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Abstract

A fundamental function of the visual system, and other sensory systems, due

to resource limitations, is to optimally select task-relevant information from the

barrage of information impinging the retina. In a series of experiments different

aspects of attention to visual information for perception and recognition are

addressed.

Firstly, what information is selected? In Chapter 2, I begin with addressing

the generic problem of knowing which information drives the perception of a

stimulus. As a case study example, a first experiment using Bubbles (Gosselin

and Schyns, 2001) determines the specific information underlying the perception

of the stable percepts of an ambiguous image and shows that this information is

grounded in different spatial filters processing each image interpretation. A

further experiment employs frequency-specific adaptation to induce a perception

of the image that is orthogonal to the adapting frequencies, validating this

information drives the selective perception of the ambiguous image.

Secondly, if we know the subset of information that is selected for the

perception of an input, can the processing of information underlying a percept be

selectively suppressed, thereby inducing an alternative percept? In the

experiments of Chapter 3, I further apply this spatial frequency adaptation

method to test the relevance of local image features for the perception of the
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ambiguous image, and the recognition of gender in hybrid faces. While the

results of the experiment on the perception of the ambiguous image suggest an

effective method for testing the role of local stimulus information for perception,

the results of the experiment on the recognition of gender in faces showed no

effect of adaptation region on perception of gender.

Thirdly, how does selective information use evolve with learning? And what

are the mechanism(s) that enable this learning? In Chapter 4, I investigated the

evolution of information use in the discrimination of unfamiliar faces using a

perceptual learning paradigm. I used the method of noise masking to examine

the facial regions observers used, over time, for successful discrimination, and to

determine the mechanisms underlying performance improvements. The results

showed that the efficiency of observers to use the information available increased

with learning differentially across different regions of the face.

Supplementary to examining attention to information in terms of the

information content of the stimulus, another series of experiments investigated

the effect of attention on the temporal dynamics of processing visual information,

and the locus of this effect within the stream of information processing. Using

spatial pre-cueing to manipulate attention and a speed-accuracy trade-off (SAT)

method to examine the full time-course of visual processing, I analysed, in

addition to the behavioural response and the parameters of the SATfunction, the

lateralised readiness potential (LRP)and other components of the event-related

brain potentials (ERPs) to determine the locus of any attentional modulations on

the speed of processing. The results of three experiments showed that attention

can speed up visual information processing, and that the locus of this effect is at

later processing stages related to the categorisation of a stimulus.
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Chapter 1

Attending to Visual Information for Perception

and Recognition: An Introduction

Phenomenologically, our perceptual experience of the world is coherent and

rich in detail. Yet, there is overwhelming converging evidence suggesting that our

perception of the world is, by necessity, highly selective in nature, indicating in

reality we attend only to a subset of the sensory information available. This

ability to select, and suppress, information is immensely valuable to an observer

in a dynamic environment. Empirical support for the selective nature of attention

derives from early studies examining eye movements in face and scene perception

that depicted eye scan paths involving a series of fixations over only a portion of

the information available (Yarbus, 1967); a finding that has been extended over

decades. Additionally, studies of change blindness, that is the failure to detect

changes in a scene, offer compelling, and sometimes surprising demonstrations of

the extent to which external events are neglected (for reviews see Rensink, 2002,

and Simons and Rensink, 2005).
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This thesis is concerned with a range of issues related to the selective use of

visual information for perception and recognition. To set the scene for the

empirical investigations described in Chapters 2 to 5, in this chapter, I review

previous research related to questions of selective attention to visual information.

Firstly, in Section 1.1, I will consider a theoretical framework, the Diagnostic

Recognition Framework (Schyns, 1998) that has been proposed in which to frame

questions of information use for perception and recognition. Next, in Section 1.2,

I introduce some of the methodological tools that are available to study questions

of information use and the different research areas in which they have been

employed. Subsequent sections review research focussing on different aspects of

visual information use. Section 1.3 reviews the literature related to the role of

spatial frequency channels in perception and recognition, and in Section 1.4, I

consider how visual information use may evolve with perceptual learning, and

describe mechanisms that have been proposed to enable learning. Lastly, in

Section 1.5, I describe behavioural and electrophysiological research on selective

spatial attention to assess the functions of attention and the processing stages

modulated by attention.

1.1 Diagnostic recognition

On acknowledging that observers, at any given time, attend only to a subset

of information available in the environment, the question arises pertaining to the

determinants of this selection; for a perceptual or recognition task which

information should the observer select? For many years the question of

information use suffered neglect; researchers studying recognition of faces,
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objects and scenes, commonly focussed on the structure of memory

representations in explaining recognition phenomena (Liu, Kersten, and Knill,

1999; Schyns, 1998). While debates regarding the nature of object

representations, in explaining recognition, sustained (e.g. viewpoint-dependence

versus independence, see Tarr and Bulthoff', 1995 and Biederman and

Gerhardstein, 1995, respectively for insight into this debate), analyses of the

information available in the input, and consideration of task demands suffered

neglect.

! ! ! !

Recognition phenomena
(Viewpoint-dependence, basic-

levelness, scale-based
recognition ...)

1Task demands
(Information demands of the task)

-----I.~ Cue Diagnosticity

Available object information
(Shape, colour, texture,

illumination)

Figure 1.1. .Th~ Diagnostic Recognition Framework (adapted from Schyns, 1998). The
framework highlights how the interaction between the information demands of a task and
~e info~mation available jointly determine the subset of information that becomes
diagnostic to resolve a task. According to this framework, information diagnosticity
could explain the image information subtending various recognition phenomena.

The Diagnostic Recognition Framework (see Figure 1.1), articulated by

Schyns (1998), attempts to redress the balance between the information

19



represented in memory, the information available to the observer as input, and

the constraints imposed by the visual and cognitive systems in extracting this

information. Schyns (1998) proposes that the interactions between the

information demands of a recognition task and the availability of useful object

information jointly determine the subset of information selected by the observer,

in other words, the information diagnostic to resolve a visual task. Still, for a

given task, how do we determine which information is the diagnostic information?

Further still, how can we measure the availability of useful object information?

The advent of sophisticated methodological tools and their application to the

study of information use in visual recognition is enabling these questions to be

addressed, enhancing knowledge of the information observers use to resolve daily

visual tasks.

To understand the Diagnostic Recognition Framework as a context in which

to consider aspects of information use for perception and recognition, I first

consider how task demands, and their interaction with the availability of object

information, might modulate information use. A description of the research

methods employed to study questions of information use for perception and

recognition will followin Section 1.2.

1.1.1 Task Demands

Imagine a single human face as present visual input, multiple classifications

are possible - this face could be male, young, sad, familiar, and his identity, your

brother Mark. Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976) indicated

that a single object might be categorised at three different levels of specificity _
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the superordinate (e.g. tree, musical instrument), basic (e.g. birch, guitar), and

subordinate (e.g.White birch, Folk guitar) levels. As a determinant of information

selection, task demands refer to the information constraints imposed by these

multiple categorisations that are possible in recognising a single visual input.

The information demands of the recognition task, for example in judging the

gender or expression or identity of this single face, differentially modulate the

information attended in that visual input. Task demands, therefore, necessarily

reflect the information represented in memory for the particular categorisation or

recognition of a given visual input.

Task demands have been shown to modulate the selection of visual input at

early processing stages within the visual system (Oliva and Schyns, 1997). A

fundamental aspect of the perception and recognition of any visual input is the

spatial scales at which an input is represented. The spatial scale of an input, as

viewed by an observer, is determined by the size of the input and its distance

from the observer. Consider again as an example a human face as input; from a

distance you are unable to perceive the fine details of the face, such as the eyes

and shape of the mouth, what you see instead is a coarse outline of the face with

these finer details becoming available only as the face comes nearer. Different

features of the face, and of other visual inputs therefore, are represented at

different spatial scales, from fine to coarse. A classical finding in vision research

is the existence of a set of channels in the early visual system that are

responsible for processing visual input at these different spatial scales

(Blakemore and Campbell, 1969a, 1969b; see Section 1.3). Studies investigating

the effect of categorisation task demands on the selective use of visual

information have demonstrated a differential use of this spatial scale information
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in studies of scene (Oliva and Schyns, 1997) and face (Schyns, Bonnar, and

Gosselin, 2002; Schyns and Oliva, 1999) categorisations. Moreover, Schyns et al.

(2002) showed that this information also changed as a function of the particular

face categorisation task. Specifically, the 20 facial information observers

attended to resolve one of three face categorisation tasks, identity, gender or

expression, showed that the mouth region was selected at each spatial scale for

the identity and expression tasks, whereas for the gender task this region was

entirely neglected at all scales. For the identity task, both eyes were selected at

all spatial scales, whereas for the gender task, one eye was sufficient (from the

observer's viewpoint, the left eye), and in the expression task both eyes were

neglected.

To resolve tasks of scene and face categorisation, these studies showed that

the information observers attended was determined by the presence of task-

dependent, diagnostic information that differed across spatial scales both within

and across different tasks. Since only the categorisation task itself differed

between observers (all participants experienced the same training procedures and

were presented with identical face stimuli}, it was concluded that the presence of

diagnostic cues determined the information selected for each categorisation.

Task demands, therefore, form an important contributing factor in the selection

of visual information for perception and recognition. Importantly, the findings of

these studies are not restricted to the study of face and scene recognition but

demonstrate an important finding regarding the architecture of the visual and

cognitive systems, specifically that high level task demands modulate the low

level processing of visual input (see Pylyshyn, 1999 for a thesis against this idea).

22



Next, I consider how the availability of information determines the information

diagnostic to resolve a task.

1.1.2 Available object information

The availability of object information for perception and recognition is

constrained by factors internal, and external, to the observer. Internal

constraints relate to processing inefficiencies; the neural wiring of the visual

system imposes limitations on the spatial and temporal resolution in which object

cues may be detected or discriminated. Limitations on the availability of visual

information external to the observer non-exclusively include degraded lighting

conditions, occlusion, spatial scale, crowding, translation and rotation. Together,

these factors limit the information theoretically available to the observer.

Additionally, objects that share category membership often comprise highly

similar features; faces constitute two eyes, a nose, and a mouth that are arranged

fairly homogenously: how then are we able to effortlessly discriminate thousands

of faces? What is the distinguishing information that is available in the input to

enable these fine-detailed discriminations? To achieve a full account of the

selective use of information for perception and recognition, an examination of the

information available in the input is crucial; a dismissal of this factor has led,

sometimes, to a misinterpretation of recognition phenomena. For example, the

phenomena of viewpoint-based recognition, the observation that object

recognition performance is often enhanced when an object is viewed from specific

viewpoints, is one such area of research that in neglecting the factors of task

constraints and information availability led to a misinterpretation of the

phenomena under observation (Schyns, 1998). A brief summary of the debate

regarding viewpoint-based recognition follows.
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In the study of object recognition, a debate arose in the late 1980's to mid

1990's regarding the viewpoint-invariance of object recognition. Although object

recognition is relatively invariant to changes in viewpoint, observers do exhibit

increases in accuracy and reaction time for categorising objects at specific

viewpoints, and decreases in these performance measures as an object is

increasingly oriented away from this viewpoint (Tarr and Bulthoff, 1995). The

interpretation of this phenomenon focussed on determining the structure of

object representations in memory. The 'viewpoint-dependent' proponents

interpreted this phenomenon as evidence that objects are represented in memory

as a series of multiple viewpoints (Tarr and Bulthoff, 1995); if performance

improved for a particular viewpoint this was interpreted as evidence that this

viewpoint was stored in memory. On the other side of the theoretical divide, the

'viewpoint-invariant' theorists Biederman and Gerhardstein (1993, 1995) suggest

that object recognition is viewpoint-independent. Instead, they argue that objects

are represented in memory as configurations of volumetric primitives, called

geons. The evidence suggesting viewpoint dependency, by these theorists, is

attributed to visual processes external to those responsible for normal object

recognition.

In this debate, while focussing on the structure of object representations in

memory, researchers neglected to consider how task demands and the availability

of object information changed with variations in viewpoint. The details of this

debate are too lengthy to be discussed here and are of no special relevance other

than to illustrate the importance of considering how task demands and the

information in the input interact to effect processing (cf. Schyns, 1998 for a

summary of this debate). For example, under the diagnostic recognition
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framework, the cues that are diagnostic for object recognition will vary across

different views for different categorisation tasks; these cues mayor may not be

available within a given viewpoint. The unavailability of some cues in a given

viewpoint may impair categorisation performance for one type of task, and not for

another as this cue may not be diagnostic for this task. The point to be

emphasised is that to attribute behavioural performance to a visual input, and to

subsequently infer the representational format of this input in memory, one must

firstly have knowledge about the informational content of the input and its

availability to the observer in matching with its memory representation (Liu,

1996).

The emergences of studies in object recognition that explicitly measure the

information content of a stimulus, and its availability, have provided a fuller

account of recognition. In relation to the debate regarding viewpoint-invariance

versus viewpoint-dependency of object recognition, these studies have

demonstrated that an object's viewpoint-invariance or dependency is determined

by the information complexity contained within a specific view and the extent to

which it matches with the object's representation in memory (Liu, 1996; Liu,

Knill, and Kersten, 1995, 1999). Tjan and Legge (1998) developed a measure to

quantify the viewpoint complexity of an object recognition task using an ideal

observer approach (the concept of an ideal observer is described in Section 1.2.3).

This work emphasised the importance of measuring the information content of

any visual input, the demands of the task, and stimulus set used. As a result,

this work significantly evolved the debate in object recognition, specifically,

regarding the interpretation of object recognition phenomena such as viewpoint-
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dependency, and generally in highlighting the importance of understanding the

informational content of a visual input in any perceptual task.

1.1.3 The role of expertise

An additional factor, not explicitly considered in the Diagnostic Recognition

Framework is the effect of previous experience with a visual input, and the effects

of this experience in selecting a subset of information to detect or discriminate

this input. The level of familiarity, held by an observer, for a particular visual

input, may modulate the selection of information used to resolve a visual task.

Indeed studies investigating the effects of perceptual learning show that

information use does change over time (Gold, Sekuler, and Bennett, 2004).

1.1.4 Summary

An approach to information use that focuses only on the information

represented in memory, or only to the information in the input will fail in

capturing the incredible capacity to perceive and recognise the seemingly infinite

number of objects impinging the retina. The interaction between the information

represented in memory for a particular categorisation, and the information

available in the input determine the subset of information that earns a diagnostic

status, the subset of information to resolve the task at hand. Also relevant, as a

determinant of selective information use, is the level of familiarity held by an

observer for a particular class of objects.

The availability of research methodologies to approach questions of

information use has initiated research with diverse populations, including clinical
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patient groups with brain damage inducing impairments in judging emotional

expressions, identifying faces, hemi-spatial neglect, as well as looking at how

autistic children process faces. These methodologies will now be described.

1.2 Tools for studying visual information use

In recent years methodological developments have enabled finer analyses of

the information available to observers for a visual task, and in determining the

subset of information that is used to resolve the task. Methods such as Bubbles

(Gosselin and Schyns, 2001), the construction of hybrid stimuli (Oliva and

Schyns, 1997; Schyns and Oliva, 1999), reverse correlation (Gold, Murray,

Bennett, and Sekuler, 2000), noise masking (Gold, Bennett, and Sekuler, 1999b;

Lu and Dosher, 1998; Solomon and Pelli, 1994), and ideal observer analyses (Liu

et al., 1995; Tjan and Legge, 1998) have been employed to probe problems of

information use.

Prior to describing these methods as tools to study questions of information

use, for clarity's sake, an overview of the general framework on which some of

these techniques are grounded, namely signal detection theory (SOT),will preface

summaries of these techniques. Extensive focus will be given to methods

employed in the chapters to follow.

1.2.1 Signal Detection Theory

The methods of noise masking, ideal observer analyses, and reverse

correlation appeal explicitly to the concepts of signal detection theory (Green and

Swets, 1966), while the bubbles method borrows some of its concepts. Therefore,

for the purposes of clarity, an introduction to SOTfollows.
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Signal detection theory (SDT) provides a general framework in which to

measure sensory/perceptual processes, taking into account both the sensitivity of

an observer to a sensory event and the subsequent decision processes relating to

the event. A central tenet of SDT is the proposal that detection decisions result

from an initial sensory stage whose outputs feed into a decision stage, from which

the outcome is a decision regarding the occurrence of a sensory event. A key

assumption of SDT is that the strength of all sensory events is continuous, so

that over a series of trials there is a distribution of responses for a signal event,

and a distribution for noise only. SDT states that all decision processes occur in

the presence of uncertainty so that an observer's internal responses to any

sensory event are, as a result, probabilistic.

To illustrate the uncertainty associated with a detection task facing the

cognitive system, consider the followingscenario. Imagine the radiologist's task

of examining a medical X-ray image for potential abnormalities. The complexity

of the image makes it difficult to discriminate normal and abnormal features, and

the ability to do so accurately is dependent on both the observer's visual

sensitivity and decision-criterion. The measurement of an observer's sensitivity

characterises the processing efficiency of the perceptual system to a sensory

event, whereas an observer's decision-criterion relates to the observer's subjective

response to a sensory event. Due to the difficulty of this task and subsequent

uncertainty, several outcomes are possible. For example, an abnormality may be

present and our radiologist may accurately detect its presence (in SDT, this

response is referred to as a 'hit,), or the abnormality may be absent and its

absence may be accurately detected (termed a 'correct rejection'). These

responses are the desired outcomes, a signal (abnormality) is detected when it is
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present, and a signal is declared absent when it is absent. The radiologist is

doing welll However, two other outcomes are also possible: the radiologist may

falsely detect the presence of an abnormality when there is in fact none (referred

to as a 'false alarm'), or may falsely detect an absence of an abnormality when it

is actually present (termed a 'miss'). Clearly, in the face of uncertainty, any

observer, and perhaps particularly our radiologist, wishes to minimise the

number of 'false alarms' and 'misses', and sets their decision-criterion

accordingly.

The observer's visual sensitivity depends on the strength of any abnormality

in the image, and on the observer's experience in examining such images (Sowden

Davies, and Roling, 2000). However,the human observer is also limited by other

factors, for example, the optics of the eye results in stimulus information loss

prior to transmission through the visual system, and internal noise within the

visual system, generated by random neural firing naturally associated with

processing, also constrains performance. Additionally, the mechanisms with

which human observers encode visual input may not correspond perfectly to the

spatial and/or temporal distribution of the input, and once encoded the observer

may employ less than ideal decision processes. All of these factors influence the

observer's efficiencyin using the sensory information available.

In relation to decision-criterion, multiple factors influence an observer's

decision that an event has occurred, including the expectations of the observer or

pay-offs, each contributing to the probability of detection. In setting their

decision-criterion, that is, in forming a decision regarding the presence or

absence of any signal, an observer will take into account the consequences of

making an inaccurate decision. Turning back to the radiologist example, one
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radiologist may be extremely conservative in declaring the presence of an

abnormality in the face of uncertainty; they may fear that the cost of an

unnecessary biopsy is too high, and therefore set their response-criterion towards

signal absent decisions. Conversely, a second radiologist may be less

conservative, believing that early detection is paramount, and may therefore set

their response-criterion towards signal present decisions. The overlap between

the signal present response distribution and signal absent response distribution

is depicted in Figure 1.2. This overlap in response distributions between

detecting the presence or absence of a signal causes a problem for the observer:

Which response to choose? Fortunately, SDT uniquely provides a formal

description of how an observer's visual sensitivity and decision-criterion

determine the percentage of hits, misses, false alarms and correct rejections on

visual detection and discrimination tasks. Figure 1.2 indicates the areas under

these distributions where these response categories fall.

30



Criterion (~)

Q)
u=Q)
t:::su
uo...o
'Coo
.c:I...-Q).!II...
..:I

Misses

Correct rejections

"No" .- ---.. ''Yes''

Hits

False alarms

Signal absen t Signal present

Sensory continuum

Figure 1.2. Signal Detection Theory Response Distributions for a simple detection task.
The horizontal axis represents the observer's level of certainty that a signal is present and
the vertical axis, the probability that response will occur. The normal distribution on the
left represents the distribution of internal responses when the signal is absent, while the
distribution on the right represents the distribution of responses when the signal is
present. Notice the overlap between these two distributions; the internal response on
signal absent trials may exceed the internal response for a signal present trial incurring
detection errors. The distance between the means of these two distributions indicates the
sensitivity (measured in d' units) of the observer. The black vertical line represents the
decision criterion of the observer (.13).

A detection task would involve presentation, on alternate trials, a signal

embedded in noise, or noise alone, whereas in a discrimination task the

presentation would entail one of at least two unique signals embedded in noise.

For a detection task (Figure l.2 depicts the case for a detection task), there will be

a distribution of internal responses for each trial type, a distribution for noise

only trials, and one for signal plus noise trials, which is referred to as signal

distribution. For the discrimination task, there will be a distribution of responses

for each signal in a l-of-n discrimination task (for a task involving two signals, SI
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and S2, there will be two distributions). The internal response distribution, for

each trial type, will centre about a different mean response and will have equal

variance. The d' sensitivity measure is obtained by calculating the difference

between the two means (~1 and ~2), normalised by the variance [o] of the

distribu tions.

In SDT the sensitivity of an observer to a sensory event and the decision-

criterion of an observer are considered independent. In addition to providing this

bias-free measure of performance, another advantage of SDT is that it can be

used to express an optimal decision rule that subsequently quantifies the

information content of a stimulus. An ideal observer, that is a theoretical

observer that makes optimal use of all of the available stimulus information, can

be used to obtain a benchmark of human performance. A comparison of the

performance of this ideal observer with a human observer provides a measure of

the processing efficiency of the human observer in using the visual information

available.

In comparing an observer's performance on a visual task to either different

object cues, or to the same object over time, any change in the variability of the

internal noise, and thus the sensitivity of the observer, would be evident in the

variance of the distributions. An alteration in sensitivity would also be evidenced

in the distance between the means of the internal response distributions,

reflecting a change in the efficiency of the observer, that is, how efficiently the

observer uses the information available. An observer's internal noise and their

efficiencyin using the information available, therefore, determine sensitivity.

The provisions of independent measures of sensory sensitivity and response

strategies, as well as the comparative tool of employing ideal observer analysis,
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have combined in SDT to provide a popular framework for researching visual

perception and identification processes. Recently, promising methods grounded

in SDT have been developed to yield fruitful insights into visual information use

in perception and recognition. It is to these methods we now turn.

1.2.2 Noise masking

The method of noise masking as a tool to study visual perception and

recognition is a variant of techniques employed in engineering to measure the

inherent noise in a system by introducing a quantity of external noise. To

distinguish between the components determining visual sensitivity, that is,

internal noise and efficiency, Pelli (1990) suggested that an observer's internal

noise, unknown to the experimenter, could be measured by referring to the

quantity of experimenter-added external noise in a stimulus. Procedurally, to

disentangle the contribution of an observer's internal noise and efficiencyto their

overall sensitivity to a visual stimulus, detection or discrimination thresholds (Le.

contrast thresholds) are measured in various densities of externally added noise;

Figure 1.3 depicts stimuli masked in experimentally-added noise, low and high

densities, respectively. These thresholds are then plotted in noise-masking

functions that demonstrate the effect on an observer's contrast threshold of

adding increasing levels of external noise; thresholds increase as noise density

increases (Pelli, 1990). The plot in Figure 1.3 depicts a noise-masking function;

note at low levels of external noise there is little effect on contrast thresholds, yet

at higher levels of noise density thresholds increase. These increases are evident

only when the external noise exceeds the magnitude of an observer's intrinsic
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internal noise. This 'kink point' of the noise-masking function denotes the

equivalent input noise, that is, the estimate of the observer's internal noise. A

measure of this equivalent internal noise is obtained by adding a density of

external noise to the stimulus that will exceed the magnitude of an observer's

internal noise two-fold (Pelli and Farrell, 1999).

0- Oayl

0-- Oay6

Low External noise density High

Figure 1.3. The technique of noise masking. The figure depicts a hypothetical noise-
masking function with external noise density on the horizontal axis (increasing in density
from left-to-right), and contrast energy threshold on the vertical axis. The accompanying
pictures depict face stimuli embedded in Gaussian noise. The left image depicts a face of
mid-contrast embedded in a low level of Gaussian noise. The right face images depict a
face in a higher level of Gaussian noise, of the same contrast in the top picture, and of a
higher contrast in the bottom picture. The function illustrates how contrast energy
thresholds increase as external noise density increases, and the possible change in
contrast thresholds at different noise levels as a function of learning.
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This method of noise masking can also be used to compare human

performance with that of an ideal observer, thus providing a measure of

processing efficiency. The method has been adapted to address diverse questions

in the visual domain, including characterising the channel underlying letter

recognition (Solomon and Pelli, 1994), determining the mechanisms enabling

performance improvements in selective spatial attention tasks (Lu and Dosher,

1998) and the mechanisms of perceptual learning (Dosher and Lu, 1998, 1999;

Gold et al., 1999b; Gold, Sekuler, and Bennett, 2004; Lu and Dosher, 2004). In

the current context of exploring questions of visual information use, the method

is employed in Chapter 4 to explore the mechanisms underlying improvements in

the discrimination of faces and to trace the changes, over time, of visual

information use in a face discrimination task.

1.2.3 Ideal observer analysis

In studies of visual information use ideal observer analyses have been applied

to determine the efficiency of human performance in a wide range of visual

perception and recognition tasks (Barlow, 1980), from motion perception (Wallace

and Mamassian, 2003) to 3D objects (Liu, Knill, and Kersten, 1995; Tjan, Braje,

Legge,and Kersten, 1995), letters (Gold,Bennett, and Sekuler, 1999a; Parish and

Sperling, 1991; Solomon and Pelli, 1994) and faces (Gold et al., 1999a). The

efficiency measure, that is how effectively the human observer uses the

information available, is computed as the ratio of human sensitivity, measured in

d' units, to that of the ideal observer. The theoretical ideal observer uses all of

the available stimulus information to resolve a task optimally. Comparing human
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performance to that of an ideal observer therefore provides an upper limit of the

stimulus information available to the human observer to resolve a perceptual

task. For example, in a task of face discrimination, in which there are ten face

signals each of 256 x 256 pixels, the ideal observer can use the information

represented at each pixel that discriminates each signal from the others. An

optimal strategy in this type of task is to cross-correlate the input signal, for

example a face, with each of the other faces in memory and select that which

yields the highest correlation. The ideal observer's performance on this task is

limited only by the similarity between the ten face signals, and to prevent ceiling

performance, a noise source added by the experimenter. In contrast, the

performance of the human observer is limited by an internal noise source, and

less-than-optimal strategies. For example, the human observer may not focus on

those regions that show the highest variance between the input image and the

other images in memory, but may instead focus on features such as the eyes and

mouth that to the human observer are diagnostic to resolve the task.

Gold et al. (1999b, 2004) utilised an ideal observer in a series of experiments

aiming to characterise the mechanisms underlying perceptual learning. Using

the techniques of noise masking and ideal observer analysis to determine the

mechanisms enabling performance improvements over time, Gold et al. measured

the equivalent input noise and efficiency of observers in face and texture

discrimination tasks. Combining the techniques of noise masking and ideal

observer analysis enabled a distinction between a perceptual learning mechanism

functioning to reduce internal noise, as opposed to a mechanism that operates to

increase processing efficiency. The ideal observer utilised by Gold et al. was an

observer that on presentation of a stimulus (a signal masked by noise) maximised
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the cross-correlation of the stimulus with each of ten possible signals, or

templates, by choosing the template that gave the highest correlation. The

performance measure for this task, for both human and ideal observers, was the

signal contrast energy necessary to obtain a specified performance criterion, in

different levels of external noise, from low to high. The efficiency of the human

observer, for face and texture discrimination tasks, was calculated as the ratio of

human contrast thresholds to ideal observer contrast thresholds. Gold et al.

found an increase in processing efficiencyfor face and texture discrimination over

time, with no discernible changes in equivalent input noise. To trace the changes

in observer calculations as a result of learning, Gold et al. additionally used the

method of reverse correlation, described next.

1.2.4 Reverse correlation

Reverse correlation (also known as the classification image technique)

originated in the auditory research of Ahumada (1967, cited by Ahumada, 2002)

and has experienced a re-birth in recent years. Since its first application to

vision research (Ahumada, 1996), the technique has been applied to a variety of

perceptual tasks to estimate how observers use information in an image to reach

a decision. The technique has subsequently been creatively applied to the

perception of illusory and occluded contours (Gold et aI., 2000), to face

discrimination (Gold et aI., 2004; Mangini and Biederman, 2004), vernier acuity

(Beard and Ahumada, 1998) and spatial attention (Eckstein, Pham, and

Shimozaki, 2004). Similar to the methods described previously, reverse

correlation also presents a signal embedded in noise (see Figure 1.2), this noise is
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used by the observer to reconstruct the information represented in memory for

each classification. The outcome of a reverse correlation experiment is a

classification image, an image that simply maps the correlation over many trials

between the local noise contrast, at each image pixel, and the observer's

response.

To provide an example of the technique in operation, consider a

discrimination task where an observer has to discriminate between two signals,

Si and S2. On each trial, the observer is presented with one of these signals

embedded in luminance noise, and the contrast of the signal is adjusted to

maintain a specified performance criterion. The task of the observers is to

respond according to their perception of the presented stimulus. On some trials,

the structure of the noise will lead the observer to incur errors; the noise may

sometimes render the signal more similar to Si than to S2,or vice-versa. To

determine the information that is represented by the observer to discriminate the

signals, the technique classifies the noise patterns presented on each trial

according to the four different stimulus response categories of SOT:hits, misses,

false alarms and correct rejections, and for each category provides an average

noise pattern. The linear combination of the noise samples that led to response

hits and false alarms yields a classification image, clmr, which depicts the

information that elicited those responses. A combination of the noise samples

leading to response misses and correct rejections also yields a classification

image, elms, depicting the information that elicited those responses. The

stimulus information an observer extracts to determine the presence or absence

of a signal, or the features that enable discrimination between two signals, would

be determined by the differencebetween elm, and elms (elm = clmi- elms).
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To establish the features of an object that are represented in memory,

researchers in visual perception and cognition were forced to explore specific

hypotheses regarding the presence or absence of an object property in memory by

manipulating, sometimes crudely, one such feature (e.g. colour). An advantage of

the reverse correlation technique is that it frees the experimenter from this

constraint; a classification image, a pictorial representation of the information an

observer extracts for a categorisation, is produced purely from the observer's

classifications of the noise (plus signal) inputs. The technique has recently

evolved to reveal internal representations of letters (Gosselin and Schyns, 2003)

and stereo information (Gosselin, Bacon, and Mamassian, 2004) in experiments

where only noise, and no signal, was presented. In these studies, observers were

informed that a signal was embedded in the noise, and matched the noise-only

input against a memorised template to reconstruct the signal they were asked to

detect. The classification images from these experiments clearly depicted the

image the observers believed they could detect in the noise, in the study of

Gosselin and Schyns (2003), one of these images was a letter. Although the

technique is not employed in the chapters to follow, its development is closely

linked theoretically to the questions of interest and empirically in its

methodological characteristics.
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Figure l.4. Examples of stimuli created from methodological techniques available to
manipulate visual information. The left-most picture depicts a hybrid stimulus, that is a
stimulus that comprises a neutral female face in high spatial frequencies and an angry
male face in low spatial frequencies (adjusting viewing distance should alter observer
perception between the two alternative percepts). The centre image depicts a sparse
version of a female face, generated using the Bubbles technique. The right-most image
depicts a face embedded in Gaussian noise; experimentally added noise is added to
stimuli in experiments employing reverse correlation and noise-masking techniques.

1.2.5 The Bubbles technique

The Bubbles technique of Gosselin and Schyns (2001) is a method designed to

search for the information an observer uses to resolve a given categorisation task.

On a trial-by-trial basis, the technique randomly samples an image generation

space, e.g. a face, for information to present to an observer for classification. The

image presented is, typically, a sparse version of a stimulus that is punctured by

randomly located Gaussian-shaped holes": the middle picture of Figure 1.4

depicts such a stimulus. Over the course of an experiment the entire stimulus

space is sampled. The observer's responses to these sparse stimuli are recorded

according to the samples of information that lead to successful and unsuccessful,

categorisations. The addition of these sparse samples together form images of the

information leading to successful (hits and correct rejections), and unsuccessful
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(false alarms and misses) responses. Followinga statistical analysis on these sets

of information, a 'potent' image is constructed, that is the diagnostic subset of

information used by the observer to resolve the task.

The technique has been applied to the categorisation of faces across the 20

image (Gosselin and Schyns, 2001) and across different spatial scales (Gosselin

and Schyns, 2001; Schyns et al., 2002), to track the use of facial information

through time (Vinette, Gosselin, and Schyns, 2004), to determine the facial

information driving the ERP component, the N170 (Schyns, Jentzsch, Johnson,

Schweinberger, and Gosselin, 2003), and in the information underlying the

categorisation of emotional facial expressions (Smith, Cottrell, Gosselin, and

Schyns, 2004). In the latter paper, Smith et al. (2004) applied the technique to

determine the spatial scale information used to classify facial expressions. In

examining this issue, Smith et al. used both human observers and a model

theoretical observer to establish the efficiency with which observers used the

information available. The human data revealed, across spatial scales, the facial

information used to classify each of the six facial expressions, and the extent to

which each expression correlated with the other expressions. A calculation of the

human observer's 'optimal' use of information to resolve each expression

categorisation was obtained, taking into account the diagnostic information of

both the human and model observers. The technique has also recently been used

to study information use in clinical populations such as a patient with damage to

the amygdala that has resulted in an impairment to recognise fear from facial

1 The bubbles technique has been applied to search spaces other than the 2D image,
thereby using sampling methods other than Gaussian-shaped holes. Other search spaces
have included phase information (Gosselin and Schyns, 2002).
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expressions, explained by an inability to select information from the eyes

(Adolphs,Gosselin, Buchanan, Tranel, Schyns, and Damasio, 2005).

As a tool to examine information use in perception and recognition, the

bubbles technique has proved, in its young lifetime, a fruitful method in the

toolbox of techniques. Few methods enable simultaneous sampling of image

spaces such as the 2D image-plane together with spatial scales.

In Chapter 2, the technique is applied in a subjective task to determine the

information underlying each stable percept of an ambiguous image.

1.2.6 Summary

The aim of the present section 'Tools of Information Use' was to provide an

introduction to some of the techniques available to explore questions of

information use in visual perception and recognition, and to those employed in

the chapters to follow. Many of the techniques are complimentary, offering tools

that promise a full account of the constraints and mechanisms in information

use and its role in perception, attention and recognition. The suitability of these

techniques to particular questions of information use ultimately depends on the

question of interest. For example, the researcher interested in determining the

information used across spatial scales for face recognition would be advised to

consider the bubbles technique as opposed to the technique of reverse correlation

since the former method is more suited to searching these two spaces

simultaneously. On the other hand, if one is more interested in establishing the

mechanisms involved in extracting information, at this point of development, the

methods of noise masking and ideal observer analyses would be more
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appropriate. An advantage of both the bubbles and reverse correlation methods,

which in part seek to determine the stimulus information driving an observer's

response, is that they can both be used in conjunction with ideal observer

analyses, as is the method of noise masking. A disadvantage with both the

bubbles and reverse correlation methods, however, relates to the large number of

trials necessary to search an entire stimulus space, a consideration particularly

relevant in studying specialist clinical populations. The application of these

techniques, however, to questions relating to information use is still in its

infancy, but the mass interest in their use hopefully will lead to a solution in

reducing the number of trials such experiments demand.

1.3 Spatial Frequency Channels in Early Vision

1.3.1 Spatial frequency channels in the early visual system

An early stage in visual processing is the analyses ofvisual input by a bank of

multiple charinelsa that independently process different spatial aspects of the

input. In their seminal paper, Campbell and Robson (1967) applied a linear

systems approach to establish the extent to which the contrast sensitivity

function (CSF) could be used to predict contrast thresholds. The CSF simply

describes an observer's sensitivity to a sine-wave grating as a function of its

spatial frequencys. The results of measuring contrast detection (and

2 A channel refers to a filtering mechanism that admits a restricted range of information
(DeValoisand DeValois, 1990); in the present context this information is spatial frequency
information.
3 Spatial frequencies are expressed as the number of cycles per degree of visual angle
andj or cycles per image. Whereas the former is a relative measure accounting for the
distance fromwhich an object is viewed, the latter is an absolute measure relating only to
the information contained within the image.
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discrimination) thresholds for gratings with various waveforms (sine-, square-,

saw-tooth and rectangular-wave patterns) of identical spatial frequencies

indicated that the contrast threshold for detecting the square-wave grating

depended upon the contrast of the fundamental sine-wave component of the

square-wave. The detection (or discrimination) of a visual input, therefore, is

determined by the contrast of its components rather than its overall contrast.

Campbell and Robson concluded that the visual system comprised multiple

spatial channels, each sensitive to a limited range of spatial frequencies.
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Figure 1.5. The Contrast Sensitivity Function (CSF)of an adult human observer. The
threshold contrast required to detect a stimulus is plotted against the spatial frequency of
the stimulus (figureadapted from Sekuler and Blake, 1994).
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Blakemore and Campbell (1969a, b; see also Pantle and Se1ruler, 1968)

further substantiated this multiple channel theory in measuring the CSF before

and after adaptation. The effect of adaptation, that is reduced sensitivity to a

visual pattern following prolonged exposure, incurs temporary response

suppression of the mechanisms responsible for their processing. Blakemore and

Campbell found that adaptation to a particular spatial frequency increased

contrast thresholds on the CSF only for a limited range of neighbouring

frequencies of the adapting frequency, providing further support that the visual

system analyses input with independent spatial frequency and orientation-

selective channels.

As a result of these seminal research papers, the characteristics of these

channels have been extensively studied. Research has revealed that the visual

system comprises six such channels (Wilson, McFarlane, and Phillips, 1983),

which are between one and two octaves wide+ (Wilson et al., 1983; for a

comprehensive reviewof spatial vision see DeValoisand DeValois, 1990 and for a

historical perspective on spatial channels, see Wilson and Wilkinson, 1997). The

channels are not entirely independent, as there are interactions (Henning, Hertz,

and Broadbent, 1975) and some non-linearity (Henning, Hertz, and Broadbent,

1975; Stromeyer and Klein, 1975;Wilsonand Bergen, 1979). Therefore, although

there is dispute regarding the characteristics of these multiple spatial filters,

there maintains a general acceptance that the visual system does process visual

input via these orientation-selective spatial frequency bandwidth channels, and

that these channels operate early in visual processing. The pioneering work of

4 An octave is a factor of two.
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Campbell and Robson's subsequently compelled researchers to consider the

spatial frequency composition of experimental stimuli.

1.3.2 Beyond Gratings: Spatial Frequency Channels and Recognition

The usefulness to the visual system of the existence of multiple spatial filters

lays in the contribution of the output from these channels to the detection and

discrimination of input more complex than gratings. How the visual system uses

spatial frequency information in resolving complex tasks such as object, face and

scene recognition has been the focus of extensive study in the past two decades.

Most studies have focussed on determining the band(s) of spatial frequencies

used by the visual system to resolve tasks such as letter identification (Gold et

al., 1999a; Majaj, Pelli, Kurshan, and Palomares, 2002; Parish and Sperling,

1991; Solomon and Pelli, 1994), face recognition (Costen, Parker, and Craw,

1996; Fiorentini, Maffei,and Sandini, 1983; Gold et al., 1999a; Hayes, Morrone,

and Burr, 1986; Schyns and Oliva, 1999) and scene recognition (Oliva and

Schyns, 1997; for a review see Morrisson and Schyns, 2001).
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Figure 1.6. An example of spatial scales. The full-spectrum of spatial scales is shown in
the top image. The bottom pictures show the result of a filtering process that decomposes
the top image into six different spatial scales, one octave wide, from left-to-right, fine to
coarse scales (in cycles per image, respectively, 128, 64, 32, 16, 8 and 4).

To illustrate the analyses of a complex image passing through multiple spatial

channels, Figure 1.6 depicts an example of a complex image represented at

multiple spatial scales. The original face (top picture) shows the full range of

spatial information contained within the image. The six bottom pictures depict

the outcome of applying a one-octave wide spatial filter to the image decomposing

it into six different bands of spatial frequencies, high-to-low, from left-to-right.

Note the information content contained within these different spatial frequency

bands. Whereas finer facial detail such as wrinkles and eyebrow shape is

available in the high spatial frequencies (left-most images), this information is

absent in the lower spatial frequencies (right-most images), providing a more

coarse representation of the face such as its shape. In exploring how spatial

frequency information contributes to complex pattern recognition, many studies

have f~cussed on determining the channel(s) involved in the identification of

stimuli such as faces and letters.
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While a variety of spatial frequency filtering techniques have been employed

to elucidate the role of spatial frequency information in recognition, for letter

recognition, the evidence consistently converges to the sufficiency of low spatial

frequency information at between 1 and 3 cycles/letter (Ginsburg, 1978; Gold et

al., 1999a; Majaj et al., 2002; Parish and Sperling, 1991; Solomon and Pelli,

1994). In determining the channel(s) related to face recognition however, the

picture is less clear. Whereas Ginsburg (1980) found that accuracy for faces was

best at a band of low spatial frequencies centred at 4 cycles/face width, Tieger

and Ganz (1979) found greater masking effects at higher spatial frequencies (17

cycles/face width). Fiorentini et al. (1983) suggested that both low and high

spatial frequencies were important for face recognition but that there were fewer

errors for high-passed filtered images (containing frequencies higher than 5

cycles/face width). Later studies continued to find differences in face recognition

performance; Rubin and Siegel (1984) reported optimal performance with low

spatial frequency information at 1 cycle/face width, while others have proposed a

central band of frequencies between 8 and 16 cycles/face width (Costen et al.,

1996; Gold et al., 1999a; Parker and Costen, 1999), or between 20 and 25

cycles/face width (Hayes et al., 1986). These divergent results between the role of

low and high spatial frequency information in face recognition are explicable in

terms of the range of methodologies and the suitability of the identification tasks

used (Morrisson and Schyns, 2001).

In establishing the spatial frequency channel(s) that contribute to resolving

complex recognition tasks, questions have arisen as to whether this information

is used in a stimulus-driven, bottom-up fashion, or rather is influenced by top-

down processing. To determine the channel(s) mediating letter identification
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Majaj et al. (2002) applied the technique of critical band masking (Solomon and

Pelli, 1994) to letters of a variety of fonts, alphabets and sizes. In these studies,

the method of critical band masking was used to determine the critical band of

frequencies important for letter identification. The method involves measuring

contrast thresholds for letter identification in the presence of low- or high-pass

noise. Different predictions can be formed regarding the effects on contrast

thresholds when observers are forced to use a single channel (bottom-up

approach) versus the freedom to switch channels (top-down approach). If

observers are constrained to use only a single critical channel, the sum of the

contrast threshold elevations for letter identification caused by the low- and high-

pass noise should equal the threshold increase affected by their sums. In the

case where observers are free to switch channels, thus improving the signal-to-

noise ratio in a less noisy channel, low- and high-pass noise masking is expected

to be less effective in elevating thresholds. The results supported the single

channel model for letter recognition; threshold elevations suggested that

observers were unable to switch channels to avoid noise. Rather, the channel

used by observers to resolve the task of letter identification was determined

"solely by the properties of the signal," (p.1180). Letter identification, concluded

Majaj et al. (2002), is bottom-up, "observers are not free to choose which channel

they use" (p.1165).

Conversely, scene (Olivaand Schyns, 1997) and face categorisation (Schyns

and Oliva, 1999) studies have suggested that the channel(s) observers attended to

varied with categorisation task demands, purporting a top-down modulation of

spatial-frequency processing that is in conflict with the conclusions ofMajaj et al.

5 This effect is referred to as noise additivity (Pelli, 1981; cited in Majaj et al., 2002).
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(2002). Using hybrid stimuli that combines two unique stimuli (an example of a

hybrid stimulus used by Schyns and Oliva (1999) is shown in Figure 1.2a), for

example, a neutral female face in high spatial frequencies (HSF) and an angry

male face in low spatial frequencies (LSF), Oliva and Schyns (1997; see also

Schyns and Oliva, 1999) sought to demonstrate that the information demands of

a categorisation task can influence the spatial scale to which an observer attends.

Oliva and Schyns generated hybrid stimuli that comprised a scene represented in

low-spatial frequencies (e.g. a highway) and another scene represented in high-

spatial frequencies (e.g. a city). Prior to the testing phase in which observers were

presented with these hybrids for categorisation, observers were allocated to a HSF

group or a LSF group where they were presented with hybrid stimuli that

combined scene information at one scale, e.g. a highway in HSF, with noise in the

other scale, e.g. LSFnoise. This sensitisation phase required observers to attend

to the scale containing meaningful scene information. Categorisations of hybrid

stimuli in the subsequent testing phase revealed that participants' perception of

the hybrid stimuli aligned with the scale information to which they were

sensitised in the previous stage. Observers who were sensitised to hybrids

comprising a LSF scene and HSF noise, on presentation of a hybrid with scene

information at both scales, reported a perception of the hybrid consistent with

their sensitisation , that is the scene represented in LSF. The information

demands of the categorisation task in the sensitisation phase, the diagnostic

scale information being present at only one scale, biased perception of the

stimulus in the testing phase. Scale selection, according to Oliva and Schyns,

was therefore determined by the presence of diagnostic information, rather than
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being fixed at a single scale. This conclusion conflicts with that of Majaj et al.

(2002)who concluded that scale selection was not flexible,but fixed.

In considering the findings ofMajaj et al. (2002), Sowden et al. (2003) suggest

that the failure to find evidence of the ability to select different channels may be

due to the task and stimuli used by Majaj et al. Letter identification, which

generally takes place in high contrast, low external noise conditions, is a highly

practised task for which a single channel may be sufficient; channel switching to

avoid noise may therefore require substantial unlearning. While the observers of

Majaj et al. were not explicitly directed to attend to a specified spatial frequency

band, the observers in a study by Sowden et al. (2003) received information

regarding the channel to which they should attend. Sowden et al. conducted a

study investigating the top-down control of spatial frequency processing using

auditory pre-cueing to manipulate attention to particular spatial frequency

channels. Observers were presented with plaid stimuli comprising a low spatial

frequency grating at one orientation and a high spatial frequency grating at

another orientation. The task of the observer was to judge the orientation of the

spatial frequency grating. The auditory tone, presented prior to the onset of the

plaid stimuli, informed observers of the spatial frequency of the upcoming

grating. Itwas predicted that attending to the channel expected to carry the task-

relevant information would result in the observer reporting the orientation of the

cued grating. The results of this study showed that the perception of plaid

stimuli was influenced by the auditory pre-cue, indicating that observers

experienced a selective perception of the plaid stimuli that was consistent with

the cue; observers were able to monitor the channel they expected would carry

task-relevant information. In contrast to Majaj et al. (2002), Sowden et al. (2003)
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conclude top-down attentional modulation of spatial frequency channels, where

observers are free to choose the channel that carries task-relevant information.

This conclusion is further supported by studies showing a differential use of

spatial frequency information as a function of task demands using the bubbles

technique (Gosselin and Schyns, 2001; Schyns et al., 2002) and the N170

component (a negative peak around 170 ms post-stimulus) of the visual event-

related brain potential (ERP; Goffaux, Jemel, Jacques, Rossion, and Schyns,

2003). These studies showed that observers attended to different spatial

frequency channels to extract the diagnostic information relevant to resolve the

task.

In Chapter 2, I apply the bubbles method of Gosselin and Schyns (2001) to

the 2D image plane of a bi-stable image, and the third dimension of spatial scale,

to determine, within and across each spatial scale, the information underlying

each percept. Consistent with the perspective of Sowden et al., my position is

that observers will monitor different spatial frequency channels if task-relevant

information is present. Additionally, in Chapter 3, as a methodological tool to

explore questions of information use, I use hybrid stimuli. Such stimuli are

useful in addressing questions of information use because by combining multiple

stimuli into a single stimulus, enables the stimulus itself to become its own

control. Such stimulus manipulations have contributed to research on the effects

of task demands in information selection in behavioural (Olivaand Schyns, 1997;

Schyns and Oliva, 1999) and electrophysiological studies (Goffaux, Jemel,

Jacques, Rossion, and Schyns, 2003). Other types of hybrid stimuli include

chimeric face stimuli, that is a stimulus comprising a face of one gender on the

left side and that of another gender in the right side. Burt and Perrett (1997; see
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also Butler, Gilchrist, Burt, Perrett, Jones, and Harvey, 2005) generated such

stimuli to test perceptual asymmetries of different face categorisations and found

that participants used information from the left side of faces to resolve

categorisations of gender, age, attractiveness, speech and expression.

In relation to the flexibilityof the observer to use the information available for

perception and recognition, an additional relevant factor is the consideration that

there may be a modulation in information use as a result of learning. For

example, an observer may use information x when the signal is largely unfamiliar,

but over time may change to using information y. The next section reviews

research on the phenomena of perceptual learning, and the mechanisms that

have been proposed to enable learning. At the heart of this research are the

questions: What is perceptual learning? What are the mechanisms enabling

learning? These questions are closely related to attention to information for

perception and recognition because to extract diagnostic task-relevant

information to resolve a task, the observer must firstly learn what this

information is in order to extract it.

1.4 Perceptua11earning

In his chapter Discrimination and Comparison, James (1890) recounts real

world examples of perceptual learning; described is the ability of a man to

"distinguish by taste the upper and the lower half of a bottle of old Madeira," and

"another will recognize by feeling the flour in a barrel, whether the wheat was

grown in Iowa or Tennessee," (p.509). At his time of writing, James suggested

that psychologists were so familiar with the phenomenon of perceptual learning

that they didn't feel the need to seek to explain it. Indeed, he states, "At most
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they have said: "Attention accounts for it; we attend more to habitual things, and

what we attend to we perceive more minutely," (p.510). James's response to this

dismissal of accounting for the phenomenon of perceptual learning was a call for

a "less general" explanation in favour of one "more precise". In recent years,

strong attempts have been made to characterise precisely the conditions

necessary for perceptual learning to occur, its permanence, and its underlying

mechanisms; a reviewof this research follows.

1.4.1 The Nature of Perceptual Learning

In considering the nature of perceptual learning, here we refer only to those

studies that are, in essence, purely perceptual. For example, while the

categorisation tasks of Gauthier, Williams, Tanaka, and Tarr (1998) undeniably

entail a perceptual component in learning to discriminate computer generated

'greebles', their tasks also required considerable semantic memory involvement

for the names of individual greebles, their gender and family names, and may

therefore encompass additional processes; such studies are omitted here to

exclusively focus on studies isolating perceptual learning. Empirically,

perceptual learning has been shown to occur for a variety of visual discrimination

tasks including the discrimination of vernier acuity (Fahle and Edelman, 1993;

Poggio,Fahle, and Edelman, 1992), an object's orientation (Dosher and Lu, 1998,

1999; Lu and Dosher, 2004) and motion trajectory (Ball and Sekuler, 1987; Fahle

and Morgan, 1996; Liu and Weinshall, 2000), stereoacuity (Sowden,Davies, Rose,

and Kaye, 1996), gratings (Fine and Jacobs, 2000; Fiorentini and Berardi, 1980),

texture (Goldet al., 1999b, 2004; Karni and Sagi, 1991), face (Goldet al., 1999b,
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2004), letter (Tjan, Chung, and Levi, 2002a, b), and position discrimination (Li,

Levi, and Klein, 2004). The learning is often found to be specific to training

conditions, failing to transfer to other stimuli, tasks, visual fieldposition, and eye

of training (Ahissar and Hochstein, 1993, 1997; Fahle, Edelman, and Poggio,

1995; Fahle and Morgan, 1996; Fiorentini and Berardi, 1980; Karni and Sagi,

1993; Poggioet al., 1992; although see Liu and Weinshall, 2000 for evidence of

generalization of learning in a motion discrimination task). Perceptual learning

can occur followingrelatively short training periods (Fahle et al., 1995; Fiorentini

and Berardi, 1980; Poggioet al., 1992), to requiring longer exposure (Karni and

Sagi, 1993). Perceptual learning effects have been obtained in the absence of

feedback (Ball and Sekuler, 1987; Fahle et al., 1995), and perhaps surprisingly,

to task irrelevant features exclusive of an observer's explicit awareness and

attention (Watanabe, Nanez, and Sasaki, 2001; Watanabe, Nanez, Koyama,

Mukai, Liederman, and Sasaki, 2002).

Psychophysical studies indicating the specificity of perceptual learning to

restricted stimuli, tasks and retinal locations, imply that the neural modulations

underlying perceptual learning may occur in early stages of the visual system

(Fahle, 2004; Karni and Sagi, 1991). Physiological evidence also suggests that

plasticity in the adult primary visual cortex may support the neuronal changes

underlying perceptual learning (see Fahle, 2004 for the case supporting

modulations of early cortical mechanisms). Indeed, Watanabe et al. (2002) found

greater plasticity in lower-levelmotion processing brain areas than higher-level

motion brain areas in a passive perceptual learning task. At a behavioural level,

functional descriptions of the changes that take place in these mechanisms with
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perceptual learning have been investigated within a signal detection theory

framework; an overviewof this research follows.

1.4.2 Potential mechanisms of perceptual learning

To characterise the mechanisms responsible for perceptual learning, it has

proved useful to consider the problem within the framework of SDT (Dosher and

Lu, 1998, 1999; Gold et al., 1999b, 2004; Lu and Dosher, 2004; Tjan, Levi, and

Chung, 2002). In appealing to SDTto elucidate the effects of perceptual learning,

independent measures of an observer's visual sensitivity and decision-making

processes to a stimulus event can be traced through time. How does perceptual

learning alter an observer's sensitivity? The SDT framework enables the

partitioning of an observer's visual sensitivity into measurable and unique

mechanisms. The first mechanism that may be altered with perceptual learning

is the efficiencywith which an observer samples the visual information available

termed signal (or stimulus) enhancement. How this stimulus enhancement

mechanism achieves this perceptual learning effect varies according to the

perspectives of different researchers (Gold et al. 1999b, 2004; Dosher and Lu,

1998, 1999) and will be discussed in subsequent sections. A second mechanism

enabling perceptual learning, termed internal noise reduction, may operate to alter

the strength of the internal noise naturally associated with sensory processing.

This mechanism functions to decrease internal noise, and would also result in

improved sensitivity. A third possible mechanism that enables perceptual

learning, external noise reduction, has also been invoked (Dosher and Lu, 1998,
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1999). While deemed unnecessary by some researchers (Gold et al., 2004), such

a mechanism would operate to exclude any external noise in the stimulus.

To distinguish between these potential mechanisms the method of noise

masking has been applied to the perceptual learning tasks of orientation (Dosher

and Lu, 1998, 1999), texture (Goldet al., 1999b, 2004), face (Gold et al., 1999b,

2004), and letter (Tjan et al., 2002) discriminations. For each potential

mechanism, the noise masking method provides unique performance signatures

when plotting an observer's contrast threshold, at a specified performance

criterion, for a signal embedded in a range of noise densities (Dosher and Lu,

1998, 1999; Gold et al. 1999b, 2004). Figure 1.7 depicts hypothetical noise-

masking functions where contrast energy thresholds are plotted as a function of

the density of external noise; note how the contrast energy threshold increases as

a function of increases in external noise density. The figure depicts the changes

that would occur in the noise masking function for a perceptual learning

mechanism that in a) augments the strength of the incoming signal, b)

diminishes the magnitude of internal noise, and c) improves performance by

excluding external noise.
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Figure 1.7. Hypothetical noise masking functions for three potential mechanisms of
perceptual learning. Each panel indicates the potential effect of perceptual learning on
the noise masking function characterised by a mechanism of signal, or stimulus
enhancement in the left panel, internal noise reduction in the central panel, or external
noise reduction in the right panel.

These mechanisms have, over the years, been articulated in various forms by

researchers in different fields, including physiology and engineering. Although

similar methodology is employed between researchers, to characterise the

changes that occur with perceptual learning, the mechanisms proposed vary

depending on the theoretical leanings of different research groups. There is

agreement that sampling efficiencyand internal noise reduction are two potential

candidates. However,there exists controversy pertaining to the early versus late

addition of noise into the observer's system, and the contention that two as

opposed to three mechanisms are sufficient to account for perceptual learning.

Note that different researchers use similar terminology for these mechanisms,

while the changes these mechanisms effecton the noise masking function vary.

In the perceptual learning literature, the early noise model, propounded by

Gold et al. (1999b, 2004), posits two distinct processes to explain perceptual
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learning: signal enhancement (otherwise referred to as sampling efficiency or

calculation efficiency) and internal noise reduction. Dosher and Lu defend an

alternative position, a late noise model, suggesting a full explanatory account of

perceptual learning requires a third mechanism, external noise reduction, in

addition to mechanisms of signal enhancement and internal noise reduction.

While the methodology, and experimental results, of Gold et al. and Dosher and

Lu are highly similar, the subsequent interpretations and models constructed to

account for these results differ. An introduction to the models and arguments of

Gold et al. and Dosher and Lu, as examples of early and late noise models,

respectively, followin the next section. A brief functional description of each of

the proposed mechanisms and how they are manifested on noise-masking

functions are described.

1.4.2.1 An early noise model: Gold et al. (1999b, 2004)

In characterising the mechanisms enabling perceptual learning, Gold et al.

appeal to the black-box observer model of Pelli (1981), the Linear AmplifierModel

(LAM),depicted in Figure 1.8. In resolving a perceptual task, this simple observer

model depicts the observer receiving a noisy stimulus as input. To the

representation of this noisy input the observer contributes another noise source,

a fixed amount of contrast-invariant intemal noise. Followinga contrast-invariant

calculation on the stimulus representation, the observer finally reaches a

perceptual decision regarding the stimulus input that is based on the internal

response. To note in the model is that the internal noise source is added early in

processing, prior to the calculation stage.
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Figure 1.8. Pelli's black-box model of a human observer in a perceptual task. The
observer in this model receives as input a signal embedded in noise, to which a fixed
amount of internal noise is added. The observer performs a calculation producing an
internal response, the strength of which determines the resulting perceptual decision (an
adapted version of Pelli'smodel, fromGoldet al., 2004).

Within this model, perceptual learning potentially affects contrast-invariant

internal noise, via a mechanism of internal noise reduction that operates to adjust

an internal noise source that is invariable to the strength of the visual input.

Alternatively, or in addition, the contrast-invariant calculation, also indifferent to

the strength of the incoming signal, may be affected by a mechanism of signal

enhancement. This calculation stage denotes the internal signal strength, which

on comparison with an ideal observer is a measure of the proportion of available

information used by the human observer.

Gold et al. also acknowledge an additional, and separate, internal noise

source, contrast-dependent noise, excluded from Pelli's model (Pelli, 1990 asserts
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that this noise source results from variability in the observer's calculation). The

proportion of this contrast-dependent noise, unlike contrast-invariant internal

noise, varies with the strength of the incoming signal (Burgess and Colborne,

1988). This proportional noise source is confounded with the measurement of

calculation efficiency, consequently Gold et al. deal separately with the issue of

contrast-dependent noise in their endeavour to establish the mechanism(s)

underlying perceptual learning.

To summarise, within the early noise model proposed by Gold et al., the

mechanisms of calculation efficiency (or signal enhancement) and internal noise

reduction are the potential candidates enabling the performance improvements

associated with perceptual learning. To distinguish between these mechanisms,

Gold et al. employ the techniques of noise masking and response consistency.

The method of noise masking is used to isolate any change in calculation

efficiency,that is, how efficientlythe observer uses the information available, as a

result of perceptual learning. This method enables the calculation of the contrast

threshold of the human observer, and the theoretical ideal observer, in varying

levels of noise density. Whereas the contrast thresholds for both the human and

ideal observers will vary according to the discriminability of the stimulus set (and

will increase as the density of external noise increases), only the human

observers contrast threshold will be affected by the magnitude of internal noise

and their efficiencyin using the information available. The measure of calculation

efficiency, that is the proportion of information used by the human observer, is

obtained by comparing the contrast threshold of the human observer to that of

the ideal observer. According to the early noise model of Gold et al. a mechanism

that functions to increase calculation efficiency will reduce contrast thresholds
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uniformly across all external noise levels. Whereas, a mechanism that operates

to reduce internal noise will reduce contrast thresholds only at low levels of

external noise, causing a downward shift in the kink-point of the function (the left

and centre panels of Figure 1.7 depict the changes in the noise-masking

functions associated with each of these potential perceptual learning

mechanisms).

To establish the mechanisms underlying the perceptual learning of face and

texture pattern discrimination, Gold et al. employed the methods of noise

masking, response consistency and reverse correlation. Firstly, in their noise

making experiment, observers learned to discriminate, over six learning sessions,

ten faces and four texture patterns of varying contrast in different levels of

experimenter added external noise. An ideal observer employing an optimal

decision rule cross-correlates the noisy input signal with each of the noise-free

template stored in memory, and responds according to the signal yielding the

highest cross-correlation. Their results from tasks of face and texture

discrimination, depicted in Figure 1.9, show increases in contrast thresholds as a

function of external noise, and a decrease in contrast thresholds across all

external noise levels, as a result of practice for both face and texture

discrimination tasks. Moreover, this effect of learning on the noise masking

functions revealed increases in calculation efficiencyfor both tasks; an increase

in efficiencyof a factor of 4 in discriminating faces, and by a factor of 2 to 3 in

texture discrimination. Since a mechanism operating to reduce contrast-

invariant internal noise, within this model, produces a downward shift only in low

levels of external noise, Gold et al. rule out a contribution of this mechanism to

the changes occurring with perceptual learning. However, recall that the Linear
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Amplifier Model (Pelli, 1990) does not enable changes in contrast-dependent

internal noise to be distinguished from changes in calculation efficiency.
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Figure 1.9. Noise masking functions from Gold et al. (1999b, 2004). The upper panels
depict noise-masking functions of two observers for the task of face discrimination, and
the lower panels, the task of texture discrimination. The change in performance for each
learning session, downward shifts in contrast energy thresholds across all levels of
external noise signify a mechanism operating to enhance the strength of the incoming
signal.

To exclude the possibility of changes in contrast-dependent noise

contributing to the changes observed in calculation efficiencywith learning, Gold

et al. employ a technique additional to noise masking, the technique of response
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consistency, in a separate experiment. This technique, similar to the method of

noise masking, measures contrast energy thresholds for stimuli embedded in

external noise. The differencehowever is that this technique involvespresenting

twice an identical sequence of trials comprising stimuli embedded in identical

noise patterns of lownoise density (where contrast-invariant noise dominates) or

high noise density (where contrast-dependent noise dominates) and measuring

the consistency in responses between the two passes through an identical

experiment. For an ideal observer, the responses between these two passes will

be identical. However, for a human observer with internal noise, there will be

some inconsistency between these responses to identical stimuli. The degree of

inconsistency between the two passes is determined by the internal/external

noise ratio. The contribution of contrast-invariant noise to any response

inconsistencies is eliminated using high levels of external noise where this noise

source has little effect, therefore isolating the contrast-dependent noise source.

This response consistency technique subsequently permits the distinction

between a perceptual learning mechanism that reduces contrast-invariant noise

and one that improves calculation efficiency by reducing contrast-dependent

noise. The results from this experiment showed that response consistency did

not change at high levels of external noise, indicating that contrast-dependent

noise did not significantlychange as a function of perceptual learning.

Taken together, the noise masking and response consistency results from

Gold et al. revealed no changes in observers' contrast-invariant and contrast-

dependent internal noise. Rather, the results suggested that the mechanism

underlying the perceptual learning of faces and texture patterns is a mechanism

of signal enhancement (or calculation efficiency)that operates to increase the
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observer's efficiency in extracting the information available In the stimulus to

resolve the task.

1.4.2.2 A late noise model: Dosher and Lu (1998, 2000)

Dosher and Lu (1998, 1999) developed the Perceptual Template Model (PTM)

to characterise the mechanisms underlying the performance improvements

observed in perceptual learning tasks, and in tasks of selective spatial attention

(Lu and Dosher, 1998, 2000, 2004). The PTM,depicted in Figure 1.10, extends

the LAMwith its inclusion of transducer non-linearity and multiplicative internal

noise (or contrast-dependent internal noise). In addition, whereas the PTMcan

account for performance at different criterion levels, the LAMcannot.

I stimulus I ----. 0
i

~
Human observer

Figure 1.10. The Perceptual Template Model (PTM)of Dosher and Lu. The observer
model consists of four components: (1) a perceptual template (13); (2) a multiplicative
internal noise source (Nm); (3) an additive internal noise source (Na); and (4) a decision
process.
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An example of a late noise model, the PTMof Dosher and Lu invokes three

potential mechanisms of perceptual learning, stimulus (or signal) enhancement,

external noise exclusion and internal noise suppression, each uniquely affecting

the noise masking function. The first mechanism, stimulus enhancement,

involves augmenting the strength of an incoming sensory signal by a) increasing

the gain on the output of the relevant perceptual template, or by b) reducing

additive internal noise (termed contrast-invariant internal noise by Gold et al.

2004). A stimulus enhancement mechanism would effect change on the noise-

masking function at low levels of external noise; remember additive internal noise

has no contribution at high external noise levels, so increasing the gain of the

perceptual template at high levels of external noise would also entail a

simultaneous increase in the gain of the external noise. Notice that this

mechanism may effect change in either or both a) increasing the gain on the

output of the relevant perceptual template and b) reducing additive internal

noise. The role of a mechanism operating to suppress multiplicative internal

noise (or in the terminology of Gold et al., contrast-dependent noise) would be to

diminish the effects of this noise source by improving performance in both low

and high levels of external noise. Lastly, a PTMmechanism that functions to

restrict the effect of external noise in the stimulus would effectively narrow or

tune the filter or template processing the incoming signal to exclude competing

external noise. The effect of this mechanism on the noise masking function

would be to improve performance, reduce thresholds, in high external noise

conditions. In narrowing the template to exclude external noise, the gain of the

template is decreased (the converse effect of the stimulus enhancement

mechanism) .
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A crucial difference between the models of Gold et al. and Dosher and Lu is

the stage at which the observer's internal noise is added; for Gold et al. the

observer's internal noise is added early in the model, prior to the calculation,

whereas for Dosher and Lu the addition of noise occurs later, after the

calculation. Also, for Gold et al. the mechanism of signal enhancement effects

change only on the efficiencyof the observer to use the information available, and

is expressed on the noise masking function as a downward shift across both low

and high noise levels

In their studies of perceptual learning, Dosher and Lu measured contrast

thresholds for oriented stimuli embedded in varying levels of noise density for an

orientation discrimination task presented in the peripheral visual field. Similar to

Gold et al., the results of Dosher and Lu, depicted in Figure 1.11, showed that

contrast thresholds increased as a function of increases in external noise density

and decreased as a function of practice. The effect of learning on the noise-

masking function for orientation discrimination produced a pattern of results

similar to Gold et al., revealing a downward shift in contrast threshold across all

densities of external noise. A difference in the observer models invoked by Gold

et al. and Dosher and Lu in explaining perceptual learning have led to a

difference in the interpretation of these similar results.
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Figure 1.11. Noise masking functions from Lu and Dosher (1998). Each function
represents experimental data on the mechanism(s) underlying performance improvements
in spatial attention for two different response criteria. Here, the performance signature, a
downward shift in the noise-masking function at all levels of external noise, according to
Dosher and Lu corresponds to mechanisms of additive internal noise reduction and
external noise reduction.

Recall that Gold et al. interpreted a similar pattern of results in face and

texture discrimination tasks as evidence for a mechanism of signal enhancement,

that is, an increase in calculation efficiency. Dosher and Lu, however, interpreted

their results as evidence for a combination of mechanisms. The performance

improvements at low levels of external noise, they suggest, were enabled by a

stimulus enhancement mechanism operating to suppress additive internal noise,

whereas the improvements observed at high levels of external noise were

attributed to a mechanism of external noise exclusion. In other words,

operationally the changes effected with perceptual learning in the studies of

Dosher and Lu were to enhance the strength of the incoming stimulus by

increasing the gain of the stimulus-relevant template (formally equivalent to
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reducing additive internal noise) via a stimulus enhancement mechanism, and to

narrow the width of the template to exclude external noise, decreasing the gain of

the template (the converse effect of the stimulus enhancement mechanism).

The discrepancy in the interpretations of these highly similar results is

difficult to reconcile. Gold et al. (2004) rely on changes in one mechanism to

explain their results, signal enhancement. In contrast, Dosher and Lu invoke two

mechanisms to explain their results, that of stimulus enhancement and external

noise reduction. Gold et al. suggest that the effect of changes in a mechanism

operating to suppress external noise is two-fold: in narrowing the template to

exclude external noise, the effect is to make the template more efficient (similar in

operation to the change effected with a signal enhancement mechanism), and

reduces the gain of the output of the template (the converse effect of the stimulus

enhancement mechanism). Gold et al. argue that the external noise exclusion

mechanism of Dosher and Lu is really a combination of mechanisms, one whose

role is to reduce the gain of the template, the opposite of the role of the stimulus

enhancement mechanism also invoked by Dosher and Lu to account for their

results. Gold et al. therefore maintain that their LAM-based account is more

parsimonious in invoking a single mechanism, signal enhancement or calculation

efficiency, to explain their perceptual learning results than the appeal to two

mechanisms in the PTMof Dosher and Lu.

However, Lu and Dosher (2004) showed that perceptual learning improved

performance in a foveal orientation discrimination task only in high levels of

external noise. From this study, Lu and Dosher concluded that a mechanism of

external. noise exclusion enabled performance improvements in their perceptual

learning task. In relation to the LAMmodel proposed by Gold et al. (2004), Lu
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and Dosher point out that this model could only account for such data in terms

of an increase in calculation efficiency,and as an increase in contrast-invariant

internal noise.

In response to Lu and Dosher, Gold et al. acknowledge that, in this case, it is

more parsimonious to assume that internal noise would remain unchanged,

rather than increasing as a result of learning. Gold et al. suggest in this case

that the noise should occur after the calculation, as it does in the PTM, rather

than before.

In an attempt to explain the difference between their findings and those of Lu

and Dosher, Gold et al. suggest that the difference may lie in the processing

stages involved in the different tasks and the subsequent contribution of internal

noise. Whereas, the gratings used by Dosher and Lu may reflect earlier

processing stages, the face and texture discrimination tasks of Gold et al. may be

processed by later stages in the visual system. In their letter discrimination task,

Tjan et al. (2002a) accounted for performance improvements in terms of changes

in internal (additive or contrast-invariant) noise reduction and external noise

exclusion. In assessing both the LAMand the PTMin accounting for their data,

Tjan et al. suggest that to account for criterion-independent performance, the

transducer nonlinearity component of the PTM is necessary. Ultimately, the

success of these models will depend on how well they account for data in different

visual tasks. The future of this type of research intimates to be particularly

fruitful, and surely will emerge to contribute to greater understanding of the

mechanisms involvedin enabling perceptual learning.

In Chapter 4, I apply the noise masking paradigm to the perceptual learning

of face discrimination. In an attempt to trace over time the features or regions
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being learnt to discriminate the faces, we measured contrast thresholds on each

trial for each of six regions of the face embedded in varying levels ofnoise density.

1.4.3 Summary

This aim of the present section on Perceptual learning was to introduce the

characteristics of perceptual learning, and the mechanisms that enable it. As a

new area of research, the endeavour to functionally describe the behavioural

mechanisms underlying perceptual learning is proving fruitful. While different

observer models offer contrasting accounts of the data, the research in applying

the technique of noise masking to determine the mechanisms of perceptual

learning is still in its infancy (the first paper was published by Dosher and Lu,

1998). Already this research has focused on the perceptual learning of

orientation discrimination (Dosher and Lu, 1998, 1999; Lu and Dosher, 2004),

discrimination of faces and textures (Goldet al., 1999b, 2004), letters (Tjan et al.,

2002), and spatial position (Li et al., 2004). The use of complementary

techniques such as reverse correlation and bubbles to determine the regions of

the signal that influence the observer's performance, in conjunction with noise

masking, provide a fuller, more precise account of perceptual learning than

previously possible. The potential convergence of these methods with

electrophysiological (Liebe,Gold, Busey, and O'Donnell, 2004) and neuroimaging

techniques (Tjan, Lestou, Bulthoff, and Kourtzi, 2004) make this a promising area

of research.

Thus far, I have reviewed issues related to the information observers select to

resolve different perceptual and recognition tasks. In the next section I review
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research that examines the performance benefits of selectively attending to visual

information. In addition to the effects of attention on behavioural performance, I

also consider electrophysiologicalstudies that inform us of the effects of attention

on the time course of information processing.

1.5 Selective spatial attention

The spatial resolution of selective spatial attention, that is the selection of

information across the visual field, has been extensively studied for decades.

The shape of attention across the visual field has been previously described as

being shaped like a 'spotlight' (Posner, Snyder, and Davidson, 1980), a 'zoom-

lens' (Eriksen and St James, 1986), and a 'donut' (Muller and Hubner, 2002).

The mapping out of the spread of attention across the visual field has important

implications in constraining theories of selective attention to information for

further visual processing. However, while these metaphorical accounts are

constructed from robust patterns observed in experimental data, the employment

ofmetaphors to describe attention has contributed to the notion that attention is

a fuzzy concept. Indeed, the very word 'attention' as connoting imprecise

processes has led some to under-use the term (pashler, 1998). Yet, much

progress has been made in understanding and characterising the spatial and

temporal resolution of visual selective attention, and the functional nature of its

underlying mechanisms (Baldassi, BUIT, Carrasco, Eckstein, and Verghese,

2004).

Here, we review the findings of visual attention research, beginning with the

experimental paradigm often used by researchers exploring the effects of spatial
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attention across the visual field. Next, we consider the temporal resolution of

visual attention explored in studies employing event-related brain potentials

(ERPs),and review research that suggests that attention not only improves the

discriminability of visual input but that attention also speeds up the rate at

which visual input is processed.

1.5.1 Manipulating spatial attention: peripheral and central cueing

Several studies have consistently demonstrated performance benefits,

reflected in increased accuracy, response time improvements, and enhanced

perceptual sensitivity, when observers are given advance information regarding

target location (Bashinski and Bacharach, 1980; Downing, 1988; Henderson,

1996; Posner, Snyder, and Davidson, 1980). In such studies, a typical

experimental set-up would consist of a pre-cue directing the attention of the

observer to a particular spatial location. The information provided by the pre-cue

is manipulated to compare performance across conditions where the cue provides

a) accurate information regarding the target in valid cueing conditions, b)

inaccurate information regarding the target with invalid cues, and c) no

information regarding the target in neutral cueing conditions. Such studies show

greatest facilitation effects for valid cues, least facilitation effects with invalid

cues, and intermediate effects for neutral cues (Muller and Rabbitt, 1989). The

probability of the cue indicating target location is determined by the

experimenter, and is set, conventionally,between p(.5) to p(.75). The presentation

of the target stimulus typically followsthe pre-cue after a variable time interval
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(referred to as cue-target stimulus onset asynchrony, SOAs)ranging from short

temporal delays to longer delays.

The pre-cueing procedures used to manipulate attention have been broadly

classified into two types: central and peripheral. Research has demonstrated that

these cue types invoke two distinct attentional systems (e.g. Cheal and Lyon,

1991; Muller and Rabbitt, 1989; Posner, 1980). The peripheral cue, typically

presented adjacent to the peripheral target location, engages an exogenous

mechanism and the latter, presented centrally at fixation and pointing to the

target location, activates an endogenous system (Posner, 1980). There is evidence

to suggest that these two systems exhibit functional differences and yield

different performance benefits. Functionally, the exogenous system is said to be

reflexive,engaged by brusque visual onsets appearing in the visual field, and is

characterised by a transient response. Conversely, the endogenous system is

considered voluntary, operating consciously according to goals, and is

characterised by a sustained response profile.

In relation to facilitating performance, the exogenous system produces

relatively greater effect sizes than the endogenous system at short temporal

intervals between the offset of the cue and the onset of the target stimulus; with

peripheral cues peak facilitation is observed at SOAsofbetween 100 and 175ms,

compared to between 400 and 725 ms with central cues (Henderson, 1991;

Muller and Rabbitt, 1989). Inhibitory effects of cueing are also evident in

peripheral cueing conditions while being absent in central cueing conditions

(Cheal and Lyon, 1991; Muller and Rabbitt, 1989; Posner and Cohen, 1984;

Rafal, Calabresi, Brennan, and Sciolto, 1989); studies engaging the exogenous

system demonstrate inhibition of return (lOR), that is, an inhibitory effect
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exhibited in slower reaction times for targets at previously cued locations than for

targets at novel locations. The effect typically becomes evident at 300 ms after

the presentation of a peripheral cue and lasts as long as 2000 ms (Posner and

Cohen, 1984). This inhibitory effect under peripheral cueing conditions is

unaffected by the probability of the cue, and has recently been shown to affect

not only the previously cued location but beyond, encompassing the cued

hemifield(Bennett and Pratt, 2001).

To further explore the conditions under which attentional effects occur and

the. potential mechanism(s) underlying these effects, other display variables that

are oftenmanipulated in studies of spatial attention are the presence, or absence,

of post-stimulus masks, and/or distracter stimuli. In tasks of spatial attention,

the mechanisms that have been proposed to account for performance

improvements with cueing include signal enhancement and noise reduction

mechanisms. The presence of distracter stimuli in displays, where each

distracter is viewed as an independent source of noise, enables the mechanism

underlying cueing effects in these displays to be established. Many studies have

reported cueing effects in displays containing distracters, and have concluded

that a mechanism of distracter exclusion, otherwise known as external noise

reduction, is responsible for performance improvements in studies of selective

spatial attention (Lu and Dosher, 1998; Shiu and Pashler, 1995). While some

researchers insist that attention facilitates performance (accuracy and d'

sensitivity) only in conditions where the target stimulus is masked (Shiu and

Pashler, 1995; Smith, 2000), or is surrounded by distracters (Smith, 2000) others

have found facilitation for unmasked targets and targets presented without

distracters (Carrasco, Williams, and Yeshurun, 2002; Henderson, 1996).
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Carrasco et al. (2002), in a study on the effect of attention in a visual acuity task,

found that cueing improved both accuracy (measured in % correct) and reaction

times in the absence of a post-stimulus mask. Carrasco et al. interpreted their

results as evidence for a selective attention mechanism that enhances spatial

resolution via a signal enhancement mechanism; attention improved visual acuity

performance in displays devoidof distracters and post-stimulus masks.

While these different cueing and display conditions enable the effect of

attention on spatial cueing tasks to be quantified, the conditions under which

attention is manipulated has implications for engaging, and explaining, the

mechanism(s) involved in selecting information across the visual field. At

present, the diversity of experimental conditions (Le.different cueing procedures,

tasks, use of noise, distracters and/ or masks, measuring accuracy and/ or

response times) used renders the picture still unclear as to the precise

mechanisms underlying selective spatial attention. However, the debate within

the attention research community is not restricted to the conditions under which

attentional effects are observed; another long-lasting debate regards the locus of

attention effects: does attention operate early in the processing stream or later?

1.5.2 Early versus late attention effects

The debate regarding the early versus late selection of attention is related less

to the timing of processing and more to the processing stage at which attention

has an effect. In relation to the early selection of attention, perhaps the best-

known theory is Broadbent's (1958)filter theory. The basic premise of this theory,

as a theory of early selection, is that selection occurs early in the stream of
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processing prior to stimulus identification. While all input reaching the sensory

system are processed and represented at a physical level of description (e.g. an

object's location) only those attended stimuli succeed to the stage of processing at

which stimulus identification occurs. The capacity-limited mechanism of

selective attention, the selective filter, therefore operates to filter out unattended

stimuli, selecting only the attended stimuli for further processing. At the other

end of this early/late dichotomy are late selection theories proposed by, amongst

others, Deutsch and Deutsch (1968) and Duncan (1980). Late selection theories

suggest that selection occur late in the stream of processing following stimulus

identification. All sensory inputs are processed and represented at a semantic

level of description (e.g. placing the object into a familiar category), under no

capacity limitations. Selective processing succeeds this stage, so that only

attended stimuli transfer to a further stage of processing at which the stimulus

becomes available to awareness and memory, and the ability to make an overt

response becomes possible.

The applications of electrophysiologicaltechniques that permit the analyses of

attentional effects to be segmented into sensory and decision stages are

contributing to the debate regarding the early/late nature of selective attention.

Do the mechanisms of attention modulate the selection of input early at a sensory

stage in the processing stream or later at a decision stage? An introduction to

the use of electrophysiological measures to study selective spatial attention and

the subsequent findings of research studying the locus of attention effects

follows.
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1.5.3 ERP studies of selective spatial attention

The measurement of the brain's electrical activity on the scalp using the

electroencephalogram (EEG)has been possible for decades (Berger, 1929; cited by

Coles, Gratton, and Fabiani, 1990). The more recent development of time-locking

a stimulus event to changes in the electrical activity measured by the EEG has

enabled the derivation of the event-related brain potential (ERP),reflecting those

parts of the EEG that relate to brain activities that occur in relation to perceptual,

motor, or cognitive events. As these brain activities elicit only small potentials in

relation to the background EEG, averaging this time-locked event-related activity

over many stimulus presentations increases the signal-to-noise ratio of emerging

deflections that are associated with early sensory processing, and later decision,

motor processes. The ERPis presented on a voltage * time waveformcontaining a

number of positive and negative peaks. Unique peaks, referred to by both their

polarity and latency (for example P300 refers to a positive peak with a latency of

300 ms) have been interpreted as physiological markers of different perceptual,

motor, or cognitive functions (see Rugg and Coles, 1995 for an introduction to

research using ERPs as a tool to investigate a range of cognitive functions). The

measurement of ERPs comprising separable deflections reflecting early sensory

and later decision, motor-related processes, provides additional information

regarding the stages of processing at which attention may modulate. Indeed, the

fine-grained temporal resolution obtained by recording ERPs has provided insight

into the stage(s) at which experimental manipulations of attention modulate the

temporal dynamics of perceptual and cognitive processing (see Eimer, 1998 and

Luck, Woodman and Vogel, 2000 for reviews). Accounts of these modulations,

and the experimental conditions under which they occur, typically observed in
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either the amplitude and/ or latency of the ERP components of interest, followsin

the next section.

1.5.3.1 Central versus peripheral cueing in ERP studies

In relation to the study of visual attention, the measurement of ERPs has

proved fruitful, contributing to long-standing debates surrounding the locus of

attentional effects, the range ofmechanisms supporting attentional selection, and

the temporal resolution of attention. Here, to examine the locus of attention

effects, we focus on ERP studies that have examined visual selective attention

using central and peripheral cueing methods.

Until very recently, ERP studies using central pre-cues consistently revealed

enhancement over occipital brain regions on the first visual evoked responses, the

PI, a positive component occurring 80 to 130 ms post-stimulus and the NI, a

negative component occurring roughly 140 to 190 ms post-stimulus (Mangun,

1995; Mangun and Hillyard, 1991; Martinez, Anllo-Vento,Sereno, Frank, Buxton,

Dubowitz, Wong, Hinrichs, Heinze, and Hillyard, 1999). Typically, (with the

exception of Martinez et al. and more recently Doallo, Lorenzo-Lopez, Vizoso,

Rodriguez Holguin, Amenedo, Bara, and Cadaveira, 2004), those studies used

central cues and employed long SOAs, generally longer than 600 ms, to minimize

overlap of cue-related and target-related ERP activity. Martinez et al. (1999)

employed SOAs of between 400 and 600 ms, and consistent with other ERP

studies employing central cues, Martinez et al. found enlarged PI and NI

components over occipital sites for attended stimuli, indicating a modulation of

activity within the processing stream. It is unclear however from their analysis
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whether this effect was observed at each SOA, the shorter SOA of 400 ms and

longer at 600 ms, as they collapse their data across SOA (neither do they report

any behavioural data analysis for attended versus unattended trials). More

recently, Doallo et al. (2004) recorded ERPs to compare the time course between

peripheral and central cues at SOAs of 100, 300, 500 and 700 ms and failed to

find any PI enhancement with central cues at any of the SOAs used. Their

behavioural data, restricted to analysis of RT, however, suggested a validity effect

(P(validcue = .75)) of the informative central cue such that RTs were faster to a

validly cued target than invalid.

The few studies employing peripheral pre-cues, however, provide inconsistent

results. Hillyard, Luck, and Mangun (1994), employing SOAs of between 600 and

800 ms, found only NI enhancement for validly cued trials (P(valid cue = .75))

and failed to find enhancement of the PI. Similarly, Eimer (1994) who used a

cue-target SOAof 700 ms, also found NI enhancement at parietal electrodes for

validly cued trials (P(validcue = .75)), and contrary to those studies using central

cues, Eimer actually reported a smaller PI for valid than for invalid trials. Yet, PI

and NI enhancement for valid trials have been reported over occipital and

temporal sites by Fu, Fan, Chen and Zhuo (2001) who used SOAs from 100 to

300 ms and peripheral pre-cues with a validity of (P(validcue) = .75).

Using uninformative peripheral pre-cues (P(valid cue) = .5) and long SOAs

(566 to 766 ms), Hopfinger and Mangun (1998) also failed to find a reliable PI

enhancement effect; rather at longer SOAs PI amplitude was reduced using valid

cues compared to invalid cues, consistent with Eimer (1994). Yet, in trials with

shorter SOAs (34 to 234 ms), Hopfinger and Mangun did find PI enhancement for

validly cued trials over lateral occipital electrode sites (see also Lubbe and
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Woestenburg, 1997 who found a P1 enhancement at posterior sites for validly

cued trials with SOAsof between 100 and 300 ms). Most recently, comparing

SOAwith cue informativeness, Doallo et al. (2004) found P1 enhancement with

informative (P(validcue) = .75) and uninformative (P(validcue) = . 5) peripheral

pre-cues for their shortest SOA of 100 ms over occipital sites. In contrast, at

longer SOAs the reverse P1 amplitude pattern was observed; a smaller P1 for

validly than invalidly cued trials was observed with informative peripheral pre-

cues at a SOAof 500 ms and at a SOAof 700 ms with uninformative peripheral

pre-cues. For the latter cue type this finding extended to SOAs of 300 and 500

ms at parietal electrode sites. Noanalysis of the N1was reported in this study.

To summarise, using informative central cues (P(validcue) = .75 to 1), with

the exception of the study by Doallo et al. (2004), enhancements in the amplitude

of early ERP components, the P1 and N1, over occipital regions have been

consistently observed at long SOAs (from 400 to 800 ms). Using shorter SOAs

and central cues, no P1 enhancement for valid cues has been reported (Doalloet

al., 2004). For informative peripheral cues, P1 and N1 enhancements have been

observed when using SOAsfrom 100 to 300 ms (Fu et al., 2001), and at 100 ms

SOAfor uninformative peripheral cues (P(validcue) = . 5). For peripheral cues, at

longer SOAs, the effect seems to reverse; P1 and N1 amplitude increases for

invalid peripheral cues relative to valid cues at a SOA of 300 ms with

uninformative cues, and at 500 ms with informative cues. While such effects

may seem reflective of neuronal refractoriness between the cue and the target,

Hopfinger and Mangun (1998), argue that neuronal refractory effects would be

evident only at short rather than long SOAs.
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The effect of cue validity on the P1 component expressed as an amplitude

enhancement has been interpreted in terms of a mechanism of sensory gain

control, or amplification, that serves to modulate neuronal activity such that

attended information elicits larger sensory-evoked responses than unattended

stimuli (Hillyard,Vogel, and Luck, 1998). A mechanism of sensory gain control

invoked as a mechanism underlying attention-related enhancements of early

sensory-evoked brain potentials has also been considered as one of the

mechanisms held responsible for performance improvements in a range of visual

attention behavioural tasks. However, recent behavioural evidence by Lu,

Lesmes, and Dosher (2002)who measured performance for discriminating stimuli

in varying levels of external noise suggest that performance improvements in

attended locations are enabled by a mechanism that operates to suppress

external noise. More work is necessary in ERP research to ascertain the

mechanisms behind such enhancements.

In relation to the time course of central and peripheral cueing, Eimer (2000)

compared the time course of informative central and peripheral cues at short (200

ms) and long (700 ms) SOAs. In addition to revealing enhanced negativity for

validly cued trials at both short and long SOAs, with peripheral cues the effect

commenced around 150 ms post-stimulus, but was only later in the central

cueing conditions, evident at 250 ms. This latency difference between the two

cue types supports behavioural evidence suggesting that peripheral cues invoke

an exogenous mechanism characterised by a fast transient response, whereas

central cues invoke the slower sustained response of the endogenous system.

Whereas spatial attention has been found to affect the amplitude of early

sensory ERP components like the P1 and N1,what is the effect of attention on the
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latency of these early sensory-related components? If a function of attention is to

prioritise and select task-relevant information from the sensory input, a

shortening of the latency of these early sensory-related components may also be

beneficial to a cognitive agent in a dynamic environment. Thus far however, PI

and NI latencies have been found to be largely unaffected by validity. The study

of Fu et al. (2001) actually reports longer PI and NI latencies for valid than

invalid trials. So far, contrary to behavioural evidence, there is little ERP evidence

to support a speed-up of early sensory processing for attended as compared to

unattended information. Only one report (DiRusso and Spinelli, 2002), using the

steady-state visual potential (SSVP) over parietal-occipital areas in a task of

sustained, voluntary attention, revealed a reduction of latency by 28 ms between

attended and unattended conditions. The latency value for the attended

condition was 122 ms, within the time range where the PI is typically observed.

A latency difference has been observed in the later P300 (or P3) component, a

positive deflection typically observed from 300 to 900 ms over parietal/ central

areas, after task-relevant events. The P300 is considered a marker of stimulus

categorisation time (McCarthy and Donchin, 1981; for a review of the P300 see

Verleger, 1997), and is largely unaffected by speed-accuracy tradeoffs in RT

tasks. The results of Fu et al. (2001) revealed a shorter P300 latency for valid

than invalid trials, consistent with the effect of decreasing RTwith valid pre-cues

(Posner, 1980).

The lack of evidence for an effect of cue validity on the latency of the PI/NI is

surprising considering the vast behavioural evidence supporting a shortening of

RT to cued targets, than to un-cued targets. In the following section, I consider

issues related to measuring the effect of attention on the temporal dynamics of
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processing, both in relation to RT measures and ERP latency. To this end, I

describe a procedure designed to provide a conjoint measure of response

accuracy and response speed, and review research that has used such

procedures to determine the locus of response speed improvements and the effect

of attention on the speed ofinformation processing.

1.5.5 Measuring the speed of information processing

Inferences about the relative dynamics of perceptual or cognitive processing

are traditionally drawn from measurements of simple or choice reaction times.

Yet, a RT difference due genuinely to faster processing is indistinguishable from

one that is due, instead, to other factors, sensory- or decision-related. For

example, it is usually observed that detection RT in Posner's attentional cueing

paradigm is faster for validly cued locations than invalid (Posner, 1980). Does

this RTpattern indicate a faster processing speed for attended than unattended

items? Not necessarily, the discriminability of a target stimulus can also affect

processing time; an above threshold stimulus may reach a response threshold

earlier than a threshold stimulus at the level of motor processing, yet maintain

similar processing speeds at a sensory/decision stage. Additionally,an observer's

decision criteria may alter between valid and invalid trials, in turn affecting

reaction times. The interpretation of temporal differences in processing using

traditional RT measures is further complicated by studies demonstrating

enhanced discriminability with attention (Bashinski and Bacharach, 1980;

Carrasco, Penpeci-Talgar, and Eckstein, 2000; Posner, 1980; Yeshurun and

Carrasco, 1998, 2000). These problems can be made resolute by employing
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speed-accuracy trade-off (SAT)procedures. The use of SAT procedures to

examine the dynamics of processing has a long history in psychologytracing back

over a century (Wickelgren,1977).

Speed-accuracy trade-off procedures are simply a set of experimental

methods that are employed to encourage observers to trade accuracy for speed of

performance in order to obtain a measurement of accuracy at a range of response

times (Pachella, 1974; Wickelgren, 1977). An example of such a procedure is the

response-signal speed-accuracy trade-off method. This procedure simply forces

participants to trade response speed for accuracy by presenting them with a

response tone, at variable times after target offset, to which they must give an

immediate response (within a time window of 300 ms). By varying the lag

between the stimulus offset and the tone, a range of processing times could be

sampled. The outcome of such experiments is a speed-accuracy trade-off

function that conjointly depicts a measure of discriminability with the speed of

information processing for a given task. Figure 1.12 depicts a hypothetical SAT

function plotting a measure of accuracy, here d', against the full time-course of

an information-processing task.
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Figure 1.12. A hypothetical speed-accuracy trade-off function. The function depicts
conjointly a measure of discriminability (here, d1 and processing speed across a full time-
course of an information-processing task.

This function can be described with three parameters: an asymptotic

parameter that reflects saturated performance; a rate parameter reflecting the

rate of increase in accuracy to asymptote, and an intercept marking the point in

time where accuracy departs from chance (Wickelgren,1977).

SATmethods have been used to examine the dynamics of processing in a

range of cognitive tasks (e.g. McElree and Carrasco, 1999; Ratcliff, 1978; Reed,

1973). Indeed, McElree and Carrasco (1999; see also Carrasco and McElree,

2001 and Carrasco, McElree, Denisova and Giordano, 2003) used the response-

signal SATprocedure to examine the effect of covert attention on the speed of

information processing in a visual search paradigm, employing a central neutral

cue and a valid peripheral cue (P(valid cue = 1)) in a simple orientation
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discrimination task. Figure 1.13 depicts the potential effects of attention on the

SAT function.
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Figure 1.13. Hypothetical SAT functions. Each panel illustrates a potential effect of
cueing on the SAT function, plotted in d' units versus processing time (onset of the
response tone signal plus response time) in seconds. The plot in panel (a) reveals
different performance asymptotes, an expected pattern when attention enhances only
target discriminability. Here, attention improves performance accuracy without altering
processing time. The plots in (b)and (c)depict twoways in which attention can alter the
temporal dynamics of information processing; (b) shows how attention can modifythe rate
at which information is processed, so that asymptotic performance is reached at a faster
rate, whereas (c) depicts how attention can induce an earlier departure from chance
performance, reflected in the intercept parameter of the SATfunction.
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Figure 1.13a depicts the situation where attention modulates the asymptotic

parameter, that is improves target discriminability only. An effecton the speed of

processing can be expressed either on the rate parameter (Figure 1.13b), or the

intercept parameter (Figure 1.13c). Amodulation of the rate parameter reflects a

faster approach to asymptotic performance, whereas a modulation of the

intercept relates to an earlier departure from chance performance.

The results of Carrasco and McElree (2001) are depicted in Figure 1.14

(feature task results shown). The figure shows processing time plotted as a

function of accuracy for peripheral valid, and central neutral cues, for different

set sizes when the target is presented in isolation or amidst distracter stimuli.

Specifically, their results showed a difference in discriminability, measured by

asymptotic performance between cued and neutral conditions, a difference of

0.10 d' units in the feature search condition with the smallest set size to 0.55 d'

units as the set size increased. Attention, therefore, improved the

discriminability of the target signal. In relation to the speed of processing,

attention speeded up the rate at which information was processed by 45 ms in

the feature search condition, and from 33 (smallest set size) to 106ms (largest set

size) in the conjunction search conditions (not shown here). The results of

Carrasco and McElree (2001), employing an SATmethod, reveal how attention

enhances both the discriminability of a visual input, and the temporal efficiency

at which selected visual input is processed.
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Figure 1.14. The results of Carrasco and McElree (2001). The figure shows SAT
functions for cued and neutral trials when the target stimulus is presented alone, and
when it is presented amidst distracter stimuli.

A limitation of this research, however, is that the locus of this attentional

effect is unknown. In relation to the locus of SAT effects, an outstanding issue

concerns the aspect of processing time that is modulated by attention, the pre-

motoric or motoric portion. The locus of any attentional effect, pre-motoric or

motoric, can be established by examining the lateralised readiness potential

(LRP). In the next section, I describe an electrophysiological measure, the

lateralised readiness potential (LRP), enabling the partitioning of sensory or pre-

motoric processing from decision response-related processing.

1,5.6 SATand the Lateralised Readiness Potential (LRP)

The LRP reflects an asymmetrical readiness potential, that is, a negative EEG

potential that slowly increases and reaches a maximum deflection just before a

89



voluntary limb movement, evolvingin tasks involving a choice between the two

hands. Its onset is characterised by an increased negativity over the hemisphere

contralateral to the response hand and can be measured relative to stimulus

onset or response onset. The interval from response signal onset to stimulus-

locked LRP onset (S-LRP interval) indicates the duration of those processes

occurring before the start of the LRP. The interval between response-locked LRP

onset and the overt response (LRP-Rinterval) indicates the duration of those

processes that occur after LRPonset. That is, the S-LRPand the LRP-Rintervals

can be used as information processing markers for pre-motoric and motoric

processing, respectively. We can therefore analyse LRP onsets obtained from

waveforms time-locked either to response signal onset or to the overt response

(Osman and Moore, 1993; Leuthold, Sommer, and Ulrich, 1996) to make

inferences about the stage ofprocessing that may be modulated by attention.

The lateralised readiness potential has previously been used to establish the

locus of speed-accuracy trade-off effects (Rinkenauer, Osman, Ulrich, and Mattes,

2004). Rinkenauer et al. found in a perceptual and cognitive task that the onset

latencies of both the S-LRP and the LRP-Rwere when response speed was

stressed. At which stage in processing, sensory or decision-related, does

attention speed up information processing? In Chapter Five, I apply the SAT

method and orientation discrimination task of Carrasco and McElree (2001) to

determine the locus of this attentional modulation. We recorded ERPs while

observers completed three spatial attention experiments to assess whether the

effects of attention would be observed as a modulation on early sensory-related

ERPcomponents, or in later decision-related components.
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1.5.7 Summary

To summarise, selective spatial attention has consistently been shown to

enhance performance on various visual tasks on both behavioural and

electrophysiologicalmeasures. These performance improvements are noted as

enhanced discriminability of attended visual input, and more recently as

acceleration in the processing of selected input. The locus of this effect within

the stream of information processing is the object of an ERP study presented in

Chapter 5.

1.6 Organisation

The following four chapters present experiments, using a range of

methodologies, that address different issues related to the selective use of

information for perceptual and recognition tasks.

In Chapter 2, I use the Bubbles technique to determine the information

underlying the stable percepts of a bi-stable image, Salvador Dali's Slave Market

with the Disappearing Bust of Voltaire. On discovering that the information

underlying each percept was grounded in different spatial frequency channels

processing the image, I used spatial frequency adaptation to selectivelyinduce a

perception of the image orthogonal to the adapting frequencies. Taken together,

the experiments in Chapter 2 demonstrate the importance of understanding the

information underlying a percept and how this information is used for perception.

Since the adaptation method used in Chapter 2 was successful in inducing a

selective perception of a complex bi-stable image, I extended the method in
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Chapter 3 to attempt an adaptation of local image features (as opposed to

adapting globally across the image as in Chapter 2) in Experiment 3.1 again to

the Perception of the Dali image, and in Experiment 3.2 to the recognition of

gender in hybrid faces. In Experiment 3.1, I adapted observers to the spatial

frequency information underlying a percept that was restricted to the spatial

regions relevant to that percept, and found again that participants experienced a

perception orthogonal to the adapting pattern. Presenting the adapting patterns

underlying one percept into the regions of the alternative percept disrupted the

pattern of responses previously observed. The results of Experiment 3.1 showed

that adapting to the spatial frequency information underlying a percept inhibits

its perception only when the adapting pattern is localised to the regions of the

image underlying its perception. In Experiment 3.2, I applied the local adaptation

method to the perception of gender in hybrid faces that comprised a face of one

gender in the diagnostic regions of the face, and a face of another gender in the

non-diagnostic regions. In contrast to the results of Experiment 3.1, adapting to

the spatial frequencies underlying these faces in either the diagnostic or non-

diagnostic regions did not inhibit a gender judgement of the face within that

region.

Chapter 4 aims to characterise the mechanism(s) enabling the selectiveuse of

visual information, and to localise learning to specific facial regions. Using the

method of noise masking in a perceptual learning paradigm, I measured contrast

thresholds in varying levels of external noise density, independently across

different facial regions, over several days. I compared the information used by

human observers to discriminate face stimuli in noise to that of an ideal observer
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that could use all of the information available, and found that learning increased

efficiencyto use information differentiallyacross facial regions for two observers.

The final experimental chapter, Chapter 5, takes a different approach; rather

than looking at the information used to resolve a task I examine instead whether

or not selective attention to visual information modulates the speed at which this

information is processed. In addition to measuring the behavioural response in

terms of both accuracy and reaction time using SAT procedures in three

experiments, I also measured event-related brain potentials to determine the

locus of any effects. Analysis of the behavioural data of three experiments

showed that attention modulates the temporal dynamics of visual information

processing by enhancing the speed of processing. Analysis of the

electrophysiological data did not reveal an effect of attention on the onset latency

of the stimulus-locked or response-locked lateral readiness potential. The effects

of attention on the amplitude and latency of the ERP waveforms arose as late

effects, as opposed to early effects.

A summary of the main aims and findings of each experiment is presented in

the final General Discussion of Chapter 6. Here, methodological limitations and

theoretical implications are discussed in light of the presented results.
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Chapter 2

The Visual Information Underlying the Perception

of a Bi-stable Image"

The perceptual reversal of bi-stable images has been a source of fascination

for psychologists and artists alike, albeit for different reasons. For some artists,

the allure of introducing ambiguity is to create in the observer an experience that

is, explicitly, purely subjective and qualitative. It is a way of emphasising the

constructive nature of perception, the observer's share. For the psychologist, on

the other hand, image ambiguity serves as a tool to probe the organisation and

dynamics of the visual and cognitive system: the retina receives a single image

comprising multiple interpretations, yet the visual and cognitive system is

constrained so that only one percept is available at a given time.

6 The two experiments reported in this chapter, Experiments 2.1 and 2.2, formed part of a
poster presentation at the Annual Conference of the Vision Sciences Society 2001, and is
an elaboration of Bonnar L., Gosselin F. & Schyns P.G. (2002). Understanding Dali's
Slave Ma.rket with the Disappearing Bust of Voltaire: Acase study in the scale information
driving perception. Perception, 31, 683-691.

94



Classical examples of bi-stable ambiguous figures include those based on

figure-ground such as Rubin's vase/faces figure, others perspective-based

include the Schroeder staircase and the Necker cube, and object ambiguities like

the duck-rabbit figure. The use of such ambiguities is evident in the work of

many artists; these 'double-images' were in fact a favourite tool of the Surrealist

painter, Salvador Dali (Descharnes, 1972). One such example of Dali's paintings

is Slave Market with the Disappearing Bust of Voltaire (1940) (see Figure 2.1) in

which the heads of two nuns within a busy scene also constitute the eyes of the

Bust of Voltaire. On viewing this painting, perception switches from one

interpretation to the other.

Figure 2.1. Salvador Dali's Slave Market with the Disappearing Bust a/Voltaire (1940).
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Theoretical explanations for the perception of ambiguous images diverge

between theories of inhibition that postulate a satiation in the response of the

population of neurons processing the image (Attneave, 1971; Blake, 1989), and

attentional theories proposing a perception ofbi-stable stimuli based on top-down

selection (Leopold and Logothetis, 1999; Meng and Tong, 2004). The former

account proposes that activation of sensory neurons processing one image

interpretation, and the suppression of neurons responsive to the alternative

percept, over time, causes the state of the system to reverse as a result of

satiation or fatigue so that the population of neurons responding to the

alternative percept become activated, resulting in a switch in the perception of

the bi-stable image. The alternative account proposes that perception of bi-stable

images is controlled by signals sent from top-down attention-related regions to

. guide neuronal activity toward a particular interpretation. Alternations between

different perceptual interpretations are therefore influenced by factors under the

observer's control such as attention and mood, and can be modulated with

practice (for reviews on issues related to the perception of bi-stable images, see

Blake and Logothetis, 2001 and Leopoldand Logothetis, 1999).

Here in Experiment 2.1, we examine the information in an ambiguous figure,

Dali's Slave Market with the Disappearing Bust of Voltaire, as a case study to

determine the information underlying each alternative percept, and in

Experiment 2.2 use this information to suppress one percept and induce the

other. Our approach which begins with a determination of the information

underlying each percept, proposes a switching mechanism that is consistent with

theories of inhibition, that is that the population of neurons processing one image
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interpretation become satiated, thereby inducing the perception of the alternative

image interpretation.

2.1 Revealing the visual information for perception

A general problem in vision that also applies to these bi-stable images is to

know which information drives their perception. Ambiguous images, such as

Dali's painting, are perfect for investigating the information in a stimulus that

underlies its perception; the bottom-up information for each alternative percept is

contained in a single image. Until recently, however, no generic technique has

been available to simplify a stimulus to the essential information driving its

perception. To visualise the information driving the perception of each image

interpretation in Dali's painting, we adapt one such technique, Bubbles (Gosselin

and Schyns, 2001), originallydevelopedto isolate recognition information.

The Bubbles method randomly searches an image generation space to present

sparse versions of images as stimuli. Applyinga mask, punctured with randomly

located Gaussian windows that reveal information, generates each sparse

stimulus. By randomly varying the spatial location of each bubble, on a trial-by-

trial basis, the entire stimulus is sampled over the course of an experiment. To

obtain the information sufficient to resolve a task, the number of bubbles

revealing information is adjusted to maintain a pre-specified performance

criterion, e.g. 75% correct. Observers respond according to their percept of the

sparse stimuli and by retaining the samples of information that lead to each

response category the visual information that underlies a percept can be

established.
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So far, the technique has mainly been applied to recognition tasks involving

an objective response. For example, Gosselin and Schyns (2001) used Bubbles

to reveal the information that was diagnostic to categorise the identity, gender

and expression of the same set of faces. In a between-subjects design, they

depicted the diagnostic information for each face categorisation task,

demonstrating that the information use of the same face set varied as a function

of task demands, across both the 2D image and spatial scales.

Here, we adapt the technique to address a subjective task, the perception of a

bi-stable image. To disambiguate the image and to determine the specific visual

information that drives each possible percept of Dali's painting we searched the

2D-image as well as the third dimension of spatial scales. We chose to search

spatial scales since we know that early vision analyses visual input using

multiple spatial filters (see de Valois and de Valois, 1990 for a review, and

Chapter 1, Section 1.3). In Experiment 2.1, we found that the nature of the

information underlying the alternative percepts in this bi-stable image is

grounded in different spatial filters processing the image. In Experiment 2.2, we

validated this result using an established psychophysical technique known as

frequency-specific adaptation (Blakemore and Campbell, 1969; de Valois and de

Valois, 1990). The importance of understanding the information content of a

stimulus and how the use of this information underlies perception is highlighted.

2.2 Experiment 2.1

To determine the use of information specific to each stable percept of Dali's

painting, we adapted Bubbles (Gosselin and Schyns, 2001). This version of
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Bubbles conserves the essential components of the method, as originally

conceived, that is, it randomly searches an image space for information

underlying perceptual processing, modified slightly for this subjective task

(described in the Method section). On presentation of each sparse stimulus,

observers respond according to their percept and the samples of information that

lead to the 'nuns' response and the 'Voltaire' response are retained. We can

establish which visual information selectively drives the percept of each image

interpretation.

2.2.1 Method

2.2.1.1 Participants

Participants were ten consenting University of Glasgow students with normal

or corrected to normal vision and were paid for their participation.

2.2.1.2 Stimuli & Apparatus

The experiment ran on a Macintosh G4 using a programme written with the

Psychophysics Toolbox for Matlab (Brainard, 1997; Pelli, 1997) and the Matlab

Pyramid Toolbox (Simoncelli, 1997). Using Photoshop® we cropped the

ambiguous portion of a grey-scale version of Dali's Slave Market with

Disappearing Bust of Voltaire so that it comprised the bust ofVoltaire and the two

nuns (see the top picture of Figure 2.2), subtending 5.72 x 5.72 degrees of visual

angle on the screen (for an image of 256 x 256 pixels). To determine the

information driving each percept, we used Bubbles.
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We generated sparse stimuli that randomly sampled an image generation

space comprising the 2D-image plane and a range of 6 spatial frequency

bandwidths (see Figure 2.2 for a depiction of how the stimuli were generated).

These independent bands of spatial frequencies of one octave each had cut-offs at

128, 64, 32, 16, 8 and 4 cycles per image, from fine to coarse scales (in cycles per

degree of visual angle, 22.378, 11.189, 5.594, 2.797, 1.399, and .699). The

coarsest band was not searched for perceptual information; it served only as a

constant background. The image was presented centrally on the screen and the

background luminance was 14cd/m2. A chin-rest maintained viewingdistance at

100 cm.

The image that was represented at each bandwidth was partially revealed by

a mid-greymask that was perforated by a number of randomly located Gaussian

windows called bubbles (see Figure 2.2). We normalised to 3 the number of

cycles that any bubble could reveal and adjusted the size of the bubble for each

frequency band accordingly (the standard deviations of these bubbles were .13,

.27, .54, 1.08, and 2.15 cycles per degree of visual angle, from fine to coarse

scales). Since the size of the bubbles increases from fine to coarse scales, the

number of bubbles at each scale was adjusted to maintain constant, on average,

the total area of the image revealed.
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a.

b.

c.

d.

e.

Figure 2.2. The application of Bubbles to the 3D-image generation space. This figure
illustrates the method used to apply Bubbles to the 3D image generation space,
comprising the 2D ambiguous image and the decomposition into different spatial
frequencies. Pictures in (b) represent five different scales of (a); (c) illustrates the bubbles
applied to each scale and (d) are the revealed information of (b) by the bubbles of (c). By
reconstructing the information in (d) we obtain (e), an example of stimuli presented to
observers. Here participants typically report perceiving 'Voltaire'.
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2.2.1.3 Procedure

On each trial participants were instructed to indicate by appropriate key

presses which image they could perceive, the nuns versus Voltaire. In the event

that there was simply insufficient information to perceive either percept,

observers were instructed to press a designated 'don't know' key. We introduced

the 'don't know' response as a tool to adjust on-line, on a trial-per-trial basis, the

total number of bubbles sampling the image generation space so that the number

of 'don't know' responses did not exceed 25%. It was emphasised to observers

that this response was a last resort and should not be used when both image

interpretations were available. In this case, participants had to choose the

strongest percept. In each of the 500 experimental trials, a sparse image

computed as described appeared on the screen until the observer responded.
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e.

Figure 2.3. Computing the significance of each region in driving each percept. The
computations depicted are for the finest scale; identical computations are performed for
the four other bandwidths. The pictures in (a) depict the addition of the bubbles that led
to a 'nuns' response to the NunsPlane, the top right-most picture. The pictures in (b)
illustrate the addition of the bubbles that led to a Voltaire response; the right-most
picture is the outcome of this addition, VoltairePlane. In (c) all bubbles (those leading to a
'nuns', a 'Voltaire' and the 'don't know' response) are added to form TotalPlane (the right-
most grey-scale picture). Examples of experimental stimuli as revealed by the bubbles of
(c) are shown in (d). The pictures in (e), from left to right, are NunsProportionPlane and
VoltaireProportionPlane, the division of NunsPlane by TotalPlane and VoltairePlane by
TotalPlane. (Note the whiter area in the NunsProportionPlane corresponding to the heads
of the two nuns.)
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2.2.2 Results

Across trials, we kept track of the locations of the bubbles that led to each

image interpretation, the Nuns and Voltaire. To this end, we created a different

NunsPlane per scale (for each one of the five scales, henceforth,

NunsPlane(scale)), and a different VoltairePlane per scale (henceforth,

VoltairePlane(scale)). Whenever participants perceived the Nuns (vs.Voltaire), we

literally added the masks of bubbles to the NunsPlane(scale) (vs.

VoltairePlane(scale)), to keep track of the scale-specific bubbles of information

leading to these perceptions (see Figure 2.3). We also added the bubbles leading

to 'don't know' responses to the DontKnowPlane(scale). Together, the

NunsPlane(scale), VoltairePlane(scale) and DontKnowPlane(scale) encode how

frequently each subspace of the 3D-image generation space was interpreted as

Nuns, Voltaire or 'don't know'.

To perform a statistical analysis, we first divided the frequencies in each

plane by the total number of presentations to derive a proportion plane per scale.

We then constructed a confidence interval (p<0.01) around the mean for each of

these proportions at each scale, NunsProportionPlane(scale) (M=.341, SD=.092)

and for VoltaireProportionPlane(scale) (M=.425, S.D=.078). We disregarded all of

the areas below this confidence interval, as they were considered unimportant in

driving each percept. Figure 2.4 depicts the selectively attended information

driving each stable percept, that is, those regions above the confidence interval, of

the ambiguous portion of Dali's painting (see Figure 2.1). The top (vs. bottom)

pictures depict the information driving the nuns (vs. Voltaire) percept. Note that

the nuns occupy the finest and second-to-finest scales with no relevant

information at the remaining three coarser scales, and comprise the heads of the
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two nuns. In contrast, Voltaire dominates the second, third and fourth scales,

with the coarser scales encompassing the entire bust. Clearly, the information

driving the two image interpretations differs across the 2D-image plane and

across different bandwidths of the spatial spectrum, with an overlap at the

second scale.

/

Figure 2.4. The information driving the stable percepts of Dali's Slave Market with the
Disappearing Bust of Voltaire. The potent information that drives the perception of the
'nuns' and 'Voltaire' is depicted in the left-most column. The top left-most image depicts
the potent information driving the 'nuns' percept. The two right-most columns are
decompositions of this information into the four scales found to be diagnostic, from finest
at the top to the fourth scale at bottom. The second column demonstrates the
information relevant to the nuns, and the third column, the information relevant to
Voltaire:
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2.2.3 Discussion

The aim of Experiment 2.1 was to delineate the information underlying the

two stable percepts in Dali's Slave Market with the Disappearing Bust of Voltaire.

Using the bubbles method, sparse samples of the ambiguous portion of Dali's

painting were presented to observers, who responded according to their percept of

these stimuli. The results of this experiment revealed a differential scale

contribution in driving the alternative percepts in Dali's painting. While the

perception of the nuns relied on high spatial frequency information, perception of

Voltaire relied on low spatial frequency information. Based on this finding, I

suggest that the alternation between each image interpretation may be explained

in terms of a switch between the spatial filters processing the image (Olivaand

Schyns, 1997; Schyns and Oliva, 1999). Accordingto this idea a habituation in

the response of one set of filters could diminish one percept, thus giving rise to

the other. This interpretation is consistent with theories that suggest that

perceptual reversals of bi-stable images are initiated by a satiation in the

response of neurons responding to one image interpretation, in turn activating

the neurons responding to the alternative interpretation, giving rise to the other

percept (Attneave, 1971; Blake 1989).

Other ambiguities in art that have been explained by spatial frequency

accounts include da Vinci's portrait Mona Lisa. Livingstone(2000) suggested that

the ambiguous expression in the Mona Lisa appears differently according to

different foveal eccentricities, her smile being more apparent in low spatial

frequencies, that is in the peripheral visual field. Hayes and Ross (1995) have

also discussed the efficiencyof line drawings in representing complex scenes in
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terms of the roles of fine and coarse spatial scales, suggesting two distinct

systems for processing fine and coarse scale information.

In Experiment 2.1, Bubbles isolated the spatial scale information that

selectively drives the perception of an ambiguous figure. The method however

relies on the participants' categorisations of sparse samples of information

potentially inducing strategies atypical of perception (Murray and Gold, 2004a, b;

but see Gosselin and Schyns, 2004 for a reply to this criticism}." To strengthen

these results, a more direct link between the isolated scale information and

classical mechanisms of perception must be established. To this end,

Experiment 2.2 will seek to ground the scale-specific perceptions in early vision,

using an established psychophysical technique known as frequency-specific

adaptation (e.g.,Blakemore and Campbell, 1969; de Valois and de Valois, 1990).

2.3 Validating Experiment 2.1 with spatial frequency adaptation

The rationale of frequency-specificadaptation is that an adaptation to pattern

X changes the appearance or sensitivity to X, but not the appearance or

sensitivity to pattern Y, indicating that the underlying structures simultaneously

process independent aspects of the patterns. For example, Blakemore and

Campbell (1969) showed that observers exposed to a sinewave pattern oscillating

at, e.g. 5 cycles per degree, subsequently exhibited a reduction in their ability to

7 Developments regarding the Bubbles method, both in its applications and received
criticisms, have advanced subsequent to the application of the method presented here. A
fuller account of these developments and their implications for the current research is
discussed in the General Discussion in Chapter 6.
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perceive contrast at this particular frequency, and neighbouring frequencies.

That is, adaptation to a spatial frequency selectively impaired sensitivity to this

particular frequency, implying that only this channel was affected (see also Pantle

and Sekuler, 1968).

Although spatial frequency adaptation has mostly been applied to simple

stimuli such as gratings, Webster and Miyahara (1997) used the adaptation

method with more complex patterns, scenes containing multiple spatial

frequencies and orientations. In a series of experiments they adapted observers

to natural images and subsequently measured the effects of this adaptation on

the contrast sensitivity function with sine-wave gratings. They found impaired

sensitivity to lower spatial frequencies but not for higher.

In Experiment 2.2 I also use multiple spatial frequency adaptation to validate

that the information from Experiment 2.1 does drive the perception of the stable

percepts in Dali's painting. I reason that if perception of either the nuns or

Voltaire results from a switch between distinct spatial channels, spatial frequency

adaptation can be used to selectively turn off the spatial filters underlying one

percept (e.g., Voltaire) and effectivelydisambiguating the image (e.g., to induce a

stable perception of the nuns). In contrast, if perception results from a switching

mechanism solely under the observer's attentional control, then adapting to the

spatial frequency information underlying a percept may not lead to its

suppression. It is important to stress that our goal is not to adapt the visual

system to a specific percept [i.e., Nuns or Voltaire), but rather to habituate the

mechanisms of early vision, the spatial frequency channels that mediate the

percept. I adapted observers only to the spatial frequencies underlying each
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percept and observed the subsequent effects on the perception of the ambiguous

image. Importantly, I do not adapt observers to the percept itself.

The results of Experiment 2.1 provide a complete description of the spatial

frequencies that must be adapted to selectivelyaffect the percept of the nuns or

Voltaire (wedescribe the adaptation stimuli in the Method section). It remains a

challenge to apply frequency-specific adaptation to figurative stimuli because

such stimuli do comprise many spatial frequencies at different amplitudes,

orientations and phases, most of which must be adapted to obtain the desired

effect.

2.4 Experiment 2.2

In the adaptation phase, one group of participants adapted to high contrast

dynamic noise created from the high spatial frequencies driving the perception of

the nuns. In the other group, participants adapted to high contrast dynamic

noise created from the low spatial frequencies driving the perception of Voltaire.

In each group, the noise ensured an adaptation to the specific spatial frequencies

underlying the percepts, but not to the percepts themselves. In a transfer phase,

both participant groups were exposed to a low contrast version of an ambiguous

hybrid image composing both the nuns and Voltaire information derived from

Experiment 2.1 (see Figure 2.4). If this information is indeed the information

underlying these percepts we should then expect the groups to experience

orthogonal perceptions on presentation of the ambiguous image. Specifically,the

group adapting to low spatial frequencies should perceive the nuns, and the

group adapting to the high spatial frequencies should perceive Voltaire. These
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orthogonal perceptions subsequent to frequency channel adaptation would

establish a possible link between the perceptual information isolated in

Experiment 2.1 and fundamental mechanisms of early vision.

2.4.1 Method

2.4.1.1 Participants

Participants were ten fresh consenting students from the University of

Glasgowwith normal or corrected to normal vision. Half of the participants were

assigned to the high spatial frequency adaptation group and half to the low

spatial frequency adaptation group. All of the observers were paid for their

participation.

2.4.1.2 Stimuli & Apparatus

The experiment ran on a Macintosh G4 using a programme written with the

Psychophysics Toolbox for Matlab (Brainard, 1997; Pelli, 1997) and the Pyramid

Toolbox (Simoncelli, 1998). For adaptation, we generated 200 (256 x 256 pixels,

subtending 13.69 x 13.69 degrees of visual angle on the screen) white noise fields

that were filtered to contain the frequency response profile (forthe high-frequency

noise, between 32 and 64 cycles per image, for the low-frequency noise, it was

between 8 and 32 cycles per image) of each potent image derived from

Experiment 2.1. Consequently, the noise patterns inherited their high contrast

and random phases from the original white noise stimuli, two important

properties for frequency-specific adaptation.
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The noise patterns were presented dynamically (i.e., in a movie) on a monitor

with a screen refresh rate of 75 Hz on a black background, each pattern

presented for 13.3 ms. The presentation lasted for 3 minutes and 20 seconds.

We constructed a post-adaptation hybrid image combining the low-contrast

potent 'nuns' and the low-contrast potent 'Voltaire', a requirement of frequency-

adaptation studies (see Figure 2.5). A chin-rest maintained viewing distance at

40cm.

3 mins 20 secs

1 sec

Figure 2.5. Stimuli and design of Experiment 2.2. High-spatial frequency noise with the
same amplitude as the 'nuns' is depicted on the top-left and low-spatial frequency noise
with the same amplitude as 'Voltaire' is shown on the bottom. Two hundred of these
randomly generated noise patterns whose phase was randomly disrupted were repeated
75 times in a movie sequence. The right-most picture is a hybrid comprising the potent
nuns and Voltaire information (see Figure 2.2) derived from Experiment 2.1. The contrast
of this imagewas reduced for post-adaptation. .
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2.4.1.3 Procedure

Before experimentation, to ensure participants could perceive both

interpretations of the Dali painting, they viewed the original grey-scale image

from Experiment 2.1. Next participants were instructed to adapt to the moving

noise patterns by moving their eyes over the pattern (Blakemore and Campbell,

1969). Immediately after adaptation a low-contrast hybrid image comprising the

potent 'nuns' and the potent 'Voltaire' was presented in the centre of the screen

for 1 second. Participants were instructed to say aloud which of the two images

they could perceive, the 'nuns' or 'Voltaire', and the experimenter recorded these

responses.

2.4.2 Results and Discussion

Of the ten participants, nine experienced an orthogonal perception; that is on

presentation of the hybrid image, all observers in the Nun-adaptation group who

adapted to high spatial frequency noise perceived 'Voltaire' and with the exclusion

of one observer, those who adapted to low-frequency noise perceived the 'nuns'.

To test the significance of these results, we coded for the orthogonality of the

perception of the post-adaptation image. The distribution of responses, under a

binomial distribution that determines the probability of observing the result by

chance (there is a probability ofp(.5) of each perceptual event occurring), showed

the results to be significant (p<O.01, one-tailed). Adaptation to the spatial

frequency information underlying a percept reliably caused the suppression of the

percept, inducing the perception of the alternative percept.
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These results demonstrate a possible grounding in the mechanisms of early

vision the information underlying the selective perception of the nuns and

Voltaire isolated in Experiment 2.1 with Bubbles. Together, the results of

Experiments 2.1 and 2.2 have implications for the study of recognition and

perception. An important issue pertains to the information content of a stimulus

and its role in driving these processes. Here, it was shown that the reversal

between the two percepts in an ambiguous image could be understood in terms of

the different scale information underlying these percepts. It is believed that

knowing which information people attend to, to resolve visual tasks, is an

important but neglected component of perception. As demonstrated the Bubbles

technique can reveal what this information is.

Future studies investigating the perception of bi-stable images should take

into account the information content underlying each stable percept and its role

in the perceptual process. As there are no indications in the literature on bi-

stable images that would suggest a systematic bias towards the preponderance of

one percept over the other, I did not empirically establish the preponderance of

each percept in Dali's ambiguous Slave Market with the Disappearing Bust of

Voltaire. Nevertheless, the probability of each perception occurring may not be

p(.5) as there may be a dominating image interpretation. Consequently, a

problem arises for theories of inhibition that propose a satiation in the responses

of neurons processing a percept, presumably an extended time spent

experiencing one percept as opposed to another should initiate the alternative

percept, yet with different response distributions that may be unexplained by

such theories. In a related vein, we did not specifically measure the perceptual

reversal between the different image interpretations; rather we examined only the
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information underlying each stable image interpretation and subsequently used

this information to suppress one of the available percepts. The evidence from

Experiment 2.2 suggests that this information did suppress the related percept,

leading to the speculation that a switch between the different spatial filters may

be the mechanism by which perceptual reversal of the interpretations for this

particular bi-stable image may be achieved. To investigate this hypothesis, future

research should study the process of perceptual reversal explicitly, perhaps

focusing on the temporal dynamics of switching between percepts when the

observer free-views the original image.

2.5 Concluding remarks

In Experiment 2.1, using Bubbles, we isolated the information that drives the

perception of the two stable images of a single bi-stable image. Using an adapted

version of Gosselin and Schyns (2001) Bubbles technique to resolve a subjective

task, we disambiguated the information for perception and suggested that the

reversal between the two image percepts is the result of a switch in the spatial

filters processing the image. In Experiment 2.2, participants adapted to low- or

high-spatial frequency noise to block the response of that frequency channel and

henceforth, upon presentation of a hybrid image, experienced an orthogonal

perception. Theoretically, we highlight the importance of understanding the

information contained in a stimulus, and how the nature of this information

influences perceptual processes.

In the chapter to follow, I consider how the nature of local stimulus

information influences perceptual processes. I apply the frequency-specific
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adaptation method again to the ambiguous portion of Dali's painting, but restrict

it to local regions of the image in order to assess the role of local stimulus

information. The method is then extended to the perception of gender in hybrid

faces to examine the effect of suppressing local stimulus information on

participants' gender categorisations.
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Chapter 3

Perceiving and Recognising Local Image Features"

A generic problem in vision is to know which information drives the

perception of a stimulus. This problem was addressed in the case study

described in Chapter 2 where we depicted the information driving the two stable

percepts of the ambiguous portion of Salvador Dali's painting Slave Market with

the Disappearing Bust of Voltaire (1940). I applied the psychophysically robust

technique of spatial-frequency adaptation to the perception of a complex stimulus

comprising multiple spatial frequencies at many orientations. This method also

offers promising avenues to diverse problems of information use in perception

and recognition, in regards to the role of local features in perceptual processing.

Such insights would require, however, an adaptation effect at a local level.

In relation to the problem of information use in perception and recognition,

methods such as bubbles are proving to be informative in revealing the subset of

a stimulus used by an observer to perform a particular task. The potential role of

8 Experiment3.1 formedpart of the poster presentation at the Annual Conferenceof the
VisionSciencesSociety2001, Bonnar, L., Gosselin,F., & Schyns, P.G. (2002). Revealing
and suppressing the visual informationfor recognition.Journal of Vision, 2, 339a.
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the adaptation method may be in elucidating the effects of suppressing this

information on perceptual processing. In considering adaptation as a tool to

suppress the mechanisms responsible for processing aspects of a stimulus we

conducted two experiments using a local adaptation method to test the relevancy

of local stimulus features in a perception and recognition task. To determine the

effectiveness of this method, Experiment 3.1 extends the findings of the global

adaptation method of Experiment 2.2 by locally suppressing the mechanisms

responsible for processing the alternative percepts of Dali's painting. Experiment

3.2 aimed at further developing the method in applying it to the task of gender

recognition of hybrid faces.

3.1 Experiment 3.1

In the current experiment, I attempt to adapt locally the information

mediating the stable percepts of Dali's painting, that is, the relevant spatial

region as well as the relevant spatial frequencies. To test the interaction between

the local region and the spatial frequencies in driving each percept we ran two

conditions. In the first condition the relationship between the potent region and

the potent spatial frequencies is preserved, consistent with the procedure used in

Experiment 2.2, with the exception that here I restrict the spatial frequency

adaptation patterns to the spatial region of each stable percept. This first

condition will be referred to as the Congruent-adaptation condition. Consistent

with adaptation procedures, I observed the effects of the adaptation on the

perception of the low-contrast hybrid image. If local adaptation affects the

117



perception of the post-adaptation stimulus, I would expect a perception

orthogonal to the adapting frequency, similar to those observed following global

adaptation. Qualitatively, orthogonal responses mean that on presentation of the

post-adaptation stimulus, observers adapting to high-spatial frequencies should

perceive Voltaire, while those adapting to low-spatial frequencies should perceive

the nuns.

In the second condition, I put out of phase the spatial region and spatial

frequencies; the high frequency noise in the 'nuns' region was replaced with the

low spatial-frequency information underlying the 'Voltaire' percept (and vice

versa). The second condition will be referred to as the Incongruent-adaptation

condition. If the perception of these image interpretations relies on the

interaction between the spatial frequency information and its potent region, a

disruption of this information should result in a different distribution of

responses than those expected for the Congruent-adaptation condition under the

binomial distribution. The distribution of responses following these adaptation

conditions can be predicted following consideration of the spatial extent and

overlap between the two percepts. Figure 3.1 depicts the spatial extent and

overlap between the nuns and Voltaire percepts; the percept of the nuns

constitutes a part of the Voltaire percept, the eyes of Voltaire and the spatial

extent of Voltaire is greater of that of the nuns. Qualitatively, the impact of

adapting to low spatial frequencies restricted to the nuns region should not

inhibit a Voltaire response, as there may be sufficient perceptual information to

perceive Voltaire beyond the adapting region of the nuns. In contrast, adapting to

high spatial frequencies restricted to the Voltaire region should still inhibit a
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Nuns response due to the spatial overlap between the nuns region and the

Voltaire region.

3.1.1 Method

3. 1.1.1 Participants

Participants were forty students from the University of Glasgow with normal,

or corrected to normal vision, who had not taken part in the previous experiment.

Twenty participants were randomly assigned to one of the two conditions

(Congruent-adaptation and Incongruent-adaptation) and within each condition

half of the participants were assigned to the 'Voltaire' adaptation group (n = 10)

and half to the 'Nuns' adaptation group (n = 10).

3.1.1.2 Stimuli & Apparatus

The experiment ran on a Macintosh G4 using a programme written with the

Psychophysics Toolbox for Matlab (Brainard, 1997; Pelli, 1997) and the Pyramid

Toolbox (Simoncelli, 1998). Using a pseudo-random number generator in

MatLab, we created, for adaptation, 200 white noise fields (256 x 256 pixels) that

were filtered to contain the frequency response profile of each potent image,

derived from the previous experiment (for the high-frequency noise, between 32

and 64 cycles per image, for the low-frequency noise, it was between 8 and 32

cycles per image). In the Congruent-adaptation condition, to restrict the noise

only to the important regions underlying each percept, we multiplied the noise

fields by the potent masks for each percept, derived from Experiment 2.1. For the

Incongruent-adaptation condition, we inserted the high-frequency noise of the
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nuns into the potent region for the Voltaire percept and the low-frequency

information of the Voltaire percept into the nuns region (see Figure 3.1).

The noise patterns were presented dynamically (Le., in a movie) on a monitor

with a screen refresh rate of 75 Hz (each pattern was presented for 13.3ms). The

adaptation stimuli were presented on a grey background for 3 minutes 20

seconds (the sequence of 200 noise patterns was repeated 75 times). Weused the

post-adaptation hybrid image from Experiment 2.2 combining the low-contrast

potent 'nuns' and the low-contrast potent 'Voltaire'. A chin-rest maintained

viewing distance at 40 cm.
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a.

CON-HSF

b.

CON-LSF

c.

d.

INCON-HSF

Figure 3.1. The stimuli and design of Experiment 3.1. The left side of the figure depicts
the Congruent-adaptation condition. In (a), the upper left quadrant, the high spatial
frequency noise with the identical amplitude as the 'nuns' is restricted to the potent
region of the 'nuns' (the CON-HSFcondition), and in (b), the lower left quadrant, the low
spatial frequency noise of 'Voltaire' confined to the 'Voltaire' region (the CON-LSF
condition). The right side of the figure shows examples of the stimuli used in the
Incongruent-adaptation condition. Depicted in the upper right quadrant (c) is the low
spatial frequency noise restricted to the nuns region (the INCON-LSFcondition) and in (d)
the lower right quadrant, is high spatial frequency noise confined to the Voltaire region
(the INCON-HSFcondition). The image shown in the centre is the post-adaptation hybrid
image containing the potent nuns and potent Voltaire information (depicted separately in
the left-hand side of Figure 2.4) derived from Experiment 2.1 and depicted in Figure 2.5
(the actual experimental image was of lower contrast than that presented here).

3. 1.1.3 Procedure and Design

In a between-subjects design, ten participants were randomly assigned to

each of one of the four experimental conditions: the Congruent-adaptation

conditions CON-HSF and CON-LSF, where the spatial region and spatial

frequency information underlying a percept are preserved, and the Incongruent-

adaptation conditions, INCON-HSFand INCON-LSF,where the spatial region and

spatial frequency information are disrupted. Prior to the task, to ensure all
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participants could perceive both interpretations of Dali's painting, each viewed

the original greyscale image from Experiment 2.1 that contained the ambiguous

portion of Dali's painting (see the image depicted in Figure 2.2a). On the

participant's acknowledgement that they could perceive both image

interpretations: two nuns and the Bust of Voltaire, participants were informed

that the experiment would comprise of only one trial and would begin with an

adaptation phase. Each participant was asked to fixate in the centre of the

moving noise patterns, making as few eye movements as possible. They were

informed that immediately after this adaptation phase a low-contrast image

would be presented for 1 second. Participants were instructed to say aloud which

of the two images they could perceive, the 'nuns' or 'Voltaire'. The post-

adaptation image that was presented, a low contrast version of the central image

depicted in Figure 3.1, was a hybrid image comprising the potent nuns and

Voltaire information, derived from Experiment 2.2.

3.1.2 Results

3.1.2.1 Congruent-adaptation

Of the ten observers who adapted to the high-spatial frequency information

restricted to the potent region of the 'nuns' region (in Figure 3.2 this condition is

referred to as CON-HSF),an orthogonal result, that is the perception of Voltaire

following adaptation, was evident in 9flO observers. Of the 10 observers who

adapted to the low-spatial frequency information underlying the 'Voltaire' percept,

located in the potent 'Voltaire' region (CON-LSF),9 observers reported perceiving

the nuns on presentation of the ambiguous image, a perception orthogonal to the
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information to which they adapted. These distributions of responses were both

significant under the binomial distribution (p=O.Ol, one-tailed). This result is

consistent with the global adaptation effect found in Experiment 2.2, but more

importantly, it demonstrates the transfer of a local adaptation effect to the local

information within a complex image. Still, it remains necessary to further test

the robustness of the interaction between the spatial frequency information and

the location of this information in driving perception. The second condition

tested the local nature of this information by making incongruent the spatial

region and the spatial frequency information underlying each percept.

8
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CON-HSF CON-LSF INCON-HSF INCON-LSF

Condition-Adaptationgroup

Figure 3.2. The results of Experiment 3.1. The bar chart depicts the frequency of each
percept for each of the four conditions. The conditions CON and INCON refer respectively
to the preservation of congruency between the spatial region and the spatial frequencies
of the adaptation group, and the disruption of this relationship. The adaptation terms
HSF and LSF refer to high spatial frequencies and low-spatial frequencies, respectively.
Each adaptation pattern encompasses an entire spatial frequency description of either the
nuns or of Voltaire.
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3.1.2.2 Incongruent-adaptation

On adapting to the high spatial frequency noise in the Voltaire region (INCON-

HSF), the presentation of the hybrid image resulted in 7 observers perceiving

Voltaire and 3 perceiving the nuns. Of the 10 observers who adapted to the low-

spatial frequency noise inserted in the nuns region (INCON-LSF),only 2 observers

experienced a perception orthogonal to the adapting frequency, that is, 2

perceived the nuns and 8 Voltaire. The distribution of responses for each

condition under the binomial distribution proved significant in the INCON-LSF

case (p<0.05, one-tailed), with 8/10 participants experiencing a percept that was

unsuppressed by the spatial frequency information to which they adapted. Under

the binomial distribution, the distribution of responses observed in the INCON-

HSF condition was not significant (p>0.05, one-tailed), with 7/10 participants

experiencing a percept that was suppressed by the adapting spatial frequency

information.

3.1.3 Discussion and Conclusions

We were interested in establishing whether a local adaptation effect on

complex visual stimuli could be obtained. The orthogonality of responses

observed in the Congruent-adaptation condition was similar to the results of the

global adaptation of Experiment 2.2, supporting the effectiveness of the local

adaptation. The orthogonal result observed in the Congruent-adaptation

condition, where the relationship between the potent region and spatial

frequencies was preserved, clearly diminishes when this information is put out of

phase in the Incongruent-adaptation condition. The results of the Incongruent-
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adaptation condition demonstrate the dependence between the spatial extent and

the spatial frequency information driving each percept. That is, adapting to the

spatial frequency information of a percept that was not restricted to its spatial

region did not necessarily suppress its perception as in the INCON-LSFcondition.

The local/ global nature of the stimulus may explain this result; the information

comprising the 'nuns' also constitutes the eyes of Voltaire, thereby inserting high

spatial frequencies into the 'Voltaire' region naturally includes inserting it into the

'nuns' region, therefore inhibiting a 'nuns' perception (only 3/10 perceive

Voltaire). In inserting the low-spatial frequencies into the 'nuns' region, sufficient

'Voltaire' information is preserved outside the adapting region to perceive

'Voltaire' (8/10). The frequency of responses, as noted in Figure 3.2, suggests a

predominance of the 'Voltaire' percept in the incongruent conditions. The

observed 'perceptual suppression' demonstrates the importance of the interaction

between spatial region and spatial frequencies in driving these two percepts.

Altogether, these results demonstrate an adaptation effect on local stimulus

information. The results suggest the method may be used as a tool to investigate

the role of local stimulus features in mediating perception and recognition.

Further interesting applications of this local adaptation method include the

extent to which attentional modulations of contrast determine perception and

also, how the information content of a stimulus relates to conscious visual

perception. In the section to follow, I apply the method to the recognition of

gender in hybrid faces.
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3.2 Locally adapting information for recognition

The diagnostic recognition framework (Schyns, 1998) posits a flexible usage of

visual information that is constrained by the availability of information, the

constraints of the visual system and the demands of the task. In three

categorisation tasks (identity, gender and expression) of the same face stimuli,

Schyns, Bonnar and Gosselin (2002) demonstrated a differential use of

information to resolve these tasks, both within each task (across different spatial

scales) and between each task (across the 20 image plane and across spatial

scales). In other words, different information in the same stimulus set was

diagnostic to resolve the three tasks, demonstrating a flexible use of information

as a result of task demands. For example, in judging the gender of a face, the left

side of the face was found to be more diagnostic than the right side, whereas, in

judging whether a face is neutral or happy, the mouth area alone proved

sufficient (Gosselin and Schyns, 2001; Schyns et al., 2002, 2003).

The local nature of these diagnostic regions in resolving a particular

categorisation task warrants the validity of applying the local adaptation method

used in Experiment 3.1 to observe the effect of suppressing this information on

the recognition of the post-adaptation stimulus. We were interested in

suppressing the diagnostic information underlying a specific face categorisation

to determine whether the classification could still be made when the necessary

diagnostic information to make the categorisation was perceptually suppressed.

To this end, we created novel hybrid stimuli that contain the information from

one face in the diagnostic regions for a particular task and the information from

another face in the non-diagnostic regions. For our purposes, the task of gender

recognition seemed appropriate due to the asymmetry in selecting facial
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information on the left side of the face to resolve gender identification (Burt and

Perrett, 1997; Schyns et al., 2002). This asymmetrical processing of visual

information is due to the role of the right-hemisphere (attending to the left-visual

field) in processing facial gender (Burt and Perrett, 1997; Butler et al., 2005).

3.3 Experiment 3.2

Hybrid stimuli have been used previously to study the flexibility of scale

information in the categorisation of faces (Schyns and Oliva, 1999) and scenes

(Olivaand Schyns, 1997). However, in these studies observers were sensitised to

either low, or to high, spatial frequency faces (or scenes), then categorised hybrid

images that combined, for example, an angry man in low-spatial frequencies and

a happy woman in high-spatial frequencies. In these experiments, observers were

unaware that the stimuli were hybrid stimuli and significantly judged the

stimulus consistent with their spatial frequency sensitisation. That is, those

observers who were sensitised to high spatial frequencies categorised the hybrid

stimulus according to the face that was represented in high spatial frequencies.

In the experiment to be described, the aim and method are different. Here,

we use adaptation to suppress specific perceptual information, unlike Oliva and

Schyns (1997) and Schyns and Oliva (1999) who sensitised observers to specific

perceptual information. In the adaptation phase, we aim to locally suppress the

information underlying the gender recognition of one of the faces comprising the

hybrid stimulus, and thus induce a gender judgement of the stimulus that

reflects the face in the non-adapting region. The adapting patterns are restricted
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either to the diagnostic regions of the face or the non-diagnostic regions. An

observer, presented with adapting patterns in the diagnostic regions, should

experience a suppression of the facial information located in those regions, that

is, the eyes, and mouth regions, with a particular focus towards the left side of

the face. It is predicted that a suppression of this information, on presentation of

a hybrid face, comprising the facial information of a male face and female face,

should report the gender of the face in the non-diagnostic region, where

information is not suppressed. Conversely, an observer, presented with adapting

patterns in the non-diagnostic regions, should experience a suppression of the

facial information located in those regions, that is, the right eye and chin regions,

forehead and external shape of the face. Here, it is predicted that a suppression

of this information, on presentation of a hybrid face, should report a gender

judgement that reflects the face in the diagnostic regions. Again, note that

observers are adapted only to the spatial frequency information underlying the

stimulus, not to the stimulus itself.

3.3.1 Method

3.3.1.1 Participants

Participants were nineteen consenting University of Glasgow students with

normal or corrected to normal vision, paid for their assistance. Each participant

was allocated into one of the two local adaptation groups, five to the diagnostic

adaptation region and thirteen to the non-diagnostic adaptation regions, These

9 The difference in sample sizes between these two conditions is the result of pilot
experiments that demonstrated an effect of adaptation on the gender reported of the post-
adaptation hybrid image only in the diagnostic adaptation condition.
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two groups will be referred to as the Diagnostic-adaptation group and Non-

diagnostic adaptation group, respectively.

3.3.1.2 Stimuli & Apparatus

The experiment ran on a Macintosh G4 using a programme written with the

Psychophysics Toolbox for Matlab (Brainard, 1997; Pelli, 1997) and the Pyramid

Toolbox (Simoncelli, 1998).

3.3.1.2.1 Diagnostic Hybrids

To generate the diagnostic hybrid faces, which were presented post-

adaptation, we used the face set and diagnostic face masks for the gender task of

Schyns et al. (2002; shown in Figure 3.3a and b). At each spatial scale we

inserted the information from one face into the diagnostic region and information

from another face of a different gender into the non-diagnostic region. Figure 3.3

depicts the generation of the diagnostic hybrids. The hybrid stimulus set

consisted of eight diagnostic hybrid faces (gender counterbalanced across the

diagnostic and non-diagnostic regions so that four faces contained males in the

diagnostic region and females in the non-diagnostic regions, and vice-versa) that

were generated from a set of twelve faces (seven male, five female).

As is necessitated by adaptation procedures the contrast of the hybrid faces

was reduced. The reduction in contrast was not uniform across the entire hybrid

face; rather, the contrast was differentially adjusted so that the diagnostic face

region was of higher contrast than the non-diagnostic face region. The motivation

for this differential contrast adjustment was simply to reduce the bias to the face

represented in the non-diagnostic region. This region simply contains more
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information (see Schyns et al., 2002), reducing the contrast relative to the

diagnostic region therefore counter-balances this bias by reducing the salience of

the non-diagnostic region.

3.3.1.2.2 Adaptation Stimuli

To generate the adaptation stimuli, we created 1000 white noise patterns that

were coloured with the average spatial frequency spectrum of our stimulus set

(computed by taking the fourier transform of each hybrid face in the set of stimuli

and computing the mean for the set). For the Diagnostic-adaptation condition,

using the diagnostic masks for gender (as derived in Schyns et al., 2002), we

inserted into the diagnostic areas at each of the five scales a new coloured noise

pattern on every frame (on a monitor with a screen refresh rate of 75 Hz, each

frame lasted for 13.3 ms). Figure 3.4 shows the stimuli and design of the

adaptation experiment. Prior to each trial we randomly selected from the set of

noise patterns a subset for the adaptation period. For the initial adaptation

period, we selected 200 of these patterns that we repeated 135 times (for a total

presentation time of 360 seconds). Consistent with adaptation procedures, prior

to each subsequent trial, an additional 50 adaptation patterns were randomly

selected and repeated 45 times (lasting 30 seconds), to maintain the adaptation

effect throughout the experiment (see De Valois and De Valois, 1990 for a review

of studies and procedures used to adapt spatial frequency channels). Amid-grey

fixation cross was placed in the centre of the adapting pattern to maintain

fixation.
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a.

b.

c.

d.

e.

f.

Figure 3.3. Stimulus generation for Experiment 3.2. The pictures in (a) represent two of
the original faces used to generate the hybrids, a male on the left and female on the right;
(b) illustrates the diagnostic masks for the gender task, left to right, from Schyns et al.
(2002), from fine to coarse. The white regions delineate the diagnostic regions and the
black the non-diagnostic regions. In (c) the female face in (a) is filtered into 5 different
bandwidths (only 4 are shown here as the fifth did not contain any useful information)
and is multiplied by the filters in (b) to reveal the diagnostic information of the face; the
same operation is carried out in (d), the male face is inserted into the non-diagnostic
regions. The pictures in (e) show the addition of (c) and (d) at each scale. A
reconstruction of the images in (e) is shown in the left-hand picture of (f) and the right-
hand picture is a low-contrast version presented to observers.
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3.3.1.3 Procedure and Design

The experiment comprised eight trials in total, with each trial comprising an

adaptation phase prior to the presentation of a hybrid stimulus of which the

participant had to judge the gender. The sequence of experimental events was as

follows. A trial commenced with a fixation cross, located in the centre of the

adapting pattern, on which each participant was instructed to fixate during the

entire adaptation phase. The firat trial commenced with an initial adaptation

period (lasting for 360 seconds) followingwhich a low-contrast diagnostic hybrid

face (see the right-hand picture in Figure 3.4) was presented for 1 second. The

participant was asked to judge the gender of this face as quickly (to avoid

diminishing the adaptation effect) and as accurately as possible via appropriate

key presses. For the second trial, and the remaining six subsequent trials, a

shorter adaptation pattern was presented (30 seconds presentation time) to

maintain the adaptation effect, prior to the presentation of the hybrid stimulus.

For each group of participants, two averages were calculated, the average number

of responses corresponding to the gender presented in the diagnostic region of the

hybrid face, and the average number of responses corresponding to the gender

presented in the non-diagnostic region of the hybrid face.
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360 (or 30) secs

1 sec

Figure 3.4. Stimuli and design of Experiment 3.2. The smaller pictures on the left-hand
side depict the adaptation stimuli, generated by colouring 1000 white noise patterns with
the average spatial frequencies of our stimulus set. The top pictures depict the
adaptation patterns for the 'diagnostic-adaptation' condition with the noise inserted into
the diagnostic regions, at each spatial scale, cropped by a face-mask. The pictures in the
bottom left-hand side illustrate the 'non-diagnostic adaptation' condition with the noise
inserted into the non-diagnostic regions at each scale. Two hundred of these patterns
were repeatedly presented dynamically in a movie. The right most picture is a low-
contrast diagnostic hybrid comprising a female in the diagnostic regions and a male in the
non-diagnostic regions.

3.3.2 Results

3.3.2.1 Diagnostic-adaptation condition

If adapting to the spatial frequency information underlying the average hybrid

face in the diagnostic region suppresses the information for accurate gender

recognition of the face in this region, then observers should report the gender of

the face in the non-diagnostic region. An analysis of the data provided by five

observers who adapted to the average spatial frequencies of the faces in the
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diagnostic region, on eight trials, showed that the gender in the non-adapting

non-diagnostic region was reported on 52.3% of trials, whereas the gender in the

diagnostic region was reported on 47.7% of trials. This distribution of responses

under the binomial distribution was not significant (p>O.05); adapting in the

diagnostic region did not induce a perception of the hybrid face in the non-

diagnostic region.

1~--------------~==========~1
CDiagnosticgender
.Non-diagnosticgender

Diagnostic Non-Diagnostic
Adaptation group

Figure 3.5. The results of Experiment 3.2. The bar graph shows the proportion of
responses for each adaptation group.

3.3.2.2 Non-diagnostic adaptation condition

Following the reasoning of the expected result of the Diagnostic adaptation

condition we would expect that if adapting in the non-diagnostic region
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suppresses the local information necessary to correctly judge the gender in this

region, then the observer should report the gender in the diagnostic region.

Figure 3.5 shows the frequency of responses, for the Diagnostic-adaptation and

the Non-diagnostic adaptation groups, for the gender in the diagnostic and non-

diagnostic regions. An analysis of the data provided by thirteen observers who

adapted to the average spatial frequencies of the faces in the non-diagnostic

region, on eight trials, showed that the gender in the non-adapting diagnostic

region was reported on 48% of trials, whereas the gender in the non-diagnostic

region was reported on 52% of trials. Under the binomial distribution this

distribution of responses was not significant (p>O.05); adapting in the non-

diagnostic region did not induce a perception of the hybrid face in the diagnostic

region.

3.3.3 Discussion

The aim of the current experiment was to test the effectiveness of the local

adaptation method in a task that relies on localised information. We attempted to

induce a perception of a hybrid stimulus that comprised a face of one gender in

the diagnostic regions and a face of another gender in the non-diagnostic regions,

that was opposite of the adapting region. Locally adapting to the spatial

frequencies underlying the average hybrid face did not significantly result in a

categorisation of the face in the non-adapting region. There are a number of

potential explanations for these null results. Firstly, it is possible that the

adaptation phase failed the challenge of adapting simultaneously the many

spatial frequencies at multiple orientations, all of which had to be adapted to
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obtain the desired effect. This argument however is weakened by the successful

adaptations observed in Experiments 2.2 and 3.1. Perhaps more relevant is the

possibility that the hybrid stimuli ineffectively portrayed two genders. The

imbalance in the spatial extent of the diagnostic and non-diagnostic regions could

have resulted in an inherent bias towards perceiving the gender represented in

the predominant non-diagnostic region. Although we attempted to transcend this

bias by differentially adjusting the contrast of the faces in each region, the results

here do not greatly deviate from pilot work where the hybrid stimuli retained

uniform contrast. Perhaps a more fundamental strategy to deal with this

problem would have been to establish the difficulty of the gender recognition task

of hybrid faces prior to conducting the adaptation experiment. A preliminary

experiment should have been conducted, presenting only the hybrid faces and

subsequently recording gender categorisations, with no adaptation phase. Our

failure to include such an experiment testing the effectiveness of these stimuli,

therefore, raises the possibility that the hybrid stimuli ineffectivelyportrayed two

alternative percepts. A further methodological concern is the lack of reaction

time data for the task; despite being instructed to respond as fast as possible, the

responses of observers may have been too long, resulting in a less strong

adaptation effect.

In considering the aim and outcome of the current experiment, perhaps an

issue of greater interest relates to the conception of diagnostic information, as

presented here. Here, we used the gender masks from Schyns et al. (2002)

generated from a bubbles experiment, to assign a feature's diagnostic status. In

that experiment a feature was deemed diagnostic if it reached a specified

threshold. Yet, in a practical sense, the level at which this threshold is set is
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entirely subjective according mainly with the whim of the experimenter. The

assignment of a feature as diagnostic, or non-diagnostic, for a particular visual

task is therefore problematic. It is more likely the case that features follow a

gradient, rather than a definitive, diagnostic status. The distinction, therefore,

between the sufficiency, preference or necessity of a feature in resolving a

perceptual task, is blurred. An additional and related point regards the strategies

employed by individual participants in resolving a recognition task due to the

possibility that there are gross individual differences in the facial regions

observers use in resolving such a task. The gender masks used here, derived

from the bubbles experiment of Schyns et al. (2002), represent the average

regions across observers, an experiment using the bubbles method could easily

investigate individual differences in the information observers use to resolve face

categorisation tasks.

3.3.3 Concluding remarks

Using local frequency-specific adaptation in either the diagnostic regions of a

face, or non-diagnostic regions, our goal was to induce a gender decision of a

hybrid face that reflected the face in the non-adapting regions. Due perhaps to

the inherent bias in the hybrid stimuli themselves in terms of the imbalance in

information, the desired effectwas not obtained. Further experimentation should

focus on establishing the effectiveness of the hybrid stimuli in representing two

percepts prior to testing the effect of local adaptation on subsequent gender

judgements.
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Chapter 4

Learning to Discriminate Features in Noise-?

An abundance of data has been collected over the years, demonstrating

improvements in performance on several perceptual and recognition tasks, as a

result of learning and attention, and over time, practice in detection or

discrimination tasks, can lead to performance improvements that are long

lasting, are specific to the experimental conditions under observation, and occur

in the absence of feedback (for a review, see Fine and Jacobs, 2002). These

phenomena are generally associated with perceptual learning.

Outside the laboratory, real world examples of perceptual learning are widely

evident. Consider the ability of the wine or whisky expert who can make the fine

discriminations necessary to notice the difference between two wines of a different

vintage from the same vineyard, or to detect the 'nose' of quality single malts. In

the visual sense, medical experts develop the ability to discriminate normal from

abnormal structures in X-ray images, which to the novice appear like random

10 Experiment 4.1, described in this chapter, was presented as a poster presentation at
the European Conference on Visual Perception (ECVP),2002. Bonnar L., & Schyns, P.G.
(2002).Finding Diagnostic Features in Noise. Perception, 31 (Supp), 18.
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blobs. In recent years, methodological developments have led to considerable

research activity addressing the mechanisms behind performance improvements

on a range of perceptual tasks, including those that lead to perceptual learning.

4.1 Mechanisms of perceptual learning

In discrimination tasks that rely on making fine distinctions between different

instances of the same class of stimuli, such as a face identification task, an

efficient strategy, considering resource limitations, would be to attend to the

information that is optimal to resolve the task, that is, the diagnostic information.

In order to successfully extract this useful information in the context of other

competing information, the visual system must firstly learn what the information

is so that attention can be deployed to extract it.

The potential mechanisms underlying improvements in performance on

perceptual tasks involving selective attention and perceptual learning were

introduced in Section 1.4.2. To recap, a mechanism of signal enhancement

operates to augment the strength of the incoming signal, a mechanism of external

noise exclusion narrowly tunes the perceptual template to exclude any external

noise, and lastly, a mechanism of internal noise reduction reduces the internal

neural noise naturally associated with perceptual processing. The roles of these

mechanisms in underlying the performance improvements accompanied by

attention and perceptual learning have been investigated using the methods of

noise masking and response consistency.

Using the method of noise masking, Lu and Dosher (2004) distinguished

between these mechanisms to investigate the mechanism(s) behind improvements
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in performance in an orientation discrimination task, as a result of perceptual

learning. To distinguish between these mechanisms, the contrast energy of the

signal was varied and different levels of external noise were added to the signal.

Each of these mechanisms carries different predictions regarding performance in

these experimental conditions; different performance signatures are revealed

when the contrast necessary for a pre-specified performance criterion is plotted

against each level of external noise. In this task, it was found that the

mechanism behind performance improvements in an orientation discrimination

task in the foveawas external noise reduction.

The method has also been fruitfully applied to distinguish between the

mechanisms behind the perceptual learning of faces and textures (Gold et al.,

1999b; 2004). The mechanism behind the observed improvements (up to 400%

discrimination improvement over several days) in face and texture discrimination

tasks was signal enhancement. Comparisons with an ideal observer, that was

able to use all of the available information in the stimulus to resolve the task,

revealed that the human observer, over time, became more efficient at encoding

relevant information for accurate discrimination. To my knowledge, this study

was the first to apply a noise masking paradigm to high-level stimuli such as

faces, to reveal the mechanism that operates to support learning of such stimuli.

However, since the contrast energy of the signal and the external noise added to

the signal were uniform across the stimulus, the results of Gold et al. (1999b) do

not inform us of the locality of this learning. A later study by Gold et al. (2004)

employed the method of reverse correlation to trace the changes in the facial

regions observers used to discriminate two faces and two texture patterns.

Focussing on the results from their face discrimination task, the classification
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images of Gold et al. on the first half of learning, show a bias towards using

information from the left side of the face, in particular the left eye region, then in

the second half of learning, a greater use of the right eye region emerges. Their

results also showed an increase in the similarity between their participants'

template in resolving the 2-AFC face discrimination task, and that of an ideal

observer that can use all of the available stimulus information.

The study of Gold et al. goes a long way in identifying both the mechanism

underlying the perceptual learning of faces and in attempting to trace this

learning to particular facial regions (their Experiments 1 and 3, respectively). But

does the suggested mechanism of signal enhancement operate across the entire

image? In other words, is it possible that a mechanism of signal enhancement

operates to improve the efficiencywith which the observer samples information

from diagnostic regions of the face, and another mechanism functions to exclude

less useful facial regions? To obtain an online map of the perceptual learning

mechanisms in operation in this task, across different facial regions, a method is

required that simultaneously informs us of the mechanism(s) in operation, and

the facial regions over which they operate. Here, I apply the noise masking

method in a perceptual learning paradigm involving the discrimination of ten

faces to map learning through time to specific face regions.

4.2 Experiment 4.1

The experiment uses the method of noise masking, in a perceptual learning

paradigm, to examine the mechanism(s) behind any discrimination improvements

over time and to localise these improvements to particular features. Previous
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work, using the Bubbles method, has revealed the features used to resolve an

identity task (Gosselin and Schyns, 2001; Schyns et al., 2002). In these

experiments, observers used, across different spatial scales, the eyes, the mouth

and the chin. To assess the locality of any learning effects, and to obtain an

online map of the attentional mechanisms in operation in this task, we applied

regional masks that revealed information at different regions of the face (eg. the

left eye). The contrast energy of the signal, revealed by each regional mask, was

differentially adjusted, and different levels of external noise were added to each

region, to map learning onto specific facial features and the mechanism(s)

underlying this learning.

4.2.1 Methods

4.2.1.1 Participants

Three consenting University of Glasgow students with normal, or corrected to

normal vision were paid for their participation in this experiment.

4.2.1.2 Stimuli

The experiment ran on a Macintosh G4 using a programme written with the

Psychophysics Toolbox for Matlab (Brainard, 1997; Pelli, 1997). Stimuli were

generated using the greyscale faces of Schyns and Oliva (1999) (fivemales and

five females with normalised hairstyles, orientation and lighting, centred on a 256

x 256 grey background of average luminance). Figure 4.1 illustrates the stimulus

generation process. To assess learning at a region-by-region level, using

Photoshop® to generate six regional face masks (the regions were left eye, right

142



eye, nose, left mouth, right mouth, and facial outline) that when applied to each

face, revealed information in each respective region. To remove any fine edges,

each mask was low-passed using a Gaussian filter (radius of 5 pixels). The

application of these masks to the face stimulus allowed the contrast and noise to

be independently adjusted at each region. To vary the contrast level of the signal

and the density of the noise added to the signal, we used the method of constant

stimuli. We used five levels of contrast and five levels of noise density, identified

by pilot studies to span the threshold range. The stimuli, observers actually saw,

was generated in the followingway.

Prior to each trial, a pseudo-random number generator in MatLab selected

the face to be presented, and for each region of the face, one of five contrast and

noise levels. The adjustment in contrast and the addition of noise was carried

out separately for each region. I began firstly by adjusting the contrast of the

face. Next, to the reduced contrast face, I added, pixel-by-pixel, a randomly

generated Gaussian noise pattern (256 x 256 pixels to match the size of the face

image) with a mean of zero, and a variance that was 1 of 5 & values (0.05, 0.087,

0.15, 0.259, 0.45), each indicating, from low-to-high, the density of noise. The

regional mask was then applied to the face to crop the signal to this region. This

procedure was followedfor each of the six facial regions: left eye, right eye, nose,

left mouth, right mouth, and face shape. Finally, I added together each region to

create a face that varied, region-by-region, in contrast and the density of added

external noise. Followingthe first day of training, contrast levels were established

daily for each observer to avoid ceiling performance. The stimulus was centred

on a 256 x 256 background of average luminance and subtended 5.72 x 5.72 deg

of visual angle.
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a.

Figure 4.1. The stimulus generation process. The pictures in (a) through to (d) illustrate
the stimulus generation process for one region (here, the left eye), but please note that the
same procedure is followedon the same original face for different contrast energy levels
and noise density levels in each of the six regions. One of the original faces from our
stimulus set is depicted in (a); (b) shows the reduced contrast version of (a) and (c) shows
a randomly generated white Gaussian noise pattern that is added to (b) to obtain (d). The
image in (e) shows the application of one of the region masks (here, the left forehead) to
the image in (d). The final image in (f) shows an example of the stimuli observers were
presented; it is the result of the addition of steps (a) to (e) for each of the six regions. It
depicts a face with varying levels of contrast energy and different levels of noise densities.

4.2.1.3 Procedure

4.2.1.3.1 Human Observers

The sequence of events for a single trial is depicted in Figure 4.2. Each trial

began with a fixation point, presented in the centre of the screen for 1 second,

followingwhich the test stimulus was presented for 500ms. A response selection
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window presenting all of the faces within the stimulus set was then displayed

until the observer responded via a mouse-click. To track learning over time, each

observer completed 3 blocks of 500 trials per day for a period of 8 days. A chin-

rest maintained viewingdistance at 100cm.

Figure 4.2. Example of a single trial in Experiment 4.1. A trial commenced with a
fixation point on a blank field for 1000 ms. A target stimulus, a face was then presented
for 500 ms, followedby a response window containing thumbnail-sized pictures of each of
the ten face images. To respond, the observer had to select one of these images via a
mouse click.

4.2.1.3.2 Ideal Observer

An ideal observer, performing an identical task to the human observer, was

presented with the same face stimuli as the human observer. This theoretical

observer takes into account all of the information available, pixel-by-pixel, in the

signal. The observer uses a decision rule whereby the cross correlation between
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the presented signal and each of the full contrast noise-free templates it has in

memory is maximised to resolve the 1-of-10 face discrimination task. In a

winner-take-all fashion, the observer simply chooses the template that results in

the highest cross correlation with the presented signal. In using this type of

observer as a benchmark of human performance, it is important to determine the

inherent discriminability between the full contrast noise free stimuli set. Figure

4.3 depicts a confusion matrix of the cross-correlation between the ten face

images used in Experiment 4.1. This confusion matrix indicates the strength of

the correlation coefficient between pairs of the ten face images used in the

experiment, indicated in greyscale values. The maximum correlation between a

pair of faces was .929 (between the face stimulus in the fourth column and the

face in the second row), and the minimum .756 (here, between the face stimulus

in the tenth column and the face in the ninth row).
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Figure 4.3. The confusion matrix for the image set used in Experiment 4.1. The figure
depicts the cross-correlation, in greyscale, between each of the ten face images used in
Experiment 4.1; along the columns at the top are faces 1 to 10, left to right, and down the
rows from top to bottom. The colour bar indicates the strength of the correlation; the
minimum correlation between two of the ten faces was 0.756 and the maximum 0.929.

We also computed a confusion matrix, depicted in Figure 4.4, for each of the

six facial regions, the left eye, right eye, nose, left mouth, right mouth, and shape.

In the left eye region of the ten faces, the maximum correlation was .966 and the

minimum, .896; .981 and .957 for the right eye; .991 and .941 for the nose

region; for the left mouth .986 and .921; .997 and .982 for the right mouth; and

.987 and .930 for the shape.
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Figure 4.4. Confusion matrices for each of the different face regions, derived from the ten
faces used in Experiment 4.1. The maximum and minimum correlations between two
image features of the ten face images used were as follows (column and row co-ordinates
in parentheses): left eye .966 (2,3) and .896 (5,10), maximum and minimum respectively;
right eye .981 (2,1) and .957 (5,7); nose .991 (6,9) and .941 (10,8); left mouth .986 (7,9)
and .921 (1,5); right mouth .997 (2,4) and .982 (7,3); and lastly, for shape the maximum
and minimum correlations were .987 (8,10) and .930 (10,9), respectively.

4.2.1.4 Data Analysis

For each observer and learning session, responses were recorded in matrices

each corresponding to the five contrasts and noise levels for each of the six

regions of the face. To determine a contrast threshold at a specific performance

criterion for each noise density level at each facial region and learning session, a

cumulative Gaussian was fitted to the mean discrimination performance of each

cell in these matrices, yielding a discrimination contrast threshold at a
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performance criterion of 60% for Observer D.K. and 65% for Observers S.H. and

V.L at each noise level. An identical analysis was conducted on the data of the

ideal observer.

The next step in the analysis was to obtain a measure of efficiency for the

human observer in using the information available at different contrast and noise

levels in different regions of the face. To this end, we calculated the ratio between

the performance of the ideal observer and the performance of the human

observer, given by F = (9Idealj9Human)2, where 9 represents the average contrast

threshold (across noise levels) for the human and ideal observers.

4.2.2 Results

In order to gain stable estimates of contrast thresholds, the data for each

observer was collapsed over the following learning sessions. For Observers D.K.

and S.H., data from eight days of learning were collapsed into two sessions:

Session 1 (Days 1,2,3, and 4) and Session 2 (Days 5, 6, 7, and 8). For Observer

V.L., data were collapsed into four learning sessions: Session 1 (Days 1 and 2),

Session 2 (Days 3 and 4), Session 3 (Days 5 and 6), and Session 4 (Days 7 and 8).

Figure 4.5 depicts the outcome of the fitting procedure used to derive contrast

thresholds at each level of noise density for each region of the face, for Observer

D.K, in the left eye region of the face for Session 1 in (a) and Session 2 in (b). The

figure depicts in (a) and (b) panels plotting the proportion correct for five different

contrast levels (here, contrast is measured on a log scale) at five levels of external

noise. Note that contrast increases in intensity from left-to-right within each plot,

and in noise density from the top left-most plot to the bottom right-most plot in

149



(a). The horizontal line in each plot marks a performance criterion of 60%.

Note, albeit with some exceptions, that proportion correct increases as contrast

energy increases, and decreases as noise density increases. In some cases, the

fitting procedure yielded a threshold that was outside the range used in the

experiment, resulting in no threshold being recorded. Consistently, across all

three observers, this occurred in calculating thresholds for the nose region; this

region is therefore omitted from any further analysis. This fitting procedure was

followed to obtain contrast thresholds for each of three observers in five levels of

noise density in six regions of the face, for each learning session. Identical

analyses were also followedto obtain thresholds for the ideal observer.
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Figure 4.5. Cumulative Gaussian functions plotting proportion correct as a function of
signal energy contrast (plotted on a log scale) for Observer D.K. in the face discrimination
task of Experiment 4.1. Each of the plots corresponds to performance at a particular
level of external noise in one of the six face regions, here the left eye. The five plots in a)
correspond to the first two days of learning, and in b) the last two days of learning; for
each of the five levels of noise density, increasing from left-to right, top-to-bottom,
proportion correct is depicted for the five different levels of contrast tested. These
functions were determined for each observer and day of training independently each of
the six regions of the face. (The size of each dot relates to the number of times this level
of noise and contrast were presented so that a larger dot entails a greater number of
presentations) .
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Tables 4.1, 4.2, and 4.3 show the contrast thresholds for each observer in

each facial region at each level of external noise density (empty cells correspond

to missing contrast thresholds). Table 4.1 presents the contrast thresholds

obtained for Observer D.K. for separate learning sessions: Session 1 and Session

2. With but one exception (the fourth noise density level in the left eye region),

the table shows that contrast thresholds increased as a function of external noise

density for each of the five regions analysed. Additionally, contrast thresholds

decreased from Session 1 to Session 2 (at the third noise level in the left eye

region, contrast threshold increased from Session 1 to Session 2).

Table 4.1. Contrast thresholds for Observer O.K. The table depicts contrast thresholds
(presentedhere in % Michelsoncontrast where performancecriterion is at 60% accurate)
measured in fivedifferentlevelsofnoise density (indicatedby 0, as 0 increases the density
of noise increases) for fivefacial regions. Thresholds for learning session Days 1 & 2 are
shown in greyfont, Days3 & 4 in black font. (Emptycells correspond to missingvalues).

Facial Region
External noise density

5 = 0.05 5 = 0.087 5 = 0.15 5 = 0.259 5 = 0.45

Left eye 0.104 0.172 0.255 0.656
0.077 0.139 0.365 0.245

Right eye 0.133 0.164 0.287 0.834
0.082 0.147 0.172 0.465

Left mouth 0.124 0.180 0.370
0.07 0.111 0.271

Right mouth 0.131 0.259 0.613
0.075 0.193 0.201

Shape 0.109 0.137 0.30 0.674
0.076 0.08 0.19 0.360 0.540

The results for Observer S.H. are shown in Table 4.2. At a performance

criterion of 65%, contrast thresholds increased as external noise density
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increased in all facial regions (with the exception of a minor decrease in threshold

as external noise increased from the lowest level to the next level of density in the

left eye region). Importantly, the effect of learning on reducing contrast

thresholds was evident in the decreases between Session 1 and Session 2 for all

facial regions.

Table4.2. Contrast thresholds forObserverS.H. The table shows contrast thresholds (%
Michelsoncontrast where performance criterion is at 65% accurate) measured in five
differentlevelsof noise density for fivefacialregions. Thresholds for Session 1 are shown
in greyfont, Session2 in black font. (Emptycellscorrespondto missingvalues).

Facial Region
External noise density

5 = 0.05 5 = 0.087 5 = 0.15 5 = 0.259 5 = 0.45

Left eye 0.14 0.324 0.659
0.03 0.02 0.04 0.042 0.044

Right eye 0.128 0.169 0.372
0.016 0.062 0.03 0.036

Left mouth 0.114 0.17 0.428 0.799
0.019 0.021 0.041 0.032 0.067

Right mouth 0.181 0.214 0.345 0.789
0.015 0.029 0.038 0.03 0.036

Shape 0.144 0.164 0.257 0.851 0.853
0.013 0.019 0.032 0.065 0.192

The contrast thresholds for Observer V.L. at a performance criterion of 65%

correct are shown below in Table 4.3 for four learning sessions. In comparison to

Observers D.K. and S.H., the contrast thresholds for Observer V.L. do not

consistently increase as external noise density increases. Increases in contrast

thresholds, as external noise increases, are evident on Session 1 for the right eye,

left mouth, right mouth and shape; on Session 2, for the right eye, left mouth,
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right mouth and shape; on Session 3, only for the left eye, left mouth and shape,

and not in any region consistently on Session 4.

Table 4.3. Contrast thresholds for Observer V.L. The table shows contrast thresholds (%
Michelson contrast) measured in five different levels of noise density for five facial regions
(65% performance criterion). Thresholds for Sessions 1 & 3 are shown in grey font,
Sessions 2 & 4 in black font. (Empty cells correspond to missing values).

External noise density
Facial Region ~ = 0.05 ~ = 0.087 ~ = 0.15 ~ = 0.259 ~ = 0.45

0.088 0.178 0.711 0.062 0.547
Left eye 0.141 0.722 0.09 0.227 0.105

0.037 0.066 0.092 0.423
0.015 0.046 0.015
0.083 0.116 0.166 0.455

Right eye 0.037 0.026 0.137 0.32
0.052 0.084 0.045
0.011 0.021 0.016 0.053 0.046
0.029 0.094 0.138 0.431

Left mouth 0.059 0.091 0.117 0.352
0.025 0.052 0.132 0.569
0.028 0.016 0.025 0.027 0.091
0.061 0.106 0.513

Right mouth 0.052 0.085 0.093 0.176 0.709
0.051 0.041 0.189 0.155
0.013 0.016 0.03 0.025 0.026
0.042 0.068 0.15 0.23

Shape 0.056 0.09 0.159 0.204 0.623
0.026 0.032 0.067 0.168 0.584
0.022 0.019 0.035 0.083 0.154

Figure 4.6 illustrates the results for Observer V.L.; in each face image the

contrast in each region is set to match the corresponding contrast threshold for

each region according to the different learning session at a performance criterion

of 65%. The rows, from top-to-bottom, depict the face images for different

training sessions, Session 1 through to Session 4, whereas each column, from

left-to-right, represents a different level of noise density, from low-to-high,

respectively.
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Session
1

Session
2

Session
3

Session
4

8 = 0.05

Noise density

8 = 0.087 8 = 0.15 8 = 0.259

Figure 4.6. The results of Observer V.L. depicted as contrast threshold versus noise
image maps. Each picture contains the contrast threshold for each region for a single
levelof noise density, increasing from the left column to the right-most column. Each row
represents a different training session, Session 1 on the top row, Session 4 on the bottom
row.
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To provide a benchmark of performance in terms of the information that is

available to the observer to discriminate l-of-l0 face signals embedded in

external noise, we presented the same task and stimuli to an ideal observer that

based its response on the cross-correlation between the noisy stimulus presented

on a given trial to that of the noise-free stimuli it has in memory. The ideal

observer simply chooses its response based on the stimulus yielding the highest

correlation with the presented stimulus.

The following bar graphs represent, for each of the three observers, the

efficiencyof information use for each region across the different learning sessions

(some measures of efficiency for some face regions particularly on early training

sessions were so small that they appear missing from the bar graph). For

Observer S.H., the bar graph in Figure 4.7 shows an increase in efficiency from

Session 1 to Session 2 for all regions. On Session 1, efficiency is highest for the

right eye and right mouth regions, whereas it is extremely low for the left eye, left

mouth, and shape. On Session 2, efficiency increases for the left eye relative to

the right eye, and increases are observed also for the left mouth, a smaller

increase in efficiency for using shape information can also be observed. For

Observer S.H., the greatest efficient use of information is in the right mouth

region, at below 12%on Session 2.
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Figure 4.7. Calculation efficiency measures for Observer S.H. The graph depicts
measures of calculation efficiencyacross learning sessions for each of five facial regions.

Figure 4.8 shows calculation efficiency measures for Observer D.K. The bar

graph shows lower efficiency levels for Observer D.K. on Session 1 than for

Observer S.H. across all regions, with the right mouth showing the highest level

of efficiency. On Session 2, efficiency increases for all regions with the exception

of the left mouth, and shows the highest increase in using shape information,

followedby the right mouth.
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Figure 4.8. Calculation efficiency measures for Observer D.K. The graph depicts
measures of calculation efficiency across learning sessions for each of five facial regions.

Lastly, the efficiency measures for Observer V.L., depicted in Figure 4.9, are

variable; decreases in efficiency for using information from the left eye, right eye,

and right mouth decrease between Session 1 and Session 3, increasing again on

Session 4. On Session 1, efficiency is highest for the right eye and right mouth,

the left eye on Session 2, the right eye on Session 3, and the left eye on Session 4

at just below 8% efficiency. On Session 4, increases in the efficient use of

information are evident for the left eye, right eye, left mouth, and right mouth.
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Figure 4.9. Calculation efficiency measures for Observer V.L. The graph depicts measures
of calculation efficiency across four learning sessions for each of five facial regions.

Taken together, the results suggest that the efficiency, with which observers

use the information available, increases with learning differentially across facial

regions, and between observers.

4.2.3 Discussion

In Experiment 4.1, we measured contrast thresholds in varying levels of noise

density at different regions of the face over several learning sessions, with the aim

of localising learning to specific facial information, and to determine the

mechanisms underlying learning. The results of two observers show consistent
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increases in contrast thresholds as external noise density increases, as expected

by Legge, Kersten, and Burgess (1987), whereas the results of a third observer

were less consistent. Importantly, contrast thresholds also decreased with

learning, across all image regions and four noise density levels for the same two

observers. The efficiencymeasures, that is how effectivelyhuman observers use

the information available, computed by taking the ratio of the contrast threshold

for the ideal observer to that of the human observer, show increases in efficiency

between early and later learning sessions for all image regions, again for two

observers. The results of the third observer, Observer V.L., showed decreases in

efficiency for some facial regions between the first day of learning and the second

and third days, before increasing again on the fourth and final session. An

explanation for the inconsistency in this observer's results may be due to the

strategies the observer used to resolve the task. For example, it is possible that

when the noise was too high in one facial region, the observer simply switched to

using the information in another facial region with a lower noise level. That

observers may switch automatically to using other less noisy features when the

noise level is too high in a preferred feature is an inherent problem with the

patchwork nature of the stimulus. Let us consider in more detail the

methodological problems with the current experiment.

In regards to localising learning to specific face features, the method we used

here treats each feature independently. Yet, it is well documented that observers

use configurations of features (for a review see Maurer, Le Grand, and Mondloch,

2002); Schyns et al. (2002) showed that the eyes and mouth are used in

conjunction to resolve a face identity task. In the present experiment, we have

not examined the role of configural processing in learning to discriminate faces.
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It would be possible, however to examine the use of configurations of facial

regions in a secondary trial-by-trial analysis, in which the contrast and noise

levels in each region are monitored when a correct response is made. The

outcome of the current experiment is a face that is contrast modulated across

different facial regions for a specified performance criterion and shows how

perceptual learning reduces the amount of contrast required across the different

facial regions to resolve the task.

The aim of the current experiment was not restricted to localising perceptual

learning to specific facial features, rather the aim was also to determine the

mechanism(s) enabling learning and subsequent extraction of these image

features. We hoped that by manipulating contrast and noise levels differentially

across the face image that we could plot, for each facial region, a contrast

threshold versus external noise function for each learning session, enabling the

mechanism underlying learning to be characterised. For each of the three

observers, at some noise levels and face regions, we were unable to establish a

contrast threshold that was within the acceptable range (that is within the range

used in the experiment), leading to several empty cells. We were unable,

therefore, with incomplete data, to fit a model to the data, such as the LAMused

by Gold et al. (1999b, 2004) or the PTMof Lu and Dosher (2004), to establish the

mechanisms underlying learning. Despite running pilot studies that indicated an

initial contrast range, for some regions this range was outside the contrast range

required by the observer. Future studies should address this issue by

manipulating contrast in a baseline noise-free condition to determine the contrast

range per region.
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As with all learning experiments, a crucial step in the design is to establish

the correct number of trials in a given session in which to assess the effects of

learning; an insufficient number of trials may not provide enough observations

per condition, whereas too many trials may lead to within-session learning

effects. Here, observers completed 1500 trials a day for 8 days; for Observers

D.K. and S.H. these trials were split into two learning sessions for subsequent

analyses - Session 1 comprising days 1-4, and Session 2 comprising days 5-8,

whereas four learning sessions were retained for Observer V.L. Learning was

observed between these different learning sessions despite the large number of

trials involved, within-session learning effects did not result in a dissipation of

cross-session learning effects. However, reducing the number of trials, or the size

of the search space itself (for example, measuring thresholds in three levels of

noise: low, medium and high density) would enable a closer assessment of any

within-session learning effects. This problem of running an extensive number of

trials is applicable to other similar methods exploring information use; the

reverse correlation method used by Gold et al. in a 2 AFCface discrimination task

required 9600 trials from each observer, and the Bubbles method, when used on

few observers also requires thousands of trials to sample an entire stimulus

space.

A future study aiming to map perceptual learning to specific regions of the

face, and to characterise the mechanism(s) enabling learning, could potentially

use the Bubbles method of Gosselin and Schyns (2001). Whereas, Gosselin and

Schyns searched the face stimulus for diagnostic information using a grey mask

randomly punctured with bubbles that revealed local information, one could use

instead a gaussian noise mask punctured with bubbles, that from trial-to-trial
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varies in noise density, and whose bubbles reveal information at different levels of

contrast. Additionally, constraining the search space to the information that has

been found to be diagnostic for resolving facial identity (Schyns et al., 2002)

would reduce the number of trials required to examine the entire stimulus space.

4.2.4 Concluding remarks

We used the method of noise masking in Experiment 4.1 to map the

perceptual learning of a face discrimination task onto specific facial regions, and

to characterise the mechanism(s) enabling learning. We observed, for two

observers, consistent increases in contrast thresholds as external noise density

increased, across facial regions, and a reduction in thresholds with learning.

Comparison with an ideal observer that can use all of the available stimulus

information provided efficiency measures for each of the different facial regions

for each day of learning. Methodological problems, however, that resulted in

missing data prevented a determination of the mechanism(s) underlying this

learning. We consider the questions of the evolution of information use in

perceptual learning, and the corresponding mechanism(s) enabling this learning,

as important in achieving both a qualitative, and quantitative description of

perceptual learning.
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Chapter 5

Attention Modulates the Speed of Visual

Information Processingr!

A fundamental function of the visual system, and other sensory systems, due

to resource limitations, is to optimally select task-relevant information from the

barrage of information impinging the retina. The mechanisms that enable such

selection are those of visual attention. Visual attention has been shown to

enhance performance in various visual tasks, including threshold tasks of

contrast sensitivity (Carrasco, Penpeci-Talgar, and Eckstein, 2000), spatial

resolution (Yeshurun and Carrasco, 1998, 2000; Carrasco, Williams, and

Yeshurun, 2002), and visual search (Carrasco and Yeshurun, 1998). Such

evidence supports the view that a core function of visual attention is to facilitate

visual processing by enhancing the perceptibility of a range of visual input.

11 The experiments described in this chapter formed a poster presentation at ECVP2003.
Bonnar, L., Jentzsch, I, & Leuthold, H. (2003). Attention and the Speed of Information
Processing. Perception, 32 (Supp.), 140.
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While the effects of attention on the discriminability of visual input have been

extensively studied, fewer studies have examined the effects of attention on the

temporal dynamics of visual processing. One such study, Carrasco and McElree

(2001; see also McElree and Carrasco, 1999), that has examined the effect of

attention on visual information processing found acceleration in the rate at which

visual information is processed; in other words, attention speeded up processing.

If attention facilitates visual processing by altering the temporal dynamics of

information processing, at which stage of processing does this modulation occur?

5.1 Determining the locus of a temporal modulation of attention

The locus of any attentional effect within the information-processing stream

could potentially lie at an early sensory stage, or at a later, decision-related stage.

This chapter seeks to establish the locus of any attentional modulation on the

temporal dynamics of processing in a series of three experiments, analysing

event-related brain potentials (ERPs),in addition to the accuracy and time course

of the behavioural response. To this end, each experiment employed pre-cues to

manipulate spatial attention in an orientation discrimination task, and speed-

accuracy trade-off (SAT)procedures to examine the full time course of processing.

We used the response-signal SATmethod that simply consists of presenting an

auditory tone, at variable times after target onset, to initiate a limited time

window in which the observer must make their response. Using a range of time

lags, from short-to-long, between the target and response tone, enables the full

time course of processing, and the time window where attention has an effect, to

be examined. To establish the processing stages(s) modulated by attention, we
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analysed the pre-motoric (S-LRP) and motoric (LRP-R) components of the

lateralised readiness potential (LRP). An effect on the pre-motoric S-LRP interval

would signify a modulation of early processes, whereas an effect on the motoric

LRP-R interval would indicate a modulation of later response-related processes.

Previously, Rinkenauer et al. (2004) found that SATprocedures shortened both S-

LRP and LRP-R components of the LRP in perceptual and cognitive tasks. We

also analysed the effect of attention on the time course and topography of

potential amplitude or latency modulations of visual-related ERP components.

The earliest ERP components reported modulated by attention, in terms of

enhanced amplitude, are the PI and NI components (Fu et al., 2001; Hopfinger

and Mangun, 1998; Lubbe and Woestenburg, 1997). Yet, in relation to attention

speeding up visual processing, no electrophysiological evidence of a shortening of

the latency of these early components has been reported, a somewhat surprising

situation considering behavioural evidence supporting a modulation on the

temporal dynamics of processing. In regards to later components, modulations

on the P2, N2, and P3 components have also been observed for valid cues as

enhancements in amplitude, and as a shortening of latency of the P3 (Fu et al.,

2001), indicating a chronometric effect at the level of stimulus categorisation.

Here, the aim is to establish whether a modulation in the speed of processing

expressed on the SAT function may be accompanied by a shortening of the

latency in either S-LRPor LRP-Rlatency, and/or in early ERP components such

as the PI/NI, or the later P3. While the use of SATprocedures enable a conjoint

investigation of the effects of attention on both the discriminability and temporal

dynamics of processing, the localisation of these effects cannot be established

with such procedures. The analysis of the LRP and ERPs, however, enable the
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locus of such effects to be established. Figure 5.1 illustrates the chain of

information processing and the corresponding electrophysiological markers that

could potentially be modulated by attention. In relation to the LRP, a

chronometric modulation occurring at a pre-motoric stage would be evident as a

shortening in the latency of the S-LRP interval, whereas a modulation at the

motoric stage would be evident as a shortened latency of the LRP-Rinterval. In

relation to other ERP components, an attentional modulation at sensory stages of

processing would be evident on the early PI/NI components, whereas a

chronometric modulation at the later stage of stimulus categorisation would be

indexed by an earlier peak latency of the P3 component. Followingthis stimulus

categorisation stage, a later modulation on the ERP waveform could also occur

that relates to a response selection stage. The combination, therefore, of

employing SATprocedures and recording ERPs, in spatial attention tasks enables

both the effect of attention on the temporal dynamics of processing to be

characterised, and the locus of this effect to be established.

Sensory Categ. Select Motor

~
PI/NI P3

LRP
~.

~
~

S-LRP LRP-R
Figure 5. 1. The stream of information processing and the electrophysiological markers of
processing stages.
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In Experiment 5.1, we followedCarrasco and McElree's (2001) methodological

and experimental procedures, using a 100% valid peripheral cue that provided

information only about target onset and target location, and a neutral cue located

centrally providing no information regarding target location. In Experiment 5.2,

we used only a peripheral cue but varied its validity (P(valid)=.5)to control for the

effect of cue presentation (peripheral vs. central, as used in Experiment 5.1) on

the ERP waveforms. Experiment 5.3, while retaining the pre-cueing

characteristics of Experiment 5.2, employed a more complex display in which the

target was always presented amidst distracter stimuli. Here, the observer had to

discriminate the target stimulus that appeared at the same location of an

adjacent report cue (a small black line) that was either congruent or incongruent

with the pre-cue.

5.2 Experiment 5.1

To assess the effect of covert attention on the speed of information

processing, we adopted a response-signal speed-accuracy trade-off procedure in a

2-AFC orientation discrimination task, as used previously by Carrasco and

McElree (2001). Using an orientation discrimination task in both feature and

conjunction search tasks, with and without distracters, Carrasco and McElree

found that attention speeded up the rate at which visual information is

processed. Using the feature search condition of Carrasco and McElree, in a

display without distracters, we manipulated attention using a peripheral valid

cue (P(valid= 1))that indicated the spatial location of the upcoming target, and a

central neutral cue that indicated only target onset. As eye movements can be
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initiated in less than 150 ms after the abrupt onset of a target, the timing of

events was set to preclude eye-movements.

An effect of attention on the discriminability of processing will be revealed as

a higher level of asymptotic performance on the SAT function for the cued

condition, relative to the neutral condition, whereas an effect on the speed of

information processing will be realised on the SAT function as a faster rate of

increase in accuracy to asymptotic performance, or as an earlier departure from

chance performance. The locus of any effects will be established by analysis of

early sensory-related (PI/NI), or later categorisation-related (P3) ERP

components. The onset latency of the pre-motoric and motoric intervals of the

LRPwill also be analysed to determine any chronometric modulation of attention.

5.2.1 Method

5.2.1.1 Participants

Participants were twelve consenting students from the University of Glasgow

(mean age of 27, 8 females, 11 right-handed) with normal, or corrected to normal

vision, and who were paid for their participation.

5.2.1.2 Stimuli & apparatus

Participants were tested in a sound-attenuated cabin with no lighting. The

experiment ran on an IBM-compatible computer using the Experimental Run

Time System (ERTS)software to control the experiment (Dutta, 1995). A response

pad was used for response recording with keys operated by the left and right

169



index finger located about 6 cm to the left and right of the centre. Stimuli were

presented on a monitor at a constant viewingdistance of 1 m.

A small black square served as a cue stimulus subtending 0.23' of visual

angle. In the neutral cue condition it was presented at fixation. In the cued

condition, the cue was randomly presented on an invisible compass grid at one of

four equidistant locations (north, south, east and west) from the central fixation

point. The target stimuli, generated using Matlab, consisted of gabor patches (2

cpd sinusoidal gratings cut by a gaussian of 6=X) that varied only on the

orientation dimension, oriented by 12' to the left or right. The contrast of these

gabor patches was reduced to 6% (Michelson contrast) based on pilot studies

showing correct identification at 75% correct. Each gabor patch subtended 0.8'

of visual angle, viewed at a distance of 1m. The target stimulus was randomly

presented on an invisible compass grid at one of four equidistant locations (north,

south, east and west), 3.89' eccentricity from the central fixation point. The

background luminance of the monitor was set to 10.3 cdj'm>.
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Time
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800ms

50ms

Variable time lag followed
by response tone signal

Figure 5.2. A typical trial sequence of Experiment 5.1. Each trial is initiated with a
fixation point, presented for 800 ms. A spatial cue, either a peripheral valid cue or
neutral central cue, is then presented for 66 ms, followed by an lSI of 50 ms, then the
target stimulus, an oriented gabor patch, is presented for 50 ms. After a variable time lag
of 30, 60, 120, 250, 500 or 1000 ms, a tone sounds to inform the observer to make their
response within a 300 ms time interval. Feedback is then presented ('In Time', 'Too slow'
or 'Wait for tone') informing the observer about the timing of their response.

5.2.1.3 Procedure

Figure 5.2 illustrates a typical trial sequence. Each trial began with a fixation

point, presented for 800 ms, on which each participant was asked to fixate

throughout the length of the trial. A cue (small black square), peripheral valid or

central neutral, was then presented for 66 ms. The neutral cue, which replaced

the central fixation point, indicated only the target onset and yielded an equal

probability of the target appearing at anyone of the four possible target locations.

The valid cue was presented adjacent to the upcoming target location, therefore

indicating target onset and target location. Followingan lSI of 50 ms, the target,

an oriented gabor patch, then appeared in one of the four possible locations for
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so ms. The task of the observer was to discriminate the orientation of the target

(tilted left or right) by pressing the appropriate response key. A tone that

sounded at one of six possible times followingtarget offset (30, 60, 120, 2S0, SOO

and 1000 ms) initiated a limited response window during which the observer had

300 ms to respond. Following the observer's response, positive feedback

informed the observer when the response was made within the time window ("In

time") and negative feedback when the response was made either before the tone

sounded ("Wait for tone") or after the time window ("Tooslow"). Each observer

was asked to respond as soon as possible within the response interval. The

experiment began with a practice block of 43 trials to familiarise participants with

the experimental procedure. Each observer then completed 12 blocks of 98 trials

in one experimental session (the first 2 trials in each session were practice trials),

taking short breaks at the end of each block.

5.2.1.4 Electrophysiological Recordings

Electroencephalographic (EEG) activity was continuously recorded from 70

Ag/AgCI electrodes using a BIOSEMI Active-Two amplifier system, including

external electrodes for recording vertical electro-ocular (vEOG) and horizontal

EOG (hEOG), at a sampling rate of 2S6 Hz. EEG activity was recorded from

midline electrodes Fpz, Afz, Fz, FCz, Cz, CPz, Pz, POz, Oz, and Iz, over the left

hemisphere from electrodes 101, Fp1, AF3, AF7, F1, F3, FS, F7, F9, FC1, FC3,

FCS,FT7,C1,C3,CS,T7,CP1,CP3,CPS,TP7,P1,P3,PS,P7,P9,P03,P07,01,

M1, and from the homologue electrodes over the right hemisphere. Figure S.3

depicts the electrode layout. VEOG and hEOG waveforms were calculated off-
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line as follows: vEOG(t) = FP1(t) minus I01(t), and hEOG(t) = F9(t) minus F10(t).

Two additional electrodes, Common Mode Sense (CMS) active electrode and

Driven Right Leg (DRL)passive electrode, were used as reference and ground

electrodes, respectively; cf. (www.biosemijfaqjcms&drl.htm). Off-line, trials

containing blinks were corrected using a dipole approach (BESA2000) and EEG

activity was re-referenced to average reference. The analysis epoch for the

stimulus-locked data started 100 ms prior to cue onset and lasted for a. total

duration of 1600 ms. For the response-locked analyses, epochs started 1400 ms

before the response and lasted for 1600 ms. EEG and EOG activity was filtered

(band-pass 0.01-10 Hz), averaged time-locked to cue onset (S-locked data) or to

the response onset (R-locked data).

/'

I
(
\

"

Figure 5.3. Electrode layout for the Biosemi 64 channel system.
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In addition, we calculated the LRPfor each participant and each experimental

condition. To this end, the ERP at recording sites ipsilateral to the response hand

was subtracted from the ERP at homologous contralateral recording sites. The

resulting difference waveform for each site-pair (e.g., C3/C4) was averaged across

hands separately to eliminate any ERP activity unrelated to hand-specific motor

activation (Coles, 1989). The term LRP will be exclusively used to describe

activity at the C3/C4 site and the term L-ERPto refer to lateralised ERP activity

calculated in the same way as the LRPfor all other electrode site-pairs.

5.2.1.5 Data Analysis

5.1.1.5.1 Behavioural data analysis

As a measure of performance accuracy we chose d'to obtain response bias

free estimates of performance by using the z-scores for the hit rate and false

alarm rate (for target present trials and for target absent trials, respectively) for

each of the two cueing conditions at each response tone lag. For each observer

and condition (twelve conditions: two cues x six response lags), we obtained d'

estimates and measures of variance in the following way. We entered the raw

data (trial-by-trial accuracy) into a series of eight bins each containing sixteen

trials. For each of these eight bins, we calculated the proportion of trials in which

the observer responded correctly. Using this measure, we then calculated a d'

estimate for each response bin. Where performance reached ceiling levels (100%

correct) in any of the conditions, the d' estimate was amended to a random

number that reflected ceiling performance. The d' measure for each of the twelve

conditions was calculated as the mean d' across these eight bins. For each
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condition, the variance was calculated as the variance in d' units across the eight

bins. To obtain group data, we calculated the mean d' and variance across all

twelve observers for each of the twelve conditions. The d' and variance estimates

for each condition were incorporated into the fitting procedures for each observer

and for the group mean data.

To measure the effect of attention on processing dynamics the experimental

SAT data, for each observer, were fitted with a limited exponential model with

three parameters:

d'(t)=A*( 1-exp(-(x-cr)jy)) (Equation 5.1)

The asymptotic parameter Areflects the point at which maximal performance

accuracy is achieved, y corresponds to the rate of increase in accuracy to

asymptotic performance, measured in the pre-asymptotic section of the function

and c, the intercept of the function marks the point at which accuracy departs

from chance performance. As proposed by McElree and Carrasco (1999), we

assessed the goodness of fit by evaluating an adjusted-Rs statistic that represents

the amount of variance captured by the model. This procedure was conducted on

each individual observer's SAT data to obtain estimates of each of the three

parameters, and also on the average data. To test for differences between cueing

conditions, we conducted paired-samples t-tests (one-tailed) on the individual

asymptote, rate and intercept parameters.
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5.2.1.5.2 EEG data analysis

Only trials with a correct response and without EEG or EOG artifacts were

included in the EEG data analysis. All signals were averaged separately for each

observer and each of the twelve experimental conditions (two cue types and six

response tone lags). Mean ERP amplitude was analysed in a 200 ms interval

immediately preceding response signal onset using a 200 ms baseline before pre-

cue onset. To examine the effects of cueing on the ERP data, statistical analyses

were performed by means of Greenhouse-Geisser corrected (Huyhn, 1978)

repeated measures analyses of variance (ANOVA)at time intervals (from80 to 380

ms post-stimulus).

LRP onsets were measured and analysed by applying a jack-knife-based

procedure (Miller,Patterson, and Ulrich, 1998). For each condition, grand mean

LRPwaveforms were calculated by averaging across all participants. Next, grand

average LRPs for each of the twelve experimental conditions were computed by

omitting from each grand average the ERP data of another participant. LRP

onsets were measured in the waveform of each grand average as follows. Because

LRP peak amplitudes in S-locked waveforms differed as a function of

experimental conditions, a fixed onset threshold was used (Milleret al., 1998). In

Experiments 5.1 and 5.3, LRPonsets were measured relative to a1-100 ms pre-

response signal baseline (for Experiment 5.3, this baseline was set to between

600-700 ms for the longer lags) at the point in time when LRP amplitude

exceeded 1 ).LV. For the shorter lags (30, 60, 120, and 250 ms), the search area

for the S-locked LRPwas conducted in the 300-800 ms time interval, whereas for

the longer lags (500 and 1000 ms), the search area was set to the 800 to 1500 ms

time interval. In Experiment 5.2, for the short response lags (30, 60, 120, and
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250 ms), LRP onsets were measured relative to a1-100 ms pre-response signal

baseline at the point in time when LRP amplitude exceeded 0.5 IlV,whereas for

the longer lags, the signal baseline was set to 600-700 ms. For the shorter lags

the search area for the S-locked LRP was conducted in the 300-800 ms time

interval, whereas for the longer lags (500 and 1000 ms), the search area was set

to the 800 to 1500 ms time interval. Following the recommendations of Miller et

al. (1998), effects in the LRP-Rinterval were obtained using a relative LRPonset

criteria (30% of LRP peak amplitude) with waveforms referred to a 200 ms

baseline starting 1400 ms before the response. The standard error of the

difference between LRP onsets in cued and neutral conditions was determined

with the jack-knife method proposed by Miller et al. (1998) and the null

hypotheses were tested using repeated-measures ANOVAswith Cue and Lag as

factors.

5.2.2 Results

5.2.2.1 Behavioural measures

5.2.2.1.1 Reaction time and Accuracy

Table 5.1 shows mean reaction time (RT)and accuracy (shown as proportion

correct) of twelve observers for the cued and neutral conditions at six response

lags. A repeated measures ANOVAon the RT data with Cue and Lag as factors

showed a significant main effect of Lag (F(5,55)=821.35, p<O.OOl), a non-

significant main effect of Cue (F(1,11)=0, p>0.05), and significant Lag x Cue

interaction (F(5,55)=23.27, p<O.OOl). The same analysis on the accuracy data

showed significant main effects of Lag (F(5,55)=40.75, p<O.OOl) and Cue
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(F(1,1l)=14.68, p<O.OOl), and significant Lag x Cue interaction (F(5,55)=5.64,

p<O.OOl). Independent analyses of reaction time and accuracy data for

Experiment 5.1 therefore indicate that the valid peripheral cue did not modulate

reaction times (mean RT 594.71 and 594.64, for cued and neutral conditions

respectively), but did enhance performance accuracy (mean proportion correct

91.5 and 88.5, for cued and neutral conditions respectively). The Cue x Lag

interaction is due to shorter RT and higher accuracy at short response lags for

cued than neutral trials, whereas the cueing effect is reversed in RT, and absent

in accuracy, for long response lags (cf.Table 5.1).

Table 5.1. Mean reaction times (ms) and accuracy (proportion correct) for cued and
neutral conditions at six response lags (SOin parentheses).

Lag Cued RT Neutral RT Cued Acc Neutral
(%) Acc (%)

30ms 392 (24) 427 (33) 83 (8.5) 79 (7.8)

60ms 406 (22) 431 (30) 86 (9.2) 80 (8.6)

120ms 424 (22) 445 (32) 90 (7.2) 85 (9.3)

250 ms 509 (19) 512 (22) 96 (2.2) 94 (4.8)

500ms 713 (28) 695 (28) 96 (2.4) 97 (3.0)

1000 ms 1125 (89) 1059 (93) 97 (2.1) 97 (2.3)
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5.2.2.1.2 Speed-Accuracy Tradeoff

To examine the dynamics of information processing directly, one must

consider conjointly speed and discriminability measures. Figure 5.4 shows the

group average data, demonstrating a clear speed-accuracy trade-off effect for the

cued and neutral conditions. The adjusted-Re was .98 for both the cued and the

neutral conditions, indicating good fits to the average group data. The individual

data yielded adjusted-R? statistics ranging between .43 and .93 for the cued

condition and between .59 and .98 for the neutral condition ..

4

Cued Neutral
adj R2 ,99 .99
asymptote 3.48 3.41
rate 51 111S 51 ms
intercept 339 ms 371 ms

3

•

1

o
0.2 0.4 0.6 0.8 1

Processing time, plus response lag (sees)
1.2

Figure 5.4. Averagetime course data for Experiment 5.1. Accuracy is plotted in d' units
as a function of processing time (response lag plus processing time in seconds) for both
cued and neutral conditions. The data is fitted with Equation 5.1.
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Figure 5.4 shows the values for each of the three parameters used to fit the

group data. To examine differences in discriminability between the cued and

neutral conditions, we looked at the asymptote, the point at which maximal

performance is achieved. The asymptotic parameters of the SATfunction showed

that accuracy reached asymptotic levels at 3.48 d' units for the cued condition,

and 3.41 d' units for the neutral condition, indicating that performance was only

marginally higher in the cued condition. A t-test on the individual asymptote

parameters was not significant, t(11)=O.26, p>O.05, one-tailed. Therefore, at

maximal processing time, there was no difference in the level of asymptotic

accuracy between these two cueing conditions.

Next, to examine the effect of cueing on the temporal dynamics of processing,

we turn to the rate and intercept parameters of the SAT function. Figure 5.4

shows no difference in the rate parameter, both 51 ms, for the cued and neutral

conditions (t<I), indicating that the valid cue did not modulate the rate at which

information was processed. Turning to the intercept parameter, a t-test on the

individual data was significant (t(11)=2.82,p<O.OI), with processing proving to be

faster in the cued condition (339 ms) than the neutral condition (371 ms). The

SAT data of Experiment 5.1 therefore indicate that the valid peripheral cue did

not improve target discriminability, demonstrated by similar asymptotes in both

cueing conditions. In relation to the effect of cueing on the speed of information

processing, no effect was evident in the rate of information processing, however,

an earlier departure from chance performance as evidenced in the earlier

intercept of the SAT function was demonstrated for the cued relative to the

neutral condition.

180



5.2.2.2.Electrophysiological measures

5.2.2.2.1 The Stimulus-locked LRP (S-LRP)

Figure 5.5 depicts, from left to right, the average stimulus-locked LRP for

correct responses for cued and neutral conditions at each response tone lag. For

each response lag, we used the jack-knife-based scoring method to measure the

difference in S-LRP onset latencies between the cued and neutral conditions;

Table 5.2 provides the mean onset latencies for cued and neutral conditions at six

response lags. A repeated-measures ANOVAon the mean onset latencies, with

Cue and Lag as factors, showed a non-significant main effect of Cue

(F(1,1l)=O.39, p>O.05), and significant main effect of Lag (F(5,55)=60.43,

p<O.OOl). The Cue x Lag interaction was not significant (F(5,55)=1.53, p>O.05).

The type of pre-cue, peripheral valid or central neutral therefore had no

significant effect on S-LRP latency, indicating that early pre-motoric processing

was not modulated by the validity of the pre-cue. The effect of response tone lag

was evidenced as an increase in S-LRP mean onset latency as the lag between

target and response increased.
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Table 5.2. The mean onset-latency (ms) of the stimulus-locked LRP (S-LRP)for cued and
neutral trials at six response lags in Experiment 5.1 (SD in parentheses).

Lags Cued Neutral

30ms 496 (8.55) 496 (6.40)

60ms 485 (6.02) 542 (7.51)

120ms 488 (4.46) 546 (9.39)

250ms 570 (4.82) 570 (6.38)

500ms 867 (5.70) 850 (6.34)

1000 ms 1300 (52.63) 1108 (18.87)
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Figure 5.5. The stimulus-locked LRPand HEOG for Experiment 5.1. The top waveform
in each panel shows the group average S-LRP for both conditions, cued and neutral, and
related HEOG is shown in the bottom waveform, for each response lag, from left-to-right,
top to bottom.
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At long response lags it is possible that S-LRP activation occurs prior to the

onset of the response tone as LRPpreparation may already have occurred. To

test that S-LRPactivation prior to response tone onset was significantly different

from zero at these longer response lags, one-sample t-tests were conducted on the

mean amplitudes in the time intervals, 520 to 620 ms and 1020 to 1120 ms,

followingpresentation of the cue, for the late response lags of 500 ms and 1000

ms. In the time interval 520 to 620 ms, at a response lag of 500 ms, mean

amplitude for cued trials was -0.46 IlV (SD=0.65), t(11)=-2.45, p<0.05, and for

neutral trials, -0.72 IlV (SD=0.91), t(11)=-2.74, p<0.05. At the later lag of 1000

ms, mean amplitude for cued trials was -0.32 IlV (SD=1.21), t(11)=-0.91, p>0.05,

and for neutral trials, -0.97 IlV (SD=0.93), t(11)=-3.61, p<0.005. In the S-LRP

time interval 1020 to 1120 ms, mean amplitude for cued trials at response lag

1000 ms, mean amplitude for cued trials was -0.56 uv (SD=1.16), t(11)=-1.69,

p>0.10, and for neutral trials -0.93Ilv (SD=0.91), t(11)=-3.55, p<0.005. To

summarise these results, at a response tone lag of 500 ms, S-LRP preparation

occurred for both cued and neutral conditions in the time interval 520 to 620 ms.

At the later response lag of 1000 ms, S-LRPactivation occurred for neutral trials

but not for cued trials in the 520 to 620 ms and 1020 to 1120 ms intervals.

5.2.2.2.2 S-LRP onset latency as a chronometric measure tofit SAT junction

To examine the effect of cueing on the dynamics of information processing

using the mean onset latency of the S-LRPas a chronometric measure, we fitted

Equation 5.1 to the data presented in Table 5.2. Since the S-LRPonset latencies

were obtained using a jack-knife procedure, we subjected the d' and variance
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data to the same procedure (described in Section 5.2.1.5.2). Figure 5.6 shows the

average data, fitted with Equation 5.1, for the cued and neutral conditions. The

adjusted-Re was .76 for the cued condition and .72 for the neutral condition. The

individual data fits yielded adjusted-Re statistics ranging between .52 and .99 for

the cued condition and between .56 and .77 for the neutral condition.

Turning to the parameters of the SAT function, performance reached

asymptotic levels at 3.55 and 3.60 d' units for cued and neutral trials

respectively. A t-test on the individual asymptotic parameters was not significant

(t(11)=0.46, p>0.05), indicating that the peripheral valid cue did not improve the

discriminability of the target stimulus. As for a modulation in the speed of

processing, measured here using S-LRP onset latency, the rate parameter was 47

ms for cued trials vs. 81 ms for neutral trials, although this turned out not to be

significant (t(11)=0.20, p>0.05). The intercept parameter was also earlier for cued

trials 429 ms vs. 447 ms for neutral trials, but neither was this difference

significant (t(11)=0.04, p>0.05).
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Figure 5.6. Average discrimination accuracy (d' units) as a function of S-LRP latency for
Experiment 5.1. Accuracy is plotted in d' units as a function of S-LRP onset latency
(response lag plus processing time in seconds) for both cued and neutral conditions and
is fitted with Equation 5.1.

5.2.2.3 The Response-locked LRP (LRP-R)

Figure 5.7 depicts, again from left to right, the average response-locked LRP

and related HEOG for the correct responses in the cued and neutral conditions,

for each response tone lag. Again, we used the jack-knife-based scoring method

to measure the difference in LRP-Ronset latencies. A repeated-measures ANOVA

on the mean onset latencies with Cue and Lag as factors showed a non-

significant main effect of Cue (F(1, 11)=0.10, p>0.05), and significant main effect of
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Lag (F(5,55)=5.79, p<O.OOl). The Cue x Lag interaction was also non-significant

(F(5,55)=1.28, p>O.05). Table 5.3 shows the mean onset latencies of the

response-locked LRPfor cued and neutral conditions at each of the six response

lags. Again, the valid peripheral cue had no significant effect on the onset latency

of the LRP-R, indicating that motoric processes were not significantly modulated

by the validity of the pre-cue. The effect of the response tone lag on the LRP-R

mean onset latency was largely to lengthen the onset latency as the response lag

increased, with the exception of the longer lags.

Table 5.3. The mean onset-latency (ms) of the response-locked LRP (LRP-R)for cued and
neutral trials at six response lags in Experiment 5.1 (SD in parentheses).

Lag Cued Neutral

30ms -145 (2.70) -138 (2.61)

60ms -145 (2.70) -136 (2.31)

120ms -151 (2.31) -136 (2.61)

250ms -176 (4.66) -161 (2.61)

500ms -119 (4.18) -135 (2.67)

1000 ms -128 (2.31) -148 (4.42)
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Figure 5.7. The response-locked LRP and HEOG for Experiment 5.1. Each panel, from
left-to-right, top-to bottom, shows the cued and neutral LRP-R onset latency, and related
HEOG, for each response lag.
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5.2.2.4 Event-related potentials (ERPs)

To examine the effect of cueing on ERP amplitude, we conducted repeated-

measures ANOVAon the grand-mean data for seventy electrodes at different time

intervals (80-110 ms, 110-140 ms, 140-170 ms, 170-200 ms, 200-260 ms, 260-

320 ms, 320-380 ms) within each waveform, with Electrode, Cue and Lag as

factors. Table 5.4 shows Greenhouse-Geisser corrected F-statistics and

significance levels for the main effect of Electrode, and the interactions, Electrode

x Cue, Electrode x Lag, and Electrode x Cue x Lag at each of these different time

intervals. A significant main effect of Electrode was found at the first four time

intervals, in the 80-110 ms interval (.F(69,759)=10.62, p<0.005), 110-140 ms

interval (.F(69,759)=5.65, p<0.05), 140-170 ms (.F(69,759)=5.97, p<0.05), and in

the interval 170-200 ms (.F(69,759)=9.05, p<0.01). A significant Electrode x Cue

interaction was found at the later three time intervals, 200-260 ms

(F(69,759)=2.81, p<0.05), 260-320 ms (.F(69,759)=13.28, p<0.005), and 320-380

ms (.F(69,759)=8.93, p<0.05). The interaction Electrode x Lagwas also significant

at the later intervals, 260-320 ms (.F(345,3795)=4.04, p<0.005) and 320-380 ms

(.F(345,3795)=4.92, p<0.005).
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Table 5.4. Greenhouse-Geisser corrected F-values and significance levels for repeated-
measures ANOVAwith Electrode, Cue, and Lag as factors, on ERP amplitude data for
Experiment 5.1 over electrode sites P07, P08, P03, P04, 01, 02, and POZ (tp>0.10,
*p<0.05, **p<O.Ol, ***p<0.005).

Time Interval

80- 110- 140- 170- 200- 260- 320-
110ms 140ms 170ms 200ms 260ms 320ms 380ms

Electrode F=10.62 F=5.65 F=5.97 F=9.05 F=1.84 F=1.58 F=1.33
*** * * ** t t t

ElectxCue F=1.26 F=0.93 F=1.47 F=2.46 F=2.81 F=13.28 F=8.93
t t t t * *** ***

ElectxLag F=1.02 F=1.16 F=1.06 F=0.95 F=0.89 F=4.04 F=4.92
t t t t t *** ***

ElecxCuexLag F=1.12 F=1.04 F=0.92 F=0.96 F=1.06 F=1.19 F=1.21
t t t t t t t

Since there was no significant Electrode x Cue x Lag interaction, at any time

interval within the ERP, we averaged the waveforms across response lags for each

separate cueing condition. Further ERP analysis is restricted to seven electrode

sites where attention-related effects on visual ERPs are usually found to be most

pronounced: the parietal-occipital P07, P08, midline POZ, P03, P04, and the

occipital 01 and 02. Figure 5.8 presents the grand-averaged waveforms for both

cueing conditions at parietal-occipital electrodes P07, P08, POZ, P03, P04, and

occipital Oland 02. The figure shows a differential amplitude modulation of the

ERP across these electrodes, as a result of cueing.
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Figure 5.8. Grand-averaged waveforms for cued and neutral conditions of Experiment
5.1. The waveforms depicted are for seven electrode sites involved in visual processing:
parietal-occipital electrodes P07, P08, midline POZ, P03, P04 and occipital electrodes 01
and 02.
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The F-statistics and significance levels of repeated-measures ANOVAon the

grand mean data for these seven electrodes at each time interval within the

waveform are shown in Table 5.5, with Electrode, Cue, and Lag as factors. A

main effect of Electrode is observed at all time intervals with the exception of the

intervals 200-260 ms and 260-320 ms. The Electrode x Cue interaction was

significant at the 110-140 ms post-stimulus time interval (F(6,66)=4.15, p<0.05),

at 140-170 ms interval (F(6,66) = 4.79, p<0.05), 170-200 ms (F(6,66)=5.91,

p<O.Ol), and again in the time interval 320-380 ms (F(6,66)=4.62, p<0.05).

Whereas, the time intervals up to 200 ms reflect differential cue-related activation

due to the type of pre-cue, peripheral versus central, the 320-380 ms interval

reflects an effect of cueing on the target stimulus. There was no Electrode x Lag

interaction at any of the time intervals, or any significant Electrode x Cue x Lag

interactions.
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Table 5.5. Greenhouse-Geisser corrected F-values and significance levels for repeated-
measures ANOVAwith Electrode, Cue, and Lag as factors, on the ERP amplitude data for
Experiment 5.1 on seven electrode sites: occipital electrodes 01 and 02; parietal-occipital
electrodes P03, P04, P07 P08, and the midline electrode POZ. (tp>O.05, *p<O.05,
**p<O.Ol).

Time Interval

80- 110- 140- 170- 200- 260- 320-
110ms 140ms 170ms 200ms 260ms 320ms 380ms

Electrode F=6.07 F=3.69* F=4.48* F=4.35* F=2.66t F=3.44t F=4.70*
**

ElectxCue F=O.95t F=4.15* F=4.79* F=5.91 F=1.12t F=1.46t F=4.62*
**

ElectxLag F=O.96t F=1.52t F=1.33t F=O.71t F=O.74t F=1.62t F=1.67t

ElecxCuexLag F=1.23t F=1.85t F=1.69t F=1.48t F=1.54t F=1.18t F=1.17t

The Electrode x Cue interaction is depicted in Figure 5.8 for each electrode;

an increase in ERP amplitude in the cued condition is evident at lateral parietal-

occipital sites P03 and P04 on the N190 component and at the midline electrode

POZ on the N200. The reverse pattern, that is an increase in amplitude for the

neutral condition relative to the cued condition, is evident at electrode sites P07

and P08. This differential ERP activation reflects a differential stimulation

between the different cue types, peripheral presentation for the valid cue versus

central presentation for the neutral cue. Figure 5.9 illustrates the difference in

mean amplitudes between these cue types, peripheral valid versus central

neutral, at each of these electrode sites in the 170-200 ms time interval
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Figure 5.9. Mean amplitude (measured in JlV)at electrodes P07, P08, P03, P04, 01, 02,
and paz in the time interval 170-200 ms post-cue for the cued and neutral conditions of
Experiment 5.1.

To examine more closely the time course of the differential activation

resulting between different cue types, we calculated difference waves (Cued(ERP

activity) minus Neutral(ERP activity)) for each response lag. Figure 5.10 presents

these difference waveforms at each electrode site, and clearly depicts cue-related

activity particularly around 170 ms, maximal over lateral occipito-temporal

recording sites, illustrating the difference in activation between the peripheral cue

and central cue. Target-related activation is prominent between 320-380 ms, and

is expressed as more positive activity for the valid cue relative to the neutral cue,

maximal at electrode Pz. This differential target-related activity between the valid

and neutral cue, however, might be due to neuronal refractoriness. However,

since the size and location of the pre-cue and target are non-overlapping, this

explanation seems unlikely.
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Figure 5.10. Difference waveforms for Cued - Neutral conditions of Experiment 5.1 at
each response lag for seven electrode sites (P07, P08, POZ, P03, P04, 01, and 02).
These difference waves were obtained by subtracting the ERP for the neutral condition
from the ERP for the cued condition for each response lag.
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Figure 5.11 depicts this difference activation as scalp topographic voltage

maps from 90 to 370 ms. The figure shows the peripheral cue activation

commencing around 130 ms to 190 ms, and target-related activation becoming

evident at 250 ms, peaks at around 320 ms.

90.0 IIItI 130.0 RIO
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Figure 5.11. Scalp topographic voltage maps of the difference between cued and neutral
trials from 90 ms to 370 ms.

P3 component. The mean peak latency of the P3 component for cued and

neutral trials was 536.68 (SD=75.88) and 565.08 ms (SD=82.42), respectively. To

analyse the peak latency of this component for cued and neutral trials at

electrode Pz, we conducted a repeated measures ANOVAwith Lag and Cue as
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factors. Results of the ANOVA showed a significant main effect of Lag

(F(5,55)=4.90, p<0.01), demonstrating a longer peak P3 latency as response tone

lag increases (with the exception of the longer lags). A significant main effect of

Cue (F(1,1l)=6.64, p<0.05) was also observed, indicating a reliable effect of the

cue resulting in an earlier P3 peak latency in the cued condition than the neutral

condition, (but no significant Lag x Cue interaction (F(5,55)=1.08, p<0.05)).

Figure 5.12 shows the grand-averaged waveforms for cued and neutral conditions

at Pz, and Figure 5.13 depicts topographic maps of P3 activation, posterior- and

anterior-views, at 570 ms (400 ms post target offset) for both cueing conditions.

o 200 400 600 800 1000 1200 ms

Figure 5.12. Grand-averaged waveform depicting the P3 component for cued and neutral
trials at electrode site Pz.
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Figure 5.13. Scalp topographic voltage maps of P3 activation for cued (top) and neutral
(bottom) trials. Activation is in the time range 570 ms and reference amplitude 0.80 uv.

5.2.3 Discussion

Using pre-cues to manipulate attention, and SAT procedures to examine the

full time course of processing, our objectives were firstly, to establish whether

attention would speed up information processing, and secondly, to establish the

locus of any effect within the chain of information processing events by analysing

the LRP and ERPs. Analysis of the accuracy and RT data suggest that

participants followed the SATprocedure, as instructed, in that both accuracy and

RT increased as a function of an increase in the response tone lag. This is also

supported by the significant lag effect on the onset latency of the LRP.

An attentional modulation in the speed of information processing can be

realised as either acceleration in the rate at which information is processed

(evidenced on the rate parameter of the SAT function) and/or as an earlier
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departure from chance performance (evidenced on the intercept parameter).

While there was an absence of enhanced discriminability in the cued condition

(evidenced by similar asymptotic performance), the behavioural data of

Experiment 5.1 did demonstrate a modulation in the speed of information

processing, indicated by the earlier intercept of the SAT function for the cued,

relative to the neutral condition (339 vs. 371 ms), indicating an earlier departure

from chance performance for the cued condition by 32 ms. Our result contrasts

with that of the feature search task of Carrasco and McElree (2001) who observed

a difference of 45 ms in the rate parameter of the SATfunction. However, this

difference reflects the average difference across three conditions used by Carrasco

and McElree, incorporating conditions with displays of different set sizes,

therefore a direct comparison between the results reported here and their

corresponding findings is unavailable. In the current experiment, we did not find

a difference in the rate parameter of the SATfunction, finding instead a difference

in the intercept. However, Carrasco and McElree suggest that the difference in

processing time found between their cued and neutral conditions as a difference

in rate could also have been expressed as a difference in the intercept of the

function, with little loss in the quality of the fits. Our conclusion therefore that

cueing the location of an upcoming target modulated the temporal dynamics of

processing is consistent with that of Carrasco et al.

What then is the locus of this attentional effect in the information-processing

stream? As outlined earlier, analysis of the SAT function does not provide

information regarding the particular processes that are speeded up by attention,

so in an effort to establish the locus of this effect, I turn from the behavioural

data to the EEG data. The effect of cueing on the ERP waveforms at parietal-
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occipital and occipital sites firstly became evident between 110-200 ms, and

again 320-380 ms. In the earlier intervals, between 110-200 ms, this difference

in activation reflects cue-related activity, rather than target-related activity. We

did not find an effect of cueing on any of the intervals in which early target-

related PI or NI would be observed. The later effect of cueing in the 320-380 ms

interval, likely to reflect target-related activity, occurs around 200 ms following

target onset. However, the types of cues employed in this experiment, peripheral

and central, resulted in differential stimulation, and thus incur difficulties in

interpreting the resulting differential effects on the ERP waveforms due to the

overlapping cue-related and target-related activity in sensory ERP components.

As a result, no latency analysis of ERP components was possible.

In relation to the S-LRP component of the LRP, that is the pre-motoric

component, we found no difference in onset latency between cueing conditions.

Neither did we observe a difference in the onset latency of the LRP-R,the motoric

component of the LRP, indicating that motoric processes were not modulated by

the informativeness of the peripheral valid cue, relative to the neutral cue. It is

therefore possible that the LRP measure was not sufficiently sensitive to tease

apart the benefits derived from knowing the target location. The failure to find

any modulation on the onset latency of the S-LRP or LRP-Ralso incurs difficulty

in reconciling this data to the SAT data (although analysing the reaction time

data independent of accuracy also failed to find a difference between cueing

conditions). Yet, we used the S-LRP onset latency data as an alternative

chronometric measure in which to fit the SATfunction, however statistical testing

showed no significant differences between cue types in any of the three SAT

parameters. As a chronometric measure, the sensitivity of the LRP to noise has
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been acknowledged. However, a difference between cueing conditions was

instead found on the peak latency of the P3 component, with an earlier latency

for the cued condition relative to the neutral condition. A modulation on the P3

component suggests that the locus of the cueing effect is at the level of stimulus

categorisation, reflected by the earlier peak latency in the cued condition

(Verleger, 1997). In other words, attention accelerated categorisation-related

processes.

In establishing the locus of the effect of attention on the speed of information

processing, the current experiment provides limited information due to the

difficulties mentioned. In Experiment 5.2, I adapt the cueing procedure to permit

comparison between valid and invalid peripheral pre-cues on the ERP waveforms

in the hope of establishing the locus of the temporal benefit delivered by the valid

pre-cue.

5.3 Experiment 5.2

In Experiment 5.1, we observed a speeding up of visual information

processing with attention, expressed on the SATfunction as an earlier departure

from chance performance, expressed as an earlier intercept in the cued condition

relative to the neutral condition. Due to the differential stimulation between the

cued and neutral conditions, in that the valid cue was presented peripherally and

adjacent to the target, and the neutral cue was presented centrally, we were

limited in interpreting the effects of attention on the ERP data of Experiment 5.1.

Here, in Experiment 5.2 the cueing procedure is modified to observe the effects of

attention on the SATfunction and ERPs via the presentation of a valid peripheral
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cue and an invalid peripheral cue. Additionally, we modified the spatial

arrangement in which cues and targets could appear; here, a cue and target were

always presented along the same axis, vertical or horizontal. In simplifying the

display in this way, we remove the differential stimulation observed in

Experiment 5.1 using the central neutral cue, and observe any potential

differences between the vertical and horizontal meridians. Using an invalid cue,

as opposed to a neutral cue, may also lead to a greater decrease in performance,

further enhancing any attentional effects.

5.3.1 Method

5.3.1.1 Participants

Participants were twelve students from the University of Glasgow with

normal, or corrected to normal vision, paid for their participation (mean age of 22,

5 males, 12 right-handed).

5.3.1.2 Stimuli and Procedure

The stimuli and procedure were identical to those used in Experiment 5.1

except for a modification of the cueing procedure and the display. The central

neutral and peripheral valid cues from Experiment 5.1 were replaced by

peripheral cues that accurately indicated the location of the upcoming target on

half of the trials (valid cue) and away from the target on the remaining half

(invalid cue). The spatial arrangement was also modified so that on any given

trial the target location was restricted to one of two positions along the vertical or
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the horizontal axis. As before, the observer's task was to indicate the orientation

of the target gabor patch according to the speed-accuracy trade-off procedure.

5.3.2 Results

5.3.2.1 Behavioural data

5.3.2.1.1 Reaction time and accuracy

Table S.6 presents mean RTs and performance accuracy for valid and invalid

conditions at each of the six response lags. A repeated measures ANOVAon the

reaction time data with Cue and Lag as factors showed a significant main effect of

Lag (F(S,SS)=479.29,p<0.001), a non-significant main effect of Cue (F(1,11)=1.46,

p>O.OS), and non-significant Lag x Cue interaction (F(S,SS)=2.02, p>O.OS). The

same analysis on the accuracy data showed significant main effects of Lag

(F(S,SS)=4S.78,p<O.OOl) and Cue (F(1,1l)=42.4S, p<O.OOl), and a significant Lag

x Cue interaction (F(S,SS)=11.S0,p<O.OOl). Independent analyses of the reaction

time and accuracy data indicate that the validity of the cue did not significantly

modulate reaction time (M (valid vs. invalid) = S74 ms and S79 ms) but did

improve performance accuracy (M (valid vs. invalid) = 90.S% and 8S.8% correct).

The significant Cue x Lag interaction is due to shorter RT and higher accuracy at

short response lags for valid than invalid trials, whereas the cueing effect is

reversed in RT, and absent in accuracy, for long response lags (cf. Table S.6).
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Table 5.6. Mean reaction times and performance accuracy for valid and invalid
conditions at six response lags.

Lag Valid RT Invalid RT Valid Acc Invalid Acc
I%} I%}

30m. 382 (27) 396 (34) 81 (7.2) 73 (8.4)

60ms 398 (22) 404 (32) 86 (7.4) 76 (7.5)

120ms 411 (28) 422 (34) 88 (6.9) 83 (9.0)

250ms 491 (20) 501 (22) 95 (2.7) 93 (4.8)

500ms 695 (38) 688 (36) 96 (3.8) 95 (4.7)

1000ms 1071 (97) 1063 (104) 96 (2.7) 95 (3.1)

5.3.2.1.2 Speed-Accuracy Trade-off

The individual and group average data for Experiment 5.2 were again fitted

with Equation 5.1. Fits of the group data yielded adjusted-Re values of .99 for

both the valid and invalid conditions. Fitting Equation 5.1 to the SAT functions

of individual observers yielded adjusted-Re values that ranged from between .63

to .97 for the valid condition and .56 to .99 for the invalid conditions. Figure 5.14

depicts the outcome of this fitting procedure on the group data for the valid and

invalid conditions. Looking at the asymptotic parameters for the two cue types

suggests no effect of attention on overall discriminability at maximal processing

time; asymptotic performance was achieved at 3.55 d' units in the valid condition

and a d' of 3.57 in the invalid condition, t(11)=O.77,p>O.05, one-tailed).
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adj R2 .99 .99
asymptote 3.55 3.57
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intercept 349 ms 393 ms
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Figure 5.14. Averagetime course data for Experiment 5.2. Accuracy is plotted in d' units
as a function of processing time (response lag plus processing time in seconds) for both
valid and invalid conditions. The data is fitted with Equation 5.1.

As in Experiment 5.1, to assess the effect of cueing on the dynamics of

processing we examine the rate and intercept parameters. No significant

difference was found in the rate parameters between cue types, with the valid

condition only slightly faster at 48 ms. than the invalid condition at 50 ms

(t(11)=0.18, p>0.05). An analysis of the intercept parameters revealed that

performance increased from chance levels earlier in the valid condition (349 ms)

than the invalid condition (393 ms), a difference .of 44 ms (t(11)=2.36, p<O.Ol),

indicating that the validity of the pre-cue enhanced processing speed.
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5.3.2.2 Electrophysiological Measures

5.3.2.2.1 The S-LRP

The effect of the cue type on the stimulus-locked LRP was measured and

analysed using the same procedures outlined in Experiment 5.1. A repeated-

measures ANOVAwith Cue and Lag as factors showed a non-significant main

effect of Cue (F(1,1l)=1), but a significant main effect of Lag (F(5,55)=7.73,

p<O.OOl) so that as the response lag increased, the mean onset latency of the S-

LRP increased. The Cue x Lag interaction was non-significant (F(5,55)=O.20).

Similar to Experiment 5.1, the validity of the cue did not modulate pre-rnotoric

processes. Table 5.7 presents the mean onset latencies of the S-LRPfor the valid

and invalid conditions at each of the six response lags. The waveforms in Figure

5.15 depict the group average S-LRP and HEOGwaveforms at each response lag

for each condition.

Table 5.7. The mean onset-latency (ms) of the stimulus-locked LRP (S-LRP)for the valid
and invalid conditions at six response lags in Experiment 5.2 (SD shown in parentheses).

Lag Valid Invalid

30ms 450 (8.52) 409 (20.84)

60ms 470 (7.13) 376 (13.38)

120ms 449 (10.16) 535 (16.37)

250ms 532 (7.80) 579 (6.48)

500ms 852 (4.86) 862 (6.18)

1000 ms 1038 {13.39) 1158 {137.55)
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Figure 5.15. The stimulus-locked LRPand HEOG for Experiment 5.2. Each panel, from
left-to-right, top-to bottom, shows the valid and invalid S-LRPonset latency, and HEOG,
for each response lag.
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To test that S-LRP activation prior to response tone onset was significantly

different from zero, one-sample t-tests on the mean amplitudes were again

conducted in the time intervals S20 to 620 ms and 1020 to 1120 ms for the late

response lags of SOOms and 1000 ms. In the time interval S20 to 620 ms, at a

response lag of SOOms, mean amplitude for valid trials was -0.S3 IlV (SD=0.8l),

t(11)=-2.24, p<O.OS, and for invalid trials, -0.S3 IlV (SD=0.7S), t(11)=-2.43,

p<O.OS. For the later response lag of 1000 ms, mean amplitude for valid trials

was -0.67 IlV (SD=0.83), t(11)=-2.79, p<O.OS, and for invalid trials, -0.60 IlV

(SD=1.1S), t(11)=-1.82, p>O.OS. In the S-LRP time interval 1020 to 1120 ms, at

the later response lag of 1000 ms, mean amplitude for valid trials was -1.23 IlV

(SD=1.0S), t(11)=-4.0S, p<O.OOS, and for invalid trials -1.22 IlV (SD=0.99), t(ll)=-

4.27, p<O.OOS. LRP activation was significantly different from zero, indicating

that LRP activation occurred prior to tone onset at these later lags, except for

invalid trials in the interval S20-620 ms at the 1000 ms lag where only a trend

was observed.

Due to the failure to find a significant effect of cueing on reaction time for this

experiment, no analysis was conducted here using the S-LRP onset latencies as a

chronometric measure to fit the SATfunction.
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Figure 5.16. The response-locked LRPand HEOG for Experiment 5.2. From left-to-right,
top-to bottom, each panel shows the valid and invalid LRP-Ronset latency, and HEOG,
for each response lag.
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5.3.2.2.2 The LRP-R

Figure S.16 shows the group average LRP-R and HEOG waveforms for each

condition at each response tone lag. The mean onset latency of the response-

locked LRPfor valid and invalid trials at each response lag for Experiment S.2 is

shown in Table S.8. A repeated-measures ANOVAon the onset latencies with

Cue and Lag as factors showed a non-significant main effect of Cue (F(I, 11)=0.44,

p>O.OS), but a significant main effect of Lag (F(S,SS)=6.4S, p<O.OOI), such that

LRP-Rmean onset latency increased as the response tone lag increased, with the

exception of longer lags. The Cue x Lag interaction was non-significant

(F(S,SS)= LSI, p>O.OS). The validity of the cue therefore did not differentially

modulate motoric processing.

Table 5.8. The mean onset-latency (ms) of the response-locked LRP for valid and invalid
trials at six response lags of Experiment 5.2 (SD in parentheses).

Lag Valid Invalid

30ms -139 (2.06) -150 (3.54)

60ms -142 (2.31) -162 (4.33)

120 ms -152 (3.55) -151 (4.12)

250ms -180 (3.60) -164 (3.17)

500ms -134 (3.75) -105 (4.77)

1000 ms -117 (4.23) -114 (3.85)
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5.3.2.2.3 Event-related potentials

The statistical analyses of the ERP data were conducted in exactly the same

way as for Experiment 5.1. Table 5.9 shows the Greenhouse-Geisser corrected F-

statistics and significance levels for the main effect of Electrode, Electrode x Cue

interaction, Electrode x Lag interaction, and Electrode x Cue x Lag interaction, for

seventy electrodes. A main effect of Electrode was observed at all time intervals

(see Table 5.9 for F-values and significance levels) except 200-260 ms

(F(69,759)=2.04, p>0.05). The earliest time interval in which we can observe an

Electrode x Cue interaction is the interval between 200-260 ms (F(69,759)=4.53,

p<0.001), and observed again in the 260-320 ms (F(69,759)=15.57, p<0.001) and

320-380 ms (F(69,759)=6.30, p<0.001) intervals. The Electrode x Lag interaction

was also significant at the later two time intervals of 260-320 ms

(F(345,3795)=5.54, p<0.001) and 320-380 ms (F(345,3795)=5.02, p<0.001).

There were no significant Electrode x Cue x Lag interactions at any time interval.
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Table 5.9. Greenhouse-Geisser corrected F-values and significance levels for repeated-
measures ANOVA with Electrode, Cue, and Lag as factors, on ERP amplitude data for
Experiment 5.2 (tp>O.10, *p<O.05, ***p<O.001).

Time Interval

80- 110- 140- 170- 200- 260- 320-
1l0ms 140ms 170ms 200ms 260ms 320ms 380ms

Electrode F=8.60 F=8.39 F=8.64 F=9.94 F=2.04 F=2.57 F=3.36
*** *** *** *** t * *

ElectxCue F=O.69 F=O.6O F=O.82 F=1.13 F=4.53 F=15.57 F=6.30
t t t t *** *** ***

ElectxLag F=O.93 F=O.82 F=O.85 F=O.87 F=1.10 F=5.54 F=5.02
t t t t t *** ***

ElecxCuexLag F=1.18 F=1.04 F=1.06 F=1.26 F=1.00 F=O.92 F=O.95
t t t t t t t

Figure 5.17 depicts grand-averaged waveforms for valid and invalid cue

conditions, collapsed across response lag, at the same parietal-occipital and

occipital electrodes focussed on in Experiment 5.1. At each electrode site shown,

the figure depicts an overlap in the waveforms between cueing conditions up to

200 ms post-cue presentation, indicating similar activation of the peripheral pre-

cues, eliminating the differential stimulation between the cues used in the

previous experiment.
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Figure 5.17. Grand-averaged waveforms for Experiment 5.2 for valid and invalid
conditions. The waveforms depicted are for the same seven electrodes depicted in Figure
5.7 (P07 P08, POZ,P03, P04, 01 and 02).

213



The results of repeated-measures ANOVAon ERP amplitude at these seven

electrode sites with Electrode, Cue, and Lag as factors at different time intervals

are shown in Table 5.10. A significant main effect of Electrode was observed up

to 200 ms, but not in the time intervals between 200 and 380 ms (see Table 5.10

for F-values and significance levels). The earliest time interval in which a

significant Electrode x Cue interaction emerges is between 260 and 320 ms

(F(6,66)=13.32, p<O.OOl), and is observed again in the interval 320-380 ms

(F(6,66)=6.94, p<O.OOl). The Electrode x Lag interaction was significant only in

the interval 320-380 ms (F(30,330)=6.94, p<O.Ol).

Table 5.10. Greenhouse-Geisser corrected F-values and significance levels for repeated-
measures ANOVAwith Electrode, Cue, and Lag as factors, on ERP amplitude of seven
electrodes (tp>O.10, **p<O.Ol, ***p<O.OOl).

Time Interval

80- 110- 140- 170- 200- 260- 320-
110ms 140ms 170ms 200ms 260ms 320ms 380ms

Electrode F=8.39 F=6.91 F=7.37 F=6.37 F=1.32 F=1.84 F=1.S1
*** ** ** ** t t t

ElectxCue F=O.57 F=O.71 F=O.78 F=O.56 F=2.20 F=13.32 F=6.30
t t t t t *** ***

ElectxLag F=1.49 F=1.04 F=O.86 F=1.07 F=O.69 F=1.39 F=6.94
t t t t t t **

ElecxCuexLag F=1.22 F=O.91 F=O.89 F=O.64 F=1.15 F=O.93 F=O.88
t t t t t t t
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Figure 5.18 depicts mean amplitude for valid and invalid trials between 260-

320 ms for each electrode. Amplitude enhancements for valid trials relative to

invalid trials are particularly evident at parietal-occipital sites P07, P08 and P04.

-0.8 -'---- _

P07 POB P03 P04 01 02 POZ

Electrode

Figure S.lB. Mean amplitude for valid and invalid conditions at lateral parietal-occipital
P07 and POB, P03 and P04, lateral occipital 01 and 02, and the midline parietal-
occipital paz, at time interval 260-320 ms.

Next, we calculated difference waveforms (valid(ERP activity) minus

invalid(ERP activity)) to reveal the time course of when these conditions begin to

differ. We calculated difference waves for when target presentation occurs along

the vertical meridian at top and bottom locations, and -along the horizontal
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meridian, at left and right target positions. Figure 5.19 depicts these difference

waveforms, and depicts the greatest difference between 250 and 300 ms,

expressed as greater positivity for the valid cue relative to the invalid cue, and a

bigger difference when the target was presented along the horizontal meridian

than along the vertical meridian. In contrast to Experiment 5.1, there is no initial

effect of the cue at 170 ms, an effect eliminated through the use of peripheral

cues. However, there are similar later target-related effects at around 300 ms

(180 ms relative to target onset), corresponding to a smaller NI (latency range) for

valid than invalid trials. This difference activation is also depicted in scalp

topographic voltage maps in Figure 5.20 for vertically presented targets (top

image) and horizontally presented targets (bottom image) from 170 ms to 450 ms

post-cue, showing occipito-temporal distribution of the validity effect in ERP

difference waves.
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Figure 5.19. Difference waveforms between valid and invalid trials when the target
stimulus was presented along the vertical meridian (collapsed across top and bottom
locations) and along the horizontal meridian (collapsed across left and right locations).
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Figure 5.20. Scalp topographic voltage maps for valid minus invalid cues averaged over
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P3 Latency. To establish peak P3 latency for Experiment 5.2, we subjected

the data to the jack-knife procedure to obtain a more stable estimate of peak P3

latency. A repeated measures ANOVAon the peak latency of the P3 component

with Lag and Cue as factors showed a significant main effect of Lag (F(5,55)=4.76,

p<0.05), such that peak P3 latency was observed later for longer response lags. A

non-significant main effect of Cue (mean peak latencies for valid and invalid cues

were 514 ms and 508 ms, respectively, F(1,1l)=0.16, p>0.05), and non-significant

Lag x Cue interaction (F(5,55)=0.50, p>0.05). Figure 5.21 depicts a topographical

map of average peak P3 activation (collapsed across Cue and Lag) at 510 ms post-

stimulus onset.

,nJ_
UG.v. .... --IUI"",..,

Figure 5.21. Scalp topographic voltage map of P3 activation in Experiment 5.2.
Activation is in the time range 510 ms and reference amplitude 0.50 IlV.
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5.3.3 Discussion

The aim of Experiment 5.2 was to determine the locus of the attentional

modulation on the temporal dynamics of information processing. Similar to

Experiment 5.1, the behavioural data revealed no difference in discriminability on

the SATfunction between valid and invalid peripheral cue conditions, indicating

that attention did not enhance target discriminability. Speed of processing,

however, was affected by the validity of the cue; the intercept of the SATfunction

occurred earlier in the validly cued condition (349 ms) compared to the invalid

condition (393 ms), a difference of 44 ms. This speeding up of information

processing is consistent with Experiment 5.1 where we also found a modulation

in the speed of processing, also expressed on the intercept parameter.

Again, to determine the locus of this effect, we analysed the effect of cue

validity on S-LRP and LRP-R onset latency and found no significant effects,

suggesting that there were no significant modulations of pre-motoric or motoric

processes. The failure to find an effect on LRP latencies is consistent with the

analysis of the RT data, which also showed no effect of cueing. However, as

mentioned previously, it is possible that the LRP is insufficiently sensitive as a

chronometric measure to pick up differences between cueing conditions in such a

task. The high levels of performance that participants achieved in this task

suggest that the task itself was not sufficiently demanding. In contrast to

Experiment 5.1, no modulation was found on the peak latency of the P3

component, indicating that stimulus categorisation was not affected by cue

validity.

As for the effect of cueing on the amplitude of the ERP, the earliest

modulation arose in the 260-320 ms interval, that is, 134 to 194 ms following
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target onset, most evident over occipital areas, corresponding to a smaller N1 for

valid trials compared to invalid trials. In relation to previous studies analysing

the effect of attention on N1 amplitude, results are mixed according to the SOA

used. While Fu et al. (2001) found an enhanced N1 for valid trials at short SOAs,

Doallo et al. (2004) found a smaller N1 for valid trials at longer SOAs. This effect

may somehow reflect an enhancement in processing for targets opposite the cued

location, a finding that has been reported in a behavioural task for cues and

targets that appear across the same axis, horizontal or vertical, at SOAs from 106

ms to 541 ms (Tse, Sheinberg, and Logothetis, 2003).

In a further experiment, the difficulty of the task is increased by adding

distracter stimuli to the display in the hope of establishing further the

performance benefits of attention, and to observe the effects on the LRP and

ERPs.

5.4 Experiment 5.3

A problem with both Experiments 5.1 and 5.2 was the high level of

performance attained by observers; here in Experiment 5.3 we increase the

difficulty of the task by presenting the target stimulus in an array of distracters.

In including distracters in the display, this experiment is more akin to the feature

search condition of Carrasco and McElree (2001), in which the target stimulus is

presented with three distracter stimuli. However, the pre-cueing procedure used

here is different from that used by Carrasco and McElree. Similar to Experiment

5.2, peripheral valid pre-cues are used whose validity is manipulated (p(validity=

.5)) to direct attention towards the target on half of the trials, and away from the
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target on remaining trials. Additionally, in order to eliminate the possibility that

any potential attentional effect could be explained simply in terms of reducing

spatial uncertainty regarding the target's location, we also employed, in addition

to a valid or invalid pre-cue, a report cue that was either consistent with the

location of the pre-cue on valid trials, or inconsistent on invalid trials (Lu and

Dosher,2000). The task of the observer was to discriminate the orientation of the

target stimulus that appeared in the location of the report cue.

5.4.1 Method

5.4.1.1 Participants

Twelve University of Glasgow students with normal, or corrected to normal

vision, were paid for participating in the experiment (Mean age 22.2 years, all

right-handed).

5.4.1.2 Stimuli and Procedure

As in Experiments 5.1 and 5.2, target stimuli were oriented gabor patches,

tilted clockwise and anti-clockwise by 45 degrees. In order to make the task more

attention ally demanding, we inserted distracter stimuli (vertically oriented gabor

patches) into the three remaining locations. To eliminate spatial uncertainty, we

also employed a report cue that comprised a small straight line to inform the

observer of the target to be discriminated. The neutral and valid cues from

Experiment 5.1 were replaced by a peripheral cue that accurately indicated the

location of the upcoming target on 50% of the trials and away from the target on

the remaining 50%, appearing equiprobably at any of the other 3 positions. As
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before, the observer's task was to indicate the orientation of the target gabor

patch according to the speed-accuracy trade-off procedure.

5.4.2 Results

5.4.2.1 Behavioural data

5.4.2.1.1. Reaction time and accuracy

Table S.ll presents reaction times and performance accuracy for twelve

observers for valid and invalid cue conditions at six response lags. A repeated

measures ANOVAon the reaction time data with Cue and Lag as factors showed a

significant main effect of Lag (F(S,SS)=490.l9, p<O.OOl), a significant main effect

of Cue (F(1,1l)=100.6l, p<O.OOl), and significant Lag x Cue interaction

(F(S,SS)=3.49, p<O.Ol). The same analysis on the accuracy data showed

significant main effects of Lag (F(S,SS)=31.73, p<O.OOl) and Cue (F(1,1l)=19.61,

p<O.OOl), and significant Lag x Cue interaction (F(S,SS)=10.02, p<O.OOl). The

validity of the cue therefore modulated reaction time so that observers responded

faster in the valid condition (M (valid and invalid: S82 ms vs. 624 ms), and

improved performance accuracy (M (valid and invalid: 90% vs. 86% correct). The

significant Lag x Cue interaction indicated a decreasing cueing effect in accuracy

with increasing response lag, whereas the cueing effect on RT was largest for

short and longer lags, and smaller for intermediate lags.
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Table 5.11. Mean RT and performance accuracy for valid and invalid conditions at six
response lags (SD in parentheses).

Lag VaUdRT Invalid RT Valid Acc Invalid Acc
(%) (%)

30ms 391 (30) 434 (37) 85 (7.8) 69 (13.1)

60ms 399 (30) 436 (33) 87 (8.4) 69 (12.4)

120ms 424 (32) 456 (25) 90 (9.8) 74 (14.0)

250ms 510 (20) 539 (16) 95 (5.4) 82 (11.4)

500ms 701 (42) 742 (27) 96 (3.1) 88 (l1.9)

1000 ms 1064 (l09) 1136 (90) 97 (3.1) 89 (11.5)

5.4.2.1.2. Speed-Accuracy Trade-off

Figure 5.22 depicts the group average data and the fits for both the valid and

invalid conditions. Adjusted-Re values for the group data, for the valid and

invalid conditions, were .99 and .98 respectively, with individual values ranging

from between .5 and .99 for the valid condition, and between .54 and .99 for the

invalid condition.
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Figure 5.22. Average time course data for Experiment 5.3. Accuracy is plotted in d' units
as a function of processing time (response lag plus processing time in seconds) for both
valid and invalid conditions. The data is fitted with Equation 5.1.

In this experiment, the effect of attention on discriminability is reflected in the

difference in the asymptotic parameters of the two conditions; asymptotic

performance was reached at 3.59 d' units in the valid condition and 2.47 in the

invalid condition, indicating that the' validity of the cue enhanced target

discriminability (t(11)=3.27, p<0.005). To assess the effect of attention on the

speed of processing, we turn to the rate and intercept parameters. Figure 5.22

shows that the rate of information processing was faster in the valid condition

relative to the invalid condition (58 ms vs. 105 ms; t(11)=2.41, p<O.Ol), a

difference of 47 ms. In terms of the intercept of the SAT function, an earlier
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intercept was observed for the valid condition at 331 ms as opposed to 353 ms in

the invalid condition, a difference of 22 ms (t(11)=2.72, p<O.Ol).

5.4.2.2 Electrophysiological measures

5.4.2.2.1 The S-LRP

The effect of the cue type on the stimulus-locked LRP was measured and

analysed using the same procedures outlined in Experiments 5.1 and 5.2. Table

5.12 shows the mean onset latencies of the S-LRP for the valid and invalid

conditions at each response lag. A repeated-measures ANOVAon the onset

latencies with Cue and Lag as factors showed a non-significant main effect of Cue

(F(l,ll)=O.ll, p>O.05), but a significant main effect of Lag (F(5,55)=20.26,

p<O.OOl), such that the S-LRPmean onset latency increased as the response lag

increased. The Cue x Lag interaction was non-significant (F(5,55)=O.29, p>O.05).

Figure 5.22 depicts the S-LRP and HEOG waveforms for both conditions at each

response lag for Experiment 5.3.
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Table 5.12. The mean onset-latency (ms) of the stimulus-locked LRPfor valid and invalid
trials at six response lags of Experiment 5.3 (SD in parentheses).

Lag Valid Invalid

30ms 481 (10.48) 467 (5.21)

60ms 466 (2.70) 471 (8.02)

120 ms 509 (7.34) 508 (7.46)

250ms 561 (13.94) 638 (11.69)

500ms 898 (7.63) 857 (6.26)

1000 ms 1264 (66.48) 1153 (57.08)
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Figure 5.23. The stimulus-locked LRP and HEOG for Experiment ?3. From left-to-right,
top-to bottom, each panel shows the valid and invalid S-LRP onset latency, and HEOG,
for each response lag.
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To test that S-LRP activation prior to response tone onset was significantly

different from zero, one-sample t-tests on the mean amplitudes were conducted in

the time intervals 520 to 620 ms and 1020 to 1120 ms for the late response lags

of 500 ms and 1000 ms. In the time interval 520 to 620 ms, at a response lag of

500 ms, mean amplitude for valid trials was -0.47 ,.N (SD=0.89), t(11)=-1.83,

p>0.05, and for invalid trials, -0.42 ,.N (SD=0.69), t(11)=-2.11, p=0.05. At the

later response lag of 1000 ms, for valid trials mean amplitude was -0.61 flY

(SD=1.23), t(1l)=-1.71, p>0.05, and for invalid trials, -0.14 flY (SD=0.79), t(ll)=-

0.60, p>0.05. In the S-LRP time interval 1020 to 1120 ms, at the later lag of

1000 ms, mean amplitude for valid trials was -1.07 flY (SD=1.51), t(11)=-2.47,

p<0.05, and -0.65 flY(SD=1.14) for invalid trials, t(1l)=-1.96, p<0.10. The results

of these analyses show that in the time interval 520 to 620 ms, S-LRP activation

was not significantly different from zero for valid, and only just so for invalid

trials, at the 500 ms response lag. In the 1020-1120 ms interval, S-LRP

activation was significantly different from zero for valid trials at the 1000 ms

response lag, but only a trend was evident for invalid trials.

5.2.2.2.2 S-LRP onset latency as a chronometric measure to fit SAT junction

As in Experiment 5.1, we fitted the jack-knife S-LRP onsets (presented in

Table 5.12) with Equation 5.1 to obtain conjoint measures of discriminability and

the temporal dynamics of processing. Figure 5.24 presents the S-LRP onset

latencies plotted against jack-knife based d' performance measures, fitted with

Equation 5.1. The quality of fit determined by the value of adjusted R2 showed

values of .87 and .99 for the valid and invalid conditions respectively. The quality
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of fits of individual data ranged from .84 to .9 in the valid condition and .98 to .99

in the invalid condition.

4~------~------~------~--------~------~------_'
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Valid Invalid
adj R2 .87 .99
asymptote 3.60 2.52
rate 72 ms 174 ms
intercept 400 ms 394 ms
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0.2 004 0.6 0.8 1.2 lA

S-LRP Processing time (sees]

Figure 5.24. Average S-LRPonset data for Experiment 5.3. Accuracy is plotted in jack-
knife d' units as a function of S-LRPonset latency for both valid and invalid conditions.
The data is fitted with Equation 5.1.

The effect of attention on discriminability is reflected in the difference in the

asymptotic parameters of the two conditions;' asymptotic performance was

reached at 3.60 d' units in the valid condition, and 2.52 in the invalid condition.

A one-tailed Hest on the individual asymptote parameters was significant
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(t(11)=9.92, p<O.OOl), indicating that the validity of the cue improved the

discriminability of the target stimulus. To assess the effect of attention on the

speed of processing, we turn again to the rate and intercept parameters. Figure

5.24 shows that there was a significant difference in the rate parameter (72 ms

versus 174 ms, for valid and invalid conditions, respectively, t(l1)= 10.01,

p<O.OOl), indicating that the valid cue accelerated the rate at which information

was processed, a difference of 102 ms compared to the invalid cue. No significant

effect of cueing was found on the intercept parameter of the SATfunction, for the

valid condition the intercept was 400 ms versus the slightly earlier time of 394

ms in the invalid condition (t(11)=0.21, p>0.05).

5.4.2.2 The LRP-R

Table 5.13 shows the mean onset latencies of the response-locked LRP for

valid and invalid trials at each response tone lag. A repeated-measures ANOVA

with Cue and Lag as factors showed the main effects of Cue and Lag to be non-

significant (main effect of Cue, F(1,11)=2.02, p>0.05, and main effect of Lag,

F(5,55)=2.05, p>0.05). The Cue x Lag interaction was also non-significant

(F(5,55)=1.12, p>0.05). Figure 5.25 shows the LRP-R and HEOG waveforms for

both conditions at each response lag for Experiment 5.3.
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Table 5.13. The mean onset-latencies (ms) of the response-locked LRP for valid and
invalid trials at six response lags of Experiment 5.3 (SD in parentheses).

Lag Valid Invalid

30mB -146 (4.22) -169 (5.94)

60mB -159 (4.20) -160 (5.63)

120mB -122 (5.43) -179 (4.12)

250mB -197 (4.29) -174 (6.61)

500mB -129 (7.52) -160 (5.88)

1000 ms -130 (6.57) -164 (6.93)
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Figure 5.25. The response-locked LRPand HEOGfor Experiment 5.3. From left-to-right,
top-to-bottom, each panel shows the valid and invalid LRP-Ronset latency, and HEOG,
for each response lag.
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5.4.2.3 The effect of cueing on ERPs

Table 5.14 presents the Greenhouse-Geisser F-statistics and significance

levels for the main effect of Electrode and the interactions, Electrode x Cue,

Electrode x Lag, and Electrode x Cue x Lag. A main effect of Electrode can be

observed at all time intervals with the exception of 200-260 ms (F(69,759)=1.57,

p>0.05; see Table 5.14 for F-values and significance levels). The earliest

amplitude modulation of the ERP by cue type observed in the Electrode x Cue

interaction emerges only at the last time interval 320-380 ms (F(69,759)=2.67,

p<O.OOl). A significant Electrode x Lag interaction is also restricted to the 320-

380 ms time interval (F(345,3795)=2.73, p>0.05). No significant Electrode x Cue

x Lag interactions were found at any of the time intervals.

Table 5.14. Greenhouse-Geisser corrected F-values and significance levels for repeated-
measures ANOVA with Electrode, Cue, and Lag as factors, on ERP amplitude data for
Experiment 5.3 (tp>O.10, *p<O.05, ***p<O.001).

Time Interval

80- 110- 140- 170- 200- 260- 320-
110 140 170 200 260 320 380

Electrode F=8.86 F=5.81 F=6.31 F=7.49 F=1.57 F=3.06 F=3.3
*** *** *** *** t * *

ElectxCue F=O.61 F=O.87 F=O.93 F=O.86 F=O.79 F=1.06 F=2.67
t t t t t t ***

ElectxLag F=1.00 F=O.89 F=O.85 F=1.01 F=O.78 F=1.45 F=2.73
t t t t t t ***

ElecxCuexLag F=O.99 F=O.99 F=O.97 F=O.80 F=1.07 F=O.91 F=O.77
t t t t t t t
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Figure 5.26. Grand-averaged waveforms for Experiment 5.3 for valid and invalid
conditions at electrodes P07 P08, POZ, P03, P04, 01, and 02.
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Figure 5.26 shows the ERPwaveforms elicited by the valid and invalid cues at

occipital and parietal electrodes collapsed over response lag. Repeated-measures

ANOVAon the amplitude data of these seven electrodes showed a main effect of

Electrode in the intervals 80-110 ms (F(6,66)=3.74, p<0.05), and 170-200 ms

(F(6,66)=4.99, p<0.05). There were no significant Electrode x Cue interactions at

any time intervals (see Table 5.15 for F-values and significance levels), and a

significant Electrode x Lag interaction was evident in the 110-140 ms interval

(F(30,330)=2.32, p<0.05) and 460-520 ms interval (F(30,330)=3.03, p<0.05).

There were no significant Electrode x Cue x Lag interactions.

Table 5.15. Greenhouse-Geisser corrected F-values and significance levels for repeated-
measures ANOVA with Electrode, Cue, and Lag as factors, on ERP amplitude data of
Experiment 5.3 for seven electrode sites (tp>O.10, *p<O.OS).

Time Interval (ms)

80- 110- 140- 170- 200- 260- 320- 380- 460-
110 140 170 200 260 320 380 460 520

Electrode F=3.74 F=2.26 F=2.8S F=4.99 F=1.S7 F=1.43 F=O.89 F=O.89 F=1.44
* t t * t t t t t

ElectxCue F=O.27 F=O.43 F=O.44 F=O.60 F=O.79 F=1.02 F=1.12 F=1.12 F=2.30
t t t t t t t t t

ElectxLag F=2.06 F=2.32 F=1.28 F=O.9S F=O.78 F=1.40 F=O.73 F=O.73 F=3.03
t * t t t t t t *

ElecxCuexLag F=1.10 F=O.77 F=1.12 F=O.90 F=1.07 F=O.77 F=O.77 F=O.77 F=O.71
t t t t t t t t t
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Figure 5.27 depicts the mean amplitudes for valid and invalid trials between

460-520 ms (around 340-400 ms following target onset) for each electrode.

Amplitude enhancements for valid trials relative to invalid trials are particularly

evident at parietal-occipital sites P08, P04 and POZ.

2.4

o

~_ 1.8

i
~ 1.2

0.6

P07 POB P03 P04
Electrode

01 02 POZ

Figure 5.27. Mean amplitude for valid and invalid conditions at lateral parietal-occipital
P07 and P08, P03 and P04, lateral occipital 01 and 02, and the midline parietal-
occipital POZ,at time interval 460-520 ms (around 340-400 ms followingtarget onset).

Figure 5.28 depicts difference waveforms (valid(ERP activity) minus

invalid(ERP activity)) for each response lag. The figure shows that the pattern of

activation for the valid cue is more positive in the 400-600 ms time range,

particularly at electrodes P03 and Pz. Scalp topographic voltage maps of this

difference activation are shown in Figure 5.29, confirming the occipito-temporo-

parietal distribution of the validity effect.
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Figure 5.28. Difference waves (valid(ERP)minus invalid(ERP)) for the six response lags of
Experimen t 5.3.

238



190.0 ....

310.0 "'"

5!iO.oms

670.0 ....

210.0 ms

330.0 InS

570.oma

690.0 ....

23O.oms

~.om.

470.0 ms

590.0_

710.0 ms

250.0_

370.0 ms

490.0 _

610.0 ms

7JO.oms

270.0 ..

390.0 ms

510.0 nil

630.0 ms

750.0 nil

reference fre.
0.25 pV I step

Figure 5.29. Topographical maps of the difference activation between valid and invalid
(valid minus invalid) trials of Experiment 5.3.
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P3 Latency. The mean peak latency of the P3 component for valid and invalid

conditions, time-locked to the onset of the target stimulus, was 440 ms and 470

ms, respectively. Figure 5.30 shows the grand-average ERP waveforms showing

the peak P3 onset latency for valid and invalid trials at electrode Pz, and scalp

topographic voltage maps shown in Figure 5.31 illustrate the topography of

activation at 440 ms for valid trials and 470 ms for invalid trials. A repeated

measures ANOVAon the peak latency of the P3 component with Lag and Cue as

factors showed a significant main effect of Lag (F(5,55)=13.51, p<O.OOl), a

significant main effect of Cue (F(I, 11)=7.68, p<0.05), and 'non-significant Lag x

Cue interaction (F(5,55)=0.39, p>0.05). The validity of the cue significantly
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modulated the latency of the peak P3 component, indicating an effect at the level

of stimulus categorisation.
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Figure 5.30. Grand-averaged ERP waveform showing peak P3 latency for valid and
invalid trials at electrode Pz.

Figure 5.31. Scalp topographic voltage maps of P3 peak latency for valid (left) and invalid
(right) trials, at 440 ms and 470 ms, respectively, for Experiment 5.3.
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5.4.3 Discussion

The main results of Experiment 5.3 can be summarised as following. Firstly,

cue validity enhanced target discriminability as evidenced in the higher

asymptote parameter of the SAT function. Secondly, cue validity speeded up

information processing, as reflected in the rate parameter, indicating a faster rate

in the increase from chance to asymptotic performance (a difference of 47 ms), a

finding consistent with the study of Carrasco and McElree (2001). We also found

a difference of 22 ms in the earlier intercept of the SATfunction for valid trials,

relative to invalid trials. In using the onset latency of the S-LRPas an alternative

chronometric measure with which to fit the SAT function, we observed both a

difference in target discriminability, and speed of processing, evidenced on the

SATfunction as a difference in the rate of processing, 102 ms faster in the valid

condition. Yet, in analysing the effect of cue validity on the mean onset latencies

of the S-LRPand LRP-R,similar to the previous two experiments, we failed to find

any effects, indicating that advance information regarding target location did not

shorten pre-motoric or motoric processing, as measured by the LRP.

Turning to the ERP data, the earliest target-related amplitude modulation

was observed at around 300-400 ms following target onset. Cue validity also

modulated the latency of the P3 component, occurring earlier for valid trials

relative to invalid trials. The modulation of the ERP, relative to the previous

experiments, and compared to previous studies, manifests here at later time

intervals, suggesting an effect on decision-related processes, rather than early

sensory-related processes.

241



5.5 Concluding remarks

The aims of this study were to determine if attention could speed up visual

information processing, and if so, to establish the locus of such effects within the

information processing stream. Potentially, the locus of a modulation on the

temporal dynamics of processing could lie at early sensory stages, and/or at later

response-related stages. The results of three experiments using pre-cueing to

manipulate spatial attention, and a SAT procedure to examine the full time

course of processing, indicated that attention does speed up information

processing, as observed in the earlier intercept of the SAT functions of

Experiments 5.1, 5.2, and 5.3, and in the rate of processing in Experiment 5.3.

Cue validity enhanced the speed of information processing, expressed as an

earlier departure from chance performance, by 22 ms in Experiment 5.3, 32 ms

in 5.1, and 44 ms in Experiment 5.2, while the rate of information processing was

accelerated by 47 ms in Experiment 5.3.

To determine the locus of this effect, we analysed the early pre-motoric, and

later motoric, intervals of the LRP. Perhaps due to insufficient sensitivity of the

LRP as a chronometric measure, no effect of cue validity was observed on either

LRPinterval. ERP analyses, however, revealed that the amplitude and latency of

the early PI component was unaffected by attention, while a larger NI component

was evident for invalid trials relative to valid trials in Experiment 5.2. The effect

of cue validity on ERP amplitude appeared later in Experiment 5.3, occurring

around 300-400 ms following target onset. While amplitude enhancements of

ERP components have been widely documented; and behavioural measures of the

temporal dynamics of processing, such as RT and SAT, suggest that attention

speeds up processing, no equivalent effect has been reported in terms of a latency
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shift for early ERP components. The results reported here are consistent with

previous studies; attention did not affect the latency of early ERP components,

but did incur earlier peak latency for the later P3 component. Taken together,

analyses of the ERPs suggest that there were no attentional modulations of early

sensory-related components, neither in amplitude nor latency. Rather, ERP

amplitude was modulated at later time intervals, and the earlier latency for the

peak P3 component for valid trials indicates an effect of attention at later

decision-related stages related to stimulus categorisation.

Further exploration in establishing the locus of a temporal modulation in

information processing, as a result of attention, should perhaps employ a more

difficult task, such as a feature conjunction task, as performance levels were

already high here at short response lags with invalid cues. Increasing the

difficulty of the task, and thus reducing performance levels overall, may produce

a more pronounced effect on the LRPand ERPwaveforms.
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Chapter 6

General Discussion

The aim of this thesis was to explore different questions regarding the

selective use of visual information for perception and recognition. To this end, a

series of experiments were conducted, each described in Chapters 2 to 5. In this

final chapter, summaries of those experiments are provided, followed by a

consideration ofmethodological and theoretical implications.

6.1 Summary

In Chapter 2, I posed the question: What is the information underlying the

stable percepts of a bi-stable image? I addressed this question in Experiment 2.1

using the bubbles method of Gosselin and Schyns (2001), to determine the

information underlying the bi-stable percepts of Oali's Slave Market with the

Disappearing Bust of Voltaire. The results of 'fhis experiment showed that the

information underlying these percepts differed across the 20 image and across

the third dimension of spatial scales; the perception of the Nuns was restricted to
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high spatial frequency information, whereas the information underlying the

perception of Voltaire was constrained to lower spatial frequencies. I proposed

that the alternation between the two different percepts of this bi-stable image

might be explained in terms of a switch between the spatial filters processing the

image.

In Experiment 2.2, I validated this information using frequency-specific

adaptation in which observers adapted either to high or low spatial frequency

patterns, and then viewed a hybrid image containing the information underlying

the perception of the Nuns and of Voltaire (derived from Experiment 2.1).

Adapting observers to high spatial frequency patterns suppressed perception of

the Nuns, and induced a perception ofVoltaire, whereas adaptation to low spatial

frequency patterns suppressed the Voltaire percept, inducing a perception of the

Nuns. Experiment 2.2 demonstrates that adaptation to the spatial frequency

information underlying a percept caused a suppression of the percept, inducing a

perception of the alternative image interpretation. I concluded from these two

experiments that knowing the information content of a stimulus can contribute to

our understanding of the perceptual mechanisms engaged in processing visual

input.

In Chapter 3, the adaptation method employed in Chapter 2 was further

developed to suppress the use of local stimulus information. To test the potential

effectiveness of this method in suppressing local perceptual information and thus

test the relevancy of this information for perception and recognition, in

Experiment 3.1 I extended the findings of Experiment 2.2 and adapted observers

locally to the information underlying the stable percepts of Dali's painting.

Similar to Experiment 2.1, I adapted observers to the low spatial frequency
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information underlying the Voltaire percept or to the high spatial frequency

information underlying the Nuns percept. The adapting patterns however were

restricted either to the spatial region corresponding to the percept (Congruent

conditions), or were inconsistent with the percept (Incongruent conditions). On

presentation of a hybrid image that comprised both percepts, the distribution of

responses in the Congruent conditions were consistent with the findings of

Experiment 2.2, that is, observers adapting to high spatial frequency information

constrained to the spatial regions of the Nuns percept reported a perception

orthogonal to the adapting pattern, in this case Voltaire. Participants who

adapted to low spatial frequency information restricted to the spatial regions of

Voltaire also reported a perception orthogonal to the adapting pattern. In

contrast, the distribution of responses for the Incongruent conditions differed

from the Congruent conditions; most observers who adapted to low spatial

frequency information constrained to the spatial regions of the Nuns percept still

perceived Voltaire, indicating a failure to suppress the Voltaire percept. The

distribution of responses for observers who adapted to high spatial frequency

information restricted to the spatial regions of the Nuns showed an orthogonal

perception, that is they perceived Voltaire, indicating a suppression of the Nuns

percept, albeit less than in the Congruent condition. The results of Experiment

3.1 highlight the importance of the interaction between the spatial regions and

spatial frequencies in driving these percepts. Methodologically, I suggested that

this adaptation effect on local stimulus information might provide a tool to

examine the use of local stimulus information in mediating perception and

recognition of visual input.
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Experiment 3.2 applied the local adaptation method to the perception of

gender in faces. I created hybrid face stimuli that contained the information of

one face across the facial regions and spatial scales diagnostic to resolve a gender

task, and the face of another gender in the non-diagnostic regions. Observers

adapted to the average spatial frequency information underlying the faces,

restricted to either the diagnostic regions, or to the non-diagnostic regions. It

was expected that this local adaptation would result in a suppression of the

visual information in the adapting region, so that gender judgements of hybrid

faces would result in a distribution of responses that would reflect the face

represented in the non-adapting region. The results, however, failed to find an

effect of the region of adaptation on the gender judgement of the hybrid face

stimuli. I discussed this null result in Chapter 3 as a methodological problem,

most probably with the hybrid faces used, and in our conception of diagnostic

information.

In Chapter 4, I addressed the followingquestions relating to the evolution of

information use with learning: How does attending to visual information evolve

over time as a result of learning? And what is the mechanism(s) enabling

learning? Since observers use only a subset of the information available, do the

mechanism(s) enabling learning and selection change over the visual input? I

attempted to answer these questions in a face discrimination task using the

method of noise masking in a perceptual learning paradigm. The method

involved measuring observers contrast thresholds in different levels of external

noise across different regions of the face in' several learning sessions. To

characterise the mechanisms enabling learning, contrast thresholds were plotted

as a function of external noise density for each day of learning, as conducted
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previously by Gold et al. (1999b, 2004). Each potential mechanism yields a

different performance signature on contrast versus noise functions. To obtain a

benchmark of performance we also presented the same task to a theoretically

ideal observer that can use all of the information available in the stimulus.

Comparison of human performance to that of ideal performance enabled the

calculation of a measure of the efficiencywith which human observers used the

information available in each facial region, on each learning session.

The results for two observers were consistent showing increases in contrast

thresholds across facial regions as noise density increased. Contrast thresholds

also decreased with learning, across all image regions and four noise density

levels for the same two observers. For each of the three observers tested, at some

noise levels and face regions, it was not possible to establish a contrast threshold

that was within the tested range, leading to several empty data cells. Therefore,

with incomplete data, I was unable to fit a model to the contrast versus noise

functions, such as the LAMused by Gold et al. (1999b, 2004) or the PTMof Lu

and Dosher (2004), to establish the mechanisms underlying learning. The results

of a third observer were inconsistent, showing decreases in efficiency for some

facial regions between the first day of learning and the second and third days,

before increasing again on the final session. I explained the inconsistency in this

observer's results in relation to the strategies the observer may used to resolve

the task.

My conclusions from Experiment 4.1 while limited by the disappointing

missing data points, endorse the endeavour to 'provide a qualitative as well as a

quantitative account of perceptual learning in a face discrimination task. The
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experiment was discussed in terms of methodological improvements for future

study.

Chapters 2 to 4 each investigated the visual information attended for different

perceptual and recognition tasks, in Chapters 2 and 3 for the perception of a bi-

stable image, as well as the perception of gender in faces in Chapter 3, to the

evolution of information use across time in a face discrimination task in Chapter

4. Regarding the role of visual information use for perception and recognition,

Chapter 5 adopted a different approach. Here, rather than looking at the

information content of a stimulus I posed the question: Does attention speed up

information processing? And if so, what is the locus of the attentional effect?

Experiments 5.1,5.2, and 5.3 all examined this question using a spatial attention

paradigm, in which attention was manipulated using pre-cues, and speed of

processing measured using SAT procedures. The locus of the effect was

established by recording stimulus and response-related LRP and components of

the ERPs.

The results from Experiments 5.1, 5.2 and 5.3 showed that attention does

enhance the speed of visual information processing, evident in the earlier

intercept (all three experiments) and rate parameters (Experiment 5.3) of the SAT

function for attended versus unattended trials. In relation to the locus of this

effect, analyses of the LRP revealed no effect of attention on the early stimulus-

locked component, or on the late response-locked LRPstage, perhaps due to the

insufficient sensitivity of the LRP as a chronometric measure. As for the event-

related brain potentials, no amplitude or latency modulations were evident on

early sensory-related PI/NI components. An effect on the peak latency of the P3

component was observed, however, in Experiments 5.1 and 5.3, suggesting an
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acceleration of categorisation processes. Overall, the results are consistent with

the idea that attention modulates decision-related processes. For example,

Schneider and Bavelier (2003) arrived at a similar conclusion in a study

investigating attentional modulations on the temporal dynamics of information

processing.

6.2 Issues, methodological and theoretical

Here, I consider specific methodological and general theoretical issues related

to the experiments just described. Firstly, I consider the effectiveness of the

bubbles method as a tool in which to determine the subset of information an

observer selects to resolve perceptual and recognition tasks. Secondly, I

contemplate the concept of diagnosticity and suggest its interpretation here may

be problematic in at least one experiment. Lastly, I reflect on the form of

question: What is the information selected? I suggest in many areas of research

this question is of importance, but that it has its limitations.

6.2.1 Does Bubbles induce atypical observer strategies?

Experiments 2.1 and 2.2 together provide a case study on the visual

information underlying the perception of a bi-stable image. To determine this

information, I used the bubbles method of Gosselin and Schyns (2001), which

was applied across the 20 image, and across different spatial scales, fine-to-

coarse. The Bubbles method is unique in enabling a simultaneous search of the

20 spatial information underlying a percept, and the entire spatial frequency
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spectrum decomposed into several spatial frequency bands. Other techniques

such as noise masking or reverse correlation, at this time in their development,

do not enable such a large search space to be sampled simultaneously for

information; rather these techniques typically measure performance in stimuli

band-passed to contain only a range of spatial frequencies as opposed to the

entire image spectrum. The effectiveness of the bubbles method as a tool to

study information use, however, has recently been subject to some criticism

(Murray and Gold, 2004a, b).

At the core of this debate is the critique that in sparsely sampling a stimulus

using a technique such as bubbles, observers employ strategies atypical of

everyday perception and recognition. Yet, the evidence from studies applying the

bubbles method to questions of information use in face categorisation tasks

converge well with similar studies using different methodologies. For example, in

the experiments of Gosselin and Schyns (2001) and Schyns et al. (2002), the face

information used to resolve a face identity task, determined using bubbles, is

highly similar to the facial information fixated in experiments recording eye

movements (Yarbus, 1967). Additionally, the information used to resolve the

gender task in these bubbles experiments revealed a bias to information on the

left side of the face, a result consistent with studies using chimeric face stimuli

(Burt and Perrett, 1997; Butler et al., 2005), and with results using reverse

correlation (Mangini and Biederman, 2004). This convergence of evidence for the

information observers use in different face tasks, derived from different

methodologies, suggests that the sampling method of bubbles does not lead

observers to adopt an atypical selective use of information. In the context of the

current experiment, the technique was applied to determine the information
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present when an observer experienced one percept as opposed to the other. This

information was validated in Experiment 2.2 using frequency-specific adaptation,

and observed orthogonality in responses suggested that the information derived

using bubbles is indeed the information that underlies these percepts.

6.2.2 The concept of diagnosticity

The concept of diagnosticity was introduced here within the context of the

Diagnostic Recognition Framework (Schyns, 1998). Within this framework, the

information diagnostic to resolve a task is determined by the constraints imposed

by the demands of the task, and the availability of stimulus information. Thus,

this framework posits a flexible approach towards the selective use of

information. Previous research using the bubbles method substantiates this

approach, demonstrating that the diagnostic information in the same stimulus

set differed as a function of the categorisation task demands (Gosselin and

Schyns, 2001; Schyns et al., 2002). The application of the bubbles method to

determine the diagnostic information to resolve a task operates by assigning a

diagnostic status to a feature (at a pixel level) as it reaches a pre-determined

threshold criterion, those features that fall below this criterion are assigned a

non-diagnostic status, whereas those above are heralded diagnostic. The

problem with this binary representation of feature diagnosticity is that in reality,

it is more likely that features are best represented as a gradient of diagnosticity in

which each feature has a differential diagnostic weight. At different levels of

performance criterion, for example adjusting from 75% to 60% correct, a different

set of features will be deemed diagnostic, however overlapping. A distinction is
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necessary, therefore, between the sufficiency versus necessity of a feature, to

resolve a given perceptual or recognition task.

6.2.3 Determining the information selected for perception

Here, I consider the usefulness of asking the question: What is the

information selected? The flexible approach to the selective use of information

states that information selection is determined by task demands, the availability

of stimulus information, and previous experience with the input. Therefore, the

information selected to resolve a task will vary accordingly. It could be argued

that there are clear limitations in a research agenda that aims to determine solely

the information subtending different perceptual or recognition tasks. While

there are many research domains where a determination of the subset of

stimulus information that is used to resolve a task would prove fruitful, a

research agenda whose sole endeavour is to establish such information is limited

where there is an absence of interest for characterising the mechanisms of

processing. This is an important point to acknowledge, because the development

of new techniques, such as bubbles and reverse correlation, which pictorially

reveal the information, used or represented, to resolve a task, may lead to a less-

than-informative application of these techniques to questions of visual

processing. However, used appropriately, and in conjunction with other

techniques, these techniques have the potential to provide a fuller account of

visual and cognitive processing that was previously unavailable.
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6.3 Conclusion

In summary, this thesis has addressed different aspects of attention to visual

information for perception and recognition, including an analysis into the visual

information underlying the perception of an ambiguous image, the tracing of the

evolution of information use as a result of learning, and establishing the locus of

an attentional modulation on the speed of visual information processing. On

reflection, the main contributions of the present research are, firstly, in

highlighting the importance of understanding the information content of a

stimulus and how this may influence processing, and secondly, in developing

methods in which to determine and validate this information. Lastly, it was

shown that attention accelerates the temporal dynamics of processing, at the

locus of a decision stage in the stream of information processing, related to

stimulus categorisation. In addressing each research question, different

methodologies were employed, the limitations of which have been discussed. In

addition to highlighting methodological weaknesses of the present experiments, I

have also suggested improvements to overcome these in future research, and

highlighted some theoretical issues implied by the results reported here.

254



References

Adolphs, R., Gosselin, F., Buchanan, T.W., Tranel, D., Schyns, P.G., & Damasio,

A.R. (2005). A mechanism for impaired fear recognition after amygdala

damage. Nature, 433, 68-72.

Ahissar, M., & Hochstein, S. (1993). Attentional control of early perceptual

learning. Proceedings of the National Academy of Sciences, USA, 90, 5718-

5722.

Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of

perceptual learning. Nature, 387, 401-406.

Ahumada, A.J. (2002). Classification image weights and internal noise level

estimation. Journal of Vision, 2, 121-131.

Attneave, F. (1971). Multistability and Perception. Scientific American, 225, 62-

71.

Baldassi, S., BUIT,D., Carrasco, M., Eckstein, M., & Verghese, P. (2004). Visual

attention. Vision Research, 44, 1189-1191.

Ball, K., & Sekuler, R. (1987). Direction-specific improvement in motion

discrimination. Vision Research, 27, 953-96$.

Barlow, H.B. (1980). The absolute efficiency of perceptual decisions.

Philosophical Transactions of the Royal Society of London B: Biological Sciences,

290, 71-82.

255



Bashinski, H.S., & Bacharach, V.R (1980). Enhancement of perceptual

sensitivity as the result of selectively attending to spatial locations. Perception

& Psychophysics, 28, 241-248.

Beard, B.L., & Ahumada, A.J. (1998). A technique to extract relevant image

features for visual tasks. In RE. Rogowitz & T.N. Pappas, (Eds.), Human

Vision and Electronic Imaging III, SPIE Proceedings, 3299, 79-85.

Bennett, P.J., & Pratt, J. (2001). The spatial distribution of inhibition of return.

Psychological Science, 12, 76-80.

Biederman, I., & Gerhardstein, P.C. (1995). Viewpoint-dependent mechanisms

in visual object recognition: a critical analysis. Journal of Experimental

Psychology: Human Perception and Performance, 21, 1506-1514.

Blake, R (1989). A neural theory of binocular rivalry. Psychological Review, 96,

145-167.

Blake, R, & Logothetis, N. (2001). Visual completion. Nature Neuroscience

Reviews, 3, 1-11.

Blakemore, C., & Campbell, F.W. (1969a). On the existence of neurones in the

human visual system selectively sensitive to the orientation and size of retinal

images. Journal of Physiology, 203, 237-260.

Blakemore, C., & Campbell, F.W. (1969b). Adaptation to spatial stimuli. Journal

of Physiology, 200,11-13.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10,433-436.

Burgess, A.E., & Colborne, B. (1988). Visual signal detection. IV. Observer

inconsistency. Journal of the Optical Society of America,S, 617-627.

256



Butler, S., Gilchrist, 1.0., Burt, O.M., Perrett, 0.1., Jones, E., & Harvey, M.

(2005). Are the perceptual biases found in chimeric face processing reflected

in eye-movement patterns? Neuropsychologia, 43, 52-59.

Carrasco, M., Giordano, A.M., & McElree, B. (2004). Temporal performance

fields: visual and attentional factors. Vision Research, 44, 1351-1365.

Carrasco, M., & McElree, B. (2001). Covert attention accelerates the rate of

visual information processing. Proceedings of the National Academy of Sciences

of the United States of America, 98, 5363-5367.

Carrasco, M., McElree, B., Denisova, K., & Giordano, A.M. (2003). Speed of

visual processing increases with eccentricity. Nature Neuroscience, 6, 699-700.

Carrasco, M., Penpeci-Talgar, C., & Eckstein, M. (2000). Spatial attention

increases contrast sensitivity across the CSF: Support for signal enhancement.

Vision Research, 40, 1203-1215.

Carrasco, M., Williams, P.E., & Yeshurun, Y. (2002). Covert attention increases

spatial resolution with or without masks: Support for signal enhancement.

Journal of Vision, 2, 467-479, http://journalofvision.org/2/6/4/00I

10.1167/2.6.4.

Cheal, M., & Lyon, O.R. (1991). Central and peripheral precuing of forced-choice

discrimination. The Quarterly Journal of Experimental Psychology, 43A, 859-

880.

Coles, M.G.H. (1989). Modern mind-brain reading: Psychophysiology,

physiology, and cognition. Psychophysiology, 26, 251-269.

Coles, M.G.H., Gratton, G., & Fabiani, M. (1990). Event-related brain potentials.

In J.T. Cacioppo & L.G. Tassinary (Eds.), Principles of Psychophysiology:

257

http://journalofvision.org/2/6/4/00I


Physical, Social, and Inferential Elements. Cambridge: Cambridge University

Press.

Costen, N.P., Parker, D.M., & Craw, I. (1996). Effects of high-pass and low-pass

spatial filtering on face identification. Perception & Psychophysics, 58, 602-

612.

Descharnes, R (1972). The World of Salvador Dali. London: MacMillan London

Limited.

Deutsch, J.A., & Deutsch, A. (1963). Attention: Some theoretical considerations.

Psychological Review, 70, 80-90.

DeValois, RL., & DeValois, K.K. (1990). Spatial Vision. New York: Oxford

University Press.

Di Russo, F., & Spinelli, D. (2002). Effects of sustained, voluntary attention on

amplitude and latency of steady-state visual evoked potential: a costs and

benefits analysis. Clinical Neurophysiology, 113, 1771-1777.

Doallo, S., Lorenzo-LOpez,L., Vizoso, C., Rodriguez Holguin, S., Amenedo, E.,

Bani, S., & Cadaveira, F. (2004). The time course of the effects of central and

peripheral cues on visual processing: an event-related potentials study.

Clinical Neurophysiology, 115, 199-210.

Dosher, B.A., & Lu, Z.L. (1998). Perceptual learning reflects external noise

filtering and internal noise reduction through channel reweighting.

Proceedings of the National Academy of Sciences of the United States of America,

95, 13988-13993.

Dosher, B.A., & Lu, Z.L. (1999). Mechanisms of perceptual learning. Vision

Research, 39, 3197-3221.

258



Dosher, B.A., & Lu, Z.-L. (2000a). Noise exclusion in spatial attention.

Psychological Science, 11, 139-146.

Dosher, B.A., & Lu, Z.-L. (2000b). Mechanisms of perceptual attention in

precuing of location. Vision Research, 40, 1269-1292.

Downing, C.J. (1988). Expectancy and visual-spatial attention: Effects on

perceptual quality, Journal of Experimental Psychology: Human Perception and

Performance, 14, 188-202.

Duncan, J. (1980). The locus of interference in the perception of simultaneous

stimuli. Psychological Review, 87, 272-300.

Dutta, A. (1995). Experimental run time system: software for developing and

running experiments on IBM-compatible PCs. Behavioural Research Methods,

Instruments, & Computers, 27, 16-51.

Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity.

Electroencephalography and clinical Neurophysiology, 99, 225-234.

Eimer, M. (1998). Mechanisms of visuospatial attention: Evidence from event-

related brain potentials. Visual Cognition,S, 257-286.

Eimer, M. (2000). The time course of spatial orienting elicited by central and

peripheral cues: Evidence from event-related brain potentials. Biological

Psychology, 53, 253-258.

Eriksen, C.W., & St. James, J.D. (1986). Visual attention within and around the

field of focal attention: A zoom-lens model. Perception & Psychophysics, 40,

225-240.

Fahle, M. (2004). Perceptual learning: A case for early selection. Journal of

Vision, 4, 879-890, http://journalofvision.org/4/ 10/4/, D0110.1167 /4.10.4.

259

http://journalofvision.org/4/


Fahle, M., & Edelman, S. (1993). Long term learning in vernier acuity: Effects of

stimulus orientation, range and of feedback. Vision Research, 33, 397-412.

Fahle, M., Edelman, S., & Poggio, T. (1995). Fast perceptual learning in

hyperacuity. Vision Research, 35, 3003-3013.

Fahle, M., & Morgan, M. (1996). No transfer of perceptual learning between

similar stimuli in the same retinal position. Current Biology, 6, 292-297.

Fine, I., & Jacobs, R.A. (2000). Perceptual learning for a pattern discrimination

task. Vision Research, 40, 3209-3230.

Fine, I., & Jacobs, R.A. (2002). Comparing perceptual learning across tasks: A

review. Journal of Vision, 2, 190-203, http://journalofvision.org/2/2/5,

00110.1167/2.2.5.

Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation

and spatial frequency. Nature, 287, 43-44.

Fiorentini, A., Maffei, L., & Sandini, G. (1983). The role of high spatial

frequencies in face perception. Perception, 12, 195-201.

Fu, S., Fan, S., Chen, L., & Zhuo, Y. (2001). The attentional effects of peripheral

cueing as revealed by two event-related potential studies.

Neurophysiology, 112, 172-185.

Gauthier, I., Williams, P., Tarr, M.J., & Tanaka, J. (1998). Training "greeble"

Clinical

experts: A framework for studying expert object recognition processes. Vision

Research, 38, 2401-2428.

Goffaux, V., Jemel, B., Jacques, C., Rossion, B., & Schyns, P.G. (2003). ERP

evidence for task modulations on face perceptual processing at different spatial

scales. Cognitive Science, 27, 313-325.

260

http://journalofvision.org/2/2/5,


Gold, J., Bennett, P.J., & Sekuler, A.B. (1999a). Identification of band-pass

filtered letters and faces by human and ideal observers. Vision Research, 39,

3537-3560.

Gold, J., Bennett, P.J., & Sekuler, A.B. (1999b). Signal but not noise changes

with perceptual learning. Nature, 402, 176-178.

Gold, J., Murray, R.F., Bennett, P.J., & Sekuler, A.B. (2000). Deriving

behavioural receptive fields for visually completed contours. Current Biology,

10, 663-666.

Gold, J.M., Sekuler, A.B., & Bennett, P.J. (2004). Characterizing perceptual

learning with external noise. Cognitive Science, 28, 167-207.

Goldstone, R.L. (1998). Perceptual learning. Annual Review of Psychology, 49,

585-612.

Gosselin, F., Bacon, B., & Mamassian, P. (2004). Internal surface

representations approximated by reverse correlation. Vision Research, 44,

2515-2520.

Gosselin, F., & Schyns, P.G. (2001). Bubbles: A new technique to reveal the use

of visual information in recognition tasks. Vision Research, 41, 2261-2271.

Gosselin, F., & Schyns, P.G. (2003). Superstitious perceptions reveal properties

of internal representations. Psychological Science, 14, 505-509.

Gosselin, F., & Schyns, P.G. (2004). No trouble with bubbles: a reply to Murray

and Gold. Vision Research, 44, 471-477.

Hayes, T., Morrone, M.C., & Burr, D.C. (1986). Recognition of positive and

negative bandpass-filtered images. Perception, 15, 595-602.

Hayes, A., & Ross, J. (1995). Lines of Sight. In R. Gregory, J. Harris, P. Heard &

D. Rose, (Eds.), The Artful Eye. Oxford: Oxford University Press.

261



Henderson, J.M. (1996). Spatial precues affect target discrimination in the

absence of visual noise. Journal of Experimental Psychology: Human Perception

and Performance, 22, 780-787.

Henning, G.B., Hertz, B.G., & Broadbent, D.E. (1975). Some experiments

bearing on the hypothesis that the visual system analyses spatial patterns in

independent bands of spatial frequency. Vision Research, 15,887-897.

Hillyard, S.A., Luck, S.J., & Mangun, G.R. (1994). The cuing of attention to

visual field locations: Analysis with ERP recordings. In H. J. Heinze, T. F.

Munte, & G. R. Mangun (Eds.), Cognitive electrophysiology: Event-related brain

potentials in basic and clinical research (pp. 1-25). Boston: Birkhausen.

Hillyard, S.A., Vogel, E.K., & Luck, S.J. (1998). Sensory gain control

(amplification) as a mechanism of selective attention: electrophysiological and

neuroimaging evidence. Philosophical Transactions of the Royal Society of

London B, 353, 1257-1270.

Hopfinger, J.B., & Mangun, G.R. (1998). Reflexive attention modulates

processing of visual stimuli in human extrastriate cortex. Psychological

Science, 9, 441-447.

Huyhn, H. (1978). Some approximate tests for repeated-measures designs.

psychometrika,43, 161-175.

James, W. (1890). The principles of psychology: Volume one. NewYork: Dover

Publications.

Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture

discrimination: Evidence for primary visual cortex plasticity. Proceedings of the

National Academy of Sciences of the United States of America, 95, 861-868.

262



Karni, A., & Sagi, D. (1993). The time course of learning a visual skill. Nature,

350, 250-252.

Legge,G., Kersten, D., & Burgess, A.E. (1987). Contrast discrimination in noise.

Journal of the Optical Society of America: A, 4, 391-406.

Leopold, D.A., & Logothetis, N.K. (1999). Multistable phenomena: Changing

views in perception. Trends in Cognitive Sciences, 3, 254-264.

Leuthold, H., Sommer, W., & Ulrich, R. (1996). Partial advance information and

response preparation: Inferences from the lateralised readiness potential.

Journal of Experimental Psychology: General, 125, 307-323.

Li, R.W., Levi,D.M., & Klein, S.A. (2004). Perceptual learning improves efficiency

by re-tuning the decision 'template' for position discrimination. Nature

Neuroscience, 7, 178-183.

Liebe, S., Gold, J.M., Busey, T.A., & O'Donnell, B. (2004). Electrophysiological

correlates of the effects of perceptual learning on signal and noise in the

human visual system. [Abstract]. Journal of Vision, 4, 297a,

http://journalofvision.org/4/8/297 t, DOl:10.1167/4.8.297.

Liu, Z. (1996). Viewpoint-dependency in object representation and recognition.

Spatial Vision, 9, 491-521.

Liu, Z., Knill, D.C., & Kersten, D. (1995). Object classification for human and

ideal observers. Vision Research, 35, 549-568.

Liu, Z., Knill, D.C., & Kersten, D. (1999). Dissociating stimulus information from

internal representation - a case study ion object recognition. Vision Research,

39, 603-612.

Liu, Z., & Weinshall, D. (2000). Mechanisms of generalization in perceptual

learning. Vision Research, 40, 97-109.

263

http://journalofvision.org/4/8/297


Livingstone, M. (2000). Is it warm? Is it real? Or just low spatial frequency?

Science, 290, 1299.

Lu, Z.L., & Dosher, B.A. (1998). External noise distinguishes attention

mechanisms. Vision Research, 38, 1183-1198.

Lu, Z.L., & Dosher, B.A. (2000). Spatial attention: Different mechanisms for

central and peripheral temporal pre-cues? Journal of Experimental

Psychology: Human Perception and Performance, 26, 1534-1548.

Lu, Z.L., & Dosher, B.A. (2004). Perceptual learning retunes the perceptual

template in foveal orientation identification. Journal of Vision, 4, 44-56,

http./ fjournofvision.org/4/ 1/5/ ,DOl:10.1167/4.1.5.

Lu, Z.L., Lesmes, L.A., & Dosher, B.A. (2002). Spatial attention excludes

external noise at the target location. Journal of Vision, 2, 312-323.

Lubbe, R.H.J., & Woestenburg, J.C. (1997). Modulation of early ERP

components with peripheral precues: A trend analysis. Biological Psychology,

45, 143-158.

Luck, S.J., & Hillyard, S.A. (1994). Electrophysiological correlates of feature

analysis during visual search. Psychophysiology, 31, 291-308.

Luck, S.J., Woodman, G.F., & Vogel,E.K. (2000). Event-related potential studies

of attention. Trends in Cognitive Sciences, 4, 432-440.

Majaj, N.J., Pelli, D.G., Kurshan, P., & Palomares, M. (2002). The role of spatial

frequency channels in letter identification. Vision Research, 42, 1165-1184.

Mangini, M.C., & Biederman, I. (2004). Making the ineffable explicit: estimating

the information employed for face classifications. Cognitive Science, 28, 209-

226.

264



Mangun, G.R.R., & Hillyard, S.A. (1987). The spatial allocation of visual

attention as indexed by event-related brain potentials. Human Factors, 29,

195-211.

Maurer, D., Le Grand, R., & Mondloch, C.J. (2002). The many faces of configural

processing. Trends in Cognitive Sciences, 6, 255-260.

McCarthy, G., & Donchin, E. (1981). Ametric for thought: A comparison of P300

latency and reaction time. Science, 211, 77-80.

McElree, 8., & Carrasco, M. (1999). The temporal dynamics of visual search:

Evidence for parallel processing in feature and conjunction Searches. Journal

of Experimental Psychology: Human Perception and Performance, 25, 1517-

1539.

Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception?

Differences between binocular rivalry and ambiguous figures. Journal of

Vision, 4, 539-551, http://journofvision.org/4/7 /2/ ,DOl:10.1167/4.7.2.

Miller, J., Patterson, T., & Ulrich, R. (1998). Jack-knife-based method for

measuring LRPonset latency differences. Psychophysiology, 35, 99-115.

Morrisson, D., & Schyns, P.G. (2001). Usage of spatial scales for the

categorization of faces, objects and scenes. Psychological Bulletin and Review,

8,454-469.

Muller, M.M.,& Hubner, R. (2002). Can the spotlight of attention be shaped like

a donut? Psychological Science, 13, 119-124.

Muller, H.J., & Rabbitt, P.M.A. (1989). Reflexive and voluntary orienting of

visual attention: Time course of activatiori and resistance to interruption.

Journal of Experimental Psychology: Human Perception and Performance, 15,

315-330.

265

http://journofvision.org/4/7


Murray, R.F., & Gold, J.M. (2004a). Troubles with bubbles. Vision Research, 44,

461-470.

Murray, R.F., & Gold, J.M. (2004b). Reply to Gosselin and Schyns. Vision

Research, 44, 479-482.

Oliva, A. & Schyns, P.G. (1997). Coarse blobs or fine edges? Evidence that

information diagnosticity changes the perception of complex visual stimuli.

Cognitive Psychology, 34, 72-107.

Osman, A., & Moore, C.M. (1993). The locus of dual-task interference:

Psychological refractory effects on movement-related brain potentials. Journal

of Experimental Psychology: Human Perception & Performance, 19, 1-21.

Pachella, R.G. (1974). The interpretation of reaction time in information-

processing research. In B. Kantowitz (Ed.), Human Information Processing:

Tutorials in Performance and Cognition. Hillsdale, NJ: Erlbaum.

Pantle, A., & Sekuler, R. (1968). Size-detecting mechanisms in human vision.

Science, 162, 1146-1148.

Parish, D.H., & Sperling, G. (1991). Object spatial frequencies, retinal spatial

frequencies, noise, and the efficiency of letter discrimination. Vision Research,

31, 1399-1415.

Pashler, H. (1998). The psychology of attention. Cambridge, MA:MITPress.

Pelli, D.G. (1981). Effects of visual noise. PhD Thesis, University of Cambridge,

Cambridge.

Pelli, D.G. (1990). The quantum efficiencyof vision. In C. Blakemore (Ed.), Vision:

Coding and efficiency (pp. 3-24). Cambridge: CambridgeUniversityPress.

Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics:

Transforming numbers into movies. Spatial Vision, 10,437-442.

266



Pelli, P.G., & Farrell, B. (1999). Why use noise? Journal of the Optical Society of

America: A, 16, 647-653.

Poggio,T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual

hyperacuity. Science, 256, 1018-1021.

Posner, M.1. (1980). Orienting of attention. Quarterly Journal of Experimental

Psychology, 2, 3-25.

Posner, M.I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma

& D. Bouwhis (Eds.), Attention and Performance X. (pp.531-556). Hillsdale,

N.J.:Erlbaum.

Posner, M.I., Snyder, C.RR, & Davidson, B.J. (1980). Attention and the

detection of signals. Journal of Experimental Psychology: General, 109, 160-

174.

Pylyshyn, Z.W. (1999). Is vision continuous with cognition? The case for

cognitive impenetrability of visual perception. Behavioural and Brain Sciences,

22,341-423.

Rafal, RD., Calabresi, P.A., Brennan, C.W., & Sciolto, T.K. (1989). Saccade

preparation inhibits reorienting to recently attended locations. Journal of

Experimental Psychology: Human Perception and Performance, 15,673-685.

Ratcliff, R (1978). A theory of memory retrieval. Psychological Review, 85, 59-

108.

Reed, A.V. (1973). Speed-accuracy trade-off in recognition memory. Science,

181, 574-576.

Rensink, RA., O'Regan, J.K., & Clark, J.J. (1997). To see or not to see: The need

for attention to perceive changes in scenes. Psychological Science, 8, 368-373.

267



Rensink, RA. (2002). Change detection. Annual Review of Psychology, 53, 245-

277.

Rinkenauer, G., Osman, A., Ulrich, R, & Mattes, S. (2004). On the locus of

speed-accuracy tradeoff in reaction time: Inferences from the lateralised

readiness potential. Journal of Experimental Psychology: General, 133, 261-

282.

Rubin, G.S., & Siegel, K. (1984). Recognition of low-pass filtered faces and

letters. Investigative Ophthalmology and Visual Science, 25, 96.

Rugg, M.D., & Coles, M.G.H. (1995). The ERP and cognitive psychology:

Conceptual issues. In M.D. Rugg & M.G.H. Coles (Eds.), Electrophysiology of

Mind. Event-related Brain Potentials and Cognition (pp. 27-39). Oxford: Oxford

University Press.

Schneider, K.A., & Bavelier, D. (2003). Components of visual prior entry.

Cognitive Psychology, 47, 333-366.

Schyns, P. G. (1998). Diagnostic recognition: Task constraints, object

information and their interactions. Cognition, 67, 147-179.

Schyns, P.G., Bonnar, L., & Gosselin, F. (2002). Show me the features!

Understanding recognition from the use of visual information. Psychological

Science, 13,402-409.

Schyns, P.G., Jentzsch, I., Johnson, M., Schweinberger, S.R, & Gosselin, F.

(2003). A principled method for determining the functionality of brain

responses. NeuroReport, 14, 1665-1669.

Schyns, P. G., & Oliva, A. (1999). Dr. Angry and Mr. Smile: When categorization

flexibly modifies the perception of faces in rapid visual presentations.

Cognition, 69, 243-265.

268



Schyns, P.G., & Rodet, L. (1997). Categorization creates functional features.

Joumal of Experimental Psychology: Leaming, Memory and Cognition, 23, 681-

696.

Sekuler, R, & Blake, R (1994). Perception. NewYork:McGraw-Hill.

Shiu, L., & Pashler, H. (1995). Spatial attention and vernier acuity. Vision

Research, 35, 337-343.

Simoncelli, E.P. (1997). Image and multi-scale pyramid tools [Computer

software]. NewYork: Author.

Simons, D.J., & Rensink, RA. (2005). Change blindness: Past, present and

future. Trends in Cognitive Sciences, 9, 16-20.

Smith, M.L., Cottrell, G.W., Gosselin, F., & Schyns, P.G. (2005). Transmitting

and decoding facial expressions. Psychological Science, 16, 184-189.

Smith, P.L. (2000). Attention and luminance detection: Effects of cues, masks,

and pedestals. Joumal of Experimental Psychology: Human Perception and

Performance, 26, 1401-1420.

Solomon, J.A., & Pelli, D.G. (1994). The visual filter mediating letter

identification. Nature, 369,395-397.

Sowden, P.T., Davies, I.RL., & Roling, P. (2000). Perceptual learning of the

detection of features in x-ray images: A functional role for improvements in

adults' visual sensitivity? Joumal of Experimental Psychology: Human

Perception and Performance, 26, 379-390.

Sowden, P.T., Davies, I., Rose, D., & Kaye, M. (1996). Perceptual learning of

stereoacuity. Perception, 25, 1043-1052.

Sowden, P.T., Ozgen, E., Schyns, P.G., & Daoutis, C. (2003). Expectancy effects

on spatial frequency processing. Vision Research, 43, 2759-2772.

269



Stromeyer, C.F., & Klein, S. (1975). Evidence against narrow-band spatial

frequency channels in human vision: The detectability of frequency modulated

gratings. Vision Research, 15,899-910.

Talgar, C.P., & Carrasco, M. (2002). Vertical meridian asymmetry in spatial

resolution: Visual and attentional factors. Psychonomic Bulletin & Review, 9,

714-722.

Tarr, M.J., & Bulthoff, H.H. (1995). Is human object recognition better described

by geon structural descriptions or by multiple views? Journal of Experimental

Psychology: Human Perception and Performance, 21, 1494-1505.

Tieger, T., & Ganz, L. (1979). Recognition of faces in the presence of two-

dimensional sinusoidal masks. Perception and Psychophysics, 26, 163-167.

Tjan, 8.S., 8raje, W.L., Legge,G.E., & Kersten, D. (1995). Human efficiency for

recognizing 3-D objects in luminance noise. Vision Research, 35, 3053-3069.

Tjan, 8.S., Chung, T.S.L., & Levi, D.M. (2002a). Limitation of ideal-observer

analysis in understanding perceptual learning. Annual Meeting Abstract and

Program Planner accessed at www.arvo.org. Association for Research in Vision

and Ophthalmology. Abstract 2916.

Tjan, 8.S., Chung, T.S.L., & Levi, D.M. (2002b). How many functional factors

does it take to explain perceptual learning? Perception (supp), 31, 109a.

Tjan, 8.S., & Legge, G.E. (1998). The viewpoint complexity of an object-

recognition task. Vision Research, 38, 2335-2350.

Tjan, 8.S., Lestou, V., 8ulthoff, H.H., & Kourtzi, Z. (2003). An fMRImethod for

identifying the sequential stages of processing in the ventral visual pathway.

Journal of Vision, 3, 109a, http://journalofvision.org/3/9j10

doi:10.1167/3.9.109.

270

http://www.arvo.org.
http://journalofvision.org/3/9j10


Verleger, R. (1997). On the utility of P3 latency as an index of mental

chronometry. Psychophysiology,34, 131-156.

Vinette, C., Gosselin, F., & Schyns, P.G. (2004). Spatio-temporal dynamics of

face recognition in a flash: It's in the eyes. Cognitive Science, 28, 289-301.

Wallace, J.M., & Mamassian, P. (2003). The efficiency of speed discrimination

for coherent and transparent motion. Vision Research, 43, 2795-2810.

Watanabe, T., Nanez, J.E., Koyama, S., Mukai, I., Liederman, J., & Sasaki, Y.

(2002). Greater plasticity in lower-level that higher-level visual motion

processing in a passive perceptual learning task. Nature Neuroscience, 5,

1003-1009.

Watanabe, T., Nanez, J.E., & Sasaki, Y. (2001). Perceptual learning without

perception. Nature, 413, 844-848.

Webster, M.A., & Miyahara, E. (1997). Contrast adaptation and the spatial

structure of natural images. Journal oj the Optical Society oj America A, 14,

2355-2366.

Wickelgren, W.A. (1977). Speed-accuracy trade-off and information processing

dynamics. Acta Psychologica, 41,67-85.

Wilson, H.R., & Bergen, J.R. (1979). A four mechanism model for threshold

spatial vision. Vision Research, 19, 19-32.

Wilson, H.R., McFarlane, O.K., & Phillips, G.C. (1983). Spatial frequency tuning

of orientation selective units estimated by oblique masking. Vision Research,

23, 873-882.

Wilson, H.R., & Wilkinson, F. (1997). Evolving concepts of spatial channels in

vision: From independence to nonlinear interactions. Perception, 26, 939-960.

Yarbus, A.L. (1965). Eye movements and vision. NewYork: Plenum.

271



Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual

performance by enhancing spatial resolution. Nature, 396, 72··75.

Yeshurun, Y., & Carrasco, M. (2000). The locus of attentional effects in texture

segmentation. Nature Neuroscience, 3, 622-627.

272




