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Abstract 

 

Introduction and methods 

Asymmetric dimethylarginine (ADMA) is a potent endogenous competitive 

inhibitor of nitric oxide synthases, which has attracted considerable attention 

as a marker and mediator of atherosclerotic disease and as a potential 

mediator of multiple organ failure in critical illness due to endothelial 

dysfunction.  However, data regarding basic aspects of its biology such as 

biological variation and its response to acute inflammation are lacking.  

Moreover, significant methodological variability has been a barrier to collating 

the burgeoning data available.  Therefore, this thesis describes the 

development and validation of a reliable assay for measurement of ADMA and 

related compounds in plasma, urine and other biological fluids based on 

isocratic reverse phase high performance liquid chromatography (HPLC).   This 

method was used to determine the biological variation of ADMA in human 

plasma, and its response to acute inflammation using a model of elective knee 

arthroplasty.  Further HPLC methods for measurement of dimethylamine 

(DMA), the main metabolite of ADMA, and nitrate were developed and used to 

determine excretion of these compounds in acute inflammation to 

complement the observed changes in plasma ADMA concentration. 

 

Results 

Complete chromatographic separation of arginine, homoarginine, 

monomethyl-arginine, ADMA and its structural isomer SDMA was achieved, 

permitting their accurate quantification using a novel, non-endogenous, 

internal standard.  The intra-individual biological variation of ADMA was found 

to be low at 7.4%, imposing a tight imprecision goal for analytical methods.  

Plasma ADMA concentration decreases rapidly during the acute inflammatory 

response, with a median decrease of around 30%, and a significant change 

already evident as little as 12 hours following the onset of inflammation.  No 
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similar change was seen in the concentration of the closely related compound 

SDMA.  No significant increase in the urine excretion of DMA was noted during 

the early phase of the response, with a significant increase seen 5 days 

following the insult by which point the plasma ADMA concentration had 

returned to baseline levels.  A small, but significant, decrease in nitrate 

excretion during the inflammatory response was seen, mirroring the observed 

changes in plasma ADMA. 

 

Conclusion 

The low biological variation of ADMA suggests physiological regulation.  The 

rapid and significant decrease in plasma concentration during inflammation 

does not appear due to increased catabolism, but rather is more likely to 

represent increased cellular partitioning.  This may be associated with an 

impairment in NOS activity.  It is unclear whether this is of pathological 

significance, or represents a physiological response to regulate NO production 

in inflammation.  Further study is warranted in relevant models, particularly 

with attention to intracellular concentrations. 
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Chapter 1 

Introduction 

 

1.1  Arginine and its endogenous methylated derivatives 

 

1.1.1 Biochemistry of arginine 

 

Arginine is a semi-essential amino acid, and is characterised by a guanidino 

group on its side-chain.  With a pKa of around 12.5 the guanidino group is 

protonated at physiological pH, giving the molecule a net positive charge.  

This renders arginine important at the surface of proteins, with a role in 

receptor-ligand interactions.  It is also an important role in several metabolic 

pathways, including the urea cycle, as a substrate for gluconeogenesis, and, 

crucially, as the substrate for nitric oxide (NO) production by nitric oxide 

synthases (NOS). 

 

1.1.2 Methylated derivatives of arginine 

 

In common with other amino acids arginine is subject to various post-

translational modifications which contribute to the functionality of different 

proteins.  One or two methyl groups can be added to the nitrogen atoms of 

the guanidino group to yield mono- and dimethylarginines.  Dimethylarginines 

had been identified in human urine in the early 1970s1, although it was about 

two decades before their potential importance in human physiology was 

realised2.  The chemical structures of arginine, monomethylarginine (MMA), 

asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) 

are shown in figure 1.1. 
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Figure 1.1:  Chemical structures of arginine and its methylated derivatives 
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1.1.3 Synthesis of methylarginines 

 

Endogenous methylarginines are synthesised by a group of enzymes called 

protein arginine methyltransferases (PRMT), which methylate arginine 

residues within proteins3,4.  In mammals there are two main types, both 

utilising S-adenosyl methionine as a methyl group donor.  Type 1 PRMTs have 

a fairly wide range of substrate proteins, including histones and non-histone 

nuclear proteins, and largely produce ADMA4.  Type 2 PRMTs  appear specific 

to myelin basic protein, and largely produce SDMA, a structural isomer of 

ADMA4.  Both PRMTs produce MMA.  Methylated proteins interact with nucleic 

acids and thus protein methylation has important roles in processes like 

transcription and the epigenetic regulation of gene expression.  Free MMA, 

ADMA and SDMA appear on degradation of the proteins containing them.  It is 

generally felt that arginine methylation is an irreversible process.  There is 

evidence that the activity of type 1 PRMTs can be increased by native and 

oxidised low density lipoproteins (LDL)5, increased shear stress6 and anti-

double stranded DNA antibodies7; this suggests that in certain pathological 

states increased PRMT activity could contribute to increased ADMA 

concentrations.  It has been estimated that humans generate about 300 µmol 

of ADMA per day8. 

 

1.2 Clearance of endogenous methylarginines 

 

1.2.1 Catabolism of ADMA by dimethylarginine dimethylaminohydrolase 

(DDAH) 

 

Earlier studies in rabbits had suggested the presence of a metabolic pathway 

for elimination of ADMA many years before the enzymes responsible were first 

identified9.  It appears that approximately one-sixth of the ADMA generated in 
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humans is excreted unchanged into urine2,8, with the majority metabolised by 

DDAH8,10-12 yielding citrulline and dimethylamine10. The metabolic activity of 

DDAH is dependent on a cysteine residue at its catalytic site12.   It has also 

been demonstrated that its molecular structure excludes SDMA as a substrate, 

meaning DDAH is specific for ADMA12.  SDMA, therefore, appears to undergo 

clearance predominantly by renal excretion, as suggested by its significant 

net renal extraction and the strong correlation of plasma SDMA and creatinine 

concentrations13.  The Michaelis constant (Km) of DDAH for ADMA is 

approximately 180 µM, which is many times greater than typical ADMA 

concentrations in humans10.  This means that DDAH should be operating within 

the linear part of its substrate-velocity curve, theoretically permitting a tight 

regulatory influence of DDAH activity on ADMA concentration. 

 

1.2.2 Isoforms and distribution of DDAH 

 

There are two isoforms of DDAH.  DDAH-1 is expressed widely in tissues 

expressing neuronal NOS, especially in the liver and renal cortex, but also in 

diverse tissues such as the pancreas and macrophages11,14.  The liver and 

kidney are therefore quantitatively important sites of ADMA catabolism, 

studies in rats demonstrating fractional excretions of around 30% and 35% 

respectively15,16.  In humans the net renal excretion has been calculated as 

16.2%13.  The importance of the liver in ADMA catabolism is further supported 

by studies showing increased concentrations following major hepatectomy17, 

the strong influence of hepatic dysfunction on ADMA concentrations in 

critically ill patients18, and reductions in ADMA concentration following liver 

transplantation19. 

 

DDAH-2 is expressed widely in foetal tissues, becoming fairly selective for 

sites expressing endothelial NOS (eNOS) in adults14,20.  It thus predominates in 

the vascular endothelium and cardiovascular system, but is also expressed in 
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immune tissues expressing inducible NOS (iNOS)20.  While DDAH-1 has also 

been demonstrated in the endothelium, DDAH-2 appears to exceed it by a 

factor of 10 or more, suggesting that DDAH-2 is the isoform of major 

importance in blood vessels14.  DDAH-2 is also found in the kidney, specifically 

within its vasculature, and may be involved in NO-mediated homeostatic 

responses in that organ21. 

 

Targeted silencing of DDAH isoforms by small interference RNAs has generated 

data suggesting differential roles of the two isoforms14.  DDAH-1 silencing is 

associated with increased plasma ADMA concentration, but little effect on 

blood vessel NO responses.  In contrast DDAH-2 silencing is associated with 

impaired blood vessel responses, but no significant effect on circulating ADMA 

conentrations14.  DDAH-1 has, therefore, been dubbed the “guardian of 

circulating ADMA” concentrations20.    However, more recent work using a 

DDAH-1 knockout mouse showed increased plasma and tissue concentrations 

of ADMA, with raised blood pressure, and no measurable DDAH activity22.  The 

authors of this study speculate that DDAH-1 is the predominant enzyme for 

ADMA catabolism, and that the role of DDAH-2 is doubtful22.  It will be 

important to further delineate isoform-specific roles of DDAH. 

 

Polymorphisms in the genes encoding DDAH enzymes have been increasingly 

studied because of their potential effects on ADMA concentrations, and 

certain polymorphisms have been implicated in cardiovascular risk23, and in 

the decline in renal function in patients with chronic kidney disease24. 
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1.3 Pathophysiological roles of DDAH and ADMA in endothelial dysfunction 

 

1.3.1 DDAH activity impairment in oxidative stress 

 

The critical role of DDAH in vascular health arose from observations using a 

pharmacological DDAH inhibitor which induced a gradual vasoconstriction in 

isolated vascular segments that was reversed by the addition of arginine25.  

This suggested that ADMA was produced continuously, DDAH acting to prevent 

its accumulation.  Furthermore, transgenic mice over-expressing DDAH-1 

demonstrated a 50% reduction in plasma ADMA concentration compared with 

wild type, associated with increased urinary nitrate and a 15 mmHg reduction 

in systolic blood pressure26.  DDAH over-expression is also associated with 

protection from exogenous ADMA in the cerebral circulation27, and DDAH-2 

over-expression ameliorates vascular injury in response to ADMA infusion in 

mice28.   

 

The cysteine residue at the catalytic site of DDAH is susceptible to oxidative 

stress with attenuation of enzyme activity12, thus providing a link between 

vascular risk factors, oxidative stress, raised ADMA concentration and 

endothelial dysfunction.  Such an effect has been demonstrated with oxidised 

LDL and tumour necrosis factor α (TNFα)29, associated with increased ADMA.  

Similar effects have seen with hyperglycaemia30, hyperhomocystinaemia31 and 

cigarette smoke extract32.  Furthermore, eNOS uncoupling by ADMA increases 

production of superoxide with the potential to further impair DDAH and 

increase ADMA even further in a perpetuating cycle33.  DDAH can also be 

inhibited by nitrosylation and in states of excess NO production, especially by 

iNOS, may provide a mechanism through which accumulating ADMA acts as a 

“brake” on harmfully excessive levels of NO production34.  Interactions 

between oxidative stress, DDAH, ADMA and NOS are summarised and 

illustrated diagrammatically in figure 1.2. 
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Figure 1.2:  Interactions between oxidative stress, DDAH activity, ADMA 

and NOS 

 

1.3.2 ADMA in NOS inhibition and endothelial dysfunction 

 

The discovery of NO as the endothelial-derived relaxing factor was a major 

breakthrough in the understanding of the vascular endothelium and its 

dysregulation in disease35.  It has several other functions including inhibition 

of processes involved in atherosclerosis such as smooth muscle cell 

proliferation, platelet aggregation and adhesion, and monocyte adhesion; it 

can thus be described as an anti-atherogenic molecule36.  It is also part of the 

immune response, and is produced in large quantities in response to sepsis 

and inflammation37.  It is synthesised from arginine by NOS38, of which there 

are endothelial, inducible and neuronal isoforms39. 

 

ADMA and MMA are competitive inhibitors of all NOS isoforms2,5,40,41, although 

attention has focussed almost entirely on ADMA as the predominant NOS 
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inhibitor in human plasma.  The seminal work of Vallance showed that intra-

arterial infusion of ADMA into healthy volunteers caused a dose-dependent 

decrease in forearm blood flow, an effect that could be partially offset by 

infusion of arginine2.  In the same study ADMA injections into guinea pigs 

resulted in a 15% increase in systolic blood pressure at an ADMA concentration 

about 9 times that at baseline (9.8 µmol/L).  In healthy human males 

intravenous infusion of ADMA to generate concentrations up to 3 times normal 

raised systemic vascular resistance by approximately 24% and impaired the 

cardiac response to exercise8.  A similar study showed a 14 % decrease in 

cardiac output42.  ADMA also appears to reduce renal perfusion and sodium 

excretion and increase blood pressure42,43 and inhibit flow/shear-stress-

induced vasodilatation in isolated arterioles44.   

 

The experimental studies described in the foregoing paragraph involve plasma 

concentrations greater than those seen in health and many disease states 

(e.g. 2.60 – 5.31 µmol/L compared with a “normal” value of around 0.5 

µmol/L45).  However, observational studies seem to confirm the in vitro 

relevance of ADMA, with a significant inverse correlation shown between 

plasma ADMA concentration and brachial flow-mediated dilatation in over 

2,000 healthy young adults46.  Similar associations have been demonstrated in 

individuals with hypercholesterolaemia47, type 2 diabetes mellitus48 and 

chronic kidney disease49.  Furthermore, plasma ADMA concentration was 

significantly associated with progression of carotid intima-media thickness in 

individuals without overt cardiovascular disease50. 

 

Another relevant factor in the interpretation of plasma ADMA concentrations 

is the fact that intracellular concentrations can be approximately 5 – 10 times 

that found in plasma, with endothelial cells actively able to take up ADMA and 

concentrate it intracellularly51.  Given that the inhibitor constant (Ki) of ADMA 

on eNOS is around 0.9 µmol/L, it is clear that a modest increase in plasma 

ADMA concentration could have a significant effect on NO production51.  
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Further work is needed to elucidate the relationship of intra- and 

extracellular concentrations of methylarginines in vivo. 

Although SDMA has no direct effect on NOS, it is able to compete with 

arginine for transport via cationic amino acid transporters (CAT), thereby 

potentially reducing substrate availability for NO synthesis52,53.  In cultured 

endothelial cells, SDMA reduced NO synthesis in a dose-dependent fashion, an 

effect that was reversed by arginine supplementation53. 

 

1.3.3  Associations of ADMA with vascular risk factors 

 

There has been much work seeking associations with traditional and novel 

cardiovascular risk factors as part of the underlying hypothesis that, through 

NOS inhibition, ADMA could be a mediator of endothelial dysfunction.   

 

1.3.3.1  Hypercholesterolaemia 

The evidence in hypercholesterolaemia is inconsistent.  Diet-induced 

hypercholesterolaemic rabbits and monkeys have an approximately 2-fold 

increase in ADMA concentration54,55, and associations have also been 

demonstrated in humans47,56,57.  Other human studies have failed to replicate 

this link58,59, although one of these studies included only individuals with total 

cholesterol < 4.6 mmol/L58  and in the other more than 50% of participants 

were already taking lipid lowering drugs59.  Lowering of plasma ADMA  

concentration on statin treatment has also been an inconsistent finding, with 

studies showing reductions with rosuvastatin and fluvastatin60,61, but no 

changes in other studies despite large reductions in cholesterol62-66.  It has 

also been shown that higher ADMA concentrations are associated with a 

reduced responsiveness in terms of endothelial function to statin 

treatment67,68, suggesting that high ADMA concentrations might be able to 

block the pleiotropic effects of statins, which include up-regulation of eNOS69.   
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1.3.3.2  Obesity, insulin resistance and diabetes mellitus 

Hyperglycaemia seems to result in oxidative stress which can impair DDAH 

activity in human cells30, and plasma ADMA concentrations are raised in 

individuals with impaired glucose tolerance70-72, and are associated with 

impaired myocardial tissue perfusion in this context72.  In subjects undergoing 

angiography, ADMA was found to strongly predict glycaemic category (normal, 

impaired and diabetes)73, and in women with previous gestational diabetes 

was found to predict the development of glucose intolerance with an adjusted 

hazard ratio of 3.94 (1.16 – 13.37) for an ADMA concentration above the 

median during 3 years of follow up74.  In obese women, ADMA concentrations 

are higher in those with associated insulin resistance, and in these individuals 

weight loss through caloric restriction decreases ADMA concentration and 

improves insulin sensitivity75.  Weight reduction surgery in morbidly obese 

women is also associated with decreases in plasma ADMA76.  In neither of 

these studies, however, was weight independently associated with ADMA as 

such75,76; rather it appears that the metabolic abnormalities that can develop 

in the setting of obesity are what influence the ADMA concentration, and the 

reduction in ADMA concentration following weight loss occurs in line with 

improvements in parameters of insulin sensitivity rather than the measured 

weight76.  In patients with diabetes mellitus plasma ADMA concentration is 

associated with albuminuria and microangipathy77, and independently and 

strongly predicts the development of retinopathy78 and the progression of 

nephropathy79. 

 

As in hypercholesterolaemia, the effect of pharmacological treatment on 

ADMA is also variable.  In type 2 diabetes, 3 months of treatment with 

metformin decreased plasma ADMA concentration by about 30%80, and similar 

reductions have been seen in women with polycystic ovarian syndrome and 

insulin resistance81.  Peroxisome proliferator-activated receptor gamma 

(PPARγ )agonists have been shown to reduce plasma ADMA and improve 

endothelial function in subjects with type 2 diabetes71,82, although negative 
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results with this therapy have also been reported83.  DDAH-2 contains a PPARγ 

binding site in the promoter region, and this provides a possible mechanism 

for the effect of these drugs84.  Lastly, intensive glucose control, irrespective 

of how it is achieved, reduces plasma ADMA concentration and improves 

vascular function, possibly through anti-cytokine and anti-atherogenic 

effects85. 

 

1.3.3.3  Hypertension 

The crucial role of NO on vascular tone and function predicts a role for ADMA 

in hypertension.  DDAH-1 knockout mice demonstrate a significant increase in 

plasma ADMA concentration and blood pressure22,86,87, although, intriguingly 

data do not suggest that  DDAH-2 is as important, at least under basal 

conditions28,88.  In humans with hypertension, plasma ADMA concentrations are 

increased compared with healthy controls and are related to markers of 

endothelial dysfunction89-91 and are associated with mean blood pressure in 

healthy individuals70.  Moreover, ADMA infusion into healthy volunteers 

reduced renal blood flow, increased salt retention and raised systemic blood 

pressure42.  Interestingly, plasma ADMA concentration is also raised compared 

with controls in subjects with so-called “white coat hypertension”, perhaps 

suggesting that this is not an entirely benign phenomenon92.  It has also been 

shown that in healthy young men, black Africans have significantly reduced 

NO and flow-mediated dilatation compared with white Europeans, and this is 

independently associated with ADMA concentration93.  It is intriguing to think 

that this could underlie a fundamental difference in the aetiology of 

hypertension in these different ethnic groups, a fact which is perhaps already 

acknowledged by treatment guidelines that reflect a reduced responsiveness 

to inhibition of the renin-angiotensin system in black African and Caribbean 

patients94.   In summary, the role of ADMA in hypertension is likely to involve 

several factors, including the direct effect of NOS inhibition, and the effect 

on renal haemodynamics.  Moreover, increased shear stress is known to 
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increase PRMT activity, and this represents another possible mechanism for 

increased ADMA concentrations6. 

 

Several studies have demonstrated reductions in plasma ADMA concentration 

with short-term angiotensin converting enzyme (ACE) inhibitor treatment; in 

these studies ADMA was reduced by 12 – 20%, and incorporated patients with 

essential hypertension95-97, insulin resistance98, diabetes99 and chronic kidney 

disease (CKD)100.  Angiotensin-receptor blocking drugs produce similar effects 

on ADMA95,97,101, and this may be related in part to inhibition of the effects of 

oxidative stress, such as lipid peroxidation, and so restoration of DDAH 

activity102.  This may be a factor in explaining the protective effects of ACE 

inhibitors on the vascular endothelium, which seem to extend beyond their 

obvious effects on the renin-angiotensin system103. 

 

1.3.3.4  Chronic kidney disease 

CKD is regarded as a risk factor for cardiovascular disease and mortality, with 

the excess in mortality not being explained by traditional vascular risk factors 

alone104.  Patients with end-stage renal failure (ESRF) were first shown to 

have a significant increase in plasma ADMA in the landmark study of Vallance2.  

Since then this observation has been repeated in several studies incorporating 

patients with various stages of CKD and ESRF (reviewed by Jacobi105).  In CKD, 

plasma ADMA concentration is increased, on average, around 2-fold over 

healthy controls, with a wide range of concentrations reported (0.46 – 4.20 

µmol/L)105.  Although plasma ADMA and creatinine concentrations do not 

correlate well as such, ADMA does increase steadily across the stages of 

CKD106,107.  Interestingly, ADMA concentrations are also increased in patients 

with kidney disease but normal renal function as defined by glomerular 

filtration rate (GFR), in whom there is also evidence of increased oxidative 

stress106,108,109.  This, plus evidence from prospective studies, suggests that 

ADMA is involved in the progression of renal disease:  ADMA independently 
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predicts progression to ESRF in patients with CKD, diabetic nephropathy and 

in transplant recipients110-113.  In one study progression to end point (doubling 

of serum creatinine or initiation of renal replacement therapy) occurred 

around 20 months earlier for those with an ADMA concentration above the 

median110.  In another a 0.1 µmol/L increase in ADMA was associated with an 

odds ratio of 1.47 (1.12 – 1.93) for progression111.  The role of ADMA in renal 

disease progression may relate in part to peritubular ischaemia, and in an 

animal model increased expression of DDAH via an adenoviral vector was 

associated with retardation of kidney damage, in particular tubulointerstitial 

fibrosis114.  However, this situation is not clear-cut, given a study of DDAH-1 

polymorphisms which showed that increased DDAH-1 mRNA polymorphism was 

actually associated with a steeper decline in GFR115. 

 

ADMA may also be a determinant of cardiovascular disease in CKD, being 

associated independently with carotid IMT and its progression in patients with 

mild to moderate disease116 and in those with ESRF117.  It is also associated 

with left ventricular hypertrophy and cardiac dysfunction118, and is an 

independent predictor of death in CKD110,119.  As little as a 0.1 µmol/L 

increase is associated with a 20% increase in mortality110, and in haemo-

dialysis patients ADMA is the second strongest predictor of death after age, 

with a  2 – 3 fold increased risk of death for an ADMA concentration above the 

75th centile119. 

 

Haemodialysis reduces ADMA concentration and increases vasodilatation, 

although its clearance is somewhat lower when compared with other low 

molecular weight compounds such as urea and creatinine: the magnitude of 

reduction in plasma ADMA concentration is variable, with reductions of 0 – 80% 

reported105.  It is possible that plasma concentrations are not always a 

reliable guide to the more physiologically relevant intracellular concentration.  

Patients prone to dialysis-associated hypotension have a greater initial 

reduction in ADMA than normotensive equivalents, and a consequent excess of 
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NO may be implicated in the blood pressure lability120.  Following renal 

transplantation, plasma ADMA concentration decreases and is associated with 

improved endothelial function121. 

 

SDMA correlates highly with GFR as determined by inulin clearance (R = 0.85), 

and appears to be a more sensitive marker of renal function than serum 

creatinine122.  Although it could be regarded as the less important 

dimethylarginine, perhaps as a sensitive and non-invasive marker of GFR it has 

a future role.   However, its potential role in reducing arginine availability has 

already been mentioned, and in this context it is interesting to note that its 

concentration is correlated with the angiographic stenosis score in patients 

with mild CKD53.  Moreover, SDMA has been shown to independently predict 

cardiovascular and all-cause mortality in patients referred for coronary 

angiography123. 

 

1.4  ADMA in atherosclerotic disease  

 

1.4.1  ADMA in atherosclerotic disease and prediction of events and mortality 

 

Plasma ADMA concentration is associated with the presence and extent of 

atherosclerotic vascular disease.  In a large multi-centre case-controlled study  

ADMA had the best discriminative power to distinguish cases of coronary heart 

disease (CHD) from controls, with an odds ratio (95% CI) of 6.04 (2.56 – 14.25) 

for those in the highest tertile of ADMA concentration versus the lowest (> 

0.72 and < 0.58 µmol/L respectively)124.  Moreover, in men with early stage 

atherosclerosis ADMA concentration is independently associated with 

measurable endothelial dysfunction, and in this context is also associated with 

the presence of erectile dysfunction, a condition directly attributable to 

reduced NO availability125.  In patients with established CHD, ADMA is 
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associated with the severity of lesions at angiography126.  Patients presenting 

with acute coronary syndromes (ACS) have higher ADMA concentrations than 

those with stable angina127, and these decrease rapidly with medical 

treatment128.  The failure of ADMA concentration to reduce to levels seen in 

stable angina 6 weeks following percutaneous intervention strongly predicted 

recurrence of a cardiovascular event during the following year129.   It is also 

interesting to note that gradients of ADMA concentration have been 

demonstrated in coronary vessels, with higher concentrations distal to 

atherosclerotic plaques than proximal to them (2.39 versus 1.52 µmol/L), 

perhaps reflecting the “local” effects of endothelial dysfunction130.         

 

It is the evidence from longitudinal and prospective studies which provide 

arguably the most compelling case for the role of ADMA as not only a marker, 

but mediator, of atherosclerotic disease, repeatedly showing its predictive 

value independently of traditional and novel risk factors.  This extends to the 

prediction of cardiovascular events, cardiovascular mortality and all-cause 

mortality, in individuals with established atherosclerotic disease, in high risk 

groups and in the general population.  Table  1.1 summarises the major 

findings of these studies, with hazard ratios adjusted for traditional risk 

factors.  Predictive value has been demonstrated in diverse cohorts, including 

ostensibly healthy individuals in the general population131-134, high risk groups 

such as diabetics112,135,136 and those with CKD100,137, in patients with 

established CHD59,138 and following acute coronary syndromes139,140, chronic 

heart failure141, peripheral vascular disease142,143 and primary pulmonary 

hypertension144.  Generally in high risk patients and in those with a prior 

history of CHD, it seems that highest tertile ADMA concentrations are 

independently associated with an apparent doubling of the (relative) risk of 

cardiovascular events and mortality.  This often involves ADMA concentrations 

which are not markedly increased above what might be regarded as “normal” 

by many published studies which have reported reference values (discussed 

later in section on reference intervals), and this partly reflects analytical 

variation between different assay methodologies.  It perhaps also says 



42 

 

something about the utility of reference intervals for describing abnormality, 

which is another issue discussed later.  In this sense a parallel can be drawn 

with serum cholesterol concentration and its relationship with atherosclerosis.  

It must also be acknowledged that these studies are not enough to prove a 

causal relationship between ADMA concentrations and vascular disease, with 

possible confounding factors remaining even after adjustment for known risk 

factors.                                                                                                                          

 

1.4.2  Arginine supplementation and the “arginine paradox” 

 

As arginine is the substrate for NO synthesis, the provision of supplemental 

arginine to overcome the effect of ADMA seems an attractive proposition.  

However, as the inherent plasma concentration is in the region of 60 – 80 

µM145, which is far in excess of the Km of around 3.14 µM of eNOS for 

arginine51, in theory arginine availability should not be a limiting to enzyme 

activity and NO production.  Nevertheless, there have been studies suggesting 

a benefit from arginine supplementation on NO production and endothelial 

function.  Indeed, in Vallance’s landmark study, some of the cardiovascular 

effects of ADMA infusion could be offset by simultaneous arginine infusion2.  

Other studies in animals and humans have shown similar results47,54,146-148, and 

oral arginine supplementation has been associated with increased exercise 

capacity in patients with stable angina149 and peripheral vascular disease150.  

The combination of arginine with statin treatment might enhance the effect 

of statin on endothelial function in patients with higher ADMA concentrations, 

in whom ADMA has been proposed to offset, or block, the endothelial effects 

of statins68,151,152.  A meta-analysis of trials involving arginine supplementation 

suggested a benefit on vascular endothelial function in patients with impaired 

flow-mediated dilatation153.  This apparent benefit of arginine 

supplementation when, in theory, its concentration shouldn’t be rate-limiting, 

has been termed the “arginine paradox”154, and might relate to two main 

factors.  First, the competitive nature of its inhibition of NOS, with increases 
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in the apparent Km of the enzyme that can be partially overcome by arginine 

supplementation.  Second, by competition with arginine for transport via the 

cationic amino acid transporter (CAT), for which ADMA has a strong 

affinity51,52.  The physical association of the transporter and eNOS in the 

caveloae of endothelial cells further underlines its importance in delivering 

the arginine to NOS155.  The ratio of arginine to ADMA has thus become a 

parameter which has been increasingly studied, and lower ratios have been 

associated with severity of heart failure and mortality in patients with 

cardiomyopathy156,157 and have been implicated in the link between obesity 

and late-onset asthma, in which reductions in exhaled nitric oxide 

metabolites may be important pathophysiologically158.  Systemic inflammation 

in a population-based cohort correlated negatively with the arginine:ADMA 

ratio, and may therefore explain the link between inflammation and reduced 

NO availability159.  In patients with inflammatory arthropathies, treatment 

with TNF-α antagonists was associated with increases in the arginine:ADMA 

ratio and vascular function160.  Reference values for the arginine:ADMA ratio 

have been described in the healthy population145.  Plasma arginine is a non-

essential amino acid, being synthesised largely in the kidney, although this 

may be insufficient in states of increased demand, i.e. inflammation and 

catabolic stress161. 

 

However, the proposed benefits of arginine supplementation have not been 

demonstrated consistently.  Studies in post-menopausal women162, CHD163, 

healthy men164 and chronic heart failure165 have returned negative results in 

terms of its relatively short-term effects on vascular function.  Furthermore, 

there is a possibility of harm, with arginine supplementation being associated 

with reduced functional capacity in patients with peripheral vascular 

disease166, and with a possible increase in mortality following MI167.  It has 

been speculated that utilisation of the excess arginine by alternative 

metabolic pathways might be responsible, for example, with production of 

ornithine which is a precursor of polyamines that can ultimately act to lessen 

vascular compliance168. 
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The benefits, if any, of arginine supplementation are therefore unclear, and 

there appears to be insufficient evidence to recommend this as a strategy to 

improve vascular endothelial function.  However, the arginine:ADMA ratio 

might represent a useful parameter as a reflection of eNOS substrate to 

inhibitor ratio over and above ADMA concentration alone. 
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Cohort N Follow-up Outcome ADMA concentration Hazard ratio (95% CI) Ref 

General population 3320 10.9 years All cause mortality Per 0.13 µmol/L increase 1.21 (1.07 – 1.37) 131 

Healthy women 880 24 years MI (fatal & non-fatal) and stroke Per 0.15 µmol/L increase 1.29 (1.09 – 1.53) 132 

Healthy men 256 6.2 years MI and sudden cardiac death Highest tertile, > 0.86 µmol/L 2.40 (1.14 – 5.08) 133 

Non-smoking men 150 5 years Acute coronary events Highest quartile, > 0.62 µmol/L 3.92 (1.25 – 12.3) 134 

Type 1 DM & nephropathy 397 11.3 years Fatal and non-fatal coronary events Above median, > 0.46 µmol/L 2.05 (1.31 – 3.20) 112 

Type 2 DM 125 1.75 years Fatal and non-fatal coronary events Highest tertile, > 0.63 µmol/L 2.37 (1.05 – 5.35) 135 

Type 2 DM, angiography 163 2 years All cause mortality Highest tertile, > 1.05 µmol/L 2.63 (1.13 – 6.11) 136 

Chronic kidney disease 131 2.25 years Progression to ESRD and death Per 0.1 µmol/L increase 1.20 (1.07 – 1.35) 110 

Chronic kidney disease 820 9.5 years Cardiovascular mortality Per 0.25 µmol/L increase 1.25 (1.05 – 1.48) 137 

Coronary heart disease 2528 5.45 years Cardiovascular mortality Highest tertile, > 0.89 µmol/L 1.68 (1.18 – 2.41) 138 

Coronary heart disease 1874 2.6 years Fatal and non-fatal coronary events Highest tertile, > 0.70 µmol/L 2.62 (1.52 – 4.51) 59 

Acute coronary syndromes 

(men) 
193 2 years Death, coronary events and stroke Highest tertile, > 1.05 µmol/L 1.81 (1.01 – 3.25) 139 

Myocardial infarction 249 1 year All cause mortality Highest tertile, > 1.14 µmol/L 4.83 (1.59 – 14.71) 140 

Chronic heart failure 253 0.5 years Coronary events and death Highest tertile, > 0.64 µmol/L 2.00 (1.01 – 3.97) 141 

Peripheral vascular disease 496 1.6 years Fatal and non-fatal coronary events Highest quartile, > 0.64 µmol/L 1.70 (1.02 – 2.88) 142 

Peripheral vascular disease 133 2.9 years Major coronary events Highest quartile, > 0.84 µmol/L 5.10 (2.10 – 12.10) 143 

Hazard ratios are presented following adjustment for demographics and known cardiovascular risk factors 

Table 1.1:  Main findings from longitudinal studies of ADMA concentrations and clinical outcomes  
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1.5  ADMA in critical illness 

 

1.5.1  ADMA in the pathogenesis of multiple organ dysfunction 

 

Even with best care, admission to the intensive care unit (ICU) is associated 

with significant mortality, and sepsis is a leading cause of death169.  Sepsis 

and tissue injury are associated with a cascade of responses termed the 

systemic inflammatory response syndrome (SIRS)170, which is a non-specific 

reaction to infectious and non-infectious processes.  This is mediated by 

immune cells and inflammatory cytokines, and is involved in the response to 

infection and tissue repair.  Septic shock describes the occurrence of 

hypotension and impaired tissue perfusion which is often resistant to 

aggressive fluid resuscitation and vasopressor agents, and seems to result 

from a dysregulation of the inflammatory response with multiple organ 

dysfunction resulting from a mixture of excessive inflammation, clotting 

cascade activation and coagulopathy, and dysfunction of the vascular 

enodothelium171.  Septic shock has been termed “warm shock” because of the 

peripheral vasodilatation which is said to distinguish it from cardiogenic and 

hypovolaemic shock, at least in its earlier stages.  It has been proposed that 

excessive NO production is an important mediator of septic shock, at least 

partly explaining the cardiovascular compromise and unresponsiveness to fluid 

and vasopressors172.  NO production from the inducible isoform iNOS can lead 

to highly significant increases in NO 37,172.  While this has a detrimental effect 

on cardiovascular haemodynamics, it is considered an essential part of the 

host defence to infection, through the cytotoxic properties of the 

peroxynitrite ion172,173.  It has been proposed that activation of DDAH with 

increased ADMA clearance facilitates the increase in NO from iNOS in vascular 

smooth muscle cells174,175.   
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The role of ADMA in critical illness and shock is not clear.  It has been 

proposed that ADMA is involved in the development of multiple organ failure 

through its inhibitory effects on constitutive NO production by eNOS176.  

Through a mixture of increased protein turnover, renal and hepatic 

dysfunction, and the direct effects of oxidative stress, hyperglycaemia and 

cytokines on DDAH activity, a potent combination of factors could conspire to 

increase the burden of ADMA, with effects of eNOS impairing organ blood 

flow, as well as other effects including capillary leakage and thrombocyte 

aggregation176.  Moreover, studies in a rat model suggest that in excessive NO 

generation from iNOS might be directly associated with reduced eNOS activity 

and renal dysfunction177.  Therefore, DDAH and ADMA appear well-placed to 

be an important part of not only the pathogenesis of multiple organ failure, 

but also as potential therapeutic targets in the treatment of these patients 

who have a high mortality. 

 

1.5.2 ADMA and mortality in critically ill patients 

 

Significantly increased ADMA concentrations have been reported in ICU 

patients and have been associated with mortality.  In a cross-sectional study 

in ICU, ADMA was an independent and strong marker of outcome, with a 17-

fold increase in mortality for patients in the highest quartile of ADMA18.  In 

this study markers of hepatic function were strongly associated with ADMA 

concentration, suggesting that the liver is an important organ in ADMA 

handling in this context15,18.  Indeed, in a rat model of endotoxaemia a 

significant increase in the hepatic uptake of ADMA was observed, such that 

the fractional excretion increased to 41% compared with a basal value of 

around 27%174.  In another clinical study, plasma ADMA was associated with 

shock, severity of organ failure and inflammatory markers178.  However, the 

situation might be more complex, as significant decreases in the ADMA:SDMA 

ratio have been demonstrated in septic humans, with significant negative 

correlations between inflammatory cytokines and ADMA concentrations179.  
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This latter observation has been interpreted as reflecting increased ADMA 

catabolism during inflammation179, which presumably would be largely 

mediated by the liver given what has been previously said about studies in 

rats174; furthermore, in septic humans, acute liver failure is associated with a 

significant increase in plasma ADMA concentration and mortality compared 

with septic patients with intact liver function180.   In acute liver failure 

related to paracetamol toxicity, concentrations of ADMA and inflammatory 

cytokines are also significantly correlated181, and plasma ADMA decreases 

rapidly following liver transplantation17,19,181.   

 

In light of what has been already been said about the arginine:ADMA ratio, 

this parameter has been studied in the context of critical illness, though not 

reported in many studies.  In one ICU study, septic patients had a significantly 

lower arginine:ADMA ratio compared with hospitalised (non-septic) controls, 

and lower still in septic patients with shock182.  Moreover, the ratio correlated 

with the severity of organ failure, and was significantly associated with eNOS 

dependent microvascular reactivity182.  The authors of this study speculate 

that as early sepsis (i.e. without shock) is a hyperdynamic state there is 

increased hepatic and, to a lesser extent, renal excretion, with increased 

ADMA concentration as hepatic function falls in shock.  A similar ICU study 

replicated these findings, with the additional observation that a declining 

arginine:total dimethylarginine (sum of ADMA and SDMA)  ratio is 

independently associated with hospital mortality, with an odds ratio of 1.63 

(1.00 – 2.65) per quartile183.  In addition, arginine:dimethylarginine ratio was 

significantly associated with urine nitrate excretion, a surrogate marker of 

overall NOS activity183.  However, previous trials of arginine supplementation 

have produced mixed results, with evidence of potential harm184, therefore 

while the arginine:ADMA ratio might provide information regarding the 

potential interaction of substrate and inhibitor on NO generation, its increase 

by arginine supplementation appears not to be a “quick fix” to improve 

endothelial function and outcomes in critical illness.  This might be related to 

a diversion of arginine from NOS: human endothelial cells exposed to 
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lipopolysaccharide (LPS) and TNFα develop increased arginase activity185, and 

in humans exposed to intravenous endotoxin the plasma arginine:ADMA ratio 

decreases significantly within 4 hours of exposure186.  In paediatric patients 

with sepsis ADMA concentrations were found to be lower than in febrile and 

healthy controls, although so too were arginine concentrations, which the 

authors speculate to be related to arginase activity187.  This prompted them 

to dismiss ADMA as a cause of endothelial dysfunction in this patient group, 

which raises important questions of how plasma and intracellular 

concentrations are related, given that it is the latter which would be 

expected to be important.  It could also relate to the point in the disease 

process at which the samples were taken; in adult patients with acute 

bacterial infections the recovery phase is associated with a significant 

increase in plasma ADMA concentration, suggesting an initial decrease during 

the early stages of the inflammatory response188.  It might be that the 

significant increases seen in the ICU studies discussed occur at more advanced 

stages in the disease process, when the inflammatory response and organ 

dysfunction are more established.  Lastly, common polymorphisms in the 

DDAH-2 gene may be associated with phenotypic variability in the 

pathophysiology of sepsis and the propensity to haemodynamic 

disturbance178,189. 

 

In summary, increases in ADMA concentrations have been associated with 

organ dysfunction and mortality in critically ill patients, and have been 

speculated to be causally related through effects on NOS.  However, given the 

potentially harmful effects of excessive NO, the intriguing possibility of a 

regulatory role of ADMA acting as a “brake” on iNOS remains34.  Indeed, 

stimulated macrophages and endothelial cells actively take up 

dimethylarginines190,191.  Moreover, while the liver increases ADMA uptake 

during inflammation there is no definite evidence that this is due to DDAH-

mediated catabolism174.  Therefore it is at least theoretically possible that 

increased ADMA uptake acts to achieve this regulatory role.  The distribution 
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of ADMA between the intra and extracellular compartments is further 

considered in relation to the study described later in chapter 8. 

 

1.5.3 Therapeutic manipulation of DDAH and NOS in critical illness 

 

Intensive insulin therapy to maintain normoglycaemia has been associated 

with improved outcomes in ICU192.  It has been proposed that modulation of 

ADMA concentration could account for this beneficial effect193: intensive 

insulin treatment was associated with ADMA concentrations that were lower 

on day 2 compared with those treated conventionally.  Moreover, at the end 

of the study period intensively treated patients had lower ADMA 

concentrations and there was an association between total insulin dose and 

ADMA concentration on the last day193.  These effects could be explained by 

preservation of DDAH activity, given the effect of hyperglycaemia on DDAH 

activity30,194.  Other explanations potentially include reduced protein 

catabolism and increased cellular uptake of ADMA via CATs195. 

 

The potentially harmful effect of excess NO from iNOS has prompted the 

search for NOS inhibitors to improve cardiovascular stability in sepsis and 

critical illness.  Monomethylarginine (MMA) was first studied in this context, 

but was actually associated with increased mortality196.  Similar results were 

demonstrated in patients with cardiogenic shock following MI197.  It is 

probable that the adverse outcomes in these studies related to the non-

specific nature of the NOS inhibition, with eNOS inhibition in particular 

associated with reduced constitutive NO production and organ perfusion.  

More recently, a pharmacological inhibitor of DDAH-1 has been studied in a 

rat model of LPS-induced endotoxic shock198.  In cultured cells, the inhibitor 

specifically reduced NO production in aorta but not macrophages, thus 

permitting selective inhibition of iNOS-mediated NO production in blood 

vessels but not macrophages (which largely express DDAH-2)198.  In LPS-
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treated rats, those treated with the inhibitor demonstrated attenuation of the 

rate of hypotension.  Similar results were seen in heterozygous knockout 

animals (DDAH1+/-), with only modest effects on plasma ADMA 

concentration198.  Both DDAH-1 and DDAH-2 are present in blood vessels, and 

it is now perhaps becoming clear that DDAH-1 is, in fact, of prime importance 

in blood vessels22,86,199, despite what has previously been said regarding the 

tissue distributions of the different isoforms.  While these animal studies are 

promising, it is clear that further work is required to determine whether this 

is a feasible approach for improving cardiovascular stability in septic humans. 

 

1.6 Measurement of dimethylarginines 

 

1.6.1 General analytical considerations 

 

Measurement of ADMA has been most commonly performed in human plasma 

and serum, although urinary measurement, and, increasingly, intracellular 

measurements are being utilised in studies concerned with the physiology and 

clearance of ADMA.  ADMA quantification is rendered difficult by its relatively 

low, submicromolar, concentration, particularly in the presence of many 

other amino acids that are present in far greater concentrations.  A further 

analytical challenge is in achieving separation, generally by chromatography, 

of the structural isomers ADMA and SDMA.  Methods such as high performance 

liquid chromatography (HPLC) and mass spectrometry coupled to gas or liquid 

chromatography permit the simultaneous measurement of arginine, ADMA, 

SDMA, and MMA, which is a distinct advantage, given what has been said 

previously about the increasing use of the arginine:ADMA ratio as a marker of 

NO substrate availability, and the role of SDMA as a marker of renal function, 

and possibly as a cardiovascular risk marker in its own right.  It is also 

generally possible to measure the non-essential amino acid homoarginine, 

which is structurally very similar to arginine, differing only by the length of its 
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carbon skeleton which is 1 carbon atom longer.  Although its role in human 

metabolism is unclear, homoarginine has been proposed to have a role in the 

availability of NO, and is strongly correlated with flow-mediated dilatation 

during normal pregnancies200, and has been independently associated with 

cardiovascular events and mortality in patients referred for angiography202 

and in those undergoing haemodialysis203.  Moreover, a recent report suggests 

an antagonistic relationship with arginine in connection with blood 

pressure201.  Therefore, measurement of endogenous homoarginine 

concentrations might be of interest. While the concentration of MMA in 

plasma is many times less that of ADMA, its intracellular concentration can be 

significantly higher, and thus its measurement might be of interest and 

relevance in cellular studies51.  In summary, therefore, methods for 

dimethylarginine measurement would ideally permit the reliable simultaneous 

quantification of arginine, ADMA, SDMA, MMA and homoarginine, and be 

suitable for plasma/serum, urine and intracellular matrices. 

 

1.6.2 High performance liquid chromatography (HPLC) 

 

HPLC has been the most frequently used method for ADMA analysis, the 

majority of methods employing reverse-phase chromatography with 

fluorescence detection, and have proved reliable and stable, and capable of 

high precision.  Complete separation of ADMA and SDMA can be achieved 

under isocratic conditions205,206,209,201, though some methods have required 

gradient elution204,207,208,211.  A universal requirement is sample clean-up given 

the large number of amino acids and other interfering substances in plasma.  

Solid phase extraction takes advantage of the basic nature of the amino acids 

of interest, using cationic exchangers to select the basic amino acids for 

analysis.  However, this adds a potentially laborious pre-analytical sample 

preparation step to the process, and could thus be considered something of a 

disadvantage.  Furthermore, typical analysis times are in the region of 20 – 40 

minutes, which could also be considered a disadvantage compared with the 
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relatively shorter analysis times using mass spectrometry.  That said, HPLC 

with a monolithic column that permits higher flow rates can reduce analysis 

times to as little as 10 minutes while retaining excellent separation212.   

Furthermore, use of a programmable auto-injector allows batches of 

extracted samples to be analysed, for example, overnight.  One further 

requirement is derivatisation, as the amino acids themselves are not 

fluorescent.  This has commonly been achieved with ortho-phthaldialdehyde 

(OPA) which produces fluorescent adducts that are reliably separated on 

chromatography205,206,208,210,211.  One disadvantage of OPA adducts is their 

relative instability, necessitating derivatisation just prior to analysis to 

prevent significant reductions in fluorescence during analysis206. 

 

An internal standard needs to be added prior to sample preparation, and is 

used essentially to correct for errors during the various pre-analytical 

processes.  An internal standard must, therefore, behave similarly to the 

analytes of interest and be reliably quantified during analysis.  Homoarginine 

and MMA have been frequently employed as internal standards in HPLC, with 

the apparent general view that as they are present in low concentrations in 

plasma, the use of high enough concentrations should avoid large errors from 

their natural variation in biological samples.  However, given what has been 

said about the emerging biological importance of these compounds, 

alternative internal standards might be desirable.  The ideal internal standard 

would be one not inherent in biological samples; in this regard N-propyl-L-

arginine (NPA) has been used, though its separation from the dimethyl-

arginines may not be easily achieved on all columns45.  Characteristics of the 

main HPLC methods, including imprecision and reference values obtained 

using them, are shown in table 1.2 
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1.6.3 Tandem mass spectrometry 

 

Methods based on tandem mass spectrometry (MS/MS) have become popular 

principally as they allow discrimination of ADMA and SDMA based on 

fragmentation pattern, rather than relying solely on chromatographic 

separation which inevitably prolongs the analysis time.  In this way laborious 

sample preparation steps can often be avoided, save for a simple protein 

precipitation step for plasma and serum samples.  However, the lack of a 

specific daughter ion for ADMA often necessitates the coupling of liquid 

chromatography (LC-MS/MS)213-219, which imposes the need to finds a 

compromise between adequate chromatographic separation and analysis 

times that are not too long45.  Derivatisation is required in gas 

chromatography MS/MS (GC-MS/MS)220,221 in order to produce thermally stable 

and volatile derivatives.  In LC-MS/MS, derivatisation is not absolutely 

required; however, butylation, for example, can lead to characteristic 

products which increase specificity to such an extent that analysis times are 

extremely short, making methods suitable for very high throughput of 

samples215.  Potential drawbacks of MS/MS methods include the requirement 

for expensive equipment and technical expertise to develop and optimise 

methods accordingly.  However, when this is available, the advantages of 

simplified sample preparation and higher throughput makes this an attractive 

analytical method.  Table 1.2 shows characteristics of some of the main 

methods. 

 

1.6.4 Enzyme linked immunosorbent assay (ELISA) 

 

An ELISA based method which can quantify ADMA only was developed, with 

the aim of overcoming the drawbacks of HPLC and MS/MS methods as 

considered above222.  This has now been used in several large studies.  Its 

major advantage lies in the high throughput of samples possible with its 96 
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well plate format.  A second ELISA, based on much the same principles, is said 

to offer greater sensitivity223.  The obvious drawback of ELISA lies in its 

inability to measure, on the same sample, the concentrations of relevant and 

related compounds such as SDMA and arginine.  It also appears to be relatively 

imprecise compared with chromatographic methods.  There have also been 

doubts about its accuracy, as discussed in the following section on method 

comparisons. 

 

1.6.5 Between method comparisons 

 

As can be seen from the reference values in table 1.2, results from different 

methods display considerable variability, with mean reference values in so-

called healthy individuals ranging from around 0.37 to 0.78 µmol/L.  It is 

obvious that this magnitude of variation between analytical methods is a 

problem when, as previously discussed, small changes in ADMA concentration 

are associated with significant biological effects.  Indeed, it has been cited as 

a direct hindrance to the assimilation of the large volume of clinical work thus 

far done on ADMA and a barrier to appreciating the level of risk associated 

with ADMA224.   Specifically in renal disease, a review by Jacobi105 nicely 

summarises the position by assimilating the range of “control” values for 

ADMA in renal studies which are meant to represent healthy individuals, 

finding a range of 0.36 – 1.40 µmol/L.  While studies in renal disease have 

been promising, Jacobi notes that “the variability of ADMA levels currently 

precludes useful application of this putative biomarker”105.  The main factors 

behind this variability are likely to include lack of a reference standard and a 

lack of specificity in some chromatography methods45.  Compounding this is 

the relative lack of any comparative studies, and no agreement on what 

constitutes acceptable performance for analytical methods.  In addition to 

between-method variation there is the effect of imprecision, which, as 

Teerlink225 points out, is to reduce statistical power in clinical trials and 

under-estimate the strength of associations in epidemiological studies.  



56 

 

Indeed, an experiment simulating the effect of increasing imprecision in the 

results from a real study shows a rapid falling off of the chance of achieving 

statistical significance, even in the range of 5 – 10%, a level of imprecision 

which some might view as being acceptable225.  It is clear that many of the 

methods summarised in table 1.2 display relatively high imprecision. 

 

There have been a small number of comparative studies evaluating ELISA with 

MS/MS, which seem to highlight a specific problem concerning the calibration 

of the ELISA method.  ELISA appears to over-estimate ADMA concentrations up 

to a factor of 1.5 to 2 in comparison with robust HPLC and LC-MS/MS methods 

despite good correlation226-228.  This suggests a problem with calibration, 

possibly related to matrix-dependent effects, given the calibrators are in an 

aqueous solution.  However, no correlation was noted between the methods 

in another study229.  The increasing number of published studies using ELISA 

highlights the issues of imprecision and bias, and the future of ADMA-based 

research is arguably dependent on standardisation of analytical methods to 

allow assimilation of the burgeoning body of research. 

 

1.6.6 Analytical performance goals 

 

European consensus is that goals, or minimal standards, for the satisfactory 

performance of analytical methods are best defined on the basis of biological 

variation230,231.  Biological variation describes the degree of inherent variation 

both within an individual over time, and between individuals in a population.  

Desirable imprecision is generally set as less than 0.5 times the intra-

individual variation, because at this level analytical variation should have a 

minimal impact on the total test variation230,232.  However, there are virtually 

no data regarding the biological variation of ADMA.  Teerlink225 has estimated 

a narrow between-subject variation, something which is also suggested by the 

relatively small standard deviations in the reference data shown in table 1.2.   
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Method principle 
Inter-assay 

CV, % 

Reference values† 

Mean ±±±± SD, µmol/L 
Ref 

Gradient RP HPLC, AccQFluor 2.7 0.45 ± 0.07 (n = 30) 204 

Isocratic RP HPLC, OPA 2.5 0.58 – 0.64* (n = 292) 205 

Isocratic RP HPLC, OPA 2.0 0.47 ± 0.08 (n = 53) 206 

Gradient RP HPLC, AccQFluor 6.0 0.44 ± 0.08 (n = 12) 207 

Gradient RP HPLC, OPA < 10.0 0.76 ± 0.12 (n = 35) 208 

Isocratic RP HPLC, NDA 2.3 Range 0.38 – 1.30 (n = 50) 209 

Isocratic RP HPLC, OPA Not stated 0.30 ± 0.05 (n = 7) 210 

Gradient RP HPLC, OPA 5.6 0.58 ± 0.02 (n = 10) 211 

LC-MS/MS, underivatised 4.2 – 5.5 0.46 ± 0.07 (n = 103) 213 

LC-MS/MS, underivatised < 10.0 0.46 ± 0.07 (n = 29) 214 

LC-MS/MS, butyl ester 4.4 0.46 ± 0.09 (n = 85) 215 

LC-MS/MS, underivatised Not stated 0.66 ± 0.12 (n = 15) 216 

LC-MS/MS, underivatised < 8.0 0.37 ± 0.06 (n = 14) 217 

LC-MS/MS, underivatised 6.0% 95% CI 0.44 – 0.46 (n = 42) 218 

LC-MS, OPA 5.7% 0.45 ± 0.13 (n = 15) 219 

GC-MS, methyl PFP 1.6% 0.60 ± 0.08 (n = 10) 220 

GC-MS/MS, methyl PFP 5.8% 0.39 ± 0.06 (n = 12) 221 

ELISA 10.3% 0.65 ± 0.13 (n = 10) 222 

ELISA 4.2% 0.78 ± 0.09 (n = 8) 223 

* Reference values presented as means in four groups stratified according to 

age.  

†  As described in the method validation. 

 

Table 1.2:  Summary of major analytical methods for ADMA measurement 

and associated reference values 
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1.7 Population reference intervals for ADMA 

 

There have been relatively few population studies encompassing a reasonable 

number of well-defined “healthy” individuals.  Teerlink233, using a well 

validated HPLC method, reported a 95% reference interval of 0.39 – 0.63 

µmol/L in a large population based cohort (n = 2,311, mean 0.50 µmol/L, age 

range 50 – 74).  The somewhat older average age of Teerlink’s cohort should 

be acknowledged, as well as the presence of impaired glucose tolerance or 

diabetes in about a third of a cohort, which might influence the results 

obtained234.   Schulze235 reports a 95% reference interval of 0.36 – 1.17 µmol/L 

using ELISA (n = 500, mean 0.69 µmol/L, age range 19 – 75).   Hov236 reported 

data from Norwegian blood donors, showing a 95% reference interval of 0.40 – 

0.77 µmol/L using HPLC (n = 283, mean 0.59 µmol/L, age range 16 – 69).   

Schwedhelm237 reported reference values in healthy non-smoking individuals 

from the Framingham Offspring Cohort, showing a reference interval between 

the 2.5 and 97.5 centiles of 0.31 – 0.73 µmol/L, using LC-MS/MS (n = 1,126, 

mean 0.52 µmol/L, mean age 56). 

 

The higher mean ADMA in study is of Schulze is consistent with what has 

already been said about the comparison between ELISA and chromatography 

methods.  The relatively wider range most likely represents the higher 

imprecision of the assay.  Each of the four studies in the foregoing paragraph 

report a weak but significant correlation between ADMA concentration and 

age.  Furthermore, post-menopausal women have significantly higher ADMA 

concentrations than younger women and younger men233,235-237.  Indeed 

hormone replacement therapy is associated with a decrease in ADMA 

concentrations, which may represent the effect of oestrogen on DDAH238.   

However, these age and gender differences are biologically small, and it has 

been suggested that the generation of age and gender specific reference 

intervals would be of little, if any, benefit235.  Indeed, when this has been 
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done, the mean concentrations between groups are small, with means ranging 

from 0.58 to 0.64 µmol/L in a study by Meinitzer205. 

 

Other studies of greater than 100 individuals have reported results which 

equate to 95% ranges of 0.30 – 0.82 (mean 0.51) µmol/L and 0.32 – 0.62 (mean 

0.50) µmol/L, both using HPLC70,239.  Considering these with results from well 

validated methods (see table 1.2), it seems that an ADMA concentration of 

around 0.50 µmol/L is close to the healthy population value. 

 

1.8 Summary 

 

ADMA is a potent endogenous inhibitor of all NOS isoforms.  ADMA is produced 

ubiquitously following the degradation of protein containing methylated 

arginine residues, and is largely cleared by the enzyme DDAH.  DDAH activity 

is impaired in a number of oxidative stresses, and this, through NOS 

impairment, may be a factor in endothelial dysfunction in patients with 

cardiovascular risk factors.  ADMA has also been associated with the extent of 

cardiovascular disease, and is an independent predictor of cardiovascular 

events and mortality, both in high risk groups and in the general population.  

ADMA may also play a role in the pathogenesis of multiple organ failure in 

critical illness.  Analytical methods for ADMA analysis produce results with 

considerable variability, and this has proven a barrier to the assimilation of 

the large body of clinical work concerning ADMA and perhaps hindered its 

recognition as a potent risk factor and therapeutic target. 

 

Data regarding the biological variation of ADMA are absent from the 

literature, and, consequently, analytical performance goals to guide assay 

development have not been established.  While ADMA has been proposed to 
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play a role in acute inflammation and the regulation of NO, its early response 

during the evolution of the inflammatory response, and how this relates to 

NOS activity, is not known. 

 

1.9 Aims of thesis 

 

1.  To establish an analytical method for the reliable and simultaneous 

measurement of arginine, homoarginine, ADMA and SDMA in biological 

fluids, based on HPLC and simplified to allow its easy adoption in the 

clinical laboratory. 

 

2.  To establish a laboratory reference interval for plasma 

dimethylarginines using the developed method. 

 

3. To establish the intra and inter-individual biological variation of 

dimethylarginines, and from this assess the utility of traditionally 

defined population reference intervals in detecting “abnormality”. 

 

4. Using biological variation data, to establish analytical performance 

goals (imprecision, total error, bias) for analytical methods. 

 

5. To develop a method for measuring urine dimethylamine, the excreted 

product of DDAH-mediated ADMA catabolism, as a marker of whole 

body DDAH activity. 

 

6. To develop a method for measuring urine nitrate excretion, as a marker 

of whole body NO production. 
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7. To design a study using a suitable patient cohort that will allow 

assessment of plasma dimethylarginine concentrations in the non-

inflamed state, and during the evolution of the acute inflammatory 

response. 

 

8. Using the developed methods, to assess whether significant changes in 

whole body DDAH and NOS activities occur during the inflammatory 

response, and relate this to changes in plasma ADMA concentration. 
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Chapter 2 

HPLC analysis of dimethylarginines in biological samples 

 

2.1  Principle of method 

 

HPLC involves separation of compounds based on their relative affinities for 

two different phases, a solid, or stationary, phase and liquid, or mobile, 

phase.  Reverse-phase HPLC is most commonly deployed, and describes the 

specific combination of a hydrophobic stationary phase and polar mobile 

phase.  In this type of chromatography analytical columns are often composed 

of silica bonded alkyl chains, C18 being the most popular.  Separation of a 

mixture of analytes is therefore based on their relative hydrophobicity, with 

more hydrophobic compounds tending to adsorb more to the column, delaying 

their progress relative to more polar compounds which have greater affinity 

for the mobile phase.  The composition of the mobile phase, with respect to 

factors such as pH, ionic strength of the buffer, and concentration of organic 

solvent can be manipulated to optimise separation of analytes and the overall 

analytical run time.  Isocratic elution refers to HPLC in which the composition 

of the mobile phase remains constant.  Gradient elution is required when 

some compounds in the mixture are strongly retained on the column, and an 

increase in the organic solvent component of the mobile phase is needed to 

encourage elution; this prevents overly long run times and improves the 

quality and resolution of the peaks obtained.   

 

Once separated on the analytical column, quantitation is based on a detection 

method in which the output of a detector is proportional to the analyte 

concentration.  Commonly used methods include electrochemical, absorbance 

of light, fluorescence and mass spectrometry.  In amino acid analysis, 

fluorescence detection following derivatisation is often employed.  This has 
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the advantage of high sensitivity and specificity, the latter from the specific 

excitation wavelength and wavelength for the re-emission of light.  The 

signals from the detector are captured by data management software, 

resulting in a chromatogram featuring a series of peaks from which analytes 

are quantitated based on relative peak heights or peak areas.  The major 

components of a reverse-phase HPLC system are shown in figure 2.1. 

 

 

 

 

 

 

 

Figure 2.1:  Schematic diagram of the HPLC system ( from www.lab-

training.com ) 

 

2.2  Specimen collection and pre-analytical handling 

 

2.2.1  Plasma 

 

Plasma was selected as the preferred specimen type.  This was as previous 

studies have shown measured arginine concentrations to be significantly 

higher in serum samples compared with plasma205,225, and that this is 

artefactual owing to release from blood cells.  The choice of anticoagulant, 

i.e. heparin or EDTA, was considered unimportant as they appear to exert no 

influence over measured dimethylarginine concentrations205,225.    



64 

 

The time to separation of plasma from the cellular components of blood has 

been previously shown to be non-critical for ADMA and SDMA analysis, with no 

significant change in whole blood after 2 days storage at room temperature205.  

However, arginine does decrease significantly in whole blood, with a 

reduction in the region of 25% after 2 hours240; however, at 30 – 60 minutes 

the change is minimal.  This is most likely due to the effect of arginase from 

lysed erythrocytes or leucocytes, an effect that can be inhibited by storing 

the blood on ice240.  In the studies described in this thesis blood specimens 

were centrifuged promptly after collection, i.e. generally within 30 minutes, 

and definitely within 60 minutes.  However, if longer processing times were 

anticipated it would be advisable to store samples on ice to prevent 

reductions in arginine concentration related to ex vivo metabolism. 

 

Specimens were centrifuged (500 g, 4°C, 10 minutes) and the plasma removed 

into plastic containers.  These were stored at -70°C until analysis. 

 

2.2.2  Urine 

 

Urine was collected into plain specimen containers and stored at -80°C until 

analysis.  After thawing, centrifugation was used to remove any insoluble 

precipitation. 

 

2.2.3  Erythrocyte lysates 

 

After removal of the plasma and buffy coat, packed red cells were stored at -

70°C until analysis.  Three freeze/thaw cycles were deployed to ensure lysis 

of the erythrocyte membranes.  100 µL of packed cells were thoroughly mixed 

with 400 µL of deionised water, and the mixture centrifuged (Eppendorf 
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microcentrifuge Model 5417C) to remove cellular debris.  200 µL of the 

supernatant was used for analysis. 

 

2.3  Reagents and buffers 

 

2.3.1  List of chemicals 

 

Asymmetric dimethyl-L-arginine (Calbiochem, Nottingham, UK) 

Symmetric dimethyl-L-arginine (Calbiochem, Nottingham, UK) 

L-Homoarginine (Sigma chemical company, Poole, UK) 

L-Arginine (Sigma chemical company, Poole, UK) 

Monomethyl-L-arginine (Sigma chemical company, Poole, UK) 

Monoethyl-L-arginine (Calbiochem, Nottingham, UK) 

Boric acid (BDH chemicals, VWR international Ltd, Leicestershire) 

Ortho-phthaldialdehyde (Sigma chemical company, Poole, UK) 

3-mercaptopropionic acid (Sigma chemical company, Poole, UK) 

Sodium acetate (BDH chemicals, VWR international Ltd, Leicestershire) 

Acetonitrile, HPLC grade (Rathburn chemicals Ltd, Walkerburn, Scotland) 

Methanol, HPLC grade (Rathburn chemicals Ltd, Walkerburn, Scotland) 

Ammonia (Romil Ltd, Waterbeach, Cambridge) 
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2.3.2  Preparation of buffers and reagents 

 

2.3.2.1  50 mM borate buffer 

3.1 g of boric acid were dissolved in 1 litre of deionised water, and the pH 

adjusted to 8.5 using 2 M potassium hydroxide.  This was prepared every 4 

weeks to prevent interferences from contaminating substances which was 

seen to occasionally affect older solutions. 

 

2.3.2.2  200 mM borate buffer 

2.5 g of boric acid were dissolved in 200 ml of deionised water, and the pH 

adjusted to 8.5 using 2 M potassium hydroxide. 

 

2.3.2.3  Ammonia/methanol for elution from SPE cartridges 

A  solution containing 10% v/v concentrated ammonia and 50% v/v methanol 

in deionised water. 

 

2.3.2.4  Derivatising agent 

10 mg OPA were dissolved in 200 µL of methanol, then mixed with 1.8 mL of 

200 mM borate buffer.  Finally 10 µL of mercaptopropionic acid were added.  

This stock solution was diluted 1:5 with 200 mM borate buffer prior to use.  

The stock solution stable for approximately 1 week, before a decrease in 

fluorescence occurred owing to instability of the thiol group. 

 

 

2.3.2.5  Mobile phase: 50 mM acetate buffer with 9% v/v acetonitrile 
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A 50 mM sodium acetate buffer was prepared by dissolving 3.73 g of sodium 

acetate in 910 mls of deionised water, and the pH adjusted to 6.3 using 

glacial acetic acid.  90 mls of acetonitrile were added.  The mobile phase was 

filtered through a 0.45 µm nylon filter and degassed prior to use. 

 

2.4  Standards 

 

2.4.1  Preparation of stock standards 

 

As no commercially available standards are available, individual stock 

standards were prepared from pure compounds.  These were made in 10mM 

hydrochloric acid (HCl) at concentrations of 1mM and were stored at -70°C 

until use. 

 

2.4.2  Working standards 

 

A combined calibration standard was made by preparing in deionised water a 

solution containing the four main analytes of interest at the following 

concentrations (table 2.1).  These were aliquoted and stored at -70°C until 

use.  Their stability, as assessed by chromatographic peak heights, was 

determined to be at least 1 year.  When a fresh batch was prepared, 

comparison against the previous lot was used to assign calibrator values and 

ensure continuity in calibration.  As discussed in the section on linearity, a 

single point calibration was chosen, given the linearity of the detector 

response across a wide concentration range. 
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Component Concentration, µM 

Arginine 50 

Homoarginine 1.0 

ADMA 1.0 

SDMA 1.0 

 

Table 2.1:  Analyte concentrations in combined calibration standard   

 

2.5  Internal standard 

 

2.5.1  General requirements of an internal standard 

 

The requirement for a sample cleanup technique involving multiple manual 

steps is a source of random error and thus imprecision.  An internal standard 

is thus added to each standard, QC and sample at the start of the analytical 

process, and so corrects for random errors especially in the sample cleanup 

process.  The ideal internal standard is chemically similar to the analytes of 

interest, thus behaving similarly during extraction and analysis, is well 

resolved from the analytes, and is preferably not inherent in biological 

samples.  MMA and monoethylarginine (MEA) were evaluated, in order to 

compare the performance of the former commonly used internal standard 

with the latter which is novel and non-endogenous. 
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2.5.2  Monomethylarginine (MMA) 

 

MMA is the most commonly used internal standard in HPLC methods for ADMA 

analysis, and is chosen because of its relatively low concentration in human 

plasma compared with the other analytes of interest233.  A stock standard of 

MMA was prepared in 10 mM HCl.  This was diluted in deionised water to 

obtain a working solution of 5 µM which was aliquoted and stored at -70°C 

until use. 

 

2.5.3  Monoethylarginine (MEA) 

 

The non-endogenous compound MEA was selected as a candidate internal 

standard.  A stock standard of MEA was prepared in 10 mM HCl.  This was 

diluted in deionised water to obtain a working solution of 5 µM which was 

aliquoted and stored at -70°C until use. 

 

2.6  Internal quality control material 

 

As there are no commercially available QC materials for ADMA, a large plasma 

pool was obtained from the blood transfusion service for use as in-house QC.  

This was stored in aliquots at -70°C until use.  It was analysed in duplicate in 

each analytical run in order to generate analytical variation data. 
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2.7  Specimen preparation by solid phase extraction 

 

2.7.1  Solid phase extraction (SPE) cartridges and principle 

 

The strongly basic nature of the amino acids of interest make SPE a good 

method for their extraction from the numerous other amino acids in plasma.  

At neutral and weakly basic pH, the amino acids of interest are protonated 

and bind strongly to the cation exchange resin, while other amino acids are 

washed through.  After washing steps, they can be eluted from the column 

using a strongly basic solution.  Isolute PRS columns (1 ml/50 mg cartridges, 

Kinesis Ltd, Epping, UK) were selected as the SPE medium. 

 

2.7.2  Solid phase extraction procedure 

 

200 µL of plasma, standard or QC material were pipetted into small test 

tubes.  To each of these were added 80 µL of the internal standard and finally 

720 µL of 50 mM borate buffer, to create a final volume of 1 mL.  For analysis 

of urine samples, 50 µL of urine were used, with the same quantity of internal 

standard and 870 µL of borate buffer.  This was to bring the higher 

concentrations of ADMA found in urine into a range ensuring linearity of the 

detector response.  Results were multiplied by a factor of 4 to correct for the 

smaller volume of urine used in the analysis. 

 

The SPE cartridges were placed on a Vac Elut extraction system, and 

activated and equilibrated with 2 ml of methanol followed by 2 ml of 50 mM 

borate buffer.  The sample mixtures, as described above, were then run 

through the cartridges.  The columns were then consecutively washed with a 

further 1 ml of borate buffer, 3 ml deionised water and 3 ml methanol.  It was 
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generally possible to perform these steps under gravity, with vacuum suction 

only occasionally required if the flow rate through one or more of the columns 

was sluggish.  Following the washing steps, the amino acids of interest were 

eluted using 3 ml of the 10% ammonia/50% methanol solution and collected 

into glass tubes.  The eluent was then evaporated to dryness at 80°C under 

air.  Using this system, 40 samples could be extracted in approximately 2 

hours. 

 

2.8  Derivatisation 

 

The dried extract was reconstituted in 100 µL deionised water and thoroughly 

mixed.  To that was then added 100 µL of the derivatising agent prepared as 

described above.  After thorough mixing, the tubes were left sitting in the 

dark for 15 minutes in order to ensure completion of the reaction.  The 

derivatised samples were then transferred into auto-sampler vials and placed 

in the autosampler ready for analysis. 

 

2.9  Chromatography 

 

2.9.1  Chromatographic system and setup 

 

The chromatographic system consisted of a solvent delivery system, 

programmable autosampler and fluorimeter (Waters, Watford, UK).  20 µL of 

the derivatised sample was injected by the programmable autosampler onto 

the column for chromatography.  Excitation and emission wavelengths were 

340 nm and 455 nm respectively, the optimal wavelengths for OPA adducts.  

After the elution of arginine the sensitivity was increased, at around 14 

minutes, by adjusting the EUFS (emission units full scale) from 32,000 to 
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8,000.  This was necessary as the concentration of arginine is inherently 

around 100 – 200 times greater than that of the other analytes.  Signals from 

the detector were captured by a data management system (Millennium 2010, 

Waters, Watford, UK).   

 

2.9.2  Analytical column 

 

The analytical column was a Symmetry C18, 4 µm, 4.6 x 150 mm, protected 

by a 3 x 4 mm C18 guard column.  The ambient temperature in the laboratory 

was maintained at a constant level in order to ensure stability of retention 

times. 

 

2.9.3  Mobile phase 

 

The mobile phase, prepared as described, was maintained at room 

temperature and pumped through the analytical column at a flow rate of 1.5 

ml/minute.  The mobile phase was recycled in order to allow a larger number 

of samples to be analysed in a single run without having to prepare overly 

large volumes of the mobile phase.  This was not found to cause any problem 

with interfering peaks, even in continuous runs of up to 100 sample injections. 

 

2.10  Calculation of results 

 

Quantification was done by the method of internal standardisation on the 

basis of peak heights as the analytes were all completely resolved at baseline 

and the peaks consistently sharp and well defined.  Analyte concentrations 

were calculated by dividing the peak height ratio of analyte to internal 
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standard in the (unknown) sample by that in the calibration standard and 

multiplying by the known concentration in the standard.  A single level 

calibration was selected owing to the linearity of all analytes over a wide 

concentration range, as demonstrated in the section on analytical validation. 

 

2.11  Resultant chromatographic profiles 

 

Elution from the analytical column was in the order arginine, MMA, 

homoarginine, ADMA, SDMA and MEA.  All were resolved at baseline and no 

interference from other peaks was a problem.  The retention factors (K’) 

based on the described conditions are given in table 2.2. 

 

Compound Retention factor (K’) 

Arginine 12.6 

MMA 18.3 

Homoarginine 21.0 

ADMA 24.0 

SDMA 26.2 

MEA 35.9 

 

Table 2.2:  Retention factors for the analytes of interest 

 

Chromatographic profiles of a combined standard, including MMA, and an 

extracted human plasma sample using MEA as the internal standard are shown 

in figure 2.2. 
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Figure 2.2:  Chromatographic profiles of (a) a combined standard and (b) 

an extracted human plasma sample.   

Peak identification:  1) Arginine, 2) MMA, 3) Homoarginine, 4) ADMA, 5) SDMA, 

6) MEA 
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2.12  Analytical validation 

 

2.12.1  Linearity 

 

The detector responses were determined to be linear up to 200 µM for 

arginine, 10 µM for homoarginine and 4 µM for ADMA and SDMA under the 

conditions described.  Calibration curves and linear regression equations for 

each of the 4 analytes are shown in figure 2.3.  These were determined by 

preparing sequential dilutions from a stock standard and subjected to the full 

analytical procedure.  The responses on the y axes represent the peak height 

ratios of analyte to internal standard.  The correlation coefficients are > 

0.998 for each analyte.   
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Figure 2.3:  Calibration curves and regression equations for arginine, 

homoarginine, ADMA and SDMA 

 

 

2.12.2  Limits of detection and quantification 

 

Limits of detection were defined as 3 times the chromatographic baseline 

noise from a sample blank.  The lower limit of quantification was defined as 

10 times the signal-to-noise ratio.  The results are shown in table 2.3.  The 

lower limit of quantification is significantly lower than the concentrations 

commonly encountered in biological samples. 

 

 

 



78 

 

Analyte Limit of detection, µmol/L Limit of quantification, µmol/L 

Arginine 0.01 0.04 

Homoarginine 0.001 0.004 

ADMA 0.001 0.004 

SDMA 0.001 0.004 

 

Table 2.3:  Limits of detection and quantification 

 

2.12.3  Recovery 

 

Accuracy was assessed by determining the recovery of analytes from spiked 

plasma samples.  Increasing concentrations of each analyte were added to 

aliquots of a plasma pool, and the recovery calculated following subtraction 

of the basal concentration.   This experiment was performed in triplicate, and 

the mean (SD) results are shown in table 2.4.  Recoveries were within the 

range 98.0 – 105.4% for arginine, ADMA and SDMA.  For homoarginine, 

recoveries were within the range 92.1 – 93.5% and linear throughout the 

concentration range.   
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Analyte 
Added amount 

µmol/L 

Concentration measured 

Mean (SD), µmol/L 

Calculated recovery 

Mean (SD), % 

0 79.5 (1.2)  

50 133.9 (0.8) 103.4 (0.6) 
Arginine 

(n = 3) 
100 178.6 (0.3) 99.5 (0.2) 

0 1.57 (0.03)  

2.00 3.46 (0.13) 93.4 (8.3) 

5.00 6.23 (0.08) 92.1 (1.8) 

Homoarginine 

(n = 3) 

10.00 10.97 (0.04) 93.5 (0.5) 

0 0.34 (0.02)  

0.50 0.84 (0.03) 100.0 (6.1) 

1.00 1.35 (0.02) 100.7 (2.6) 

2.00 2.44 (0.01) 105.4 (0.6) 

ADMA 

(n = 3) 

4.00 4.46 (0.07) 103.6 (1.9) 

0 0.27 (0.02)  

0.50 0.77 (0.03) 99.5 (4.2) 

1.00 1.26 (0.05) 99.0 (3.6) 

2.00 2.26 (0.06) 99.6 (2.5) 

SDMA 

(n = 3) 

4.00 4.19 (0.06) 98.0 (1.3) 

 

Table 2.4:  Recoveries from spiked plasma samples 
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2.12.4  Precision 

 

2.12.4.1  Intra-assay variation 

The intra-assay CV was determined by analysing 10 aliquots of a single plasma 

pool within a single batch and the results shown in table 2.5.  Each aliquot 

was subjected to solid phase extraction, and so represents the whole 

analytical procedure.    

 Arginine, µmol/L Homoarg, µmol/L ADMA, µmol/L SDMA, µmol/L 

1 57.2 1.79 0.44 0.31 

2 59.6 1.84 0.45 0.32 

3 59.8 1.85 0.45 0.32 

4 59.7 1.80 0.44 0.31 

5 57.2 1.76 0.45 0.31 

6 56.6 1.76 0.43 0.31 

7 58.6 1.78 0.43 0.31 

8 57.4 1.79 0.44 0.32 

9 58.7 1.77 0.44 0.31 

10 56.4 1.76 0.43 0.31 

Mean 58.1 1.79 0.44 0.31 

SD 1.329 0.032 0.008 0.005 

CV, % 2.3 1.8 1.9 1.6 

 

Table 2.5:  Intra-assay variation 



2.12.4.2  Inter-assay variation  

The in-house QC material was analysed in duplicate in each batch.  50 pairs of 

QC duplicates were analysed over approximately 1 year.   Analytical variance 

(SDA
2) was calculated from the difference between each pair of duplicates 

according to the formula: 

SDA
2 = Σ d2/2N 

where d is the difference between each duplicate pair and N is the number of 

duplicates.  Inter-assay CV was calculated from this variance, and is shown in 

table 2.6. 

 

Analyte Mean concentration, µmol/L Inter-assay CV, % 

Arginine 37.3 2.5 

Homoarginine 1.48 2.9 

ADMA 0.36 2.5 

SDMA 0.24 3.2 

 

Table 2.6:  Inter-assay variation 

 

2.12.5 Comparison of internal standards 

 

Comparison of the two potential internal standards was done by analysing 

plasma samples which had both MEA and MMA added as internal standards.  

Arginine, homoarginine, ADMA and SDMA results were then calculated using 

each of the internal standards and the results compared.  Data for a group of 

70 plasma samples is presented in table 2.7.  It can be seen that there are no 

significant differences, and on linear regression, the correlation coefficients 
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are all greater than 0.975.  These results suggest that either internal standard 

can be used without a compromise in accuracy or precision. 

 

Arginine Homoarginine ADMA SDMA 
 

Mean SD Mean SD Mean SD Mean SD 

MEA 60.4 22.3 1.93 0.77 0.46 0.08 0.38 0.08 

MMA 59.6 21.6 1.90 0.74 0.46 0.08 0.38 0.07 

 

Table 2.7:  Comparison of MEA and MMA as internal standards 

 

2.12.6  Stability of analytes in stored plasma samples 

 

Aliquots of the QC material were analysed following 18 months of storage at -

70˚C, with no significant differences seen in the measured concentrations 

from baseline, confirming stability under the described storage conditions.  

The mean (SD) values from 3 measurements 18 months apart are shown in 

table 2.8, with no significant differences seen between the two time points (p 

values all > 0.40). 

 

 Arginine, µmol/L Homoarg, µmol/L ADMA, µmol/L SDMA, µmol/L 

Baseline 34 (1.5) 1.41 (0.01) 0.35 (0.01) 0.24 (0.01) 

18 months 33 (1.2) 1.40 (0.08) 0.36 (0.02) 0.24 (0.02) 

 

Table 2.8:  Stability of analytes in stored plasma samples 
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2.13 Modification of method for measurements in urine 

 

Minor adjustments were made in order to permit measurement of ADMA and 

SDMA in urine, where they are present in much higher concentrations, both in 

the basal state221 and in certain pathological conditions where they can be 

even higher, e.g. liver disease241.  The sample injection volume onto the 

analytical column was reduced to 12 µL, and the detector response was 

assessed to its limit of linearity.  The net result was linearity up to 20 µM for 

both ADMA and SDMA.  Figure 2.4 demonstrates this, with the y axes showing 

the detector response in mV. 
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Figure 2.4:  Calibration curves and regression equations for ADMA and 

SDMA in urine 
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The sample volume taken for solid phase extraction was reduced to 50 µL with 

results increased by a factor of 4, thereby effectively increasing the 

measurable range in urine samples to 80 µmol/L.  This was felt to be 

adequate for the overwhelming majority of human urine samples, based on 

literature values241.  Any samples above this range were analysed following 

dilution. 

 

A recovery experiment was performed identically to that described in plasma 

earlier in the chapter.  Urine was spiked with increasing amounts of ADMA and 

SDMA and the recovery calculated following subtraction of the basal 

concentration.  This was done in triplicate and the mean (SD) results are 

shown in table 2.9.  The recoveries were acceptable, ranging from 95.5 – 

99.0% for ADMA and 97.2 – 99.7% for SDMA. 

 

Analyte 
Amount added 

µmol/L 

Concentration measured 

Mean (SD), µmol/L 

Calculated recovery 

Mean (SD), % 

0 9.10 (0.30)  

5 13.88 (0.13) 95.5 (2.5) 
ADMA 

(n = 3) 
10 19.00 (0.01) 99.0 (0.1) 

0 7.44 (0.26)  

5 12.30 (0.24) 97.2 (4.7) 
SDMA 

(n=3) 
10 17.41 (0.06) 99.7 (0.6) 

 

Table 2.9:  Recoveries from spiked urine samples
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Chapter 3 

Reference intervals for dimethylarginines 

 

3.1 Materials and methods 

 

3.1.1 Selection of subjects 

 

Ostensibly healthy volunteers from the laboratory staff were selected to 

determine reference intervals for arginine, homoarginine, ADMA and SDMA for 

the current analytical method.  Exclusion criteria were smoking and clinical 

history of a condition known to affect ADMA concentrations, in particular 

cardiovascular and renal disease.  Each individual was informed of the 

purpose and procedure of the study and the exclusion criteria; individuals who 

wished to participate and who didn’t exclude themselves after being informed 

of the exclusion criteria provided consent for blood samples to be taken as 

detailed below.  Increased weight, or body mass index (BMI) was not specified 

as an exclusion criterion, as an independent effect of BMI on ADMA 

concentrations has not been shown.  100 subjects were recruited (51 female, 

49 male), with a mean (range) age of 43 (23 – 65) years. 

 

3.1.2 Specimen collection and handling 

 

Blood was taken by standard venepuncture into tubes containing heparin as an 

anticoagulant, and the plasma removed following centrifugation and stored at 

-70˚C until analysis.  At the same time a sample was taken into a serum 

separator tube (SST) for the analysis of serum lipids (total cholesterol, 

triglyceride, high density lipoprotein (HDL) cholesterol), C reactive protein 
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(CRP), creatinine and alanine aminotransferase (ALT).  This was to exclude 

subjects with significant dyslipidaemias, active inflammation or renal 

impairment, all factors which can affect serum dimethylarginine 

concentrations.  Blood sampling was done under non-fasting conditions, with 

all specimens collected during the early morning after breakfast.  The 

implications of this are discussed in chapter 12.2. 

 

3.1.3 Biochemical analysis 

 

Arginine, homoarginine, ADMA and SDMA concentrations were calculated using 

the method described in chapter 2.  Serum lipids, CRP, creatinine and ALT 

were analysed on a multi-channel autoanalyser in the routine biochemistry 

laboratory, using methods described briefly in chapter 7.  Low density 

lipoprotein (LDL) cholesterol was calculated according to the Friedewald 

equation (total cholesterol – HDL – (triglyceride/2.2)).  Estimated glomerular 

filtration rate (eGFR) was calculated using the standard 4 variable 

modification of diet in renal disease (MDRD) formula, as appropriate to the 

creatinine method in use in NHS Greater Glasgow and Clyde laboratories242: 

eGFR (ml/min/1.73m2) = 175 × (Creatinine/88.6)-1.154  × (Age)-0.203 × 0.742 if 

female 

 

3.1.4 Statistical methods 

 

The data for arginine, homoarginine, ADMA and SDMA were examined for 

normality using the Kolmogorov Smirnov test.  Non-normally distributed data 

were logarithmically transformed.  Means and 95% reference intervals were 

constructed from the transformed data.  Correlations between ADMA and 

other parameters was done using Spearman rank correlation where variables 
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were non-normally distributed.  Differences between age and gender 

stratified groups were examined using the Mann Whitney U test. 

 

3.2  Results 

 

3.2.1  Population distribution  

 

Biochemical data for all of the subjects examined can be seen in appendix 2.  

The means, medians and SDs from the raw data are presented in table 3.1. 

 

Analyte Mean, µmol/L Median, µmol/L SD, µmol/L 

Arginine 68.5 65.7 26.4 

Homoarginine 1.99 1.86 0.84 

ADMA 0.46 0.45 0.084 

SDMA 0.39 0.38 0.077 

 

Table 3.1:  Means, medians and SDs of reference group data (n = 100) 

 

The reference values for all four analytes in table 3.1 were found to be non-

normally distributed.  Therefore logarithmic transformation was employed to 

normalise the distributions.  Probability plots and histograms of the 

logarithmically transformed data are shown in figures 3.1 (a) – (d). 
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Figure 3.1(a) Probability plot and histogram of reference values for 

arginine following logarithmic transformation 
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Figure 3.1(b)  Probability plot and histogram of reference values for 

homoarginine following logarithmic transformation 
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Figure 3.1(c)  Probability plot and histogram of reference values for ADMA 

following logarithmic transformation 
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Figure 3.1(d)  Probability plot and histogram of reference values for SDMA 

following logarithmic transformation 
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3.2.2 Calculation of reference intervals 

 

95% reference intervals were derived conventionally by defining lower and 

upper limits 2 SDs either side of the logarithmically transformed means.  The 

resultant reference intervals are shown in table 3.2 

 

Analyte Mean, µmol/L 95% reference interval, µmol/L 

Arginine 63 27 – 148 

Homoarginine 1.83 0.82 – 4.09 

ADMA 0.45 0.32 – 0.65 

SDMA 0.38 0.26 – 0.56 

 

Table 3.2:  95% reference intervals following logarithmic transformation 

 

3.2.3 Age and gender influences 

 

3.2.3.1  Comparison of gender stratified groups 

The data for the four analytes in question was divided according to gender, 

and comparisons made between gender groups.  The median arginine 

concentration was higher in men compared with women, but no other gender 

differences were seen.  Table 3.3 shows the median concentrations and p 

values for inter-group comparisons. 
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 Arginine Homoarginine ADMA SDMA 

Male, µmol/L 75 (53 – 93) 1.86 (1.39 – 2.47) 0.42 (0.38 – 0.52) 0.40 (0.34 – 0.44) 

Female,  µmol/L 62 (48 – 79) 1.87 (1.37 – 2.49) 0.45 (0.41 – 0.52) 0.37 (0.33 – 0.41) 

p value 0.03 0.93 0.26 0.22 

 

Table 3.3:  Median (inter-quartile range) values and p values for 

comparisons of reference group stratified by gender 

 

3.2.3.2 Associations with age 

No significant correlations were seen between ADMA and SMDA concentrations 

and age, both displaying Spearman rank correlations of 0.14 and 0.18 

respectively.  The female group was divided according to age into two groups 

of < 50 years and ≥ 50 years in order to investigate the effect of menopausal 

status.  The age cut off of 50 years was selected as it represents the typical 

age of menopausal transition.  No significant differences were seen between 

the groups (p = 0.35). 

 

3.2.4 Correlations of dimethylarginines with other variables 

 

SDMA and ADMA were strongly correlated (r = 0.53, p < 0.001).  There was a 

borderline weak correlation between SDMA and serum creatinine (r = 0.19, p = 

0.08).  These are shown in figures 3.2 and 3.3 respectively.  The correlation 

between SDMA and creatinine was weaker than reported in other studies, but 

the range of creatinine values encountered was somewhat narrower, which 

probably accounts for the apparently lesser strength of the association.  No 

significant correlation was seen between SDMA and eGFR (r = -0.10, p = 0.36), 

although any potential association between SDMA and renal function could 
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have been undermined by the use of non-fasting samples which can affect 

serum creatinine concentrations243, and the range of encountered eGFRs 

which are overall in the range where the MDRD equation is known to perform 

less well242 (mean eGFR in reference group 78 ml/min/1.73m2). 

 

No correlations were seen between SDMA and other variables.  ADMA 

demonstrated no correlations with total cholesterol (r = -0.11, p = 0.31), LDL 

cholesterol (r = -0.116,   p = 0.28), serum creatinine (r = -0.10, p = 0.334) 

concentrations, or eGFR (r = 0.11, p = 0.31). 
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Figure 3.2:  Relationship between ADMA and SDMA concentrations in 

reference group 

 

Figure 3.3:  Relationship between creatinine and SDMA concentrations in 

reference group 
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Chapter 4 

Biological variation of dimethylarginines 

 

4.1 Biological variation and its utility 

 

4.1.1  Background to biological variation 

 

Any analyte measured repeatedly will demonstrate inherent variation in the 

serial results obtained.  Broadly speaking this variation consists of two main 

sources: that related to random variation in the assay, and that which is 

inherent in the individual and can be considered as random around a 

homeostatic set point.  This is termed the intra-individual biological variation 

(CVI).  Homeostatic set points differ between individuals, and this is termed 

the inter-individual variation (CVG)
244.  A parameter which is homeostatically 

important, such as blood pH or extracellular potassium concentration, would 

be expected to have a rather narrow intra-individual variation owing to the 

action of regulatory mechanisms, while a parameter not subject in itself to 

regulation, such as urine osmolality, would display a much wider 

variation244,245.  Certain analytes have predictable cyclical rhythms which 

might be diurnal, e.g. serum cortisol, monthly, e.g. female reproductive 

hormones or seasonal, e.g. vitamin D.  Additionally some analytes exhibit 

changes according to age, or at certain times of life such as puberty, 

pregnancy or menopause.  As has been discussed in the introduction, ADMA 

has been shown to increase, although by a small absolute amount, with 

increasing age and after the menopause.  However, little is known about its 

biological variation, although such data is required in order to assess its 

biological significance, determine the likely significance of changes in serial 

results, and define quality specifications for analytical methods244. 
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In order to determine the components of biological variation, repeated 

specimens are taken from a group of individuals under standardised 

conditions.  In general it is advised to select a small number of reference 

subjects who are free from disease or medication known to affect the analyte 

being measured; they should be sampled under standardised conditions, and 

samples analysed within a single analytical batch in order to minimise the 

effect of pre-analytical and analytical variation230,232. 

 

4.1.2  Reference change value 

 

Biological variation data are also used to determine the reference change 

value (RCV).  Laboratory tests are often measured repeatedly, with changes 

between measurements used to monitor such factors as disease progression or 

response to treatment, both in clinical practice and in studies.  Since some 

variation will be expected from biological variation, the RCV is useful in 

describing the magnitude of difference required to be confident of a 

biologically significant change at a certain level of statistical 

significance232,244. 

 

4.1.3  Index of individuality and the utility of reference intervals 

 

Reference intervals are often regarded as being equivalent to “normal 

ranges”, although clearly there will be, sometimes considerable, overlap 

between healthy and diseased individuals.  Many analytes measured in clinical 

laboratories exhibit a CVI which is much less than the CVG, a prime example of 

this being serum creatinine244-246.   In practice this means that the majority of 

individuals have a range of “normal” values which are contained within a 

fraction of the overall reference interval, be this in the middle of the range or 

at either extreme.  An individual could, therefore, have a result which is 
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highly unusual for them but still within the overall reference interval246.   The 

index of individuality (II) is derived from the components of biological 

variation and describes exactly this “biological individuality”, and is used to 

assess the utility of traditionally-defined reference intervals in denoting 

abnormality in a single measurement on a single occasion246.  Essentially it is 

the ratio of CVI to CVG.  A ratio of > 1.4 generally means that a population 

derived reference interval can be used to denote “abnormality” in an 

individual with a reasonable degree of likelihood.  In contrast, a ratio < 0.6 

indicates that an isolated result has limited diagnostic utility when compared 

with a reference interval246. 

 

4.1.4  Analytical performance goals 

 

Performance goals for analytical methods are best based on biological 

variation230,231.  These goals are designed to ensure that, at acceptable levels 

of performance, variation from analytical “noise” does not obscure clinical 

“signal”, and cover both random error, i.e. imprecision, and systematic error, 

i.e. bias.  A desirable goal for imprecision has been set as no more than 0.5 

times CVI, as at this level the impact of analytical variation should be 

minimal230,231. 

 

4.2 Methods 

 

4.2.1 Specimen collection and handling 

 

Twelve ostensibly healthy individuals, members of the biochemistry 

laboratory staff at Glasgow Royal Infirmary, were recruited (6 men, 6 women, 

age range 20 – 53 years).  None had any disease known to affect ADMA 
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concentrations, and none were on regular medication.  All were non smokers, 

and none consumed alcohol in excess of recommended safe levels.  All 

maintained their usual lifestyles for the duration of the study. 

 

Once per week for 20 weeks blood was collected by conventional 

venepuncture following an overnight fast.  These were collected between 

09:00 and 10:00 in the morning with subjects in a sitting position and avoiding 

venous stasis.  Blood was collected into tubes containing heparin as an 

anticoagulant, centrifuged (500 g, 4˚C, 10 minutes), and the plasma 

transferred into plastic tubes which were stored at -70˚C until analysis. 

 

Plasma arginine, homoarginine, ADMA and SDMA were measured using the 

method described in chapter 2.  As there were 20 samples from each 

individual, they had to undergo solid phase extraction in 2 lots, although all 

were analysed in a single analytical run.  The analyses were performed by a 

single analyst, with a single lot of reagents, QC and calibration standards, in 

order to minimise analytical variation. 

 

4.2.2 Statistical methods 

 

Statistical analysis was carried out using Minitab statistical software (release 

13).  Data were examined for normality using the Anderson Darling test, and 

outliers defined as data points exceeding 3 SD from the mean.   

 

4.2.2.1  Determination of the components of biological variation 

For each analyte, the total intra-individual variance was calculated from the 

data for each participant and transformed into the total intra-individual CV 
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(CVTI) using the homeostatic mean from each participant.  CVTI  consists of 

both biological and analytical components, therefore the intra-individual 

variation was calculated by subtraction using the general formula: 

CVI  =  (CVTI
2  -  CVA

2)1/2 

The intra-assay CV, as described in section 2.12.4.1 was used as the CVA for 

this calculation, given that samples for a single individual were analysed in a 

single batch. 

 

The inter-individual variance reflects the difference between means of 

individuals.  It was determined by use of all the individual data points and 

transformed into the total inter-individual CV (CVT) by use of the overall 

mean.  The CVI and CVA were subtracted from this to give the CVG, according 

to the formula: 

CVG  =  (CVT
2  -  CVI

2  -  CVA
2)1/2 

 

4.2.2.2 Determination of reference change value and index of individuality 

The RCV was calculated with a view toward providing information about 

significant change at the 95% confidence level.  It was thus calculated as 

follows232: 

RCV  =  2.77  x  CVTI 

 

The II is simply the ratio of intra and inter-individual variances, as was 

calculated according to the formula246: 

II  =  CVTI / CVG 

 

 



102 

 

4.2.2.3 Determination of analytical performance goals 

The desirable goal for imprecision (CVA)
230,231 was calculated as ≤ 0.5 x CVI. 

 

The limiting goal for bias (B) is one fourth of the group biological variation 

which is itself made up of intra and inter-individual components230,231.  The 

goal was defined as: 

B  <  0.25  x  (CVI
2  +  CVG

2)1/2 

 

The resultant goal for total error (TE)230,231 is defined as <  (kI + B), where k = 

1.65 at α = 0.02. 

 

4.3 Results 

 

4.3.1 Intra- and inter-individual biological variation 

 

The data for arginine, homoarginine, ADMA and SDMA were all found to be 

normally distributed in each individual.  Two outlying data points were 

excluded.  For each individual participant the mean analyte concentrations, 

SD and resultant CVI are shown in appendix 2.  The mean CVI values are shown 

in table 4.1.  As can be seen, ADMA and SMDA exhibit tight regulation in 

human plasma, with values of 7.4% and 5.8% respectively.  Arginine and 

homoarginine are less tightly controlled, though are much less variable than 

many commonly measured analytes245. 
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Analyte 
Intra-individual variation 

CVI, % 

Inter-individual variation 

CVG, % 

Arginine 16.1 13.4 

Homoarginine 14.4 37.8 

ADMA 7.4 9.6 

SDMA 5.8 14.7 

 

Table 4.1:  Biological variation of arginine, homoarginine, ADMA and SDMA 

 

The CVG values are also shown in table 4.1.  For ADMA and SDMA the results of 

9.6% and 14.7% respectively suggest a spread in the population which is not 

excessively high, as has been suggested by the data from the various clinical 

studies examined in chapter 1.  However for SDMA in particular it is striking 

that CVI is much less than CVG (5.8% vs 14.7%), suggesting a high degree of 

biological individuality, analogous to serum creatinine.  This can be 

appreciated visually by examining figure 4.1, which contains box plots 

depicting the range of values encountered in each individual studied.  SDMA, 

ADMA and homoarginine show this individuality visually, with the individual 

ranges for arginine demonstrating much more overlap. 
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Figure 4.1:  Box plots of arginine, homoarginine, ADMA and SDMA 

concentrations in biological variation study 

 

4.3.2 Reference change value and index of individuality 

 

The RCVs and IIs are shown in table 4.2.  The RCVs for ADMA and SDMA are 

around 20%, indicating that a change of at least this magnitude is required 

between serial samples to be confident of biological significance.  The IIs 

were < 1.4 for all analytes. 
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Analyte 
Reference change value 

RCV, % 

Index of Individuality 

II 

Arginine 45.7 1.23 

Homoarginine 41.0 0.39 

ADMA 21.6 0.81 

SDMA 19.1 0.47 

 

Table 4.2:  Reference change values and indices of individuality 

 

4.3.3 Analytical performance goals 

 

Performance goals for imprecision, bias and total error are shown in table 4.3.  

The low CVI of ADMA and SDMA imposes fairly tight imprecision goals, which 

numerous methods described in the literature fail to meet.  The right-hand 

column gives the performance of the current analytical method as determined 

in the method validation outlined in chapter 2.  This suggests satisfactory 

performance. 
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Desirable specification 

Analyte 
Imprecision, % Bias, % 

Total error, 

% 

Current 

method 

CVA, % 

Arginine 8.0 5.2 10.3 2.5 

Homoarginine 7.2 10.1 16.0 2.9 

ADMA 3.7 3.1 7.2 2.5 

SDMA 2.9 3.9 10.0 3.2 

 

Table 4.3:  Analytical performance goals 

 

4.4  Summary and conclusions 

 

The biological variation of ADMA and SDMA in human plasma is low, suggesting 

fairly tight regulation.  This imposes strict analytical performance goals, 

something which many methods fail to meet.  The indices of individuality of < 

1.4 suggest that reference intervals are of limited utility in denoting 

abnormality from a single result.  This is likely to hamper efforts to 

incorporate ADMA into risk scoring systems or as a diagnostic marker. 
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Chapter 5 

Measurement of dimethylamine in urine using HPLC 

 

5.1 Background and justification 

 

Dimethylamine (DMA) is a short chain aliphatic amine derived from the DDAH-

mediated catabolism of ADMA, and is excreted in the urine247.  It was first 

identified in human urine several decades ago, and has endogenous and 

exogenous sources248.  Theoretically its excretion rate could provide a 

surrogate measure of overall DDAH activity, provided that two conditions are 

met: first, that once produced DMA is excreted entirely, or largely, unchanged 

in urine; and, second, that exogenous, that is dietary, sources of DMA can 

either be minimised or eliminated to prevent excessive background “noise” 

obscuring the variation attributable to changes in endogenous production.  On 

the first of these conditions, an experiment has shown that ingested DMA is 

excreted rapidly into the urine unchanged:  87% of an oral dose of DMA was 

excreted into the urine during the first 24 hours in healthy male volunteers, 

with only a small amount (5%) further metabolised249.  The elimination half-

life from plasma was estimated to be 6 – 7 hours249.  Moreover, as little as 2 

hours following IV injection of ADMA, a significant increase in urinary DMA is 

seen8.  On the second condition, the dietary sources of DMA have been well 

characterised.  In a study of dietary sources, no foods from the fruit and 

vegetable, meat, dairy or grain groups produced any significant increases in 

DMA excretion following ingestion250.  On the contrary, most fish and shellfish 

produced significant increases in its excretion, especially squid, coley, 

whiting, cod and sardines, and appears to be related to the breakdown of 

trimethylamine N oxide within the fish after being caught250.  It appears that 

by restricting access to this specific food group, major fluctuations from diet 

could be avoided. 
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The excretion of DMA in human urine has been estimated at around 140 to 400 

µmol/day8,247,251, with a urinary ratio of DMA to ADMA of around 10.  The 

concentrations of DMA and ADMA in urine are significantly correlated (R = 

0.84), further suggesting the validity of extrapolating DMA to ADMA 

catabolism251, and has a relatively low variation on a stable diet.    In patients 

with coronary disease, urinary excretions of ADMA and DMA are both 

increased, with an increase in the DMA:ADMA ratio, but retention of their 

positive correlation251. In view of these facts urinary DMA excretion was 

measured as an indicator of overall DDAH activity. 

 

Published methods for DMA include GC-MS/MS247,251 and HPLC252 .  The 

described GC-MS/MS requires pre-analytical sample extraction using toluene 

and derivatisation to produce pentafluorobenzamide derivatives251.  Using 

HPLC, DMA was converted to a stable fluorescent derivative using 9-

fluorenylmethylchloroformate  (FMOC) which permits reliable and sensitive 

measurement by fluorescence detection252.  The HPLC method has the 

advantage of simpler sample preparation, but requires a heating step to 

eliminate a prominent interfering peak related to the derivatising agent itself.  

Both methods demonstrate high sensitivity and acceptable precision, with 

inter-assay CVs of around 5% or less251,252.  In the current study, a method was 

developed using HPLC, taking the method of Teerlink252 as a starting point, 

with modifications to allow greater simplicity.  The remainder of this chapter 

describes its development and analytical validation. 

 

5.2  Specimen collection and pre-analytical handling 

 

Urine was collected into plain specimen containers and the samples 

immediately frozen to ensure stability of DMA.  Samples were stored at -70˚C 

and thawed immediately prior to analysis. 
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5.3  Reagents and buffers 

 

5.3.1  List of chemicals 

 

Dimethylamine (BDH chemicals, VWR International Ltd, Leicestershire) 

Trichloroacetic acid (Sigma chemical company, Poole, UK) 

Boric acid (BDH chemicals, VWR International Ltd, Leicestershire) 

9-fluorenylmethylchloroformate (FMOC) (Sigma chemical company, Poole, UK) 

Glycine (Sigma chemical company, Poole, UK) 

Potassium dihydrogen phosphate (BDH chemicals, VWR International Ltd, 

Leicestershire) 

Methanol, HPLC grade (Rathburn chemicals Ltd, Walkerburn, Scotland) 

Ethanol, HPLC grade (Rathburn chemicals Ltd, Walkerburn, Scotland) 

 

5.3.2  Preparation of buffers and reagents 

 

5.3.2.1  10% trichloroacetic acid (TCA) 

20 g TCA were dissolved in 200 ml deionised water. 

 

5.3.2.2   0.8 M borate buffer 

9.92 g boric acid were dissolved in 200 ml deionised water, and the pH 

adjusted to 9.5 using 2 M potassium hydroxide. 
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5.3.2.3  Derivatising agent 

A 10 mM solution of the derivatising agent was prepared by dissolving 26 mg 

FMOC in 10 mls acetonitrile.  This was prepared freshly prior to each 

analytical run. 

 

5.3.2.4  100 mM glycine 

75 mg glycine were dissolved in 10 ml deionised water. 

 

5.3.2.5  Mobile phase:  50 mM phosphate buffer, 60% v/v methanol,          

10% v/v ethanol 

A 50 mM phosphate buffer was prepared by dissolving 0.5 g potassium 

dihydrogen phosphate in 150 ml deionised water, and the pH adjusted to 6.5 

using 2 M potassium hydroxide.  To this was added 300 ml methanol and 50 ml 

ethanol.  The mobile phase was filtered through a 0.45 µm nylon filter and 

degassed prior to use. 

 

5.4  Standards 

 

A 10 mM stock DMA standard was prepared in deionised water and stored at -

70˚C.  From this a 250 µM working standard was prepared for use in each 

analytical run.  The standard was determined to be stable under these 

conditions by comparing peak heights on chromatography. 
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5.5  Internal quality control material 

 

Urine obtained from a single volunteer was used as the QC material.  This was 

stored in aliquots at -70˚C until use, and analysed in duplicate within each 

analytical run in order to generate imprecision data. 

 

5.6  Specimen preparation and derivatisation 

 

300 µL of sample, standard or QC were mixed with 200 µL of 10% TCA, the 

acidification stabilising the volatile DMA in solution and allowing precipitation 

of any protein in the samples.  Following centrifugation (1000 rpm, 10 

minutes), 200 µL of the supernatant were mixed thoroughly with 600 µL 0.8 M 

borate buffer.  400 µL of this mixture were then added to 300 µL of the 

derivatising agent, and the reaction allowed to proceed for 1 minute.  The 

excess derivatising agent was then neutralised by the addition of 100 µL 100 

mM glycine.  The resulting solution was transferred into a glass tube with a 

screw fitting cap and placed on a heating block at 80˚C for 10 minutes.  The 

heating step was employed to eliminate a peak which eluted on 

chromatography very close to the DMA peak.  This problem was previously 

described by Teerlink252, who demonstrated complete removal of the 

interfering peak with no effect on the DMA peak.  The same experience was 

obtained in the present study.  Following heating samples were diluted 1:10 in 

the mobile phase and transferred into autosampler vials ready for analysis. 
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5.7  Chromatography 

 

5.7.1  Chromatographic system and setup 

 

The chromatographic system consisted of a solvent delivery system, 

programmable autosampler and fluorimeter (Waters, Watford, UK).  10 µL of 

the derivatised sample was injected by the programmable autosampler onto 

the column for chromatography.  Excitation and emission wavelengths were 

260 nm and 320 nm respectively, the optimal wavelengths for FMOC 

derivatives.  At 10 minutes the sensitivity was increased by adjusting the EUFS 

(emission units full scale) from 32,000 to 4,000.  The low detector sensitivity 

at the start of the analytical run was selected as two large peaks elute near 

the start, namely the hydrolysis product of the derivatising agent, FMOC-OH 

and the FMOC-glycine derivative252.   Following their elution, the detector 

sensitivity was increased to allow reliable quantification of DMA within the 

linear part of the detector response.  Signals from the detector were captured 

by a data management system (Millennium 2010, Waters, Watford, UK).   

 

5.7.2  Analytical column 

 

The analytical column was a Luna C18, 5 µm, 4.6 x 250 mm, protected by a 3 

x 4 mm C18 guard column.  The ambient temperature in the laboratory was 

maintained at a constant level in order to ensure stability of retention times. 
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5.7.3  Mobile phase 

 

The mobile phase, prepared as described, was maintained at room 

temperature and pumped through the analytical column at a flow rate of 1.0 

ml/minute.  The mobile phase was recycled in order to allow a larger number 

of samples to be analysed in a single run without having to prepare overly 

large volumes of the mobile phase.  This was not found to cause any problem 

with interfering peaks, even in large runs. 

 

5.8 Calculation of results 

 

Quantification was done by the method of external standardisation on the 

basis of peak heights as the DMA peak was completely resolved at baseline 

and the peak consistently sharp and well defined.  DMA concentration was 

calculated by dividing the peak height of analyte in the (unknown) sample by 

that in the calibration standard and multiplying by the known concentration in 

the standard.  A single level calibration was selected owing to the linearity of 

DMA over a wide concentration range, as demonstrated in the section on 

analytical validation. 

 

5.9  Resultant chromatographic profiles 

 

The peak corresponding to DMA was completely resolved from all other peaks.  

Chromatographic profiles corresponding to an aqueous standard and human 

urine sample are shown in figure 5.1.  
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Figure 5.1:  Chromatographic profiles of (a) an aqueous standard and (b) a 

human urine sample.   The DMA peak is seen to elute at 12.4 minutes. 

 

5.10  Analytical validation 

 

5.10.1  Linearity 

 

The detector response was determined to be linear up to 2,000 µM for DMA 

under the conditions described.  Calibration curve and linear regression 

equation for DMA are shown in figure 5.2.  These were determined by 

preparing sequential dilutions from a stock standard and subjected to the full 

analytical procedure.  The values on the y axes represent the detector 

response.  The correlation coefficient was > 0.999.   

A 

B 
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Figure 5.2:  Calibration curve and regression equation for dimethylamine 

 

5.10.2  Limits of detection and quantification 

 

Limit of detection were defined as 3 times the chromatographic baseline 

noise from a sample blank, and was determined to be 2 µmol/L.  The lower 

limit of quantification was defined as 10 times the signal-to-noise ratio, and 

was determined to be 6.7 µmol/L.  The lower limit of quantification is 

significantly lower than the concentrations commonly encountered in 

biological samples. 
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5.10.3  Recovery 

 

Accuracy was assessed by determining the recovery of DMA from spiked urine 

samples.  Increasing concentrations of DMA were added to aliquots of a urine 

pool, and the recovery calculated following subtraction of the basal 

concentration.   This experiment was performed in triplicate, and the mean 

(SD) results are shown in table 5.1.  Recoveries were within the range 98.4 – 

101.5%. 

 

Amount added 

µmol/L 

Concentration measured 

Mean (SD), µmol/L 

Calculated recovery 

Mean (SD), % 

0 351 (12.7)  

250 597 (9.6) 98.4 (3.2) 

500 859 (13.3) 101.5 (2.2) 

1000 1350 (20.9) 99.9 (1.7) 

 

Table 5.1:  Recovery of dimethylamine from spiked urine samples (n = 3) 

 

5.10.4  Precision 

 

5.10.4.1  Intra-assay variation 

The intra-assay CV was determined by analysing 5 aliquots of a single urine 

pool within a single batch.  Each aliquot was subjected to the described 

process, and so the data represent the imprecision of the whole analytical 

procedure.  The results from this are shown in table 5.2. 
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 DMA, µmol/L 

1 526 

2 558 

3 525 

4 526 

5 521 

Mean 531 

SD 15.1 

CV, % 2.8 

   

Table 5.2:  Intra-assay variation 

 

5.10.4.2  Inter-assay variation 

The in-house QC material was analysed in duplicate in each batch.  12 pairs of 

QC duplicates were used to determine imprecision.  The data for these are 

given in table 5.3.  Analytical variance (SDA
2) was calculated from the 

difference between each pair of duplicates according to the formula: 

SDA
2 = Σ d2/2N 

where d is the difference between each duplicate pair and N is the number of 

duplicate pairs.  Inter-assay CV was calculated from this variance, and was 

determined to be 3.7%. 
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Pair no Sample 1, µmol/L Sample 2, µmol/L 

1 407 401 

2 363 372 

3 333 344 

4 430 416 

5 367 380 

6 366 381 

7 348 382 

8 376 349 

9 340 358 

10 366 392 

11 377 353 

12 379 362 

 

Table 5.3:  QC data for calculation of inter-assay variation
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Chapter 6 

Measurement of nitrate in urine using HPLC 

 

6.1  Background and justification 

 

NO has a very short half life in the circulation, rapidly reacting with 

oxyhaemoglobin (oxyHb) to form nitrate which is its major, inactive, 

metabolite253.  A small amount undergoes oxidation to nitrite, which can also 

be oxidised by oxyHb.  While NO itself is unstable, nitrate as the major 

metabolite of NO undergoing urinary excretion provides a relatively simple 

and non-invasive marker of whole body NO production.  The most commonly 

used methods for measurement of nitrate in biological fluids are based on the 

Griess reaction, and involve a modification of the original method in which 

nitrite reacts with the amino group of sulphanilamide under acidic conditions 

to form a diazonium cation254.  This couples typically with 

naphthylethylenediamine to form an azo dye which can be measured by 

absorption of light at 540 nm.  For urinary nitrate measurement, the nitrate 

must first be reduced to nitrite using nitrate reductase.  Therefore total nitric 

oxide metabolites (sum of nitrate and nitrite) are measured, with the 

overwhelming majority representing nitrate.  A significant problem with these 

methods is the incomplete reduction of nitrate, which has been estimated at 

around 30 – 80%255.  GC-MS and HPLC methods have also been utilised, but 

suffer in comparison with the Griess methods owing to the equipment 

required, and sometimes extensive pre-analytical sample preparation to avoid 

interferences254. 

 

Nitrate excretion in urine is also contributed to by dietary nitrate, although 

compared with dietary sources, endogenously formed nitrate has been 

estimated as being 3 to 6 times greater254,256.  Dietary sources of nitrate 
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include green vegetables, processed meats and tap water.  Following a high 

nitrate meal, urinary nitrate peaks after 4 – 6 hours, with the majority 

excreted during the following 12 hours and a return to near basal levels by 16 

hours257.  When collecting serial samples to examine for changes in 

endogenous nitrate production, therefore, it is important to standardise the 

collection time and minimise the variation from changes in the “background” 

excretion from dietary sources. 

 

The remainder of this chapter describes the development and validation of a 

simplified isocratic HPLC method for measurement of nitrate in urine and its 

comparison with a commonly used commercially available Griess colorimetric 

assay. 

 

6.2  Specimen collection and pre-analytical handling 

 

For patients participating in the knee arthroplasty study described in chapter 

8, urine samples were collected in the morning before or around the time of 

breakfast.  The patients’ evening meal was at a consistent time around 17:30 

to 18:00 hours and was their last main food intake of the day. Urine samples 

being collected in the morning around 14 hours after this on average.  

Random samples were collected and the nitrate concentrations expressed as a 

ratio to creatinine.  Urine specimens were collected into plain specimen 

containers.  These were frozen without significant delay, and stored at -70˚C, 

being thawed only immediately prior to analysis.  This was done to prevent 

bacterial reduction of nitrate to nitrite in vitro. 
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6.3  Reagents and buffers 

 

6.3.1  List of chemicals 

 

Sodium nitrate (Sigma-Aldrich, Gillingham, UK) 

Potassium dihydrogen phosphate (BDH chemicals, VWR International Ltd, 

Leicestershire) 

 

6.3.2  Preparation of mobile phase: 20 mM phosphate buffer 

 

A 20 mM phosphate buffer was prepared by dissolving 0.4 g potassium 

dihydrogen phosphate in 300 ml deionised water that was determined to be 

nitrate free by chromatography.  The pH was adjusted to 3.5 using phosphoric 

acid. 

 

6.4  Standards 

 

A 10 mM stock nitrate standard was prepared in deionised water and stored at 

-70˚C.  From this a 2,000 µM working standard was prepared for use in each 

analytical run.  The standard was determined to be stable under these 

conditions by comparing peak heights on chromatography. 
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6.5  Internal quality control material 

 

Urine obtained from a single volunteer was used as the QC material.  This was 

stored in aliquots at -70˚C until use, and analysed in duplicate within each 

analytical run in order to generate imprecision data. 

 

6.6  Sample preparation 

 

Standards, urine samples and QC material were diluted 1:50 in nitrate free 

deionised water prior to injection onto the analytical column. 

 

6.7  Chromatography 

 

6.7.1  Chromatographic system and setup 

 

The chromatographic system consisted of a solvent delivery system, 

programmable autosampler and ultraviolet detector (Waters 2478, Waters, 

Watford, UK).  100 µL of the diluted sample was injected onto the column for 

chromatography.  Signals were detected at a wavelength of 205 nm, with an 

AUFS (absorbance units full scale) of 0.8, and captured using a chart recorder. 
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6.7.2  Analytical column 

 

The analytical column was a Gemini phenyl, 3 µm, 4.6 x 150 mm, protected 

by a 3 x 4 mm guard column.  The ambient temperature in the laboratory was 

maintained at a constant level in order to ensure stability of retention times. 

 

6.7.3  Mobile phase 

 

The mobile phase, prepared as described, was maintained at room 

temperature and pumped through the analytical column at a flow rate of 0.75 

ml/minute.  The mobile phase was recycled in order to allow a larger number 

of samples to be analysed in a single run without having to prepare overly 

large volumes of the mobile phase.  This was not found to cause any problem 

with interfering peaks, even in large runs. 

 

6.8  Calculation of results 

 

Quantification was done by the method of external standardisation on the 

basis of peak heights as the nitrate peak was completely resolved at baseline 

and the peak consistently sharp and well defined.  Nitrate concentration was 

calculated by dividing the peak height of analyte in the (unknown) sample by 

that in the calibration standard and multiplying by the known concentration in 

the standard.  A single level calibration was selected owing to the linearity of 

nitrate over a wide concentration range, as demonstrated in the section on 

analytical validation. 
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6.9  Resultant chromatographic profiles 

 

The peak corresponding to nitrate was completely resolved from all other 

peaks, eluting at 6 minutes.  Chromatographic profiles corresponding to a 

range of aqueous standards and a human urine sample are shown in figure 6.1. 

 

 

 

 

Figure 6.1(a):  Chromatographic profiles of aqueous nitrate standards 
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Figure 6.1(b):  Chromatographic profile of a human urine sample 
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6.10  Analytical validation 

 

6.10.1  Linearity 

 

The detector response was determined to be linear up to 4,000 µM for nitrate 

under the conditions described.  Calibration curve and linear regression 

equation for nitrate are shown in figure 6.2.  These were determined by 

preparing sequential dilutions from a stock standard and subjected to the full 

analytical procedure.  The values on the y axes represent the detector 

response.  The correlation coefficient was > 0.999. 

 

 

Figure 6.2:  Calibration curve and regression equation for nitrate 
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6.10.2  Limits of detection and quantification 

 

Limit of detection was defined as 3 times the chromatographic baseline noise 

from a sample blank, and was determined to be 25 µmol/L.  The lower limit 

of quantification was defined as 10 times the signal-to-noise ratio, and was 

determined to be 83 µmol/L.  The lower limit of quantification is significantly 

lower than the concentrations commonly encountered in biological samples. 

 

6.10.3  Recovery 

 

Accuracy was assessed by determining the recovery of nitrate from spiked 

urine samples.  Increasing concentrations of nitrate were added to aliquots of 

a urine pool, and the recovery calculated following subtraction of the basal 

concentration.   This experiment was performed in triplicate, and the mean 

(SD) results are shown in table 6.1.  Recoveries were within the range 94.0 – 

98.0%. 

 

Amount added 

µmol/L 

Concentration measured 

Mean (SD), µmol/L 

Calculated recovery 

Mean (SD), % 

0 1375 (35)  

864 2222 (59) 98.0 (6.2) 

1729 3000 (75) 94.0 (4.3) 

 

Table 6.1:  Recovery of nitrate from spiked urine samples (n = 3) 
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6.10.4  Precision 

 

6.10.4.1  Intra-assay variation 

The intra-assay CV was determined by analysing 5 aliquots of a single urine 

pool within a single batch.  Each aliquot was subjected to the described 

process, and so the data represent the imprecision of the whole analytical 

procedure.  The results from this are shown in table 6.2. 

 

 Nitrate, µmol/L 

1 2854 

2 3021 

3 3063 

4 2875 

5 2917 

Mean 2946 

SD 92 

CV, % 3.1 

   

Table 6.2:  Intra-assay variation 
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6.10.4.2  Inter-assay variation 

The in-house QC material was analysed in duplicate in each batch.  8 pairs of 

QC duplicates were used to determine imprecision.  The data for these are 

shown in table 6.3.  Analytical variance (SDA
2) was calculated from the 

difference between each pair of duplicates according to the formula: 

SDA
2 = Σ d2/2N 

where d is the difference between each duplicate pair and N is the number of 

duplicate pairs.  Inter-assay CV was calculated from this variance, and was 

determined to be 2.8%. 

 

Pair no Sample 1, µmol/L Sample 2, µmol/L 

1 935 887 

2 854 879 

3 997 934 

4 851 889 

5 838 866 

6 859 846 

7 846 850 

8 874 856 

 

Table 6.3:  QC data for calculation of inter-assay variation 
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6.11 Comparison with Griess colorimetric assay 

 

6.11.1  Griess assay method 

 

Urine specimens from the knee arthroplasty study described in chapter 8 were 

analysed for nitrate concentration using both the currently described HPLC 

method and a commercially available colorimetric kit (Cayman Chemicals 

Item no 780001, Cambridge, UK).  This was performed according to the 

manufacturer’s instructions.  The method involves the initial reduction of 

nitrate to nitrite, the reaction of nitrite with sulfanilamide and subsequent 

reaction with naphthyl-ethylenediamine to form a purple coloured azo 

product which is measured spectrophotometrically at 540 nm.  The method 

displays intra- and interassay variations of 2.7% and 3.4% respectively.   

 

6.11.2  Method comparison 

 

108 urine specimens were subjected to analysis by both the HPLC and Griess 

methods.  There was a strong correlation between the methods (R2 = 88.3%), 

which is shown in figure 6.3. 
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Figure 6.3:  Correlation between HPLC and Griess methods for urine 

nitrate 

 

 

The Griess assay yielded consistently lower results than those from the HPLC 

assay, with the Griess results lower by a mean of 37.7%.  This constant bias is 

shown in the Bland-Altman type scatter plot in figure 6.4. 
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Figure 6.4:  Bland-Altman plot of HPLC and Griess nitrate methods 

 

6.12  Discussion 

 

The simplified HPLC method described in this chapter permits quantification 

of nitrate in urine with very straightforward sample preparation.  Interference 

from strongly retained late-eluting peaks was occasionally found to be a 

problem, but this was overcome by allowing an approximately 30 minute gap 

between sample injections after every 10 injections or so.  Another approach 

would be to programme a solvent flush after elution of the nitrate peak, 

something that would be possible using a programmable solvent delivery 

system.   

 

In common with other method comparisons between chromatographic and 

Griess methods, the Griess assay was found to under-recover nitrate 

compared with chromatography by a magnitude similar to that previously 

described254,255.  It has been speculated that this results either from the 
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incomplete reduction of nitrate to nitrite, or incomplete determination of the 

reduction recovery rate254.  Certainly, it suggests a systematic error, possibly 

resulting from the factors already mentioned or a problem in calibration.  

Methodological differences are highlighted by examination of supposedly 

“basal” nitrate concentrations in urine showing marked variability254.  

Creatinine adjusted values in the basal state for patients enrolled in the knee 

arthroplasty study were in broad agreement with those described in other 

studies254. 
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Chapter 7 

Other analytical methods 

 

7.1  Serum C-reactive protein (CRP) 

 

Serum CRP was measured in the routine biochemistry laboratories at 

Gartnavel General Hospital and the Western Infirmary, Glasgow on an Abbot 

Architect analyser (Abbot Park, Illinois).   The principle of the method is latex 

agglutination based on an antigen-antibody reaction, agglutination being 

detected as an absorbance change at 572 nm.  The intra and inter-assay CVs 

were < 1.0% and 2.1% respectively, and the assay performed satisfactorily in 

the relevant UK National External Quality Assessment Service (UK-NEQAS) 

scheme (Wolfson Laboratories, Birmingham). 

 

7.2  Serum albumin 

 

Serum albumin was measured in the routine biochemistry laboratories at 

Gartnavel General Hospital and the Western Infirmary, Glasgow on an Abbot 

Architect analyser (Abbot Park, Illinois).  The principle of the method is the 

binding of bromocresol purple to albumin to form a coloured complex, with 

absorbance at 604 nm proportional to the albumin concentration.  The intra 

and inter-assay CVs were all < 1.0%, and the assay performed satisfactorily in 

the relevant UK-NEQAS scheme. 
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7.3  Serum urea 

 

Serum urea was measured in the routine biochemistry laboratories at 

Gartnavel General Hospital and the Western Infirmary, Glasgow on an Abbot 

Architect analyser (Abbot Park, Illinois).   The method is based on a series of 

enzymatic reactions with consumption of nicotinamide adenine dinucleotide 

(NADH) being detected as a reduction in absorbance at 340 nm.  The intra and 

inter-assay CVs were < 1.5% and < 2.0% respectively, and the assay performed 

satisfactorily in the relevant UK-NEQAS scheme. 

 

7.4  Serum and urine creatinine 

 

Serum and urine creatinine were measured in the routine biochemistry 

laboratories at Gartnavel General Hospital and the Western Infirmary, 

Glasgow on an Abbot Architect analyser (Abbot Park, Illinois).   The assay is a 

kinetic Jaffe method, the reaction of creatinine with alkaline picrate being 

detected as an absorbance change at 500 nm.  The intra and inter-assay CVs 

were < 1.0% and < 4.0% respectively, and the assays performed satisfactorily 

in the relevant UK-NEQAS scheme.   As previously described in chapter 3, 

eGFR was calculated from the serum creatinine results using the 4 variable 

MDRD equation242. 

 

7.5  Serum glucose 

 

Serum glucose was measured in the routine biochemistry laboratories at 

Gartnavel General Hospital and the Western Infirmary, Glasgow on an Abbot 
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Architect analyser (Abbot Park, Illinois).   The method is based on a series of 

enzymatic reactions starting with hexokinase, the production of NADH being 

detected as an absorbance change at 340 nm.  The intra and inter-assay CVs 

were all < 1.0%, and the assay performed satisfactorily in the relevant UK-

NEQAS scheme. 

 

7.6  Plasma insulin 

 

Plasma insulin was measured in the routine biochemistry laboratory at 

Glasgow Royal Infirmary on an Abbot Architect analyser (Abbot Park, Illinois).   

The assay is a one-step immunoassay with chemiluminescence detection.  The 

intra and inter-assay CVs were < 3.5% and < 4.7% respectively, and the assay 

performed satisfactorily in the Randox International Quality Assessment 

Scheme (RIQAS). 

 

7.7  Serum alanine aminotransferase (ALT) 

 

Serum ALT was measured in the routine biochemistry laboratories at 

Gartnavel General Hospital and the Western Infirmary, Glasgow on an Abbot 

Architect analyser (Abbot Park, Illinois).   The assay is based on a series of 

enzymatic reactions, ALT in the sample catalyzing the deamination of alanine.  

Ultimately, NADH is consumed, being detected as a reduction in absorbance 

at 340 nm.  The intra and inter-assay CVs were < 2.0% and < 4.8% respectively, 

and the assay performed satisfactorily in the relevant UK-NEQAS scheme. 
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7.8  Serum bilirubin 

 

Serum bilirubin was measured in the routine biochemistry laboratories at 

Gartnavel General Hospital and the Western Infirmary, Glasgow on an Abbot 

Architect analyser (Abbot Park, Illinois).   The principle of the method is the 

binding of bilirubin to a diazo reagent, the azobilirubin product being 

detected as an absorbance change at 548 nm.  The intra and inter-assay CVs 

were < 1.0% and < 2.0% respectively, and the assay performed satisfactorily in 

the relevant UK-NEQAS scheme. 

 

7.9  Haemoglobin (for erythrocyte lysates) 

 

The haemoglobin concentration in erythrocyte lysate preparations was 

measured in the biochemistry laboratory at Glasgow Royal Infirmary using a 

Sysmex KX-21N analyser (Sysmex, Canada).   The intra and inter-assay CVs 

were < 2.0%. 
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Chapter 8 

Knee arthroplasty study design 

 

The aim of this study was to investigate the response of plasma 

dimethylarginines to a significant inflammatory response as seen following 

surgery, and to relate this to the urinary excretion of dimethylamine (DMA) as 

a marker of ADMA metabolism, and to the excretion of urinary nitrate as a 

marker of NO production.  The elective surgery model was chosen as it allows 

examination from a non-inflamed baseline, thus enlightening the temporal 

relationship between inflammation and changes in ADMA concentration. 

 

8.1  Ethical approval 

 

Approval of the study protocol was granted by the Glasgow Royal Infirmary 

Research Ethics Committee.  Copies of ethical committee and management 

approval can be seen in appendix 3, along with copies of the patient 

information sheet and consent form. 

 

8.2  Inclusion and exclusion criteria 

 

Patients undergoing elective knee joint arthroplasty for osteoarthritis at 

Gartnavel General Hospital were considered suitable for inclusion.  Patients 

with joint disease secondary to inflammatory arthropathies such as 

rheumatoid arthritis were considered unsuitable as they would be expected to 

exhibit a baseline (chronic) inflammatory response.   



140 

 

Two patients were subsequently excluded from the study in the immediate 

post-operative period, one following an acute coronary syndrome and one 

following a pulmonary embolism. 

 

Suitable patients were identified and their consent for participation obtained 

during attendance at the pro-operative assessment clinic by Dr David Reid or 

myself.  Copies of the patient information sheet and consent form can be seen 

in appendix 4.   

 

8.3  Specimen collection 

 

Venous blood and urine specimens were collected according to the protocol 

outlined below.   In general patients had their evening meal around 18:00 hrs, 

with urine specimens collected between 12 and 15 hours later.  This 

consistency was felt to minimise the variability attributable to DMA and 

nitrate excretion from ingested food.  In addition, patients did not consume 

food known to contribute significantly to urinary DMA excretion, which, as 

previously discusses, is largely confined to certain types of fish and shellfish. 

 

Day 0 (baseline) 

Urine collected during fasting period into a plain universal container for DMA 

and nitrate. 

Blood collected under fasting conditions into serum separator tube (SST) for 

routine biochemistry tests and oxalate tube for glucose. 

Blood collected by anaesthetist at time of induction of anaesthesia into a 

heparinised blood tube for dimethylarginines. 
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12 hours post-operatively 

Blood collected into heparinised tube for dimethylarginines. 

 

Day 1 to 5 post-operatively (daily, in ward) 

Urine collected during morning following overnight fast for DMA and nitrate. 

Blood collected fasting into SST and oxalate tubes for routine biochemistry 

tests and glucose. 

Blood collected into heparinised blood tube for dimethylarginines. 

 

3 months post-operatively (at out-patient clinic) 

Blood collected into heparinised blood tube for dimethylarginines. 

 

8.4  Specimen handling 

 

Blood and urine specimens were transported to the biochemistry laboratory 

within 1 hour of collection.  SST and oxalate tubes for routine biochemistry 

tests were handled according to established procedures in the routine 

laboratory.  Urine specimens were frozen without delay at -70˚C.  The 

heparinised blood tube was centrifuged (500 g, 4˚C, 10 minutes) and the 

plasma removed and stored at -70˚C  until analysis. 
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8.5  Participant demographics 

 

38 participants were recruited and completed the study.  There were 14 

males and 24 females with an age range of 55 to 81 years.  9 of these patients 

had a pre-operative diagnosis of type 2 diabetes mellitus, treated either by 

dietary control or oral hypoglycaemic drugs.  All underwent total knee joint 

arthroplasty using a standard medial parapatellar surgical approach.  Patients 

underwent anaesthesia either by general anaesthetic or spinal anaesthesia 

with sedation.  Intravenous fluids were administered as part of routine patient 

care during the first 24 hours post-operatively.  Intra-operative blood loss was 

minimised by use of a tourniquet.  Nonetheless, seven patients were judged 

to require a blood transfusion post-operatively by the surgical team caring for 

them, based on haemoglobin measurement on the second post-operative day.   

 

10 patients had progressed sufficiently to be discharged home on the fourth 

post-operative day, and so do not have measurements available for day 5.  

The remainder stayed to at least the fifth post-operative day.  It was possible 

to obtain specimens from 26 patients 3 months post-operatively, when they 

were attending the out patient clinic for review. 

 

Participant demographics, diabetes status, details of blood transfusion and 

available specimens are shown in appendix 4. 
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8.6  Statistical methods 

 

The Anderson-Darling test was used to assess the distribution of data, with p < 

0.05 taken to indicate non-normal distribution.  Where relevant and possible, 

logarithmic transformation was used to permit T-testing between paired 

groups of data.  Otherwise the Mann Whitney U test was used, with p < 0.05 

chosen for statistical significance. 

 

The Friedman test was used to examine for changes in parameters measured 

repeatedly across the study period, with p < 0.05 taken to indicate statistical 

significance.  The Mann Whitney U test was used to compare data from 2 time 

points to determine at which points the changes occurred. 

 

To determine the association between two variables, Spearman rank 

correlation (rs) was used, unless otherwise stated, more or less throughout 

given that almost all of the data were non-normally distributed.  Scatter plots 

illustrate the data where significant correlations were found. 
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Chapter 9 

Plasma dimethylarginines during the inflammatory response following 

elective knee arthroplasty 

 

9.1  Changes in acute phase reactants 

 

9.1.1  Serum C reactive protein (CRP) 

 

CRP increased significantly and rapidly in the post-operative period, indicating 

a significant inflammatory response.  The CRP peaked at days 2 – 3 post-

operatively, and was still significantly higher than baseline at day 5.  The 

median and inter-quartile CRP concentrations can be seen in table 9.1.  The 

Friedman test was used to establish the significance of the change in CRP, and 

found this to be highly significant (p < 0.0001).  The Mann Whitney U test was 

used to establish the significance of changes between days, finding significant 

changes between days 0 and 1, and 1 and 2 (p < 0.0001), with a plateau 

between days 2 and 3 (p = 0.91).   By day 5, CRP was reducing from its peak 

(day 2 vs 5, p < 0.01).  By 3 months, CRP had returned to baseline 

concentrations. 

 

9.1.2  Serum albumin 

 

Serum albumin concentration decreased significantly during the acute phase 

reaction, with the Friedman test demonstrating a highly significant change (p 

< 0.0001).  Mann Whitney U test comparisons showed a significant change 

between days 0 and 1 (p < 0.0001), with a trend to a further decrease 

between days 1 and 2 (p = 0.08), and a plateau thereafter to day 5 (p non 



145 

 

significant).  By 3 months, albumin had returned to baseline concentrations.  

Table 9.2 shows the median and inter-quartile albumin concentrations across 

the study period. 

 

The observed changes in CRP and albumin were therefore taken to confirm a 

significant post-operative inflammatory response. 

 

Time point CRP concentration, mg/L 

Day 0 2.7 (1.5 – 4.4) 

Day 1 53 (39 – 79) 

Day 2 169 (112 – 230) 

Day 3 191 (121 – 229) 

Day 4 135 (93 – 178) 

Day 5 (n = 28) 107 (74 – 136) 

3 months (n = 26) 3.0 (1.7 – 5.2) 

 

Table 9.1:  Median (inter-quartile range) CRP concentrations during study 

period 
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Time point Albumin concentration, g/L 

Day 0 39 (37 – 40) 

Day 1 33 (31 – 35) 

Day 2 31 (29 – 34) 

Day 3 31 (29 – 32) 

Day 4 30 (29 – 32) 

Day 5 (n = 28) 31 (27 – 32) 

3 months (n = 26) 39 (37 – 41) 

 

Table 9.2:  Median (inter-quartile range) albumin concentrations during 

study period 

 

9.2  Fasting glucose and insulin resistance  

 

Patients not known to be diabetic (n = 29) underwent measurements of fasting 

glucose and insulin pre-operatively and on each morning post-operatively in 

order to assess the effect of their inflammatory response on insulin 

sensitivity.  As previously discussed, insulin resistance may have adverse 

effects on DDAH activity and ADMA metabolism.   

 

There was a significant change in fasting glucose across the study period 

(Friedman p < 0.0001).  The Mann Whitney U test determined this to be a 

significant increase between days 0 and 1 (7.7 vs 5.5 mmol/L, p < 0.0001).  

This rise from baseline remained significant to day 4 post-operatively (day 0 

vs 4, p = 0.03), with a non-significant difference between days 0 and 5 (p = 
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0.2).  The median and inter-quartile range glucose concentrations are shown 

in table 9.3.  Fasting insulin demonstrated a significant change across the 

study period (Friedman p < 0.001).  In a similar pattern to glucose, this was 

evident between days 0 and 1 (13.9 vs 7.2 mU/L, p < 0.001), and remained 

higher than baseline to the end of the study period (day 0 vs 5, p = 0.01).  The 

homeostasis model assessment-insulin resistance (HOMA-IR) was calculated as 

a marker of insulin resistance258, and demonstrated a significant change 

(Friedman p < 0.0001).  This was significantly higher at day 1 (4.64 vs 1.64), 

and remained significantly higher to the end of the study period (day 5 vs 0, p 

= 0.02).  Median and inter-quartile range insulin concentrations and HOMA-IRs 

are also shown in table 9.3. 

 

Spearman correlation showed no significant correlations between the rise in 

CRP and day 1 glucose concentration or HOMA-IR (p = 0.56 and 0.99 

respectively). 

 

Day Glucose, mmol/L Insulin, mU/L HOMA-IR 

0 5.5 (5.0 – 6.0) 7.2 (5.6 – 10.2) 1.64 (1.32 – 2.68) 

1 7.7 (6.4 – 8.2) 13.9 (8.1 – 22.2) 4.64 (2.55 – 7.89) 

2 6.5 (5.7 – 7.1) 11.0 (8.5 – 19.9) 3.20 (2.34 – 6.76) 

3 6.2 (5.8 – 6.5) 12.0 (9.9 – 13.7) 3.31 (2.60 – 4.26) 

4 6.0 (5.3 – 6.6) 13.1 (8.9 – 16.0) 3.25 (2.32 – 4.34) 

5 (n = 21) 5.8 (5.3 – 6.4) 10.3 (7.9 – 13.1) 2.56 (1.98 – 3.39) 

  

Table 9.3:  Median (inter-quartile range) fasting glucose, insulin and 

HOMA-IR during study period (n = 29) 
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9.3  Plasma ADMA during the acute inflammatory response 

 

Plasma ADMA concentration decreased rapidly and significantly during the 

acute inflammatory response (Friedman p < 0.0001).  The nadir concentration 

was reached on day 2 post-operatively, by which point a median reduction of 

31% had occurred (0.43 vs 0.68 µmol/L).  However, by 12 hours post-op the 

reduction was already seen to be significant (p < 0.0001).  The plasma ADMA 

concentration was recovering by day 4 post-op, with a significant increase 

seen between days 2 and 4 (p < 0.0001).  For patients who had samples from 

both days 4 and 5 available (n = 28), a further significant increase was seen 

between days 4 and 5 (p = 0.025), such that by day 5 the ADMA concentration 

had returned to baseline levels (day 0 vs 5, p = 0.56).  Table 9.4 shows the 

median and inter-quartile range ADMA concentrations, and figure 9.1 shows 

the data as box plots. 

 

No significant correlation between ADMA concentration and eGFR was found 

either at baseline (rs = -0.06, p = 0.71), as shown in figure 9.2, or at the peak 

of the inflammatory response on day 2 (rs = 0.08, p = 0.66). 
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Time point ADMA concentration, µmol/L 

Day 0 0.62 (0.54 – 0.65) 

12 hours 0.48 (0.43 – 0.54) 

Day 1 0.43 (0.40 – 0.45) 

Day 2 0.43 (0.39 – 0.47) 

Day 3 0.49 (0.45 – 0.53) 

Day 4 0.55 (0.51 – 0.62) 

Day 5 (n = 28) 0.61 (0.57 – 0.64) 

3 months (n = 26) 0.58 (0.52 – 0.59) 

 

Table 9.4:  Median (inter-quartile range) ADMA concentrations during study 

period 

 

Figure 9.1:  Box plots of ADMA concentrations during study period 
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Figure 9.2:  Relationship between plasma ADMA and eGFR on day 0 

 

The relationship between the inflammatory response and ADMA concentration 

was further examined at baseline and at the peak of the inflammatory 

response, using Spearman rank correlation. No significant correlation was 

found between ADMA and CRP concentrations at baseline in the non-inflamed 

state (rs = -0.22, p = 0.19).  To investigate whether the magnitude of the 

inflammatory response was reflected by the change in ADMA concentration, 

the relationship between the change in CRP concentration, i.e. the peak 

minus baseline values, and percent change in ADMA concentration was sought.  

A relatively weak correlation of borderline statistical significance was found 

(rs = 0.28, p = 0.09).  These are illustrated in figures 9.3 and 9.4. 
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Figure 9.3:  Relationship between ADMA and CRP concentrations on day 0 

 

 

Figure 9.4:  Relationship between changes in CRP and ADMA 

concentrations 
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9.4  Plasma SDMA during the acute inflammatory response 

 

In contrast to ADMA, the plasma SDMA concentration showed no significant 

changes during the study period (Friedman p = 0.638).  The median and inter-

quartile range concentrations are shown in table 9.5, with the data illustrated 

as box plots in figure 9.5.  The SDMA concentration was significantly 

correlated with eGFR at baseline in the non-inflamed state (rs = -0.47, p = 

0.003), as shown in figure 9.6.  This relationship remained unaltered during 

the peak of inflammation on day 2 (rs = -0.59, p < 0.001), as shown in figure 

9.7. 

 

The differential responses of the two dimethylarginines is reflected in the 

ADMA:SDMA ratio which decreases significantly (Friedman p < 0.0001) in a 

pattern similar to that of ADMA.  These data are also shown in table 9.5. 
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Time point SDMA concentration, µmol/L ADMA:SDMA ratio 

Day 0 0.48 (0.42 – 0.56) 1.28 (1.10 – 1.43) 

12 hours 0.49 (0.40 – 0.60) 1.02 (0.82 – 1.16) 

Day 1 0.49 (0.42 – 0.55) 0.88 (0.74 – 0.99) 

Day 2 0.45 (0.40 – 0.57) 0.89 (0.77 – 1.07) 

Day 3 0.48 (0.42 – 0.55) 1.02 (0.89 – 1.16) 

Day 4 0.49 (0.42 – 0.55) 1.14 (0.99 – 1.37) 

Day 5 (n = 28) 0.48 (0.43 – 0.59) 1.20 (1.03 – 1.40) 

3 months (n = 26) 0.45 (0.39 – 0.48) 1.27 (1.14 – 1.45) 

 

Table 9.5:  Median (inter-quartile range) SDMA concentrations and 

ADMA:SDMA ratios during study period 

 Figure 9.5:  Box plots of SDMA concentrations during study period 
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Figure 9.6:  Correlation between plasma SDMA and eGFR on day 0 

 

 

Figure 9.7:  Correlation between plasma SDMA and eGFR on day 2 
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9.5  Serum sodium, urea and creatinine during the acute inflammatory 

response 

 

In order to investigate the possibility of dilution as a cause for the reduction 

in plasma ADMA concentration, serum sodium and urea concentrations were 

measured during the study period.  The inflammatory response is associated 

with promotion of water retention, probably through the enhanced action of 

the anti-diuretic hormone arginine vasopressin.  Significant water retention 

and dilution would be expected to have effects on the serum concentrations 

of sodium and urea, with mild hyponatraemia a common finding in 

hospitalised patients.   

 

Serum creatinine concentrations showed no significant changes across the 

study period, suggesting no major disturbance in renal function.  Serum urea 

showed a significant change over the study period (Friedman p < 0.0001).  

This was a modest in absolute terms, amounting to a median 12.7% reduction 

(4.4 vs 5.6 mmol/L, p = 0.03).  By day 3 this had returned to baseline 

concentrations.  No significant change was evident at day 1 post-op (5.5 vs 5.6 

mmol/L, p = 0.77).  Serum sodium concentration changed significantly during 

the study period (Friedman p < 0.0001), with a modest median 2.2% reduction 

evident at day 1 (136 vs 139 mmol/L, p < 0.0001).  This remained reduced 

from baseline for the duration of the study (day 5 vs 0, p = 0.02), returning to 

baseline concentrations 3 months post-operatively (p = 0.67).  Median and 

inter-quartile range sodium, urea and creatinine concentrations are shown in 

table 9.6. 
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Time point Sodium, mmol/L Urea, mmol/L Creatinine, µmol/L 

Day 0 139 (138 – 140) 5.6 (4.6 – 6.8) 78 (69 – 85) 

Day 1 136 (134 – 137) 5.5 (4.4 – 6.8) 77 (67 – 83) 

Day 2 137 (135 – 138) 4.4 (3.4 – 6.1) 78 (66 – 87) 

Day 3 137 (135 – 139) 4.8 (3.9 – 7.1) 77 (68 – 87) 

Day 4 138 (135 – 140) 5.1 (4.6 – 6.7) 77 (65 – 86) 

Day 5 138 (136 – 140) 5.5 (4.8 – 6.9) 77 (67 – 83) 

3 months 140 (138 – 141) 6.2 (4.9 – 7.6) 81 (75 – 87) 

 

Table 9.6:  Median (inter-quartile range) serum sodium, urea and 

creatinine concentrations during study period 

 

9.6  Plasma arginine and homoarginine during the acute inflammatory 

response 

 

Arginine concentrations changed significantly across the study period 

(Friedman p < 0.0001).  Mann Whitney U test comparisons showed a significant 

reduction which was evident at 12 hours post-op (33 vs 48 mmol/L, p < 

0.0001) and remained significantly lower than baseline until day 3 (p = 0.004 

vs day 0).  This was a similar pattern to ADMA, such that there was minimal 

change in the arginine:ADMA ratio.  The arginine:ADMA ratio was lower at 12 

hours post-op, achieving borderline significance (70 vs 84, p = 0.05); however 

no significant changes compared with baseline were seen at the other time 

points. 
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Homoarginine changed significantly across the study period (Friedman p < 

0.0001).  Mann Whitney U test comparisons revealed a significant change to 

have occurred by day 2 post-op (1.05 vs 1.48 µmol/L, p = 0.001).  

Homoarginine remained significantly lower than baseline until day 5 (p < 

0.0001 vs day 0), and had recovered to baseline at 3 months (p = 0.22).  

Median and inter-quartile range arginine, arginine:ADMA ratio and 

homoarginine concentrations are shown in table 9.7. 

 

Time point 
Arginine, 

µmol/L 

Arginine:ADMA 

ratio 

Homoarginine, 

µmol/L 

Day 0 48 (41 – 60) 84 (68 – 98) 1.48 (1.10 – 1.91) 

12 hours 33 (28 – 43) 70 (58 – 90) 1.33 (1.03 – 1.78) 

Day 1 32 (24 – 39) 76 (63 – 91) 1.28 (0.96 – 1.73) 

Day 2 31 (24 – 43) 76 (52 – 92) 1.05 (0.80 – 1.51) 

Day 3 36 (30 – 50) 78 (67 – 97) 0.78 (0.68 – 1.26) 

Day 4 49 (40 – 64) 88 (71 – 108) 0.81 (0.65 – 1.23) 

Day 5 (n = 28) 46 (36 – 60) 74 (60 – 102) 0.95 (0.66 – 1.15) 

3 months (n = 

26) 
52 (38 – 67) 93 (67 – 126) 1.29 (1.03 – 1.66) 

 

Table 9.7:  Median (inter-quartile range) arginine, arginine:ADMA ratio and 

homoarginine concentrations during study period 
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9.7  Summary of findings 

 

The post-operative course was characterised by a significant inflammatory 

response with evidence of an associated insulin resistant state.  Plasma ADMA 

concentration decreased significantly and rapidly during the early phase of 

the inflammatory response, recovering to baseline concentrations by day 5 

post-op.  The magnitude of the inflammatory response, as reflected by CRP 

concentration, was weakly associated with the magnitude of the reduction in 

plasma ADMA concentration.  In contrast, plasma concentrations of the closely 

related compound SDMA showed no significant changes during the study 

period, and were closely related to renal function.   Although modest changes 

in serum sodium and urea concentrations were seen, these are unlikely to 

represent a significant contribution of dilution to the changes in ADMA.  

Plasma arginine concentration changed similarly to ADMA during the post-

operative period.  Homoarginine concentration decreased more slowly and 

progressively, and remained lower than baseline at day 5 post-op at which 

point a significant inflammatory response was still evident. 
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Chapter 10 

Erythrocyte free ADMA concentrations during the inflammatory response 

following elective knee arthroplasty 

 

10.1  Introduction 

 

Erythrocytes contain substantial quantities of ADMA, mainly incorporated in 

methylated proteins.  This is largely in proteins other than haemoglobin259-261, 

and incubation of erythrocyte lysates at 37˚C yields increases in free ADMA 

from the action of proteases, something which can inhibited by protease 

inhibitors and incubation at 4˚C259-261.  However, erythrocytes also contain a 

certain concentration of free ADMA within their cytoplasm, which has been 

determined to be up to 2 times the concentration found in plasma261.  This 

concentration is made possible by the expression of system y+ cationic amino 

acid transporters (CAT) which have been well characterised on rat 

erythrocytes262, and in humans have been implicated in the erythrocyte 

transport of basic amino acids such as arginine and MMA263,264.  The 

relationship between plasma and free erythrocyte concentrations of ADMA is 

not clear, but Davids et al have recently shown a correlation between them in 

patients with critical illness, but not in healthy controls261.  The authors 

speculate that increased expression of CATs in the critically ill patient could 

account for the correlation, and cite the up-regulation of CATs in other 

disease states such as heart failure, renal failure and pre-eclampsia in support 

of this hypothesis262,264,265.  How this could occur in critical illness is unclear, 

although CAT-2B transporters can be up-regulated by inflammatory 

cytokines266.  Whether human erythrocytes have the capacity to metabolise 

ADMA is controversial, with mixed results in published studies.  Experimental 

evidence for DDAH-mediated catabolism has been offered from studies in rat 

and human erythrocytes259,267,268; however other studies have failed to 

demonstrate evidence of DDAH activity260,261. 
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In the present study free erythrocyte concentrations were determined in knee 

arthroplasty participants to determine their relationship to plasma 

concentrations during the inflammatory response, and therefore to determine 

their likely relevance to the acute changes in plasma ADMA concentration 

described in the previous chapter. 

 

10.2  Methods 

 

ADMA concentrations were measured in the lysates of erythrocytes taken pre-

operatively and at days 1, 2 and 3 months post-operatively.  After exclusion of 

subjects who underwent blood transfusion, this left 20 subjects with available 

samples.  Erythrocyte ADMA was measured using the method described in 

chapter 2 and the concentrations expressed as a ratio to haemoglobin 

concentration in the lysate; this latter step was employed to correct for 

errors introduced during the pipetting of cellular material.  

 

The Friedman test was used to determine whether significant changes in 

erythrocyte ADMA occurred over serial samples.  Spearman rank correlation 

was used to examine the relationship between plasma and erythrocyte 

concentrations where the data were non-normally distributed.  Statistical 

analysis was done using Minitab statistical software. 

 

10.3  Results 

 

Median and inter-quartile range erythrocyte ADMA concentrations, expressed 

as a ratio to haemoglobin, are shown in table 10.1.  Comparisons between pre 

and post-operative samples, using the Friedman test showed no significant 

changes (p = 0.34).   
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Time point Erythrocyte ADMA, nmol/g Hb 

Day 0 30.1 (24.1 – 39.4) 

Day 1 25.6 (18.9 – 37.3) 

Day 2 26.7 (23.6 – 38.3) 

3 months 32.1 (23.9 – 37.0) 

 

Table 10.1:  Median (inter-quartile range) erythrocyte free ADMA 

concentrations during the inflammatory response 

 

No significant correlations between erythrocyte and plasma ADMA 

concentrations were seen, both pre-operatively, in the absence of an 

inflammatory response or post-operatively at the peak of the inflammatory 

response (p = 0.85 on day 0; p = 0.28 on day 2).  These are shown in figures 

10.1 and 10.2.   
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Figure 10.1:  Correlation between erythrocyte and plasma ADMA 

concentrations on day 0 

 

Figure 10.2:  Correlation between erythrocyte and plasma ADMA 

concentrations on day 2  
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10.4  Summary of findings 

 

Concentrations of free ADMA within erythrocytes did not change significantly 

on development of the inflammatory response.  Pre-operatively and at the 

peak of inflammation on day 2, no correlations were found between 

erythrocyte and plasma ADMA concentrations.  Therefore no evidence was 

found to suggest that the abrupt decrease in plasma ADMA concentration 

which occurred during the inflammatory response was related to increased 

CAT-mediated uptake of ADMA. 
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Chapter 11 

Urinary excretion of dimethylamine, ADMA and nitrate during the 

inflammatory response following elective knee arthroplasty 

 

11.1  Introduction 

 

Urine measurements were performed on the subjects who had a full set of 

urine samples available to day 5 post-op (n = 20).  As previously described, 

these were collected fasting pre-operatively and on each post-op morning.  

Concentrations of dimethylamine (DMA), dimethylarginines and nitrate were 

measured using the methods described in the relevant chapters, and 

expressed as ratios to creatinine. 

 

11.2  Urine DMA during the acute inflammatory response 

 

11.2.1  Urine DMA excretion 

 

Urine DMA concentrations, expressed as ratios to creatinine, across the study 

period are shown in table 11.1.  The Friedman test revealed a significant 

change over the study period (p = 0.001).  Mann Whitney U test comparisons 

revealed a significant increase in DMA excretion at day 5 compared with 

baseline (median 105 vs 53 µmol/mmol creat, p = 0.003), but no significant 

differences between concentrations on days 1 to 4 versus baseline.  There was 

a median increase of 50% in DMA excretion on day 5 compared with baseline. 
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There was no significant correlation between the magnitude of the 

inflammatory response and the magnitude of increase in DMA excretion at day 

5 (rs = 0.14, p = 0.54), as shown in figure 11.1. 

 

Time point DMA, µmol/mmol creatinine 

Day 0 53 (44 – 87) 

Day 1 59 (41 – 81) 

Day 2 46 (38 – 97) 

Day 3 59 (48 – 108) 

Day 4 60 (44 – 82) 

Day 5 105 (63 – 155) 

 

Table 11.1:  Median (inter-quartile range) DMA:creatinine ratios during 

study period 
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Figure 11.1:  Relationship between changes in CRP concentration and DMA 

excretion 

 

11.2.2  Relationship between concentrations of urinary DMA and ADMA 

 

Urine DMA and ADMA concentrations were significantly correlated at baseline, 

in the non-inflamed state (rs = 0.66, p = 0.002), as shown in figure 11.2.  This 

relationship was weakened, though remained significant, on day 1 post-op (rs 

= 0.54, p = 0.01), but was lost by day 2, at the peak of the inflammatory 

response (rs = 0.08, p = 0.72), as shown in figure 11.3.  By day 5 urine DMA 

and ADMA concentrations were once again correlated (rs = 0.42, p = 0.07), as 

shown in figure 11.4 
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Figure 11.2:  Relationship between urinary concentrations of DMA and 

ADMA on   day 0 

 

 

Figure 11.3:  Relationship between urinary concentrations of DMA and 

ADMA on  day 2 



168 

 

 

Figure 11.4:  Relationship between urinary concentrations of DMA and 

ADMA on  day 5 

 

No significant correlation was seen between plasma ADMA concentration and 

the urinary excretion of DMA at baseline (day 0: rs = -0.12, p = 0.62).  

Similarly, no correlations were noted on any of the post-op days. 

 

11.3 Urine ADMA and SDMA excretion during the acute inflammatory 

response 

 

11.3.1  Urine ADMA excretion 

 

Urine ADMA concentrations, expressed as ratios to creatinine, across the study 

period are shown in table 11.2.  The Friedman test showed a significant 

change in ADMA concentrations across the study period (p < 0.0001).  Mann 

Whitney U test comparisons showed a difference between days 0 and 2 which 
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was of borderline statistical significance (p = 0.07).  As ADMA concentrations 

at day 0 were not normally distributed, the day 0 and 2 results were 

logarithmically transformed and were normally distributed following 

transformation (Anderson Darling test, day 0 p = 0.60, day 2 p = 0.22).  A 

paired T test on the log transformed results showed a significant difference (p 

= 0.008), confirming a significant reduction in urine ADMA at day 2 compared 

with day 0 (median 2.95 vs 3.95 µmol/mmol creatinine).  This represented the 

nadir of urine ADMA across the study period.  The Mann Whitney U test 

showed a significant increase in ADMA at day 4 compared with day 2 (median 

4.95 vs 2.95 µmol/mmol creatinine , p = 0.03), but no significant difference 

compared with day 0 (p = 0.28).  The ADMA on day 5 was significantly higher 

compared with day 2 (median 5.15 vs 2.95 µmol/mmol creatinine, p < 0.001), 

and showed a statistically borderline change compared with day 0 (Mann 

Whitney U test, p = 0.07).  Given their non-normal distribution, day 5 results 

were logarithmically transformed and found to normally distributed following 

transformation (Anderson Darling test, p = 0.68).  A paired T test on the log 

transformed results showed a significant difference (p = 0.007), confirming a 

significant increase in urine ADMA at day 5 compared with day 0 (median 5.15 

vs 3.95 µmol/mmol creatinine). 

 

At day 0, in the absence of an inflammatory response, plasma and urine ADMA 

concentrations were moderately, but non-significantly correlated (rs = 0.33, p 

= 0.16), as shown in figure 11.5.  There was a significant correlation seen on 

day 2 post-op      (rs = 0.51, p = 0.02), as shown in figure 11.6.  However no 

correlations were seen on any of the other post-op days (days 1, 3, 4 and 5: p 

values all > 0.35). 
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Time 

point 

ADMA, µmol/mmol 

creat 

SDMA, µmol/mmol 

creat 
ADMA:SDMA ratio  

Day 0 3.95 (3.15 – 4.88) 3.50 (2.63 – 4.30) 1.15 (0.98 – 1.22) 

Day 1 3.65 (3.10 – 5.08) 4.90 (3.88 – 5.85) 0.87 (0.67 – 1.02) 

Day 2 2.95 (2.02 – 4.55) 3.80 (2.92 – 5.03) 0.77 (0.66 – 1.00) 

Day 3 3.65 (2.18 – 4.75) 4.55 (2.88 – 5.40) 0.87 (0.78 – 0.99) 

Day 4 4.95 (2.25 – 6.80) 4.75 (3.43 – 6.00) 0.96 (0.89 – 1.15) 

Day 5 5.15 (3.53 – 6.43) 4.60 (4.08 – 5.48) 1.10 (0.89 – 1.29) 

  

Table 11.2:  Median (inter-quartile range) AMDA and SDMA:creatinine 

ratios and ADMA:SDMA ratios during study period 

 

 

Figure 11.5:  Relationship between plasma ADMA concentration and urine 

ADMA: creatinine ratio on day 0 
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Figure 11.6:  Relationship between plasma ADMA concentration and urine 

ADMA: creatinine ratio on day 2 

 

11.3.2  Urine SDMA excretion 

 

The Friedman test showed a significant change in urine SMDA:creatinine ratio 

during the study period (p = 0.008).  Mann Whitney U test comparison showed 

a significant increase at day 1 (median 4.90 vs 3.50 µmol/mmol creatinine, p 

= 0.004).  This difference remained significant at days 3, 4 and 5 post-op 

compared with day 0 (p = 0.05, 0.03 and < 0.01 respectively).   

 

No significant correlations were seen between plasma SDMA concentrations 

and urine SDMA:creatinine ratios at day 0 (rs = 0.18, p = 0.45), as shown in 

figure 11.7.  A similar lack of correlation was seen on each of the post-

operative days. 
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Figure 11.7:  Relationship between plasma SDMA concentration and urine 

SDMA: creatinine ratio on day 0 

 

11.3.3  Relationship between urine ADMA and SDMA concentrations 

 

In spite of the differential changes in urine ADMA and SDMA excretions 

described, they remained very strongly correlated through the study period.  

The correlation at day 0 is shown in figure 11.8 (rs = 0.95, p < 0.001).  The 

relationship remained significant during the inflammatory response as 

illustrated by the values on day 2, in figure 11.9 (rs = 0.90, p < 0.001).  This 

demonstrates a similar relationship in the non-inflamed and inflamed states, 

and remains despite no similar correlations between the concentrations of 

ADMA and SDMA in plasma. 
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Figure 11.8:  Relationship between urinary ADMA and SDMA concentrations 

on day 0 

 

 

Figure 11.9:  Relationship between urinary ADMA and SDMA concentrations 

on day 2 
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11.3.4  Urine ADMA:SDMA ratio 

 

The median and inter-quartile range ratio of ADMA to SDMA concentrations in 

urine are shown in table 11.2.  The Friedman test demonstrated a significant 

change across the study period (p < 0.0001).  The Mann Whitney U test 

confirmed a significant decrease at day 1 from baseline (median 0.87 vs 1.15, 

p = 0.0002).  The ratio remained lower than baseline at day 3 (p = 0.002), and 

returned to baseline levels by day 5 (median 1.10 vs 1.15, p = 0.84). 

 

The ADMA:SDMA ratios in plasma and urine were normally distributed, and so 

linear regression was used to determine their relationship.  A significant 

correlation was seen  at day 0, in the non-inflamed state (R2 = 0.77), as shown 

in figure 11.10.  Similarly significant correlations were seen between plasma 

and urine on each of the post-operative days, with day 2 illustrated in figure 

11.11, representing the peak of the inflammatory response (R2 = 0.93). 

 

Figure 11.10: Relationship between ADMA:SDMA ratios in plasma and urine 

on day 0 
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Figure 11.11: Relationship between ADMA:SDMA ratios in plasma and urine 

on day 2  

 

11.3.5  Urine fractional excretions of ADMA and SDMA 

 

To gain further insight into the renal handling of ADMA and SDMA, their 

fractional excretions (FE) were calculated.  These were done according the 

formula: 

 

FE = (Urine “X” × Serum creatinine) / (Plasma “X” × Urine creatinine × 1000) 

 

where “X” is ADMA or SDMA in µmol/L, and serum and urine creatinine 

concentrations are in µmol/L and mmol/L respectively. 
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FEs are shown in table 11.3.  The Mann Whitney test revealed a significant 

increase in the FE of ADMA was seen on day 1 compared with day 0 (median 

0.72 vs 0.49, p = 0.001).  On the subsequent post-operative days no 

statistically significant differences compared with day 0 were noted, until day 

5 at which point the increase from day 0 was significant (median 0.58 vs 0.49, 

p = 0.01). 

 

A very similar pattern was seen for the FEs of SDMA.  The Mann Whitney test 

revealed a significant increase on day 1 compared with day 0 (median 0.79 vs 

0.54, p = 0.008).  On post-operative days 2 to 4 no statistically significant 

differences compared with day 0 were noted, until day 5 at which point the 

increase from day 0 was significant (median 0.61 s 0.54, p = 0.01). 

 

The FEs for ADMA and SMDA were found to be normally distributed, and so 

linear regression was used to examine their relationship.  A strong correlation 

was noted between the FEs of ADMA and SDMA at day 0 (R2 = 0.84), as seen in 

figure 11.12.  This association persisted on each of the post-operative days, 

with day 2 illustrated in figure 11.3 as representative of the inflammatory 

response (R2 = 0.89)  
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Time point ADMA fractional excretion SDMA fractional excretion 

Day 0 0.49 (0.41 – 0.57) 0.54 (0.44 – 0.64) 

Day 1 0.72 (0.55 – 0.94) 0.79 (0.52 – 0.88) 

Day 2 0.54 (0.46 – 0.62) 0.59 (0.54 – 0.67) 

Day 3 0.59 (0.43 – 0.75) 0.64 (0.50 – 0.81) 

Day 4 0.53 (0.45 – 0.76) 0.62 (0.52 – 0.71) 

Day 5 0.58 (0.53 – 0.73) 0.61 (0.59 – 0.82) 

 

Table 11.3:  Median (inter-quartile range) urinary fractional excretions of 

ADMA and SDMA during study period 

 

Figure 11.12:  Relationship between urinary fractional excretions of ADMA 

and SDMA on day 0 
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Figure 11.13:  Relationship between urinary fractional excretions of ADMA 

and SDMA on day 2 

 

11.4  Urine nitrate excretion during the acute inflammatory response 

 

Median and inter-quartile range concentrations of urine nitrate, expressed as 

ratios to creatinine, are shown in table 11.4.  The Friedman test suggested a 

change of borderline significance across the study period (p = 0.089).  The 

Mann Whitney U test suggested a decrease in nitrate concentrations at day 2 

compared with day 0, which just failed to reach statistical significance 

(median 55 vs 73 µmol/mmol creat, p = 0.086).  Closer examination of the 

data revealed the day 2 concentrations to be non-normally distributed 

(Anderson Darling test, p = 0.049), with normal distribution at day 0 (Anderson 

Darling, p = 0.13).  Logarithmic transformation failed to render the day 2 

concentrations normally distributed, thus the data were examined for 

outliers; following the removal of one data point which exceeded the mean by 

> 3 standard deviations, the data were normally distributed (Anderson 

Darling, p = 0.12).  Application of a paired T test to the resultant data 
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revealed a significant decrease in nitrate concentrations at day 2 compared 

with day 0 (mean 58 vs 90 µmol/mmol creat, p = 0.002).  By day 5 the nitrate 

excretion had returned to baseline levels (median 78 vs 73 µmol/mmol creat, 

p = 0.78). 

 

Time point Nitrate, µmol/mmol creat 

Day 0 73 (45 – 124) 

Day 1 61 (36 – 102) 

Day 2 55 (41 – 74) 

Day 3 58 (35 – 75) 

Day 4 65 (45 – 90) 

Day 5 78 (49 – 110) 

 

Table 11.4:  Median (inter-quartile range) nitrate:creatinine ratios during 

study period 
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11.5  Summary of findings 

 

The urinary excretion of DMA, the major metabolite of ADMA catabolism, was 

unchanged during the early phase of the acute inflammatory response, 

suggesting that increased DDAH-mediated catabolism was not responsible for 

the early decrease in plasma ADMA concentration.  DMA excretion increased 

significantly at day 5 post-operatively, coinciding with the return of plasma 

ADMA concentration to baseline values. 

 

The urinary excretion of unchanged ADMA decreased at day 2 post-op, 

coinciding with the nadir of plasma ADMA concentration.  At day 5, on the 

return of plasma ADMA to baseline levels, the urinary excretion of ADMA was 

higher than at baseline.  The urinary SDMA excretion was increased during the 

post-operative period, although no changes in plasma SDMA concentration 

were seen.  No direct relationship between plasma and urine ADMA 

concentrations was found, at least in the non-inflamed state, although there 

was a strong correlation between the ratios of ADMA:SDMA in urine and 

plasma.   The significant correlation between plasma and urine ADMA 

concentrations on day 2 was not replicated on any of the other post-op days, 

but occurred at the nadir of plasma ADMA concentration.  The urinary 

fractional excretions (FE) of ADMA and SDMA were very similar in absolute 

terms and strongly correlated, both in the non-inflamed state on day 0 and 

throughout the inflammatory response on the post-operative days.  The FEs of 

both ADMA and SDMA were increased on day 1 compared with baseline, and 

also at day 5. 

 

The urinary excretion of nitrate decreased during the post-operative acute 

inflammatory response, reaching a nadir on day 2, coinciding with the peak 

CRP and nadir ADMA concentrations.  This had returned to baseline levels by 

day 5.  
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Chapter 12 

Discussion 

 

12.1  HPLC method for ADMA measurement 

 

The analytical method described in chapter 2 has been optimised and 

validated for the simultaneous measurement of arginine, homoarginine, ADMA 

and SDMA in plasma, urine and other biological fluids.  There are certain 

advantages over previously described methods.  First, the novel description of 

a non-endogenous internal standard offers the obvious advantage of increased 

precision and accuracy.  However, its major advantage lies in permitting the 

measurement of endogenous homoarginine and MMA, as these two compounds 

are the usual internal standards employed in HPLC methods for 

dimethylarginine analysis204-211.  Although having an unclear physiological role, 

it is clear that homoarginine is present in concentrations of around 5 – 6 times 

that of ADMA in human plasma, and has recently attracted interest as a 

potentially important molecule.   In normal pregnancies plasma homoarginine 

concentration increases in the latter trimesters and is associated with flow-

mediated dilatation201.  Moreover, decreased concentrations have been 

independently associated with adverse outcomes, including mortality and 

fatal strokes in patients undergoing angiography202,269, sudden cardiac death 

and heart failure in haemodialysis patients203, and mortality in patients with 

liver cirrhosis270.  Thus, the ability to measure homoarginine is likely to be of 

increasing interest.  MMA, though present in small concentrations in plasma, 

has a concentration 10 fold higher in endothelial cells51, and measurement of 

its endogenous concentrations may thus be of interest in cellular studies.  

Moreover, MMA has been used as part of an NO clamp in experimental studies, 

thus producing an artificially high concentration in plasma samples271.  The 

selection of MEA as the internal standard thus avoids the undesirability of 

utilising the endogenous compounds homoarginine and MMA for this purpose.  
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N-propyl-L-arginine (NPA) is another non-endogenous compound that has also 

been utilised in HPLC analysis of dimethylarginines209,272.  One of these 

methods employed phenyl columns209, which offer less stability and 

reproducibility than C18 columns.  During method development, the use of 

NPA on a C18 column was investigated, and it was found difficult to achieve 

separation of NPA from SDMA; moreover chromatographic separation was 

found to be sensitive to very small variations in mobile phase composition 

which also affected reproducibility.  One published method describes a 

method using NPA on a C18 column and using 4-Fluoro-7-nitro-2,1,3-

benzoxadiazole as a derivatising agent272. However, in order to achieve 

chromatographic separation a complicated gradient elution was required, as 

was maintenance of the analytical column at 40˚C.  Moreover, the run time 

was 32 minutes, which is not an improvement on the method described in this 

thesis.  It is also notable that the authors did not describe the measurement 

of arginine and homoarginine, and it is not clear, therefore, whether these 

can be reliably quantified using that method. 

 

Second, it was possible to achieve baseline resolution of all compounds of 

interest under isocratic conditions, including arginine, homoarginine, ADMA, 

SDMA, and MMA if required.  It is desirable to measure these compounds 

simultaneously given the importance of arginine and its interaction with ADMA 

in determining NO production, and the increasing interest in homoarginine.  

The inability to measure these compounds is a major drawback of ELISA.  

Although gradient elution can be utilised with programmable solvent delivery 

systems there is an advantage in the relative simplicity of an isocratic 

method.   

 

A disadvantage of the described method is the relatively long analysis time.  

Under the conditions described attempts to decrease elution times by further 

manipulating the mobile phase were found to detrimental to the resolution of 

ADMA and SDMA.  However, this could be improved by using monolithic 
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columns while retaining the advantages already discussed.  HPLC columns 

generally consist of very tightly packed silica particles, with smaller particle 

sizes used in order to decrease diffusion distances and improve performance.  

This is at the expense of increased back pressure, which is inversely 

proportional to the spaces between the particles.  Monolithic columns consist 

of a porous single piece rod, and are much more porous, allowing operation at 

higher flow rates without excessive pressure.   Teerlink has described an HPLC 

method for dimethylarginine analysis using a monolithic column, allowing 

isocratic elution and a run time of 10 minutes (albeit using MMA as the 

internal standard)212.  It should be possible to employ monolithic columns to 

the method described in this thesis; use of the internal standard would likely 

extend the run time to around 15 minutes, which is a significant 

improvement.  Another option would be to employ MMA as the internal 

standard, which was not found to be detrimental to accuracy or precision, and 

could shorten the run time to around 25 minutes. 

 

In summary, the described analytical method permits the precise and reliable 

simultaneous measurement of arginine, homoarginine, MMA, ADMA and SDMA 

in plasma, urine and biological fluids under isocratic conditions.   

 

12.2  Reference intervals for dimethylarginines and their clinical utility 

 

The sample size of 100 individuals fell slightly short of the 120 recommended 

by the International Federation of Clinical Chemistry and Laboratory Medicine 

(IFCC) which has been calculated with a view to ensuring confidence at the 

upper and lower reference limits273.  This could be considered a weakness, 

although as the group was not sub-divided and the reference intervals 

obtained were in agreement with other studies involving larger numbers of 

subjects it was not felt that this slight shortfall would unduly influence the 

results obtained.  As no significant gender-related differences were seen for 
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homoarginine, ADMA and SDMA concentrations there was felt to need to 

describe gender-specific reference intervals.  While arginine concentrations 

were overall slightly higher in males in the present study, the biological 

significance of this was not certain as other studies have shown no significant 

differences237. 

 

Blood sampling was performed under non-fasting conditions in the present 

study.  It has been shown that plasma ADMA and SDMA concentrations are not 

significantly different fasting and post-prandially, which under-pinned the 

essentially pragmatic decision to collect samples non-fasting274.  Arginine 

concentrations increase at 2 and 4 hours post-prandially, which could 

contribute some variability to the measurements obtained for this analyte274.  

However this wasn’t the main aim of the study, and in any case the arginine 

values are in broad agreement with other published values from fasting 

samples 237.  However, some caution should be exercised in ascribing 

biological significance to the apparent gender difference in arginine 

concentrations. 

 

The reference values for ADMA described here are in broad agreement with 

other well validated chromatographic methods, which seem to suggest a 

plasma ADMA concentration of around 0.50 µmol/L as close to the healthy 

population mean233,236,237.  The slightly lower mean concentration in the 

present study (0.45 µmol/L) might represent the overall average younger age 

of the cohort.  Additionally some of the published population studies 

previously mentioned contain significant numbers of individuals who are not 

as such “healthy”, for example the study of Teerlink234 in which up to a third 

of the population had impaired glucose tolerance or diabetes as well as a 

proportion with chronic kidney disease.  These conditions would be expected 

to be associated with higher ADMA concentrations. 
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The present data fails to replicate the association of ADMA with age seen in 

other studies233,235-237.  This might be related to the size of the cohort, which 

is arguably too small to allow sub-group comparisons.  In particular the 

number of women in the post-menopausal age range was small (n = 12).  

Obtaining data from a larger number of subjects to allow sub-group 

comparisons would be required to further investigate the effects of age and 

menopausal status, although, as previously noted, the differences are small. 

 

The intra- and inter-individual components of biological variation are of 

importance in determining the spread of values and hence the likely utility of 

reference intervals in denoting abnormality or disease in an individual when a 

single measurement falls outwith the range.  In the present study the indices 

of individuality (II) for ADMA and SDMA are below the threshold of 1.4 which 

has been proposed as the ratio suggesting utility of reference intervals.  This 

is better understood graphically by examining the box plots of 

dimethylarginine concentrations encountered in the biological variation study; 

for most of the individuals studied, their range of values are entirely 

encompassed within the overall range.  This is especially true for SDMA, which 

is not surprising given its relationship to renal function.  Therefore, although 

the described reference intervals provide something of an index of 

“normality” in health, it is clear that results within or without them cannot be 

taken to indicate the absence or presence of clinically significant disease.  An 

alternative approach is to use ADMA concentrations to complement traditional 

approaches to cardiovascular risk assessment, given what has already been 

said about its relationship to risk factors and as a prognostic marker.  

However, at least at the moment, the direct clinical utility of ADMA 

measurement is uncertain, not least owing to the lack of an intervention to 

modify its concentration. 
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12.3  Plasma ADMA concentrations during the acute inflammatory response 

 

The major finding of the knee arthroplasty study was a rapid and significant 

decrease in plasma ADMA concentration during the early phase of the acute 

inflammatory response.  In order to assess the likely reasons for this it is 

important to consider the various factors which influence the plasma 

concentration, namely its rate of production (within cells), metabolism at its 

site of production, export from cells (via CATs), and uptake (again via CATs) 

into other organs for clearance.  Perturbations in the plasma concentration 

could, therefore, represent changes in any or all of these processes.  Broadly 

speaking, an abrupt decrease as seen in this study suggests increased 

clearance from plasma rather than a reduction in synthesis.  Previous studies 

have suggested that inflammation can stimulate DDAH-mediated ADMA 

clearance.  In one, vascular smooth muscle cells were exposed to interleukin-

1β, a key cytokine of the inflammatory response, and demonstrated an 

increase in DDAH expression and activity175.   In another, endotoxaemia in rats 

was associated with a significant increase in hepatic fractional excretion of 

ADMA (41.0 vs 27.7%)174, which it was assumed reflected metabolism.  

However, the effects of different factors on DDAH activity make the net 

effect of inflammation difficult to predict: for example, cytokines have been 

shown to induce DDAH activity, while factors such as oxidative stress, 

hyperglycaemia and NO itself have a negative effect20.  It was anticipated 

that increased DDAH-mediated catabolism would lead to an increase in urine 

DMA excretion.  In fact, urine DMA excretion remained unchanged during the 

first 4 post-operative days, while the decrease in plasma ADMA concentration 

was evident as early as 12 hours post-op.  Once produced DMA is expected to 

appear rapidly in urine given its short elimination half-life of around 7 hours 

and almost complete excretion of an orally administered dose within 24 

hours249.  The results, therefore, suggest that increased DDAH-mediated 

catabolism was not responsible for the described changes in plasma ADMA 

concentration.  An increase in DMA excretion was finally seen by day 5, 

coinciding with the return of plasma concentration to baseline levels.   
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In the absence of clear evidence for increased metabolism, it could be 

hypothesised that the decrease in plasma ADMA concentration reflects 

increased redistribution intracellularly.  The data for urine ADMA excretion 

could provide support for this: although no direct correlation between plasma 

and urine ADMA concentrations was found, there was a significant decrease in 

urine ADMA excretion on day 2, and a significant increase on day 5, in 

absolute terms.  The baseline (day 0) ADMA concentrations were very similar 

to values of 3.4 and 4.1 µmol/mmol creatinine as reported by others in 

healthy non-inflamed individuals221,275.   While SDMA is excreted solely by the 

kidney, only a relatively small fraction of ADMA is excreted unchanged.  It is 

assumed that the urinary excretion of ADMA, in absolute terms, is related to 

the amount presented to the kidney, and by GFR.  This assumption is perhaps 

justified by the finding urinary fractional excretion (FE) rates of (unchanged) 

ADMA and SDMA which are numerically very similar and strongly correlated 

throughout the study period.  Although there is an abrupt and transient 

increase in the FEs of both ADMA and SDMA on day 1, this is unlikely to 

account for the decrease in plasma ADMA concentration, given the absolute 

reduction in urine ADMA concentration, and the lack of similar changes in 

plasma SDMA concentration.  Therefore, the described changes in urinary 

ADMA excretion are likely a simple reflection of a reduction in the circulating 

ADMA pool on day 2 and a subsequent increase on day 5.  It is also notable 

that the correlation between urinary DMA and ADMA concentrations in the 

baseline, non-inflamed, state was lost during the inflammatory response, 

further suggesting a change in the distribution of ADMA between plasma, 

which is the source of urinary ADMA, and cells, which are the source of DMA.  

Finally, a decrease in urinary nitrate excretion on day 2 suggested a reduction 

in NOS production, which could also be consistent with increased cellular 

partitioning; certainly had a reduction in cellular ADMA concentration 

occurred, an increase in NOS activity, if anything, might have been 

anticipated.   
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There have been very few studies relating plasma and intracellular 

concentrations of ADMA, most published data focussing on plasma 

concentrations with the implicit assumption that they reflect concentrations 

intracellularly.  However, it is clear that intracellular ADMA concentrations 

can be several times higher than plasma in a variety of tissues, and can 

increase in response to injury and inflammation.  In a rabbit model of critical 

illness, injury was associated with higher concentrations of ADMA in liver 

compared with healthy control animals276; this was especially true in 

hyperglycaemic animals who had lower liver activities of DDAH.  In this same 

model concentrations of SDMA correlated with concentrations in kidney, liver 

and myocardium, with no such direct relationship seen between tissue and 

plasma concentrations of ADMA276.  Further analysis on pooled data from this 

same model showed correlations between ADMA concentrations in various 

tissues, but no strong relationships between ADMA concentrations in plasma 

and kidney, skeletal muscle or myocardium; plasma and liver ADMA were 

correlated, but this lost significance in a multivariable model277.  In this 

model, it is also interesting to note that DDAH activities are poorly correlated 

with intracellular ADMA concentrations, but are a much stronger determinant 

of plasma ADMA concentration, activities in liver, kidney and muscle together 

accounting for around 50% of the variation in plasma ADMA277.  Further 

insights have been gained from studies in models of lung injury.  Sheep given 

a burn injury from smoke inhalation had significantly increased lung tissue 

concentrations of ADMA 3 weeks following the injury, associated with a 

significant reduction in DDAH-2 activity;  DDAH-1 activity was significantly 

increased, making it uncertain which isoform of DDAH is of greater 

importance278.  Interestingly, in this same model the plasma arginine 

concentration decreased rapidly following the injury, returning to baseline 

levels about one week following the injury, similar to the findings in the 

present study; unfortunately plasma concentrations of ADMA and SDMA were 

not reported278.  In a mouse of model of endotoxin-induced lung injury similar 

findings were reported; as early as 2 hours post-injury a significant increase in 

lung ADMA occurred (12.13 vs 7.53 nmol/gww), with a further increase at 12 

hours (19.10 nmol/gww)279.  In this study DDAH-1 and DDAH-2 protein 
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expression was unchanged, but a significant decrease in DDAH activity was 

measured; moreover, at 12 hours iNOS expression and nitric oxide metabolites 

were increased279.  Again, plasma dimethylarginine concentrations were not 

reported.  Even in the basal, non-inflamed, state lung tissue contains 

significant quantities of protein-incorporated ADMA and free ADMA 

concentrations similar to that in heart, but significantly lower than liver and 

kidney280.  Interestingly, both mice and humans display similar ADMA:SDMA 

ratios in plasma and fluid from bronchoalveolar lavage, suggesting similar 

ratios intra- and extracellularly280.  This study also demonstrated significantly 

greater expression of DDAH-2 than DDAH-1 in lung tissue. 

 

While the studies described in the foregoing paragraph suggest that 

intracellular concentrations of ADMA can increase significantly during tissue 

injury and inflammation, the relationship between plasma and intracellular 

concentrations is not clear.  However, it is known that endothelial cells in the 

basal state contain up to 10 times the ADMA concentration found in 

plasma34,281.  Furthermore, vascular injury results in an almost 4-fold increase 

in the intracellular concentrations of ADMA and MMA, sufficient to cause eNOS 

uncoupling and impairment of vascular relaxation281.  Stimulated peripheral 

blood mononuclear cells generate a significant increase in ADMA 

concentration, something which is inhibited by the anti-inflammatory 

compound salicylic acid281.   

 

The evidence from the studies discussed suggests that DDAH inhibition in 

inflammatory states could lead to intracellular ADMA accumulation.  However, 

transport through system y+ CATs is another potential mechanism for this 

concentration.  CATs permit bidirectional movement of basic amino acids into 

and out of cells.  Methylarginines are good substrates for CATs, with ADMA, 

MMA and SDMA all capable of transport in competition with arginine52.  

Therefore, in addition to inhibition of NOS, methylarginines, including SDMA, 

can affect NOS activity by reducing availability of arginine.  CATs are widely 
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distributed although as such do not lead to equilibrium between the intra- and 

extracellular compartments163.  They exhibit the phenomenon of trans-

stimulation in which high a concentration on one side of the transporter 

stimulates transport266,282.  There is distinct tissue distribution, with CAT-1 

expressed in virtually all tissues with the exception of the liver; CAT-2A, in 

contrast, is found mainly in the liver266,282.  CAT-1 displays a Km for arginine 

of around 100 – 150 µM, while CAT-2A has a 10-fold lower affinity than CAT-

1266,282.  This may serve to ensure preferential uptake of arginine by cells 

expressing eNOS, rather than by the liver for degradation by arginase.  

Indeed, the co-localisation of CAT-1 and eNOS may ensure the efficient 

delivery of arginine to the enzyme, and extracellular arginine concentrations 

are probably more important than intracellular concentrations in determining 

NOS activity in endothelial cells283.  However, this also ensures access to eNOS 

by ADMA155. The demonstration of DDAH-2 in the cytoplasm and apical vesicles 

places all of the key players, namely NOS, DDAH and CATs in close 

proximity14.  CAT-2B are inducible by inflammatory cytokines and are often 

found in tissues expressing iNOS, and have lower substrate affinity than CAT-

1190,266,282,284.   Knockout studies have shown that CAT-1 knockout is lethal, 

while the effect of CAT-2 knockout in mice is to reduce basal NO production 

by iNOS which leads to lung inflammation in the absence of pathological 

stimuli, related to reduced NO production in alveolar macrophages285.  Other 

stimuli for CAT expression include tissue growth and repair, insulin and 

starvation, while oxidative stress can have an inhibitory effect266.  There is 

evidence in rats that CAT-1 expression is also induced by inflammation in the 

kidney and lung in particular, and that this induction is rapid, within hours284.  

Human embryonic kidney cells over-expressing CAT-1 were found to be 

capable of significant increases in ADMA and arginine uptake, which amounted 

to an almost 9-fold increase in ADMA transport285.  These studies confirmed 

the competitive nature of such transport, showing inhibition of ADMA uptake 

at high, but physiological, concentrations of arginine.  It was also shown that 

these cells demonstrated increased efflux of arginine and ADMA from cells 

into transport buffer not containing them285.    The role of CATs is highlighted 
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by experimental studies showing a rapid removal of arginine from the 

circulation following infusion, and the rapid clearance of infused ADMA which 

had a mean plasma half-life of 24 minutes in one human study42,287.  The 

effect of insulin is also worthy of consideration in relation to the changes seen 

in the present study.  Patients post knee arthroplasty demonstrated an insulin 

resistant state and a significant increase in plasma insulin as early as day 1 

post-op.  Insulin infusions, into both healthy subjects and type 1 diabetics, 

lead to a rapid and significant decrease in plasma ADMA and arginine 

concentrations with much less of an effect on SDMA195,288.  Two further studies 

in type 1 diabetics showed lower ADMA concentrations compared with healthy 

controls, with one showing an increase in NO metabolites, and the other 

showing no relationship between plasma ADMA concentration and forearm 

blood flow289,290. Furthermore, hormone treatment in male to female 

transsexuals was associated with a reduction in plasma ADMA concentration, 

with speculation that reduced peripheral insulin sensitivity and consequent 

hyperinsulinaemia could be responsible for the effect291.  The observed 

reductions in ADMA concentrations in critically ill patients receiving intensive 

insulin therapy has been proposed to be due to preservation of DDAH activity; 

however, CAT-mediated uptake could potentially be involved193.  Thus, in the 

present study stimulation of CAT-mediated transport by inflammation and 

insulin remain possible contributory mechanisms for the observed changes in 

plasma ADMA concentration.  However, the lack of similar changes in SDMA 

concentration is more difficult to explain, given that ADMA and SDMA should 

be equally good substrates for CATs52.  It would also be difficult to anticipate 

this effect in isolation, as the hyperglycaemia and oxidative stress would 

likely also have an inhibitory effect on DDAH and thus ADMA metabolism30. 

 

There have been relatively few human studies examining plasma 

dimethylarginines in acute inflammation, and none documenting a sharp 

decrease from a non-inflamed baseline.  It has already been stated that high 

ADMA concentrations are associated with adverse outcomes in critical illness 

and may be related to multiple organ dysfunction.  In these studies, the 
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effects of organ failure themselves are likely to a dominant factor in 

increasing ADMA concentrations, given the importance of liver and kidney 

function in particular for ADMA metabolism.  However, the aim of the current 

study was to examine the effect of inflammation itself in the absence of 

significant organ dysfunction.  One small study of patients with bacterial 

infections demonstrated an increase in plasma ADMA concentration on 

resolution of infection with no changes in SDMA, prompting the authors to 

speculate increased DDAH activity as a possible cause188.  Endotoxaemia in 

humans led to a reduction in plasma arginine concentration and a reduction in 

the arginine:ADMA ratio, although the study period was only 3.5 hours, 

possibly too early to see changes in plasma ADMA concentration; however, the 

reduction in arginine concentration suggests acute uptake or consumption186.    

Further human studies have shown increases in ADMA concentrations during 

the recovery from sepsis, but not in septic shock182, and low arginine 

concentrations in critically ill children which increase during recovery292.  In 

another study patients undergoing abdominal surgery demonstrated a modest 

reduction in plasma ADMA concentration on day 1 post-op, compared with 

patients undergoing major hepatectomy who showed no change17.  These 

findings are largely consistent with those in the present study.   

 

One further possibility to consider is that of metabolic pathways other than 

DDAH for ADMA degradation.  It has been shown that the enzyme alanine-

glyoxylate aminotransferase 2 (AGXT2) metabolises ADMA in a mouse model of 

over-expression using an adenoviral expression vector293.  Conversely, 

pharmacological inhibition of AGXT2 in mice was associated with increased 

concentrations of both ADMA and SDMA294.  A further study in knockout mice 

demonstrated increased ADMA concentrations and hypertension295.  However, 

the relevance of this pathway in man is uncertain, with DDAH-mediated 

catabolism likely to account for the majority of enzymatic ADMA 

clearance22,296.  However, evaluation of this pathway in different physiological 

states, including inflammation would be of value in excluding significant non-

DDAH mediated catabolism of ADMA in explaining the results from the present 
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study.  Measurement of its metabolic product α-keto dimethylguanidino-

valeric acid (DMGV) in urine has been successfully undertaken, providing a 

possible way of assessing significant changes in its metabolic activity297. 

 

To summarise, acute inflammation is associated with a rapid, significant and 

transient reduction in plasma ADMA concentration.  While the influence of 

DDAH on plasma ADMA concentration is not in doubt, the results from the 

present study mitigate against a significant increase in DDAH activity, at least 

initially.  Neither was increased renal excretion implicated, based on urine 

concentrations which were felt to simply reflect the ADMA concentration.  

The likeliest explanation is increased compartmentalisation intracellularly 

mediated by increased CAT uptake.  No evidence was found to suggest 

increased accumulation within erythrocytes.  A decrease in urine nitrate, 

reflecting reduced NOS activity, is consistent with this hypothesis.  The later 

increase in DMA excretion is likely to represent remobilisation of the 

intracellular pool and transport to quantitatively important sites of DDAH 

metabolism: this does not necessarily mean that DDAH activity was increased 

per se, as the Km of DDAH means that increased amounts of ADMA presented 

to the enzyme will be rapidly metabolised.  Certainly it is clear that in the 

inflamed state the plasma concentration is unlikely to be representative of 

the intracellular concentration.  The differential responses of the 

dimethylarginines described in the present study raises the possibility of a 

physiological role for ADMA in regulating NOS activity during the early phase 

of acute inflammation.  

 

12.4  Suggestions for further work 

 

A large body of work, spanning over 20 years, has been produced providing 

strong evidence for ADMA as an endogenous inhibitor of NOS, and thus a 

molecule important in the pathogenesis of disease states characterised by 
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impairment of NO-mediated responses.  This has included large 

epidemiological and prospective observational studies establishing the 

independent prognostic value of ADMA for cardiovascular events and 

mortality, and, increasingly, in the outcome of critically ill patients.  Despite 

this work, however, fundamental questions remain regarding the basic biology 

of ADMA.  Is it simply an “innocent” by-product of protein metabolism which 

acquires relevance only when some other condition leads to impairment of its 

metabolism, or is it part of a regulatory system controlling the production of 

NO under certain physiological conditions such as the inflammatory response?  

This question is of particular interest as excessive NO production has been 

proposed to be deleterious and a potential contributor to multi-organ 

dysfunction in critical illness.  This latter proposal has led to trials of the 

related NOS inhibitor, MMA, in this patient group, unfortunately with adverse 

outcomes.  If the work in this thesis points to intracellular 

compartmentalisation of ADMA during the acute inflammatory response, it 

may be speculated that this could potentially be associated with something 

approaching isoform-specific regulation of NOS, depending on the 

predominant sites of accumulation.  It is suggested that this should be a key 

question for future research, and the central part of this is the relationship 

between extracellular, as exemplified by plasma, concentrations and those 

intracellularly, in various tissues.  There is precious little published on this 

relationship, although that which exists suggests that intracellular 

concentrations are increased by inflammatory stimuli, although how this 

relates to the overall distribution of ADMA in these states is not known.  

Furthermore, most of the published work is in animal models, thus further 

work in humans is required, although the relative difficulty in obtaining 

relevant tissue samples, especially in a study involving serial measurements, 

is acknowledged.  A recent publication reporting dimethlyarginine 

concentrations in peripheral blood mononuclear cells298 – albeit only in 

healthy non-inflamed subjects – suggests a way forward, as these could be 

feasibly assessed serially, perhaps using a model similar to that described in 

this thesis.  These cells would be more relevant than erythrocytes as they 

contain the necessary cellular machinery to transport and metabolise ADMA, 
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i.e. CATs and DDAH, as well as the inducible isoform of NOS.  This work will 

be important in elevating ADMA from its status as a marker of disease to that 

of mediator, and thus its “life-cycle” from production to metabolism as a 

possible therapeutic target. 

 

Homoarginine is a relative new-comer to the arginine field of research, in 

terms of possible biological interest in humans.  Much fundamental knowledge 

regarding its basic biology, i.e. origin, metabolism and biological effects, is 

lacking as its low concentration relative to arginine has seemingly hitherto 

rendered it of little interest.  However, a few recently published studies 

suggesting a predictive role for mortality following cardiovascular events and 

an association with blood pressure and vascular haemodynamics have 

suggested it worthy of further study.  This should initially focus on its origin in 

humans and, along the lines suggested for ADMA, proceed to study of it intra 

and extracellular distribution and the factors determining this.
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 Appendix 1 

Results from reference subjects (n = 100) 

No Sex Age 
Arginine 

µmol/L 

Homoarg 

µmol/L 

ADMA 

µmol/L 

SDMA 

µmol/L 

Chol 

mmol/L 

LDL 

mmol/L 

CRP* 

mg/L 

Creat 

µmol/L 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

M 

F 

M 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

M 

F 

F 

F 

M 

49 

24 

30 

45 

50 

42 

55 

25 

59 

49 

40 

24 

57 

40 

38 

45 

27 

59 

41 

39.2 

31.8 

56.5 

57.3 

45.5 

29.3 

80.0 

50.2 

52.3 

65.8 

57.8 

32.4 

64.8 

65.7 

51.5 

72.4 

61.4 

75.5 

58.4 

1.94 

1.92 

3.17 

1.60 

1.74 

1.29 

1.96 

1.96 

1.13 

0.82 

2.52 

1.62 

1.05 

2.49 

2.07 

1.37 

1.83 

3.14 

0.79 

0.42 

0.33 

0.42 

0.41 

0.40 

0.29 

0.64 

0.42 

0.46 

0.54 

0.52 

0.42 

0.49 

0.45 

0.39 

0.41 

0.39 

0.45 

0.43 

0.41 

0.34 

0.27 

0.36 

0.37 

0.28 

0.45 

0.38 

0.38 

0.37 

0.40 

0.36 

0.36 

0.33 

0.39 

0.30 

0.33 

0.31 

0.29 

6.6 

4.8 

3.9 

7.4 

7.0 

4.8 

7.4 

5.1 

7.9 

6.5 

5.1 

6.0 

5.3 

4.0 

5.4 

5.2 

5.2 

5.7 

6.4 

4.5 

2.9 

2.2 

5.1 

4.5 

2.9 

5.3 

3.0 

5.0 

4.5 

3.3 

3.5 

3.7 

2.3 

3.6 

2.8 

3.6 

3.0 

4.2 

2.6 

2.5 

0.6 

1.6 

3.5 

1.6 

3.6 

4.7 

0.8 

3.6 

1.6 

3.0 

1.0 

0.7 

0.9 

1.0 

1.0 

5.1 

0.4 

108 

75 

72 

82 

85 

87 

88 

103 

76 

87 

79 

99 

66 

64 

102 

80 

70 

81 

67 
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20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

M 

M 

M 

F 

M 

M 

M 

M 

F 

F 

F 

F 

M 

M 

M 

M 

F 

F 

M 

M 

F 

M 

M 

48 

38 

44 

41 

53 

49 

42 

45 

39 

41 

41 

44 

52 

47 

40 

32 

37 

30 

44 

62 

51 

61 

57 

70.3 

72.9 

57.1 

64.1 

25.5 

55.3 

108.1 

105.4 

53.9 

100.1 

78.9 

58.8 

99.4 

36.6 

81.3 

30.8 

14.2 

75.2 

93.2 

48.3 

75.1 

22.8 

39.4 

2.33 

2.27 

1.70 

2.06 

1.09 

0.94 

4.20 

2.89 

1.62 

3.55 

3.30 

1.48 

1.92 

1.75 

2.62 

1.04 

1.60 

1.07 

1.65 

2.07 

3.22 

1.10 

2.66 

0.41 

0.32 

0.46 

0.40 

0.46 

0.41 

0.73 

0.40 

0.49 

0.56 

0.68 

0.51 

0.52 

0.58 

0.45 

0.45 

0.56 

0.48 

0.54 

0.41 

0.41 

0.43 

0.46 

0.35 

0.30 

0.33 

0.43 

0.42 

0.40 

0.57 

0.37 

0.31 

0.53 

0.47 

0.35 

0.46 

0.44 

0.36 

0.37 

0.56 

0.38 

0.35 

0.37 

0.38 

0.31 

0.38 

5.9 

6.6 

5.5 

4.7 

4.6 

6.1 

4.6 

5.2 

9.0 

6.0 

4.7 

3.7 

6.7 

5.7 

5.7 

4.3 

3.5 

3.7 

3.1 

4.0 

5.3 

4.9 

5.0 

3.6 

4.5 

3.5 

3.1 

2.6 

4.0 

2.9 

3.4 

6.5 

3.8 

3.2 

2.0 

4.0 

3.8 

4.0 

2.8 

2.3 

2.4 

2.0 

2.5 

2.5 

3.0 

2.7 

0.8 

1.2 

0.5 

5.4 

0.9 

0.8 

1.2 

0.8 

4.4 

1.8 

0.6 

3.8 

1.3 

0.7 

2.0 

0.2 

0.9 

1.9 

0.3 

5.5 

< 6.0 

16.0 

< 6.0 

97 

111 

86 

70 

92 

77 

80 

82 

115 

91 

91 

67 

85 

89 

87 

85 

58 

60 

73 

84 

80 

75 

80 
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43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

F 

M 

M 

F 

M 

M 

M 

F 

M 

M 

M 

M 

M 

M 

F 

F 

F 

M 

F 

F 

M 

M 

M 

47 

52 

31 

47 

29 

37 

42 

55 

43 

43 

40 

48 

49 

53 

34 

29 

40 

65 

27 

42 

54 

33 

47 

63.6 

79.0 

92.0 

98.3 

88.8 

92.9 

57.8 

37.0 

47.6 

27.6 

45.0 

64.4 

41.4 

75.1 

73.7 

64.5 

52.1 

43.9 

40.2 

79.6 

70.5 

75.0 

78.4 

0.90 

1.00 

1.53 

2.37 

2.76 

1.47 

2.99 

2.11 

1.87 

1.91 

1.41 

1.95 

1.30 

0.97 

1.47 

1.75 

1.24 

1.60 

2.04 

1.69 

2.45 

1.93 

2.56 

0.53 

0.65 

0.57 

0.47 

0.44 

0.50 

0.53 

0.45 

0.47 

0.46 

0.62 

0.37 

0.34 

0.48 

0.36 

0.38 

0.47 

0.35 

0.29 

0.37 

0.42 

0.39 

0.42 

0.42 

0.53 

0.52 

0.39 

0.37 

0.37 

0.33 

0.31 

0.35 

0.41 

0.52 

0.34 

0.29 

0.36 

0.27 

0.27 

0.36 

0.34 

0.35 

0.40 

0.38 

0.35 

0.35 

7.3 

5.8 

5.7 

4.8 

4.5 

5.6 

6.3 

6.4 

5.8 

6.2 

4.7 

5.4 

6.5 

4.3 

5.2 

6.2 

4.2 

6.1 

5.0 

5.0 

6.2 

5.2 

5.6 

4.5 

3.5 

3.5 

2.4 

1.9 

3.9 

3.3 

4.4 

2.5 

4.2 

2.4 

3.6 

4.2 

2.2 

3.1 

4.3 

2.2 

3.7 

2.7 

2.6 

3.7 

3.1 

3.5 

< 6.0 

8.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

100 

95 

83 

71 

86 

72 

85 

88 

75 

85 

75 

80 

83 

80 

90 

100 

95 

75 

90 

85 

75 

90 

77 
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66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

F 

F 

F 

M 

M 

M 

F 

F 

M 

F 

F 

M 

M 

F 

F 

F 

F 

F 

F 

F 

M 

F 

M 

35 

23 

43 

20 

43 

23 

49 

51 

52 

48 

42 

27 

40 

32 

40 

45 

41 

30 

50 

40 

58 

30 

40 

40.2 

46.5 

38.7 

57.7 

76.3 

54.6 

57.4 

74.7 

45.6 

39.0 

75.0 

109.6 

106.6 

77.6 

106.3 

61.0 

151.7 

107.5 

90.8 

83.4 

107.2 

136.5 

109.3 

2.30 

1.05 

3.83 

1.58 

1.86 

1.10 

2.07 

3.21 

3.90 

1.60 

3.22 

2.73 

2.49 

3.08 

3.43 

1.18 

0.99 

1.44 

1.52 

1.32 

1.15 

2.53 

3.28 

0.56 

0.37 

0.46 

0.52 

0.42 

0.55 

0.62 

0.38 

0.56 

0.54 

0.37 

0.42 

0.42 

0.41 

0.51 

0.39 

0.47 

0.38 

0.54 

0.36 

0.37 

0.55 

0.54 

0.40 

0.40 

0.35 

0.42 

0.42 

0.55 

0.41 

0.28 

0.46 

0.45 

0.43 

0.44 

0.34 

0.33 

0.28 

0.40 

0.39 

0.32 

0.53 

0.40 

0.46 

0.38 

0.58 

5.3 

6.1 

5.9 

3.9 

5.1 

5.9 

5.0 

6.8 

4.9 

6.3 

5.2 

4.7 

4.8 

4.0 

4.6 

5.7 

5.0 

4.7 

4.1 

3.8 

5.7 

4.4 

6.1 

3.1 

4.3 

3.8 

2.0 

2.7 

3.7 

2.8 

4.6 

2.7 

3.1 

3.4 

2.8 

2.9 

1.9 

2.5 

3.3 

3.0 

2.9 

2.0 

2.4 

4.0 

2.6 

3.9 

< 6.0 

10.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

< 6.0 

0.4 

0.5 

0.9 

0.8 

0.2 

0.7 

0.8 

0.8 

3.9 

0.9 

0.6 

0.6 

0.7 

90 

95 

67 

75 

79 

75 

78 

80 

80 

90 

84 

104 

89 

70 

64 

96 

82 

85 

75 

59 

103 

66 

106 
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89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

M 

F 

M 

F 

M 

M 

F 

F 

M 

F 

M 

M 

60 

60 

57 

55 

56 

59 

42 

30 

58 

55 

43 

35 

105.7 

40.7 

59.5 

66.5 

85.9 

95.0 

79.1 

66.9 

141.1 

67.6 

98.5 

86.3 

1.94 

1.40 

1.31 

1.38 

1.39 

2.39 

2.29 

1.60 

5.41 

1.31 

1.86 

1.99 

0.42 

0.52 

0.51 

0.52 

0.55 

0.42 

0.42 

0.49 

0.59 

0.40 

0.41 

0.46 

0.47 

0.50 

0.55 

0.47 

0.66 

0.32 

0.34 

0.36 

0.41 

0.33 

0.44 

0.39 

6.8 

3.4 

4.6 

6.4 

4.7 

6.2 

4.5 

3.0 

3.9 

3.5 

5.2 

5.9 

4.6 

1.6 

2.9 

4.2 

3.1 

4.3 

2.0 

1.9 

2.7 

1.6 

3.3 

3.5 

0.4 

0.3 

2.4 

5.1 

1.0 

1.9 

0.8 

0.8 

0.5 

0.9 

1.9 

3.5 

100 

68 

101 

84 

123 

93 

79 

51 

52 

47 

108 

84 

*Some CRPs reported as < 6.0 were measured on a less sensitive CRP assay; 

the remainder were on a high sensitivity assay.



201 

 

Appendix 2 

Demographic information, means, SD and resultant CVI for subjects 

enrolled in biological variation study 

Subject 1: F Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 102 1.40 0.40 0.36 

SD 17.83 0.21 0.03 0.02 

CVI, % 17.1 14.7 7.0 3.9 

 

Subject 2: F Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 103 0.94 0.45 0.38 

SD 19.29 0.18 0.06 0.03 

CVI, % 17.4 19.2 12.5 5.8 

 

Subject 3: M Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 68 1.92 0.40 0.44 

SD 11.13 0.21 0.03 0.03 

CVI, % 16.0 10.3 7.5 5.7 
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Subject 4: M Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 77 2.35 0.47 0.40 

SD 17.72 0.30 0.03 0.03 

CVI, % 22.8 12.3 6.4 6.1 

 

Subject 5: F Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 90 0.97 0.49 0.41 

SD 19.9 0.14 0.03 0.03 

CVI, % 21.9 13.9 6.4 6.6 

 

Subject 6: M Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 88 2.50 0.42 0.37 

SD 10.2 0.23 0.02 0.02 

CVI, % 11.1 8.9 5.1 5.0 

 

Subject 7: F Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 84 1.46 0.52 0.44 

SD 16.9 0.24 0.04 0.03 

CVI, % 19.8 15.8 8.1 6.6 
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Subject 8: M Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 100 1.03 0.54 0.49 

SD 17.64 0.16 0.05 0.03 

CVI, % 17.3 15.5 9.8 6.2 

 

Subject 9: F Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 80 2.32 0.44 0.34 

SD 9.22 0.42 0.03 0.02 

CVI, % 11.1 17.7 6.6 3.9 

 

Subject 10: M Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 78 3.19 0.49 0.36 

SD 9.33 0.52 0.03 0.02 

CVI, % 11.6 16.0 6.0 5.6 

 

Subject 11: F Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 83 2.33 0.46 0.37 

SD 12.97 0.37 0.03 0.02 

CVI, % 15.4 16.3 6.0 5.5 
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Subject 12: M Arginine Homoarginine ADMA SDMA 

Mean, µmol/L 89 1.73 0.44 0.26 

SD 10.75 0.22 0.03 0.02 

CVI, % 11.7 12.0 7.0 8.1 

 

 



205 

 

Appendix 3 

Patient information sheet and consent form 

 

1.   Study title 

 
Measurement of cellular oxidative stress following elective orthopaedic 
surgery. 

How does having a knee joint replacement effect the concentration of 
particular molecules in the blood? 

 

2.   Invitation paragraph 

You are being invited to take part in a research study.  Before you decide it is 
important for you to understand why the research is being done and what it 
will involve.  Please take time to read the following information carefully and 
discuss it with others if you wish.  Ask us if there is anything that is not clear 
or if you would like more information.  Take time to decide whether or not 
you wish to take part. 

Thank you for reading this. 
 
 
3. What is the purpose of the study? 
 
This study’s purpose is to give a better understanding of how the human body 
reacts to inflammation. Inflammation is the normal response to any physical 
insult. The aim of this study is to measure the concentration in the blood of 
products of cellular metabolism that may change during inflammation. 
Increasing our knowledge in this area may help us to understand why 
individual patients respond differently to similar injuries and disease. Elective 
knee joint replacement provides a good model to measure this response in 
normal adults. The data from this study is essential to allow us to measure 
and understand the same variables in seriously ill hospital patients. 

 

4. Why have I been chosen? 
You have been chosen because you are about to undergo a knee joint 
replacement operation.  We intend to include 50 patients in total in the 
study. 
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5.   Do I have to take part? 

It is up to you to decide whether or not to take part.  A member of the 
research team will meet with you to describe the study and go through this 
information sheet with you. If you do decide to take part you will be given 
this information sheet to keep and be asked to sign a consent form. You are 
still free to withdraw at any time and without giving a reason.  A decision to 
withdraw at any time, or a decision not to take part, will not affect the 
standard of care you receive. 

 

6.  What will happen to me if I take part? 

If you decide to take part, you will have additional blood and urine samples 
collected. Using a needle and syringe we will take 15 millilitres (about an egg 
cupful) of blood each time usually from your arm. The first blood sample will 
be collected in the anaesthetic room, just before the start of your operation. 
Further blood samples will be collected approximately 6 and 12 hours after 
the start of your operation and on each morning after the operation for up to 
5 days or until you go home, if sooner. We will also collect a urine sample 
from you each morning during your hospital stay. A final blood sample will be 
collected when you return to the orthopaedic clinic approximately 6 weeks 
later. 

 

Where possible, to minimise the number of times that blood is taken from 
you, samples for this research will be collected with the blood samples that 
are taken as part of your routine care in hospital. 

 

You will only participate in this study during your normal hospital stay. 
Participation in this study will neither prolong your hospital stay nor require 
you to attend the hospital for the purpose of the study alone. 

  

In total you will be involved in the study for approximately 6 weeks during 
which you will have up to eight additional blood samples taken. 
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7.   What do I have to do? 

After your operation, morning blood samples will be collected before 
breakfast. We  require that you don’t eat from midnight until the blood 
sample is taken around 7am. You would be allowed to drink water freely 
throughout the night. We would also ask you to provide a urine sample each 
morning that you are in hospital. There are no other lifestyle restrictions 
other than those explained at the time of surgery.  You can carry out your 
daily activities as normal and take all regular medication. 

8.   What is the drug or procedure that is being tested? 

There is no drug being tested and the procedures used are performed 
routinely and are safe. 

 

9.   What are the alternatives for diagnosis or treatment? 

As your operation is not affected by the study, there are no alternatives for 
treatment. 

 

10.  What are the side effects of taking part? 

There are no specific side effects of taking part in the study. The operation 
performed is the same whether you are in the trial or not. 

 

11.  What are the possible disadvantages and risks of taking part? 

Taking the blood samples may cause some minor brief discomfort. In addition 
there is a small risk of bruising and local irritation. 

Your knee replacement operation itself, has risks and these will be explained 
to you when you consent for it. The operation performed will be the same as 
if you were not in the trial. 

Very rarely when performing a routine operation or test we find evidence of a 
disease or condition that is not expected and is causing no symptoms at 
present.  If this occurs we would do what we felt to be in your best interests 
at the time and then discuss it fully with you subsequently. 
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12.  What are the possible benefits of taking part? 

There is no particular benefit to you, over and above that of the operation 
itself. 

 

13.    What if new information becomes available? 

Sometimes during the course of a research project, new information becomes 
available about what is being studied.  If this happens, your research doctor 
will tell you about it and discuss with you whether you want to continue in the 
study.  If you decide to withdraw your research doctor will make 
arrangements for your care to continue. If you decide to continue in the study 
you will be asked to sign an updated consent form. 

Also, on receiving new information your research doctor might consider it to 
be in your best interests to withdraw you from the study.  He/she will explain 
the reasons and arrange for your care to continue. 

 

14.  What will happen to the samples I give? 

Blood and urine samples collected from you will stored and undergo 
laboratory analysis at Glasgow Royal Infirmary. No genetic tests are being 
done. Your blood and urine samples would be labelled with a unique study 
number allocated to you so that they cannot be identified by laboratory staff.  

 

15.  What will happen if I don’t want to carry on in the study?  

You can withdraw from the study at any time if you wish, and without giving a 
reason. Information that has already been collected may still be used. Any 
stored blood samples that can still be identified as yours will be destroyed if 
you wish. 

 

16.  What happens when the research study stops? 

When the study stops, patients will attend the hospital for the same routine 
follow-up as those patients who were not in the study. Any remaining blood 
samples which have not been used in this study would be destroyed. 
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17.    What if something goes wrong? 

If you are harmed by taking part in this research project, there are no special 
compensation arrangements.  If you are harmed due to someone's negligence, 
then you may have grounds for a legal action but you may have to pay for it.  
Regardless of this, if you wish to complain, or have any concerns about any 
aspect of the way you have been approached or treated during the course of 
this study, the normal National Health Service complaints mechanisms may be 
available to you. 

 

18.  Will my taking part in this study be kept confidential? 

If you join the study, some parts of your medical records will be looked at by 
a member of the research team who may or may not be directly involved in 
your clinical care. All will have a duty of confidentiality to you as a research 
participant. All information which is collected about you during the course of 
the research will be kept strictly confidential and any information about you 
which leaves the hospital will have your name and address removed so that 
you cannot be recognised from it. 

 

Your G.P will also be made aware of your participation in the study. 

 

19.  What will happen to the results of the research study? 

The results of the study will be analysed and subsequently published in a 
scientific journal.  You will not be identified in any report/publication. 

If you wish to know the results of the study, please contact me through the 
department of anaesthesia. (0141 211 2069.) 

 

20.  Who has reviewed the study? 

The study has been reviewed by West Glasgow Research and Ethics 
Committee. 
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21.   Contact for Further Information 

My name is David Reid.  If you require any further information, I can be 
contacted in Gartnavel General Hospital Department of Anaesthesia on 0141 
211 2069. 

Professor John Kinsella is the Consultant in charge of the trial and he can be 
contacted via his secretary on 0141 211 4625. 

Thank you for taking the time to read this information and for agreeing to 
take part in the study. 

 

You will be given a copy of the information sheet to keep and a signed 
consent form. 

 

5th May 2008 
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Patient Identification Number for this study: 

 
CONSENT FORM  

 

Title of Project: Measurement of cellular oxidative stress following elective 
orthopaedic surgery. 
 

Name of Researcher:  Dr David Reid 

 

1. I confirm that I have read and understand the information sheet 
dated............................ (version............ ) for the above study and 
have had the opportunity to ask questions.          

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason, without my medical care 
or legal rights being affected. 

3. I understand that sections of any of my medical notes may be looked at by 
responsible individuals or from regulatory authorities where it is relevant 
to my taking part in research.  I give permission for these individuals to 
have access to my records. 

4.   I agree to my GP being informed of my participation in the study. 

5.   I agree to take part in the above study.    

   
     

 

___________________  ____________         ____________________ 

Name of patient   Date   Signature 

 

 

___________________  _____________     _____________________ 

Name of person taking  Date   Signature 

consent 

 

1 copy for patient, 1 for researcher site file, 1 (original) to be kept in medical notes
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Ethical approval 
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Management approval 
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Appendix 4 

Demographic details and details of blood transfusion and available 

specimens for patients enrolled in knee replacement study. 

Subject Sex Age Diabetes Blood transfusion Available specimens* 

1 F 75 N N D0 – D4, 3M 

2 F 74 N N D0 – D4, D5, 3M 

3 M 62 Y N D0 – D4, D5, 3M 

4 F 68 N N D0 – D4, D5 

5 F 77 N Day 3 D0 – D4, D5, 3M 

6 M 73 N N D0 – D4, D5, 3M 

7 F 69 N N D0 – D4, D5, 3M 

8 M 73 N N D0 – D4, 3M 

9 F 78 N Day 2 D0 – D4, D5, 3M 

10 F 69 N Day 2 D0 – D4, D5, 3M 

11 F 71 N N D0 – D4, D5, 3M 

12 F 79 N Day 2 D0 – D4, D5, 3M 

13 F 78 N N D0 – D4, D5 

14 F 75 N Day 2 D0 – D4, D5, 3M 

15 F 64 N N D0 – D4, D5, 3M 

16 M 74 N Day 2 D0 – D4, D5, 3M 

17 M 65 Y N D0 – D4, D5, 3M 

18 M 79 Y N D0 – D4, D5, 3M 
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19 F 71 N N D0 – D4, 3M 

20 F 81 Y Day 2 D0 – D4, D5 

21 M 62 N N D0 – D4 

22 M 72 Y N D0 – D4, 3M 

23 M 68 Y N D0 – D4, D5, 3M 

24 F 55 N N D0 – D4 

25 F 68 N N D0 – D4, D5, 3M 

26 F 74 N N D0 – D4, D5, 3M 

27 M 78 N N D0 – D4, D5, 3M 

28 F 72 N N D0 – D4, D5 

29 F 55 Y N D0 – D4, D5 

30 M 73 N N D0 – D4, D5, 3M 

31 M 65 N N D0 – D4, D5, 3M 

32 M 64 Y N D0 – D4, 3M 

33 F 66 N N D0 – D4 

34 F 59 Y N D0 – D4, 3M 

35 F 61 N N D0 – D4 

36 M 72 N N D0 – D4, D5 

37 F 63 N N D0 – D4, D5 

38 F 76 N N D0 – D4, D5 
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