE-LC-MS protein identifications summed across all 12 gel 

pieces. The false discovery rates (FDR) for all experiments were below 5%. 

Detection of proteins by the IDA MS/MS method (2.1.2.3) lead to the 

identification of 300-400 proteins. The scan is designed to maximise the number 

of identifications obtained and is selective only to the intensity of any given ion. 

An exclusion list, written into the program, ensures that once a protein has been 

subjected to MS/MS it is ignored for 30 seconds. This serves to prevent masking 

of less abundant ion species, the exclusion time is calculated to ensure that the 

abundant ion has been completely eluted from the column, the average peak 

width was measured at about 15-20 seconds.  

The PI359 scans have identified between 150-200 proteins, a much higher 

number than was expected. The high number identified could indicate that the 

PI359 scan has poor selectivity or simply that the sample complexity is 

overwhelming. In the second case the low resolution of the quadrupole creates a 

rather wide window for ion transmission; in order to maximise sensitivity the 

width was set at 1.2 Da. The downside of this approach is that ions with 

fragments close enough to the target of 359 are detected and analysed. 

Additionally, the high complexity of the samples increases the chances that once 

an ion with a particular nominal mass produces the fragment of interest there 

will be other ions with similar nominal mass in the ion stream at the same time. 

 The SDS-PAGE samples should contain more proteins than either of the other 

two separation methods as even the highly hydrophobic species would be 
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solubilised and separated. A caveat to this would be  that if the separation was 

poor along the length of the gel then each band may be too heavily loaded with 

proteins; leading to loss of information caused by ion suppression.  After tryptic 

digestion the peptide fragments of the hydrophobic protein would be more 

soluble (than the molecule as a whole) and as such would not drop out of 

solution prior to the RP-LCMS analysis. The gel lanes were each cut into 12 

sections, each section having many individual bands, each band many individual 

proteins. In order to improve separation the gel lanes could be cut into a greater 

number of pieces. The number of protein species in each of the gel pieces is also 

unequal. Careful examination of the number of proteins found in each could 

provide information for optimum cutting of the gel lanes in order to spread the 

complexity over the different sections.   

The cytochrome P450 family of enzymes are of particular interest due to their 

roles in drug metabolism, proximity to reactive metabolites and accessible 

cysteine residues (Kyle et al., 2012). CYP450s also represent the presence of 

membrane associated proteins in the samples, indicating whether or not the 

sample preparation was effective. The enzymes were detected by both the IDA 

and PI359 approaches, however the IDA approach managed to identify more than 

twice as many CYP450s.  

 

Figure 84. Cytochrome P450 enzymes identified by both the IDA scans and 

PI359 scans (FDR <5%). 
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The presence of so many of these membrane integral and associated proteins 

suggests that the 1d-PAGE approach effectively deals with proteins with 

hydrophobic domains.  

Mascot based searching came back negative for the presence of any metabolite-

peptide adducts associated with known proteins. A variety of metabolite-peptide 

adducts were included at the end of the report amongst the peptides unassigned 

to proteins; Mascot only reports protein hits that exceed a given MOWSE score 

threshold, with the total score being a sum of the component peptide scores. 

Peptides found in this region typically have low ion scores and do not belong to a 

protein with any other peptide matches.  Incomplete digestion of a sample can 

lead to a greater than expected number of missed cleavages i.e. peptide chains 

bearing uncut (in this case) tryptic motifs. Physiological or even process-specific 

post translation modifications of proteins outside of those specified in the 

Mascot parameters would produce peptides of unpredictable mass. In both cases 

Mascot would fail to find the true identity of the non-conforming peptide.  

Manual inspection of these low scoring unassigned ions with putative clozapine 

metabolite modifications was carried out. It was found that putative matches 

were not statistically significant and often included ions (a and z ions) not 

routinely detected in CID type experiments. As would be expected in the case of 

statistical artefacts, the IDA MS/MS experiments revealed many more putative 

matches than did the PI359 experiments. Additionally, a similar range of false 

positive matches were observed in the negative control samples that did not 

include any clozapine. 

 

4.4.1.2 LC-MS Analysis of Offgel Samples 
 

The Offgel technique allows for the separation at either the peptide or protein 

level. Separation is based on isoelectric focusing, as occurs in the 1st dimension 

of 2D PAGE. Offgel has the advantage of separating samples along the length of 

an IPG strip whilst having them remain accessible for collection. Fractions are 

simply pipetted from the tray and can be readily analysed with little further 

preparation. The technique is not however compatible with less soluble proteins 



 

179 
 

 

(Santoni et al., 2000) meaning that in order to analyse the membrane associated 

species it would first be necessary to digest them to the peptide level. 

 

Figure 85. Proteins identified by the Offgel as 1st dimension of separation 

(FDR <5%). 

In order to maximise the presence of lipid associated proteins a delipidation 

protocol was implemented prior to tryptic digestion (2.1.1.9). This protocol may 

be responsible for somewhat correcting an oversight in the experimental design, 

a lack of a denaturing step in the in solution digestion method (further discussed 

in section 4.5). 

Again, the number of proteins identified by the IDA approach is much greater 

than those identified by the PI359 approach. The Offgel separation afforded 

more fractions (24) than did the 1d-PAGE method but has yielded considerably 

fewer protein identifications, particularly by IDA MS/MS. The separation of 

proteins at the peptide level can considerably decrease the number and 

certainty of protein identification in individual fractions. This effect is  clearly 

caused by the presence of different tryptic fragments from the same protein 

being spread across many fractions. As Mascot computes MOWSE scores by 

summing the scores of peptide assigned to a given protein, the fewer the 

number of peptides present in a sample the lower the protein scores will be.  In 

order to combat this the mass spectrometric data for each of the fractions in 

each sample were recombined using the Peak List conversion Tool 

(Proteomecommons.org IO framework 6.21). The merged data files for each 
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sample were then submitted to Mascot for searching against the relevant 

database. This method ensures that proteins receive all of the fragments 

detected across the IPG strips range and ensures maximum sequence coverage 

and increases the likelihood of correct identification whilst reducing false 

matches. 

The discrepancy between the number of proteins identified in the clozapine 

positive and negative samples could easily have been caused by technical 

variations. Due to the nature of the work and the time required to perform the 

extensive LCMS analysis it was not possible to continually monitor the 

performance of the equipment. Variations throughout prolonged runs can occur 

due to MS related issues, wear on the ESI needle or accumulation of 

contamination around the ESI orifice or due to some of the less appealing 

idiosyncrasies related to nanoflow HPLC. 

The CYP450s are well represented. Again the IDA scan has identified many more 

CYP450s than the precursor ion scans. The apparent abundance of the enzymes 

(around 1:10 proteins) is not surprising considering the sample is a human liver 

microsomes fraction. The microsomes contain an abundance of endoplasmic 

reticulum which is the locus of CYP450 activity. The enzymes are there 

synthesized and cotranslationally inserted into the ER membrane (Negishi et al., 

1978). 
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Figure 86. Cytochrome P450 enzymes as detected by Offgel-LC-MS analysis of 

human liver microsome samples (FDR <5%). 

 

4.4.1.3 LCMS Analysis of IEX Samples 
 

Ion exchange chromatography separates out either proteins or peptides based on 

Coulombic interactions between a functionalised stationary phase 

(phosphonic/sulfonic for SCX) acid and charge-bearing regions of the 

proteins/peptides in a mobile phase (see 1.2.3) (Morris and Morris, 1962; 

Kopaciewicz et al., 1983). The separation method is readily fine tuned, ideal for 

automation and interfaces well with reversed phase LC-MS analysis. Another 

widely used workhouse technique, IEX is well characterised and robust (Masuda 

et al., 2005).  

The complexity of the microsome fraction is evident upon examination of the UV 

data generated during the SCX separation. Even with a separation gradient of 30 

min it is impossible to see sharp individual peaks. The presence of many such 

peaks is seen as an amorphous ‗hill‘ on the chromatogram; it is likely that the 

sample contains many tens of thousands of peptides and a wide dynamic range. 

From the data it was apparent that the majority of the peptides eluted between 

15-40 min. The initial spike represents the early elution of dimethyl sulfoxide 

(DMSO) present in the sample as a means of solubilising the lipophilic clozapine. 
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Pooling of fractions 3-8 was carried out; based on the evidence of the UV 

chromatogram (figure 87) there was very little peptide present in these fractions 

as shown by the lack of any UV response. 

 

Figure 87. SCX separation of C- HLM sample. UV-VIS 214nm, indicative of 

peptide bonds. The majority of peptide elution occurs between 15 and 40 

min. Individual peaks are not distinguishable; a hallmark of the sample‟s 

complexity.  
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Figure 88. SCX separation of C- HLM UV-VIS 280nm. The absorbance at 280nm 

is dependent on the presence of the aromatic ring structures associated with 

particular amino acids. As a consequence the signal is considerably lower 

than that seen in the 214nm trace which measures the peptide bond 

associated with all peptides.  

 

SCX provided an effective method for 1st dimension separation of peptides 

performing almost as well as the GeLC-MS approach. Again the  PI359 scans 

showed up a very high number of protein identifications. There was a lack of 

protein IDs for the sample SCX C+ merged, examination of the raw data revealed 

poor acquisition, likely caused by deterioration of ESI quality most likely brought 

on by a failing needle. It was not possible to correct for this fault due to time 

limitations. It is more likely that the SCX C- merged IDA sample gives a better 

representation of the number of protein IDs achievable. The disparity between 

the PI359 and IDA protein IDs across the other separations approached a roughly 

2:1 ratio (figures 83 and 85). SCX C- merged is consistent with this, C+ merged is 

closer to a 1:1 ratio (figure 86). 
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Had the acquisition of the clozapine positive sample gone more smoothly then it 

is probable that the SCX approach would have performed better i.e. provided 

more protein identifications, than the GeLC approach. As with the Offgel work 

the liver microsome samples were subjected to delipidation prior to tryptic 

digestion in order to access the less soluble membrane integral and associated 

proteins. As a result it was expected that a comparable number of membranes 

associated proteins be identified. 

The number of CYP450s identified in the SCX samples by IDA was considerably 

lower than the numbers identified using either GeLC or Offgel separations. It is 

possible that the hydrophobic peptides were retained on the sorbent of the SCX 

column by hydrophobic interactions (Liu et al., 2006). In order to overcome this 

problem it would be necessary to increase the acetonitrile content of the SCX 

buffers from 5% v/v as used in these experiments to around 30% v/v  (Liu et al., 

2006). Unfortunately it was not possible to repeat the experiment with the 

improved buffer due to time limitations. 

 

 

Figure 89.  The total number of proteins identified in the IDA experiments 

(FDR <5%) for SCX C+ is considerably lower than the number identified in the 

SCX C- IDA runs. Examination of the data suggested that the mass 

spectrometers ESI interface was not performing well . 
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Figure 90. The poor showing of CYP450s is likely caused by retention of 

hydrophobic peptides on the sorbent of the column. The increasing salt 

gradient does not effectively disrupt the hydrophobic interaction. (FDR <5%). 

 

 4.4.2 Comparisons 
 

 

Figure 91. Total unique protein identification for each separation method 

and scanning method (FDR <5%). 
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The GeLC approach identified more proteins than any other approach using the 

IDA method. The detergent SDS used in the 1d-PAGE approach acts to solubilise 

hydrophobic proteins through the formation of protein-SDS complexes. The 

interaction between the SDS and the proteins is similar in nature to the 

interaction of proteins with lipid membranes  and other amphiphilic  substances 

(Reynolds and Tanford, 1970; Mascher and Lundahl, 1989). Despite the ease with 

which the 1st dimensional separation by SDS PAGE handles these otherwise 

insoluble proteins it would appear that appropriate delipidation steps before 

tryptic digestion can bring about similar results when used with the other 

methods (figures 92 and 93).  
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Figure 92. Offgel, GeLC and SCX protein distribution - membrane associated 

vs. non-membrane associated. 
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Figure 93. Despite having the greatest number of non-membrane associated 

protein IDs. The SCX method has identified the fewest membrane associated 

proteins. 

The Offgel approach seems to have the greatest disparity between  protein 

identifications from the PI359 scanning mode to the IDA MS/MS method. It is 

likely that the sample complexity is lower indicating the possibility that some 

peptides may have dropped out of solution, likely upon reaching their isoelectric 

point, or been retained by the IPG strip. The focussing stage involves a long time 

at room temperature and perhaps there was partial degradation of the sample 

during that time.  

The GeLC approach identified the greatest number of unique CYP450 enzymes. 

This is likely due to the efficiency with which the method handles proteins with 

hydrophobic domains. The poor performance of the SCX separation with respect 

to CYP450 identifications would likely be overcome with a more optimal organic 

solvent concentration. 
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Figure 94. Offgel CYP450 identifications were similar to those identified by 

GeLC. The SCX approach is markedly less effective. 

 

4.4.3 Overlapping of Protein Identifications 
 

The following figures (95 and 96) serve to illustrate how the different 

approaches complement each other in the coverage of the proteome being 

studied. The various means of separation should have resulted in a range of 

fractions each with particular characteristics. The composition of each fraction 

should be completely unique and allow for the detection of different peptides. 

This can be understood best by considering the limitations of mass spectrometric 

detection. A major obstacle to detection is the limited dynamic range of mass 

spectrometers, the most abundant ions are detected most commonly and can 

effectively suppress the detection of lower abundance ions. Each fraction 

represents a different combination of high and low abundance ions meaning that 

theoretically the proteins detected in each should vary. 

The comparison between the IDA method and PI359 method was quite revealing. 

It was initially expected that the PI359 method bring about a marked increase in 

selectivity when searching against a complex background. The data obtained in 

this project indicates that the PI359 scan detects roughly one protein for every 

three seen in the non-selective IDA approach, less than an order of magnitude 

more selective. It is unlikely that such a small improvement would be useful 
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when dealing with highly complex liver microsome fractions. Further 

investigation of this revealed that a high number of false negative identifications 

were made based on the fact that the target ion at m/z 359.1 is not very 

selective (4.4.4.4). 

 

 

Figure 95. Offgel vs. SCX vs. GeLC protein identifications based on 

information dependant acquisition. It is immediately apparent how each of 

the separation techniques contributed to the overall proteome coverage. A 

large number of proteins were not detected by more than one of the 

approaches. 
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Figure 96. Offgel vs. SCX vs. GeLC protein identifications based on PI359 

scanning. As with the IDA experiments a majority of proteins were not 

detected from more than one of the separation methods. 

 

 

Figure 97. Precursor ion scanning vs. information dependant acquisition 

protein identifications. The PI359 scan identified approximately 1/3 as many 

proteins as did the IDA method. This level of selectivity is considerably lower 

than expected. 
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4.4.4 Distribution of Protein Identifications Across Multiple Separation 
Dimensions 
 

In order to better understand how the proteins and peptides were spread across 

the two dimensional separation spaces in each combination of separation 

techniques the following heatmaps were created (figures 98-104). The mass 

spectrometric data in the form of .wiff files (ABI/Sciex) were loaded into the 

Peak View 1.0 software and the TICs used to generate heatmaps. For the PI359 

scans the heatmaps were based on the initial PI359 scan ion chromatograph, for 

the IDA scans the heatmaps were based on the enhanced MS scan data. In all 

heatmaps the vertical axis is divided into fractions generated by the 1st 

dimension of separation, the horizontal axis is based on time. The Intensity of 

the ions detected is represented by increasing darkness for increasing intensity. 

4.4.4.1 GeLC 
 

 

Figure 98. The GeLC separations represent 1st dimension protein separation 

followed by 2nd dimension peptide separation. From the heatmap the 

distribution of ion intensity is fairly uniform from around 13-30 min 

chromatographic time.               
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Figure 99. The GeLC PI359 heatmap presents a pronounced intensity of ions 

at around the 13 minute mark across all fractions with a lower detection 

from 13-10 min. This ion of m/z 523 was found to be a tryptic peptide 

fragment hence its presence in all fractions. 
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4.4.4.2 SCX 
 

 

Figure 100. The SCX IDA heatmap represents a non-uniform use of the 2D 

separation space with areas of particularly high ion intensity.  
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Figure 101.  SCX PI359 scan. The pattern of ion intensity is similar to that 

seen in the IDA scan. 
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Figure 102. Overlay of the heatmap from figure 100 (SCX IDA) and the UV 
data from figure 87. The area of high intensity from samples 3-8 represents a 
single MS run. The lack of UV signal indicated a low level of peptide present 
and as such these samples were pooled. Samples 9-20 represent the most 
abundant peptide elution from the SCX run and coincide with the greatest 
number of peptide identifications. 
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4.4.4.3 Offgel 

 

Figure 103. The Offgel IDA heatmap shows a wide distribution of ion 

intensities. 
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Figure 104. The Offgel PI359 heatmap shows a much narrower distribution of 

ion intensities. 

As would be expected the heatmaps associated with the more selective 

precursor ion scans tend to be more concentrated with respect to areas of high 

intensity. The effect is most pronounced in the comparison of the GeLC IDA and 

PI359 heatmaps. From this data it would appear that the ion intensity peaks at 

around the 13 minute mark across all of the gel sections in the PI359 sample. 

This indicates that the PI359 scan mode is reacting to something that is eluted at 

the same time in all fractions. Due to the nature of the 1st dimension of 

separation it should not be possible for the same protein to be present in all 

fractions. An exception to this rule is of course the trypsin used for digestion of 

all samples, the reason that is does not occur in samples with either Offgel or 

SCX 1st dimensional separations is that the trypsin added to those samples was 

subjected to the 1st dimension of separation. In contrast, the GeLC approach is 

the only one in which tryptic digestion is carried out after the 1st dimension of 

separation. Trypsin was identified in all samples as was expected and a detailed 

manual analysis of the data revealed the ion to be a peptide fragment, at m/z 

523, belonging to trypsin. 
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From the heatmaps it appears that the GeLC separation makes the best use of 

the 2 dimensional separation space followed by the Offgel approach. 

Interestingly this does not seem to be in agreement with the actual performance 

of the Offgel method. In this case as only the TIC is taken into account this may 

indicate the presence of some sort of contaminant in the Offgel fractions. This 

may also go towards explaining the lack of proteins identifications as a 

consequence of ion suppression.  A known limitation of SCX separations is the 

tendency for tryptic peptides to bear predominantly either 2 or 3 charges. As 

separation proceeds based on the charge states of the peptides the elution 

window is relatively narrow ultimately leading to an inefficient use of separation 

space (Gilar et al., 2005). Looking at the merged figure of the SCX heatmap and 

UV data (figure 102) it is clear that peptides are predominantly located within 

the region of high UV intensity (time 25-40 min). In order to fully utilise the 

theoretical separation space it would be necessary to increase the length of the 

SCX elution gradient and to increase in the number of fractions taken. 

Additionally, peptide elution along the second dimension mainly occurs in the 

second third of the reverse phase run; lengthening the reverse phase separation 

gradient should further increase separation space. The obvious downside to this 

would be the greatly increased analysis time required.  

In the all heatmaps the majority of high intensity ions are detected between 

about 13-30 min. This correlates well with the RP-LCMS gradient used in that 

maximal detection of peptides occurs during the gradual increase in buffer B. 

The Offgel IDA heatmap however, has a peak in ion intensity between min 5-7. 

This is a very early point in the solvent gradient and may be due to some sort of 

contaminant. The same peak in intensity does not occur in any of the other 

samples, including the PI359 Offgel runs. This is likely due to the contamination 

failing to produce the necessary product ion of 359 m/z and as such being unable 

to trigger the PI359 scan.   

The seemingly high number of protein identifications made even when using the 

precursor ion scan is likely caused by either an almost ubiquitous production of 

fragments at 359 m/z, overlap of parent ion masses between parent ions that 

produce the precursor and those that do not; or a combination of both factors. 

The precursor ion scans selectivity is adversely affected by the lack of mass 

accuracy inherent to quadrupole instruments (typically >100 ppm). A precursor 
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ion scan of 359 m/z units translates more accurately to 359.1 +/-0.6, giving a 

very wide window for non-specific selection of precursor ions. A higher mass 

accuracy would mean narrowing the window of selection thereby eliminating a 

high level of false positives. Unfortunately this approach would not serve to 

close the window on the problem of overlapping parent masses but would 

effectively reduce the sensitivity of the method. Even with more accurate 

identification of fragment ion masses the initial parent ion masses would still be 

limited by the quadrupole‘s poor resolution.  The only truly effective way to 

eliminate or at least alleviate the problem would be to improve peptide 

separations and thereby reduce the number of different ion species being 

introduced to the instrument at any given moment. 

 

4.4.4.4 PI359 candidate ions 
 

A detailed analysis of the data was carried out in order to identify ions that were 

responsible for triggering the precursor scan. The results from the GeLC 

experiments were chosen as they are responsible for the greatest number of 

protein hits. Peptide matches from the mascot results files were manually 

inspected for any fragment ions with mass 359.1+/- 0.6Da representative of the 

target mass of the precursor scan coupled with the MS/MS tolerance of the 

instrument in this scanning mode. The charge state of the parent peptides were 

not taken into account, only the charge state of the fragment ions were 

considered as only these are capable of triggering a scan. Ions included in the 

search criteria were of type b, y and y*; where y* is a y series ion with a loss of 

17Da representative of internal fragmentation and loss of ammonia (NH3).  The 

mass difference was taken as the theoretical exact mass of the detected peptide 

minus the theoretical exact mass of the adduct fragment (359.1092 Da). The 

mass difference was then converted into error as expressed in parts per million 

(ppm). Additionally, the number of possible permutations for a given peptide 

was calculated using the general formula: 

 

Where n is equal to the number of unique amino acids in the sequence. 
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And: 

 

 

Where m is equal to the total number of amino acids in a sequence with 2 

identical amino acids; no sequences were identified that had more than 2 of the 

same amino acids. 

It is important to note that the following table represents only detected 

peptides and that only one permutation was chosen even in cases where 

multiple permutations were discovered. The reason being that the purpose of 

the analysis was to identify which peptides have masses close enough to the 

target precursor mass to trigger a scan. Every permutation of a given peptide 

sequence will be isobaric in mass to any other sequence of the same amino acids 

making the listing of permutations redundant. 
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Table 9. Peptide fragments detected in the PI359 scans of clozapine positive 
and negative human liver microsome samples as separated by GeLC. The 
exact theoretical mass of the precursor ion (359.1092) was compared to the 
exact theoretical mass of a peptide fragment as matched by the Mascot 
search engine. 

Predicted 
mass Peptide 

Ion 
series 

Mass 
difference(Da) 

Mass 
difference 

(ppm) Permutations 

358.6823 PVTEDR 2+ y -0.4269 1189 720 

359.1197 NED b 0.0105 29 6 

359.135 GWD b 0.0258 72 6 

359.1361 TEQ b 0.0269 75 6 

359.1561 AADTV b 0.0469 131 12 

359.1561 NDK y* 0.0469 131 6 

359.1561 TGEA b 0.0469 131 24 

359.1561 AADT b 0.0469 131 12 

359.1638 SAGWDAK 2+ Y* 0.0546 152 2520 

359.1674 GGSR y* 0.0582 162 12 

359.1714 NPF b 0.0622 173 6 

359.1748 IMN b 0.0656 183 6 

359.1748 VGMA b 0.0656 183 24 

359.1748 VMQ b 0.0656 183 6 

359.1925 ATSV b 0.0833 232 6 

359.1925 GTLS b 0.0833 232 24 

359.1925 GTVT b 0.0833 232 12 

359.1925 PDASVTK 2+ y 0.0833 232 5040 

359.1925 PDK y 0.0833 232 6 

359.1925 QTK Y* 0.0833 232 6 

359.1925 SAVT b 0.0833 232 24 

359.2037 SPR y 0.0945 263 6 

359.2401 ALR y 0.1309 365 6 

359.2401 IAR y 0.1309 365 6 

359.2653 VIK y 0.1561 435 6 

359.2653 VLK y 0.1561 435 6 

359.6537 SEDDPR 2+ y 0.5445 1516 360 

359.6719 ETESPR 2+ y 0.5627 1567 360 
 

In total some 149 different motifs were discovered that produced ions close 

enough to the precursor target mass to trigger the scan. The table describes 28 

of these ions but all 149 were permutations of those detailed. It is important to 

note that these are peptide fragments produced by the CID fragmentation of 

larger peptides and not full length tryptic fragments produced during digestion 

of proteins. This means that the limitations imposed on tryptic peptide 
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fragments (i.e. the position of cleavage sites lysine, and arginine at the start and 

end of peptides) do not apply and therefore do no limit the number of 

permutations possible. The total number of permutations possible from the data 

represented was 9,234. Most fragments were found to be singly charged ions of 

either three of four residues in length which may seem counterintuitive as fewer 

permutations are possible when compared to fragments with 5, 6 or 7 amino 

acids but makes sense when the nature of the dataset being searched is 

considered. The protein database (Swissprot in this case) contains a finite 

number of protein sequences of finite length. The probability of randomly 

matching a given peptide fragment to a protein sequence decreases in 

proportion to the number of amino acids in the fragment i.e. the sequence EVE 

is more likely to occur than the sequence EVEKQ.  

It should be possible to calculate the total number of peptide sequences that 

would give rise to the precursor target mass, how often they appear in a given 

dataset and their variance from the exact mass of the target. With this data it 

would be possible to ascertain the optimal window at which to perform 

precursor scan based searches. 

In the case of this work none of the matched peptide fragments came within 

0.01 Da of the exact mass of the precursor target; a difference of greater than 

28ppm. An instrument such as the ABSCIEX TripleTOF © 5600 capable of a 

resolution of 40,000 FWHM and a mass accuracy of better than 2ppm could 

theoretically distinguish between the actual target mass and those identified in 

this analysis. It is extremely unlikely that all of the possible combinations of 

amino acids with mass similar to that of the target were identified and it is 

possible that there are masses which come closer than the 28ppm observed; 

however, the higher resolution and mass accuracy would act to decrease the 

number of false positives. False negatives can be alleviated with the widening of 

the mass window to allow for experimental error and allowing for the known 

precision of any given instrument type.  
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 4.5 Discussion 
 

In the course of these experiments no positive identifications were made with 

respect to proteins modified with clozapine metabolites. All five of the 

previously identified metabolites (3.4.1) were included as part of the Mascot 

search parameters. It is possible that the rarity of modification in the liver 

microsome system has meant that more abundant ions have completely 

suppressed the detection of metabolite-protein adducts. Many possible peptide 

fragments bearing clozapine modifications were identified as unmatched ions i.e. 

the amino acid sequence did not significantly match any proteins in the 

databases searched. It is more likely that these matches are statistical artefacts 

caused by the extremely large amount of data generated by the MS analysis of 

samples. It is not particularly surprising that the IDA based scans did not reveal 

any protein-drug adducts. The complexity of the sample and the relative scarcity 

of the modification (5.4.5) would stack the odds against their discovery. The 

failure of the more selective precursor ion based scans to identify modifications 

is more disappointing. The enhanced selectivity should act to effectively reduce 

the background complexity. However the results of the work carried out in this 

part of the project demonstrated that the precursor ion scan identified around 

1/3 the number of proteins that were identified using the IDA method. This level 

of selectivity is unlikely to greatly assist in detecting drug modified peptides in 

such a complex background. This could be partly overcome by using a higher 

resolution and more accurate instrument in order to increase the selectivity of 

the precursor scan. 

Due to the large number of fractions for analysis it was sometimes necessary to 

have them stored in the autosampler for up to 24 hours. It was considered 

possible that sample degradation could occur over this length of time leading to 

a reduction in the number of peptides detected. However  earlier work involving 

the modification of synthetic peptides with clozapine showed that the modified 

peptides could be detected in samples after several days at room temperature 

and multiple freeze/thaw cycles. Additionally, the autosampler device stored 

the samples at 4 ˚C further decreasing the likelihood that an unacceptable 

amount of sample degradation occurred. 
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Each of the studies involved two dimensions of separation in order to greatly 

reduce the complexity of any given sample thereby allowing for a more in depth 

and complete analysis of the liver microsome proteome. Each of these 

approaches allowed for the identification of several hundred unique proteins. In 

total, more than 1700 proteins were identified, more than 1000 of which were 

non-redundant. Despite this fact the low levels of coverage for some proteins 

means that a large part of the proteome has gone undetected. Additionally, 

peptides with post translational modifications not accounted for cannot be 

detected using the Mascot search. Despite the selectivity of the precursor 

scanning approach limitations on sensitivity are likely to play a part in the 

detection of low level modifications.  

Separation by Offgel fractionation and by ion exchange was carried out at the 

peptide level in order to maximise the number of hydrophobic proteins 

solubilised in the samples. In the case of both the SCX and Offgel experiments 

digestion of proteins was carried out in-solution. With in-solution digestion the 

primary concern is the prevention of adsorption, protein aggregation and 

precipitation. In order to prevent these problems, proteins can be treated with 

chaotropes, detergents (ionic, zwitterionic or non-ionic), organic acids or 

organic solvents. Work has shown that using these agents as part of in-solution 

digestion strategies results in a marked improvement in membrane protein 

identifications, as discussed in the review by Speers and Wu (Speers and Wu., 

2007). A good representation of membrane proteins, upon MuDPIT/Offgel 

analysis, has been obtained simply by carrying out digestion in a high 

concentration of chaotropic agent (8M urea) (Gonzalez-Begne et al.,2009; 

Elschenbroich et al., 2009). The chaotrope serves to disrupt protein-protein 

interaction and prevent precipitation. High concentrations of methanol or 

acetonitrile also act to denature and solubilise proteins and have been shown 

effective in dealing with the digestion of membrane proteins (Blonder et al., 

2004; Dormeyer et al., 2008).  

Detergents are commonly used to solubilise proteins and separate them from 

membranes. A range of these are used but SDS is typically favoured. SDS forms 

complexes with the proteins and result in their denaturation (Reynolds and 

Tanford, 1970). Although it can be used to efficiently and effectively purify 

proteins from membranes it interferes with mass spectrometric downstream 
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analysis (Loo et al., 1994). The problem with ionic detergents is that they ionise 

so efficiently and are in such great quantity that they cause ion suppression and 

a subsequent loss in sensitivity. In order for mass spectrometric analysis to be 

carried out the detergent must be stringently removed from the proteins. An 

approach, known as FASP (filter-aided sample preparation), uses SDS to 

solubilise proteins  before loading them into an ultrafiltration device (Nagaraj, 

et al., 2008). Once in the device the proteins undergo buffer exchange into an 

8M urea solution with the SDS being washed through the filter. Enzymatic 

digestion is then carried out and the peptide fragments eluted and collected for 

analysis. Results indicate that the method is highly effective for identification of 

membrane proteins and also has been shown to improve sequence coverage of 

identified proteins when compared to standard in gel digestion (Wisniewski et al., 

2009). 

The delipidation protocol applied in this work with respect to the in-solution 

digested proteins likely played a part in denaturing the proteins and allowing for 

more efficient digestion. However it is highly probable that the application of 

one of the a aforementioned methods for handling membrane proteins would 

have markedly increase the number of identifications. A review of the literature 

indicates that in-solution digestion can provide elucidation of membrane 

proteins at least on par with gel based methods.  

Due to the apparent complexity of the samples after the various forms of two 

dimensional separations applied it may be necessary to either add a further 

orthogonal separation technique or use a more selective method for identifying 

modified peptides/proteins or increase the degree of separation in either or 

both dimensions. The obvious drawbacks to adding further orthogonal separation 

techniques is the exponential increase in processing time.  It could be argued 

that all of these techniques are limited by the fact that they effectively reduce 

the resolution of separation by necessitating the collection of fractions. A 

problem that is only currently overcome when separating proteins by 2D PAGE 

due to the analogue nature of both dimensions of separation. It would be 

possible to overcome this limitation by increasing the number of fractions taken 

to a point at which the fraction length is greatly shorter than the expected 

chromatographic peak width. However this approach would generate a vast 
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number of fractions and increase downstream analysis times to an unacceptable 

extent. 

Affinity depletion of the most abundant 4-6 proteins in routinely carried out in 

order to improve identification of less abundant species(Ramstrom et al., 2009; 

Echan et al., 2005; Linke et al., 2007), however it has been shown that the 4-6 

next most abundant proteins then go on to mask the presence of less abundant 

species (Stalder et al., 2008). Due to the extremely wide dynamic range (around 

1010 ) the effective application of this technique probably requires several 

rounds of depletion, during these depletions it is likely that an unacceptable loss 

of sample will occur through non-specific interactions. 

It is worth noting that the failure to detect the presence of modified metabolites 

is not synonymous with the nonexistence of said molecules. The earlier work 

carried out involving the formation of both glutathione adducts and synthetic 

peptide adducts clearly demonstrates the reactivity of the clozapine metabolites 

with the sulfhydral group of cysteine both with and without the catalytic activity 

of GST. 

The formation of protein adducts would appear to be at least partially specific; 

with earlier work carried out having demonstrated that the presence of free and 

accessible cysteine residues does not always lead to adduct formation.   

In samples of this complexity a major challenge is that of ion suppression. The 

phenomenon is poorly understood but is supported by several studies (Tang and 

Kebarle, 1993; King et al., 2000; Annesley, 2003; Mallet et al., 2004 ).  There 

are two likely causes of such suppression; firstly, competition between 

molecules for charge and secondly, a saturation of analyte within the ESI 

droplets leading to increased viscosity. In the first case molecules with greater 

basicity will outcompete others for the positive charge (the available charges 

are limited as droplets evaporate and approach the Rayleigh limit (1.3.1.4.1)) 

and thereby suppress their transmission into the mass spectrometer. In the 

second case the analyte concentration can increase the viscosity of the droplets 

and thereby work against the transition of ions from the liquid to the gas phase.  

Typically this so called matrix effect is caused by contaminant molecules eluting 

along with analytes. Sample preparation is an important step in reducing the 

effects of ion suppression.  
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Ion suppression occurs with increased sample concentration, previous work has 

demonstrated that increasing the amount of a tryptically digested BSA sample 

above 40 fmol lead to a problematic level of ion suppression in a nanoLC-MS 

setup (Hirabayashi et al., 2007). This is representative of a general suppression 

of ions and seems more related to the implications it has on the linearity of mass 

spectrometric response and its applications in quantification (Enke, 1997). 

However another possible outcome with interesting implications for this work is 

the suppression of specific ions to such an extent that they are effectively 

excluded from the MS analysis. The effective exclusion is brought about by their 

signal being indistinguishable from the background noise. 

 Metabolite peptide adducts represent only a small fraction of the total peptide 

content of the highly complex liver microsome digest. Consequently, when 

competing for free charges in the electrospray ionisation  process they will be 

underrepresented;  the number of molecules entering the gas phase as ions  

would be in proportion to the number present in the liquid phase.  However, this 

is only true when the availability of free charges greatly exceeds the number of 

analyte molecules in an ESI droplet as the competition between different 

analytes ends with every molecule entering the gas phase as an ion. 

 In actuality the dynamic is more complex with the free charges only being 

accessible at the outer edges/surfaces of the droplets and their number being 

limited by factors including the electrical conductivity and the flow rate of the 

solvent (Tang et al., 1989; Cech and Enke, 2001; Tang and Kebarle, 1993). When 

the number of charges is similar to or less than the number of analytes then 

molecules that possess properties allowing them to ionise more effectively will 

acquire more of the available charges. If the disparity between ionisation 

affinity and the difference in concentration is great enough it is probable that 

the low abundance species will be effectively entirely suppressed.  

As the overall representation of modified peptides is so low it is highly probable 

that at any time during ESI at which such a species is present it will be 

accompanied by several non-modified species. The chances of the modified 

species being the more ionisable will always be lower than that of any of the 

other group of non-modified peptides simply by the laws of probability. 
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The ultimate consequence of this is almost paradoxical; it seems to follow that 

by increasing the concentration of the sample beyond a particular threshold (a 

number of analyte molecules exceeding the free charges) the sensitivity of the 

analysis with respect to lower abundance less ionisable species would decrease. 

For this reason it has been suggested that decreasing flow rates to low nl/min 

should decrease charge competition and extend the dynamic range with respect 

to quantitation (Tang et al., 2004). 

 

 

Chapter 5: DiGE and Western Blot Analysis 
 

5.1 Aims 
 

The putative stochastic process of electrophilic attack and subsequent protein-

metabolite adduct formation suggests a situation in which there exists 

populations of various protein species with both modified and native 

configurations. The ability to accurately measure and compare the relative 

proportions of modified and unmodified proteins of the same species would 

allow for the creation of a map of proteins at risk from electrophilic attack from 

any particular xenobiotic. Difference gel electrophoresis (DiGE) allows for the 

direct comparison of whole proteomes exposed to different physiological 

conditions (e.g.  drug treated vs. control samples) (Alban et al., 2003). 

Optimisation of the system must always be carried out to ensure proper labelling 

of samples. 

The aims of this project were as follow: 

1) Optimisation of a native saturation DiGE protocol applied to the human 

liver microsome assay products. 

2) Analysis of data gathered from a large scale analytical experiment 

comparing clozapine treated and untreated human liver microsome 

fractions. 



 

210 
 

 

3) Preparative DiGE experiment carried out with proteins of interest 

identified in 2) excised, digested, analysed by reversed phase LCMS and 

identified using Mascot. 

4) Synthesis of  biotinylated desmethyl clozapine for protein binding study by 

western blot and digestion and LCMS. 

 

Figure 105. The DiGE workflow used in the following work. After 

optimisation the changes in apparent protein abundance were analysed by 

analytical DiGE. Those proteins with markedly altered fluorescence were 

then subjected to a preparative DiGE experiment for their subsequent 

identification, excision and tryptic digestion. 

 

5.2 Introduction 
 

5.2.1 DiGE 
 

DiGE allows for the quantification of protein differences between samples of 

distinct origin whist correcting for problems that arise from gel to gel 

variation inherent to 2d-gel electrophoresis  experiments (Karp et al., 2008; 

Hrebicek et al., 2007; Viswanathan et al., 2006). The technique is based on 
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the use of functionalised fluorescent dyes with distinct excitation and 

emission properties that can be multiplexed on a single 2d gel. The technique 

has been shown to have  dynamic range of at least 4 orders of magnitude 

(Kolkman et al., 2005). 

DiGE minimal labelling sensitivity is about 1ng per spot whereas the 

saturation dyes detection can be as sensitive as 0.1ng per spot (Shaw et al., 

2003). The saturation dyes are spectrally resolvable and have a maleimide 

reactive group that forms a covalent bond with the sulfhydral group of 

cysteine. Some protein is lost by precipitation and proteins can be 

preferentially labelled by either of the dyes (Shaw et al., 2003). This can be 

compensated  for by adding extra replicates and switching the Cy dye used 

for treated and untreated samples in each ; as was carried out in the 

following work. A pooled sample, comprising equal parts of all samples 

analysed, is used to normalise spots across gels (Wheelock et al., 2006). For 

preparative gels the Cy3 dye is used at much higher concentration  for the 

visualisation of much greater quantities of proteins followed by their 

subsequent proteolytic digestion and extraction.  

A typical DiGE experiment calls for the denaturation and reduction of protein 

samples, using  tri(2-carboxyethyl)phosphine (TCEP), in order to allow for 

maximal labelling. In the following experiments labelling was carried out on 

native proteins. This was done in order to selectively label only proteins with 

surface accessible and reactive cysteines. The labelling is in effect analogous 

to the protein-drug adduct formation that also occurs at surface accessible 

and reactive cysteine thiol groups. It is hypothesised that in the drug treated 

samples those adduct-bearing thiols will not react with the dye. 

Consequently, those same proteins in the untreated sample will appear to be 

of a higher intensity due to increased dye abundance. 
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Figure 106. DiGE experiment with only two proteins. In the clozapine 

negative sample the blue protein (x) has surface accessible cysteine 

residues and thus can react with the CyDyes. The same protein in the 

clozapine treated sample has reacted with a clozapine metabolite; 

consequently fewer protein molecules were available to react with the 

dye. As a result the fluorescence associated with protein x is decreased in 

the clozapine treated sample vs. the clozapine negative sample. 

Saturation labelling does not affect protein digestion or mass spectrometric 

analysis (Yan et al., 2002). System variations such as gel to gel variations are 

corrected for using the internal standards. Spot identification and matching is 

handled by the DIA (differential in gel analysis) software in order to minimise 

subjective editing and to ensure that data is consistent. The software 
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performs background subtraction, quantitation and normalization over the 

full range of gels analysed. The aim of DiGE is to reduce system variation to a 

point at which it can be distinguished from biological variation.  Spots on the 

gels are compared to the internal standards to give a ratio. This ratio can be 

compared directly across all of the gels in the experiment. The internal 

standard also serves to aid the matching of spot patterns across the gels. 

Biological replicates are included in order to reduce the effect of biological 

variation between samples. Biological replicates take into account changes in 

protein expression between samples with identical treatments but non-

identical sources (see section 1.5).  

Univariate testing such as Students t-test or analysis of variance (ANOVA) 

allow for a statistical measurement of changes across gels. These tests 

provide a so called p (probability) score that describes the likelihood that 

there has been no change in protein concentration. A low score indicates a 

low probability that spots are of a similar intensity; consequently the lower 

the score the higher the probability that proteins are of different 

concentrations in the samples compared. 

 

5.2.2 Biotinylated Desmethyl Clozapine 
 

The synthesis of a biotinylated form of desmethylclozapine was used to 

effect a highly sensitive and selective method for the identification of 

metabolite-drug adducts by western blot analysis followed by protein 

digestion and LCMS. 

Western blotting typically involves the separation of proteins by 1d/2d gel 

electrophoresis followed by probing with highly specific antibodies coupled to 

a detection system; usually a secondary antibody-probe molecule (Towbin et 

al., 1979). The western blot analysis carried out in this work did not make 

use of antibodies but instead a streptavidin probe conjugated to horse radish 

peroxidise (Strep-HRP) electro chemiluminescence (ECL) system for imaging. 

Streptavidin has an extremely high affinity for biotin, with a dissociation 

constant of 10-15 M (Green, 1990) forming a bond with equivalent energy to a 

covalent bond. The interaction is highly selective and as with antibodies also 
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used in affinity purifications. The sensitivity of the technique allows for the 

detection of protein down to about the low picogram-femtogram range.  

Duplicate gels stained with Coomassie enabled the identification of proteins 

highlighted in the western blot analysis. These proteins were digested and 

recovered from the gel prior to mass spectrometric analysis. Recovery was 

carried out by making a 1:1 scale hardcopy of the ECL image obtained from 

the G:BOX. This image was placed under the Coomassie stained gels (figure 

122) and used as a template for the excision as indicated in figure 122. The 

gels were run with the same material and in the same way as was carried out 

in the analytical and preparatory DiGE experiments (described in the 

following sections), physical inspection of the Coomassie stained gels (figure 

123) reveals many features seen in the DiGE images. The number of features 

visible however is far fewer than observed in the images obtained from the 

CyDyes do to their greater sensitivity. The gels seen in  figure 123 appear to 

be almost identical. Glutathione trapping and LC-MS based analysis allowed 

for the characterisation of reactive species generated via the metabolism of 

the biotinylated drug. Data from the experiments was used to identify 

potential characteristic ions that could be applied to selective precursor ion 

scan MS methods.  

 

5.3 Methods 
 

5.3.1 Optimisation of DiGE Conditions 
 

Titration of the saturation DiGE dyes. 

Clozapine treated and untreated samples were obtained from the HLM assay 

and cleaned up using 3 kDa spin filters. Proteins were recovered from the 

filter using 25 mM ammonium bicarbonate (AmBic) solution at pH 8. 

Saturation labelling was carried out using the following concentrations of 

Dyes: 2nmol, 4nmol and 6nmol. Gel images were examined to determine 

which dye concentration gave the best results. 
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5.3.2 Analytical DiGE 
 

Analytical DiGE analysis was carried out as described in (2.1.1.13).  

Briefly, three separate batches of HLM were used, each producing both a 

clozapine treated and untreated sample for a total of six samples. An equal 

amount of material from each of these was pooled to generate a 7th sample, 

the pooled internal standard. In total 12 gels were run, gels 1-6 each 

contained one of the 6 treated or untreated samples labelled with Cy3 and an 

equal amount of the internal standard labelled with Cy5. Gels 7-12 contained 

the same but with the internal standard labelled with Cy3 and the samples 

labelled with Cy 5.  

 

5.3.3 Preparative DiGE 
 

A much greater amount of protein is used in preparative DiGE allowing for its 

subsequent recovery, digestion and analysis. The large amount of protein 

protects against the losses inherent to in gel digestion as well as losses by 

adsorption occurring during manipulation and storage of samples. A full 

description of the protocols used can be found at (2.1.1.14). 

 

5.3.3.1 Analysis of DiGE Data 
 

The DeCyder Differential in gel analysis (DIA) (GE healthcare) program was 

used to analyse the data obtained from the gels. The images were loaded 

into the software and protein spots identified, some manual corrections were 

made in order to ensure good correlation between the various gel images. 

The biological variation analysis (BVA) module  was used to assign statistical 

values to changes in protein concentration across the gels. A table of proteins 

with statistically significant (p<0.05) decreases in protein concentration in 

clozapine treated vs. untreated samples was produced. It should be noted 

that in the experiment it was necessary to use saturation labelling as the goal 

was to saturate free cysteine residues. The saturation DiGE system only has 

two dyes, Cy3 and Cy5, compared to three dyes for minimal labelling (Cy2, 
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Cy3 and Cy5). This limits experimental design. In a minimal labelling 

experiment it is possible to have a pooled sample (an internal standard for 

inter-gel normalisation) as well as two potential test states (e.g. treated and 

untreated). In this way a pairwise comparison can be carried out. However, 

the saturation dyes only allow for the inclusion of a pooled sample and a 

single test state (treated or untreated) per gel. As a consequence, in order to 

obtain the same number of replicates it is necessary to produce twice as 

many gels. This is important in order to maintain statistical power as 

statistical power is directly proportional to the number of replicates being 

tested (Karp and Lilley, 2009; Hunt et al., 2005). 

 

5.3.4 Biotinylated Desmethylclozapine (b-DMC) 
 

Desmethylclozapine was reacted with pentafluorophenyl biotin to produce b-

DMC. The b-DMC was recovered from solution by reversed phase 

chromatography, fractions were identified by UV (214 nm, 254 nm) and 

characterised by mass spectrometry (2.1.2.1). The purified b-DMC was 

metabolised in the HLM assay (2.1.1.17) and the products of the assay 

collected for analysis. 

 

5.3.5 Trapping and Identification of DMC and b-DMC Metabolites 
 

Biotinylated desmethylclozapine was metabolised by human liver microsomes 

and trapped with glutathione (2.1.1.15). Samples reconstituted in buffer A 

were analysed by RP-LCMS in order to characterise b-DMC metabolite-

glutathione conjugates. Collision induced dissociation (CID) was carried out 

on adducts in order to identify prominent fragment ions. These ions were 

used in order to generate a selective precursor ion scan. 

 

5.3.6 Western Blot Analysis of b-DMC Products 
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 The b-DMC treated sample and the untreated negative control were both 

separated using 2d-PAGE (2.1.1.5). Appropriately sized PVDF membranes 

were cut to fit the gels, proteins were transferred from gel to membrane by 

the application of an electric field. Blocking of the membrane with a 5% w/v 

solution of powdered milk was followed by labelling with an HRP-streptavidin 

probe. Enhanced chemiluminescence reagents (Pierce) were added and the 

gels were visualised in the G:BOX system (Syngene) using its Chemi blot 

program. 

 

5.3.6.1 Staining, Excision and Digestion of Proteins 
 

A sample treated with b-DMC was run on a 24 cm 2d gel using the protocol 

specified in (2.1.1.5) with the bind silane treatment. The gel was Coomassie 

stained, washed in distilled water and placed on top of a full size image 

taken from the western blot analysis. Spots overlaying those identified by the 

western blot were excised and tryptically digested (2.1.1.10). The tryptic 

digests were analysed by LCMS. 

5.3.7 Analysis of proteins by Reversed Phase Liquid Chromatography-
Mass Spectrometry (RP-LCMS) 
 

The tryptically digested proteins were analysed by RP-LCMS as described in 

(2.1.2.2) for an IDA scan and (2.1.2.3) for a selective precursor ion scan 

(2.1.2.7). Data obtained was submitted to Mascot for searching in order to 

identify proteins and modifications. 
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Figure 107.  b-DMC workflow. DMC is converted to b-DMC. Glutathione 

trapping allows for the identification of metabolites. Western blotting is used 

to locate the metabolite-protein adducts. The corresponding regions of the 

2d gel are excised and tryptically digest. The samples are then analysed by 

LC-MS with data from the glutathione trapping stage used to generate 

selective precursor ion scan methods.   

 

5.4 Results 
 

 

5.4.1 Optimisation of DiGE Protocol 
 

Saturation DiGE required careful optimisation for each sample type to be 

analysed i.e. the fluor: protein ratio must be balanced correctly. Too much 
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fluor results in side reactions with lysine and to horizontal charge trains;  

underlabeling results in multiple spots in the vertical dimension.  

Cy3 and Cy5 labelled gel images were produced for each of the three dye 

concentrations. The gels were qualitatively compared for the presence of 

horizontal or vertical streaking and for the degree of overlay between spots 

labelled with the different dyes. 

The liver microsome fraction is known to have relatively high glutathione 

levels  of between 5-10 mmol/L (Armstrong, 1987; Sies et al 1983);  reduced 

glutathione has a reactive cysteine and as such is capable of reacting with 

the maleimide functionalised CyDyes. This may lead to depletion of the free 

dye by means of a reaction between the maleimide functional group and the 

sulfhydral side group of cysteine. Taking this into account it is likely that a 

concentration above the recommended 2 mmol would be required in order to 

produce optimal labelling of a liver microsome sample.  

The narrow range, pH 4-7, was chosen to ensure better separation between 

proteins with similar isoelectric points. Due to the number or proteins in the 

sample it is likely that any given spot comprises many different proteins 

species. A consequence of this is that changes in abundance can be masked. 

An increase in the fluorescence of any given spot may be caused by a change 

in any one of its several component proteins. A multiple-fold change in the 

abundance of a very low abundance protein may be lost as background noise 

when the presence of a much higher abundance protein masks the signal. 
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Figure 108. 2 nmol CyDye. There is some evidence of vertical streaking 

possibly due to underlabeling of proteins. The background noise is 

relatively high, making identification of some spots difficult. 

 

Figure 109. 4 nmol Cy Dye. The gel was partially damaged when removed 

from the glass plates causing some warping. Spot intensity is better with less 

background interference. Better resolution of spots is apparent. 
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Figure 110.  6 nmol CyDye. Resolution of proteins is further improved and 

the number of spots visible has increased again with background noise 

becoming even less apparent. 

A general improvement in spot visibility and definition (resolution) is apparent 

from 2-6 nmol (Figures 94-96). A decrease in background noise (signal: noise) is 

also obvious and is  by 6nmol. From these images it would appear that samples 

treated with 6 nmol of dye give the best results. This outcome is as predicted 

and is probably in part accounted for by the high glutathione content typical of 

liver cells (up to 5mM). 

False colours were assigned to the Cy3 (yellow-green) and Cy5 (red) images  

from each gel in order to compare the overlay of proteins labelled with each of 

the dyes. Overlaid spots appear as an intense yellow, green and red spots are 

either poorly overlaid or have one dye at a higher concentration than the other. 

Across the three concentrations of dye the overlay is generally good with a trend 

towards improvement as the concentration increases (Figures 97 and 98). Some 

failure to overlay is explained by the sensitivity of the electrophoresis to the 

different dye structures that occurs around the 20-30 kDa mass range and is 

expected to cause misalignment in roughly 1% of the protein spots (DiGE product 

booklet, Amersham). 
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The qualitative analysis clearly indicated that the highest dye concentration (6 

nmol) gave the best results and as such was used in the analytical DiGE 

experiments.  

 

Figure 111.  2 nmol composite. Yellow-green represents Cy3, Red represents 

Cy5. The intense yellow is the result of the combination of Cy3 and Cy5. 

 



 

223 
 

 

 

Figure 112. 6 nmol composite. The superior resolution and overlay of 

proteins is apparent when compared to the 2 nmol composite image. 

 

5.4.2 DiGE of Clozapine Treated Microsomes Vs. Untreated Microsomes 
 

Biological variation analysis (BVA) of the 12 gels yielded the following table of 

results (table 18). A statistical cut-off p-value of 0.05 was applied to spots 

showing decreased intensity in the drug treated vs. control samples. Intensity 

changes range from a factor of 1.16 to 2 were observed within this statistical 

cross-section. Matching of spots across all 12 gels was a difficult task due to the 

number of protein spots present and physical differences between the gels. 

Warping occurred in several of the gels; the bottom portion of the gel became 

markedly wider than the top, resulting in trapezoid shaped gels. The software 

has a warping feature that was applied in order to correct for this. There was 

some variation in the number of spots detected (from 1884-2349 per gel with 

1244-1565 matched to the master gel);  due to the high number of gels manual 

spot matching was limited. It should be noted  that a principal component 

analysis for the identification of outliers was not carried out but should have 

been. Outliers may either represent proteins with strong differential expression 

or be indicative of mismatched spots. 



 

224 
 

 

A consequence of the imperfect matching of spots across the gel series is that 

some of the protein abundance changes are supported by less than 12 gels 

thereby reducing their statistical validity. Identification of statistically 

significant changes is potentially the first step in locating proteins modified by 

the clozapine metabolites. By running a preparative gel with the same samples, 

picking the spots identified in this study, digesting and analysing them by LCMS it 

should be possible to find modified proteins. 

A major drawback with this technique is the imperfect separation of proteins 

across either of the two dimensions. Proteins with similar mass and similar 

isoelectric points are likely to migrate to approximately the same part of the gel. 

Consequently each of the spots identified is likely to contain more than a single 

protein. This can lead to the masking phenomenon described previously (4.4). 

Additionally  it has been demonstrated that DiGE can underestimate the changes 

in protein concentration as compared to western blot analysis (Hannigan et al., 

2007). 

 

Table 10. This table represents all of the spots that showed a decrease in 

intensity (Clozapine treated vs. Untreated). Only changes with a p-value of 

<0.05 were accepted (representative of a 95% confidence that there is a real 

change in intensity and not a false positive).  

Master 

spot Gels  p-value Intensity 

Excision 

number 

396 12(12) 0.02 -1.32 1 

432 11(12) 0.017 -1.39 2 

437 11(12) 0.00025 -1.6 3 

438 10(12) 0.0082 -1.34 4 

491 12(12) 0.034 -1.18 5 

498 12(12) 0.035 -1.47 6 

504 12(12) 0.034 -1.19 7 

575 11(12) 0.028 -1.4 8 

601 11(12) 0.062 -1.25 9 

612 6(12) 0.0087 -1.16 10 
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615 10(12) 0.0083 -1.3 11 

624 10(12) 0.031 -1.3 12 

707 10(12) 0.046 -2 13 

748 8(12) 0.0079 -1.8 14 

757 11(12) 0.032 -1.25 15 

 

 

 

5.4.3 Preparative DiGE 
 

 

The preparatory gel was imaged as described in (2.1.1.13.5) as the preparatory 

gel only has a single dye (Cy3) this image was loaded as both channels (Cy3 and 

Cy5) into the DIA module of DeCyder. After DIA processing the data was loaded 

into the BVA module with the analytical DiGE data to allow for matching of spots. 

The spots identified in the previous table were added to the pick list in the 

DeCyder software. The program records the coordinates of the target spots and 

communicates the information to the Ettan Spot Handling Workstation 

(Amersham Biosciences, UK) which then physically removes the gel pieces for 

further analysis. The gel pieces were then subjected to tryptic digestion 

(2.1.1.10). Analysis of the 15 excised spots by RP-LCMS using both an IDA 

approach and the more selective PI359 scanning mode was carried out.  Due to 

material constraints a single preparatory DiGE gel was created. 

 



 

226 
 

 

 

 

Figure 113. An image of the preparative gel;  Spot identification was carried out in the 
DeCyder DIA and BVA modules. Spots added to the pick list are designated in red. 

 

As previously predicted the number of proteins detected greatly outnumbers the 

number of spots excised. The excision of spots was slightly altered in this 

approach in order to compensate for the drift in mass imparted by the clozapine 

metabolite. This adaptation lead to the use of larger than normal spots (2mm 

picker head) and the increased number of protein identifications. A likely 

consequence of the larger spots is the inclusion of more proteins in the gel 

section taken and analysed.  

The mass spectrometric data was searched using Mascot; the parameters were 

set as previously described in (2.1.4.3). The PI359 scan when used on such small 

populations of proteins should have enhanced effectiveness due to a reduced 

likelihood of false positive precursor ions. From the data 18 proteins were 
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identified compared with the 147 proteins identified in the IDA type 

experiments . These numbers exclude trypsin and the various keratins that were 

likely contaminants picked up during sample handling and preparation. From 

these results one of two things is happening, either selectivity is being increased 

or sensitivity is being reduced.  The lack of adduct identification seems to 

indicate that the latter is more likely. 

It was not possible to detect the presence of any metabolite-peptide adducts in 

the mass spectrometric data; including both the PI359 and IDA scanning methods. 

There could be several reasons for this i) The data gathered from the analytical 

gels may not indicate the presence of protein adducts;  ii) a relatively low 

abundance modified protein may be further depleted in the gel digestion and 

extraction steps iii) the adduct may not be of the same character as those 

searched for. 

It is possible that 12 gels does not give enough statistical significance to identify 

spots with changes of such a low degree (1.2-2 fold); in order to determine the 

statistical significance of the experiment with respect to making false negative 

errors a power analysis can be carried out. The power analysis requires the 

effect size to be measured (the minimum difference between two states i.e. 

control and treated) the significance level (typically 0.05), sample size 

(replicates) and the standard deviation observed in each group (control vs. 

treated). It is possible to carry out a post-hoc calculation to determine the 

statistical power of any given experiment but it is generally believed by 

statisticians that the results have little meaning or value. Work by Hoenig and 

Heisey showed that post-hoc calculation of statistical power provides results 

that are directly proportional to the p-value and so provides no new information 

(Hoenig and Heisey, 2001). The power analysis only carries real meaning when 

carried out prospectively and can be used to determine the number of samples 

required to detect a change of a given size with a particular statistical 

significance (usually set at 80%). The DeCyder software used in this work did not 

offer the functionality required to provide this information. Other software 

however e.g. Progenesis SameSpots (Non-linear Dynamics) can carry out power 

analysis calculations. An underpowered experiment would produce an high 

degree of false negatives leading to potentially important proteins going 

undetected. In this case it would be necessary to either increase the number of 
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gels examined, which would considerably add to analysis time and costs, or to 

consider the possibility that the degree of modification is beneath that 

detectable by the DiGE approach. Relatively little is understood about the 

mechanisms of drug-protein adduct formation as a generalised concept. It is 

entirely possible that metabolites could have affinity for particular protein 

targets (Labenski et al., 2009; Bartolone et al., 1989; Pumford et al., 1990; 

Nakayama et al., 2010; Fisher et al., 2011). In this case the high concentration 

of drug used in these studies should ensure a considerable amount of modified 

protein.  If this were the case then this DiGE based approached should easily 

identify a subsequent depletion of the unmodified protein in the sample exposed 

to the reactive metabolites. 

As to the second possibility, it is well known that losses occur when carrying out 

in gel digestion and extraction of peptides. The factor of depletion is estimated 

to be around 15-30% with subsequent handling steps seeing further losses of 10-

15% caused by adsorption of peptides to plastic surfaces (Speicher et al., 2000). 

With saturation DiGE‘s lower detection limit of around 0.1 ng of material (Shaw 

et al., 2003) this would mean that after digestion and handling losses (after 

handling: 0.75 ng) there would be around 15 fmol of protein (for a protein of 50 

kDa); well within the detection limits of a Qtrap instrument (Wilm et al., 1996).   

Additionally, the proteins selected for digestion and extraction were of 

relatively high intensities indicating that protein abundance was fairly high and 

as such are unlikely to be at the lower end of the DiGE detection limit. 

The formation of a metabolite not detected in the early glutathione trapping 

experiments is entirely possible and with a mass not added to the Mascot search 

parameters peptides bearing these modifications would be effectively invisible. 

However, the metabolites detected and added to the Mascot database 

comprised the sum of all adducts detected for clozapine based on a thorough 

search of the literature (Fisher et al., 1991; Jian et al., 2009; Jegouzo et al., 

1999; Van Leeuwen et al., 2005; Inoue et al., 2009; MacDonald et al., 2011; Zhu 

et al., 2007; Zhang and Yang, 2008; Yan et al., 2005). Whilst it is possible that 

other metabolites exist, the major metabolite is likely amongst those included in 

the search parameters. 
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5.4.3.1 Protein Identifications 
 

Proteins identified from both  the IDA and PI359 methods were catalogued and 

compared. The following tables (tables 19 and 20) represent proteins with 

relatively high MOWSE scores and good protein coverage. The false discovery 

rates were below 5% for all experiments. 

 

Table 11. High MOWSE scoring proteins identified in the preparative DiGE 

experiment. These results were taken from the IDA experiments and have an 

associated false discovery rate of 4.3%.  
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Spot Mascot ID 
 

Protein name 
Mowse 
score 

Coverage 
(%) 

 
MW 
kDa 

 
pI 

1  CPSM_HUMAN  

 Carbamoyl-phosphate synthase 
[ammonia]  475 31 

165 6.3 

1  MYH9_HUMAN   Myosin-9 202 11 
160 5.5 

2  GRP78_HUMAN   78 kDa glucose-regulated protein 438 40 
78/72 5.1 

2  PDIA4_HUMAN   Protein disulfide-isomerase A4  129 21 
72 5 

2  HS71L_HUMAN   Heat shock 70 kDa protein 1L  110 7 
70 5.7 

2  HSP7C_HUMAN   Heat shock cognate 71 kDa protein 102 4 
71 5.4 

3  GRP78_HUMAN   78 kDa glucose-regulated protein  595 48 
72 5.1 

3  PDIA4_HUMAN   Protein disulfide-isomerase A4  409 32 
73 5 

3  HSP7C_HUMAN   Heat shock cognate 71 kDa protein 232 11 
71 5.4 

4  GRP78_HUMAN   78 kDa glucose-regulated protein  437 33 
78 5.1 

4  PDIA4_HUMAN   Protein disulfide-isomerase A4  293 32 
73 5 

4  HSP7C_HUMAN   Heat shock cognate 71 kDa protein 112 13 
71 5.4 

5  HSP7C_HUMAN   Heat shock cognate 71 kDa protein  356 21 
71 5.4 

5  HSP71_HUMAN   Heat shock 70 kDa protein 1  166 17 
70 5.5 

5  GRP75_HUMAN   Stress-70 protein, mitochondrial  149 20 
74 5.5 

6  GRP75_HUMAN   Stress-70 protein, mitochondrial  237 29 
74 5.9 

6  ANXA6_HUMAN   Annexin A6 217 24 76 5.4 

6  HSP7C_HUMAN   Heat shock cognate 71 kDa protein  134 12 71 
5.4 

7  ANXA6_HUMAN   Annexin A6 260 25 76 5.4 

7  GRP75_HUMAN   Stress-70 protein, mitochondrial  184 27 74 
5.9 

7  NCPR_HUMAN   NADPH--cytochrome P450 reductase  128 9 77 5.4 

7  NDUS1_HUMAN  

 NADH-ubiquinone oxidoreductase 75 
kDa subunit 126 15 79 5.4 

7  HSP71_HUMAN   Heat shock 70 kDa protein 1  113 11 70 
5.5 

8  HSP71_HUMAN   Heat shock 70 kDa protein 1  82 8 70 
5.5 

9  ALDH2_HUMAN   Aldehyde dehydrogenase 224 24 56/51 6.6 

9  PDIA3_HUMAN   Protein disulfide-isomerase A3  221 29 57 6 

9  EST1_HUMAN   Liver carboxylesterase 1  120 11 62 6.1 

10  ALDH2_HUMAN   Aldehyde dehydrogenase 170 16 56/57 6.6 

10  PDIA3_HUMAN   Protein disulfide-isomerase A3  132 20 57 6 

10  EST1_HUMAN   Liver carboxylesterase 1  100 8 62 6.1 

11  PDIA3_HUMAN   Protein disulfide-isomerase A3  200 28 57 6 

11  ALDH2_HUMAN   Aldehyde dehydrogenase 147 21 56 6.6 

11  EST1_HUMAN   Liver carboxylesterase 1  82 11 62 6.1 
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Table 12. High MOWSE scoring proteins from the preparative DiGE 

experiment. These results were taken from the PI359 experiments and have 

a false discovery rate of 3.5%. 

12  EST1_HUMAN   Liver carboxylesterase 1  168 14 62 6.1 

14  EST1_HUMAN   Liver carboxylesterase 1 147 12 62 6.1 

15  EST1_HUMAN   Liver carboxylesterase 1  170 20 62 6.1 

Spot Mascot ID Protein name 
MOWSE 
score 

Coverage 
(%) 

MW 
kDa 

 

pI 

1  PDIA1_HUMAN   Protein disulfide-isomerase  101 11 
57 4.8 

1  NUCB1_HUMAN   Nucleobindin-1  92 8 

54 5.2 

1  PDIA6_HUMAN   Protein disulfide-isomerase A6  63 7 

48 5.0 

2  GRP78_HUMAN   78 kDa glucose-regulated protein  528 34 

72 5.1 

2  HS71L_HUMAN   Heat shock 70 kDa protein 1L  113 6 

70 5.8 

2  HSP72_HUMAN  

 Heat shock-related 70 kDa 
protein 2  85 2 

70 5.6 

2  HSP7C_HUMAN  

 Heat shock cognate 71 kDa 
protein 84 3 

71 5.4 

3  GRP78_HUMAN   78 kDa glucose-regulated protein  228 23 

72 5.1 

3  PDIA4_HUMAN   Protein disulfide-isomerase A4  178 8 

73 5.0 

4  GRP78_HUMAN   78 kDa glucose-regulated protein  153 14 

72 5.1 

4  PDIA4_HUMAN   Protein disulfide-isomerase A4  150 8 

73 5.0 

5  GRP75_HUMAN   Stress-70 protein, mitochondrial  283 17 

74 5.9 

5  HSP7C_HUMAN  

 Heat shock cognate 71 kDa 
protein  283 20 

71 5.4 

5  HSP72_HUMAN  

 Heat shock-related 70 kDa 
protein 2  217 13 

70 5.6 
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Liver carboxylesterase (EST1), Protein disulfide isomerases (PDIA1, 3 and 4) 

aldehyde dehydrogenase (ALDH2) and several heatshock proteins were detected 

in multiple gel spots.  

 

5.4.4 Glutathione Trapping of Desmethyl Clozapine (DMC) and 
Biotinylated-DMC (b-DMC) 
 

Synthesis of b-DMC was a straightforward reaction followed by purification by 

RP-LCMS and characterisation by mass spectrometry.  

The neutral loss of 129 (NL129) scan was again used in conjunction with the GSH 

trapping assay in order to identify the major metabolites of DMC and b-DMC. The 

mechanism of adduct formation is likely through an intermediate nitrenium ion 

and subsequent electrophilic attack on the nucleophilic sulphur molecule of 

glutathione (Uetrecht, 1992; Williams et al., 2003).  MS/MS data collected from 

the DMC sample was collected (figure 114) and interpreted (Figure 116). The 

5  GRP78_HUMAN   78 kDa glucose-regulated protein  153 6 

72 5.1 

6  GRP75_HUMAN   Stress-70 protein, mitochondrial  105 8 

74 5.9 

7  GRP75_HUMAN   Stress-70 protein, mitochondrial  86 7 
74 5.9 

8  NCPR_HUMAN  

 NADPH--cytochrome P450 
reductase  56 1 77 

5.4 

9  PDIA3_HUMAN   Protein disulfide-isomerase A3  110 8 57 
6.0 

9  ALDH2_HUMAN  

 Aldehyde dehydrogenase, 
mitochondrial  72 13 56 

6.6 

9  EST1_HUMAN   Liver carboxylesterase 1  44 2 62 
6.2 

11  ALBU_HUMAN  Serum albumin  83 6 69 
5.9 

11  ALDH2_HUMAN 
 Aldehyde dehydrogenase, 

mitochondrial  62 12 56 
6.6 

11  EST1_HUMAN  Liver carboxylesterase 1  51 2 62 
6.2 

12  EST1_HUMAN  Liver carboxylesterase 1  47 3 62 
6.2 

14  CES1P_HUMAN 
 Putative inactive 
carboxylesterase 4  42 5 31 

7.8 

15  EST1_HUMAN  Liver carboxylesterase 1  56 4 62 
6.2 
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spectra collected contained a series of ions consistent with the CID 

fragmentation of the proposed glutathione-metabolite adduct. It was noted that 

the ion present at 345.1m/z was the equivalent of the ion used as part of the 

precursor scanning approach for the identification of clozapine metabolite 

conjugates (359 m/z). 

Analysis and interpretation of the data collected from the b-DMC sample (figures 

117 and 119) indicates that the addition of a biotin tag does not considerably 

alter the route of metabolism and adduct formation when compared to both 

unmodified DMC and clozapine. A range of ions analogous to those found in both 

clozapine and DMC (mass shifted for the biotin tag) were identified (figure 119). 

These included a marker ion, with a m/z value of 571.1, analogous to the 

previously identified ions representing the drug metabolite with the added mass 

of sulphur. 

 

Figure 1134. MS/MS scan of GSH trapped DMC metabolite identified using the 

NL129 scanning approach. The predominant ion at 345 m/z is equivalent to 

that used in the previous PI359 scanning approach.  
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Figure 115. An enhanced resolution scan showing the GSH-DMC conjugate at 
m/z 618. The unusual chlorine isotope distribution pattern is clearly visible. 
The peak at m/z 620 represents the presence of 37Cl and is of much higher 
abundance than the peak at 619 which contains 36Cl.  
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Figure 116. Proposed CID fragmentation route of DMC-GSH. The ions are 

putatively described in the table to the right. 

 

 

 

 

 

 

 

 

 

 

 

 

Fragment 

Ion m/z Structure 

a 489.1 DMC+GSH-E 

b 345.1 DMC+Sulfur 

c 313.1 DMC 

d 432.1 DMC+Cysteine 

e 618.2 DMC+GSH  
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Figure 117. MS/MS scan of GSH trapped b-DMC metabolite. An information 

dependant acquisition spectrum taken from an NL129 PI scanning method. 

The ion at m/z 571.1 is analogous to the m/z 359 ion identified in the 

fragmentation of clozapine glutathione conjugate. The characteristic chlorine 

isotope pattern is not seen as the spectrum represents the fragmentation of 

the monoisotopic ion; hence no isotopic data outside of this is visible. 
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Figure 118. An enhanced resolution scan showing the parent ion from figure 
117. The monoisotopic peak at 422.6 contains 35Cl; the peak at 423.6, 37Cl. 
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Figure 119. Left: proposed CID fragmentation of the b-DMC metabolite-

glutathione adduct. Right: compilation of CID fragment ions from the 

glutathione adduct of the b-DMC metabolite. 

 

These results demonstrate  that  addition of the biotin tag does not affect the 

fragmentation pattern of the glutathione adduct other than the addition of mass 

associated with the tag. It has been demonstrated that the PI359 scan is 

effective at identifying modified peptide fragments (3.4.5) and by extension the 

PI571 scan (b-DMC) should have the same capabilities.    

 

5.4.5 2d-PAGE/Western b-DMC 
 

Several spots are clearly visible on the control (clozapine negative) membrane 

(Figure 120). The same pattern is visible in the clozapine treated sample; they 

are of a much greater intensity than the background are well focused and appear 

in roughly the same position. These spots probably represent endogenous 

biotinylated proteins and the increased intensity is due to the high loading 

capacity and point focusing characteristics of the 2d gel. Non-specific binding of 

Fragment 

Ion m/z Structure 

a 715.2 

b-

DMC+GSH-E 

b 571.1 b-DMC+S 

c 658.2 b-DMC+C 

d 308.1 GSH 

e 227.1 biotin 

f 313.1 DMC 

g 422.6 b-DMC+GSH 

h 537.1 b-DMC 
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the probe to the membrane would not occur in such an orderly and repeatable 

fashion. A relatively long exposure was used (1 hour) in order to maximise the 

sensitivity of the technique, this would clearly enhance the signal of both 

endogenously biotinylated material as well as the synthetically labelled drug 

protein adducts. 

 

Figure 120. Image of the western blot membrane bearing the untreated 

sample. No non-specific interactions between strep-HRP probe and the 

membrane or proteins are evident. The green ellipses mark areas of high 

biotin concentration (most likely endogenously biotinylated protein). 

The membrane representing the b-DMC spiked HLM sample (Figure 121) had an 

intense band of proteins of apparently the same mass range but with differing 

isoelectric points, most likely so-called charge trains. The locations of the non-

endogenous biotinylated proteins were noted and used to excise these target 

proteins from coomassie stained gels. 
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Figure 121. Image of western blot membrane bearing b-DMC treated sample. 

Overlaid is the region of interest used to define the excision site on the 

coomassie stained gels. The horizontal “smearing” of the signal may be due 

to protein charge trains. The green ellipses mark areas with high biotin 

concentration that coincide with those in figure 119.  

 

5.4.6 2d-PAGE Coomassie Stained 
 

From the Coomassie stained images (Figure 122) it appears that protein 

separation along both dimensions is optimal. There are no clear signs of 

horizontal charge trains or vertical mass changes indicative of sample 

preparation or contamination problems. Spots appear well focussed and distinct. 

In contrast the Strep-HRP ECL based image shows substantial horizontal 

streaking. The streaking occurs in the drug treated sample only i.e. the 

endogenously biotinylated proteins were not affected;  this type of streaking can 

be associated with overloading of the gel.  However, the sensitivity of Coomassie 

blue is limited to around 10-100ng (Fazekas de St. Groth et al., 1963; Neuhoff et 
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al., 1988) and the sensitivity of the strep-HRP system is approximately three 

orders of magnitude greater (10-100 pg). If the gel were overloaded it should 

also appear so in the Coomassie stained images, which it clearly does not.  

Another explanation for this is that the protein or proteins bearing the 

biotinylated metabolite exist with multiple undefined post translational 

modifications; modifications including phosphorylation, glycosylation, 

acetylation and many others are common (Packer et al., 1998; Mann and Jensen, 

2003; Seo and Lee, 2004) It is even possible that variable amounts of binding 

between the biotinylated metabolite and protein cause it to spread out along 

the IPG strip.  Artefacts introduced in sample preparation and analysis including 

oxidation of cysteines, electrolytic reduction of carboxylic acid groups to 

aldehydes and carbamylation of nucleophilic side groups have also been shown 

to alter the pI of proteins (Perdivara et al., 2010; Lee and Chang, 2009; 

Lippincott and Apostol, 1999; Righetti, 2006).  
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Figure 122. Coomassie stained 2d gel marked for gel excision around the 

region indicated by the 2d western blot. Each of the 9 boxes were excised, 

tryptically digested and analysed by RP-LCMS. The top image is that of the 

negative control, the bottom image is that of the drug treated sample. 
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Mass spectrometric analysis of the tryptically digested proteins was carried out; 

the resulting data files were searched against the Swissprot protein database 

(human) using the Mascot search engine as described previously (2.1.4.3). 

In the b-DMC information dependant acquisition (IDA) experiments protein 

disulfide isomerise A (PDIA3) and a liver carboxyl esterase (EST1) were detected 

in 8 of the 9 fractions. Mitochondrial aldehyde dehydrogenase (ALDH2) was 

detected in 7 of the 9. In the precursor ion experiments  PDIA3 was detected in 

8 of the 9 samples, EST1 in 3 and ALDH2 in 2. MOWSE scores for PDIA3 ranged 

from 94 to 316 with protein coverage between 11- 34% in the case of IDA 

experiments and 72 to 224 with protein coverage of 3-10% in precursor ion 

experiments. The PI scans provide inferior MSMS data when compared to the IDA 

methods. This is probably due to poor detection of the precursor ions causing 

triggering of MSMS experiments at non-optimal points i.e. either the leading or 

trailing edge of their chromatographic elution peaks. No credible identifications 

of modified peptides have been made so far, the complexity of the samples 

tested is greatly simplified as a consequence of both dimensions of separation 

afforded by the 2d-PAGE and the 3rd dimension provided by the RP-LC.  

It is possible that although the modified protein is present, as is suggested by 

the western blot evidence, it is of a negligible quantity and falls outwith the 

detection range of the mass spectrometer. 

 

5.5  Discussion 
 

 

5.5.1 DiGE Protein Identifications 
 

The fairly large number of proteins identified in the DiGE experiment was not 

unexpected. On average around 10 proteins were recovered from each spot 

excised from the gels. Several proteins were found to be present in multiple gel 

pieces, these proteins also tended to have high MOWSE (molecular weight search) 

scores and good protein coverage. Despite this no reliable adduct identifications 

were made. This list of proteins was compared with the data obtained in from 

the b-DMC experiments to determine if there were any interesting matches. 
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5.5.2 b-DMC Experiments Protein Identifications 
 

The following proteins were observed in both the preparative DiGE experiment 

and in the b-DMC western blot work. These proteins were considered as possible 

targets for metabolite-adduct formation. 

Protein disulfide isomerise A (PDIA3) is a major part of the major 

histocompatibility complex (MHC) class 1 peptide loading complex. Critical for 

final antigen conformation and exports from the endoplasmic reticulum  to cell 

surface. PDIA3 acts as a chaperone  ensuring the correct folding or isomerisation 

of nascent proteins through the regulation of disulfide bonding (Laboissiere et 

al., 1995). Disruption of proper folding is clearly a danger to cell survival and is 

implicated in disease (Dobson, 2001).PDIA3 is found in close proximity to the 

cytochrome enzymes implicated in the formation of reactive metabolites 

meaning that even metabolites with a short half life would have the chance to 

attack the enzyme.  

Liver carboxylesterases (including EST1) are responsible for the metabolism of 

carboxylic esters into alcohols and carboxylates(Brzezinski et al., 1994; Schindler 

et al., 1998; Pindel et al., 1997). Involved in the metabolism of drugs with ester 

or amide bonds, this enzyme is abundant in the liver and fits the profile 

described in the western blot .  

Mitochondrial aldehyde dehydrogenase (ALDH2) functions to detoxify aldehydes 

(Wang et al.,  2009; Jackson et al.,  2011) most notably acetaldehyde produced 

by metabolism of alcohol. Acetaldehyde can also be produced endogenously 

during lipid peroxidation (Esterbauer et al., 1991), glycation and amino acid 

oxidation (Anderson et al.,  1997). Acetaldehyde has an LD50 about 10 times 

lower than alcohol, it is a highly active electrophilic molecule and can form 

adducts with amino, hydroxyl and sulfhydral groups of proteins thereby altering 

structure, function or elimination. 

Irreversible modifications of these proteins leading to a disruption of their 

functions or to their subsequent proteolytic degradation could result in cellular 

damage, death or autoimmune reactions (Ohsawa et al., 2003; Smith et al., 1993; 

Furst et al., 1997; Muller et al., 2011). Clozapine toxicity has no known 
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connection with these proteins but the detection of adducts would indicate that 

the proteins are susceptible to electrophilic attack.    

The identification of proteins present within each of the gel sections still does 

not guarantee discovery of the protein-drug adduct. The best represented 

protein is by no means the most likely candidate. Good sequence coverage and 

high scoring matches are simply likely to represent abundance. Although some of 

these proteins mentioned would make for interesting targets no direct evidence 

was found for their involvement in protein adduct formation in this case. 

 

5.5.3 Selective Protein Adduct Formation 
 

As previously discussed the formation of protein adducts is probably more 

selective than first thought. The local environment of nucleophilic centres can 

influence their reactivity (Zhang and Dixon, 1993). Amino acids with basic 

sidegroups can dramatically reduce the pKa of neighbouring thiol sidegroups of 

cysteines. The thiolate anions have much greater reactivity than the sulfhydral 

group and as such are more likely to form adducts.  

The primary structure of proteins identified in the b-DMC study were analysed 

using the program motif_HUNTER 

(http://proteotools.pharmacy.arizona.edu/proteotools/motif.jsp). The 

occurrences of the motifs KK, K?K, CH, HC, CR, RC, KC, CK and overall content 

of each of these residues (Table 13).  

 

KK K?K CH HC CR RC KC CK 
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Table 13. The presence of basic amino acid residues neighbouring cysteines 

is a known risk factor for protein adduct formation. The FASTA data for each 

of these proteins was searched for such sites. All proteins apart from ATPA 

human were found to posses at least one such domain. 

Protein CK/KC CR/RC CH/HC 

ALDH2 

Human 

142 VLKCLR 

147 - - 

EST1 

Human 

272 AGCKTT 

277 - 

282 MVHCLR 

287 

PDIA3 

Human 58 GHCKRL 63 - 57 CGHCKR 62 

PDIA3 

Human 

407 GHCKNL 

412 - 

406 CGHCKN 

411 

CH60 

Human 

234 GQKCEF 

239 

444 LLRCIP 

449 - 

ATPA 

Human - - - 

FTCD 

Human - 

468 LARCGN 

473 - 

FTCD 

Human - 

252 ETCREA 

257 - 

FTCD 

Human - 

474 LACRSD 

479 - 

 

For all of the proteins tested there were also  multiple instances of either KK or 

KxK domains. This data was not included in the table because although the 

reactive nitrenium ion associated with clozapine is a so called intermediate 

(between hard and soft) electrophile experimental evidence suggests that it 

does not form adducts with lysine residues (Yan et al., 2007). The presence of 

these putative binding domains may lend further circumstantial evidence to 

adduct-formation in the proteins discussed.  

In order to check that these domains might be indicative of electrophilic binding 

targets 50 proteins were selected from those identified in the SCX, OFFGEL and 
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GeLC experiments. The proteins were selected from the IDA based experiments 

with only clozapine negative samples being included. The proteins selected has a 

median length of 347 amino acids. 36 of the 50 (72%) were found to contain at 

least one of the domains (CK, KC, CH, HC, RC, CR). This would indicate that the 

presence of the domains is not uncommon and as such may not alone be 

indicative of electrophilic binding potential. 

 

 

5.5.4 Western Blot/2d-PAGE Vs. DiGE 
 

The proteins recovered from 2d-PAGE based on the western blot analysis were 

all around a mass of 60 kDa, this would preclude the presence of the GRP78 

protein or any of the other heatshock proteins identified by the DiGE experiment. 

On the evidence provided by the western blot study it is unlikely that most of 

these proteins are especially attacked by clozapine metabolites. It is more likely 

that at least some of the proteins identified in the DiGE analysis were false 

positives. The sensitivity of the DiGE technique would probably require that a 

greater number of replicates be used in order to pinpoint changes to protein 

concentration based on drug modification. With some studies reporting levels of 

protein modification at less than 5% (DeCaprio and Fowke, 1992; DeCaprio and 

O‘Neill, 1985) it is quite possible that DiGE is incapable of identifying modified 

proteins regardless of the number of replicates used as the changes would be 

insignificant in comparison to biological and or system variations. 

The DiGE and b-DMC techniques make use of bottom up proteomics as were 

applied in the case of the protein separation studies (Chapter 4) the major 

difference however is the presence of entire protein digests within individual 

samples. This approach enhances the ability to identify proteins and modified 

peptides as the entire protein sequence can be found in a single sample. The 

lack of identification of modifications even in the b-DMC samples is interesting. 

The signal from the ECL images required a long exposure time in order to be 

visualised indicating that the amount of protein is at the low end of the 

detection range. After digestion and recovery from the gel the total amount of 

modified protein  is likely to be in the low picogram range (~10 pg) which 
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translates to ~200 attomoles for a 50 kDa protein.  Coomassie staining of the gels 

revealed proteins in the region containing the metabolite adducts; as this 

staining is several orders of magnitude less sensitive the concentration of 

unmodified proteins greatly outnumber the modified ones. This concentration 

differential decreased the likelihood of detecting any modified peptides .  As 

was seen MS identifications were not a problem. The lack of metabolite modified 

peptides suggests several possibilities i) the formation of an unknown metabolite 

ii) limitations in the Mascot search engine for the identification of modified 

peptides iii) breakdown of the protein adducts before MS analysis iv) poor tryptic 

digestion v) very low levels of modification. 

The glutathione trapping experiments only revealed the presence of a single 

metabolite and experimentation with clozapine never revealed any metabolites 

smaller than desmethylclozapine so it is unlikely that any other metabolites exist. 

The biotin tag must still be in place as the proteins were bound by the 

streptavidin probe, from the negative control it can be seen that the probe did 

not have any non-specific binding characteristics. The search engine was capable 

of identifying clozapine metabolite modified peptides when tested with the 

synthetic peptides (3.4.6). Experiments were carried out with both glutathione 

trapped metabolites and modified synthetic peptides. It was found that adducts 

could still be identified more than a week after modification took place and 

from samples stored at room temperature in solution. The digestion protocol 

used has been shown to provide excellent digestion, some of the proteins 

identified in the study had coverage of greater than 40%, taking into account the 

relatively complex background this is a good result.  

It may be possible that there was not sufficient material for the precursor scan 

to be effective, the sensitivity of the instrument may be the issue. The machine 

used in the study, the API 5500™ (AB SCIEX) is at present the most sensitive and 

advanced instrument of its type. If the problems is one of sensitivity it may be 

overcome with the development of improved technology. The work involved in 

designing both precursor ion scans was carried out using a API 4000™ (AB SCIEX) 

with a sensitivity of at least 1 order of magnitude less than the 5500. The 

detection of modified peptides using the precursor scan in this case seems to 

point against an issue of sensitivity.  
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5.5.5 Mass Spectrometric Detection 
 

It would appear from the data that the degree of adduct formation is below the 

current threshold of detection. It is likely that the signal is being suppressed by 

other more intense ions and is being lost as background noise. The precursor ion 

scan is designed to combat this by filtering out those ions without a 

characteristic fragment. It was previously shown that the precursor ion (PI359) 

scan selectivity was poorer than expected; detecting almost 1 third as many 

proteins as were detected using a basic IDA method (2.1.2.3). In this part of the 

project the selectivity of the precursor ion scan was increased with only 18 

precursor ion based detections to 147 IDA based detections. The precursor ion at 

571 m/z may be less common than the ion at 359m/z or the considerably less 

complex fractions may lead to less overlap in peptide masses eluting from the 

reversed phase column.  However, even with this improvement the selectivity of 

the precursor scan didn‘t reduce the number of proteins detected (PI vs. IDA) by 

a single order of magnitude.  

The Q-trap has another scanning method with improved sensitivity and 

selectivity, the multiple reaction monitoring SRM scan. Using this approach 

coupled with nanoHPLC it is possible to detect peptides down to about 500 

attomoles from a gel purified protein digest (Sinnaeve et al., 2005; Sinnaeve and 

Bocxlaer, 2004). Running SRM scans however requires detailed fragmentation 

information of particular protein/peptide targets. In the context of this study in 

which the mass of any given metabolite modified peptide is unknown SRM 

scanning is not possible. The selective precursor ion scans are capable of 

detecting peptides down to low (around 5fmol) femtomole levels (Wilm et al., 

1996) typically an improvement of at least one order of magnitude over IDA 

scanning methods. Calculations have shown that approximately 90% of the total 

protein content of a cell is made up of around 10% of the known 10,000 – 20,000 

protein species (Zuo et al., 2001) and as a consequence many low abundance 

proteins may be extremely difficult to detect. Furthermore an oversight in this 

work was the failure to quantitatively determine the performance of the HPLC-

mass spectrometer setup. The lower limit of detection was not established, 

these literature values represent optimum levels. The setup used was monitored 
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for performance using a 22 fmol injection of a tryptically digested BSA standard 

that was run daily; in this work this is the lowest confirmed amount of sample 

detected. 

The identification of low level post translation modifications is problematic . 

The first step usually involves some sort of simplification of the protein 

background usually in the form of affinity purification (Zhang et al., 2011; 

Abraham et al., 2000; Engholm-Keller and Larsen, 2011; Sidoli et al., 2012). In 

this project the background was depleted by means of a 3d separation of 

proteins (2d of PAGE coupled to RP-LCMS), even with the reduced complexity 

afforded by analysing the spot removed from the gel the total amount of 

modified material could still be markedly less than the amount of unmodified 

material. Assuming the presence of 5 proteins with each protein yielding 20 

tryptic fragments and with a single modified protein with 1% adduct formation, 

modest assumptions, the ratio of modified to unmodified peptides is 

approximately 1:10000, a dynamic range of 4 orders of magnitude. The added 

selectivity of the precursor ion scan should increase the odds by eliminating 

those peptide fragments without the necessary precursor ion. The failure to 

detect any modified peptides would seem to indicate a problem with the 

precursor ion scan. It would appear that either the precursor ion is too common 

or that it is produced at low levels and is indistinguishable from background 

noise. The collision energy used in the precursor ion scan was  used during the 

synthetic peptides experiments. The CE was set to 47 eV, this value is however 

not optimal for peptides with masses and compositions decidedly different to 

those used in the optimisation experiments. This is one possible explanation for 

a low signal from the precursor ion. 

The use of the saturation DiGE approach is only applicable to proteins bearing 

accessible cysteine groups. The electrophilic nature of the metabolites must be 

such that they preferentially attack the sulfhydral groups. The technique 

requires a skilled operator, a lot of time and is a relatively expensive approach. 

The process is not readily automated. Proteins of low abundance are not readily 

identified by DiGE and as such critical information may be lost. At best the 

technique could flag up potential problems but is limited in its ability to handle 

proteins with extreme isoelectric points and high hydrophobicity.  
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For these reasons it is unlikely that a DiGE based approach would be suited to a 

high throughput screening system for the identification of metabolite-protein 

adducts. 
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Chapter 6: General Discussion and Conclusions 
 

6.1 Findings 
 

The objective of this project was to develop a methodology for the identification 

of drug-protein adducts in vitro. Ideally the approach would lend itself to high 

throughput automation in order to meet the needs of pharmaceutical companies 

that generate many tens of thousands of new chemical entities (NCEs). The need 

for such a test is clear; the lengthy timescales and high costs associated with 

developing new drugs is substantial; eliminating a molecule at an early stage 

would provide substantial financial savings as well as protect the wellbeing of 

would-be human test subjects. 

The findings of the project were as follows: 

 The glutathione trapping assay in combination with the synthetic peptide 

work was successfully used to identify reactive metabolites of clozapine 

and design and validate an effective precursor ion scanning method. 

 

 The complexity of the human liver microsome fraction was found to be 

too great for analysis by the three 2d separation methods applied. This 

was found to be true even in combination with the precursor ion scan. 

 

 It was not possible to reliably isolate drug-protein adducts using a 

difference gel electrophoresis (DiGE) approach. 

 

 Drug protein adducts were successfully visualised using a western blot 

approach to detect biotin modified drug molecules. However it was found 

that the degree of modification was insufficient for detection by mass 

spectrometry. 
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6.2 Trapping of Reactive Metabolites 
 

The glutathione trapping assay is widely used for the identification of reactive 

metabolites. It performs the task well but is not useful in determining whether 

or not any given NCE be progressed to the next stage of development. In order 

to determine this it would be necessary to decide if the metabolites were a 

threat to cellular function. Currently this means many levels of preclinical and 

clinical testing. 

Being able to identify particular protein targets for an NCE would be a notable 

step towards characterising its potential toxicity. Looking to the future, it should 

be possible to correlate drug-adduct formation with adverse reactions. Patterns 

of protein modification and subsequent toxicity would likely become apparent.  

In order to detect drug-protein adducts in a complex background such as that of 

the human liver microsome fraction it would be necessary to either decrease the 

complexity of the sample, produce a selective method of scanning or more likely 

both. The glutathione model is effective at trapping metabolites but the neutral 

loss scan used to detect the conjugates (drug-GSH) are specific to the 

glutathione molecule. It was found that the fragmentation of glutathione 

conjugates produced an ion incorporating both a drug fragment and the sulphur 

atom from cysteine. This was found to be an effective alternative to the neutral 

loss scan. 

The synthetic peptide work demonstrated both that clozapine metabolites could 

form adducts with polypeptides other than glutathione and that the precursor 

ion scan at 359 m/z could be used to detect them. This allowed for the 

identification of clozapine-protein adducts in the general case i.e. theoretically 

any clozapine-protein adduct could be detected. 

As drug-protein interactions depend on a number of physical factors including 

electrostatic interactions, physical accessibility and local pKa the synthetic 

polypeptides, with their limited primary structure, were not ideal analogues but 

only useful for testing the validity of the precursor ion scanning method. 

 

 



 

254 
 

 

6.3 Protein/Peptide Separation Methods 
 

The three 1st dimensional separation methods were used to identify some 1700 

proteins, more than 1000 of which were non-redundant (4.4.2). The separations 

appeared to be complimentary in that the degree of overlap was relatively small 

(4.4.3). The combination of these separation methods and reversed phase LCMS 

using the selective precursor scanning methods was still insufficient to identify 

the presence of even a single protein-drug adduct. 

The separation techniques chosen are staple in proteomics experiments. It would 

be possible to further increase the degree of separation attained  by increasing 

the length of the separation gradient used in either the SCX approach (with more 

fractions being taken) or the reversed phase LC approach or by increasing the 

number of bands excised from the 1d gel. Unfortunately in so doing the length of 

time required to carry out the experiments would increase dramatically. 

Obviously this is not ideal for a high throughout methodology.  It is possible that 

even with increased separation time and/or increased fractions collected that 

drug-protein adducts still not be detected.  

It was shown that the precursor ion scan did not have good selectivity for 

modified peptides. When compared with a general information dependant 

acquisition (IDA) the precursor ion scan identified around 1/3 as many proteins, 

none of which bore drug modifications(4.4.3). This is likely a result of the low 

resolution inherent to triple quadrupole instruments coupled with the high 

sample complexity. Examination of the data gathered using this method 

revealed that there were some 149 fragments not related to adduct formation 

that could trigger the precursor ion scan and that from these 149 motifs it was 

possible to predict 9,234 fragments within the same mass range. It was found 

however that none of these ions came closer than 28ppm of the exact mass of 

the precursor target (359.1092 Da); meaning that if the scan had been applied to 

a higher resolution instrument such as an Orbitrap or QqToF none of those false 

positives would have triggered the precursor scan. Precursor ion scans are used 

in the discovery of other post translational modifications but usually in 

conjunction with some form of affinity purification. 
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6.4 DiGE and Western Blotting 
 

Analysis of the proteins recovered from the DiGE experiment again yielded a 

distinct lack of any drug-protein adducts. The complexity of each LCMS sample 

was greatly reduced as only small spots were excised from the gel for 

subsequent digestion and analysis. The DiGE analytical experiment was used to 

pinpoint proteins with changes in apparent abundance ranging from 1.2-2 fold. 

147 proteins were identified by IDA and 18 by precursor ion scan. The lack of 

drug-protein adducts in a sample of such relative simplicity was interesting and 

potentially suggested that the level of modification may be the issue. The 

evidence from the western blot work suggests that the amount of modification is 

very low in relation to the total amount of protein (5.5.4). It appears to be at 

the lower limit of the detection capabilities of the western blot with a 1 hour 

exposure necessary for visualisation. Consequently it is entirely possible that the 

total amount of modified protein was too low for reliable mass spectrometric 

detection. In order to determine the amount of modification occurring it would 

be necessary to carry out a further experiment. Synthetic peptide could be 

spiked into the HLM assay and recovered using it‘s biotin tag. The recovered 

peptide could then be separated using RP-LC and the modified and unmodified 

fractions collected.  These fractions could then be analysed by mass 

spectrometry at a range of concentrations. The relative intensity of the parent 

ions could then be compared and an estimation of modification levels made. 

 

6.5 Conclusions 
 

From the work carried out it would appear that the detection of drug-protein 

adducts is not trivial. It is apparent that in this case the total amount of 

modified protein was very low and thus the dynamic range was wide. A single 

approach for the identification of drug-protein adducts in the general case may 

be beyond the reach of current technologies and methodologies, at least within 

reasonable expectations of time and expense. Improvements in liquid 

chromatography, perhaps ultra performance liquid chromatography (UPLC), and 

instrument speed and sensitivity are likely to contribute to future developments 

in the long term. In such a complex system, ion suppression would play an 
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important role in limiting the dynamic range achieved during mass spectrometric 

analysis. In the paper by Hirabayashi et al (Hirabayashi et al., 2007) a peptide 

probe was used to monitor ion suppression. The probe (sequence DSSSSS) was 

designed to be highly hydrophilic and have a low isoelectric point (pI 3.8);  At 

the pH of a typical RP-LC mobile phase (pH3) it holds a single proton and is not 

sensitive to gas phase proton transfer reactions. The peptide was spiked into the 

LC mobile phase and due to its hydrophilicity it is not retained on the column 

and so is present throughout the mass spectrometric analysis. Analysis of the 

mass chromatogram associated with the m/z of the probe is analysed with the 

presence of ion suppression highlighted by marked decreases in the 

chromatogram. This approach could be applied to the work carried out in this 

study in order to identify the extent of ion suppression and thereby optimise the 

amount of sample for analysis. Once an optimal sample load is identified it 

would then be useful to determine the lower limit of detection for drug-peptide 

adducts. This could be achieved by spiking an HLM preparation with decreasing 

(known) amounts of modified peptide. The solution should then be analysed by 

LCMS, the tandem ms data could then be searched against a protein database. 

As the amount of modified peptide in the sample decreases the search score 

should too decrease until it falls below the significance level required for a 

match. This would determine the lowest amount of modified peptide that can be 

detected against the complex microsomal background. The experiment could be 

carried out using both the precursor ion scan and an IDA based approach in order 

to determine the usefulness of the precursor method.  

In addition, an Interesting development was that of the use of peptide aptamer 

libraries to create affinity purification devices, the so called Proteominer 

approach  (Boschetti and Righetti, 2008). The presence of millions of peptide 

aptamers allows for the capture of a normalised cross section of a complex 

protein sample and the detection of low abundance peptides. Although the 

technology was available at the time of this project, it came to the attention of 

the author at a late stage when time constraints made further investigations 

impossible. It has since been demonstrated however, that the proposed 

mechanism by which the Proteominer approach works is incorrect. Work by a 

group headed by Friedrich Lottspeich has demonstrated that binding to the 

beads is not based on specific interactions between the hexapeptides and 
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proteins but more likely due to hydrophobic interactions (Keidel et al., 2010). 

Very similar results could be observed when comparing the effects of the 

Proteominer treatment to treatment using C18 functionalised beads. This is not 

to say that the approach has no merits. Regardless of the mechanism of action it 

is clear that the approach can be used to reduce the dynamic range of proteins 

present in a sample (D‘Ambrosio et al., 2008; Farinazzo et al., 2009; Boschetti 

and Righetti, 2008).  
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