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Abstract 

 
This thesis is divided into two parts. The first part describes the production of a small 

stereodiverse library of 2-substituted piperidines. Novel chiral titanium alkylidene reagents ii 

alkylidenated resin-bound esters i to give acid-labile resin-bound enol ethers iii. These were 

cleaved to give amino ketones iv. The switch in the nature of the resin from acid-stable to 

acid-labile is key to the purity of the amino ketones iv, as during cleavage only the acid-

sensitive enol ethers iii are cleaved, leaving the unreacted esters i on the resin. The amino 

ketones iv were cyclized using TMSCl to give cyclic iminium salts v. Diastereoselective 

reduction of the iminium salts v with NaBH(OAc)3 gave piperidines vi which, after cleavage 

of the chiral protecting group, gave the desired enantiomerically-enriched, 2-substituted 

piperidines vii.  
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The piperidines vii were produced in good overall yield, high purity, and good to 

excellent stereochemical purity. By switching the enantiomer of the phenylethylamine chiral 

protecting group used, either enantiomer of the desired piperidine could be produced at will.  

The second part of the thesis describes a solution-phase route to 2,6-syn substituted 

piperidin-4-ones xii inspired by the Petasis-Ferrier rearrangement. Imino esters x derived 

from β-amino acids viii were methylenated using the Petasis reagent, dimethyltitanocene, to 

give imino enol ethers xi containing nucleophilic and electrophilic functionality in the same 



 
3

molecule. The mild microwave conditions used for the methylenation gave the enol ethers xi 

in minutes. Potentially, the reaction takes advantage of selective heating of the polar Petasis 

reagent in a non polar solvent system so that the rate determining decomposition of the 

Petasis reagent is accelerated without affecting any sensitive substrate. Acidic conditions 

activated the imine and induced cyclization to give the desired 2,6-syn piperidin-4-ones xii in 

good yield and excellent diastereoselectivity. A small library of piperidinones was produced 

to demonstrate the method. 
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Abbreviations 

 
Å angstrom 

Ac acetyl 

AIBN azobisisobutyronitrile 

aq Aqueous 

Ar Aryl 

atm atmosphere 

bmimPF6 1-butyl-3-methylimidazolium hexafluorophosphate 

Bn benzyl 

Boc tert-butyl carbamate 

Boc2O di-tert-butyldicarbonate 

Bpoc 

O

O
 

BPS tert-butyldiphenylsilyl 

Bu butyl 
iBu isobutyl 
tBu tert-butyl 

bp boiling point 

BT benzothiazole 
oC degrees centigrade 

CDA chiral derivatizing agent 

CI chemical ionization 

conc. concentrated 

Cp cyclopentadienyl anion 

Cy cyclohexyl 

d doublet 

DCM dichloromethane 

DDQ 2,3-dicyano-5,6-dichloroparabenzoquinone 

DIBAL diisobutylaluminium hydride 

DOS diversity-orientated synthesis 

DMAP 4-N,N-dimethylaminopyridine 

DMF dimethylformamide 

DMSO dimethylsulfoxide 

dr diastereomeric ratio 
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ε’ dielectric constant 

ε” dielectric loss 

ee enantiomeric excess 

EI electron impact 

equiv. equivalents 

er enantiomeric ratio 

EtOAc ethyl acetate 

FAB fast atom bombardment 

GC gas chromatography 

h hour 

HMDS hexamethyldisilazane 

HMPA hexamethylphosphoramide 

HPLC high performance liquid chromatography 

HWE Horner-Wadsworth-Emmons 

Hz   Hertz 

IR infrared 

LDA lithium diisopropylamide 

m  multiplet 

MAOS microwave-assisted organic synthesis 

mp melting point 

min minutes 

MOM methoxymethyl 

MS molecular sieves 

NMR nuclear magnetic resonance 

NOE nuclear Overhauser effect 

Nu nucleophile 

PCC pyridinium chlorochromate 

pg protecting group 

Ph phenyl 

PhH benzene 

PhMe toluene 

PMB paramethoxybenzyl 

PSI pounds per square inch 

Py pyridine 

q quartet 
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quin. quintet 

QUINAP 1-(2-diphenylphosphino-1-naphthyl)isoquinoline 

RCM ring closing metathesis 

RT room temperature 

s singlet 

SASRIN super acid sensitive resin 

SPS solid-phase synthesis 

t  triplet 

tanδ  loss factor  

TBS tert-butyldimethylsilyl 

TES triethylsilyl 

Tf triflate 

TFA trifluoroacetic acid 

THF tetrahydrofuran 

TIPS triisopropylsilyl 

TMEDA N, N, N’, N’-tetramethylethyldiamine 

TMS trimethylsilyl 

p-tosic para-toluenesulfonic 

Ts toluenesulfonyl   
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Chapter 1 

Solid-Phase Chemistry 
 

1.1 Background 

 

First introduced as a method to streamline peptide synthesis by the late, great 

Merrifield1, solid phase chemistry has grown to become a versatile and powerful method to 

make a wide variety of molecules. An insoluble solid support is functionalized with a linker 

that connects it to the substrate. Effectively, this means that the substrate can easily be 

separated from the reaction mixture by simple separation of the liquid and solid phases. A 

large excess of reagent can therefore be used to drive the reactions to completion and all 

unused, excess reagent can be removed by filtration and washing. Furthermore, the solid-

supported substrates can be contained within porous reactors, allowing several different 

substrates, each contained in a different reactor, to be treated in one reaction vessel. This 

batch synthesis strategy means that many different products can be produced at one time in 

the same flask. Importantly, for industry and drug discovery, the easy workup/purification 

also allows solid-phase synthesis (SPS) to be easily automated. Adaptability to automation 

combined with batch synthesis means that libraries of thousands of compounds can be 

produced very quickly.  

 

1.2 Diversity-Orientated Synthesis2 

 

 Diversity-orientated synthesis (DOS) involves the production of libraries of small, 

diverse compounds via automation and, typically, SPS. Small molecules have proven to be 

potent in many different areas, especially as drugs, and as tools in the investigation of 

biological pathways.3 In particular, the ability to tune a compound’s activity by modifying 

structural attributes means that small molecule probes provide unparalleled versatility in the 

unravelling of nature’s complex workings. 

 Access to large and diverse small molecule libraries is of paramount importance. 

Sometimes, existing knowledge of biological systems being targeted or investigated can 

direct the synthetic strategies, allowing for structure-based rational design. However, 

existing information is not always available, and even when it is, only a broad guideline is 

provided. Thus, even structure-based rational design must take into account a diverse and 

large volume of chemical space. Furthermore, to investigate fully a region of chemical space, 

the compounds produced must be stereodiverse. It is not enough just to construct different 
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scaffolds. The investigation must be deeper and take into account the different stereoisomers 

of each scaffold. A typical library inspired by DOS will contain thousands of compounds 

ideally, each existing in a unique region of chemical and stereochemical space.  

 DOS should not be carried out in a blind way. By incorporating information from 

known biologically potent compounds a DOS can be directed. Successful drugs and 

biology’s collection of natural products populate a list of privileged structures.4 These small 

but powerful molecules allow the chemist to build a library by decorating a proven 

foundation. Building on previous success by incorporating privileged structures allows the 

library to not only be large and diverse, but also significant. 

 The purity of each and every tested member in a DOS-inspired library must be high. 

Biological screening is sensitive and confidence that only one compound is being tested is 

necessary to be sure of the origin of observed effects. DOS requires huge numbers of 

compounds, and SPS provides a means to access these large numbers. Unfortunately, solid-

supported intermediates cannot be purified. Thus, the reactions used in a DOS should be 

robust, proceeding with maximum efficiency, providing high yields and greater than 90% 

purity. Due to the stereospecificity of biological systems, stereochemical purity is an 

essential consideration in the planning of a DOS. The targets should be one enantiomer. 

 A variety of beautiful work has been accomplished in the production of DOS-

inspired libraries. By using the adaptability of SPS to automation, a library of 45,140 drug-

like aromatic nitrogen-containing heterocycles, such as purines and pyrimidines, was 

produced5 by Schultz and co-workers, who then screened the library for the ability to 

influence stem cell differentiation.6 One member in the library, purmorphamine 1, was able 

to induce differentiation of mouse mesenchymal stem cells into osteoblasts, an action called 

osteogenesis. Other members of the library also induced various effects on stem cells, 

including neurogenesis, cardiomyogenesis, and dedifferentiation. Importantly, the DOS was 

not guided by any biological information. However, by creating a huge library, including 

multiple privileged structures, and covering a large volume of chemical space, Schultz and 

co-workers were able to discover potent small molecule stem cell differentiators. 
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Taking advantage of the ability of SPS to produce vast numbers of compounds, 

Schreiber et al. produced a 4,320 member library of dihydropyrans using a Diels-Alder 

cycloaddition.7 Careful reaction planning and an excellent chiral catalyst ensured that 

enantiomeric excess of the final products was high, 80 to 96 % ee. Furthermore, by using 

both enantiomers of the catalyst, both enantiomers of the product could be formed 

separately, thus making the route stereodiverse. Purity of the final dihydropyrans that came 

off resin was excellent (≥ 95% pure in >75% of cases). Biological screening of the library 

found that one member, haptamide B 2, showed excellent activity in affecting the 

transcription factor Hap3 in vivo.8 
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 SPS and DOS are great partners in the discovery of new biologically active 

compounds. Only with the special characteristics of SPS, particularly the adaptability to 

automation, can effective DOS be achieved. By taking into consideration diversity, 

stereodiversity, the region of chemical space to be investigated, and by carefully planning 

chemically robust solid-phase routes, DOS will continue to produce important drug 

candidates and reveal information about biological systems. 
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1.3 Linkers 

 

 DOS is perhaps the greatest test of an SPS. DOS requires a variety of reactions to be 

compatible with potentially thousands of substrates. This means the substrate as a whole, 

including the solid support, must tolerate all reaction conditions used to transform specific 

moieties within it. The reactions, substrates and resin must be carefully chosen. The vast 

majority of the mass of a solid support used for SPS is typically polystyrene; however, the 

most important part of the solid support is the linker that “links” the substrate to the support. 

Different linkers have different effects on the eventual outcome of the reaction. Of particular 

importance are the loading conditions, the ability of the linker to tolerate a variety of reaction 

conditions, the cleavage conditions, and the “trace” that the linker leaves behind at the 

former point of attachment in the cleaved product. The linker-dependant loading conditions 

should allow for a wide variety of different substrates to be linked to the resin, and as with 

all solid-phase transformations, loading must be high yielding. Once the substrate is on resin 

the linker must be inert to all proposed transformations and all proposed reactants. Cleavage 

conditions rely on the chemical properties of the linker. These properties must allow 

cleavage to occur in high yield and under conditions that do not damage the product being 

released from resin. Finally, the trace of the point of attachment to resin should ideally be a 

desired functionality of the cleaved product. When taking into account the large numbers of 

compounds and reactants used in DOS, the ability of the linker to be transformed without 

affecting the substrate and vice versa is of particular concern. Thus the choice of linker is 

key to minimizing the negative effects, and possibly even gaining profit from SPS. There are 

a variety of linkers reported in the literature,9 and the choice of which linker to use is as 

crucial to the success of the synthesis as any of the conditions chosen for chemical 

transformation.  

 

1.4 Acid-Labile Linkers 

  

Several popular acid-labile linkers are ester-derived. The sensitivity of the linker is 

determined by the stability of the cation formed after cleavage in relation to the stability of 

the protonated ester, Scheme 1.1.  
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When the cation is very unstable, as with Merrifield linker 3, HF is required for 

cleavage. Few compounds are left unaffected by HF so linkers based on more electron-rich 

benzylic esters are often used to facilitate cleavage, and allow for a more diverse array of 

target molecules. Wang linker 4, and the SASRIN linker 5, are cleaved by 50% TFA in 

DCM, and 1-3% TFA in DCM respectively, Scheme 1.2. By using volatile acids such as 

TFA and HF, excess acid can be removed by simple evaporation to give the cleaved product 

with minimum workup.  
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While ester linkers are the most commonly used, amide-derived supports such as the 

Rink Linker10 also exist, and these follow a similar trend to the ester linkers above. The acid-

sensitive ester linkers discussed can conversely also be cleaved by using a small nucleophilic 

base such as NaOMe, to give the cleaved product as the methyl ester. Where this type of 

cleavage is undesired, a linker can be made that sterically hinders attack by nucleophiles 

such as a small base 

 

1.5 Traceless Linkers11,12 

 

 In the ester linkers shown above the trace left at the point of attachment to resin  

takes the form of a carboxylic acid functional group. In a well-planned synthesis the trace 

could be part of the desired molecule, but this is not always the case. Sometimes it is 

desirable to have a linker that allows cleavage to happen such that the point of attachment is 

not apparent in the cleaved product. Trialkylsilanes have been used as traceless linkers since 

they are amenable to ipso substitution and can therefore be cleaved to give aromatic 

compounds marked only with a hydrogen atom at the former point of attachment to the resin. 

Furthermore, trialkylsilanes tolerate a wide variety of conditions including very basic 
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reagents, and transition metal catalyzed reactions. Plunkett and co-workers have used 

traceless linkers of this nature to make small libraries of benzodiazepines13, Scheme 1.3.  
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The cleavage conditions are typically harsh, and depend on the chemical nature of the 

linker and on the electronic properties of the aromatic ring. The ipso substitution is favoured 

by a more electron-rich environment and so the cleavage is easier for systems with electron-

donating groups attached to the aromatic ring. The cleavage can be facilitated by switching 

from a trialkylsilane to a trialkylgermanium linker.14 The germanium analogue of 8 is 

cleaved by anhydrous TFA, or elemental bromine15 to give benzodiazepine 9, or its 7-

bromoanalogue, respectively. 

 

1.6 Safety Catch Linkers 

 

As stated before, linkers, substrates and reagents are chosen so that they will tolerate 

each other during the solid-phase portion of a synthetic route. Sometimes a targeted region of 

chemical space requires that reactions and substrates must be used that perturb this reactant, 

substrate, linker “symbiosis”. In such cases a less reactive linker is needed; a linker whose 

lability can be turned on and off.  

 Safety catch linkers must undergo an activation step for their labile characteristics to 

be turned on. Wagner used this strategy in preparing a library of diphenylmethyl derivatives 

14,16 Scheme 1.4. A functionalized arene 11 was linked to the support via a stable carbon-

sulfur bond. The sulfur was alkylated to give the sulfonium salt 13 which was cleaved via a 

palladium catalyzed cross-coupling reaction. Interestingly, this example used the cleavage 
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step to introduce diversity, an example of a productive cleavage. It is important to note that, 

when using a safety catch linker, the resin-bound substrate must be able to tolerate not just 

the cleavage conditions, but the typically harsh activation conditions. 
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1.7 Chameleon Catch Linkers 

 

Considering the high demands of purity required by DOS, linker design inspired by 

purity is essential. A chameleon catch strategy switches the nature of the linker during the 

synthetic sequence so that it is cleaved using different conditions to the original linker. In 

doing so, only linker that has undergone the synthetic sequence is cleaved and all un-reacted 

linker is left on resin, ensuring high purity of the cleaved product. It differs from a safety 

catch linker in that the products can be obtained by cleaving some samples prior to switching 

the linker to give one set of products and cleaving some samples after switching the linker to 

give a different range of products. This maximizes diversity. 

Barrett and co-workers revealed this method in their route to cyclohexanones,17 

Scheme 1.5. During the sequence, relatively acid-stable esters 15, derived from Merrifield 

resin, were converted into acid-sensitive cyclic enol ethers 16. Diels-Alder reactions then 

gave cyclic enol ethers 17. Mild acidic cleavage conditions were then used to cleave only 

material derived from enol ether 16 and thus the cyclahexanones 18 were produced in high 

purity. 
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Work within the Hartley group has exploited this elegant type of linker to provide 

access to a wide array of different privileged structures from the same starting esters,18,19,20,21 

Scheme 1.6. Using novel titanium carbenoids, relatively acid-stable resin-bound esters 19 are 

converted into acid-labile enol ethers 20. Mildly acidic conditions then cleave the resin-

bound enol ethers to give the heterocycles 21 in excellent purity. The switch in the nature of 

the linker is productive, as the alkylidenation adds diversity and builds the privileged 

structure. The heteroaromatic scaffolds can then be further decorated when R2 is a boronate 

group, via Suzuki cross-coupling on resin. See section 3.8 for a more in depth discussion of 

the Hartley methodology. 
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1.8 Cyclative cleavage 

 

 As mentioned earlier, ester-derived and amide-derived linkers can be cleaved by 

small nucleophiles. When the nucleophile is part of the molecule being cleaved then 
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cyclative cleavage occurs. A resin-bound ester containing a protected nucleophile 22 can be 

deprotected and then cyclized to give a range of products 23, Scheme 1.7. This strategy has 

the advantage that cleavage is productive. A variety of heterocycles have been produced 

using this type of linker, including diketopiperazines22, diketomorpholines23, lactones24, and 

quinolinones25.   
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Nicolaou and co-workers demonstrated another type of cyclative cleavage involving 

cleavage via ring closing metathesis (RCM), Scheme 1.8.26 Merrifield resin could be 

converted into the resin-bound ylide 24, which in turn was transformed into the diene 25. 

Grubbs’1st generation catalyst27 26 formed the macrocycle and cleaved the product from 

resin in one step. 
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Scheme 1.8 

 

1.9 Enantioselective Solid-Phase Synthesis 

 

The production of stereodiverse libraries is essential for the production of selective 

drugs, and the complete understanding of complex biological systems. In particular, routes 

that allow access to a range of stereoisomers on the same scaffold are of interest. 
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Enantioselective routes using solid phase techniques are still uncommon, but some very 

elegant work has been reported.28 

The aldol reaction is a powerful tool in the stereoselective construction of carbon-

carbon bonds. In the production of a library of spiroketals Waldmann and co-workers have 

used chiral boron enolates to perform this reaction on solid-supported aldehydes, 29 Scheme 

1.9. An aldehyde linked to a polystyrene support via a Wang linker 28 was treated twice with 

the preformed boron enolate 29 to give the aldol adduct 30. It is notable that the aldehyde 

must be treated twice with six equivalents of the enolate; a large excess of reagent is a 

common disadvantage of SPS. A further aldol reaction, followed by release and cyclization 

induced by cleavage of the p-alkoxybenzyl ether groups yielded the desired spiroketals 32 in 

good overall yield and high diastereoselectivity. The route proves that even demanding 

solution phase transformations can be used effectively in the SPS of libraries. 
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Another powerful reaction in the production of non-racemic compounds is the Diels-

Alder cycloaddition. More fine work by Waldmann demonstrated how this reaction can also 

be adapted to solid phase,30 Scheme 1.10. Resin bound aldehydes 33 were treated with the 

Danishefsky diene 35 in the presence of the formidable chromium catalyst 34. The cyclized 

product 36 could be released from resin to give the dihydropyranone in excellent 

enantiomeric excess (> 98% in some cases), or further functionalized via Michael addition to 

give a library of trisubstituted tetrahydropyranones also in good enantiomeric excess. It is 

notable that the high level of stereocontrol is achieved with only 5 mol% of catalyst. 
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Scheme 1.10 

 

Schreiber and co-workers recently reported an enantioselective route to 

dihydroisoquinolines31 using a ligand and metal system developed by Knochel,32 Scheme 

1.11. Resin-bound dihydroisoquinoline 37 was alkylated to give the imminium salt 38. 

Phenyl acetylene was added to the imminium via Knochel’s copper QUINAP system to give 

the chiral isoquinoline 39 in 84% yield and 75 % ee. Importantly, by using both enantiomers 

of QUINAP, separately, both enantiomeric series of isoquinolines could be accessed.  
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1.9 Conclusion 
  

By exploring broad swathes of chemical space, diversity orientated synthesis is 

proving to be an essential tool for the deciphering of biological systems. SPS is an excellent 

method to produce the large libraries necessary for DOS. With automation, a huge array of 

compounds can be made very quickly and with minimal human effort in the lab. It is 

important to capitalize upon these advantages, yet it is also important to respect human input. 

Human effort that is not necessary in the lab must be used in careful and intelligent planning 

and development. While producing a vast number of compounds means there are a lot of 

different samples to test, it does not necessarily mean that a broad range of chemical space is 

being investigated. For this reason a good SPS must allow for the introduction of a wide 

range of diversity. Furthermore, as biological systems are sensitive to the three dimensional 

shape and chirality of substrates, stereocontrol in the synthetic route is paramount. Several 

excellent examples have been discussed in this section, but the need for different, unique, 

stereodiverse solid phase routes is still great.  
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Chapter 2 

Piperidines 
 

2.1 Introduction 

 

 The piperidine ring is a privileged structure,33 exhibiting a range of biological 

activities. From the hemlock plant to the poison arrow frogs of South America piperidines 

are found in nature everywhere. Their interesting attributes as potential drugs have not been 

ignored; Watson and colleagues noted that over 12,000 discrete piperidine entities have been 

described in clinical or preclinical studies.34 Clearly, there has been a lot of synthetic interest 

in this small heterocycle. Short, stereocontrolled routes are of particular interest, as three-

dimensional control is imperative for the isolation of specific biological attributes. 

          Many different methods have been used to construct piperidines and these have been 

reviewed.35 Popular strategies include reductive amination, intramolecular Michael addition, 

Mannich reaction, ring-closing metathesis, radical cyclization, Diels-Alder cycloaddition, 

and nucleophilic addition to pyridinium salts. Some recent examples and types of cyclization 

are discussed below, followed by a review of methods employed for the construction of 

piperidines on solid phase, or by post-cleavage modification.  

 

2.2 Reductive Amination 

 

 Davis and co-workers reported an elegant synthesis of lasubin II, a member of the 

Lythraceae family of natural products, isolated from one of the Lagerstroemia genus of 

shrubs.36 The key reaction in the route is a reductive amination leading to the formation of a 

piperidine ring, Scheme 2.1. The sulfinyl group is removed from the β-amino alcohol 40 

with HCl, neutralization causes cyclization to the imine, which is reduced with LiAlH4 to 

give the piperidine 41 in 76% yield as a single diastereomer. Deprotection followed by 

tosylation causes another cyclization to give lasubin II 42.   
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2.3 Intramolecular Michael Addition 

          

An earlier synthesis by Pyne and co-workers cyclizes vinyl sulfoxides, via Michael 

type addition, to give 2-substituted piperidines.37 In one example, vinyl sulfoxide 43 cyclized 

to give predominantly piperidine 45 in good yield and excellent diastereoselectivity. Pyne 

proposes a likely mechanism for the transformation in which a hydroxide anion supplied by 

triethylbenzylammonium hydroxide attacks the carbonyl of vinyl sulfoxide 43 to give the 

anion 44 which would be stabilized by the electron withdrawing CF3 group. The 

stereochemistry of the outcome can be explained by assuming that the anion 44 is positioned 

so that the electron lone pair on sulfur is syn coplanar with the C=C double bond, and thus 

the nitrogen would then attack from the opposite face to the large Ar group. 
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2.4 Intramolecular Mannich Reaction 

 

 The nuphar alkaloids are a range of terpenoid alkaloids isolated from the Nuphar 

genus of aquatic plants. They exibit a range of interesting attributes such as anti-fungal, 

immunosuppressive, and anti-tumor activity. The core structure of the Nuphar alkaloids is a 

trisubstituted piperidine ring. Davis and co-workers used their intramolecular Mannich 

methodology to produce one of these alkaloids,38 Scheme 2.3. The β-amino ketone 46 is 

cyclized by activation of the imine with tosic acid mono-hydrate in benzene to give the 

piperidine 47 in good yield as a single isomer which is taken through several more steps to 

give the nuphar alkaloid 48. 
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Scheme 2.3 

 

 

2.5 Ring Closing Metathesis (RCM) 

 

 (+)-α-Conhydrine, first isolated from the seeds and leaves of Cronium maculatum L, 

is one member of the anti-viral and tumor-suppressant family of alkaloids containing the 2-

(1-hydroxyalkyl) piperidine unit. Jamieson and Sutherland have used their ether-directed, 

stereoselective aza-Claisen rearrangement, followed by RCM, to produce this small 

alkaloid.39 The trichloroacetimidate 49 underwent aza-Claisen rearrangent to provide the 

trichloroamide 50 in good yield and excellent diastereoselectivity. Hydrolysis of the 

trichloroacetate group followed by acylation gave the diene 51 which, when treated with 

Grubbs’ 1st generation catalyst 26, cyclized in quantitative yield to give the piperidinone 52. 

Reduction of the double bond, followed by removal of the protecting group, and reduction of 

the lactam then gave (+)-α-conhydrine 53. 
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2.6 Radical Cyclization 

 

 The pseudodistomins are a range of natural products whose scaffold contains a 

piperidine-based cyclic amino alcohol.  These small alkaloids can be isolated from tunicates, 

also called sea squirts, such as the Ascidiacea. They exibit a range of interesting biological 

activities. Naito and co-workers saw the potential of a radical cyclization between the oxime 

ether and the aldehyde in carbamate 54 to produce the basic scaffold of a pseudodistomin 

type alkaloid,40 Scheme 2.5. The major product is 3,4-anti piperidine 56, which was isolated 

in good yield, and as an 80:20 mixture with the corresponding 3,4-syn compound. The 

proposed mechanism involves the the oxophilic stannyl radical attacking the carbonyl group 

of oxime 54 to make ketyl radical 55. Naito suggests that the electronic repulsion between 

the oxime and the stannyloxy group lead to an anti configuration in the transition state 55, 

and therefore predominantly the anti piperidine 56. In addition, it is argued that the radical 

stabilizing influence of the oxygen atom in the oxime encourages 6-exo-trig cyclization, 

eliminating 7-endo-trig cyclization. 
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2.7 Reductive Hydroamination 

 

 Pseudodistomin D is from the pseudodistomin family of natural products described 

earlier, and is found in the Okinowan sea squirt pseudodistomina kanoko. Along with 

calmodulin antagonistic activity, pseudodistomin D also exhibits potent cytotoxicity against 

murine leukemia, and human epidermoid carcinoma KB cells. Trost et al. used dynamic 

kinetic asymmetric cycloaddition of isocyanate 58 onto vinyl aziridine 57 to produce a chiral 

urea 60, which was further manipulated to give diamine 61,41 Scheme 2.6. Silver tosylate 

induced reductive hydroamination of alkyne 61 to give the piperidine 62 in good yield as one 

diastereomer, and with no pyrrolidine side products. Simple deprotection of the TBS group 

gave pseudodistomin D. 
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Scheme 2.6 

 

 The lack of pyrrolidine side products and the perfect diastereoselectivity are of 

interest. Trost proposed that the silver ion coordinates to the alkyne causing cyclization, by 

the kinetically favored 5-exo-dig mode of cyclization to give the pyrrolidine 63, which is in 

rapid equilibrium with piperidine 65 via bicycle 64, Scheme 2.7. Sole formation of the 
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piperidine 62, could arise because the equilibrium lies heavily to the side of 65 and hence 62 

is formed by reduction of the dominant species. Another possible explanation is that due to 

the faster reduction rate of an sp2 to an sp3 carbon in a six-membered ring as compared to a 

five-membered ring42 the imine 65 is preferentially reduced in the presence of imine 63.  
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Scheme 2.7 

 

2.8 Diels-Alder Cycloaddition 

 

 Pipecolic acid is a metabolite of lysine that is found in human physiological fluids, 

and appears to be involved in signaling in the central nervous system.43 Diaz-de-Villegas and 

co-workers used an asymmetric Diels-Alder cycloaddition to form a precursor 67 to (R)-4-

oxopipecolic acid 68,44 Scheme 2.8. Reaction of Danishefsky’s diene 3545 with the chiral 

imine 66 in the presence of even a catalytic amount of Lewis acid gives the piperidinone 67 

as a single diastereomer in good yield. However, the best results were obtained with 

stoichiometric amounts of zinc iodide. 
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Scheme 2.8 

 

 The stereoselectivity can be explained by the chelation of the zinc by the imine 

nitrogen atom and the oxygen atom of the closest benzyloxy group, Figure 2.1. The chiral 

protecting group rotates to minimize 1,3-allylic strain so that the non-coordinated O-benzyl 

group and the phenyl of the phenethyl group are matched in blocking the si-face. Thus, 

attack occurs solely from the re-face. When the other enantiomer of the phenethyl chiral 

protecting group is used, a mismatch occurs, and a mixture of diastereomers is formed. 
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 While the aza-Diels-Alder reaction has become a powerful tool in the formation of 

piperidines, the inverse-electron-demand Diels-Alder reaction of azadienes is far less 

common. However, recent work by Carretero and co-workers has highlighted just such a 

method.46 Carretero used a Lewis acid and a chiral ligand to effect the cycloaddition of enol 

ethers, and N-tosylated chalcones, Scheme 2.9. The electron rich enol ether was added to the 

N-tosylimine 69 in the presence of a nickel catalyst and the chiral ligand DBFOX-Ph to give 

piperidine 70. Reaction times were long, but yields were good, endo selectivity was excellent 

and enantiomeric excess ranged from 77-92%. A range of R2 substituents was tolerated. 

However, substitution at the iminic carbon was limiting, with only electron-poor to electron 

neutral aryl groups working well, giving good yields and enantiomeric excesses between 90 

and 92%.  
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 The resultant piperidines can then be cyclized further via nucleophilic displacement 

of the Lewis-acid-coordinated alkoxy group from hemiaminal 71 to give benzothiadiazine 

derivatives 73 after reduction or alkylation of intermediate quinolinium ion 72, Scheme 2.10. 

Asymmetric routes to benzothiadiazines are of interest as these alkaloids have shown 

potential in the treatment of learning and memory disorders, and neurodegenerative disease. 
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2.9 Nucleophilic Addition to Pyridinium Salts 

 

 Palinavir 74 is a potent HIV protease inhibitor with a piperidine core,47 Figure 2.2.  
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Figure 2.2 

 

A key intermediate in the synthesis of palinavir is the piperidine (2S,4R)-4-

hydroxypipecolic acid 79. Brooks and Comins used a strategy involving the nucleophilic 

addition to a pyridinium salt to synthesize this key intermediate,48 Scheme 2.11. Reaction of 

the disubstituted pyridine 75 with the chloroformate 76 gave the pyridinium salt 77. Addition 

of vinylmagnesium bromide, followed by hydrolysis yielded the piperidinone 78 with a dr of 

93:7. Recrystallization gave diastereomerically pure piperidinone 78 in a 78% yield. This 

was then converted into (2S,4R)-4-hydroxypipecolic acid 79 in several steps.  
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2.10 Solid-Phase Synthesis of Piperidines 

 

There are many different ways to make piperidines, each with their own advantages 

and disadvantages.  However, only a select few of these methods have been adapted to solid-

phase synthesis. Many solid-phase methods start with the piperidine already intact and then 

functionalize the piperidine. A synthetic pathway that builds the piperidine core on resin is 

very rare. Several methods involve the use of a Diels-Alder cycloaddition using a solid-

supported reactant, but barring one other example these are the only literature methods.  

Elegant work by Hall and co-workers took advantage of a novel tandem Diels-Alder 

cycloaddition/allylboration, to produce diverse piperidine analogues,49 Scheme 2.12. 

SASRIN linked maleimides 80 were treated with diene 81, and benzaldehyde to give the 

resin-bound piperidine 82. A reaction temperature of 80 oC, and a ratio of 1:5:10 maleimide 

80/diene 81/aldehyde was needed for the reaction to go to completion within a reasonable 

time, as is common with aza-diene cycloadditions. However, the reaction proceded with 

100% endo selectivity, and release from resin with TFA-DCM (1:200) gave the piperidine 

83 in good yield. While this solid phase sequence has not been broadly tested, the solution-

phase analogue has been thoroughly investigated and tolerates a wide range of dienes and 

aldehydes.  
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  In the only solid-phase asymmetric synthesis of piperidines, Zech and Kunz 

employed a more conventional aza-Diels-Alder reaction whereby a resin-bound aza sugar, 

acting as a chiral auxiliary, was converted to an imine. Cycloadditon with Daneshefsky’s 

diene 35 afforded various asymmetric piperidine analogues,50 Scheme 2.13. Resin-bound 

imine 84 was treated with ZnCl2, and Daneshefsky’s diene 35 to yield the resin-bound 

piperidine 85. This was then cleaved with tetrabutylammonium fluoride, and acetic acid in 

THF to give the piperidine 86, in good yield and typically good to excellent 

diastereoselectivity. While the auxiliary was not removed, there is a literature procedure for 

its cleavage.51 Alternatively, the resin-bound piperidine 85 could be alkylated by addition of 

an alkyl cuprate to give a resin-bound 2,4-disubstituted piperidinone. 
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Scheme 2.13 

 

 Another method developed by Rutjes, Hiemstra and co-workers relies on an acid 

catalyzed cyclization of a carbamate and an acetal,52 Scheme 2.14. The resin bound 

carbamate 87 was treated with catalytic p-toluenesulfonic acid for 30 min to induce 

cyclization, which was followed by reaction with 1H-benzotriazole to give stable resin-

bound piperidine 88. Removal of the benzotriazole group with BF3
.OEt2 followed by attack 

with a nucleophile, and removal from resin with NaOMe, gave the piperidines 89. Yields 

were typically good, though some R groups and nucleophiles gave poor results. The 

piperidines were produced as the 2,4-anti diastereomers. 
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 2.11 Conclusion 

 

 Even simple piperidines show excellent biological activity, and the core structure is 

often seen in more complex systems. New synthetic routes to such a privileged structure are 

always welcome, especially when new stereogenic centers are introduced in a controlled 

way. Every method has its advantages and weaknesses, so each particular target will benefit 

from a particular method, thus the more routes available to the synthetic chemist, the better. 

With industrial demand for stereoselectivity, diversity, and pure amounts of compounds 

never higher, solid-phase stereodiverse routes to piperidines are attractive. Such methods 

would allow the production of large libraries of specific compounds, all distinctly different 

from each other.  
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Chapter 3 

Alkenation reactions 
 

3.1 Introduction 

 

  Alkenation reactions or transformations that produce carbon-carbon double bonds are 

of paramount importance in organic synthesis. Not only do these reactions bring two carbons 

together, but due to the reactive nature of carbon-carbon double bonds further 

transformations are possible. Indeed the 1979 Nobel Prize was awarded to George Wittig 

(shared with H. C. Brown) largely due to his development of the Wittig alkenation. The most 

commonly used alkenation reactions are the Wittig, the Horner-Wadsworth-Emmons, and 

the Peterson reactions, although Julia and modified Julia reactions are becoming more 

popular. However, there are several titanium promoted alkenation reactions, including the 

Takeda and Petasis reactions that have special attributes, giving them a niche in the synthetic 

world.  

 

3.2 The Wittig Reaction 

 

 The Witttig alkenation53,54 is particularly attractive as it requires only mild 

conditions, and no ambiguity exists as to the location of the double bond being formed. 

Before Wittig chemistry double bond formation from a carbonyl substrate was achieved 

through nucleophilic attack followed by elimination; rearrangement sometimes occurred and 

the position of the double bond formed was sometimes difficult to predict and control.  

 In the Wittig reaction a phosphonium salt 90 formed from the addition of PPh3 to an 

alkyl halide is deprotonated with a base, usually an alkyllithium or phenyllithium, to give the 

resonance stabilized ylide 91. It is thought that the ylide reacts with aldehydes or ketones to 

give the oxaphosphetane 93, possibly via the betaine 92. However, evidence for the betaine 

is scarce. Once the oxaphosphetane is produced, fragmentation occurs and the alkene 94 is 

produced together with an equivalent of triphenylphosphine oxide. The immense strength of 

the phosphorus oxygen double bond is the driving force of the reaction. 
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Scheme 3.1 

 

There are generally two different kinds of ylide. A stabilized ylide is produced when 

either R1 or R2 contains an electron-withdrawing group on the α-carbon atom. When such a 

group exists the formation of the oxaphosphetane is reversible and the thermodynamic 

product (the E isomer) is formed. If the R groups on the ylide are, instead, electron-donating, 

then the oxaphosphetane formation is not reversible, and the kinetic product (the Z isomer) is 

formed. The use of a lithium base slows down the elimination of triphenylphosphine oxide 

and therefore reduces the Z selectivity of the Wittig reaction when a non-stabalized ylide is 

used. In fact, using the Wittig-Schlosser reaction it is possible to obtain near perfect E 

selectivity,55 Scheme 3.2. When bromoethane is treated with PPh3 and BuLi the ylide 95 is 

produced together with one equivalent of LiBr. If the aldehyde is added at -78 oC, the LiBr 

slows the elimination of triphenylphosphine oxide. When the temperature is raised in the 

presence of PhLi the configuration of the pseudo-phosphetane switches to trans. Protonation 

of the pseudo-phosphetane with tBuOH yields the alkene 98 with 99% selectivity for the E 

geometry. 
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3.3 Horner-Wadsworth-Emmons (HWE) Reaction 

 

 The HWE reaction56 is a widely used variation of the Wittig reaction. A phosphonate 

ester 99 is used instead of a triphenylphosphonium salt. The reaction only works when either 

R1, or R2 is an electron-withdrawing group. The carbanion 100 is produced by the 

deprotonation of the phosphonate ester 99 with a base, Scheme 3.3; NaH is shown here but 

other strong bases also work. Reaction of the carbanion with an aldehyde or ketone gives the 

alkene 101, via a mechanism similar to the Wittig reaction, and produces a water-soluble  

by-product 102. The alkene is typically produced in good yield as the E isomer. Due to the 

increased reactivity of the carbanion, the method can be used to alkenate hindered ketones 

that would not undergo the Wittig alkenation. 
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3.4 Peterson Alkenation 

 

 In what could be considered as the silicon version of the Wittig reaction, the Peterson 

alkenation57 uses an α-silyl carbanion 104 to attack an aldehyde or ketone to give a mixture 

of diastereomeric β-hydroxyalkyltrimethylsilanes 105, and 106, Scheme 3.4. A Grignard 

type nucleophile 104 is shown but the α-silyl carbanion can take other forms as well. Each β-

hydroxyalkyltrimethylsilane 105 or 106 then eliminates in a stereospecific manner dependant 

on acidic or basic conditions to give the alkene as either the Z or E geometric isomer.  
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 When acidic conditions are used on β-hydroxysilane 105 anti-elimination takes place 

via protonated intermediate 107 to give the alkene 108, Scheme 3.5. 

 

acid
R4

R3

OH2

Me3Si

R2
R1

R3

R4

R1

R2R4
R3

OH

Me3Si

R2
R1

105 107 108  
Scheme 3.5 

 

 On the other hand basic conditions convert β-hydroxysilane 105 into an oxyanion 

109, which following 180o rotation around the carbon-carbon bond, forms 

oxasilacyclobutane 110. Now syn-elimination of the oxasilacyclobutane 110 gives the other 

geometric isomer, alkene 111. 
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Scheme 3.6 

 

 The Peterson reaction can be used with very hindered ketones, when the Wittig 

reaction does not work. It has the advantage that only one geometric isomer is produced from 

each β-hydroxysilane, but unfortunately suffers from poor stereocontrol in the synthesis of 

the β-hydroxysilanes 105 and 106. 

  

3.5 Julia Alkenation 

 

 The original Julia alkenation was developed in 1973 by Marc Julia and Jean-Marc 

Paris,58 Scheme 3.7. The phenylsulfone 112 is metalated, after which addition to an aldehyde 

113 affords the β-alkoxysulfone 114. Acylation of 114 to give the β-acyloxysulfone provides 

a good leaving group, facilitating single-electron-donor-induced reductive elimination to 

give the alkene 116. Typically the method gives high E selectivity. The reaction is difficult 

to perform, requiring 4 distinct steps. However, it has found frequent use in important 

synthetic schemes. 
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 Kocienski et al. showed that the reaction is stereoselective rather than stereospecific, 

Scheme 3.8.59 The E-geometrical isomer 124 predominates regardless of which 

diastereomeric sulfone 117 or 120 is used, and the E:Z ratio depends on the bulk of R1 and 

R2. This is because the radicals 118 and 119, formed by single electron transfer and loss of 

sulfinate, can very rapidly interconvert by pyramidal inversion. The carbanions 121 and 122 

can also interconvert in this way. Presumably the rate determining step is elimination of the 

acylate anion and involves a product like transition-state so that steric interactions between 

R1 and R2 disfavour the formation of the Z geometric isomer 123. 
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In an attempt to address the synthetic difficulties of the classical Julia alkenation, a 

one pot method called the modified Julia alkenation has been developed, Scheme 3.9. This 

method has been extensively reviewed by Blakemore.60 Instead of a phenylsulfone 112 the 

modified Julia alkenation uses a heterocyclic sulfone, usually a 1-phenyl-1H-tetrazol-5-yl, or 

benzothiazol-2-yl sulfone 125. The β-alkoxysulfone, 126, or 130, forms as before, but now 

there is no need for acylation as the heterocylic group is transferred via a Smiles 

rearrangement to the β-oxygen giving sulfinate 128 or 132. Spontaneous elimination of 

sulfur dioxide and lithium benzothiazole gives the alkene 123 or 124. While the reaction is 

easier to perform, stereocontrol suffers. The anti diastereomer 126 yields the E isomer 124 

and the syn diastereomer 130 yields the Z isomer 123. In some cases it would seem that the 

syn and anti diastereomers 126 and 130 can interconvert via retroaddition-addition, and so 

stereochemistry is not always set by the formation of the alkoxy sulfone. When unbranched 

aliphatic aldehydes are used the Z isomer is produced in moderate excess. This is possibly 

because during the Smiles rearrangement the E pathway requires the spirocylic intermediate 

127 to take an eclipsed-gauche arrangement of R1 and R2. The spirocyclic Z precursor 131 

does not suffer this problem. However the sulfinate salt 132 must adopt an eclipsed gauche 

configuration of R1 and R2 in order to place the eliminating groups in the antiperiplanar 

arrangement necessary for elimination, and this possibly hinders the formation of the Z 

isomer 123. 
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When α,β-unsaturated aldehydes, including aryl aldehydes, are used stereoselectivity 

improves dramatically. Smith and co-workers used a modified Julia alkenation in their total 

synthesis of the potent cytotoxic agent (–)-callystatin A,61 Scheme 3.10. When sulfone 133 

was metalated with NaHMDS and HMPA, the α,β-unsaturated aldehyde 134 could be added 
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to give the desired alkene 135 in poor yield but excellent stereoselectivity. The poor yield 

was a result of β-elimination of the sulfone. 
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Scheme 3.10 

 

 Julia and co-workers propose that this increased stereoselectivity results from the loss 

of the BTOLi group from the spirocyclic precursors 127 and 131 before elimination can 

occur,62 Scheme 3.11. Should this happen the zwitterionic conformers 136 and 137 would be 

produced. Fast equilibrium to the more stable 137 would precede loss of SO2 to give the E 

alkene 124. The α,β-unsaturation of R2 helps to stabilize the positive charge thereby allowing 

the carbocation to be formed. 
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 Later in the total synthesis of (–)-callystatin A, Smith and co-workers used a 

conventional Julia alkenation to complete the scaffold of the target molecule,61 Scheme 3.12. 

Metalation of the sulfone 138 followed by addition of the aldehyde 139, acylation, and 

reductive elimination gave the desired alkene 140 in high yield and good stereoselectivity. 

As is demonstrated by this total synthesis, the classical and modified Julia alkenation 

complement each other well to give the synthetic chemist a very useful tool in the 

construction of alkenes. 
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3.5 Titanium Alkylidenes 

 

        While the Wittig-type reactions are extremely powerful and general tools in organic 

synthesis they suffer in cases when the carbonyl contains an acidic α-hydrogen atom, as the 

Wittig-type alkenations typically require strong bases. Wittig-type reactions have been 

known to cause epimerization of α-protons through enolate formation and even epimerize β-

protons via retro-Michael addition. Furthermore the alkenation of carboxylic acid derivatives 

such as amides and esters generally is not possible using any of the above methods. To 

overcome these problems a range of titanium carbenoid reagents have been developed. These 

reagents are non basic so they do not deprotonate acidic α-protons or cause retro-Michael 

additions. They are also small and reactive and will, therefore, react with even hindered 

ketones. Most importantly they can alkylidenate carboxylic acid derivatives such as esters, 

and amides. These reagents and their use have been comprehensively reviewed recently,63 

but their key features will be summarized briefly. 

 

3.6 Tebbe Methylenation 

 

  The Tebbe reagent64 is the titanium aluminium complex 141 formed from the 

reaction of Cp2TiCl2, and AlMe3 in toluene.65 The reagent is very sensitive to air and 

moisture, but is nonetheless available commercially as a toluene solution. The Tebbe reagent 

reacts in the presence of a Lewis base, like pyridine, to give titanocene methylidene 142, 

which can methylenate aldehydes, ketones, and a range of carboxylic and carbonic acid 

derivatives like esters, and amides, Scheme 3.13.   
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Titanocene methylidene 142 is formed via the base-induced elimination of AlClMe2 

from titanocycle 141. This reactive species acts as a Schrock carbene; an electron deficient 

16 electron titanium complex in a high oxidation state, nucleophilic at carbon and 

electrophilic at titanium, Scheme 3.14. The nucleophilic reagent reacts with carbonyl groups 

to give the alkene 143 and an equivalent of Cp2Ti=O, via the decomposition of 

oxatitanacyclobutane 144 in a manner similar to the phosphetane in the Wittig reaction. The 

formation of the very strong titanium-oxygen bond gives the reaction a strong driving force. 
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 The main advantage of the Tebbe reagent over Wittig-like reagents is that it 

methylenates esters, amides, thioesters, and carbonates. The reactivity of the reagent depends 

on the electronics of the substrate, and therefore, due to nucleophilic nature of the Shrock 

carbene, the Tebbe reagent will methylenate more electrophilic carbonyls preferentially. This 

means that aldehydes and ketones will be methylenated in the presence of esters and amides. 

While the use of a Lewis base is necessary to start the reaction, only a mild Lewis base is 

required, and thus base sensitive groups are tolerated in the reaction. Furthermore the 

reaction does not require heating. Unfortunately, the reaction is limited to methylenation and 

due to the instability of the reagent the procedure can sometimes be tricky.  

       Roush and co-workers have used the Tebbe Reagent in their synthesis of the bicyclic 

core of HIV-1 integrase inhibitor integramycin,66 Scheme 3.15. The cis fused decalin 145, 

obtained from a highly stereoselective intra-molecular Diels-Alder cycloaddition, was 

methylenated with the Tebbe reagent at low temperature to give the desired diene 146 in 

69% yield. Several transformations later and the bicyclic core of integramycin was produced. 

It is important to note that, despite the acid-sensitive protons α to the carbonyl, no 
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epimerization of the chiral centers occurred. This can be attributed to the mild non-basic 

conditions of the Tebbe methylenation. 
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Scheme 3.15 

 

 While electronics are the main factor in determining the reactivity of a substrate 

towards Tebbe methylenation, sterics also play a role. In cases where two carbonyl groups 

have similar electronic properties sterics will determine the regioselectivity of the reaction. 

Work by Steglich and co-workers demonstrates the methylenation of a methyl ester in the 

presence of a bulky silyl ester,67 Scheme 3.16. Using one equivalent of Tebbe reagent and 

low temperature the diester 148 was selectively methylenated to provide the enol ether 149 

in very good yield. 
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Scheme 3.16 

 

3.7 Petasis Reagents 

 

The simplest Petasis reagent is dimethyltitanocene 150.68 It is relatively air and 

moisture tolerant and can be stored as a solution in a mixture of toluene and THF at low 

temperature for months. The reagent can be produced by the method of Payack et al. by the 

reaction of methylmagnesium chloride with titanocene dichloride;69 this can be done on a 

kilogram scale.70 Dimethyltitanocene 150 will undergo α-elimination under thermal or 
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microwave conditions, Section 7.6,71,72 to give the same Schrock carbene 142, as is produced 

by the Tebbe reagent, Scheme 3.17. Meurer and co-workers have investigated the reaction 

mechanism for the Petasis reaction by using atmospheric pressure chemical ionization mass 

spectrometry to find the signals corresponding to the oxatitanocyclobutane 144, and the 

products of its dissociation, which eventually lead to the desired alkene and titanocene 

oxide.73  
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Scheme 3.17 

 

 Unlike the Tebbe reagent, the Petasis reagent is not limited to methylenation. Work 

by Petasis and Bzowej demonstrated the use of functionalized Petasis reagents.74  When 

bis(benzylic)titanocenes were heated in the presence of esters in toluene the corresponding 

enol ethers were produced. The particular example shown, Scheme 3.18, produced only the Z 

isomer in quantitative yield. Typically yields and Z to E selectivity were moderate to good. 

Unfortunately, the range of possible functionalized Petasis reagents is not broad. Only 

reagents that cannot undergo a fast β-elimination are effective. Otherwise this undesired β-

elimination out competes the desired α-elimination, and the Schrock carbene is never 

generated.  
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 The favored geometry of the alkene can be explained by considering the two possible 

oxatitanacyclobutane intermediates 156 and 157,75 Scheme 3.19. When an ester 154 reacts 

with a Schrock carbene 155, generated from a functionalized Petasis reagent, two different 

oxatitanacyclobutanes are possible: 156, and 157. Intermediate 156 will lead to the E alkene, 
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and intermediate 157 will lead to the Z alkene. The reaction is likely to be under kinetic 

control so the E:Z ratio is dependant on the relative energies of the transition states leading to 

156 and 157. The oxygen attached to R1 acts as a spacer and thus minimizes steric 

interactions with the OR1 group. So, unless R3 is very small, intermediate 156 is favored, and 

the Z alkene is produced in preference.  
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Scheme 3.19 

 

Dimethyltitanocene has found a wide variety of uses in the literature. Its mechanism 

of reaction is very similar to the Tebbe alkenation, and so, due to its comparative ease of 

synthesis, it is used in similar situations as the Tebbe alkenation. The simple benign reaction 

conditions make it an attractive reagent to methylenate carbonyl groups containing acidic α-

protons. In their studies towards the total synthesis of kainic acid, Parsons and co-workers 

used dimethyl titanocene to methylenate a ketone containing a sensitive α-chiral center, 

Scheme 3.20.76 When ketone 160 was treated with the Petasis reagent in THF and heated 

under reflux the alkene 161 was produced in good yield, and the sensitive chirality was left 

untouched. The transformation also demonstrates the chemoselectivity of the reaction as the 

ketone is alkenated preferentially in the presence of an ester. 
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 The Petasis methylenation has been combined with other reactions to allow new 

synthetic strategies. Sigmatropic rearrangements have proved to be very powerful tools for 

the organic chemist. One popular strategy involves methylenation of an allylic ester to form 

a precursor for a Claisen rearrangement. In a paper demonstrating the utility of p-menthane-

3-carboxaldehyde as a chiral auxiliary, Spino et al. used just such a strategy in the synthesis 

of (+)-cuparenone 16577, Scheme 3.21. The starting allylic ester 162 was methylenated with 

dimethyltitanocene to give the enol ether 163, which was heated under reflux in toluene to 

give the product of the Claisen rearrangement 164 in a very good yield from ester 162 as 

essentially one diastereomer. Following removal of the chiral auxiliary by ozonolysis: 

cyclization, methylenation and hydrogenation gave (+)-cuparenone 165.  
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3.8 Takeda Reagents 

  

While Petasis reagents allow for more than just methylenation, functionalized 

versions of these reagents are rarely used in the literature. The award-winning group of 

Takeda and co-workers have produced a synthetic method that produces complex titanium 

alkylidenes via the reduction of thioacetals.78 Importantly, a range of thioacetals can be used 

to access titanium carbenoids, notably thioacetals that contain hydrogens β to the thioacetal, 

and hence, after formation of the titanium reagent, β to the Schrock carbene. The titanium 

alkylidenes can then be used to alkylidenate aldehydes, ketones, esters, thioesters, and 

benzamides. The geometry of the alkene formed is governed by the same rules as for the 

Petasis reagents since the mechanism of reaction of the Schrock carbene is the same for both 
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the Takeda and the Petasis reactions. While stereoselectivity is poor or unreliable for 

aldehydes, ketones, and thioesters; esters and benzamides are converted to the corresponding 

enol ethers and enamines with good and perfect Z selectivity. 

 The reagents are generated by reduction of titanocene dichloride with magnesium in 

the presence of triethylphosphite to produce a low-valent titanium(II) complex 167,79 

Scheme 3.22. The reaction is extremely water-sensitive and 4 Å molecular sieves are 

essential for the reaction to proceed reliably. The low-valent complex 167 reduces the 

thioacetal 166 to give the Schrock carbene 168, thus oxidizing the titanium back to 

titanium(IV). The nature of the thioacetal 166 is important. Diphenylthioacetals, and 

dithianes derived from 1,3-propanedithiol are both reduced effectively, however 

diphenylthioacetals are slightly more reactive and generally preferable. The reaction is 

technically demanding, but when given careful attention, yields consistent results.   
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Scheme 3.22 

 

The fact that additional functionality can be introduced with the titanium alkylidene 

is the key feature of the Takeda reagents. A variety of different thioacetals have been used to 

produce the desired Schrock carbenes, including: dithio-orthoformates 16980,81, 

triphenyltrithio-orthoformate 17080, 2-silyl-1-bis(phenylthio)ethanes 17182, benzylic and 

homobenzylic thioacetals 172, 173, 174,83,18,19,20,84,85 Figure 3.1. While the Takeda reaction 

tolerates a broad spectrum of functionality some groups cause problems in the reagent itself. 

Bromo and chloro groups can react with the low valent titanium(II) species 167. Aryl 

chlorides are somewhat tolerated but dechlorination can occur. Unprotected amine groups 

generally cause problems and need to be protected so that no free hydrogen atoms exist on 

the amine.  
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 Takeda methodology has not been used in the synthesis of piperidines, but has been 

used to produce various heterocycles. Due to the inherent advantages of the Takeda reaction, 

intramolecular alkenation is possible. Takeda and co-workers have capitalized on this to 

produce the challenging 7 membered cyclic enol ether 176,86 Scheme 3.23. The thioacetal 

175 was treated with low-valent titanium species 167 to provide the cyclic enol ether 176 in 

a modest yield. The modest yield is due in large part to competing intermolecular alkenation.  
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Hartley and co-workers have used the Takeda alkenation as an integral part of their 

methodology towards a wide variety of aromatic heterocycles, Scheme 3.24. Originally the 

method was aimed at benzofuran synthesis.18 A benzaldehyde-derived dithiane 177 is treated 

with the low-valent titanium complex 167 to produce a Schrock carbene that alkylidenates a 

Merrifield resin-bound ester 178 to give resin-bound enol ether 179. The enol ether 

undergoes acid hydrolysis to cleave from resin and form the benzofuran 180. The method 

exploits the functionality and reactivity of the Takeda alkenation, the ease of work up 

allowed by solid-phase synthesis, and the purity ensured by a chameleon catch strategy, 

Section 1.7. The Takeda alkenation’s mild reaction conditions are especially important when 

the R group is a boronate group. The fact that the reactive group is tolerated means that more 

diversity can be introduced by means of a Suzuki cross-coupling.19 

 



 
49

R1 S

S

OR2

R1 = H, 5-F, 4-NEt2, 5-OTMS, 5-
R2 = MOM, TMS, TBS

B
O

O

O

OR3

OR3

OR2
R1

1) Cp2Ti(P(OEt)3)2
          167

2)

O
R3R1

1% TFA in DCM

177 179

178

180
R3 = Me, Ph, (CH2)2Ph, CH=CMe2, p-MeOC6H4, 3-furyl  

Scheme 3.24 

 

 The Hartley methodology has also proven to be very adept at producing 

indoles, Scheme 3.25.83 The reaction pathway is very similar to that discussed above. A 

benzaldehyde-derived dithiane 181 is treated with the low-valent titanium complex 167 to 

produce a Schrock carbene that alkylidenates a Merrifield resin-bound ester 178 to give 

resin-bound enol ether 182. The choice of protecting groups is crucial and the carbamate 

nitrogen atom must have no free hydrogen atoms. The enol ether undergoes acid hydrolysis 

to cleave from resin and form the indole 183. Once again the fact that the reactive boronate 

ester is tolerated means that more diversity can be introduced by means of a Suzuki cross-

coupling.21 Only indoles and benzofurans have been presented, but analogous routes give 

benzothiophenes20 and quinolines.84  
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3.9 Takai reagents 

  

1,1-Bimetallic reagents, also called modified Takai reagents, have proved to be useful 

alkylidenation reagents, showing up frequently in the literature. Takai and co-workers first 

produced titanium bimetallics by treating dibromomethane (1.5 equiv.) and zinc dust (4.5 

equiv.) in THF with TiCl4 (1.1 equiv.) in DCM to give the bimetallic 184. After stirring for 

15 min, a ketone (1 equiv.) was added, which reacted with the bimetallic reagent to give 

alkenes,87 Scheme 3.26.  
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  It would seem that the reaction proceeds via the dihaloalkane reacting with zinc dust 

to form a di-zink 188, Scheme 3.25. Takai and co-workers showed that if the di-zinc 188 was 

preformed fewer equivalents of all reagents were necessary. The di-zinc 188 is hard to make, 

but its formation can be expedited with a catalytic amount of lead(II).88 When diiodomethane 
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is treated with zinc dust no di-zinc 188 is produced. If a small amount of lead(II)chloride is 

added, the necessary di-zinc 188 is produced efficiently. The first addition of zinc to the gem 

dihalide is thought to be a fast addition, and the second addition a slow one. Transmetalation 

of monozinc 185 would give the more covalent organolead intermediate 186. Now the 

second iodide is replaced quickly by zinc to give the bimetallic 187. It is believed that 

replacement of the lead by zinc is fast and yields the di-zinc 188, which undergoes 

transmetalation to give the titanium zinc bimetallic 184. The pre-formed di-zinc 188 (2 

equiv.), TiCl4 (1 equiv.), and the ketone (1 equiv.) in THF can be stirred at RT to give the 

desired alkene. 
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Tochtermann and co-workers found that, alternatively to the preformed di-zinc 188, 

comercially available Nysted reagent 190 will effect methylenation in the presence of TiCl4, 

Scheme 3.27.89 When ketone 189 was treated with Nysted reagent and TiCl4 in THF, 

methylenation took place at room temperature to give alkene 191 in a good yield. 

Interestingly when the ketone 189 was treated with Wittig conditions, epimerization occurred 

at C-6.  
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Nicolaou et al. used a 1,1-bimetallic reagent in their synthesis of the fused polycyclic 

skeleton of vannusal A, a triterpene isolated from a tropical marine ciliate,90 Scheme 3.28. 

Ketone 192 was treated with zinc dust, PbCl2, TMSCl, diiodomethane, and TiCl4 to give the 

alkene 193 in very good yield. RCM using Grubbs 2nd generation catalyst 194 gave the 

protected fused polycycle 195. Nicolaou et al. specifically chose the bimetallic reagent 

because of the epimerisable center α, to the ketone, and to prevent loss of the OTES group 

via retro Michael addition.  
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 Takai reagents are similar to 1,1-bimetallic reagents, and can incorporate diversity by 

allowing the use of gem-dihaloalkanes.91,88 The method differs from that above in the use of 

a base, usually tetramethylethylenediamine (TMEDA). The reaction mechanism is still to be 

established. The reagent can be used to alkylidenate a range of carbonyl compounds 

including esters, amides, and thioesters. All hetero-substituted alkenes were produced with 

Z-selectivity except enamines which were produced as the E-isomer.  

 Following unsuccessful attempts via elimination, Dujardin and co-workers turned to 

Takai chemistry in their syntheis of dihydropyrans,92 Scheme 3.29. The (R)-mandelic acid 

derivative 196 was subjected to the Takai reagent generated from 1,1-dibromoethane to 

produce the dieneophile 197 in modest yield. Alkenation occurred solely on the less hindered 

site and with good selectivity for the Z geometrical isomer. Alkene 197 was taken as a 
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mixture of geometrical isomers and subjected to europium catalyst induced Diels-Alder 

cycloadditon to give the dihydropyran 199 in good yield as one enantiomer. Interestingly 

only the Z isomer underwent reaction; the E isomer appeared to suffer overwhelming steric 

hindrance in the favored endo transition state.  
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3.10 Conclusions 

 Whereas the Wittig-type reactions are still far more widely used, titanium-based 

alkylidenations have found a niche in the synthetic landscape. A range of strategies have 

developed that capitalize on their special qualities. The typically mild reaction conditions 

and reactivity allow titanium alkylidenes to be used broadly yet selectively for a multitude of 

synthetic situations. Most importantly where Wittig-type reagents fail to alkenate carboxylic 

acid derivatives, titanium carbenoids have demonstrated considerable utility in transforming 

esters, and amides into hetero-substituted alkenes. As shown above, access to hetero-

substituted alkenes not only adds to accessible chemical space, but opens up a range of 

synthetic possibilities. Indeed, titanium carbenoids are used frequently by the top names in 

chemistry, and have proven to be an indispensable tool to the organic chemist. 
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Chapter 4 

Previous Work 
 

4.1 Strategy 

 

Previous work in the Hartley group, inspired by the lack of stereodiverse solid-phase 

routes to piperidines, had built on the Hartley solid-phase methodology to investigate a solid-

phase route to enantiomerically-enriched 2-substituted piperidines, Scheme 4.1. 
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Scheme 4.1 

 

 The strategy would involve the use of novel chiral titanium alkylidene 201, generated 

from thioacetal 200 to produce a series of amino-ketones 204 on solid phase. The bulky 

chiral group would act as a protecting group during the generation of the organotitanium 

reagent 201, and the alkylidenation of resin-bound esters 20293 to give resin-bound enol 
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ethers 203. Cyclization of the amino ketones would give an iminium salt 205. The chiral 

group would then control the reduction of the iminium ion 205 giving enantiomerically 

enriched 2-substituted piperidines 206. No longer needed, the phenethyl chiral protecting 

group would be removed to give stereodiverse piperidines 207.  

 Dr. Mhairi Gibson had used this strategy to produce several 2-substituted piperidines 

207, however, the reaction conditions were not optimized and the enantiomeric purity of the 

piperidines had not been determined.  

  

4.2 Substrate Synthesis 

 

Dr. Gibson’s work began with the synthesis of the thioacetal substrate 200. The key 

feature of the substrate 200 was the protecting group. Using a bulky chiral group not only 

promised stereocontrol, but also had the potential to protect the amine during the 

alkylidenation. Using α-phenethylamine as a building block of the thioacetal 200 was 

particularly attractive as it is affordable, bulky, and readily available in both enantiomeric 

forms.94 Furthermore, the benzylic nitrogen-carbon bond can be reductively cleaved, and 

thus the phenethyl group can easily be removed. Efforts to introduce the group using 

displacement were unsuccessful, however, reductive amination proved effective, Scheme 

4.2. Using a method developed by Takeda and co-workers, alcohol 208 was produced from 

2,3-dihydrofuran.86 The alcohol 208 could be oxidized using a modification of the Swern 

conditions to give the aldehyde 209, which underwent reductive amination with either 

enantiomer of α-phenethylamine to give the thioacetal substrate (S)-200, or (R)-200.  
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4.3 Amino Ketone Synthesis 

 

 For the thioacetal substrate 200 to be an effective precursor it would have to be stable 

during the challenging solid-phase Takeda alkylidenation. Typically, amino groups 

complicate Takeda alkylidenations, possibly by coordination to titanium. Amino groups 

should contain no free protons to be successfully used as substrates for Takeda 

alkylidenation. Previous work within the Hartley group had shown that a dithiane 210 

bearing a tert-butylcarbamate group was an unsuitable substrate.83 Investigation of the 

substrate showed that when treated with Takeda conditions followed by an aqueous acid 

quench, two aromatic compounds, 211 and 212, were isolated, Scheme 4.3. Toluidine 211 

was probably formed from the desired intermediate titanium benzylidene 213,  Figure 4.1. 

Thiol 212 on the other hand was probably the product of monoinsertion of titanium(II) to 

give the titanium(IV) species 214. Intramolecular deprotonation of the carbamate would then 

give the thiol 212 and prevent formation of the alkylidenating reagent 213. 
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Despite these concerns, the thioacetal substrates 200 were treated with low-valent 

titanium reagent 167. The reaction mixture was then added to resin-bound esters 202. The 

resin was washed, and cleavage with TFA-DCM (10:90) gave the desired amino-ketones 204 

in good yield and good purity. Seemingly, neither coordination of titanium, nor 

intramolecular deprotonation was a problem. When looking closely at titanium(IV) species 

214 the molecule appears pre-arranged for proton transfer, whereas in the more flexible 

complex 215, a putative intermediate in the generation of titanium alkylidine 201, the amino 

and titanium groups are more separated. Furthermore, the free protons on the amino groups 

of complexes 214 and 215 have very different acidic qualities, Scheme 4.4. Deprotonation of 

aniline 216 is relatively easy due to conjugation of the resultant anion with the carbamate 

protecting group and the neighboring phenyl group. Secondary amine 218 is relatively 

difficult to deprotonate as it contains neither of these stabilizing groups. Thus intramolecular 

deprotonation would be significantly more difficult for complex 215 than complex 214. 
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 Steric bulk of the protecting group would account for the inability of the titanium to 

coordinate with the amine. Dr. Gibson used the thioacetal substrate (S)-200 to prepare a 

series of amino-ketones (S)-204, Scheme 4.5, Figure 4.2. 
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Figure 4.2 Yields of amino ketones (S)-204 

 

 The corresponding series of amino ketones (R)-204 produced from thioacetal (R)-200 

was also prepared in similar yields. It is likely that amino ketone 200h fails to form because 

the nucleophilic nitrogen atom of the pyridine ring coordinates to titanium, thus preventing 

formation or reaction of titanium alkylidene 201. 

 

4.4 Diastereoselective Cyclization via Reductive Amination 

 

 Shipman and coworkers had previously devised a method of preparing chiral 2-

substituted piperidines using the α-phenethyl group to control the stereochemistry, Scheme 

4.6.95 Starting from chiral methyleneaziridines 220, their strategy involved the opening of the 

aziridine with a Grignard reagent, and copper iodide to give the metalloenamine 221. 
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Alkylation with 1,3-diiodopropane gave the imine 222 which cyclized to give the 

piperidinium salt (S)-205a. Reduction of the iminium ion with the bulky reducing agent 

NaBH(OAc)3, gave the desired piperidine (2S, 1’S)-206a in moderate yield with excellent 

diastereoselectivity. 

 

N

Me EtMgCl, 
CuI (cat.)
THF, _30 oC

Pr N
MgCl

Me
I(CH2)3I
40 oC

N

I

Me

Pr

N

Me

Pr IN

Me

Pr NaBH(OAc)3

220 221

(S)-205a       (2S, 1'S)-206a  42% 
dr = 98.5:1.5 after chromatography

222

 
Scheme 4.6 

 

Shipman proposed that the high level of stereocontrol can be attributed to the fact that 

the iminium ion (S)-205a exists in half chair conformations 223 and 224, Scheme 4.7. The 

phenethyl group arranges itself so that the benzylic hydrogen atom is projected towards the 

propyl group, thereby minimizing 1,3-allylic strain. The hydride must attack axially to 

directly give a chair conformation. Therefore, the only two paths of attack available to the 

hydride are those shown. Hydride attack from the Si face of conformation 223 is blocked by 

the bulky phenyl group, so, formation of piperidine 225 is unlikely. On the other hand, 

hydride attack from the Re face of conformation 224 is relatively uninhibited. Thus, 

preferential formation of piperidine (2S, 1’S)-206a is ensured. A bulky reducing agent is 

essential due to the reliance on steric interaction with the phenethyl group. When Shipman 

and co-workers used NaBH4 in place of NaBH(OAc)3 the diastereomeric ratio in the crude 

mixture dropped from 95:5 to 88:12. 
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 Cyclization of the amino ketones 204 proved to be difficult. By using a large excess 

of desiccant in the presence of NaBH(OAc)3 the amino-ketones 204 could be cyclized to 

give piperidines 206, Scheme 4.8, Figure 4.3. Amino ketones (R)-204a, (R)-204b, and (R)-

204i cyclized well. Electron-rich amino ketones (R)-204f and (R)-204g cyclized poorly. 

Amino ketone (R)-204f proved to be impossible to cyclize effectively, while the only way to 

produce piperidine (2S, 1’R)-206g in reasonable yield was by repeated treatment of amino 

ketone (R)-204g with the cyclization and reduction conditions. The (S) series of amino-

ketones cyclized poorly, and column chromatography was necessary to purify desired 

piperidine 206 from uncyclized material. Clearly, the cyclization procedure was not reliable. 

Unfortunately, due to time constraints, the diastereomeric purity of the piperidines formed 

was not investigated. 
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Figure 4.3 Yields of disubstituted piperidines 206 

 

4.5 Removal of the Chiral Protecting Group 

 

  The chiral protecting group could be removed via high pressure hydrogenation. 

Using Pd(OH)2, the 2-substituted piperidines (R)-207a, and (S)-207b were produced from 

the N-protected piperidines 206, Scheme 4.9. Unfortunately the removal of the phenethyl 

group was not generally applicable. In the case of (2S, 1’R)-206g the harsh conditions caused 

the exocyclic and endocyclic N-benzylic group to be cleaved giving a mixture of products. 

Hydrogenation of the piperidine (2S, 1’R)-206i removed the phenethyl group but also 
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reduced the alkene moiety. The deprotection of piperidines 206 derived from (S)-201 was not 

attempted. Enantiomeric purity was not determined due to time constraints. 
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4.6 conclusions 

 

 The work by Dr. Gibson had shown great potential and demonstrated the viability of 

the method. However, even though the method was promising, there were still major 

concerns that needed to be addressed. Namely, the cyclization had to be less capricious, the 

hydrogenation had to be more general, and the enantiomeric purity of the piperidines 207 

formed had to be determined. Furthermore, yields of amino ketones 204 were not always 

reproducible, and therefore, the alkylidenation step needed to be optimised.  
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Chapter 5 

Synthesis of 2-Substituted Piperidines 
 

5.1 Improving the Solid-Phase Alkylidenation 

 

At the start of my work, SPS of amino ketones 204 had been demonstrated by Dr. 

Gibson, but the sequence was not yet consistently reproducible. Often, amino ketones were 

produced in poor yields and insufficient purity for high throughput synthesis. This 

necessitated optimization of the alkylidenation reaction. 

 The reactive organotitanium species 155 has a free coordination site, which we wish 

to be occupied by the carbonyl group of 154, but could also be occupied by the 

triethylphosphite used in generating organotitanium reagent 155, Scheme 5.1. We believed 

that by using the more bulky triisopropylphosphite in place of triethylphosphite, 18 electron 

complex 226 would be more likely to dissociate due to the increased sterics, and therefore 

aid in the formation of oxatitanacyclobutane 156, eventually leading to the desired alkene. 
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Scheme 5.1 

  

Unfortunately, the switch to triisopropylphosphite did not have an appreciable affect 

on the alkylidenation reaction, Scheme 5.2. When titanocene dichloride was reduced in the 

presence of triisopropylphosphite, a colour change from red to black was observed 

suggesting that the low-valent complex 227 was formed. Alkylidenation was also successful, 

but while the amino ketone (R)-204b was produced, the yield was poor and purity was 

mediocre. 
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We tried several more modifications of the procedure, including: microwave 

irradiation of the solid phase step, different methods of reactant addition, and different 

reaction times for different steps of the sequence, but the results remained unsatisfactory. 

Finally, suspecting that trace moisture in the argon source was poisoning the reaction, we 

inserted a column of desiccant (CaH2, or CaO) between the argon source and the reaction 

vessel, Figure 5.1.  
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Figure 5.1 

 

By ensuring that the all argon used in the reaction and preparation of reagents was 

treated in this way, the yields improved and purity was ensured, Scheme 5.3. The purity of 

the products could be further improved by dissolving the trifluoroacetate salt of the amino 

ketone (R)-204b in 1M HCl(aq), and extracting the product from the aqueous layer with 

DCM. 
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5.2 A More Elegant Cyclization 

 

 While the use of 25 equivalents of desiccant followed by NaBH(OAc)3 gave the 

desired N-protected piperidines 206, we were not satisfied with the conditions. Despite the 

logistics of using 25 equivalents of Na2SO4, the yields of N-protected piperidines 206 were 

not reliable. We envisaged that a Lewis acid could coordinate to, and thus activate, the 

carbonyl of amino ketone 204, Scheme 5.4. Cyclization would then give the iminium salt 

205, which, as shown by Shipman and co-workers,95 could be reduced by NaBH(OAc)3 to 

give piperidines 206 in good yield and high diastereoselectivity.  
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 We imagined that the oxophilic Lewis acid chlorotrimethylsilane (TMSCl) should 

limit the coordination of the Lewis acid to the more Lewis basic nitrogen atom, encouraging 

oxonium ion formation and cyclization. Furthermore, the reagent would provide a chloride 

counterion, is volatile, and would yield only volatile side products. This would mean that 

before the reduction stage, any side product and any excess TMSCl could be removed in 

vacuo leaving only the pure, non-volatile piperidinium salt. The reaction was performed in a 

Schlenk tube to facilitate controlled evaporation. The amino ketone (S)-204a was treated 

with with TMSCl in DCM and then all volatile components of the reaction mixture were 

removed in vacuo, Scheme 5.5. Reduction with NaBH(OAc)3 gave the desired piperidine 

(2S, 1’S)-206a in good yield and purity. Diastereomeric purity was not determined at this 

stage as we were unable to obtain a sample of the minor diastereomer to positively identify it 

in the 1H NMR spectrum of the crude mixture.  
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 A range of different conditions and bulky reducing agents were screened to optimize 

the reaction, Table 5.1. The use of 5 equivalents of TMSCl was essential to drive the 

cyclization to completion. NaBH(OAc)3 effected reduction of the iminium ion without 

problem above –10 oC, however, lower temperatures gave no product. Diisobutylaluminium 

hydride (DIBAL), sodium cyanoborohydride (NaCNBH3), and L-Selectride all gave 

incomplete reaction. The best conditions used 5 equivalents of TMSCl, and 2 equivalents of 

NaBH(OAc)3 at RT, or –10 oC. Following removal of the chiral phenethyl group, there was 

no difference in the enantiopurity of the piperidines produced from reduction at RT or at –10 
oC, and RT was deemed more convenient. 

 

Table 5.1 Cyclization and reduction of amino ketone (S)-204a 

 to give piperidine (2S, 1’S)-206a  
equiv. 
TMSCl 

reducing agent 
 (2 equiv.) 

temperature of 
reduction 

yield of piperidine 
(2S, 1’S)-206a 

2 equiv. NaBH(OAc)3 RT 66% 

5 equiv. NaBH(OAc)3 RT 90% 

5 equiv. NaBH(OAc)3 –78 oC no product 

5 equiv. NaBH(OAc)3 –40 oC no product 

5 equiv. NaBH(OAc)3 –10 oC 90% 

5 equiv. DIBAL RT reaction incomplete 

5 equiv. NaCNBH3 RT reaction incomplete 

5 equiv. L-Selectride RT reaction incomplete 
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5.3 Removal of the Chiral Protecting Group 

 

 The chiral protecting group can be removed via high pressure hydrogenation. When 

the substituent at the 2-position is a simple alkyl group, the high pressure procedure gives 

unprotected piperidines in good yield, Scheme 5.6. However, the harsh procedure caused 

problems when the 2-position of the piperidine 206 was aromatic, Section 4.5. 

 

N

Me

(2S, 1'S)-206a

1) H2, Pd(OH)2/C (10 mol%)
    EtOH, 40 psi, 40 oC

2) ethereal HCl N
H2

(S)-207a  97%

Cl

 
Scheme 5.6 

 

We investigated atmospheric pressure hydrogenolysis of the phenethyl protecting 

group using Pd/C. The deprotection proceeded to give the 2-substituted piperidine (S)-207a 

as the hydrochloride salt in excellent yield, Scheme 5.7. The addition of HCl was essential to 

form the hydrochloride salt and ensure that the small, potentially-volatile compound did not 

evaporate during workup. Most importantly, the reaction proceeded cleanly. After 

deprotection, pure material could be obtained by simply washing the piperidine salt 207 with 

EtOAc, and separating the wash from the solid product. From the solid-phase alkenation 

through cyclization, reduction, and deprotection, no time-intensive purification was 

necessary. Furthermore, the model for induction of stereochemistry, Scheme 4.7, was 

consistent with the absolute stereochemistry assigned by optical rotation. The piperidine (S)-

207a is a natural product isolated from the hemlock plant, called (S)-coniine. The optical 

rotation (S)-207a matched that of (S)-coniine96 signifying that we had produced the (S) 

enantiomer in excess. 
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69

5.4 Stereoisomeric Purity 

 

 Confident in the yield and chemical purity of our synthetic route, we investigated the 

sterechemical purity of the final piperidines 207. In Shipman’s synthesis of (S)-coniine,95 

Mosher’s method was used to determine enantiomeric excess.97 Chiral derivitizing agents 

(CDA) are commonly used to determine enantiomeric purity, and can even be applied in the 

assignment of absolute configuration.98 (R)-Mosher’s acid (R)-229 is a particularly popular 

CDA and, after conversion to its corresponding acid chloride (S)-230, Scheme 5.8, it can be 

used to make the Mosher’s amide of secondary amines.  
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Shipman and co-workers started with an uneven mixture of enantiomers (R)- and (S)-

coniine, (R)-207a and (S)-207a, respectively. From the optical rotation they knew that the (S) 

enantiomer was in excess, but they did not know by how much. Reaction of the mixture with 

Mosher’s acid chloride (S)-230 gave a diastereomeric mixture of the Mosher’s amides 231 

and 232, Scheme 5.9. The enantiomeric mixture had been converted to a diastereomeric 

mixture and so the two compounds 231 and 232 could be differentiated by NMR 

spectroscopy. The fluorine atoms in the CF3 group are shielded to different degrees in the 

diastereomers 231 and 232, and appear at different shifts in the 19F NMR spectrum. By 

integrating the peaks corresponding to the two CF3 groups, the relative amounts of 231 and 

232 in the sample were determined. Hence, the relative amounts of (R)-207a and (S)-207a in 

the original sample were known.  
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Unfortunately in our hands the method failed. Despite separate reaction of (S)-207a 

with both enantiomers of Mosher’s acid chloride only one identical peak was ever visible in 

the 19F NMR spectrum. This is perhaps because the relative amount of the minor 

diastereomer was too small to be detected by the NMR machine, which for all its advantages 

is only moderately sensitive. 

We turned our attention to chromatographic methods. Chiral gas chromatography is a 

very sensitive method for determination of enantiomeric purity. Low boiling points are 

essential when using gas chromatography (GC), so to prepare the piperidines for analytical 

gas chromatography, the amine group was converted into a trifluoroacetamide. Secondary 

amines have strong intermolecular hydrogen bonds, while tertiary amides do not have a good 

hydrogen bond donor. Furthermore, fluoroalkanes have only weak intermolecular 

interactions. This is perhaps best demonstrated by considering the boiling points of n-hexane 

and perfluoro-n-hexane. While perfluoro-n-hexane is much heavier than its hydrogen 

analogue, perfluoro-n-hexane boils at a significantly lower temperature than n-hexane. 

Reaction of piperidine (S)-207a with triethylamine and trifluoroacetic anhydride gave 

the corresponding trifluoroacetamide (S)-233a in good yield, Scheme 5.10.  
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Amide (S)-233a existed as a 2:1 mixture of geometric isomers, Scheme 5.11. As 

would be expected, the amide bond can rotate around its axis, but this rotation is slowed by 

conjugation between the nitrogen lone pair and the carbonyl group. Although this rotation 

allows rapid E-Z interconversion at room temperature, it is slow relative to the NMR 

timescale, and the two geometric isomers were well resolved in the 1H NMR spectrum. 
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 The trifluoroacetamide (S)-233a proved to be a good candidate for chiral GC 

analysis. Conditions that separated the two enantiomers on a Supelco -DEX 120 column 

were easily found. The analysis showed that our route had produced the piperidine (S)-207a 

in a very respectable 90 % ee. It is clear that with an er of 95:5, 19F NMR spectroscopy did 

not detect the minor diastereomer in a 95:5 mixture of the Mosher’s amides 231, and 232. As 

mentioned above, the enantiomeric excess of (S)-233a was identical regardless of the 

temperature used in the reduction of the iminium salt (S)-205a. Reduction with NaBH(OAc)3 

at RT and at –10 oC gave identical results. 

 While conversion to the trifluoroacetamide helps to make amines more suitable for 

analysis with GC, some compounds are just too heavy. For this reason, an alternate method 

was employed for the heavier piperidines, using chiral high performance liquid 

chromatography (HPLC), a method that can analyze large, non-volatile compounds. 

Reaction of the piperidine (R)-207b with benzoyl chloride and triethylamine gave the 

benzamide (R)-234b Scheme 5.12. Like the trifluoroacetamide (S)-233a, the benzamide (R)-

234b existed as two geometrical isomers. Unfortunately, the two isomers were not well 

resolved by 1H NMR spectroscopy at RT. To analyze the complicated spectrum, and 

characterize the benzamide properly, the temperature of the probe had to be changed. The 

probe could either be cooled to slow the rotation and thus resolve the two geometrical 
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isomers, or heated so that interconversion was fast on the NMR timescale. As we did not 

have access to a cryoprobe, heating was the only option available. When the 1H NMR 

spectrum was obtained at 50 oC, the results were easily interpretable, and the benzamide (R)-

234b could be characterized with confidence.  

 

N
H2

(R)-207b

NEt3 (3 equiv.)
PhCOCl (2 equiv.)

DCM
N

O

(R)-234b  56%

Cl

 
Scheme 5.12 

  

Separation and analysis of the two enantiomers (R)-234b and (S)-234b with chiral 

HPLC proved to be challenging. Using a Chiralcel OD-H column, the (R) enantiomer eluted 

before the (S) enantiomer. A simple, binary hexane-isopropanol solvent system produced 

peaks with large tails. When (R)-234b was in excess over (S)-234b, the peak corresponding 

to the minor (S) enantiomer was obscured by the tail of the peak corresponding to the major 

(R) enantiomer. After much experimentation with different solvent conditions, it was found 

that by using a more complex solvent system (hexane-isopropanol-methanol 98:1:1), the 

peak shape could be changed so that the peaks were well separated. This system was used 

when (R)-234b was in excess over the later eluting component (S)-234b. In the opposite 

case, when the second component (S)-234b was in excess, a binary hexane-isopropanol 

solvent system could be used.  

 Confident that we had developed conditions to analyze enantiomeric purity of the 

piperidines 207 produced by our solid-phase method, we aimed to demonstrate our work by 

developing a small library of compounds in both the (2R) and (2S) stereoisomeric forms.  

 

5.5 Library Synthesis 

 

 We aimed to prepare a library that would demonstrate the key aspects of our  

method. The library should demonstrate the ability to produce diverse products by producing 

piperidines with varied groups at the 2-position. Both the (2R) and (2S) stereoisomeric forms 

of each piperidine would have to be synthesized to show that our synthetic route is 

stereodiverse. Both conventional and stereochemical purity of the final piperidines 207 

needed to be high to demonstrate the method’s applicability to diversity-orientated synthesis.  
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 Five different resin-bound esters were prepared from Merrifield resin, Scheme 5.13, 

Figure 5.2. Resin 202a was prepared from butyric acid, and allowed access to the small 

natural product coniine. Production of this compound would not only demonstrate the ability 

of the method to control stereochemistry when the group at the 2-position was small, but as 

discussed in section 5.3, also allowed us to confirm that our model for stereochemical 

induction was consistent with the absolute stereochemistry of the piperidines produced. 

Resin 202b was produced from dihydrocinnamic acid, and investigated the result of steric 

bulk separated from the point of stereochemical induction. Resin 202c was produced from 3-

methoxybenzoic acid, and we hoped would demonstrate that the new atmospheric pressure 

hydrogenolysis of the chiral auxiliary tolerated 2-arylpiperidines. Enantiopure resin 202d 

was prepared from (S)-(+)-2-methylbutyric acid and would investigate the ability of the 

chiral auxiliary to control diastereomeric purity in cooperation and in competition with 

directing effects in the substrate. Furthermore, along with resin 202c, resin 202d explored the 

effects of steric bulk adjacent to the site of stereochemical induction. Resin 202e was 

prepared from (R)-(+)-citronellic acid, and as with resin 202d probed the effects of existing 

chirality on the stereochemical outcome of the reduction. We assumed that the alkene would 

be reduced during removal of the auxiliary, but that this would not increase the complexity 

of the products.  

 
RCO2H (15 equiv.), 
CsCO3 (15 equiv.), 
KI (25 equiv.)

DMF, 80 oC
Cl

O

R O

3  
Scheme 5.13 
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Figure 5.2 Resin-bound esters prepared for library synthesis  

 

 As the piperidines 207 were the target compounds, none of the intermediates were 

isolated. The synthetic scheme was followed from resin-bound ester 202 to piperidine 207, 
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Scheme 5.14. The five resin-bound esters were treated with the titanium alkylidene (R)-201, 

generated from (R)-200, to make the amino ketones (R)-204 via the resin-bound enol ethers 

(R)-203. Cyclization conditions gave the N-protected piperidines 206 which underwent 

hydrogenolysis to give the piperidines 207. The route was repeated with all five resin-bound 

esters, but using the (S) enantiomer of the titanium alkylidene (S)-201. The isomeric purity of 

all 10 piperidines produced was determined using the methods outlined in Section 5.5. 

Piperidines 207a, and 207d were small enough to be analyzed by GC. They were converted 

into the corresponding trifluoroacetamides 233a, and 233d and stereoisomeric purity was 

determined by chiral GC. Piperidines 207b, 207c, and 207e were converted to the 

corresponding benzamides 234b, 234c, and 234e, and analyzed with chiral HPLC. Only 

benzamide (R)-234b required a complex eluent mixture. A simple binary hexane-isopropanol 

solvent system provided sufficient separation for all other examples analyzed by HPLC. 
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Scheme 5.14 

 

 All piperidines were produced in excellent chemical purity, and good overall yield 

(based on the original loading of the Merrifield resin) for the 5 steps from the starting resins 

202, Figure 5.3. A general similarity in the yield of the two stereoisomeric piperidines 
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arising from each resin-bound ester 202a-e showed that the synthetic transformations were 

reliable. Efficient production of piperidine 207c proved that aromatic substituents at C-2 of 

the piperidine were tolerated by the hydrogenolysis under atmospheric pressure. Clean 

reduction of the alkene of 206e demonstrated that while alkenes were not tolerated by the 

method, a single product would likely be obtained.  
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Figure 5.3 Yields of piperidines 207 from resin-bound esters 202 

 

The stereoisomeric purity of the piperidines was good to excellent. The enantiomeric 

purity of piperidines 207a-c produced from titanium reagents (R)-201, and (S)-201 would 
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have been expected to be equal and opposite, and only small differences were observed. 

These could have arisen during reduction of the iminium ion if the conditions were slightly 

different, but washing of the salt of the final piperidine could also account for small changes, 

if homochiral material packs differently from heterochiral material (lattice energy affects 

solubility). Increasing steric bulk of the substituent at the 2-position appears to increase the 

diastereoselectivity in the reduction of the iminium ions 205, unless the bulk is directly 

adjacent to the point of induction of stereochemistry. The larger the R group, the more the 

phenethyl group will project the small proton towards the R group to minimize 1,3-allylic 

strain. In doing so, the phenethyl group blocks axial attack on the half-chair conformation 

235 of the ion 205 more consistently, Scheme 5.15. However, if the R group contains a large 

amount of steric bulk at the carbon atom adjacent to C-2 of the iminium ion, then this steric 

bulk will also block the reducing agent. Therefore, hindrance to attack is a result of 

hindrance from the phenethyl group and hindrance from the R group. The facial selectivity 

will be proportional to the steric hindrance to attack from one face over steric hindrance to 

attack from the other face. In the case of examples 205a, 205b, and 205c where the R group 

does not contain a stereocenter, the hindrance due to the R group is equivalent on both faces. 

When hindrance from the R group is significant compared to the hindrance from the 

phenethyl group, the ratio of hindrance on the face blocked by the phenethyl group to the 

hindrance on the other face will be reduced, and facial selectivity will be reduced. An R 

group with bulk adjacent to C-2 lessens the influence of the phenethyl group, and this 

accounts for the lower enantiomeric purity observed for piperidine 207c. 
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 Diastereomeric piperidines 207d and 207d’ were obtained from chiral resin-bound 

ester 202d, and diastereomeric piperidines 207e and 207e’ were obtained from chiral resin-

bound ester 202e. In all cases the phenethyl group had controlled the favoured absolute 

configuration at C-2. The discrepancy in the diastereomeric purities in products arising from 

the (R), and (S) phenethyl groups is a result of matched and mismatched chiral centres, 

Scheme 5.16. Consider reduction of the reacting conformers 238 and 239 of diastereomeric 

iminium ions 205d and 205d’, respectively. In both cases, the R group and the phenethyl 

group project their hydrogen atoms inward towards each other in an effort to minimize 1,3-

allylic strain. In the matched case, iminium ion 238, the ethyl and the phenyl group from the 

R group and the phenethyl group, respectively, both block the upper face. When the opposite 

enantiomer of the phenethyl group is used, the mismatched case arises and the opposite is 

true. In reacting conformer 239, the bulky substituents from the R group and the phenethyl 

group block opposite faces. As is evidenced from the results, the phenethyl group wins out 

and controls the stereochemistry of the 2-position. However, the diastereomeric purity is 

lower than in the matched case. The overall diastereoselectivity in both cases is low due to 

the bulky group adjacent to C-2 that reduces stereodifferentiation between the two faces.  
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Scheme 5.16 

 

 A similar effect operates in the reduction leading ultimately to piperidines 207e and 

207e’. In both cases, the stereoselectivity is high because the R group is bulky, but there is a 
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CH2 group next to C-2 of the iminium ions 205e and 205e’. The effect of the more distant 

chiral centre is weak, and matched and mismatched cases give similar diastereoselectivities. 

Absolute stereochemistry of (S)-207a, and (S)-207b was assigned by comparison of 

their optical rotations with literature values.96 As described earlier, these literature 

comparisons agreed with the predictions made by the model for stereochemical induction, 

Scheme 4.7. We therefore assigned the absolute stereochemistry of piperidines 207c, 207d, 

and 207e using the model. Furthermore, all piperidines synthesized using the titanium 

reagent (S)-201 had positive optical rotations and their trifluoroacetamides (S)-233a and (R)-

233d, and benzamides (R)-234b, (R)-234c and (R)-234e eluted first on chiral GC and chiral 

HPLC, respectively. These consistencies in optical rotation and chromatography further 

confirm the assignments of absolute stereochemistry.  

 

5.6 Conclusion 

 

We have developed a stereodiverse route to 2-substituted piperidines. Overall yields 

are good (26-60%) and the stereochemistry at the 2-position can be controlled to give 

piperidines with high levels of isomeric purity (76-96% ee). A range of substituents can be 

introduced at the 2-position, though groups containing bulk separated from the site of 

stereochemical induction will give the best results. We imagine that this route would be 

useful in the production of large, diverse libraries in a DOS.  
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Experimental 

 
All reactions under an inert atmosphere were carried out using oven dried or flame dried 

glassware. Solutions were added via syringe. THF was freshly distilled from sodium 

benzophenone. Dichloromethane, and triethyl phosphite were distilled from CaH2 prior to 

use. Petroleum ether refers to the fraction boiling at 40-60 °C. Reagents were obtained 

from commercial suppliers and used without further purification unless otherwise stated. 

The solid phase reactions were carried out in normal glassware, but with the resin 

(particle size = 150-300 µm diameter) contained within porous polypropylene reactors 

that had an internal volume of 2.4 mL, and a pore size of 74 µm. Purification by column 

chromatography was carried out using silica gel, mesh size 35-70 µm as the stationary 

phase. 1H and 13C NMR spectra were obtained on a Bruker DPX/400 spectrometer 

operating at 400 and 100 MHz respectively. All coupling constants are measured in Hz. 

DEPT was used to assign the signals in the 13C NMR spectra as C, CH, CH2 or CH3. 

Mass spectra (MS) were recorded on a Jeol JMS700 (MStation) spectrometer. Infra-red 

(IR) spectra were obtained on a Perkin-Elmer 983 spectrophotometer. A Golden GateTM 

attachment that uses a type IIa diamond as a single reflection element was used in some 

cases so that the IR spectrum of the compound (solid or liquid) could be directly detected 

(thin layer) without any sample preparation. Optical rotations were determined as 

solutions irradiating with the sodium D line (λ = 589 nm) using a AA series Automatic 

polarimeter. [α]D values are given in units 10-1degcm2g-1. 
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 Merrifield resin bound esters  202 

 

Merrifield resin-bound esters were prepared following the published procedure for 

loading Merrifield resin.93 Five polypropylene reactors charged with Merrifield resin 

[0.311 milliequiv. reactor-1, 163 mg of Merrifield resin with a loading of 1.91 milliequiv. 

(of benzylic chloride) g-1] were stirred in DMF (35 mL) straight from the bottle, with 

CsCO3 (1.517 g, 4.66 mmol), KI (0.130 g, 7.83 mmol), and the carboxylic acid (4.65 

mmol) at 80 °C for 20 h. The reactors were washed with DMF:H2O (9:1, 2), THF (2), 

MeOH (2), DCM (1), and MeOH (1) to give the desired resin bound esters contained 

within porous polypropylene reactors, which were dried under vacuum. The same 

procedure was used to prepare reactors with a loading of 0.325 milliequiv. reactor–1 [170 

mg Merrifield resin with a loading of 1.91 milliequiv. (of benzylic chloride) g -1].  

 

Preparation of resin-bound enol ethers  203 

 

Note: any Ar used during this procedure should be passed through a column of desicant 

(CaH2, or CaO) placed between the argon source and the reaction vessel. 

 

Cp2TiCl2 (0.93 g, 12 equiv.), Mg (100 mg, 13.2 equiv., predried at 250 °C overnight) and 

freshly activated 4-Å molecular sieves (0.25 g) were twice heated, gently, by heat-gun 

under reduced pressure (0.3 Torr) for about 1 min, shaking the flask between heatings, 

and then placed under argon. Dry THF (5 mL) was added followed by dry P(OEt)3 (1.3 

mL, 24 equiv.). After stirring for 3 h, the thioacetal (R)-200 or (S)-200 (3 equiv.) in dry 

THF (5 mL) was added to the mixture and stirring continued for 15 min. Resin-bound 

ester 202 [0.311 milliequiv./reactor from Merrifield resin with a loading of 1.83 

milliequiv. (chloride) g–1, or 0.325 milliequiv./reactor from Merrifield resin with a 

loading of 1.91 milliequiv. (chloride) g–1] contained in a porous polypropylene reactor 

and prepurged with argon was added. After 17 h the reactor was removed from the flask 

and washed with THF (5×) then alternately with MeOH and DCM (3×), and finally with 

MeOH then Et2O. The reactor containing the resin-bound enol ether was then dried under 

vacuum. 
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Preparation of chiral piperidines  207 

 

A reactor containing a resin-bound enol ether 203 was shaken with TFA (4%) in DCM (5 

mL) for 1 h. The solution was removed and the reactor was washed with DCM (3×). The 

combined organics were concentrated under reduced pressure to give the salt of the 

intermediate amino ketone 204, which was re-dissolved in DCM and washed (2×) with 1 

M NaOH. The organic layer was dried with MgSO4, filtered and concentrated in vacuo to 

give the free base. TMSCl (5 equiv.) was added to a solution of the resulting amino 

ketone (0.311 mmols, or 0.325 mmols, 1 equiv.) in dry DCM (1.5 mL) under argon 

contained in a Schlenk tube. After stirring at RT for 6 h, solvent was carefully removed 

under vacuum (0.3 Torr). The resulting iminium salt was dissolved in dry DCM (1.5 mL) 

under argon, cooled to 0 °C and NaBH(OAc)3 (2 equiv.) was added. After stirring for 18 

h at RT the solution was treated with 1 M NaOH at 0 °C, washed with 1 M NaOH (3×) 

and then brine, dried with MgSO4, and concentrated in vacuo to give a piperidine 206. 

10% Pd/C (25 mol%) was added to a solution of the disubstitued piperidine (1 equiv.) 

and 6 M HCl (2 equiv.) in ethanol (1.5 mL). The atmosphere was changed to H2, and the 

reaction was stirred at 65 °C for 5 h. The reaction mixture was centrifuged and the 

supernatant liquid was decanted through a filter. Concentration in vacuo gave the 

piperidine hydrochloride salt 207 as a solid which was then washed with EtOAc. 

 
4,4-Bis-(phenylsulfanyl)-butan-1-ol86  208 

 

PhS
OH

SPh

 
 

A solution of 2,3-dihydrofuran (3.8 ml, 50 mmols, 1 equiv.) in 50 mL of DCM is cooled 

to 0 oC. Thiophenol (10.3 mL, 100 mmols, 2 equiv.), followed by borontrifluoride 

diethyletherate (6.35 mL, 55 mmols, 1.1 equiv.), were added to a solution of 2,3-

dihydrofuran (3.8 mL, 50 mmols, 1 equiv.) in DCM (50 mL) under Ar at 0 oC. The 

reaction stirred 3.5 h at RT and was quenched with 32 mL of water. The reaction mixture 

was washed with 1M NaOH (4), and satd. NaCl (1). The organic layer was dried over 

MgSO4 and solvent removed in vacuo to give the desired alcohol 208 as an oil (11.89 g, 

82%). IR (thin film): 1024, 1064, 1438, 1581, 2873, 3058 cm-1. H (CDCl3, 400 MHz) 

1.47 (1H, broad s, OH), 1.81-1.92 (4H, m, CH2), 3.65 (2H, t, J= 6.0, CH2OH), 4.47 (1H, 

t, J= 6.4, CHS2), 7.25-7.37 (6H, m, H arom.), 7.47-7.51 (4H, m, H arom.). C (CDCl3, 

100 MHz): 30.10 (CH2), 32.30 (CH2), 58.21 (CH), 62.29 (CH2), 127.73 (CH), 128.91 
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(CH), 132.72 (CH), 134.13 (C). m/z (EI): 290 (M+, 5%), 250 (10), 180 (49), 141 (80), 82 

(100), 71 (100). HRMS: 290.0799. C16H18OS2 requires (M+) 290.0799. Data agrees with 

literature.86  

 

(1’R) N-[4,4-Bis(phenylsulfanyl)butyl]-N-[1’-phenylethyl]amine  (R)-200 

 

PhS
H
N

SPh

H  
 

4,4-Bis(phenylsulfanyl)butan-1-ol 208 (11.92 g, 41 mmol) was dissolved in DCM (315 

mL). DMSO (29 mL, 41 mmol) and triethylamine (40 mL, 28 mmol) were added. The 

reaction mixture was cooled to 0 °C. Sulfur trioxide pyridine complex (25.57 g, 160 

mmol) was added in 3 g batches. The ice bath was removed and the mixture was stirred 

under Ar at RT for 20 h.  The reaction was quenched with aqueous saturated NaHCO3 

(120 mL). The mixture was extracted with DCM (3) and the organic extracts were 

combined, washed with water (3) then satd. NaCl (1). The organic layer was dried 

over MgSO4 and concentrated in vacuo to yield crude 4,4-

bis(phenylsulfanyl)butyraldehyde 209 as a cloudy yellow oil (11.88 g). 4Å molecular 

sieves (4.8 g) and half of the crude aldehyde (5.94 g, 21 mmol) were dissolved in DCM 

(215 mL). Enantiomerically pure (R)-phenylethylamine (5.7 mL, 41 mmol) was added, 

and the reaction mixture became cloudy. After 3 h of stirring under Ar at RT NaBH4 

(0.87 g, 23 mmol) was added. The mixture was stired overnight. The reaction was 

quenched with water (6mL), and then washed with water (3), and satd. NaCl (1). The 

organic layer was dried over MgSO4, and concentrated in vacuo. Column 

chromotography (SiO2), [petroleum ether-ethyl acetate (1:1)] followed by column 

chromatography (SiO2), [eluting first with DCM-petroleum ether (4:1) to remove 

impurities, and then petroleum ether-ethyl acetate (1:1)] gave the desired amine (R)-200 

as a pale yellow oil (4.067 g, 49%). Rf [petroleum ether-ethylacetate (1:1)] 0.18. []D 

+24.6 (c 1.21, DCM) IR (thin film): 3313 (N-H), 3058, 2958, 2925, 1581, 1479, 1450 

cm-1. H (CDCl3, 400 MHz) 1.33 (3H, d, J= 6.6, CH3), 1.73-1.81 (2H, m, CH2), 1.82-1.89 

(2H, m, CH2), 2.40 (1H, dt,  J= 11.6, 6.8, CHAHBN), 2.47 (1H, ddd, J= 11.6, 7.5, 6.2, 

CHAHBN), 3.73  (1H, q, J= 6.6, CHCH3), 4.40 (1H, t, J= 6.8, CHS2), 7.28 (11H, m, H 

arom.), 7.43 (4H, m, H arom.). C (CDCl3, 100 MHz): 24.39 (CH3), 27.55 (CH2), 33.58 

(CH2), 46.93 (CH2), 58.17 (CH), 58.19 (CH), 126.51 (CH), 126.60 (CH), 126.82 (CH), 
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127.60 (CH), 127.63 (CH), 128.39 (CH), 128.85 (CH), 132.65 (CH), 132.70 (CH), 

134.24 (C), 134.26 (C), 145.76 (C). m/z (EI): 393 (M+, 58%), 284 (M+-SPh, 100%). 

HRMS: 393.1586. C24H27NS2 requires (M+) 393.1585. Microanalysis C, 73.25; H, 6.99; 

N, 3.66; S, 16.09. C24H27NS2 requires C, 73.28; H, 6.87; N, 3.56; S, 16.28 

 

(1’S) N-(4,4-Bis-phenylsulfanylbutyl)-N-[1’-phenylethyl]amine  (S)-200 

 

PhS
H
N

SPh

H  
 

In the same way, the other half of the 4,4-bis-(phenylsulfanyl)butyraldehyde 209 (5.94 g, 

21 mmol) was dissolved in DCM (215 mL) and treated with enantiomerically pure (S)-

phenylethylamine (5.7 mL, 41 mmol) to give the desired amine (S)-200 as a pale yellow 

oil (3.8 g 46% yield). []D –24.3 (c 1.08, DCM).  All other data in agreement with that 

for (R)-200. 

 

 

(1’R) 1-(1’-Phenylethylamino)-7-phenylheptan-3-one hydrochloride salt (R)-204b 

 

H2
N

O MeH
Cl  

 

 

Starting with resin-bound ester 202b (0.311 milliequiv.), following enol ether preparation 

using (R)-200 gave the resin bound enol ether (R)-203b. The reactor containing the resin-

bound enol ether (R)-203b was shaken with TFA (4%) in DCM (5 mL) for 1 h. The 

solution was removed and the reactor was washed with DCM (3×). The combined 

organics were concentrated under reduced pressure to give the amino ketone (R)-204b. 

The crude product was dissolved in hot 1M HCl and extracted with DCM to give the HCl 

salt in 57% yield.  

 
1H NMR (CDCl3, 400 MHz) δ: 1.51 (2H, m, CH2), 1.81-1.90 (2H, m, CH2), 1.88 (3H, d, 

J= 6.8, CH3), 2.34 (2H, t,  J= 7.2, CH2), 2.48-2.59 (1H, m, CHAHBN), 2.58-2.68 (1H, m, 
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CHAHBN), 2.66 (2H, t, J= 7.2, CH2), 2.83 (2H, t, J= 8.0, CH2), 4.20-4.24 (1H, m, 

CHCH3), 7.08-7.18 (3H, m, arom.), 7.23-7.28 (2H, m, arom.), 7.37-7.40 (1H, m, arom.), 

7.42-7.46 (2H, m, arom.), 7.54 (2H, d J 7.2, arom.), 9.77 (1H, broad s, NHAHB), 10.06 

(1H, broad S, NHAHB). 1H NMR Consistent with, but different from data for the TFA 

salt. 99 

 

(2S, 1’S) 2-Propyl-1-(1’-phenylethyl)piperidine  (2S, 1’S)-206a 

 

N

H

 
 

(1’S) 8-(1’-phenylethylamino)octan-4-one trifluoroacetic acid salt (S)-204a in DCM was 

washed (2×) with 1 M NaOH, dried with MgSO4, filtered and concentrated in vacuo to 

give (1’S) 8-(1’-phenylethylamino)octan-4-one as the free base. TMSCl (1.13 mL, 8.90 

mmol, 4.4 equiv.) was added to a solution of (1’S) 8-(1’-phenylethylamino)octan-4-one 

(0.499 g, 2.02 mmol, 1 equiv.) in dry DCM (10 mL) under argon contained in a Schlenk 

tube. After stirring at RT for 5 h, solvent was carefully removed under vacuum (0.3 

Torr). The system was purged with Ar. The iminium salt was dissolved in dry DCM (10 

mL), cooled to 0 °C and NaBH(OAc)3 (0.856 g, 4.04 mmol, 2 equiv.) was added. After 

stirring under Ar for 18 h at RT the solution was treated with 1 M NaOH at 0 °C, washed 

with 1 M NaOH (3×), brine (1×), dried with MgSO4, and concentrated in vacuo to give 

(2S, 1’S) 2-propyl-1-(1’-phenylethyl)piperidine (2S, 1’S)-206a as a deep red oil (0.423 g, 

90% yield). H (CDCl3, 400 MHz) 0.84 (3H, t, J= 7.2, CH3CH2), 1.17 (3H, d, J= 6.4, 

CH3CH), 1.18-1.65 (10H, m, CH2), 2.13 (1H, m, CHAHBN), 2.28 (1H, m, CHAHBN), 2.65 

(1H, m, H2), 3.92 (1H, q, J= 7.2, CHCH3), 7.12 (1H, t, J= 7.2, H arom.), 7.21 (2H, m, H 

arom.), 7.34 (2H, d, J = 7.6, H arom.). 
1H NMR Consistent with literature data. 99 
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(2S) 2-Propylpiperidine hydrochloride salt  (S)-207a (prepared via high pressure 

hydrogenation) 

 

N
H2

Cl  
 

A mixture of (2S, 1’S) 2-propyl-1-(1’-phenylethyl)piperidine (2S, 1’S)-206a (0.189 g, 

0.82 mmol, 1 equiv.), and 20% Pd(OH)2/C (0.053 g, 10 mol%) in EtOH (6 mL) was 

hydrogenated at 40 oC, and 40 PSI, for 24 h. The reaction mixture was passed through a 

cotton wool plug directly into saturated ethereal HCl. The solution was concentrated to 

yield a light brown solid. The solid was washed with hot ether to give (S)-207a as a  light 

beige solid. (0.1295 g, 97% yield). For characterization data see (2S) 2-propylpiperidine 

hydrochloride salt (S)-207a (library synthesis)  

 

(2S) 2-Propylpiperidine hydrochloride salt   (S)-207a (prepared via atmospheric 

pressure hydrogenation) 

 

N
H2

Cl  
 

10% Pd/C (102 mg, 25 mol%) was added to a solution of (2S, 1’S) 2-propyl-1-(1’-

phenylethyl)piperidine (2S, 1’S)-206a (92.9 mg, 0.40 mmol, 1 equiv.) and 6 M HCl (0.14 

mL, 0.84 mmol, 2 equiv.) in ethanol (2 mL). The atmosphere was changed to H2, and the 

reaction was stirred at 65 °C for 5 h. The reaction mixture was centrifuged and the 

supernatant liquid was decanted through a filter. Concentration in vacuo gave the 

piperidine as a solid which was then washed with EtOAc to give pure (2S) 2-

propylpiperidine hydrochloride salt (S)-207a as a solid (64.5 mg, 98%). For 

characterization data see (2S) 2-propylpiperidine hydrochloride salt (S)-207a (library 

synthesis) 
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(2S) 2-Propylpiperidine hydrochloride salt   (S)-207a (library synthesis)  

 

N
H2

Cl  
 

Starting with resin-bound ester 202a (0.325 milliequiv.), following enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (S)-200 gave (2S) 2-

propylpiperidine hydrochloride salt (S)-207a as a solid (31.4 mg, 60% based on loading 

of Merrifield resin). []D
18 +8.1 (c=0.52, EtOH), []D +19.8 (c 0.50, DCM).  Lit:96 []D 

+6.5 (c=1.2, EtOH). IR (thin film): 2935, 2725, 1590, 1455 cm-1. H (CDCl3, 400 MHz) 

0.94 (3H, t, J= 7.6, CH3), 1.36-1.53 (3H, m), 1.57-2.10 (7H, m), 2.73-2.85 (1H, m, H6ax), 

2.87-2.98 (1H, m, H6eq), 3.44 (1H, broad d, J=11.1, H2), 9.17 (1H, s, NHAHB), 9.47 (1H, 

s, NHAHB). C (CDCl3, 100 MHz) 13.69 (CH3), 18.53 (CH2), 22.14 (CH2), 22.57 (CH2), 

28.08 (CH2), 35.30 (CH2), 44.71 (CH2), 57.11 (CH). m/z (CI): 128 (M+, 100%), 84 (25). 

HRMS: 128.1438 C8H16N requires (M+), 128.1439.  1H NMR and 13C NMR data agree 

with literature.96 

 

(2S) N-trifluoroacetyl-2-propylpiperidine  (S)-233a (Determination of enantiopurity of  

(S)-207a) 

 

N

F3C O  
 

Triethylamine in DCM (0.14 mL of a 0.37 M solution, 1.5 equiv.) was added to (2S) 2-

propylpiperidine hydrochloride (S)-207a (5.3 mg, 32 mol, 1 equiv.). The solution was 

cooled to 0 °C and trifluoroacetic anhydride in DCM (0.14 mL of a 0.30 M solution, 40 

mol, 1.2 equiv.) was added. The solution was stirred for 18 h under Ar at RT, and was 

washed with satd. NaHCO3 (2), 1M HCl (2), and satd. NaCl (1). The organic layer 

was dried over MgSO4, and solvent removed in vacuo to give (2S) N-trifluoroacetyl-2-

propylpiperidine (S)-233a as an oil (7.0 mg, 97%), existing as a 2:1 mixture of 

geometrical isomers a, and b. IR (thin film): 2954, 2876, 1686 (C=O), 1457 cm-1. H 

(CDCl3, 400 MHz): 0.93 (3Ha, t J= 7.3, CH3), 0.94 (3Hb, t J= 7.3, CH3), 1.17-1.79 (10Ha 

& b, m), 2.84 (1Hb, td J=13.7, 1.6, CHAHBN), 3.16 (1Ha, td J =13.1, 2.8, CHAHBN), 3.78 
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(1Ha, broad d J =13.6, CHAHBN), 3.97-4.06 (1Hb, m, H2), 4.36-4.43 (1Hb, m, CHAHBN), 

4.66-4.73 (1Ha, m, H2). C (CDCl3, 100 MHz) 12.92 (CH3)a & b, 17.61 (CH2)b, 17.77 

(CH2)a, 18.11 (CH2)a, 18.26 (CH2)b, 24.31 (CH2)b, 25.12 (CH2)a, 27.10 (CH2)a, 27.52 

(CH2)b, 30.41 (CH2)a, 31.14 (CH2)b, 37.39 (CH2)a, 40.02 (CH2)b, 49.14 (CH)a, 52.52 

(CH)b. m/z (CI): 224 [(M+H)+, 100%]. HRMS: 224.1264 C10H17ONF3 requires (M+H+), 

224.1262.  This was then used on a chiral GC (Supelco -DEX 120 column, 70 °C for 2 

min, then the temperature was increased at a rate of 1 °C min–1 to 150 °C) to show a 90 

%ee (tS=32.98 min, tR=33.57 min). 

 

(2R) 2-Propylpiperidine hydrochloride salt (R)-207a 

 

N
H2

Cl  
 

Starting with resin-bound ester 202a (0.311 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (R)-200 gave (2R) 2-

propylpiperidine hydrochloride salt (R)-207a as a solid (38.6 mg, 75% based on loading 

of Merrifield resin). []D
18 –7.3 (c=0.06, EtOH), []D –20.0 (c 0.20, DCM). Lit:96 []D –

7.3 (c=1.0, EtOH). Other data in agreement with (S)-207a and literature.96 

 

(2R) N-trifluoroacetyl-2-propylpiperidine  (R)-207a (Determination of enantiopurity 

of  (R)-207a)  

 

N

F3C O  
 

Following the same procedure as for (S)-207a above, (2R) 2-propylpiperidine 

hydrochloride (R)-207a (10.5 mg) was converted into (2R) N-trifluoroacetyl-2-

propylpiperidine (R)-233a (12.1 mg, 84% - data agrees with that of other enantiomer). 

This was then used on a chiral GC (Supelco -DEX 120 column, 70 °C for 2 min, then 

the temperature was increased at a rate of 1 °C min–1 to 150 °C) to show an 89 %ee 

(tS=32.97 min, tR=33.55 min). 
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(2R) 2-Phenylethylpiperidine hydrochloride salt  (R)-207b 

 

N
H2

Cl
 

 

Starting with resin-bound ester 202b (0.311 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (S)-200 gave (2R) 2-

phenylethylpiperidine hydrochloride salt (R)-207b as a solid (30.1 mg, 43% based on 

loading of Merrifield resin). []D +13.5 (c 0.38, DCM), +10.1 (c 0.139, MeOH) Lit:96 

[]D +11.1 (c 0.65, MeOH). IR (thin film): 2944, 2719, 1587, 1493, 1455 cm-1. H 

(CDCl3, 400 MHz): 1.29-1.45 (1H, m), 1.63-1.78 (2H, m), 1.79-2.13 (4H, m), 2.27-2.45 

(1H, m), 2.61-2.78 (3H, m), 2.80-2.95 (1H, m, CHAHBN), 3.31-3.45 (1H, m, H2), 7.13-

7.37 (5H, m, H arom.), 9.30 (1H, s, NHAHB), 9.53 (1H, s, NHAHB). C (CDCl3, 100 

MHz): 22.05 (CH2), 22.25 (CH2), 28.12 (CH2), 31.09 (CH2), 34.58 (CH2), 44.68 (CH2), 

56.56 (CH), 126.11(CH), 128.32 (CH), 128.44 (CH), 140.04 (C). m/z (CI): 190 (M+, 

100%), 84 (25). HRMS: 190.1597 C13H20N requires (M+), 190.1596. 1H NMR and 13C 

NMR data correspond with the literature. 96 

 

(2R) N-Benzoyl-2-phenylethylpiperidine  (R)-234b (Determination of enantiopurity of  

(R)-207b) 

 

N

O

 
 

Triethylamine (10.0 L, 0.07 mmol, 3 equiv.) was added to (R)-207b (5.2 mg, 0.023 

mmol, 1 equiv.) in DCM (0.30 mL). The solution was cooled to 0 °C and benzoyl 

chloride (5.0 L, 0.05 mmol, 2 equiv.) was added. The solution stirred under Ar 18 h 

while warming to RT, and was then washed with water (1). The organic layer was dried 

over MgSO4, filtered and concentrated in vacuo to yield the crude benzamide as a yellow 

oil. Column chromatography (SiO2, Petroleum ether-EtOAc 9:1) gave (2R) N-Benzoyl-2-

phenylethylpiperidine (R)-234b as a colorless oil (3.8 mg, 56 %).  Rf (SiO2, Hex-EtOAc 

2:1): 0.51. IR (thin film): 2931, 1621 (C=O), 1495 cm-1. H (CDCl3, 400 MHz, 50 °C): 
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1.32-1.69 (6H, m), 1.71-1.83 (1H, m), 1.97-2.08 (1H, m), 2.41-2.61 (2H, m), 2.84-2.98 

(1H, m, CHAHBN), 3.75-4.16 (1H, m, CHAHBN), 4.28-4.64 (1H, m, H2), 7.05-7.11 (2H, 

m, H arom.), 7.13-7.18 (3H, m, H arom.), 7.21-7.30 (5H, m, H arom.). C (CDCl3, 100 

MHz, 50 oC): 19.28 (CH2), 26.14 (CH2), 28.67 (CH2), 32.14 (CH2), 32.89 (CH2), 125.95 

(CH), 123.65 (CH), 128.27 (CH), 128.43 (CH), 128.46 (CH), 129.14 (CH), 137.35 (C), 

141.84 (C), 170.89 (C). m/z (EI): 293 (M+, 20%), 188 (70), 105 (100), 77 (33). HRMS: 

293.1778 C20H23ON requires (M+), 293.1780. Chiral HPLC (Chiralcel OD-H, hexane-

isopropanol-methanol 98:1:1, 0.5mL min–1) showed 96 %ee (tR=55.45 min, tS=62.17 

min). 

 

(2S) 2-Phenylethylpiperidine hydrochloride salt  (S)-207b 

 

N
H2

Cl
 

 

Starting with resin-bound ester 202b (0.311 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (S)-200 gave (2S) 2-

phenylethylpiperidine hydrochloride salt (S)-207b as a solid (31.2 mg, 44% based on 

loading of Merrifield resin). []D –13.9 (c 0.47, DCM), –10.1 (c 0.089, MeOH). Lit:96 

[α]D –11.3 (c 0.95, MeOH). Other data in agreement with (R)-207b and literature.96 

 

(2S) N-Benzoyl-2-phenylethylpiperidine  (S)-234b (Determination of enantiopurity of  

(S)-207b) 

 

N

O

 
 

Following the same procedure as for (R)-207b above, (2S) 2-phenylethylpiperidine 

hydrochloride salt (S)-207b (6.0 mg) was converted into (2S) N-Benzoyl-2-

phenylethylpiperidine (S)-234b (4.4 mg, 56% - data agrees with that of other 

enantiomer). Chiral HPLC (Chiralcel OD-H, hexane-isopropanol 98:2, 0.8 mL min–1) 

showed 94 %ee (tR=35.65 min, tS=41.27 min). 
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(2R) 2-(3'-Methoxyphenyl)piperidine hydrochloride salt  (R)-207c 

 

N
H2

Cl

OMe  
 

Starting with resin-bound ester 202c (0.325 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (S)-200 gave (2R) 2-

(3'-methoxyphenyl)piperidine hydrochloride salt (R)-207c as a solid (24.9 mg, 34% based 

on loading of Merrifield resin). []D +27.8 (c 1.32, DCM) IR (thin film): 2920, 2704, 

1602, 1496 cm-1. H (CDCl3, 400 MHz): 1.45-1.58 (1H, m), 1.68-1.77 (1H, m), 1.90-2.16 

(4H, m), 2.68-2.81 (1H, m, H6ax), 3.14 (1H, broad d, J=11.7, H6eq), 3.75 (3H, s, CH3O), 

3.82-3.91 (1H, m, H2), 6.85 (1H, dd, J= 8.2, 2.1, H6’), 7.08 (1H, broad d, J= 7.7, H4’), 

7.19-7.24 (2H, m, H2’ & H5’), 9.45-9.61 (2H, m, NH2). C (CDCl3, 100 MHz): 21.60 

(CH2), 23.11 (CH2), 30.52 (CH2), 45.63 (CH2), 55.51 (CH3), 61.38 (CH), 112.21 (CH), 

115.87 (CH), 119.84 (CH), 129.95 (CH), 137.90 (C), 159.91 (C). m/z (CI): 192 (M+, 

100%). HRMS: 192.1388 C12H18ON requires (M+), 192.1388.  Consistent with, but 

different from data for the racemic free base.100 

 

(2R) N-Benzoyl-2-(3’-methoxyphenyl)piperidine  (R)-234c (Determination of 

enantiopurity of  (R)-207c) 

 

N

O
OMe  

 

Triethylamine (18.5 L, 130 µmol, 3 equiv.) was added to (2R) 2-(3'-

methoxyphenyl)piperidine hydrochloride salt (R)-207c (10.0 mg, 44 µmol, 1 equiv.) in 

DCM (0.50 mL). The solution was cooled to 0 °C and benzoyl chloride (10.2 L, 90 

µmol, 2 equiv.) was added. The solution stirred under Ar 18 h while warming to RT, and 

was then washed with water (1). The organic layer was dried over MgSO4, and 

concentrated in vacuo to yield the crude benzamide as a yellow oil. Column 
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chromatography (SiO2, Petroleum ether-EtOAc 9:1) gave (2R) N-benzoyl-2-(3’-

methoxyphenyl)piperidine (R)-234c as a solid (10.1 mg, 78%). Rf (SiO2, Hex-EtOAc 

2:1): 0.45. IR (thin film): 2947, 1629 (C=O), 1490 cm-1. H (CDCl3, 400 MHz, 50 °C): 

1.59-1.72 (4H, m), 1.90-2.00 (1H, m, C3HAHB), 2.38 (1H, broad d, J = 14.0, C3HAHB), 

2.93-3.00 (1H, m, C6HAHB), 3.82 (3H, s, CH3O), 4.00-4.20 (1H, m, C6HAHB), 5.50-5.60 

(1H, m, H2), 6.81 (1H, dd, J=8.2, 2.5, H6’), 6.88 (1H, broad s, H2’), 6.92 (1H, d, J=7.7, 

H4’), 7.30 (1H, t, J=8.0, H5’), 7.36-7.39 (3H, m, H arom.), 7.42-7.47 (2H, m, H arom.). 

C (CDCl3, 100 MHz, 50 °C): 19.85 (CH2), 26.03 (CH2), 28.29 (CH2), 55.31 (CH3), 

112.00 (CH), 113.19 (CH), 119.10 (CH), 126.63 (CH), 128.50 (CH), 129.38 (CH), 

129.77 (CH), 136.90 (C), 141.26 (C), 160.47 (C), 171.37 (C). m/z (EI): 295 (M+, 90%), 

190 (95), 105 (100), 77 (50). HRMS: 295.1570 C19H21O2N requires (M+), 295.1572.  

Chiral HPLC (Chiralcel OD-H, hexane-isopropanol 97:3, 0.8 mL min–1) showed 76 %ee 

(tR=32.05 min, tS=42.25 min). 

 

 

 

(2S) 2-(3’-Methoxyphenyl)piperidine hydrochloride salt  (S)-207c 

 

N
H2

Cl

OMe  
 

Starting with resin-bound ester 202c (0.325 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (R)-200 gave (2R) 2-

(3’-methoxyphenyl)piperidine hydrochloride salt (S)-207c as a solid (25.0 mg, 34% based 

on loading of Merrifield resin). []D –24.6 (c 0.26 , DCM). Other data in agreement with 

(R)-207c. 
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(2S) 2-N-Benzoyl-2-(3’-methoxyphenyl)piperidine  (S)-234c (Determination of 

enantiopurity of  (S)-207c) 

 

N

O
OMe  

 

Following the same procedure as for (R)-207c above, (2S) 2-(3'-

methoxyphenyl)piperidine hydrochloride salt (S)-207c (10.2 mg) was converted into (2S) 

N-Benzoyl-2-(3’-methoxyphenyl)piperidine (S)-234c (9.9 mg, 75% - data agrees with 

that of other enantiomer). Chiral HPLC (Chiralcel OD-H, hexane-isopropanol 97:3, 0.8 

mL min–1) showed 80 %ee (tR=32.14 min, tS=41.63 min). 

 

(2R, 2’S) 2-[But-2’-yl]piperidine hydrochloride salt  207d 

 

N
H2H Cl

 
 

Starting with resin-bound ester 202d (0.325 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (S)-200 gave (2R, 2’S) 

2-[but-2’-yl]piperidine hydrochloride salt 207d as a solid (20.2 mg, 35% based on 

loading of Merrifield resin). []D +19.1 (c 1.15, DCM) IR (thin film): 2932, 2733, 1590, 

1448 cm-1. H (CDCl3, 400 MHz): 0.93 (3H, t, J= 7.4, CH3CH2), 1.08 (3H, d, J= 6.6, 

CH3CH), 1.21-2.08 (9H, m) , 2.84 (2H, m, CH2N), 3.52 (1H, broad d, J=12.1, H2), 8.88 

(1H, s, NHAHB), 9.41 (1H, s, NHAHB). C (CDCl3, 100 MHz): 11.48 (CH3), 14.10 (CH3), 

22.31 (CH2), 22.83 (CH2), 23.78 (CH2), 26.21 (CH2), 36.99 (CH), 45.73 (CH2), 61.74 

(CH). m/z (CI): 142 (M+, 100%), 84 (25). HRMS: 142.1598 C9H20N requires (M+), 

142.1596. 
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(2R, 2’S) N-trifluoroacetyl-2-[but-2’-yl]piperidine  233d (Determination of the 

diastereomeric purity of  207d) 

 

N
H
O CF3  

 

Triethylamine (5.9 µL, 42 µmol, 1.5 equiv.) was added to (2R, 2’S) 2-[but-2’-

yl]piperidine hydrochloride salt 207d  (5.0 mg, 28 µmol, 1 equiv.) in DCM (0.25 mL). 

The solution was cooled to 0 °C and trifluoroacetic anhydride (4.7 µL, 34 µmol, 1.2 

equiv.) was added. The solution stirred 18 h under Ar while warming to RT, and was then 

washed with saturated NaHCO3 (2), 1M HCl (2), and brine (1). The organic layer 

was dried over MgSO4, filtered, and concentrated in vacuo to give (2R, 2’S) N-

trifluoroacetyl-2-[but-2’-yl]piperidine 233d as an oil (6.3 mg, 94%), existing as a 2.3:1 

mixture of geometric isomers a, and b. IR (thin film): 2962, 1688 (C=O), 1455 cm-1. H 

(CDCl3, 400 MHz): 0.87 (3Ha+b, t, J= 7.3, CH3CH2), 0.928 (3Hb, d J=6.3, CH3CH), 

0.934 (3Ha, d J= 6.6, CH3CH), 0.96-1.08 (1Ha+b, m), 1.24-1.45 (1Ha+b, m), 1.46-1.78 

(5Ha+b, m), 1.88-1.98 (2Ha+b, m), 2.75 (1Hb, broad t J=12.8, H6ax), 3.12 (1Ha, td J =13.0, 

1.9, H6ax), 3.52-3.56 (1Hb, m, H6eq), 3.78 (1Hb, broad d, J=13.6, H6eq), 4.27-4.33 (1Ha, 

m, H2), 4.36-4.43 (1Hb, m, H2). C (CDCl3, 100 MHz): due to presence of the other 

diastereomer and geometrical isomers the carbon spectrum is too complex to analyze. m/z 

(CI): 238 [(M+H)+, 100%]. HRMS: 238.1421 C11H19ONF3 requires (M+H+), 238.1419.  

This was then used on a chiral GC (Supelco -DEX 120 column, 70 °C for 2 min, then 

the temperature was increased at a rate of 1 °C min–1 to 150 °C) to show a dr (RS:SS) = 

87:13 (tRS=38.32 min, tSS=40.12 min). 

 

(2S, 2’S) 2-(But-2’-yl)piperidine hydrochloride salt  207d’ 

 

N
H2H Cl

 
 

Starting with resin-bound ester 202d (0.325 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (R)-200 gave (2S, 2’S) 
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2-(but-2’-yl)piperidine hydrochloride salt 207d' as a solid (15.0 mg, 26% based on 

loading of Merrifield resin). []D –16.7 (c 0.27, DCM) IR (thin film): 2931, 2736, 1590, 

1452 cm-1. H (CDCl3, 400 MHz): 0.91 (3H, t, J= 7.4, CH3CH2), 1.08 (3H, d, J= 6.9, 

CH3CH), 1.19-2.08 (9H, m), 2.73-2.92 (2H, m, CH2N), 3.53 (1H, broad d, J= 12.8, H2), 

8.92 (1H, s, NHAHB), 9.18 (1H, s, NHAHB). C (CDCl3, 100 MHz): 11.26 (CH3), 15.64 

(CH3), 22.24 (CH2), 22.88 (CH2), 24.48 (CH2), 25.46 (CH2), 37.39 (CH), 45.84 (CH2), 

62.51 (CH). m/z (CI): 142 (M+, 100%), 84 (10). HRMS: 142.1594 C9H20N requires (M+) 

142.1596. 

 

(2S, 2’S) N-trifluoroacetyl-2-(but-2’-yl)piperidine  233d’ (Determination of the 

diastereomeric purity of  207d') 

 

N
H
O CF3  

 

Triethylamine in DCM (0.12 mL of a 0.37 M solution, 1.5 equiv.) was added to (2S, 2’S) 

2-[but-2’-yl]piperidine hydrochloride salt 207d’ (5.2 mg, 29 µmol, 1 equiv.). The 

solution was cooled to 0 °C and trifluoroacetic anhydride in DCM (0.12 mL of a 0.30 M 

solution, 1.2 equiv.) was added. The solution stirred 18 h at RT, and was washed with 

satd. NaHCO3 (2), 1M HCl (2), and satd. NaCl (1). The organic layer was dried over 

MgSO4, and solvent removed in vacuo to give the (2S,2’S) N-trifluoroacetyl-2-(but-2’-

yl)piperidine 233d’ as an oil (6.9 mg, 99%), existing as a 2.3:1 mixture of geometrical 

isomers a, and b.  IR (thin film): 2961, 1686 (C=O), 1459, 1215, 1192, 1137, 1105 cm-1. 

H (CDCl3, 400 MHz): 0.79 (3Ha, d J= 6.7, CH3CH), 0.82 (3Hb, d J= 6.8, CH3CH), 0.94 

(3Ha+b, t J= 7.4, CH3CH2), 1.08-1.23 (1Ha+b, m), 1.24-1.29 (1Ha+b, m), 1.46-1.78 (4Ha+b, 

m), 1.88-1.98 (2Ha+b, m), 2.75 (1Hb, broad t J=13.6, H6ax), 3.10 (1Ha, td J =13.9, 2.9, 

H6ax), 3.58-3.65 (1Hb, m, H6eq), 3.79 (1Hb, broad d, J=13.6, H6eq), 4.32-4.43 (1Ha+b, m, 

H2). C (CDCl3, 100 MHz): due to presence of the other diastereomer and geometrical 

isomers the carbon spectrum is too complex to analyze. m/z (CI): 238 [(M+H)+, 100%]. 

HRMS: 238.1421. C11H19ONF3 requires (M+H+), 238.1419.  This was then used on a 

chiral GC (Supelco -DEX 120 column, 70 °C for 2 min, then the temperature was 

increased at a rate of 1 °C min–1 to 150 °C) to show a dr (RS:SS) = 20/80 (tRS=38.07 min, 

tSS=39.82 min) 
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(2R, 2’R) 2-[2’-6'-Dimethylhept-1'-yl]piperidine hydrochloride salt  207e 

 

N
H2H Cl

 
 

Starting with resin-bound ester 202e (0.325 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (S)-200 gave (2R, 2’R) 

2-[2’-6'-dimethylhept-1'-yl]piperidine hydrochloride salt  207e as a solid (23.3 mg, 29% 

based on loading of Merrifield resin). []D +14.3 (c 0.71, DCM) IR (thin film): 2927, 

2711, 1607, 1433 cm-1. H (CDCl3, 400 MHz): 0.85 (3H, d, J= 6.6, CH3C6’), 0.86 (3H, d, 

J= 6.6, CH3C6’), 0.92 (3H, d, J= 6.4, CH3C2’), 1.08-2.01(16 H, m), 2.73-2.87(1H, m, 

H6ax), 2.94-3.04 (1H, m, H6eq), 3.44 (1H, broad d, J=11.0, H2), 9.16 (1H, s, NHAHB), 

9.42 (1H, s, NHAHB). C (CDCl3, 100 MHz) 20.04 (CH3), 22.21 (CH2), 22.43 (CH2), 

22.51 (CH3), 22.71 (CH3), 24.41(CH2), 27.90 (CH), 28.63 (CH2), 28.85 (CH), 36.05 

(CH2), 39.19 (CH2), 40.91 (CH2), 44.78 (CH2), 55.44 (CH). m/z  (CI): 212 (M+, 100%), 

84 (25). HRMS: 212.2379 C14H30N requires (M+), 212.2378. 

 

(2R, 2’R) N-Benzoyl-2-[2’-6’-dimethylheptyl]piperidine  234e (Determination of the 

diastereomeric purity of  207e) 

 

N
H
O

 
 

Triethylamine (5.7 L, 40 mol, 3 equiv.) was added to (2R, 2’R) 2-[2’-6'-dimethylhept-

1'-yl]piperidine hydrochloride salt 207e (3.4 mg, 14 mol, 1 equiv.) in DCM (0.30 mL). 

The solution was cooled to 0 °C and benzoyl chloride (3.2 L, 0.03 mmol, 2 equiv.) was 

added. The solution stirred under Ar 18 h while warming to RT, and was then washed 

with water (1). The organic layer was dried over MgSO4, filtered and concentrated in 

vacuo to yield the crude benzamide as a yellow oil. Column chromatography [SiO2, 

Petroleum ether-EtOAc (9:1)] gave (2R, 2’R) N-Benzoyl-2-[2’-6’-

dimethylheptyl]piperidine 234e as an oil (4.0 mg, 92%). Rf [SiO2, Petroleum ether-

EtOAc (3:1)]: 0.65. IR (thin film): 2927, 2866, 1631 (C=O) cm-1. H (d6 DMSO, 400 
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MHz, 80 °C): 0.84 (3H, d, J = 6.2, CH3C2’), 0.91 (6H, d, J = 6.6, CH3C6’), 1.09-1.90 

(16H, m), 2.95-3.08 (1H, m, H6ax, partly obscured by water peak), 3.72-3.90 (1H, m, 

H6eq), 4.38-4.54 (1H, m, H2), 7.31-7.39 (2H, m, H arom.), 7.42-7.48 (3H, m, H arom.). 

C (CDCl3, 100 MHz, 50 oC): 19.33 (CH2), 20.06, 22.57, 22.65, 24.78, 26.36, 27.99, 

29.44, 29.90, 37.63, 39.38, 126.72 (CH), 128.37 (CH), 129.08 (CH), 137.51 (C), 171.03 

(C). m/z (EI): 315 (M+, 15%), 188 (95), 105 (100), 77 (20). HRMS: 315.2562 C21H33ON 

requires (M+), 315.2560.  Chiral HPLC (Chiralcel OD-H, hexane-isopropanol 99:1, 0.8 

mL min–1) showed dr (RR:SR) = 99.5:0.5 (tRR=16.28 min, tSR=19.58 min). 
 

(2S, 2’R) 2-[2’-6'-Dimethylhept-1'-yl]piperidine hydrochloride salt  207e’ 

 

N
H2H Cl

 
 

Starting with resin-bound ester 202e (0.325 milliequiv.), following the enol ether 

preparation, the chiral piperidine preparation, and using thioacetal (R)-200 gave (2S, 2’R) 

2-[2’-6'-dimethylhept-1'-yl]piperidine hydrochloride salt 207e' as a solid (21.2 mg, 26% 

based on loading of Merrifield resin). []D –15.1 (c 3.18, DCM) IR (thin film): 2957, 

2722, 1455 cm-1. H (CDCl3, 400 MHz): 0.841 (3H, d, J= 6.6, CH3C6’), 0.844 (3H, d, J= 

6.6, CH3C6’), 0.87 (3H, d, J= 6.5, CH3C2’), 1.08-2.00 (16 H, m), 2.82 (1H, m, H6ax), 

2.92-3.06 (1H, m, H6eq), 3.45 (1H, broad d, J=11.6, H2), 9.09 (1H, s, NHAHB), 9.37 (1H, 

s, NHAHB). C (CDCl3, 100 MHz): 15.24 (CH3), 22.25 (CH2), 22.35 (CH2), 22.56 (CH3), 

22.65 (CH3), 24.62 (CH2), 27.87 (CH), 27.93 (CH2), 28.90 (CH), 37.75 (CH2), 39.07 

(CH2), 40.39 (CH2), 44.74 (CH2), 55.52 (CH). m/z (CI): 212 (M+, 100%). HRMS: 

212.2376 C14H30N requires (M+), 212.2378. 

 

(2S, 2’R) N-Benzoyl-2-[2’-6’-dimethylheptyl]piperidine  234e’ (Determination of the 

diastereomeric purity of  207e') 

 

N
H
O
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Triethylamine in DCM (0.17 mL of a 0.37 M solution, 63 mol, 1.5 equiv.) was added to 

207e’ (10.3 mg, 42 mol, 1 equiv.). The solution was cooled to 0 °C and benzoyl 

chloride in DCM (0.26 mL of a 0.19 M solution, 49 mol, 1.2 equiv.) was added. The 

solution was stirred for 18 h at RT, and then was washed with satd. NaCl (1). The 

organic layer was dried over Na2SO4, filtered, and solvent removed in vacuo to yield the 

crude benzamide as a yellow oil. Column chromatography [SiO2, Petroleum ether-EtOAc 

9:1] gave (2S, 2’R) N-Benzoyl-2-[2’-6’-dimethylheptyl]piperidine 234e’ as an oil  (9.5 

mg, 72%) Rf (SiO2, Petroleum ether-EtOAc 3:1): 0.63. IR (thin film): 2926, 1625 (C=O) 

cm-1. H (d6-DMSO, 400 MHz, 80 °C): 0.84 (3H, d, J = 6.4, CH3C2’), 0.90 (6H, d, J = 

6.6, 2  CH3C6’), 1.05-1.74 (16H, m), 2.96-3.05 (1H, m, H6ax, partly obscured by water 

peak), 3.78 - 3.93 (1H, m, H6eq), 4.33-4.48 (1H, m, H2), 7.32-7.38 (2H, m, H arom.), 

7.42-7.49 (3H, m, H arom.). C (CDCl3, 100 MHz, 50 oC): 19.17 (CH2), 22.56, 22.66, 

24.67 (CH2), 28.00, 28.35 (CH2), 37.53 (CH2), 39.30 (CH2), 126.60 (CH), 128.37 (CH), 

129.08 (CH)  m/z (EI): 315 (M+, 15%), 188 (100), 105 (95), 77 (20), 28 (17). HRMS: 

315.2562 C21H33ON requires (M+), 315.2565.  Chiral HPLC (Chiralcel OD-H, hexane-

isopropanol 99:1, 0.8mL/min) showed dr (RR:SR) = 98.5:1.5 (tRR=16.19 min, tSR=19.04 

min). 
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Chapter 6 

Petasis-Ferrier Rearrangement 
 

6.1 Discovery and Mechanism 

 

Controlled rearrangements have become important transformations in organc 

synthesis, especially when synthetically challenging compounds can be obtained from 

readily synthetically available compounds. One very elegant example is the Petasis-

Ferrier rearrangement. The Petasis-Ferrier rearrangement is used to produce the 

biologically important heterocycles, tetrahydrofurans101 and tetrahydropyranones102, from 

dioxalanones and dioxanones respectively, each available from a simple condensation 

reaction.  

1,3 Dioxalan-4-ones 240 are synthesized via the straightforward condensation of 

α-hydroxy acids and aldehydes, Scheme 6.1. Petasis and Lu found that the dioxalanones 

240 could be methylenated to give the corresponding enol ethers 241 which when treated 

with iBu3Al rearranged to give the tetrahydrofurans 242 with good to excellent 2,4,5-syn 

selectivity.  

 

O
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HOCp2TiMe2

THF, 65 oC

iBu3Al

240 241 242

PhMe

 R1 = Me, R2 = Ph
  90%,  >99% syn

 R1 = Me, R2 = Ph
          55%  

Scheme 6.1 

 

 The reaction presumably proceeds by Lewis acid activation of the system by 

coordination to the oxygen atom of the enol ether 241 to give the species 243, Scheme 

6.2. Following this activation, the lone pair on the oxygen atom that is antiperiplanar to 

the carbon-oxygen bond assists the ring to open and form the reactive aluminium enolate 

244. The oxonium ion 244 now cyclizes via a 5-(enolendo)-endo-trig mechanism to give 

the Lewis-acid-coordinated tetrahydrofurananone 245. Intramolecular hydride addition 

from iBu3Al then gives the tetrahydrofuran 242. 
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Scheme 6.2 

 

Interestingly, even if the 2,4-anti diastereomer of the dioxalanone 240 is used the 

final tetrahydrofuran is produced in the same high syn:anti ratio as when the 2,4-syn 

dioxalanone is used. Petasis and Lu proposed explanations for this,101 Scheme 6.3. Lewis-

acid-coordinated 2,4-syn enol ether 246, would likely proceed according to the 

mechanism proposed above to give the aluminium coordinated tetrahydrofuranone 250 

and ultimately the desired tetrahydrofuran. The 2,4-anti diastereomer 247, would first 

form Z-oxonium ion 249 and then isomerise to give the E-oxonium ion 248 which is 

expected to be more stable. As seen previously E-oxonium ion 248 would lead to the 2,5-

syn tetrahydrofuran. It is also possible that the cyclization of the Z-oxonium ion 249 to 

the aluminium coordinated tetrahydrofuranone 251 is an equilibrium process and thus the 

reaction proceeds to give the thermodynamically favored 2,5-syn product.  
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 The Petasis-Ferrier rearrangement is better known for its application to 

tetrahydropyranones, Scheme 6.4. Dioxanones 252 are readily available from simple 

condensation of β-hydroxyacids and aldehydes. Petasis methylenation of dioxanones 252 

yields enol ethers 253. Petasis and Lu found that when triisobutylaluminium was added to 

the enol ether 253 a mixture of epimeric 2,6-syn tetrahydopyranols 254 were produced. 

Oxidation of the epimeric alcohols 254 furnished the 2,6-syn tetrahydropyranones 255 in 

good yield. 
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Scheme 6.4 

 

 The rearrangement starts with the coordination of triisobutylaluminium to the 

enolic oxygen atom, Scheme 6.5. Cleavage of the adjacent carbon-oxygen bond assisted 

by the antiperiplanar lone pair of the other oxygen atom gives the enolate 257. Bond 

rotation gives the conformation represented by enolate 258. The R1 group occupies the 

lowest energy pseudo-equatorial position in the 6-membered ring transition state leading 

to Lewis-acid-coordinated tetrahydropyranone 259. Intramolecular hydride addition from 

the triisobutylaluminium produces the epimeric tetrahydropyranols 254. 
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6.2 Phorboxazole A 

 

Smith et al. have used the Petasis-Ferrier rearrangement to produce a variety of 

different tetrahydropyran-containing natural products,103,104,105,106 Figure 6.1.  
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In the total synthesis of (+)-phorboxazole A 260,106 pioneering work 

demonstrated the power of the Petasis-Ferrier rearrangement by using the transformation 

to construct the highlighted 2,6-syn tetrahydropyranol units. 

Initially, in the synthesis of the tetrahydropyranol adjacent to the oxazole, Smith 

and co-workers had difficulties effecting the rearrangement. This prompted them to 

screen several Lewis acids on a model system not only to optimize the yield, but also to 

prevent the reduction of the initially formed tetrahydropyranone to epimeric alcohols, as 

the stereoselectivity of the reduction was not reliable. In the model system Me2AlCl 

provided better yields than iBu3Al and was incapable of the undesired reduction. 

However, when these findings were applied to the enol ether 261 the rearrangement still 

failed to occur, Scheme 6.6.  
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Scheme 6.6 

 

Smith postulated that, since the oxazole nitrogen atom is a strong Lewis base, the 

Lewis acid does not coordinate enough to the less Lewis basic oxygen atom of the enol 

ether. Smith believed that if the enol ether oxygen atom could be moved to the side of the 

alkene closest to the oxazole, that the Lewis acid, which is capable of di-coordination, 

would be able to coordinate the oxazole nitrogen and reach across to the enolic oxygen, 

thus allowing the rearrangement to occur, Figure 6.2.  
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 The necessary enol ether 264 was prepared from dioxanone 263 by Petasis 

methylenation at two sites with excess dimethyltitanocene, Scheme 6.7. Now Me2AlCl 

effected the desired rearrangement at low temperature and afforded the 

tetrahydropyranone 265 in very good yield as a single diastereomer.  
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6.3 Conclusion 

 

Starting from dioxanones, synthetically available from a simple condensation 

reaction, the Petasis-Ferrier rearrangement enables the production of synthetically 

valuable 2,6-syn tetrahydropyranones. As shown above, the rearrangement has found 

significant use in the total synthesis of complex natural products, and can be considered a 

proven synthetic method. Strangely there was no nitrogen analogue of this rearrangement 

in the literature. 
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Chapter 7 

Microwave-Assisted Organic Synthesis 
 

7.1 Introduction 

 

Microwave energy is emerging as a new source with which to heat and drive 

chemical transformations. Once considered a last resort to force tricky reactions, 

microwave irradiation is becoming an important tool for everyday synthesis and the 

design of experiments.107,108 Early microwave chemistry took place in conventional 

kitchen appliances, but now there are a wide variety of specialized microwaves dedicated 

to synthesis. The extreme increases in reaction rate have attracted much attention from 

academics and industrialists alike.  

Conventional heating relies on heat transfer from a heat source, through a reaction 

vessel, and finally into the reaction medium. This has a host of negative effects: the 

exterior of the reaction is hotter than the interior, power is wasted in the heating of the 

exterior, and temperature is difficult to control and monitor. Microwave-assisted organic 

synthesis (MAOS) overcomes these problems via direct coupling of microwave energy to 

the reagents and solvents in the reaction vessel. With MAOS heating a reaction mixture is 

fast, efficient, and easy to control.  

Applying an electromagnetic field causes dipoles or ions to align with that field. If 

the field oscillates then the dipoles or ions will try to reorient with the change in the field, 

and give off energy in the form of heat. The most efficient heating occurs when the 

electromagnetic field oscillates at a frequency that is slow enough for the dipoles to align 

with but not follow the applied electromagnetic field. Typically the frequency of 

chemical microwaves is 2.45 GHz. Different solvents respond to microwave irradiation 

to varying degrees. The two factors that are most indicative of a medium’s ability to 

convert electromagnetic radiation into heat are the dielectric loss (ε”), and the dielectric 

constant (ε’). The dielectric loss describes the efficiency with which electromagnetic 

radiation is converted into heat. The dielectric constant describes the ability of the 

molecules to be polarized by the electromagnetic field. The ratio of (ε”/ε’) is described as 

the loss factor (tanδ). A larger value of tanδ indicates a reaction medium that is more 

suited to MAOS. The loss factors of various solvents are summarized in table 7.1. 
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Table 7.1 loss factors of some standard solvents107 

Solvent Tanδ 
Ethanol 0.941 
DMSO 0.825 

Methanol 0.659 
DMF 0.161 
Water 0.123 

Acetonitrile 0.062 
THF 0.047 

Dichloromethane 0.042 
Toluene 0.040 
Hexane 0.020 

 

Due to their very polar nature and high boiling points ionic liquids make excellent 

solvents for MAOS. Larhed and co-workers have used the ionic liquid 1-butyl-3-

methylimidazolium hexafluorophosphate (bmimPF6) to perform Heck reactions,109 

Scheme 7.1. When an aryl halide 266 in the ionic solvent was treated with an acrylate 

267 and standard Heck conditions, the desired cinnamic esters 268 could be obtained in 

only 5 minutes in high yield. This is in stark contrast to the long reaction times of several 

hours necessary when employing reflux conditions by conventional heating, and a 

conventional solvent. More challenging examples required slightly longer reaction times, 

but even when electron-rich aryl halides were used, reactions were finished in 45 

minutes. Purification was simple as the reaction medium was completely non-volatile. 

Distillation isolated the product and also left the reaction medium ready for a subsequent 

Heck reaction. Indeed the catalytic ionic system could be recycled 5 times and still 

provide yields in excess of 90%, each time requiring simple distillation to separate 

product from reaction medium. Aside from the creative purification procedure, the high 

temperature made possible by a very high boiling solvent, and the ability of microwave 

energy to achieve this temperature are exploited to drastically shorten the reaction time 

for this very useful transformation.  
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Scheme 7.1 
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7.2 Microwave Effects: 

 

Due to the vast increase in reaction rate sometimes observed with MAOS there is 

a great deal of controversy concerning the existence of a microwave effect. Some 

scientists believe that the rate increase is the result solely of thermal effects, that rate 

increase is caused by the rapidly achieved high temperatures. Others believe that the 

ability of the applied electromagnetic field to orientate molecules plays a part in the short 

reaction times.110 The Arrhenius equation [K = A exp(-Ea/RT)] is helpful in visualizing 

the claimed non-thermal microwave effects. The pre-exponential constant A is related to 

the probability of molecular impacts. The organized vibration of polar molecules at the 

reaction interface could plausibly effect A and increase the rate. It is also argued that the 

applied field can organize polar species, affecting entropy, and the activation energy. 

Stabilization of polar intermediates could also play a role in rate increase. If a reaction 

proceeds via a polar transition state the applied electromagnetic field should stabilize the 

polar species. When polarity increases from reactants to transition state the stabilizing 

effects of the applied field would decrease the activation energy of the reaction, and 

speed up the reaction. The reasons for the dramatic rate increase sometimes observed 

with MAOS will be discussed for many years to come, however, the effects of this rate 

increase can be enjoyed today. 

 

7.3 Isochoric Microwave Irradiation for High Temperatures 

  

Microwave irradiation is frequently used to heat a conventional solvent far in 

excess of its boiling point, by heating the reaction in a sealed tube. Fürstner and Seidel 

use this strategy to good effect in their route to arylboronates 272. The Suzuki cross 

coupling reaction has become one of the most widely used transformations in chemistry, 

and many literature procedures use microwave energy to drive the reaction.111 A 

microwave-assisted route to the precursor pinacol arylboronates needed for the Suzuki 

reaction would further streamline the technique. Fürstner’s route gives pinacol boronates 

from aryl chlorides using a Pd-heterocyclic carbene complex,112 Scheme 7.2. The use of 

aryl chlorides is significant as they are more readily available, but less reactive than their 

bromine and iodine analogues. No doubt the microwave technology employed plays a 

key role in enabling use of the less reactive chloro substrate. The catalytic system is made 

up of Pd(OAc)2, and an N-heterocyclic carbene produced in situ by deprotonation of the 

imidazolium salt 270. An aryl chloride 269 is treated twice with the catalytic system in 
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the presence of bis(pinacol)borane 271 at 110 oC for 10 minutes. After this very short 20 

minute reaction time, the desired arylboronates 272 are isolated in good yield.  
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Scheme 7.2 

 

7.4 Reaction Development  

 

 Stadler and Kappe’s optimization of the Biginelli reaction demonstrates the 

powerful ability of microwave-assisted synthesis to speed up reaction development, 

Scheme 7.3.113 Due to the very short reaction times, MAOS allows many different 

parameters to be tested very quickly. Furthermore, results are obtained so fast that test 

runs can be performed in series, not parallel. Information gained from one test run can 

easily provide input into the design of the next test run. Using these advantages, the 

catalyst, reaction temperature, and reaction time for the microwave-assisted Biginelli 

reaction were optimized in only a few hours of experiment time. With optimized 

conditions in hand, a 48 member library of dihydropyrimidines 276 was produced in 

good average yield and within 12 h.  
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7.5 Fine Control of Reaction Temperature 

 

 Microwave-assisted chemistry also finds itself at the forefront of natural product 

synthesis. Ley and co-workers have recently reported the total synthesis of azadirachtin 

279.114 A key Claisen rearrangement is driven by microwave energy to give the allene 

278 necessary for the radical cyclization that forms the core ring structure of the complex 

and beautiful natural product 279, Scheme 7.4. While conventional heating failed even in 

the presence of Claisen rearrangement promoting Lewis acids, and after extended periods 

of time, microwave energy effected the desired reaction in minutes with no additive 

necessary. Pulsing of the microwave energy was important and prevented decomposition 

at the extreme temperature. Here the control made possible by microwave technology is 

key. Since heating only occurs in the reaction vessel, and not in the surroundings, very 

precise heating and cooling can be achieved with the convenience of an on-off switch. 

While many advantages of microwave chemistry come from the dull axe of extreme 

temperatures, the method also has an elegant side displayed in this beautiful total 

synthesis. 
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7.6 Petasis Methylenation 

 

Two examples of microwave-assisted Petasis methylenation exist in the literature. 

Ley and co-workers first used the stategy to methylenate a key intermediate in the 

synthesis of spongistatin 1,72 Scheme 7.5. When ketone 280 was heated conventionally at 

120 oC for 3 h with dimethyltitanocene in toluene, the alkene 281 was produced in a 71% 

yield. However, adding a small amount of ionic liquid (1-ethyl-3-methylimidazoline 

hexafluorophosphate), and using microwave irradiation to heat the reaction at 160 oC for 

10 min produced alkene 281 in an 82% yield. When a conventional solvent is used with a 

low tanδ value, achieving high temperature with microwave energy can be difficult. Ley 

and co-workers overcame this problem by adding the ionic liquid to the solvent which 

acts as a sponge for the microwave energy. Importantly, even at the extreme temperature 

the mild methylenating reagent leaves both chiral centres untouched, avoiding enolization 

or retro-Michael addition. 

 

OTESOTIPS

OTBS

CH2TESOTIPS

OTBS

Cp2TiMe2, PhMe

MeN
NEt PF6

280 281

MW, 10 min

82%  
Scheme 7.5 

 

More work in this area has highlighted the utility and selectivity of the 

microwave-assisted Petasis methylenation. Gallagher and co-workers were having 

trouble finding a route to pyruvate based enol ethers 283. However, they found that 

microwave energy efficiently drove the Petasis reaction giving the desired products,71 

Scheme 7.6. When pyruvate-based oxalates 282 were treated with dimethyltitanocene, 

and heated for just 30 minutes with microwave energy, only the less hindered carbonyl 

was alkenated to form enol ethers 283 in good yield. Enamines could also be produced 

from oxalate monoamides. Conventional heating gave very poor results and even after 24 

h, the reaction had failed to go to completion. In 30 min the extreme temperature 

achieved with microwave energy had driven the reaction entirely to completion; leaving 

the tert-butyl ester functionality completely unreacted. 
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Scheme 7.6 

 

7.7 Conclusion 

 

The advent of MAOS means that the choice of heat source has become a key 

variable to be considered for maximizing success in the laboratory. While microwave 

energy is a powerful new tool, it is not a suitable heating source for all applications, and 

the method suffers when it comes to scaling up. However, when compared to 

conventional heating in efficiency, control, and speed, microwave irradiation is a superior 

heat source. The speed with which information can be gathered and applied to reaction 

optimization is particularly impressive and significant. Every year an increasing number 

of microwave-assisted routes are published, and the method is gaining popularity in 

industry as well. As demonstrated by the microwave-assisted Petasis methylenation, 

some reactions benefit greatly from the special attributes of microwave energy. As with 

many examples, the reaction shows great promise, but has not been fully explored.  
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Chapter 8 

β-Amino Acids to Piperidinones 
 

8.1 Modified Petasis-Ferrier Rearrangement 

 

We initially envisaged a nitrogen analogue of the Petasis-Ferrier rearrangement. 

The good yields and the excellent selectivity of the reaction, Scheme 6.1,101 were 

attractive attributes and we imagined that perhaps we could produce pyrrolidines 286 via 

a similar reaction pathway, Scheme 8.1. A direct analogue would start with 

oxazolidinones 284 and proceed to give pyrrolidines 286 via enol ethers 285.  
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R3 R3 R3
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Scheme 8.1 

 

An important factor in the rearrangement would be electron density around the 

nitrogen atom of the enol ether 285. Only if the nitrogen atom had enough electron 

density to assist cleavage of the C-O bond would rearrangement occur. Although N-alkyl 

oxazolidinones proved to be too unstable or difficult to synthesize, there are several 

simple syntheses of amide and carbamate protected oxazolidinones in the 

literature.115,116,117,118,119 However, an amide or carbamate might not have enough electron 

density at the nitrogen atom due to conjugation of the nitrogen lone pair with the 

carbonyl group, Figure 8.1.  
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Figure 8.1 

 

On the other hand a tert-butyl carbamate (Boc) protected oxazolidinone would be 

expected to deprotect in the acidic environment required for the Petasis-Ferrier 

rearrangement and thus provide the necessary electron density on the nitrogen atom. 



 
112

Fadel and Salaün had synthesized the N-benzoyl oxazolidinone 289 from alanine 287 via 

the Schiff base 288,120 Scheme 8.2.  We thought that by using di-tert-butyldicarbonate 

(Boc2O) in place of benzoyl chloride that we would be able to access the Boc-protected 

oxazolidinones. 
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2) PhCHO
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PhCOCl

 
Scheme 8.2 

 

The synthesis of the Boc-protected oxazolidinone proved to be challenging. 

Boc2O is not as reactive as an acid chloride and simply replacing benzoyl chloride with 

Boc2O produced no desired product.  After much experimentation it was found that by 

heating to 55 oC in chloroform, an appreciable amount of product 290, presumably the 

2,4-syn diastereomer, could be obtained, albeit in poor yield, Scheme 8.3.  
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Scheme 8.3 

 

 While there are many ways to methylidenate compounds like oxazolidinone 290, 

we chose to use dimethyltitanocene as it is easily produced from cheap starting 

materials,69 and can be stored for long periods of time. Furthermore, the reagent breaks 

down to the reactive Schrock carbene by thermolysis and thus the reaction is simple to 

perform, requiring only heat for activation. Purification is also an attractive attribute as 

the titanium byproducts precipitate out of hexane. Simple filtration provides a mild 

workup and purification procedure that even acid-sensitive enol ethers tolerate. 

Furthermore, the adaptability of the reaction to microwave irradiation enables short 

reaction times.71,72  

 Literature procedures for microwave-assisted Petasis methylidenation call for 

very high temperatures and harsh reaction conditions,71,72 Section 7.6. The solvents are 
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heated far in excess of their boiling points and in one example a small amount of ionic 

liquid is necessary to aid the absorption of microwave energy. We decided to investigate 

milder conditions. To our surprise, reaction of the oxazolidinone 290 with 

dimethyltitanocene for only 10 min at 80 oC gave the desired enol ether 291 in good 

yield, Scheme 8.4. While bringing the reaction to 80 oC took about 9 minutes, total 

reaction time was still under 20 minutes. It was later discovered that the conditions could 

be even milder; 10 min at 65 oC gave a slightly improved yield, 65%.  
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Scheme 8.4 

 

These findings are in stark contrast to previously reported microwave-assisted 

Petasis methylidenations. No additive is required, and the temperatures are equivalent to 

those used with conventional heating sources. This is significant, as a commonly given 

reason for the enhanced reaction rates seen with MAOS is the very high reaction 

temperature when compared to conventional heating, Section 7.2. Possibly, in this case, 

there is a rate enhancement due to selective absorption of the microwave energy by the 

titanium reagent, due to the polar metal-carbon bond. Formation of the Schrock carbene 

is the rate-determining step in Petasis methylenation.121 The microwaves would pass 

through the relatively microwave-transparent solvents, but would interact with the 

titanium complex leading to α-elimination without significant heating of the bulk solvent. 

 Although methylenation was successful, all attempts to induce the enol ether 291 

to undergo rearrangement were unsuccessful, Scheme 8.5. Trimethylsilyl chloride 

(TMSCl), trimethylsilyl triflate (TMSOTf), triisobutylaluminium, and 

dimethylaluminium chloride all failed to effect the desired transformation. Under a range 

of temperatures and reaction times, only the products of decomposition were ever seen.  
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Scheme 8.5 
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8.2 A New Aproach 

  

 Clearly, a new approach was necessary. Believing that the carbamate failed to 

rearrange because the ring failed to open and produce the reactive intermediate 293, 

Figure 8.2, we sought an alternative reaction that would not require a ring opening, i.e., a 

synthetic equivalent of the reactive intermediate 293 that would allow access to the target 

pyrrolidines. The important reactive groups of species 293 are the electrophilic iminium 

group and the nucleophilic enolate. The imino enol ether 294 contains an imine group 

which, after activation with an acid, would become a good electrophile, while the enol 

ether provides a nucleophile analogous to the enolate of bifunctional species 293.  
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Figure 8.2 

 

 We visualized access to the imino enol ethers 294 via microwave-assisted Petasis 

methylenation of imino esters 295, which are readily available from α-amino acids 296, 

Scheme 8.6.  
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 L-Alanine was esterified with SOCl2 in MeOH to give α-amino ester 297 as the 

HCl salt in excellent yield.122 A standard procedure taken from Roques and co-workers123 

gave the imino ester 298 in good yield from the condensation of amino ester 297 with 

benzaldehyde, Scheme 8.7.  
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Scheme 8.7 
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Methylenation of the imino ester 298 posed an interesting situation. While there is 

only one carbonyl group, the electrophilic imine could also be a target for methylenation. 

Furthermore, nucleophilic organometallic reagents have been shown to react selectively 

with the imine functionality of imino esters derived from α-amino acids.124 Petasis 

methylenation proceeds via a Schrock carbene and, therefore, electrophilicity largely 

determines the reactivity of a substrate towards dimethyltitanocene. Despite these 

concerns, the ester group was methylenated selectively to give the enol ether 299 as a 

single compound, Scheme 8.8. Once again, the exceptionally mild microwave conditions 

effected the methylenation in only 10 minutes at 80 oC. Even milder conditions, 

maintaining the reaction at only 65 oC for 10 min gave an improved yield of 78%. 

 

N
O

O
Me N

O
MeCp2TiMe2 (2 equiv.)

THF-PhMe, 80 oC, 10 min

298 299  54%  
Scheme 8.8 

 

The driving force of Petasis methylenation of carbonyl groups is the formation of 

the strong titanium-oxygen bond in the by-product, titanocene oxide, Scheme 8.9. 

Reaction with the imine functionality of imino ester 298 would not produce titanocene 

oxide. Therefore, it seems that the strength of the titanium-oxygen bond not only ensures 

a good yield for the reaction, but also means dimethyltitanocene selectively reacts with 

carbonyls in the presence of imines.  
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Scheme 8.9 

 

 Unfortunately, cyclization of the enol ether 299 was not successful. Once again a 

range of different acids and conditions failed to give the desired products. After aqueous 

workup, only the products of hydrolysis or decomposition were obtained. It is probable 

that the cyclization fails due to its very challenging nature.125 The 5-(enolendo)-endo-trig 

cyclization required is rare, in fact the original Petasis-Ferrier rearrangement is one of the 



 
116

few examples. We investigated the possibility of a challenging but easier 6-(enolendo)-

endo-trig cyclization.  

 

8.3 Piperidinones 

 

  Our strategy centred on the use of a one-carbon extension; using the β-imino enol 

ethers 301 as the precursors to 2,4-substituted piperidin-4-ones 302, Scheme 8.10. Thus, 

piperidinones 302 would be produced by the acid-induced 6-(enolendo)-endo-trig 

cyclization of imino enol ethers 301 theoretically available from imino esters 300.  
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Scheme  8.10 

 

To validate and then demonstrate our proposed route to piperidinones 302, β-

amino esters 306 - 308 were prepared from β-amino acids 303 - 305, Scheme 8.11, Table 

8.1.  
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Scheme 8.11 

 

Table 8.1 Yields of amino esters from β-amino acids 

amino acid amino ester R1 Yield 
303 306 Me 98% 
304 307 Ph 98% 
305 308 PhCH2 100% 

 

 Condensation of the amino esters 306 - 308 with an aldehyde or ketone gave the 

desired imino esters 309a-n, Scheme 8.12, in the yields shown in table 8.2. 
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Scheme 8.12 

 

Table 8.2 Summary of Imino Ester Synthesis 
amino 
ester 

imino 
ester R1 R2 R3 

conditions 
useda yield 

306 300a Me Ph H A 75%b 
307 300b Ph Ph H A 89% 
307 300c Ph 2,4-(MeO)2C6H3 H A 94% 
308 300d PhCH2 Ph H A 83% 
306 300e Me (E)-4-MeOC6H4CH=CH H A 87%b 
306 300f Me 2,4-(MeO)2C6H3 H A 61% 
306 300g Me 3-Br C6H4 H A 58% 
307 300h Ph tBu H B 90% 
307 300i Ph Et H B 91%c 
306 300j Me 2-F C6H4 H A 55% 
307 300k Ph 2-NO2 C6H4 H A 92% 
307 300l Ph Pyrid-3-yl H A 90% 
306 300m Me Ph Me C 74%d 
307 300n Ph             –(CH2)5–  C 73% 

a) see text for details 

b) Yield based on aldehyde  

c) 300i:307:EtCHO 80:13:7; d) E:Z ratio was 93:7 

 

Most imino esters were formed using conditions A, i.e., the amino ester was 

stirred with the aldehyde, triethylamine, and Na2SO4 in DCM at RT. After aqueous 

workup, any necessary purification was achieved by distillation. Imino esters 300h, and 

300i were made in the same way, but could not tolerate aqueous workup or distillation, as 

the aliphatic imines were too unstable, and required the workup procedure outlined in 

conditions B, i.e., workup and purification involved only precipitation of triethylamine 

salts followed by filtration, and evaporation. While pivaldehyde-derived imino ester 300h 

was isolated as pure product, propionaldehyde-derived imino ester 300i had to be isolated 

as an 80:13:7 mixture of imino ester 300i, free amino ester 307, and propionaldehyde. An 

excess of easily removed volatile pivaldehyde could be used to drive the formation of 

300h to completion, however 300i was too susceptible to the formation of enamine-

derived side products, and an excess of propionaldehyde could not be used.   
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Ketone-derived imines 300m and 300n failed to form from the treatment of amino 

esters 306 and 307 with ketones, using Na2SO4 as a desiccant. The more challenging 

condensations required conditions C, i.e., the amino ester and ketone were heated at 

reflux with triethylamine in PhMe with azeotropic removal of water. After aqueous 

workup any necessary purification was achieved by distillation. 

 One further imino ester was prepared, Scheme 8.13. Anthranilic acid 309 

was esterified with thionyl chloride in MeOH to give the amino ester 310, and then 

heated to reflux with benzaldehyde and triethylamine in toluene with azeotropic removal 

of water to give the imino ester 311. 
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Scheme 8.13 

 

With an array of imines available, we set out to validate our route to piperidinones 

302. The methylenation of imino ester 300a was attempted using microwave-assisted 

Petasis methylenation with 1.7 equivalents of dimethyltitanocene, Scheme 8.14. After 

reaction, analysis of the crude material by 1H NMR spectroscopy revealed the appearance 

of two broad, overlying 1H singlets at 4.0 ppm, and an upfield shift of 0.3 ppm for the 

CH2C(OMe)=CH2 of the imino enol ether 301a relative to the CH2CO2Me of the starting 

imino ester 300a. These findings confirmed the presence of the desired enol ether 301a. 

However, it was clear that some ester remained, and the reaction was judged to be about 

75% complete. The crude material was re-treated with 0.7 equivalents of 

dimethyltitanocene. Importantly, the glassware used for the second treatment was not 

oven-dried. Following normal workup and purification, which included distillation at 170 
oC, the crude material was once again analyzed by 1H NMR spectroscopy. Broad singlets 

in the region of 3.5 to 4.0 ppm showed that several enol ethers were present, and signals 

farther upfield displayed peak shapes that resembled those of protons with axial and 

equatorial couplings in a 6-membered ring. Apparently, the enol ether 301a had cyclized 

to give two cyclic enol ethers 313 and 314. Presumably, the high temperature in the 

presence of trace moisture caused cyclization of imino enol ether 301a to give the 

oxonium ion 312 which lost a proton α to the carbonyl group giving a mixture of the two 
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cyclic enol ethers 313 and 314. Simple hydrolysis of the enol ethers with HCl(aq) gave the 

racemic piperidine as the hydrochloride salt 315a. Interestingly, not only had we 

somewhat serendipitously synthesized our target molecule, but it had been made 

exclusively as the 2,6-syn diastereomer, see Section 8.4 for assignment of 

stereochemistry.   
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Scheme 8.14 

 

The excellent stereoselectivity observed is probably secured by a preference for a 

6-membered transition state 318, Scheme 8.15. Acid activates the imino enol ether 301a, 

which could potentially react by two chair-like conformations 316 and 317. The low-

energy conformation 316 has the R1 group in a pseudo-equatorial orientation, while the 

pseudo-axial orientation of this group in conformer 317 is disfavored by 1,3-pseudo-

diaxial interactions. The orientation of the R2 group is set by the E geometry of the imine. 

The relative stability of conformation 316, and the transition state 318 arising from it, 

results in selectivity for the 2,6-syn piperidinone 315a.  
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Scheme 8.15 

  

Formation of the imino enol ether 301a was repeated in oven-dried glassware. 

Treatment of the crude imino enol ether 301a with aqueous acid effected the cyclization 

which, following a wash with DCM and evaporation of the aqueous acid, gave 2,6-syn 

piperidinium salt 315a in good yield from imino ester 300a, Scheme 8.16. A range of 

different acid concentrations was screened, Table 8.3, with 7M HCl(aq) giving the best 

results. It is only because cyclization is so fast that aqueous acid can be used. The acid-

sensitive imine and enol ether functionalities have little opportunity to undergo 

hydrolysis. 
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Table 8.3 yield of piperidinium salt 315a from imino ester 300a 
concentration of  HCl(aq) yield of 315a 

12 M 23% 

9 M 59% 

7 M 62% 

2.4 M 59% 

 

While the imino ester 300b was also cleanly methylenated with 

dimethyltitanocene, and underwent the desired aqueous-acid-induced cyclization to give 
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diphenylpiperidinium salt 315b, formation of piperidinium salts 315c and 315m was 

problematic, Scheme 8.17, Table 8.4.  
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Scheme 8.17 

 

Table 8.4 Yields of piperidinones 315 from esters 300 via conditions from scheme 8.17 

imino ester R1 R2 R3 piperidinone yield 
300a Me Ph H 315a 62 
300b Ph Ph H 315b 62 
300c Ph 2,4-(MeO)2C6H3 H 315c no product 
300m Me Ph Me 315m Trace 

 

Methylenation of imino ester 300m proceeded cleanly to give enol ether 301m, 

but acidic cyclization conditions gave only a trace of piperidinium salt 315m, isolated by 

crystallization out of a complex mixture. Presumably, the ketone-derived imine is too 

sterically hindered for rapid cyclization and hydrolysis competes. The imino ester 300c 

decomposed significantly when subjected to dimethyltitanocene at 80 oC under 

microwave-irradiation, but by heating the reaction to only 65 oC with microwave 

irradiation (approximately 7 minutes) and maintaining this temperature for only 3 

minutes, the methylenation could be completed without decomposition. In fact, the lower 

reaction temperature gave improved results in all microwave-assisted methylenations. 

Unfortunately, despite clean methylenation of imino ester 300c, cyclization of enol ether 

301c was still problematic. 7M HCl(aq) gave only a 12% yield of the desired piperidinone 

salt 315c by crystallization from a complex mixture. The electron-rich nature of the imine 

probably slowed the cyclization so that hydrolysis competed. The 2,4-dimethoxyphenyl 

group donates electron density to the imine and in doing so reduces the electrophilicity of 

the imine, preventing the nucleophilic enol ether from attacking quickly. 

Piperidinones 315c and 315m were isolated by crystallization from complex 

mixtures, but the major products in both cases were those of imine and enol ether 

hydrolysis. The cyclization is fast enough to compete with hydrolysis only when 

electronics are favorable and the imine is not sterically hindered. We imagined that 

anhydrous acid would activate the imines 301 and allow cyclization to the oxonium ions 

320 and the tautomeric enol ethers 321 and 322 to occur without inducing competing 
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hydrolysis, Scheme 8.18. After the cyclization was complete, aqueous acid could be 

added to hydrolyze the oxonium ions 320 and the tautomeric enol ethers 321, and 322 to 

the desired piperidinones 302. 

 

R1

N OMe

R2 R3

301

R1

HN OMe

R2 R3

N
H2

O
Me

R2 R1 N
H2

O
Me

R2 R1N
H2

O
Me

R2 R1

N
H

O

R2 R1

1) aqueous acid
2) neutralization

319

321 320 322

302

HA

R3R3R3

R3

A

A A2A

 
Scheme 8.18 

 

Unsurprisingly, imino ester 300a underwent microwave-assisted Petasis 

methylenation and was then cyclized with anhydrous p-toluene sulfonic acid (p-TsOH). 

After acid hydrolysis, the piperidinone 302a was isolated in good yield as exclusively the 

2,6-syn diastereomer, Scheme 8.19, Table 8.5. Similarly, imino ester 300d gave a good 

yield of piperidinone 302d. Methylenation and cyclization of more challenging imino 

ester 300c under the new conditions gave an improved but modest yield of piperidinone 

302c. α,β-unsaturated imino ester 300e underwent methylenation-cyclization to give 

piperidinone 302e in similarly modest yield despite a higher reaction temperature for the 

cyclization. Following aqueous workup the 1H NMR spectrum of the crude products from 

the cyclizations to give piperidines 302c and 302e showed a mixture of the desired 

piperidinones 302c and 302e and the products of imine and enol ether hydrolysis. We 

believe that in both cases the 17 h reaction time was not enough for the very slow 

cyclization, and the aqueous acid used to hydrolyze cyclized product also hydrolyzed the 

uncyclized imino enol ether. Despite the anhydrous conditions, the cyclization was so  
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slow that even without competing hydrolysis, the reaction was not viable.  
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Scheme 8.19 

 

Table 8.5 Yields of piperidinones 302 from esters 300 via conditions from Scheme 8.19     
imino 
ester R1 R2 R3 

cyclization 
temperature piperidinone yield 

300a Me Ph H 20 oC 302a 61 
300c Ph 2,4-(MeO)2C6H3 H 20 oC 302c 40a 
300d PhCH2 Ph H 40 oC 302d 61 

300e Me (E)-4-MeOC6H4CH=CH H 60 oC 302e 37b 
a) During the methylenation the temperature is held at 65 oC for only 3.5 min. 

b) During the methylenation the temperature is held at 65 oC for only 5 min. 

 

 Still unhappy with the cyclization conditions, we considered the role of the 

solvent. Activated imino enol ether 319 cyclizes to give oxonium salt 320, Scheme 8.18. 

DCM is a relatively non-polar solvent and does not stabilize the oxonium ion 320 or the 

transition state leading to it. A more polar solvent would stabilize the transition state and 

encourage cyclization. Just switching from DCM to the polar dimethoxyethane (DME) 

improved the yield of piperidinone 302c to a respectable 51%, Scheme 8.20, Table 8.6. 

Imino esters 300c, 300f, 300g, 300h, and 300i all cyclized using p-TsOH in DME to give 

piperidines 302c, 302f, 302g, 302h, and 302i, respectively. The yields of the reactions 

were all good with the exception of piperidinone 302i. The poor yield of 302i is due to 

the decomposition of the aliphatic imine of imino ester 300i and the corresponding imino 

enol ether 301i into enamine-derived side products. 

 

R1

N OMe

O

R2

300

N
H

O

R2 R1

R3

302
R3

1) Cp2TiMe2 (1.8 equiv.)
THF-PhMe, 65 oC, 10 min

2) p-TsOH (2 equiv.)
   DME, 20 oC, 17 h

3) 1M HCl(aq) 1 h

4) neutralization  
Scheme 8.20 



 
124

 

Table 8.6 Yields of piperidinones 302 from esters 300 via conditions from scheme 8.20 

imino ester R1 R2 R3 piperidinone yield 
300c Ph 2,4-(MeO)2C6H3 H 302c 51%a 
300f Me 2,4-(MeO)2C6H3 H 302f 58%b 
300g Me 3-Br C6H4 H 302g 48% 
300h Ph tBu H 302h 58% 
300i Ph Et H 302i 35%b 

300m Me Ph Me 302m no product 
a) During the methylenation, the temperature is held at 65 oC for only 3.5 min. 

b) During the methylenation the temperature is held at 65 oC for only 2.5 min. 

 

 Even though more challenging examples were producing piperidinones in good 

yield, the acetophenone-derived imino ester 300m still failed to undergo reaction to give 

the desired trisubstituted piperidinone, despite the improved conditions. 

A range of different acids were screened in different solvents in an effort to find 

better conditions for the cyclization of enol ether 301m, Scheme 8.21, Table 8.7. While 

most cyclization conditions gave incomplete conversion and a mixture of the syn and anti 

piperidinones, triisobutylaluminium in DMSO effected the cyclization in good yield and 

good diastereoselectivity. The use of a Lewis acid in such a polar Lewis basic solvent is 

unorthodox. However, the more Lewis basic imine out-competes the solvent for the 

attention of the Lewis acid. These unconventional conditions allowed one of the most 

challenging examples to successfully undergo cyclization to give the tri-substituted 

piperidinone in the highest yield we had yet seen, and with good 2,6-syn selectivity. The 

slightly elevated reaction temperature was used to ensure that the polar solvent did not 

freeze in the cold Scottish climate.  

 
Me

N OMe

Ph
301m

Cp2TiMe2 
(1.8 equiv.)
THF-PhMe
65 oC, 10 min

N
H

O

Ph Me
Me

1) cyclization conditions
    from Table 8.7

302m

2) 1M HCl(aq) 45 min.
3) neutralization

Me

Me

N OMe

O

Ph
300m
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Scheme 8.21 
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Table 8.7 Transformation of imino ester 300m to piperidinone 302m 

solvent acid (2 equiv.) temperature  syn/anti yield 
DME tosic acid 20 oC N/A no product 

DMSO tosic acid 28 oC 74/26 N/A 
DMSO (Me)2AlCl 28 oC 63/37 N/A 
DCM Al(iBu)3 -10 oC 38/62 N/A 

DMSO Al(iBu)3 28 oC 89/11 69% 
N/A – Not determined due to incomplete conversion 

 

Interestingly, the use of triisobutylaluminium in DCM gave an excess of the 2,6-

anti diastereomer. Although this result was very intriguing, the result was not 

investigated due to lack of time. 

  The new cyclization conditions proved to be superior in all cases, and a range of 

piperidinones was synthesized to demonstrate the method, Scheme 8.22, Table 8.8. A 

variety of imines cyclized well, including those from diversely-decorated aromatic 

aldehyes 300a, 300b, 300c, and 300j, an α,β-unsaturated aldehyde 300e, an alkyl aryl 

ketone 300m, and a dialkyl ketone 300n, giving the spirocycle 302n.  

 

R1

N OMe

O

R2

300

1) Cp2TiMe2 (1.8 equiv.)
THF-PhMe, 65 oC, 10 min

N
H

O

R2 R1

R3

2) iBu3Al (2 equiv.)
   DMSO, 28 oC, 17 h

302

3) 1M HCl(aq) 45 min.

4) neutralization
R3

 
Scheme 8.22 

 

Table 8.8 Yields of piperidinones 302 from esters 300 via conditions from scheme 8.22 

imino ester R1 R2 R3 piperidinone yield 
300a Me Ph H 302a 68% 
300b Ph Ph H 302b 70% 

300c Ph 2,4-(MeO)2C6H3 H 302c 66%a 

300e Me (E)-4-MeOC6H4CH=CH H 302e 51%b 
300j Me 2-F C6H4 H 302j 64% 

300m Me Ph Me 302m 66% 
300n Ph                    –(CH2)5–  302n 52% 

a) During the methylenation the temperature is held at 65 oC for only 3.5 min.  

b) During the methylenation the temperature is held at 65 oC for only 3 min. 
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Imino esters 300k, and 300l, derived from aldehydes with highly electron-

withdrawing 2-nitrophenyl, and 3-pyridinyl substituents, failed to undergo transformation 

to the corresponding piperidinones. The cyclization was not the problem in these cases. 

Despite extensive exploration of the methylenation reaction, only complex mixtures of 

products, presumably due to attack on the imine, were ever obtained, Scheme 8.23.  
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THF-PhMe N OMe
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Cp2TiMe2

THF-PhMe

 
Scheme 8.23 

 

 Imino ester 311 could be methylenated, but cyclization of the resulting enol ether 

323 failed, Scheme 8.24. Unfortunately, due to time constraints, cyclization was only 

tried using p-TsOH in DCM. It is possible that the cyclization would have proceeded had 

we used triisobutylaluminium in DMSO.  

 

N

OMe

O

Ph

N

OMe

Ph

N
H

O

Ph

Cp2TiMe2 (1.8 equiv.)

PhMe-THF, 65 oC, 10 min
p-TsOH

DCM

311 324323
Scheme 8.24 

 

 8.4 Assignment of Relative Stereochemistry 

 

 The relative stereochemistry of the piperidinones was assigned via the Nuclear 

Overhauser Effect (NOE). For piperidines 302a, and 302c - j, irradiation of the protons at 
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either C-2 or C-6 of the piperidinones produced a signal at the other position, Figure 8.4. 

The NOE correlation between the protons at C-2 and C-6 are summarized in Table 8.9 

and show that all the piperidinones have the 2,6-syn relative stereochemistry. 

  

N
H

R1 R2

O

Ha Hb

NOE  
Figure 8.4 

 

Table 8.9 NOE correlations for piperidinones 302 as shown in Figure 8.4 

piperidinone R1 R2 
irradiated 

proton 
NOE 
Ha 

NOE 
Hb 

302a Ph Me Ha (3.96 ppm)   0.93% 
      Hb (3.12 ppm) 0.79%   

302c 2,4-MeOC6H3 Ph Ha (4.41 ppm)   2.07% 
      Hb (4.10 ppm) 2.34%   

302d Ph PhCH2 Ha (3.78 ppm)   1.56% 
      Hb (3.15 ppm) 1.45%   

302e (E)-4- Me Ha (3.59 ppm)   1.57% 
  MeOC6H4CH=CH   Hb (3.07 ppm) 1.70%   

302f 2,4-MeOC6H3 Me Ha (4.22 ppm)   1.80% 
      Hb (3.11 ppm) 1.79%   

302g 3-Br C6H4 Me Ha (3.92 ppm)   1.15% 
      Hb (3.10 ppm) 1.11%   

302h tBu Ph Ha (2.69 ppm)   1.38% 
      Hb (3.89 ppm) 1.32%   

302i Et Ph Ha (2.90 ppm)   1.17% 
      Hb (3.93 ppm) 1.03%   

302j 2-F C6H4 Me Ha (4.31 ppm)   1.01% 
      Hb (3.15 ppm) 0.95%   

  

This strategy was not viable for the symmetrical 2,6-diphenylpiperidinone 302b 

as the protons at C-2 and C-6 are equivalent. However, our data for piperidinone 302b 

matches literature data for 2,6-syn diphenylpiperidin-4-one.126 The assignment of the 2,6-

syn relative stereochemistry to piperidinone 302b is further supported by the 2,6-syn 

relative stereochemistry of 2,6-diarylpiperidinone 302c. Piperidinones 302b, and 302c are 

similar and one would expect both to be formed in a similar manner with the same 

relative stereochemistry.  

Trisubstituted piperidinone 302m displayed an NOE correlation between the 

proton at C-6 and the protons of the methyl group at C-2, Figure 8.5.   
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N
H

O

Me
HMe

NOE 
0.54%  

Figure 8.5 

 

8.5 γ-Amino Acids to Pyrrolidines 

 

During the investigation of the aqueous acid-induced cyclization, imino ester 327 

was synthesized from γ-aminobutyric acid 325, Scheme 8.25. We hoped that the imino 

enol ether 328 produced by microwave-assisted Petasis methylenation of imino ester 327 

would cyclize under aqueous acidic conditions to give an azepine 330. However, 

treatment of the imino ester 327 with dimethyltitanocene followed by aqueous acid gave 

the 2,3-anti pyrrolidine as the HCl salt 329 as a single diastereomer. The anti 

stereochemistry was assigned via consideration of the mechanism. However the coupling 

constant of 7.5 Hz observed in the 1H NMR spectrum between protons at the C-2 and C-3 

positions is slightly lower than seen in a related compound where the analogous coupling 

constant is 9.8 Hz.127 Thus the assignment of stereochemistry is very tentative. 
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Scheme 8.25 

 We hypothesize that protonation of the imine 328 gives the iminium ion 331, 

containing a terminal enol ether, Scheme 8.26. The 7-(enolendo)-endo-trig cyclization 

required to form the azepine 334 is slow, and so tautomerization of the iminium ion 331 

via oxonium ion 332 to form iminium ion 333 competes. The latter then undergoes the 

comparatively easy 5-(enolexo)-endo-trig cyclization to give pyrrolidine 335, which 

hydrolyzes to produce the corresponding ketone 329. 
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+H +H

-H-H

328

HCl(aq)
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Ph

hydrolysis

329

hydrolysis
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Scheme 8.26 

 

Unfortunately, very little investigation into this interesting cyclization was 

undertaken due to time constraints. More in depth examination of the reaction is 

necessary to determine whether the transformation is useful. 

 

8.6 Conclusions  

 

 Inspired by the Petasis-Ferrier rearrangement, we have developed and thoroughly 

demonstrated a highly diastereoselective route to 2,6-substituted piperidin-4-ones. The 

key transformations are microwave-assisted Petasis methylenation and Lewis-acid-

induced cyclization. The mild conditions and selectivity of the microwave-assisted 

methylenation are unprecedented. Using the same low temperatures as conventional 
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methods, we were able to obtain full conversion of esters to enol ethers in 10 min or less. 

The selectivity of the reagent for carbonyl groups in the presence of imines allows access 

to imino enol ethers containing both electrophilic and nucleophilic functionality in the 

same molecule. The conditions of the Lewis-acid-induced cyclization are the result of 

extensive optimization and the consideration of many different examples. A variety of 

imino esters derived from condensation with diverse aldehydes or ketones with β-amino 

acids should allow preparation of diverse piperidinones as single diastereomers. Since 

there are good methods for the asymmetric synthesis of β-amino acids,128 the route should 

also allow the asymmetric synthesis of 2,6-substituted piperidinones.  
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302a  69%
iBu3Al, DMSO

302b  70%
iBu3Al, DMSO

302c  66%
iBu3Al, DMSO

302d  61%
p-TsOH, DCM

302e  51%
iBu3Al, DMSO

302f  58%
p-TsOH, DME

302g  48%
p-TsOH, DME

302h  58%
p-TsOH, DME

302i 34%
p-TsOH, DME

302j  64%
iBu3Al, DMSO

302m  66%
iBu3Al, DMSO

302n  52%
iBu3Al, DMSO  

Figure 8.6 Yields of piperidines 302 and the conditions used to obtain these yields 
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EXPERIMENTAL 
 

Where general procedures are given for transformations, the exact quantities used in each 

preparation are listed under the compound name, together with reaction times where 

these vary. Unless otherwise stated, all reactions were carried out using oven dried or 

flamedried glassware. Solutions were added via syringe unless otherwise stated. Diethyl 

ether, tetrahydrofuran, dichloromethane, and toluene were dried using a Puresolv© 

solvent drying system prior to use. DME was freshly distilled from sodium 

benzophenone; DMSO was dried over 4Å molecular sieves for 24 h, and then distilled 

from CaH2 under reduced pressure. Petroleum ether refers to the fraction boiling at 40-60 

°C. With the exception of Cp2TiMe2, produced via the method of Payack et al.69 

Reagents were obtained from commercial suppliers and used without further purification 

unless otherwise stated. Purification by column chromatography was carried out using 

silica gel, mesh size 35-70 µm as the stationary phase. All distillations were carried out 

bulb to bulb in a Kugelrohr Apparatus. 1H and 13C NMR spectra were obtained on a 

Bruker DPX/400 spectrometer operating at 400 and 100 MHz respectively. All NMR J 

values are given in Hz and are uncorrected. 1H NMR signals of piperidinones 302 were 

assigned using COSY spectra. CH3, CH2, CH, and C in the 13C NMR spectra were 

assigned using DEPT. Mass spectra (MS) were recorded on a Jeol JMS700 (MStation) 

spectrometer. Infra-red (IR) spectra were obtained on a Perkin-Elmer 983 

spectrophotometer. A Golden GateTM attachment that uses a type IIa diamond as a single 

reflection element was used so that the IR spectrum of each compound (solid or liquid) 

could be directly detected without any sample preparation.Melting points were 

determined on a Gallenkamp melting point apparatus. 
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General Esterification procedure 

 

Thionyl chloride (2 equiv.) was added dropwise to a stirred solution of the appropriate 

amino-acid (1 equiv., 0.6 M) in MeOH at –10 oC under Ar. The solution was heated 

under reflux for 3h. After cooling to RT, all volatile compounds were removed in vacuo 

to give the crude ester. Washing the crude product with hot hexane (3) gave the pure 

amino-ester as the hydrochloride salt. 

 

Imine formation procedure A 

Triethylamine (2 equiv.), and the desired aldehyde (0.8-1.2 equiv.) were added to a 

stirred suspension of an amino-ester (1 equiv., 0.3 M), and sodium sulfate (1.2 equiv.) in 

dry DCM under Ar at RT. After stirring for 3 h, the mixture was washed with water (2), 

then satd. NaCl (1), dried over Na2SO4, filtered and concentrated in vacuo. Distillation 

yielded the pure imino ester. 

 

Imine formation procedure C  

A solution of triethylamine (2 equiv.), the desired ketone (1.2-1.5 equiv.), and the amino 

ester (1 equiv., 0.3 M) in dry toluene was heated at reflux under Ar with continuous 

removal of water by means of a Dean-Stark trap for the stated reaction time (see below). 

The reaction mixture was cooled to RT, washed with water (2), and satd. NaCl (1). 

The organic layer was dried over Na2SO4, filtered and concentrated in vacuo to yield the 

crude imine. Distillation gave the pure imino ester. 
 

Synthesis of Piperidinones  302 

Although the various piperidinones were made a number of times under a variety of 

conditions, only one procedure is given for each piperidinone prepared, and in each case 

this is the procedure that gave the best yield during the studies described. The best 

combination is methylenation procedure B and cyclization procedure D, but this 

combined procedure was never used for the preparation of piperidinones 302d, 302f, 

302g, 302h and 302i.  
 

Methylenation procedure A 

A 0.96 M solution of Cp2TiMe2 (1.8-2.1 equiv.) in toluene-THF (1:1 by mass) was added 

to an imino ester (1 equiv.), and sealed in a 10 mL microwave tube under argon. This was 

irradiated under 100 W maximum microwave power using a CEM DISCOVERY 
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microwave system to raise the internal temperature to 80 oC (ca. 9 min), and the 

temperature maintained with microwave irradiation a further 10 min, before cooling. The 

resultant black solution was concentrated in vacuo and hexane added to precipitate most 

titanium-containing impurities. The hexane extract was filtered and concentrated in vacuo 

to yield the crude enol ether.  

 

Methylenation procedure B 

A 1.30 M solution of Cp2TiMe2 (1.8-2.1 equiv.) in toluene-THF (1:1 by mass) was added 

to an imino ester (1 equiv.), and sealed in a 10 mL microwave tube under argon. This was 

irradiated under 100 W maximum microwave power using a CEM DISCOVERY 

microwave system to raise the internal temperature to 65 oC (ca. 7 min), and the 

temperature maintained with microwave irradiation a further 2.5-10 min (the exact times 

and maximum internal pressures observed are included for individual transformations 

below), before cooling. The resultant black solution was concentrated in vacuo and 

hexane added to precipitate most titanium-containing impurities. The hexane extract was 

filtered and concentrated in vacuo to yield the crude enol ether. 

 

Cyclization procedure A (aqueous acid) 

Using non-dried glassware, 7M HCl(aq) (25 equiv.) was added to the crude enol ether 301 

and the resulting mixture was stirred for 0.5 h. The solution was washed with DCM 5X, 

and the aqueous layer was concentrated in vacuo to give the piperidinone 315 as the 

hydrochloride salt. 

 

Cyclization procedure B (p-tosic acid in DCM) 

p-Toluene sulfonic acid (2 equiv.) was added to a stirred suspension of 4Å molecular 

sieves (0.3 g), and the crude enol ether 301 (1 equiv., 0.07M) in dry DCM under Ar. The 

solution was heated at 40 oC for 17 h, cooled to RT and quenched with 1M HCl(aq) (2ml). 

The reaction mixture stirred for a further 0.5 h, basified with NaOH(aq), and the solution 

was extracted with DCM. The organic extract was washed with satd. NaCl (1), dried 

over Na2SO4, and concentrated in vacuo to give the crude piperidinone 302, which was 

purified by column chromatography. 

 

Cyclization procedure C (p-tosic acid in DME) 

p-Toluene sulfonic acid (2 equiv.) was added to a stirred solution of crude enol ether 301 

(1 equiv., 0.1 M) in dry DME, under Ar. The solution was stirred at RT for 17 h, and 
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concentrated in vacuo. The resultant residue was stirred in 1M HCl(aq) (10 equiv.) for 1 h. 

The solution was basified with NaOH(aq), and extracted with DCM (4). The organic 

extract was washed with satd. NaCl (1), dried over Na2SO4, and concentrated in vacuo 

to give the crude piperidinone 302, which was purified by column chromatography. 

 

Cyclization procedure D (triisobutylaluminium in DMSO) 

Triisobutylaluminium (1.0 M in Hexanes, 2 equiv.) was added to the crude enol ether 301 

(1 equiv., 0.03 M) in dry DMSO, under Ar. The solution stirred at 28 oC for 17h, and was 

quenched with careful addition of 1M HCl(aq) (35 equiv.). The reaction mixture was 

stirred a further 45 min, basified with NaOH(aq), and extracted with EtOAc. The organic 

extract was washed with NH4Cl(aq), dried over Na2SO4, and concentrated in vacuo to give 

the crude piperidinone 302, which was purified by column chromatography.  

 

(4S) 4-Methyl-5-oxo-2-phenyloxazolidine-3-tert-butylcarbonate  290 

 

N
O

O

O

O

 
 

1M NaOH (11.2 mL, 11.2 mmol, 1 equiv.) was added to L-alanine (1.000 g, 11.2 mmol, 

1 equiv.). After the amino acid had fully dissolved, water was removed in vacuo via a 

Kugelrohr apparatus to leave the sodium salt. 4 Å molecular sieves (1.0 g), and 

benzaldehyde (1.7 mL, 16.8 mmol, 1.5 equiv.) were added to a solution of the sodium 

salt in DCM (11.0 mL). The solution was then heated under Ar at reflux for 5 h. The 

solvent was removed in vacuo to leave the Schiff base. Chloroform (17 mL), followed by 

di-tert-butyldicarbonate (4.409 g, 20.2 mmol, 1.8 equiv.) were added to the flask 

containing the Schiff base, and the reaction was stirred under Ar at 55 oC for 15 h. The 

turbid solution was washed with water (1), NaHCO3 (1), NaHSO3 (1), dried over 

MgSO4, filtered and concentrated in vacuo to give crude oxazolidinone as a yellow oily 

solid. Recrystalyzation from Et2O, in hexane gave pure (4S) 4-methyl-5-oxo-2-

phenyloxazolidine-3-tert-butylcarbonate 290 as a solid (0.653 g, 21%). IR (thin film): 

1778, 1685, 1399, 1365 cm-1. H (d6 DMSO, 400 MHz, 80 oC) 1.20 (9H, s, CH3C), 1.57 

(3H, d, J= 6.7, CH3CH), 4.65 (1H, q, J= 6.7, CHCH3), 6.51 (1H, s, CHC), 7.44 (5H, s, H 

arom.) C (d6 DMSO, 100 MHz, 80 oC) 16.29 (CH3), 27.68 (CH3), 51.32 (C), 80.70 
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(CH), 88.98 (CH), 126.76 (CH), 128.44 (CH), 129.57 (CH), 137.80 (C), 150.69 (C), 

172.34 (C). HRMS: 277.1309 C15H19O4N, requires (M+) 277.1314. 

 

(4S) 4-Methyl-5-methylene-2-phenyloxazolidine-3-tert-butylcarbonate  291 

 

N
O

O

O

 
 

A 1.30 M solution of Cp2TiMe2 (0.50 mL, 0.65 mmols, 1.5 equiv.) in toluene-THF (1:1 

by mass) was added to (4S) 4-methyl-5-oxo-2-phenyloxazolidine-3-tert-butylcarbonate 

290 (0.1204 g, 0.43 mmol, 1 equiv.), and sealed in a 10 mL microwave tube under argon. 

This was irradiated under 100 W maximum microwave power using a CEM 

DISCOVERY synthesizer to raise the internal temperature to 65 oC (ca. 7 min), and the 

temperature maintained with microwave irradiation a further 10 min, before cooling. The 

resultant black solution was concentrated in vacuo and hexane added to precipitate most 

titanium-containing impurities. The hexane extract was filtered and concentrated in vacuo 

to yield the crude enol ether. Column chromatography (SiO2, Hexane-EtOAc- NEt3 

96:6:1) gave (4S) 4-methyl-5-methylene-2-phenyloxazolidine-3-tert-butylcarbonate 291 

as an oil (77.6 mg, 65%). Rf (SiO2, Hexane-EtOAc-NEt3 93:6:1): 0.65. IR (thin film): 

1705, 1683, 1458 cm-1. H (d6 DMSO, 400 MHz, 80 oC) 1.17 (9H, s, CH3C), 1.47 (3H, d, 

J= 6.1, CH3CH), 4.05 (1H, dd, J= 1.2, 2.2, CHAHB=C), 4.24 (1H, dd, J= 1.5, 2.2, 

CHAHB=C), 4.67 (1H, tq, J= 1.3, 6.0, CHCH3), 6.18 (1H, s, CHC), 7.27-7.34  (2H, m, H 

arom.),  7.34-7.39 (3H, m, H arom.) C (d6 DMSO, 100 MHz, 80 oC) 20.23 (CH3), 27.74 

(CH3), 53.83 (C), 79.91 (C), 80.52 (CH2), 90.64 (CH), 126.41 (CH), 128.15 (CH), 128.83 

(CH), 139.74 (C), 150.96 (C), 161.89 (C). m/z (EI): 275 (M+, 15%), 219 (40), 202 (20), 

132 (75), 104 (90), 84 (100). HRMS: 275.1523 C16H21O3N, requires (M+) 275.1521. 

  

Methyl (2S) 2-aminopropionoate hydrochloride salt  297 

 

H3N
OMe

Cl

Me

O  
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Using: thionyl chloride (1.63 ml, 22.5 mmol, 2 equiv.), L-alanine (1.000 g, 11.2 mmol, 1 

equiv.), in MeOH (20.0 mL), and following the general esterification procedure gave (2S) 

methyl 2-aminopropionoate hydrochloride salt 297 as a solid (1.404 g, 90%). IR (thin 

film): 1740 (C=O) cm-1. H (CDCl3, 400 MHz) 1.72 (3H, d, J= 7.2, CH3CH), 3.80 (3H, s, 

OCH3), 4.23-4.33 (1H, m, CH) 8.68 (3H, broad s, NH3). m/z (CI): 104 (M+, 100%). 

HRMS: 104.0713 C4H12O2N requires (M+), 104.0712. data in agreement with the 

literature.129 

 

Methyl (2S, E) 2-(benzylidenamino)propionoate  298 

 

N
OMe

Me

O

 

 

Following general imine formation procedure A, triethylamine (1.00 ml, 7.2 mmol, 2 

equiv.), benzaldehyde (0.37 ml, 3.6 mmol, 1 equiv.), (2S) methyl 2-aminopropionoate 

hydrochloride salt 297 (0.500 g, 3.6 mmol, 1 equiv.), and Na2SO4 (0.305 g, 2.2 mmol, 0.6 

equiv.), in DCM (10 ml) gave (2S, E) methyl 2-(benzylideneamino)-propionoate 298 as 

an oil with no distillation necessary (542 mg, 79%). H (CDCl3, 400 MHz) 1.53 (3H, d, 

J= 6.8, CH3CH), 3.75 (3H, s, OCH3),  4.16 (1H, q, J= 6.8, CH),  7.38-7.47  (3H, m, H 

arom.),  7.75-7.80 (2H, m, H arom.),  8.32 (1H, s, N=CH). C (CDCl3, 100 MHz) 19.42 

(CH3), 52.16 (CH3) , 67.97 (CH), 128.45 (CH), 128.54 (CH), 131.07 (CH), 135.65 (C), 

162.93 (CH), 172.95 (C). Data in agreement with the literature.130 

 

(3S, E) 2-Methoxy-3-(benzylidenamino)but-1-ene  299 

 

O
MeN

Me

 
 

Following methylenation procedure B, using a 1.30 M solution of Cp2TiMe2 (0.89 mL, 

1.16 mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (2S, E) methyl 2-

(benzylideneamino)-propionoate 298 (123 mg, 0.64 mmol, 1 equiv.) and a 10 min 

reaction time at 65 °C (maximum pressure of 35 psi) gave crude enol ether. Distillation 
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gave pure (3S, E) 2-methoxy-3-(benzylideneamino)but-1-ene 299 (95 mg, 78%). Bp 140 
oC at 0.4 mm Hg. IR (thin film): 1644 (C=N), 1450, 1238 cm-1. H (CDCl3, 400 MHz) 

1.43 (3H, d, J= 6.8, CH3CH), 3.59 (3H, s, OCH3),  3.94 (1H, q, J= 6.8, CHN), 3.93 (1H, 

d, J= 2.0, C=CHAHB), 4.12 (1H, d, J= 2.0, C=CHAHB), 7.28-7.37  (3H, m, H arom.),  

7.67-7.72 (2H, m, H arom.),  8.22 (1H, s, N=CH). C (CDCl3, 100 MHz) 20.68 (CH3), 

54.86 (CH3) , 68.08 (CH), 80.67 (CH2), 128.32 (CH), 128.47 (CH), 130.60 (CH), 136.28 

(C), 160.63 (CH), 165.16 (C). m/z (CI): 190 [(M+H)+, 100%]. HRMS: 190.1230 

C12H16ON, requires (M+H+) 190.1232. 

 

 

Methyl (3RS, E) 3-(benzylideneamino)butanoate  300a 

 

N OMe

O

 

 

Following general imine formation procedure A, triethylamine (0.45 ml, 3.3 mmol, 2 

equiv.), benzaldehyde (0.13 ml, 1.3 mmol, 0.8 equiv.), (3RS) methyl 3-aminobutanoate 

hydrochloride salt 306 (250 mg, 1.63 mmol, 1 equiv.), and Na2SO4 (281 mg, 1.96 mmol, 

1.2 equiv.), in DCM (4.5 ml) gave (3RS, E) methyl-3-(benzylidenamino)butanoate 300a 

as an oil with no distillation necessary (200 mg, 75%). IR (thin film): 1736 (C=O), 1644 

(C=N) cm-1. H (CDCl3, 400 MHz) 1.30 (3H, d, J= 6.4, CH3CH),  2.60 (1H, dd, J= 5.3, 

15.5, CHAHB),  2.69 (1H, dd, J= 8.1, 15.5, CHAHB),  3.62 (3H, s, OCH3),  3.80-3.90 (1H, 

m, CHN),  7.38-7.44  (3H, m, H arom.),  7.69-7.74 (2H, m, H arom.),  8.34 (1H, s, 

N=CH). C (CDCl3, 100 MHz) 22.30 (CH3), 42.26 (CH2), 51.43 (CH3) , 62.68 (CH), 

128.19 (CH), 128.51 (CH), 130.61 (CH), 136.14 (C), 160.38 (CH), 172.20 (C). m/z (EI): 

205 (M+, 15%), 132 (30), 82 (100). HRMS: 205.1101. C12H15O2N, requires (M+) 

205.1103. 
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Methyl (3RS, E) 3-(benzylidenamino)-3-phenylpropionate   300b 
 

 

N OMe

O

 

 

Following imine formation procedure A, triethylamine (0.33 ml, 2.3 mmol, 2 equiv.), 

benzaldehyde (0.13 ml, 1.3 mmol, 1.1 equiv.), (3RS) methyl 3-amino-3-phenylpropionate 

hydrochloride salt 307 (250 mg, 1.16 mmol, 1 equiv.), and Na2SO4 (199 mg, 1.40 mmol, 

1.2 equiv.), in DCM (5.0 ml) gave (3RS, E) methyl 3-(benzylidenamino)-3-

phenylpropionate 300b as an oil (272 mg, 89%). Bp 200 oC at 0.6 mm Hg. IR (thin film): 

1736 (C=O), 1644 (C=N) cm-1. H (CDCl3, 400 MHz) 2.90 (1H, dd, J= 4.4, 15.6, 

CHAHB),  3.05 (1H, dd, J= 9.2, 15.6, CHAHB),  3.61 (3H, s, OCH3),  4.86 (1H, dd, J= 9.2, 

4.4, CHN),  7.21-7.44  (8H, m, H arom.),  7.73-7.79 (2H, m, H arom.),  8.44 (1H, s, 

N=CH). C (CDCl3, 100 MHz) 43.09 (CH2), 51.56 (CH3), 70.85 (CH), 126.89 (CH), 

127.36 (CH), 128.39 (CH), 128.47 (CH), 128.59 (CH), 130.76 (CH), 136.10 (C), 142.74 

(CH), 161.48 (CH), 171.73 (C). m/z (EI): 267 (M+, 80%), 208 (30%), 194 (100%), 121 

(95), 104 (70). HRMS: 267.1262. C17H17O2N, requires (M+) 267.1259. 

 

 

Methyl (3RS, E) 3-(2’,4’-dimethoxybenzylidenamino)-3-phenylpropionate   300c 
 

 

N OMe

O

MeO OMe  

 
Following imine formation procedure A, triethylamine (0.91 ml, 6.5 mmol, 2 equiv.), 

(3RS) methyl 3-amino-3-phenylpropionate hydrochloride salt 307 (700 mg, 3.24 mmol, 1 

equiv.), 2,4-dimethoxybenzaldehyde (538 mg, 3.24 mmol, 1 equiv.), and Na2SO4 (0.55 g, 

3.9 mmol, 1.2 equiv.), in DCM (10.0 ml), gave (3RS, E) methyl 3-(2’,4’-
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dimethoxybenzylidenamino)-3-phenylpropionate 300c as a pale yellow solid (1.000 g, 

94%). Bp 215 oC at 0.8 mm Hg. Mp 78-79 oC. IR (thin film): 1730 (C=O), 1600 (C=N) 

cm-1. H (CDCl3, 400 MHz) 2.90 (1H, dd, J= 5.1, 15.2, CHAHB),  3.00 (1H, dd, J= 9.0, 

15.3, CHAHB),  3.61 (3H, s, OCH3),  3.82 (3H, s, OCH3),  3.83 (3H, s, OCH3),  4.82 (1H, 

dd, J= 5.1, 8.9, CHN),  6.40 (1H, d, J= 2.2, H3’),  6.50 (1H, dd, J= 2.2, 8.6, H5’),  7.21-

7.28 (1H, m, H arom.),  7.29-7.36 (2H, m, H arom.),  7.42-7.46 (2H, m, H arom.),  7.96 

(1H, d, J= 8.6, H6’),  8.71 (1H, s, N=CH). C (CDCl3, 100 MHz) 43.41 (CH2), 51.46 

(CH3), 55.37 (CH3), 55.42 (CH3), 71.18 (CH), 97.85 (CH), 105.31 (CH), 117.94 (C), 

126.88 (CH), 127.11 (CH), 128.46 (CH),  128.79 (CH), 143.30 (C), 156.85 (CH), 160.20 

(C), 163.11 (C), 171.76 (C). m/z (EI): 327 (M+, 20%), 254 (100), 164 (90), 149 (60), 121 

(65). HRMS: 327.1473 C19H21O4N, requires (M+) 327.1471. 

 

Methyl (3RS, E) 3-(benzylidenamino)-4-phenylbutanoate  300d 

 

N OMe

O

 
 

Following imine formation procedure A, triethylamine (0.31 mL, 2.2 mmol, 2 equiv.), 

benzaldehyde (0.12 mL, 1.2 mmol, 1.1 equiv.), (3RS) methyl 3-amino-4-phenylbutanoate 

hydrochloride salt 308 (249 mg, 1.09 mmol, 1 equiv.), and Na2SO4 (186 mg, 1.31 mmol, 

1.2 equiv.), in DCM (4.0 mL), gave (3RS, E) methyl 3-(benzylidenamino)-4-

phenylbutanoate 300d as a colorless oil with no distillation necessary (253 mg, 83%). IR 

(thin film): 1736 (C=O), 1602 (C=N) cm-1. H (CDCl3, 400 MHz): 2.69 (1H, dd, J= 4.4, 

15.6, CHAHBCO), 2.76 (1H, dd, J= 8.4, 15.6, CHAHBCO), 2.93 (1H, dd, J= 7.6, 13.2, 

PhCHCHD), 2.98 (1H, dd, J= 6.0, 13.2, PhCHCHD), 3.61 (3H, s, OCH3), 3.86-3.94 (1H, 

m, CHN), 7.15-7.21 (3H, m, H arom.), 7.21-7.28 (2H, m, H arom.), 7.37-7.48 (3H, m, H 

arom.), 7.63-7.71 (2H, m, H arom.), 8.04 (1H, s, N=CH). C (CDCl3, 100 MHz): 40.23 

(CH2), 42.54 (CH2), 51.47 (CH3), 68.94 (CH), 126.30 (CH), 128.15 (CH), 128.23 (CH), 

128.45 (CH), 129.74 (CH), 130.58 (CH), 135.98 (C), 138.27 (C), 161.50 (CH), 172.18 

(C). m/z (EI): 281 (M+, 10%), 250 (20), 190 (100), 158 (50), 130 (90), 117 (30), 91 (60), 

77 (20). HRMS: 281.1414 C18H19O2N requires (M+), 281.1416.   
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Methyl (3RS, 1’E, 2’E) 3-[3’-(4”-methoxyphenyl)prop-2’-enylidenamino]butanoate 

300e 

 

N OMe

O

MeO  
 

Following imine formation procedure A, triethylamine (0.91 ml, 6.5 mmol, 2 equiv.), 

(3RS) methyl 3-amino-butanoate hydrochloride salt 306 (498 mg, 3.26 mmol, 1 equiv.), 

4-methoxycinnamaldehyde (423 mg, 2.60 mmol, 0.8 equiv.), and Na2SO4 (0.56 g, 4.00 

mmol), in DCM (10.0 ml), gave (3RS, 1’E, 2’E) methyl 3-[3’-(4”-methoxyphenyl)prop-

2-enylidenamino]butanoate 300e as a pale yellow oil (592 mg, 87%). Bp 190 oC at 0.45 

mm Hg. IR (thin film): 1736 (C=O), 1635 (C=N) cm-1. H (CDCl3, 400 MHz) 1.25 (3H, 

d, J= 6.4, CH3CH),  2.53 (1H, dd, J= 5.2, 15.5, CHAHB),  2.62 (1H, dd, J= 8.2, 15.5, 

CHAHB),  3.63 (3H, s, OCH3),  3.64-3.76 (1H, m, CHN),  3.81 (3H, s, OCH3),  6.73 (1H, 

dd, J= 8.8, 15.9, H2’),  6.85-6.91 (2H, m, H arom.),  6.90 (1H, d, J= 16, H3’),  7.40 (2H, 

d, J= 8.9, H arom.),  8.04 (1H, d, J =8.8, H1’). C (CDCl3, 100 MHz) 22.37 (CH3), 42.28 

(CH2), 51.41 (CH3) , 55.26 (CH3), 62.30 (CH), 114.20 (CH), 125.81 (CH), 128.43 (C), 

138.64 (CH), 141.73 (CH), 160.42 (C), 162.31 (CH), 172.14 (C). m/z (FAB): 262 

[(M+H)+, 100%]. HRMS: 262.1446 C15H19O3N, requires (M+H)+ 262.1443. 

 

 

Methyl (3RS, E) 3-(2’,4’-dimethoxybenzylidinamino)butanoate   300f 

 

N OMe

O

OMeMeO  
 

Following imine formation procedure A, triethylamine (0.51 mL, 3.7 mmol, 2 equiv.), 

(3RS) methyl 3-aminobutanoate hydrochloride salt 306 (278 mg, 1.81 mmol, 1 equiv.), 

2,4-dimethoxybenzaldehyde (309 mg, 1.86 mmol, 1 equiv.), and Na2SO4 (309 mg, 2.18 

mmol, 1.2 equiv.), in DCM (6.0 ml), gave (3RS, E) methyl 3-(2’,4’-
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dimethoxybenzylidinamino)butanoate 300f as an oil (291 mg, 61%). Bp 175 oC at 0.2 

mm Hg. IR (thin film): 1737 (C=O), 1607 (C=N) cm-1. H (CDCl3, 400 MHz): 1.28 (3H, 

d, J= 6.4, CH3CH), 2.56 (1H, dd, J= 5.8, 15.1, CHAHB), 2.64 (1H, dd, J= 7.8, 15.1, 

CHAHB), 3.63 (3H, s, OCH3), 3.78-3.86 (1H, m, CHN), 3.82 (3H, s, OCH3), 3.83 (3H, s, 

OCH3), 6.42 (1H, d, J= 2.3, H3’), 6.49 (1H, dd, J= 2.3, 8.6, H5’), 7.86 (1H, d, J= 8.6, 

H6’), 8.64 (1H, s, CH=N). C (CDCl3, 100 MHz): 22.47 (CH3), 42.66 (CH2), 51.38 

(CH3), 55.41 (CH3), 55.46 (CH3), 62.86 (CH), 97.97 (CH), 105.27 (CH), 117.99 (C), 

128.59 (CH), 155.77 (CH), 160.06 (C), 162.99 (C), 172.35 (C). m/z (EI): 265 (M+, 15%), 

234 (20), 192 (70), 164 (100), 149 (75), 121 (15). HRMS: 265.1313 C14H19O4N requires 

(M+), 265.1314.   

 

Methyl (3RS, E) 3-(3’-bromobenzylidenamino)butanoate  300g 

 

N OMe

O

Br  
 

Following imine formation procedure A triethylamine (0.31 mL, 2.2 mmol, 2 equiv.), 3-

bromobenzaldehyde (0.13 ml, 1.1 mmol, 1 equiv.), (3RS) methyl 3-aminobutanoate 

hydrochloride salt 306 (170 mg, 1.11 mmol, 1 equiv.), and Na2SO4 (309 mg, 2.18 mmol, 

1.2 equiv.), DCM (6.0 ml), gave a mixture of the desired imino-ester and un-reacted 3-

bromobenzaldehyde. Removal of the aldehyde by distillation (75 oC, 0.5 mmHg) gave 

pure (3RS, E) methyl 3-(3’-bromobenzylidenamino)butanoate 300g as an oil (184 mg, 

58%). IR (thin film): 1736 (C=O), 1644 (C=N) cm-1. H (CDCl3, 400 MHz): 1.29 (3H, d, 

J= 6.5, CH3CH), 2.59 (1H, dd, J= 5.1, 15.6, CHAHB), 2.68 (1H, dd, J= 8.3, 15.6, CHAHB), 

3.63 (3H, s, OCH3), 3.80-3.90 (1H, m, CHN), 7.27 (1H, t, J= 7.8, H5’), 7.53 (1H, ddd, J= 

1.0, 1.9, 8.0, H4’), 7.60 (1H, broad d, J= 7.7, H6’), 7.92 (1H, t, 1.6, H2’), 8.27 (1H, s, 

N=CH). C (CDCl3, 100 MHz): 22.25 (CH3), 42.09 (CH2), 51.48 (CH3), 62.58 (CH), 

122.87 (C), 127.09 (CH), 130.03 (CH), 130.70 (CH), 133.50 (CH), 138.16 (C), 158.81 

(CH), 172.08 (C). m/z (EI): 285 (M+, 45%), 283 (M+, 45%), 226 (45), 224 (45), 212 (90), 

210 (100), 130 (40), 104, (65), 102 (85), 86 (70), 84 (100). HRMS: 285.0181, and 

283.0207, C12H14O2N81Br requires (M+), 285.0188, and C12H14O2N79Br requires (M+), 

283.0208;  
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Methyl (3RS, E) 3-(2’,2’-dimethylpropylidenamino)-3-phenylbutanoate  300h 

 

N OMe

O

 
 

Triethylamine (0.15 mL, 1.1 mmol, 1.1 equiv.) was added to a suspension of (3RS) 

methyl 3-amino-3-phenylpropionate hydrochloride salt 307 (217 mg, 1.01 mmol, 1 

equiv.), and Na2SO4 (170 mg, 1.20 mmol, 1.2 equiv.) in dry DCM (5.0 mL) under Ar. 

The suspension stirred 1 h and pivaldehyde (0.20 ml, 1.8 mmol, 1.8 equiv.) was added. 

The reaction mixture stirred a futher 30 min, was filtered, and concentrated in vacuo. The 

resultant residue was extracted with dry Et2O (3). The extracts were filtered and 

concentrated in vacuo to give (3RS, E) methyl 3-(2’,2’-dimethylpropylidenamino)-3-

phenylbutanoate 300h as an oil (224 mg, 90 %). IR (thin film): 1740 (C=O), 1666 (C=N) 

cm-1. H (CDCl3, 400 MHz): 1.05 (9H, s, CH3C), 2.77 (1H, dd, J= 4.5, 15.0, CHAHB), 

2.86 (1H, dd, J= 9.6, 15.0, CHAHB), 3.63 (3H, s, OCH3), 4.57 (1H, dd, J= 4.5, 9.6, CHN), 

7.21-7.27 (1H, m, H arom.), 7.29-7.35 (2H, m, H arom.), 7.35-7.40 (2H, m, H arom.), 

7.63 (1H, s, N=CH). C (CDCl3, 100 MHz): 26.85 (CH3), 36.14 (C), 43.59 (CH2), 51.36 

(CH3), 70.57 (CH), 126.64 (CH), 127.10 (CH), 128.44 (CH), 143.14 (C), 171.68 (C=N), 

172.64 (C=O). m/z (EI): 247 (M+, 30%), 174 (40), 121 (100), 104 (50). HRMS: 247.1575 

C15H21O2N requires (M+), 247.1572. 

 

Methyl (3RS, E) 3-(propylidenamino)-3-phenylpropionoate  300i 

 

N OMe

O

 
 

In the same way as for the preparation of imine 300h, triethylamine (0.26 mL, 1.83 

mmol, 2 equiv.), (3RS) methyl 3-amino-3-phenylpropionate hydrochloride salt 307 (197 

mg, 0.91 mmol, 1 equiv.), Na2SO4 (157 mg, 1.11 mmol, 1.2 equiv.), and propionaldehyde 
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(0.073 ml, 1.01 mmol, 1.1 equiv.), in DCM (5.0 ml) gave a mixture of (3RS, E) methyl 3-

(propylidenamino)-3-phenylpropionoate 300i, the starting (3RS) methyl 3-amino-3-

phenylpropionate 307, and propionaldehyde in a 80:13:7 ratio (183 mg, 86% imine 300i 

by mass, 79% yield). H (CDCl3, 400 MHz):  1.07 (3H, t, J=7.6, CH3CH2), 2.26 (2H, dq, 

J= 4.7, 7.5, CH2CH3), 2.79 (1H, dd, J= 4.7, 15.4, CHAHB), 2.94 (1H, dd, J= 9.4, 15.4, 

CHAHB), 3.64 (3H, s, OCH3), 4.59 (1H, dd, J= 4.7, 9.4, CHN), 7.23-7.28 (1H, m, H 

arom.), 7.29-7.38 (4H, m, H arom.),  (1H, t, J= 4.8, N=CH). 

 

Methyl (3RS, E) 3-(2’-fluorobenzylidenamino)butanoate  300j 

 

N OMe

O

F  
 

Following imine formation procedure A, triethylamine (0.68 mL, 4.9 mmol, 2 equiv.), 

(3RS) methyl 3-aminobutanoate hydrochloride salt 306 (376 mg, 2.45 mmol, 1 equiv.), 2-

fluorobenzaldehyde (0.31 ml, 2.9 mmol, 1.2 equiv.), and Na2SO4 (422 mg, 2.97 mmol, 

1.2 equiv.), in DCM (10.0 ml), gave (3RS, E) methyl 3-(2’-fluorobenzylidenamino)-

butanoate 300j as an oil (302 mg, 55%). Bp 125 oC at 0.5 mm Hg. IR (thin film): 1739 

(C=O), 1640 (C=N) cm-1. H (CDCl3, 400 MHz) 1.30 (3H, d, J= 6.4, CH3CH),  2.60 (1H, 

dd, J= 5.4, 15.4, CHAHB),  2.68 (1H, dd, J= 8.1, 15.4, CHAHB),  3.64 (3H, s, OCH3),  

3.84-3.94 (1H, m. CHN), 7.06 (1H, broad dd, J= 8.7, 10.2, H3’), 7.15 (1H, broad t, J= 

7.8, H5’), 7.35-7.41 (1H, m, H4’), 7.95 (1H, dt, J= 1.8, 7.5, H6’), 8.63 (1H, s). C 

(CDCl3, 100 MHz) 22.27 (CH3), 42.27 (CH2), 51.49 (CH3) , 62.94 (CH), 115.70 (CH, d, 

J= 21.2), 123.79 (C, d, J= 9.6), 124.28 (CH, d, J= 3.5), 127.85 (CH, d, J= 2.7), 132.21 

(CH, d, J= 8.7), 153.79 (CH, d, J= 4.8), 162.23 (C, d, J= 251.1), 172.06 (C). m/z (EI): 

223 (M+, 50%), 164 (50), 150 (100), 123 (50), 102 (60). HRMS: 223.1011. C12H14O2NF, 

requires (M+) 223.1009. 
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Methyl (3RS, E) 3-(2’-nitrobenzylidenamino)-3-phenylpropionoate  300k 

 

N OMe

O

NO2  
 

Following imine formation procedure A, triethylamine (0.85 mL, 6.1 mmol, 2 equiv.), 

(3RS) methyl 3-amino-3-phenylpropionoate hydrochloride salt 307 (0.709 g, 3.3 mmol, 1 

equiv.), 2-nitrobenzaldehyde (0.450 g, 3.0 mmol, 0.9 equiv.), and Na2SO4 (0.460 g, 3.3 

mmol, 1 equiv.), in DCM (10.0 ml), gave (3RS, E) methyl 3-(2’-nitrobenzylidenamino)-

3-phenylpropionoate 300k as a yellow oil with no distillation necessary (0.852 g, 92%). 

IR (thin film): 1736 (C=O), 1636 (C=N) cm-1. H (CDCl3, 400 MHz) 2.93 (1H, dd, J= 

4.6, 15.5, CHAHB),  3.08 (1H, dd, J= 9.4, 15.5, CHAHB),  3.68 (3H, s, OCH3),  4.97 (1H, 

dd, J= 4.6, 9.4, CHN), 7.25-7.31 (1H, m, H arom.), 7.34-7.39 (2H, m, H arom.), 7.43-

7.47 (2H, m, H arom.), 7.55 (1H, dt, J= 1.5, 7.8, H5’), 7.65 (1H, broad t, J= 7.5, H4’), 

8.01 (1H, dd, J= 1.1, 8.1, H6’), 8.05 (1H, dd, J= 1.5, 7.7, H3’), 8.81 (1H, s, N=CH). C 

(CDCl3, 100 MHz) 42.93 (CH2), 51.77 (CH3) , 71.01 (CH), 124.27 (CH), 126.96 (CH), 

127.69 (CH), 128.78 (CH), 130.11 (CH), 130.82 (CH), 131.14 (C), 133.45 (CH), 141.86 

(C), 148.87 (C), 157.58 (CH), 171.29 (C). m/z (CI): 313 [(M+H)+, 100%], 163 (30), 121 

(40). HRMS: 313.1190. C17H17O4N2, requires (M+H+) 313.1188. 

 

Methyl (3RS, E) 3-phenyl-3-[(pyrid-3'-yl)methylidenamino]-propionoate  300l 
 

N

N OMe

O

 
 

Following imine formation procedure A, triethylamine (0.25 mL, 1.8 mmol, 2 equiv.), 

(3RS) methyl 3-amino-3-phenylpropionoate hydrochloride salt 307 (0.198 g, 0.9 mmol, 1 

equiv.), 3-pyridinecarboxaldehyde (0.10 mL, 1.0 mmol, 1.1 equiv.), and Na2SO4 (0.160 

g, 1.1 mmol, 1.2 equiv.), in DCM (4.0 ml), gave a mixture of the desired imino-ester and 
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un-reacted 3-pyridinecarboxaldehyde. Removal of the aldehyde by distillation (70 oC, 0.5 

mm Hg) gave pure (3RS, E) methyl 3-phenyl-3-[(pyrid-3'-yl)methylidenamino]-

propionoate 300l as an oil (0.221 g, 90%). IR (thin film): 1736 (C=O), 1644 (C=N) cm-1. 

H (CDCl3, 400 MHz) 2.90 (1H, dd, J= 4.4, 15.8, CHAHB),  3.06 (1H, dd, J= 9.4, 15.8, 

CHAHB),  3.62 (3H, s, OCH3),  4.89 (1H, dd, J= 4.4, 9.4, CHN), 7.25-7.39 (4H, m, H 

arom.), 7.42-7.47 (2H, m, H arom.), 8.14 (1H, td, J= 1.9, 7.9, H4’), 8.42 (1H, s, N=CH), 

8.64 (1H, dd, J= 1.7, 4.8, H6’), 8.88 (1H, d, J= 1.6, H2’). C (CDCl3, 100 MHz) 42.93 

(CH2), 51.64 (CH3), 71.06 (CH), 123.58 (CH), 126.90 (CH), 127.61 (CH), 128.73 (CH), 

131.64 (C), 134.86 (CH), 142.31 (C), 150.42 (CH), 151.63 (CH), 158.72 (CH), 171.59 

(C). m/z (EI): 268 (M+, 80%), 195 (85), 121 (100). HRMS: 268.1208. C16H16O2N2, 

requires (M+) 268.1212. 

 

Methyl (3RS, E) 3-(1’-phenylethylidenamino)butanoate  300m 

 

N

Me

OMe

O

 
    

Following imine formation procedure C with a reaction time of 17 h, triethylamine (0.41 

mL, 2.9 mmol, 2 equiv.), acetophenone (0.21 mL, 1.8 mmol, 1.2 equiv.), and (3RS) 

methyl 3-aminobutanoate hydrochloride salt 306 (223 mg, 1.45 mmol, 1 equiv.), in 

toluene (6.0 mL), gave a 93:7 mixture of (3RS, E), and (3RS, Z) methyl 3-(1’-

phenylethylidenamino)butanoate 300m as an oil (235 mg, 74%). Bp 150 oC at 0.6 mm 

Hg. IR (thin film): 1737 (C=O), 1635 (C=N) cm-1. H (CDCl3, 400 MHz) 1.22 (3H, d, J= 

6.4, CH3CH), 2.29 (3H, s, CH3C), 2.60 (1H, dd, J= 5.5, 15.3, CHAHB),  2.71 (1H, dd, J= 

7.8, 15.2, CHAHB),  3.65 (3H, s, OCH3),  4.16-4.26 (1H, m, CHN),  7.35-7.38  (3H, m, H 

arom.),  7.69-7.74 (2H, m, H arom.). C (CDCl3, 100 MHz) 15.49 (CH3), 21.00 (CH3), 

42.83 (CH2), 51.40 (CH3), 53.34 (CH), 126.70 (CH), 128.17 (CH), 129.34 (CH), 141.55 

(C), 164.14 (C), 172.69 (C). m/z (EI): 219 (M+, 10%), 204 (15), 188 (15), 160 (20), 146, 

(100), 145 (90), 105 (60), 84 (85). HRMS: 219.1262. C13H17O2N, requires (M+) 

219.1259. 
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Methyl (3RS) 3-(cyclohexylidenamino)-3-phenylbutanoate  300n 

 

N OMe

O

 
    

Following imine formation procedure C with a reaction time of 48 h, triethylamine (0.61 

ml, 4.39 mmol, 2 equiv.), (3RS) methyl 3-amino-3-phenylpropionate hydrochloride salt 

307 (472 mg, 2.19 mmol, 1 equiv.), cyclohexanone (0.34 mL, 3.3 mmol, 1.5 equiv.), in 

toluene (6.0 mL), gave (3RS) methyl 3-(cyclohexylidenamino)-3-phenylbutanoate 300n 

as an oil (416 mg, 73%). Bp 190 oC at 0.4 mm Hg. IR (thin film): 1736 (C=O), 1655 

(C=N) cm-1. H (CDCl3, 400 MHz) 1.40-1.72 (6H, m), 2.18-2.32 (3H, m), 2.39-2.48 (1H, 

m), 2.81 (1H, dd, J= 5.0, 15.2, CHAHB),  2.97 (1H, dd, J= 9.0, 15.2, CHAHB),  3.63 (3H, 

s, OCH3),  5.09 (1H, dd, J= 5.0, 9.0, CHN),  7.19-7.24  (1H, m, H arom.),  7.27-7.36 (4H, 

m, H arom.). C (CDCl3, 100 MHz) 25.95 (CH2), 26.93 (CH2), 27.85 (CH2), 30.02 (CH2), 

40.14 (CH2), 43.86 (CH2), 51.44 (CH3), 59.40 (CH) 126.10 (CH), 126.81 (CH), 128.46 

(CH), 143.54 (C), 172.19 (C=N), 174.36 (C=O). m/z (EI): 259 (M+, 30%), 200 (15), 186 

(40), 121 (50), 106 (40), 84 (100). HRMS: 259.1575. C16H21O2N, requires (M+) 

259.1572. 

 

(4RS, E) 4-(Benzylidenamino)-2-methoxypent-1-ene  301a  

 

N

Ph

Me

OMe

 
 

Following methylenation procedure B, using a 1.30 M solution of Cp2TiMe2 (1.28 mL, 

1.66 mmol, 1.9 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-

(benzylidenamino)butanoate 300a (179 mg, 0.87 mmol, 1 equiv.) and a 10 min reaction 

time at 65 °C (maximum pressure of 45 psi) gave crude enol ether 301a (202 mg). H 

(CDCl3, 400 MHz) 1.28 (3H, d, J= 6.4, CH3CH), 2.32-2.37 (2H, m, CHCH2), 3.48 (3H, 
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s, OCH3),  3.55-3.63 (1H, m, CHN), 3.96-3.99 (2H, m, C=CH2), 7.37-7.42 (3H, m, H 

arom.),  7.69-7.74 (2H, m, H arom.),  8.23 (1H, s, N=CH).  

 
(4RS, E) 4-(Benzylidenamino)-2-methoxy-4-phenylbut-1-ene  301b  
 

N

Ph

Ph

OMe

 

 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.63 mL, 0.82 

mmol, 2.1 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-

(benzylidenamino)-3-phenylpropionate 300b (104.8 mg, 0.39 mmol, 1 equiv.) and a 10 

min reaction time at 65 °C (maximum pressure of 25 psi) gave crude enol ether 301b 

(142.7 mg). H (CDCl3, 400 MHz) 2.71 (2H, d, J = 7.0, CHCH2), 3.53 (3H, s, OCH3), 

3.81 (1H, d, J = 2.0, C=CHAHB), 3.88 (1H, d, J = 2.0, C=CHAHB), 4.59 (1H, t, J= 7.0, 

CHN),  7.21-7.49  (8H, m, H arom.),  7.74-7.78 (2H, m, H arom.),  8.26 (1H, s, N=CH). 

 

(4RS, E) 4-(2’,4’-dimethoxybenzylidenamino)-2-Methoxy-4-phenylbut-1-ene  301c  
 

N

Ph

OMe

OMeMeO  

 
Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.40 mL, 0.51 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(2’,4’-

dimethoxybenzylidenamino)-3-phenylpropionate 300c (92.3 mg, 0.28 mmol, 1 equiv.) 

and a 3.5 min reaction time at 65 °C (maximum pressure of 24 psi) gave crude enol ether 

301c (128.9 mg). H (CDCl3, 400 MHz) 2.59-2.70 (2H, m, CHCH2), 3.51 (3H, s, OCH3),  

3.78-3.87 (8H, m, 2  OCH3, C=CH2), 4.53-4.60 (1H, m, CHN),  6.41-6.43 (1H, m, H3’),  

6.50-6.54 (1H, m, H5’),  7.22-7.29 (1H, m, H arom.),  7.30-7.37 (2H, m, H arom.),  7.41-

7.45 (2H, m, H arom.),  7.98-8.01 (1H, m, H6’), 8.57 (1H, s, N=CH). 
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(4RS, E) 4-(Benzylidenamino)-2-methoxy-5-phenylpent-1-ene  301d  

 

N

Ph

OMe

Ph

 
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (92 mL, 1.20 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-

(benzylidenamino)-4-phenylbutanoate 300d (186.4 mg, 0.66 mmol, 1 equiv.) and a 10 

min reaction time at 65 °C (maximum pressure of 44 psi) gave crude enol ether 301d 

(128.9 mg). H (CDCl3, 400 MHz): 2.45 (1H, dd, J= 8.0, 13.6, CHAHBC=), 2.52 (1H, dd, 

J= 6.0, 13.6, CHAHBC=), 2.91 (1H, dd, J= 8.4, 13.2, PhCHCHD), 2.99 (1H, dd, J= 4.8, 

13.2, PhCHCHD), 3.48 (3H, s, OCH3), 3.58-3.65 (1H, m, CHN), 3.89 (2H, s, C=CH2),  

7.10-7.14 (3H, m, H arom.), 7.18-7.23 (2H, m, H arom.), 7.35-7.47 (3H, m, H arom.), 

7.62-7.71 (2H, m, H arom.), 7.84 (1H, s, N=CH).  

 

(4RS, 1’E, 2’E) 2-Methoxy-4-[3’-(4”-methoxyphenyl)prop-2’-enylidenamino]pent-1-

ene  301e  

 

N

Me

OMe

MeO  
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.54 mL, 0.70 

mmol, 2.0 equiv.) in toluene-THF (1:1 by mass) with (3RS, 1’E, 2’E) methyl 3-[3’-(4”-

Methoxyphenyl)prop-2’-enylidenamino]butanoate 300e (91.9 mg, 0.35 mmol, 1 equiv.), 

and a 3 min reaction time at 65 °C (maximum pressure of 29 psi) gave crude enol ether 

301e (101.3 mg). H (CDCl3, 400 MHz) 1.15 (3H, d, J= 6.4, CH3CH),  2.24 (2H, d, J= 

6.4, CHCH2), 3.35-3.46 (1H, m, CHN), 3.43 (3H, s, OCH3),  3.75 (3H, s, OCH3), 3.80 

(1H, d, J = 2.0, C=CHAHB), 3.82 (1H, d, J = 2.0, C=CHAHB), 6.67-6.88 (4H, m, H2’, H3’, 

H arom.),  7.33 (2H, d, J= 8.6, H arom.),  7.85 (1H, d, J =8.2, H1’). 
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(4RS, E) 4-(2’,4’-Dimethoxybenzylidenamino)-2-methoxypent-1-ene  301f 

 

N

Me

OMe

OMeMeO  
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.93 mL, 1.21 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(2’,4’-

dimethoxybenzylidenamino)butanoate 300f (178.9 mg, 0.68 mmol, 1 equiv.) and a 2.5 

min reaction time at 65 °C (maximum pressure of 48 psi) gave crude enol ether 301f 

(198.0 mg). H (CDCl3, 400 MHz): 1.18 (3H, d, J= 6.4, CH3CH), 2.31 (1H, dd, J= 6.8, 

14.0, CHCHAHB), 2.36 (1H, dd, J= 7.2, 14.0, CHCHAHB), 3.46 (3H, s, OCH3), 3.61-3.68 

(1H, m, CHN), 3.61 (3H, s, OCH3), 3.62 (3H, s, OCH3), 3.85 (1H, d, J = 2.0, 

C=CHAHB), 3.86 (1H, d, J = 2.0, C=CHAHB), 6.40 (1H, d, J= 2.3, H3’), 6.48 (1H, dd, J= 

2.3, 8.6, H5’), 7.86 (1H, d, J= 8.6, H6’), 8.52 (1H, s, CH=N).  

 

(4RS, E) 4-(3’-Bromobenzylidenamino)-2-methoxypent-1-ene   301g 

 

N

Me

OMe

Br  
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.63 mL, 0.82 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(3’-

bromobenzylidenamino)butanoate 300g (129.6 mg, 0.46 mmol, 1 equiv.) and a 10 min 

reaction time at 65 °C (maximum pressure of 33 psi) gave crude enol ether 301g (151.4 

mg). H (CDCl3, 400 MHz): 1.22 (3H, d, J= 6.6, CH3CH), 2.31 (2H, d, J = 7.2, CHCH2), 

3.44 (3H, s, OCH3), 3.68-3.75 (1H, m, CHN), 3.81 (1H, d, J= 2.0, C=CHAHB), 3.83 (1H, 

d, J= 2.0, C=CHAHB), 7.23-7.32 (1H, m, H5’), 7.50-7.54 (1H, m, H4’), 7.58-7.61 (1H, m, 

H6’), 7.90-7.93 (1H, m, H2’), 8.1 (1H, s, N=CH).  
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(4RS, E) 4-(2’,2’-Dimethylpropylidenamino)-2-methoxy-4-phenylbut-1-ene   301h 

 

N

Ph

OMe

 
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.70 mL, 0.91 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(2’,2’-

dimethylpropylidenamino)-3-phenylbutanoate 300h (125.0 mg, 0.51 mmol, 1 equiv.) and 

a 10 min reaction time at 65 °C (maximum pressure of 33 psi) gave crude enol ether 301h 

(158.6 mg). H (CDCl3, 400 MHz): 1.07 (9H, s, CH3C), 2.50 (1H, dd, J= 9.2, 13.6, 

CHCHAHB), 2.58 (1H, dd, J= 4.4, 13.6, CHCHAHB), 3.52 (3H, s, OCH3), 3.80 (1H, d, J= 

2.0, C=CHAHB), 3.87 (1H, d, J= 2.0, C=CHAHB), 4.29 (1H, dd, J= 4.4, 9.2, CHN), 7.21-

7.24 (1H, m, H arom.), 7.30-7.35 (2H, m, H arom.), 7.40-7.43 (2H, m, H arom.), 7.47 

(1H, s, N=CH). 

 

(4RS, E) 2-Methoxy-4-phenyl-4-(propylidenamino)but-1-ene  301i 

 

N

Ph

OMe

 
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.72 mL, 0.94 

mmol, 2.1 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-

(propylidenamino)-3-phenylbutanoate 300i (114.5 mg, 86% pure by mass, 0.45 mmol, 1 

equiv.) and a 2.5 min reaction time at 65 °C (maximum pressure of 34 psi) gave crude 

enol ether 301i (151.1 mg). No characterization was performed due to instability of the 

aliphatic imine. 

 

(4RS, E) 4-(2’-Fluorobenzylidenamino)-2-methoxypent-1-ene   301j 

 

N

Me

OMe

F  
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Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.52 mL, 0.68 

mmol, 2.0 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(2’-

fluorobenzylidenamino)-butanoate 300j (75.1 mg, 0.34 mmol, 1 equiv.), and a 10 min 

reaction time at 65 °C (maximum pressure of 23 psi) gave crude enol ether 301j (100.9 

mg). H (CDCl3, 400 MHz) 1.34 (3H, d, J= 6.4, CH3CH),  2.40 (2H, d, J= 6.4, CHCH2),  

3.51 (3H, s, OCH3),  3.62-3.66 (1H, m. CHN), 3.84 (1H, d, J= 2.0, C=CHAHB), 3.87 (1H, 

d, J= 2.0, C=CHAHB), 6.93-7.00 (1H, m, H3’), 7.04-7.07 (1H, m, H5’), 7.23-7.29 (1H, m, 

H4’), 7.80-7.86 (1H, m, H6’), 8.38 (1H, s, N=CH). 

  

(4RS, E) 2-Methoxy-4-(1’-phenylethylidenamino)pent-1-ene   301m  

 

N

Ph

Me

OMe

Me  
    

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.94 mL, 1.22 

mmol, 1.9 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(1’-

phenylethylidenamino)butanoate 300m (140.6 mg, 0.64 mmol, 1 equiv.), and a 10 min 

reaction time at 65 °C (maximum pressure of 42 psi) gave crude enol ether 301m (155.7 

mg). H (CDCl3, 400 MHz) 1.20 (3H, d, J= 6.2, CH3CH), 2.21 (3H, s, CH3C), 2.35 (1H, 

dd, J= 6.4, 13.6, CHCHAHB), 2.41 (1H, dd, J= 7.6, 13.6, CHCHAHB), 3.52 (3H, s, 

OCH3),  3.86 (1H, d, J = 2.0, C=CHAHB), 3.88 (1H, d, J = 2.0, C=CHAHB), 3.92-4.01 

(1H, m, CHN),  7.33-7.36  (3H, m, H arom.), 7.68-7.73 (2H, m, H arom.).  

 

 

(4RS, E) 4-(cyclohexylidenamino)-2-methoxy-4-phenylbut-1-ene  301n 

 

N

Ph

OMe

 
    

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.90 mL, 1.17 

mmol, 2.0 equiv.) in toluene-THF (1:1 by mass) with (3RS) methyl 3-

(cyclohexylidenamino)-3-phenylbutanoate 300n (75.1 mg, 0.34 mmol, 1 equiv.), and a 10 
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min reaction time at 65 °C (maximum pressure of 42 psi) gave crude enol ether 301n 

(153.5 mg). H (CDCl3, 400 MHz) 1.40-1.75 (6H, m), 2.18-2.45 (4H, m), 2.55-2.66 (2H, 

m, CHCH2), 3.53 (3H, s, OCH3), 3.82 (1H, d, J= 2.0, C=CHAHB), 3.85 (1H, d, J= 2.0, 

C=CHAHB), 4.86 (1H, dd, J= 5.2, 8.0, CHN),  7.19-7.45  (5H, m, H arom.). 

 

(2RS, 6RS) 2-Methyl-6-phenylpiperidin-4-one  302a 

 

N
H

O

H H
 

 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (1.28 mL, 1.66 

mmol, 1.9 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-

(benzylidenamino)-butanoate 300a (179 mg, 0.87 mmol, 1 equiv.) and a 10 min reaction 

time at 65 °C (maximum pressure of 45 psi) gave crude enol ether 301a (202 mg). 

Following cyclization procedure D, triisobutylaluminium (0.62 ml, 0.62 mmol, 1.0 M in 

hexanes, 2 equiv.), and a portion of the crude enol ether 301a (71.1 mg), in DMSO (10.0 

ml) yielded the crude piperidinone. Column chromatography [SiO2, DCM-MeOH (50:1)] 

gave (2RS, 6RS) 2-methyl-6-phenylpiperidin-4-one 302a as a solid (39.4 mg, 68%). Rf 

[SiO2, DCM-MeOH (20:1)]: 0.44. Mp 81-82 oC. Lit:130 mp 65-67 oC. H (CDCl3, 400 

MHz) 1.26 (3H, d, J= 6.2, CH3CH), 2.23 (1H, dd, J= 11.6, 14.0, H3ax),  2.41 (1H, broad 

dd, J= 2.8, 14.0, H3eq),  2.48-2.52 (2H, m, H5),  3.12  (1H, dqd, J= 2.9, 6.1, 12.0, H2),  

3.96 (1H, m, H6),  7.27-7.41 (5H, m, H arom.). C (CDCl3, 100 MHz) 22.61 (CH3), 49.76 

(CH2), 49.89 (CH2), 52.32 (CH), 61.02 (CH), 126.51 (CH), 127.85 (CH), 128.75 (CH) 

142.58 (C), 208.93 (C). 1H NMR data in agreement with the literature.131 

 

(2RS, 6SR) 2,6-Diphenylpiperidin-4-one  302b 

  

N
H

O

H H
 

 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.63 mL, 0.82 

mmol, 2.1 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-
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(benzylidenamino)-3-phenylpropionate 300b (105 mg, 0.39 mmol, 1 equiv.) and a 10 min 

reaction time at 65 °C (maximum pressure of 25 psi) gave crude enol ether 301b (143 

mg). Following cyclization procedure D, triisobutylaluminium (0.78 ml, 0.78 mmol, 1.0 

M in hexanes, 2 equiv.), and crude enol ether 301b (143 mg), in DMSO (13.0 ml) yielded 

the crude piperidinone. Column chromatography [SiO2, DCM-MeOH (100:1)] gave (2RS, 

6SR) 2,6-diphenylpiperidin-4-one 302b as a solid (68.9 mg, 70%). Rf [SiO2, DCM-

MeOH (40/1)]: 0.31. Mp 99-100 oC. H (CDCl3, 400 MHz) 2.48-2.62 (4H, m, H3 & H5), 

4.01 (2H, dd, J= 3.6, 10.8, H2 & H6), 7.16-7.41 (10H, m, H arom.). C (CDCl3, 100 

MHz) 50.38 (CH2), 61.16 (CH), 126.54 (CH), 127.93 (CH), 128.76 (CH) 142.68 (C), 

208.24 (C). 1H NMR data in agreement with the literature.126 

 

(2RS, 6SR) 2-(2’,4’-Dimethoxyphenyl)-6-phenylpiperidin-4-one  302c 

 

N
H

O

H H

OMe

MeO  
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.40 mL, 0.51 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(2’,4’-

dimethoxybenzylidenamino)-3-phenylpropionate 300c (92.3 mg, 0.28 mmol, 1 equiv.) 

and a 3.5 min reaction time at 65 °C (maximum pressure of 24 psi) gave crude enol ether 

301c (128.9 mg). Following cyclization procedure D, triisobutylaluminium (0.56 ml, 0.56 

mmol, 1.0 M in hexanes, 2 equiv.), and crude enol ether 301c (128.9 mg), in DMSO 

(10.0 ml) yielded the crude piperidinone. Column chromatography [SiO2, DCM-MeOH 

(50:1)] gave (2RS, 6SR) 2-(2’,4’-dimethoxyphenyl)-6-phenylpiperidin-4-one 302c as an 

oil (57.9 mg, 66%). Rf [SiO2, DCM-MeOH (20:1)]: 0.70. IR (thin film): 1730 (C=O) cm-

1. H (CDCl3, 400 MHz) 2.51-2.66 (4H, m, H3 & H5),  3.80 (3H, s, OCH3),  3.81 (3H, s, 

OCH3),  4.10 (1H, dd, J= 5.6, 9.2, H6),  4.41 (1H, dd, J= 3.3, 11.5, H2),  6.46 (1H, d, J= 

2.4, H3’),  6.52 (1H, dd, J= 2.4, 8.5, H5’),  7.26-7.39 (3H, m, H arom.),  7.44-7.50 (3H, 

m, H arom.). C (CDCl3, 100 MHz) 47.30 (CH2), 49.32 (CH2), 52.86 (CH), 54.28 (CH3), 

54.33 (CH3), 60.13 (CH), 97.37 (CH), 103.35 (CH), 122.19 (C), 125.56 (CH), 125.90 

(CH), 126.73 (CH), 127.68 (CH), 141.99 (C), 156.37 (C), 159.14 (C), 207.94 (C). m/z 

(EI): 311 (M+, 75%), 192 (100), 164 (90), 149 (60), 121 (40). HRMS: 311.1523 

C19H21O3N, requires (M+) 311.1521. 
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(2RS, 6RS) 2-Benzyl-6-phenylpiperidin-4-one  302d 

 

N
H

O

H H
 

 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (92 mL, 1.20 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, 3E) methyl 3-

(benzylidenamino)-4-phenylbutanoate 300d (186.4 mg, 0.66 mmol, 1 equiv.) and a 10 

min reaction time at 65 °C (maximum pressure of 44 psi) gave crude enol ether 301d 

(128.9 mg). Following cyclization procedure B, p-toluene sulfonic acid (73 mg, 0.43 

mmol, 2 equiv.), and crude enol ether 301d (64.0 mg), in DCM (5.0 ml) yielded the crude 

piperidinone. Column chromatography [SiO2, DCM-MeOH (50:1)] gave (2RS, 6RS) 2-

benzyl-6-phenylpiperin-4-one 302d as a colorless oil (34.5 mg, 61%). Rf [SiO2, DCM-

MeOH (20/1)]: 0.50. IR (thin film): 1714 (C=O) cm-1. H (CDCl3, 400 MHz): 2.25 (1H, 

dd, J= 11.6, 14.0, H3ax), 2.38 (1H, dd, J= 2.5, 14.5, H3eq), 2.39-2.44 (2H, m, H5), 2.73 

(1H, dd, J= 8.2, 13.5, CHAHBCH), 2.81 (1H, dd, J= 5.0, 13.5, CHAHBCH), 3.15 (1H, 

dddd, J= 2.9, 5.2, 8.1, 11.3, H2), 3.74-3.82 (1H, m, H6), 7.12-7.33 (10H, m, H arom.). C 

(CDCl3, 100 MHz): 43.34 (CH2), 48.09 (CH2), 50.54 (CH2), 57.82 (CH), 60.79 (CH), 

126.41 (CH), 126.70 (CH), 127.78 (CH), 128.72 (CH), 128.97 (CH), 129.14 (CH), 

137.63 (C), 142.64 (C), 208.46 (C). m/z (CI): 266 [(M+H)+, 100%], 174.2 (15). HRMS: 

266.1544 C18H20ON requires (M+H+), 266.1545.   

 

 

(2RS, 6RS, E) 2-[2’-(4”-Methoxyphenyl)vinyl]-6-methylpiperidin-4-one  302e 

 

N
H

O

H H

MeO  
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Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.54 mL, 0.70 

mmol, 2.0 equiv.) in toluene-THF (1:1 by mass) with (3RS, 1’E, 2’E) methyl 3-[3’-(4”-

methoxyphenyl)prop-2’-enylidenamino]butanoate 300e (91.9 mg, 0.35 mmol, 1 equiv.), 

and a 3 min reaction time at 65 °C (maximum pressure of 29 psi) gave crude enol ether 

301e (101.3 mg). Following cyclization procedure D, triisobutylaluminium (0.70 ml, 0.70 

mmol, 1.0 M in hexanes, 2 equiv.), and the crude enol ether 301e (101.3 mg), in DMSO 

(10.0 ml) gave the crude piperidinone. Column chromatography [SiO2, DCM/MeOH 

(50/1)] gave (2RS, 6RS, E) 2-[2’-(4”-methoxyphenyl)vinyl]-6-methylpiperidin-4-one 

302e as an oil (44.0 mg, 51%). Rf [SiO2, DCM/MeOH (20/1)] 0.23. IR (thin film): 1703 

(C=O), 1604 (C=C) cm-1. H (CDCl3, 400 MHz) 1.24 (3H, d, J= 6.2, CH3CH),  2.15 (1H, 

broad ddd, J= 1.1, 11.7, 14.0, H5ax),  2.33 (1H, ddd, J= 1.1, 11.4, 14.1, H3ax),  2.34-2.37 

(1H, m, H5eq), 2.36 (1H, ddd, J= 2.1, 3.3, 14.0, H3eq), 3.07 (1H, dqd, J= 3.0, 6.1, 11.7, 

H6),  3.59 (1H, dddd, J= 1.0, 3.4, 7.3, 11.7, H2),  3.81 (3H, s, OCH3),  6.06 (1H, dd, J= 

7.2, 15.8, H1’),  6.52 (1H, broad d, J= 15.8, H2’),  6.83-6.88 (2H, d, J= 8.8, H3’’ & 

H5’’), 7.28-7.33 (2H, d, J= 8.4, H2’’ & H6’’). C (CDCl3, 100 MHz) 22.64 (CH3), 48.00 

(CH2), 49.77 (CH2), 51.88 (CH), 55.27 (CH3), 58.98 (CH), 114.04 (CH), 127.61 (CH), 

128.29 (CH), 129.11 (C), 130.45 (CH), 159.42 (C), 208.53 (C). m/z (EI): 245 (M+, 

100%), 160 (70), 121 (75). HRMS: 245.1415 C15H19O2N, requires (M+) 245.1416. 

 

(2RS, 6RS) 2-(2’, 4’-Dimethoxyphenyl)-6-methylpiperidin-4-one  302f 

 

N
H

O

H H

OMe

MeO  
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.93 mL, 1.21 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(2’,4’-

dimethoxybenzylidenamino)butanoate 300f (178.9 mg, 0.68 mmol, 1 equiv.) and a 2.5 

min reaction time at 65 °C (maximum pressure of 48 psi) gave crude enol ether 301f 

(198.0 mg). Following cyclization procedure C, p-toluene sulfonic acid (106 mg, 0.62 

mmol, 2 equiv.), and a portion of the crude enol ether 301f (90.9 mg), in DME (3.0 ml) 

yielded the crude piperidinone. Column chromatography [SiO2, DCM-MeOH (50:1)] 

gave (2RS, 6RS) 2-(2’, 4’-dimethoxyphenyl)-6-methylpiperidin-4-one 302f as an oil (44.4 

mg, 58%).  Rf [SiO2, DCM-MeOH (20:1)]: 0.24. IR (thin film): 1713 (C=O) cm-1. H 
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(CDCl3, 400 MHz): 1.22 (3H, d, J= 6.2, CH3CH), 2.17 (1H, dd, J= 11.8, 13.9, H5ax), 2.40 

(1H, ddd, J= 1.8, 2.7, 14.0, H5eq), 2.43-2.54 (2H, m, H3), 3.11 (1H, dqd, J= 2.9, 6.1, 

12.0, H6), 3.797 (3H, s, OCH3), 3.800 (3H, s, OCH3), 4.22 (1H, dd, J= 4.1, 10.8, H2), 

6.45 (1H, d, J= 2.4, H3’), 6.49 (1H, dd, J= 2.4, 8.4, H5’), 7.32 (1H, d, J= 8.4, H6’). C 

(CDCl3, 100 MHz): 22.72 (CH3), 47.94 (CH2), 49.99 (CH2), 52.32 (CH), 54.43 (CH), 

55.26 (CH3), 55.35 (CH3), 98.53 (CH), 104.19 (CH), 122.88 (C), 127.25 (CH), 157.45 

(C), 160.09 (C), 209.73 (C). m/z (EI+): 249 ((M)+, 100%), 206 (65), 192 (90), 164 (100), 

149 (75), 121 (45). HRMS: 249.1362 C14H19O3N requires (M+), 249.1365.   

 

 

(2RS, 6RS) 2-(3’-Bromophenyl)-6-methylpiperidin-4-one  302g 

 

N
H

O

H H

Br  
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.63 mL, 0.82 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(3’-

bromobenzylidenamino)butanoate 300g (129.6 mg, 0.46 mmol, 1 equiv.) and a 10 min 

reaction time at 65 °C (maximum pressure of 33 psi) gave crude enol ether 301g (151.4 

mg). Following cyclization procedure C, p-toluene sulfonic acid (157 mg, 0.91 mmol, 2 

equiv.), and crude enol ether 301g (151.4 mg), in DME (5.0 ml) yielded the crude 

piperidinone. Column chromatography [SiO2, DCM-MeOH (100:3)] gave (2RS, 6RS) 2-

(3’-bromophenyl)-6-methylpiperidin-4-one 302g as an oil (58.6 mg, 48%).  Rf [SiO2, 

DCM-MeOH (100:3)]: 0.51. IR (thin film): 1714 (C=O) cm-1. H (CDCl3, 400 MHz): 

1.26 (3H, d, J= 6.2, CH3CH), 2.21 (1H, ddd, J= 0.7, 11.7, 13.9, H5ax), 2.37-2.44 (2H, m, 

H5eq, H3ax), 2.48 (1H, ddd, J= 2.0, 3.7, 14.0, H3eq), 3.10 (1H, dqd, J= 3.0, 6.2, 11.6, H6), 

3.92 (1H, dd, J= 3.7, 11.2, H2), 7.21 (1H, t, J= 7.8, H5’), 7.30 (1H, broad d, J= 7.7, H6’), 

7.42 (1H, ddd, J= 1.2, 1.9, 7.9, H4’), 7.59 (1H, t, 1.8, H2’). C (CDCl3, 100 MHz): 22.58 

(CH3), 49.64 (CH2), 49.78 (CH2), 52.20 (CH), 60.39 (CH), 122.81 (C), 125.24 (CH), 

129.59 (CH), 130.28 (CH), 130.93 (CH), 144.95 (C), 208.13 (C). m/z (EI): 269 (M+, 

15%). 267 (M+, 15%), 212 (10), 210 (10), 184 (15), 182 (15), 85 (60), 83 (100). HRMS: 

269.0239, and 267.0258, C12H14ON81Br requires (M+), 269.0239, C12H14ON79Br requires 

(M+), 267.0259. 
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(2RS, 6SR) 2-(1’, 1’-Dimethylethyl)-6-phenylpiperidin-4-one  302h 

 

N
H

O

H H
 

 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.70 mL, 0.91 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(2’,2’-

dimethylpropylidenamino)-3-phenylbutanoate 300h (125.0 mg, 0.51 mmol, 1 equiv.) and 

a 10 min reaction time at 65 °C (maximum pressure of 33 psi) gave crude enol ether 301h 

(158.6 mg). Following cyclization procedure C, p-toluene sulfonic acid (89 mg, 0.52 

mmol, 2 equiv.), and a portion of the crude enol ether 301h (80.2 mg), in DME (4.0 ml) 

yielded the crude piperidinone. Column chromatography [SiO2, DCM-MeOH (50:1)] 

gave (2RS, 6SR) 2-(1’, 1’-dimethylethyl)-6-phenylpiperidin-4-one 302h as an oil (34.5 

mg, 58 %).  Rf [SiO2, DCM-MeOH (20:1)]: 0.30. IR (thin film): 1714 (C=O) cm-1. H 

(CDCl3, 400 MHz): 0.98 (9H, s, CH3C), 2.27 (1H, broad t, J= 12.6, H3ax), 2.40-2.47 (2H, 

m, H3eq & H5ax), 2.50 (1H, ddd, 2.0, 3.7, 13.7, H5eq), 2.69 (1H, dd, J= 2.8, 11.8, H2), 

3.89 (1H, dd, J= 3.7, 11.2, H6), 7.27-7.33 (1H, m, H arom.), 7.34-7.39 (2H, m, H arom.), 

7.41-7.45 (2H, m, H arom.). C (CDCl3, 100 MHz): 26.18 (CH3), 33.64 (C), 43.37 (CH2), 

50.57 (CH2), 60.95 (CH), 65.64 (CH), 126.53 (CH), 127.73 (CH), 128.68 (CH), 143.27 

(C), 210.14 (C). m/z (CI+): 232 [(M+H)+, 100%], 174 (20). HRMS: 232. 1703 C15H22ON 

requires (M+H)+, 232.1701. 

 

(2SR, 6SR) 2-Ethyl-6-phenylpiperidin-4-one  302i 

 

N
H

O

H H
 

 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.72 mL, 0.94 

mmol, 2.1 equiv.) in toluene-THF (1:1 by mass) with (3RS, 3E) methyl 3-

(propylidenamino)-3-phenylbutanoate 300i (114.5 mg, 86% pure by mass, 0.45 mmol, 1 

equiv.) and a 2.5 min reaction time at 65 °C (maximum pressure of 34 psi) gave crude 
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enol ether 301i (151.1 mg). Following cyclization procedure C, p-toluene sulfonic acid 

(180 mg, 1.05 mmol, 2.3 equiv.), and the crude enol ether 301i (151.1 mg), in DME (5.0 

ml) yielded the crude piperidinone. Column chromatography [SiO2, DCM-MeOH 

(100:3)] gave (2SR, 6SR) 2-ethyl-6-phenylpiperidin-4-one 302i as an oil (32.4 mg, 35%).  

Rf [SiO2, DCM-MeOH (20:1)]: 0.48. IR (thin film): 1714 (C=O) cm-1. H (CDCl3, 400 

MHz): 0.97 (3H, t, J= 7.5, CH3CH2), 1.54-1.65 (2H, m, CH3CH2), 2.21 (1H, dd, J= 11.8, 

13.7, H3ax), 2.45 (1H, ddd, J= 1.4, 2.7, 13.9, H3eq), 2.48-2.54 (2H, m, H5), 2.90 (1H, dtd, 

J= 2.8, 6.3, 11.9, H2), 3.89-3.97 (1H, m, H6), 7.27-7.32 (1H, m, H arom.), 7.32-7.43 (4H, 

m, H arom.). C (CDCl3, 100 MHz): 10.06 (CH3), 29.74 (CH2), 47.77 (CH2), 50.42 

(CH2), 58.26 (CH), 61.03 (CH), 126.53 (CH), 127.82 (CH), 128.73 (CH), 142.76 (C), 

208.98 (C). m/z (EI): 203 (M+, 15%), 174 (20), 149 (20), 131 (20), 104 (20), 84 (100). 

HRMS: 203.1313 C13H17ON requires (M+), 203.1310. 

 

(2RS, 6RS) 2-(2’-Fluorophenyl)-6-methylpiperidin-4-one  302j 

 

N
H

Me

O

F

H H
 

 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.52 mL, 0.68 

mmol, 2.0 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(2’-

fluorobenzylidenamino)-butanoate 300j (75.1 mg, 0.34 mmol, 1 equiv.), and a 10 min 

reaction time at 65 °C (maximum pressure of 23 psi) gave crude enol ether 301j (100.9 

mg). Following cyclization procedure D, triisobutylaluminium (0.67 ml, 0.67 mmol, 1.0 

M in hexanes, 2 equiv.), and the crude enol ether 301j (100.9 mg), in DMSO (10.0 ml) 

gave the crude piperidinone. Column chromatography [SiO2, DCM-MeOH (50:1)] gave 

(2RS, 6RS) 2-(2’-fluorophenyl)-6-methylpiperidin-4-one 302j as a solid (44.8 mg, 64%). 

Rf (SiO2, DCM/MeOH 50/1): 0.50. Mp 84-85 oC. IR (thin film): 1716 (C=O) cm-1. H 

(CDCl3, 400 MHz) 1.27 (3H, d, J= 6.2, CH3CH), 2.21 (1H, ddd, J= 0.7, 11.7, 14.1, 

H5ax), 2.43 (1H, ddd, J= 2.1, 2.8, 14.1, H5eq),  2.47 (1H, ddd, J= 0.7, 11.6, 13.9, H3ax), 

2.55 (1H, ddd, J= 2.0, 3.5, 14.0, H3eq), 3.15  (1H, dqd, J= 2.9, 6.2, 11.7, H6),  4.31 (1H, 

dd, J= 3.4, 11.5, H2),  7.05 (1H, ddd, J= 1.1, 8.2, 10.6, H3’), 7.17 (1H, dt, J=1.1, 7.6, 

H5’), 7.28 (1H, dddd, J= 1.8, 5.3, 7.6, 8.2. H4’), 7.54 (1H, dt, 1.7, 7.5, H6’).  C (CDCl3, 

100 MHz) 22.65 (CH3), 48.12 (CH2), 49.82 (CH2) , 52.30 (CH), 53.77 (CH, d, J= 2.9), 
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115.62 (CH, d, J= 22.3), 124.63 (CH, d, J= 4.0), 127.52 (CH, d. J= 3.8), 129.16 (CH, d, 

J= 7.9), 129.31 (C, d, J= 13.5), 160.06 (C, d, J= 244.2), 208.36 (C). m/z (EI): 207 (M+, 

20%), 164 (15%), 149 (20%), 122 (25), 84 (100). HRMS: 207.1057 C12H14ONF, requires 

(M+) 207.1059. 

 

(2RS, 6RS) 2,6-Dimethyl-2-phenylpiperidin-4-one  302m  

  

N
H

Me

O

R
R' H  

A) R=Ph, R’=Me 

B) R=Me, R’=Ph 

A:B = 89:11 

 

Following methylenation procedure  B, a 1.30 M solution of Cp2TiMe2 (0.94 mL, 1.22 

mmol, 1.9 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-(1’-

phenylethylidenamino)butanoate 300m (140.6 mg, 0.64 mmol, 1 equiv.), and a 10 min 

reaction time at 65 °C (maximum pressure of 42 psi) gave crude enol ether 301m (155.7 

mg). Following cyclization procedure D, triisobutylaluminium (0.64 mL, 0.64 mmol, 1.0 

M in hexanes, 2 equiv.), and a portion of the crude enol ether 301m (78.1 mg), in DMSO 

(11.0 ml) gave an 89:11 ratio of the 2,6-syn, and the 2.6-anti 2,6-dimethyl-2-

phenylpiperidin-4-one 302m as an oil (44.8 mg, 68%) after column chromatography 

[SiO2, DCM-MeOH (40:1)]. Repeated chromatography allowed samples of each 

diastereomer to be isolated pure. 2,6-syn 302m: Rf [SiO2, DCM-MeOH (40/1)]: 0.25. IR 

(thin film): 1715 (C=O) cm-1. H (CDCl3, 400 MHz) 1.28 (3H, d, J= 6.2, CH3CH), 1.43 

(3H, s, CH3C), 2.08 (1H, ddd, J= 0.9, 11.4, 13.6, H5ax), 2.44 (1H, ddd, J= 1.8, 3.2, 13.6, 

H5eq), 2.56 (1H, broad d, J= 13.2, H3ax), 2.63 (1H, dd, J= 1.8, 13.2, H3eq), 3.42 (1H, dqd, 

J= 3.3, 6.2, 11.3. H6), 7.26-7.30 (1H, m, H arom.), 7.32-7.39 (2H, m, H arom.), 7.54-7.59 

(2H, m, H arom.). C (CDCl3, 100 MHz) 23.12 (CH3), 25.67 (CH3), 47.27 (CH), 50.19 

(CH2), 54.08 (CH2), 58.95 (CH), 124.65 (CH), 127.03 (CH), 128.43 (CH), 148.17 (C), 

209.63 (C=O). m/z (EI): 203 (M+, 10%), 188 (10%), 160 (5%), 149 (10%), 146 (10), 84 

(100). HRMS: 203.1313 C13H17ON, requires (M+) 203.1310. 2,6-anti 302m: Rf [SiO2, 

DCM-MeOH (40:1)]: 0.21. IR (thin film): 1714 (C=O) cm-1. H (CDCl3, 400 MHz) 1.14 

(3H, d, J= 6.2, CH3CH), 1.48 (3H, s, CH3C), 2.01 (1H, broad dd, J= 12.2, 13.7, H5ax), 

2.23 (1H, ddd, J= 1.9, 2.9, 14.3, H5eq), 2.43 (1H, broad d, J= 14.0, H3ax), 2.67-2.77 (1H, 
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m, H6), 3.17 (1H, dd, J= 1.8, 14.4, H3eq), 7.18-7.40 (5H, m, H arom.). C (CDCl3, 100 

MHz) 25.54 (CH3), 34.11 (CH3), 47.15 (CH), 49.65 (CH2), 51.67 (CH2), 59.65 (CH), 

125.90 (CH), 126.81 (CH), 128.68 (CH), 145.02 (C), 209.24 (C). m/z (CI): 204 [(M+H)+, 

100%]. HRMS: 204.1389 C13H18ON, requires (M+H+), 204.1388. 

 

(2RS) 2-Phenyl-1-aza-spiro-5,5-undecan-4-one  302n  

 

N
H

O

 
 

Following methylenation procedure B, a 1.30 M solution of Cp2TiMe2 (0.90 mL, 1.17 

mmol, 2.0 equiv.) in toluene-THF (1:1 by mass) with (3RS) methyl 3-

(cyclohexylidenamino)-3-phenylbutanoate 300n (75.1 mg, 0.34 mmol, 1 equiv.), and a 10 

min reaction time at 65 °C (maximum pressure of 42 psi) gave crude enol ether 301n 

(153.5 mg). Following cyclization procedure D, triisobutylaluminium (0.48 mL, 0.48 

mmol, 1.0 M in hexanes, 2 equiv.), and a portion of the crude enol ether 301n (63.7 mg), 

in DMSO (8.0 ml) gave the crude piperidinone. Column chromatography [SiO2, DCM-

MeOH (40:1)] gave (2RS) 2-phenyl-1-aza-spiro-5,5-undecan-4-one 302n as an oil (30.6 

mg, 52%). Rf [SiO2, DCM-MeOH (40:1)]: 0.25. IR (thin film): 1711 (C=O) cm-1. H 

(CDCl3, 400 MHz) 1.31-1.78 (10H, m, CH2), 2.31-2.54 (4H, m H3 & H5), 4.16 (1H, dd, 

J= 4.7, 10.2, H2), 7.27-7.33 (1H, m, H arom.), 7.34-7.39 (2H, m, H arom.), 7.41-7.45 

(2H, m. H arom.). C (CDCl3, 100 MHz) 21.50 (CH2), 21.73 (CH2), 25.56 (CH2), 32.50 

(CH2), 40.32 (CH2), 50.03 (CH2), 53.08 (CH2), 54.65 (CH), 55.42 (C), 126.68 (CH), 

127.76 (CH), 128.70 (CH), 143.10 (C), 209.80 (C). m/z (EI): 243 (M+, 60%), 200 (100), 

187 (55), 131 (50), 104 (45), 83 (25). HRMS: 243.1624 C16H19ON, requires (M+) 

243.1623. 

 

(3RS) Methyl 3-aminobutanoate, hydrochloride salt  306 

 

H3N OMe

O

Cl  
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Using: thionyl chloride (2.80 ml , 38.6 mmol, 2 equiv.), (3RS) 3-aminobutyric acid 303 

(1.98 g, 19.2 mmol, 1 equiv.), in MeOH (33.0 mL), and following the general 

esterification procedure gave (3RS) methyl 3-aminobutanoate hydrochloride salt 306 as 

an oil (2.90 g, 98%). IR (thin film): 1731 (C=O) cm-1. H (CDCl3, 400 MHz) 1.50 (3H, d, 

J= 6.5, CH3CH),  2.75 (1H, dd, J= 5.7, 17.0, CHAHB),  2.97 (1H, dd, J= 6.7, 17.0, 

CHAHB),  3.73 (3H, s, OCH3),  3.76-3.87 (1H, broad m, CHN),  8.35  (3H, broad s, NH3). 

C (CDCl3, 100 MHz) 18.52 (CH3), 37.99 (CH2), 45.08 (CH) , 52.34 (CH3), 171.10 (C). 

m/z (CI): 118 (M+, 100%). HRMS: 118.0867 C5H12O2N requires (M+), 118.0868. 1H and 
13C NMR consistent but different with the literature NMR spectra, which used D2O as the 

solvent.132 

 

 

(3RS) Methyl 3-amino-3-phenylpropionate, hydrochloride salt  307 

 

H3N OMe

O

Cl  
 

Using: thionyl chloride (3.22 ml, 44.4 mmol, 2 equiv.), (3RS) 3-amino-3-

phenylpropionoic acid 304 (3.663 g, 22.2 mmol, 1 equiv.), in MeOH (40.0 mL) and 

following the general esterification procedure gave (3RS) Methyl 3-amino-3-

phenylpropionate hydrochloride salt 307 as a solid (4.660 g, 98%). Mp 145-147 oC. IR 

(thin film): 1734 (C=O) cm-1. H (CDCl3, 400 MHz) 3.02 (1H, dd, J= 7.2, 16.8, CHAHB),  

3.29 (1H, dd, J= 6.8, 16.8, CHAHB),  3.60 (3H, s, OCH3),  4.65-4.78 (1H, broad m, 

CHN),  7.30-7.39 (3H, m, H arom.),  7.49-7.56 (2H, m, H arom.),  8.75  (3H, broad s, 

NH3). C (CDCl3, 100 MHz) 38.37 (CH2), 52.23 (CH) , 52.28 (CH3), 127.55 (CH), 

129.14 (CH), 129.34 (CH), 135.24 (C), 170.06 (C). m/z (CI): 180 (M+, 100%), 163 (33), 

106 (20). HRMS: 180.1024 C10H14O2N requires (M+), 180.1025. Consistent with but 

different from data for the free base.133 

 

 

 

 

 



 
162

(3RS) Methyl 3-amino-4-phenylbutanoate, hydrochloride salt  308 

 

H3N OMe

O

Cl  
 

Using: thionyl chloride (0.41 mL, 5.6 mmol, 2 equiv.), (3RS) 3-amino-4-phenylbutyric 

acid 305 (500 mg, 2.8 mmol, 1 equiv.), in MeOH (5.0 mL) and following the general 

esterification procedure gave (3RS) methyl 3-amino-4-phenylbutyrate hydrochloride salt 

308 as a solid (640 mg, quantitative). Mp 133-135 oC. IR (thin film): 1716 (C=O) cm-1. 

H (DMSO, 400 MHz): 2.56 (1H, dd, J= 5.8, 16.7, CHAHB), 2.71 (1H, dd, J= 6.9, 16.7, 

CHAHB), 2.82 (1H, dd, J= 8.6, 13.6, CHCHD), 3.10 (1H, dd, J= 5.5, 13.6, CHCHD), 3.53 

(3H, s, OCH3), 3.62-3.72 (1H, m, CHN), 7.23-7.28 (3H, m, H arom.), 7.30-7.37 (2H, m, 

H arom.), 8.40 (3H, s, NH3). C (CDCl3, 100 MHz): 35.79 (CH2), 37.94 (CH2), 48.80 

(CH), 51.71 (CH3), 126.96 (CH), 128.59 (CH), 129.40 (CH), 135.92 (C), 170.10 (C=O). 

m/z (CI): 194 (M+, 100%), 102 (20). HRMS: 194.1184 C11H16N1O2 requires (M+), 

194.1181.134 

 

Methyl 2-aminobenzoate  310 

 

NH2

OMe

O

 
 

Using: thionyl chloride (2.12 mL, 29.2 mmol, 2 equiv.), 2-aminobenzoic acid 309 (2.001 

g, 14.6 mmol, 1 equiv.), in MeOH (25 mL) and following the general esterification 

procedure, but using a reaction time of 39 h instead of 3 h, gave the hydrochloride salt as 

a solid. The salt is taken up in water which is basified with 1M NaOH, and extracted with 

DCM. The organic layer is dried over Na2SO4 filtered and concentrated in vacuo to give 

methyl 2-aminobenzoate 310 as an oil (1.733 g, 78%). IR (thin film): 1694 (C=O) cm-1. 

H (CDCl3, 400 MHz): 3.86 (1H, s, OCH3), 5.71 (2H, broad s, NH2), 6.61-6.67 (2H, m, H 

arom.), 7.26 (1H, dt, J= 1.6, 7.7, H4), 7.85 (1H, dd, J= 1.6, 8.0, H6). C (CDCl3, 100 

MHz): 51.50 (CH3), 110.70 (C), 116.26 (CH), 116.65 (CH), 131.17 (CH), 134.06 (CH), 
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150.33 (C), 168.54 (C). m/z (EI): 151 (M+, 80%), 119 (100). HRMS: 151.0636 

C8H9N1O2 requires (M+), 151.0633. 

 

Methyl 2-(benzylidenamino)benzoate  311 

 

OMe

O

N

 
    

Following imine formation procedure C with a 48 h reaction time, triethylamine (0.60 

mL, 4.3 mmol, 2 equiv.), benzaldehyde (0.26 mL, 2.6 mmol, 1.2 equiv.), and methyl 2-

aminobenzoate hydrochloride salt 310 (399 mg, 2.1 mmol, 1 equiv.), in toluene (9.0 mL), 

gave methyl 2-(benzylideneamino)benzoate 311 as an oil (141 mg, 28 %). Bp 180 oC at 

0.6 mm Hg. IR (thin film): 1689, 1578 cm-1. H (CDCl3, 400 MHz) 3.84 (3H, s, OCH3), 

6.95 (1H, dd, J= 0.9, 7.9, H3), 7.23 (1H, dt, J= 1.0, 7.6, H5), 7.45-7.53 (4H, m, H arom.). 

7.88-7.93 (3H, m, H arom.), 8.29 (1H, s, N=CH). C (CDCl3, 100 MHz) 52.04 (CH3), 

120.21 (CH), 123.12 (C), 124.68 (CH), 128.77 (CH), 128.90 (CH), 130.72 (CH), 131.51 

(CH), 132.93 (CH), 136.07 (C), 153.39 (C), 160.62 (CH), 167.14 (C). m/z (EI): 239 (M+, 

30%), 224 (100), 151 (30), 119 (35). HRMS: 239.0948. C15H13O2N, requires (M+) 

239.0946. 

 

 

(2RS, 6RS) 2-Methyl-6-phenylpiperidin-4-one, hydrochloride salt  315a 

 

N
H2

O

Cl

H H

 
 

Following methylenation procedure A, a 0.96 M solution of Cp2TiMe2 (0.71 mL, 0.68 

mmol, 2.1 equiv.) in toluene-THF (1:1 by mass) and (3RS, E) methyl 3-

(benzylidenamino)butanoate 300a (65.4 mg, 0.32 mmol, 1 equiv.), gave crude enol ether 

301a (44.9 mg). Following cyclization procedure A, 7M HCl(aq) (3 ml), and a portion of 
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the crude enol ether 301a (21.2 mg), gave (2RS, 6RS) 2-methyl-6-phenylpiperidin-4-one, 

hydrochloride salt 315a as a brown solid (21.2 mg, 62%). Mp 191-192 oC IR (thin film): 

1721 (C=O) cm-1. H (CDCl3, 400 MHz) 1.46 (3H, d, J= 6.4, CH3),  2.53-2.58 (1H, m, 

H3eq),  2.58-2.62 (1H, m, H5eq),  2.98 (1H, dd, J= 12.8, 15.6, H3ax),  3.21 (1H, dd, J= 

13.6, 15.4, H5ax),  3.72-3.85  (1H, broad m, H2),  4.73-4.82 (1H, broad m, H6),  7.42-

7.52 (3H, m, H arom.),  7.75 (2H, d, J= 7.6, H arom.),  9.59-9.68 (1H, broad m, NHAHB),  

10.41-10.56 (1H, broad m, NHAHB). C (CDCl3, 100 MHz) 18.21 (CH3), 44.28 (CH2), 

44.42 (CH2), 51.93 (CH), 57.98 (CH), 127.92 (CH), 128.86 (CH), 129.20 (CH) 135.95 

(C), 202.60 (C). m/z (CI): 190 (M+, 100%). HRMS: 190.1231 C12H16ON requires (M+), 

190.1232. 

 

(2RS, 6SR) 2,6-Diphenylpiperidin-4-one hydrochloride salt  315b 

 

N
H2

O

H

Cl

H

 
 

Following methylenation procedure A, a 0.96 M solution of Cp2TiMe2 (0.79 mL, 0.76 

mmol, 1.8 equiv.) in toluene-THF (1:1 by mass) with (3RS, E) methyl 3-

(benzylidenamino)-3-phenylpropionate 300b (112.4 mg, 0.42 mmol, 1 equiv.) gave crude 

enol ether 301b (110.4 mg). Following cyclization procedure A, 7M HCl(aq) (10 ml), and 

the crude enol ether 301b (110.4 mg) gave (2RS, 6SR) 2,6-diphenylpiperidin-4-one 

hydrochloride salt 315b as a beige solid (75.4 mg, 62%). Mp 215-216 oC.  IR (thin film): 

1725 (C=O) cm-1. H (CDCl3, 400 MHz) 2.63-2.73 (2H, broad m, H3eq & 5eq),  3.45-3.58 

(2H, broad m, H3ax & 5ax),  4.92-5.01 (2H, broad m, H2 & H6),  7.38-7.48 (6H, m, H 

arom.),  7.80 (4H, d, J= 6.8, H arom.),  9.95-10.06 (1H, broad m, NHAHB),  10.71-10.84 

(1H, broad m, NHAHB). C (CDCl3, 100 MHz) 44.33 (CH2), 59.12 (CH), 128.35 (CH), 

128.65 (CH), 129.23 (CH) 135.54 (C), 202.20 (C). m/z (CI): 252 (M+, 100%). HRMS: 

252.1389 C17H18ON requires (M+), 252.1388. 
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Methyl 4-aminobutanoate, hydrochloride salt  326 

 

H3N
OMe

OCl  
 

Using: thionyl chloride (3.45 mL, 47.5 mmol, 2 equiv.), 4-aminobutyric acid 325 (2.451 

g, 23.8 mmol, 1 equiv.), in MeOH (45 mL) and following the general esterification 

procedure gave methyl 4-aminobutanoate hydrochloride salt 326 as a solid (3.567 g, 

98%). IR (thin film): 1726 (C=O) cm-1. H (DMSO, 400 MHz): 2.13 (2H, quin., J= 7.3, 

CH2CH2CH2), 2.53 (2H, t, J= 7.2, CH2C), 3.07-3.19 (2H, m, CH2N), 3.68 (3H, s, OCH3), 

8.19 (3H, s, NH3). C (CDCl3, 100 MHz): 22.60 (CH2), 30.94 (CH2), 39.37 (CH2), 51.95 

(CH3), 173.32 (C). m/z (CI): 118 (M+, 100%). HRMS: 118.0867 C5H12N1O2 requires 

(M+), 118.0868. 

 

 

(E) Methyl 4-(benzylidenamino)butanoate  327 

 
OMe

N
O

 

 

Following Imine formation procedure A, triethylamine (0.46 ml, 3.3 mmol, 2 equiv.), 

benzaldehyde (0.21 ml, 2.0 mmol, 1.2 equiv.), methyl 4-aminobutanoate hydrochloride 

salt 326 (0.254 g, 1.7 mmol, 1 equiv.), and Na2SO4 (0.288 g, 2.0 mmol, 1.2 equiv.), in 

DCM (5.0 ml) gave (E) methyl 4-(benzylidenamino)butanoate 327 as an oil (0.2721 g, 

80%). Bp 150 oC at 0.6 mm Hg. IR (thin film): 1736 (C=O), 1645 (C=N) cm-1. H 

(CDCl3, 400 MHz) 2.06 (2H, quin., J= 7.0, CH2CH2CH2), 2.42 (2H, t, J= 7.2, CH2C),  

3.62 (2H, t, J= 6.8, CH2N),  3.66 (3H, s, OCH3), 7.37-7.42 (3H, m, H arom.),  7.70-7.74 

(2H, m, H arom.),  8.28 (1H, s, N=CH). C (CDCl3, 100 MHz) 26.05 (CH2), 31.69 (CH2), 

51.49 (CH3) , 60.39 (CH2), 128.04 (CH), 128.55 (CH), 130.61 (CH), 136.09 (C), 161.50 

(CH), 173.89 (C). m/z (EI): 205 (M+, 30%), 174 (85), 132 (100). HRMS: 205.1101. 

C16H16O2N2, requires (M+) 205.1103. 
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(E) 2-Methoxy-5-(benzylidenamino)pent-1-ene  328 

 

N
OMe

 

 

Following methylenation procedure B, a 0.96 M solution of Cp2TiMe2 (0.88 mL, 0.84 

mmol, 1.8 equiv.), in toluene-THF (1:1 by mass) with (E) methyl 4-

(benzylidenamino)butanoate 327 (96.1 mg, 0.47 mmol, 1 equiv.), and a 10 min reaction 

time at 65 oC gave crude enol ether (E) 2-methoxy-5-(benzylidenamino)pent-1-ene 328 

(84.1 mg). H (CDCl3, 400 MHz) 1.91 (2H, quin., J= 7.2, CH2CH2CH2), 2.18 (2H, t, J= 

7.4, CH2C),  3.53 (3H, s, OCH3), 3.62 (2H, dt, J= 1.2, 7.2, CH2N),  3.89 (2H, s, C=CH2), 

7.38-7.43 (3H, m, H arom.),  7.70-7.74 (2H, m, H arom.),  8.28 (1H, t, J= 1.2, N=CH). C 

(CDCl3, 100 MHz) 28.34 (CH2), 32.55 (CH2), 54.74 (CH3) , 60.90 (CH2), 80.60 (CH2), 

128.06 (CH), 128.60 (CH), 130.53 (CH), 136.30 (C), 161.24 (CH), 163.69 (C). 

 

(2SR, 3SR) 1-(2’-Phenylpyrrolidin-3’-yl)ethanone, hydrochloride salt  329 

 

N
H2

O

H

H Cl

 
 

Following methylenation procedure A, Cp2TiMe2 (0.88 mL, 0.84 mmol, 1.8 equiv.), and 

(E) methyl 4-(benzylidenamino)-butanoate 327 (96.1 mg, 0.47 mmol, 1 equiv.), gave 

crude enol ether 328 (84.1 mg). Using non-oven-dried glassware, conc. HCl(aq) (3 ml) 

was added to the crude enol ether and the resulting mixture was stirred for 0.5 h. The 

solution was washed with DCM (5X), and the aqueous layer was concentrated in vacuo 

to give (2SR, 3SR) 1-(2-phenylpyrrolidin-3-yl)ethanone hydrochloride salt 329 as a solid 

(25.7 mg, 62%). For characterization purposes the salt was dissolved in water, basified 

with NaOH(aq), extracted with DCM, dried over Na2SO4, and concentrated in vacuo to 

give the free base. IR (thin film): 1708 (C=O) cm-1. H (CDCl3, 400 MHz) 1.92-2.05 (1H, 

m, CHCHAHB), 2.02 (3H, s, CH3), 2.06-2.19 (1H, m, CHCHAHB), 2.97-3.08 (2H, m, 

CH2N), 3.16 (1H, ddd, J= 4.9, 7.5, 10.0, CHCO),  4.25 (1H, d, J= 7.2, CHN), 7.13-7.31  

(5H, m, H arom.). C (CDCl3, 100 MHz) 30.00 (CH3), 30.23 (CH2), 46.77 (CH2), 60.07 
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(CH), 65.09 (CH), 126.68 (CH), 127.35 (CH), 128.59 (CH) 143.14 (C), 209.36 (C). m/z 

(CI+): 190 [(M+H)+, 100%]. HRMS: 190.1231. C12H16ON requires (M+H)+, 190.1232. 
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