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Summary

Diesel fuel is a complex mixture of hydrocarbons with an average carbon number of er
C2~. The majority of components consist of alkanes, both straight chained (n-alkanes)

and branched and aromatic compounds including mono-, di- and polyaromatic

hydrocarbons. Regardless of this complexity, diesel fuel can be readily degraded by a

number of soil microorganisms making it a likely candidate for bioremediation. The

concept of using plants to enhance biorernediation, termed phytorernediation, IS a

relatively new area of scientific interest. A branch of phytoremediation particularly

suited to the remediation of diesel fuel contaminated soil is rhizodegradation.

Rhizodegradation is the breakdown of contaminants in soil by microbial activity that is

enhanced by the presence of the root zone (rhizosphere). Rhizodegradation is

particularly applicable to diesel fuel contamination as diesel fuel, due to its physical

properties, is normally held in the surface soil and does not leach far into the soil

profile. Diesel fuel is therefore held within the rooting zone of the plant and is

susceptible to rhizodegradation. Plants have been shown to encourage organic

contaminant degradation principally by providing an optimal environment for microbial

proliferation in the rhizosphere. These degradative processes are influenced not only by

the rhizosphere microorganisms but also by the unique properties of the host plant

which often leads to enhanced breakdown of organic contaminants in soils that are

vegetated, compared to non vegetated soils. In practice however, there are many

problems associated with establishing a beneficial plant cover on diesel fuel

contaminated soil.

Diesel fuel was seen to be phytotoxic to plants at relatively low concentrations. The

type of toxicity induced could be attributed to specific fractions of the total diesel fuel

product. Acute toxicity, indicated by inhibition of germination was characteristic of the

volatile diesel fuel fraction. Low molecular weight branched cyclohexanes and

aromatics, identified by GC-MS to be present in the volatile fraction, were found to

cause acute phytotoxic symptoms on selected plant species. A delay in germination was

also found to be caused by the physical properties of diesel fuel. Diesel fuel would

cause a film of oil to form around the seed which would act as a physical barrier,

reducing the transfer of water and oxygen to the germinating seed thus 'suffocating' it.

This physical effect was shown to delay seed emergence and in conjunction with the

acutely phytotoxic effects of the volatile diesel fuel fraction, was the main cause of the

overall inhibitory effect of diesel fuel contaminated soil on germination.
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A large variation In the ability of plant species capable of tolerating diesel fuel

contamination whilst germinating was observed. This ability was not species specific as

members of the same plant family showed differential sensitivity to diesel fuel

contamination. Differences were also found within plant subspecies.

Chronic toxicity was initiated by the higher molecular weight diesel fuel components

with symptoms developing over time. A decrease in plant height and plant biomass was

observed for the majority of plant species investigated during this study which is

indicative of chronic toxicity. Developmental effects were also apparent on plants

grown in diesel fuel contaminated soil including a delay in maturation of plants

indicated by delayed seeding/flowering, a reduction in the number of nodules produced

on roots of leguminous plants and differences in their nitrogen-fixing ability and an

increase in the number of branched and adventitious roots present on plants grown in

diesel fuel contaminated soil.

The physical effects of diesel fuel on soil also had implications for growth of plants on

contaminated soils. The influence of diesel fuel on soil water holding capacity differed

with the age of the product. Freshly contaminated soil showed a large increase in the

volume of water held by the soil whereas 'aged' contaminated soil exhihited the

tendency to repel water. This effect must be considered as an additional cause of poor

plant performance in diesel fuel contaminated soils as it clearly has an effect on the soils

ahility to hold water and maintain appropriate moisture conditions for optimal plant

growth.

Despite its adverse effect on plants, diesel fuel did not have an obvious detrimental

effect on the soil microbial community. Assessment of soil health and nutrient cycling

using a series of enzymological methods showed diesel fuel was used as a substrate for

microbial proliferation and the cycling of nutrients through the soil system was

continuing. Plants grown on this contaminated soil enhanced microbial activity even

further by developing a rhizosphere community. The highest enzymic activities were

always found in planted soils compared to unplanted soils. The influence of the plant

was integral to biodegradation of diesel fuel in soil as was demonstrated by the highest

rates of diesel fuel biodegradation being found in planted soils as opposed to unplanted

soils. Differences in the amounts of diesel fuel remaining in soil were also found under

different plant species. Legumes and their associated rhizosphere community seemed to

provide the optimal environment for diesel fuel biodegradation in the rhizosphere.
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If the introduction of ethanol to diesel fuel was adopted in the UK, the proposed

remedial technique may be ineffective. Diesel fuel with ethanol added would move

further in the soil profile, possibly taking the contaminant out of reach of the rooting

zone. This would increase the threat of groundwater contamination and would require

another method of remediation to be found.
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CHAPTER ONE

INTRODUCTION

1.1 Environmental

Hydrocarbons

Contamination with Petroleum

Since its first commercial oil well in 1859, more than 100 billion barrels of oil have been

produced in the United States of America. In 1994, world petroleum consumption was at a

rate of about 65 million barrels per day (Manahan, 1994). Crude oil is extracted from the

earth as a raw material for petroleum refining which provides so much of the worlds

energy. The production, transportation and refining of petroleum is, by a conservative

estimate, introducing 6 million metric tonnes of oil annually into the oceans (Atlas and

Bartha, 1981) and inevitably involves the risk of accidental spills. The wreck of the tanker

Torrey Canyon in 1969 and the grounding of the Arrow tanker the following year (Wang et

al., 1994) focused environmental concern on the fate of hydrocarbon pollutants in the

oceans (Atlas and Bartha, 1992). In recent years, the number of tanker collisions, releasing

crude oil into the aquatic environment seem more frequent, starting with the spill from the

Exxon Valdez in Prince William Sound, Alaska in 1989, causing widespread pollution and

environmental damage. In addition, pollution of the marine environment of the Arabian

Gulf, as well as on land, with crude oil following the 1991 Gulf war (Fayad and Overton,

1995) focused attention on pollution of the aquatic environment. These highly topical

routes of oil contamination have received much attention and a wealth of literature exists
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within the scientific community on oil contamination in the aquatic environment (Atlas and

Bartha, 1981 and 1992, Prince, 1994, Fayad and Overton, 1995, MacNaughton et al.,

1999). What is less well documented is contamination of the environment by petroleum

products and in particular contamination of the terrestrial environment.

Existing literature on petroleum contamination falls into one of three categories:

bioremediation of hydrocarbons in soil by landfarming techniques or where fertiliser,

aeration or inoculants have been added to artificially stimulate the degradation rate (Dibble

and Bartha, 1979, Oudot et al., 1989, Song et al., 1990, Widrig and Manning, 1995,

Margensin and Schinner, 1997a and 1997b, Brown et al., 1998, Urarahy et al., 1999,

Jergensen et al., 2000, Roy and Greer, 2000)~ characterisation of and effect on

microorganisms capable of growing on petroleum hydrocarbons (Song and Bartha, 1990,

Nichols et al., 1997, Nicolotti and Egli, 1998, Yuste et al., 2000) and plant growth in oil

contaminated soil (Dibble and Bartha, 1979, Bossert and Bartha, 1984, Xu and Johnson,

1995, Chaineau et al., 1997, Xu and Johnson, 1997, Carman et al., 1998a and 1998b).
i

Little information exists specifically on the bioremediation of diesel fuel contaminated soil

or the effect of diesel fuel contamination on plant growth and development. The work that

has been published on the effect of petroleum products, including diesel fuel, on plants has

concentrated on the direct toxic effects of oil on the upper parts of the plant (Baker, 1970).

Diesel fuel contamination studies have focused on bioremediation experiments with cold-

adapted microorganisms (Margensin and Schinner, 1997a and 1997b), engineered

biodegradation techniques in the surface soil or aqueous media (Widrig and Manning,

1995, Sepic et al., 1996, Jergensen et al) or bioremediation with fertiliser addition (Song et

ai, 1990, Roy and Greer, 2000). To my knowledge, only one study has investigated the

process of natural attenuation of diesel fuel in soil (Berry and Burton, 1997) and

phytoremediation of diesel fuel contaminated sites using Willow trees (Carman et al.,

1998a and 1998b).

1.2 Petroleum Hydrocarbon Contamination - Past and

Present

There are more than 30,000 tonnes of waste oil unaccounted for in the UK each year. Oil

accounts for one quarter of all pollution events dealt with by the Environmental Protection

agencies. Oil pollution can occur from many sources, both accidental and intentional. Oil

may be spilt during delivery or when storage tanks are filled, storage tanks may leak

2
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because they are not maintained or because they are not protected from vandalism, used oil

is poured down drains or allowed to seep into the ground. The increase in serious pollution

incidents from oil prompted the Environment Agency to examine the effectiveness of

current oil storage regulations. This led to the launching of the Oil Care Campaign in

January 1995 which brought together the oil industry, local authorities, retailers and

regulators in an effort to raise awareness of the impact of oil pollution. Despite the fall in

the total number of incidents, the number of major oil pollution incidents rose in 1997. In

1997, in England and Wales, there were 5,542 substantiated fuel and oil pollution

incidents, with diesel fuel responsible for 35% of the incidents (Environment Times,

1998). The Scottish Environmental Protection Agency (SEPA) and the three water

authorities in Scotland deal with hundreds of oil pollution incidents each year. The most

commonly encountered types of oil are diesel, central heating oil, waste oil and petrol. In

1996/1997, the total number of oil pollution incidents, from industrial, agricultural and

other sources, was 426 (SEPA, 1997). This figure rose to 480 in 1997/1998 (SEPA, 1998).

These incidents are recorded as they generally end up polluting a water body, which the

authorities must deal with. Soil sites contaminated with oil will largely go unrecorded.

Petroleum refining unavoidably generates considerable volumes of oil sludges.

Common sources of these sludges are storage tank bottoms, oil-water separators, cleaning

of processing equipment and soil from minor spills on refinery grounds (Dibble and

Bartha, 1979b). The disposal of these sludges on land is common practice (Dibble and

Bartha, 1979a and 1979b, Bossert and Bartha, 1985, Ururahy et al, 1999, Brown et al.,

1998, Jergensen et al., 2000). Land farming or biopiling, as it is now known (Jergensen et

al., 2000) is another route of petroleum hydrocarbon input into the soil environment.

Land may also be contaminated with petroleum hydrocarbons from railway yards

and transportation refuelling areas where continual small spills have lead to chronic fuel

pollution. A lot of agricultural farms, factories and army installations have their own fuel

storage tanks for refuelling vehicles which is a possible source of fuel contamination. In

addition, the large number of petrol stations around the country may add to contamination

of the environment through refuelling mishaps and storage problems. Contamination also

happens on a large scale when there are major transportation accidents, pipeline bursts or

mechanical failure of pumps transporting petroleum products (Dibble and Bartha, 1979a,

Widrig and Manning, 1995, Carman et al., 1998a and 1998b).

3
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Historic contamination by petroleum hydrocarbons is also likely to be found in

many of the designated contaminated land and Brownfield sites found around the country

where the origin and extent of contamination is unknown. In the O.K. alone, there may be

up to 250, 000 hectares of contaminated land carrying a potential cleanup cost of almost

£20 billion (Whittaker et al., 1995).

From all these sources, the amount of land contaminated with petroleum

hydrocarbons such as diesel fuel, in theory, is extensive and a means of remediating this

land must be found.

1.3 Petroleum Hydrocarbons

Crude oil consists primarily of carbon and hydrogen with a wide variety of elements

combined in various forms. Petroleum hydrocarbons are a mixture of hydrocarbons

produced from the distillation of crude oil. During the refining process, petroleum

products are strongly enriched with hydrocarbons leaving the majority of inorganic

materials and other sulphur, nitrogen and oxygen containing organic compounds in the

residual material.

1.3.1 General Petroleum Chemistry

Petroleum hydrocarbons are divided into two broad families: aliphatic and aromatic

hydrocarbons. Aliphatic hydrocarbons are further divided into three main classes: alkanes,

alkenes and cycJoalkanes.

1.3.1.1 Aliphatic Hydrocarbons

Alkanes contain only single carbon-carbon bonds. Straight chain alkanes or n-alkanes, as

they are more commonly known, consist of carbons attached to no more than two other

carbons in a linear fashion with two methyl (CH3) terminations. Branched alkanes are

structural isomers of n-alkanes which have alkane groups (alkyl) substituted onto

hydrocarbon structures. For example, n-pentane, 2 methyl butane or isopentane and 2, 2
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dimethyl propane or neopentane are all described by CSHI2 but their structures are very

different.

Alkenes are hydrocarbons that contain less hydrogen, carbon for carbon, than the

corresponding alkane due to the occurrence of one or more double bonds in the alkenes

structure. The simplest member of the series is ethene.

CycIoalkanes are alkanes where carbon atoms form cyclic structures, with the smallest

member of the series being cyclopropane. Examples of these aliphatic hydrocarbons are

given in Figure 1.3.1.1.

1.3.1.2 Aromatic Hydrocarbons

Aromatic hydrocarbons have one or more benzene rings as structural components. A

monoaromatic compound has one benzene ring with either six hydrogen groups or a

combination of alkyl and hydrogen groups attached. Xylene is a derivative of benzene,

which is commonly found in lighter petroleum products and has three isomers.

A diaromatic compound has two fused benzene rings with either eight hydrogen or alkyl

groups attached. Naphthalene is a diaromatic hydrocarbon found in the middle range

petroleum distillates.

Polyaromatic hydrocarbons (PAHs) have more than two fused benzene rings and they can

have various alkyl and hydrogen groups attached. Benzo(a)pyrene is an example of a

carcinogenic 5 ringed aromatic which is found in heavier petroleum products and is

persistent in the environment. In general, alkyl substituted PAHs predominate in

petroleum (SCLF, 1998). Examples of these aromatic hydrocarbons are given in Figure

1.3.1.1.
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H
I

H-C-C-C-H
I I IH H

H-C-H
I
Halkanes

neopentane or 2, 2 dimethyl propane

H" /H

/C""
H-/C --C,H
H H

cyclopropane

H" ,/HC=C
,/ "H H

ethene

cyclic alkane alkene

0- xylene m - xylene

CH3

P - xylene
naphthalene benzo(a)pyrenc

monoaromatic hydrocarbon diaromatic hydrocarbon polyaromatic hydrocarbor

From Holtzclaw et ai, (1991) and Gibson and Subramanian, (1984).

Figure 1.3.1.1. Structural representation of selected aliphatic and aromatic hydrocarbons.

1.3.1.3 Pattern of Bonding in Hydrocarbons

Aliphatic and aromatic compounds differ by the patterns of bonding between adjacent

carbon atoms. Aromatic molecules have ring structures and are basically symmetric with

clouds of electrons above and below the plane of the molecule. Aromatic carbon-carbon

bonds are termed resonance bonds as electrons are shared between multiple carbon atoms.

This 'sharing' of electrons imparts chemical stability to the structure. The bonding pattern

of aromatic structures also contributes to their moderate polarity. The electron clouds

surrounding the molecules can be deformed by the charge on adjacent molecules resulting

in the development of partial positive and negative charges on the molecule.
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Aliphatic structures have highly directional bonds where carbon atoms share

electrons only with adjacent carbon atoms. This allows free rotation of the structure

around these bonds which allows aliphatic structures to assume many different

conformations. The bonding pattern of aliphatic structures does not permit the non

uniform distribution of charge found with aromatic structures to the same degree, thus

aliphatics are non polar or only slightly polar.

The polarity of hydrocarbons governs the degree to which they will interact with

themselves and with water and as a general rule, as polarity increases, so does water

solubility and boiling point. Therefore aromatics are more water soluble and less volatile

than alkanes with the corresponding number of carbon atoms.

Within each hydrocarbon structural family and sub family, there are homologous

senes. Each member of the series differs from adjacent members in the series by a

repeating unit and the physical properties of compounds change with the number of carbon

atoms. For example, there is an increase in the boiling point of approximately 20ce for

each carbon atom added to an n-alkane chain.

Another feature of petroleum hydrocarbons is that they have large numbers of

isomers. Isomers are compounds that have the same elemental formula but have different

structural configurations. In general, as the carbon number increases, the number of

possible isomers increases rapidly (Holtzclaw et al., 1991). The large number of isomeric

compounds accounts for petroleum products high degree of complexity. Petroleum

products with high boiling point constituents have high average carbon numbers therefore,

they have a large number of isomers and greater chemical complexity than petroleum

products with low boiling point constituents.

1.3.1.4 Other Components of Petroleum Mixtures

Organic compounds containing sulphur, nitrogen and oxygen may be encountered at

significant concentrations in crude oil and in some heavier fuels such as No. 6 fuel oil.

Sulphur containing aromatic compounds are the major constituents.

Metals are also encountered in petroleum fuel mixtures in the form of salts of carboxylic

acids or as porphyrin chelates.
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1.3.2 Petroleum Products

Petroleum fuel mixtures are produced from crude oil through a variety of refining and

blending processes. After treatment to remove dissolved gas, dirt and water, crude oil is

distilled and a variety of petroleum product fractions result. Some of the more important

hydrocarbon products derived from the refining of petroleum hydrocarbons are given in

Table 1.3.2.1.

1.3.2.1 Diesel #2 Fuel

Transportation diesels are manufactured primarily from distilled fractions of crude oil with

some blending with cracked gas oils. The major components of diesels are similar to those

present in crude oil but with a larger percentage of aromatics (up to 30-40%). There are

five different grades of diesel fuel for uses that range from cars, commercial trucks and

buses to marine and railroad engines. Additives are used in diesel fuels to protect the fuel

system against deposits, rust and corrosion and to keep the fuel system components clean.

Table 1.3.2.1.1 shows the typical classes of diesel fuel additives.
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Additive Composition

Ignition improvers Alkyl nitrates and nitntes, nitro- and nitroso-
compounds, peroxides

Combustion catalysts /
deposit modifiers

Organometallics of Ba, Ca, Mn, Fe
Mn, MnO, Mg, MgO, Mg02, Ala]

Anti-oxidants N-N dialkylphenylenediamines, 2,6 dialkylphenols,
chlorinated hydrocarbons

Detergents/dispersants Alcohols, amines, alkylphenols, carboxylic acids,
sulfonates and succinamides

Table 1.3.2.1.1. Typical classes of diesel fuel additives.

The type of diesel fuel investigated during this study was normal, car diesel fuel or

diesel #2 fuel. Diesel #2 fuel is classed as a middle petroleum distillate and has a typical

carbon range of Cs to C26 with the majority of components in the CIO-C20 range. Diesel

fuel is a complex mixture of hydrocarbons. The majority of components consist of

alkanes, both straight chained, branched and cyclic, and aromatic compounds including

mono-, di- and polyaromatic hydrocarbons (PAHs). Of the medium distillate fuels used in

terrestrial situations, diesel has the highest content of PAHs and total aromatics (Wang et

al., 1990) which make it increasingly difficult to remediate. Regardless of this complexity,

diesel fuel can be readily degraded by a number of soil microorganisms making it a likely

candidate for bioremediation.

1.4 Biodegradation of Petroleum Hydrocarbons in Soil

It has been widely demonstrated that nearly all soils and sediments have populations of

microorganisms that are capable of degrading petroleum hydrocarbons. It has been noted

that about 20% of all microbial species examined have some capacity to degrade

hydrocarbons (Higgins and Burns, 1975). Table 1.4.1 lists examples of the genera of

hydrocarbon-degrading microorganisms isolated from soil.
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Bacteria Fungi
Achromohacter t
Acinetobacter
Agrobacterium
Alcaligenes t
Azotobacter
Bacillus
Chromobacterium
Flavobacterium t
Methanobacte rium
Micrococcus]
Mycobacte rium t
Nitrosomonas
Nocardia t
Pseudomonas t
Sarcina
Vibrio
Xanthomonas

Aspergillus :j:
Botrytis
Candida
Chryososporium
Fusarium
Gliocladium
Mortierella :j:
Paecilomyces
Penicillum :j:
Rhodotorula
Saccharomyces
Spica ria
Tolypocladium
Trichoderma :j:
Yerticillium

t most consistently isolated hydrocarbon-degrading bacteria from soil
:f: most consistently isolated hydrocarbon-degrading fungi from soil

compiled from Bossert and Bartha, 1984 and Walton et al., 1993.

Table lA.I. Genera of hydrocarbon-degrading microorganisms isolated from soil.

1.4.1 Biodegradation of Individual Petroleum Hydrocarbons

Susceptibility to biodegradation varies with the structure and size of the hydrocarbon

molecule (Alexander, 1994). The n-alkanes are the most readily degraded by the widest

range of microorganisms, with alkanes of intermediate chain length (CIO-C24) degraded

most rapidly. Figure 1.4.1.1 shows the initial attack on alkanes which can occur according

to three mechanisms. It is generally accepted that both short chain and long chain alkanes

are oxidised monoterminally to the corresponding alcohol, aldehyde and fatty acid. Short

chain alkanes are toxic to many microorganisms and very long chain alkanes become

increasingly resistant to biodegradation (Atlas and Bartha, 1981). Branched n-alkanes are

less easily degraded, with rate of degradation being inversely proportional to the degree of

branching (Higgins and Bums, 1975). Branching reduces the rate of biodegradation by

interfering with the degradation mechanisms or blocking degradation altogether.
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02+2H -2H

(A) R - CH2 - CH3 '>..... ~~ R - CH2 - CH20H R - CH2 - CHO
alkane H2O primary alcohol aldehyde

La H2O

-2H
(B) R - CH2 - CH3 R-CH=CH2

alkane alkene

-2H

O2 -2H
(C) R - CH2 - CH3 SL .. [R - CH - CH200H] R - CH2 - COOH

alkane alkylhydroperoxide fatty acid

1
beta - oxidation

(A) oxidation to alcohol, aldehyde and fatty acid. (B) dehydrogenation to alkene followed by conversion to

alcohol. aldehyde and fatty acid and (C) formation of fatty acid through labile hydroperoxide intermediate.

Pathway B was demonstrated in vitro but does not appear to occur on a significant scale in the environment.

Further degradation of the fatty acids occurs by beta-oxidation (from Atlas and Bartha. 1981).

Figure 1.4.1.1. Oxidation of terminal methyl groups by alkane degrading microorganisms.

Cyclic alkanes are the least susceptible to microbial attack (Higgins and Burns,

1975) as they are frequently unable to serve as sole carbon sources for microbial growth

unless they have a sufficiently long aliphatic side chain. They can however be degraded

via co-metabolism by two or more co-operating microbial strains with complementary

metabolic capabilities (Atlas and Bartha, 1981). Cyclic hydrocarbons having no terminal

methyl groups can be degraded by a few microorganisms by the mechanism shown in

Figure 1.4.1.2 but more commonly, co-metabolism is the primary mechanism in the

biodegradation of cyclic hydrocarbons.
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cS
0 0o 0,+2H - 2H 0 O2+ 2H 6'-........ ~

.........___
~~'if

H2O H2O

cyclohexane cyclohexanol cyclohexanone caprolactone

+ H2O

COOH COOH COOH
I I I
CH2 CH2 CH2
I I I
CH2 - 2H CH2 - 2H CH2

beta - I I I
oxidation CH2 CH2 CH2

I + H2O I I
CH2 CH2 CH2
I I I
COOH CHO CH20H

adipic acid 6 oxo hexanoic acid 6-hydroxy hexanoic acid

Figure 1.4.1.2. Microbial oxidation of cyclohexane as an example for metabolism of

cyclic hydrocarbons (from Atlas and Bartha, 1981).

Aromatic hydrocarbons, especially polyaromatic hydrocarbons, are degraded more

slowly than alkanes. Aromatic hydrocarbons are oxidised in one or more steps to catechol

then further degraded by opening of the aromatic ring by oxidative ortho or meta cleavage.

Figure 1.4.1.3 illustrates the possible mechanisms of aromatic degradation. Many

condensed polyaromatic hydrocarbons are degraded with difficulty or not at all (Atlas and

Bartha, 1981).
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naphthalene naphthalene 1,2 diol
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HCOOH
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1 CoA

1
CH] - c- COOH
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+
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COOHW'O
OH

4 hydroxy-2-oxo-4-
(2-hydroxyphenyl)
butyric acid

)l
o
II

H3C - C - COOH
pyruvic acid

Figure 1.4.1.3. Microbial metabolism of a condensed aromatic ring structure as shown for

naphthalene. The resulting catechol is further metabolised by ortho- or meta- cleavage

(from Atlas and Bartha, 1981).

14



Gillian Adam, 2001 Chapter I, Introduction

1.4.2 Biodegradation of Petroleum Products

Biodegradation of petroleum products has been demonstrated in a number of studies. In

1979, Dibble and Bartha demonstrated biodegradation of kerosene petroleum hydrocarbons

in agricultural soil following a pipeline break. The disappearance rate of the higher

molecular weight compounds (n-Cn to n-C17) was slightly faster than the disappearance of

the n-Clo to n-Cr, compounds. This pattern points to biodegradation as the principle

disappearance mechanism, since the compounds disappeared in order of their preferential

microbial utilisation rather than in order of their volatility (Dibble and Bartha, 1979). Song

et al (1990) illustrated that the environmental persistence of medium distillate fuels

increased in the order: jet fuel > heating oil > diesel fuel. Bioremediation treatment

substantially reduced the persistence of all three of these fuels but a residual fuel content

remained. In studies concerning diesel fuel, rapid biodegradation of the n-alkanes (Cw

C18) was observed in aqueous solutions, with aromatic compounds proving to be more

resistant to biodegradation (~epi~ et al., 1996). Even with biopiling studies, a residual

hydrocarbon content is left with total degradation of lubricating and diesel fuel after 5

months being 70% and 71% of the original amount added (Jergensen et al., 2000).

It is apparent that microorganisms capable of degrading hydrocarbons are

widespread and present in most soil environments but biodegradation of heavier petroleum

products is never complete. Diesel fuel is a middle distillate fuel composed mainly of n-

alkanes, which should, in theory, degrade rapidly. Diesel fuel had a high % of aromatics

including polyaromatic hydrocarbons (PAHs) as well as cyclic and branched alkanes,

which will prove more difficult to degrade. By encouraging a larger and more varied

microbial population to develop in soil contaminated with petroleum hydrocarbons,

increased and enhanced biodegradation may be observed.

1.5 The Rhizosphere

The microbial population of soil is altered both quantitatively and qualitatively by the

presence of plant roots (Rovira and McDougall, 1967). The zone of soil in which this root

influence is extended is called the 'rhizosphere' and was first described by Hiltner in 1904

(Curl and Truelove, 1986). This specialised region is characterised by enhanced microbial

biomass and activity. The rhizosphere community consists of microorganisms, mainly

bacteria, fungi and algae and micro and mesofauna, such as protozoa, nematodes, mites
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and insects (Walton et al., 1994a). The abundance of microorganisms in the rhizosphere is

commonly 5 to 20 times higher than that of non vegetated soil (Atlas and Bartha, 1993).

Roots provide plants with anchorage and the means to acquire water, nutrients and

other growth substances from soil. In addition, roots provide rhizosphere microorganisms

with highly favourable conditions for growth. Roots provide structure for microbial

colonisation and support microbial communities through inputs of photosynthate to the

rhizosphere. Organic compounds released from roots, root exudates and sloughed, dead

cells are the cause of the increased microbial biomass in the rhizosphere compared to non

rhizosphere soil. This release of photosynthate and the rapid decay of fine roots also

increases soil organic matter, which may in turn alter contaminant adsorption,

bioavailability and leachability (Schnoor et al., 1995).

1.5.1 Plant- Microbial Interactions

The specIes of plant growing in the soil is a critical factor in the development of a

rhizosphere community. Perhaps the best characterised bacterial associations with plant

roots are those of the nitrogen fixing bacteria (rhizobia) and leguminous plants. These

symbiotic associations are unique for both their nutrient contribution to soils and the

physiological relationship between bacteria and plant host. The bacteria invade the root

tissues, which respond by forming nodules that become the site of bacterial nitrogen

fixation. The interaction of leguminous plants with nitrogen-fixing bacteria results in

increased microbial biomass, plant growth and root exudation perhaps because of the

increased availability of soil nitrogen in the presence of nitrogen-fixing bacteria. This in

turn may lead to enhanced microbial degradation of organic compounds in the rhizosphere

by these bacteria (Anderson et al., 1993).

The type, quantity and effectiveness of exudates and enzymes produced by plant

roots vary between plant species and even within subspecies. Plants that produce exudates

that have been shown to stimulate growth of degrading microorganisms or stimulate co-

metabolism would be more beneficial than plants without such directly useful exudates.

Red mulberry, crab apple and osage trees produce exudates containing relatively high

levels of phenolic compounds at concentrations capable of stimulating growth of PCB-

degrading bacteria (Fletcher and Hedge, 1995). Research into this area of rhizodegradation
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is still at an early stage and no specific plant species has been found that produce exudates

capable of stimulating hydrocarbon-degrading bacteria capable of degrading diesel fuel.

Numerous studies have shown increased biodegradation of organic contaminants in

vegetated as opposed to unvegetated soils (see Section 1.6.2.). However, the interactions

between plants and bacteria that increase contaminant degradation are not fully understood.

l.5.2 Plant-Microbe- Toxicant Interaction in the Rhizosphere

What is the specificity of the interaction between plants and bacteria that leads to

contaminant degradation? The answer to this question will determine the strategy used to

develop and evaluate phytoremediation methods. One such answer to this question was

proposed by Walton et al (1994), that plants produce specific signals in response to a

contaminant which increases microbial activity causing increased biodegradation of the

contaminant of concern. For example, when a chemical stress (contaminant) is present in

the soil, a plant may respond by increasing or changing root exudation (carbon allocation)

to the rhizosphere. As a result, the microbial community, in turn, increases the

detoxication rate of the contaminant. This microbial response could be an increase in

microbial numbers, an increase in synthesis of detoxication enzymes or a change in the

relative abundance of the microbial strains in the rhizosphere that can degrade the

contaminant. Figure 1.5.2.1 illustrates this plant-microbe-toxicant interaction which gives

protection to the plant by inducing the metabolic capabilities of the rhizosphere microbial

community.

17



Gillian Adam, 200 I Chapter I, Introduction

_________--------tt--._------------

PLANT DETECTS
CONTAMINANT

CHANGE IN
ROOT

EXUDATION
CHEMICAL

,~_'()NTAMINAN·I-

ENHANCED
DETOXlnCA-rION OF
eONTA tvl!~A i'JT

EXUDAT[S STltvlULATE
M!CR()HIAL COtdMI JNITY

Figure 1.5.2.1. Hypothetical mechanism by which the rhizosphere microbial community

may be influenced by the host plant to promote detoxication of a contaminant in soil

(positive feedback mechanism).

By encouraging plants to grow on contaminated soil you are enhancing the

microbial population that will degrade the contaminant for you. This type of remediation

is called phytoremediation and has recently become an area of intense study.
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1.6 What is Phytoremediation?

The term 'phytoremediatiori' is formed from the Greek prefix phyto (meaning plant)

attached to the Latin suffix remedium (meaning to cure or restore) (Cunningham et al.,

1997). In its simplest form, phytoremediation is the use of green plants to remediate

contaminated soil, sediment and water (Cunningham et al, 1997, Salt et ai., 1998). The

use of plant based systems for cleaning up wastes is not new. In fact, the use of plants to

cleanse waters contaminated with organic and inorganic pollutants dates back hundreds of

years (Cunningham et al, 1996) and forms the basis of the reed bed, constructed wetland

and municipal waste water treatment technology that we use today. The concept of using

plants to remediate contaminated soils is a more recent development and has become an

area of intense scientific study. Soil based phytoremediation technologies are in various

stages of development, with laboratory research and field trials being conducted to

determine the biological, chemical and physical processes that are involved. Within the

research community concerned with phytoremediation of contaminated soils, research on

the use of plants to remediate inorganic contaminants is extensive and progressing at a

more rapid pace than research in organic contaminants. Inorganic contaminants are

relatively immutable and therefore their fate in the environment is easier to trace. Organic

contaminants, on the other hand, undergo physical, biological and chemical changes,

making analysis inherently difficult. Nonetheless, several phytoremediation technologies

for the treatment of shallow groundwater organic contaminants are in advanced stages of

field trials. Trees with deep roots and high transpiration rates are being tested to address

the problems of landfill leachates, pesticide contamination and plant nutrients such as

nitrate and phosphate, under commercial names such as Ecolotree@cap, Treemediation and

Rhizofiltration (Cunningham et al., 1996). All these processes have targeted relatively

water soluble contaminants in surface or shallow subsurface waters. Surface soil

decontamination of relatively insoluble/insoluble contaminants in situ, is less well

documented, both in the laboratory and in the field.

1.6.1 The Phytoremediation Industry

The US phytoremediation industry consists of dedicated phytoremediation companies

whose sole or primary remediation technology is phytoremediation, other speciality

companies diversifying into hazardous waste phytoremediation from areas such as
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constructed wetlands, consulting/engineering firms that have developed an expertise In

phytoremediation and a large number of academic, government and other non profit

research groups conducting research and developing new technologies (D. Glass

Associates, 1998). In 1998, D. Glass Associates carried out a survey of phytoremediation

markets in the United States of America and found phytoremediation to be applicable to a

number of hazardous waste scenarios. The largest phytoremediation market in the U. S.

was for the treatment of organic contaminants in groundwater which was estimated at $5-

10 million. Other large markets included control of landfill leachate, estimated at $3-5

million and remediation of metals in soils, also about $3-5 million. A few, smaller markets

existed including remediation of organics in soils and organics in wastewater, each

estimated at $2-3 million and the remediation of radionuclides in soil and groundwater,

estimated at $0.5-1 million. Phytoremediation offered an alternative treatment strategy to

the remediation of soil and water with sizeable potential markets (D. Glass Associates,

1998). D. Glass Associates predicted the markets involving organic contaminants should

see a strong, steady growth in coming years with the markets involving metals and

radionuclides capable of dramatic growth as the technology becomes better established.

Britain is at the very early stages of adopting phytoremediation as a viable cleanup

strategy for contaminated land, therefore the majority of the research is carried out by

academic research groups. A few of the larger companies conduct internal research or

tender research to universities on phytoremediation projects particularly relevant to their

company. On such example is BP Amoco who has carried out research on methyl tertiary

butyl ether (MTBE) remediation in groundwater using willow trees (personal

communication). To my knowledge, there has been no similar survey to the one carried

out by D. Glass Associates on the potential phytoremediation market in the UK. However,

many of the contamination problems encountered in the U.S. are mirrored in the U.K.

therefore parallels can be drawn to the potential phytoremediation markets.

1.6.2 Contaminants Targeted for Phytoremediation

Phytoremediation is potentially applicable to a diverse range of substances, including many

of the major environmental contaminants.

Early work involving metal hyperaccumulators focused on heavy metals (Cd, Cr,

Pb, Co, Cu, Ni, Se, Zn) and radionuclides (Cs, Sr, Ur) (Cunningham et al., 1996).

However, phytoremediation has been demonstrated successfully against other inorganic
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contaminants including arsenic and various salts and nutrients (nitrate, ammonium,

phosphate) (Schnoor et al., 1995).

The ability of plants to take up and metabolise a range of environmentally

problematic organic contaminants has also been established. Examples include,

chlorinated solvents (TCE, PCE) (Walton and Anderson, 1990), ammunition wastes (TNT,

DNT, TNB, RDX, HMX), polychlorinated biphenyls (PCBs) and pesticides (Burken and

Schnoor, 1997). In addition to the direct uptake and metabolism of organics, plants release

exudates from their roots that enhance microbial bioremediation in the root zone

(rhizosphere). Examples of contaminants susceptible to rhizosphere degradation are

petroleum hydrocarbons (BTEX, PAHs) (GWRTAC, 1996, Ferro et al., 1998, Wetzel et

al., 1998, Qui et al., 1998, Binet et al., 2000).

1.6.3 Contaminant Distribution and Site Considerations

The distribution of a contaminant in the soil is important to both the feasibility and design

of a phytoremediation system. Contaminant distribution will depend on the age of the

contaminant, source of the contaminant and nature of the spill as well as the soil type,

rainfall and temperature. Contaminant availability is probably the most important

parameter in biological remediation strategies as contaminants can be sequestered in a soil

in such a way that they cannot interact with soil microorganisms and cannot be

metabolised and degraded. Phytoremediation is most effective if soil contamination is

limited to 1-2 metres depth from the surface (rooting zone) or if groundwater is within

approximately 5 metres of the surface (hydraulic capture zone of plant roots). Sites with

low to moderate soil contamination spread over large areas and sites with large volumes of

groundwater with low level contamination are particularly suited to phytoremediation.

1.6.4 Types of Phytoremediation Processes

Phytoremediation either removes the contaminant from the matrix (decontamination) or

sequesters it into the matrix (stabilisation). Several different types of phytoremediation

exist based on the natural processes carried out by plants.
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Phytodecontamination processes

1. Phytoextraction: extraction and accumulation of contaminant into the plant tissue with

subsequent harvesting of plant tissue for destruction e.g. heavy metals, radionuclides.

2. Phytovolatilisation: plants and their associated microbial activity help to increase the

rate of volatilisation of a contaminant e.g. certain organics

3. Phytodegradation : plants take up the contaminant and metabolises it to an non

harmful by product e.g. chlorinated solvents, pesticides

4. Rhizodegradation: plant roots, their associated microbiota and/or exudates destroy the

contaminant in the root zone e.g. petroleum hydrocarbons.

Phytostabilisation processes

I. Humification : incorporation of contaminants into soil humus resulting In lower

bioavailability

2. Lignification toxic components become irreversibly trapped in plant cell wall

constituents

3. Irreversible binding: compounds become increasing unavailable due to binding into

soil (aging).

1.6.5 Plant Species used in Phytoremediation

A variety of naturally occurring and specially selected plant species are used in

phytoremediation. Hyperaccumulators, plants that can translocate and tolerate

concentrations of heavy metals approximately 100 or more times the usual concentrations

(Negri. 1996) seemed ideal candidates for phytoextraction. However, these species appear

to hyperaccumulate only one metal in abundance. are slow growing and produce low

biomass (Cunningham et al., 1997). No matter how fascinating biologically,

hyperaccumulators are poor candidates for phytoremediation systems and researchers are

turning to other species as more promising commercial candidates. Deep rooting trees of

the Salicaceae family (Willow and Poplar) are most commonly used for applications

requiring withdrawal of large amounts of water and as barriers to subsurface flow of

contaminated groundwater (Stomp et al., 1993) due to their flood tolerance, high

transpiration rates and fast growth (Schnoor et al., 1995). Grasses such as ryegrass and

fescue are used in the remediation of PAH contaminated soils (Aprill and Sims, 1990,

Ferro et al, 1998, Binet et al, 2000) due to their fibrous root systems with extensive surface
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area for microbial colonisation. Grasses appear to be ideal for both phytoremediation and

erosion control because their fibrous root systems form a continuous dense rhizosphere

(Ferro et al. 1998). Nitrogen fixing plants such as legumes (e.g. alfalfa) have been used in

some trials because nitrogen is a critical component in the mineralisation of organics in

soil.

It is apparent that more plants that grow well in contaminated soils need to be

identified and screened for use in phytoremediation technologies.

1.6.6 Advantages of Phytoremediation

There are numerous reasons for the increasing level of research on the beneficial effects of

vegetation on contaminated soil. Primarily, plants provide a cost effective method of

remediating contaminated soil as plants use solar energy to grow, which is inexpensive and

widely available. Plants transpire considerable amounts of water which can help bring

mobile contaminants to the root zone (rhizosphere) where they are taken up by the plant

and accumulated or metabolised. This can slow or even prevent the downward migration

of the contaminant. The rhizosphere, due to the increased amount of organic carbon added

to the soil, also provides an excellent environment for the adsorption and microbial

degradation of organic contaminants. Plants can enhance oxygen transfer to microbial

communities by transporting oxygen within the plant and by lowering the water table so

that gas phase diffusion can occur in the soil. Vegetation is aesthetically pleasing and can

stabilise soils against erosion by wind and water (Ferro et al., 1998). When wind blown

dust is controlled, it reduces an important pathway for human exposure via inhalation of

soil and ingestion of contaminated food (Schnoor et al., 1995). Vegetation can also be

managed inexpensively and can produce biomass for chemical or energy applications

(Erickson et al., 1998).

1.6.7 Disadvantages of Phytoremediation

There are significant depth limitations to phytoremediation. Phytoremediation is most

effective at sites with shallow contaminated soils, where contaminants can be treated in the

rhizosphere and by root uptake (Schnoor et al., 1995). Relatively mobile contaminants
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could be drawn to plants by a combination of root presence and the hydraulic gradient

induced by transpiration from a depth of approximately 10 metres. With relatively

immobile contaminants, most researchers consider remediation possible only within the

top 0.5 to 2 metres. Although the maximum deptlsto which roots can be found are often

considerably deeper, the root density decreases dramatically with increasing depth

(Cunningham et al., 1996). Soluble exudates are produced by plants, which may bind

contaminants and enhance their migration off site. The time taken for phytoremediation

technologies to show beneficial effects are slow compared to traditional ex situ engineering

methods. It may take several growing seasons to reach the desired contaminant

concentration level. If contaminants are mobilised and accumulated in the plant there is

the potential for contamination of the food chain as well as release of contaminants back to

the environment if, for example, contaminants collect in leaves and are released during

litter fall.

1.7 Why Diesel Fuel is a Suitable Candidate for

Phytoremediation

Diesel fuel, on entering the terrestrial environment, will spread and seep into the soil.

However, the downward migration of diesel fuel through the soil profile is limited due to

the physical properties of the fuel. Under normal conditions, diesel fuel will be adsorbed

in the organic matter rich surface soil, impeding downward migration. Accidental oil

contamination has been shown to accumulate in the surface soil, with the highest

percentage being in the top 0-20cm (Kiss et al., 1998). This makes diesel fuel

contaminated soil appropriate for phytoremediation techniques as the contaminant is held

in the surface soil and within the rooting zone of most plant species. The type of

phytoremediation process that is particularly suited to diesel fuel contaminated soil is

rhizodegradation. Rhizodegradation is the breakdown of contaminants in soil by microbial

activity that is enhanced by the presence of the root zone. As discussed previously,

exudates, produced and released from plant roots can increase the microbial biomass and

activity in the rhizosphere. These exudates include sugars, amino acids, organic acids,

fatty acids, sterols, growth hormones, enzymes and other compounds. Degradation of root

exudates can lead to co-metabolism of contaminants in the rhizosphere. The use of

exudates as co-metabolites to contaminants in the rhizosphere is particularly pertinent to

diesel fuel biodegradation as many of the cyclic alkanes and aromatic compounds can be
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successfully degraded by co-metabolism but cannot be used as the sole carbon substrate by

microorganisms. Plant roots substantially increase the surface area where active microbial

degradation can be stimulated and can affect soil conditions by increasing aeration and

moderating soil moisture content, thereby creating more favourable conditions for

biodegradation by indigenous microorganisms. Again, the increase in aeration afforded by

plant roots is beneficial to diesel fuel degradation as it is an almost strictly aerobic process.

Another aspect of diesel fuel on entering a soil system is evaporation to the

atmosphere. A sizeable proportion of diesel fuel is made up of volatile components that

will evaporate after a spill. These lighter, more volatile components will disappear rapidly

from the soil surface but diesel fuel which has seeped into the surface soil will release

these volatile components more slowly. This creates a problem, in a phytoremediation

sense, as short chain hydrocarbons and light aromatics are known to be toxic. Few authors

have investigated this area of phytotoxicity of volatile diesel fuel components so little is

known about the possible effects on plants of these volatile components. What is known,

dates back to research into fuels, such as diesel, as herbicides. Previous to 1930, no special

weed oils were made and unaltered diesel and smudge oil were used (Overbeek and

Blondeau, 1954). The principal reason for the use of oils as herbicides was that they were

especially suited to the elimination of weedy grasses and when properly applied, did not

harm the crop plants and did not leave toxic residues. Diesel fuel was noted as a valuable

general contact herbicide because of its low interfacial tension on plants and because its

content of chronic toxicants were effective against grasses but it was too heavy and caused

chronic toxicity to which the crop plants were not tolerant (Crafts and Reiber, 1948). This

suggests that diesel fuel phytotoxicity comes entirely from the heavier fuel components but

a later report by Currier (1951) illustrated the phytotoxicity of benzene derivatives. Currier

found toxicity to increase in the order: benzene, toluene, xylene, trimethylbenzenes in both

vapour and spray treatments (Currier, 1951). All these compounds are likely to be found

in the volatile fraction of diesel fuel and may affect plant growth in diesel fuel

contaminated soil.

1.8 Soil Enzymology

Although enzymes catalyse many degradative processes, soil enzymology has been

neglected for decades (Gramss et al., 1999). In recent years, the study of enzyme activity

in soil has expanded significantly and as a result, more than 50 enzymes have been

examined, many of which are crucial to the cycling of nutrients in soil. Soil enzymes
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originate from plants, animals, fungi and bacteria although it is generally agreed that the

microbial component is the main source of these enzymes in soil. Because many enzymes

are substrate specific and can be chosen from different functional groups (e.g.

oxidoreductases, hydrolases etc.) there is an opportunity to determine the potential of a soil

to carry out a wide range of reactions that may be critical in the functioning of the

ecosystem (Dick, 1997). Alternatively, enzyme activities hold the potential to determine

whether contaminated soil is 'impaired' to carry out these biochemical processes. By

measuring the changing pattern of specific enzymes during bioremediation of diesel fuel in

planted and unplanted soils, the influence that plants have on the level of enzymes, from

microorganisms as well as from other sources, could be illustrated. This would provide

valuable information as to why enhanced degradation is observed in the rhizosphere of

selected plant species compared to unplanted soils.

The enzymes chosen for investigation were essential in cycling matter through the

soil system and could therefore be used to assess the breakdown of diesel fuel in soil and

the effect of diesel fuel contamination on soil health. These enzymes can be found as an

integral part of intact microbial cells or as free enzymes outside microbial cells

(exoenzymes). The source of these enzymes may be purely microbial or both plant and

microbially produced. Figure 1.8.1 illustrates the various components making up enzyme

activities in soils.

1.8.1. Dehydrogenase Enzymes

Dehydrogenase enzymes come from the oxidoreductase group of soil enzymes.

Biological oxidation of organic compounds is generally a dehydrogenation process, with

dehydrogenase enzymes systems fulfilling a significant role in the oxidation of organic

matter (Tabatabai, 1982). The dehydrogenase enzymes responsible for dehydrogenase

activity in soil are found as an integral part of intact microbial cells and therefore, the

results of an assay would indicate the average metabolic activity of the active microbial

population. Indeed, several authors have found dehydrogenase activity to closely correlate

with respiratory activity in soils (Steubing, 1967, Camifia et al., 1998). Measurement of

dehydrogenase activity in this study would illustrate if total microbial activity was

enhanced in planted soils as opposed to unplanted soils and if certain plant species

increased microbial activity in the rhizosphere more than other plant species. Itwould also
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show if diesel fuel was being utilised as a substrate for growth by microorganisms in the

soil and at what level diesel fuel became inhibitory to activity of the microbial population.

1.8.2 Phosphatase Enzymes

The general name phosphatases is a collective term used to describe a broad group of

enzymes that catalyse the hydrolysis of organic phosphorus in soil. They belong to the

hydrolase group of soil enzymes. These enzymes have been classified into five major

groups but it is the phosphomonoesterases, acid phosphatase and alkaline phosphatase, that

hold particular interest because of their importance in soil organic phosphorus

mineralization and plant nutrition (Tabatabai, 1982). Since plants utilise only inorganic

phosphorus, organic phosphorus compounds must first be hydrolysed by phosphatases

which mostly originate from plant roots, fungi and soil microorganisms. Plant roots are

major producers of acid phosphatase but do not produce alkaline phosphatase. Alkaline

phosphatase originates from soil bacteria, fungi and fauna. Microorganisms also produce

acid phosphatases. Phosphatases measured in soils reflect the activity of enzymes bound to

soil colloids and humic substances, free phosphatases in the soil solution and phosphatases

associated with living and dead plant or microbial cells (Kramer and Green, 2000). The

measurement of phosphatase activity during this study would provide information on

whether a change in phosphorus cycling was observed in the contaminated soil. Diesel

fuel contamination adds a large input of carbon to the soil system. In order to break this

usable substrate down the increasing microbial numbers in the soil require additional

nutrients, namely nitrogen and phosphorus. Soil microorganisms will therefore be using

the majority of available nutrients in the soil for diesel fuel degradation, leaving little

phosphorus available for plant growth. Phosphatases are adaptive enzymes and the

intensity of the excretion by plant roots and microorganisms is apparently determined by

their need for phosphate (Skujins, 1976). An increase in phosphatase activity would again

show if diesel fuel was being used as a substrate for growth by the microorganisms but it

would also indicate whether plants were responding to the rhizosphere microorganisms

breaking down the contaminant in the soil by changing their exudation to the rhizosphere.

This would be a step in the right direction towards explaining why the presence of plants

enhances contaminant degradation.
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1.8.3. Non-Specific Proteases, Lipases and Esterases.

The activity of these enzymes in a soil system is assessed by the measurement of

fluorescein diacetate (FDA) hydrolysis in a broad spectrum enzyme assay. The variety of

enzymes responsible for FDA activity in soils are found within cells and also as free

enzymes (exoenzymes). Non-specific proteases, lipases and esterases are involved in the

decomposition of many types of tissue, thus the ability to hydrolyse FDA seems

widespread in the soil environment, especially among the major decomposers - bacteria

and fungi (Schnurer and Rosswall, 1982). Generally more than 90% of the energy flow in

a soil system passes through microbial decomposers therefore an assay which measures

microbial decomposer activity will provide a good estimate of total microbial activity.

Measurement of FDA activity during this study is similar to the measurement of

dehydrogenase activity in the sense that it estimates total metabolic activity of the soil

system. How it differs from the dehydrogenase activity assessment is that FDA

hydrolysing enzymes are found as free enzymes as well as in live microbial cells. This

will provide an estimate of the total microbial activity of the soil as a whole not just of the

microbial component and illustrate the influence of plant derived enzymes in the soil

system.

1.9 Current Research Needs

Crude oil contamination, particularly in the aquatic environment, is well documented.

Contamination by petroleum products such as diesel fuel and contamination of the soil

environment and those species that interact with the soil environment (microorganisms and

plants) is less well documented. When reviewing the literature for this work, the relative

scarcity of reports on petroleum biodegradation in soils as compared with those in aquatic

systems was notable.

The most common method of dealing with soil contaminated with petroleum

hydrocarbons is to remove the contaminated soil to landfill or for incineration. This

approach is destructive and costly. Alternative methods for the remediation of

contaminated land have been developed including physical, chemical and biological

methods. In the last 20 years more selective, sophisticated methods have been developed

including soil vapour extraction, extraction followed by wet chemical analysis and
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different thermal treatments (Sepi~ et al., 1996). Chemical techniques include

solidification with quicklime and application of surface active additives. The main

problem with these methods are they are site specific, dependent on the characteristics of

the contaminant and they can be costly to implement. There is a need for inexpensive, in

situ treatments for reclaiming soil contaminated with petroleum hydrocarbons. Biological

treatments for the clean-up of contaminated sites are becoming favourable and an

alternative possibility. Phytoremediation is one such technique which may be especially

applicable to diesel fuel contaminated land.

1.10 Aims and Objectives

The aim of this study was to investigate biodegradation of diesel fuel in the soil .

environment and determine whether biodegradation could be enhanced by the presence of

plants. This investigation encompassed the behaviour of diesel fuel on entering the soil

environment, how diesel fuel affected the soil microbial component and the effect of diesel

fuel on selected plant species' growth and development. The interaction between plants

and their associated microorganisms and the processes involved in the phytoremediation of

diesel fuel contaminated soil were also investigated.

A main objective during this study was to develop suitable methods for the

characterisation of diesel fuel. As little information was available on diesel fuel

composition, thorough analysis of the diesel fuel product was required.

The outcome of this research would hopefully conclude whether

phytoremediation is a viable option for diesel fuel contaminated soil.
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CHAPTER TWO

MATERIALS AND METHODS

All glassware/plasticware was physically washed then soaked in 2-5 % Decon

(Phosphate-free surface active cleaning agent) overnight. The glassware/plasticware

was rinsed under running water then rinsed 5 times in deionised water.

Glassware/plasticware used for nutrient determination was given a final rinse with

Purite deionised water. The glassware/plasticware was dried at approximately 40°C in a

drying oven. All chemicals, unless otherwise stated, were Analar grade.

2.1 Soils Used in the Study

2.1.1 Soil Sampling, Storage and Preparation

The soils used in this study were collected fresh from each site. The soil profile was

sampled to a depth of approximately 30cm and the removed soil placed in a heavy duty

polythene sample bag.

The soils were initially sorted to remove large stones, twigs/plant material,

macroinvertebrates etc., and then sieved to 4mm. The soils were stored in tied

polythene sample bags at 4°C until used.
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2.1.2 Description of Soils

The soils used in this study were classified to a Soil Series using the Soil Memoirs and

Soil Maps for each area (Grant et al. 1962and Ragg et al., 1976). Only three soils used

in this study were not from classified Soil Series. These were two manufactured

composts (John Innes seed compost and compost No.2) and the Garscube soil.

Information on their site history, preparation and textural class has been given. A brief

description of each soil used is given below.

Arkleston soil

The site is located at Arkleston Farm, Paisley, Scotland and is used for intensive

cultivation of potatoes. It belongs to the Dreghom Association, which is formed from

raised beach deposits. The series is Dreghom, which has been classed as a freely

drained brown forest soil. Ordnance survey grid reference NS 508655.

Barassie soil

The site is located at Troon, Ayrshire, Scotland and is from a garden. It belongs to the

Dreghom Association, which is developed from raised beach deposits. The soil comes

under the Dreghom Series, which has been classed as a freely drained forest soil.

Ordnance survey grid reference NS 328329.

Bargour soil

The site is located at Auchincruive, Ayr, Scotland and is under permanent grass. It

belongs to the Bargour Association which is developed from till derived from

carboniferous sandstone. The series is Bargour, which has been classed as an

imperfectly drained brown forest soil. Ordnance survey grid reference NS 379234.

Caprington soil

The site is also located at Auchincruive, Ayr, Scotland and is under permanent grass

and managed for grazing dairy cows. The soil belongs to the Rowanhill Association,

which is developed from glacial till derived from sandstone and shale of the productive

coal measures. The soil comes under the Caprington Series, which is classed as an

imperfectly drained brown forest soil. Ordnance survey grid reference NS 376232.

Darvel soil

The site is located at Lennoxtown, Scotland and is from a garden. It belongs to the

Darvel Association which is formed from fluvioglacial sands and gravels derived from
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carboniferous igneous and sedimentary rocks. The soil comes under the Darvel Series,

which has been classed as a freely drained brown forest soil of low base status.

Ordnance survey grid reference NS 635773.

Garscube soil

The site is located at Garscube, Glasgow, Scotland and has had manure applied for an

unknown number of years. The soil, analysed for textural properties, has been classed

as a sandy loam. Ordnance survey grid reference NS 540702.

John Innes Seed Compost and Compost No.2

These are manufactured soils formulated by John Innes Horticultural Insitute, UK,

which have been classed as sandy by textural analysis (RHS, 1996).

Seed Compost is prepared by mixing 2 parts sterilised loam, 1 part peat and 1 part

sand by volume. The loam is prepared by stacking turf for 6 months or more then

sterilising it to remove any pathogens present in the soil. Nutrients are added to this

mix in the form of 1.2 kg superphosphate of lime and 0.594 kg ground limestone per

cubic metre.
Compost No.2 is prepared by mixing 7 parts loam, 3 parts peat and 1 part sand

by volume. To this mixture, 1.2 kg ground limestone, 2.4 kg superphosphate of lime

and 1.2 kg potassium sulphate per cubic metre is added.

2.2 Characterisation of Soil Types by Physical and

Chemical Properties

2.2.1 Physical Properties

2.2.1.1 Particle Size FractionationbyMechanical Analysis

Particle size analysis for the determination of textural class was carried out using a

modified method based on ADAS method 57 (ADAS, 1986).

Soil texture describes the size distribution of particles in a soil. The following

method provides a quantitative assessment of particle size distribution that allows for an

33



Gillian Adam, 200 I Chapter 2, Materials and Methods

accurate description of soil texture. The method involves breaking down the soil to its

primary particles of sand, silt and clay by destruction of soil organic matter followed by

dispersion of the remaining mineral soil. This allows the soil particles to be fractionated

according to size by either sieving (sand fractions) or by the sedimentation rate of the

particles (silt and clay fractions). The textural class was then determined from the

texture chart prepared by the Soil Survey of England and Wales (Hodgson, 1976).

Destruction of Soil Organic Matter and Soil Dispersion

The following procedure was repeated for each soil investigated.

Six, labelled porcelain evaporating basins were placed in a 105°C oven and dried for I

hour. One of the six basins was labelled 'coarse and medium sand', one 'fine sand', two

were labelled 'silt plus clay' and the remaining two labelled 'clay'. The basins were

removed from the oven and allowed to cool in a desiccator. The basins were then

weighed (to four figures) and the oven dry weight recorded.

109 of air dry (sieved < 2mm) soil was weighed accurately (to two figures) into

a 400ml glass beaker. 50ml of 6% (w/v) H202 solution was carefully added to the

beaker along with two drops of a silicon antifoaming agent. Any initial reaction was

allowed to subside then the beaker was heated gently on a steam bath and the mixture

stirred occasionally with a glass rod. The mixture was heated until the frothing, caused

by the reaction of H202 on organic matter in the soil, had ceased. The beaker was then

removed from the steam bath and allowed to cool slightly. A further 50ml 6% H202

solution was added to the mixture and the sides of the beaker washed down with

deionised water. The beaker was placed back on the steam bath and heating continued

until the reaction was complete. Once the reaction had stopped, the beaker was heated

for a further 15 minutes to ensure complete oxidation of organic matter had occurred.

The beaker was removed from the steam bath and allowed to cool. Once cool, the sides

of the beaker were washed down with deionised water to give approximately a 2cm

depth of soil suspension in the beaker. lOml of 5.7% Calgon (dispersing agent) was

added then the suspension dispersed for 5 minutes in an ultrasonic bath.

Sand Fractionation

A l000ml graduated cylinder was set up with a large filter funnel in the neck. 180J.lm

and 53J.lm sieves were banked together (with the 180J.lmsieve on top) and placed in the

filter funnel. The sieve sizes approximated to the medium sand-fine sand and fine
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sand-coarse silt boundaries and allowed separation of the coarse and medium sand

fraction and the fine sand fraction.

The beaker containing the dispersed soil suspension was emptied into the

180~m sieve and the beaker washed thoroughly with deionised water to ensure all the

soil was added to the sieve. The soil was then washed through the sieves with deionised

water until the water passing through the 180~m sieve ran clear. The 180~m sieve

containing the coarse plus medium sand fraction was set aside. The fine sand fraction

in the 53~m sieve was washed in the same way. The cylinder was then made up to

IDOOmI with deionised water and stoppered.

The sand fractions were recovered by washing the sand in each sieve with a jet

of deionised water into the appropriate labelled porcelain basin. The excess water in the

basins was evaporated off in a steam bath then the sand fractions placed in a losoe

oven to dry overnight. The basins were removed from the oven and allowed to cool in a

desiccator. The basins were weighed (to four figures) and the % coarse plus medium

sand and % fine sand (on an oven dry basis) was calculated as shown below.

% sand fraction = weight of sand fraction * lOO

weight of oven dry mineral soil

The weight of oven dry mineral soil can be calculated from :

Weight of oven dry mineral soil = wt. of soil * c.f. * (lOO - % LO!)

100

see section 2.2.3 for calculation of % LO! and section 2.2.4 for conversion factor.

Silt plus clay fraction

Once the sand fractions were removed, the remaining soil fraction contained in the

1000ml graduated cylinder was used to determine the silt and clay fractions.

As the rate of sedimentation is temperature dependent, the temperature of the

suspension was measured and an appropriate sedimentation time was selected (see

appendix) for silt plus clay at a depth of 20cm at this temperature (Hodgson, 1976).

The lOOOmlcylinder was shaken for approximately 60 seconds. The cylinder was then

placed on a pipetting stand and timing started on a stopwatch. With the tap closed, a
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SOml pipette was lowered into the 1000mi cylinder until the tip of the pipette just failed

to touch the surface of the suspension. The height on the pipetting stand scale was

noted then 20 seconds before the required sampling time, the pipette was gently lowered

exactly 20cm into the suspension. At the appropriate time, the tap was opened and

slightly more than SOml of suspension was withdrawn. The tap was closed and the

pipette removed from the IOOOmIcylinder. The volume of the pipette was adjusted by

running the excess suspension into a waste beaker. The SOml of suspension was then

emptied into the appropriate, labelled porcelain basin. The cylinder was shaken again

and the above procedure repeated to obtain a duplicate sample.

The porcelain basins containing silt plus clay fractions were evaporated to

dryness on a steam bath. The basins were then placed in a 105°C oven and left to dry

overnight. The basins were removed from the oven and allowed to cool in a desiccator.

The basins were weighed (to four figures) to obtain % silt plus clay fraction present in

the soil.

Silt plus clay % wt. of fraction - wt. of dispersant

wt. of oven dry mineral soil
* vol. of cylinder

vol. of pipette

* 100

The weight of dispersant can be calculated from:

Wt. of dispersant (g) = 0.57 * vol. of pipette

1000

Clay fraction

The IOOOmlgraduated cylinder was shaken as before then placed in an incubator at

25°C. Just before sampling time (see appendix), the cylinder was removed from the

incubator and set up on the pipetting stand as before. At the appropriate time, 25ml of

suspension was removed from a depth of 10cm and emptied into the labelled porcelain

basin. Again, a duplicate sample was taken but the cylinder was not shaken between

samples.

The basins containing clay fractions were evaporated to dryness on a steam bath

then placed in a 105°C oven overnight. The basins were removed from the oven, cooled

in a desiccator then reweighed to obtain the % clay present in the soil.

Clay % = wt. of fraction - wt. of dispersant

wt. of oven dry mineral soil
* vol. of cylinder

vol. of pipette
* 100
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Silt fraction

The % silt was obtained by subtracting the % clay from the % silt plus clay.

2.2.2 Chemical Properties

2.2.2.1 Determination of soil pH

This method was carried out according to ADAS method 32 (ADAS, 1986).

Procedure

109 fresh soil was weighed, in triplicate, into 40z glass jars. 25ml of deionised water

was added to each jar and the contents shaken, intermittently, for 15 minutes. After 15

minutes the soil suspension was shaken and the pH electrode (calibrated to pH 4.0 and

pH 7.0) lowered immediately into the soil suspension. After 30 seconds the pH of the

soil suspension was recorded.

2.2.2.2 Moisture Content

All air dried soils contain a certain amount of water which is strongly held by the soil

particles. The weight of this water, known as hygroscopic water, depends partly on the

relative humidity and the temperature of the atmosphere. It is necessary to know

precisely what the moisture content of the soil is, as although soil analyses are generally

carried out on fresh or air dried soils, the results are reported on an oven dry basis. By

working out this conversion to oven dry weight, it is possible to compare results from

different laboratories obtained at different times.

Procedure

Porcelain basins were placed in a 105°e oven. After 1 hour, the basins were removed

and allowed to cool in a desiccator. The basins were then weighed on a 4 figure balance

and the weights recorded. 20g fresh soil was then weighed, in triplicate, into each

basin. The basins were placed back into the l05°e oven overnight. The basins were
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again removed from the oven and cooled in a desiccator and the weight recorded. The

% moisture loss from soil, on a fresh weight basis, can be calculated as shown below.

% moisture loss (fresh soil basis) = wt. fresh soil - wt. oven dry soil

wt. fresh soil
* 100

2.2.2.3 Organic Matter Content by Loss on Ignition (% LOn

Ignition of soil at a high temperature (e.g. 700aC) will result in a loss of weight due to

loss of organic matter and loss of combined water. In addition, calcareous soil will also

lose carbonate. Ignition at a lower temperature (e.g. 400°C) however, will reduce the

error but will require longer for complete combustion of the organic matter. The

method described below combines these aspects and is used to measure the loss of soil

organic matter by loss on ignition.

Procedure

5g of soil was weighed, in triplicate, into silica basins and dried overnight at 105°C.

The soils were weighed to obtain the oven dry soil weight. The soils were then placed

in a muffle furnace and ignited at 500aC for 6 hours. The samples were then reweighed

and the weight of ignited soils calculated.

The % organic matter by loss on ignition was calculated by:

% organic matter (LOI) = wt. oven dry soil - wt. ignited soil

wt. oven dry soil
* 100

2.2.2.4 Conversion Factors (et) for Fresh and Air Dried Soil Samples

The conversion factors for relating fresh and air dried soil sample weights to oven dried

weights was carried out by the procedure described below. The conversion was

necessary to allow results to be compared with results obtained at different times or in

different laboratories. This is discussed in Section 2.2.2.2.
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Procedure

Porcelain basins were placed in a 105°C oven for 1 hour, removed and allowed to cool

in a desiccator. 5g of either fresh or air dried soil was weighed, in triplicate, into each

porcelain basin and the basins replaced in the oven and dried overnight. Once cooled in

a desiccator, the basins were weighed and the oven dry weights recorded. The

conversion factor (cf) for air dry or fresh samples weights to an oven dry basis can be

calculated as follows:

cf = total oven dry weight

total fresh or air dry weight

The fresh or air dry sample weights can then be multiplied by the cf to give sample

weight on an oven dry basis.

2.2.2.5 Kjeldahl Nitrogen

Kjeldahl nitrogen content of the soils was determined using the digestion method of

Bremner and Mulvaney (1982) with ammonium being determined in the digests by an

automated colorimetric method on the Technicon Autoanalyser system. This method

does not include oxidised forms of nitrogen such as nitrate.

Samples were digested in concentrated sulphuric acid using potassium sulphate

to raise the boiling point and a copper selenium catalyst mixture to accelerate the

digestion process. Ammonium in the digests was determined by a modified indophenol

green method using a complexing reagent to prevent interferences due to the

precipitation of hydroxides in the reagent system.

Soil Digestion

Procedure

Soil samples were air dried and finely ground using a mortar and pestle. Approximately

O.5g of soil was weighed accurately, using a four figure balance, into a foil weighing

boat. The soil was then transferred carefully, to a dry, digestion tube, ensuring all the

soil reached the bottom of the tube. The foil weighing boat was reweighed and the
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weight recorded. This allowed accurate calculation of the total weight of soil added. 5

replicates for each sample were prepared and the remainder of the rack set up with

blanks. Blanks were prepared as above but without the addition of soil.

The rest of the method was carried out in a fume cupboard.

Half a catalyst tablet was added to each digestion tube then, using a dispenser,

5ml of concentrated sulphuric acid was added. The rack was placed on the digestion

block and the fume extraction system set up. The block was heated gently until the

initial frothing subsided, then the temperature was increased to 375°C and the tubes

heated until the digests cleared. A baffle was placed on the front of the rack to promote

refluxing higher up the tubes, thereby washing material down into the tubes. Once

digestion was complete the block was heated for a further 3 hours.

The tubes were removed from the block and allowed to cool until just warm to

the touch. If left too long the digests can solidify. Pointing the tubes to the back of the

fume cupboard, IOml of deionised water was carefully added. The tubes were shaken

vigorously to mix the contents then a further 30ml of deionised water was added and the

contents mixed.

The contents of each digestion tube were then filtered (Whatman, N02) into

IDOml volumetric flasks. The tubes were washed with deionised water and the

washings transferred to the filter paper. The filter paper was also washed with

deionised water then the volumetric flask was made up to the mark with deionised

water.

Determination of Ammonium in Kjeldahl Digests

Procedure

The manifold shown in Fig. 2.2.2.5.1 was used for the determination of ammonium-N

in the soil digests. The flow rates used at each step in the automated determination are

shown in Table 2.2.2.5.2. The samples were analysed using the manifold shown along

with standards, blanks and zeros. The samples were run at the rate of 40 per hour with a

dilution/neutralisation step before the main manifold (see Table 2.2.2.5.2). The colour

was developed in a water bath at 37°C and the colour intensity measured at 650nm. The

air was cleaned from atmospheric ammonium by bubbling through 5% sulphuric acid

solution. The calibration graph for ammonium is linear from O-lOOmg NH4-N r'. For

calibration purposes, standards in the range 0-25mg NH4-N r' were used as my samples

were never above this concentration.
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5 turns

to waste

J
I

sample 0.10
10 turns water

~/\/\/ I air 0.80
mixing coil

resample 0.32
10 turns 10 turns I
/\/\/-/\/\/ l I phenol 0.60

air 0.32
mixing coil

hypochlorite 0.16

to waste

tlow cell

15mm

650nm sample wash

delay coil, 3 mins 37 QC

Figure 2.2.2.5.1 Technicon autoanalyser II manifold for the determination of NH4-N.

Step in procedure Flow rate ml min·

Dilution/neutralisation

Sample wash solution: 5 % v/v H2S04

Neutralising solution

Air

2.00

0.80

0.10Sample

Main manifold

Complexing reagent

Alkaline phenol

Air

Resample

Hypochlorite

20 turn mixing coil

3 min delay coil

pull through

0.60

0.60

0.32

0.32

0.16

1.20

Table 2.2.2.5.2 Flow rates used In the automated determination of NH4-N in soil

digests.
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2.2.2.6 Extractable Phosphorus

Extractable inorganic phosphorus in soil was determined from sodium bicarbonate

extracts using ADAS method No. 59 (ADAS, 1986) coupled with an automated

determination step. A Technicon Autoanalyzer II was used for the determination of soil

inorganic phosphorus. The method is based on the formation of a phosphomolybdate

complex using antimony to accelerate the formation of the faintly yellow coloured

product. The coloured product is then reduced using ascorbic acid to give a more

intense blue colour, which may be measured at 880nm. The method is applicable to a

wide range of samples including water samples, soil extracts and digests of plant

material.

Extraction procedure

2.Sg air dried soil (sieved < 2mm) was weighed into a 40z glass jar. Four replicate

samples and two blanks without the addition of soil were prepared. SOml of O.SM

NaHC03 was added to each jar and the jars were shaken on an end-over-end shaker for

30 minutes. The samples were filtered (Whatman, No.2) and extracts collected in

100ml plastic bottles.

Determination of Inorganic Phosphorus in Soil Extracts

Soil inorganic phosphorus in the soil extracts was determined using the Technicon

Autoanalyzer II system. The solutions were analysed along with standards, blanks and

zeros. Inorganic phosphate has a linear calibration graph in the range O-Smg P04-P )"1

and as all my samples were below the top standard concentration there was no need for

dilution. The colour was developed in a water bath at 37°C and the colour intensity

measured at 880nm. This work was carried out by Fariedh Karabassi.

2.2.2.7 Extractable Potassium

Extractable potassium was determined by flame photometry according to a modified

version of ADAS Method 63 (ADAS, 1986). The flame photometer (Corning model

410) was calibrated using 0 to SOmg K )"1 standards prepared by relevant dilution of the

stock solution in 1M ammonium nitrate solution. The resultant calibration graph is

curved.
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Extraction procedure

5g of air dried soil (sieved < 2mm) was weighed, in triplicate, into 40z glass screw top

jars. A blank was included without the addition of soil. 50ml of 1M ammonium nitrate

solution was added to each jar and the jars shaken for 30 minutes on an end-over-end

shaker. The soil extracts were then filtered (Whatman, No.1) and the filtrate collected

in 100miplastic bottles.

Samples which gave readings above the highest standard concentration were

diluted 1:5 in 1M ammonium nitrate solution

2.3 Analysis of Diesel Fuel Oil

2.3.1 Extraction of Diesel Fuel from Soil

2.3.1.1 Cold Solvent Extraction Step (Short Residence)

Due to the short residence time of diesel fuel in some samples, a method of extraction

was developed that allowed the volatile, lighter fuel components to be removed

effectively followed by extraction of the heavier fuel components.

A cold shaking extraction method was developed from the mechanical

shaking method of Schwab et a/ (1999). 40g of fresh soil (sieved < 2mm) was extracted

for 30 minutes in 100mi 1:1 acetone: dichloromethane in an orbital incubator (l5°C,

200 rev min-I). The extract was filtered (Whatman, No.2) into 100mi volumetric flask

and the volume made up with 1:1 acetone: dichloromethane. This sample was then

prepared for Soxhlet extraction as described in Section 2.3.4 to remove the heavier

components.

This extract was analysed by GC-FID using the conditions described in

Section 2.3.4 and the total petroleum hydrocarbon (TPH) value calculated. The TPH

values obtained for each step of the extraction were summed to provide a total TPH

value for the sample. Dilution of the original diesel fuel in CH2Ch served as a

quantitative analytical standard.
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2.3.l.2 Soxhlet Extraction Step

40g of soil sample was left to air dry overnight. The sample was ground in a mortar and

pestle then transferred to a cellulose thimble for Soxhlet extraction. The Soxhlet

method was modified from the US EPA method 3540C for non volatile and semi

volatile organic compounds (US EPA, 1986) and the method of Song et at (1990).

5g of anhydrous sodium sulphate was added to the bottom of a cellulose

extraction thimble then the air dried soil sample added. The thimble was plugged with

glass wool then placed into the Soxhlet apparatus. 100mi of either dichloromethane

(CH2Ch) or I: I acetone: dichloromethane was added and the sample extracted for 6

hours. Once cool the extract was transferred, with washings, to a IOOml volumetric

flask and the volume made up to 100mi with the appropriate solvent. The extract was

analysed by GC-FID as described in Section 2.3.4 and the residual TPH value

calculated. Dilution of the original diesel fuel in CH2Ch served as a quantitative

analytical standard.

2.3.2 Gas Chromatography - Flame Ionisation Detection (GC-FID)

The method for diesel analysis by capillary GC-FID was modified from the US EPA

method 8100 for the analysis of polyaromatic hydrocarbons (PAHs) (US EPA, 1986).

The development of the method is discussed in Chapter 3, Section 3.1.2. The

chromatographic conditions were as follows. Analyses were carried out with a Hewlett-

Packard 5890A gas chromatograph and Flame Ionisation detector (FID). The GC was

interfaced with a Hewlett-Packard Chemstation data system. Helium carrier gas was

adjusted to the recommended linear flow velocity of 20cm sec" using the non-retained

compound butane. Separations were performed on a SGE BPX 5 polysilphenylene-

siloxane capillary column (25m x 0.32mm I.D. x O.5f..lm). 0.5111of sample was injected

at 35°C with a temperature hold of 3 minutes. The temperature increased SoC min-I up

to 2S0°C with a 10 minute hold at the end of the run. The injector temperature was

260°C and the detector temperature 270°C.
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2.3.3 Gas Chromatography- Mass Spectrometry (GC-MS)

Capillary GC-MS was carried out using a Hewlett-Packard 5971 mass selective detector

interfaced to a 5890 series II gas chromatograph and computer (Vectra QS/16S). Mass

spectra were recorded at 70 eV on continuous scanning mode. Mass spectra were run

through the computer's NBS library for identification. Separations were performed on a

HPI fused silica capillary column (l2.5m x 0.2mm 1.0. x 0.33Jlm). The carrier gas

used was helium with a flow rate of lml min -1.

Chromatographic conditions for the analysis of diesel samples were as follows.

For pure diesel sample analysis, 0.2Jll undiluted diesel was injected at 40°C and this

temperature was held for 2 minutes. After this initial time, a temperature programme of

3°C minute') began up to 275°C and this temperature was held for 1 minute. The

sample was split at a ratio of 50: 1.

The Total Ion Current (TIC) pattern produced by GC-MS was similar to the

pattern produced by capillary GC.

2.3.4 Headspace Analysis of Diesel Fuel (GC-Fill and GC-MS)

Headspace sampling of volatiles involves placing a sample in a sealed vial and heating

it to a predetermined temperature for a period of time. Minimising temperature change

and sample volume change is extremely important for headspace sensitivity (Kolb,

1997). The temperature of the sample vial is held for sufficiently long to bring the gas-

phase and sample-phase solute concentrations into equilibrium. The volatiles in the

gas-phase are then removed and injected directly onto the GC column. This method of

equilibrium sampling (Figure 2.3.4.1) was used for the qualitative analysis of the

volatile diesel fuel fraction.
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I

Under a constant set of conditions, equilibrium solute concentrations in the headspace

are directly proportional to the concentrations in the sample phase.

Figure 2.3.4.1 Basic headspace sampling technique: Equilibrium sampling

As qualitative analysis of diesel was required it was not necessary to determine when

the sample reached equilibrium, only when a sufficient gas-phase concentration of the

volatile diesel components was reached.

Procedure

Ig of diesel fuel was weighed into a Chrompack'" headspace vial (4cm x 2cm). The

vial was then sealed with a Teflon septum insert and metal collar. This trapped any

volatile components within the headspace of the vial and allowed a headspace sample to

be withdrawn through the septum. The vial was incubated at 22°C ± 2°C for 48 hours

to allow the diesel volatile and non volatile components to equilibrate. A O.5rnl

headspace sample was withdrawn from the vial using a 1ml gas syringe (JW

Chromatography) and injected directly onto the GC column. The sample was analysed

using the programmes described below. Further information on columns used and GC

conditions are described in Sections 2.3.2 for GC-FID and 2.3.3 for GC-MS.
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GC-FID Method

0.5ml of diesel headspace was injected at 35°C with a temperature hold of 3 minutes.

The temperature rose steadily at 5°C min" to 250°C. The temperature was held at

250°C for 10 minutes.

GC-MS Method

O.5ml diesel headspace was injected at 35°C with a temperature hold of 3 minutes. The

temperature then rose to 250°C on a steady 5°C min-1 programme with no temperature

hold at the end of the programme. The sample was split at a ratio of approximately 5:1.

2.3.5 Separation of Diesel Fuel on Silica Gel

Separation of diesel fuel on silica gel columns was carried out by a modified method

based on the method of Wang et al., (1990). The method involved subdividing a diesel

fuel sample into saturated. aromatic and polar fractions for total hydrocarbon analysis.

2.3.5.1 Preparation of Solvents

All solvents used in the experiment were degassed prior to use.

200ml of Analar hexane. dichloromethane and chloroform:methanol (1:1 v/v) were

poured into separate 500ml Buchner flasks. The flasks were placed on magnetic

stirrers. at low speed. and a vacuum applied. The solvents were stirred under vacuum

for approximately 1 hour until all the gas was removed. Once removed from the

vacuum apparatus. the solvents were dried over 4A molecular sieve. which had been

activated at 105°C for 24 hours. and the flasks sealed with Nesco™ film to prevent air

re-entering the solvent.

2.3.5.2 Preparation of Silica Column

Approximately 30g silica gel (Kieselgel Grade 12. 28-200 mesh. Sigma-Aldrich Co.)

was weighed into a dry 100ml beaker and activated at 105°C for 12 hours. Once cool.

hexane was added to produce a slurry of silica in hexane. A glass column (24cm x

2.3cm ID) with Teflon™ guard was packed with the silica-hexane slurry until

approximately 20cm was achieved. The column was allowed to settle for 48 hours
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under gravity. The silica was then further packed by running the column at a rate of

approximately 3ml min-I for 2 hours. This procedure was repeated after 24 hours.

Hexane was replenished from a reservoir connected to the top of the column, which

allowed continual replacement of the solvent without letting the column dry out. The

column was then ready for use.

2.3.5.3 Hydrocarbon Fractionation on Silica Column

0.5g of diesel fuel was added to 3g of silica gel (Kieselgel Grade 12, 28-200 mesh,

Sigma-Aldrich Co.) and applied to the top of the column. A 3g layer of anhydrous

sodium sulphate was added to the top of the column to absorb any water present and

prevent the disturbance of the sample. Hexane was added to wet the top of the column

and sample and the column opened to allow a slow flow rate through. The hexane flow

brought the sample onto the top of the column and flow rate was set at 30 drops min-I

which was equivalent to 1ml min -I. Hexane was run through the column until 120ml

was collected which contained the saturated fraction. The column was closed and the

reservoir changed to dichloromethane. Dichloromethane was run through the column at

the same rate until 120ml was collected. This fraction contained the aromatic diesel

fuel compounds. Finally, chloroform:methanol 1:1 was added to the reservoir and run

through the column as before. This removed the polar fraction.

Each fraction was collected then transferred to a 150ml round bottom flask, with

washings. The fractions were concentrated on a rotary evaporator until almost dry then

transferred and made up to 1ml in volumetric flasks. The concentrated fractions were

then analysed by GC-FID as described in Section 2.3.2.
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2.4 Behaviour of Diesel Fuel in the Soil

2.4.1 Movement of Diesel Through Soil Column

2.4.1.1 Leaching Experiment

A column was constructed which allowed the movement of diesel fuel through soil, at

depth, to be followed.

Leaching Column Set Up

Polyethylene drain pipe was cut into sections (L 10cm x ID 4cm). The sections were

sealed together using Parafilm and waterproof tape to provide an airtight seal at the

joins. Ten sections were fitted together to create a column 1 metre in length. As the

sections were fitted together, the column was filled with John Innes compost No.2 by

tapping the soil into each section to create an evenly packed column. John Innes

Compost No.2 was chosen as a substitute soil as it is prepared from sterilised loam

which provided a low microbial activity soil (Adam and Duncan, 1001). The column

was built up, section by section, in this way. The bottom section of the column had a

fine Nylon mesh covering the lower end to prevent the soil from escaping but allowing

the leachate to freely drain away. An extra section was placed on the top of the column

to provide a collar for the water reservoir. The column was run at a temperature of

approximately 15°C to reduce microbial activity in the column. The complete set up of

the column is illustrated in Figure 2.4.1.1.1.

Procedure

10ml of diesel fuel oil was added, by syringe, to the top of the column. The diesel fuel

was allowed to penetrate into the soil for approximately 30 minutes. After this time,

50ml of water was poured in to wet the column, then 2 litres of water was added by

inverting a 2.5 litre plastic bottle into the top of the column. This acted as a reservoir

allowing a constant supply of water to leach through the column. The flow rate

depended entirely on gravity flow and the density of the soil packed column. It took

approximately 24 hours for 2 litres of water to leach through the column/therefore a
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fresh 2 litre reservoir was set up each day. This process was continued for 5 days

providing a total of IO litres of water leached through the column.

The column was dismantled one section at a time and a 40g subsample

taken from each section. The samples were then extracted to determine the amount of

diesel fuel present in each section as described in Section 2.3.1.
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Figure 2.4.1.1.1. Diagrammatic representation of the leaching column set up. The

column consisted of 11 sections (one extra section on top of the column to act as a

collar for the reservoir) supported by clamp stands. The reservoir was a 2.5 litre plastic

bottle containing 2 litres of water. A 4 litre beaker collected the leachate beneath the

column.
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2.4.1.2 Adsorption of Petroleum Hydrocarbons to Soil Components

A laboratory study was undertaken to investigate the movement of various aromatic

compounds commonly found in diesel fuel (toluene, naphthalene, l-ethyl naphthalene,

2,5 dimethylnaphthaJene, phenanthrene, anthracene, pyrene and chrysene) through a soil

column and if the movement of these compounds was enhanced by ethanol. The effect

of soil components on contaminant movement was also investigated. This work was

carried out in collaboration with Keiji Gamoh (Kochi University, Japan) whilst working

on ajoint collaboration on ethanol-additive fuels within the department.

Preparation of column packing material

The packing materials used in the study were prepared by sieving the initial air dried

samples to < 150llm. This provided material, with an acceptable particle size range and

narrower particle size distribution, for packing into a HPLC column that would give

constant back pressure values and good chromatographic conditions.

Column 0-01 packing material was prepared entirely from sieved Barassie soil.

Column 0-05 material is the sieved subsoil from the Barassie series. This provides the

same soil matrix with lower organic matter, silt and clay content. Column 0-0 IF

material is Barassie soil that has been placed in a furnace at 600°C for 6 hours to burn

off all the organic matter. For control purposes a column packed with acid washed sand

(0-06) and silica gel columns (0-07 and 0-08) were included.

Particle size analysis for the determination of size distribution was carried out

by mechanical analysis as described in Section 2.2.1.1. Organic matter content was

assessed by loss on ignition (LO!) as described in Section 2.2.2.3. Table 2.4.1.2.1

shows the physical characteristics of the six packing materials used in the study.
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Particle size distribution

Column Description Organic Coarse + Fine sand Silt % Clay %
matter LO! % medium sand %

%

G-OI Sandy soil 16.68 1.68 38.86 21.56 24.78

G-05 Sandy subsoil 5.01 36.00 45.33 10.17 6.97

G-OIF Sandy soil (OM 0.00 1.95 44.75 24.80 28.50
removed)

G-06 acid washed sand 0.00 100 0.00 0.00
(Fisher Scientific • ~

Chemicals)

G-07 Matrex silica 60 • 100
~(Fisher Scientific

Chemicals) (0.070 - 0.0035 mm)

G-08 Silica Gel60H 100
(Merck BDH) • ~

(0.0015
mm)

% sand values are based on one replicate measurement and % silt and clay are based on duplicate

measurements.

Mechanical analysis recoveries for G - 01 and G - 05 were 103.56 % and 103.48 % respectively. Particle

size measurements are based on : coarse sand> 0.18 mm, fine sand 0.18 - 0.05 mm, silt 0.05 - 0.002

mm, clay < 0.002 mm.

Table 2.4.1.2.1. Physical characteristics of the packing materials used in this study

Column Preparation

The prepared material was packed into an empty stainless steel HPLC column (L

100mm x ID 4.6mm) by dry tapping. The packed column was attached to a HPLC

pump and 50% aqueous ethanol flowed through (0.1-1.5ml min -I) as a packing solvent.

After 30 minutes, a small portion of soil saturated in 50% aqueous ethanol was added to

the column head to fill up the crack left by the material shifting during packing. Once
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the column was successfully packed, 50% aqueous ethanol was run through overnight at

0.1ml min-I. Acetone was used to measure the void volume.

Procedure

Each petroleum hydrocarbon standard (I OOmg r' toluene, naphthalene, l-ethyl

naphthalene, 2,5-dimethyl naphthalene, anthracene, phenanthrene, pyrene and chrysene,

prepared in acetone) was added to the selected column individually and varying

aqueous ethanol concentrations used as the mobile phase with isocratic elution. The

hydrocarbon standards were injected into the column at 1.6ml min-I and detected by

UV at 254, 285 and 335nm. Flow rate was set for each column at a rate which provided

a constant back pressure. The chromatographic conditions used for each column are

outlined in table 2.4.1.2.2. The trend in retention of the hydrocarbons on each column

showed good linearity with carbon number, suggesting the column was performing

successfully. A good recovery of the petroleum hydrocarbon analytes, from each

column, under these conditions was achieved when the absorbance of the eluent from

each column was measured by UV spectrophotometry and compared to the

corresponding standard solution. The recoveries for mono-and di-aromatic analytes

were >99% and >94% for polyaromatic hydrocarbon analytes.

Mobile phase

25 % aqueous ethanol water

Column 0-01 0-05 O-OIF 0-06 Silica A Silica B

Packing
weight g-I

1.6 2.6 2.4 2.2 1.2 0.85

Flow ml min-I 1.6 1.6 1.6 1.6 0.8 1.2

Pressure psi 90 600 110 20 100 2000

Pressure measured in Jb/in2 (psi). Metric conversion - 1 psi - 7 kPa.

Table 2.4.1.2.2. Chromatographic conditions used for individual packed columns.
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2.4.2 Water Holding Capacity of Soil

The water holding capacity of soil is determined by allowing a measured amount of

oven dry soil to soak up water. After the soil is saturated and the excess water allowed

to drain, the weight increase of the soil is recorded. This value gives 100% of the water

holding capacity of that soil.

Procedure

Two labelled, porcelain evaporating basins were dried for I hour in a 105°C oven.

After I hour the basins were removed and allowed to cool in a desiccator. The oven dry

weight of the basins was recorded.

Two glass leaching columns (L 18cm x ID 2.5cm) were packed with

approximately 25g oven dry (l05°C) soil (sieved < 2mm). A cotton wool plug was

placed at the bottom of the column to prevent soil from escaping. The columns were

then completely saturated with water and the excess water allowed to drain. When the

columns had stopped dripping, the soil was recovered from each column and emptied

into the appropriate, labelled porcelain basin. The basin plus wet soil was weighed and

the weight gain recorded.

Weight of water gained (g) = weight of wet soil (g) - weight of oven dry soil (g)

This allows the % water holding capacity to be calculated from:

% water holding capacity = weight of water gained (g)

weight of oven dry soil (g)
* 100

This method was validated by oven drying the porcelain basins containing the

wet soil at 105°C overnight. The basins were removed from the oven and allowed to

cool in a desiccator. Once cool, the oven dry weights were recorded and the % moisture

determined as described in section 2.2.2.2. The % moisture content agreed with the %

water holding capacity therefore, the gravimetric method described above was found to

be accurate and used for the other samples.

54



Gillian Adam, 200 I Chapter 2, Materials and Methods

2.4.3 Hydrophobicity of soil (Repellency Test)

The molarity of ethanol droplet (MED) test, first proposed by Watson and Letey (1970)

and later developed by King (1981), was used to measure soil water repellency.

The water droplet (WD) test was used initially to assess the extent of soil

repellency. In the WD test, the time taken for water droplets (approximately 40JlL) to

penetrate the soil was measured for entry times of 4 minutes or less. If entry took more

than 4 minutes, the MED test was used.

The MED test measures the molarity of ethanol m a droplet (approximately

40JlL) required for soil infiltration in less than lO seconds. Soil water repellence was

assessed using ethanol concentrations of 0.2M intervals in the range 0.0-5.0M. The

repellence rating, stated as the MED index, was interpreted from the guidelines

provided by King (1981).

Procedure

A Perspex cell with a mesh bottom (L 63mm x W 45mm x D 9mm) was packed with

the oven dried (105°e) soil sample (sieved < 2mm) (Fig. 2.4.4.1). The soil was packed

evenly by tapping and lightly pressing the soil into the Perspex cell. The excess soil

was removed using a spatula to create an even surface.

The WD test involved applying a droplet of water, by Pasteur pipette, at a 90°

contact angle (upright position) onto the packed cell's soil surface. The time taken for

the droplet to penetrate fully into the soil surface was recorded. If the time taken was

over 240 seconds then the sample was retained for the MED test.

The MED test involved applying a droplet of ethanol, by Pasteur pipette, at a

90° contact angle onto the soil surface. A number of ethanol concentrations at 0.2 M

interval were used, in the range 0.0-5.0M. For each ethanol concentration, 3 replicate

measurements were made in a diagonal across the packed cell. The test was stopped

once the ethanol concentration was found which allowed full penetration of the droplet

within 10 seconds.

This was carried out for all the soil samples tested and the repellency rating

calculated from the interpretation guidelines shown in Table 2.4.4.1
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and MED). Diagonals represent the direction of replicate measurements on each cell.
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Tests

Rating Severity of Repellence MED WD(s)

(molarity of

ethanol)

Not significant <I

2 Very low

4

7

3 Low 0.0 8

0.2 11

4 0.4 16

0.6 22

5 0.8 33

1.0 53

6 Moderate 1.2 85

1.4 142

7 1.6 260

1.8

8 2.0

2.2

9 Severe 2.4

2.6

10 2.8

3.0

11 Very severe 3.2

3.4

12 3.6

3.8

> 3.8

Table 2.4.4.2.. Interpretation guidelines for water repellence rating of soils.

Modified from King (1981).
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2.5 Enzyme assays

2.5.1 Acid and Alkaline Phosphatase Activity

The measurement of soil phosphatase activity was modified as described below from

the method of Tabatabai and Bremner (1982).

The method involves the colorimetric estimation of p-nitrophenol released by

phosphatase activity when soil is incubated with buffered sodium p-nitrophenl solution.

Procedure

1.0g of fresh soil (sieved < 2mm) was weighed into 2Sml Quickfit conical flasks. 4ml

of MVB (pH 6.S for acid phosphatase assay or pH 11 for alkaline phosphatase assay)

was added to each flask and 1ml of 0.002SM p-nitrophenyl phosphate solution prepared

in the same buffer was added to start the reaction. The flasks were stoppered then

shaken to mix the contents of the flasks. The flasks were then incubated at 37°C for 1

hour.

Once removed from the incubator, Iml of O.SM CaCl2 was added to each flask

and the contents shaken thoroughly. 4ml of 0.5M NaOH was then added and the

contents shaken thoroughly. The soil suspension was filtered (Whatman, No.2) and the

filtrate measured at 400nm on a spectrophotometer (Hitachi V-II00

spectrophotometer). The p-nitrophenol content of each filtrate was calculated by

reference to a calibration graph prepared from 0-50Jlg p-nitrophenol standards.

A suitable number of replicates were prepared. Controls were prepared by the

procedure described above except the addition of p-nitrophenyl phosphate solution was

made after the CaCh and NaOH had been added.

Standard preparation

Iml of standard p-nitrophenol solution was diluted to 100ml with deionised water. 0, 1,

2, 3, 4 and Sml of this diluted standard solution was pipetted into 5ml volumetric flasks.

The volume of each flask was then adjusted to Sml with deionised water. The contents

of each flask were then transferred into individual 14ml capped vials. lml of 0.5M

CaCh and 4ml of O.SM NaOH was then added to each vial and the contents filtered as

described above.

If the colour intensity of the filtrates exceeded the 50Jlg p-nitrophenol standard,

an aliquot of the filtrate was diluted with deionised water until the spectrophotometer
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readings fell within the range of the calibration graph. A 1:5 dilution was most

commonly used.

2.5.2 Dehydrogenase Activity

The measurement of soil dehydrogenase activity was carried out by the method of

Casida et al (1964).

The method described below involves the colorimetric determination of 2,3,5-

triphenyl formazan (TPF) produced by the reduction of 2,3,5-triphenyltetrazolium

chloride (TTC) by soil microorganisms.

Procedure

35g of soil (air dry, sieved <2mm) was weighed into a 40z screw top glass jar. 0.35g of

Ca2 CO) was then added and the contents of the jar shaken to allow the Ca2CO) to be

thoroughly incorporated throughout the soil. 6g of this soil mixture was accurately

weighed into a weighing basin and transferred to a quick fit glass test tube. A suitable

number of replicates (5) were prepared.

Iml of triphenyltetrazolium chloride (TTC) aqueous solution (3%) and 2.5ml of

deionised water were then added to each test tube and the contents mixed thoroughly

with a glass rod. The test tubes were then placed in an incubator at 37°C for 24 hours.

Once removed from the incubator, 10ml of methanol was added to each test tube

and the contents shaken by hand for approximately I minute. The contents of each test

tube were then filtered through a glass filter funnel plugged with non absorbent cotton

wool into a lOtlml volumetric flask. This step was repeated, adding 10ml aliquots of

methanol to the test tubes and quantitatively transferring all the soil to the filter funnel.

The soil was then washed with methanol to removed all the triphenyl formazan (TPF)

produced and the remaining volume in the volumetric flask made up to the mark with

methanol.

The extracts were measured at 485nm on a spectrophotometer and the

concentration of TPF produced during the 24 hour incubation calculated by reference to

the standard calibration graph. The graph was prepared using 500, 1000, 1500 and 2000

ug mrl standards where methanol was used as the zero standard. The resulting graph

was linear.
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2.5.3 Fluorescein Diacetate Hydrolysis

The method for measuring fluorescein diacetate (FDA) activity in soil was carried out

by the modified method of Adam and Duncan ( 2.00 I ) from the original method by

Schniirer and Rosswall (1982).

FDA hydrolysis is widely accepted as an accurate method for measuring total

microbial activity in a range of environmental samples. The method involves the

hydrolysis of colourless fluorescein diacetate by both free and membrane bound

enzymes to the coloured end product, fluorescein, which can be measured by

spectrophotometry. The development of this method is described fully in Chapter 3,

Section 3.2.

Reagents

Potassium phosphate buffer pH 7.6, 60mM:

8.7g K2HP04 (Riedel-de Haen, Sigma-Aldrich Co. Ltd., Analar) and 1.3g KH2P04

(Merck, BDH Analar) were dissolved in approximately 800ml deionised water. The

contents were made up to 1 litre with deionised water.

2: I chloroform/methanol

666ml chloroform (Fisher Scientific UK Limited, analytical grade) was added to a 1

litre volumetric flask. The flask was made up to 1 litre with methanol (Fisher Scientific

UK Limited, analytical grade) and the contents mixed thoroughly.

IOOOf..1gFDA ml -I stock solution

O.lg fluorescein diacetate (3' 6'-diacetyl-fluorescein., Sigma-Aldrich Co. Ltd.) was

dissolved in approximately 80ml of acetone (Fisher Scientific UK Limited, analytical

grade) and the contents of the flask made up to 100mI with acetone. The solution was

stored at - 20°e.

2000f..1gfluorescein ml -I stock solution

O.2265g fluorescein sodium salt (Merck, BDH Analar) was dissolved in approximately

80ml of 60mM potassium phosphate buffer pH 7.6 and the contents made up to lOOml

with buffer. Fluorescein sodium salt contains 88.3% fluorescein therefore 2265flg

fluorescein sodium salt is required to prepare a 2000f..1gfluorescein standard solution.
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20Jlg fluorescein ml -I standard solution

Iml of 2000Jlg fluorescein ml -I stock solution was added to a lOamI volumetric flask

and the contents made up to the mark with 60mM potassium phosphate buffer pH 7.6.

1-5 ug ml -I standards were prepared from this standard solution by appropriate dilution

in 60mM potassium phosphate buffer pH 7.6.

Procedure

2g soil (fresh weight, sieved < 2mm) was placed in a SOml conical flask and ISml of

60mM potassium phosphate buffer pH 7.6 added. 0.2ml 1000Jlg FDA mrl stock

solution was added to start the reaction. Blanks were prepared without the addition of

the FDA substrate along with a suitable number of sample replicates. The flasks were

stoppered and the contents shaken by hand. The flasks were then placed in an orbital

incubator (Gallenkamp Orbital Incubator, 100 rev min-I) at 30°C for 20 minutes.

Once removed from the incubator, l Sml of 2: 1 chloroform/methanol was added

immediately to terminate the reaction. Stoppers were replaced on the flasks and the

contents shaken thoroughly by hand. The contents of the conical flasks were then

transferred to SOml centrifuge tubes and centrifuged at 2000 rev min-I for approximately

3 minutes (MSE Scientific Instruments, Coolspin 2 centrifuge). The supernatant from

each sample was then filtered (Whatman, No 2) into SOmIconical flasks and the filtrates

measured at 490nm on a spectrophotometer (Hitachi U-II 00 spectrophotometer).

The concentration of fluorescein released during the assay was calculated using

the calibration graph produced from O-SJlg fluorescein ml" standards which were

prepared from a 20Jlg fluorescein mrl standard solution. The OJlg ml' fluorescein

standard was used to zero the spectrophotometer before each set of blanks and samples

were read.
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2.6 Plant experiments

2.6.1 Germination Experiments

2.6.1.1 Plant Screening Experiment

Twenty five plant species including grasses, legumes, herbs and commercial crops were

screened for their ability to germinate in diesel fuel contaminated soil.

Plants screened included 14 species of grass: Cocksfoot; Creeping bent;

Highland bent; Meadow bent; Common bent; Black grass; Couch grass; Sweet vernal

grass; Rough meadow grass; Westerwold's ryegrass; Sheep's fescue; Strong creeping

red fescue; Chewing's fescue and Annual canary grass, 2 herbs: Black medick and

Fodder burnet, 5 legumes: Common vetch; Red clover; White clover; Little yellow

trefoil and Lucerne and 2 cultivar varieties of Oil seed rape :Rocket and Martina and 2

cultivar varieties of Flax: Viking and Elise.

The soil used in this experiment was John Innes seed compost and the diesel fuel

was obtained from a local Esso petrol station. To obtain an even distribution of diesel

fuel oil in the soil, 5g of diesel was weighed into a beaker containing 5g acetone. This

mixture was then added to a beaker containing lOOg soil (sieved < 2mm) and the

contents mixed thoroughly. The acetone was then allowed to evaporate from the soil

leaving a 50g kg-I diesel contaminated soil. This procedure was repeated until enough

soil was obtained for the experiment. The same procedure was used to produce 25g kg"

diesel contaminated soil.

109 of uncontaminated, 25g kg-I and 50g kg" diesel contaminated soil was

weighed into petri dishes, in duplicate. Seeds of each species investigated were planted

in appropriate petri dishes and the soil moistened. The lids were replaced on the petri

dishes and the dishes placed in an incubator at 20°C. The dishes containing

contaminated treatments were placed in a desiccator (without silica gel) before being

put in the incubator whereas the uncontaminated treatments were placed in directly.

The petri dishes were watered when necessary and the rate of germination recorded at

one and two weeks.
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2.6.1.2 Germination of Plant Species at Lower Temperatures

This experiment was designed to test the effect of the volatile diesel fraction on seed

germination. Eight plant types were planted in 0, 25 and 50g diesel kg-I soil then

incubated at 8°C. Seeds can germinate at 6°C therefore an incubation temperature of

8°C was chosen as it would allow the seeds to germinate but the lower temperature

would reduce the concentration of volatile diesel components present in each petri dish.

Fifty seeds of Highland bent, Common bent and Sweet vernal grass and twenty

five seeds of Black grass, Rough meadow grass, Fodder burnet, Chewing's fescue and

Strong creeping red fescue were planted, in duplicate, in petri dishes containing 0, 25

and 50g diesel kg" John Innes compost No.2. The soil was prepared as described in

Section 2.6.1.1. The dishes were then moistened with water and placed in a dark

incubator at 8°C ± 1°C. Once germination had occurred in the majority of samples, the

lights were switched on in the incubator and set to a 16 hour light! 8 hour dark cycle.

The dishes were watered when necessary and the germination rate measured weekly for

six weeks.

2.6.1.3 Volatility Experiment

A new experimental set up was devised to measure the germination rate of selected

plant species where low concentrations of volatile diesel components were present.

Twenty five Westerwold's ryegrass, Sweet vernal grass, Annual canary

grass, Lucerne and White clover were planted in 0, 25 and 50g diesel kg-I John Innes

compost No.2. Each petri dish was then set up as shown in Figure 2.6.1.3.1 with an

acetate collar supporting the petri dish lid. Holes were put in the lid to allow the

volatile diesel components to dissipate whilst allowing moisture to be retained. The

dishes were covered with black plastic sheeting to encourage germination. Once the

seeds had germinated, the sheeting was removed and the dishes watered when

necessary. Germination rate was measured at 1 and 2 weeks.
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f ---------------------- 1 '"
Petri dish lid with
holes cut

retfi dish base lined
with filter paper

t·_"_·._.._"_"_"_.._n_ .._ .._ .._.. ..

.__ Acetate collar

Figure 2.6.1.3.1 Set up for low volatile's germination experiment

2.6.1.4 Germination Experiment in 'Aged' Soil

This experiment followed the germination rate of five plant species in 'aged' diesel fuel

contaminated soil to illustrate the effect of the volatile fraction on germinating ability of

seeds.

Fifty Sweet vernal grass and twenty five Strong creeping red fescue, Sheep's

fescue, Chewing's fescue and Black grass seeds were planted in 0, 25 and 50g diesel

kg-I John Innes compost No.2 which had been previously contaminated. The soil was

contaminated as described in Section 2.6.1.1 and stored in open plastic bags for three

weeks. This provided a diesel fuel contaminated soil with the more volatile components

at a minimum. The dishes were moistened with water then incubated at 22°C ± 2°C in

the dark until the first signs of germination were apparent. The dishes were then

positioned in the light and watered when necessary. The germination rate was

measured at one and two weeks.

2.6.1.5 Seed Viability

This experiment was designed to evaluate a Triphenyl tetrazolium chloride (TTC)

method for estimating the germination rates of varying seed species and to determine if

diesel fuel had any effect on the viability of seeds.
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It is possible to predict the germinability of corn, oats, rye, wheat and barley by

observation of the embryo parts that are stained red by the insoluble formazan deposited

in viable tissue. It has been reported that new barley, oats and wheat incubated in a 1%

TTC solution at 48°C gave a good colour reaction, which appeared to be a quick,

reliable index for germination ability (Smith, 1951). The method has been adapted to

include other seed species and to evaluate the effectiveness of the method as an

indicator of seed germination ability.

Preliminary investigation

Seed species chosen for investigation were Flax variety 'Viking', Oil seed rape variety

'Commanche', Canary grass and Red clover. Seeds from each species were randomly

sampled from homogeneous populations of each seed type.

Twenty seeds of each type were then incubated at 20°C in a 1.5% TTC solution

in petri dishes. Seeds were removed at intervals and dissected using a sharp blade to see

the extent of colour development at the embryo. Seeds were cut on the longitudinal axis

to expose the embryo clearly. The colour developed was visually rated: red, pink and

none which provided an estimate of viability: very viable, may be viable or non viable.

Effect of diesel fuel on Flax seed viability

Procedure

Flax seed variety 'Viking' was chosen due to the factors stated in the preliminary

experiment.

Two hundred and forty randomly sampled flax seeds were split into three groups

(80 seeds in each). These seeds were subjected to the following treatments:

1. 80 seeds submerged and soaked in diesel fuel oil for 24 hours,

2. 80 seeds submerged and soaked in diesel fuel oil for 48 hours and

3. 80 seeds submerged and soaked in diesel fuel oil for 168 hours.

Half the seeds from each treatment (40 seeds in total) were removed from the

diesel fuel, lightly dried on a paper towels then placed in a 1.5% TIC solution. The

seeds were incubated at 20°C for 24 hours to determine the extent of diesel oil

penetration and damage to the viability of the seed. The remaining 40 seeds from each

treatment were split into 4 groups of 10 seeds and planted in petri dishes containing
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John Innes compost No.2. The dishes were moistened and placed in the dark at 20°C

until the first signs of germination, when they were removed and allowed to grow in

light conditions. The germination rate of the pre soaked seeds was calculated. A

control was set up for each test with uncontaminated seeds.

2.6.1.6 Phytotoxicity of Individual Petroleum Hydrocarbons

Branched Cyclohexanes

The experiment was designed to test the phytotoxicity of individual hydrocarbons

commonly found in the lighter fraction of diesel fuel as it has been observed that the

volatile fraction of diesel fuel has an effect on seed germinating ability.

Procedure

Iml of each cyclohexane solution (methyl, ethyl, propyl and butyl cyclohexane) at each

concentration level (0.1, 1 and 5mg r') was added, in triplicate, to the appropriate,

labelled petri dish. Each petri dish was lined with a filter paper (Whatman No.1, 9cm

diameter) which absorbed the added contaminants. The acetone was allowed to

evaporate for approximately 3 minutes then the filter paper was dampened with water

and 15 Westerwold's ryegrass seeds were placed on the filter paper. The petri dished

were incubated at 22°C ± 2°C in the dark until the first signs of germination, when they

were removed and placed in light conditions. The filter papers were kept moist and the

germination rate measured.

Aromatic Hydrocarbons

The effect of various aromatic hydrocarbons, commonly found in diesel fuel, on seed

germination and development was investigated.

Procedure

15g of John Innes compost No.2 was weighed into a petri dish. l.5ml of IOmg r'
naphthalene solution was added to the soil. The lid was replaced on the petri dish and

the contents shaken to mix the contaminant into the soil. This was repeated using the

10mg r' anthracene solution. The above procedure was repeated for the 50mg r' 1,4

DMN and 2,3,5 TMN solutions except 0.3ml of each contaminant was added to 15g
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soil. This produced soil contaminated with 1mg r' of each aromatic hydrocarbon. A

total of 4 replicate dishes for each contaminant were prepared in this way.

Fifteen Canary grass seeds were planted in each replicate dish, the soil

moistened with water and the dishes incubated at 22°C ± 2°C in the dark. Once

germination was apparent, the dishes were placed in the light and watered when

necessary.

2.6.2 Simulated Diesel Fuel Spill

The effect of an aboveground diesel fuel spill on vegetation was investigated by

simulating a diesel spill on soil planted with four different plant species.

Procedure

Four 35.5cm x 21.5cm seed trays were filled with John Innes compost No.2. Each tray

was then seeded with EM3 meadow mix, Westerwold's ryegrass, Red clover or

Chewing's fescue. The trays were watered and covered with black plastic sheeting to

encourage germination. Once shoots were apparent in the trays, the sheeting was

removed and the plants grown in the greenhouse with a 16 hour light/8 hour dark cycle

and a constant temperature of 25°C ± 3°C. The plants were grown for two months and

the trays were watered when necessary.

After two months, lOOml of diesel fuel was spilled in the centre of each planted

tray. Two weeks after diesel addition, the plants were cut back to allow re-growth of

new plant material.

The trays were left to grow for a further two months before being destructively

sampled. Soil samples were taken from each comer of the tray and one sample from the

middle of the tray using a corer (40mm x ID 38mm). The two corner samples from the

same side were combined to produce larger samples (see Figure 2.6.2.1). This was

repeated for each tray. The collected samples were sieved « 2 mm) then oven dried

(105°C) overnight in porcelain basins. Each soil sample's repellency was evaluated

using the MED test as described in Section 2.4.4.
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Figure 2.6.2.1. Diagram of sampling pattern of planted trays.

2.6.3 Greenhouse Experiments

The most successful plant species observed in the initial germination experiments

(Section 2.6.1) were used in a series of greenhouse experiments to evaluate the growth

and development of selected species in diesel fuel contaminated soil.

Preparation of diesel fuel contaminated soil

Diesel fuel contaminated soil was prepared at different treatment levels by the same

procedure for the following pot experiments.

Soil was weighed accurately on a top pan balance (2 figure) and spread out onto

heavy duty plastic sheeting. The appropriate amount of diesel fuel, which was obtained

from a local Esso petrol station, was weighed into a 40z glass jar then poured over the

soil. The diesel fuel was then mixed in thoroughly through the soil using a hand trowel.

The contaminated soil was then weighed into a labelled plastic pot and was ready for

planting.

2.6.3.1 Initial Mixed Plant

Ten plant species were selected for an initial pot trial. This experiment was split into

two sections for ease, with 5 species being investigated in the Set 1 and 5 species in the

Set 2.
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Set 1

Four grass species: Black grass, Cocksfoot, Common bent and Sweet vernal grass and

one Oil rape seed cultivar Martina were chosen for investigation.

Ten 4 " plastic pots were filled with uncontaminated John Innes Compost No.2,

ten pots with 25g diesel kg-I and ten pots with SOg diesel kg". The diesel fuel

contaminated soil was prepared as described in Section 2.6.3. A hundred seeds from

each plant species were then sown, in duplicate, into Og diesel kg-I soil treatment. This

was repeated for the 25g diesel kg-I treatment level and the 50g diesel kg-I treatment

level. The pots were clearly labelled with an identification number, plant species,

treatment level and replicate number and then arranged randomly. The pots were

watered and covered with black plastic sheeting to encourage germination. When signs

of plant growth were apparent, the sheeting was removed and a set of greenhouse strip

lights (3 strip lights in total) placed over the pots. The lights were set on a 16 hour

light/8 hour dark cycle and the plants watered when necessary.

Set 2

Four grass species were again chosen: Sheep's fescue; Strong creeping red fescue;

Chewing's fescue and Westerwold's ryegrass and I herb species: Black medick. The

pots were set up as before in 0, 2S and SOgdiesel kg' soil except 50 seeds were planted

in each pot.

Greenhouse observations

The following measurements were made after 3 weeks, 6 weeks then 7 weeks. Tallest

plant height (em), majority plant height (em), leaf burn (visual rating 1 - 5), stem colour

and in addition for the Oil seed rape, maturity rating (ADAS) was measured. Total

shoot yield per pot and total root weight per pot were measured at the end of the 7

weeks as described in Section 2.7.1.1 and 2.7.1.2.

2.6.3.2 Grasses vs Legumes

Two plant species from the families Gramine.a.e and Leguminosae were investigated

for their potential to grow in soil contaminated with diesel fuel. The experiment was

designed to illustrate if the Leguminosae grew better in diesel fuel contaminated soil,

due to their close association with nitrogen fixing microorganisms, than members of the
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Gramineao, family. The C : N ratio in the soil will be increased by the addition of

diesel fuel as diesel fuel is comprised mainly of carbon and hydrogen. This may result

in immobilisation of soil nitrogen, leaving none available for plant growth. The

Leguminosae fix atmospheric nitrogen to produce their own nitrate for growth therefore

they may prove more successful in diesel fuel contaminated soil.

Procedure

The plant species chosen for this study were Westerwold's ryegrass, Strong creeping

red fescue, Common vetch and Red clover.

4.6kg of Darvel soil (sieved < 4 mm) was contaminated with 0, 5, 10 and 20g

diesel kg' soil as described in Section 2.6.3. 350g of soil was weighed into 4" plastic

pots to provide a total of 13 pots contaminated with 0, 5, 10 and 20g diesel kg'. Fifteen

seeds from each plant type were planted, in triplicate, into the pots at each treatment.

One pot from each treatment was left unplanted. The pots were then laid out in the

greenhouse in a randomised design, watered and covered with black plastic sheeting to

encourage germination. Once shoot emergence was apparent, the sheeting was removed

and the plants were watered when necessary.

Greenhouse observations

Longest shoot height and majority shoot height were measured every three weeks until

harvest (15 weeks). Germination rate was measured at 3 and 15 weeks. Observations

on plant health and development were also made during the experiment. At 15 weeks,

the pots were destructively sampled and shoot and root biomass collected for

determination as described in Section 2.7.1.1 and 2.7.1.2. Investigation of the Common

vetch root nodules was carried out as described in Section 2.7.1.3. In addition, a few

nodules from control and contaminated vetch plants were sectioned by hand, placed on

a glass slide and viewed by light microscopy (x 10 magnification). The light microscope

set up is described in Section 2.7.1.4

2.6.3.3 Ryegrass vs oil seed rape

A larger greenhouse experiment was set up which compared the growth of

Westerwold's ryegrass and Oil seed rape as these seed species consistently grew well in

diesel fuel contaminated soil. The experimental design incorporated two plant species
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in four diesel fuel treatment levels (Og, Sg, 7.Sg and 109 diesel fuel kg-I soil) with two

harvest dates (2 and 4 months).

Procedure

Arkleston soil was used for this experiment and was contaminated Skg at a time. Fifty

six 9" plastic pots were washed prior to use and labelled with the plant species,

contamination level, replicate number and identification number.

In addition to the contaminated soil prepared for the pots, Ikg of soil was also

contaminated at each diesel fuel level and stored at 4°C for the duration of the

experiment to provide a baseline for diesel lost through abiotic processes.

Twenty one sets of each seed type were counted out and stored in clip top vials

until planting. Sixty Westerwold's ryegrass and 40 Oil seed rape cultivar Commanche

seeds were in each set. The seeds were planted in the appropriate pot then the pots were

laid out in a randomised block design in the greenhouse. The pots were then thoroughly

watered and covered with black plastic sheeting to encourage germination. After 4 days

the sheeting was removed and the pots were watered when required.

Greenhouse measurements and soil sample analyses

Germination rate was measured after 1 week then at the 2 month and 4 month sampling

dates. After 2 months the first set of pots were destructively sampled. Plant

productivity was assessed by measuring oven dry biomass as described in Section

2.7.1.1.

Enzyme analyses including acid and alkaline phosphatase activity (Section

2.S.1), dehydrogenase activity (Section 2.5.2) and FDA activity (Section 2.5.3) were

carried out on soil subsamples from each pot. Finally, diesel analysis was carried out on

soil subsamples from each pot, the soils kept at 4°C for the duration of the experiment

and freshly contaminated soils at each diesel fuel level.

2.6.3.4 Legume vs Non-Legume

This pot trial involved three plant species plus a control with no plants at four different

diesel fuel treatment levels (0, 5, 10 and ISg diesel kg-I soil). The trial incorporated two

sampling dates at 2 months and 4 months growth
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Procedure

Eighty 7" plastic pots and eighty 9" plastic saucers were washed prior to use. Each pot

was labelled with an identification number, plant type, treatment level and replicate

number. Twenty four sets of each seed type were counted out and stored in clip top

vials. Twenty seeds per set was decided on for both Westerwold's ryegrass and

Common vetch as this would provide adequate plant cover but with enough room for

growth over the 4 month experiment. Because the EM3 special general purpose

meadow mix was a mixture of seed species, counting out individual seeds was

unrealistic. Instead, 0.09g ± 0.005 of EM3 was weighed into each set as suggested by

the supplier's guidelines for sow rate (4g per m2).

Each pot holds 2kg soil therefore 40kg of uncontaminated, 5g diesel kg-I, 109

diesel kg-I and 15 g diesel kg-1 John Innes compost No.2 was required. The diesel fuel

treated soil was contaminated 2kg at a time as described in Section 2.6.3. The pots were

then laid out in the greenhouse. The seeds were planted into each pot and the pots

thoroughly watered. The pots were then covered with black plastic sheeting to aid

germination and prevent the surface soil from drying out. After 4 days, when most of

the seeds were showing signs of germinating, the covering was removed. Light was

provided by a central lamp (Phillips 400 watt HPI plus) set on a 16 hour lightl8 hour

dark cycle. The pots were watered initially every day from above, to provide the

germinating seeds with water but once the plants were reasonably well grown, the

saucers were filled and the plants obtained water from below.

2.6.3.5 Willow Clone Trial

This experiment was designed to determine if variability exists among willow clones for

performance in diesel fuel contaminated soil.

Plant and soil selection

For this study, four willow clones were chosen. One traditional British variety of basket

willow, Rosewarne white (Salix aurita x cinerea x viminalisi and three recently bred

Swedish varieties of Salix viminalis : Jorr, Jorrun and Ulv were selected for comparison.

2kg of John Innes seed compost was contaminated at a time using the procedure

described in Section 2.6.1 to obtain 0, 25 and 50g diesel kg'" contaminated soils. This

procedure was repeated until 20kg of each contaminated soil was produced. The
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contaminated soils were then transferred to 25kg troughs. A trough was also set up with

20kg of uncontaminated soil as a control.

Experimental design

The stools of each willow clone were labelled with a number from 1-12. Four stools

from each willow clone were planted into 0, 25 or 50g kg-I contaminated soil. The

design was a randomised complete block with four replications.

Greenhouse observations

The following agronomic traits were measured every two months: shoot length, number

of shoots and diameter of longest shoot at half height. Total yield, number of leaves per

shoot and root mass was measured at the end of the experiment.

Harvesting of willow

After 10 months growth, the final measurements were taken and the willow trees were

harvested. The trees were harvested by cutting the shoots level with the top of the

original stool. The shoot and leaf material were put in plastic sample bags until oven

dry biomass was assessed.

The stools and roots were removed from the troughs and any soil adhering to the

roots shaken back into the trough. The root material and stools were then placed in

plastic sample bags. It was extremely difficult to separate the roots of individual trees

so the overall root biomass for each trough was measured.

The shoot material was prepared as described in section 2.7.1. To obtain the total

oven dry shoot biomass per plant.

The soil from each trough was emptied onto heavy duty plastic sheeting and

allowed to air dry for 48 hours. The soil was then sieved « 2mm) to remove the rest of

the root material. This root material was added to the material already collected for

each trough. The soil was then subsampled and stored in a tied plastic sample bag at

4°C until diesel analysis was carried out. The root material was prepared and dried as

described in Section 2.7.2.

Diesel analysis

The diesel fuel remaining in the soil after 10 months was extracted from a subsample of

each trough using the Soxhlet method (section 2.3.1) followed by GC-FID analysis

(Section 2.3.2).
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2.6.3.6 Detoxification Experiment

The experiment was designed to investigate the effect of the more volatile fraction of

diesel fuel on plants at different stages of growth. Both seeds and transplanted

seedlings were grown in freshly contaminated and 'aged' diesel fuel contaminated soils.

Procedure

Three hundred and fifty Westerwold's ryegrass seeds were planted in 3S.Scm x 2l.Scm

seed trays, approximately 2 weeks before the experiment start date. John Innes compost

No.2 was contaminated at 2Sg and SOg diesel kg-1 soil treatment levels as described in

section 2.6.3. Two kg of soil at each contamination level was prepared 4 weeks in

advance of the experiment start date. Four 4" pots were filled with this soil and left to

'age' in the greenhouse. This procedure was repeated 1 week before the experiment

start date. with four 4" pot again being filled with contaminated soil at each level. The

day before the experiment was due to commence, 2kg of soil was freshly contaminated

at each level and transferred to 4" pots. Twenty five seeds or twenty five 2 week old

seedlings were planted, in duplicate, at each level of diesel fuel contamination. The

pots were thoroughly watered and laid out in the greenhouse. The pots were watered

when necessary.

Greenhouse observations and harvesting

The general condition of the plants was monitored along with germination rate for the

seeded treatments and survival rate for the transplanted seedlings. The longest shoot

was also recorded. Once the experiment was complete, the shoot biomass was collected

and oven dried as described in Section 2.7.1.

2.7 Harvesting ofGreenhouseTrials

2.7.1 Preparation of Shoot Material

The shoot material was cut at the root-shoot interface, one plant at a time. This allowed

the number of plants per pot to be calculated accurately at the time of harvest. The

shoot material from each plant was bulked together, cut down to manageable lengths (if

required) and then placed in pre-weighed foil envelopes. The envelopes containing
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shoot material were oven dried for 72 hours at 75°C. After this time, envelopes

containing shoot material were removed from the oven and cooled in a desiccator.

Once cool, the envelopes containing shoot material were weighed (to four figures) to

obtain the oven dry weight of shoot material.

Willow shoot material was cut level with the top of the original stool. The

shoots were then cut using secateurs to approximately 5cm lengths to allow easier

drying. The cut shoot material was placed in preweighed foil basins then oven dried at

75°C for 96 hours. The foil basins were then removed from the oven and allowed to

cool in a desiccator. The foil basins containing oven dried shoot material were weighed

on a two figure balance and the weight recorded.

Determination of dry weight should be carried out at 60-75°C as destruction of

plant material is prevented at these lower temperatures (Bohm, 1979).

2.7.2 Preparation of Root Material

When harvesting, the pot was upturned onto heavy plastic sheeting and the plants plus

soil tipped out. The shoot (top growth) material was then cut at the root-shoot interface

and retained for further preparation. The root and soil mixture was shaken to dislodge

the majority of soil. The larger roots were hand picked from the soil and set aside. The

soil was then sieved « 2mm) to retain the remaining root material and this was added to

the rest of the root material. The soil (sieved < 2mm) was sub-sampled for enzyme and

diesel analyses if required.

The collected root material was air dried then sorted by hand to remove most of

the soil debris. The roots were then washed by hand through a 1mm sieve in continuos

running water as a final cleaning step.

The washed roots were air dried to near dryness then placed in a pre-weighed

foil envelope and dried at 75°C for 72 hours. After this time, the envelopes containing

root material were removed and allowed to cool in a desiccator. Once cool, the

envelopes containing root material were weighed (to four figures) and the weight of

oven dry root material calculated.

Samples prepared in this way may lose fine roots and older root segments. Due

to this, a 10% total root weight error was placed on the oven dry root weights (Bohm,

1979).
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2.7.3 Determination of Root Nodules

Leguminous plants were also prepared for root nodule investigation. The plants were

shaken free from soil then washed thoroughly under running water. After the root

sample was washed, the number of nodules was determined on a per plant basis. The

roots nodules were then prepared for microscopy (Section 2.7.1.4) or dry root weight

determination (Section 2.7.1.2).

2.7.4 Nodule Embedding and Microscopy

The preparation of root nodules for microscopic examination was carried out by Mr

Eoin Robertson of the mLS Electron Microscopy Unit.

Freshly washed root nodules were fixed in gluteraldehyde in 0.2M cacodylate

buffer for 6 hours then dehydrated through an ethanol series. The dehydrated nodules

were then infiltrated in LR white resin for 48 hours and polymerised at 60°C overnight.

Sections (2 microns) were cut using a glass knife on a LKB ultratone III and dried onto

glass slides over a hot plate at 60°C. Half the sections were stained at 60°C for 10

seconds with I% toluidine blue in 1% sodium tetraborate (Borox). The sections were

visualised at lOx and 40x magnification on a Leica ATC ™ 2000 compound microscope

with camera attachment.

2.8 Spatial Distribution of Roots

An experimental system was set up which enabled the pattern of root development of

selected plant species to be followed in a model soil system contaminated with diesel

fuel.

Experimental set up

Two glass boxes were constructed (40cm x loocm) from heavy glass plates and set up

as shown in Figure 2.8.1. Different patterns of diesel oil contamination were

investigated to follow how root development in selected plant species altered when

diesel fuel was encountered. The different set ups are shown below.

In each set up, John Innes seed compost (sieved < 2mm) was used and the

different concentrations of diesel oil contaminated soil prepared as described in section
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2.6.3. The glass boxes were set up in the greenhouse where light was provided on a 16

hour light/8 hour dark cycle from a central lamp (Phillips 400 watt HP! Plus) and the

temperature was maintained at 2YC ± 3°e. The glass boxes were covered with black

plastic sheeting to create a realistic soil environment and to allow the seeds to

germinate. The plants in the glass boxes were watered when necessary.

Clamp stand..---
r-- I- f-I--

Section I Section 2 Section 3

r-- I- ----
I" ;t ---, / ---'"\ /

Wooden struts

100cm

40cm

Figure 2.8.1 Basic set up of glass box for following the pattern of root development in

situ

Set up 1: One glass box was left as a control and filled with uncontaminated soil. The

second box was contaminated with a layer of diesel fuel (lOml for each section) at a

depth of lOcm and uncontaminated soil was placed on top of the contaminated layer.

Each box was split into three sections to allow comparison of three different plant

species (see Figure 2.8.2). The plant species chosen were two grasses, Common bent

and Sweet vernal grass and an Oil seed rape cultivar variety Martina. One hundred

seeds from each species were sown into the relevant section of each box and the boxes

watered.

Diesel horizon seeds

<. -:
.~

...

Section I Section 2 Section 3

~ l- f-I--

Figure 2.8.2. Impact of a diesel horizon on plant root growth.
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Set up 2: Glass boxes were set up in three sections as in set up I. Two of the three

sections were further split into two halves to provide one half with contaminated soil

and one half with uncontaminated soil (see Figure 2.8.3.). 2Sg kg-' and 50g kg-'

contaminated soil was prepared and packed into the allocated area. A 10cm depth of

uncontaminated soil was included on top of all three sections.

SOCocksfoot seeds and 2S Fodder burnet seeds were planted in each section of

the appropriate box. The boxes were watered and covered with plastic sheeting as

before.

contaminated sections seeds

/ \ /
-

t--

Figure 2.8.3. Development of roots when in contact with uncontaminated and

contaminated soil

.·.·.····J>tocm·/···· ..·f\· .
,; \

. .! .

Set up 3: Glass boxes were set up as before except each section had a contaminated

patch of diesel fuel oil. 2Sg kg-' and Sag kg-' contaminated soil was prepared as before

and then used to pack a 6cm x 6cm square of the glass box section. A control section

was included with no contaminated soil. One glass box was planted with Oil seed rape

variety Commanche, 20 seeds per section and the second box planted with Flax variety

Viking, 30 seeds per section. The boxes were covered with plastic sheeting and watered

when necessary.

r--- 50 g kg "

contaminated patches seeds

Figure 2.8.4. Pattern of root growth where diesel fuel contaminated is present in

distinct patches.

50 g kg "25 g kg "
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Set up 4: Glass boxes were constructed as before but each section contained two

contaminated squares per section (4cm x 2.5cm). The levels of diesel fuel oil

contamination were 0, 5, 109 kg-I in box 1 and 15, 25 and 50g kg-I in box 2. Twenty

Oil seed rape seeds variety Comrnanche were planted in each section and the glass

boxes watered.

contaminated patches seeds

o
5 gkg-1

o

Figure 2.8.5. Illustration of box showing smaller areas of discrete diesel fuel

contamination.

Set up 5: One glass box was
constructed as shown in Figure 2.8.6.
with the glass positioned lengthwise.
This gave a 1 metre deep soil profile
which was used to measure the rooting
depth of Westerwold's ryegrass. The
box was packed entirely with
uncontaminated soil and 3 seeds
planted. The box was watered and
covered with plastic sheeting and the
root depth measured on a weekly basis.

Figure 2.8.6. Photograph of vertical
glass box set up for monitoring rooting
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2.9 Statistical Analysis

Sample standard deviations, calculated using the Microsoft Excel statistical function,

were used to work out the standard error of the mean and the coefficient of variation.

The standard error of the mean was used to provide an estimate of the precision

of the sample mean as an estimate of the population mean. This provided a better

estimate of variability than the sample standard deviation as it took into account the

sample size, which sometimes differed from treatment to treatment.

Standard error of the mean = sample standard deviation

J sample size (no. of replicates)

The coefficient of variation was used to examine the degree of variability

between two or more sample means where the mean values were on incomparable

scales. This was calculated from :

Coefficient of variation = sample standard deviation

sample mean

* 100

Analysis of variance was carried out using the Minitab package and Tukeys One

Way Anova function which sets a 95% confidence interval. The Anova values

indicated whether or not there was a significant difference between treatment means.

80



CHAPTER THREE

METHOD DEVELOPMENT

The methods for diesel fuel extraction and analysis and Fluorescein diacetate (FDA)

hydrolytic activity were integral parts of this study and were chosen for further

development.

3.1 Analysis of Diesel Fuel

3.1.1 Extraction of Diesel Fuel from Soil

Due to the different concentrations of diesel fuel present in the soil samples analysed

(ranging from 5g-50g diesel kg" soil) during this study and the different residence

times of diesel fuel in these soil samples (ranging from 1 week to 10 months), different

extraction techniques had to be developed to effectively remove the remaining diesel

fuel.

Soil samples containing diesel fuel with a short residence time, such as the soil

samples taken after 1 week from the leaching experiment described in Section 2.4.1,

contained both volatile diesel fuel components and heavier diesel fuel components. The

extraction method for these samples required a two-step extraction procedure whereby
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the more volatile components were initially extracted followed by removal of the

heavier components.

Samples containing diesel fuel with longer residence times (> I month)

did not require this initial extraction step as the majority of volatile components were

already lost by this time. Instead, a hot solvent extraction could be performed directly

on these samples. Depending on the initial concentration of diesel fuel in soil, different

sample preparations were performed and different solvents used for the extraction.

3.1.1.1 Long Residence Time Samples (>1month)

It has been observed during the course of this study that the majority of the volatile

diesel fuel components are lost from soil within 2-3 weeks. Therefore, a hot solvent

extraction technique was used directly on long residence time soil samples, as no initial

extraction was required for removal of the lighter, more volatile components. The hot

solvent, soxhlet extraction technique was carried out using the method of Song et al

(1990). The type of solvent used during the extraction was dependent on the initial

diesel fuel concentration of the soil samples.

High Level Diesel Fuel Samples (25-50g diesel kg" soil range)

The higher diesel fuel concentrations were used in the Willow clone trial described in

Section 2.6.3.5. Because the initial concentrations were high, the overall recovery of

diesel fuel from soil was achieved relatively easily using the soxhlet extraction method.

100mi of dichloromethane was used to extract a 40g air dried «2mm) diesel fuel

contaminated soil sample. The recovery value of the method was tested by adding a

specified concentration of diesel fuel to soil, then allowing the diesel fuel to interact

with the sample for 24 hours. This contaminated soil sample was air dried and sieved <

2mm, then extracted with hot dichloromethane for 6 hours. Quantitative recovery of

this 0 time sample was determined on total petroleum hydrocarbon (TPH) recovery as

well as on recovery of individual hydrocarbons. Dilution of the original diesel fuel in

dichloromethane served as a quantitative analytical standard. The results for TPH

recovery and individual hydrocarbons are given in Table 3.1.1.1.1 below.
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Peak area

Standard
original diesel fuel

o time freshly
extracted 25g kg' Recovery %

TPH 159514 119198 74.7

Individual petroleum Ret time Peak Ret time Peak
hydrocarbons area area

CIO 16.847 2823 16.947 1074 38.0
C 11 20.392 4820 20.496 3078 63.9
CI2 23.710 5336 23.819 4234 79.3
CI3 26.818 5417 26.932 4753 87.7
CI4 29.735 5529 29.852 4966 89.8
CI5 32.483 5467 32.603 4993 91.3
CI6 35.076 4995 35.200 4636 92.8
CI7 37.531 7101 37.659 6322 89.0
CI8 39.871 5484 40.003 5280 96.3
CI9 42.083 3094 42.218 3104 100.3
C20 44.196 2479 44.334 2447 98.7

Diesel fuel standard is prepared from a I: 100 diltuion of original diesel fuel in dichloromethane. 0 time

standard is a 40g sample of 25g diesel kg' soil extracted with 100ml dichloromethane which is equal to a

I: 100 dilution.

Total petroleum hydrocarbon value (TPH) is the sum of all the peak areas measured.

Individual petroleum hydrocarbons are n-alkanes with carbon numbers ranging from 10 - 20. Retention

time is the peak retention time in minutes.

Table 3.1.1.1.1. TPH recovery and individual petroleum hydrocarbon recovery values

used to assess efficiency of the dichloromethane soxhlet extraction procedure, n = 3

where % difference between triplicate injections <5%.

Due to the acceptable recovery achieved by this method (approximately 75%

TPH), the method was not modified for high level diesel fuel samples. The majority of

the 25% diesel fuel components that were not recovered were probably volatile diesel

fuel components that would be quickly lost from the soil. The extremely high recovery

of the heavier diesel fuel components (approximately 80-100%) indicated the method

was working successfully. However, when using this method for lower level diesel fuel

samples, the recovery rate was much lower than achieved before (approximately 50%
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recovery, data not shown). The method was therefore modified to allow quantitative

extraction of diesel fuel from low level samples (5-20 g diesel kg'( soil ) with better

recovery rates.

Low Level Diesel Fuel Samples (S-20g diesel kg-' soil range)

To enhance the extraction of diesel fuel components from soil, 5g diesel kg' soil

samples were ground prior to extraction and the recovery rates compared to samples

that were sieved <2 mm prior to extraction. Grinding of soil samples prior to extraction

increased the recovery of diesel fuel components only slightly (1.5%). The most

noticeable increase in recovery was observed when different solvents were used during

the extraction. The US EPA method 3540C for non volatile and semi volatile organic

compounds suggests using a mixture of dichloromethane and acetone (1: I) for

extraction of petroleum hydrocarbons. This solvent mixture was assessed and the

recovery rates obtained compared to a dichloromethane extraction on its own. The

results showed a large increase in recovery rate when the dichloromethane : acetone

(I: I) mix was used. Ground 5g diesel kg'( soil samples extracted with dichloromethane

recovered only 48% of the total diesel fuel added. This value increased to 60%

recovered when dichloromethane : acetone (1: 1) was used. Again, the recovery rates

were calculated using dilution of the original diesel fuel in dichloromethane. The low

level diesel fuel samples were used in long term growing experiments (> I month) so

although this value for recovery appears to be quite low, when you consider the

contribution the volatile diesel fuel components would make to this value, the recovery

is acceptable. An estimate of the total peak area lost from volatile diesel fuel

components was determined by calculating the sum of the peak areas of every peak

measured in the original diesel fuel standard below 21 minutes retention time. From

headspace analyses carried out in Section 4.4 it was observed that diesel fuel

components of retention times of 21 minutes or less could volatilise freely at room

temperature. It was therefore decided that components below 21 minutes retention time

coming off the GC column would be lost naturally through volatilisation and would

therefore not be present in diesel fuel contaminated soil samples of 1 month or over.

The recovery of diesel fuel components from this low level sample (5g diesel kg" soil)

using dichloromethane : acetone (I: 1) increased to approximately 76% recovery when

the estimate of volatiles diesel fuel components is included. This recovery rate was

deemed acceptable for the lowest level sample used during the course of this study (5g

diesel kg-( soil) and theoretically, the recovery would increase with the other higher

concentrations of the low level samples (10-20 g diesel kg" soil).

84



Gillian Adam, 2001 Chapter 3, Method Development

3.1.1.2 Short Residence Time Samples (1 week)

Soil samples containing diesel fuel with a short residence time still contain the majority

of volatile diesel fuel components found in fresh diesel fuel. Because of this, an initial

extraction must be performed to ensure quantitative removal of the volatile diesel fuel

fraction. As these diesel fuel components are low molecular weight, a cold solvent

extraction is necessary to prevent volatilisation of the components of interest. A cold

shaking extraction was developed from the method of Schwab et at (1999) using the

solvent dichloromethane : acetone (l: 1) mixture which performed extremely well in

previous extractions.

A 0 time, 5g diesel kg" soil sample was prepared as a standard to test the

recovery of this method. Again, suitable dilution of the original diesel fuel (0.2g) in

dichloromethane (100ml) served as a quantitative analytical standard. The fresh

sample was extracted by mechanical shaking using 100ml dichloromethane : acetone

(1: 1). After 30 minutes extracting, the sample was filtered into 100ml volumetric flask

and made up to the mark with dichloromethane : acetone (1: 1). This sample was then

analysed by GC-FID to obtain the TPH value as described in Section 2.3.4. The

recovery of diesel fuel components using the modified mechanical shaking method was

excellent. 82.6% total petroleum hydrocarbons (TPH) was recovered using the initial

cold extraction. Individual petroleum hydrocarbon recoveries were also assessed, with

recoveries ranging from approximately 79-87 % for n-alkanes (C 12- C21). The

recovery of the more volatile diesel fuel components was greatly improved compared to

the hot solvent soxhlet extraction. The recovery values for TPH as well as individual

petroleum hydrocarbons are given in Table 3.1.1.2.1.

To increase the recovery further, samples that had previously been cold

solvent extracted were kept for additional extraction by the hot solvent soxhlet method.

This would hopefully improve the recovery of the heavier diesel fuel components

whose recoveries were not as high using the cold solvent method as previously observed

using the hot solvent soxhlet extraction. The samples were prepared and extracted

using dichloromethane : acetone (1: 1) as described in Section 3.1.1.1 and the extracts

analysed by GC-FID to obtain TPH values and individual petroleum hydrocarbon

values. The recovery of diesel fuel components by this extra step was increased and the

results are given in Table 3.1.1.2.1.
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Table 3.1.1.2.1 (shown on next page). TPH recovery and individual petroleum

hydrocarbon recovery values used to assess efficiency of the mechanical shaking and

soxhlet extraction procedure, n = 3 where % difference between triplicate injections

<5%.

Diesel fuel standard is prepared from a 0.2: 100 diltuion of original diesel fuel in

dichloromethane. 0 time standards are 40g samples of 5g diesel kg' soil extracted with

100ml dichloromethane : acetone which is equal to a 0.2: 100 dilution. Total petroleum

hydrocarbon value (TPH) is the sum of all the peak areas measured. Individual

petroleum hydrocarbons are n-alkanes with carbon numbers ranging from 12-21.

Retention time is the peak retention time in minutes. Increased recovery % is the total

peak area measured by adding the shaking and soxhlet extracted peak area values

together and displaying as a percentage of the original diesel fuel standard.

86



ID
N00

0"-......
o
IDI/")

O"-~[--I/")IDO"-oo~N~
('<')[--01/").,00\0"-000"-00
00000"-0"-0"-0"-0"-0"-0"-0"-

N_ID~ooooO"-I/")[--oo
N('<')('<')I/")I/").,o~~o\ ......
0000000000000000[--00

[--[--00[--('<')1/")('<')[--
~1D-::t00(,<,)001D-::t0"-"""_I/")\C)I/")I/") ......IDOO"-N_____ N __ oolD

8._....
~

8._........
~

~I/")
V
rJJ
s::o._....
u
Cl,)

'2._



Gillian Adam, 2001 Chapter 3, Method Development

The development of the methods described in the previous section allowed

quantitative extraction of diesel fuel from a range of diesel fuel contaminated soil

samples with acceptable recovery rates. As diesel fuel contaminated soil ages, volatile

diesel fuel components are lost and the remaining diesel fuel components become more

difficult to extract. A hot solvent soxhlet extraction was therefore required to remove

the 'aged' diesel fuel successfully from the long residence time samples. Recovery of

'aged' diesel fuel was acceptable in the high level diesel fuel samples using

dichloromethane but not in the low level diesel fuel samples. A mixture of acetone :

dichloromethane (1: 1) was used instead, with great success. The advantage of acetone:

dichloromethane (1: 1) against dichloromethane on its own may be due to the increased

polarity of the extracting solvent causing a 'wetting' effect on the soil components

thereby enhancing the extraction of diesel fuel.

The recoveries obtained for each extraction method were acceptable and the loss

in recovery observed could be easily explained by loss of the more volatile diesel fuel

components. Therefore, the methods described here were used as standard methods for

the extraction of diesel fuel from soil samples throughout the rest of this study. The

final extraction procedures are described in full in Section 2.3.1.

3.1.2 Capillary GC-FID Method for Diesel Fuel Analysis

The method for diesel analysis by GC-FID was modified from the US EPA method

8100 for the analysis of polyaromatic hydrocarbons (PAHs) (US EPA, 1986). Method

8100 describes the use of both packed and capillary columns however, the capillary

column method was chosen as a starting point as better resolution of individual

hydrocarbon components would be achieved.

3.1.2.1 Summary of Method

The method provides gas chromatographic conditions for the detection of parts per

billion (ppb) levels of certain PAHs. The samples must first be extracted, then both neat

and diluted samples may be analysed by direct injection. A 2 to 5J.LIaliquot of the

sample is injected into the GC using the solvent flush technique and the compounds in

the effluent detected by flame ionisation detection (FID).
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3.1.2.2 Choice of Solvent

The suggested solvents for use in this method were analytical grade isooctane and

hexane. Isooctane was found to contain impurities, most of which were in the time

range of the diesel fuel component peaks which provided an unsatisfactory baseline. In

order to minimise the levels of background noise created by the solvent, hexane was

tested. The resultant trace showed considerably lower levels of impurities, which

provided a steady baseline with low background noise. Hexane proved a satisfactory

solvent to use for the analysis.

3.1.2.3 Gas Chromatograph (GC)

Analyses were carried out on a Hewlett-Packard 5890A gas chromatograph. The GC

was interfaced with a Hewlett-Packard Chemstation data system which comprised of a

HP 9000 300 series computer, HP 9153C disc drive and Thinkjet printer.

Hydrogen and air were used as detector support gases with nitrogen as the make

up gas. Helium was used as the carrier gas as it is the preferred gas for temperature

programmed analyses. The column head pressure was set at 30kPa. The carrier gas

linear flow velocity was checked using the non-retained compound, butane. The flow

was adjusted as near to the recommended 20cm S-1 as possible (actual linear velocity

was 19.3cm S-I).

The injection mode was purged splitless injection with a purge delay of 36

seconds. This delay allowed volatile peaks to be obtained from the column with the

least amount of interference from the solvent tail.

3.1.2.4 Choice of Column

Method 8100 suggests using a 30m x O.25mm I.D. or 30m x 0.32mm I.D. fused silica

capillary column. In this case a 25m x O.32mm 1.0. SGE BPX 5 (5% phenyl (equiv.)

polysilphenylene siloxane) capillary column (SGE Chromatography Products) was used

for the analysis of diesel fuel oil. Diesel fuel is a complex mixture of volatile, semi-

volatile and non-volatile components. The BPX 5 capillary column provided a versatile

column that has been successfully used to analyse non-volatile PAHs as well as semi-

volatile hydrocarbons. In addition, the BPX 5 capillary column proved capable of

resolving volatile hydrocarbons.
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The BPX phase type has a greater stability through substitution of a benzene

rmg for some of the oxygen atoms in the siloxane backbone. This substitution

dramatically improves both the chemical and thermal stability of the stationary phase.

This allows column bleed to be kept to a minimum, high operating temperatures to be

achieved and an extended column life (SGE Chromatography Products Catalogue,

1998). Low column bleed is particularly important, as most of the diesel fuel analyses

will be in the trace range where low column bleed enhances the detection and

quantitation of analytes. Reduced column bleed also makes the column more detector

compatible, minimising rising baselines and detector contamination. This aspect is

most important for the analysis of biodegraded and weathered fuel products, as baseline

rise is unavoidable in these samples.

3.1.2.5 Detector

Flame Ionisation Detection (FID) was chosen as it exhibits a nearly universal response

to all organic compounds, it is sensitive, stable and has a large linear range.

3.1.2.6 Temperature Programme

The recommended temperature programme was: set the column temperature at 35°C for

2 minutes, then programme at lOoe min-I to 265°C and hold for 3 minutes.

Initially the programme was not altered except for the final operating

temperature. The HP 5890A GC has a maximum operating temperature of 250oe. This

temperature is sufficiently high to allow elution of all the diesel fuel components from

the column.

Using the described conditions, a 0.5JlI sample of diesel fuel diluted 111000 in

hexane (analytical grade) was injected onto the column. The resultant trace was poorly

resolved therefore the temperature programme was modified. In order to resolve the

large number of diesel fuel peaks successfully, the temperature gradient was reduced to

5°C min-I. This produced a satisfactory resolution of all the major peaks present in

diesel fuel (see Figure 3.1.2.6.1).

Figure 3.1.2.6.1. (on next page) GC trace of diluted diesel fuel using the modified

temperature conditions.
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3.1.2.7 Linear Response, Detection Level and Quantifiable Level

The linear response was calculated USIng n-alkane and polyaromatic hydrocarbon

standards.

Preparation of n-decane and anthracene standards, 0-1000 mg rl
0.1g of n-decane (Sigma-Aldrich, 99% pure) was weighed into a 100mI volumetric

flask and the flask made up to volume with hexane (analytical grade). This provided a

1000mg r' decane standard solution. This standard solution was used to prepare 0.5, 5,

50 and 500mg r' decane standard solutions by appropriate dilution in hexane. The

procedure was repeated to prepare a range of anthracene standards except acetone

(analytical grade) was used as the solvent.

The response was found to be linear up to 1000mg r' which is within the range

of the analyses (see Table 3.1.2.7.1).

Standard concentration avopeak area % difference between R 2 value

mg l" replicates area and avo area

n-decane 0.5 34.83 0.89

5 353.6 0.20

50 3207.5 0.33

500 32289.0 1.60

1000 65812.0 1.18 0.9999

anthracene 0.5 25.5 4.33

5 342.25 0.82

50 3479.0 5.00

500 30413.0 0.64 0.9999

1000 60826.0*

• indicates theoretical value. R2 value indicates the deviation from a linear trend with values of I (or close

to) showing a linear relationship.

Table 3.1.2.7.1 Linear detection range values for n-decane and anthracene.
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The limit of detection was O.OSmg r' and the lowest quantifiable level was

O.Smg r'. Where very low concentrations of diesel required quantification, integrator

events were set no lower than the events acceptable for the O.Smg r' standard i.e.,

threshold 0 with a peak area reject of 20.

3.1.2.8 Petroleum Hydrocarbon Standards

Standards were injected to confirm some of the major peaks in the diesel fuel

chromatograph.

Preparation of n-Alkane and Aromatic Hydrocarbon Standards

The appropriate amount of each standard was weighed accurately into a 100ml

volumetric flask then the contents of the flask made up to volume with the relevant

solvent. n-alkane, cyclohexane and naphthalene standards were prepared in hexane

(analytical grade) with the more polar PAHs being prepared in acetone (analytical

grade).

Both qualitative and quantitative standards were prepared and injected into the

GC as individual compounds and as mixtures of compounds. O.51l1of each individual

standard solution or mixed standard solution was injected directly onto the column and

analysed using the GC conditions described in Section 2.3.2. Triplicate injections of

each standard were obtained for reproducibility and the retention time and peak area

calculated for quantitative identification of diesel fuel components (Table 3.1.2.8.1).

Calculation of Standard Reproducibility

Peak areas of replicate injections were added together then divided by the replicate

number to give the average peak area. The average peak area was then divided by 100

to give 1% of the average peak area. The average peak area was subtracted from the

replicate peak area (or vice versa depending on which value was larger), and then the

difference between the two is divided by the 1% average peak area value. This gives

the % difference between the average peak area and the replicate peak area (see

example below).
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Example for 998mg r' 1,8 Dimethylnaphthalene

Replicate I: peak area

Replicate 2:

Replicate 3:

45935

46253

46057

Average peak area 46081.7

1% average peak area = 46081.7

100

= 460.8

% difference between average peak area and replicate peak area:

avopeak area - peak area rep. 1 = 46081.7 - 45935 = 0.32 % difference

1% avopeak area 460.8

peak area rep. 2 - aV. peak area = 46253 - 46081.7 = 0.37 % difference

1% avopeak area 460.8

aV. peak area - peak area rep. 3 = 46081.7 - 46057 = 0.05 % difference

1% avopeak area 460.8

Average % difference = 0.25 %

Reproducibility of the standards was satisfactory with peaks areas of triplicate

injections lying within 5% of each other and retention times varying no more than ±

0.01 minute.

Table 3.1.2.8.1 (on next page) Example of some petroleum hydrocarbon standards used

for quantitative identification of diesel fuel components.
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Assessment of petroleum hydrocarbon contaminated land is hampered by the

lack of readily available information describing the composition of common petroleum

products. Petroleum products are highly complex and variable mixtures that require

specific chemical analysis that is time consuming and challenging. Once a petroleum

hydrocarbon mixtures is released into the environment, its composition changes due to

processes such as biodegradation, dissolution into water and volatilisation. These

processes affect each hydrocarbon group differently, resulting in a pattern of

hydrocarbon distribution that may be very different from the original petroleum

product.

In order to assess the behaviour of diesel fuel in the soil and monitor any

changes that may occur to the diesel fuel composition, a GC-FID method was

developed. The method gave excellent separation of the main diesel fuel components in

an acceptable run time that allowed changes in diesel fuel composition to be observed

and quantitated.

3.2 Fluorescein Diacetate (FDA) Hydrolysis

The method for measuring total microbial activity by FDA hydrolysis was modified

from the original method of Schntirer and Rosswall (1982). A quick and easy method

to measure the overall activity of the soils microbial population was essential for

investigating the impact of diesel fuel on soil health. The most widely used method for

soil studies, after thorough searching of the literature, was developed by Schnurer and

Rosswall in 1982. The method showed great potential but was very limited in the range

of soil types it could successfully be applied to. The method was critically assessed to

provide a more sensitive and accurate method for the determination of FDA hydrolysis

in a wide range of soils. The development of the method is discussed below.

3.2.1 Background

The use of fluorescein esters as a measure of enzyme activity was first noted by Kramer

and Guilbault (1963) where a simple procedure was described for the assay of lipase

activity in the presence of other esterases. It was not until 1980 that the use of

fluorescein esters as a measure of microbial activity was applied to environmental

samples. Swisher and Carroll (1980) demonstrated that the amount of fluorescein
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produced by the hydrolysis of fluorescein diacetate (FDA) was directly proportional to

the microbial population growing on Douglas Fir foliage and a standardised method was

developed. This method was later evaluated by Schnurer and Rosswall (1982) who

used FDA hydrolysis to determine total microbial activity in soil and straw litter as well

as cell density in pure microbial cultures.

Fluorescein diacetate (3' 6' -diacetyl-fluorescein) is a fluorescein conjugated to

two acetate radicals. This colourless compound is hydrolysed by both free

(exoenzymes) and membrane bound enzymes (Stubberfield and Shaw, 1990), releasing

a coloured end product, fluorescein. Figure 3.2.1.1 illustrates the enzymic conversion

of FDA to fluorescein which appears to be primarily a hydrolysis followed by a

dehydration reaction. This end product absorbs strongly in the visible (490nm) and can

be measured by spectrophotometry. The enzymes responsible for FDA hydrolysis are

plentiful in the soil environment. Non-specific esterases, proteases and lipases, which

have been shown to hydrolyse FDA, are involved in the decomposition of many types

of tissue. The ability to hydrolyse FDA thus seems widespread, especially among the

major decomposers, bacteria and fungi (Schnurer and Rosswall, 1982). Generally more

than 90% of the energy flow in a soil system passes through microbial decomposers

therefore an assay which measures microbial decomposer activity will provide a good

estimate of total microbial activity.

The FDA method was also shown to correlate well with some of the most

accurate measures of microbial biomass such as ATP content and cell density studies

(Stubberfield and Shaw, 1990) and radio-labelled thymidine incorporation into

microbial DNA (Federle et al., 1990). Whereas these methods are time consuming and

difficult to perform, enzyme assays are generally rapid and simple.

Since 1982, FDA hydrolysis has been used to measure total microbial activity in

a range of samples from mould growth on wood and other building materials (Bjurman,

1993), to plant residues (Zablotowicz et al., 1998), to stream sediment biofilms (Battin,

1997), activated sludge (Fontvieille, 1992) and deep sea clay and sand sediment profiles

(Gumprecht et al., 1995).

The advantage of this method being simple, rapid and sensitive, coupled with

the widespread acceptance of FDA hydrolysis as a measure of total microbial activity,

suggested that this would be an extremely useful method to optimise to include a wide

range of soils.
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o
II

CH1-C-0

HYDROLYSIS

Step 1

Fluorescein diacetate (FDA)
colourless

DEHYDRATION

H-O Step 2

H-O
Step 3

+ H20

H-O o

Fluorescein coloured acid yellow
visible 490 nm

The enzymic conversion of fluorescein diacetate (FDA) to fluorescein appears to be primarily a

hydrolysis reaction followed by a dehydration reaction. The two acetate groups are hydrolysed at their

ester linkage and the lactone part of the structure is cleaved at its internal ester link (step 1). The resultant

OH group leaves, creating a positively charged bond (step 2). This charge must be satisfied so the above

intermediary step occurs starting from a loss of H at the terminal position (step 3). This results in an

overall loss of water.

Figure 3.2.1.1 Enzymic conversion of fluorescein diacetate (FDA) to fluorescein.
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3.2.2 Limitations of the Original Method

Schntirer and Rosswall found that FDA activity was very low in sand and clay samples.

The low activity observed for these soil types was made more difficult to measure by

the authors' choice of solvent for terminating the hydrolysis reaction. Because of the

rapidity of FDA hydrolysis, it is necessary when working with many samples to find a

way of terminating hydrolysis at a specific time. Schntirer and Rosswall found acetone

(50% v/v) to be most efficient, totally stopping hydrolysis in a soil sample for 2 hours.

However, a substantial decrease in the absorbance of fluorescein produced by the soil

samples was observed when acetone was added. This dramatic colour loss is

independent of initial fluorescein concentration but makes the measurement of FDA

hydrolytic activity very difficult in soils with low microbial activity i.e. sandy and/or

clayey soils.

Also, the original method for preparing standards involved preparing hydrolysed

fluorescein by boiling FDA solutions of known concentrations in a water bath. This

method proved extremely inaccurate and was not reproducible hence was deemed an

unsuitable method for preparing standards.

Despite these limitations, the method had many features that conveyed its

potential as a rapid and accurate measurement of total microbial activity in soil, which

many other methods lacked. It was therefore decided that the method should be

developed.

The individual parameters of the FDA reaction were studied to optimise the

assay for the measurement of soil samples. These factors included effect of pH, amount

of soil, amount of substrate, time of incubation, optimum temperature of incubation,

choice of solvent for terminating the hydrolysis reaction and preparation of suitable

standards. The results from each parameter studied were culminated to produce the

final assay procedure (Section 2.5.3). Each parameter studied is discussed below.
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3.2.3 Method Development

3.2.3.1 Materials

Soils Used in the Study

A total of five surface soils and one manufactured soil were selected to obtain a range of

textural properties within the sandy and lor clayey textural class and cover a range of

enzymic activities. Particle size analysis for the determination of textural class was

carried out as described in Section 2.2.1.1 and dehydrogenase activity assessed as

described in Section 2.5.2. The total nitrogen content of the soils, soil pH and organic

matter content was assessed as outlined in Sections 2.2.2.5, 2.2.2.1 and 2.2.2.3. Table

3.2.3.1.1 shows the textural, chemical and biological properties of the six soils chosen.

Soils % coarse % fine % silt % clay Textural class
sand sand

Barassie] 7.7 14.2 4.1 4.4 Sand
Bargour:j: 39.4 27.5 11.3 21.8 Sandy loam
Caprington:j: 29.2 22.0 25.7 23.1 Sandy clay loam
Dreghorrr] 32.7 35.3 16.3 15.7 Sandy loam
Garscube 51.7 20.8 12.8 15.2 Loamy sand
John Innes compost 72.2 17.6 4.9 8.4 Sand

Soils pH LOI Total Dehydrogenase activity (Jl¥,
(water) (%) N (%) TPF g' oven dry soil 24 h- )

Barassie+ 7.20 5.7 0.20 173.59
Bargour:j: 5.46 6.9 0.18 145.79
Caprington:j: 6.46 10.5 0.28 151.16
Dreghornt 6.86 6.5 0.17 67.80
Garscube 7.23 9.6 0.35 224.70
John Innes compost 7.06 10.2 0.19 76.88

Coarse sand> 0.18 mm, fine sand 0.18 - 0.05 mm, silt 0.05 - 0.002, clay < 0.002 mm.

t Textural properties and Total N (%) taken from Metwaly (Ph.D. thesis, University of Glasgow, 1999).

t Textural properties and Total N (%) taken from Khan (Ph.D. thesis, University of Glasgow, 1987).

Table 3.2.3.1.1. Textural, chemical and biological properties of the six soils chosen.
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Reagents

60mM potassium phosphate buffer pH 7.6

8.7g K2HP04 (Riedel-de Haen, Sigma-Aldrich Co. Ltd., Analar) and 1.3g KH2P04

(Merck, BDH Analar) were dissolved in approximately 800ml deionised water. The

contents were made up to 1 litre with deionised water. The buffer was stored in the

fridge (4DC) and pH checked on day of use.

2: 1 chloroform/methanol

666ml chloroform (Fisher Scientific UK Limited, analytical grade) was added to a

1 litre volumetric flask. The flask was made up to 1 litre with methanol (Fisher

Scientific UK Limited, analytical grade) and the contents mixed thoroughly.

lOOOf.1gFDA mrl stock solution

O.lg fluorescein diacetate (3' 6'-diacetyl-fluorescein, Sigma-Aldrich Co. Ltd.) was

dissolved in approximately 80ml of acetone (Fisher Scientific UK Limited, analytical

grade) and the contents of the flask made up to lOOml with acetone. The solution was

stored at _20De.

2000f.1gfluorescein ml' stock solution

O.2265g fluorescein sodium salt (Merck, BDH Analar) was dissolved in approximately

80ml of 60mM potassium phosphate buffer pH 7.6 and the contents made up to IOOml

with buffer

20f.1gfluorescein ml' standard solution

1ml of 2000f.1g fluorescein ml' stock solution was added to a l00ml volumetric flask

and the contents made up to the mark with 60mM potassium phosphate buffer pH 7.6.

1-5 ug mrl standards were prepared from this standard solution by appropriate dilution

in 60mM potassium phosphate buffer pH 7.6.
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3.2.3.2 Investigation of Method Parameters

Effect of pH

The rate of hydrolysis of fluorescein compounds reaches a maximum between pH 7.0

and 8.0 (Guilbault and Kramer, 1964). Fluorescein diacetate was found to exhibit a

maximum rate of hydrolysis at pH 7.6 (Swisher and Carroll, 1980). Carrying out the

enzymic reaction at this pH was advantageous for many reasons. At high and low pHs,

solubilisation of organic matter in the soil samples caused interference problems with

the measurement of fluorescein released, by creating blanks with very high background

absorbances. Carrying out the reaction at pH 7.6 removed this interference problem.

Spontaneous hydrolysis of fluorescein esters is known to occur at high pHs (Guilbault

and Kramer, 1964). At pH 7.6 no spontaneous hydrolysis of fluorescein diacetate was

observed. Finally, the product of FDA hydrolysis, fluorescein, exhibits a maximum

fluorescence at about pH 8.0 (Guilbault and Kramer, 1964). This was verified when

standards were prepared in buffers at different pHs. The absorbance values measured

for the same concentration of fluorescein standards were more than double in the pH 7.6

potassium phosphate buffer compared with the pH 5.6 buffer (Table 3.2.3.2.1). This

illustrates that fluorescein is near its maximum absorbance at pH 7.6.

pH5.6 pH7.6

Fluorescein cone abs 400nm Fluorescein cone abs 400nm
(ug/ml) (ug/rnl)

0 0 0 0
2 0.175 1 0.248
4 0.344 2 0.403
6 0.511 3 0.636
8 0.682 4 0.830
10 0.844 5 1.056
12 1.009

Table 3.2.3.2.1 Absorbance of fluorescein standards in buffers of varying pH.
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Effect of Temperature

The rate of hydrolysis of a substrate by an enzyme depends on the temperature of

incubation. A study of FDA activity in soil as a function of temperature showed

maximum activity occurred at 30°C. This is in agreement with findings by Breeuwer et

al (1995) who observed maximum FDA activity by yeast esterases at this temperature.

The activity rapidly decreased just above 30°C suggesting inactivation of the enzymes

involved at this elevated temperature. Fig 3.2.3.2.2 shows the effect of temperature on

FDA hydrolysis in a sandy soil. At high temperatures considerable spontaneous

hydrolysis of fluorescein esters can occur (Guilbault and Kramer, 1964), adversely

affecting the accuracy and reproducibility of the method. No spontaneous hydrolysis of

FDA was found to occur between 20-40°C, which covers the range around the

temperature chosen for this assay.
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Fig 3.2.3.2.2 Effect of temperature on FDA hydrolysis by enzymes present in a sandy

soil (Barassie).
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Amount of Soil

The initial reaction rates of soil enzymes are usually proportional to the amounts of soil

added to the assay (Frankenberger and Johanson, 1983). Using the conditions described

for the final assay procedure, soil weights (fresh weight, sieved < 2mm) ranging from

O.S-Sg were incubated to discover the optimal amount of soil required for the reaction to

proceed at a steady rate without substrate becoming limiting. A linear relationship was

observed between soil weight and fluorescein released up to 2.Sg. Fig. 3.2.3.2.3 shows

the effect of the amount of soil on the hydrolysis rate of FDA. The deviation from

linearity when soil weights greater than 2.Sg were used indicates substrate concentration

was probably becoming a limiting factor
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Fig. 3.2.3.2.3 3 Relationship between soil weight and FDA hydrolysis.
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A soil weight of 2g was chosen for the final assay procedure. This allowed the

reaction to proceed at a steady rate, for all the soils tested, without substrate becoming

limiting. It also ensured that the amount of fluorescein hydrolysed during the assay fell

within the sensitivity range of the spectrophotometer (0.1-1.0). The three soils chosen

to illustrate this in Fig. 3.2.3.2.3.3 were: (a) a manufactured compost (John Innes

Compost No 2) which represents a sandy soil with low microbial activity; (b) Dreghorn

which represents a sandy loam with an intermediate microbial activity and (c) Garscube

soil which is a loamy sand with high microbial activity. The low activity soil released

enough fluorescein during the assay to be measured accurately by spectrophotometry

(absorbance values greater than 0.1) and the high activity soil released enough

fluorescein to lie within the range of the spectrophotometer without dilution

(absorbance values below 1.0). These three soil types hopefully represent the range of

microbial activities encountered in most soils.

Adsorption of Fluorescein onto Soil

The amount of fluorescein adsorbed onto soil was considered before carrying out the

enzyme assay. When a new soil is investigated, the amount adsorbed onto soil should

be calculated so the values obtained for the assay can be corrected for the loss. Table

3.2.3.2.3.4 shows the results from a simple experiment showing the adsorption of

fluorescein to soils with differing textural properties. Soil samples were incubated

using the conditions described for the final assay procedure in 15ml fluorescein

standard at each concentration (0-5Jlg ml'). Blanks were prepared without the addition

of soil. Samples and blanks were centrifuged and filtered as described in the final assay

procedure. The amount of fluorescein adsorbed at each concentration is shown as %

fluorescein adsorbed and an average total value is given for each textural class.

Generally the amount of fluorescein adsorbed is less than 5%. This observation was

noted by the original authors who found the adsorption of fluorescein to soil did not

exceed 7% and was mostly lower than 5% (Schnurer and Rosswall, 1982). A soil with

a high silt-clay ratio and high organic matter content, such as Caprington can however

adsorb up to 13.7% fluorescein which is a large proportion of the total released.
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% fluorescein ug ml' adsorbed by soil

Fluorescein
conc ug mrl

in blank

Barassie Dreghorn Caprington

sand sandy loam sandy clay loam

0 0 0 0
I 5.7 ± 0.83 3.3 ± 0.69 20.2 ± 0.47
2 4.3 ± 0.60 7.1 ± 2.57 14.6 ± 0.39
3 3.2±0.15 5.8 ± 0.27 11.1 ± 0.93
4 4.1 ± 0.29 3.3 ± 0.74 10.5 ± 0.26
5 2.7 ± 0.24 2.4 ± 1.07 11.7 ± 1.53

Average total
adsorbed % 4.0 3.6 13.7

Given are means ± S.E., n = 3.

Table 3.2.3.2.3.4 Adsorption of fluorescein onto soils with differing textural properties.

Time of incubation

It has been suggested that an assay for soil enzymes should not require a long

incubation time because the risk of error through microbial proliferation increases with

increasing incubation time. Part of this error can be minimised by the addition of

toluene as a bacteriostat to enzyme assays although many authors do not favour the use

of toluene for this purpose. Toluene has been shown to inhibit some enzymes as well as

having an activating effect on others due to increased permeability of the cell membrane

in the presence of toluene, allowing entry of the substrate. (Skujins, 1967). In this study

the use of toluene as a bacteriostat in the assay of FDA hydrolysing enzymes was

dismissed as it was found to inhibit FDA hydrolysis in the soil samples investigated by

approximately 35%. It was therefore decided to keep the incubation time as short as

possible.

The hydrolysis reaction was found to be linear with time up to 40 minutes for

the soils investigated using the conditions described for the final assay procedure.

Figure 3.2.3.2.3.5 indicates the linear increase in FDA hydrolysis up to 40 minutes in
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two of the soil types investigated. The assay was not limited by substrate concentration

over this time period.
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Figure 3.2.3.2.3.5 Determination of optimum incubation time.

An incubation time of 20 minutes was chosen for the final assay procedure

because this time allowed the concentration of substrate hydrolysed to lie within the

range of the spectrophotometer for all the soil types investigated without the need for

dilution. Removing a possible dilution step makes the method quicker and easier to

perform as well as removing an extra step where error could occur.

Choice of Solvent for Terminating Hydrolysis

It is necessary when carrying out enzyme assays to be able to stop the enzymic reaction

at a given point. As mentioned before, Schntirer and Rosswall found acetone (50% v/v)

to be most efficient, totally stopping hydrolysis in a soil sample for 2 hours. The

addition of acetone to the soil samples did terminate hydrolysis but it also caused a

decrease in the amount of fluorescein measurable by spectrophotometry. Although the
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drop in colour was by the same ratio each time (ranged from 39.8-41.0% in 1-5J.lgmrl

fluorescein standards where acetone was added), samples with low microbial activity

which only release a small amount of fluorescein were made increasingly more difficult

to measure. This decrease in colour, which was more than a dilution effect, was shown

on average to be 37% of the colour developed in a sandy soil. Table 3.2.3.2.3.6

illustrates the decrease in fluorescein concentration of samples where acetone has been

used to stop the hydrolysis reaction compared to samples where chloroform/methanol

(2: I v/v) has been used. The samples sometimes dropped below the range of the

spectrophotometer when acetone was added. The absorbance values for the samples

where chloroform/methanol (2: 1 v/v) has been used to terminate hydrolysis lie just

above 0.1, which is the minimum absorbance that can be measured accurately by

spectrophotometry. The sample values where acetone has been used to stop the reaction

have fallen below the range that can be measured accurately (see Figure 3.2.3.2.3.7).

The relative precision of the method, defined by the coefficient of variation of replicate

measurements, is also increased when chloroform/methanol (2: 1 v/v) is used instead of

acetone. Therefore the use of acetone was deemed unsuitable for this purpose and

chloroform/methanol (2: 1 v/v) was proposed as the new solvent for terminating FDA

hydrolysis in soil samples.
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chloroform/methanol Acetone (50% v/v)
(2: 1 v/v)

replicate abs 490 nm cone (Jig g -1) abs 490 nm cone (Jig g -1) Corrected
soil soil cone (Jig g -1)

soil

1 0.129 0.543 0.060 0.249 0.332
2 0.125 0.5.33 0.063 0.268 0.356
3 0.109 0.467 0.061 0.255 0.340
4 0.109 0.455 0.043 0.180 0.239
5 0.133 0.568 0.068 0.288 0.383
6 0.124 0.518 0.052 0.221 0.294

Final vol. of filtrate (ml) 20 30 20

avocone (Jig g -1) soil 0.514 0.244 0.324

CV 8.61 15.74

All replicate absorbance values and concentration values in ug fluorescein g -1 oven dry soil are given.

The final volumes of filtrate collected were 20 ml in the chloroform/methanol (2: 1 v/v) samples and 30

ml in the acetone samples. Due to the differences in the final volumes a conversion factor of 0.33 was

used on the acetone values to counteract this dilution effect. The corrected concentration values for the

acetone samples give fluorescein concentrations (ug g -I oven dry soil) in a 20 ml final volume. These

values can be compared directly to the values obtained for the chloroform/methanol (2:1 v/v) samples.

CV = coefficient of variation.

Table 3.2.3.2.3.6 Decrease in fluorescein concentration (Jig ml") of Barassie soil in

acetone terminated samples compared with chloroform/methanol (2: I v/v) terminated

samples.
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Figure 3.2.3.2.3.7 Decrease in absorbance by addition of acetone compared to

chloroform/methanol (2: 1) in Barassie soil.

Change in hydrolysis over time

Changing from acetone to another means of terminating the hydrolysis reaction

involved finding a substitute that would stop hydrolysis successfully without causing

the same loss of colour observed with acetone. A 2: 1 ratio of chloroform/methanol

(v/v) was found to be most efficient, stopping hydrolysis from continuing for up to 50

minutes after its addition (Figure 3.2.3.2.3.8). The length of time the reaction was

terminated for was sufficient to allow the measurement of a large number of samples

without changes occurring in the samples.
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Figure 3.2.3.2.3.8 Change in fluorescein concentration over time after termination of

the hydrolysis reaction.

In addition, chloroform will help solubilise cell membranes, as acetone did,

facilitating the extraction of fluorescein. FDA, being non-polar, readily penetrates into

the cell and is hydrolysed to fluorescein. The polarity of fluorescein impedes its

transport back through the cell membrane causing intracellular accumulation.

Fluorescein is liberated into the environment only after the storage capacity of the cell

has been exceeded and the excess is excreted (Rotman and Papermaster, 1966).

Chloroform will help solubilise cell membranes aiding the extraction of fluorescein.

The presence of methanol will help the chloroform interact with the moist soil hence

increasing its ability to terminate the reaction effectively. Fluorescein released during

the incubation also moves preferentially into the more polar potassium phosphate

buffer/methanol phase, which increases the efficiency of the extraction procedure.

Acetone also removed a lot of dissolved organic matter from the samples producing
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blanks with very high background absorbances whereas the chloroform/methanol (2: 1

v/v) does not. All these advantages make chloroform/methanol a more beneficial

solvent to use in terminating the hydrolysis reaction.

Substrate Concentration

2000~g mrl fluorescein diacetate (FDA) solution was used by most authors as the

substrate for the reaction. By adding 0.2ml of 2000~g mrl FDA, 400~g FDA was

achieved in each replicate. This concentration was found to be unnecessarily high for

the conditions chosen for the final procedure. High concentrations of FDA should be

avoided as FDA is poorly soluble in water and other polar solutions (Breeuwer et al.,

1995). Even in acetone, high concentrations of FDA produce slightly cloudy solutions

suggesting not all the FDA added is in solution, hence available to the microorganisms.

Instead a 1000~g ml' FDA solution was chosen to start the reaction. This supplied

200~g FDA to each replicate, which can in turn, release a maximum of 160Jlg of

fluorescein. This 160Jlg of fluorescein is diluted in 15ml 60mM potassium phosphate

buffer pH 7.6 then a further 5ml of methanol (from 15ml chloroform/methanol (2: I v/v)

only the methanol is added to the filtrate). This gives a final possible fluorescein

concentration of 8Jlg ml'. The maximum concentration of fluorescein is never released

by the conditions described for the final procedure therefore standards are prepared

covering a range of 0-51lg fluorescein ml'. All the soils investigated, using the

conditions set for the assay, were within the range described by the standards.

Preparation of standards

The original method stated that standards should be prepared using hydrolysed

fluorescein diacetate (FDA). This was achieved by boiling FDA solutions of known

concentrations in a water bath for 30 minutes (Schnurer and Rosswall, 1982). Other

authors increased the boiling time to 60 minutes (Chen et al., 1988). This method for

obtaining reproducible standards proved too variable. Figure 3.2.3.2.3.9A shows the

results of 0-200Jlg FDA standards prepared in this way. 0-200Jlg concentrations of

FDA were added to 5ml of 60mM potassium phosphate buffer pH 7.6 in screw top

vials. The lids were replaced and the standards placed in a boiling water bath for a set

time (30 or 60 minutes). Once cool a further lOml of 60mM potassium phosphate

buffer pH 7.6 was added to keep all volumes the same as the final procedure. 15ml of

chloroform/methanol (2: 1 v/v) was added and the standards were centrifuged and

filtered as described by the final procedure. The standards were measured at 490nm and
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the results plotted to produce a standard calibration graph. The results differed for both

hydrolysis times. Fluorescein diacetate can in fact be hydrolysed for up to 6 hours in a

water bath, although a slight plateau is reached after 4 hours. Figure 3.2.3.2.3.9B

illustrates the continued hydrolysis of a 100f.1gFDA standard. Replicate 100f.1gFDA

standards in Sml 60mM potassium phosphate buffer pH 7.6 were placed in a boiling

water bath. A duplicate set of replicates were removed every hour and the fluorescein

released measured as described above. Whether FDA is continuing to be hydrolysed or

whether it is being degraded in the prolonged heating is unclear but the method for

preparing standards is clearly unacceptable.

1.2 A
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0
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.0 0.4«

0.2
0.0

0
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2 4 6
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Figure 3.2.3.2.3.9A Fluorescein diacetate (FDA) hydrolysed in boiling water bath

(diluted 1 : 1 in 60mM potassium phosphate buffer pH 7.6) and B continued hydrolysis

of 100 ug FDA standard in boiling water bath.
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Sodium fluorescein salt was chosen instead to prepare the standards. Sodium

fluorescein salt released the same acid yellow coloured fluorescein as FDA released

allowing direct measurement of fluorescein released from FDA in soil by a standard

calibration graph prepared from sodium fluorescein salt. Certain pure fluorescein

preparations should be avoided as this compound is generally solvent yellow coloured

and adds an error to the absorbance measurements. The fluorescein salt can be weighed

accurately and known concentrations of fluorescein obtained so standard results rarely

differ. Standards prepared by this method did not alter significantly over three separate

months.

By using the boiling water bath method for preparing standards the amount of

fluorescein hydrolysed by the samples and the amount of FDA hydrolysed during

standard preparation was continually underestimated and was not always consistent.

Preparing standards from sodium fluorescein salt is a much more accurate method.

3.2.3.3 Conclusions

The potential of fluorescein diacetate (FDA) hydrolysis as a measure of total microbial

activity has been recognised by many authors and used on a wide range of samples.

The most frequently used method for measuring FDA activity in soil was found to be

limited in the range of soil types it could measure successfully. The method described

in this study critically assessed each individual parameter of the FDA hydrolysis assay

and optimised each one for the measurement of a wide range of soils.

The pH the assay was carried out at was unchanged from the original method as

FDA had a maximum rate of hydrolysis at this pH. pH 7.6 was also beneficial as no

spontaneous hydrolysis of FDA occurred at this pH, no solubilisation of organic matter

was observed and the product of the hydrolysis reaction, fluorescein, was near its

maximum absorbance. The optimum temperature of incubation was found to be 30°C

and a 20 minute incubation time was chosen for the final assay procedure. FDA

hydrolysis was linear with time up to 40 minutes but 20 minutes was sufficient for

obtaining easily measurable fluorescein concentrations within the range of the

spectrophotometer. A linear relationship was found between soil weight and FDA

hydrolysis up to 2.5g soil. Two g was chosen as the final soil weight as it allowed a

steady reaction rate without substrate becoming limited for all the soils investigated and
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it also ensured that the fluorescein concentrations released lay within the range of the

spectrophototmeter. It was also noted that fluorescein can be adsorbed onto soil causing

error in the amount of fluorescein measurable after hydrolysis. For most soil types this

value was below 5% but could be as high as 13% in clayey soils. It was therefore

important to work out adsorption loss when a new soil type was being investigated.

The most important parameter assessed during this study was the choice of

solvent for terminating the reaction. By changing the solvent from acetone (50% v/v) to

chloroform/methanol (2: 1 v/v) low activity soils, such as sandy and clayey soils, could

be measured successfully. This increased sensitivity was achieved as no loss of colour

was observed when chloroform/methanol (2: 1 v/v) was used. Chloroform/methanol (2: 1

v/v) also aids extraction of fluorescein from microbial cells by altering or destroying the

membrane properties allowing fluorescein to be released. There is no need to place

samples in an ice bath, as the original method states, to prevent volatilisation when

using chloroform/methanol (2: 1 v/v) and the presence of chloroform increases the

extraction efficiency of fluorescein by pushing fluorescein into the more polar

methanol/phosphate buffer layer which is then filtered and measured. This increased

extraction efficiency was verified by the decrease in replicate variability when

chloroform/methanol (2: 1 v/v) was used. The variability was measured by the

coefficient of variation which was 8.6% in the chloroform/methanol (2: 1 v/v) samples

as opposed to 15.7% in the acetone samples. For this soil type 4% of the variability can

be attributed to adsorption of fluorescein onto soil. Chloroform/methanol (2: 1 v/v)

stopped hydrolysis for up to 50 minutes in the samples investigated which was

sufficient to allow measurement of a large number of samples. The

chloroform/methanol (2: 1 v/v) does not remove dissolved organic matter, as acetone

did, hence produce clear blanks with low background absorbance. The substrate

concentration used provided enough substrate for the assay to proceed without

limitation and was below the saturation level of FDA in polar solutions. Finally, the

altered method for preparing standards provides reproducible standards with consistent

fluorescein concentrations. By modifying the individual parameters and optimising the

assay conditions, the new method proposed allows for a faster determination of FDA

activity in a wide range of soils with increased precision and sensitivity.
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Fluorescein diacetate (FDA) hydrolysis is widely accepted as an accurate and

simple method for measuring total microbial activity in a range of environmental

samples, including soils. The current method for measuring FDA hydrolysis in soils

was limited in its application. As the measurement of soil microbial activity is

extremely important in assessing the impact of contamination on soil systems, the

original method was optimised for the measurement of a wide range of soil types. The

new, more sensitive method was applied to the range of soils used in this study, both

diesel fuel contaminated and uncontaminated. The final procedure is described in

Section 2.5.3.
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CHAPTER FOUR

ANAL YSIS OF DIESEL FUEL

A large part of this study involved following the changes in diesel fuel composition

after it had been released into the soil environment. Changes occur due to volatilisation,

leaching, adsorption and biodegradation of diesel fuel, which affects each hydrocarbon

family differently. Petroleum characterisation (fingerprinting) is a technique that uses

gas chromatography to identify petroleum hydrocarbons definitive characteristics which

allows the type of petroleum product to be defined. This method could be used to

assess the diesel fuel composition and therefore identify any changes to that

composition. As petroleum fingerprinting relies on the expertise of the analyst, it was

extremely important to obtain detailed compositional and structural information which

would allow me to become familiar with the chromatographic profile and help define

whether losses observed were due to abiotic (non-biological) or biotic (biological)

processes. In depth analysis of diesel fuel was carried out by GC-FID as described in

Section 2.3.2 and GC-MS as described in Section 2.3.3 on pure diesel products, the

volatile diesel fraction (Section 2.3.4) and by petroleum hydrocarbon class separation

on silica gel (Section 2.3.5).
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4.1 Diesel Fuel Fingerprinting

Hydrocarbon products such as gasoline, diesel fuel and asphalts are all produced from

crude oil by a variety of refining and distillation processes. Each product is created by

the combination of multiple individual hydrocarbon compounds, all of which have

slightly different properties such as boiling and vaporisation temperatures. The middle

range distillates are used in different proportions to create products such as kerosene,

diesel and heating oil (Wigger et al., 1998).

Diesel fuels are complex mixtures of hydrocarbons with an average carbon

number of C8-C26. The majority of components consist of alkanes, both straight

chained (n-alkanes) and branched and aromatic compounds including mono-,. di- and

polyaromatic hydrocarbons (PARs). There are five different grades of diesel fuels for

uses that range from cars, commercial trucks and buses to marine and railway engines.

The type of diesel fuel used throughout this study was for use in cars, sometimes called

diesel #2. Transportation diesels are manufactured primarily from distilled fractions of

crude oil with some blending with cracked gas oils. The majority of components are

similar to those present in the crude oil, but include a higher fraction of aromatics.

Differences in the composition of diesel fuel depend on the source of the crude oil and

on refinery processes. Fortunately, the majority of diesel fuel produced in Scotland

comes from BP-Amoco's Grangemouth refinery. This minimises the different

compositions of diesel fuel likely to be found in Scotland. The only retailer that is not

supplied by diesel refined from Grangemouth is Esso (personal communication - BP

Amoco). Figure 4.1.1 shows GC-FID chromatograms of diesel fuel from BP and Esso

service stations. The chromatograms are similar but the pattern of the tall, evenly

spaced n-alkanes differ. The majority of hydrocarbons present in each diesel fuel are

the same but the concentration of each hydrocarbon is different which produces a

slightly different hydrocarbon fingerprint. Because of this difference in composition,

Esso diesel fuel was used throughout the duration of this study to avoid any errors

incurred by using fuels produced by different refineries.
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The n-alkane containing 17 carbons, n- heptadecane (peak designated by *) is in the highest concentration

in both chromatograms but the concentrations of C 13, C 14, CIS and C 16 are very different.

Figure 4.1.1. GC-FID chromatograms of diesel fuel from A) Esso and B) BP service

stations. Both fuel samples were analysed using the same chromatographic conditions

as described in Section 2.3.2
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4.2 GC-FID Analysis of Diluted Diesel Fuel

The analysis of diesel fuel began by separating a diluted diesel fuel sample by capillary

gas chromatography using the optimum chromatographic conditions for the separation

determined in Chapter 3, Section 3.1.2. The developed method provided good

resolution of all the major peaks in the diesel fuel chromatogram within a reasonable

run time (56 minutes). Identification of individual peaks present in the diesel fuel

sample was carried out by comparison with external standards injected separately.

Alkane, cycloalkane, mono-, di- and polyaromatic hydrocarbon standards were prepared

(as described in Section 3.1.2.8) and used to identify the corresponding peaks in the

diesel fuel sample. Figure 4.2.1 shows the GC-FID chromatogram of diesel fuel diluted

1:100 with hexane. Each identified peak has been assigned a number which relates to

the numbers given below the chromatogram.
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1- nonane, 2 - decane, 3 - butyl cyclohexane, 4 - undecane, 5 - dodecane, 6 - tridecane, 7 - tetradecane, 8 -

hexamethyl benzene, 9 - 1,8 dimethyl naphthalene, 10 - pentadecane, 11- hexadecane, 12 - heptadecane,

13 - octadecane, 14 - nonadecane, 15 - eicosane, 16 -heneicosane, 17 - docosane, 18 - tricosane.

Figure 4.2.1 GC-FIO chromatogram of diesel fuel diluted 1:100 with hexane.
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4.3 GC-MS Analysis of Pure Diesel Fuel

To provide positive identification of the lesser hydrocarbon peaks found in the diesel

fuel chromatogram, pure diesel fuel was separated by capillary gas chromatography

then individual peaks analysed by mass spectrometry. GC-MS is an extremely useful

method for identifying unknown compounds within hydrocarbon samples but the

complexity of the diesel fuel sample sometimes made the interpretation of the resulting

mass spectra difficult. For example, less defined, broader peaks would sometimes

contain mixtures of two or three compounds due to poor resolution of all the

compounds present. If you took a MS measurement from the front of the peak you

could get a completely different mass spectrum than if you took a measurement from

the back of the peak. Therefore, measurements were taken from areas of the peak

thought to contain only one compound then repositioned on another such area within the

peak. This was very time consuming, as two or three mass spectra were taken from

each peak. Overall, the data produced from this thorough examination of one pure

diesel fuel chromatogram led to a detailed description of the different hydrocarbons

present in diesel fuel.

Figure 4.3.1 illustrates the Total Ion Concentration (TIC) chromatogram

produced by GC-MS analysis of a pure diesel fuel sample. As the sample was injected

into the GC in its undiluted form, no solvent peak was present to mask the more volatile

diesel compounds that come off the column during the first few minutes of the analysis.

This allowed a complete diesel fuel fingerprint to be obtained.
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Figure 4.3.2 illustrates the same TIC diesel fuel chromatogram as in Figure

4.3.1. The chromatograms (shown on the next few pages) were obtained by displaying

the original chromatogram stored in the memory of the data system in 10 minute

segments and selecting the optimum attenuation of the particular segment before

pnnting. Each peak on the chromatogram analysed by mass spectrometry has been

designated a number and these numbers correspond to the peak numbers listed in Table

4.3.3. Very small or very 'messy' peaks were not analysed by mass spectrometry.

Table 4.3.3 (shown as the mirror image of each chromatographic section) gives full

information on each peak identified.
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Peak No. Retention Time Peak Area (%) Compound
-~-~--~

1.33 0.099 methyl cyclohexane
2 1.66 0.131 benzene
3 1.83 0.049 dihydro 4,4 dimethyl 2 (3H) furanone
4 1.95 0.099 1,3 dimethyl cyclohexane
5 2.35 0.150 3 ethyl hexane
6 2.84 0.116 ethyl cyclohexane
7 2.94 0.094 1,1,3 trimethyl cyclohexane
8 3.21 0.147 ethyl benzene
9 3.34 unknown
10 3.74 0.123 2,3 dimethyl heptane
11 3.98 0.267 a benzene
12 4.14 0.194 3 ethyl 4,4 dimethyl 2 pentene
13 4.75 0.466 n - nonane
14 4.90 0.114 1 methy1ethyl benzene
15 5.03 0.043 1methylethyl cyclohexane
16 5.40 0.177 propyl cyclohexane
17 5.56 0.095 butyl cyclopentane
18 5.87 0.347 a benzene
19 6.12 0.258 a naphthalene
20 6.40 0.138 a naphthalene
21 6.54 0.104 1 ethyl 2,3 dimethyl cyclohexane
22 6.68 0.152 a naphthalene
23 6.88 0.273 2, 3 dimethyl octane
24 6.98 0.286 an alkane
25 7.26 0.584 a naphthalene
26 7.32 0.124 a benzene
27 7.42 0.261 a benzene
28 7.77 4 propyl 3 heptene
29 7.93 0.157 (1 methylpropyl) benzene
30 8.21 0.237 a benzene
31 8.35 0.840 n - decane
'"') 8.45 0.820 I methyl 3-( 1 methylethyl) benzene.)_

33 8.54 0.117 a benzene
34 8.83 0.120 a benzene
35 9.20 0.297 butyl cyclohexane
36 9.35 0.317 2,6 dimethyl nonane
37 9.63 0.283 I methyl 3 propyl benzene
38 9.80 0.547 bicyclo nona-dien-J-one

- ----------------------------------------------------- _--------_ ..._------

Table 4.3.3. Full peak information relating to the chromatogram of undiluted diesel fuel in

Figure 4.3.2. Peak numbers 1- 38 relating to 0 -- ID.OOminutes on the chromatogJ"arn.
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Peak No. Retention Time Peak Area (%) Compound

39 10.20 0.211 1methyl 4 propyl benzene
40 10.57 0.112 aromatic
41 10.83 0.504 5 methyl decane
42 10.99 0.380 aromatic
43 11.10 0.355 4,5 dimethyl nonane
44 11.36 0.250 3 methyl decane
45 12.24 0.281 4,7,7 trimethyl bicyclo heptan-3-one
46 12.47 0.186 aromatic
47 12.74 1.245 n - undecane
48 12.92 0.215 decahydro-2 methyl naphthalene
49 13.06 0.215 aromatic
50 13.19 0.095 2,3 dihydro 1,6 dimethyl indene
51 13.46 0.345 2,3 dihydro 5 methyl indene
52 13.57 0.160 5 methyl undecane
53 13.73 0.795 pentyl cyclohexane
54 13.96 0.184 4,5 dimethyl nonane
55 14.04 unknown
56 14.12 0.194 1 methyl 4(2 methylpropyl) benzene
57 14.53 0.611 I methylene indene
58 14.65 0.159 I methyl 4,2 methyl propyl benzene
59 15.00 0.275 aromatic
60 15.27 0.360 alkane
61 15.45 0.555 4 methyl undecane
62 15.61 0.593 alkane
63 15.95 0.327 alkane
64 16.19 0.342 branched cyclohexane
65 16.60 0.182 I methyl 3 pentyl cyclohexane
66 17.33 1.931 n - dodecane
67 18.00 0.759 alkane
68 18.49 hexyl cyclohexane
69 18.75 0.170 unknown
70 18.97 0.365 4 butyl benzaldehyde
71 19.22 0.187 1,5 dimethyl bicyclo[3.2.2.]nona-6.8-

dien-3-one
72 19.53 1.499 1 methyl naphthalene
73 19.72 0.254 alkane
74 19.80 0.224 5 methyl dodecane
75 20.00 0.312 4 methyl dodecane

._---_. __ ._----------------

Table 4.3.3 continued. Peak numbers 39- 75 relating to 10.00-- 20.00 minutes on the

chromatogram.
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Peak No. Retention Time Peak Area (%) Compound

39 10.20 0.211 1 methyl 4 propyl benzene
40 10.57 0.112 aromatic
41 10.83 0.504 5 methyl decane
42 10.99 0.380 aromatic
43 11.10 0.355 4,5 dimethyl nonane
44 11.36 0.250 3 methyl decane
45 12.24 0.281 4,7,7 trim ethyl bicyclo heptan-3-one
46 12.47 0.186 aromatic
47 12.74 1.245 n - undecane
48 12.92 0.215 decahydro-2 methyl naphthalene
49 13.06 0.215 aromatic
50 13.19 0.095 2,3 dihydro 1,6 dimethyl indene
51 13.46 0.345 2,3 dihydro 5 methyl indene
52 13.57 0.160 5 methyl undecane
53 13.73 0.795 pentyl cyclohexane
54 13.96 0.184 4,5 dimethyl nonane
55 14.04 unknown
56 14.12 0.194 1 methyl 4(2 methylpropyl) benzene
57 14,53 0,611 1 methylene indene
58 14,65 0,159 1 methyl4,2 methyl propyl benzene
59 15,00 0,275 aromatic
60 15.27 0,360 alkane
61 15.45 0,555 4 methyl undecane
62 15,61 0,593 alkane
63 15,95 0,327 alkane
64 16,19 0.342 branched cyclohexane
65 16,60 0,182 1methyl 3 pentyl cyclohexane
66 17,33 1.931 n - dodecane
67 18.00 0.759 alkane
68 18.49 hexyl cyclohexane
69 18.75 0.170 unknown
70 18.97 0.365 4 butyl benzaldehyde
71 19.22 0.187 1,5 dimethyl bicyclo[3.2.2.]nona-6,8-

dien-3-one
72 19.53 1.499 1methyl naphthalene
73 19.72 0.254 alkane
74 19.80 0.224 5 methyl dodecane
75 20.00 0.312 4 methyl dodecane

--------------- -- ~~--~---- -------_

Table 4.3.3 continued. Peak numbers 39 -- 75 relating to 10.00 -- 20.00 minutes on the

chromatogram.
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Peak No. Retention Time Peak Area (%) Compound

76 20.13 1.524 aromatic
77 20.50 0.448 alkane
78 20.71 0.662 7 methyl dodecane
79 20.97 0.511 cyclohexyl benzene
80 21.86 2.359 n - tridecane
81 22.27 alkane
82 22.65 0.59 alkane
83 22.85 alkane
84 23.14 0.785 heptyl cyclohexane
85 23.23 2 ethenyl naphthalene
86 23.73 0.194 1 methyl 2 hexylbenzene
87 24.09 0.428 alkane
88 24.26 0.268 5 methyl tridecane
89 24.41 1.251 2,6 dimethyl naphthalene
90 24.64 0.581 2 methyl tridecane
91 24.91 1.367 a naphthalene
92 25.08 0.976 a naphthalene
93 25.26 0.871 2,6,10 trimethyldodecane
94 25.41 0.471 aromatic
95 25.72 1.339 a naphthalene
96 25.99 0.321 aromatic
97 26.22 2.393 n - tetradecane
98 26.40 0.321 alkane
99 26.60 0.43 ] aromatic
]00 27.11 0.262 alkane
!O1 27.49 0.194 aromatic
102 27.60 0.573 octyl eycIohexane
103 27.74 0.684 4 methyl I , I biphenyl
104 27.93 0.381 oetyl benzene
105 28.08 0.256 ( Imethylheptyl) benzene
106 28.26 0.206 alkane
107 28.42 0.406 alkane
108 28.51 1.027 2(-I methylethyl) naphthalene
109 28.87 1.622 alkane
110 29.06 0.746 alkane
111 29.41 0.698 aromatic
112 29.60 0.688 a naphthalene
113 29.71 0.356 1-(1-5-dimethy Ihexyl )-4-methyl

--._--------- ----------- eyclohexane

Table 4.3.3 continued. Peak numbers 76 - 113 relating to 20.00 - 30.00 minutes on the

chromatogram.
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Peak No. Retention Time Peak Area (%) Compound

114 30.17 0.759 a naphthalene
115 30.38 2.8]4 n - pentadecane
116 30.70 1.086 a naphthalene
117 31.07 0.338 9H fluorene
118 31.16 0.248 1 methyl 7, I methyl ethyl naphthalene
119 31.58 0.650 a naphthalene
120 31.80 0.490 nonylcyclohexane
]21 32.38 0.569 2 methyl 1 propyl naphthalene
122 32.58 0.722 alkane
123 32.78 0.616 9 silafl uorene
124 33.07 0.430 3 methyl pentadecane
125 33.24 0.215 4 methyl benzofuran
126 33.49 0.310 dibenzofuran
127 33.76 0.351 aromatic
128 33.88 0.419 1 methyl-7-( I methylethyl) naphthalene
]29 34.30 2.834 n - hexadecane
130 35.03 0.288 aromatic
131 35.54 0.496 4 methyl 9H fluorene
132 35.70 0.301 aromatic
133 35.80 0.317 decyl cyclohexane
134 35.98 0.471 alkane
135 36.22 1.676 alkane
136 36.42 0.425 alkane
137 36.62 0.316 alkane
]38 36.87 0.270 alkane
139 37.00 0.258 2 methoxy 1,1 biphenyl
140 37.89 0.121 anthracene
14] 38.06 2.613 n - heptadecane
142 38.38 1.9] 1 2,6,10,14 tetramethyl pentadecane
143 39.62 0.909 undecylcyclohexane
144 39.86 0.479 alkane

----.-- ---"--------~- -.------.-----~~---------

Table 4.3.3 continued. Peak numbers 114·- 144 relating to 30.00 - 40.00 minutes on the

chromatogram.
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..-------------~~------~

Peak No. Retention Time Peak Area (%) Compound

-----~---

145 40.23 0.354 alkane
146 40.47 0.239 alkane
147 40.62 0.318 methyl dibenzothiophene
148 41.26 0.332 methyl dibenzothiophene
149 41.57 2.218 n - octadecane
150 41.94 1.618 2,6,10,14 tetramethyl hexadecane
151 42.19 0.242 2 methyl phenanthrene
152 42.74 0.368 unknown
153 42.95 0.246 alkane
154 43.22 0.448 dodecylcyclohexane
155 43.46 0.16] alkane
156 43.66 0.189 3 methyl heptadecane
157 43.88 0.088 3 methyl octadecane
158 44.72 0.348 branched alkane
159 44.93 1.809 n - nonadecane
160 45.65 0.085 unknown
161 46.23 0.171 unknown
162 46.61 0.410 tridecyl cyclohexane
163 46.93 0.269 2 methyl nonadecane
164 47.18 0.139 3 methyl nonadecane
165 47.65 0.106 alkane
166 48.14 1.506 n - elcosane
167 49.38 0.083 unknown
168 49.85 0.115 tetradecyl cyclohexane

----------------------------------

Table 4.3.3 continued. Peak numbers 145 - 168 relating to 40.00 - 50.00 minutes on the

chromatogram.
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-------.-~-~-------.-.-- - --.- ..---.------.----~--

Peak No. Retention Time Peak Area (%) Compound

169 50.06 0.090 Alkane
170 50.56 0.093 Alkane
171 51.21 0.882 n - heneicosane
172 54.14 0.584 n - docosane
173 55.95 Branched cyclohexane
174 56.96 0.325 n - tricosane
175 59.73 0.173 n - tetracosane
176 62.34 0.086 n - pentacosane
177 64.42 n- hexacosane

--- ..--.---

Table 4.3.3 continued. Peak numbers 169 - 177 relating to 50 -- 65.00 minutes on the

chromatogram.



~j
10
10
!
'j <0'

,0

,,.,..========:=====--====

.:T~ --------=~===============

·1

..D ___ -_..-J;
C·

!:: C~

i r'J;
',s '.0
, J ~

1
~-:1
J U,.
'l 0

""U'\ --,.~ 0
r-e- --- i '-0

i
-i!
~I

}1:
0
0

\.0
L{)

r
I
I 0
I o·

<0"
L{)

01
0;

;_. • s

I 01<
;- L{)'

$" ----sr --,.1,
a; +r-

__.- ,- T--- - .---:--,..---- -'-_'_'~r-, -,-,.--....-.~-....,

:U 0 0 0 0 0 0 0 0

I~ 0 0 0 0 0 0 0 0

ICU 0 0 0 0 0 0 0 0

,Ll 0 0 0 0 0 0 0 0

I§ \.0 <:::r N 0 co \.0 "l' N

rl rl rl rl

I~

C,'
,0:
--r- ."

Ol!o LO"A:;
I"

~

!I
E::j



Gillian Adam, 200 I Chapter 4, Results and Discussion: Analysis of Diesel Fuel

In the chromatogram shown (Figure 4.3.2), a total of 177 peaks were indicated

and from these 106 were identified. It should however, be emphasized that out of the

61 unidentified peaks only 7 are unknown. The other 54 peaks mass spectra allowed

these peaks to be classed as an alkane, cycloalkane, benzene, naphthalene or other

aromatic. Although the identity of these peaks is not known, the hydrocarbon class of

each peak was identified. This allowed the percentage distribution of hydrocarbon

classes present in this diesel fuel sample to be determined. Table 4.3.4 shows the

percentage distribution of hydrocarbon classes in diesel fuel identified by GC-MS.

Each peak was identified to its hydrocarbon class then the percentage peak areas from

each peak were added together to give a total for that particular class. The small or

'messy' peaks not analysed by mass spectrometry were included in this calculation and

are represented by the unknown class of compounds at the end of Table 4.3.4.

% total diesel fuel composition

Total alkanes
n-alkanes
branched alkanes and alkenes
cyclic alkanes (branched cyclohexane)

56.5
25.1
24.2

7.2 (5.8)

Total aromatics
monoaromatics
diaromatics
pol yaromatics

26.6
5.0

19.0 (14.3)
2.9

Other (mainly biphenyls and dibenzothiophenes) 3.5

Unknown 13.4

Table 4.3.4 % distribution of hydrocarbon classes in diesel fuel identified by GC-MS.

Only 13.4% of the total diesel fuel composition could not be identified. The

values obtained appear realistic when compared with class separations performed by

other researchers. Song et al (1990) found 53.7% of diesel fuel consisted of saturates,

45% aromatics and 1.3% polar compounds. Similar results were found during this

investigation, with diesel fuel containing 56.5% saturates. A lower value for total
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aromatics and polar compounds was observed however. The values obtained for total

aromatics were also found by Bundt et al (1991). The authors observed total aromatics

to equal 28.3% of diesel fuel with mono-, di- and polyaromatic hydrocarbons (PAHs

plus biphenyls) making up 16.4%, 8.0% and 3.9% of the total respectively. I found the

diesel fuel analysed contained 26.5% total aromatics with 5.0%, 19.0% and 2.9%

consisting of mono-, di- and PAHs. 3.5% of this diesel was also found to contain more

polar compounds such as biphenyls and dibenzothiophenes.

The differences in percentage distribution can be attributed to diesel fuel

composition differing due to the source of crude oil used and refining processes. The

values represented here do appear to be a realistic measure of the percentage

distribution of hydrocarbon classes present in a typical diesel fuel.

Figure 4.3.5 shows the percentage distribution of hydrocarbon classes in

diesel fuel from Table 4.3.4 represented as chromatogram-style graphs. Each graph

shows the full diesel composition with a specific class highlighted. For example, Figure

4.3.5.A illustrates the n-alkane and branched alkanes present in diesel fuel. This class

of compounds is spread throughout the whole chromatogram. Figure 4.3.5 E however

shows the diaromatic compounds which can only be found in the mid-range of the

chromatogram. This figure clearly illustrates the elution pattern of each hydrocarbon

class and gives an indication of the percentage of the total diesel fuel made up by each

hydrocarbon class.
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A 3.00
- Branched cyclic

2.50 alkanes-alkanes
- alkanes (n- and

2.00
branched)

-- monoaromatics

1.50 -- diaromatics

1.00 ---PAHs

0.50 -others (biphenyls)

0.00
0 10 20 30 40 50 60

B 3.00

2.50 - Branched cyclic
alkanes-alkanes

2.00
-- alkanes (n- and

branched)
-- monoaromatics

1.50
-diaromatics

1.00
--PAHs

0.50 -+-others (biphenyls)

0.00
0 10 20 30 40 50 60

C 3.00

2.50 --- Branched cyclic
axanes-alkenes

2.00 -- alkanes (n- and
branched)

----- monoaromatics
1.50

-- diaromatics
1.00

---PAHs

0.50 -r-others (biphenyls)

0.00
0 10 20 30 40 50 60

Figure 4.3.5. Graphical representation of the percentage distribution of hydrocarbon

classes in diesel fuel.

A) n-alkanes, branched alkanes and alkenes, B) cyclic alkanes and C) other compounds

(mainly biphenyl and dibenzothiophenes).
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D 3_00

- Branched cyclic
2.50 alkanes-alkanes

- alkanes (n- and
2.00 branched)

----*- monoaromatics

1.50 --- diaromatics

1.00 -PAHs

0.50 ---- others (biphenyls)

0.00
0 10 20 30 40 50 60

E 3.00

2.50
- Branched cyclic

alkanes-alkanes
2.00 -alkanes (n- and

branched)

1.50 - monoaromatics

- diaromatics
1.00

-PAHs

0.50
-others (biphenyls)

0.00
0 10 20 30 40 50 60

F 3.00

2.50
- Branched cyclic

alkanss-alkenes
2.00 -alkanes (n- and

branched)
1.50 - monoaromatics

- diaromatics
1.00

-PAHs
0.50

- others (biphenyls)

0.00
0 10 20 30 40 50 60

Figure 4.3.5 continued. Graphical representation of the percentage distribution of

hydrocarbon classes in diesel fuel.

D) monoaromatics, E) diaromatics and F) polyaromatics (PAHs).
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The distinctive pattern of petroleum hydrocarbon chromatograms is due to the

presence of homologous series of hydrocarbons that differ from adjacent members in

the series by a repeating unit. The most apparent homologous series in diesel fuel is the

n-alkane family. The group starts with n-octane, a compound containing 8 carbons, and

increases by addition of CH2 through the series until n-hexacosane, a C26 hydrocarbon.

These n-alkanes provide the 'backbone' to the diesel fuel chromatogram (as illustrated

on Figure 4.3.1).

A less obvious homologous series was identified during GC-MS investigation of

the diesel fuel chromatogram. A branched cyclohexane series was found ranging from

methyl cyclohexane to hexadecyl cyc1ohexane. This series was difficult to see in the

original diesel fuel chromatogram as the cyclohexane peaks were hidden in the dense

area of peaks beneath the n-alkanes. However, with the help of GC-MS the series was

identified. Cyclohexanes have an identifiable mass spectra which is built around the

large 82/83 ion peak which represents the individual cyclohexane structure. The

remaining peaks represent the branching units from this main ion peak, which generally

increase by 15 representing a CH2 group. The GC-MS data system was able to scan the

diesel fuel chromatogram for all 82/83 ion peaks which highlighted all cyclohexanes.

Figure 4.3.4 illustrates the resulting GC-MS chromatogram produced by scanning for

ions 82 and 83 within the diesel fuel chromatogram. The familiar pattern of evenly

spaced peaks was again seen, verifying the presence of a branched cycIohexane

homologous series. This was an interesting find as little work has been presented

relating to cycIohexanes in diesel fuel products. The majority of toxicity and

degradation information relating to hydrocarbons centres on alkanes and aromatics.

This topic will be discussed fully in Chapter 6.
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4.4 GC-FID and GC-MS Analysis of Volatile Diesel Fuel

As mentioned at the start of the chapter, diesel fuel composition alters when released

into the soil environment due to weathering by both biological and non-biological

processes. Biological weathering caused by microbial degradation or plant uptake will

be discussed in later chapters.

There are two main processes which affect the non-biological weathering of

diesel fuel, these being leaching and volatilisation. Although both these factors will be

discussed in later chapters it was necessary to quantify the loss of diesel fuel by

volatilisation, as volatilisation is the most important non-biological weathering process

affecting diesel fuel composition.

Diesel fuel is a complex mixture of both volatile and non-volatile compounds. It

was important to determine which compounds would volatilise, under normal

conditions, from diesel fuel and how this changed the diesel fuel fingerprint.

Theoretically, the compounds identified during the GC-MS analysis of diesel fuel could

be assessed individually on their volatility by reference to values for each pure

compound. However, the volatility of these compounds is retarded by the fact that

diesel fuel is a complex mixture, therefore volatility values for pure compounds have no

use in this situation. Instead, a sample of diesel fuel was placed in a vial, sealed and

then stored at 20°C for equilibrium headspace sampling as described in Section 2.3.4.

The compounds, which were volatile at 20°C, began to evaporate from the diesel fuel

until they reached equilibrium in the headspace above the sample. An aliquot of this

headspace was then withdrawn from the vial and injected directly onto the GC column.

Figure 4.4.1 shows the GC-FID chromatogram of hydrocarbons present in the

heads pace above the diesel fuel sample.
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Figure 4.4.1. GC-FID chromatogram of volatile diesel fuel fraction at 20°C.

No peaks were detected after 25 minutes on the chromatogram so the GC run was

stopped at 35 minutes.

To identify the peaks present in the diesel fuel headspace, another diesel sample

was prepared for equilibrium headspace sampling and analysed by GC-MS. The

chromatographic conditions used for the GC-MS analysis were the same as for GC-FlD

analysis except the type of column used (see Section 2.3.4). However, very similar

chromatographic traces were obtained using both methods. Figure 4.4.2 illustrates the

GC-MS chromatogram of the headspace diesel fuel fraction. Peaks analysed by mass

spectrometry were assigned a peak number and this number relates to the peak numbers

listed in Table 4.4.3.



-_-------- ------- __ ---

Peak No. Retention Time Peak Area (%) Compound
----------~-

I 1.417 3.217 methyl cyclohexane
2 1.788 2.041 toluene
3 3.154 1.650 Ethyl cyclohexane
4 3.672 3.417 o-xylene
5 3.903 9.120 m-xylene
6 4.270 3.981 branched alkane
7 4.470 5.968 p-xylene
8 4.702 3.937 iso-cyclohexane
9 5.313 7.681 n-nonane
10 5.474 1.487 alkyl benzene
11 5.921 2.466 propyl cyclohexane
12 6.112 1.192 nonene
13 6.364 3.154 alkyl benzene
14 6.623 4.040 alkyl benzene
15 6.852 1.036 alkyl benzene
16 7.359 1.506 decene
17 7.577 3.005 ethyl benzene
18 7.728 1.102 (ethylpropyl) cyclopentane
19 8.157 0.426 alkyl benzene
20 8.372 0.620 (methylethyl) benzene
21 8.484 3.895 decane
22 8.643 0.373 alkyl benzene
23 9.151 1.107 butyl cyclohexane
24 9.245 0.861 ethy I heptane
25 9.468 0.600 alkyl benzene
26 9.566 1.603 alkyl benzene
27 9.883 0.349 alkyl benzene
28 10.422 0.681 alkyl benzene
29 10.543 0.550 methyl octane
30 10.720 0.391 branched alkane
31 10.861 0.305 branched cyclohexane
32 11.640 1.913 n-undecane
33 12.178 0.531 branched alkane
34 12.378 0.381 (methylpropyl) cyclohexane
35 14.639 0.464 n-dodecane

-_._ ----_.__ .. -_. -_._ .._- -- ~-- ---- -~-------- .-- -----------------._

Table 4.4.3. Full peak information relating to the chromatogram of diesel fuel headsPace

in Figure 7.4.2. Peak numbers I - 35 relating to 0 -- 15.00 minutes on the chromatogram.
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35 peaks were analysed and 20 peaks were identified. The other 15 peaks were

grouped into their respective hydrocarbon family or sub-family by analysis of the mass

spectra. The dominant peaks were the low molecular weight alkanes (C9-CI2), BTEX

compounds (benzene, toluene, ethyl benzene and the xylenes, m-, 0- and p-xylene) and

branched cyclohexanes (methyl-buty!).

The volatile fraction in diesel fuel at 20DC made up between 5 and 10% of the

total diesel fuel.

4.5 Hydrocarbon Group-Type Analysis by Fractionation

As demonstrated in the previous sections of this chapter, the major problem in the

analysis of diesel fuel is in its complexity. The pre-separation of diesel fuel according

to classes of similar structure prior to their identification would make the process of

identifying individual compounds much easier, especially for the determination of

minor compounds. Numerous separation procedures for crude oil, shale oil and coal

derived materials exist from liquid-liquid extractions to semi-preparative HPLC using

backflush techniques (Akhlaq, 1993). In 1961, Snyder established the classical method

of column chromatography on silica gel and alumina to separate petroleum

hydrocarbons. Since then a variety of adsorbents have been tested.

Diesel fuel fractionation into alkane, aromatic and polar groups was carried out

by the modified method of Wang et al (1990) as described in Section 2.3.5.

4.5.1 Analysis of Hydrocarbon Classes

Each fraction collected after separation on the silica gel column was analysed by GC-

FID as described in Section 2.3.2. Figure 4.5.1.1 illustrates the GC-FID chromatogram

of hydrocarbons eluted with n-hexane from the silica column. Although the

chromatogram looks very similar to the original diesel fuel chromatogram, there should

be no aromatic compounds present in this fraction. Figure 4.5.1.1 shows all the evenly

spaced n-alkanes present in diesel fuel, with the branched and cyclic alkanes appearing

in between these evenly spaced peaks.
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Figure 4.5.1.1. OC-FID chromatogram of alkane fraction of diesel fuel.

Figure 4.5.1.2 illustrates the OC-FlD chromatogram of hydrocarbons eluted with

dichloromethane from the silica column. This fraction contains aromatic compounds

such as mono-, di- and polyaromatic hydrocarbons (PAHs). The peaks appear near the

start of the chromatogram and lessen as the time increases. This result was expected, as

the majority of aromatic compounds found in diesel fuel are mono- and diaromatic

hydrocarbons, which elute at the early to middle stages of the GC run time (see Figure

4.3.5). The fingerprint 1 obtained for the aromatic fraction was similar to the results

published by Sepic et al (1996) for diesel fuel.
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Figure 4.5.1.2 GC - FID chromatogram of aromatic fraction of diesel fuel.

Unfortunately, the column packing partially dried out before I could run

chloroform:methanol (1/1 v/v) to collect the polar fraction.

Although the silica column method does separate diesel fuel into its relevant

fractions successfully, the method itself is extremely time cORSUl11ingand difficult to

perform. The column method was not suited to routine analysis of numerous samples

but it did provide information on the distribution of compounds in both the alkane and

aromatic fractions.
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GC-FID and GC-MS analysis provided a huge amount of information on the

composition of diesel fuel which was an integral part of this study. The majority of

hydrocarbons present were identified which allowed the distribution of hydrocarbon

classes in diesel fuel to be calculated. The information gained on diesel fuel

composition allowed diesel fuel biodegradation in the soil to be followed and provided

information on the type of diesel fuel components that were being degraded. In

addition, in depth analysis of the pure diesel fuel product and the volatile diesel fuel

fraction by GC-FID and GC-MS, added greatly to the lack of readily available

information on the composition of petroleum products.
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CHAPTER FIVE

BEHAVIOUR OF DIESEL FUEL IN THE SOIL

When considering the overall effect of contamination on a soil system, change to the

soil physical as well as biological characteristics must be investigated. The behaviour

of diesel fuel on entering a soil system was investigated and the effect diesel fuel had on

soil physical properties ascertained.

5.1 Influence on Soil Water Holding Capacity

Soil water holding capacity is the total amount of water a soil can absorb without

draining. The amount of water a soil can hold is dependent on soil physical properties

that influence soil structure. The most important factors influencing soil water holding

capacity are the amount of organic matter present and the silt and clay content. It is

widely known that the higher the organic matter and fine particle content of the soil, the

larger the volume of water that soil can hold. This statement was verified by comparing

the soil water holding capacities of two soils with differing textural properties (Section

2.2.1.1). Barassie soil, which has been classed as a sand, has an organic matter content

(LOI % value) of 5.7% and a water holding capacity of 41.6%. Darvel soil, which is in

the sandy clay loam class, contains 9.1 % organic matter (LOI 9'(' value) and has a water

holding capacity of 54.3%. These values clearly show the influence that the physical
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characteristics of soil haveon the soil water holding capacity of soil. It was therefore

concluded that addition of organic material, in the form of diesel fuel hydrocarbons,

may influence the water holding capacity of the soil. This theory was investigated by

contaminating soil with diesel fuel to produce IOOg of SOg diesel kg-I soil and the water

holding capacity of the contaminated soil compared to the uncontaminated soil. The

results showed an increase of 13.7% in soil water holding capacity of soil contaminated

with diesel fuel compared to uncontaminated soil.

Few authors have mentioned an increase in water holding capacity when

investigating soils contaminated with petroleum hydrocarbons. In fact, Li et al (1997)

noted that contamination did not change the saturation percentage of soil. These

observations were made on soils containing 'aged' hydrocarbon residues however. By

using freshly contaminated soil, an unrealistic situation for comparison has been set up.

It was therefore decided that the soil samples, planted with Meadow mix, collected from

the final greenhouse trial (Section 2.6.3.4) after 4 months would be tested to provide a

more realistic estimate of the influence of residual diesel fuel contamination on soil

water holding capacity.

The soil water holding capacity of Meadow mix planted and unplanted,

uncontaminated soil and planted and unplanted diesel fuel contaminated soil at all levels

(5g, 109 and 15g diesel kg' soil) was tested. Table 5.1.1 shows the percentage soil

water holding capacity of the Meadow mix soil samples.

Treatment % water holding capacity

Uncontaminated, no plants

Uncontaminated, plants

5g diesel kg', no plants

5g diesel kg", plants

109 diesel kg', no plants

109 diesel kg", plants

15g diesel kg', no plants

ISg diesel kg', no plants

36.7

36.7

39.4

41.1

42.6

42.3

40.9

42.6

Diesel residues ranged from <1%, 1.89% and 3.39% in 5g, 109 and 15g diesel kg-I soil under planting.

Table 5.1.1. % soil water holding capacity of aged diesel fuel contaminated soil planted

with Meadow mix, n = I.
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Little difference was found between the uncontaminated soil and the

uncontaminated soil planted with Meadow mix. This was first thought of as unusual as

plants produce exudates which increase the organic carbon content of the soil. You

would therefore expect an increase in soil water holding capacity of planted soils

compared to unplanted soils. However, the plants had only been growing for 4 months,

which may not have been enough time to influence the organic carbon content of the

surrounding soil. Also, the sample was taken from the bulk soil and not the rhizosphere

soil so any organic matter added to the soil surrounding the roots would be diluted in

the bulk soil.

An increase was found between the contaminated and uncontaminated soil

samples. Water holding capacity was increased by an average 4.8% (range 2.7-5.9%),

in the diesel fuel contaminated soils tested. This small increase is due to the residual

diesel fuel in the soil after 4 months treatment and the influence of microorganisms and

plant growth on soil organic carbon content.

The influence of diesel fuel on soil water holding capacity obviously differed

with the age of the product. Freshly contaminated soil showed a large increase in the

volume of water held by the soil. This may be due to the entire diesel fuel fraction

being present which means the more hydrophilic aromatic compounds were still present

which would attract water and increase the water holding capacity of the soil. When the

contaminated soil ages however, these hydrophilic compounds are degraded readily,

leaving behind more hydrophobic residues. This more realistic scenario showed as fuel

ages and degrades in the soil, less of an impact was observed on soil water holding

capacity but an increase in water repellence was observed.

5.2 Occurrence of Repellent Soil

Hydrophobic mineral soils have been observed in various environments over the years,

including burned forest soils, citrus groves, sandy soils of Australia and New Zealand

and cultivated soils (King, 1981, Roy and McGill, 1997). Soil water repellency is

attributed to the presence of hydrophobic organic substances forming a coating over the

surface of normally hydrophilic soil particles. It was always thought that soil water

repellency was attributed solely to the presence of organic material of unusual

composition however, a theory that is gaining wider acceptance is that the molecular
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orientation of organic matter coatings on soil particles may be determining whether

soils repel or adsorb water (Ma'Shum and Farmer, 1995). According to this theory,

amphiphilic or surface active molecules such as humic, fulvic and fatty acids, can

impart water repellant character to a soil when their hydrophilic ends are oriented

towards soil particle surfaces and their hydrophobic ends extend toward the open pore

space (Anderson et al., 1995). The reverse arrangement is thought to prevail in soils

that adsorb water normally where the hydrophilic functional groups interact mostly with

the soil solution whereas the hydrophobic functional groups interact mostly" with

themselves and with the surface of organic matter coatings. Changes in the interfacial

conformation of amphiphilic organic molecules on the surface of soil particles has been

postulated to occur during soil drying and following treatment with certain non polar

organic solvents (Ma'Shurn and Farmer, 1995).

Soils contaminated with hydrophobic materials, such as hydrocarbon residues

have the potential to develop water repellency (Li et al., 1997) which may result in

impaired plant-soil water relations (Brown et al., 1982). The formation of repellant soil

characteristics due to diesel fuel contamination was investigated using the method of

King (1981) as described in Section 2.4.3.

Two sets of samples were tested for development of water repellency, one with a

low diesel fuel content (ranging from <1-3.45% diesel fuel residue) and one with a high

diesel fuel content (approximately 7.5%). Firstly, one set of samples collected from the

pot experiment described in Section 2.6.3.4 was investigated. These samples contained

both diesel fuel contaminated and uncontaminated soil and both Westerwold's ryegrass

planted and unplanted soil. The soils were packed into perspex cells as described in

Section 2.4.3 and the water droplet (WD) test performed. The results from this

experiment are given in Table 5.2.1 with a repellency rating given based on the

interpretation guidelines for water repellency rating of soils by King (1981).
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Water Droplet (WO) Test

Sample Infiltration rate (S-I) Rating Explanation

<I, I, <I Not significant

3,3,3 2 Very low

16,13,14 3 Low

62,62,54 5 Low

158, 146, 137, 153 6 Moderate

Uncontaminated, unplanted

Uncontaminated, planted

5g diesel kg-I soil, planted

109 diesel kg --I soi I, planted

15g diesel kg -I soil, planted

5g, 109 and ISg diesel kg-I soil residual values were < 1(,Y,! (NO), 2_12% and 3.45%.

Table 5.2.1 Repellency rating determined by the Water Droplet Test for contaminated

and uncontaminated, planted and unplanted soils.

The results show that uncontaminated soil has a very low rating providing no

significant water repellence but by growing plants in uncontaminated soil, the

repellency rating goes up one point. This slight increase in repellency was probably

caused by plant exudates and increased microbial biomass in planted soil as opposed to

unplanted soil. This observation has been noted by several authors, with repellency

heing formed by decomposing plant material and exudates, under certain stands of plant

species such as Eucalyptus, pine and ytcca (King, 1981). The addition of diesel fuel

decreased the infiltration rate of water into soil significantly. Increase in diesel fuel

addition caused a subsequent increase in the repellency of soil. As these soils have been

remediated for 4 months, the diesel fuel content is small. However, the diesel fuel that

remains in the soil is in the form of more resistant, hydrophobic residues which IS

reflected by the soil repellency results.

The second set of samples tested for repellency were samples collected from the

simulated diesel fuel spill as described in Section 2.6.2. Samples were collected from

the corner positions and the middle of each planted tray after the experiment had ended.

Each tray had been contaminated with 100 ml of diesel fuel, spilled on the surface of

each planted tray to simulate an aboveground diesel fuel spill. Soil samples were

prepared and the water droplet (WO) and molarity of ethanol (MED) test performed as

described in Section 2.4.3. The results given in Table 5.2.2 for the four plant species
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tested using both WD and MED tests have again been given a repellency rating as

described by King (1981 ).

Corner I N/A

Test

MED rating

12

12

12

12

10

II

12

12

12

12

12

12

Plant type position WO rating

Westerwold's
ryegrass

Middle *

Corner I

Corner 2

Red clover Middle *

Corner 2

Chewing's fescue Middle *

Corner I

Corner 2

Meadow mix Middle *

Corner I

Corner 2

NIA not applicable. MED ratings> 9 - II indicate severe conditions and> II indicate very severe

repellent conditions (from the Interpretation guidelines for water rcpellencc rating of soils, modified by

King, 19X I).

Approximately 7.5% diesel fuel added per tray - higher levels of diesel fuel at middle positions than

corner positions. * point source of diesel fuel contamination.

Table 5.2.2 Repellency rating of soils under four different planting treatments

determined by the Water Droplet (WO) Test and Molarity of Ethanol (MED) Test.

The water droplet test was initially performed on the first few samples but the

infiltration rate of the water droplet was greater than 4 minutes therefore the test was

abandoned. In fact, the soils used in the simulated diesel fuel spill experiment were so

repellant, the water droplet placed on the soil surface stayed, perfectly formed on the

soil surface for> I hour. No infiltration of water occurred at all. This led to the

molarity of ethanol (MED) test being performed on these samples. The molarity of
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ethanol required to break the surface tension of the repellent soil surface in these

samples was very high (>3.8 M ethanol). This gave a repellency rating of II or 12 for

the majority of samples tested which is very severe. The extreme repellency of the soil

was one of the reasons for the lack of plant regrowth in the simulated diesel oil spill

experiment (Section 2.6.2). The soil could not retain enough water and the plants could

not obtain adequate water to begin regrowing. An example of the effect of the

simulated diesel fuel spill on plant growth is illustrated in Figure 5.2.3. Red clover

plants before the spill, immediately after and 2 months after being cut back and 'allowed

to regrow show how badly the plants were affected by the fuel spill and that regrowth

was seen only around the edges of the spill.
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Figure 5.2.3. Simulated diesel fuel spill on Red clover planted soil.
Example of Red clover plants before the spill (top), immediately after the
spill (middle) and 2 months after being cut back (bottom).



Gillian Adam, 2001 Chapter 5, Results and Discussion: Behaviour of Diesel in Soil

The introduction of diesel fuel into the soil clearly has an effect on the soil's

ability to hold water and maintain appropriate moisture conditions for optimal plant

growth. This effect must be considered as an additional cause of poor plant

performance in diesel fuel contaminated soils. Although the residual diesel fuel content

of the soil may be low enough not to cause any phytotoxic effects on plant growth, the

influence these residues have on the development of repellant soil may cause reduced

plant yield and unhealthy plants.

5.3 Downward Migration of Diesel Fuel in Soil

Another important factor on diesel fuel entering a soil system is its subsequent lateral

and vertical movement in the soil profile. Rainfall can encourage contaminant leaching

through the soil profile which can lead to surface water and groundwater contamination.

Diesel fuel, due to its hydrophobic character, should not move far in the soil profile.

However, this statement is highly dependent on the characteristics of the soil the diesel

fuel is contaminating and whether diesel fuel is contaminating from an aboveground or

underground source. The difference in the surface and subsurface soil characteristics

allow diesel fuel, on entering these systems, to behave very differently.

The presence of other contaminants commonly found with diesel fuel may also

influence its migratory behaviour. The results discussed below include work carried out

by Professor Keiji Gamoh and myself on ethanol additive fuels. Although this work is

not directly related to the thesis subject matter, it is extremely pertinent to this chapter

on the behaviour of diesel fuel in the soil. Diesel fuel consists of many additives which

improve the performance of the fuel. Addition of oxygenates, such as ethanol and

methyl-tertiary-butyl ether (MtBE) to fuels to reduce vehicular emissions is common

practice. At present, only MtBE and similar ethers are used in the U.K. (Environment

Agency, 1999). These additives, although beneficial in reducing atmospheric pollution,

may in fact increase groundwater contamination due to cosolvency of petroleum

hydrocarbons and by provision of a preferential substrate for microbial utilisation

(personal communication). Because these additives are present in diesel fuel, their

influence on contaminant movement should not be discounted. The rest of this chapter

therefore discusses diesel fuel movement in the soil profile and how the inclusion of

additives, such as ethanol, influence this movement.

152



(lillian Adam, 200 I Chapter 5, Results and Discussion: Behaviour of Diesel in Soil

5.3.1 Vertical Movement of Diesel Fuel Through a Soil Column

Vertical movement of diesel fuel from an above ground spillage was investigated using

a I m soil packed column which was leached with water as described in Section 2.4.3.

The distribution of diesel fuel down the soil profile was determined by GC-FID analysis

of extracted diesel fuel from 10 cm sections of the column.

The results from the I m soil columns suggested that the downward migration of

diesel fuel in the soil profile was enhanced by ethanol addition. Figure 5.3.1 shows the

percentage distribution of diesel fuel in I m soil columns leached with 10 I of water,

where only diesel fuel has been added and where diesel fuel with 5 % ethanol has been

added. Little movement of diesel fuel was observed in the diesel fuel only column with

diesel fuel distribution decreasing evenly from the top of the column (Section I) to a

depth of 30 cm (Section 3). Negligible amounts of diesel fuel were found below this

depth.

Diesel fuel with 5 % ethanol, on the other hand, was seen to migrate to a depth

of 40 cm and the pattern of diesel fuel distribution in the soil profile was very different

from that seen in the diesel fuel only column. Again, the largest percentage of diesel

fuel was found in the top 10 cm (Section 1). The percentage of diesel fuel in Section 2

and 3 decreased, as before, to 22.5 % and 13.8 %. However, the percentage of diesel

fuel in Section 4 rose to 24.1 % of the total diesel fuel added. No diesel fuel was found

in sections below this depth.
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Figure 5.3.1.1. % distribution of diesel in Im soil columns for diesel only (top) and

diesel plus 5% ethanol (bottom). Only sections 1-5 are shown as no diesel was found in

the lower sections of the column (sections 6-10).

The pattern of diesel fuel distribution in the soil profile clearly showed the

enhancement of diesel fuel movement through the soil column due to ethanol addition.

Gas chromatographic (GC) analysis of diesel fuel extracted from each soil section

resulted in GC traces whose pattern of hydrocarbon distribution were very similar.

There was no indication that specific components or fractions of the diesel fuel were

being mobilised and moving further down the soil profile than other components or

fractions of the diesel fuel. This implies that the effect ethanol has on enhancing diesel

fuel movement in the soil may be due to the 'wetting' effect of ethanol on the soil

components allowing mass movement of diesel fuel. As previously discussed, ethanol
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can break the surface tension of repellent soils allowing infiltration. Ethanol present

within diesel fuel would therefore enhance infiltration of diesel fuel into the soil profile

by lessening the adsorptive capacity of the hydrophobic sites of soil components such as

organic matter and allow diesel fuel to move further down the soil profile. It can be

concluded that by further increasing the concentration of ethanol in diesel fuel,

increased movement of diesel fuel into the subsurface would be observed.

To quantitate what sort of concentrations of ethanol were required to enhance

movement of diesel fuel into the subsurface a more thorough investigation was

undertaken.

5.3.2 Movement of Petroleum Hydrocarbons Through A Soil Column

The effect of soil components on contaminant movement was investigated by a novel

method using HPLC packed columns carried out by Professor Keiji Gamoh and as

described in Section 2.4.4. This allowed the retentive behaviour of different soil

components on petroleum hydrocarbons to be studied. Conclusions could then be

drawn from these results on the behaviour of petroleum hydrocarbon movement in

surface soils and subsurface soils.

Initially, a soil (Barassie series: 40.5% sand, 21.5% silt and 25.0% clay) with an

average organic matter content (16.7%) was assessed to determine if aromatic

hydrocarbons, commonly found in diesel fuel, could move through a soil column and

what levels of ethanol addition enhanced this movement. Aqueous ethanol

concentrations ranging from 0 to 50% ethanol were used as the mobile phase in this

column (G-O I). An aqueous ethanol concentration of above 10% was required for any

movement of hydrocarbons in column G-OI to occur. At 25% aqueous ethanol as the

mobile phase, the lighter, more soluble aromatic hydrocarbons eluted slowly from the

column whereas the larger aromatics (1,5 dimethyl naphthalene, phenanthrene,

anthracene, pyrene and chrysene) were retained on the column. Toluene, naphthalene

and l-ethyl naphthalene had retention times of 2.49, 9.86 and 28.00 minutes

respectively. The length of time taken for these hydrocarbons to come off the G-O I

column suggests the soil packing has hydrophobic sites capable of retaining aromatic

hydrocarbons but the adsorption of the lighter hydrocarbons on these sites can be

overcome by 25% aqueous ethanol. When the aqueous ethanol concentration of the

mobile phase was further raised to 50% ethanol, all the aromatic hydrocarbons added
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could be eluted from the column and the time taken for elution was much quicker than

with 25% aqueous ethanol. This implies the retentive behaviour of the soil column was

lessened by increasing concentrations of ethanol. This is supported by the observations

made in the previous section and the MED test results whereby increasing ethanol

concentration breaks the surface tension of repellent soil allowing penetration. Table

5.3.2.1 shows the retention time (tR) and capacity factor (k') of hydrocarbons on the

Barassie soil column (0-01) using different ethanol mobile phase concentrations.

Capacity factors are included as although a peak can be identified by its retention time,

this varies with column length and mobile phase flow rate (Lindsay, 1992). The same

columns lengths are used throughout this experiment but the mobile phase flow rates

differ. By using capacity factors instead of retention times, a direct comparison can be

drawn between different column results.

Mobile phase

25% EtOH 50% EtOH

k' k'
Hydrocarbon

Acetone, to = 0.78 to = 0.78

toluene 2.49 2.19 1.40 0.79

Naphthalene 9.86 11.64 1.45 0.86

I ethyl naphthalene 28.00 34.89 2.35 2.01

1,5 dimethyl naphthalene 2.61 2.35

phenanthrene 4.28 4.49

anthracene 4.55 4.83

pyrene 6.69 7.58

chrysene 18.00 22.08

Capacity factor k' = tR - t" where tR is the analyte peak retention time

r, and to is the peak of the unretained solvent front

Table 5.3.2.1 Retention time (tR) and capacity factor (k') of hydrocarbons on the

Barassie soil column (0-01) using different ethanol mobile phase concentrations.
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Figure 5.3.2.2 illustrates the information given in Table 5.3.2. I on the retentive

behaviour of the Barassie soil column (G-O I). The capacity factors are quite large so

the natural log (In) of each capacity factor (k') has been taken to bring the In k' values to

between I and 10, which is the normal range for k' values (Lindsay, 1992). Using 25%

aqueous ethanol as the mobile phase eluted only the smaller aromatic hydrocarbons

(toluene, naphthalene and I ethyl naphthelene), the larger aromatics (1,5 dimethyl

naphthalene, phenanthrene, anthracene, pyrene and chrysene) were retained on the

column. By increasing the aqueous ethanol concentration to 50%, all the aromatic

hydrocarbons added to the column were eluted and more quickly than when 25%

aqueous ethanol was used as the mobile phase.

4 -
3.5 -I •
31 •

2.5 •
2 • .25% EtOH~

c 1.5 • • 50% EtOH
I

1 l • •

i •0.5
0 I II

ID •-0.5 5 10 15 20
carbon number

Carbon number relates to : C7 - toluene, Cl 0 - naphthalene, C 12 - I ethyl naphthalene and I, 5 dimethyl

naphthalene, C 14 - phenanthrene and anthracene, C 16 - pyrene and C 18 - chrysene.

Figure 5.3.2.2 Comparison of retentive behaviour of G-O I soil column using different

mobile phase concentrations of ethanol.

Increasing In k' values indicate increased retention of hydrocarbons due to

increased adsorption to soil sites. The 25% aqueous ethanol results lie above the 50%

aqueous ethanol results as the hydrocarbons were retained longer on the column using

25% aqueous ethanol as the mobile phase than they were using 50% aqueous ethanol

mobile phase.
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It can be clearly seen that ethanol enhances hydrocarbon mobility through soil

columns and increasing the ethanol concentration, in turn, increases the mobility of the

hydrocarbons. The aromatic hydrocarbons were strongly held in the soil by adsorption

to soil components and could not be mobilised by water or up to 10% ethanol as the

mobile phase. At 25% aqueous ethanol, only the lighter aromatic compounds (toluene,

naphthalene and I ethyl naphthalene) were mobilised. As the ethanol concentration

increased to 50% however, all the aromatic hydrocarbons added to the column were

mobilised and eluted from the column.

To determine what effect vanous soil components had on the adsorption of

aromatic hydrocarbons a series of soil columns were prepared with varying ratios of

organic matter, sand, silt and clay.

Column 0-05 was prepared from the subsurface soil of the Barassie series used

111 column 0-01. This subsurface soil consisted of a very large proportion of sand

(approximately 81 %) with low organic matter (approximately 5%), silt (approximately

10%) and clay (approximately 7%). Column O-OIF was packed from the Barassie soil

used in column 0-0 I that had been ignited for 6 hours in a 500 QC furnace to remove all

the organic matter. Column 0-06 is a manufactured sand sample (Fisher Scientific

Chemicals, 40-100 mesh) which provided a measure for the mineral fraction of soil and

finally, columns 0-07 and 0-08 which are packed from silica of varying particle size.

Column G-07 contains particles in the fine sand to silt range and column G-08 contains

only silt-sized particles. These columns were included to investigate the intluence of

particle size distribution on hydrocarbon adsorption. Figure 5.3.2.3 shows the trend in

retention of hydrocarbons on various soil columns. 25% aqueous ethanol was used as

the mobile phase as it was found to enhance hydrocarbon mobility in the original soil

column (G-OI) and is an important environmental value as fuel in Brazil and many

states in the U. S. A. contain 24% ethanol (Massad et al., 1993).
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Figure 5.3.2.3 shows the trend in retention of hydrocarbons on various soil columns.

The original soil column (G-OI) which contained average organic matter, sand,

silt and clay values had the highest adsorptive capacity for aromatic hydrocarbons

which is shown in Figure 5.3.2.3 by the trend in retention lying above all the other

column values. The sandy subsoil, which contained high levels of sand but with low

organic matter, silt and clay content had the next highest adsorptive capacity. The

presence of organic matter was the most important factor in the adsorption of petroleum

hydrocarbons because when all the organic matter was removed, as in column G-O IF,

the retentive behaviour of the soil column was drastically reduced. Column G-OIF was

basically the same as column G-O I except 110 organic matter was present. This allowed

the retentive behaviour of the column to be attributed, almost entirely, to the presence of

organic matter. However, some retention of the larger aromatic hydrocarbons, such as

phenanthrene, was observed which suggests other factors are involved in retaining

hydrocarbons on soil. Column G-06, which is a manufactured sand of narrow particle

size range, also showed signs of retaining the larger aromatic hydrocarbons suggesting

sand particles themselves have some retentive behaviour.
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Two silica columns were used to distinguish between the influence of particle

size on hydrocarbon retention. The results are given in Table 5.3.2.4. The silica used as

packing material in these columns (G-07 and G-08) had no surface coatings hence they

had little adsorptive capacity. Because of this water was used as the mobile phase.

Mobile phase: water

Column G-07 Column G-08

Hydrocarbon k' k'

Acetone, to = 1.47 t, = 2.86

toluene
Naphthalene
I ethyl naphthalene
phenanthrene

2.10
3.81
5.97
6.17

0.42
1.19
2.43
2.54

4.81
7.83
15.72
18.95

0.68
1.73
4.49
5.62

Table 5.3.2.4 Retention times and capacity factors for petroleum hydrocarbons on silica

columns with varying particle size ranges.

Column G-07 had a larger particle size distribution (diameters ranging from

0.0035 mm to 0.70 mm particles) than column G-08 (0.0015 mm particle size diameter).

This was reflected by the capacity factors of the aromatic hydrocarbons on each

column. The time taken for elution of each hydrocarbon was almost double on column

G-08 compared with column G-07. These results show that mineral particles such as

sand, may influence the adsorption of petroleum hydrocarbons even when they are not

coated with organic matter or other active functional groupings. Generally, fine

particles and organic matter are responsible for the adsorption of pollutants to the soil

matrix. However, the results obtained during this investigation using various sandy

soils and surrogate sand columns indicate other factors may be involved in the

adsorption of petroleum hydrocarbons. Other authors have found that sandy soil can

bind hydrocarbons adsorptively although neither silty material nor significant amounts

of organic matter was present. Loser et al (1999) proposed that soil particles are

covered with micropores, which enlarge the soil surface in comparison with the

macroscopic surface area. This microporosity is the reason for hydrocarbons being
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more strongly adsorbed to sandy soil than expected (Loser et al., 1999). This theory

seems a likely explanation for the slightly retentive behaviour of both the silica columns

tested (columns G-07 and G-08) and the sandy soil column with no organic matter

present (column G-O IF).

These results suggest a greater possibility of groundwater contamination by

aromatic hydrocarbons in ethanol additive diesel fuel spills occurring from both

underground storage tanks and above ground spills. Surface soil components such as

soil organic matter, as well as silt and clay, play an extremely important role in retaining

petroleum hydrocarbons near the soil surface. However, ethanol was shown to enhance

movement of both individual petroleum hydrocarbons and diesel fuel by lessening the

adsorptive capacity of the surface soil components. If these petroleum hydrocarbons

leak at the subsurface level, the low organic matter content and the lower silt and clay

contents allow hydrocarbon migration to occur more freely. In addition, an

underground petroleum hydrocarbon spill, which would normally migrate and

contaminate groundwater quite readily, would be further enhanced by the addition of

ethanol.
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Having demonstrated the behaviour of diesel fuel on entering a soil system and

the influence it has on the physical properties of soil I turn to the main focus of this

study which considers whether phytoremediation was a viable option for the clean up of

diesel fuel contaminated land and whether growing plants enhanced the breakdown of

diesel fuel in contaminated soil. The remaining results chapters therefore investigate

the effect of diesel fuel on plants at various stages of growth and development in an

attempt to determine which plant species are most successful in diesel fuel

contaminated soil. The most successful plant species from the initial screening studies

were then used in large scale greenhouse trials to: examine the effect of diesel fuel on

plant growth and development; investigate the influence of diesel fuel and plant growth

on soil enzyme activity and to quantify the degradation of diesel fuel in planted and

unplanted soil.

The data collected from these plant trials lead to a better understanding

of the changes occurring in soil due to the addition of diesel fuel and growing plants and

gave a clearer picture of the effect of phytoremediation on the plant-soil-

microorganism-contaminant interactions.
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CHAPTER SIX

EFFECT OF DIESEL FUEL ON PLANT GROWTH AND

DEVELOPMENT: EFFECT ON THE SEED

6.1 Plant Screening

A selection of plant species were screened for their ability to germinate in soil

contaminated with diesel fuel as described in Section 2.6.1.1. The response varied with

diesel fuel concentration and plant species. At relatively low levels of diesel fuel

contamination, delayed seed emergence and reduced germination we.~observed for the

majority of plant species investigated (Table 6.1.1).

The ability of seeds to germinate in diesel fuel contaminated soil ranged from

completely unaffected (e.g. Oil seed rape, Flax cv. Elise) to completely susceptible (e.g.

Couch grass, Rough meadow grass). Some plant species were affected initially,

resulting in a delayed seed emergence. These species had low percentage germination

rates at 7 days but germination increased significantly by 14 days. This effect is clearly

illustrated by Common vetch, with percentage germination being 64%, 26% and 12% at

7 days in Og, 25g and SOg diesel kg' soil respectively. By day 14, the germination rate

had risen to 64%, 60% and 42% in Og, 25g and 50g diesel kg' soil. This trend is also

seen with Red clover, White clover and Little yellow trefoil.



"7 ~ 0 I/") 00 0 r- 0 I/") 00 0 00 C"l 00 C"l
b1) 0 I/") ~ 00 0\ \0 0\ I/") r- C"l I/") 00 "1"" r-

~
~
eo

Q) c.......
('j 0
I- .~
C
0 I-.......0;J c
c;:l Q)

c uO§ C
0

I- U
<tl a)Cl :FJ

<tl 0 0
I/") 00 0 0 0 \0 0 \0 0 00 "1"

Q I/") ~ "1" - ~ "1" C"l

o
I/") o o

N

s
S
::os

'" E ~ E~
~ ::os ~ E......

'" ~ t: <::Ja
._

'-' '"... ~ l;::I :.... '" E
._

.::= '" ::os ~ <::J
~ ~ '"

o~
~ .;:: "\:j ::s '" ~

~ '" 'U ~:t:;., .s ::l ...... 0 :.... 'U
t::l i2 0 ~ '" '" ......

'U ~ -- -- ..... E ~
:....

E 0 ~ :-:::: E S l;::I ~ ~ l;::I...... ......
§- t:l... ::os .~ ...... :.... ~ ~

Q) 0 8 '" ~ -c
l;::I '" "" ..:;;: -... ...... l;::I

E ...... ...... ::s ~ ;;:.. t: t:0() "" v v ::os ::os ...... l;::I 0 v
:.... :.... ~ E e('j "" '" '" .~ ::os ::s l;::I .;:::

l;::I '"Z
l;::I l;::I ......._ ._ ._

...... v v d
._

E "" :.......... ...... ...... v v '-'Co '" '" '" ~ 'U :....
~ l;::I

:FJ ..... ::s ::s ~ ::osc 2 0 0
~ ~ ';'S ......

Q) v l;::I
._ ...... ...... l;::I°u .~ :.... :.... -... :.... "" '" '"t::l c.c 0() 0() -.. -- ~ 0 0 Cl) ~

~
'U ..:;;:

Q) ....l Q -.:t:: -.:t:: -.:t:: -.:t:: -.:t:: -.:t:: 0... ..,.J -.:t:: ~ ~ 0...
0..
Vl
.......
C
('j

0:::
<tl
;:l
U

.0 '"
Vl

Vl '" ~
.0 Vl ('j Vl

('j I- -0 Vl
Vl 1-0 b1) <tl <tl

('j
Vl b1) <tl l- I-<
('j >. ;:l b1)

.0 .0 .0 1-0 ~ I-
b1) U

Q) ....... ....... ....... b1) <tl C Vl >.

E c = = 0 Vl ;:l 05. ~ I-<

<tl <tl <tl ~ -0 -0 Vl U ('j

('j .0 .0 .0 Vl = ('j Vl Vl <tl Vl ~....... Vl <tl 0 ('j ~ <tl
Z 0 ('j Vl 1-0

b1) -0 = <tl E 1-0 1-0 b1) U

cB 0 1-0 Vl ~ b1) uc c c b1) ('j > Vl = "a('j E
,_

0 Vl 05. 1-0 ....... ..c <tl ..c 0.. b1) .~Vl :a ~ b1) ;:l
E <tl ~ <tl E 1S <tl b1) ....... U <tl = =Vl U ~ b1) "0 <tl ;:l Vl ;:l <tl 0 <tl

E Vl 0 tE 0 <tl ~ 0 <tl 0 ..c 1-0 ..c =('j U U U c:Q 0:: 0:: ~
....... u <t:0 I- Cl) U Cl) Cl)

U Cl

I/")-o
I/")

oo I/")

o o 00
00

o
I/")

o
\0

o
I/")

o
N

o
C"l

o 00
\0

o

o

o
\0

o
r-



Il)

0 '1" N 0 N 00 10 Vi Vi 00 00
....

N
ro

Vi N '1" '1" .- 10 0\ 0\ r<I 0\ cJ
I-

~a 0
0 rfl
("l ro

rfl

.... .....
;>-.

ro ro

CIl Vi 0 \0 0 \0 \0 \0 '1" 0 0 10 \0 01) '"d

"0 N N \0 Vi r<I r<I 00 0 0 \0 0\ .S:: Il)...... .....
"<t

...., c
.- § ro

p. 0.
l-

ll)
Il) l-

ll)

-;" 0 "<t \0 0 '1" 0 0 ':::t '1"
<+:: ~

0 00 00 0 0 ro
01) (") \0 Vi \0 "'i" r- r- 0\ I/J " u:

~
~ » Il)

01)
ro u

Il) e:
'"d Il)

..... ':::t 0-

ro 0
ir:

I- ..... '"d

e: ro -e Il)

,9 l- §......
Il)

..... e:
o:

ro Il)
r- Il)

e: u
rJl

's e: '"d Il)

0
Il) ~

I- U

I- .....
Il) a3

;:::I s:

0
til

v:
ro ~

Il) 0 "<t 0 N ("l 00 Vi Vi \0 "<1"
Il) E

a If) r<I ..... r<I 00 '1" r- 0\ 0\ ("<") 0\ 13 E
a3 N.a /\

'"-'
a3 ......

rJl
o: 0

~ If) "<1" \0 ':::t 0 00 8 8 \0 "<1"
Il) 0

00 0 ~ ..c:
'"d N N N ':::t .- 00 .- .- \0 0\ VJ

r-
....... ~0

~tile: Il) <U.2 N ........... .- ro
ro VJ .~

0 00 00 '1" '1" N 0 0 0 \0 N ~ l- ro
("l N \0 "<1" "'i" '1" 00 0\ 0\ r- 0\ ...... C-e: 01)

Il) e: Il)

u l-

e: 'u I-

0 .g V
u 0-
01) 0 VJ

~
l- "0e: 0- Il)

1::$ ';;" "d Q)

u.;::
..... e rfl
ro

::s E E > ro If)

~
01) N

~ ~
0 e '"d......

~
-... ....... "0 .~ B
Cl Cl Il) ~

'" t: t: rfl e:
:.... :..: :..: 0 's P..

:::s Cl ~ (j 1::$ ::s ::s 0-

.S :;:: '" E > > .S .S >< l- ll)

-- .... s:: E ::s t::I Il) Il) I-

::s E ~ > '" '" '" '" 01) Il)

'@ ::s
._

'';:: :::: ::s .~ .~ rfl

~
...t:l "0 ~

:::s ...t:l :::: (j §- §- ..... ..... .~
<1) SI

....... S .§
Il)

-... ~ ~ :::s "1:j '" u ...... 'J)

6 Cl
... Cl ~ ~ ._

<1) e: Il)

Cl
..... !:: !:: E '" '" 0- ro 'u

ell (;).c ..... Cl() 8 (j

z :::s .~ (j .~ :::: ::s 8 u :::: ::s rfl P.. Il)

u :::: '"
._ .... ._

.~ E: E: ..... 0-
....... ..... ....... '" e '"d

tfl .S:: '- Cl() 1::$ Cl Cl Cl
._

'" '"
rfl

Il) "1:j ~ .... ~ ~ ~ "I:l E 1::$
::s ::s ro <1) "0.... ....

~
(,.) ~ s:: .S Il)

u ro
~ ~ ~ ~ ~ ~

.... ..... 0- rfl Il)

Il) ....l ~ ~ ....:) ....:J ....... Il)

0-
0 ;>-. 'J)

if]

....
..... '"' Il) 01)~ > c:
c &
ro

<1) c:

:0:
'--"" rfl '@
I/J ~~ ;::) E

ro ro 0" <1)

.... ..... <1)
l-

ll) C c: Il)

~ .- Il)
t 0 ..- ~

u ro .~ ro r-
0

~
I-

;§ ~ c: c <U
I/J 's 0
<1)

rfl
......

8 ..c ~ 0.. > > 01) '.g ro
<1) ~ ...... u ...... 2 u u c: ..... .~

;:::I Il)
Il) Il) e:

§ u ...... I- ~
<1) <1) :Q VJ 0 0.

01)
~

e v Il) u ~ 0.. .- '§
~ .... > I- > 2 C'j > iiS

<1)

z ;:::I <1) 3
.....

Il) c: 0 I- l- -
"0 8 ~ > - ~ ~ l-

e 0 0 u Q) e '"d "0 > Q)

0 e ..... E » e Il) Il) > P-
ro ~ Q) u Q) 1-0 <1) Il) Il) u u -.0 ~

8 g "0 E
...., ~ Il) 8 rfl rfl >< 8rfl '"d '"d :.a >< Il)

8 12 tl u C'j 8- 0 0 Il) j 8 (3 0 ro
~

0 Il) ~ ~ u ~ ~ ;.J 0 [i:; lJ: .- 4-

U ::r:: u f-< '"'
0



Gillian Adam, 2(0) Chapter 6, Results and Discussion: Effect on the Seed

The inhibition of germination generally increased with increasing diesel fuel

concentration with some species showing an almost linear decrease in germination with

increasing diesel fuel concentration (e.g. Black grass, White Clover). The ability to

tolerate diesel fuel contamination whilst germinating was not species specific as

members of the same plant family showed differential sensitivity to diesel fuel

contamination. The most apparent example of this was found in the family Gramineae

(Grasses) with some species germinating well (e.g. Westerwold's ryegrass) whilst

others would not germinate at all (e.g. Couch grass). Differences were also found

within subspecies (e.g. Fescues).

The differential sensitivity of plants to hydrocarbon toxicity is well known

(Crafts and Reiber, 1948; Currier, 1951; Baker, 1970; Warner et al., 1983; Gauvrit and

Cabanne, 1993; Chainea et al., 1997) and exploited to man's benefit. For example,

members of the family Umbelliferae (e.g. carrots) are notably tolerant to injury by

lighter oils (low molecular weight, BP range I50-275°C) whereas grasses are intolerant.

This specificity allowed oils to be successfully used as post emergence herbicides in

vegetable crops (Gauvrit and Cabanne, 1993). Although the toxicity of oils described in

these articles apply to the oil being sprayed directly onto the plant and not applied to the

soil, as in my case, many helpful parallels can be drawn.

Phytotoxicity was seen to increase with gravity through the series gasoline,

kerosene, diesel fuel and heavy fuel oil, indicating that the lighter fractions, either

because they are more volatile or because the compounds present are less toxic, caused

less long term damage to the plants than the heavier fraction (Crafts and Rieber, 1948).

In apparent contradiction to that statement, the smaller the hydrocarbon molecule, the

more toxic the oil is to plants (van Overbeek and Blondeau, 1954). Highly volatile

hydrocarbons, primarily those that are small and lightweight, are able to move through

cell membranes easily. Depending on the nature of the chemical, this penetration can

cause toxic effects, which are acute but generally short lived. Therefore, these

lightweight components of oils are initially extremely toxic to plants but are too volatile

to cause lasting damage.

The type of toxicity induced by petroleum hydrocarbons was also related to the

molecular weight of their components, with acute toxicity being induced by low

molecular weight components and chronic toxicity induced by high molecular weight

components (Gauvrit and Cabanne, 1993). Acute toxicity was exhibited by gasoline
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and the light ends of oils and also by benzene, toluene, xylene, cyclohexane,

cyclohexene and many of their derivatives. Such toxicity is violent but non persistent

hecause the compounds causing the toxicity are relatively volatile and soon leave the

plant (Crafts and Reiber, 1948). Acute toxicity caused by the lighter fraction of diesel

fuel may explain the delayed seed emergence and reduction in germination displayed by

plants in the initial screening experiment. This theory was investigated further in a

series of germination experiments designed to determine the effect of diesel fuel's

volati Ie components on seed germination.

Chronic toxicity, which is initiated by high molecular weight components, results

from application of diesel fuel and heavy fuel oils (Crafts and Reiber, 1948).

Expression of chronic toxicity may vary over time with symptoms developing slowly.

As the initial screening experiment was conducted over a short time period, the

occurrence of symptoms relating to chronic toxicity was unlikely. This effect was

studied in detail in a series of pot experiments that will be discussed in chapter 8.

6.2 Phytotoxicity of Volatile Diesel Fraction

The inhibition of seed germination by the volatile fraction of diesel fuel was

investigated further in a series of germination experiments. The experiments were

designed to minimise the concentration of volatile diesel fuel components in close

proximity to the germinating seed.

The first experiment described in Section 2.6.1.2 involved germinating seeds in

petri dishes at 8DC instead of 20De. This would minimise the volatilisation of the low

molecular weight components of diesel fuel but still allow germination to proceed.

Eight plant species were chosen for comparison which were reasonably cold tolerant.

The germination rate of plants at this temperature was dramatically reduced compared

to germination rates at 20DC) however a noticeable increase in germination rate was

again apparent for all species tested in all treatment levels compared to the germination

rates of the same species in freshly contaminated soil. Measurements were made over

the course of 6 weeks due to the slowed germination response. Table 6.2.1 shows the

percentage germination of the eight species tested. After 6 weeks, the response of both

Chewing's fescue and Strong creeping red fescue had greatly improved compared to the

original screening experiment results. In freshly contaminated soil, both these plants'
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percentage germination fell to 50% or below the control value in 50g diesel kg-1 soil as

shown in Table 6.1.1. When grown at 8°C, their percentage germination was the same

or just slightly below the control at this treatment level. A few of the plant species,

namely Highland bent, Common bent and Rough meadow grass, did not grow well at

this low temperature. These species were possibly more susceptible to the cold and the

germination results obtained will be biased by this factor and are therefore included

with caution. Germinating seeds at a lower temperature appeared to slow volatili~ation

of diesel fuel components present in the petri dishes, which resulted in a less detrimental

effect on germination. This observation has been noted by several authors (Bossert and

Bartha, 1984; Rogers et al., 1996), who came to the same conclusion.

Germination %

Diesel concentration g kg'

Plant species 2 weeks 4 weeks 6 weeks

0 25 50 0 25 50 0 25 50

Highland bent II 0 0 22 7 6 31 21 22
Common bent 25 0 0 25 2 3 43 6 10
Sweet vernal grass 41 31 17 48 32 23 57 46 42
Black grass 40 30 18 40 38 24 48 36 28
Rough meadow grass 16 0 0 18 0 0 20 8 4
Fodder burnet 32 14 0 60 30 16 72 52 38
Chewing's fescue 40 IS 14 40 26 28 66 62 68
Strong creeping red fescue S2 54 48 82 62 64 88 88 80

Table 6.2.1 Germination at low temperature 8 °C

Another germination experiment was set up to verify the results obtained from

the last experiment as the differential response of the species chosen to the lower

germination temperature caused an unnecessary bias. Seed species were again

germinated in petri dishes, in the same levels of diesel fuel contaminated soil as before

(Og, 25g and 50g diesel kg-1 soil) except an acetate collar was used to create a volume

of air space above the germinating seeds which would allow the diesel fuel volatiles to

dissipate (Section 2.6.1.3). Table 6.2.2 shows the results of this experiment where

percentage germination has again been measured after 7 and 14 days.
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Germination %

Diesel concentration g kg-'

7 days 14 days

Plant species 0 25 50 0 25 "50

Canary grass 34 28 54 46 44 60
Sweet vernal grass 34 26 22 38 34 28
White clover 54 40 50 54 48 56
Westerwold's ryegrass 78 72 62 80 80 80
Lucerne 88 66 76 88 74 90

Table 6.2.2. Germination of seeds of varying plant species in diesel fuel contaminated

soil with low volatile diesel fuel components.

Although the results are variable, the overall germination rate of the seeds in

both treatment levels is more similar to the control germination rate. Because the

volatile fraction of diesel is less concentrated in this experimental set up, the results

suggest the volatile fraction has an influential role in delaying seed emergence and

reducing germination.

To test this conclusion, five plant species were germinated in diesel fuel

contaminated soil that had been 'aged' for three weeks before the seeds were sown

(Section 2.6.1.4). By aging the soil, this ensured the majority of the volatile

components of diesel had volatilised. The results for this experiment given in Figure

6.2.3 clearly shows the influence that the volatile fraction of diesel fuel had on seed

germination. The values show the ratio of percentage germination of each treatment

compared to the control, which will have a value of I (equals 100% germination). The

results compare the 14 days screening experiment germination values with the 14 days

'aged' soil germination values. All five plant species tested had higher germination

rates, at all treatment levels, in the 'aged' soil compared with the freshly contaminated

soil, which was used in the screening experiment. The largest difference in germination

rates was seen with Black grass which germinated badly in freshly contaminated soil

but improved greatly, particularly at the 25g diesel kg' soil level, in 'aged' soil. At the
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lower level, 2Sg kg', most plants showed a slight increase in germination in the 'aged'

soil but a large improvement was seen at the SOgkg' level.
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Figure 6.2.3. Germination of varying plant species in 'aged' diesel fuel contaminated

soil compared to freshly contaminated soil. A) Strong creeping red fescue, B)

Chewing's fescue, C) Sheep's fescue, D) Black grass and E) Sweet vernal grass.
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A set of germination experiments were set up to help explain the toxic effect of

the volatile fraction of diesel fuel and attribute the effect to a specific group of

components of diesel fuel. Seeds were germinated in soils contaminated with a variety

of pure petroleum hydrocarbons and the germination rates were measured.

Headspace analysis of diesel fuel was carried out as described 10 2.3.4 to

determine which hydrocarbons would be present in the volatile fraction of diesel fuel

surrounding the germinating seeds. GC-FID analysis concluded that approximately 5-

1QC'/(J of diesel fuel consists of compounds that would volatilise at 20 DC under normal

conditions. GC-MS allowed identification of some of the compounds commonly found

in the volatile fraction of diesel fuel. The results of diesel fuel headspace analysis are

discussed fully in Section 4.4.

6.3 Phytotoxicity of Individual Hydrocarbons

The predominant volatile hydrocarbons found in diesel fuel headspace were the

isomers of xylene (rn-, 0- and p-), alkanes (C9-C 12) and alkyl benzenes. There were

also low levels of toluene, branched cyclohexanes (rnethyl-, to butylcyclohexane) and

alkenes.

A lot of work has previously been done on toxicity of volatile hydrocarbons.

Aliphatic hydrocarbons (C(,-Cd were shown to be non-toxic to plants by spray

application (Crafts and Reiber, 1948) and introducing a double bond into n-alkane

chains only increased the toxicity slightly. Toxicity in both vapour and spray treatments

increased in the order benzene, toluene, and the xylene (Currier, 1951) confirming the

conclusions of Crafts and Reiber (1948) who stated that toxicity increased as the side

chain was lengthened in this series.

The most interesting components identified in the diesel headspace were

branched cyclohexanes as little work has been done on these compounds. A

homologous series of cyciohexane with increasing branching was identified in diesel

fuel and the lighter of these cyclohexanes were identified in the headspace. Crafts and

Reiber showed cyclohexane was more toxic that methylcyclohexane when applied as a

spray diluted in paraffin oil. However, the activity of hydrocarbons is dependant on

diluent. On a molar concentration basis, a hydrocarbon diluted with air is roughly 30

times more phytotoxic than a hydrocarbon diluted with water and approximately 3,000

times more phytotoxic than if it were diluted in paraffin oil (Currier, 1951). So
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although work has been carried out on the toxicity of these hydrocarbons, little is known

about their toxicity to germination whilst in the vapour phase. A germination

experiment was designed to test the effect of increasing branching of cyclohexane on

Westerwold's rye grass seeds.

Controls started to germinate after 3 days whereas the contaminated seeds

germination was delayed until day 6. By day 9, measurable shoots had been produced

in both control and contaminated dishes.

eye lohexane Concentration mg l Germination (%) Shoot length (cm)
±SE

control 0 64 ± 2.22 63.5 ± 2.02

0.1 62 ± 5.88 8.50 ±0.9l
methyl 1.0 64 ± 2.22 8.53 ± 0.73

5.0 58 ± 2.22 7.95 ± 0.23

0.1 53 ± 0.00 8.73± 1.11
ethyl 1.0 62 ± 4.44 8.80 ± 0.68

5.0 44 ± 9.69 7.50 ± 0.52

0.1 73 ± 7.70 9.53 ± 1.22
propyl 1.0 60 ± 3.85 9.l0± 1.19

5.0 69 ± 4.44 9.73 ± 0.19

0.1 47±3.85 9.20 ± 0.61
butyl 1.0 49 ± 2.22 9.60 ± D.5l

5.0 62 ± 8.01 8.17 ± D.74

Average values given ± SE. n = 3.

Table 6.3.1 % germination and shoot length values for Westerwold's ryegrass grown

for 9 days in varying concentrations of branched cyclohexanes.

The results were varied but showed branched cyclohexanes delayed seed

emergence and caused a reduction in shoot length. The reduction in shoot length cannot

be directly attributed to the delayed seed emergence, therefore the cyclohexanes must be

having a detrimental effect on growth. No significant difference was found between the

germination results however, the trend in results suggests increasing levels of methyl,
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ethyl and butyl cyclohexane had a detrimental effect on germination but propyl

cyclohexane seemed to enhance germination slightly.

This experiment was repeated using a less tolerant plant species to try and obtain

a clearer picture of the effect of branched cyclohexanes on germination. Sheep's fescue

seeds were germinated in 0.1-5.0mg r' of each cycJohexane contaminant as before.

Sheep's fescue proved more susceptible to diesel fuel contamination and therefore may

provide a better indication of the toxic effect of branched cyclohexanes. The results

shown in Table 6.3.2 were much easier to interpret.

Cyclohexane Concentration mg r' Germination (%)

control 0 43 ± 1.76

0.1 57±0.67
methyl 1.0 37 ± 1.20

5.0 37±0.33

0.1 3 ± 0.33
ethyl 1.0 O±O.OO

5.0 O±O.OO

0.1 20 ± 1.00
propyl 1.0 53 ± 1.15

5.0 23 ± 1.53

0.1 47 ± 1.53
butyl 1.0 O±O.OO

5.0 O±O.OO

Average values given ± SE, n = 3.

Table 6.3.2 % germination of Sheep's fescue after 17 days growing in varying

concentrations of branched cyclohexanes.

The ethyl and butyl branched cyclohexanes had a huge impact on germination

rate with practically no seeds germinating in any of the ethyl cyclohexane

concentrations and only the lowest level of butyl cyclohexane allowing a normal

germination rate. By stark comparison, the methyl and propyl cyclohexanes had an

a1most norma1 germination rate. At O.lmg methyl cyclohexane r' , germination
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appeared to be enhanced by the contaminant and at higher concentration levels the

germination rate was just slightly below the control germination rate. Propyl

cyclohexane reduced germination rate by approximately 50% of the control at 0.1 and

5.0mg i' levels but appeared to enhance the germination rate at 1.0mg r' level. This

result was odd but may have been caused by a non-homogeneous selection of seeds

being used. When carrying out the plant experiments, a homogeneous selection of

seeds were chosen to provide as even a response to germination and growth as possible.

However, it was very difficult to obtain homogeneity with small seeds or seeds with a

husk such as Sheep's fescue.

An unusual pattern of germination was apparent in this experiment, with length

of cyclohexane branching determining toxicity to seeds. The methyl and butyl

cyclohexanes appeared to be extremely toxic to seeds whilst the methyl and propyl

cyclohexanes had no or slight toxicity. A similar observation has been noted with

toxicity of substituted benzenes. Crafts and Reiber (1948) found benzene toxicity

increased with increasing number of isopropyl substitutions but not in a simple series.

The mono- and tri- substitutions were low in toxicity and the di- and tetra- substitutions

were high in toxicity.

These experiments have shown that the lightweight, volatile hydrocarbons

present in diesel fuel have a large influence on the germination of seeds of varying plant

species. However, germination results of the contaminated treatments with minimal

volatile diesel fuel components were never as high as the control germination results.

This suggests that the influence of the volatile fraction of diesel fuel is not the only

factor inhibiting seed germination. The remaining diesel fuel still has some level of

toxicity to the seeds.

Amakiri and Onofeghara (1984) have shown thatrrude oil and its distillates are

potent contact herbicides. The embryo of a seed could be injured or killed if it comes

into contact with crude oil. Oil may enter seeds via the micropylar end of

dicotyledonous seeds or the coleorhizal end of monocotyledonous seeds, or simply

through a crack or scar in the seed coat (Amakiri and Onofeghara, 1984). Whichever

way it enters, penetration of oil would endanger the activity of the embryo, which is

vital to germination. Injury to the embryo that was not fatal resulted in delayed seed

emergence.
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To determine whether diesel fuel had similar contact herbicidal properties as

described for crude oil by Amakiri and Onofeghara (1984), a modified germination

experiment was conducted on seeds previously soaked in diesel fuel (Section 2.6.1.5).

6.4 Effect of Diesel Fuel on Seed Viability

A preliminary experiment was carried out to assess the effectiveness of the Tetrazolium

method by Smith (1951) for determining germinating ability of cereals and if this

method could be applied to other seed species.

In the presence of viable tissue, colourless solutions of triphenyl tetrazolium

chloride (TTC) form insoluble red triphenyl formazan (TPF) by the following reaction

(Smith, 1951):

+ 2 e + 2H+ + Iter

colourless red colour

It is then possible to predict the germinating ability of seeds by observation of the

embryo parts that are stained red by the insoluble TPF deposited in viable tissue.

After 24 hours incubation in 1.5% TTC solution at 20DC, the Red clover and

Flax seeds were showing signs of colour development but the Canary grass and Oil seed

rape seeds were not. These seeds were placed back into the TTC solution and incubated

for a further 96 hours.

The Red clover seeds had colour development ratings of 45% red, 20% pink and

0% white. This ties in well with the initial screening experiment germination results

(Table 6.1.1) that showed percentage germination of Red clover seeds after 7 days to be

44%. This figure rose to 56% after 14 days. Some of the pink rated seeds by the

Tetrazolium test must be viable enough to germinate but a slight lag phase is seen.

The Flax seeds had ratings of 70% red, 30% pink and 0% white, suggesting 70%

of the seeds were very viable. Again this is in agreement with the initial screening
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experiment results where 72% germination was recorded after 7 days and 74%

germination after 14 days.

The Oil seed rape and Canary grass seeds, which were incubated for a total of

120 hours, appeared to have good penetration of the TTC by this time. The Oil seed

rape seeds were harder to assess and a colour development rating of 69% red and 31%

white was observed. This value underestimates the actual percentage germination as

normal germination rates are observed in the high 90% range. The same prohlem was

found when assessing the Canary grass seeds and a ratio of 60% red to 40% white was

found. Again this underestimates the true percentage germination, as it is normally

approximately 70-80%. The problem may be caused by hoth Oil seed rape and Canary

grass seeds having hard seed coats which may affect the penetrability of the TTC

solution.

From this preliminary investigation, Red clover and Flax seeds were found to be

the most successful seed species for use in viability studies as they allowed easy

penetration of the TTC solution through their seed coats facilitating rapid colour

development (within 24 hours), the seeds were easy to dissect and the stained embryo

was clearly visible. Flax seeds were chosen for the next part of the investigation

(Section 2.6.1.5), as they were larger and more manageable than the small Red clover

seeds. The Oil seed rape and Canary grass seeds were discarded as suitable species for

investigation as the incubation time in TTC solution was larger than the other species

tested and the penetration of TTC solution in this time was inconsistent.

Seeds of the Flax variety 'Viking' pre-soaked in diesel fuel differed from control

seeds in their pattern of germination. Oil soaked seeds tended to have a larger lag phase

preceding germination and the lag in germination seemed to increase with increasing

pre-soaking time (Figure 6.4.1).
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Figure 6.4.2 Germination of flax seeds pre-soaked in diesel fuel.

The percentage germination fell from 97.5% in the control to 87.5% after 24

hours soaking, then to 67.5% and 42.5% after 48 and 168 hours respectively. Despite

the longer lag period, the overall percentage germination of diesel fuel soaked seeds

after 14 days was not badly affected until the 168 hour pre-soaking treatment, where the

percentage germination fell from the 90% range to 70%.

Flax seeds dissected after pre-soaking in diesel fuel showed that the seeds had

retained their viabi lity even after soaking for 168 hours (Table 6.4.3). Pre-soaking for

48 and 168 hours showed only 2.5% of the seeds to be completely non-viable. This

may suggest that diesel fuel has penetrated into the seed and killed the embryo making

it non-viable or it may be just a few of the seeds were non-viable to begin with. The

majority of the pre-soaked seeds were showing signs of viability using the Tetrazolium

test but the germination rate in the 168 hour pre-soaked treatment was drastically

reduced. This inhibitory effect on germination could be attributed more to physical

constraints than biological damage on the seeds resulting (rom the physical and

chemical characteristics of the diesel fuel. As mentioned previously, diesel fuel was

used in the past as a herbicide (Crafts and Reiber, 1948; van Overbeek and Blondeau,

1953). Although the toxicity of diesel fuel has decreased in recent years due to the

removal of a lot of the aromatic compounds present in the diesel fraction, it is still toxic

to plants at certain concentrations. The embryo of a seed could easily be injured or

killed if it were to come in contact with diesel fuel. There was little indication that the

embryos were being killed in this investigation however, as the majority of seeds were

showing tetrazolium reducing properties, suggesting respiring, healthy seeds. Amakiri
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and Onofeghara (1984) showed that seeds of Capsicum frutescens retained almost 100%

viability after 32 weeks pre-soaking in crude oil. The lag phase preceding germination

was increased threefold.

The seeds have a primary line of defence preventing diesel fuel penetration -

their seed coat. The integrity and hardness of the seed coat affect the rate of oil

penetration (Amakiri and Onofeghara, 1984). Only 2.5% of the 48 and 168 hour pre-

soaked seeds were classed as non-viable. Injury to the embryo may not have been fatal,

but reduced the growth activity of the embryo, which resulted in delayed seed

emergence. These results indicate that seed coats resistant to oil penetration will be

virtually unaffected, and therefore a prerequisite to embryo damage by oil is tissue

penetration.

Visual appearance of TIC reduction

Treatment

Soaked in diesel (hrs)

Development of stained colour •

Red Pink None (white)

o
24

48

168

70.0

87.5

77.5

66.7

30.0

12.5

20.0

30.8

0.0

0.0

2.5

2.5

• average of 40 seeds

Table 6.4.3 Development of TPF staining in viable seeds pre-soaked for varying

lengths of time in diesel fuel.

A more likely reason for the inhibitory effect of diesel fuel on

germination is its physical water repellent property. The film of oil around the seeds

may act as a physical barrier, preventing or reducing both water and oxygen from

entering thus 'suffocating' the seed. This would explain why the seeds still reduced
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TTC to TPF after being submerged in diesel fuel but had an extended lag phase before

germinating.

The effects of diesel fuel on the later stages of growth and development was

observed by measuring the shoot and root lengths of the pre-soaked diesel fuel seedlings

after 14 days growth (Table 6.4.4).

soaked in diesel (h) ±SE

Shoot height (cm)

±SE

Root length (cm)

±SE

Treatment Germination %

o
24

48

168

100 ± 0.00

95 ± 0.29

92.5 ± 0.58

70 ± 0.87

8.5 ± 0.24

8.0 ± 0.15

6.8 ± 0.33

6.7 ± 0.41

11.8 ± 0.12

11.2 ± 0.19

10.8 ± 0.57

9.1±1.10

Table 6.4.4 Summary of average germination, shoot and root lengths of 14 day old Flax

seedlings pre-soaked in diesel fuel.

There was a slight decrease in shoot length observed in the pre-soaked seed

treatments compared to the control. The longer the pre-soaking, the greater the

reduction in shoot length. The control and 24 hour pre-soaked seed shoot length were

not significantly different but both these values were significantly different from the 48

and 168 hour pre-soaked seed shoot lengths. This suggests soaking the seeds in diesel

fuel for longer than 24 hours has a significant effect on plant development. This trend

was also seen for the root length values although the differences in lengths were not

significantly different.

The other noticeable difference on plant development was the production of

secondary leaves on the Flax seedlings. The secondary leaves were quite noticeable on

the control and 24 hour pre-soaked seedlings but were small or not present on the other

treated seedlings. This showed the effect that the lag phase, caused by pre-soaking in

diesel fuel, had on plant development.
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In summary, germination of seeds in diesel fuel contaminated soil was highly

dependent on plant species. Some species were notably tolerant whilst other species

were completely intolerant of diesel fuel contamination. The ability to tolerate diesel

fuel was not species specific, with members of the same plant family showing

differential sensitivity to diesel fuel. Of the more tolerant species, a delay in seed

emergence was generally observed. This delay was caused, in part, by the volatile

fraction of diesel fuel. Individual volatile hydrocarbons were shown to delay seed

emergence and have a detrimental effect on plant development with branched

cyclohexanes being particularly phytotoxic to certain plant species. Another cause of

this inhibitory effect on germination may be attributed to the physical constraints

induced by diesel fuel on the seed. Diesel fuel would cause a film of oil to form around

the seed which would act as a physical barrier, preventing or reducing both water and

oxygen transfer thus 'suffocating' the seed. The physical effect was also shown to

delay seed emergence and therefore could be a factor in the overall inhibitory effect of

diesel fuel contamination on germination.

180



CHAPTER SEVEN

EFFECT OF DIESEL FUEL ON PLANT GROWTH AND

DEVELOPMENT: EFFECT ON THE ROOT

7.1 Changes to Root Structure

When conducting the initial screening experiments where seeds were germinated in

freshly contaminated soil (Section 2.6.1.1) an unusual developmental effect occurred on

some of the seed species being investigated. Branching of roots from seedlings grown

in diesel fuel contaminated soil was observed, where none wcs seen in the

uncontaminated control seedlings. This observation kept recurring during the initial

screening experiment and was therefore investigated more fully.

Figure 7.1.1 illustrates two week old Annual canary grass and Flax seedlings

grown in SOgdiesel kg' contaminated soil and uncontaminated soil. The effect on plant

development is clearly noticeable with the contaminated seedlings being extremely

'stunted' compared to the control seedlings. The most interesting effect however, was

the appearance of branches on the root structure of Flax seedlings grown in

contaminated soil. The roots of contaminated seedlings were highly branched whereas,

the seedlings grown in uncontaminated soil had one, long root.
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A

c

B

D

Figure 7.1.1. Effect of diesel fuel on root formation of two week old seedlings.

(A) Annual canary grass - seedling grown in diesel fuel contaminated (top) and

uncontaminated (bottom) soil; (B) Annual canary grass - enlargement of seedling

grown in contaminated soil; (C) Flax - seedling grown in diesel fuel contaminated (top)

and uncontaminated (bottom) soil and (D) Flax - enlargement of seedling grown in

contaminated soil.

Can ary grass seedlings grown in contaminated soil showed root structures

appearing on the stems of seedlings. This effect was not observed in the control plants

grown in uncontaminated soil. Root structures that appear in unusual places on plants

are termed adventitious roots. The development of adventitious roots has been shown

.to be caused by the plant growth hormone, auxin. Salisbury and Ross (1991) noted that

added auxin often caused emergence of many adventitious roots in the lower internodal
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added auxin often caused emergence of many adventitious roots in the lower internodal

stem region and these roots were not restricted to the base of stems, but could form on the

lower surface of stems that were placed in a horizontal position and kept moist.

Naphthalene acetic acid, which is a synthetic auxin, and several derivatives of benzoic acid

also have auxin activity (Salisbury and Ross, 1991). Similar substances to these can be

found in petroleum products and it is not unlikely that they would induce hormone type

effects on plants grown in petroleum contaminated soils. This effect has been noted by

several authors (Bossert and Bartha, 1985; Gudin and Harada, 1974a and b).

Gudin and Harada (1974a) fractionated crude oil as well as other distillates,

including kerosene and residual asphaltic fraction, by successive solvent elution. The

fractions were then tested for auxin activity using a series of biological tests including

elongation of sections of oat mesocotyles. The fractions containing active auxin were then

separated on silica gel columns and analysed. The authors concluded that naphthenic acids

and phenyl acetic acid identified from crude oil and its distillates were responsible for

certain developmental effects found in vegetation grown on petroleum polluted sites.

In a later paper, Gudin and Harada (1974b) also found that the presence of phenyl

acetic acid, isolated from petroleum fractions, had a significant effect on geotropism.

Geotropism involves the correct orientation of the root and shoot tips emerging from

germinating seeds. During a pot trial involving Oil seed rape (described in Section 2.6.3.l),

an extremely low germination rate was observed for Oil seed rape in contaminated soil

(Section 8.1) although germination was high in the initial screening experiment for the same

seed type (Section 6.1). After further investigation of the seeds remaining in the soil after

the pot experiment had ended it became apparent what had caused the low germination rate.

The majority of seeds had split their seed coats but the root and shoot tips failed to orient

properly and were shrivelled before emerging from the soil. The root tips appeared to grow

horizontally or curved upwards, while the shoot tips and cotyledons were frequently

oriented downwards or sideways. This observation was noted by Bossert and Bartha (1985)

when growing Soybeans (Glycine max) in oily sludge material. They concluded the

disruption of geotropism was likely to be caused by hydrocarbon residues with plant

hormone effects.

These observations suggest diesel fuel may contain compounds that resemble

the structure of and exhibit plant growth hormone effects similar to those found by

Gudin and Harada (1974a and b).
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To try and distinguish between the components of diesel fuel that mimic plant

growth hormones, a germination experiment was set up to test individual petroleum

hydrocarbons (Section 2.6.1.6). No branching was observed when germination

experiments using cyclohexanes were conducted so this group was excluded from the

trial. For a chemical to induce similar effects as a plant growth hormone their structures

must be similar. The effects observed when growing plants in petroleum contaminated

soils were mostly attributed to an auxin type chemical. Therefore the most obvious

group of chemicals to start with were those which appeared similar to auxin (Figure

7.1.2 A). Gudin and Harada (1974) identified naphthenic acids and phenyl acetic acid

(Figure 7.1.2 B and C) as components of crude oil and its distillates which exhibited

auxin activity. Commercial powders into which cut ends of stems are dipped to

facilitate root production usually contain Naphthalene acetic acid (NAA) (Salisbury and

Ross, 1991). It was therefore decided that the diaromatic and polyaromatic

hydrocarbons (PAHs) should be tested first.

A

B

OCH2-COOH

/:/ PAA

C

NAA

Figure 7.1.2 (A) Indole-3-acetic acid (lAA) - most common auxin plant growth

hormone and other types of auxin including (B) Phenylacetic acid (PAA) which is

widespread among plants but is less active than IAA and (C) Naphthalene acetic acid

(NAA) which is a synthetic auxin and more effective at root initiation than IAA.
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To test whether branching of aromatics or size of aromatic compound had an

effect on root development a germination experiment was set up. Canary grass seeds,

which had shown development of adventitious roots previously, were germinated in

Img r' naphthalene, 1,4 dimethyl naphthalene (1,4 DMN), 2,3,5 trimethylnaphthalene

(2,3,5 TMN) and anthracene contaminated soil. The results are given in Table 5.1.2 for

percentage germination, root length and percentage of branching roots and shoot length.

Although there was a large drop in germination rate in 1,4 DMN contaminated soil

compared to the control, the germination rate was not significantly different from the

others. The length of root appeared to be reduced by growth in naphthalene but again

the difference was not significant. However, a significant reduction in shoot length was

observed for seedlings grown in ),4 DMN contaminated soil compared to the control.

contaminant % branched % germination avo shoot length av. root length
roots ±SE ±SE ±SE

Control 26 33.3 ± 2.66 25.5 ± 0.56 9.85 ± 1.03

Naphthalene 23 28.3 ± 8.02 25.48 ± 0.51 6.44 ± 1.66

1,4 DMN 33 19.3 ± 4.96 22.49 ± 0.83 9.48 ± 0.84

2,3,5 TMN 65 33.5±6.12 26.04 ± 0.80 10.18 ± 1.53

Anthracene 37.5 40.0 ± 6.0 24.47 ± 0.70 7.85 ± 0.10

Table 7.1.2 Development of Canary grass seedlings grown in Img r' concentrations of

various aromatic compounds.

The number of branching roots was also measured in each replicate to ascertain

whether the contaminant being tested was enhancing the formation of adventitious

roots. Unexpectedly, the control had some branching roots present on seedlings grown

in uncontaminated soil (26%). This may be due to the shallow depth of soil in the petri

dishes causing the plant to produce adventitious roots for support. Seedlings grown in

naphthalene contaminated soil showed no sign of enhanced root branching with 23% of

seedlings having branching roots. There was a slight increase in branching observed

with 1,4 DMN and anthracene contaminated soils with the number of seedlings having

branched roots rising to 33% and 37.5% respectively. The largest and most significant

increase was seen with 2,3,5 TMN which enhanced the number of seedlings exhibiting
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signs of root branching to 65%. This value is clearly different from the control value,

indicating that branched naphthalenes such as 2,3,5 TMN, have an influence on root

development. The trend in results observed during this experiment suggest an increase

in the number of branches on naphthalene enhances the occurrence of adventitious root

formation on Canary grass seedlings. This may be due to branching causing the

chemical to persist longer whereas unbranched naphthalene would be volatile and

would disappear quickly from the vicinity of the growing seedling.

7.2 Spatial Distribution of Roots

An experimental system was set up which enabled the pattern of root development of

selected plant species to be followed in a model soil system contaminated with diesel

fuel (Section 2.8).

Set up I was designed to examine the reaction of plant roots to a continuous

subsurface layer of diesel fuel. The seeds were germinated and allowed to grow

initially in uncontaminated soil as a 10 cm layer of uncontaminated soil was placed on

top of the layer of diesel fuel. Therefore, there was very little difference between the

germination rate in the control and contaminated sections of the glass box

(approximately 2%). Although three plant species were chosen for investigation, only

the oil seed rape results are discussed in full. The reason for this being, the germination

rate of both grass species in the glass box set up were quite low with Sweet vernal grass

having a germination rate of approximately 50% and Common bent having a

germination rate of approximately 40%. The roots produced by both these grasses were

very fine and difficult to visualise in the glass box set up unlike the Oil seed rape roots,

which were extremely thick and white in appearance. The roots of both grass species

were slow growing whereas the roots of the oil seed rape grew quickly and were

altogether easier to assess. It was therefore decided that the glass boxes containing oil

seed rape plants should be thoroughly studied to help explain the interaction of roots

with areas of diesel fuel oil contamination.

After 2 weeks growth, the oil seed rape plants were growing well. The plants

grown in the control glass box with no diesel fuel addition had produced a considerahle

top growth hiomass and had long, vertical roots reaching almost to the hottom of the

glass box (approximately 30 cm). The plants grown in the contaminated glass box were
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the same size as the plants grown in the uncontaminated box "I however the roots

appeared to grow to the level of the diesel fuel layer and no further. After 3 weeks

growth, the roots of the oil seed rape plants growing in the contaminated box began to

grow through the diesel fuel layer into the uncontaminated soil below. The plants began

to look less healthy at this stage, with small yellow blotches appearing on the leaves and

the stems were beginning to go purple. At 3 weeks, the difference in top growth

biomass was apparent between the control and contaminated plants. By 5 weeks the

majority of the roots from the oil seed rape plants growing in the control box had

reached the bottom of the glass box (approximately 40 cm) and the plants were healthy

and the top growth abundant. The oil seed rape plants grown in the contaminated box

were much shorter than the control plants and at least a growth stage behind the control

plants according to the ADAS rating for growth stages in oil seed rape. The control

plants were showing signs of their third or fourth true leaf whereas the contaminated

plants had only their second true leaves. The cotyledons of the contaminated plants

were also very yellow and dropping off the plant whereas the cotyledons of control

plants were green and perfectly unfolded. The roots of the contaminated plants had

grown through the diesel layer but the roots themselves were very fine and had less bulk

than the rest of the roots growing in uncontaminated soil. There was a noticeable line of

differentiation between these two root areas, which can be clearly seen in Figure 7.2.1.

After 8 weeks the top growth biomass was harvested from each glass box and dried as

described in Section 2.7.1.1. The biomass collected from the contaminated box was

43% of the total biomass collected from the control glass box. The large reduction in

biomass was exaggerated due to the number of plants that died in the contaminated

glass box as well as the smaller, less healthy plants.
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Figure 7.2.1. Oil seed rape plants growing in a glass box set up with a subsurface layer

or diesel fuel. The arrow indicates the line of differentiation between the root mass

above and below the diesel contaminated horizon.

Set up 2 was designed to evaluate whether roots would grow into diesel fuel

contaminated soil when there was also a supply of 'clean', uncontaminated soil present.

Each glass box was split into three sections and half of each section filled with either

uncontaminated, 25g kg-lor 50g kg" diesel fuel contaminated soil. Each glass box also

had a lOcm layer of uncontaminated soil, as described in set up 1, to allow germination

to proceed unhindered. Two deep rooting plant species were chosen for this

investjgation. Cocksfoot, which is a grass and Fodder burnet, which is a herb. The

seeds began to germinate and shoot growth was apparent by week one.\-\owever.there

was a distinct difference between the germination rates of Fodder burnet seeds in each

section. The control, uncontaminated section had a 56% germination rate whereas the

25g kg" and 50g kg" diesel fuel contaminated sections had germination rates of36%



(lillian Adam, 200 I Chapter 7, Results and Discussion: The Effect on the Roo!

and 20% respectively. The volatile fraction of the diesel fuel may have been diffusing

through the soil profile, affecting seed germination. After 4 weeks growth, the

germination rate had risen to 72%, 52% and 32% in the uncontaminated, 25g kg'! and

50g kg'! diesel fuel contaminated sections and the plants were growing successfully.

The roots of the Fodder burnet plants stopped at the contaminated sections and the

remaining roots grew into the uncontaminated half. After 3 months growth, the roots of

the Fodder burnet plants were still avoiding the contaminated regions in each section.

The root of the Cocksfoot plants on the other hand, appeared to grow straight

into the contaminated sections although the rate of root growth through the sections was

slower in the 50g diesel kg'! section than the 25g diesel kg'! section. After 3 months

growth, the uncontaminated and the 25g diesel kg'! sections were packed with roots and

the roots were penetrating the 50g diesel kg'! section. The germination rate of

Cocksfoot seeds was extremely poor in all sections (approximately 6%), which must be

due to the different growth conditions in the glass box. The germination rate of

Cocksfoot seeds was never high (53% in control soil shown in Table 6.1.1) but was

considerably higher than 6%. Although the number of seeds growing in each section

was low, root penetration and overall root mass in each section suggests that Cocksfoot

plants are capable of growing into diesel contaminated areas quite successfully as

shown by Figure 7.2.2.

After three months growth, measurement of total oven dried shoot and root

biomass (as described in Sections 2.7.1 And 2.7.2) showed an increase in Cocksfoot

plant biomass growing in the 25g kg'! contaminated glass box compared to plants

growing in the control glass box. The total shoot biomass increased to 118% of the

control biomass and the root biomass increased to 123% of the control root biomass.

The increase in root biomass was much larger than shoot biomass in the 25g kg'!

contaminated treatment which altered the shoot: root ratio. The shoot: root ratio of

control plants was 0.99 which is in the normal range for healthy plants. The shoot

biomass is generally larger than the root biomass giving a value of 1 or slightly below

(Bohrn, 1979). This ratio fell to 0.94 in contaminated plants, as the root biomass was

much larger than the shoot biomass. This indicates that plants growing in 25g kg'!

contaminated treatment were stressed, as stress, particularly water stress, results in a

larger proportion of carbon being allocated to the roots (Li et al., 1997). This stress

may have been caused by the physical influence of diesel fuel on the soil reducing its

ability to hold water thus reducing the amount available for plant uptake. The effect of

diesel fuel on soil physical properties leading to factors such as water stress are

discussed fully in Chapter 5.
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The 50g diesel kg' contaminated plants showed a decrease in both shoot and

root biomass, with shoot biomass falling to 46% of the control and root biomass falling

to 57% of the control root biomass. Figure 7.2.2 illustrates an example of shoot and

root biomass collected from Cocksfoot plants grown in each section of the glass hox set

up.

Figure 7.2.2 (overpage) Example of Cocksfoot plants harvested from A) control, B)

25g diesel kg' contaminated treatment and C) SOg diesel kg' contaminated treatment

after 3 months growth.
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Set up 3 was designed to test whether small areas of contamination would be

tackled by probing roots in the soil or if those roots would preferentially avoid

contaminated areas and grow into areas of 'clean' soil. Glass boxes were set up as

shown in Section 2.8 with patches (6 cm x 6 cm) of 0, 25g and 50g diesel kg-1

contaminated soil below the soil surface. Flax variety' Viking' and Oil seed rape

variety 'Commanche' were chosen for this experiment as both were notably tolerant to

diesel fuel and produced sizeable roots which would be easily identifiable in the glass

box set up. Seeds were planted and germinated well in the uncontaminated soil above

the contaminated patches. Germination rates in each section of the glass box were

similar with average percentage germination reaching 98% for Flax plants and 64% for

Oil seed rape plants. After 3 weeks, the roots of both plants were growing through the

area which would have been contaminated in the control, uncontaminated section of

each glass box but not into the contaminated sections. The majority of the roots avoided

the contaminated patches entirely, which is illustrated in Figure 7.2.3.

(A) (B)

Figure 7.2.3. Growth of Oil seed rape in glass boxes contaminated with (A) Og and (B)

25g diesel kg-l soil patches. Photographs illustrate the pattern of root development

after 3 weeks growth.
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After 8 weeks growth, the roots of both plant species had filled the areas of

uncontaminated soil completely. The Oil seed rape plant roots were beginning to grow

into the 2Sg diesel kg" soil patch but were less inclined to move into the SOgdiesel kg"

soil patch. Figure 7.2.4 shows a close up of both these contaminated areas.

Figure 7.2.4. Close up of Oil seed rape plant roots in (A) Og and (B) 2Sg diesel kg"

contaminated soil at 8 weeks.

The Flax plant roots had a similar response but avoided the contaminated areas

more readily than the Oil seed rape roots. Figure 7.2.S again shows a close up of Flax

roots in Og and SOgdiesel kg" contaminated soil.

(A)

Figure 7.2.S. Close up of Flax plant roots in (A) Og and (B) SOg diesel kg"

contaminated soil at 8 weeks.
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Set up 4 was designed to evaluate the response of plant roots to patches of diesel

fuel contamination and if the age of the root affected its ability to grow into

contaminated areas. The glass boxes were split into three sections and each section

contaminated with small patches (4cm x 2.5cm) of diesel fuel contaminated soil as

shown in Figure 2.8.5. Each section contained either Og, 5g, 109, l5g, 25g or 50g diesel

kg" contaminated soil patches positioned near the top and bottom of each glass box

section. Oil seed rape was again used for this experiment as it proved to be the most

successful plant species for illustrating the effect of diesel fuel contamination on the

pattern of root development. The germination rate was similar in each section with

average percentage germination being 97%.

After 4 weeks growth, the Oil seed rape plants were growing well in all the

sections of the glass boxes. The plants were green and healthy and the roots were

growing into all the contaminated patches except the 50g diesel kg-! contaminated soil

patches. The roots of the Oil seed rape plants grew through the Og, 5g, 109 and 15g

diesel kg" contaminated soil patches easily. The roots coming into contact with the top

25g diesel kg" contaminated soil patch did not grow straight through this area but

appeared to skirt around the edges. The roots reaching the bottom contaminated patch

however, grew straight through suggesting the length of time it took for the roots to

reach the bottom patch was sufficient to allow a reduction in the diesel fuel's toxicity

either due to dissipation of the volatile fraction or biodegradation, therefore they were

not deterred from entering this area. The soil profile was tightly packed to allow a

realistic soil density to be achieved that would greatly reduce any diesel fuel

volatilisation from occurring. In addition, the length of time it took for the roots to

reach the bottom contaminated patch was only 7 days more from the time they reached

the first patch. It was unlikely that biodegradation of diesel fuel over this time period

could account for the roots readily penetrating the lower contaminated patch. The most

likely explanation therefore was that the roots had become acclimatised to the diesel

fuel contamination and the plant was more developed and able to tackle the presence of

this contaminant Figure 7.2.6 illustrates root growth in 25g and 50g diesel kg"

contaminated soil sections.
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(Q)

Figure 7.2.6. Growth of Oil seed rape plants in glass boxes contaminated with small

patches of (A) 25g and (B) 50g diesel kg" soil.

Finally, a glass box was set up and positioned lengthwise as shown in Figure

2.8.6 to test the depth of rooting of Westerwold's ryegrass. Some authors suggest grass

roots only grow about 50cm into the soil profile, which would imply they are of no use

for phytoremediation at depths greater than 50cm. Westerwold's ryegrass was chosen

as it is not considered a deep rooting grass and was capable of growing in reasonably

high levels of diesel fuel contaminated soil, hence a likely plant species for

phytoremediation.

After 2 months growth, Westerwold's ryegrass roots had extended down to a

depth of 1 metre, filling the entire length of the glass box set up. This proves that

grasses may extend their root systems far into the soil profile and should not be

discarded as candidates for surface soil phytoremediation practices.
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7.3 Effect on Nodulation of Leguminous Plants

During the harvesting of pot experiments containing leguminous plants, a recurring

difference in the number and formation of the nodules present on control and

contaminated Common vetch (Vida sativa) plants was observed. This observation was

investigated further during harvesting of the pot experiment described in Section 2.6.3.4

where Vetch plants, along with Westerwold's ryegrass and Meadow mix, were grown in

varymg levels of diesel fuel contaminated soil and harvested after 2 and 4 months

growth. Plants were removed from the soil and washed to remove any adhering soil and

the number of nodules per plant counted. Five nodules were then removed from five

separate control plants and five separate contaminated plants and sectioned for light

microscopy as described in Section 2.7.1.4.

Observation of nodule sections by light microscopy illustrated clear differences

between nodules taken from control Vetch plants and plants grown in diesel fuel

contaminated soil. The majority of the nodules from control plants were spherical and

appeared to be at the initial stages of nodule differentiation. Few bacteroids were

present within the central body of the nodule suggesting the nodule was immature. This

agrees with the visual observations made during harvesting of this experiment (Section

2.6.3.4) and the pot experiment described in Section 2.6.3.2 where the nodules of

control Vetch plants were spherical and greenish/white in appearance when cut open to

expose the central nodule structure. These observations indicated that the nodules were

at an early stage of development and may not have been effectively fixing atmospheric

N~. Figure 7.3.1 A shows a section of a Vetch root nodule grown in uncontaminated

soil. An enlargement of this nodule is also shown (Figure 7.3.I.B), illustrating clearly

the bacteroids and surrounding cortical cells.

Figures 7.3.1 and 7.3.2 (shown overpage). Sections of Common vetch root nodules

grown in uncontaminated and diesel fuel contaminated soil.

In the longitudinal axis of the nodule, the central mass of tissue shows successive stages

of host cell invasion and differentiation by rhizobium with the nodules grown in

uncontaminated soil having few cells harbouring rhizobia (Figure 7.3.1) and nodules

grown in contaminated soil having a large central mass of infected cells and well

differentiated cell types (Figure 7.3.2).
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While some cells became infected by rhizobia, other cells remained uninfected

and developed into a variety of specialised cell types. At an early stage, nodule

endodcrrnis (E) developed as a single layer of cells having suberised cell walls, dividing

the outer cortex (OC) from the central nodule parenchyma or inner cortex (lC). The

inner cortex is distinctive as the cells are tightly packed without intercellular air spaces

which constitutes the major barrier for oxygen diffusion.

Within the inner cortex, rhizobia differentiate into intracellular symbionts or

bacteroids which are harboured within organelle-like structures called symbiosomes

which form hacteroid clusters within cells (BC). Bacteroids induce the nitrogen-fixing

(nitrogenase) enzyme system which are protected in the low oxygen microenvironent

created by the inner cortex. Vascular tissue (VT) extends into the nodule body allowing

exchange of nutrients and water between the nodule and the plant (Brewin. 1991).
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(A)

(B)

Figure 7.3.1. Light microscopy section (Zu) ofa Common vetch nodule
(magnification x 40) grown in uncontaminated soil (A) and (B) enlargement
of this nodule (magnification x 100).



(A)

(B)

Figure 7.3.2. (A) Light microscopy section (Zu) ofa Common vetch
nodule (magnification x40) grown in contaminated soil and (B)
enlargement of this nodule (magnification xlOO).
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In comparison, the nodules taken from Vetch plants grown in diesel fuel

contaminated soil were elongate or club shaped and were pink/red when cut open to

expose the inner nodule structure. The bacteroids were numerous and filled most of the

central nodule body as illustrated in Figure 7.3.2A and B. The difference in nodule

shape is clearly apparent between each section as well as the number of bacteria filled

cells between the control and the contaminated nodules (Figures 7.3.1 and 7.3.2). These

results suggest, at low levels of diesel fuel contamination (5-10g diesel kg-1 soil),

nodules formed on contaminated plants are actually more developed than the

corresponding nodules developed on control plants.

The apparent stimulation of legume root nodules by low levels of hydrocarbon

contamination in soil was first noted by Carr in 1919. An increase in the number of

nodules per plant was seen on Soybean plants grown in low levels of crude oil

contaminated soil. Carr concluded that a small amount of oil may even be desirable in

nodule development in Soybean plants and where the amount of oil was increased to the

extent of damaging the plant, there was still some nodule development. Although the

total number of root nodules per plant on contaminated plants was reduced compared to

the number of root nodules per plant on control plants, root nodules were more

developed than the control nodules, as shown by the light microscopy sections. At

higher levels of diesel fuel contamination (15g diesel kg" soil) however, root nodule

formation was severely suppressed with only two nodules being present out of a total of

13 plants. Decrease in nodule formation of leguminous plants has been noted in soils

contaminated with heavy metals (Porter and Sheridan, 1981, Casella et al., 1988,

MArtensson, 1992), agrochemicals (Martensson, 1992), acid rain (Porter and Sheridan,

1981) and PAHs (Wetzel and Werner, 1995) but no work has been carried out on

nodulation in diesel fuel contaminated soil. It was therefore important to investigate the

effect of diesel fuel contamination on nodule formation and development.

An explanation for the apparent stimulation of nodule development in diesel fuel

contaminated soil may be the additional carbon added to the soil in the form of diesel

fuel, changed the soil C:N ratio. The addition of a huge carbon source, such as diesel

fuel, would widen the C:N ratio which in turn would leave less N available for plant

uptake. This has been observed for soils contaminated with petroleum hydrocarbons

(Xu and Johnson, 1997) with N becoming immobilised in the microbial biomass hence

less N is available for plant uptake. This may cause the Vetch plants growing in

contaminated soil to nodulate quicker than Vetch plants grown in uncontaminated soil
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which would explain why the contaminated nodules appeared more developed and at a

later stage of differentiation than the control nodules even though the seeds were

planted at the same time.

In summary, growth of plants in diesel fuel contaminated soil induced the

formation of adventitious roots on certain plant species. This unusual developmental

effect was likely to have been caused by the presence of petroleum hydrocarbons that

had growth hormone-type effects. Branched naphthalenes showed signs of enhancing

the development of adventitious roots on Canary grass seedlings. Similar hormone-type

suhstances present in diesel fuel may also have induced other developmental effects,

such as negative geotropism.

The pattern of root development was also altered when presented with diesel

fuel contaminated soil. Plant roots would avoid diesel fuel contaminated patches if

there was 'clean' soil to grow into. Once the 'clean' soil was utilised, only then would

plant roots grow into the contaminated patches. As the plants grew, their ability to grow

into contaminated soil increased suggesting an acclimation period was present.

Finally, diesel fuel contamination did not affect the strain of microorganisms

responsible for root nodule formation in the soil. Root nodules were found on plants

grown in contaminated soil and they appeared more developed than the corresponding

nodules found on control plants. This unusual observation was attributed to the need for

nitrogen fixation by the plants grown in contaminated soil. The soil C:N ratio was off

balance. in favour of carbon, due to the huge input of petroleum hydrocarbons therefore

the plant-microbial interaction would try to compensate for this.
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CHAPTER EIGHT

EFFECT OF DIESEL FUEL ON PLANT GROWTH AND

DEVELOPMENT: EFFECT ON THE PLANT

The previous two chapters have shown some effects of diesel fuel on the viability and

germination of selected plant species and its effect on root growth and development.

The plant species that germinated most successfully in diesel fuel contaminated

soil in the initial screening experiments (described in Section 6.1) were used in a series

of small pot experiments to examine the effect of diesel fuel on the later stages of plant

growth and development. A pot trial was also set up using Willow to determine

whether variability exists among Willow clones in their ability to grow in diesel fuel

contaminated soil.

8.1 Initial Mixed Plant Experiment

Ten plant species were chosen from the initial plant screening experiment (see Section

6.1) either for their high germination rate in diesel fuel contaminated soil or, for

comparison, their consistently poor germination in differing levels of diesel fuel

contaminated soil. These species were used in a small pot experiment, which was split

into two sets for ease of sampling. The results could then be used to compare the effect

of diesel fuel contamination on susceptible and non-susceptible plant species.
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Five species were used in Set up I and five species in Set up 2, as described in Section

2,6,3.1. The soil used in the experiment was manufactured John Innes compost which

provided a model soil with adequate nutrients for plant growth. The physical and

chemical characteristics of this soil type are given in Table 8.1.1.

Textural properties Chemical properties

% coarse sand 72.2

o/c fine sand 17.6

% silt 4.9

% clay 8.4

Textural class sand

pH 7.06

La! % 10.2 ± 0.20

Total N % 0.19 ± 0.01

Ext. P mg kg'

Ext. K mg kg'

43.6 ± 0.59

292.2 ± 0.80

Average values are given. LO} % ± SE, n = 3. Total N % ± SE, n = 5. Extractable P ± SE, n = 4 and

Extractable K ± SE, n = 3.

Table 8.1.1 Physical and chemical properties of the John Innes Compost no. 2.

However, the germination rate of both the susceptible and non-susceptible plant

species was extremely poor as shown by the results in Table 8.1.2. This was

unexpected as many of the seed species were chosen for their high germinating ability

in the presence of diesel fuel (e.g., Strong creeping red fescue, Sheep's fescue,

Westerwold's ryegrass).
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% Germination

treatment, g diesel kg' soil

Plant species o 25 50

Black grass
Cocksfoot
Common bent
Sweet vernal grass
Oi I seed rape

36 ± 2.0
24 ± 1.5 6 ±0.5
5 ± 1.5 2 ± 1.0

38 ± 9.5 9.5 ± 0.5
61 ±6.0 48 ± 1.076 ± 1.0

Sheep's fescue 59 ± 2.5 24 ± 3.0 7 ± 0.5
Strong creeping red fescue 64 ± 2.0 45 ± 2.5 8 ± 0.0
Chewing's fescue 79 ± 3.5 13 ±4.5 6 ± 1.0
Westerwold's ryegrass 71 ±0.5 28 ± 3.0 2 ±O.O
Black medick 8 ± 1.0 O±O.O 2 ±O.O

Average values given ± SE, n = 2. - (blank values) germination rate not recorded

Table 8.1.2 Germination results from initial mixed plant experiment (Set up 1 and 2).

The only seed species that germinated well in both the initial screening experiment

and the initial pot trial was Oil seed rape. The germination rate was much lower

however, than in the initial screening experiment. The concentrations of diesel fuel

chosen for the initial pot experiment were the same as those used in the initial screening

experiment (0, 25 and 50g diesel kg' soil) as although the concentrations were high, the

seeds seemed capable of germinating at these concentrations. This appeared not to be

the case in the pot experiment. It became apparent that covering the seeds with soil had

a greater effect on the germination rate and health of the plant than expected. The seed

would he surrounded by diesel fuel contaminated soil and when the shoot and root tips

started to emerge from the germinating seed, they would be in close proximity to the

diesel fuel. The entire germinating seed would also be enclosed by diesel fuel volatiles,

which may also offect germination. These factors were investigated and the results

discussed in Sections 6.2 (Phytotoxicity of volatile diesel fuel) and Section 6.4 (Effect

of diesel fuel on seed viability). The results from these investigations showed that the

volatile diesel fuel fraction had a large influence on germination and seed viability was

also affected by diesel fuel contaminated soil in close proximity to the seed.
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The small number of plants that did germinate and grow in the 2Sg and SOg

diesel kg' contaminated soils were very different from the plants of the same species

grown in uncontaminated soil. The overall heights of plants grown in diesel fuel

contaminated soil were stunted compared to plants grown in uncontaminated soil as

shown in Figure 8.1.3. All the plant heights of species grown in diesel fuel

contaminated soil were reduced by more than 50% of the control plant height except for

Westerwold's ryegrass, whose height improved towards the end of the experiment

(Figure S.I.3 G). Sweet vernal grass (Figure 8.1.3 B) and Meadow foxtail (Figure-Si l.S

D) showed a distinct difference between plant height in the 25g and 50g diesel kg' soil

treatments. The remaining plant species were just as badly affected by 25g diesel kg'

soil treatment as they were by the 50g diesel kg' soil treatment. As the weeks

progressed, plant height increased slightly in most of the plant species investigated,

suggesting whatever had suppressed growth initially was less phytotoxic or the plant

was adapting to tolerate the conditions.

205



Gillian Adam, 2001 Chapter 8, Results and Discussion Effect on the Plant

4

( E>J
E 20
~
E 15-
.gl
<lJ
..c
15
0
..c
Cl)

u:;
~, ~ 0

8 0

(A)
E 20
-S.
E 15
OJ
'iii
..c
(5 10
0..c
Cl) 5
u:;
~
~ 0

0 2 6 2 4 6 8

growth (weeks) growth (weeks)

(c) (D)
E 40 E 25
-S. -S.
+-' E 20
~ 30 .gl
<lJ <lJ 15
..c ..c
(5 20 (5
0 0 10
..c .c
Cl) 10

Cl)

5
U5 u:;
~ ~
ctl 0 ctl 0
+-'

+-'

0 2 4 6 8 0

growth (weeks)

2 4 6 8

growth (weeks)

(E)
~ 30
E

~25 ~.gl 20
Q)
..c
15 15
~ 10 -I ~
u:; I ,_/'

~ 5: -df====-n4
~ 0 ~-- - --------,--------,

-+- Og diesel kg-1
_ 25g diesel kg-1

--Is- 50g diesel kg-1

o 2 4

growth (weeks)

6 8

Average values given, n = 2.

Figure 8.1.3. Tallest shoot height of selected plant species grown in varying levels of

diesel fuel contaminated soil after 7 weeks. A) Oil seed rape cv. Martina. B) Sweet

vernal grass. C) Cocksfoot, D) Meadow foxtail and E) Common bent.
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Figure 8.1.3 continued. Tallest shoot heights of selected plant species grown in varying

levels of diesel fuel contaminated soil after 7 weeks.

F) Chewing's fescue, G) Westerwold's ryegrass, H) Black medick, I) Strong creeping

red fescue and J) Sheep's fescue.
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The visual condition of the plants grown in contaminated soil was good, apart

from the oil seed rape, whose leaves were badly discoloured. There was no sign of

severe leaf burn, which would indicate the plant was transpiring some of the more

volatile hydrocarbons. All in all, the general condition of the plants was good but the

drastic reduction in plant biomass showed just how badly affected the plants grown in

diesel fuel contaminated soil really were. Growth in diesel fuel contaminated soil

noticeably reduced the production of top growth of every plant screened. Figure, 8.1.4

shows two plant species grown in Og, 2Sg and SOgdiesel kg'! contaminated soil for six

weeks. Oil seed rape was one of the more successful plant species chosen as its

germination rate was 76%, 61% and 48% in 0, 25 and SOgdiesel kg'! soil respectively.

Although the germination rate was only moderately affected, the rate of growth was

severely affected, as is illustrated in Figure 8.1.4. The Meadow foxtail's germination

rate was badly affected but the overall plant height was only slightly reduced in the 2Sg

diesel kg"! soil treatment compared to the control plants (Figure 8.1.4). Meadow foxtail

did not grow well at the higher level of contamination (SOgdiesel kg'! soil).

The reduction in the average height of contaminated plants grown in diesel fuel

contaminated soil is reflected in the overall shoot and root biomass results collected

from contaminated plants. At harvest, shoot and root biomass was collected from both

control and contaminated treatments then oven dried as described in Section 2.7.1 and

2.7.2 to obtain oven dried biomass weights. The results from Set up I and Set up 2 are

given separately in Tables 8.1.5 and 8.1.6. The total oven dried shoot weight per pot is

given for plants in Set up I due to overcrowding of the pots caused by a high planting

density. The high density of plants in each pot prevented an accurate germination count

from being conducted hence the results could not be given on a weight per plant basis.

The density of planting was reduced in Set up 2 to overcome this problem therefore the

results from Set up 2 are presented as total oven dry weight per plant.

The results clearly show the effect that growing plants on diesel fuel

contaminated soil had on plant biomass. All the plant species investigated had reduced

biomass when grown in diesel fuel contaminated soil but the reduction in biomass

varied greatly between plant species. For example, Black grass plant biomass was

reduced to 44% of the control biomass value in 2Sg diesel kg'! contaminated soil and to

0.2% in SOg diesel kg'! contaminated soil. Oil seed rape plant biomass on the other

hand, was reduced to 14% and 10% of the control biomass values in 2Sg and SOg diesel

kg'! contaminated soil.

208



Figure 8.1.4. Oil seed rape (top) and Meadow foxtail (bottom) plants grown in
Og, 25g and 50g diesel kg" soil for 6 weeks.
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Av. total shoot dry wt. per pot (mg)

Treatment, g diesel kg' soil

Plant species o 25 50

Black grass 1784 ± 356.8 781.4 ± 0.15 3.9 ±0.6
Cocksfoot 926 ± 247.8 10.3 * 2.8 *
Common bent 1075 ± 43.9 52.7 ± 20.6 0
Sweet vernal grass 1261±79.2 70.5 ± 30.0 12.4±1.7
OiI seed rape 5044 ± 8.0 722.9 ± 70.6 527.6 ± 00.5

Average values are given (in mg) ± standard errors. n = 2 unless superscripted hy* where n = I.

Table 8.1.5. Total shoot weights (oven dry weight) per pot for plant species grown in

Set up I.

Av. Shoot wt. per plant (mg) Av. Root wt. per plant (mg)

Plant species o
Treatment, g diesel kg- soil

25 50 0 25 50

Sheep's fescue 128.2± I.I± 0.7 ± 37.0± 1.2 ± 1.5 ±
44.0 0.13 0.44 1.2 0.00 0.7

Strong creeping 170.0± 12.75 ± 1.4 ± 55.5 ± 2.25 ± 0.7 ±
red fescue 14.9 10.3 0.00 6.8 0.3 0.0
Chewing's 8.6 ± 0.9 ± 0.97 ± 65.0± 3.1 ± 4.3 ±
fescue 1.2 0.3 0.74 12.0 1.6 2.0
Westerwold's 161.8 ± 10.9± 8.1 ± 188.0± 6.75 ± 0
ryegrass 4.6 6.7 0.00 7.45 4.1
Black medick 1198.4± 0 5.35 ± 325.5 ± 0 3.3 ±

279.8 2.65 98 0.30

Average values arc given (in rng) ± SE. n = 2

Table 8.1.6. Total shoot and root weights (oven dry weight) per plant for plant species

grown in Set up 2.
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Drastic reductions in both shoot and root biomass were observed for all the plant

species investigated in this experimental set up. Although the seed species chosen for

this experiment were capable of germinating in high levels of diesel fuel (e.g. 25g and

SOg diesel kg' soil) as illustrated in Section 6.1, they did extremely poorly in this

experimental set up. It was therefore decided that lower diesel fuel contamination

Icvels would be used in subsequent plant experiments to allow a more sizeable plant

biomass to develop. This should allow any difference in diesel fuel bioremediation due

to the influence of plant growth to he seen.

8.2 Grasses versus Legumes

Four plant species were chosen from the initial germination experiment (see Section

6.1) that germinated well in diesel fuel contaminated soil. Two species from the family

Grumineae: and two species from Leguminosae were chosen to investigate if the

Leguminosae grew better in diesel fuel contaminated soil, due to their close association

with nitrogen fixing microorganisms than members of the Gramine.os;

The soil used in this experiment (Darvel soil) was a 'real' soil, sampled fresh

from site and prepared for use. A freshly collected soil was chosen to provide realistic

soil conditions. The soils physical and chemical charateristics are given in Table 8.2.1

helow.

Tex tural properties Chemical properties

170 coarse sand

% fine sand

33.5

20.0

22.0

24.4

pH

LOI%

Total N %

Ext. P mg kg'

Ext. K mg kg" I

7.30

9.1 ±O.16

Textural class Sandy clay loam

0.32 ± 0.01

49.4 ± 0.72

169.0 ± 0.75

Average values are given. LOI % ± SE, n = 3. Total N lYt:, ± SE, n = 5. Extractable P ± SE, n = 4 and

Extractable K ± SE, n = 3.

Textural characteristics taken from Mctwaly, PhD Thesis, University of Glasgow, 1999.

Table X.2.1. Physical and chemical properties of Darvel soil.
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Agronomic performance in diesel fuel contaminated soil was again assessed by

measuring germination rate, plant height (tallest shoot height and majority shoot height)

and shoot and root biomass. In addition, the ability of Common vetch plants and Red

clover to develop root nodules and the onset of maturation indicated by

flowering/seeding of each species was investigated.

Germination rate was measured every three weeks from planting until harvest at

15 weeks but only the results from the 3 week and 15 week measurements are given in

Table 8.2.2 on the next page.

A reduction in germination rate was observed for all the plant species

investigated except for the Common vetch plants grown in 5g diesel kg' soil initially.

At three weeks the % germination rate was increased to 91.1 % in the 5g diesel kg' soil

compared to 82.2% in the control soil. By harvest time at 15 weeks however, the

number of plants surviving had fallen to 60% in the 5g diesel kg' soil compared to

84.4% in the control soil. This initially high germination rate in the low level of diesel

fuel contaminated soil may indicate the Common vetch seeds were not affected by low

levels of diesel fuel until the seed coats had split and germination had begun. Once the

primary root and shoot had emerged, the seedlings were more susceptible to diesel fuel

toxicity. The Red clover and Westerwold's ryegrass seeds responded much the same to

diesel fuel contamination at the start of the experiment as they did at the end whereas

the Common vetch and Strong creeping red fescue seeds appeared to improve by the 15

week measurement. Common vetch plants grown in 20g diesel kg' soil increased from

8.9% germination rate at 3 weeks to 37.8% germination rate at 15 weeks. Strong

creeping red fescue increased to 17.8% germination rate in 109 diesel kg-I soil at 15

weeks from 4.4% germination rate at 3 weeks.
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Tallest plant height and majority plant height were measured throughout the

experiment until harvest. The results for tallest plant height are illustrated in Figure

8.2.3. Plants grown in contaminated soil were stunted compared to the same plants

grown in control soil. Common vetch plants showed an almost linear decrease in plant

height with increasing diesel fuel concentration. Westerwold's ryegrass plant height

was very similar at the 5g and 109 diesel kg' soil level but Westerwold's ryegrass

failed to grow at the 20g diesel kg' soil level. Red clover and Strong creepin,g red

fescue plant heights were reduced compared to the control plants with Red clover

performing slightly better at the higher levels of diesel fuel contamination than Strong

creeping red fescue.
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Figure 8.2.3 Tallest plant height measurements of A) Westerwold's ryegrass, B)

Common vetch, C) Red clover and D) Strong creeping red fescue over the length of the

experiment.
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The decrease in plant growth indicated by the reduction in shoot height was

reflected by the shoot and root biomass results for the majority of plant species

investigated. The only exception to this rule was Westerwold's ryegrass, whose shoot

biomass values per plant appeared stimulated by growing in low levels of diesel fuel

contaminated soil (5g and 109 diesel kg' soil). Table 8.2.4 illustrates the average oven

dry shoot and root biomass results for the four plant species investigated. Shoot

biomass per plant was increased by 32% and 347% compared to the control plants

biomass per plant in 5g and 109 diesel kg' soil respectively. This large increase in

shoot biomass for plants grown in the 109 diesel kg' soil treatment was reflected in the

root biomass results by an increase of 158% compared to the control root biomass. This

apparent stimulation of growth may be due, in part, to the additional space allowed to

plants grown in contaminated soil pots. Germination rates were reduced in

contaminated soil hence the planting density was less in contaminated pots compared to

control pots. This would allow more room for contaminated plants to grow and produce

biomass. The increase in biomass cannot be explained entirely by differences in

planting density and it appears that Westerwold's ryegrass growth is stimulated in low

levels of diesel fuel contaminated soil.
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Two other observations were made during the course of this pot experiment

regarding the developmental behaviour of plants grown in diesel fuel contaminated soil.

The first observation was concerned with the development of root nodules on the two

species of legume used in this trial. The possible advantage that legumes would have

over other plant species would be in their ability to fix atmospheric nitrogen to produce

their own source of nitrogen. This nitrogen fixing ability would allow leguminous

plants to grow in soil with low levels of available nitrogen which is frequently the case

with hydrocarbon contaminated soils. A huge input of petroleum hydrocarbons in the

form of diesel fuel for example, would alter the C:N ratio of the soil in favour of carbon

and the little available nitrogen present would become immobilised in microbial

biomass. Any plant that produced its own source of available nitrogen may therefore

grow more successfully in diesel fuel contaminated soils. Infection of roots of

leguminous plants with the appropriate species of Rhizobium or Brady-rhizobium is

required for the formation of root nodules (Brock and Madigan, 1991). Decrease in

nodule formation has been noted by other authors in contaminated soils (Porter and

Sheridan, 1981.,Casella et al., 1988.,Martensson, 1992.,Wetzel and Werner, 1995) but

no work has been carried out on nodulation of legumes in diesel fuel contaminated soil.

Observations from this pot experiment showed that nodules were present on roots of

both control and contaminated plants which suggests that the species of Rhizobium

responsible for infecting the roots of both Red clover and Common vetch plants were

unaffected by diesel fuel contamination. In addition, when root nodules taken from

control and contaminated plants were dissected to show their internal structures, a very

clear difference between control and contaminated nodules was observed. Nodules

taken from control plants of both Red clover and Common vetch grown in

uncontaminated soil had small nodules with pale, almost white internal structures. This

suggests a lack of leghaemoglobin, the red coloured protein responsible for binding

oxygen within the nodule structure, which is always found in healthy nitrogen fixing

nodules (Brock and Madigan, 1991). Nodules taken from contaminated Red clover and

Common vetch plants had swollen nodules with extremely pink or red internal

structures, which suggests the nodules were actively fixing nitrogen. Although this

observation was noted on both Red clover and Common vetch plants, the difference was

more apparent in Common vetch root nodules. This difference in the development of

root nodules was investigated in more detail in a later pot experiment (Section 9.2) and

the results from this experiment discussed fully in Section 5.3.
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The second observation made during the course of the experiment was the onset

of maturation of the plants under study. Plants grown in diesel fuel contaminated soil

were found, time and time again, to be stunted compared to plants grown in

uncontaminated soil. The reduction in plant height suggested that diesel fuel was

retarding growth of the plant but it was unclear whether developmental changes in the

plant, such as the onset of flowering, were being retarded also. The control Red clover

plants began to flower after 10 weeks growth where no flowering was apparent on the

contaminated plants even at harvesting (15 weeks). The Common vetch plants began to

flower and produce seed pods after 12 weeks growth where no seed pods were present

on any of the contaminated plants. At harvesting, the Common vetch plants grown in

5g diesel kg' soil were flowering and had seed pods present but none of the plants

grown in higher diesel fuel contamination levels showed signs of doing so. Figure 8.2.5

illustrates the production of seed pods on Common vetch plants where none are present

on the corresponding contaminated plants. The Westerwold's ryegrass plants growing

in both control and contaminated soil began to seed around 14 weeks growth. The

Strong creeping red fescue had not seeded by the harvest date. The lag phase observed

in flowering/seeding of the plant species investigated suggest diesel fuel is affecting

plant physiology and slowing the plants usual flowering cycle. The fact that Common

vetch plants did eventually flower and produce seed pods suggests that diesel fuel

contamination is delaying the developmental process rather than preventing it from

happening.
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Figure 8.2.5 Production of seed pods on Common vetch plants where none are present

on the corresponding contaminated plants. A) Control plant on left and contaminated

plant on right. B) Enlargement of control plant showing seed pods.

8.3 Toxicityof' Aged' Soil

A recurring problem observed during the small pot experiments was the low
germination rate of seeds in diesel fuel contaminated soil that had previously been
found to germinate well. Seeds in the initial screening experiment (Section 6.1)
germinated and grew successfully but when the same seeds were planted in
contaminated soil in the pot experiments, their germination rate decreased. The effect
that covering the seeds with contaminated soil had on germination and growth was
investigated in Section Q.2 and Section bA. It was found that volatile diesel fuel
components had a large influence on seed germination and that diesel fuel affected the
viability of seeds possibly by physically impeding the germinating seed.

An experiment was designed, similar to the experiment described in Section
2.6.1.4, to further test the influence of volatile and low molecular weight diesel fuel
components on a larger scale. Og,25g and 50g diesel kg" soil treatments were set up at
progressively later stages of aging of contaminated soil as described in Section 2.6.3.6.
John Innes compost No.2 was contaminated with diesel fuel at different times to
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prepare treatments that had aged 4 weeks, treatments that had aged 1 week and freshly
contaminated treatments. Pots at each treatment level were then seeded with
Westerwold's ryegrass or planted with 2 week old Westerwold's ryegrass seedlings to
investigate if there was a discernible difference between different plant stages - seed
versus seedling.

The agronomic performance of both seed and seedlings was assessed. After 1
week, the Westewold's ryegrass seeds were germinating in the control soil with a 82%
germination rate. The 25g diesel kg" soil treatments had germination rates of 48%,
66% and 4% in the aged 4 weeks, aged 1week and freshly contaminated soils. The 50g
diesel kg" soil treatments had germination rates of 10%, 4% and 0% in the aged 4
weeks, aged 1 week and freshly contaminated soils. The transplanted seedlings
appeared healthier in the control soil than in any of the contaminated treatments but this
may have been due as much to the stress of transplantation as the effect of diesel fuel
contamination. As the experiment progressed, the seedlings grew more happily in an
the treatments.

After 3 weeks, the seeded pots were improving, with germination rates
increasing in all pots except the freshly contaminated 50g diesel kg" soil treatment
which failed to show any signs of growth. Table 8.3.1 shows the germination results of
the seeded treatments.

Treatment g diesel kg" soil Germination rate %
Og
25g fresh
25g 1 week
25g4 weeks
50g fresh
50g 1week
50g4 weeks

84 ± 0.5
8±0.0
72 ± 5.5
76 ± 2.0
O±O.O
16 ± 0.0
40 ±2.5

Average values are given ± SE, n = 2.

Table 8.3.1 Germination results of the Westerwold's ryegrass seeded treatments.
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After 6 and 9 weeks growth the germination rate and tallest shoot height were

measured for the seeded pots and survival rate of seedling and tallest shoot height

measured for the pots transplanted with seedlings. The results are given in Table 8.3.2.

The germination rate of the seeds had not increased since the 3 week

measurement. In fact, the number of plants decreased in the 4 week aged SOg diesel

kg' soil from 40% germination rate at 3 weeks to 30% germination rate at 9 weeks.

The number of seedlings surviving transplantation into contaminated soil was high.

Only at the freshly contaminated SOg diesel kg" soil level was the survival rate

drastically reduced as illustrated in Table 8.3.2. Plant heights were tallest in control soil

for both the seeded pots and pots containing seedlings. Plants heights were lower in the

SOg diesel kg" soil contaminated treatments than in the 25g diesel kg" soil. It was

apparent that diesel fuel contamination was still affecting plant growth after 4 weeks

aging as plant height and germination rate were lower than the control values.
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The seedlings appeared to perform slightly better in the contaminated soils than

the seeded treatments as can be seen in Figures 8.3.3 and 8.3.4. Figure 8.3.3 shows the

seeded treatments at all levels of diesel fuel contamination after 4 and 9 weeks growth.

The seeds germinated and grew more successfully at the lower contamination level (25g

diesel kg' soil) and in the 4 week aged soil. Figure 8.3.4 shows the treatments

transplanted with seedlings after 4 and 9 weeks growth. After 9 weeks, there was a

difference between the 25g and the 50g seedling treatments but it was not as apparent as

with the seeded treatments. Again the seedlings appeared to grow more successfully in

the aged soils but the biomass values do not support this statement. Table 8.3.5 shows

the oven dry shoot and root biomass results for Westerwold's ryegrass plants in all the

treatment levels.

Both shoot and root biomass per plant was drastically reduced in all levels of

diesel fuel treated soil for the seeded treatments. As expected, the reduction was more

drastic in the 50g diesel kg' soil level than in the 25g diesel kg' soil level. The

reduction in shoot biomass was actually less in the freshly contaminated 25g diesel kg'

soil treatment than in the aged treatments with biomass being 19.3%, 9.29c and 12.3%

of the control biomass in the freshly contaminated, aged 1 week and aged 4 weeks

treatments. The root biomass results followed this trend. No seeds germinated in the

freshly contaminated 50g diesel kg-I soil treatment and shoot biomass was reduced to

3.4% of the control biomass in both the aged 1 week and aged 4 weeks treatments. The

seedlings appeared to grow more successfully in the contaminated soils in Figure 8.3.4

but the biomass results again show a drastic reduction in biomass. Shoot biomass was

reduced to 19.5%, 20% and 24.5% of the controls shoot biomass in the freshly

contaminated 25g diesel kg' soil, aged 1 week and aged 4 weeks seedling treatments.

Root biomass was reduced even further with the 2Sg contaminated treatment averaging

a root biomass of 5.4% of the controls root biomass. Seedlings grown in the 50g diesel

kg I soi I treatments were, on average, reduced to 10.8% of the controls shoot biomass

and 6.7% of the controls root biomass.
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A clear difference was seen between the freshly contaminated and aged soil

treatment levels in the seeded treatments but not in the seedling treatments. The

seedlings seemed to survive and grow more successfully than the newly germinated

seeds in the contaminated treatments and the total biomass collected at harvest was

greater for the seedlings in all treatments than the seeds. This may be due to the 'head

start' the seedlings have over the seeds on producing biomass. It appeared that

plants at a later stage of growth could survive and grow more successfully in diesel fuel

contaminated soil than seeds. However, transplanting seedlings was extremely hard to

do and the plants were probably unnecessarily stressed and may have been damaged due

to this transplantation process, adding an error to the results. In addition, the 4 week

aged diesel fuel contaminated soil had considerable water repellence making wetting of

the soil very difficult. This could also have biased the results. Therefore the statement

that plants at later stages of growth are more capable of growing in diesel fuel

contaminated soil than seeds should be viewed tentatively, as the results were variable.

8.4 Growth of Willow on Diesel Fuel Contaminated Soil

Willow has been used extensively in the remediation of metal contaminated sites due to

its abundant growth on poor soils, uptake and accumulation mechanisms for certain

metals and its ability to transpire large volumes of water reducing metal leaching into

the subsurface. Little work has been carried out on the growth of willow on petroleum

hydrocarbon contaminated sites however. Carman et al (1998) chose a hybrid willow,

species Prairie cascade, to remediate a diesel fuel contaminated site due to its superior

agronomic performance in fuel contaminated soil. The experiment described in Section

2.6.3.5 was designed to evaluate if variability exists among willow clones in their

ability to grow in diesel fuel contaminated soil.

Four willow clones, one British variety and three Swedish varieties, were

planted in varying levels of diesel fuel contaminated soil. The growth of willow in

contaminated soil was assessed and the quantity of diesel fuel remaining in the soil after

10 months measured to determine the potential of willow as candidates for

phytoremediation of diesel fuel contaminated sites.
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8.4.1 Rooting of Willow Cuttings (stools)

Each willow stool was planted directly into the soil at all treatment levels without prior

rooting. This allowed the rooting ability of the stool in diesel fuel contaminated soil to

be evaluated. Willow is generally planted after initial rooting has occurred. Carman et

al (1998) transplanted cuttings into sand to allow rooting then further transplanted the

rooted cuttings into 'clean' soil to allow leaf and root development to begin before

planting in contaminated soil. This method of planting provides a bias In the

assessment of willow clones for their ability to grow in contaminated soil as the

contaminated soil may slow down or even prevent rooting from occurring and the

willow cutting is much older and possibly less susceptible to the contaminants when it

is transplanted. By allowing the cuttings to produce root and shoots, you are also

making the job of planting much more difficult as you have to be careful not to damage

the delicate roots and new shoots.

After two weeks growth in Og, 25g and 50g diesel kg' contaminated soil, all the

stools in the control soil had developing roots and shoots whereas one Jorr stool in the

25g diesel kg' treatment and one Jorr and one Jorrun stool in the 50g diesel kg"

treatment showed no signs of growth. This suggests the diesel fuel contaminated soil

may be suppressing the initial stages of root and shoot development. Figure 8.4.1.1

illustrates the initial stages of root and shoot growth (2 weeks) in Og, 25g and 50g diesel

kg' contaminated soil treatments.

R.4.2 Agronomic Assessment

8.4.2.1 Shoot Height

Differences in shoot length and plant health were apparent for all willow clones grown

in contaminated soil compared to the control soil (Og diesel kg-I). Initially, the mean

value for average shoot length of each replicate was reduced more in the Ulv and

Rosewarne White clones then in the Jorr and Jorrun clones. Average shoot length in the

Ulv clone was reduced by 37% and 45% of the control average shoot length in the 25g

and SOg diesel kg' contaminated soil respectively. A similar response was shown by

the Rosewarne White clone with average shoot length being reduced by 37% and 43%.

The Jorrun and Jorr clones appeared to grow more happily in diesel fuel contaminated

soil with reduction in shoot lengths being 7.4% and 33% and 10% and 48% respectively
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at the two treatment levels. After six months the trend in pattern of growth shown by

the clones initially altered. The overall growth of the Ulv clone improved at the 25g

diesel kg" level with average shoot length being 74% of the control average shoot

length. A slight reduction was seen at the 50g diesel kg" level. The Jorrun clone

deteriorated badly in both treatments over the six month period with average shoot

lengths falling to 63% and 47% of the control. The Rosewarne White clone, which was

badly affected to begin with, worsened over the six months. Average shoot length

dropped to 53% of the control in both treatments. There was no distinction between the

higher and lower levels of diesel fuel contamination. The Jorr clone, on the other hand,

continued to grow well at the 25g diesel kg"! level and improved significantly at the 50g

diesel kg" level. The average shoot lengths of the replicates grown in control (Og

diesel kg") and 25g diesel kg" soil treatments were almost identical. This pattern of

growth continued until harvesting of the willow at ten months. The Rosewame White

and Jorrun clones did not improve further whereas the Ulv and Jorr clones stayed at the

same level of growth. Figure 8.4.2.1.1 illustrates the pattern of shoot length over the 10

month growing period for each clone investigated. A slight decrease in shoot height is

noted at the 10 month measurements for all clones in all treatment levels as growth

begins to slow at the end of the growing season.
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Figure 8.4.2.1.1. Average shoot heights of willow clones grown in Og, 2Sg and SOg

diesel kg' contaminated soil over 10 month growth period. A) Jorr, B) Jorrun, C) Ulv

and D) Rosewarne white.

8.4.2.2 Shoot Diameter

The diameter of the longest shoot was also measured at half its height. Figure 8.4.2.2.1

shows the shoot diameter measurements for each clone over the 10 month growing

period. It is generally seen that the length of shoot relates to the diameter of shoot.

This statement appears to be true for the willow clones grown in control soil (Og diesel

kg'). As illustrated in Figure 8.4.2.2.1, shoot length increases and the diameter of the

shoot also increases slightly. This pattern is also followed at the 25g and SOg diesel kg'

treatment levels for the Rosewarne White, Ulv and Jorrun clones but not for the JOlT

clone. JOlT replicates grown in 25g diesel kg' soil showed little difference in shoot

height (Figure 8.4.2.1.1) but the measured shoot diameter is very different between the

control and contaminated treatments (Figure 8.4.2.2.1). The reduction is shoot diameter

may indicate a symptom of diesel fuel toxicity that the measurement of only shoot

height would not have uncovered.
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Figure 8.4.2.2. J. Average shoot diameters (at half shoot height) of willow clones

grown in Og, 2Sg and SOg diesel kg-I contaminated soil over 10 months. A) JOlT, B)

Jorrun, C) Ulv and D) Rosewarne white.

8.4.2.3 Shoot Biomass

After 10 months the willows were harvested. The leaves on each willow were removed

and counted then the shoot biomass collected and dried as described in Section 2.7.1.

The number of leaves per willow and the reduction in shoot biomass clearly reflect the

retardation of growth and affect on plant health that diesel fuel contamination had on

willow. The number of leaves was reduced on contaminated willow compared to

control willow. Even the Jorr clones grown in 25g diesel kg", whose shoot height was

very similar to clones grown on Og diesel kg' soil, had fewer leaves, on average. The

number of leaves per willow fell to 59.2% and 38.8% of the control in the 25g and SOg

diesel kg' soil respectively.

Shoot biomass was badly affected in all the clones investigated and tied in well

with the measurements of shoot height and shoot diameter. The JOlT clone biomass
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dropped to 47% in 25g diesel kg' soil compared to the control. Although the shoot

height between the control and the 25g diesel kg' treatment was not greatly different,

the overall biomass was greatly reduced. This was expected as the shoot diameter was

greatly reduced in the 25g diesel kg' treatment compared to the control. The Jorrun

and Ulv clones had similar reductions in shoot biomass with percentages falling to 32.9

and 6.8 and 29.4 and 4.8 in the 25g diesel kg' soil and 50g diesel kg' soil treatments

respectively. The Rosewarne white shoot biomass was as badly affected at the 25g

diesel kg' treatment level as it was at the 50g diesel kg' treatment level. Shoot

biomass fell to 15.3 % and 14.4 % of the control biomass in the two treatments. Table

8.4.2.3.1 summarises the agronomic performance of the four willow clones grown in Og,

25g and 50g diesel kg' soil.

8.4.2.4 Root Biomass

Although root mass was not measured individually for each willow clone in this

experiment. the overall root mass was collected from each treatment. It proved very

difficult to separate the roots from individual willow cuttings in each treatment level

due to the roots becoming entangled with each other. Instead, the roots were collected

from each treatment and bulked together to provide measurements for total root mass in

each diesel fuel treatment level. The 25g diesel kg' soil treatment had a reduced root

mass of 22.8 % of the control and the SOgdiesel kg" soil treatment dropped to 10.2 %

of the control.
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8.4.3 Analysis of Residual Diesel Fuel

The amount of diesel fuel remaining in the soil after 10 months was determined by

extracting the diesel fuel residue from subsamples taken at each treatment level. The

diesel fuel was extracted using the Soxhlet method described in Section 2.3.2 and

analysed by GC-FID to obtain total petroleum hydrocarbon (TPH) values (as described

in Section 2.3.4). The recovery of TPH from soil using this procedure for extraction

and analysis was approximately 75 % (see Section 3.1.1.1) with extremely high

recovery of >C 13 hydrocarbons (> 87 % recovery).

After 10 months growth, the level of diesel fuel had decreased by approximately

50% in both the 25g and 50g diesel kg' soil treatments, as shown in Table 8.4.3.1. This

level of breakdown is not as high as expected, but the concentration of diesel fuel added

was high.

treatment TPH peak area % difference Av. TPH % diesel
between peak area remaining
replicates

Original diesel 159515 4.9

Fresh 25g (time 119198 1.0
zero)

25g willow 1 57324 1.0
25g willow 2 60663 2.4
25g willow 3 58875 0.6 58954 49.5

Fresh 50g (time 238396
zero estimate)

50g willow I 120109 4.7
50g willow 2 93527 1.3 107564 45.0
50g willow 3 109055 4.1

TPH peak areas calculated from replicates, n = 3. Fresh 50g (zero lime) TPH peak area is an estimate

calculated hy doubling the TPH peak area extracted from the Fresh 25g (zero lime) sample.

Table 8.4.3.1. Total petroleum hydrocarbon (TPH) values and (Yo diesel fuel remaining

after 10 months for Willow planted troughs.

234



Gillian Adam, 2001 Chapter 8, Results and Discussion Effect on the Plant

The troughs in which the Willow trees were grown in had no drainage, which

meant that waterlogged conditions were frequently encountered in these troughs. The

Willow trees themselves are capable of surviving under wet conditions but waterlogging

of the soil would cause anaerobic conditions to arise which is not conducive to rapid

breakdown of petroleum hydrocarbons. Hydrocarbon breakdown is a predominantly

aerobic process. If the conditions the Willow were grown in maintained an aerobic

environment at all times, an increase in degradation may have occurred. Nevertheless,

Willow are capable of growing on high levels of diesel fuel contaminated soil and

encourage breakdown of the diesel fuel contaminant.

Figure 8.4.3.2 illustrates the pattern of breakdown of diesel fuel remaining in the

25g diesel kg" soil trough after 10 months compared to the original extracted diesel fuel

(25g diesel kg" soil at time zero). Hydrocarbons from the front of the diesel fuel

chromatogram were preferentially degraded under these conditions. n-alkanes ranging

from C9-C 14 were greatly reduced, along with the lower molecular weight branched

alkanes and aromatics. Some of these compounds could be lost by volatilisation but the

majority of the compounds lost (anything over 24 minutes on the chromatogram) were

not volatile, therefore they must have been biologically degraded.
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(bottom) compared to 25g diesel kg" soil at time zero (top).
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In summary, the senes of small pot experiments have shown that seed

germination was severely reduced by covering the entire seed with contaminated soil.

This finding was extremely important as an integral part of this study involved finding

suitable plant species that would grow successfully in diesel fuel contaminated soil.

This problem was investigated in more detail (Sections 2.6.1.3 and 2.6.1.5) and the

results discussed in a previous chapter (Sections &.2 and 6.4). At high levels of diesel

fuel contamination (25g-50g diesel kg' soil) a decrease in germination rate was

observed in contaminated treatments compared to control soils. Plants grown in

contaminated treatments were stunted compared to the corresponding plants in control

soil and the overall shoot and root biomass was reduced in contaminated soil compared

to control soil. A decrease in plant height and reduction in plant biomass are both

symptoms of the chronic toxicity of diesel fuel on plant health. Despite these

disadvantages, the visual condition of the plants was good. In low levels of

contamination (5g-20g), reduction in germination rate, plant height and shoot and root

biomass was again observed for the majority of the plant species tested. Westerwold's

ryegrass growth however, appeared stimulated at low levels (5g diesel kg' soil) of

diesel fuel contamination and would be further investigated as a possible candidate for

phytoremediation of diesel fuel contaminated soil. When growing legumes in low

levels of diesel fuel contaminated soil, the microorganisms responsible for infecting

plant roots to develop root nodules were found to be present and still active. One worry

during this investigation was that diesel fuel would kill off the Rhizobia present

naturally in the soil as Rhizobia are quite sensitive to contamination. This was not

found to be the case in the pot experiments. In fact, more developed root nodules were

found on the contaminated plants than on control plants. This unusual observation was

studied in more detail in the later, larger scale greenhouse trials that will be discussed in

the next chapter (Chapter 9). Finally, flowering and seeding in contaminated plants was

delayed when compared to plants grown in control soil, suggesting a lag in plant

development.

Variability did exist between Willow clones grown in diesel fuel contaminated

soil. The initial stages of root and shoot development was suppressed in the Jorr and

Jorrun clones but not in the Rosewarne white and Ulv clones. Shoot height, shoot

diameter and plant biomass was reduced in all the clones grown in diesel fuel

contaminated soil compared to uncontaminated soil. The Swedish variety, Jorr, had

superior agronomic performance in diesel fuel contaminated soi I compared to the other

Willow clones investigated.
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The small pot experiments have allowed a number of plant species to be chosen

for the final large scale greenhouse trials to investigate the processes involved and the

effect of phytoremediaiton on diesel fuel contaminated soil. The experiments have also

shown what measurements need to taken to provide a thorough agronomic assessment

of plant performance in diesel fuel contaminated soil.



CHAPTER NINE

PHYTOREMEDIATION OF DIESEL FUEL CONTAMINATED

SOIL

A number of plant species that performed well in diesel fuel contaminated soil throughout

the initial screening experiments and small pot experiments were selected for larger

greenhouse trials to study the phytoremediation ability of these plants. A detailed

investigation of agronomic performance of these plant species in varying levels of diesel

fuel contaminated soil was carried out. In addition, the effect of planting and diesel fuel

contamination on soil enzymatic activity was studied and the concentration of diesel fuel

remaining in planted and unplanted soils was measured to determine if diesel fuel

biodegradation was enhanced in planted soils.

Soil enzymes may originate from plants, animals, fungi and bacteria although it is

generally agreed that the microbial component is the main source of enzymes in soil (Dick,

1997). Soil enzymes have a unique role in assessing soil health because soi I as a whole

(not only the biological component) can be thought of as a living biological system capable

of carrying out certain biochemical reactions without viable cells (Dick, 1997). Because

many enzymes are substrate specific and can be chosen from different functional groups,

there is an opportunity to determine the potential of soil to carry out a whole range of

reactions that may be critical to the functioning of the ecosystem. Soil enzyme activity can

relate to plant productivity, microbial biomass, biogeochemical cycling, impacts of

pollutants on soils or the status of remediated soil. By studying soil enzyme activities, a
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clearer picture of the effects of diesel fuel contamination on the soil system as a whole and

the influence of planting on the soil system was obtained.

The soil enzymes investigated during this study were dehydrogenase, acid and

alkaline phosphatase and non specific proteases, lipases and esterases. These enzymes

come from different functional groups and can therefore be used to determine the activity

of different compartments of the soil system. Dehydrogenase enzymes reflect the total

oxidative capabilities of soil microorganisms (Carnifia et al., 1998, Casida, 1977). They

arc linked to respiration and show if the soil microorganisms arc utilising diesel fuel as a

substrate for growth. Phosphatase enzymes release plant available, inorganic phosphate

from organic matter (Boero and Thien, 1979) which is essential for plant growth and

would show if nutrient cycling was continuing in the contaminated soil. Finally, non

specific proteases, lipases and esterases can be measured by a broad spectrum enzyme

assay. This provides a general indication of soil hydrolytic activity which can be used to

assess soil microbial activity (Schnurer and Rosswall, 1982, Swisher and Carroll, 1980,

Adam and Duncan, in press). This will show whether microbial activity is affected by

diesel fuel contamination and whether activity is increased under planted soils compared to

unplanted soils.

9.1 Ryegrass versus Oil Seed Rape

Westerwold's rye grass and oil seed rape were chosen to illustrate the phytoremediation

potential of diesel fuel in a larger greenhouse experiment as these species consistently

germinated and grew well in diesel fuel contaminated soil. A real soil (Arkleston) was

chosen for this study to provide more realistic soil conditions with a natural population of

soil microorganisms which would allow the effect of diesel fuel contamination on soil

microbial activity and diesel fuel biodegradation to be studied. The Arkleston soil physical

and chemical characteristics are given in Table 9.1.1.
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Textural properties Chemical properties

% fine sand

32.7

35.3

16.3

15.7

pH

LOI%

Total N %

6.86

6.5

0.17 ± 0.01

26.7 ± 0.38

% coarse sand

% silt

% clay

Textural class

Ext. P mg kg'

Sandy loam Ext. K mg kg' 71.0 ± 0.24

Average values are given, LO! cl ± SE, 11 = 3, Total N % ± SE, n = 5. Extractable P ± SE, n = 4 and

Extractable K ± SE, n = 3,

Textural characteristics taken from Metwaly, Ph, D thesis, University of Glasgow, 1999.

Table 9.1.1. Physical and chemical characteristics of Arkleston soil.

The experimental design incorporated two plant species as well as unplanted soil at

four different treatment levels (0, 5, 7.5 and 109 diesel kg' soil). The concentrations of

diesel fuel were lower than previously used to determine the effect on growth and

breakdown of diesel fuel at lower soil contamination levels.

Germination rate measured after 1 week was high for both plant species in all diesel

fuel treatment levels. Table 9,1.2 shows the germination rate of both plant species in 0, 5,

7.5 and 109 diesel kg' soil. The Westerwold's ryegrass germinated well at all treatment

levels. The Oil seed rape germination rate showed an almost linear decrease as diesel fuel

concentration increased. Despite the reasonably high germination rate of Oil seed rape in

diesel fuel contaminated soil, the plants became badly infected at the seedling stage. The

health of the plant must have been reduced by growing in diesel fuel contaminated soil,

making the plants more susceptible to infection. As plant growth was terribly stunted,

seedlings were extremely close to the soil surface providing an easy transfer of infection

from the soil to the plant. A fungus, possibly a powdery mildew, took over the Oil seed

rape plants, which had a huge knockdown effect on the plant population. For this reason,

the Oil seed rape treatments were removed from the pot experiment. The experiment was

continued with Westerwold's ryegrass as the only plant species.
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Av. Germination rate %

Treatment level g diesel kg' soil

Species o 5 7.5 10

Westerwold's
ryegrass

66 ± 2.26 69 ± 3.43 66 ± 2.97 60 ± 3.88

OJI seed rape 84 ± 3.63 77 ± 3.52 68 ± 6.57 56 ± 7.11

Avcrage values correspond to average of two levels of pots (2 month and 4 month replicates) at same

treatment level, n = 6.

Table 9.1.2. Germination rate of Oil seed rape and Westerwold's ryegrass after I week in

diesel fuel contaminated soil.

9.1.1 Agronomic Assessment

Germination rate and tallest shoot height were to be measured at 2 and 4 months.

However, after the 2 month sampling date the remaining Westerwold's ryegrass plants,

which would have been sampled at 4 months, became infected with Black Fly. The

occurrence of disease on both plant species suggested the soil used for this experiment was

a carrier of disease/pests to begin with. Growing plants in contaminated soil would reduce

plant health making them more susceptible to attack but disease would have to be already

present to cause such a widespread infection. This set back in the pot experiment was

unfortunate but a lot of information could be gathered from the 2 month Westerwolds

ryegrass samples when compared to the control and unplanted pots at the same treatment

levels. Table 9.1.1.1 gives a summary of the results of the agronomic parameters assessed

at the 2 month sampling date.
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Av. Av. tallest Av. shoot Av. root
Treatment g germination shoot (cm) biomass per biomass per
diesel kg" soil (%) plant (mg) plant (mg)

0 60 ± 1.67 93.3 ± 4.81 254 ± 1 3645 ± 150

5 68 ± 6.01 66.0 ± 2.00 45 ± 0 980 ± 150

7.5 55 ± 1.91 62.3 ± 4.06 47 ± 1 1089 ± 100

10 49 ± 6.27 63.7± 4.18 55 ± 1 1272 ± 150

Average values are given ± SE, n = 3. Biomass values are expressed as oven dry (75°C) weights.

Table 9.1.1.1. Summary of agronomic performance of Westerwold's ryegrass at the 2

month sampling date.

There was a slight decrease in the number of plants at each treatment level when

compared to the original % germination results recorded at week 1. This decrease was

more apparent at the higher diesel fuel contamination levels and was probably due to

overcrowding in the pots causing the smaller, weaker plants to die out as well as the effect

of diesel fuel contamination. The average shoot height of contaminated plants was stunted

compared to control plants but very little difference in shoot height was observed between

contaminated treatments. Contaminated plants shoot height was, on average, reduced by

32% compared to the controls average shoot height. A large difference in shoot and root

biomass was observed between the control and contaminated plants. On average, shoot

biomass decreased to 19% of the control plant biomass in contaminated plants and root

biomass was reduced by 50% in contaminated plants. Within the contaminated treatments,

a small increase in shoot biomass was observed with increasing diesel fuel contamination

levels. This unusual trend is more apparent in the root biomass results where a significant

increase is observed. An increase in the root biomass over the shoot biomass may suggest

these plants are stressed and are not obtaining enough water for growth so they are

allocating more of their energy to producing a larger root system to compensate. Addition

of diesel fuel to soil has been shown to increase soil water repellency (Section 5.2)

therefore the plant may be responding to this contamination by producing a larger root to

shoot ratio to obtain essential water and nutrients.
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9.1.2 Enzymatic Assessment of the Plant-Soil System

At the two month harvest, after the pots had been destructively sampled for plant

biomass, the remaining soil was subsampled for enzymatic analysis. The subsamples were

then analysed for phosphatase acitivity (as described in Section 2.5.1), dehydrogenase

activity (as described in Section 2.5.2) and Fluorescein diacetate (FDA) activity (as

described in Section 2.5.3).

9.1.2.1 Dehydrogenase Activity

Addition of diesel fuel to soil caused a significant increase in activity up to the 109 diesel

kg' soil level where a slight decrease was seen. Addition of diesel fuel caused a 54.7%,

86.0% and 72.3% increase in dehydrogenase activity compared to the control soils activity

in Sg, 7.Sg and 109 diesel kg' soil as shown in Figure 9.1.2.1.1. All the contaminated soils

dehydrogenase activities were significantly higher than the control soil with no diesel fuel

addition which suggests proliferation of the natural microbial population by diesel fuel

addition caused by the microbial population utilising diesel fuel as a food (carbon) source.

Steubing (1967) found a similar increase in dehydrogenase activity in soils contaminated

with heating oil compared to control soil. The higher results were explained by the

increase in the hydrocarbon oxidising bacteria present.
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Figure 9.1.2.1.1 Dehydrogenase activity in unplanted and Westerwold's ryegrass planted

soils at Og, 5g, 7.Sg and 109 diesel kg' soil treatments.
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By growing Westerwold's ryegrass in soil, an increase of 61 % in the dehydrogenase

activity was observed. The dehydrogenase levels increased following the same pattern as

observed in the unplanted soil, up to the 109 diesel kg' soil level, where dehydrogenase

activity stayed the same. The dehydrogenase activity results clearly showed the increased

microbial activity and microbial population under planted soils as opposed to unplanted

soils. The decrease in dehydrogenase activity observed at the 109 diesel kg' soil level in

unplanted soil was not seen in planted soil at this contamination level. The plant

rhizosphere effect may be protecting the microorganisms from the inhibitory effect of the

diesel fuel as shown by the high level of dehydrogenase activity that was maintained.

9.1.2.2 Phosphatase Activity

Plant roots are major producers of acid phosphatase but do not produce alkaline

phosphatase (Kramer and Green, 2000, Pant et al., 1994). Acid phosphatase is closely tied

to root growth activity and plant demand for phosphorus. Soil microorganisms can also

produce acid phosphatase. Alkaline phosphatase originates entirely from soil bacteria,

fungi and fauna (Frankenberger and Dick, 1983, Pant et al., 1994, Tabatabai, 1994).

Microorganisms can produce and release large quantities of extracellular phosphatase due

to their large combined biomass, high metabolic capabilities and short life cycles. Again,

because phosphatases are adaptive enzymes, the intensity of excretion by microorganisms

will be determined by their need for phosphate (Skujins, 1976).

The acid phosphatase results showed little increase from the control level in

unplanted soils except at the 7.5g diesel kg' soil level where an increase of 26% was

observed. When Westerwold's ryegrass was grown, an increase in activity in all treatment

levels was seen as illustrated in Figure 9.1.2.2.1. Acid phosphatase activity in the control,

planted soil increased 41% above the control, unplanted soil. An increase of 35%, 69(/c)

and 75% was observed in the 5g, 7.5g and 109 diesel kg' planted soils compared to the

corresponding unplanted soils. This increase in acid phosphatase activity is representative

of the increased need for inorganic phosphate by plants and microorganisms for growth.
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Figure 9.1.2.2.1 Acid phosphatase activuy In unplanted and Westerwold's ryegrass

planted soils at Og, 5g, 7.5g and lag diesel kg' soil treatments.

The alkaline phosphatase results showed increased production of enzymes by

microorganisms at the lag diesel kg" soil level. The increase was small, being only 7%

above the control activity, but it may suggest there was a lack of available phosphate which

was required for microbial growth. A large increase was seen at the 5g diesel kg" soil

level under planted conditions as shown in Figure 9.1.2.2.2. This may suggest that at this

diesel fuel treatment level, very little inorganic phosphate was available for microbial

proliferation, possibly due to the plants using a lot of the available inorganic phosphate for

growth. Therefore production of alkaline phosphatase was increased to enhance the

availability of inorganic phosphate for microbial growth.
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Figure 9.1.2.2.2 Alkaline phosphatase activity in unplanted and Westerwold's ryegrass

planted soils at Og, 5g, 7.5g and 109 diesel kg' soil treatments.

9.1.2.3 Fluorescein Diacetate (FDA) Activity

FDA hydrolysis is a broad spectrum enzyme assay as the enzymes responsible are non

specific proteases, lipases and esterases. They are widespread in the soil environment and

provide a general estimate of total microbial activity in the soil.

FDA activity was seen to increase in unplanted soil by addition of 5g diesel kg-' soil.

This initial stimulation in activity tailed off at higher levels of diesel fuel addition as shown

in Figure 9.1.2.3.1. FDA activity fell from 120% of the control activity in the 5g diesel kg-

, soil treatment to 104% and 94% of the control activity in the 7.Sg and 109 diesel kg' soil

treatments respectively. The results show that the total microbial activity was stimulated

by diesel fuel, in the majority of treatments, in unplanted soil. At the 109 diesel kg" soil

treatment, FDA activity was suppressed slightly which suggests that this concentration of

diesel fuel is beginning to have an inhibitory or even toxic effect on the soil

microorganisms as their total activity is decreasing.

By growing Westerwold's ryegrass in the soil, FDA activity was increased by 32%

compared to the unplanted soil. FDA activity was increased in diesel fuel contaminated,
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planted soil by 9% on average, compared to the uncontaminated planted soil. Little

difference was observed between FDA activities in the different diesel fuel treatments.

This suggests in planted soils, the level of non specific proteases, lipases and esterases

were increased compared to unplanted soil but the further addition of higher levels of

diesel' fuel had no effect on the levels of these enzymes. The increased level of

microorganisms being supported by the added diesel fuel and the plants may have reached
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Figure 9. J .2.3.1 Fluorescein diacetate (FDA) activity in unplanted and Westerwold's

ryegrass planted soils at Og, 5g, 7.5g and 109 diesel kg" soil treatments.

9.1.3 Analysis of Residual Diesel Fuel

After two months, the amount of diesel fuel remaining in the unplanted and Westerwold's

ryegrass planted soil, at all diesel fuel treatment levels, was measured. The residual diesel

fuel was extracted from the soil as described in Section 2.3.2 and analysed by GC-FID as

described in Section 2.3.4. Total petroleum hydrocarbon (TPH) values were calculated for

the residual diesel fuel in each soil treatment as well as for diesel fuel extracted at time

zero to illustrate the % breakdown observed. A subsample of each diesel fuel treated soil

was also stored in the cold room (4°C) for 2 months to provide a baseline value of the o/c

diesel fuel lost through abiotic processes and not due to microbial or plant influence. The
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results for each diesel fuel treatment level are presented in Tables 9.1.3.1, 9.1.3.3 and

9.1.3.5.

The 5g diesel kg' soil treatment showed a large decrease in the amount of diesel

fuel remaining after 2 months as shown in Table 9.1.3.1. The loss of diesel fuel from both

planted and unplanted soils was very similar with % diesel fuel remaining in unplanted soil

being 39.8% and % diesel fuel remaining in planted soil being 37.2%. The soil stored in

the cold room over the 2 month period that the experiment was running showed a loss of

approximately 28% compared to diesel fuel extracted from freshly contaminated soil (time

zero). This loss was due to volatilisation and adsorption of diesel fuel components but not

biological loss. The true breakdown rates were therefore calculated using the cold room

TPH value as the starting point to demonstrate true biological breakdown. The breakdown

rates due to microbial and plant influence were 45% and 48% in the unplanted and

Westerwold's ryegrass planted soil. Only 3% more diesel was broken down under planting

at the 5g diesel kg' soil level. Figure 9.1.3.2 illustrates the diesel fuel components

remaining in the planted and unplanted soils compared to the chromatogram of the original

diesel extracted at time zero.

treatment TPH peak area % difference % diesel remaining
between replicates

Fresh (time zero) 34622.55 1.16 100

Cold room 24956.66 1.12 72.1

5g diesel, no plants 13781.00 0.86 39.8

Plants, 5g diesel I

Plants, 5g diesel 2

Plants, 5g diesel 3

12195.28

12433.23

13970.39

1.58

0.65

2.73

Average

37.2

TPH peak areas calculated from replicates with less than 5% difference between them, n = 3.

Table 9.1.3.1 Total petroleum hydrocarbon (TPH) values and % diesel fuel rernauung

after 2 months for contaminated, unplanted and planted soils.
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Figure 9.1.3.2 Chromatograms of 5g diesel kg" soil original diesel fuel extracted at time

zero and residual diesel fuel extracted from unplanted and planted soil (top to bottom)

plotted together. Original chromatograms were set to the same scale.
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Although the amount of diesel fuel remaining in the planted and unplanted soils

was similar, the pattern of diesel fuel distribution was quite different. The difference

cannot be seen clearly from the chromatograms in Figure 9.1.3.2 but if you compare the

extent of breakdown of individual petroleum hydrocarbons, a pattern begins to emerge. n-

alkanes ranging from carbon 13 to carbon 22 were used to illustrate this. Figure 9.1.3.3

shows the percentage breakdown of individual n-alkanes in unplanted and planted soils.

The % breakdown is calculated by subtracting the peak area of the individual n-alkane

remaining in the soil from the peak area of the same individual n-alkane extracted from the

cold room sample. This gives the true amount of breakdown observed under the specific

treatment. Figure 9.1.3.3 showed that breakdown in unplanted soil at the 5g diesel kg" soil

contamination rate was quite even for all the n-alkanes investigated. The smallest (C 13)

and slightly higher (C21) n-alkanes had the highest amount of breakdown. being 58% and

55%. The mid range n-alkanes (C17 and C18) also showed high % breakdown. A very

different pattern of breakdown was observed for n-alkanes in planted soil. The highest %

breakdown was seen for the smaller n-alkanes but the % breakdown tailed off rapidly after

that. An almost linear decrease in degradation was seen with increasing carbon number

(Figure 9.1.3.3). This increased breakdown of the smaller, lower molecular weight n-

alkanes shows a definite shift in the microbial community responsible for diesel fuel

degradation when compared to the even breakdown of n-alkanes in the unplanted soil.
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Figure 9.1.3.3 % degradation of individual n-alkanes 111 5g diesel kg" unplanted and

Westerwold's ryegrass planted soil.
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At the higher contamination level of 7.5g diesel kg' soil the amount of diesel fuel

remaining in the unplanted soil was much higher than previously observed in the 5g diesel

kg' soil treatment. 56.9% diesel fuel was left in the unplanted soil as shown by the results

in Table 9.1.3.4. This higher level of diesel fuel may require a longer period of breakdown

by soil microorganisms due to its toxicity at high concentrations or the increased quantity

requiring breakdown. The amount of diesel fuel remaining in Westerwold's ryegrass

planted soil was 34.3%. This large difference in residual diesel fuel content is attributed

entirely to the influence of plants and their associated microorganisms on contaminant

breakdown. The % breakdown of diesel fuel by purely biological processes in the

unplanted and planted soils is 20% and 52% when loss by abiotic processes is taken into

account. The increased breakdown under planted soil is clearly seen in Figure 9.1.3.5

where the unplanted and planted residual diesel fuel chromatograms are compared.

treatment TPH peak area % difference % diesel remaining
between replicates

Fresh (time zero) 60436.45 2.95 100

Cold room 42947.77 2.74 71.1

7.5g diesel, no 34400.18 1.76 56.9

plants

Plants, 7.5g diesel I 18128.55 3.03 Average

Plants, 7.5g diesel 2 19841.09 1.79 34.3

Plants, 7.5g diesel 3 24180.09 2.50

TPH peak areas calculated from replicates with less than 5% difference between them, n = 3.

Table 9.1.3.4 Total petroleum hydrocarbon (TPH) values and % diesel fuel remaining

after 2 months for contaminated, unplanted and planted soils.
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Figure 9.1.3.5. Chromatograms of residual diesel fuel extracted from 7.5g diesel kg" soil

unplanted and planted soil (top to bottom) plotted together.
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The additional biological breakdown in unplanted soil was minimal as can be seen

from Figure 9.1.3.6. Surprisingly, the higher molecular weight n-alkanes had the highest

% breakdown in unplanted soil. The planted soil showed enhanced % breakdown for all

the n-alkanes investigated. Breakdown was again higher for the low molecular weight n-

alkanes and decreased as carbon number increased (as shown in Figure 9.1.3.6). The huge

difference in breakdown illustrated can be clearly seen by comparing the chromatograms in

Figure 9.1.3.5.
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9.1.3.6 % degradation of individual n-alkanes 111 7.5g diesel kg' unplanted and

Westerwold's ryegrass planted soil.

The amount of diesel fuel remammg In unplanted soil increased further as the

diesel fuel contamination level was increased to 109 diesel kg-I soil. The amount of diesel

fuel remaining in unplanted soil was 61.4%, compared to 46% remaining in the planted

soil as shown in Table 9.1.3.7.
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treatment TPH peak area % difference % diesel remaining
between reElicates

Fresh (time zero) 82878.77 2.50 100

Cold room 65864.82 2.36 79.5

109 diesel, no plants 50851.39 0.23 61.4

Plants, 109 diesel I 34175.84 2.39 Average'

Plants, 109 diesel 2 42003.71 2.16 46.0

TPH peak areas calculated from replicates with less than 5% difference between them, n = 3.

Table 9.1.3.7. Total petroleum hydrocarbon (TPH) values and % diesel fuel remaining

after 2 months for contaminated, unplanted and planted soils.

Again the cold room sample allowed abiotic losses to be accounted for therefore

breakdown rates of diesel fuel by soil microorganisms in the unplanted soil was 33% and

42% breakdown by plants and their associated microbial community in the planted soil.

Enhanced breakdown of individual n-alkanes was again observed under planted soil as

opposed to unplanted soil and the lower molecular weight n-alkanes were again

preferentially degraded in planted soil as shown in Figure 9.1.3.8. Figure 9.1.3.9 compares

the unplanted and planted chromatograms from the 109 diesel kg' soil treatments.
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9.1.3.8 % degradation of individual n-alkanes In 7.5g diesel kg' unplanted and

Westerwold's ryegrass planted soil.
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Figure 9.1.3.9 Chromatograms of residual diesel fuel extracted from 1Og diesel kg" soil

unplanted and planted soil (top to bottom) plotted together.
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The results clearly showed that at low levels of diesel fuel contamination (5g diesel

kg' soil), little advantage was seen in diesel fuel breakdown rates in planted soil as

opposed to unplanted soil. At higher levels (7.5g and JOg diesel kg' soil) a significant

difference was observed between planted and unplanted soil. Degradation of individual n-

alkanes in 5g diesel kg' unplanted soil showed no bias as to what molecular weight range

of n-alkanes were degraded. The microbial population that had proliferated in the

Westerwold's rye grass rhizosphere was seen to preferentially degrade the lower molecular

weight alkanes. Breakdown of n-alkanes at the higher contamination levels (7.5g·and 109

diesel kg' soil) in unplanted soil was minimal.

Growing Westerwold's ryegrass clearly enhanced the degradation rate of diesel fuel

in contaminated soil.

9.2 Legumes versus Non Legumes

A large pot trial involving legumes and non legumes at four different diesel fuel treatment

levels was designed to further investigate phytoremediation of contaminated soil.

Westerwold's ryegrass was again chosen as it performs well in diesel fuel contaminated

soil. Common vetch was chosen as the legume species as it performed well in the initial

plant screening experiment (section 6.1) as well as in the small pot experiment described in

Section 8.2. Meadow mix, containing a mixture of grass and legumes species was chosen

to investigate if a mixture of plant species is more successful than individual species in the

phytoremediation process. John Innes compost No.2, which is made from sterilised loam

and heat treated to remove pathogens, was used as the soil in this experiment to avoid the

complications that arose with diseased plants in the last experiment. The soil physical

and chemical characteristics were given previously in Table 8.1.1. The experimental

design included three different planting treatments in 0, 5, JO and 15g diesel kg' soil levels

with 2 sampling dates.

9.2.1 Agronomic Assessment

Germination rate was recorded for all the pots at all treatment levels after 2 months growth.

The germination rates for each plant species investigated were very different as illustrated

in Table 9.2.1.1. Westerwold's ryegrass appeared to germinate more successfully at the 5g

diesel kg' soil level than in control soil (Og diesel kg" soil). There was little difference
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between germination rates in the control and 109 diesel kg' soil but a definite decrease in

germination was observed at the 15g diesel kg' soil level. Common vetch

germination appeared unaffected by the diesel fuel contamination levels chosen in this pot

experiment. Meadow mix also appeared unaffected by contamination level until the 15g

diesel kg' soil treatment, where germination rate was reduced by 50%.

Treatment g diesel kg' soil % germination

Westerwold's ryegrass
o
5
10
15

58 ± 0.88
67 ± 1.45
59 ± 1.53
44 ± 1.76

Common vetch
o
5
10
15

60 ± 0.88
62 ± 1.76
64 ± 2.52
63 ± 1.25

Av. no. seedlings per pot

Meadow mix
o
5
10
15

10 ± 0.88
11 ± 1.76
11 ± 2.52
5±1.15

Average % germination values arc given for both Westerwolds rygrass and Common vetch whereas average

number of seedlings per pot arc given for Meadow mix, n = .1

Average values correspond to two levels of pots (2 month and 4 month) at the same treatment level.

Table 9.2.1.1 Germination rate of Westerwold's ryegrass, Common vetch and Meadow

mix at all treatment levels after 2 months growth.

After two months growth the Westerwold's ryegrass plants were growing

extremely well in the 5g diesel kg' soil treatment level, quite well in the 109 diesel kg'

soil treatment level but were poor at the 15g diesel kg' soil treatment level. Figure 9.2.1.2

illustrates the health of each plant species grown and the production of shoot biomass in

this pot experiment at the first harvest date (2 months). Although the Westerwold's

ryegrass plants were growing well in the 5g diesel kg" soil treatment level their overall
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shoot biomass was reduced compared to the control. Table 9.2.1.3 shows the shoot and

root biomass results of each plant species after 2 months growth.

Westerwold's ryegrass plants shoot biomass was reduced by 34%, 59% and 95%

compared to the control plants average biomass in the 5g, 109 and I5g diesel kg-l soil

treatment levels respectively. The root biomass results did not follow the same pattern,

with little difference in root biomass observed until the I5g level, where root biomass

actually increased. At the 5g and 109 diesel kg" soil treatment levels, root biomass was

reduced by 5% and 15% compared to the control. In the I5g diesel kg" soil treatment

level however, root biomass per plant was seen to increase 67% compared to the control.

This unusual trend has been observed for Westerwold's ryegrass in a previous pot

experiment (Section 8.3). The shoot to root ratio was extremely off balance in favour of

root biomass which suggests the plant was allocating more of its energy and resources to

producing a larger root system, possibly as a means of obtaining more water.

Common vetch plants grew quite successfully at the 5g and 109 diesel kg" soil

levels but again were poor at the I5g diesel kg" soil level as shown in Figure 9.2.1.2.

Although germination rate showed no distinct difference between control and

contaminated treatments the shoot and root biomass results showed a clear difference, as

illustrated in Table 9.2.1.3. Shoot biomass was reduced by 62% in both the 5g and 109

diesel kg" soil treatments and by 93% in the 15g diesel kg-}soil treatment. This huge

reduction in shoot biomass was not reflected in the root biomass results. Root biomass was

reduced by 17%, 23% and 28% in the 5g, 109and 15gdiesel kg" soil treatments compared

to the control.

The Meadow mix plants grew well at the 5g diesel kg" soil level, were poor at the

109 diesel kg" soil level and barely grew at the 15g diesel kg" soil level. Shoot biomass

was moderately reduced by 28% in the 5g diesel kg" treatment level and drastically

reduced by 87% and 93% in the 109 and 15g diesel kg" soil treatment level compared to

the control. Root biomass was reduced by 67%, 73% and approximately 100% in the 5g,

109and I5g diesel kg" soil treatment levels compared to the control.

Plant height was also measured each month during the course of the experiment but

these results will be given together with the 4 month results.
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Figure 9.2.1.2 Growth ofWesterwold's ryegrass, Common vetch and Meadow mix (from

top to bottom) in Og, 5g, 7.5g and 109 diesel kg" soil (from left to right) after 2 months.
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After 4 months growth, the general health and biomass of plants grown in the lower

levels of diesel fuel contaminated soil (5g and 109) had greatly increased for all the plants

investigated. The plants grown in 15g diesel kg' contaminated soil were still not

producing much bulk. Figure 9.2.1.4 illustrates Westerwold's ryegrass, Common vetch

and Meadow mix in the four soil treatment levels at the 4 month harvest date. As you can

see from the photographs, there is little difference between plants grown in Og, 5g and 109

diesel kg' contaminated soil for the three planting species tested. Figure 9.2.1.5 shows the

increase in plant height for each plant species over the course of the experiment. The

Westerwold's ryegrass plants showed a more defined difference in plant height between

treatment levels at the end of the experiment than they did at the start. The Common vetch

plants grown in Og, 5g and 109 diesel kg" contaminated soil showed little difference in

plant height throughout the experiment and the plants grown in 5g and 109 diesel kg'

contaminated soil actually had taller shoot heights at the end of the experiment (4 months)

than the control plants. Common vetch plants did not grow well in 15g diesel kg'

contaminated soil but their plant height did improve slightly over the course of the

experiment. Meadow mix plants, like Westerwold's ryegrass, showed a more defined

difference in plant height nearer the end of the experiment than at the start. From about the

2 month measurement, plants grown in 5g diesel kg" contaminated soil had taller shoot

heights than the control plants. Plants grown in 109 diesel kg" soil closely followed the

control plant heights until the 4 month measurement where the control plant height

increased above the height of plants grown in 109 diesel kg" soil. Plants grown in 15g

diesel kg" soil were much shorter than plants grown in the other treatments but plant

height was seen to rapidly improve after 3 months.
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Figure 9.2.1.4. GrowthofWesterwold's rye grass, Common vetch and Meadow mix (from

top to bottom) in Og, 5g, 7.5g and 10g diesel kg" soil (from left to right) after 4 months.
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Figure 9.2.1.5 Plant height data over the course of the experiment for (A) Westerwold's

ryegrass, CB) Meadow mix and (C) Common vetch in Og, 5g, 7.5g and 109 diesel kg' soil.
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Shoot and root biomass was again collected at the 4 month harvest date. This

collection of biomass differed from the first biomass collection at 2 months as a cutting

regime was included whereby shoot biomass was cut back after 2 months growth and this

biomass added to the biomass collected at the 4 month harvest. This cutting proved to he

successful as healthy re-growth of all the plant species was observed.

Westerwold's ryegrass shoot biomass was still reduced when compared to the

control plants shoot biomass after 4 months. Shoot biomass was reduced by 52%, 68«

and 77% in 5g, 109 and 15g diesel kg'! soil compared to the control as shown in Table

9.2.1.6. Root biomass was reduced compared to the control by 47%, 67% and 68% in 5g.

109 and 15g diesel kg' contaminated soil. No increase in root biomass was observed as

seen previously at the 2 month harvest date. Common vetch plants grown in Og, 5g and

109 diesel kg' soil had similar plant heights but a noticeable difference in shoot biomass

was observed. Shoot biomass was reduced by 38% and 55% in the 5g and 109 diesel kg'

soil treatments compared to the control. Common vetch plants grown in 15g diesel kg'

contaminated soil had a reduced shoot biomass of 90%. Meadow mix plants grown in 5g

and 109 diesel kg' contaminated soil produced slightly more shoot biomass than

previously seen with any of the other plant species, when compared to the control biomass.

Shoot biomass was reduced by 14% and 45% in 5g and 109 diesel kg' contaminated soil

compared to the control. At the l5g diesel kg' soil level however, the shoot biomass was

drastically reduced to 0.12% of the control biomass.
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9.2.2 Enzymatic Assessment of the Soil-Plant System

At two and four months, plants were harvested. After pots had been destructively

sampled for plant biomass, the remaining soil was subsampled for enzymatic analysis. As

before, subsamples were analysed for phosphatase activity (as described in Section 2.5.1),

dehydrogenase activity (as described in Section 2.5.2) and fluorescein diacetate (FDA)

activity (as described in Section 2.5.3). The results of the 2 and 4 month enzymatic

analyses are discussed below.

9.2.2.1 Dehydrogenase Activity

Addition of diesel fuel to soil caused a huge increase in dehydrogenase activity.

Dehydrogenase activity rose to 369%, 700% and 708% in 5g, 109 and ISg diesel kg' in

unplanted soil compared to control soil (Og diesel kg' soil) as shown in Table 9.2.2.1.1.

This large increase in activity was seen in the previous experiment (Section 9.1) and

represented the increase in microbial numbers caused by the input of diesel fuel being

utilised as a food source by the microorganisms. Little difference was seen, at this early

stage, between planted and unplanted, uncontaminated soil dehydrogenase activities.

However, an increase in dehydrogenase activity was observed in planted, contaminated

soil as opposed to unplanted, contaminated soil. The largest increase in activity was seen

under Common vetch planted soil as illustrated in Figure 9.2.2.1.2. Dehydrogenase

activity rose from 97% of the unplanted, 5g diesel kg' soil value to 136% and 203% above

the 109 and 15g diesel kg' I unplanted soil values. Westerwold's ryegrass and Common

vetch planted soils had dehydrogenase activities above the corresponding dehydrogenase

values in unplanted soil. Meadow mix planted soil had dehydrogenase values below or

just slightly over the corresponding dehydrogenase values in unplanted soil. This suggests

the microbial population associated with Meadow mix plants is much smaller and less well

developed than the microbial populations present under the other two plant species.
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Figure 9.2.2.1.2. Enzymatic analyses for 2 month legumes vs non legumes soil samples.

A) Dehydrogenase activity, B) FDA activity, C) Acid phosphatase activity and D) Alkaline

phosphatase activity.
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The initial increase in dehydrogenase activity observed at 2 months by addition of

diesel fuel to soil had lessened in the 5g and 109 diesel kg' soil treatments by the 4 month

measurement. A huge increase in activity of 581% above the uncontaminated soil value

was observed at the 15g diesel kg' soil level as shown in Table 9.2.2.1.3. This high

dehydrogenase activity may indicate that there is a lot of diesel fuel still present and being

utilised as a food source by microorganisms in the 15g diesel kg' soil. The quantity of

diesel fuel remaining in the lower contamination levels may be low or the diesel fuel

components left are very difficult to breakdown so the overall dehydrogenase activity of

these treatments is low.

A difference in dehydrogenase activity was observed between planted and

unplanted treatments at the 4 month sampling date which was not seen after 2 months. An

increase of 67%, 40% and II % was observed by growing Westerwolds ryegrass,

Common vetch and Meadow mix compared to uncontaminated, unplanted soil. Figure

9.2.2.1.4 illustrates the difference in dehydrogenase activities of the planted and unplanted

soil at all treatment levels. Westerwold's ryegrass planted soil dehydrogenase activity

continued to increase with diesel fuel addition to 62%, 176% and 2549( above the

uncontaminated, planted soil in 5g, 109 and 15g diesel kg' soil respectively. Common

vetch planted soil dehydrogenase activity increased up to the 109 diesel kg' soil, where it

levelled off to the 15g diesel kg-I soil. Meadow mix planted soil dehydrogenase activity

again increased to the 109 diesel kg' soil level, where a slight decrease in activity was

observed at the 15g diesel kg' soil level.
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Figure 9_2.2.1.4. Enzymatic analyses for 4 month legumes vs non legumes soil samples.

A) Dehydrogenase activity, B) FDA activity, C) Acid phosphatase activity and D) Alkaline

phosphatase acti vity.
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When the dehydrogenase activities for each treatment at the 2 month sampling date

and the 4 month sampling date were compared, the increase or decrease in activity over the

length of the experiment, could be determined.

In the uncontaminated, unplanted treatments, the dehydrogenase activity continued

to increase from the 2 to 4 month sampling date. This would be expected as the microbial

population present would utilise the organic matter and nutrients present in the soil and

continue to proliferate. In the 5g and 109 diesel kg' soil, the dehydrogenase activity

decreased over the 4 month period. The initial flourish of activity caused by the input of a

small amount of useable substrate (diesel fuel) would quickly go, causing a decrease in

dehydrogenase activity sometime after the 2 month measurement. The microorganisms

would use the easily degradable diesel fuel components first, which would cause the large,

initial increase in dehydrogenase activity observed. The remaining diesel fuel may not be

as suitable a substrate for microbial degradation hence the microbial activity and the

number of microorganisms the soil could support would fall causing the observed decrease

in dehydrogenase activity. At the 15g diesel kg' soil level the dehydrogenase activity was

increasing which suggests the remaining diesel fuel was still being utilised effectively by

soil microorganisms.

In the planted soil, three different situations were found under the three different

planting regimes used in this experiment. The Westerwold's ryegrass planted treatments

followed the same pattern of increases and decreases in dehydrogenase activity as the

unplanted soil. Dehydrogenase activity was increased more in the uncontaminated, planted

treatments than in the unplanted treatment. In the unplanted treatment, dehydrogenase

activity increased 80% over the 2 to 4 month period. In the Westerwold's ryegrass planted

treatment, an increase of 320% was observed over the 2 to 4 month period. This difference

illustrates the influence of plant exudates input and the presence of the growing plant on

microbial numbers and dehydrogenase activity. The same increase in dehydrogenase

activity over the 2 to 4 month period was observed for Common vetch and Meadow mix

uncontaminated treatments compared to the uncontaminated, unplanted treatment.

Whereas dehydrogenase activity was seen to decrease in the 5g diesel kg' unplanted and

Westerwold's ryegrass planted treatments, an increase was observed in the Common vetch

and Meadow mix planted treatments. The reason for this difference may be that the

microbial populations developing under the Common vetch and Meadow mix planted soils

are different from the populations present in the unplanted and Westerwold's ryegrass

planted soil. The microbial community may have developed at a slower rate which may

indicate there was still easily degradable diesel fuel left for microbial utilisation or the

microorganisms may have been more varied in the substrates they could degrade, allowing
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higher molecular weight diesel fuel components to be used which may have been avoided

by the microorganisms present in the unplanted and Westerwold's ryegrass planted soils.

At the 109 and 15g diesel kg' soil level, dehydrogenase activity was seen to decrease in

the Common vetch planted treatments. The initial high activities observed at the 2 month

sampling date imply the majority of useable diesel fuel components would have been used

up initially, with the more specialised microbial component surviving to the 4 month

sampling date. The Meadow mix planted soil dehydrogenase activity continued to increase

in the 109 diesel kg' soil before levelling off at an activity that was maintained in the 15g

diesel kg' soil. This suggests the microbial population that was supported in the 15g

diesel kg' Meadow mix planted soil had reached its maximum level of activity and still

had enough substrate for growth to maintain this high level of activity.

9.2.2.2 Phosphatase Activity

An increased need for inorganic phosphate caused an increase in acid phosphate activity in

the diesel fuel contaminated soil compared to uncontaminated soil. In unplanted soil, acid

phosphate activity increased 81%,100% and 93% in 5g, 109 and 15g diesel kg' soil above

the Og diesel kg' soil value. Table 9.2.2.2.1 shows the acid phosphatase results under each

treatment at the 2 month harvest date. In planted treatments, the Meadow mix planted soil

showed a similar pattern of acid phosphatase activity as the uncontaminated, unplanted soil

as shown in Figure 9.2.2.1.2. The other two plant species phosphatase activities rose

above the control, unplanted and Meadow mix planted soils only at the higher levels of

diesel fuel contamination (lOg and 15g diesel kg" soil). There was little difference

between the activities of Westerwold's ryegrass and Common vetch. The small increase in

acid phosphatase activity suggested the plants had sufficient inorganic phosphate for

growth hence they did not need to produce vast quantities of additional acid phosphatase

enzymes to breakdown organic phosphate to inorganic phosphate at this stage.

The alkaline phosphatase results, which illustrate phosphatases produced only from

micoorganisms, showed a slightly different pattern of activity. Alkaline phosphatase

activity was increased by the addition of diesel fuel, as observed in the acid phosphatase

results. but also by growing plants on the soil. Alkaline phosphatase activity values were

increased by 20% in Westerwold's ryegrass planted soil, 16% in Common vetch planted

soil and 42% in Meadow mix planted soil compared to unplanted, uncontaminated soil as

shown in Table 9.2.2.2.2. Diesel fuel contamination also caused an increase in alkaline

phosphatase activity under planted soil. On average an increase of 123%, I15% and 52%
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was seen in diesel fuel contaminated Westerwold's ryegrass, Common vetch and Mcadow

mix planted soil compared to uncontaminated, planted soil. Figure 9.2.2.1.2 illustrates the

pattern of alkaline phosphatase activity at each treatment level. The larger difference in

alkaline phosphatase activity in planted soils compared to acid phosphatase activity may be

due to the plants utilising the majority of inorganic phosphate available with the

microorganisms responding to this by producing more alkaline phosphatase which would

in turn release more inorganic phosphate for microbial growth.
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The increase in acid phosphatase activity caused by the addition of diesel fuel that

was observed at the 2 month sampling date was continued to the 4 month sampling date.

Acid phosphatase activity increased JO%, 37% and 57% above the uncontaminated soil in

5g, 109 and 15g diesel kg' soil treatments as shown in Table 9.2.2.2.3. Acid phosphatase

activity was also seen to increase slightly in Westerwold's ryegrass and Meadow mix

planted soils when compared with unplanted soil, as illustrated In Figure 9.2.2.1.4.

Westerwold's ryegrass planted soil demonstrated a large increase In acid phosphatase

activity in 5g and 109 diesel kg-! soil treatments compared to the corresponding unplanted

treatments. This suggests the plants and microorganisms required more inorganic

phosphate for growth than was currently available in the soil therefore an increase in acid

phosphatase activity was seen to counteract this problem. The level of activity fell at the

15g diesel kg' soil level. Figure 9.2.2.1.4 illustrates the pattern of acid phosphatase

activity under Common vetch and Meadow mix planted soil, which is similar to the pattern

observed under Westerwold's ryegrass planted soil.

The pattern of alkaline phosphatase activity observed after 4 months was

extremely different in the unplanted and planted soil treatments as shown in Table

9.2.2.2.4 and Figure 9.2.2.1.4. In unplanted soil, alkaline phosphatase activity started at a

high value in the uncontaminated soil and slowly decreased to the 15g diesel kg' soil

value. The planted soils had the opposite effect, with an increase in all plant species being

observed from the uncontaminated soil to the JOg diesel kg' soil. A further decrease in

activity was observed for all plant species in the 15g diesel kg-! soil. The need for

inorganic phosphate by microorganisms was obviously much more important to the

microorganisms present in the planted soil than in the unplanted soil. The majority of the

inorganic phosphate would be used by the plants for growth leaving little available for

microbial growth.
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When the phosphatase activities were compared at the 2 and 4 month sampling

dates, conclusions could be drawn about the role of phosphatase enzymes in the

contaminated soil system. In unplanted soils, addition of diesel fuel was used as a

substrate by microorganisms for growth, creating a need for additional inorganic

phosphate, which resulted in an increase in both acid and alkaline phosphatase activity. By

growing plants in soil, the plants are removing inorganic phosphate for growth, which is

taking available phosphate away from the microbial component. In response, an ,increase

in predominantly alkaline phosphatase, with some acid phosphatase, was observed to

release inorganic phosphate from organic phosphate for use by the microorganisms.

9.2.2.3 Fluorescein Diacetate (FDA) Activity

Addition of diesel fuel had a larger effect on FDA hydrolysis activity than planting had.

Addition of 5g, 109 and 15g of diesel fuel to unplanted soil caused a 82%, 116% and 92%

increase in FDA activity compared to control soil (Og diesel kg' soil, unplanted). Table

9.2.2.3.1 shows the FDA activity results in unplanted soil and under different planting

treatments. A large increase in FDA activity was observed for all plant species in the 5g

diesel kg' soil treatment as illustrated in Figure 9.2.2.1.2. This suggests, at this level of

contamination, the microbial population associated with each plant species is working at a

similar level of total activity and is not being hindered either by the quantity of diesel fuel

or its toxicity. When diesel fuel contamination is increased to 109 diesel kg' soil, a

decrease in the level of total activity is observed. This level of activity is held in the 15g

diesel kg' soil for all the planted soils except Common vetch planted soil where the FDA

activity appears to rise again.
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After 4 months, FDA activity in unplanted soil at all treatment levels was much

lower than the corresponding planted treatment as shown in Figure 9.2.2.1.4. The highest

level of FDA activity was observed in the 5g and 109 diesel kg' soil treatments for the

three plant species investigated, with activity decreasing in the 15g diesel kg' soil

treatment. Table 9.2.2.3.2 shows the FDA activities for unplanted and planted soil at all

treatment levels. At the two month measurement, FDA activities in unplanted and planted

soil were similar except at the 5g diesel kg' soil level. Over the course of the experiment,

FDA activities of planted soils became more distinguishable from the unplanted soil

activities. The FDA activity of planted soil, which represents the total microbial activity of

the soil, was increased well above the activity of unplanted soil in the majority of

treatments. Common vetch planted soil had the highest activity after 4 months growth of

all the plant species investigated.

Measurement of FDA activity showed the level of total microbial activity was

much higher in diesel contaminated soil compared to uncontaminated soil and that planted

soils had a much higher level of FDA activity than unplanted soils.
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9.2.3 Analysis of Residual Diesel Fuel

A huge amount of breakdown was observed over the 2 month period before the first

harvest The treatments containing 5g diesel kg' soil had diesel fuel residues below the

measurable range, in both the planted and unplanted treatments. This huge decrease in

residual diesel fuel content was not unexpected, as all the plant species investigated grew

extremely well at this level of contamination and the level of enzymatic activity was high.

The 109 and ISg diesel kg' soil treatments also had small residual diesel fuel

concentrations as shown in Tables 9.2.3.1 and 9.2.3.2. At the 109 diesel kg' soil level, the

lowest % diesel fuel remaining was found under Common vetch planted soil (2.1 %

remaining), with Westerwold's ryegrass (3.1 % remaining) and Meadow mix (4.7%

remaining) planted soil closely following. At the 15g diesel kg' soil level, this pattern

changed with Meadow mix planted soil performing slightly better than Westerwold's

ryegrass planted soil. After 2 months, the % diesel fuel remaining was less than 5% of the

diesel fuel added. in all treatments, which is an extremely promising result.

treatment TPH peak area % difference Av. TPH % diesel
between peak area remaining
replicates

Fresh (time 74312 1.1
zero) 66196 2.1

71776 1.0 70761 100

Ryegrass 109 1 1422 5.6
Ryegrass IOg2 1636 3.8
Ryegrass 109 3 3444 3.3 2168 3.1

Vetch 109 1 1354 3.6
Vetch IOg2 1544 5.5 1449 2.1

M. mix 109 I 5207 4.4
M. mix 109 2 1415 5.9 3311 4.7

TPH peak areas calculated from replicates, n = 3.

Table 9.2.3.1 Total petroleum hydrocarbon (TPH) values and % diesel fuel remaining

after 2 months for 109 diesel kg' contaminated, planted soils.
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treatment TPH peak area % difference Av. TPH % diesel
between peak area remaining
re licates

Fresh (time 114748 1.3
zero) 104327 3.6

112156 3.6 110410 100

Ryegrass 15g I 4201 4.6
Ryegrass 15g2 8784 2.6
Ryegrass 15g 3 2959 4.8 5314 4.8

Vetch 15g I 3752 4.5
Vetch 15g 2 3130 4.0
Vetch 15g 3 1826 5.4 2903 2.6

M. mix 15g I 1485 4.9
M. mix 15g 2 3262 4.1
M. mix 15g 3 5635 1.9 3460 3.2

TPH peak areas calculated from replicates, 11 = 3.

Table 9.2.3.2 Total petroleum hydrocarbon (TPH) values and % diesel fuel remaining

after 2 months for 15g diesel kg' contaminated, planted soils.

After 4- months, the amount of diesel fuel remaining had decreased even further. In

tile 109 diesel kg' soil treatment the amount of diesel fuel residue left under Common

"etch. Meadow mix and Westerwold's ryegrass planted soil was 1.6%, 1.9% and 2.1 % as

shown in Table 9.2.3.3. The overall rate of biodegradation was high in the Common vetch

planted soil and the amount of diesel fuel remaining in this soil was the lowest of the three

planting treatments. Meadow mix and Westerwold's ryegrass planted soil were not far

behind. At the 15g diesel kg' soil level, the same pattern of breakdown was observed as

illustrated in Table 9.2.3.4. Common vetch planted soil had the lowest diesel fuel residue

level, with Meadow mix and Westerwold's ryegrass planted soil in second and third place.

The difference between the amount of diesel fuel remaining in each planting treatment was

much larger in the 15g diesel kg' treatment than in the 109 diesel kg" soil treatment.

There was. on average. a 0.4% difference between the residue levels of Common vetch and

the other two plant species at the IOg diesel kg' soil level. This difference rose to 1.5%
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between the residue levels of Common vetch and the other two plant species at the 15g

diesel kg' soil level.

treatment TPH peak area % difference
between
re licates

Av. TPH
peak area

% diesel
remammg

Ryegrass 109 1 1179
Ryegrass 109 2 2051
Ryegrass 109 3 1274

Vetch 109 I 1191
Vetch 109 2 850
Vetch 109 3 1311

M. mix 109 I 1119
M. mix 109 2 1353
M. mix IOg3 1536

2.9
2.2
2.3 1501 2.1

1.3
4.5
4.5 1117 1.6

1.4
1.7
1.4 1336 1.9

TPH peak areas calculated from replicates, n = 3.

Table 9.2.3.3 Total petroleum hydrocarbon (TPH) values and % diesel fuel remaining

after 4 months for 109 diesel kg" contaminated, planted soils.

treatment TPH peak area % difference
between
replicates

Av. TPH
peak area

%diesel
remaining

Ryegrass 15g 1 4677
Ryegrass 15g 2 2237
Ryegrass 15g 3 4515

Vetch 15g I 2653
Vetch 15g 2 1924
Vetch 15g 3 1712

M. mix 15g 1 3690
M. mix 15g 2 3898
M. mix 15g 3 3629

0.4
1.2
2.2 3810 3.5

1.4
3.8
1.1 2096 1.9

6.8
5.5
1.0 3738 3.4

TPH peak areas calculated from replicates, 11 = 3.

Table 9.2.3.4 Total petroleum hydrocarbon (TPH) values and % diesel fuel remaining

after 4 months for 15g diesel kg' contaminated, planted soils.
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The results of the large scale greenhouse trials illustrate how selected plant species

can be successfully used to enhance the degradation of diesel fuel contaminated soil. This

observation has been noted by many authors for a variety of petroleum hydrocarbon

contaminants such as PAHs (Ferro et al., 1998, Qui et al., 1998,Wetzel et al., 1998,Binet

et al., 2000), crude oil and fuels (Song et al., 1990,Carman et al., 1998).

The residual diesel fuel concentration was found to be different under different

planting species which suggests there is a difference in the microbial consortia associated

with certain plant species. This is not unexpected as plant species release differing

quantities and composition of root exudates which in turn, support a consortia of

microorganisms. Enzymes studies were used to try and clarify the difference in microbial

activity observed under different plant species and if this information could be related to

the total amount of diesel fuel degraded. The most useful enzymes system studied was

dehydrogenase activity. Dehydrogenase enzymes are only found in live microbial cells

therefore they represent a measure of the microbial biomass and microbial activity. The

results from the dehydrogenase enzyme assays showed a clear picture of how diesel fuel

was affecting the microorganisms present in the soil and how microbial activity changed in

planted soils as opposed to unplanted soils. This is in agreement with work carried out by

Bauer et at (1991) who assessed the sensitivity of different soil microbiological and

enzymological methods and concluded that dehydrogenase activity was the most sensitive

assay for assessing biological effects of oil contamination on soil.

Phosphatases measured in soils reflect the activity of enzymes bound to soil

colloids and humic substances, free phosphatases in soil solution and phosphatases

associated with living and dead plant or microbial cells. It has been suggested that

phosphatase enzymes can be a good indicator of the organic phosphorus mineralisation

potential and biological activity of soils (Kramer and Green, 2000). An increase in acid

phosphatase activity was observed in planted soils as opposed to unplanted soils which

holds with the fact that acid phosphatases are produced from plants and microorganisms.

This strengthens the observation of increased activity in planted soils as opposed to

unplanted soils and shows that the phosphorus mineralisation cycle was continuing in

diesel fuel contaminated soils. Apart from these points, measurement of phosphatase

activities did prove useful in assessing the effect of diesel fuel on the soil ecosystem.

FDA hydrolysis activity was used to measure total microbial activity and again

illustrated the increased activity in planted soils versus unplanted soils. It also helped to

distinguish between total microbial activities under different planting species. Little

difference in FDA activity was observed at the low levels of diesel fuel contamination but

distinct differences was seen at the higher levels of contamination. The highest FDA
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activity was observed in Common vetch planted soil. The highest rate of diesel fuel

degradation was also found under Common vetch planted soil. This observation was also

noted by Wang and Bartha (1990) who found FDA hydrolysis to be inversly correlated

with diesel fuel persistence.
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CHAPTER TEN

GENERAL DISCUSSION AND CONCLUSIONS

10.1 Analysis of Diesel Fuel

The methods developed in Chapter 3 for the extraction of diesel fuel from soil and the

analysis of diesel fuel extracts allowed the changes in diesel fuel composition, after it

had been released into the soil environment, to be followed. The extraction techniques

employed gave more than acceptable recovery values and the improved separation of

diesel fuel components using the modified GC-FTD programme allowed a clear picture

of diesel fuel in the soil to be obtained. Information on the composition of diesel fuel

was difficult to find when this project began. Therefore, an integral part of this study

was to thoroughly characterise diesel fuel to obtain detailed information on the

individual hydrocarbon components that make up the diesel fuel chromatogram.

Differences in the composition of diesel fuel depend on the source of crude oil and the

refinery processes involved in producing the diesel fuel product. Clear differences in

the aliphatic and aromatic fraction of two different diesel fuels was apparent thus it was

concluded that studies should be carried out using the same source of diesel fuel (i.e.

from an Esso petrol station) to minimise differences in the resulting chromatograms.

The majority of work in this thesis used the same batch of diesel fuel to ensure any

differences detected was due to the influence of the soil environment and not due to

differences in the diesel fuel itself. If a new batch of diesel fuel was required, the fuel
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was again characterised to identify any changes in hydrocarbon content from the last

diesel fuel used.

Capillary GC-FID analysis produced a very distinctive chromatogram. The

majority of diesel fuel components, providing the backbone of the chromatogram, were

n-alkanes ranging from n-nonane (C9) to tricosane (CD). This is in agreement with the

suggested carbon range of diesel fuel (S.C.L.F., 1998, Holtzclaw et al., 1991). These n-

alkane components were well separated by GC-FID and easy to identify using external

standards. However, beneath the backbone of n-alkanes, lay a whole range of peaks.

some of which were separated whilst others were small and indistinguishahle from

adjacent peaks. Some branched cyclohexanes, branched benzenes and hranched

naphthalenes were identified by GC-FID but it became apparent that another method of

analysis would have to be used to provide the in depth information of diesel fuel

composition required. To provide positive identification of the lesser hydrocarbon

peaks found in the diesel fuel profile, pure diesel fuel was separated by capillary GC-

FID then the individual peaks analysed by mass spectrometry (MS). This proved an

enormous task as 177 peaks were resolved and required positive identification. GC-MS

is an extremely powerful tool for identifying unknown compounds, but the complexity

of diesel fuel made interpretation of the mass spectra difficult. Nevertheless, out of the

177 peaks resolved, 106 were positively identified. And it should be emphasized that

out of the 61 unidentified peaks, only 7 are truly unknown. The other 54 peaks were

identified into the appropriate hydrocarbon class using the mass spectra data. Capillary

GC-FID analysis provided excellent separation of the major components in the diesel

fuel chromatogram and was sufficient for carrying out total petroleum hydrocarbon

(TPH) analysis on petroleum samples. However, capillary GC-MS is required if any in

depth analysis is required. Without GCMS analysis, a lot of the more interesting

components of diesel fuel would not have been identified. As expected, the majority of

components were n-alkanes, branched alkanes and diaromatic hydrocarbons. However.

a less obvious homologous series of branched cyclohexanes was identified by GC -ytS.

This series ranged from methyl cyclohexane, which is extremely volatile to hexadecyl

cyclohexane, which is completely non volatile. There are no accounts of this class of

cyclic alkanes being present in diesel fuel and the majority of toxicity and degradation

information centres on alkanes and aromatics. The identification of this class of

compounds was an important find and was investigated in more detail. The results of

this investigation will be discussed later.
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The detailed analysis of diesel fuel by GC-MS was time consuming but

provided valuable and much needed information on the composition of diesel fuel.

When the results of the diesel fuel analysis were summarised into specific hydrocarbon

fractions, a clear picture of the hydrocarbon classes present in diesel fuel emerged. The

alkane fraction made up 57% of the total diesel fuel, with n-alkanes being 25%,

branched alkanes (and alkenes) being 24% and cyclic alkanes being 7%. This high

percentage of branched alkanes and cyclic alkanes would make the diesel fuel .more

difficult to degrade than if it contained only n-alkanes. The aromatic fraction was 27%

of the total diesel fuel, with 5% attributed to monoaromatics, 19% diaromatics and 3%

polyaromatics (PAHs). Again, this high level of PAHs would make the diesel fuel more

resistant to degradation. The trend of results of the hydrocarbon class data were in

agreement with work published by Song et al (1990) and Hundt et al (1991) and

represent a realistic measure of the percentage hydrocarbon class distribution in a

typical diesel fuel.

10.2 Behaviour of Diesel Fuel in the Soil Environment.

10.3.1 Weathering Effects

Changes occur in diesel fuel composition after it has been released into the environemnt

due to abiotic processes such as volatilisation, leaching and adsorption and biotic

processes, namely biodegradation.

10.2.1.1 Volatilisation

Non-biological change in diesel fuel composition was caused mainly by volatilisation.

Diesel fuel is a complex mixture of hydrocarbons containing both volatile and non

volatile components. It was important to determine which compounds would volatilise

under normal conditions and how this affected the diesel fuel chromatogram. GC-FID

analysis illustrated that compounds up to approximately 20 minutes on the diesel fuel

chromatogram would volatilise under normal conditions. The components were
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identified by GC-MS as mainly BTEX (benzene, toluene, ethyl benzene and xylenes),

n-alkanes (CrC'2), branched alkanes, branched benzenes and branched cyclohexanes

(methyl to butyl). On average, the volatile fraction of diesel fuel made up

approximately 10% of the total diesel fuel product.

10.2.1.2 Leaching

Leaching of diesel fuel on entering the soil system from an above ground source was

found to be minimal, due to the hydrophobic properties of diesel fuel and the adsorptive

capacity of the surface soil components. Organic matter and silt and clay content

played an extremely important role in retaining diesel fuel in the top 30cm of the soil.

This factor is extremely beneficial to the phytoremediation of diesel fuel contaminated

sites as the contaminant is held within the rhizosphere of the plant where degradation

takes place. It also reduces the possibility of diesel fuel contaminating ground water. If

diesel fuel were to enter from an underground source, for example from a leaking

underground storage tank, this scenario would be completely different. The amount of

organic matter is greatly reduced in subsurface soils therefore diesel fuel entering would

not be retained and would migrate more readily. This may lead to possible groundwater

contamination. The contaminant would also be out with the rooting zone of most plant

species and the number of microorganisms is greatly reduced in subsurface soils,

making biodegradation unlikely. It was therefore concluded that phytoremediation of

diesel fuel contaminated soils would only be applicable to surface contamination, not

underground spills.

10.2.1.3 Adsorption

During the leaching experiments it was observed that diesel fuel components,

particularly the higher molecular weight aromatic compounds. could be adsorbed onto

soil components such as organic matter. It was therefore not unexpected that samples

contaminated with diesel fuel then stored for 2 months, had lower recoveries of diesel

fuel components by soxhlet extraction than freshly contaminated soil. A subsample of

each contaminated soil was stored at 4°C to provide a baseline value of the percentage

diesel fuel lost through abiotic processes and not due to microbial breakdown or plant
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influence. Although volatilisation would be considerably slower at 4°C, the method of

soxhlet extraction would remove the readily volatile components. The contaminated

soil was stored in bags which prevented leaching from occurring. The samples would

not represent the loss of diesel fuel through abiotic processes entirely, but loss through

volatilisation and adsorption. On average, 30% of the diesel fuel fraction added at the

start of the experiment was not recovered after 2 months storage at 4°C. It has been

shown that approximately 10% of this fraction would be readily lost through

volatilisation therefore only 20% is unaccountable for. If the diesel fuel components

were adsorbed to the soil surface, then the 6 hour hot solvent soxhlet extraction would

be expected to remove them efficiently. This was not the case, which suggests the

diesel fuel components have diffused into the soil organic matter matrix and possibly

become irreversibly bound. The organic fraction of soils is responsible for the sorption

of many compounds, particularly those that are hydrophobic (Alexander, 1994) such as

the majority of diesel fuel components. Sorption of organic contaminants to soils often

entails an initially rapid and reversible process followed by a period of slow sorption

occurring over weeks, months or even years and this slow sorption leads to a fraction

that resists desorption (Hatzinger and Alexander, 1995) hence resists extraction by

'normal' methods. This desorption resistant fraction is often persistent in the soil

environment as it is less available to microbial and enzymatic breakdown. PAHs have

been found to become 'trapped' in the humic polymer of soil organic matter

(Eschenbach et al., 1993, Alexander, 1994, Hatzinger and Alexander, 1995) which

increases their environmental persistence. The fact that approximately 20% of my

diesel fuel became unavailable was worrying from a remediation point of view as I

wanted to induce microbial degradation of the contaminants. If a large proportion of the

contaminant was unavailable to the microbial population, complete remediation of

diesel fuel contaminated soil would not be feasible. However, in soil systems with high

clay and particulate matter content the majority of bacterial cells are themselves sorbed

(Alexander, 1994). It is likely, that bacteria active in degradation are retained on solids,

a view that is supported by the finding that as naphthalene is being metabolised in the

soil, the population of naphthalene degraders that are sorbed are two orders of

magnitude above those present in the water phase (Di Grazio et al., 1990). In addition,

exoenzymes released from microbial cells and plants become sorbed to soil components

and play and important role in contaminant degradation. So although sorption may

reduce the rate and extent of biodegradation, it does not necessarily prevent it.
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10.3 Physical Effects of Diesel Fuel on Soil

When considering the overall effect of contamination on a soil system, change to the

soil's physical as well as biological characteristics must be investigated. The water

holding capacity of soil was affected by diesel fuel contamination. Fresh diesel fuel

contamination at high levels (SOg diesel kg' soil) increased water holding capacity by

approximately 14% compared to uncontaminated soil. This observation may be caused

by the presence of more hydrophilic, aromatic compounds, that are still present in

freshly contaminated soil, attracting water. As the diesel fuel contaminated soil aged,

this large increase in water holding capacity was not observed. After 4 months, a slight

increase was found between the contaminated soils and uncontaminated soils water

holding capacity. This small increase was probably due to the small residual diesel fuel

content of the soil and the influence of soil microorganisms and plant growth on soil

organic carbon content.

It seems that soil freshly contaminated with diesel fuel will attract and hold

water more readily than uncontaminated or aged diesel fuel contaminated soil. This

may be an additive factor as to why diesel fuel does not leach far through soil, but stays

in the surface soil. Apart from the fuel components being adsorbed to soil organic

matter and physically impeded from moving, if diesel fuel contaminated soil was

holding water but not draining, the usual percolation of water through the soil profile

would be affected.

A more important physical affect caused by diesel fuel contamination of soil

was observed when contaminated soils, left in the greenhouse to age, were used in a pot

experiment. These soils were seeded then the seeds thoroughly watered in. However, it

was extremely difficult to wet the soil in these pots. The water pooled on the soil

surface and seemed to sink into the soil very slowly. This phenomenon is indicative of

water repellency. Soil water repellency is attributed to the presence of hydrophobic

organic substances forming a coating over the surface of normally hydrophillic soil

particles. The process of aging diesel fuel would have left the heavier. more

hydrophobic hydrocarbons as a residue which caused the soil to develop water

repellency. This phenomenon has been observed by other authors (Li et al .. 1997,

Brown et al., 1982). The formation of repellent soil may result in impaired plant-soil

water relations as it would strongly influence the soil's ability to maintain appropriate
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moisture conditions. This factor is extremely important, as provision of an adequate

water supply is essential in optimising plant growth and maintaining good plant cover.

10.4 Effect of Diesel Fuel on Plant Growth and Development

10.4.1 Acute Toxicity

Diesel fuel contaminated soil had a huge effect on germination. The inhibition of

germination generally increased with increasing diesel fuel concentration. The

germination response however, varied greatly between plant species and even within

subspecies. The most obvious example of this differential sensitivity to diesel fuel was

found with the grasses. Some grass species germinated well (e.g. Westerwold's

ryegrass) whereas other would not germinate at all (e.g. Couchgrass). Differences were

also seen in plants within subspecies (e.g. Fescue). The grasses which appeared less

tolerant of diesel fuel were weed species which was not surprising as diesel fuel was

used, in the past, as a post emergence herbicide to remove weed grasses in vegetable

crops (Gauvrit and Cabanne, 1993). Despite the low germination rates observed in

diesel fuel contaminated soil initially, most of the plant species screened germination

rates improved which suggested whatever had affected germination was short lived.

Acute toxicity caused by the lighter fraction of diesel fuel was delaying seed emergence

and reducing germination rate. When seeds were germinated in a more open

environment where volatile diesel fuel components could dissipate or aged diesel fuel

contaminated soils where the majority of volatile components had volatilised, the

germination rate was much higher. To determine which compounds present in the

volatile fraction of diesel fuel were causing this effect on germination rate, the data

from the GC-MS analysis of diesel fuel were studied. The most predominant volatile

hydrocarbons found in diesel fuel were the isomers of xylene (m-, 0- and p-), short

chained n-alkanes (C9-C12) and branched benzenes. There were also low levels of

toluene, branched cyclohexanes (methyl to butyl) and alkenes. N-alkanes (C6-C12)are

non toxic to plants (Crafts and Reiber, 1948) and introducing a double bond to the

structure only increases toxicity slightly. These components of the volatile diesel fuel

fraction were therefore unlikely to be causing the effect on germination observed.
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Crafts and Reiber (1948) also stated that toxicity increased as the side chain length was

increased. This statement was verified by the work of Currier (1951), who found

toxicity increased in the order benzene> toluene> xylene. All these compounds were

present in the volatile diesel fuel fraction and were probably having an effect on

germination rate.

The most interesting components identified in the volatile diesel fuel fraction

were branched cyclohexanes as little work has been carried out on these compounds.

Cyclohexane was found to be more phytotoxic than methyl cyclohexane when applied

as a spray diluted in paraffin oil (Crafts and Reiber, 1948). As these cyclohexanes were

present as pure compounds in air, they are likely to be 3,000 times more phytotoxic than

when they were present in paraffin oil (Currier, 1951). An unusual pattern of

germination was apparent when these compounds were tested, with length of

cyclohexane branching determining toxicity to seeds. The ethyl and butyl branched

cyclohexanes had a huge detrimental effect on germination with practically no seeds

germinating in any of the ethyl cyclohexane concentrations and only the lowest level of

butyl cyclohexane allowed normal seed germination. The methyl and propyl

cyclohexanes, on the other hand, had an almost insignificant effect on germination rate.

A similar observation was noted by Crafts and Reiber (1948) concerning the toxicity of

substituted benzenes. The mono and tri substitutions were low in toxicity and the di and

tetra substitutions were high in toxicity. This pattern of toxicity according to the

placement of selected branches forms the basis of herbicide toxicity as branches placed

at certain positions on the herbicide molecule will be readily metabolised, whereas other

positions will prevent metabolism and induce toxicity. Lightweight, volatile cyclic

alkanes and aromatic hydrocarbons were shown to be the most likely candidates

influencing the germination of seeds in diesel fuel contaminated soil. Although these

volatile hydrocarbons had the largest effect in delaying and reducing seed emergence, it

was not the only factor inhibiting germination.

10.4.2 Physical Impedance

Germination rate of seeds grown in diesel fuel contaminated soil with minimal volatile

diesel fuel components did show an increase in germination rate when compared with

the germination rate in freshly contaminated soil but the germination rate was never as
high as the germination rate observed in uncontaminated soil. This implies the
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remaining diesel fuel had some level of toxicity to seeds. Inhibition of germination was

observed in seeds soaked in diesel fuel but the seeds themselves were still viable and

capable of germinating. A delay in emergence was observed when these soaked seeds

were planted in uncontaminated soil. This delay in emergence increased with increased

soaking time of the seeds. As the embryos within the seeds were not killed outright by

soaking in diesel fuel, the diesel fuel must have been asserting a physical effect on the

seed. This leads us back to the physical hydrophobic property of diesel fuel and the fact

that diesel fuel is water repellent. Seeds present in diesel fuel contaminated soil would

probably be coated with a thin film of oil which may act as a physical barrier,

preventing or reducing both water and oxygen from entering thus 'suffocating' the seed.

Both water and oxygen are essential in initiating seed germination therefore a delay in

germination would be expected if water and oxygen were prevented from reaching the

internal seed structure, Amakiri and Onofeghara (1984) showed that seeds of Capsicum

frutescens retained almost 100% viability after 32 weeks pre-soaking in crude oi I but a

lag phase preceding germination was observed.

10.4.3 Plant Hormone-Type Influence

During a pot trial involving Oil seed rape, an extremely low germination rate was

observed in diesel fuel contaminated soil. When the seeds were removed from the soil

after the pot experiment had ended, it became apparent what had caused the low

germination rate. The majority of seeds had begun germinating and split their seed

coats but the root and shoot tips failed to orient properly and were shrivelled and unable

to emerge from the soil. The root tips grew horizontally or curled upwards whereas the

shoot tips were frequently found orienting downwards. This disruption in geotropism

has been noted before with Soybeans grown in oily sludge material (Bossert and Bartha.

1985) and is likely to be caused by hydrocarbon residues in the soil with plant hormone-

type effects. Gudin and Harada (l974a and 1974b) found the presence of compounds

with plant hormone activity in crude oil and petroleum fractions. Naphthenic acids and

phenyl acetic acids illustrated certain developmental effects on vegetation. with phenyl

acetic acid having a significant effect on geotropism (Gudin and Harada. I974b ).

Naphthenic acid is used in commercial powders to initiate root production in

cut stems. Considerable branching of certain plant species was observed in diesel fuel
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contaminated soil where no branching was apparent on the corresponding plants grown

in uncontaminated soil. This substantiates the presence of certain compounds present in

diesel fuel contaminated soil that possess plant hormone-type effects. Naphthalene

derivatives were tested for their effect on root branching as a number of branched

naphthalenes were identified in the diesel fuel fraction by GC-MS. Naphthalene

showed no significant increase in root branching but root branching did appear more

frequently as the number of substitutions on the naphthalene structure increased. 1,4

dimethyl naphthalene caused an increase in branching above that observed on 'plant

roots grown in naphthalene. 2,3,5 trimethyl naphthalene further increased the number

of plants illustrating branched roots.

The hormonal effects induced by diesel fuel may be harmful as shown by the

effect on geotropism on Oil seed rape emergence or have no adverse effects or even

beneficial effects, as illustrated by the increased root branching on selected plant

species. This effect would be beneficial as it provides a larger surface area for

microbial colonisation which would increase the rhizosphere effect created by plants

and their associated microorganisms.

10.4.4 Effect on the Spatial Distribution of Roots

In order for phytoremediation to have a beneficial effect on diesel fuel breakdown, a

large root mass would have to develop in the contaminated areas. Diesel fuel was

proving to be inhibitory to many stages of plant development and uncertainty arose as to

whether plant roots would actually grow in diesel fuel contaminated soil or whether

diesel fuel would retard the growth of roots to such an extent that the plant would be

damaged. In order to answer these questions, an experimental glass box system was set

up which enabled the pattern of root development of plant species to be followed. Plant

root growth was retarded when faced with a subsurface layer of diesel fuel. The roots

stopped growing, just short of the diesel fuel contaminated horizon. However, once all

the uncontaminated surface soil was packed with roots and there was no more available

uncontaminated soil to grow into, the roots began to penetrate the contaminated area.

This result was extremely promising, as plant roots would have to penetrate

contaminated soil for rhizodegradation to occur. The plant roots passed through this

contaminated areavery quickly and were not as bulky as the roots at the top and the
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bottom of the glass box. All the same, roots did grow and fill the contaminated area

with a sizeable root mass. Variations on this experiment were conducted with the

results illustrating that plant roots would tackle diesel fuel contaminated areas only

when the majority of uncontaminated soil has been filled, unless the level of diesel fuel

contamination is very low (5g - 109 diesel kg' soil), The likely reasons for this

avoidance of contaminated areas is obviously the toxicity of diesel fuel but also the

oxygen levels in these contaminated areas would be low, causing the searching roots to

avoid these areas. The contaminated patches would be colonised by hydrocarbon

utilising microorganisms which would compete with plant roots for oxygen.

10.4.5 Effect on Nodulation of Leguminous Plants

When petroleum hydrocarbons contaminate soil, the carbon:nitrogen (C:N) ratio of the

soil is altered. The added carbon stimulates microbial numbers but causes an imbalance

in the C:N ratio which may result in immobilisation of soil nitrogen by the microbial

biomass, leaving none available for plant growth. As members of the Leguminosae fix

atmospheric nitrogen to produce their own nitrate for growth, they may prove more

successful at growing on diesel fuel contaminated soil. To further support this

statement, species of Leguminosae have been found to be the most abundant

reinhabitors of petroleum contaminated sites (Gudin and Syratt, 1975).

An important factor in the legumes success would be dependant on the

development of functional root nodules. Decrease in nodule formation has been noted

by other authors in soils contaminated with heavy metals (Porter and Sheridan, 1981,

Casella et al., 1988), agrochemicals (Martensson, 1992) and polyaromatic hydrocarbons

(Wetzel and Werner, 1995), however no work has been carried out on nodulation in

diesel fuel contaminated soil.

During harvesting of pot experiments containing leguminous plants, a

recurring difference in the number and formation of root nodules present on diesel fuel

contaminated and uncontaminated plants was observed. The average total number of

root nodules per plant was drastically reduced in contaminated plants compared to

control plants and observation of nodule sections by light microscopy illustrated clear

differences in their structure. Unexpectedly, the nodules taken from contaminated

plants were more developed than the corresponding nodules on uncontaminated plants.
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An explanation for this observation is the addition of diesel fuel to the soil system acted

as a huge input of carbon, thereby causing an imbalance in the C:N ratio of the soi I.

This may have initiated a response in the plant, as it required more available nitrogen,

where chemical signals were given out, attracting the appropriate species of Rhizobium

to the plant root surface. At the root surface, the Rhizobia would infect root hairs and

penetrate into the root structure, initiating the development of the root nodule.

Although the number of nodules were reduced on plants grown in diesel fuel

contaminated soil, they were well developed and effectively fixing atmospheric nitrogen

which indicates legumes would be a potentially useful plant species to grow in diesel

fuel contaminated soils.

10.4.6 Chronic Toxicity

Signs of chronic toxicity induced by diesel fuel contamination became apparent once

the plant was more developed. Chronic toxicity is evident from slow development of

injury with long lasting effects including yellowing of leaves, stunting of plant height

and eventual death (Currier, 1951). Reduction in plant height was apparent for all plant

and tree species grown in diesel fuel contaminated soil. This reduction in plant height

caused further reductions in shoot and root biomass except at low levels of diesel fuel

contaminated soil where one species of grass, appeared to have increased shoot and root

biomass. The species of legumes investigated during this study seemed less affected by

diesel fuel contamination. A larger decrease in shoot and root biomass was observed

for non leguminous plants compared to leguminous plants which may be due to the

legumes' symbiotic relationship with nitrogen fixing bacteria providing additional

nitrogen for plant growth. Another observation made during this study indicating

chronic toxicity was the onset of maturation was slower in contaminated plants when

compared with control plants. Plants grown in uncontaminated soil began to seed and

flower at an earlier stage than plants grown in contaminated soil. The lag phase

observed in flowering/seeding of the plant species investigated suggests a chronic toxic

effect of diesel fuel which is affecting the plants' physiology. The fact that the

contaminated plants did eventually flower/seed suggests diesel fuel is delaying the

developmental process rather than preventing it.
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10.5 Effect of Diesel Fuel on Soil Microorganisms and

Enzymic Activity

Addition of diesel fuel to the soil system would have an effect on the biological

component of the soil. Diesel fuel may prove harmful to the higher organisms

commonly found in soil such as earthworms and insects. This effect was not

investigated however during this study. Attention was given to the effect of diesel fuel

on the microbial component of soil as the microorganisms would be the main degraders

of diesel fuel. It is known that nearly all soils contain populations of microorganisms

capable of degrading petroleum hydrocarbons (Bossert and Bartha, 1984). Therefore,

diesel fuel was not expected to have a deleterious effect on the microbial component,

except perhaps at very high concentrations. The usual methods of measuring a change

in microbial composition are microbiological methods such as most probable number

(MPN) determinations and plating techniques. A more important measurement to be

made during this study was the change in microbial activity not in microbial

composition therefore another approach was taken, away from the usual microbiological

techniques. Soil enzymology can be used to assess the biochemical reactions taking

place in a soil system. Enzymes catalyse many degradative processes in soil and

originate from plants, animals, fungi and bacteria although the microbial component is

the main source of these enzymes. By studying some of the important soil enzyme

systems, information could be provided on the degradation and cycling processes

occurring in the soil and also provide an estimate of total microbial activity.

Addition of diesel fuel to soil caused a significant increase in dehydrogenase

activity. As the dehydrogenase enzymes responsible for dehydrogenase activity are

found only in intact microbial cells, this result indicates proliferation of the natural

microbial community and/or a huge increase in the oxidative capabilities of the existing

microbial population. Fresh diesel fuel contains a number of readily utilisable

compounds such as n-alkanes, therefore it is likely that the existing microbial

community used this huge carbon input as a food source which would mean a large

increase in the oxidative behaviour of the microbial population but because there was

such a large input of carbon, microbial proliferation would also have occurred. There

would be nothing to limit the growth of the microbial population initially. This initial

increase in dehydrogenase activity was seen to lessen in the lower diesel fuel
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contaminated treatments (5g and 109 diesel kg-I soil) with time suggesting the readily

degraded hydrocarbons were less abundant.

Degradation of organic carbon by microorganisms also requires an input of

nutrients, particularly nitrogen (N) and phosphorus (P). The amount of plant available

nitrogen decreased in the diesel fuel contaminated soils, as discussed previously, which

resulted in the formation of nitrogen fixing root nodules on leguminous plants. The

amount of phosphorus would also be expected to become limiting as the majority of P

would be used by microorganisms during the degradation of diesel fuel. Acid and

alkaline phosphatase activity was seen to increase with the addition of diesel fuel which

supports the previous statement. The activities of soil phosphatases convert

unavailable, organic P to available, inorganic P which suggests additional inorganic P

was required in the diesel fuel contaminated soil.

A non specific enzyme assay was also carried out which measured the

fluorescein diacetate (FDA) hydrolysing ability of proteases, lipases and esterases.

The ability to hydrolyse FDA is widespread in the soil environment therefore FDA

activity can also be used as a measure of total microbial activity. FDA activity differs

from dehydrogenase activity in that FDA hydrolysing enzymes are found as both

exoenzymes and within microbial cells whereas dehydrogenase enzymes are found

only in live microbial cells. Addition of diesel fuel showed a large increase in FDA

activity as expected suggesting the total metabolic activity of the FDA hydrolysing

enzymes was increased to breakdown the added diesel fuel.

The enzyme analyses illustrate that diesel fuel is used as a food source by soil

microorganisms which causes increased microbial activity and microbial proliferation,

An additive effect of this diesel fuel utilisation is the increased need for nutrients

which is supported by the increase in phosphatase activity in the soil and the

production of root nodules by leguminous plants.

10.6 Effect of Diesel Fuel on Soil Microorganisms and

Enzymic Activity in Planted Soils

The same series of enzyme assays were used to assess the level of enzyme activity in

soils planted with selected plant species to try and illustrate plant influence on soil

microbial communities.
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Dehydrogenase activity increased under planted soil as opposed to unplanted

soil which shows the larger microbial population and the increased activity of this

population associated with the rhizosphere of the plant. An increase in dehydrogenase

activity was also observed in diesel fuel contaminated, planted soil. Differences in

dehydrogenase activity was also seen under different plant species which illustrates that

plants themselves, through differences in root exudation and root biomass, influence the

population of microorganisms that populate their rhizosphere.

The phosphatase activity results in planted soils were not as useful as the 'other

measured enzymes assays. No clear trend was apparent but generalisations could be

made. Increased phosphatase activity (both acid and alkaline phosphatase) was

observed in planted soils as opposed to unplanted soils which is representative of the

increased need for inorganic P for plant growth as well as for microbial growth.

FDA activity in planted soils, which represents the total microbial activity of the

soil, was increased well above the activity in unplanted soils and this increase in activity

did not decrease with time.

The enzyme assay results clearly illustrate the increased activity in planted soils

as opposed to unplanted soils which suggests the degradative capabilities of rhizosphere

microorganisms and enzymes should be greater than non-rhizosphere microorganisms

and enzymes.

10.7 Enhanced Degradation of Diesel Fuel in Planted Soil

The enhanced activity under planting was reflected in the residual diesel fuel content of

planted soils as opposed to unplanted soils. The amount of diesel fuel remaining in soil

after phytoremediation treatment was lower than without treatment. At low levels of

diesel fuel contamination (5g diesel kg' soil) little enhancement was seen using

phytoremediation when compared to natural attenuation (biodegradation by indigenous

microorganisms without the addition of fertilisers, inoculants etc). Only 3% more

diesel was broken down under planting. As the diesel fuel concentrations in the soil

increased however, the benefits of phytoremediation on residual diesel fuel content was

observed. The planted soils consistently degraded more diesel fuel leaving a smaller

residual fraction than unplanted soil. On average, 15% less diesel fuel remained in
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planted soils compared to unplanted soils. The microbial population associated with

planted soil was seen to preferentially degrade different hydrocarbon compounds than

the microorganisms in unplanted soil. This again substantiates the idea that the

microbial community of the rhizosphere changes by plant influence. Differences in the

amount of diesel fuel remaining in soil was also noted under different plant species with

the leguminous species planted soil degrading more diesel fuel than either the grass

species or the mix of grasses and legumes.

10.8 Implications for the Phytoremediation of Diesel Fuel

Contaminated Sites

The results from this study allow various conclusions to be drawn on the potential of

phytoremediation for diesel fuel contaminated sites. Firstly, the hydrophobic behaviour

of diesel fuel prevents this contaminant from leaching far through the soil profile. This

is a benefit as contamination of ground water is less of a risk and the contaminant is

held within the rooting zone of the plant making rhizodegradation possible. The

hydrophobic property of diesel fuel, particularly diesel fuel residues, causes the soil to

become slightly water repellent which affects the plants ability to maintain appropriate

moisture conditions. Growing plants may be affected initially by this but plant roots

provide channels for water infiltration as they push their way through the soil profile

and the additional root biomass will add to the organic carbon content of the soil which

should increase the ability of soil to hold water.

The rhizosphere community that develops under plant species is greater in size,

more diverse and more metabolically active than the microbial community found in

unplanted soils. This is the major reason why many authors have found increased

organic contaminant degradation in planted soils as opposed to unplanted soils. The

release of exudates from plant roots may also aid in co-metabolism of the more resistant

compounds found in diesel fuel which would not be possible in unplanted soils. The

living plant exerts a definite influence on the surrounding microbial community and

encourages the degradation of diesel fuel.

The greatest problem with establishing a plant population on diesel fuel

contaminated soil was the toxicity of the volatile diesel fuel fraction. The volatile diesel
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fuel fraction had a huge inhibitory effect on seed germination. It is therefore advised to

leave a site contaminated with a fresh diesel fuel spill for at least 2 weeks before

planting to allow the diesel fuel volatiles to dissipate. The majority of sites will contain

aged hydrocarbons and this will not be a problem.

Plants respond very differently to diesel fuel contamination therefore the choice

of plant species to phytoremediate diesel fuel contaminated sites is extremely important.

The agricultural, ley grasses such as Westerwold's ryegrass were more tolerant of diesel

fuel than any of the weed grass species. Grasses are useful in phytoremediation

practices as they have extensive, fibrous root systems which allows a huge surface area

for microbial colonisation. They also have considerable rooting depths, with

Westerwold's ryegrass shown to root to a depth of »Irn which is more than sufficient

for treatment of contaminants in the surface soil. The roots of most plants were also

shown to grow into diesel fuel contaminated areas after an initial acclimatisation period.

Another successful species of plant found to grow in diesel fuel contaminated soil was

the legumes. Legumes were less affected by growing in diesel fuel contaminated soil

than the grasses. This is probably due to their ability to fix atmospheric nitrogen to

produce nitrate for growth. This process was found to be unaffected and even enhanced

in diesel fuel contaminated soils. If extremely high levels of diesel fuel are present on

site then willow trees may be grown, as they are more tolerant of high levels of diesel

fuel than lower plant species. Again, the selection of willow clone is very important as

they also have differential sensitivities to diesel fuel contamination.

Increased bioremediation of diesel fuel contaminated soil was seen in planted

soils compared to unplanted soils which suggests phytoremediation should be

considered as an alternative remediation technique to the destructive and expensive

techniques favoured for the clean up of petroleum hydrocarbon contaminated land. The

practical implications that can be taken from this study are low levels of diesel fuel

contamination can be successfully remediated, on a short time scale, using a cover of

plants. Leguminous plants were particularly successful and would be of benefit as

fertiliser addition is unnecessary, although an input of phosphate would increase plant

biomass and may enhance degradation rates further. If the move to add ethanol to fuels

in the UK was adopted, the remedial situation would change significantly. In the case

of diesel fuel, its movement in the soil profile would increase, possibly taking the

contaminant out of reach of the rooting zone, making rhizodegradation ineffective.

There would also be a greater threat of groundwater contamination. Another alternative

phytoremediation process may have to be considered.
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Appendix i

Table showing settling times of silt plus clay and clay particles at selected temperatures.

Temperature QC Settling time at 20 em

Silt plus clay

(equivalent settling diameter

<0.06 mm)

Settling times at 10 em

Clay

(equivalent settling diameter <

0.002 mm)

10 83 seconds 625 minutes

11 81 608

12 79 590

13 77 575

14 75 559

15 73 544

16 71 530

17 69 517

18 67 503

19 65 491

20 64 479

21 62 467

22 61 456

23 59 446

24 58 435

25 57 426
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Effect of diesel fuel on growth of selected plant species

G. Adam and H. Duncan

Department of Agricultural, Food and Environmental Chemistry,Joseph Black Building,

University of Glasgow, GLASGOW G 12 8QQ, Scotland.

Abstract

Diesel oil is a complex mixture of hydrocarbons with an average carbon number of C8-

C26. The majority of components consist of alkanes, both straight chained and

branched and aromatic compounds including mono-, di- and polyaromatic

hydrocarbons. Regardless of this complexity, diesel oil can be readily degraded by a

number of soil microorganisms making it a likely candidate for bioremediation. The

concept of using plants to enhance bioremediation, termed phytoremediation, is a

relatively new area of scientific interest. It is particularly applicable to diesel oil

contamination as diesel oil generally contaminates the top few metres of soil (surface

soil) and contamination is not uniform throughout the site. By encouraging plants to

grown on diesel oil contaminated soil, conditions are improved for the microbial

degradation of the contaminant. During this study, establishing plants on diesel oil

contaminated soil proved difficult. Diesel oil is phytotoxic to plants at relatively low

concentrations. At concentrations below this phytotoxic level, the development of

plants grown in diesel oil contaminated soil differs greatly from plants grown In

uncontaminated soil. Tolerance of plants to diesel oil and ability to germinate in diesel

oil contaminated soil varied greatly between plant species as well as within plant

species. The broadest differences in germination were seen within the grasses with

certain species thriving in low levels of contamination (e.g. Creeping bent) while others

were intolerant of diesel oil contamination (e.g. Rough meadow grass). The herbs,

legumes and commercial crops screened appeared to be largely unaffected by low levels

of diesel oil contamination (25g diesel kg"), At the higher level of contamination (50g

diesel kg"), half of the twenty two plant species screened failed reach a germination rate

equal to 50% of the control rate. Two species of grass failed to germinate at all at this

contamination level. Plant species that successfully germinated and grew were studied

further to determine the effect of diesel oil contamination on the later stages of plant

development. This work investigates the effect of diesel oil on plant growth and

development.

Keywords : phytoremediation, petroleum hydrocarbons, PARs, plant performance.



1. Introduction

Phytoremediation, or the use of green plants and their associated microbiota to

remediate environmental contaminants, has recently become an area of intense study

(Cunningham et al., 1996). Plants have been shown to encourage organic contaminant

reduction principally by providing an optimal environment for microbial proliferation in

the root zone (rhizosphere) (Kruger et al., 1997). These degradative processes are

influenced not only by rhizosphere microorganisms, but also by unique properties of the

host plant (Walton et al., 1994). This often leads to enhanced breakdown of organic

contaminants in soils that are vegetated, compared to non vegetated soils. If plants can

be successfully established on polluted soils, then the plant - microbial interaction in the

rhizosphere may provide an economical method for enhancing microbial degradation of

complex organic contaminants. Diesel oil is one such contaminant that should, in

theory, be remediated by a mixed community of microorganisms under these

conditions. In practice however, there are many problems associated with establishing a

beneficial plant cover on diesel oil contaminated soil.

Diesel oil is a complex mixture of petroleum hydrocarbons containing

everything from volatile, low molecular weight alkanes which are potentially

phytotoxic, to naphthalenes which may interfere with normal plant development. In

addition, polycyclic aromatic hydrocarbons (PARs) found in diesel spills are of

particular concern as they are relatively persistent in the soil environment. Of the

medium distillate fuel oils used in terrestrial situations, diesel oil has the highest content

of PAHs and total aromatics (Wang et al., 1990) which makes it increasingly more

difficult to remediate. Within the framework of a larger study on diesel oil

phytoremediation, attention was given to the effect of diesel oil on plant performance.

This included the effect of diesel oil on seed germination, the spatial distribution of

plant roots grown in diesel oil contaminated soil and changes in plant root morphology

observed in the presence of diesel. Examples are given for a variety of different plant

species including grasses, herbs, legumes and commercial crops.

2. Germination and Seed Emergence

Twenty two plant species including grasses, herbs, legumes and commercial crops were

screened for their ability to germinate in diesel oil contaminated soil. At relatively low

levels of diesel oil, delayed seed emergence and reduced germination rates were

observed for a variety of plant species (Table 1).



Table J Germination rates (%)a of plant species exposed to varying concentrations of

diesel oil, measured 14 days after planting at 20°e.

Germination Rate
Plant species (%)

Diesel concentration
( )

Common name Latin name 0 25 50

Grasses

Cocksfoot Dactylis glomerata 53 20 0

Creeping Bent b Agrostis stolonifera 30 38 5

Highland Bent b Agrostis castellana 85 50 46

Black Grass Alopecurus myosuroides 60 30 3

Sweet Vernal Grass b Anthoxanthum odoratum 90 60 15

Rough Meadow Grass b Poa trivialis 55 10 0

Westerwold's Ryegrass Lolium multiflorum 78 64 50

Sheep's Fescue Festuca ovina 58 38 24

Strong Creeping Red Fescue Festuca rubra ssp. rubra 82 88 40

Chewing's fescue Festuca rubra ssp. commutata 48 50 20

Annual Canary Grass Phalaris canariensis 72 60 10

Herbs and legumes

Black Medick Medicago lupulina 20 20 24

Fodder Burnet Sanguisorba minor ssp muricata 18 16 2

Common Vetch Vida sativa 64 60 42

Red Clover Trifolium pratense 56 56 40

White Clover Trifolium album 68 36 12

Little Yellow Trefoil Trifolium dubium 40 36 18

Lucerne Medicago sativa 74 84 66

Commercial crops

Oil Seed Rape cv. Rocket Brassica napus var. olifera 100 100 95

Oil Seed Rape cv. Martina Brassica nap us var. olifera 100 100 95

Flax cv. Viking Linum usitatissimum 74 66 38

Flax cv. Elise Linum usitatissimum 94 96 98

a 100% germination rate equals every seed planted germinating and producing a sizeable shoot (> 2mm).

b These seed species were planted at a sow rate of 100 per replicate. The remaining species were planted

25 seeds per replicate



3. Plant Performance

The overall heights of plants grown in diesel oil contaminated soil were stunted

compared to control plants grown in uncontaminated soil. This effect cannot be

attributed directly to delayed seed emergence as some plant species germinated as

successfully as the controls, yet their development was impaired by the presence of

diesel. For example, the oil seed rape cultivar Martina germinated well in the presence

of diesel (Table 1) but the production of top growth was noticeably reduced to 17.8%

and 16.6% of the control top growth in 25g diesellkg soil and 50g diesel/kg soil

treatments respectively. The same pattern was observed for root biomass with

reductions falling to 21% and 20% of the control biomass for the two treatments

(unpublished work).

4. Root Morphology

Plants grown in diesel oil contaminated soil exhibit formation of adventitious roots (root

structures which arise in unusual positions) as illustrated in Figure 1. Photographs (a)

and (b) show the formation of adventitious roots on the stem of a Canary grass seedling

where no such structures are found on the control seedling. Photographs (c) and (d)

show increased lateral roots present on a Flax seedling grown in contaminated soil as

opposed to the control seedling.



(a)

(c)

(b)

(d)

Figure 1 Effect of diesel on root formation of two week old seedlings.

(a) Annual canary grass - seedlings grown in contaminated (top) and uncontaminated (bottom) soils; (b)

Annual canary grass - enlargement of seedling grown in contaminated soil; (c) Flax - seedlings grown in

contaminated (top) and uncontaminated (bottom) soil and (d) Flax - enlargement of seedling grown in

contaminated soil.

5. Spatial Distribution of Roots

An experimental system was set up which enabled the pattern of root development of

selected plant species to be followed in a model soil system contaminated with diesel

oil. Initial observations indicate plant roots avoid diesel oil contaminated areas

completely if they have uncontaminated soil to grow into. If there is no available

uncontaminated soil, roots will grow through contaminated regions until they find an

area of uncontaminated soil. However, at lower contamination levels (up to 109

diesel/kg soil) roots will enter the contaminated area after an acclimation period. This



observation is also seen with concentrated patches of diesel oil. Once the majority of

the surrounding uncontaminated soil has been utilised, the roots begin to move into the

contaminated patch. This suggests that degradation of diesel oil may be enhanced by

the action of rhizosphere microorganisms.

6. Further work

Work is continuing on the effects of diesel on plant development with attention being

given to attributing these effects to a specific fraction or fractions of diesel oil.
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Abstract

Fluorescein diacetate (FDA) hydrolysis is widely accepted as an accurate and simple

method for measuring total microbial activity in a range of environmental samples,

including soils. Colourless fluorescein diacetate is hydrolysed by both free and

membrane bound enzymes, releasing a coloured end product fluorescein which can be

measured by spectrophotometry. The current method for measuring FDA hydrolysis in

soils is limited in its application. FDA activity was very low in sandy and clayey soils.

The low activity observed for these soil types was made difficult to measure by the

original authors' choice of solvent for terminating the hydrolysis reaction. Acetone

(50% v/v) was found to be most efficient at stopping the hydrolysis reaction. During

this study acetone (50% v/v) was found to cause a decrease of approximately 37% in the

absorbance of fluorescein produced by the soil samples measured. Although this colour

loss is independent of initial fluorescein concentration, it makes the measurement of

FDA hydrolytic activity extremely difficult in soils with low microbial activity i.e.

sandy and/or clayey soils. Chloroform/methanol (2: 1 v/v) was found to successfully

stop the hydrolysis reaction for up to 50 min in a range of soil samples without causing

the loss of colour observed with acetone. By changing the solvent used for terminating

the hydrolysis reaction, low activity soils could be measured successfully. Other

parameters of the hydrolysis reaction were optimised for the measurement of soil

samples including effect of pH, optimum temperature of incubation, amount of soil,

time of incubation, amount of substrate and preparation of suitable standards. Anew,

more sensitive method is proposed adapted from the original method, which provides a

more accurate determination of FDA hydrolysis in a wide range of soils.

Keywords: Fluorescein diacetate (FDA), enzymic hydrolysis, total microbial activity,

soil.



1. Introduction

The use of fluorescein esters as a measure of enzyme activity was first noted by Kramer

and Guilbault (1963) where a simple procedure was described for the assay of lipase

activity in the presence of other esterases. It was not until 1980 that the use of

fluorescein esters as a measure of microbial activity was applied to environmental

samples. Swisher and Carroll (1980) demonstrated that the amount of fluorescein

produced by the hydrolysis of fluorescein diacetate (FDA) was directly proportional to

the microbial population growing on Douglas Fir foliage and a standardised method was

developed. This method was later evaluated by Schnurer and Rosswall (1982) who

used FDA hydrolysis to determine total microbial activity in soil and straw litter as well

as cell density in pure microbial cultures.

Fluorescein diacetate (3' 6' -diacetyl-fluorescein) is a fluorescein conjugated to

two acetate radicals. This colourless compound is hydrolysed by both free

(exoenzymes) and membrane bound enzymes (Stubberfield and Shaw, 1990), releasing

a coloured end product, fluorescein. Fig. 1 illustrates the enzymic conversion of FDA

to fluorescein which appears to be primarily a hydrolysis followed by a dehydration

reaction. This end product absorbs strongly in the visible wavelength (490 nm) and can

be measured by spectrophotometry. The enzymes responsible for FDA hydrolysis are

plentiful in the soil environment. Non-specific esterases, proteases and lipases, which

have been shown to hydrolyse FDA, are involved in the decomposition of many types

of tissue. The ability to hydrolyse FDA thus seems widespread, especially among the

major decomposers, bacteria and fungi (Schnurer and Rosswall, 1982). Generally more

than 90% of the energy flow in a soil system passes through microbial decomposers,

therefore an assay which measures microbial decomposer activity will provide a good

estimate of total microbial activity.

The FDA method was also shown to correlate well with some of the most

accurate measures of microbial biomass such as ATP content and cell density studies

(Stubberfield and Shaw, 1990) and radio-labelled thymidine incorporation into

microbial DNA (Federle et al.. 1990). Whereas these methods are time consuming and

difficult to perform, enzyme assays are generally rapid and simple.

Since 1982, FDA hydrolysis has been used to measure total microbial activity in

a range of samples from mould growth on wood and other building materials (Bjurman,

1993), to plant residues (Zablotowicz et al., 1998), to stream sediment biofilms (Battin,



1997), activated sludge (Fontvieille, 1992) and deep sea clay and sand sediment profiles

(Gumprecht et al., 1995).

The advantage of this method being simple, rapid and sensitive, coupled with the

widespread acceptance of FDA hydrolysis as a measure of total microbial activity,

suggests this would be a good method to optimise to include a wide range of soils. The

original Schntirer and Rosswall (1982) method, which most authors use today, is limited

in its application. Schntirer and Rosswall found that FDA activity was very low in sand

and clay samples. The low activity observed for these soil types was made more

difficult to measure by the authors' choice of solvent for terminating the hydrolysis

reaction. Because of the rapidity of FDA hydrolysis, it is necessary when working with

many samples to find a way of terminating hydrolysis at a specific time. Schntirer and

Rosswall found acetone (50% v/v) to be most efficient, totally stopping hydrolysis in a

soil sample for 2 h. However, a substantial decrease in the absorbance of fluorescein

produced by the soil samples was observed when acetone was added. This dramatic

colour loss is independent of initial fluorescein concentration but makes the

measurement of FDA hydrolytic activity very difficult in soils with low microbial

activity i.e. sandy and/or clayey soils. Therefore, a new, more sensitive method is

proposed adapted from the original Schntirer and Rosswall method which will provide a

more accurate determination of FDA hydrolysis in a wide range of soils.
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Fig. 1 Enzymic conversion of fluorescein diacetate (FDA) to fluorescein.

The enzymic conversion of fluorescein diacetate (FDA) to fluorescein appears to be primarily a

hydrolysis reaction followed by a dehydration reaction. The two acetate groups are hydrolysed at their

ester linkage and the lactone part of the structure is cleaved at its internal ester link (step 1). The resultant

OH group leaves, creating a positively charged bond (step 2). This charge must be satisfied so the above

intermediary step occurs starting from a loss of H at the terminal position (step 3). This results in an

overaJlloss of water.



2. Material and Methods

2.1 Soils

A total of five surface soils and one manufactured soil were selected to obtain a range of

textural properties within the sandy and lor clayey textural class and cover a range of

enzymic activities. Particle size analysis for the determination of textural class was

carried out as described by the modified method of Khan (PhD thesis, University of

Glasgow 1987) from the ADAS method 57 (1981b). Dehydrogenase activity was

assessed by the method of Casida et al (1964). Total nitrogen content of the soils was

determined by the digestion method of Bremner and Mulvaney (1982) coupled to an

automated determination of nitrogen in the digests. Soil pH was determined according

to ADAS method 32 (1981 a). Organic matter content was assessed by loss on ignition

(LO!). 5 g soil was weighed, in triplicate, into silica basins and dried overnight at

105°e. The soils were reweighed to obtain the oven dry soil weight. The soils were

then placed in a muffle furnace and ignited at 5000e for 6 h. The samples were then

reweighed and the weight of ignited soils calculated. The % organic matter by loss on

ignition was calculated by subtracting the weight of ignited soil from the weight of oven

dry soil. This value was then divided by the weight of oven dry soil and the resulting

value multiplied by 100 to obtain % LO!. Table 1 shows the textural, chemical and

biological properties of the six soils chosen.



Table lA Textural properties and Table IB Chemical and Biological properties of the

soils used in the study.

Soils % coarse % fine % silt % clay

sand sand

Textural class

Barassie] 77.7 14.2 4.1 4.4 Sand

Bargour:j: 39.4 27.5 11.3 21.8 Sandy loam

Caprington:j: 29.2 22.0 25.7 23.1 Sandy clay loam

Dreghornt 32.7 35.3 16.3 15.7 Sandy loam

Garscube 51.7 20.8 12.8 15.2 Loamy sand

John Innes compost 72.2 17.6 4.9 8.4 Sand

Coarse sand> 0.18 mm, fine sand 0.18 - 0.05 mm, silt 0.05 - 0.002, clay < 0.002 mm.

Table IB

Soils pH

(water)

LOI

(%)
Total Dehydrogenase activity

N (%) (Jlg TPF g.1 oven dry soil

24 h·l)

Barassie] 7.20 5.7 0.20 173.59

Bargour:j: 5.46 6.9 0.18 145.79

Caprington:j: 6.46 10.5 0.28 151.16

Dreghornt 6.86 6.5 0.17 67.80

Garscube 7.23 9.6 0.35 224.70

John Innes compost 7.06 10.2 0.19 76.88

t Textural properties and Total N (%) taken from Metwaly (Ph.D. thesis, University of Glasgow, 1999).



2.2 Reagents

60 mM potassium phosphate buffer pH 7.6

8.7 g K2HP04 (Riedel-de Haen, Sigma-Aldrich Co. Ltd., Analar) and 1.3 g KH2P04

(Merck, BDH Analar) were dissolved in approximately 800 ml deionised water. The

contents were made up to I I with deionised water. The buffer was stored in the fridge

(4CC) and pH checked on day of use.

2: I chloroform/methanol

666 ml chloroform (Fisher Scientific UK Limited, analytical grade) was added to a

1 I volumetric flask. The flask was made up to 1 I with methanol (Fisher Scientific UK

Limited, analytical grade) and the contents mixed thoroughly.

1000 ug FDA ml -I stock solution

0.1 g fluorescein diacetate (3' 6'-diacetyl-fluorescein., Sigma-Aldrich Co. Ltd.) was

dissolved in approximately 80 ml of acetone (Fisher Scientific UK Limited, analytical

grade) and the contents of the flask made up to 100 ml with acetone. The solution was

stored at - 20ce.

2000 ug fluorescein ml -I stock solution

0.2265 g fluorescein sodium salt (Merck, BDH Analar) was dissolved in approximately

80 ml of 60 mM potassium phosphate buffer pH 7.6 and the contents made up to 100 ml

with buffer.

20 ug fluorescein ml -I standard solution

1 ml of 2000 ug fluorescein ml -I stock solution was added to a 100 ml volumetric flask

and the contents made up to the mark with 60 mM potassium phosphate buffer pH 7.6.

1-5 ug ml -I standards were prepared from this standard solution by appropriate dilution

in 60 mM potassium phosphate buffer pH 7.6.

2.3 Methods

The individual parameters of the fluorescein diacetate hydrolysis reaction were studied

to optimize the assay for the measurement of soil samples. These factors included

effect of pH, amount of soil, amount of substrate, time of incubation, optimum

temperature of incubation, choice of solvent for terminating the hydrolysis reaction and

preparation of suitable standards. The results from each parameter studied were



culminated to produce the final assay procedure. To determine the effect of each

parameter on the FDA hydrolysis reaction, changes were made to the final procedure

but these changes will be explained where appropriate in the results and discussion

section.

2.4 Final Procedure

2 g soil (fresh weight, sieved < 2 mm) was placed in a 50 ml conical flask and 15 ml of

60 mM potassium phosphate buffer pH 7.6 added. 0.2 ml 1000 ug FDA ml -I stock

solution was added to start the reaction. Blanks were prepared without the addition of

the FDA substrate along with a suitable number of sample replicates. The flasks were

stoppered and the contents shaken by hand. The flasks were then placed in an orbital

incubator (Gallenkamp Orbital Incubator, 100 rev min-I) at 30°C for 20 min.

The following steps involving chloroform/methanol were carried out in a fume

cupboard. Once removed from the incubator, 15 ml of chloroform/methanol (2: 1 v/v)

was added immediately to terminate the reaction. Stoppers were replaced on the flasks

and the contents shaken thoroughly by hand. The contents of the conical flasks were

then transferred to 50 ml centrifuge tubes and centrifuged at 2000 rev min-I for

approximately 3 min (MSE Scientific Instruments, Coolspin 2 centrifuge). The

supernatant from each sample was then filtered (Whatman, No 2) into 50 ml conical

flasks and the filtrates measured at 490 nm on a spectrophotometer (Hitachi U - 1100

spectrophotometer).

The concentration of fluorescein released during the assay was calculated using

the calibration graph produced from 0 - 5 Ilg fluorescein ml" standards which were

prepared from a 20 ug fluorescein ml" standard solution. The 0 flg ml" fluorescein

standard was used to zero the spectrophotometer before each set of blanks and samples

were read.

2.5 Statistical analysis

Sample standard deviations were used to assess standard error and replicate variability

was measured by the coefficient of variation (CV) using an EXCEL statistical package

(Microsoft). One-way analysis of variance (ANOV A) was prepared using MINIT AB

(for WINDOWS 10.1). Probability values were set at 0.05 level for all statistical



measures. FDA hydrolysis values were expressed as ug fluorescein released g -I oven

dry (105°C) soil unless stated otherwise.

3. Results and Discussion

3.1 Effect of pH

The rate of hydrolysis of fluorescein compounds reaches a maximum between pH 7.0

and 8.0 (Guilbault and Kramer, 1964). Fluorescein diacetate was found to exhibit a

maximum rate of hydrolysis at pH 7.6 (Swisher and Carroll, 1980). Carrying out the

enzymic reaction at this pH was advantageous for many reasons. At high and low pHs,

solubilisation of organic matter in the soil samples caused interference problems with

the measurement of fluorescein released, by creating blanks with very high background

absorbances. Carrying out the reaction at pH 7.6 removed this interference problem.

Spontaneous hydrolysis of fluorescein esters is known to occur at high pHs (Guilbault

and Kramer, 1964). At pH 7.6 no spontaneous hydrolysis of fluorescein diacetate was

observed. Finally, the product of FDA hydrolysis, fluorescein, exhibits a maximum

fluorescence at about pH 8.0 (Guilbault and Kramer, 1964). This was verified when

standards were prepared in buffers at different pHs. The absorbance values measured

for the same concentration of fluorescein standards were more than double in the pH 7.6

potassium phosphate buffer compared with the pH 5.6 buffer. This illustrates that

fluorescein is near its maximum absorbance at pH 7.6.

3.2 Effect of temperature

The rate of hydrolysis of a substrate by an enzyme depends on the temperature of

incubation. A study of FDA activity in soil as a function of temperature showed

maximum activity occurred at 30°C. This is in agreement with findings by Breeuwer et

al (1995) who observed maximum FDA activity by yeast esterases at this temperature.

The activity rapidly decreased just above 30°C suggesting inactivation of the enzymes

involved at this elevated temperature (Fig 2). At high temperatures considerable

spontaneous hydrolysis of fluorescein esters can occur (Guilbault and Kramer, 1964),

adversely affecting the accuracy and reproducibility of the method. No spontaneous

hydrolysis of FDA occurred between 20-40°C which covers the range around the

temperature chosen for this assay.
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Fig. 2 Effect of temperature on FDA hydrolysis by enzymes present in a sandy soil

(Barassie). Mean values with standard error bars, n = 4.

3.3 Amount of soil

The initial reaction rates of soil enzymes are usually proportional to the amounts of soil

added to the assay (Frankenberger and Johanson, 1983). Soil weights (fresh weight,

sieved < 2 mm) ranging from 0.5-5 g were incubated to discover the optimal amount of

soil required for the reaction to proceed at a steady rate without substrate becoming

limiting. A linear relationship was observed between soil weight and fluorescein

released up to 2.5 g (Fig. 3). The deviation from linearity when soil weights greater

than 2.5 g were used indicates substrate concentration was probably becoming a

limiting factor.

A soil weight of 2 g was used for the final assay. This allowed the reaction to

proceed at a steady rate, for all the soils tested, without substrate becoming limiting. It

also ensured that the amount of fluorescein hydrolysed during the assay fell within the

sensitivity range of the spectrophotometer (0.1-1.0). The three soils chosen to illustrate

this in Fig. 3 were: (a) a manufactured compost (John Innes Compost No 2) which

represents a sandy soil with low microbial activity; (b) Dreghom which represents a



sandy loam with an intermediate microbial activity and (c) Garscube soil which is a

loamy sand with high microbial activity. The low activity soil released enough

fluorescein during the assay to be measured accurately by spectrophotometry

(absorbance values greater than 0.1) and the high activity soil released enough

fluorescein to lie within the range of the spectrophotometer without dilution

(absorbance values below] .0). These three soil types hopefully represent the range of

microbial activities encountered in most soils.
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Fig. 3 Relationship between soil weight and FDA hydrolysis. Mean values with

standard error bars, n = 3.

3.4 Adsorption of Fluorescein onto soil

The amount of fluorescein adsorbed onto soil was considered before carrying out the

enzyme assay. When a new soil is investigated, the amount adsorbed onto soil should

be calculated so the values obtained for the assay can be corrected for the 10 s. Soil

samples were incubated using the conditions described for the final assay procedure in

]5 mJ fluorescein standard at each concentration (0-5 ug ml') (Table 2). Blanks were



prepared without the addition of soil. Samples and blanks were centrifuged and filtered

as described in the final assay procedure. The amount of fluorescein adsorbed at each

concentration is shown as % fluorescein adsorbed and an average total value is given for

each textural class. Generally the amount of fluorescein adsorbed is less than 5%. This

observation was noted by the original authors who found the adsorption of fluorescein

to soil did not exceed 7% and was mostly lower than 5% (Schnurer and Rosswall,

1982). A soil with a high silt-clay ratio and high organic matter content, such as

Caprington can however adsorb up to 13.7% fluorescein, a large proportion of the total

released.

Table 2 Adsorption of fluorescein onto soils with differing textural properties.

% fluorescein (ug ml') adsorbed by soil

Fluorescein cone Barassie Dreghom Caprington
(Jlg ml') in blank sand sandy loam sandy clay loam

0 0 0 0
I 5.7 ±0.83 3.3 ± 0.69 20.2 ± 0.47
2 4.3 ±0.60 7.1 ± 2.57 14.6 ± 0.39
3 3.2 ± 0.15 5.8 ± 0.27 11.1 ± 0.93
4 4.1 ± 0.29 3.3 ± 0.74 10.5 ± 0.26
5 2.7 ±0.24 2.4 ± 1.07 11.7 ± 1.53

Average total
adsorbed % 4.0 3.6 13.7

Given are means ± S.E., n = 3.

3.5 Time of incubation

It has been suggested that an assay for soil enzymes should not require a long

incubation time because the risk of error through microbial proliferation increases with

increasing incubation time. Part of this error can be minimised by the addition of

toluene as a bacteriostat to enzyme assays although many authors do not favour the use

of toluene for this purpose. Toluene has been shown to inhibit some enzymes as well as

having an activating effect on others due to increased permeability of the cell membrane



in the presence of toluene, allowing entry of the substrate (Skujins, 1967). In this study

the use of toluene as a bacteriostat in the assay of FDA hydrolysing enzymes was

dismissed as it was found to inhibit FDA hydrolysis in the soil samples investigated by

approximately 35%. It was therefore decided to keep the incubation time as short as

possible.

The hydrolysis reaction was linear with time up to 40 min for the soils

investigated using the conditions described for the final assay procedure (Fig. 4). The

assay was not limited by substrate concentration over this time period.

- .. - Barassie
---Bargour

80

Fig. 4 Determination of optimum incubation time. Means and standard error bars, n =
3.

An incubation time of 20 min was chosen for the final assay procedure to allow

the concentration of substrate hydrolysed to lie within the range of the

spectrophotometer for all the soil types investigated without the need for dilution.

3.6 Choice of solvent for terminating hydrolysis

Schnurer and Rosswall found acetone (50% v/v) to be most efficient, totally stopping

hydrolysis in a soil sample for 2 h. The addition of acetone to the soil samples did



terminate hydrolysis but it also caused a decrease in the amount of fluorescein

measurable by spectrophotometry. Although the drop in colour was by the same ratio

each time (ranged from 39.8-41.0% in 1-5Jlg mrl fluorescein standards where acetone

was added), samples with low microbial activity which only release a small amount of

fluorescein were made increasingly more difficult to measure. This decrease in colour,

which was more than a dilution effect, was, on average, 37% of the colour developed in

a sandy soil. Table 3 illustrates the decrease in fluorescein concentration of samples

where acetone has been used to stop the hydrolysis reaction compared to samples where

chloroform/methanol (2: 1 v/v) has been used. The samples sometimes dropped below

the range of the spectrophotometer when acetone was added. The absorbance values for

the samples where chloroform/methanol (2: I v/v) has been used to terminate hydrolysis

lie just above 0.1, the minimum absorbance that can be measured accurately by

spectrophotometry. The sample values where acetone has been used to stop the reaction

have fallen below the range that can be measured accurately. The relative precision of

the method, defined by the coefficient of variation of replicate measurements, is also

increased when chloroform/methanol (2: 1 v/v) is used instead of acetone. Therefore

chloroform/methanol (2: I v/v) was proposed as the new solvent for terminating FDA

hydrolysis in soil samples.



Table 3 Decrease in fluorescein concentration O..lg ml') of Barassie soil in acetone

terminated samples compared with chloroform/methanol (2: I v/v) terminated samples.

chloroform/methanol Acetone (50% v/v)

(2: I v/v)

replicate abs 490 cone (Jlg g -I)

soil

abs 490 conc (ug g -I)

nm nm soil

Corrected

conc (ug g -I)

soil

0.129 0.543 0.060 0.249 0.332

2 0.125 0.5.33 0.063 0.268 0.356

3 0.109 0.467 0.061 0.255 0.340

4 0.109 0.455 0.043 0.180 0.239

5 0.133 0.568 0.068 0.288 0.383

6 0.124 0.518 0.052 0.221 0.294

Final vol. of filtrate 20 30 20

(ml)

avocone (ug g -I ) soil 0.514 0.244 0.324

CV 8.61 15.74

All replicate absorbance values and concentration values in Ilg fluorescein g -I oven dry soil are given.

The final volumes of filtrate collected were 20 ml in the chloroform/methanol (2: 1 v/v) samples and 30

ml in the acetone samples. Due to the differences in the final volumes a conversion factor of 0.33 was

used on the acetone values to counteract this dilution effect. The corrected concentration values for the

acetone samples give fluorescein concentrations (ug g -I oven dry soil) in a 20 ml final volume. These

values can be compared directly to the values obtained for the chloroform/methanol (2: 1 v/v) samples.

CV = coefficient of variation.



3.7 Change in hydrolysis over time

Changing from acetone to another means of terminating the hydrolysis reaction

involved finding a substitute that would stop hydrolysis successfully without causing

the same loss of colour observed with acetone. A 2: 1 ratio of chloroform/methanol

(v/v) was most efficient, stopping hydrolysis from continuing for up to 50 min after its

addition (Fig. 5). The length of time the reaction was terminated for was sufficient to

allow the measurement of a large number of samples without changes occurring in the

samples. In addition, chloroform will help solubilise cell membranes, as acetone did,

facilitating the extraction of fluorescein. FDA, being non-polar, readily penetrates into

the cell and is hydrolysed to fluorescein. The polarity of fluorescein impedes its

transport back through the cell membrane causing intracellular accumulation.

Fluorescein is liberated into the environment only after the storage capacity of the cell

has been exceeded and the excess is excreted (Rotman and Papermaster, 1966).

Chloroform will help solubilise cell membranes aiding the extraction of fluorescein.

The presence of methanol will help the chloroform interact with the moist soil hence

increasing its ability to terminate the reaction effectively. Fluorescein released during

the incubation also moves preferentially into the more polar potassium phosphate

buffer/methanol phase, which increases the efficiency of the extraction procedure.

Acetone also removed a lot of dissolved organic matter from the samples producing

blanks with very high background absorbances whereas the chloroform/methanol (2: 1

v/v) does not. All these advantages make chloroform/methanol a more beneficial

solvent to use in terminating the hydrolysis reaction.
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Fig. 5 Change in fluorescein concentration over time after termination of the hydrolysis

reaction. Mean values and standard error bars, n = 5. Means followed by the same

letter are not significantly different at P < 0.05.

3.8 Substrate concentration

2000 ug ml' fluorescein diacetate (FDA) solution was used by most authors as the

substrate for the reaction. By adding 0.2 ml of 2000 ug ml" FDA, 400 ug FDA was

achieved in each replicate. This amount was unnecessarily high for the conditions

chosen for the final procedure. High concentrations of FDA should be avoided as FDA

is poorly soluble in water and other polar solutions (Breeuwer et al., 1995). Even in

acetone, high concentrations of FDA produce slightly cloudy solutions suggesting not

all the FDA added is in solution, hence available to the microorganisms. Instead a 1000

ug ml' FDA solution was chosen to start the reaction. This supplied 200 flg FDA to

each replicate which can, in tum, release a maximum of 160 flg of fluorescein. This

160 ug of fluorescein is diluted in 15 ml 60 mM potassium phosphate buffer pH 7.6

then a further 5 ml of methanol (from 15 ml chlorofonnlmethanol (2: 1 v/v) only the

methanol is added to the filtrate). This gives a final possible fluorescein concentration



of 8 f..lgmr'. The maximum concentration of fluorescein is never released by the

conditions described for the final procedure therefore standards are prepared covering a

range of 0-5 ug fluorescein mr'. All the soils investigated, using the conditions set for

the assay, were within the range described by the standards.

3.9 Preparation of standards

The original method stated that standards should be prepared using hydrolysed

fluorescein diacetate (FDA). This was achieved by boiling FDA solutions of known

concentrations in a water bath for 30 min (Schntirer and Rosswall, 1982). Other authors

increased the boiling time to 60 min (Chen et al., 1988). This method for obtaining

reproducible standards proved too variable. 0-200 ug concentrations of FDA were

added to 5 ml of 60 mM potassium phosphate buffer pH 7.6 in screw top vials (Fig 6A).

The lids were replaced and the standards placed in a boiling water bath for a set time

(30 or 60 min). Once cool a further 10 ml of 60 mM potassium phosphate buffer pH 7.6

was added to keep all volumes the same as the final procedure. 15 ml of

chloroform/methanol (2: 1 v/v) was added and the standards were centrifuged and

filtered as described by the final procedure. The standards were measured at 490 nm

and the results plotted to produce a standard calibration graph. The results differed for

both hydrolysis times. Fluorescein diacetate can in fact be hydrolysed for up to 6 h in a

water bath, although a slight plateau is reached after 4 h. Fig 6B illustrates the

continued hydrolysis of a 100 ug FDA standard. Replicate 100 ug FDA standards in 5

ml 60 mM potassium phosphate buffer pH 7.6 were placed in a boiling water bath. A

duplicate set of replicates were removed every hour and the fluorescein released

measured as described above. Whether FDA is continuing to be hydrolysed or whether

it is being degraded in the prolonged heating is unclear but the method for preparing

standards is clearly unacceptable.

Sodium fluorescein salt was chosen instead to prepare the standards. Sodium

fluorescein salt released the same acid yellow coloured fluorescein as FDA released

allowing direct measurement of fluorescein released from FDA in soil by a standard

calibration graph prepared from sodium fluorescein salt. Certain pure fluorescein

preparations should be avoided as this compound is generally solvent yellow coloured

and adds an error to the absorbance measurements. The fluorescein salt can be weighed

accurately and known concentrations of fluorescein obtained so standard results rarely

differ. Standards prepared by this method did not alter significantly over three months.



By using the boiling water bath method for preparing standards the amount of

fluorescein hydrolysed by the samples and the amount of FDA hydrolysed during

standard preparation was continually underestimated and was not always consistent.

Preparing standards from sodium fluorescein salt is a much more accurate method.
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Fig. 6 (A) Fluorescein diacetate (FDA) hydrolysed in boiling water bath (diluted

1 : 1 in 60 mM potassium phosphate buffer pH 7.6) and (B) continued hydrolysis of

100 ug FDA standard in boiling water bath.



4. Conclusions

The potential of fluorescein diacetate (FDA) hydrolysis as a measure of total microbial

activity has been recognised by many authors and used on a wide range of samples.

The most frequently used method for measuring FDA activity in soil was found to be

limited in the range of soil types it could measure successfully. The method described

in this study critically assessed each individual parameter of the FDA hydrolysis assay

and optimised each one for the measurement of a wide range of soils.

The most important parameter assessed during this study was the choice of

solvent for terminating the reaction. By changing the solvent from acetone (50% v/v) to

chloroform/methanol (2: 1 v/v) low activity soils, such as sandy and clayey soils, could

be measured successfully. This increased sensitivity was achieved as no loss of colour

was observed when chloroform/methanol (2: 1 v/v) was used.
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Abstract

Groundwater contamination by fuel spills from aboveground and underground storage tanks

has been of growing concern in recent years: This problem has been magnified by the

addition of oxygenates, such as ethanol and methyl-tertiary-butyl ether (MtBE) to fuels to

reduce vehicular emissions to the atmosphere. These additives, although beneficial in

reducing atmospheric pollution, may however increase groundwater contamination due to

cosolvency of petroleum hydrocarbons and by provision of a preferential substrate for

microbial utilisation. With the introduction of ethanol to diesel fuel imminent and the

move away from MtBE use in many states of the USA, the environmental implications

associated with ethanol additive fuels must be thoroughly investigated. Diesel fuel

movement was followed in a 1m soil column and the effect of ethanol addition to diesel

fuel on this movement determined. Addition of 5 % ethanol to diesel fuel was found to

enhance the downward migration of the diesel fuel components, thus increasing the risk of

groundwater contamination. A novel method using soil packed HPLC columns allowed

the influence of ethanol on individual aromatic hydrocarbon movement to be studied. An

aqueous ethanol concentration above 10 % was required for any movement to occur. At

25 % aqueous ethanol the majority of hydrocarbons were mobilised and the retention

behaviour of the soil column lessened. At 50 % aqueous ethanol, all the hydrocarbons were

mailto:gilliana@chem.gla.ac.uk


found to move unimpeded through the columns. The retention behaviour of the soil was

found to change significantly when both organic matter content and silt/clay content was

reduced. Unexpectedly, sandy soil with low organic matter and low silt/clay was found to

have a retentive behaviour similar to sandy subsoil with moderate silt/clay but little organic

matter. It was concluded that sand grains might have a more important role in the

adsorption of petroleum hydrocarbons than first realised. This method has shown that soil

packed HPLC columns can be used to provide a quick estimate of petroleum hydrocarbon,

and possibly other organic contaminant, movement in a variety of different soil types.

Keywords: Diesel, Aromatic hydrocarbons, Ethanol, Mobilisation, Groundwater.

Introduction

Since the petroleum crisis of the early 1970's, Brazil is the only country that has attempted

a large scale programme to substitute a non-renewable fuel source by an entirely renewable

one (i.e., hydrated ethanol) (Massad et al., 1993). A large proportion of cars are fuelled

exclusively by ethanol and the remaining gasoline sold in petrol stations contains 24%

ethanol. Like any other large-scale energy programme the advantages and disadvantages

of ethanol fuel usage have been investigated. As well as the inherent economic advantages,

ethanol addition to fuel is environmentally appealing as it is one of the oxygenates, along

with methyl-tertiary-butyl ether (MtBE), used to reduce vehicular emissions of carbon

monoxide and ozone precursors to the atmosphere. However MtBE, which is the most

common oxygenate added to reformulated gasoline in North America, has been shown to

be persistent in subsurface systems and to create taste and odour problems. InMarch 1999,

California announced plans to phase out MtBE use by 2003 following a number of

incidents involving the loss of groundwater supplies due to MtBE pollution (Environment

Agency, 1999). Ethanol is therefore considered as a possible substitute. Several studies

have been carried out on gasoline-ethanol fuels but little work has been done on other fuels.

With the introduction of 3 % ethanol to diesel fuel, which is currently under revision by

the Brazilian authorities and the move away from MtBE use in many states in the USA, the

environmental implications associated with ethanol additive fuels must be thoroughly

investigated.

Theoretically, the addition of ethanol to gasoline should enhance the downward migration

of this contaminant in soil due to increased solubilisation of gasoline components in ethanol



and the wetting effect of ethanol on the more hydrophobic soil components. If this is true,

risk of contamination of ground water by gasoline is greatly increased when ethanol is

present. Gasoline comprises low molecular weight alkanes (C5 - Cl 0) and aromatics

(mainly benzenes and naphthalenes) with very little polyaromatic hydrocarbons (PAHs).

A large proportion of gasoline is made up of BTEX (benzene, toluene, ethyl benzene and

m-, 0- and p-xylene) components, which are relatively soluble and would degrade readily

under the right environmental conditions. The presence of ethanol along with gasoline may

however retard the degradation of gasoline components, with microorganisms preferentially

utilising ethanol over gasoline (personal communication). This increases the residence time

of gasoline in the soil, which may cause further ground water contamination problems.

A blend of ethanol with other additives was developed for use with diesel engines. The

above implications can be implied for the diesel-additive ethanol situation. Diesel

however, contains a higher percentage of aromatics, which can include up to 3% PAHs.

PAHs are of specific concern as they are more persistent in the environment and some

PAHs have adverse health effects. Action levels for PAHs in ground water are very low

and contamination by diesel fuel components would pose a serious threat to ground water

quality. The higher concentration of aromatics in diesel may prevent the downward

migration of the contaminant due to lower solubility of the aromatics and increased

adsorption of the aromatics on soil components. However, the possibility of movement into

groundwater must be investigated.

A laboratory study was undertaken to investigate the movement of diesel fuel and various

aromatic compounds found commonly in gasoline (toluene, naphthalene) and diesel fuel

(naphthalene, l-ethyl naphthalene, 2,5 dimethylnaphthalene, phenanthrene, anthracene,

pyrene and chrysene) through a soil column and to determine if the movement of these

compounds is enhanced by ethanol. The effect of soil components on contaminant

movement was also investigated.



Materials and Methods

Movement of diesel fuel through soil column

Leaching column set up

Polythene drain pipe was cut into sections (L 10 cm x ID 4 cm). The sections were sealed

together using waterproof tape to provide an airtight seal at the joins. Ten sections were

fitted together to create a column I m in length. As the sections were fitted together, the

column was filled with John Innes compost No.2 by tapping the soil into each section to

create an evenly packed column. John Innes Compost No.2 was chosen as a substitute soil

as it is prepared from sterilised loam which provided a low microbial activity soil (Adam

and Duncan, in press). The column was built up, section by section, in this way. The

bottom section of the column had a fine Nylon mesh covering the lower end to prevent the

soil from escaping, but allowing the leachate to freely drain away. An extra section was

placed on the top of the column to provide a collar for the water reservoir. The column was

run at a temperature of approximately 15°C to reduce microbial activity in the column. The

complete set up of the column is illustrated in Fig. 1.

Procedure

10 ml of diesel fuel oil was added, using a 50 ml syringe, to the top of the column. The

diesel fuel was allowed to penetrate into the soil for approximately 30 min. After this time,

50 ml of deionised water was poured in to wet the column, then 2 I of deionised water was

added by inverting a 2.5 I plastic bottle into the top of the column. This acted as a reservoir

allowing a constant supply of water to leach through the column. The flow rate depended

entirely on gravity flow and the density of the soil packed column. It took approximately

24 h for 2 I of deionised water to leach through the column, therefore a fresh 2 I reservoir

was set up each day. This process was continued for 5 days and provided a total of 10 I of

water leached through the column.

The column was dismantled one section at a time and a 40 g subsample was taken from

each section. The samples were then extracted separately to determine the amount of diesel

fuel present in each section. This procedure was repeated using 10 rnl of diesel fuel oil with

5 % ethanol additive. 10 I of water was again leached through the column and the sections

dismantled for diesel analysis as above.
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Fig. 1. Diagrammatic representation of the leaching column set up. The column consists

of 11 sections (one extra section on top of the column to act as a collar for the reservoir)

supported by clamp stands. The reservoir is a 2.5 ] plastic bottle containing 2 I of water.

A 4 Ibeaker collects the leachate beneath the column.

Diesel fuel extraction

Due to the short residence time of diesel fuel in the soil column, a method of extraction was

developed that allowed the volatile, lighter fuel components to be removed effectively,

followed by extraction of the heavier fuel components. A cold shaking extraction method

was developed from the mechanical shaking method of Schwab et al (1999). 40 g of fresh

soil (sieved < 2 mm) was extracted for 30 min in 100 mIl:l acetone: dichloromethane in

an orbital incubator (15 "C, 200 rev min -I). The extract was filtered (Whatman, No.2)



into a 100 ml volumetric flask and the volume made up with 1:1 acetone: dichloromethane.

This extract was analysed by GC-FID using the conditions described below and the total

petroleum hydrocarbon (TPH) value calculated.

The 40 g soil sample was left to air dry overnight and was then transferred to a cellulose

thimble for Soxhlet extraction. The Soxhlet method was modified from the US EPA

method 3540C for non volatile and semi volatile organic compounds and the method of

Song et al (1990). 5 g of anhydrous sodium sulphate was added to the bottom of a cellulose

extraction thimble then the air dried soil sample added. The thimble was plugged with

glass wool then placed into the Soxhlet apparatus. 100ml of 1:1 acetone: dichloromethane

was added and the sample extracted for 6 h. Once cool the extract was transferred, with

washings, to a 100 ml volumetric flask and the volume made up to 100 ml with 1:1 acetone:

dichloromethane. The extract was analysed by GC-FJD as described below and the residual

TPH value calculated. The TPH values obtained for each step of the extraction were

summed to provide a total TPH value for the sample. Dilution of the original diesel fuel

in dichloromethane served as a quantitative analytical standard.

Diesel fuel analysis by GC-FID

The method for diesel fuel analysis by capillary GC-FID was modified from the US EPA

method 8100 for the analysis of polynuclear aromatic hydrocarbons (US EPA, 1986). The

chromatographic conditions were as follows. Analyses were carried out with a Hewlett-

Packard 5890A gas chromatograph and Flame Ionisation detector (FID). The GC was

interfaced with a Hewlett-Packard Chemstation data system. Helium carrier gas was

adjusted to the recommended linear flow velocity of 20 cm sec-1 using the non-retained

compound butane. Separations were performed on a SGE BPX 5 polysilphenylene-

siloxane capillary column (25m x 0.32mm I.D. x 0.5Jlm). 0.5JlI of sample was injected at

35 "C with a temperature hold of 3 min. The temperature increased 5 "C min-1 up to 250 "C

with a 10 min hold at the end of the run. The injector temperature was 260°C and the

detector temperature 270 cc.

Statistical analysis

Triplicate injections of each extract with no more than a 5 % difference in total peak area

were obtained for each sample. Retention times and peak areas of each replicate injection

were tabulated using Microsoft Excel to allow comparison of individual diesel fuel

components. Ten assigned peaks were used for verification of acceptable replicate analysis.



The average total peak area from the three replicates was calculated and used to work out

the total TPH content of that section.

Movement of individual aromatic hydrocarbons through HPLC column

Preparation of column packing material

The packing materials used in the study were prepared by sieving the initial samples to <

150 urn. This provided material, with an acceptable particle size range and narrower

particle size distribution, for packing into a HPLC column that would give constant back

pressure values and good chromatographic conditions.

Column G-OI packing material was prepared entirely from sieved Barassie soil. Column

G-05 material is the sieved subsoil from the Barassie series. This provides the same soil

matrix with lower organic matter, silt and clay content. Column G-05F material is Barassie

soil that has been placed in a furnace at 500 °C for 6 h to bum off all the organic matter. For

control purposes a column packed with acid washed sand (G-06) and silica gel columns (G-

07 and G-08) were included.

Particle size analysis for the determination of size distribution was carried out by

mechanical analysis as described by the modified method of Khan (Ph. D. thesis, University

of Glasgow, 1987) from ADAS Method 57 (1981). Organic matter content was assessed

by loss on ignition (La I). 5 g soil was weighed, in triplicate, into silica basins and dried

overnight at 105°C. The soils were weighed to obtain the oven dry soil weight. The soils

were then placed in a muffle furnace and ignited at 500°C for 6 h. The samples were re-

weighed and the weight of ignited soils calculated. The % organic matter by loss on

ignition was calculated by subtracting the weight of ignited soil from the weight of oven

dry soil. This value was then divided by the weight of oven dry soil and the resulting value

multiplied by 100 to obtain % LOI. Table I shows the physical characteristics of the six

packing materials used in the study.



Table I Physical characteristics of the packing materials used in this study

Particle size distribution

Column Description Organic Coarse + Fine sand % Silt % Clay %
matter LOI medium sand

% %

0-01 Sandy soil 16.68 1.68 38.86 21.56 24.78

0-05 Sandy subsoil 5.01 36.00 45.33 10.17 6.97

O-OIF Sandy soil (OM 0.00 1.95 44.75 24.80 28.50
removed)

0-06 acid washed 0.00 100 0.00 0.00
sand (Fisher ... •Scientific
Chemicals)

0-07 Matrex silica 60 100
(Fisher ... •

Scientific (0.070 - 0.0035 mm)
Chemicals)

0-08 Silica Oel 60H lOO
(Merck BDH) ... •

(0.0015
mm

% sand values are based on one replicate measurement and % silt and clay are based on duplicate
measurements.
Mechanical analysis recoveries for 0 - 01 and G - 05 were 103.56 % and 103.48 % respectively. Particle size
measurements are based on : coarse sand> 0.18 mm, fine sand 0.18 - 0.05 mm, silt 0.05 - 0.002 mm, clay
< 0.002 mm.

Column preparation

The prepared material was packed into an empty stainless steel HPLC column (L 100 mm

x ID 4.6 mm) by dry tapping. The packed column was attached to a HPLC pump and 50%

aqueous ethanol flowed through (0.1 - 1.5ml min -I) as a packing solvent. After 30 min,

a small portion of soil, saturated in 50% aqueous ethanol, was added to the column head

to fill up the crack left by the material shifting during packing. Once the column was

successfully packed, 50% aqueous ethanol was run through overnight at 0.1 ml min -I.

Acetone was used to measure the void volume.



Petroleum hydrocarbon standards

100 mg I -I solutions of toluene (Fisher Scientific International Company, UK., 99 +%

Analar), naphthalene, l-ethylnaphthalene, 2,5-dimethylnaphthalene, anthracene,

phenanthrene, pyrene and chrysene (Sigma-Aldrich Co. Ltd., UK., 99 +%) were prepared

in acetone (Riedel-de Haen, Sigma-Aldrich Co. Ltd., UK., Analar).

Procedure

Each petroleum hydrocarbon standard was added to the selected column individually and

varying % aqueous ethanol concentrations used as the mobile phase with isocratic elution.

The hydrocarbon standards were injected into the column at 1.6 ml min -I and detected by

UV at 254, 285 and 335 nm. Flow rate was set for each column at a rate that provided a

constant back pressure. The chromatographic conditions used for each column are outlined

in Table 2. The trend in retention of the hydrocarbons on each column showed good

linearity with carbon number, suggesting the column was performing successfully. A good

recovery of the petroleum hydrocarbon analytes, from each column, under these conditions

was achieved when the absorbance of the eluent from each column was measured by UV

spectrophotometry and compared to the corresponding standard solution. The recoveries

for mono- and di-aromatic analytes were >99 % and >94 % for polyaromatic analytes.

Table 2 Chromatographic conditions used for individual packed columns.

Mobile phase

25 % aqueous ethanol water

Column G-OI G-05 G-OIF G-06 Silica A Silica B

Packing
weight g'

1.6 2.6 2.4 2.2 1.2 0.85

Flow ml min" 1.6 1.6 1.6 1.6 0.8 1.2

Pressure psi 90 600 110 20 100 2000

Pressure measure in Ib/in2 (psi). Metric conversion - 1 psi - 7 kPa



Results

Vertical Movement of Diesel Fuel Through a Soil column

The results from the 1m soil columns suggested that the downward migration of diesel fuel

in the soil profile was enhanced by ethanol addition. Fig. 2 shows the percentage

distribution of diesel fuel in 1m soil columns leached with 10 I of water, where only diesel

fuel has been added and where diesel fuel with 5 % ethanol has been added. Little

movement of diesel fuel was observed in the diesel fuel only column with diesel fuel

distribution decreasing evenly from the top of the column (Section 1) to a depth of 30 em

(Section 3). Negligible amounts of diesel fuel were found below this depth. Diesel fuel

with 5 % ethanol, on the other hand, was seen to migrate to a depth of 40 em and the

pattern of diesel fuel distribution in the soil profile was very different from that seen in the

diesel fuel only column. Again, the largest percentage of diesel fuel was found in the top

10 em (Section I). The percentage of diesel fuel in Section 2 and 3 decreased, as before,

to 22.5 % and 13.8 %. However, the percentage of diesel fuel in Section 4 rose to 24.1 %

of the total diesel fuel added. No diesel fuel was found in sections below this depth.
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sections of the column (sections 6-10).



Effect of ethanol on aromatic hydrocarbon movement in surface soil.

The concentrations of ethanol required to enhance movement of aromatic hydrocarbons into

the subsurface was investigated by a novel method using soil packed HPLC columns. A

soil (Barassie series: 40.5% sand, 21.5% silt and 25.0% clay) with an average organic

matter content (16.7%) was assessed. Aqueous ethanol concentrations ranging from 0 - 50

% ethanol were used as the mobile phase in this column (G-OI). An aqueous ethanol

concentration of above 10% was required before any movement of aromatic hydrocarbons

was observed. At a 25 % aqueous ethanol concentration, the lighter, more soluble aromatic

hydrocarbons eluted slowly from the column whereas the larger aromatics (1,5 dimethyl

naphthalene, phenanthrene, anthracene, pyrene, chrysene) were retained on the column

(Table 3). Toluene, naphthalene and I-ethyl naphthalene had retention times of 2.49,9.86

and 28.00 min respectively. The length of time taken for these hydrocarbons to be eluted

from column 0-01 suggests the soil packing has hydrophobic sites capable of retaining

aromatic hydrocarbons but the adsorption of the lighter hydrocarbons on these sites can be

overcome by 25 % aqueous ethanol. When the aqueous ethanol concentration of the mobile

phase was raised further to 50 % ethanol, all the aromatic hydrocarbons added could be

eluted from the column and the time taken for elution was much less than with 25 %

ethanol. This implies increasing concentrations of ethanol lessened the retentive behaviour

of the soil column. This result is not unexpected as ethanol breaks the surface tension of

repellent soil, allowing increased penetration (King, 1981). Table 3 shows the retention

time (tr) and capacity factor (k') of hydrocarbons on the sandy soil column (0-01) using

different ethanol mobile phase concentrations. Capacity factors are included as although

a peak can be identified by its retention time, this varies with column length and mobile

phase flow rate (Lindsay, 1992). The same column lengths are used throughout this

experiment but the mobile phase flow rates differ. By using capacity factors instead of

retention times, a direct comparison can be drawn between different column results. The

results clearly show that ethanol enhances hydrocarbon mobility and increasing ethanol

concentration, in turn, increases the mobility of the hydrocarbons.



Table 3 Retention time (tR) and capacity factor (k') of hydrocarbons on the Barassie soil
column (0-01) using different aqueous ethanol mobile phase concentrations.

Mobile phase

25% EtOH 50% EtOH

Hydrocarbon k' k'

Acetone to = 0.78 to = 0.78

Toluene
Naphthalene
1 Ethyl naphthalene
I, 5 Dimethyl naphthalene
Phenanthrene
Anthracene
Pyrene
Chrysene

2.19
11.64
34.89

2.49
9.86
28.00

1.40
1.45
2.35
2.61
4.28
4.55
6.69
18.00

Capacity factor k' = tR- to
to

where tRis the analyte peak retention time
and to is the peak of the unretained solvent front

0.79
0.86
2.01
2.35
4.49
4.83
7.58
22.08

Influence of Soil Components on Aromatic Hydrocarbon Movement

To determine what effect various soil components had on the adsorption of aromatic

hydrocarbons, a series of soil columns were prepared with varying ratios of organic matter,

sand, silt and clay. Column 0-05 was prepared from the subsurface soil of the Barassie

series used in column 0-01. This subsurface soil consisted of a very large proportion of

sand (approximately 81 %) with low organic matter content (approximately 5%), silt

(approximately 10%) and clay (approximately 7 %). Column O-OlF was packed from the

Barassie soil used in column a-ot that had been ignited for 6 hours in a 500 QCfurnace to

remove all the organic matter. Column a-06 is a manufactured sand (Fisher Scientific

Chemicals, 40 - 100 mesh) which provided a measure for the mineral fraction of soil and

finally, columns a-07 and a-08 which are packed from silica of varying particle size.

Column a-07 contains particles in the fine sand to silt range whereas column a-08 contains

only silt sized particles. Fig. 3 shows the trend in retention of hydrocarbons on various soil

columns. 25 % ethanol was used as the mobile phase as it was found to enhance

hydrocarbon mobility in the original soil column (a-Ol) and is an important environmental



value as fuel in Brazil and many states in the USA contain 24 % ethanol (Massad et aI.,

1993).

The original soil column (G-Ol) which contained average organic matter, sand, silt and clay

contents had the highest adsorptive capacity for petroleum hydrocarbons. This is shown in

Figure 3 by the trend in retention lying above all the other column values as increasing In

k' values indicate increased retention of hydrocarbons due to increased adsorption to soil

sites.

The sandy subsoil (column G-05), which contained high levels of sand but low levels of

organic matter, silt and clay, had the next highest adsorptive capacity. The presence of

organic matter appeared to be the most important factor in the adsorption of petroleum

hydrocarbons because when all the organic matter was removed, as in column G-01F, the

retentive behaviour of the soil column was drastically reduced. Petroleum hydrocarbons

with a carbon number below 14 were not retained at all on the column but eluted along with

the solvent front. However, some retention of the larger petroleum hydrocarbons, such as

phenanthrene, was observed suggesting other factors were involved in retaining

hydrocarbons on soil. Column G-06, which is a manufactured sand of narrow particle size

range, also showed signs of retaining larger aromatic hydrocarbons suggesting sand

particles themselves have some retentive behaviour.
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Fig. 3. Trend in retention of hydrocarbons on various soil columns.

Carbon number relates to: C7-Toluene, C10-Naphthalene, C12-1 Ethyl naphthalene and

C 14-Phenanthrene.



Influence of Sand Particle Size on Aromatic Hydrocarbon Movement.

Two silica columns were tested to distinguish between the influence of particle size on

hydrocarbon retention. The results are given in Table 4. The silica used as packing

material in these columns (G-07 and G-08) had no surface coatings hence they had little

adsorptive capacity. Because of this water was used as the mobile phase. Column G-07 had

a larger particle size distribution (diameter ranging from 0.0035 mm to 0.70 mm) than

column G-08 (0.0015 mm particle size diameter). This was reflected by the capacity factors

of the aromatic hydrocarbons on each column. The time taken for elution of each

hydrocarbon was almost double on column G-08 compared with column G-07. These

results show that mineral particles such as sand, may influence the adsorption of

hydrocarbons even when they are not coated with organic matter or other active functional

groupings.

Table 4 Retention times and capacity factors for petroleum hydrocarbons on silica
columns with varying particle size ranges.

Mobile phase: water

Column G-07 Column G-08

Hydrocarbon tR k' tR k'
min min

Acetone to= 1.47 to= 2.86

Toluene 2.10 0.42 4.81 0.68
Naphthalene 3.81 1.19 7.83 1.73
1 Ethyl naphthalene 5.97 2.43 15.72 4.49
Phenanthrene 6.17 2.54 18.95 5.62



Discussion

An important factor on diesel fuel entering a soil system is its subsequent movement, both

lateral and vertical, in the soil profile. Rainfall can encourage contaminant leaching

through the soil profile which can lead to surface water and groundwater contamination.

Diesel fuel, due to its hydrophobic character, should not move far in the soil profile.

However, this statement is highly dependent on the characteristics of the soil that the diesel

fuel is contaminating and whether diesel fuel is contaminating from an aboveground or

underground source. The difference in the surface and subsurface soil characteristics allow

diesel fuel, on entering these systems, to behave very differently.

The pattern of diesel fuel distribution in the Im soil column clearly showed the

enhancement of diesel fuel movement through the soil column due to ethanol addition. Gas

chromatographic analysis of diesel fuel extracted from each soil section resulted in traces

whose pattern of hydrocarbon distribution was very similar. There was no indication that

specific components or fractions of the diesel fuel were being mobilised and moving further

down the soil profile than other components or fractions of the diesel fuel. This implies

that the effect ethanol has on enhancing diesel fuel movement in the soil may be due to the

'wetting' effect of ethanol on the soil components allowing mass movement of diesel fuel.

Hydrophobic, soil organic matter components such as humic, fulvic and fatty acids, impart

water repellent character to a soil (Anderson et al., 1995). Ethanol has been used in many

studies on water repellent soils (King, 1981, Roy and McGill, 1997) as it can break the

surface tension of repellent soil, allowing increased infiltration. Ethanol present within

diesel fuel would therefore enhance infiltration of diesel fuel into the soil profile by

lessening the adsorptive capacity of the hydrophobic sites of soil organic matter

components. This allows diesel fuel to move further down the soil profile. By further

increasing the concentration of ethanol in diesel fuel, enhanced movement of diesel fuel

into the subsurface would be observed. This conclusion was verified by the results from

the soil packed HPLC columns. Individual petroleum hydrocarbon movement was seen to

increase with increasing ethanol content.

The characteristics of the contaminated soil were also important in influencing the

movement of petroleum hydrocarbons. The percentage organic matter present was

extremely important in retaining hydrocarbons. Organic matter is found at high levels in

the surface soil and decreases to small amounts in subsurface soils. Therefore, petroleum

hydrocarbons contaminating from an aboveground source would not migrate far in the soil



profile due to adsorption by organic matter. If petroleum hydrocarbons were contaminating

from an underground source, the amount of organic matter in subsurface soils is minimal

therefore increased movement of contaminants would be expected. This theory was

verified by the results obtained from the subsurface soil column (0-05) and the column

with no organic matter (O-OIF). However, the results obtained during this investigation

using various sandy soils and surrogate sand columns indicate that other factors may be

involved in the adsorption of petroleum hydrocarbons. Other authors have found that sandy

soil can bind hydrocarbons adsorptively although neither silty material nor significant

amounts of organic matter was present. Loser et al. (1999) proposed that soil particles were

covered with micropores, which enlarge the soil surface area in comparison with the

macroscopic surface area. This microporosity is the reason for hydrocarbons being more

strongly adsorbed to sandy soils than expected (Loser et al., 1999). This theory seems a

likely explanation for the slightly retentive behaviour of both the silica columns tested (0-

07 and 0-08) and the sandy soil column with no organic matter present (column 0-01 F).

Conclusion

These results suggest a greater possibility of groundwater contamination by petroleum

hydrocarbons in ethanol additive petrol and diesel fuel spills occurring from both

underground storage tanks and aboveground spills. Surface soil components such as soil

organic matter, as well as silt and clay, play an extremely important role in retaining

petroleum hydrocarbons near the soil surface. However, ethanol was shown to enhance the

movement of both individual aromatic hydrocarbons and diesel fuel by lessening the

adsorptive capacity of the surface soil components. If these petroleum hydrocarbons reach

the subsurface level, the low organic matter content and lower silt and clay content will

allow hydrocarbon migration to occur more freely. In addition, an underground petroleum

hydrocarbon spill, which would normally migrate and contaminate groundwater quite

readily, would be further enhanced by the addition of ethanol.

This work has shown the benefits of using soil packed HPLC columns to better understand

the role of soil components in determining movement of petroleum hydrocarbons. The

method could be used to provide a quick estimate of petroleum hydrocarbon and other

organic contaminant movement in a variety of differing soil types.
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Abstract

A method for the quantification of biofilm formation on hydrogel protective coatings

for optical sensors and cameras has been developed using fluorescein diacetate (FDA)

hydrolysis. In conjunction with these measurements the release of the fouling

resistant cationic surfactants benzalkonium chloride, tallowbenzyldimethylammonium

chloride and dicocodimethylammonium chloride was measured using high

performance liquid chromatography (HPLC) to enable correlation to be made between

release and biofilm resistance and thus determine the active lifetime of such coatings.

Results indicate that the twin-chained material, dicocodimethylammonium chloride,

produced superior biofouling resistance as, at the 12 week time point, little fouling

was detected on this coating. The long-chained tallowbenzydmethylammonium

chloride (mainly CI6 and CIS chains) was the next best fouling resistant material,

withstanding biofilm formation for 9 weeks. This correlates with the fact that these

materials had an extremely slow to zero release rate compared to the shorter chained

benzalkonium chloride (mainly CI2 and CI4), which showed signs of biofilm

formation at the 3 week time point.

Keywords: biofilm, surfactants, fluorescein diacetate, marine, optical sensors
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Introduction

Biofilm formation on marine underwater structures, vehicles, sensors etc is an

ongoing problem leading to macrofouling and surface corrosion. It occurs in any

situation where there is a solid/liquid, liquid/gas or solid/gas interface (Wimpenny,

1996). Biofilms form in many areas and in most cases their presence is unwelcome.

However, there are areas, such as medical implants, where biofilm colonisation is

essential to prevent rejection by the body. A biofilm is commonly composed of

bacteria, diatoms, protozoans, microalgae and macroalgae (Anderson, 1995).

Surfaces are initially colonised by bacteria and diatoms creating the "slime" layer, the

biofilm, which is highly hydrated. When established, the biofilm is able to confer a

defence for the organisms within it thus making the task of biofilm resistant materials

more difficult (Costerton & Lashen, 1984).

The use of marine monitoring equipment has increased in recent years and long-term

monitoring from remote buoys has necessitated biofilm resistant strategies to be

developed in order that accurate data can be collected. Research into formation of

biofilms on marine underwater sensors and camera lenses has shown that 1-2 weeks in

temperate waters would result in useless data and poor camera images (Kerr et al.,

1998). At present, work to create a transparent fouling resistant coating for marine

optical sensors and cameras continues.

Hydrogels coatings containing cationic surfactants have been shown to prevent

biofouling formation on sensors and cameras increasing their underwater deployment

time up to 20 weeks. (Cowling et al., 1998). Cationic surfactants possess two

characteristics, a hydrophillic head and a hydrophobic tail thus making them useful in

many areas of industry. Their antimicrobial properties are utilised in products such as

eyedrops, mouthwashes and laundry agents. Their surface active properties are

important as lubricators, constituents for polishes and in corrosion inhibition.

However, it is their dual properties that make them useful in biofouling resistance.

In order to understand the relationship between release of cationic surfactants from

the hydrogel and biofilm formation it has been necessary to find a method for

quantitative biofilm determination. The hydrogel used were poly- (hydroxyethyl

methacrylate) with an equivalent water content (E.W.C.) of 40%. Current methods

for testing biofouling resistant chemicals either test the response of a test organism,

usually a diatom, to the substance under investigation (Callow & Willingham, 1996;

Wigglesworth-Cooksey & Cooksey, 1996) or estimate biofilm metabolic or



physiological activities by targeting either the heterotrophic or autotrophic

compartment. These methods generally require removal of the biofilm from the

substrate, which results in considerable loss in precision. Staining techniques

followed by light microscopy are not useful as the hydrogel is also stained, making

counting of bacteria impossible. Biofouling accumulation can also be measured by

UV transmission (Parr et al., 1998; Marrs et al., 1999). However, such methods are

only capable of investigating small areas at a time, which results in many

measurements having to be taken on each sample. The methods described above are

limited as they do not realistically model a biofilm population which is, at the initial

stages, a mix of bacteria (heterotrophic) and algae (autotrophic). In addition, these

methods are time consuming. A quick and reliable estimation of biofilm metabolic

activity was required to measure the effectiveness of potential fouling resistant

hydrogels in the marine environment.

Fluorescein diacetate (3' 6' -diacetyl-f1uorescein) hydrolysis was used to quantify

biofilm formation. This colourless compound is hydrolysed by both free and

membrane bound enzymes (Stubberfield & Shaw, 1990) releasing a coloured end

product, fluorescein, which can be measured by spectrophotometry. Fluorescein

diacetate (FDA) hydrolysis has been used to assess microbial activity in marine

(Gumprecht et al, 1995 Poremba, 1995) and freshwater sediments (Battin, 1997),

activated sludge (Fontvielle et al., 1992) as well as in pure cultures of bacteria

(Schnurer & Rosswall, 1982) and algae (Gilbert et al. 1992). Only recently has this

method been applied to biofilm estimation on surfaces (De Rosa et al., 1998). This

work follows the development of marine biofilms on submerged, surfactant treated

hydrogels using FDA hydrolysis and monitors the release of cationic surfactants from

the hydrogel. The advantages of the FDA method are the whole sample can be

measured, the biofilm remains attached to its substrate, it can be used on opaque

samples where light transmission microscopy is not useful and it measures over a

wide range of biofilm thickness'. The method provides a more accurate and sensitive

estimation of biofilm activity and is easy and rapid to perform.



Materials and methods

Preparation of the Hydrogels

The hydrogels used were transparent and contained 40% water. They were prepared in

250mm x 200mm poly- (methyl methacrylate) PMMA moulds to a thickness of 1-

2mm. They were stored in distilled water until required. The details of there

preparation can be found elsewhere (Smith, 1997, Refojo, 1966).

Cationic Surfactants

The three cationic surfactants used were quaternary ammonium compounds, their

structures are shown in Figure 1. They were benzalkonium chloride (BAC) (Aldrich),

tallowbenzyldimethylammonium chloride (Akzo Nobel) DMHTB-75™ and

dicocodimethylammonium chloride (Akzo Nobel) 2C-75™. The hydrogels were

loaded with surfactant by soaking them in 5%w/v solutions for 14 days (MAST II,

1995). In the case of the DMHTB-7S™ material it was loaded at the hydrogel

production stage due its relative insolubility. Previous work had shown (Smith, 1997)

that release from hydrogels soaked in DMHTB-7S™ to be the same as those with

DMHTB-75™ included at the preparation stage. However, hydrogels prepared with

DMHTB-75™ included at the production stage were found to be more reproducible.



Figure 1
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Marine Exposure Trials

The trials were carried out at the University Marine Biological Station, which is on

the island of Cumbrae in the Firth of Clyde on the West Coast of Scotland. The

hydrogels were held on a PMMA frame. There were 16 samples exposed, 4

containing benzalkonium chloride, 4 containing DMHTB-75™, 4 containing 2C-75™

and 4 unloaded hydrogels. They were arranged in a Latin-square formation. The

exposed area was 60mm x 80mm. The rack was suspended from Keppel Pier in a

vertical orientation to a depth of 3 metres in the sea. Figure 2 shows the layout of the

test coatings. Keppel Pier is 30-40 metres from the shoreline. The trial was begun in

July 2000 and was run for a 12 week period. Samples for both surfactant

Structures of cationic surfactants



quantification and biofilm detection were taken at, 3 weeks, 6 weeks, 9 weeks and 12

weeks. Quantitative analysis of cationic surfactant content was carried out on the

BAC and the DMHTB-75™ at zero time.

The temperature in this area during the period of the trials ranged from 13°C to 15°C.

15:08:00

Figure 2 Hydrogel coatings in PMMA frame at 6 week time point.

Quantitative Analysis

The BAC and the DMHTB-75™ materials were quantitatively analysed using high

performance liquid chromatography (HPLC) coupled with DV detection at 214nm

(Guilfoyle et al, 1990). The results were reported as weight percent of BAC of dry

gel weight. A dry weight was calculated at each time-point to account for any

physical changes in the gel during the timescale of the experiment. The 2C-75™

material was analysed using a method described by Huang, 1987. The 2C-75™ is

transparent in the UV range therefore a method of Indirect Photometric



Chromatography (IPC) is used where the analyte displaces the UV active species, in

this case p-toluenesulphonic acid, from the mobile phase. This results in a negative

baseline, which represents the UV transparent species. Sample discs were taken using

a cork borer with a diameter of 20mm. Three were cut from each gel at each time

point. The surfactants were extracted from the hydrogel using a method previously

described (MAST II, 1995).

Optimisation of Hydrogel Dimensions, Sampling and Fluorescein Diacetate

Method

A preliminary experiment was conducted to determine optimum surface area

sampling size and length of submersion of hydrogels to obtain a measurable biofilm

and also the optimum conditions for carrying out the FDA hydrolysis method.

Varying sizes of PMMA coupons were submerged for differing lengths of time in the

sea at UMBSM. The sample PMMA coupons were collected and transferred to sealed

plastic containers with a small amount of seawater to prevent the biofilms drying out.

The samples were then transported in a cool box to the laboratory where they were

stored at 4 DC, to prevent growth from the time of sampling, and analysed within 24

hours of collection. Marine biofilm estimation was performed as described below

except differing lengths of incubation were used.

Estimation of Marine Biofilm Activity using Fluorescein Diacetate (FDA)

Estimation of marine biofilm activity was carried out using a modified method based

on the Adam and Duncan (200 1) method.

Four cores (30mm diameter) were cut from each hydrogel section (60 x 80 mm) and

placed into individual 60 ml glass powder jars. 15 ml of 60 mM potassium phosphate

buffer pH 7.6 (8.7 g K2HP04: 1.3 g KH2P04 made up to 1 litre in deionised water)

was added to each jar and 0.2 ml of 1000 J.1gfluorescein diacetate (3'6' - diacetyl-

fluorescein, Sigma-Aldrich Co. Ltd) mr' acetone solution added to start the reaction.

One jar from each treatment was retained as a blank without the addition of the FDA

substrate. The lids were replaced on the jars and the jars then placed in an orbital

incubator (Gallenkamp orbital incubator, 100 rev min-I) at 10 °C ± 1 °C for 1 hour.

The following steps involving chloroform/methanol were carried out in a fume

cupboard. Once removed from the incubator, the 30 mm diameter cores were taken



out of the bufferlFDA solution and 15 ml of chloroform/methanol (2: I v/v) added

immediately to terminate the hydrolysis reaction. The lids were replaced on the jars

and the contents shaken thoroughly by hand. The contents of each jar were filtered

(Whatman, No.2) into 100 ml conical flasks and the filtrates measured at 490 nm on a

spectrophotometer (Hitachi U-lIOO spectrophotometer). The blank from each

treatment was used to zero the spectrophotometer before reading the sample

absorbance.

The concentration of fluorescein released during the assay was calculated using the

calibration graph produced from 0-5 ug fluorescein mrl standards which were

prepared from a 20 ug fluorescein (fluorescein sodium salt, Merck-BDH, Analar) mrl

standard solution by appropriate dilution in 60 mM potassium phosphate buffer pH

7.6.

Results

Application to Marine Biofilm Detection

The results from the preliminary experiment indicated a surface area sampling size

between 20 mrrr' and 50 rnrrr' and a submersion period of> 14 days was sufficient to

allow development of a sizeable marine biofilm. The optimum length of incubation

using the conditions described below was 1 hour, which allowed a measurable amount

of fluorescein to be released without substrate becoming limiting. Rather than

performing the analyses at 30 QC,which is the temperature at which maximum FDA

hydrolysis occurs (Adam and Duncan, 2001) or any other arbitrary temperature,

monthly average sea temperatures were obtained from University Marine Biological

Station. A temperature of 10 QC was chosen to provide realistic environmental

conditions for carrying out the analyses. This temperature was a mean of twelve

months temperature recordings that included winter months as it was decided to

develop a method that would apply in all seasons. By keeping the incubation time

short and the incubation temperature low, changes that could occur to the biofilm

population would be minimised.



Biofilm FDA hydrolytic activity was measured, on each surfactant treated hydrogel as

well as the untreated hydrogel (blank), at 3, 6, 9 and 12 week time points. The results

are given in Table 1 and expressed in Figure 3 to illustrates biofilm development on

the hydrogels investigated over time, as indicated by an increase in the amount of

fluorescein released during the course of the incubation. The untreated hydrogel

(blank) was quickly colonised by bacteria and the biofilm well established by the 3

week time point. At 3 weeks the blank hydrogel's FDA activity had reached a

maximum of 1.393 ug fluorescein released h-I after which, FDA activity was seen to

decrease steadily to 0.884 ug fluorescein released h-I at the 12 week time point. This

reduction in activity, indicating a decrease in the amount of biofilm detected, is due to

larger organisms, such as invertebrate larvae, grazing off bacteria on the biofilm as

well as nutrient scavenging by algae, making it patchy (Anderson, 1995). A similar

biofilm growth pattern was seen for the BAC treated hydrogel except a lag phase of 3

weeks was seen before an increase in FDA activity was observed. FDA activity

increased from the 3 week time point to a maximum of 1.568 ug fluorescein released

h-I at 9 weeks. The activity then decreased rapidly, as seen in the blank hydrogel

curve, due to bacterial grazing. The DMHTB-75™ and 2C-75™ treated hydrogels

showed very different patterns of biofilm growth. The DMHTB-75™ hydrogel

showed little FDA activity over the 3 - 9 week sampling period suggesting little

biofilm growth had occurred. It was not until the 9 week time point that an increase

in FDA activity was observed. This activity rose steeply to it's highest measured

value of 1.447 J.lg fluorescein released h-I at 12 weeks. The 2C-75™ hydrogel

maintained a low level of FDA activity throughout the course of the experiment. For

the first 6 weeks an extremely low FDA activity of 0.053 J.lgfluorescein released h·1

(average value) was measured. This value rose to 0.327 ug fluorescein released h-I on

average, during weeks 9 - 12. As shown in Figure 3, this level of FDA activity was

extremely low compared to the other hydrogels tested and indicates that little biofilm

growth occurred on this hydrogel.

Biofilm formation on the various surfactant treated hydrogels was also visually

assessed at each sampling time point. Figure 2 illustrates the various hydro gels held

on a PMMA frame after the 6 week exposure time. The untreated (blank) hydrogels

are easily recognisable by the extensive algal fouling present on the hydrogel surface.



The other hydrogels retained their transparent appearance with little to no apparent

fouling.

ug fluorescein released h-I

hydrogel unloaded BAC 2C-75™ DMHTB-75™
treatment

Sampling time
(weeks)

3 1.393 ± 0.448 0.053 ± 0.002 0.043 ± 0.003 0.066 ± 0.013

6 1.313 ± 0.372 1.374 ± 0.116 0.063 ± 0.003 0.124±0.01l

9 1.042 ± 0.135 1.568 ± 0.663 0.325 ± 0.154 0.342 ± 0.114

12 0.884 ± 0.125 1.149 ± 0.337 0.330 ± 0.054 1.447 ± 0.265

Average values ± standard error (SE), n = 3

Table 1 Biofilm activity
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Figure 3 Estimation of biofilm formation measured by FDA hydrolysis activity

over time.

Release of Surfactants

The hydrogels were quantitatively analysed using HPLC as described in the methods

section. Table 2 shows the levels found. The amount of 2C-75™ found is greater

relative to that found in the BAC and DMHTBTM although the soaking time was the

same. This may be attributed to its twin structure. Figure 4 shows the release of BAC

and DMHTB-75™ over the 12 week period. It can be seen that the BAC releases in a

linear fashion over the period while the DMHTB-7S™ is practically all retained in the

hydrogel. BAC with its predominately CI2 and CI4 chains is water-soluble. It can

therefore be contained mainly in the pore water of the hydrogel with a small amount

becoming irreversible bound to the hydrophobic part of the hydrogel [Smith et aI,

2000]. The DMHTB-75™ is mainly composed of CI6 and CIS and is fairly insoluble

at room temperature. As it is a much more hydrophobic material than BAC it is likely

to attach itself to the more hydrophobic parts of the hydrogel i.e. not the pore water.

Such attachment would be fairly irreversible, in addition to DMHTB-75™'s

reluctance to release into the polar seawater environment, would result in DMHTB-

75™ being retained in the hydrogel.

The 2C-7S™ is mainly composed of CI2 and Cl4 chains. It is water soluble but

separates into two layers when left standing. It is a twin-chained material and has a



more hydrophobic character than the single chained BAC thus it is able to attach by

hydrophobic interaction to the non-water portions of the hydrogel. From the

quantitative analysis over the 12 weeks of the study it appears to be retained by the

hydrogel thus suggesting despite its water solubility it is predominately held in the

non-polar areas of the hydrogel.

% cationic surfactant (wt/wt)

hydrogel
treatment

BAC 2C-75™ DMHTB-75™

Sampling time
(weeks)

I I. I63±O.094 Not done 12.622±O.273
o

8.898±O.5722 29.701±9.319 12.111±O.241
3

6.889±O.224 19.776±1.631 13.984±O.O20
6

4.166±O.347 25.110±4.276 11.261±O.118
9

2.222±O.217 28.709±3.822 IO.137±O.320
12

Average values ± standard error (SE), n = 3

Table 2 Average release of cationic surfactants.
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Figure 4 Release of BAC and DMHTB-75™ from the hydrogel over the 12

week period.

Discussion

The estimation of biofilm growth provided by the FDA hydrolysis method correlated

well with release rates of the fouling resistant cationic surfactants. The FDA

hydrolysis results showed that the BAC treated hydrogels had a sizeable biofilm

forming by 3 weeks suggesting the active lifetime of this coating was short. This

statement was verified by the release rate of BAC from the hydrogel. BAC content of

the hydrogel decreased linearly over the course of the experiment from 11.16 % w/w

to approximately 2 % w/w at the 12 week time point. The decrease in BAC content

within the hydrogel diminished the surfactants fouling resistance, allowing bacterial

attachment and biofilm growth. The DMHTB-75™ hydrogel showed little biofilm

formation until after the 9 week time point where FDA hydrolytic activity rose

sharply to the 12 week time point. Somewhere, shortly after the 9 week sample was

taken, the release of DMHTB-75™ was sufficient as to allow biofilm growth to

increase. The release rate of DMHTB-75™ from the hydrogel was extremely slow

and the concentration of DMHTB-75™ was only slightly reduced over the course of



the experiment. Initially the concentration of DMHTB-75™ was 12.5 % w/w and by

week 12 it had fallen to 10.2% w/w. Although the reduction in DMHTB-75™

concentration does not appear to be significant, the decrease was enough to allow the

small biofilm population already present on this hydrogel to expand rapidly. The

antifouling properties of the DMHTB-75™ surfactant appear to be lost at this point

therefore the active lifetime of this coating is approximately 9 weeks. Finally, the

FDA hydrolysis results for the 2C-75™ hydrogel indicated little biofilm activity that

again corresponded well with the results obtained from the release of 2C-75™ from

the hydrogel. Almost no 2C-75™ was released from the hydrogel over the 12 week

exposure period suggesting the level of antifouling resistance the hydrogel held at the

start of the trial was the same as the resistance imparted after 12 weeks. A slight

increase in FDA activity was observed at the 9 week time point, indicating a change

in the biofilm but this increase was minimal. The active lifetime of 2C-75™ was> 12

weeks and was the greatest of all the cationic surfactants tested.

Conclusions
The FDA method for the quantifying of biofilms on the hydrogel coatings is

successful and rapid. The quantitative analysis of release of surfactant demonstrated

that retention of the surfactant extends the lifetime of the coating. It can be postulated

that the primary defence of DMHTBTM and 2C-75™ is a surface active phenomenon.

BAC is releasing and can therefore thought to be acting as an antimicrobial until the

levels of release become low and not effective.
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Abstract

When petroleum hydrocarbons contaminate soil, the carbon:nitrogen (C:N) ratio of

the soil is altered. The added carbon stimulates microbial numbers but causes an

imbalance in the C:N ratio which may result in immobilization of soil nitrogen by the

microbial biomass, leaving none available for plant growth. As members of

Leguminosae fix atmospheric nitrogen to produce their own nitrate for growth, they

may prove more successful at growing on petroleum hydrocarbon contaminated sites.

During a wider study on phytoremediation of diesel fuel contaminated soil, particular

attention was given to the performance of legumes versus other plant species.

During harvesting of pot experiments containing leguminous plants, a recurring

difference in the number and formation of root nodules present on control and

contaminated Common vetch (Vicia sativa) plants was observed. The total number

of nodules per plant was drastically reduced in contaminated plants compared to

control plants but nodules on contaminated plants were more developed than

corresponding nodules on control plants. Plant performance of Common vetch and

Westerwold's ryegrass (Lolium multiflorum) was compared to illustrate any

difference between the ability of legumes and grasses to grow on diesel fuel

contaminated soil. Common vetch was less affected by diesel fuel and performed

better in low levels of diesel fuel contaminated soil than Westerwold's ryegrass. The

total amount of diesel fuel remaining after four months in Common vetch planted

soil was slightly less than in Westerwold's ryegrass planted soil.

Keywords :

performance.

diesel fuel, legumes, root nodules, phytoremediation, plant



1. Introduction

When petroleum hydrocarbons contaminate soil, the added carbon stimulates

microbial numbers but causes an imbalance in the C:N ratio which may result in

immobilization of soil nitrogen by the microbial biomass, leaving none available for

plant growth. Members of Leguminosae fix atmospheric nitrogen to produce their

own nitrate for growth therefore, they may prove more successful at growing on

petroleum hydrocarbon contaminated sites. To further support this statement,

species of Leguminosae have been found to be the most abundant reinhabitors of

petroleum hydrocarbon contaminated sites (Gudin and Syratt, 1975).

During a wider study on the phytoremediation of diesel fuel contaminated soil,

particular attention was given to the performance of legumes versus other plant

species. An important factor of the legumes success would be dependent on the

development of root nodules. Decrease in nodule formation has been noted by other

authors in soils contaminated with heavy metals (Porter and Sheridan, 1981, Casella

et al., 1988), agrochemicals (Martens son, 1992), acid rain (porter and Sheridan,

1981) and PAHs (Wetzel and Werner, 1995), however no work has been carried out

on nodulation in diesel fuel contaminated soil. This work investigates nodule

formation on Common vetch plants grown in diesel fuel contaminated soil. Plant

performance of Common vetch and Westerwold' s ryegrass was compared to

illustrate any difference between the ability of legumes and grasses to grow on diesel

fuel contaminated soil.

2. Materials and Methods

Agronomic Assessment. Germination rate, tallest shoot height and total shoot and

root biomass was measured after two and four months growth. The number of root

nodules per plant was assessed at the two month sampling date.

Root Nodule Embedding and Microscopy. Plants were shaken free from soil then

washed thoroughly under running water. After the root sample was washed, the

number of nodules was determined on a per plant basis. The freshly washed root

nodules were then fixed in O.2M cacodylate buffer for 6 hours then dehydrated

through an ethanol series. The dehydrated nodules were then infiltrated with LR
white resin for 48 hours and polymerized at 60°C overnight. Sections (2 urn) were

cut using a glass knife on a LKB ultratone III and dried onto glass slides over a

hotplate at 60°C. The sections were stained for 10 seconds with 1% toluidine blue in
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1% sodium tetraborate. The sections were visualized at 40x and 100x magnification

on a Leica ATCTM2000 compound microscope with digital camera attachment.

Diesel Fuel Extraction. Diesel fuel remaining in the soil after four months was

extracted using a hot solvent Soxhlet extraction. 40g of soil sample was added to a

cellulose extraction thimble containing 5g anhydrous sodium sulphate then extracted

for 6 hours in 100ml of acetone:dichloromethane (I: 1 v/v). The extract was

transferred to a 100ml volumetric flask and made to volume with

acetone:dichloromethane (1: 1 v/v). Extracts were analysed by GC-FID.

GC-FID Analysis of Extracts. Analyses were carried out on a Hewlett-Packard

5890A gas chromatograph (GC) with flame ionization detector (FID). The GC was

interfaced with a Hewlett-Packard Chern station data system. Helium carrier gas was

adjusted to the recommended linear flow velocity of 20cm sec" using the non-

retained compound butane. Separations were performed on a SGE BPX5

polysilphenylene siloxane capillary column (25m x 0.32mm x I. D. 0.5fJ.m). 0.5J..lIof

sample was injected at 35°C with a temperature hold of 3 minutes. The temperature

was increased 5°C min" up to 250°C with a 10 minute hold at the end of the run.

The injector temperature was 260°C and the detector temperature was 270°C.

% diesel fuel remaining was calculated from the total petroleum hydrocarbon (TPH)

value of each sample extract subtracted from the TPH value of diesel fuel extracted

from the soil at time zero. TPH values were calculated from total peak areas of

triplicate injections with less than 5% difference between them.

3. Results and Discussion

During harvesting of pot experiments containing leguminous plants, a recurring

difference in the number and formation of root nodules present on control and diesel

fuel contaminated Common vetch plants was observed. The average total number of

nodules per plant was drastically reduced in contaminated plants compared to control

plants, with numbers falling from 8 nodules per plant in the controls, to 3, 4 and <1

in the 5g, 109 and I5g diesel kg" contaminated soil respectively.

Observation of nodule sections by light microscopy illustrated clear differences

between nodules of control Common vetch plants and plants grown in diesel fuel

contaminated soil. The majority of nodules from control plants were spherical and
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appeared to be at the initial stages of nodule differentiation. Few bacteroids were

present within the central body of the nodule suggesting the nodule was immature

and would therefore not be effectively fixing atmospheric N2 (Figures 1A and IB).

Nodules taken from contaminated plants were elongate or club-shaped and the

central mass of tissue showed successive stages of host cell invasion and

differentiation by rhizobium. The bacteroids were numerous and filled most of the

central nodule body as illustrated in Figure IC and ID. The results suggest at low

levels of diesel fuel contamination (5-10g diesel kg-1 soil), nodules formed on

contaminated plants are actually more developed than the corresponding nodules on

control plants.

A

C

B

D

Figure 1. Light microscopy section (Zum) of a Common vetch nodule grown in CA)

uncontaminated soil (magnification x40), (B) enlargement of this nodule (x l 00) and

(C) diesel fuel contaminated soil Cx40)and CD)enlargement of this nodule CxIOO).

VT - vascular tissue, BC - bacteroid cluster, QC - outer cortex and IC - inner

cortex.
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This finding is in agreement with Carr who first noted the apparent stimulation of

legume root nodules by low levels of hydrocarbon contamination on Soybean plants

in 1919. Carr concluded that small amounts of oil may even be desirable in nodule

development in Soybean plants and where the amount of oil was increased to the

extent of damaging the plant, there was still some nodule development (Carr, 1919).

An explanation for the apparent stimulation of nodule development in diesel fuel

contaminated soil may be the additional carbon added to the soil in the form of diesel

fuel, changed the soils C:N ratio. The addition of a huge carbon source, such as

diesel fuel, would widen the C:N ratio which in tum, would leave less N available for

plant uptake. This has been observed in soils contaminated with petroleum

hydrocarbons (Xu and Johnson, 1997) with N becoming immobilised in microbial

biomass leaving less N available for plant uptake. This may have caused the

Common vetch plants growing in contaminated soil to nodulate quicker than plants

grown in uncontaminated soil which would explain why contaminated nodules

appeared more developed and at a later stage of differentiation than control nodules

even though the seeds were planted at the same time.

When the agronomic performance of Common vetch plants was compared with a

non-leguminous species such as Westerwold's ryegrass, a difference in shoot and

root biomass was observed. Although germination rate and shoot height was not

badly affected by growing in low levels (5-1Og) of diesel fuel contaminated soil in

either plant species, a larger decrease in shoot biomass was observed for

Westerwold's ryegrass (Table 1) suggesting a deterioration in plant health and

performance. The total amount of diesel fuel remaining after four months in

Common vetch planted soil was slightly less than in Westerwold's ryegrass planted

soil (Table 1).

4. Conclusion.

The results suggest Common vetch were less affected by diesel fuel and performed

better in low levels of diesel fuel contaminated soil than Westerwold's ryegrass.

This advantage over Westerwold's ryegrass may have been due to the presence of

well developed root nodules on the contaminated plants.
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Plant species Treatment Av. Shoot Av. Root Germination Tallest % diesel

(g diesel biomass biomass (%) shoot fuel

kg-l soil) per plant per plant length (cm) remaining

(rng) (mg)

Common vetch 0 1230 ± 84 55 ± 15 55 ±6 64±3

5 889 ± 52 58 ± 8 66± 7 68 ±4 nd

10 552 ± 31 49±8 60±8 56 ± 5 1.58

15 123 ± 50 24 ± 18 48 ±4 39± 7 1.90

Westerwold's 0 1388 ± 49 55 ± 2 55 ± 2 79±4

ryegrass 5 667 ±2 62 ±6 62 ±6 75 ±8 nd

10 422 ±3 63 ± 7 63 ± 7 79± 5 2.12

15 318 ± 8 38 ±2 38 ±2 76 ±9 3.45

Table 1. Summary of agronomic assessment and diesel fuel breakdown in Common

vetch and Westerwold's ryegrass planted soils after 4 months.

Average values are given ± standard error, n = 3. Values indicating % diesel fuel

remaining had <5% difference between replicate areas, n = 3.
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