
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Stasinakis, Charalampos (2013) Applications of hybrid neural networks 
and genetic programming in financial forecasting. PhD thesis. 
 
 
http://theses.gla.ac.uk/4921/ 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given. 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4921/


 

Applications of Hybrid Neural Networks 

and Genetic Programming in Financial 

Forecasting 

 

 

Charalampos Stasinakis 

 

Submitted in fulfillment of the requirements 

for the Degree of Doctor in Philosophy 

 

 

Adam Smith Business School 

College of Social Sciences 

University of Glasgow 

 

 

 

October, 2013 



2 
 

Abstract 

This thesis explores the utility of computational intelligent techniques and aims to 

contribute to the growing literature of hybrid neural networks and genetic programming 

applications in financial forecasting. The theoretical background and the description of the 

forecasting techniques are given in the first part of the thesis (chapters 1-3), while the 

contribution is provided through the last five self-contained chapters (chapters 4-8). 

Chapter 4 investigates the utility of the Psi Sigma neural network when applied to 

the task of forecasting and trading the Euro/Dollar exchange rate, while Kalman Filter 

estimation is tested in combining neural network forecasts. A time-varying leverage 

trading strategy based on volatility forecasts is also introduced. In chapter 5 three neural 

networks are used to forecast an exchange rate, while Kalman Filter, Genetic Programming 

and Support Vector Regression are implemented to provide stochastic and genetic forecast 

combinations. In addition, a hybrid leverage trading strategy tests if volatility forecasts and 

market shocks can be combined to boost the trading performance of the models. Chapter 6 

presents a hybrid Genetic Algorithm – Support Vector Regression model for optimal 

parameter selection and feature subset combination. The model is applied to the task of 

forecasting and trading three euro exchange rates. The results of these chapters suggest that 

the stochastic and genetic neural network forecast combinations present superior forecasts 

and high profitability. In that way, more light is shed in the demanding issue of achieving 

statistical and trading efficiency in the foreign exchange markets. 

The focus of the next two chapters shifts from exchange rate forecasting to inflation 

and unemployment prediction through optimal macroeconomic variable selection. Chapter 

7 focuses on forecasting the US inflation and unemployment, while chapter 8 presents the 

Rolling Genetic – Support Vector Regression model. The latter is applied to several 

forecasting exercises of inflation and unemployment of EMU members. Both chapters 

provide information on which set of macroeconomic indicators is found relevant to 

inflation and unemployment targeting on a monthly basis. The proposed models 

statistically outperform traditional ones. Hence, the voluminous literature, suggesting that 

non- linear time-varying approaches are more efficient and realistic in similar applications, 

is extended. From a technical point of view, these algorithms are superior to non-adaptive 

algorithms; avoid time consuming optimization approaches and efficiently cope with 

dimensionality and data-snooping issues.  
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Chapter 1 

Introduction 

 

 

 

1.1 General Background and Motivation 

 

The majority of human activity is motivated, influenced and driven by forecasts, namely 

predictions of the future. This can be verified by numerous examples in daily life. For 

instance, an employee going to work on time every morning has to go through a 

subconscious forecasting process in his mind. In that case the forecasted variable is the 

time needed to reach the workplace. The accuracy of this daily forecast depends on many 

factors and assumptions, such as distance between home and office, traffic, walking pace, 

weather etc. Although some factors can be fixed through time, most of them are constantly 

changing, resulting in punctual and late employees. Unwillingness to set assumptions for a 

forecast is equivalent to not being willing to forecast at all. Consequently, forecasting and 

uncertainty are concepts highly inter-connected. 

In financial decisions, though, the impacts of wrong forecasts are substantially 

greater than being late for work one morning. Additionally, the financial world is so 

complex that forecasts might be affected by a myriad of factors compared to the simple 

example above. Investors attempt to forecast events that might affect a company, such as 

sales expectations, and then decide whether the price of its shares will increase or not. A 

business decision to lend or borrow money would depend on forecasts of future cash flows 

or expected returns. Economists in central banks are particularly interested in the 

extrapolation of future inflation or unemployment trends, since these lead to monetary 

policy changes. Therefore, the development of accurate financial forecasting techniques is 

of paramount importance, especially in times of global economic turmoil and market 

uncertainty. This is when financial time series are found to be most ‘noisy’ and non-

linearities and structural breaks rule the common macroeconomic explanatory variables. 
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During these periods the abovementioned task becomes extremely challenging for 

academic researchers, investors and relevant market and policy practitioners. Under this 

context, all previous parties attempt to model economic and financial activity with 

computational techniques that would be successful, where traditional statistical approaches 

would fail. 

Computational intelligence is a scientific field that develops and models techniques 

that could achieve human cognitive capabilities. These capabilities could be described in 

short by three words: Reasoning; Understanding; and Learning.  According to Bezdek 

(1994) a computationally intelligent system has pattern recognition ability and exhibits 

computational adaptivity and fault tolerance. At the same time, though, its turn-around 

speed and error rates approximate the human brain’s performance. Such computational 

approaches have been extensively utilized in forecasting applications. Specifically, Neural 

Networks (NNs), Genetic Algorithms (GAs) and Support Vector Machines (SVMs) are 

very common in the voluminous financial forecasting literature (see amongst others Adya 

and Collopy (1998), Tay and Chao (2001 and 2002), Chen et al. (2003), Kim (2006), Ahn 

and Kim (2009) and Huang et al. (2013)). 

The difference of such models with statistical ones lies in their adaptive nature. 

They can take many different forms and have as inputs any potential explanatory variable. 

Non-linearity is not possible to be measured in statistical terms and therefore these models 

have the advantage in tasks where the exact nature of the series under study is unknown. 

Sceptics argue that the lack a formal statistical theoretical background behind such 

approaches makes them useless in Finance. However, financial series are dominated by 

factors (e.g. behavioural factors, politics…) that time-series analysis and statistics are 

unable to capture in a single model. Hence, a statistical model that will capture such 

pattern in a time-series is in the long-run infeasible. Although computational models 

present encouraging results, there is an open discussion regarding their ability to overcome 

computational and complexity issues, deriving from their underlying engineering structure 

and atheoritical exploitation of the available financial data.  

Over-fitting is one of the issues that can arise during statistical inference using 

flexible computational models. The term applies when a supervised learning algorithm is 

trained to perform well in a training dataset, but fails in the important test period. One 

solution to this problem is the split of the dataset into an in-sample and out-of-sample 

period. Thus, the model’s parameters are only tuned in-sample. Popular anti-over-fitting 

techniques are the ‘early stopping procedure’ (Lin et al. (2009) and Prechelt (2012)), cross 
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validation (Zhang et al. (1999), Amjady and Keynia (2009) and Sermpinis et al. (2012b)) 

and pruning parameter approaches (Castellano et al. (1997) and Wang et al. (2010)). 

Another related drawback of computational intelligence methods is the dimensionality 

issues deriving from the large inputs fitted to the model. This is highly correlated with the 

optimal feature selection process, where from the sparse training space the model selects 

only appropriate data subsets to optimize its parameters. This issue can be handled with 

techniques such as principal component methods (Jollife, 1986), filtering techniques 

(Mundra and Rajapakse, 2007), and embedded techniques (Hsieh et al., 2011). Finally, one 

serious disadvantage of some computational intelligence techniques is the low degree of 

theoretical interpretability. Many consider them ‘black boxes’ because of their 

computational complexity, which requires professional expertise. Over-simplifying them, 

though, leads to opposite results in terms of performance. The feature selection is one way 

to create a trade-off between the previous statements. Implementing or incorporating fuzzy 

rules in these algorithms could be another efficient solution (Hua et al. (2007) and 

Khemchandani et al. (2009)). 

The promising empirical evidence from computational intelligence techniques, 

such as NNs, GAs and SVMs, allows them to remain in the central scope of much financial 

research. On the other hand, the inefficiencies deriving from the abovementioned 

computational issues point out that these models perform well in a task-specific modelling 

environment. Therefore, generalizing their performance to a more universal modelling 

framework presents limitations. For the sake of providing a point of reference, similar 

limitations apply to most modern statistical and econometric models. A recent trend to 

dealing with these limitations is to introduce hybrid models that combine the attributes of 

each technique, minimize over- fitting effects and optimally cope with the curse of high 

dimensionality (see amongst others Huang et al. (2012), Dunis et al. (2013) and Lin et al. 

(2013)). All the above conclude in a general application framework, which motivates this 

thesis. 

 

1.2 Outline and Contribution 

 

In light of the motivation outlined above, this thesis contributes in the field of 

computational financial economics by developing new hybrid/adaptive predictive models 

based on advanced computational intelligence techniques and examining various financial 



24 
 

forecasting and trading applications. These applications are presented in five self-contained 

chapters (chapters 4-8). In order to avoid unnecessary repetitions, all the forecasting 

techniques and models used in these chapters are thoroughly described in chapter 3. 

Finally, chapter 2 is a survey of the trading techniques used in financial forecasting. This is 

presented prior of all the other chapters in order to motivate and explain the trading 

rationale of the applications in chapters 4-6.  

In Chapter 4 a robust NN, namely the Psi Sigma Neural Network (PSN), is applied to the 

task of forecasting and trading the Euro/Dollar exchange rate. At the same time, the value 

of Kalman Filter estimation in combining NN forecasts is tested. Additionally, a time-

varying leverage trading strategy based on volatility forecasts is introduced to further 

improve the performance of the models and their combinations. Based on several statistical 

criteria, the results show that the stochastic NN forecast combinations present superior 

forecasts. Furthermore, the trading strategy is successful in an economic sense, leading to 

high profitability from all models under study. 

Through chapter 5 the literature of forecasting and trading the Euro/Dollar exchange rate is 

extended and the contribution is threefold. Firstly, three NNs are trained with a specialized 

fitness function to forecast this exchange rate. The function creates a trade-off between 

statistical accuracy and trading profitability. Secondly, techniques, such as the Kalman 

Filter, Genetic Programming (GP) and Support Vector Regression (SVR), are implemented 

to provide stochastic and genetic forecast combinations. Thirdly, a hybrid leverage trading 

strategy is introduced. The trading strategy tests if volatility forecasts and market shocks 

can be combined with forecasted daily returns in order to improve the trading performance 

of the models under study.  

In chapter 6 a hybrid Genetic Algorithm – Support Vector Regression (GA-SVR) model 

for optimal parameter selection and feature subset combination is proposed. The GA-SVR 

model is applied to the task of forecasting and trading three euro exchange rates. Taking 

the previous chapters one step further, this application uses a feature space comprising 

from individual NNs’ forecasts (as presented in chapter 4 and 5) and forecasts from 

traditional models. The GA-SVR forecast combinations present the best performance in 

terms of statistical accuracy and trading efficiency for all the exchange rates under study. 

That way, two key targets are achieved through this chapter. Firstly, the proposed model 

fills the gap of the literature regarding the exploitation of GAs in order to tune the SVR 

parameters, instead of the SVM ones. Secondly, the theory of combining forecasts to 

achieve higher accuracy is validated and expanded. The extension refers to the fact that the 
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model combines the forecasts that are found more relevant for each task, instead of taking 

simple averages, whether using equal or not weights, of the individual models.  

In general the three previous chapters attempt to shed more light in the demanding issue of 

achieving statistical and trading efficiency in the foreign exchange markets through 

computational intelligent models. Successful application of the proposed trading strategies, 

in conjunction with the training fitness functions suggested, leads to one conclusion: the 

necessity for a shift from purely statistically based models to models that are optimized in 

a hybrid trading and statistical approach.  

The focus of the next two chapters shifts from exchange rate forecasting to inflation and 

unemployment prediction through optimal macroeconomic variable selection. Chapter 7 

focuses on forecasting changes in monthly US inflation and unemployment. The proposed 

hybrid GA-SVR model features several novelties, as it captures asymmetries and 

nonlinearities evident in the given set of predictors; it selects the optimal feature subsets; 

and it provides a single robust SVR forecast. The rolling forward sample evaluation adds 

validity to the results of the forecasting exercise. Most importantly, it indicates which 

predictors are significant in the pro-crisis period, while it shows if these remain significant 

in crisis and after crisis periods. Chapter 8 introduces an extension of the GA-SVR, namely 

the Rolling Genetic – Support Vector Regression (RG-SVR) model in forecasting the 

monthly inflation and unemployment of eight EMU countries. Similarly to chapter 7, RG-

SVR selects optimal indicators from a large space of potential inputs. Instead of using 

rolling samples, RG-SVR implements a rolling window exercise. This provides a mapping 

of the relevant inflation and unemployment predictors in a month per month and country 

per country analysis. The task is also achieved with the minimum complexity in terms of 

support vectors. Both models outperform traditional models with constant or limited sets of 

independent variables. Hence, they extend the voluminous literature which suggests that 

non- linear time-varying approaches are more efficient and realistic in similar studies. From 

a technical point of view, these algorithms are superior to non-adaptive algorithms, avoid 

time consuming optimization approaches and efficiently cope with dimensionality and 

data-snooping issues. 

In general, each chapter includes the specific motivation, modelling techniques, empirical 

results, technical details and contribution. Thus, the reader is able to follow the rationale of 

each application in a practical and concise way. Most chapters are considered for 

publication, while they are already presented to academic peers through conferences. 

Chapter 2 is a forthcoming chapter of a book. Chapter 4 has been presented in Forecasting 
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Financial Markets 2011 conference in Marseille. Its extended version is published in the 

academic journal Decision Support Systems. Similarly, Chapter 5 has been included in the 

Asset Pricing Workshop 2012 organized by University of Glasgow. It has also been 

presented in Forecasting Financial Markets 2012 conference in Marseille. Currently it is 

under resubmission to the academic Journal of International Financial Markets, Institutions 

and Money. Finally, Chapters 6 and 7 have been presented in Forecasting Financial 

Markets 2013 in Hannover. At the moment they are being review by the academic Journal 

of American Statistical Association and Journal of Forecasting respectively. 

.  
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 Chapter 2 

Financial forecasting and trading strategies: a survey 

 

 

 

2.1 Technical Analysis Overview 

 

Forecasting the market behavior has always been in the center of scientific research by 

academics, financial and government institutions, investors, market speculators and 

practitioners. This task has proven to be extremely challenging and controversial due to the 

noisy and non-stationary nature of financial time series, especially in periods of economic 

turmoil. In order to quantify the results of financial forecasts in practical market terms, the 

above mentioned parties combine their forecasting methods with sets of rules regarding 

trade orders and capital management. These rules are called trading strategies. This 

chapter attempts to present a general survey of the trading rules originating from the 

technical market approach and link them with their modern automated equivalents and 

trading systems.    

Technical analysis is a financial market technique that focuses on studying and 

forecasting the ‘market action’, namely the price, volume and open interest future trends, 

using charts as primary tools. Charles Dow set the roots of technical analysis in late 18th 

century. The main principle of his Dow Theory is the trending nature of prices, as a result 

of all available information in the market. These trends are confirmed by volume and do 

persist despite the ‘market noise’, as long as there are not definitive signals to imply 

otherwise. 

 Another interesting definition of technical analysis is given by Pring (2002, p.2). 

‘The technical approach to investment is essentially a reflection of the idea that prices 

move in trends that are determined by the changing attitudes of investors toward a variety 

of economic, monetary, political, and psychological forces.’ Furthermore he adds that ‘the 

art of technical analysis, for it is an art, is to identify a trend reversal at a relatively early 
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stage and ride on that trend until the weight of the evidence shows or proves that the trend 

has reversed.’.  

In order to fully understand the concept of technical analysis, it is essential to 

clearly distinct it from the fundamental one. It is also important to discuss the Efficient 

Market Hypothesis and the Random Walk Theory.    

 

2.1.1 Technical Analysis vs. Fundamental Analysis 

 

In order to fully understand the concept of technical analysis, it is essential to clearly 

distinct it from the fundamental one.  The premises of the technical approach are basically 

that market action discounts all available information, prices move in trends and history 

tends to repeat itself. On the other hand, fundamental analysis is based on information 

regarding supply and demand, the two major economic forces affecting the prices’ 

direction change. Both approaches aim to solve the same problem, but ‘the fundamentalist 

studies the cause of market movement, while the technician studies the effect’ (Murphy, 

(1996, p. 5)).  

In reality the complete separation between the fundamentalist and the technician is 

not so easy to be made, although there is always basis of conflict. For example, institutions 

that need a long term assessment of their stock turn to fundamental analysis, while short-

term traders use technical one. The company’s financial health is evaluated with the 

technical approach, whereas its long-term potential is based on fundamental 

approximations. Such examples show that both techniques have advantages and 

disadvantages and one does not exclude the other. The greatest benefit derived from 

fundamental analysis is the ability to understand market dynamics and not panic in periods 

of extreme market volatility. On the other hand, technical analysis does not utilize any 

economic data or market event news, just simple tools that are easy to understand in 

comparison with fundamental indicators. The technicians are also able to adapt in any 

trading medium or time dimension and therefore they gain extra market flexibility 

compared to fundamentalists. In conclusion, technical analysis appears able to capture 

trends and extreme market events that the fundamental one discovers and explains, after 

they are already been well established.    
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2.1.2 Efficient Market Hypothesis and Random Walk Theory  

 

Fama (1970) introduced the concept of capital market efficiency. This influential paper 

established the framework implied by the context of the term ‘Efficient Market 

Hypothesis’. According to Fama (1970), a market is efficient if the prices always reflect 

and rapidly adjust to the known and new information respectively. The basis of this 

hypothesis is the existence of rational investors in an uncertain environment. A rational 

investor is following the news and reacts immediately to all important news that affect 

directly or indirectly his investment, capital, security price etc. The Efficient Market 

Hypothesis is also connected with the Random Walk Theory, which suggests that the 

market price movements are random.  

The assumptions of the Efficient Market Hypothesis can be summarized as: 

• Prices reflect all relevant information available to investors. 

• All investors are rational and informed. 

• There are no transaction costs and no arbitrage opportunities (perfect operational 

and allocation efficiency). 

Fama (1970) further classifies market efficiency into three forms, based on the 

information taken under consideration: 

• The weak form applies when all past information is fully reflected in market 

prices. The weakly efficient markets are linked with the Random Walk Theory. If 

the current prices fully reflect all past information, then the next day’s price 

changes would be the result of new information only. Since the new information 

arrives at random, the price changes must also be random.  

• The semi-strong form requires all publicly available information to be reflected in 

market prices. This form is based on the competition among analysts, who attempt 

to take advantage of the new information constantly generating from market 

actions. If this competition is perfect and fair, then there would be no analyst who 

would be able to make abnormal profits. 

• The strong form implication is that market prices should reflect all available 

information, including that available only to insiders. This form of market 
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efficiency is the most demanding, because it concludes that profits cannot be 

achieved by inside information.  

There is a general agreement that developed financial markets would meet the 

conditions of semi-strong efficiency, despite of some anomalies. These anomalies are 

related to abnormal returns that can be evident simultaneously with the release time of the 

new information. On the other hand, the concept of strongly efficient markets is not easily 

accepted. This is because most of the countries already have anti- insider-trading laws, in 

order to prevent excessive returns from inside information.    

Accepting or not the Efficient Market Hypothesis is one of the core financial debates 

of our times. The relevant literature is voluminous (see amongst others Jensen (1978), 

LeRoy and Porter (1981) Malkiel (2003), Timmerman and Granger (2004), Yen and Lee 

(2008), Lim and Brooks (2011) and Guidi and Gupta (2013)). The empirical results of this 

extensive literature are ambiguous and controversial. Especially during the 1980s and 

1990s, the Efficient Market Hypothesis was under siege. Recent case studies present more 

results in favor of the market efficiency, but the debate is still ongoing. In fact, the main 

question remains: ‘Does market efficiency exist?’ The practical market experience shows 

that trends are ‘somewhat’ existent and predictable, so strictly speaking the Efficient 

Market Hypothesis can be stated as false (Abu-Mostafa and Atiya, 1996). There is also the 

opinion that science tries to find the best hypothesis. Therefore, criticism is of limited 

value, unless the hypothesis is replaced by a better one (Sewell, 2011). 

 

2.1.3 Profitability of Technical Analysis and Criticism 

 

From all the above, it is clear that technical analysis is in contrast with the idea of market 

efficiency. The main reason for this conflict is that technical analysis opposes the accepted 

view of what is profitability in an efficient capital market. Technical analysis is based on 

the principal that investors can achieve greater returns than those obtained by holding a 

randomly chosen investment with comparable risk for a long time. Hence, the market can 

be indeed beaten. 

However, claiming that there is a direct link between profitability and technical 

trading rules is justified. For example, Brock et al. (1992) in their pioneering paper present 

evidence of profitability of several trading rules using bootstrap methodology, when 
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applied to the task of forecasting the Dow Jones Industrial Average index. Bessembinder 

and Chan (1995) extend the use of those rules to predict Asian stock index returns with 

similar results. These studies created a research trend in technical analysis’ efficiency and 

utility. Menkhoff and Schmidt (2005), Hsu and Kuan (2005) and Park and Irwin (2007) 

summarize relevant empirical evidence in surveys that focus on the profitability of the 

technical approach. Especially the latter provide an interesting separation of the 

corresponding literature into two periods: The early (1960– 1987) and modern (1988–

2004) studies periods. This classification is based on the available tools, factors, models, 

tests and drawbacks that the researcher of period had to face (i.e.  Transaction costs, Risk 

Factor Analysis, Data Mining and Pattern Recognition issues, Parameter Optimization, 

Out-of-sample verification processes, Bootstrap and White Reality Checks, Neural 

Networks and Genetic Programming architectures). Park and Irwin (2007) also note that 

most of the studies conducted in 1960s were more or less published during and after the 

1990s. The main reasons for that is, firstly, the fact that the computational resources 

‘flourished’ during that period. Secondly, the benefits of technical analysis also emerged 

through several seminal papers, which till that period were not well known to the scientific 

public. 

Taken all the above under consideration, it is very logical to wonder why technical 

analysis remains under constant criticism.  Especially academics have an extreme and 

attacking attitude towards the technical approach, which can be ‘colourfully’ described as 

follows. ‘Technical analysis is anathema to the academic world. We love to pick on it. Our 

bullying tactics are prompted by two considerations: (1) the method is patently false; and 

(2) it’s easy to pick on. And while it may seem a bit unfair to pick on such a sorry target, 

just remember: it is your money we are trying to save.’ (Malkiel, (2007, pp. 127-128)).   

The main reasoning for this critique can be summarized as: 

• Technical analysis does not accept the Efficient Market Hypothesis. 

• Widely cited academic studies conclude that technical rules are not useful (Fama 

and Blume (1966); Jensen and Benington (1970)). 

• Traders use the well-known charts and see the same signals. Their actions go in a 

way that the market complies with the overriding wisdom. Thus, technical 

analysis is a ‘self-fulfilling prophecy’. 

• Chart patterns tell us where the market has been, but cannot tell us where it is 

going. In other word the past cannot predict the future. 
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• The technical approach is ‘trapped’ between the psychology of the trader and the 

‘insensitivity’ of an automatic computational system, where no human 

intervention is allowed in real time. 

 

2.2 Technical Trading Rules  

 

There is a wide variety of technical trading rules applied everyday by market practitioners, 

trading experts and technical analysts. This section attempts to present an overview of the 

‘universe’ of these rules and to classify them in some basic categories. 

 

2.2.1 The benchmark ‘Buy-and-Hold’ Rule (BH) 

 

The ‘Buy-and-Hold’ rule (BH) is a passive investment strategy, which is thought to be the 

benchmark of all trading rules in the market. BH aligns with the Efficient Market 

Hypothesis (see Section 1). Its principle is that investors buy stocks and hold them for a 

long period of time, without being concerned about short-term price movements, technical 

indicators and market volatility. Although ‘Buying-and-Holding’ is not a ‘sophisticated’ 

investment strategy, historical data show that it might be quite effective, especially with 

equities given a long timeline. Typical BH investors use passive elements, such as dollar-

cost averaging and index funds, focusing on building a portfolio instead of security 

research.  

There is ground for criticism, especially from technical analysts, who after the 

Great Recession declared the death of BH rules. Corrado and Lee (1992),  Jegadeesh and 

Titman (1993), Gençay (1998), Levis et al. (1999), Fernández-Rodrı́guez et al. (2000), 

O’Neil (2001), Barber et al. (2006) and recently Szafarz (2012) perform competitions of 

trading strategies, with BH being the main benchmark. Although in most cases BH 

strategies are being outperformed, there are cases of returns of more than 10% per annum. 
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 2.2.2 Mechanical Trading Rules 

 

Charting is subjective to the technician’s interpretation of the historical price patterns. 

Such subjectivity allows emotions to affect the technical decisions and trading strategies. 

This class of mechanical rules attempts to constrain these personal intuitions of the traders 

by introducing a certain decision discipline, which is based on identifying and following 

trends. 

 

2.2.2.1 Filter Rules (FRs) 

 

Filter Rules (FRs) generate long (short) signals when the market price rises (drops) 

multiplied by the per cent above (below) the previous trough (peak). This means that ‘if the 

stock market has moved up ‘x’ per cent, it is likely to move up more than ‘x’ per cent 

further before it moves down by ‘x’ per cent’ (Alexander, (1961, p.26)). A trader using 

FRs, assumes that in each transaction he/she could always buy at a price exactly equal to 

the low plus ‘x’ per cent and sell at the high minus ‘x’ per cent, where ‘x’ is the size of the 

filter (threshold). Such mechanical rules attempt to exploit the market’s momentum. 

Setting up a filter rule requires two decisions. The first is the specification of the threshold. 

The second is the determination of the window length, meaning how far back the rule 

should go in finding a recent minimum. These decisions are obviously connected with the 

subjective view of the trader on the historical data at hand and the relevant past experience. 

Common thresholds values fluctuate between 0.5 percent and 3 percent, while a typical 

window length is about five trading days.  

 

FRs have a prominent place among the common tools in technical analysis, 

although the studies of the 1960s tend to understate their performance in comparison to the 

‘buy-and-hold’ rule. Several examples in the literature show that filtering techniques are 

capable of exhibiting profits. Dooley and Shafer (1983) conduct one of the earliest studies 

that focus on applying FRs to trading in the foreign exchange market. Their results show 

substantial profitability for most thresholds implemented over the period 1973–1981 for 

the DEM, JPY and GBP currencies. Sweeney (1986) suggests that a filter of 0.5% is 

outperforming a BH of 4% per annum strategy, using daily USD/DEM data during late 
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1970s.  The bootstrap technique first used by Brock et al. (1992) and later by Levich and 

Thomas (1993) address the issue of the significance of such FRs’ returns in the context of 

the stock market. Qi and Wu (2006) report evidence on the profitability and statistical 

significance of over 2000 trading rules, including FRs with various threshold sizes. Dunis 

et al. (2006 and 2008) forecast feature spreads with neural networks and apply filter 

trading rules. In their approach, they experiment beyond the boundaries of the traditional 

threshold approaches by implementing correlation and transitive filters (see Guégan and 

Huck (2004) and Dunis et al. (2005) respectively). These FRs, especially the transitive one 

combined with a recurrent neural network, present impressive results in terms of 

annualised returns. FRs can be used also as technical indicators that measure the strength 

of the trend. Dunis et al. (2011) also apply filter strategies to the task of forecasting the 

EUR/USD exchange rate. In their application, their confirmation filter does not allow 

trades that will result in returns lower than the transaction costs. Finally, Kozyra and Lento 

(2011) compare filter trading rules with the contrarian approach (see Section 2.4) and note 

that the filter technique is less profitable in periods of high market volatility in particular. 

 

2.2.2.2 Moving Average Rules (MAs) 

 

Moving Average rules (MAs) are also common mechanical indicators and their 

applications are known for many decades in trading decisions and systems. In simple 

words, a MA is the mean of a time series, which is recalculated every trading day. Their 

main characteristic is the length window, namely the number of trading days that are going 

to be used to calculate the rolling mean of the high frequency data. MAs are identifiers of 

short- or long-term trends, so the window length can be short (short MAs – 1 to 5 lags) or 

long (long MAs- 10 to 100 lags). The intuition behind them is that buy (sell) signals are 

triggered when closing prices cross above (below) the x day MA. Another variation is to 

buy (sell) when x day MA crosses above (below) the y day MA.  

Assuming that the length window is n days, the current period’s t closing price Pt,  

MAs can be further divided into three main categories: 

• Simple MA (SMA): 1 1 1(1/ )( ... )t t t t nSMA n P P P+ − − += + +                                 (2.1) 

• Exponential MA (EMA): 1 ( )t t t tEMA EMA P EMAα+ = + −                                (2.2) 
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• Weighted MA (WMA): 

[ ] [ ]1 1 2 1( 1) ... 2 ) / ( 1) / 2t t t t n t nWMA nP n P P P n n+ − − + − += + − + + +                                    (2.3) 

The SMA is an average of values recalculated every day. The EMA is adapting to the 

market price changes by smoothing constant parameter α. The smoothing parameter 

expresses how quickly the EMA reacts to price changes. If α is low, then there is little 

reaction to price differences and vice versa. The WMA give weights to the prices used a 

lags. These weights are higher in recent periods, giving higher importance in recent closing 

prices. All these MAs are using the closing price as the calculation parameter, but open, 

high and low prices could also be used.  

MAs are also well documented in the literature. Brock et al.  (1992) and Hudson et al. 

(1996) analyse the Dow Jones Industrial Average and Financial Times Industrial Ordinary 

Index respectively with MAs and conclude that they have predictive ability if sufficiently 

long series of data are considered. Especially from the first study, it is suggested the best 

rule is 50-day MA, which generates an annual mean return of 9.4%. Applications of 

artificial intelligence technologies, such as artificial neural networks and fuzzy logic 

controllers, have also uncovered technical trading signals in the data. For example, Gençay 

(1998 and 1999) investigates the non-linear predictability of foreign exchange and index 

returns by combining neural networks and MA rules. The forecast results indicate that the 

buy–sell signals of the MAs have market timing ability and provide statistically significant 

forecast improvements for the current returns over the random walk model of the foreign 

exchange returns. LeBaron (1999) finds that a 150-day MA generates Sharpe ratios of 

0.60–0.98 after transaction costs in DEM and JPY markets during 1979–1992. LeBaron 

and Blake (2000) further examine their profitability and note that it would be interesting to 

determine more complex combinations of MAs that are able to project even higher returns. 

Gunasekarage and Power (2001) apply the variable length MA and fixed length MA in 

forecasting the Asian stock markets. The first rule examines whether the short-run MA is 

above (below) the long-run MA, implying that the general trend in prices is upward 

(downward). The second rule focuses on the crossover of the long-run MA by the short-run 

MA. Their results show that equity returns in these markets are predictable and that the 

variable length MA is very successful.  

On the other hand, Fong and Wong (2005) attempt to evaluate the fluctuations of the 

internet stocks with a recursive MA strategy applied to over 800 MAs. Their empirical 

results show no significant trading profits and align the internet stocks with the Efficient 

Market Hypothesis. Chiarella et al. (2006) analyze the impact of long run MAs on the 
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market dynamics. When examining the case of the impact between fundamentalists and 

chartists being unbalanced, they present evidence that the lag length of the MA rule can 

destabilize the market price. Zhu and Zhou (2009) analyze the efficiency of MAs from an 

asset selection perspective and based on the principle that existing studies do not provide 

guidance on optimal investment, even if trends can be signaled by MAs. For that reason, 

they combine MAs with fixed rules in order to identify market timing strategies that shift 

money between cash and risky assets. Their approach outperforms the simple rules and 

explains why both risk aversion and degree of predictability affect the optimal use of the 

MA. Milionis and Papanagiotou (2011) test the significance of the predictive power of the 

MAs on the New York Stock Exchange, Athens Stock Exchange and Vienna Stock 

Exchange. Their contribution is that the proposed MA performance is a function of the 

window length and that it outperforms BH strategies. This happens especially when the 

changes in the performance of the MA occur around a mean level, which is interpreted as a 

rejection of the weak-form efficiency. Finally, Bajgrowicz and Scaillet (2012) revisit the 

historical success of technical analysis on Dow Jones Industrial Average index from 1897 

to 2011 and use the false discovery rate for data snooping. In their review they present the 

profitability of MAs during these years, but call into serious question the economic value 

of technical trading rules that have been reported in the period under study.  

 

2.2.2.3 Oscillators (OTs) and Momentum Rules (MTs) 

 

The third class of mechanical trading rules consists of the Oscillators (OTs) and 

Momentum Rules (MTs). OTs are techniques that do not follow the trend. Actually, they 

try to identify when the trend is apparent for too long or ‘dying’. Therefore they are also 

called ‘non-trending market indicators’. The main drawback of MAs is the inability to 

identify the quick and violent swifts in price direction, which lead to capital loss by 

generating wrong trading signals. This performance gap is filled from OT indices. Their 

basic intuition is that a reversal trend is eminent, when the prices move away from the 

average. Simple OT rules are based on the difference between two MAs and generate buy 

(sell) signals when prices are too low (have risen extremely). Nonetheless, being a 

difference of MA rules, OTs can also present buy and sell position, when the index crosses 

zero. The boundaries between OTs and MTs can be a bit vague depending on the case, 

because MTs can be applied to MAs and OTs. The main difference is that OTs are non-
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trend indicators, whereas MTs are capitalizing on the endurance of a trend in the market. A 

simple MT rule would be the difference between today’s closing price and the closing 

price of x days ago. The trading signal is generated based on this momentum. To put it 

simply, the buy (sell) signal is given when today’s closing price is higher than the closing 

price x days ago. Setting properly the x day’s price that is going to be used is also a matter 

of trader intuition, market knowledge and historical experience (5 and 20 days are 

common).  

There are many types of OTs and MTs used in trading applications. Some typical 

examples are summarized, interpreted in short and followed by relevant research 

applications below:  

• Moving Average Convergence/Divergence (MACD):  MACD is calculated as the 

difference between short- and long-term EMAs and identifies where crossovers 

and diverging trends to generate buy and sell signals. 

• Accumulation/Distribution (A/D): A/D is a momentum indicator which measures 

if investors are generally buying (accumulation) or selling (distribution) base on 

the volume of price movement. 

• Chaikin Oscillator (CHO): CHO is calculated as the MACD of A/D. 

• Relative Strength Index (RSI): The RSI is calculated based on the average ‘up’ 

moves and average ‘down’ moves and is used to identify overbought (when its 

value is over 70 – sell signal) or oversold (when its value is under 30-buy)  

• Price Oscillator (PO): PO is identifying the momentum between two EMAs. 

• Detrended Price Oscillator (DPO): DPO eliminates long-term trends in order to 

easier identify cycles and measures the difference between closing price and 

SMA. 

• Bollinger bands (BB): BBs are based on the difference of closing prices and 

SMAs and determine if securities are overbought or oversold. 

• Stochastic Oscillator (SO): SO is based on the assumptions that as prices rise, the 

closing price tends to reach the high prices in the previous period.  

• Triple EMA (TRIX): TRIX is a momentum indicator between three EMAs and 

triggers buying and selling signals base on zero crossovers. 
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The exact specifications and formulas of the abovementioned indicators can be found 

in Gifford (1995), Chang et al. (1996) and Edwards and Magee (1997) or in any common 

textbook of technical analysis. Their utility though has been eminent years before that. The 

pioneering paper of Brock et al. (1992) presents evidence of profitability of MACD, as for 

MAs and FRs mentioned above. Kim and Han (2000) propose a hybrid genetic algorithm – 

neural network model that uses OTs, such as PO, SO, A/D and RSI, along with simple 

momentum rules to predict the stock market. Leung and Chong (2003) compare the 

profitability of MA envelopes and BBs. Their results suggest BBs do not outperform the 

MA envelopes, despite being able to capture sudden price fluctuations. Shen and Loh 

(2004) propose a trading system with rough sets to forecast S&P 500 index, which 

outperforms BH rules. In order to set up this hybrid trading system, they search for the 

most efficient rules based on the historical data from a pool of technical indicator, such as 

MACD, RSI and SO. Lento et al. (2007) also present empirical evidence that prove BBs’ 

inability to achieve higher profits compared to a BH strategy, when tested on tested on the 

S&P/TSX 300 Index, the Dow Jones Industrial Average Index, NASDAQ Composite 

Index and the Canada/USD exchange rate. Chong and Ng (2008) examine the profitability 

of MACD and RSI using 60-year data of the London Stock Exchange and found that the 

RSI as well as the MACD rules can generate returns higher than the BH strategy in most 

cases.  

Ye and Huang (2008) extends Frisch’s (1993) damping OT with a non-classical OT.  

The non-classical OT introduces Quantum Mechanics in the market, which is treated as an 

apparatus that can measure the value and produces a price as a result. With the numerical 

simulations presented, the OT under study explains qualitatively the persistent fluctuations 

in stock markets. Aggarwal and Krishna (2011) explore Support Vector Machines and 

Decision Tree classifiers in the task of direction accuracy prediction. In their application, 

the company's stock value history is evaluated based on the daily high, open, close, low 

prices and volumes traded over the last 5-10 years. The performance of their techniques 

provides impressive forecasting accuracy of over 50% and is tested with several OTs and 

MTs (i.e. MACD, DPO, SO, A/D and RSI). Finally, Dunis et al. (2011) and more recently 

Sermpinis et al. (2012b) forecast exchange rates with several neural networks. In those 

applications, MACD are used as benchmarks, but they do not present significant 

profitability.  
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2.2.3 Other Trading Rules 

 

The rules presented above are the main market indicators of technical analysis, but their 

‘universe’ is in a way limitless. Technical analysts and practitioners tend to create new 

trading rules, which in reality are small specification alternatives of the existing ones. Such 

offsprings are commonly cited in the literature with different and more appealing names, 

despite their direct correlation with the basic mechanical rules presented in the previous 

section. 

 

2.2.3.1 Contrarian Rules (CTs) 

 

One such example is the contrarian approach in trading, or in other words the Contrarian 

Rules (CTs). Their logic and specification is very simplistic. For every simple trading rule 

that triggers a sell signal, there is the corresponding CT that triggers a buy signal and vice 

versa. Technical analysts, that use the contrarian approach, believe that the price changes 

can be temporary and the market tends to return to its steady state. Typical handbooks that 

refer to CTs are LeBaron and Vaitilingam (1999) and Siegel (2000). Forner and 

Marhuenda (2003) explore the profitability of the momentum and contrarian in the Spanish 

stock market. They find that a 12-month momentum strategy and the five-year contrarian 

strategy yield significant positive returns, even after risk adjustments have been made. 

Menkhoff and Schmidt (2005) compare BH, MT and CT traders and suggest that the later 

are overconfident and willing to hold on against the market. In other words, contrarians are 

long-run arbitrageurs, but tend to perform worse than Buyers-and-Holders or MT traders. 

More recently, Park and Sabourian (2011) also compare the ‘herding’ and ‘contrarian’ 

psychology of trade agents. The ‘herding’ trader follows the trend, whereas a ‘contrarian’ 

goes against it. Their main conclusion is that herding and contrarianism lead to price 

volatility and lower liquidity. It is also noted that herding trades are self-enforcing, while 

contrarian trades are self-defeating. 
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2.2.3.2 Trading Range Break Rules (TRBs) 

 

Trading Range Break Rules (TRBs) is also an evident class of technical rules in the 

literature. TRBs can be thought as MT indicators, since their main premise is that a 

positive or negative momentum is built, when a stock breaks through or falls below its 

trading range after several days of trading. Trading range is the spread between the recent 

minimum and maximum of the current price. TRBs generate buy positions, when the 

current price exceeds the recent maximum by at least a band. Similarly, they emit sell 

signals, when the current price falls below the recent minimum by at least the band. For 

example, Brock et al. (1992) and Bessembinder and Chan (1995) apply TRBs over the 

period 50, 150 and 200 days  and use bands of 0 and 1%. Coutts and Cheung (2000) 

investigates the applicability and validity of trading rules in the Hang Seng Index on the 

Hong Kong Stock Exchange for the period January 1985 to June 1997.  

Although TRBs are by far the most common, in terms of implementation they fail 

to provide positive abnormal returns, net of transaction costs and opportunity costs of 

investing. Park and Irwin (2007) in their technical analysis survey also include TRBs in the 

pool of profitable trading rules. In a more recent application, Wang et al. (2012) present a 

weight reward strategy, which combines MAs and TRBs to create a pool of 140 

component trading rules. The proposed hybrid trading system employs a Particle Swarm 

Optimization algorithm and the optimized combinations of MAs and TRBs are found to 

outperform the best individual MA and TRB. 

 

2.2.3.3 Breakout Rules 

 

Another interesting category of trading rules is the Channel Breakout (CHB) and Volatility 

Breakout (VOLB) rules. The CHBs are originating from Richard Donchian, a pioneer in 

futures’ trading (Kestner, 2003). The idea behind them is that a ‘channel’ of price changes 

is incorporated in the trading strategy. This ‘x days’ channel’ is created by the plot of the 

high and lows of the price during x days and is also a measure of market volatility. Trading 

entries happen when prices remain into the channel. A buy (sell) position is taken when 

today’s close is higher (lower) than the previous x day’s closes.  
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The VOLBs entries are decided in a similar logic, but based on the three following 

parameters: 

• The reference value gives a measurement value to the price move. 

• The volatility measure is a computational calculation of the market volatility and it 

is used to identify significant movements from random prices. 

• The volatility multiplier specifies how sensitive the price move is. 

The combination of these parameters results in a high and low trigger point. This 

allows the trader to buy (sell) when the closing price is above the upper (below the lower) 

trigger. Levitt (1998) compared two trend following trading systems employing CHB and 

VOLB strategies using standard and Daily Market Time Data from 1987 to1996. Both 

rules are profitable but especially VOLB presents average annual returns of more than 

10%. Qi and Wu (2006) in their extensive search of profitable trading rules suggest that the 

best rule for trading the JPY and CHF exchange rate is the CHB rule. Marshall et al. 

(2008) examine the profitability of intraday technical analysis in US equity market and 

compare FRs, MAs, TRBs and VOLBs. Their findings show that VOLBs are the most 

profitable family of trading indicators. 

 

2.2.3.4 Pattern Rules 

 

Head-and-Shoulders (HSs), Double-Tops-and-Double-Bottoms (DTBs), Triangles-and-

Rectangles (TRs) and Flags-and-Pennants (FPs) are types of rules that attempt to identify 

and establish pattern on pricing charts. They can also be thought as classes of MAs, OTs or 

MTs, and their short descriptions are given below: 

• HS is a trading rule based on the tops of ‘up-trends’ and bottoms of ‘down-trends’. 

In each period, the higher price peak (head), the two higher picks before (left 

shoulder) and after the head (right shoulder) are identified. The two lowest prices 

(points) during this period create a line, called HS ‘neckline’. In an ‘up-trend’, a 

HSs rule will act as a reversal point, only when the price succeeds to break down 

the HS ‘neckline’. Alternatively, it will go up and may retest the HS ‘neckline’ in 

the future. HSs are commonly used by daily currency traders.  

• DTBs are also frequently used as reversal pattern indicators by the FOREX market 

participants. A ‘double top’ is formed by two price peaks at approximately the 
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same level and the ‘neckline’ is similarly formed as in HSs. This pattern is 

completed, when a price closes below the lowest price that has been reached 

between the two peaks.  

• TRs are formed by two converging trend lines (triangles) or pairs of horizontal 

trend lines (rectangles), one connecting highest peaks and one connecting lower 

peaks. A triangle is completed when the closing price goes outside one of its trend 

lines (similar to the CHBs). The vertical line (called base) connecting the initial 

point of the converging trend line is called ‘base’ and the point of convergence is 

called ‘apex of the triangle’. The ‘base’ and the ‘apex’ are used to identify prices 

breakouts and moves respectively. Similarly, a rectangle is completed when the 

prices closes out of the horizontal trend lines. In the rectangles there is no ‘base’ or 

‘apex’, but the distance between the horizontal lines is always recalculated, if a 

rectangle is completed.  

• FPs are indicators of pattern continuation. The ‘flag’ is a rectangle that slopes 

against the eminent trend, while ‘pennants’ are formed a symmetrical triangles (see 

TRs). The FP patterns are completed, when the closing price breaks through one of 

their trend lines. 

The applications of the above pattern rules are quite extensive in the literature too. 

Clyde and Osler (1998) examine how graphical technical modelling methods may be 

viewed as equivalent to nonlinear prediction methods. Evidence in support of this 

hypothesis is presented by applying HS algorithm to high-dimension nonlinear data and 

they suggest that HSs can be successful in pattern identification and prediction. Lo et al. 

(2000) develop a pattern detection algorithm based on kernel regressions. Their 

methodology is able to identify price patterns, including HSs in the US stock market over 

the period 1962–1996. Lucke (2003) also explores if HSs are profitable technical 

indicators in FOREX markets. In the study many HS combination are implemented, but the 

results present not significant or even negative returns. Hsu and Kuan (2005) reexamine 

the utility of technical analysis and in their survey pattern rules like, HSs, DTBs, TRs and 

FPs, have a prominent place in the ‘universe’ of the trading rules under study. Friesen et al.  

(2009) develop a theoretical framework that confirms the apparent success of both trend-

following and pattern-based technical trading rules, as HSs and DBTs. Finally, extensive 

applications and specifications for the above pattern rules can also be found in Murphy 

(2012).  
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2.3 Automated Trading Strategies and Systems 

 

Many issues and variables have to be taken under consideration by managers and market 

practitioners, in order to reach the final specification and implementation phase of a trading 

strategy. These can be summarized as follows: 

• Identifying trading opportunities 

• Trading schedule and timing 

• Trading costs 

• Price appreciation and market impact 

• Risk evaluation of alternative strategies 

• Ability of execution of each strategy 

All the above can be evaluated through fundamental or technical approaches. 

Nonetheless, the modern market practice has a tendency to turn to market technical 

indicators, whose variety and computational demands are increasing exponentially. This is 

the main reason that technical analysis and computing appear to be linked now more than 

ever before. Charting software are applied every day to actual or virtual financial markets. 

Optimization algorithms are automatically integrated in trading platforms, such as 

Bloomberg, and make the life of the intraday trader much easier. Consequently, modern 

trading projects aim to develop automated decision support systems based on technical 

market technology and evolutionary computing. Fuzzy logic, artificial neural networks, 

genetic algorithms and programming are already established as the core of the automated 

trading approach (Deboeck, 1994).  

Allen and Karjalainen (1999) present an automated decision tree that selects the 

optimal technical rules by genetic algorithms. Dempster and Jones (2001) also try to 

emulate successful trade agents by developing a rule system based on combinations of 

different indicators at different frequencies and lags, which are selected with genetic 

programming optimization process. Shapiro (2002) notes that merging technologies, such 

us neural networks, evolutionary algorithms and fuzzy logic can provided alternatives to a 

strictly knowledge-driven reasoning decision system or a purely data-driven one and lead 

to more accurate and robust solutions. Thawornwong et al. (2003) evaluate the use neural 

networks as a decision maker to uncover the underlying nonlinear pattern of these 

indicators. The overall results indicate that the proportion of correct predictions and the 

profitability of stock trading guided by these neural networks are higher than those guided 
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by their benchmarks. Dempster and Leemans (2006) propose the use of adaptive 

reinforcement learning as the basis for a fully automated trading system application. The 

system is designed to trade foreign exchange (FX) markets relying on a layered structure 

consisting of a machine learning algorithm, a risk management overlay and a dynamic 

utility optimization layer. Their approach allows for a risk-return trade-off to be made by 

the user within the system, while the trading system is able to make consistent gains and 

avoid large draw-downs out-of-sample. Izumi et al. (2009) construct an artificial-market 

system based on support vector machines and genetic programming. Their system 

evaluates the risks and returns of the strategies in various market environments and tests 

the market impact of automated trading. Their results reveal that the market impact of the 

strategies may not only depend on their rule content but also on the way they are combined 

with other strategies.  

The above cited applications prove that automated trading is and will be dominant in 

financial markets and forecasting tasks, although its academic philosophy appears to be 

ambiguous. The utility of trading systems is usually criticized in the traditional financial 

literature, because of their dependence on strict engineering and computational rules. The 

modern market reality, though, shows that returns are driven by trading systems’ results, 

rather than the human trading behavior. On the other hand, automated trading applications 

and algorithms present practical drawbacks associated mainly with their parameter 

calibration. Therefore, financial researchers and computer engineers need to shed more 

light in this demanding and complex optimization problem. 
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Chapter 3 

Forecasting Techniques 

 

 

 

3.1 Literature Review 

 

Neural Networks (NNs) are computational models that embody data-adaptive learning and 

clustering abilities, deriving from parallel processing procedures (Kröse and Smagt, 1996). 

They provide enough learning capacity and are more likely to capture the complex non-

linear relationships which are dominant in the financial markets. Those advantages are well 

documented in the literature and a review of relevant studies is presented in De Gooijer’s 

and Hyndman’s (2006). However, skeptics on the NNs argue that they present practical 

inefficiencies related to the ‘parameter’ tuning process and the generalization of their 

performance. For that reason, researchers apply either novel NN algorithms that try to 

overcome some of these limitations (Ling et al. (2003) or forecast combination techniques 

that seem able to combine the virtues of different networks for superior forecasts (see 

amongst others Harrald and Kamstra (1997) and Teräsvirta et al. (2005)).  

The most common NN architecture is the MLP and seems to perform well at time-

series financial forecasting (Makridakis et al. (1982)). The empirical evidence, though, are 

contradictory in many cases. For example, Tsaih et al. (1998) attempt to forecast the S&P 

500 stock index futures and in their application Reasoning Neural Networks perform better 

than MLPs. Lam (2004) examines the financial forecasting performance of feed-forward 

NNs and concludes that they fail to outperform the maximum benchmarks in all cases. Ince 

and Trafalis (2006a) forecast the EUR/USD, GBP/USD, JPY/USD and AUD/USD 

exchange rates with MLP and Support Vector Regression and their results show that MLP 

achieves less accurate forecasts. Finally, according to Alfaro et al. (2008) the AdaBoost 

algorithm is superior to MPLs, when applied to the task of forecasting bankruptcy of 

European firms. On the other hand, Tenti (1996) and Dunis and Huang (2003) achieved 



46 
 

encouraging results also by using RNNs to forecast the exchange rates.  But the PSN 

architecture presents remarkable empirical evidence compared to both MLP and RNN. 

PSNs were first introduced by Ghosh and Shin (1991) as architectures able to capture high-

order correlations. Ghosh and Shin (1991 and 1992) also present results on their 

forecasting superiority in function approximation, when compared with a MLP network 

and a Higher Order Neural Network (HONN). Ghazali et al. (2006) compare PSN with 

HONN and MLP in terms of forecasting and trading the IBM common stock closing price 

and the US 10-year government bond series. PSN presented improved statistical accuracy 

and annualised return compared with both benchmarks. Satisfactory forecasting results of 

PSN were presented by Hussain et al. (2006) on the EUR/USD, the EUR/GBP and the 

EUR/JPY exchange rates using univariate series as inputs in their networks. On the other 

hand, Dunis et al. (2011) also study the EUR/USD series with PSN and fail to outperform 

MLP, RNN and HONN in a simple trading application.  

Bates and Granger (1969) and Newbold and Granger (1974) suggested combining 

rules based on variances-covariances of the individual forecasts, while Granger and 

Ramanathan (1984) presented a regression combination forecast framework with 

encouraging results. According to Palm and Zellner (1992), it is sensible to use simple 

average for combination forecasting, while Deutsch et al. (1994) achieved substantially 

smaller squared forecasts errors combining forecasts with changing weights. The 

regression framework, presented in the 90s, performs poorly though in many cases, which 

leads the research to turn to more sophisticated methods. For example, Chan et al. (1999) 

suggested the use of Ridge Regression, while Swanson and Zeng (2001) use Bayesian 

Information Criteria. However, in real applications there are also contradictory results 

regarding both these models (see Stock and Watson (2004) and Rapach and Strauss 

(2008)).  

 Time-series analysis is often based on the assumption that the parameters are fixed. 

However, in reality financial data and the correlation structure between financial variables 

are time-varying. Harvey (1990) and Hamilton (1994) both suggest using state space 

modelling, such as Kalman Filter, for representing dynamic systems, where unobserved 

variables (so-called ‘state’ variables) can be integrated within an ‘observable’ model. 

Anandalingam and Chen (1989) compare Kalman Filter with Bayesian combination 

forecast model, while Sessions and Chatterjee (1989) conclude that recursive methods are 

found to be very effective. LeSage and Magura (1992) extend the Granger-Ramanathan 

combination method by allowing time-varying weights and their methodology outperforms 

traditional and other forecast combinations. Terui and Dijk (2002) also suggest that the 
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combined forecasts perform well, especially with time varying coefficients. Stock and 

Watson (2004) try to forecast the output growth of seven countries and note that time-

varying combination forecasts can lack in robustness, despite performing well in many 

cases. Kalman Filter is also considered an optimal time-varying financial forecast for 

financial markets (Dunis and Shannon, 2005). Finally, according to Goh and Mandic 

(2007) the recursive Kalman Filter is suitable for processing complex-valued nonlinear, 

non-stationary signals and bivariate signals with strong component correlations.  

Support Vector Machines (SVMs) were originally developed for solving 

classification problems in pattern recognition frameworks. The introduction of Vapnik’s 

(1995) insensitive loss function has extended their use in non-linear regression estimation 

problems (Support Vector Regressions (SVRs)). SVRs’ main advantage is that they 

provide global and unique solutions and do not suffer from multiple local minima, while 

they present a remarkable ability of balancing model accuracy and model complexity 

(Kwon and Moon (2007) and Suykens (2005)).  

Support vector hybrid applications (SVMs and SVRs) are already very popular in 

the literature (Lo, 2000). Lee et al. (2004) propose the multi-category SVM as an extension 

of the traditional binary SVM and apply it in two different case studies with promising 

results. They note that their proposed methodology can be a useful addition to the class of 

nonparametric multi-category classification methods. Liu and Shen (2006) advance the 

previous mentioned approach by presenting the multi-category ψ- learning methodology. 

The main advantage of their model is that the convex SVM loss function is replaced by a 

non-convex ψ-loss function, which leads to smaller number of support vectors and a more 

sparse solution. Wang and Shen (2007) propose multiclass SVM, which performs 

classification and variable selection simultaneously through an L1-norm penalized sparse 

representation. This methodology appears to be very competitive in terms of prediction 

accuracy when compared with other multiclass classification techniques like the OVA 

approach. Wu and Liu (2007) introduce the Robust Truncated Hinge Loss SVM and claim 

that their model can overcome drawbacks of traditional SVM models, such as the outliers’ 

sensitivity in the training sample and the large number of support vectors.  Hsu et al.(2009) 

integrate SVR in a two-stage architecture for stock price prediction and present empirical 

evidence that show that its forecasting performance can be significantly enhanced 

compared to a single SVR model. Lu et al. (2009) and Yeh et al. (2011) propose also 

hybrid SVR methodologies for forecasting the TAIEX index and conclude that that they 

perform better than simple SVR approaches and other autoregressive models. Finally, 

Huang et al. (2010) forecast the EUR/USD, GBP/USD, NZD/USD, AUD/USD, JPY/USD 
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and RUB/USD exchange rates with a hybrid chaos-based SVR model. In their application, 

they confirm the forecasting superiority of their proposed model compared to chaos-based 

neural networks and several traditional non-linear models.  

Genetic Algorithms (GAs) and their class, namely the Genetic Programming (GP), 

are popular evolutionary approaches for solving complex computational problems with 

high degree of optimization difficulty. The theory of GAs was first presented by Holland 

(1975) and since then GAs are in the center of the research undertaken by the machine 

learning community. Genetic applications in financial forecasting are numerous (see 

amongst others Mahfoud and Mani (1996), Allen and Karjalainen (1999), Kim and Han 

(2002). Their success, though, is ambiguous since they are unable to efficiently perform 

local searching. Therefore, researchers combine the virtues of GAs with the ones of SVMs 

in order to overcome these limitations. For example, Leigh et al. (2002) present novel 

experiments of combining pattern recognition, NNs and genetic algorithms, in order to 

forecast price changes for the NYSE Composite Index. From their approach stock market 

purchasing opportunities are identified and encouraging decision-making results are 

achieved. Min et al. (2006) and Wu et al. (2007) use hybrid GA-SVM models in order to 

forecast the bankruptcy risk. In both applications, the GAs optimizes the parameters of the 

SVM and selects the financial ratios that most affect bankruptcy. Dunis et al. (2013) 

developed a GA-SVM algorithm and applied to the task of trading the daily and weekly 

returns of the FTSE 100 and ASE 20 indices. Pai et al. (2006) also apply linear and non-

linear SVM with genetically optimized parameters in forecasting exchange rates, while 

Chen and Wang (2007) forecast the tourist demand in China by applying GAs in the 

parameter optimization process of their SVR model. More recently, Yuang (2012) suggests 

that a GA-SVR model is more efficient than traditional SVR and neural network models, 

when applied to the task of forecasting sales volume.  

 

3.2 Neural Networks Architectures 

 

A standard neural network has at least three layers. The first layer is called the input layer 

(the number of its nodes corresponds to the number of explanatory variables). The last 

layer is called the output layer (the number of its nodes corresponds to the number of 

response variables). An intermediary layer of nodes, the hidden layer, separates the input 

from the output layer. Its number of nodes defines the amount of complexity the model is 
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capable of fitting. In addition, the input and hidden layer contain an extra node called the 

bias node. This node has a fixed value of one and has the same function as the intercept in 

traditional regression models. Normally, each node of one layer has connections to all the 

other nodes of the next layer.  

The network processes information as follows: the input nodes contain the value of 

the explanatory variables. Since each node connection represents a weight factor, the 

information reaches a single hidden layer node as the weighted sum of its inputs. Each 

node of the hidden layer passes the information through a nonlinear activation function and 

passes it on to the output layer if the calculated value is above a threshold.  

The training of the network (which is the adjustment of its weights in the way that the 

network maps the input value of the training data to the corresponding output value) starts 

with randomly chosen weights and proceeds by applying a learning algorithm called back-

propagation of errors 1 (Shapiro, 2000).The learning algorithm simply tries to find those 

weights which minimize an error function (normally the sum of all squared differences 

between target and actual values). Since networks with sufficient hidden nodes are able to 

learn the training data (as well as their outliers and their noise) by heart, it is crucial to stop 

the training procedure at the right time to prevent over- fitting (this is called ‘early 

stopping’). This can be achieved by dividing the dataset into 3 subsets respectively called 

the training and test sets used for simulating the data currently available to fit and tune the 

model and the validation set used for simulating future values. The training of a network is 

stopped when the mean squared forecasted error is at minimum in the test-sub period. The 

network parameters are then estimated by fitting the training data using the above 

mentioned iterative procedure (back-propagation of errors). The iteration length is 

optimised by maximising the forecasting accuracy for the test dataset. Then the predictive 

value of the model is evaluated applying it to the validation dataset (out-of-sample 

dataset).  

 

 

 

 

                                                                 
1 Back-propagation networks are the most common multi-layer networks and are the most commonly  used 
type in financial time series forecasting (Kaastra and Boyd, 1996) 
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3.2.1 Multi-Layer Perceptron (MLP) 

 

One of the NN architectures used in this thesis’ applications is the Multi-Layer Perceptron (MLP). 

MLPs are feed-forward layered NNs, trained with a back-propagation algorithm. According to 

Kaastra and Boyd (1996), they are the most commonly used types of artificial networks in financial 

time-series forecasting. The training of the MLP network is processed on a three-layered 

architecture, as described previously. A typical MLP model is shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: A single output, fully connected MLP model (bias nodes are not shown for simplicity) 

 

Where: 

• ( )[ ] 1, 2, , 1n
tx n k= +   are the inputs (including the input bias node) at time t  
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th m j= +   are the hidden nodes outputs (including the hidden bias node) 
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• t̂Y   is the MLP output  
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In the last equation tY  is the target value.  

MLPs are used in chapters 4-8 with some slight modifications in their training process. 

These alterations are explained within each chapter. 

 

3.2.2 Recurrent Neural Network (RNN) 

 

The Recurrent Neural Network (RNN) is another popular NN model. The complete 

explanation of RNN models is beyond the scope of this thesis. Nonetheless, a brief 

explanation of the significant differences between RNN and MLP architectures is 

summarized. An exact specification of RNNs is given by Elman (1990). 

A simple recurrent network has an activation feedback which embodies short-term 

memory. The advantages of using recurrent networks over feed- forward networks for 

modeling non- linear time series have been well documented in the past. However, as 

mentioned by Tenti (1996), “the main disadvantage of RNNs is that they require 

substantially more connections and more memory in simulation than standard back-

propagation networks” (p. 569), thus resulting in a substantial increase in computational 

time. However, having said this, RNNs can yield better results in comparison with simple 

MLPs due to the additional memory inputs.  

A simple illustration of the architecture of an Elman RNN is presented below.  
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Figure 3-2: Elman RNN with two nodes in the hidden layer 

Where: 

• [ ] [1] [2]( 1, 2,..., 1), ,n
t t tx n k u u= +  are the RNN inputs at time t (including bias node) 

• ty is the output of the RNN  

• [ ] ( 1, 2)f
td f = and [ ] ( 1, 2,..., 1)n

tw n k= + are the weights of the network 

• [ ] , (1, 2)f
tU f = is the output of the hidden nodes at time t 

•         is the transfer sigmoid function : ( ) xe
xS −+
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1
1

                                        
(3.4) 

•         is a linear function: ( ) ∑=
i
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(3.5) 

The Error Function to be minimized is: 
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In short, the RNN architecture can provide more accurate outputs because the inputs are 

(potentially) taken from all previous values (see inputs ]1[
1−jU  and 

]2[
1−jU in the figure 

above).  RNNs are used in chapters 4-8 and any changes in their training procedure are 

included within each chapter, similarly to MLPs. 
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3.2.3 Psi Sigma Network (PSN) 

 

The final NN architecture utilized throughout the forecasting applications of this thesis is 

the Psi Sigma Network (PSN). The PSNs are a class of Higher Order Neural Networks 

with a fully connected feed-forward structure. Ghosh and Shin (1991) are the first to 

introduce the PSN, trying to reduce the numbers of weights and connections of a Higher 

Order Neural Network. Their goal was to combine the fast learning property of single-layer 

networks with the mapping ability of Higher Order Neural Networks and avoid increasing 

the required number of weights. The training process is again three-layered.  

The PSN architecture of a one-output layer is shown in figure 3-3 below. 

 

  
 

Figure 3-3: A PSN with one output layer 
 
 

Where:  

• xt (n=1,2,…,k+1) are the model inputs (including the input bias node)  

• ,t ty y  are the PSN input and output respectively 

• wj (j=1,2..,k) are the adjustable weights (k is the desired order of the network) 
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• The hidden layer activation function: ( ) ∑=
i

ixxh                                               (3.7) 

• The output sigmoid activation function (c the adjustable term):    

1( )
1 xcx

e
σ −=

+
                                                     (3.8) 

The Error Function minimized in this case: 
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2,~1,                        (3.9) 

The training of the PSN is achieved also with the back-propagation and the ‘early-

stopping’ procedure, as described previously. The structure of the PSN and the sigmoid 

output function require the normalisation of the inputs and the de-normalisation of the 

outputs. Based on Ghazali et.al (2006), the inputs are normalised between the values of 0.2 

and 0.8 and at the end the outputs of the network are de-normalised back. 

For example, a Psi Sigma network is considered and fed with a N+1 dimensional 

input vector T
Nxxx ),...,,1( 1= . These inputs are weighted by K weight factors

T
Njjjj wwww ),...,,( 10= , Kj ,..2,1=  and summed by a layer of K summing units. As 

mentioned before, K is the desired order of the network. The output of the j-th summing 

unit, jh  in the hidden layer, is given by:  

 
∑
=

+==
N

k
ojkkj

T
jj wxwxwh

1

,j=1,2,…, K                                     (3.10) 

Hence, the output y~ of the network is: 

∏
Κ

=

=
1

)(~
j

jhy σ
         

(3.11) 

Note that by using products in the output layer the capabilities of higher order networks 

are directly incorporated with a smaller number of weights and processing units. For 

example, a k-th degree higher order neural network with d inputs needs ∑
= +

−+k

i di
id

0 )!1(!
)!1(  

weights if all products of up to k components are to be incorporated. A similar PSN needs 

only (d+1)*k weights.  
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It should also be noted that the sigmoid function is neuron adaptive. As the network is 

trained not only the weights but also c is adjusted (see equation 3.8). This strategy seems to 

provide better fitting properties and increases the approximation capability of a neural 

network by introducing an extra variable in the estimation, compared to classical 

architectures with sigmoidal neurons (Vezzi et al., 1998).  

The price for the flexibility and speed of Psi Sigma networks is that they are not universal 

approximators. A suitable order of approximation (or else the number of hidden units) 

must be chosen by considering the estimated function complexity, amount of data and 

amount of noise present. The PSN architecture is utilized in chapters 4-6. Some expansions 

to their training are also presented in each chapter. 

 

3.3 Kalman Filter Modelling 

 

Kalman Filter is an efficient recursive filter that estimates the state of a dynamic system 

from a series of incomplete and noisy measurements. In the applications of this thesis it is 

used in order to perform time-varying forecast combinations. These individual forecasts 

are derived by the previously mentioned NN architectures. Nonetheless, the Kalman Filter 

process description is needed to fully grasp the motivation behind these implementations. 

The description is given in detail in Appendix A. 

The time-varying coefficient combination forecast suggested in chapters 4 and 5 is 

shown below: 

• Measurement Equation:    ( )
3

2

1
, ~ 0,t t t

i i t t
i

cNNs
f a f NID εε ε σ

=

= +∑                  (3.12) 

• State Equation:   1 2, ~ (0, )t t
i i t t na a n n NID σ−= +                              (3.13) 

 

Where: 

• t
cNNs

f  is the dependent variable (combination forecast) at time t  

• ( 1, 2, 3)t
i if =  are the independent variables (individual forecasts) at time t 

• ( 1, 2, 3)t
i ia =  are the time-varying coefficients at time t for each NN 

• εt, nt are the uncorrelated error terms (noise) 
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When Kalman Filter is applied, all t
ia are estimated in time, along with the log-

likelihood of the model based on the observations up to time t. Then the likelihood 

function is maximized with a numerical optimization algorithm, based on 2
nσ . The updated 

alphas for the state equation are estimated at time t based on the new observations at time t 

and then the state estimates are propagated in time t+1. Thus, the Kalman Filter update can 

be considered as the best unbiased linear estimate of the individual forecasts t
if , given 

t
cNNs

f  and the prior information.  

After Kalman Filter and the numerical optimization algorithm, a Kalman 

smoothing algorithm should be applied, because the accuracy is increased to the end of the 

sample. This algorithm ‘smoothes’ the estimates by running backwards in time and using 

information acquired after time t and allows this model to compute forecasts, which use all 

available measurement data over the forecast sample. Following Welch and Bishop (2001) 

and Dunis et al. (2010) in this study the alphas are calculated by a simple random walk, 

while it is set 1 0ε = .  

 

3.4 Support Vector Regression (SVR) 

 

Support Vector Machine (SVM) is a well-known approach in the machine learning 

community. It was originally developed for solving classification problems in supervised 

learning frameworks. The introduction of the ε-sensitive loss function by Vapnik (1995) 

though established Support Vector Regression (SVR) as a robust technique for 

constructing data-driven and non- linear empirical regression models. Recently SVR and its 

hybrid applications have become popular for time-series prediction and financial 

forecasting applications. They provide global and unique solutions and do not suffer from 

multiple local minima (Suykens, 2002), while SVRs seem also able to cope well with high-

dimensional, noisy and complex feature problems. Moreover, they present a remarkable 

ability of balancing model accuracy and model complexity, depending on the available 

data (Montana and Parrella (2008), Lu et al. (2009)). 

SVR is one of the core forecasting techniques in the following chapters. In chapter 

5 SVR is used as an individual forecast combination technique. Similarly, a genetic 

algorithm is intergraded to the SVR of chapter 6, aiming to improve traditional SVR 

forecast combination techniques. In chapters 7 and 8, the hybrid SVR approaches do not 
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take into account individual forecasts from other forecasting techniques, but they select 

appropriate macroeconomic indicators in order to provide a single superior forecast. In all 

cases, though, a theoretical background is needed for the deeper understanding of the 

challenges arising from adopting such a technique in the forecasting tasks at hand. This 

background is provided below. 

 

 3.4.1 ε-SVR 

 

Considering the training data {(x1,y1), (x2,y2), (xn,yn)}, where 

, , 1...i ix X R y Y R i n∈ ⊆ ∈ ⊆ =  and n the total number of training samples, the SVR 

function can be specified as:  

             ( ) ( )Tf x w x bϕ= +                                                (3.14) 

Here w and b are the regression parameter vectors of the function and φ(x) is the 

non- linear function that maps the input data vector x into a feature space where the training 

data exhibit linearity (see figure 3-4 (c)). The ε-sensitive loss Lε function finds the 

predicted points that lie within the tube created by two slack variables *,i iξ ξ : 

                                        
0 | ( ) |

( ) ,
| ( ) |

i i
i

i i

if y f x
L x

y f x if otherε ε
ε

− ≤ ε
= ≥ 0 − −

                                (3.15) 

In other words ε is the degree of model noise insensitivity and Lε finds the predicted 

values that have at most ε deviations from the actual obtained values yi (see figure 3-4 (a) 

and 3-4 (b)).  
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Figure 3-4: a) The f(x) curve of SVR and the ε-tube, b) plot of the ε-sensitive loss function 

and c) mapping procedure by φ(x) 

 

The goal is to solve the following argument: 

 

Minimize 2*

1

1( )
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i i
i
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 
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 

+ − ≤ + +  
             (3.16) 

The above quadratic optimization problem is transformed in a dual problem and its 

solution is based on the introduction of two Lagrange multipliers *,i ia a and mapping with a 

kernel function ( , )iK x x  : 

                                    *

1
( ) ( ) ( , )

n

i i if x a a K x x b
ι=

= − +∑  where *0 ,i ia a C≤ ≤                         (3.17) 

Factor b is computed following the Karush-Kuhn-Tucker conditions. A detailed 

mathematical analysis of the above solution is given by Vapnik (1995). Support Vectors 

(SVs) are called all the xi that contribute to the previous equation, thus they lie outside the 
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ε-tube, whereas non-SVs lie within the ε-tube. 2 Increasing ε leads to less SVs’ selection, 

whereas decreasing it results to more ‘flat’ estimates. The norm term 2w characterizes the 

complexity (flatness) of the model and the term *

1
( )

n

i i
i

ξ ξ
=

 
+ 


∑ is the training error, as 

specified by the slack variables. Consequently the introduction of the parameter C satisfies 

the need to trade model complexity for training error and vice versa (Cherkassky and Ma, 

2004).  

 

3.4.2 ν-SVR 

 

The v-SVR algorithm encompasses the ε parameter in the optimization process and 

controls it with a new parameter (0,1)v∈ (Basak et al., 2007). In v-SVR the optimization 

problem transforms to: 

Minimize 2*

1

1 1( )
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n

i i
i

C v w
n
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 
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ϕ ε ξ

ϕ ε ξ

 − − ≤ + + 
 

+ − ≤ + +  
(3.18)  

 

The methodology remains the same as in ε-SVR and the solution takes a similar 

form: 

        *

1
( ) ( ) ( , )

n

i i if x a a K x x b
ι=

= − +∑  where *0 ,i i
Ca a
n

≤ ≤                      

(3.19) 

Based on the ‘v-trick’, as presented by Scholkopf et al. (1999), increasing ε leads to 

the proportional increase of the first term of *

1

1 ( )
n

i i
i

v
n

ε ξ ξ
=

 
+ + 

 
∑ , while its second term 

decreases proportionally to the fraction of points outside the ε-tube. So v can be considered 

as the upper bound on the fraction of errors. On the other hand, decreasing ε leads again to 

a proportional change of the first term, but also the second term’s change is proportional to 

                                                                 
2 A SV is either a boundary vector ( [ ]* *( ) / , / , 0i i i ia a C n C n ξ ξ− ∈ − = = ) or an error vector                                      

( * *, / , 0i i i ia a C n and ξ ξ= > ). 
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the fraction of SVs. That means that ε will shrink as long as the fraction of SVs is smaller 

than v, therefore v is also the lower band in the fraction of SVs.   

 

3.4.3 SVR parameter selection 

 

Although SVR has emerged as a highly effective technique for solving non- linear 

regression problems, designing such a model can be impeded by the complexity and 

sensitivity of selecting its parameters. This procedure can be summarized in the following 

steps: 

1. Selection of the kernel function 

2. Selection of the regularization parameter C  

3. Selection of parameters of the kernel function  

4. Selection of the tube size of the ε-sensitive loss function 

This selection can be even more complicated and computationally demanding, 

since individual optimization of the parameters of the above steps is not sufficient. Thus, 

SVR’s performance depends on all parameters being set optimally. Numerous approaches 

for this optimization have been presented in literature. For example in the ε-SVR, 

parameter ε can be set simply as a non-negative constant for convenience (ε=0 or equal to 

a very small value) (see Trafalis and Ince (2000)). This parameter can also be calculated by 

maximizing the statistical efficiency of a location parameter estimator (Smola et al. 

(1998)). Many researchers turn to the v-SVR approach because it is easier to control 

parameter ε with parameter v (see Scholkopf et al. (1999) and Basak et al. (2007)). 

Cherkassky and Ma (2004) apply RBF kernels in v-SVR and propose a data-driven choice 

of parameter C, based on the range of the output values of the training data.  But the most 

popular approach is to use the cross-validation technique (see amongst others Cao et al. 

(2003) and Duan et al. (2003)) or grid-search algorithms over the dataset (Scholkopf and 

Smola (2002) and Smola and Scholkopf (2004)). 
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3.5 Genetic Algorithms Modelling 

 

All the genetic approaches adopted in the forecasting tasks of the thesis are presented in 

this subsection of the chapter. Genetic Algorithms (GAs), formerly introduced by Holland 

(1975), are search algorithms inspired by the principle of natural selection. They are useful 

and efficient if the search space is big and complicated or there is not any available 

mathematical analysis of the problem. They form populations of candidate solutions, called 

chromosomes. Those are optimized via a number of evolutionary cycles and genetic 

operations, such as crossovers or mutations. Chromosomes consist of genes, which are the 

optimizing parameters. At each iteration (generation), a fitness function is used to evaluate 

each chromosome. In that way the quality of all the solutions is measured. Then, the fittest 

chromosomes are selected to survive. This evolutionary process is continued until some 

termination criteria are met. In general, GAs have the ability to cope with large search 

spaces and at the same time resist to get trapped in local optimal solutions, like other 

search algorithms. GAs are integrated in all the hybrid models of chapters 6-8. In every 

each one of these applications, the GA implemented has a dual goal: The optimization of 

the SVR parameters and the optimal feature subset selection. 

Genetic Programming (GP) algorithms, as presented by Koza (1992), are a class of 

GAs. The intuition behind this technique is the Darwinian principle of reproduction and 

survival of the fittest. The Darwinian Theory is applied through GPs to a population of 

computer programs of varying sizes and shapes, which run in various environments in 

order to produce forecasts at a high level of accuracy (Chen, 2002). The GP technique is 

used in chapters 5 and 7. The aim of the GP in chapter 5 is to genetically combine 

individual forecasts. On the other hand, in chapter 7 it provides a single forecast by 

identifying connections between the available macroeconomic indicators through 

evolutionary steps. 

 

3.5.1 Genetic Programming (GP) 

 

Dissimilar to previously analyzed NN architectures, GP creates an initial population of 

models and evolves it using genetic operators. The result is to perform mathematical 

expressions that best fit to the given input (data). The GP application proposed and 
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implemented in chapters 5 and 7 forms tree-based structures. These structures comprise of 

sub-trees (models) with input and output. It uses algebraic expressions that enable the 

analysis and optimization of results in a genetic tree. This tree consists of nodes, which are 

essentially functions that perform actions within its structure. The maximum tree depth is 

the maximum length of each model (of each tree structure) and it depends on the functions 

and terminals of each individual model.  The NNs’ individual forecasts and the pool of 

macroeconomic indicators are used as inputs in chapter 5 and 7 respectively. The output 

signals are then generated through the nodes’ functions.  

In the design phase of this GP algorithm the main focus is on optimizing execution 

time and limiting the ‘bloat effect’, a similar issue to over- fitting in NNs mentioned in the 

beginning of this chapter. The GP reproduces newer models replacing the weaker ones in 

the population according to their fitness. In this case, the fitness value is defined as the 

Mean Squared Error (MSE) of the forecast. Obviously the lowest MSE is considered as a 

criterion of better fitness. Then, the best models (tournament winners) are exposed to two 

genetic operators, known as mutation and crossover. Mutation is the creation of a new 

model that is mutated randomly from an existing one. This is calibrated in the model by 

setting a mutation probability. On the other hand, crossover is the creation of two new 

models from existing ones by genetically recombining randomly chosen parts of them. In 

this way, future trials will contain parts from superior models. With the crossover trial 

parameter the practitioner is able to specify the number of generations allowed to this GP 

algorithm.  

This genetic procedure creates superior offsprings, replacing the worst models 

(tournament losers), and rearranges the initial population for the next iteration. This is 

constrained by the size of the models, namely the tournament size, and their goodness of 

fit. The iterations stop and the final forecast results are obtained when the model reaches 

the critical value of the termination criterion. The termination criterion is in general 

arbitrarily chosen and task-specific. For example, in chapter 5 the termination criterion is 

set based on optimizing the trading performance with the least possible ‘bloat effect’ in the 

in-sample period. Since in chapter 7 there is no trading undertaken, the critical value is 

calculated through the same process, but now taking into account the statistical 

performance of each in-sample period. The functionality aspects of GP and the genetic 

operators are described in detail by Koza and Andre (1996) and Koza and Poli (2005). 

A final step to the optimal setup of this model is to run the GP algorithm in a 

steady-state mode. This allows only a single member of the population to be replaced at a 
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time. This decision is justified. The GP should hold a greater selection strength and genetic 

drift over other algorithms, such as a typical GA. Additionally, steady state algorithms also 

offer exceptional multi-processing capabilities (Lozano et al., 2008). The following 

flowchart describes the general structure of a typical GP algorithm. 

 

 
* The symbol ‘?’ refers to the termination criterion 

Figure 3-5: GP Architecture 

 

 

3.5.2 Hybrid Genetic Algorithm – Support Vector Regression 
Modelling 

 

Chapters 6-8 introduce and apply hybrid models that integrate GAs into the SVR 

procedure, as this is described previously. The aim of such an implementation is the 

optimal tuning of the SVR parameters and the optimal feature selection. Optimization of 

the parameters leads to higher degrees of adaptivity to the given inputs. Feature selection is 

an optimization problem that refers to the search over a space of possible feature subsets in 

order to find those that are optimal with respect to specific criteria. Such a problem 

requires a search strategy that picks the feature subsets and an evaluation method that tests 

their goodness of fit. Many searching strategies have been proposed in literature, but those 

who seem to attract more attention are the randomized searches, where probabilistic steps 
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are applied (Sun et al., 2004). Therefore, the use of GAs for such a task is appropriate and 

justified (Siedlecki and Sklansky (1989)). 

 

3.5.2.1 Hybrid Genetic Algorithm – Support Vector Regression 
(GA-SVR) 

 

  This subsection presents the hybrid Genetic Algorithm – Support Vector 

Regression (GA-SVR) model for optimal SVR parameter and feature subset combination 

(chapter 6) or selection (chapter 7). The proposed model genetically searches over a large 

pool of potential inputs and provides an out-of-sample optimized SVR forecast for each 

series under study. In order to achieve this, a simple GA is used. Its chromosome 

comprises feature genes that encode the best feature subset and parameter genes that 

encode the best choice of parameters. One such chromosome is depicted in chapter 6 (see 

figure 6-1). 

The lack of information on the noise of the training datasets makes the a priori ε-

margin setting of ε-SVR a difficult task. In order to overcome this and decrease the 

computational demands of the methodology, a RBF v-SVR approach is taken during the 

design of this hybrid model. The virtues of using RBF kernels are stated by many 

researchers, when SVR is applied in financial forecasting (i.e. Min and Lee (2005), Ding et 

al. (2009) and Kao et al. (2013)). Their advantage is that they efficiently overcome over-

fitting and seem to excel in directional accuracy. A RBF kernel is in general specified as: 

2( , ) exp( ), 0γ γ= − − >i iK x x x x                              (3.20) 

where γ represents the variance of the kernel function. Consequently, the parameters 

optimized by the GA are C, v and γ.3   

The GA uses the one-point crossover and the mutation operators. The one-point 

crossover provides two offsprings from every two parents. Then the algorithm randomly 

selects the parents and a crossover point cx. The two offsprings are made by both 

concatenating the genes that precede cx in the first parent with those that follow (and 

include) cx in the second parent. The probability for selecting an individual as a parent for 

                                                                 
3As shown in subsection 3.4 xi are the support vectors and x the data vectors.  
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the crossover operator is called crossover probability and in all the applications is 

generally set high to ensure that some population is kept for the next generation. In that 

way the GA creates better new chromosomes from good parts of the old chromosomes. 

The offspring produced by the crossover operator replaces their parents in the population. 

On the other hand, the mutation operator places random values in randomly selected genes 

with a certain probability named as mutation probability.  This operator is very important 

for avoiding local optima and exploring a larger surface of the search space. This 

probability is always set low in order to prevent the algorithm from performing a random 

search. 

For the selection step of the GA, the roulette wheel selection process is used 

(Holland (1995)). In roulette wheel selection chromosomes are selected according to their 

fitness. The better the chromosomes are, the more chances to be selected they have. Elitism  

is used to raise the evolutionary pressure in better solutions and to accelerate the evolution. 

The best solution is copied without changes to the new population. Thus, the best solution 

found can survive at the end of every generation. Similarly to the NNs, the GA-SVR model 

requires training and test subsets to validate the goodness of fit of each chromosome. The 

population of chromosomes is initialized in the training sub-period. The optimal selection 

of chromosomes is achieved through a fitness function. Then, the optimized parameters 

and selected predictors of the best solution are used to train the SVR and produce the final 

optimized forecast, which is evaluated over the out-of-sample period. In genetic algorithm 

modelling, though, fitness functions need to be increasing functions. The fitness function is 

chosen based on the forecasting task at hand. The details of the fitness functions used in 

each application are given at each specific chapter. 

Finally, the size of the initial population and the maximum number of generations 

needs to be chosen beforehand. This is done through a sensitivity analysis from the user of 

the algorithm based on the given inputs to the algorithm. These details are also provided in 

each chapter. Another issue that needs to be taken into account is the population 

convergence which is associated with the termination criterion of the GA. In all chapters, 

the population is deemed as converged when the average fitness across the current 

population is less than 5% away from the best fitness of the current population. In that 

way, the GA avoids keeping populations that their diversity is very low. If the algorithm 

evolved such populations, it would be unlikely to produce different and better individuals 

than the existing ones or those qualified to be kept in previous generations. The flowchart 

of the designed GA-SVR is shown in figure 3-6.   
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Figure 3-6: Hybrid GA-SVR and RG-SVR flowchart  
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3.5.2.2 Hybrid Rolling Genetic – Support Vector Regression (RG-
SVR) 

 

The GA-SVR previously explained is providing a single out-of-sample optimized SVR 

forecast for each series under study. Nonetheless, it is selecting parameters and feature 

subsets based on a fixed in-sample period. It is well established in the financial and 

economic literature, that the more recent the data are, the more significant is the 

information that they incorporate. Thus, the relevance of the predictors should have a 

changing composition. In order to expand the mapping ability of the algorithm to the given 

inputs and derive more realistic forecasts, the GA-SVR is extended to a Rolling Genetic – 

Support Vector Regression (RG-SVR) in chapter 8. 

The logic and the design of the RG-SVR model is the same as in GA-SVR. The novelty 

lies in the fact that each chromosome is now selected through a rolling in-sample period 

(rolling window). The algorithm requires the window size to be further divided in a 

training and test subset in order to validate the goodness of fit of each chromosome, as in 

GA-SVR. The population of chromosomes is initialized in each training sub-period. The 

optimal selection of chromosomes is achieved, when their forecasts maximize the fitness 

function in the test-sub period. These optimized parameters and selected predictors of the 

best solution are used to train the SVR and produce the final optimized forecast for the 

next observation. After this is completed, the window rolls forward by one observation and 

the procedure is repeated. In that way, the RG-SVR model presents single rolling forecasts. 

For each of these forecasts, the algorithm retains the optimized C, γ and v parameters and 

set of optimal predictors, creating an image of how the relevance of these inputs fluctuates 

as time goes by.  

The flowchart of this technique is also given by the previous figure. The reader 

should bear in mind, though, that the in-sample dataset in this case is changing in every 

iteration. In addition, the out-of-sample dataset represents just the next observation, since 

the model derives only one forecast at each loop. This brings forward again the curse of 

dimensionality in such techniques, as referred in the general motivation of this thesis. The 

integrated rolling forward estimation raises the computational demands of the algorithm. 

Its accuracy depends on the trade-off between a high-complexity model (over-fitting) and a 

large-margin (incorrect setting of the SVR ‘tube’). For that reason, another new attribute of 

RG-SVR is that the SVR procedure is performed with the minimum support vectors. 
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Chapter 4 

Forecasting and Trading the EUR/USD Exchange 
Rate with Stochastic Neural Network Combination 

and Time-Varying Leverage 

 

 

 

4.1 Introduction 

 

The term of Neural Network (NN) originates from the biological neuron connections of 

human brain. The artificial NNs are computation models that embody data-adaptive 

learning and clustering abilities, deriving from parallel processing procedures (Krose and 

Smagt, 1996). The NNs are considered a relatively new technology in Finance, but with 

high potential and an increasing number of applications. However, their practical 

limitations and contradictory empirical evidence lead to skepticism on whether they can 

outperform existing traditional models.  

The motivation of this chapter is to investigate the statistical and trading performance of a 

novel Neural Network (NN) architecture, the Psi Sigma Neural Network (PSN), and 

explore the utility of Kalman Filters in combining NN forecasts. Firstly, the EUR/USD 

European Central Bank (ECB) fixing series is applied to a Naive Strategy, an 

Autoregressive Moving Average (ARMA) model and three NNs, namely a Multi-Layer 

Perceptron (MLP), a Recurrent Network (RNN) and a PSN. Secondly, the Kalman Filter is 

compared with four forecast combination methods. That is the traditional Simple Average, 

the Bayesian Average, Granger- Ramanathan’s Regression Approach (GRR) and the Least 

Absolute Shrinkage and Selection Operator (LASSO). The models’ performance is 

estimated using the EUR/USD ECB fixing series of the period of 2002-2010, using the last 

two years for out-of-sample testing. Finally, a time-varying leverage strategy based on 

RiskMetrics volatility forecasts is introduced.  
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The results show that PSN outperforms its NN and statistical benchmarks in terms of 

annualised returns and information ratios. The NN forecast combinations, excluding the 

Bayesian Average model, present improved annualised returns and information ratios and 

in almost all cases outperform every individual NN performance. More specifically, the 

Kalman Filter outperforms all individual models and combination forecasts. The Kalman 

Filter forecasts are also found statistically different from their benchmarks under the 

Diebold-Marino test (1995).  Finally, all models except ARMA show substantial increase 

in their trading performance, after applying the time-varying leverage strategy,  

In section 4.2 follows the detailed description of the EUR/USD ECB fixing series, used as 

dataset in this study. Section 4.3 gives an overview of the forecasting, while section 4.4 

describes the forecast combination methods implemented. The statistical and trading 

performance of the models is presented in Sections 4.5 and 4.6. Finally, some concluding 

remarks are summarized in section 4.7.  

 

4.2 The EUR/USD Exchange Rate and Related Financial Data 

 

The European Central Bank (ECB) publishes a daily fixing for selected EUR exchange 

rates: these reference mid-rates are based on a daily concentration procedure between 

central banks within and outside the European System of Central Banks, which normally 

takes place at 2.15 p.m. ECB time. The reference exchange rates are published both by 

electronic market information providers and on the ECB's website shortly after the 

concentration procedure has been completed. Although only a reference rate, many 

financial institutions are ready to trade at the EUR fixing and it is therefore possible to 

leave orders with a bank for business to be transacted at this level. 

In this chapter, the EUR/USD is examined over period 2002 -2010, using the last 

two years for out-of-sample. In order to train the NNs, the in-sample dataset is further 

divided in two sub-periods (see chapter 3). 
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Table 4-1: The EUR/USD Dataset - Neural Networks’ Training Datasets 

 

The graph below shows the total dataset for the EUR/USD and its volatile trend 

since early 2008. 

 

Figure 4-1: EUR/USD Frankfurt daily fixing prices 

 

The EUR/USD time series, shown above, is non-normal and non-stationary. 

Jarque-Bera statistics confirm its non-normality at the 99% confidence interval with slight 

skewness and low kurtosis. To overcome the non-stationary issue, the EUR/USD series is 

transformed into a daily series of rate returns. So given the price level P1, P2, …, Pt, the 

return at time t is calculated as: 

                                
1

1t
t

t

PR
P−

 
= − 
 

                                                     (4.1) 

The stationary property of the EUR/USD return series is confirmed at the 1% 

significance level (ADF and PP test statistics) and its summary statistics are shown in 

Figure 4-2. From those it is obvious that the slight skewness and low kurtosis remain. The 

Jarque-Bera statistic confirms again that the EUR/USD series is non-normal at the 99% 

confidence interval. For more details on Jarque-Bera statistics see Jarque and Bera (1980). 
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PERIODS TRADING DAYS START DATE END DATE 
Total Dataset 2295 3/01/2002 31/12/2010 
Training Dataset (In-sample) 1270 3/01/2002 29/12/2006 
Test Dataset (In-sample) 511 02/01/2007 31/12/2008 
Validation Dataset (Out-of-sample) 514 02/01/2009 31/12/2010 
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Figure 4-2: EUR/USD Returns Summary Statistics  

 

There is no formal theory behind the selection of the inputs of a neural network. 

Therefore, neural networks experiments and a sensitivity analysis on a pool of potential 

inputs in the training dataset are conducted to help with this decision. The aim is to select 

the set of inputs for each network which is the more likely to lead to the best trading 

performance in the out-of-sample dataset. In this application, the set of variables that 

provide the higher trading performance for each network in the test sub-period are selected. 

Surprisingly, this set of inputs is identical for all neural network models. All sets of inputs 

are presented in table 2 below4. 

  

                                                                 
4 They are also explored as inputs autoregressive terms of other exchange rates (e.g. the USD/JPY and 
GBP/JPY exchange rates), commodit ies prices (e.g. Gold Bullion and Brent Oil) and stock market prices 
(e.g. FTSE100 and DJIA). However, the set of inputs presented in table 4-2 gave to the NNs the highest 
trading performance in the training period and were thus retained. 
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* In this application the term ‘Lag 1’ means that today’s closing price is used to forecast 
the tomorrow’s one. 

Table 4-2: Explanatory Variables 

 

4.3 Forecasting Models 

4.3.1 Benchmark Forecasting Models 

 

In this chapter two traditional forecasting strategies, the Naive Strategy and the Auto-

Regressive Moving Average (ARMA) model are used, in order to benchmark the 

efficiency of the NNs’ performance. 

 

4.3.1.1 Naive Strategy 

 

The Naive Strategy is considered to be the simplest strategy to predict the future. That is to 

accept as a forecast for time t+1, the value of time t, assuming that the best prediction is 

the most recent period change. Thus, the model takes the form:  

 

1t̂ tY Y+ =                        (4.2)  

 

tY  is the actual rate of return at time t and 1t̂Y + is the forecast rate of return at time t+1. In 

order to evaluate the Naive trading performance, a simulated strategy is used.  

Νumber Explanatory Variables Lag* 

1 EUR/USD Exchange Rate Return 1 
2 EUR/USD Exchange Rate Return 2 
3 EUR/USD Exchange Rate Return 4 
4 EUR/USD Exchange Rate Return 5 
5 EUR/USD Exchange Rate Return 8 
6 EUR/USD Exchange Rate Return 10 
7 EUR/GBP  Exchange Rate Return 1 
8 EUR/GBP  Exchange Rate Return 2 
9 EUR/JPY Exchange Rate Return 1 
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4.3.1.2 Auto-Regressive Moving Average Model (ARMA) 

 

The ARMA model is based on the assumption that the current value of a time-series is a 

linear combination of its previous values plus a combination of current and previous values 

of the residuals (Brooks, 2008). Thus, the ARMA model embodies autoregressive and 

moving average components and can be specified as below: 

0 1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qY Y Y Y w w wϕ ϕ ϕ ϕ ε ε ε ε− − − − − −= + + + + + − − − −         (4.3) 

Where: 

• Yt  is the dependent variable at time t 

• Yt-1,Yt-2,…Yt-p  are the lagged dependent variables  

• φ0,φ1,…,φp  are the regression coefficients 

• εt  is the residual term 

• εt-1,εt-2,…,εt-q  are the previous values of the residual terms 

• w1, w2,…,wq are the residual weights 

Based on the in-sample correlogram (training and test subsets), a restricted ARMA 

(13, 13) model is chosen as the best for an out-of-sample estimation (Appendix B.1). The 

ARMA model, used for this application, can be specified as follows: 

           

3 4 6 9 13 3 4

6 9 13

0.0288 0.2689 0.6028 0.3921 0.6884 0.3641 0.2638 0.59
0.3916 0.6227 0.3165
t t t t t t t t

t t t

Y Y Y Y Y Y ε ε
ε ε ε

− − − − − − −

− − −

= − + − − + + −
+ + − (4.4)

 

The evaluation of the ARMA model selected comes in terms of trading performance. 

 

4.3.2 Neural Networks (NNs) 

 

In this chapter three NN architectures, namely the MLP, RNN and the novel PSN, are used 

to forecast the series under study. All these models are thoroughly explained in chapter 6 

(training process and specification). In this part it should be noted that the starting point for 

each network is a set of random weights. Therefore, forecasts can differ between networks. 

In order to eliminate any variance between the derived NN forecasts and add robustness to 
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the results, a simple average of a committee of 10 NNs is used. Those 10 NNs are those 10 

MLPs, RNNs and PSNs that present the highest profit in the training sub-period. This is a 

necessary process in order to eliminate any outlier network that could jeopardise the final 

conclusions. The technical characteristics of the NNs used in this task are presented in 

Appendix B.2. 

 

4.4 Forecasting Combination Techniques 

 

The five techniques that are used to combine the NNs forecasts are presented in this 

section. It is important to outline that a forecast combination targets either to follow the 

trend of the best individual forecast (‘combining for adaptation’) or to significantly 

outperform each one of them (‘combining for improvement’) (Yang, 2004). Consequently, 

the naive strategy and the ARMA are rejected from the combination techniques. Both 

strategies present a considerably worse trading performance than their NNs’ counterparts 

both in-sample and out-of-sample. Therefore, their inclusion in the combination techniques 

would deteriorate their performance rather than improve it.  

 

4.4.1 Simple Average 

 

The first forecasting combination technique used in this chapter is Simple Average, which 

can be considered a benchmark forecast combination model. Given the three NNs’ 

forecasts , ,t t t
MLP RNN PSNf f f  at time t, the combination forecast at time t is calculated as:   

3( ) /MLP RNN PSNNNs

t t t t
cf f f f= + +                        (4.5)
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4.4.2 Bayesian Averaging 

 

A Bayesian Average model specifies optimal weights for the combination forecast based 

on the Akaike Information Criterion (AIC) and Schwarz Bayesian Information Criterion 

(SIC). According to Buckland et. al. (1997) the Bayesian weights using AIC, can be 

estimated as:  

0.5

, 3
0.5

1

i

j

C

AIC i
C

j

ew
e

− ∆ΑΙ

− ∆ΑΙ

=

=

∑
           

(4.6) 

Where: 

• i=1,2,3  for , ,MLP RNN PSNf f f respectively 

• ΔAICi = AICi – AICi,min                                                                (4.7) 

Based on the above, the combination forecast at time t is 
,

3

1
( ) / 3AIC i i

t t

i
NNscf w f

=

= ∑ and 

in this case the AIC Bayesian models take the following form:  

(0.33421 0.33081 0.33492 ) / 3
AIC

t t t t
c MLP RNN PSNf f f f= + +

 
         (4.8)

 

The Bayesian Average weights for SIC are defined similarly and in this case the 

SIC Bayesian model is specified as follows: 

    (0.33421 0.330833 0.33491 ) / 3
SIC

t t t t
c MLP RNN PSNf f f f= + +

       
            (4.9) 

Equations 4.8 and 4.9 are similar as the AIC and SIC criteria for the NNs in the in-

sample period are very close. For that reason, in the results only the Bayesian Average 

based on the AIC criterion is presented. This is the case where the results are marginally 

better in terms of trading performance in-sample. Nonetheless, the weights are in favor 

(maximized) of PSN, namely the model with the minimum AIC and SIC respectively.  For 

details on the exact calculation of the AIC and SIC and their Bayesian Average weights see 

appendix B.3. 

  



76 
 

4.4.3 Granger and Ramanathan Regression Approach (GRR) 

 

According to Bates and Granger (1969) a combining set of forecasts outperforms the 

individual forecasts that the set consists of. Taking this basic idea one step further, Granger 

and Ramanathan (1994) suggested three regression models as follows: 

1 0 1
1

n

c i i
i

f a a f ε
=

= + +∑                            (4.10) 

2 2
1

n

c i i
i

f a f ε
=

= +∑                         (4.11)
           

3 3
1 1

, 1
n n

c i i i
i i

f a f where aε
= =

= + =∑ ∑                                  (4.12) 

Where  

• fi, i=1,...,n are the individual one-step-ahead forecasts,  

• fc1, fc2, fc3 are the combination forecast of each model,  

• α0 is the constant term of the regression 

• αi are the regression coefficients of each model 

• ε1, ε2, ε3 are the error terms of each regression model 

 

The model specified in equation 4.10, which is selected for this case, is usually 

preferred in order to avoid forecasts errors correlated with the individual forecasts fi 

(Swanson and Zeng, 2001). Thus, the GRR model at time t used in this chapter is specified 

as shown below: 

  t
t

PSN
t

RNN
t

MLP
t

c ffff
NNs

ε++++= 132.56461.13023.350422.0           (4.13) 

However, the variety of data and the biased and correlated forecasts raise questions 

on GRR model selection or modification, which are further discussed in the literature 

(Diebold and Pauly (1987) and Coulson and Robins (1993)). 
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4.4.4 Least Absolute Shrinkage and Selection Operator (LASSO) 

 

The LASSO Regression is a class of Shrinkage or Regularization Regressions, which 

applies when multicollinearity exists among the regressors (Sundberg, 2002). The main 

difference between this technique and the Ordinary Least Squares (OLS) Regression is that 

LASSO method also minimizes the residual squared error, by adding a coefficient 

constraint (similarly to Ridge Regression (Chan et al., 1999)). 

Compared to Ridge Regression, LASSO best applies in samples of few variables 

with medium/large effect such in this case (Hastie et al., 2009). For more details on the 

mathematical specifications of LASSO see Wang et al. (2007). Given the vectors of 

independent and dependent variables: 

                                  
1 11 1

1

1, ( ,..., )

T

T
N

N

N NN

T
N

X

X

x x

x x
Y y y

   
   
   

     

==


   



                             (4.14) 

and the training data {(X1,y1),…,(XN,yN)}, the LASSO coefficients are estimated based on 

the following  argument: 

    
1

2

0
1 1

, 0ˆ arg min
d

j
j

N d

i i ij
i j

lasso subject to k ky xβ ββ β β
== =

≤ >
   = − −  

   
∑∑ ∑             (4.15) 

This argument is based on Breiman’s non-negative garrote minimization process 

(Yuan and Lin, 2007). Here k stands for the ‘tuning parameter’, because it controls the 

amount of shrinkage applied to the coefficients (Tibshirani, 2011). In this case, I 

experimented with various values of k in the in-sample period and concluded that the best 

results in terms of trading performance are acquired when the constraint takes the 

following form: 

                                               10.6MLP RNN PSNβ β β+ + ≤                                     (4.16) 

Subject to this constraint the model takes the form: 

t
t

PSN
t

RNN
t

MLP
t

c ffff
NNs

ε+++= 623.5591.1284.3       (4.17) 

This LASSO constraint makes the model adaptive, since it creates a penalization 

balance on each estimate, by leading some coefficients to zero or close to zero (see the 
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unconstrained regression of GGR (equation 4.13) compared to the LASSO one (equation 

4.17). This process favors the PSN architecture. 

 

4.4.5 Kalman Filter 

 
Kalman Filter is an efficient recursive filter that is described in chapter 3 and appendix A. 

The time-varying coefficient combination forecast suggested in this chapter is shown 

below: 

5.80 1.16 75.89
NNs

t t t t
c MLP RNN PSN tf f f f ε= + + +        (4.18) 

 

From the above equation, which represents the final state, the Kalman filtering 

process favors the PSN model. This is what one would expect, since it is the model that 

performs best individually. In order to achieve optimal Kalman Filter estimation, it is 

important though to introduce a noise ratio5: 

 

                   
2 2/r nn εσ σ=                                                (4.19) 

 

 The results are becoming more adaptive when the noise ratio rises (Dunis et al., 

2010).When 2 0nσ = , the model transforms to the typical OLS model.  

 

4.5 Statistical Performance 

 

As it is standard in literature, in order to evaluate statistically the derived forecasts, the 

RMSE, MAE, MAPE and Theil-U statistics are computed (see amongst others Dunis and 

Williams (2002) and Dunis and Chen (2005)). The statistical analysis will provide some 

information regarding the accuracy of the forecasts and strengthen the final conclusions. 

The RMSE and MAE statistics are scale-dependent measures but give a basis to compare 

volatility forecasts with the realized volatility while the MAPE and the Theil-U statistics 

are independent of the scale of the variables. In particular, the Theil-U statistic is 
                                                                 
5 As stated in chapter 3, the 2 2, nεσ σ represent the variances of the error terms of the measurement and state 
equations 
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constructed in such a way that it necessarily lies between zero and one, with zero 

indicating a perfect fit. A more detailed description of these measures can be found on 

Theil (1966) and Pindyck and Rubinfeld (1998), while their mathematical formulas are 

presented in appendix B.4. For all four of the error statistics retained (RMSE, MAE, 

MAPE and Theil-U) the lower the output, the better the forecasting accuracy of the model 

concerned.  

The in-sample and out-of-sample period performances are presented in tables 4-3 

and 4-4 respectively. The results indicate that from the individual forecasts, the PSN 

outperformed all other models in both the in-sample and out-of-sample periods. Similarly, 

for the forecast combinations methodologies the Kalman Filter beat its benchmarks for the 

four statistical criteria retained in both estimation periods. Adding to the above statistical 

performance of the Kalman Filter, the Diebold-Mariano (1995) statistic for predictive 

accuracy is also computed for both MSE and MAE loss functions. The details on the 

Diebold-Mariano statistic are given in appendix B.5. The results of the Diebold-Mariano 

statistic, comparing Kalman filter with each other method, are summarized in Table 4-5.  

From the table 4-5, the null hypothesis of equal predictive accuracy is rejected for 

all comparisons and for both loss functions at 5% confidence interval, since the test results 

|sMSE|>1.96 and |sMAE|>1.96. Moreover, the statistical superiority of the Kalman Filter 

forecasts is confirmed as for both loss functions the realizations of the statistic are 

negative 6. Finally, the second best model in statistical terms, the LASSO regression, has 

the closest forecasts with Kalman Filter. 

 
 

                                                                 
6 In this study the Diebold-Mariano test is applied to couples of fo recasts (Kalman Filter vs. another 
forecasting model). A negative realizat ion of the Diebold-Mariano test statistic indicates that the first forecast 
(Kalman Filter) is more accurate than the second forecast. The lower the negative value, the more accurate 
are the Kalman Filter forecasts. 



 

 
  

 

 

 

 

 

Table 4-3: Summary of In-Sample Statistical Performance 

  

 

 

 

 

  
Table 4-4: Summary of Out-of-Sample Statistical Performance 

  
  
 

  
Table 4-5: Summary results of Diebold-Mariano statistic for MSE and MAS loss functions 

  

 
 
 

TRADITIONAL TECHNIQUES NEURALNETWORKS FORECAST COMBINATIONS  

NAIVE ARMA MLP RNN PSN Simple  Average Bayesian Average GRR LASSO Kalman Filter 

MAE 0.0065 0.0045 0.0044 0.0042 0.0039 0.0037 0.0037 0.0035 0.0038 0.0033 

MAPE 399.44% 122.20% 97.13% 93.35% 89.43% 84.98% 85.13% 82.78% 87.63% 71.51% 

RMSE 0.0086 0.0060 0.0053 0.0050 0.0041 0.0036 0.0036 0.0032 0.0037 0.0023 

Theil-U 0.7021 0.6948 0.6686 0.5087 0.4292 0.4522 0.4625 0.4245 0.4613 0.2713 

 
TRADITIONAL TECHNIQUES NEURAL NETWORKS FORECAST COMBINATIONS  

NAIVE ARMA MLP RNN PSN Simple Average Bayesian Average GRR LASSO Kalman Filter 

MAE 0.0084 0.0059 0.0058 0.0056 0.0048 0.0048 0.0048 0.0047 0.0046 0.0044 

MAPE 405.62% 131.20% 112.37% 105.97% 97.88% 94.07% 93.76% 92.83% 92.05% 88.37% 

RMSE 0.0107 0.0077 0.0061 0.0060 0.0054 0.0053 0.0051 0.0049 0.0053 0.0043 

Theil-U 0.7958 0.8749 0.7301 0.6001 0.4770 0.5672 0.5598 0.5297 0.6142 0.5212 

 NAIVE ARMA MLP RNN PSN Simple Average Bayesian Average GRR LASSO 

sMSE -9.307 -9.321 -6.244 -5.698 -5.184 -4.869 -4.896 -4.351 -4.112 

sMAE -9.845 -9.832 -9.189 -8.881 -8.159 -7.851 -7.873 -7.679 -7.352 
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4.6 Trading Performance 

4.6.1 Trading Strategy and Transaction Costs 

 

The trading strategy applied in this chapter is to go or stay ‘long’ when the forecast return 

is above zero and go or stay ‘short’ when the forecast return is below zero. The ‘long’ and 

‘short’ EUR/USD position is defined as buying and selling Euros at the current price 

respectively. The transaction costs for a tradable amount, say USD 5-10 million, are about 

1 pip (0.0001 EUR/USD) per trade (one way) between market makers. But the EUR/USD 

time series is considered as a series of middle rates, the transaction costs is one spread per 

round trip. With an average exchange rate of EUR/USD of 1.369 for the out-of-sample 

period, a cost of 1 pip is equivalent to an average cost of 0.007% per position. 

 

4.6.2 Trading Performance before Leverage 

 

The trading performance measures and their calculation description are presented in 

appendix B.4. Table 4-6 presents the in-sample trading performance of the models and 

forecast combinations before and after transaction cost. All models present a positive 

trading performance after transaction costs. From the single forecasts the PSN outperforms 

each NN and statistical benchmark in terms of annualised return and information ratio. The 

other two artificial intelligence models, the RNN and the MLP, present the second and 

third best trading performance respectively. Concerning the forecast combinations, the 

Kalman Filter is found to have the best trading performance with an annualised return of 

41.78% and an information ratio of 4.47 after transaction costs. It is also worth noting that 

all forecast combinations outperform the best single forecast, the PSN, in terms of trading 

performance.  

The out-of-sample performance of the models before and after transaction costs is 

shown in table 4-7.The last two rows of this table suggest that the PSN continues to 

outperform all other single forecasts in terms of trading performance. From the forecast 

combinations point of view, only the Kalman Filter and the LASSO methods seem to beat 

the best single forecast. The Simple Average, Bayesian Average and GRR methods, which 

demonstrated a better performance in the in-sample period, seem unable to maintain this 
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superiority in the out-of-sample period. Moreover, the trading performance of the Bayesian 

Average and Simple Average strategies is very close. This is expected as the AIC and the 

BIC information criteria for the three NNs are very close in the in-sample period. On the 

other hand, the GRR strategy still outperforms the MLP and the RNN models in terms of 

annualised return and information ratio. That could be thought as a trend to adapt to the 

best individual performance (‘combining for adaptation’, (Yang, 2004)). Finally, the 

Kalman Filter achieves a 10% higher annualised return than the second best methodology, 

the LASSO regression. It seems that the ability of Kalman Filter to provide efficient 

computational recursive means to estimate the state of the process gives it a considerable 

advantage compared to the tested fixed parameters combination models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

 
   

  

 

 

Table 4-6: Summary of In-Sample Trading Performance  

 
TRADITIONAL 
TECHNIQUES 

NEURAL 
NETWORKS 

FORECAST 
COMBINATIONS 

NAIVE ARMA MLP RNN PSN Simple Average Bayesian Average GRR LASSO Kalman Filter 
Annualised Return 
(excluding costs) -4.80% 10.60% 14.80% 16.07% 18.37% 16.37% 16.59% 16.99% 20.23% 28.79% 

Annualised Volatility 12.03% 11.07% 11.83% 11.02% 10.89% 10.85% 10.85% 11.02% 10.99% 10.92% 
Information Ratio 
(excluding costs) -0.4 0.96 1.25 1.46 1.69 1.51 1.53 1.54 1.84 2.64 

Maximum Drawdown -6.41% -6.23% -6.23% -6.23% -6.31% -6.31% -6.31% -6.31% -6.31% -6.31% 

Annualised Transactions 77 54 71 71 76 70 71 63 69 73 

Transaction Costs 0.54% 0.38% 0.50% 0.50% 0.53% 0.49% 0.50% 0.44% 0.48% 0.51% 
Annualised Return 

(including costs) -5.34% 10.22% 14.30% 15.57% 17.84% 15.88% 16.09% 16.55% 19.75% 28.28% 

Information Ratio 
(including costs) -0.44 0.92 1.21 1.41 1.64 1.46 1.48 1.50 1.80 2.59 

 
Table 4-7: Summary of Out-of-Sample Trading Performance   

 
 
 
 

TRADITIONAL 
TECHNIQUES 

NEURAL 
NETWORKS 

FORECAST 
COMBINATIONS  

NAIVE ARMA MLP RNN PSN Simple Average Bayesian Average GRR LASSO Kalman Filter 

Annualised Return 
(excluding costs) 1.49% 13.87% 23.19% 26.14% 28.10% 32.74% 32.39% 33.99% 30.57% 42.63% 

Annualised Volatility 9.68% 9.70% 9.38% 9.59% 9.23% 9.51% 9.52% 9.49% 9.54% 9.35% 
Information Ratio 
(excluding costs) 0.15 1.43 2.47 2.73 3.05 3.44 3.4 3.58 3.21 4.56 

Maximum Drawdown -8.59% -6.52% -5.91% -6.55% -6.55% -6.55% -6.55% -6.55% -6.55% -6.66% 
Annualised 

Transactions 130 100 121 136 74 107 106 104 106 121 

Transaction Costs 0.91% 0.70% 0.85% 0.95% 0.52% 0.75% 0.74% 0.73% 0.74% 0.85% 
Annualised Return 

(including costs) 0.58% 13.17% 22.34% 25.19% 27.58% 31.99% 31.65% 33.26% 29.83% 41.78% 

Information Ratio 
(including costs) 0.06 1.36 2.38 2.63 2.99 3.36 3.32 3.50 3.13 4.47 
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4.6.3 Leverage to exploit high Information Ratios 

 

In order to further improve the trading performance of the previous models, a leverage is 

introduced based on RiskMetrics one day ahead volatility forecasts 7. The details of the 

RiskMetrics model are in appendix B.6. The intuition of the strategy is to avoid trading 

when volatility is very high while at the same time exploiting days when the volatility is 

relatively low. As mentioned by Bertolini (2010) there are few papers on market-timing 

techniques for foreign exchange, with the notable exception of Dunis and Miao (2005, 

2006). The opposition between market-timing techniques and time-varying leverage is 

apparent, as time-varying leverage can be easily achieved by scaling position sizes 

inversely to recent risk behaviour measures. 

The process starts with forecasting with RiskMetrics the one day ahead realised 

volatility of the EUR/USD exchange rate in the test and validation sub-periods. Then, 

following Dunis and Miao (2005, 2006), these two periods are split into six sub-periods, 

ranging from periods with extremely low volatility to periods experiencing extremely high 

volatility. Periods with different volatility levels are classified in the following way:  

Initially the average (μ) difference between the actual volatility in day t and the 

forecasted for day t+1 and its ‘volatility’ (measured in terms of standard deviation σ) are 

calculated. The periods where the difference is between μ plus one σ are classified as 

‘Lower High Vol. Periods’. Similarly, ‘Medium High Vol.’ (between μ + σ and μ + 2σ) and 

‘Extremely High Vol.’ (above μ + 2σ) periods can be defined. Periods with low volatility 

are also defined following the same 1σ and 2σ approach, but with a minus sign. After the 

six periods are formed, the next step is to assign the appropriate leverage factors. In each 

sub-period, leverage is assigned starting with 0 for periods of extremely high volatility to a 

leverage of 2.5 for periods of extremely low volatility. The following table presents the 

sub-periods and their relevant leverages.  

                                                                 
7 A GJR (1, 1) is also explored to model in forecasting volatility. Its statistical accuracy in 
the test sub-period in terms of the MAE, MAPE, RMSE and the Theil-U statistics is only 
slightly better compared with RiskMetrics. However, when the utility of GJR in terms of 
trading efficiency is measured for our models within the context of the strategy in the test 
sub-period, the results in terms of annualised returns are slightly better with RiskMetrics 
for most of the models. Moreover, RiskMetrics is simpler to implement than the more 
complicated GJR. Therefore, in this chapter the results obtained with RiskMetrics are 
presented. It is also worth noting that the ranking of the models in terms on information 
ratio and annualised return is the same, whether GJR or RiskMetrics are used. 
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 Extremely 
Low Vol. 

Medium 
Low Vol. 

Lower Low 
Vol. 

Upper 
High Vol. 

Medium 
High Vol. 

Extremely 
High Vol. 

Leverage 2.5 2 1.5 1 0.5 0 

 

Table 4-8: Classification of Leverage in Sub-Periods 

 

The parameters of the strategy (μ and σ) are updated every three months by rolling 

forward the estimation period. So for example, for the first three months of the validation 

period, μ and σ are computed based on the eighteen months of the test sub-period. For the 

following three months, the two parameters are computed based on the last fifteen months 

of test sub-period and the first three of the validation sub-period. Figure 4-3 summarizes 

the leverages assigned in the trading days of the out-of-sample period, based on the above 

strategy. The cost of leverage (interest payments for the additional capital) is calculated at 

1.75% p.a. (that is 0.0069% per trading day8). The final results are presented in table 4-9. 

The most striking performance achieved by the time-varying leverage strategy is 

the significant reduction in the maximum drawdown, the essence of risk for an investor in 

financial markets. Not only do all models, except ARMA, experience a higher performance 

in terms of return or risk-adjusted return, but maximum drawdowns are reduced by as 

much as 50%, from 6.31% to 3.38% in the case of the Kalman Filter combination. Even 

the naive strategy seems to try to invert its previous discouraging performance (see table 4-

7). The PSN still outperforms every NN and increases its annualised profit over 3%. 

Similarly the Bayesian Average and Simple Average combination methods present a 3% 

increase of annualised return, but they still cannot outperform the PSN and RNN individual 

performance. The other two forecast combination techniques, the GGR and the LASSO, 

also present an increased annualised return and information ratio. Finally, the Kalman 

Filter continues to present a remarkable trading performance with the highest information 

ratio and a 5.67% increase in terms of annualised return. When transaction and leverage 

costs are included, the profit decreases, but the trend of the results is not affected. That 

allows me to conclude, that in all cases the Kalman Filter can be considered by far the 

optimal forecast combination for the dataset and models under study. 

                                                                 
8 The interest costs are calculated by considering a 1.75% interest rate p.a. (the Euribor rate at  the time of 
calculation) divided by 252 trad ing days. In reality, leverage costs also apply during non-trading days so that 
I should calculate the interest costs using 360 days per year. But for the sake of simplicity, I use the 
approximation of 252 t rading days to spread the leverage costs of non-trading days equally over the trading 
days. This approximation allows me not to keep track of how many non-trading days a position is hold. 



  

 
   

 

 

 

 

 

 

 

Figure 4-3: Leverages assigned in the out-of-sample period 
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Note: The average leverage factor ex post is computed as the ratio of the annualised returns after costs of tables 4-7 and 4-9 for those models which 
achieved an in-sample information ratio of at least 2 and, as such, would have been candidates for leveraging out-of-sample. In the final results of this 
table, I do not take into account the interest that could be earned during times, where the capital is not traded (non-trading days) or not fully invested. 

Table 4-9: Summary of Out-of-Sample Trading Performance - final results 

  

 
 
 

TRADITIONAL 
 TECHNIQUES 

NEURAL 
 NETWORKS 

FORECAST  
COMBINATIONS  

NAIVE ARMA MLP RNN PSN Simple 
 Average 

Bayesian  
Average GRR LASSO Kalman 

 Filter 
Annualised Return  
(excluding costs) -2.34% 7.28% 18.13% 19.44% 22.28% 19.12% 19.36% 22.37% 25.08% 34.46% 

Annualised Volatility 10.14% 10.44% 9.90% 9.04% 9.85% 9.09% 9.13% 9.38% 9.20% 9.32% 
Information Ratio 
(excluding costs) -0.23 0.7 1.83 2.15 2.26 2.1 2.12 2.38 2.73 3.7 

Maximum  
Drawdown -3.50% -3.20% -3.66% -3.14% -3.66% -2.98% -3.21% -2.83% -2.94% -3.38% 

Annualised  
Transactions 122 90 115 117 122 111 113 97 110 114 

Average Leverage Factor 
(ex post) n.a. n.a. 1.13 1.19 1.12 1.09 1.09 1.26 1.18 1.15 

Transaction and  
Leverage Costs 1.79% 1.57% 1.74% 1.75% 1.79% 1.72% 1.73% 1.62% 1.71% 1.73% 

Annualised Return 
(including costs) -4.13% 5.71% 16.39% 17.69% 20.49% 17.40% 17.63% 20.75% 23.37% 32.73% 

Information Ratio 
(including costs) -0.41 0.55 1.66 1.96 2.08 1.91 1.93 2.21 2.54 3.51 
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4.7 Conclusions 

 

In this chapter the trading and statistical performance of a Neural Network (NN) 

architecture, the Psi Sigma Neural Network (PSN), is investigated. Then the utility of 

Kalman filters in combining NN forecasts is explored. Firstly, the EUR/USD European 

Central Bank (ECB) fixing series is applied to a Naive Strategy, an Autoregressive Moving 

Average (ARMA) model and three NNs, namely a Multi-Layer Perceptron (MLP), a 

Recurrent Network (RNN) and a PSN. Secondly, a Kalman filter-based combination is 

compared with four other forecast combination methods. That is the traditional Simple 

Average, the Bayesian Average, Granger- Ramanathan’s Regression Approach (GRR) and 

the Least Absolute Shrinkage and Selection Operator (LASSO). The models’ performance 

is estimated through the EUR/USD ECB fixing series of the period of 2002-2010, using 

the last two years for out-of-sample testing. Finally, a time-varying leverage strategy is 

introduced based on RiskMetrics volatility forecasts.  

As it turns out, the PSN outperforms its benchmarks models in terms of statistical 

accuracy and trading performance. It is also shown that all the forecast combinations, 

outperform out-of-sample all the single models except the PSN for the statistical and 

trading terms retained. It is interesting that the ‘combining for improvement’ pattern that 

all combination forecasts showed in the in-sample period, changes regarding the out-of-

sample combination forecasts. Simple Average, Bayesian Average and GRR do not 

continue to outperform PSNs’ best individual performance but are better than MLP and 

RNN, while LASSO and Kalman Filter present the best results. It seems that the ability of 

Kalman Filter to provide efficient computational recursive means to estimate the state of 

the process gives it a considerable advantage compared to the fixed parameters 

combination models. Finally, all models except ARMA show a substantial increase in their 

trading performance and a striking reduction in maximum drawdowns after applying time-

varying leverage. In all these cases, Kalman Filter remains the best approach. Its 

remarkable trading performance of Kalman Filter suggests that it can be considered as an 

optimal forecast combination for the models and time-series under study. These results 

should go some way towards convincing a growing number of quantitative fund managers 

to experiment beyond the bounds of the more traditional models and trading strategies. The 

results in table 4-9, with an information ratio in excess of 3, should also provide motivation 

for the use of Kalman Filter in combining model based forecasts.  
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Chapter 5 

Stochastic and Genetic Neural Network 
Combinations in Trading and Hybrid Time-Varying 
Leverage Effects 

 

 

 
5.1 Introduction 

 

Neural Networks (NNs) are similar to any advanced statistical model. They are optimized 

in an in-sample period and applied for prediction in an out-of-sample period. The 

difference between NNs and statistical models is that the first have an adaptive nature. 

NNs can take many different forms and have as inputs any potential explanatory variable. 

Therefore they are capable of exploring different forms of non- linearity and theoretically 

provide a superior performance than statistical-econometrical models. Non- linearity is not 

possible to be measured in statistical terms and therefore models such as NNs have the 

advantage in problems where the exact nature of the series under study is unknown.  

Sceptics argue that the lack a formal statistical theoretical background in NNs 

makes them useless in Finance. However, financial series and especially exchange rates are 

dominated by factors (e.g. behavioural factors, politics…) that time-series analysis and 

statistics are unable to capture in a single model. Based on this, it can be argued that a 

time-series statistical model that will capture the pattern of exchange rates is in the long-

run impossible. Statistical theory and mathematics will never be able to explain such a 

complex relationship. Researchers and traders should seek for the models that are closest to 

the actual pattern of the financial series under study. The flexibility and the non- linear 

nature of NNs make them perfect candidates for such a problem. This study aims to 

provide empirical evidence that will convince scientists and decision investment managers 

to experiment beyond the traditional bounds of mathematics and statistics.  



  

90 
   

This chapter attempts to evaluate the performance of a Multi-Layer Perceptron 

(MLP), a Recurrent Neural Network (RNN) and a Psi-Sigma Network (PSN) architecture 

in forecasting and trading the Euro/Dollar (EUR/USD) exchange rate. Then, the utility of 

Kalman Filter, Genetic Programming (GP) and Support Vector Regression (SVR) 

algorithms is explored as forecasting combination techniques. The used benchmarks for the 

NNs are a Random Walk model (RW), an Autoregressive Moving Average model 

(ARMA) and a Smooth Transition Autoregressive Model (STAR). The forecast 

combination techniques are then benchmarked by a Simple Average and a Least Absolute 

Shrinkage and Selection Operator (LASSO). The forecasts are evaluated in terms of 

statistical accuracy and trading efficiency. The EUR/USD exchange rate is highly liquid 

and well known for its high volatility in our days. It seems as the perfect series for a 

forecasting exercise with non-linear models. 

The rationale of the chapter is multiple. It is explored if non-linear models such as 

NNs are able to outperform traditional models such as RW, ARMA and STAR. The STAR 

model acts as statistical non- linear benchmark, while the comparison of the results with a 

RW model adds to the on-going debate if financial forecasting models can outperform a 

RW. In this forecasting competition structural macroeconomic models are not included. 

Such models are presented by Flannery and Protopapadakis (2002), Andersen et al. (2003), 

Pierce and Solakoglu (2007), Evans and Speight (2010) and recently Bacchetta and 

Wincoop (2013). The main reason for that choice is the unavailability of daily data of 

relevant macroeconomic indicators. Comparing the models with benchmarks generated by 

lower frequency data would make the forecasting competition unfair and unequal.  

This study also checks if statistical models like the LASSO and the Kalman Filter 

can combine the derived forecasts successfully in order to provide a superior trading 

performance. Their results will be benchmarked against those generated by two advanced 

non- linear techniques, a SVR and a GP model. SVR and GP algorithms have provided 

promising results in many field of Science, but they are rarely used as forecast combination 

techniques. The success of the best forecast combination model is also validated through 

the Modified Diebold-Mariano (1997) test.  

The proposed trading strategy based on volatility forecasts tests if volatility 

forecasts and market shocks can be combined with the daily return forecasts to improve the 

trading performance of the models. Lastly the implemented loss function for NN models 

adds to the literature on the utility of NNs in Finance. Until now researchers are applying 

statistical loss functions to generate trading signals through NNs. However, statistical 
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accuracy is not always synonymous with financial profitability. The proposed loss function 

attempts to bring a balance between these two terms.  

Many researchers have attempted to forecast exchange rates, but their empirical 

results are often contradictory. Meese and Rogoff (1983a, 1983b) examine the Frenkel-

Bilson, Dornbusch-Frankel, and Hooper-Morton structural exchange rate models and find 

that the random walk performs better. The authors conclude that the out-of-sample failure 

of these models is due to the volatile nature of exchange rates, the poor inflation 

measurements and their money demand misspecifications. On the other hand, Tenti (1996) 

presents promising results in predicting the exchange rate of the Deutsche Mark with three 

different RNN architectures. Hussain et al. (2006) provide statistical accurate results with 

PSN, when applied in forecasting the EUR/USD, EUR/GBP and EUR/JPY exchange rates 

and using two simple MLP and HONN architectures as benchmarks. Bissoondeeal et al. 

(2008) use linear and nonlinear methods in forecasting AUD/USD and GBP/USD 

exchange rates and conclude that NNs outperform the traditional ARMA and GARCH 

models. Moreover, Kiani and Kastens (2008) forecast the GBP/USD, USD/CAD and 

USD/JPY exchange rates with feed-forward and recurrent NNs. Although the USD/CAD 

forecasts fail to outperform the ARMA model benchmark, the results are satisfying when 

forecasting GBP/USD and USD/JPY exchange rates. Grossman and McMillan (2010) 

propose a time-varying ESTR equilibrium exchange rate model for forecasting the bilateral 

rates between the US Dollar and the Canadian Dollar, the Japanese Yen and the British 

Pound. Their non-linear model provides superior forecasts in terms of directional change 

accuracy when compared to their linear alternatives. Finally, Dunis et al. (2011) and 

Sermpinis et al. (2012a), who conduct a forecast and trading competitions with several 

different NNs architectures present ambiguous results over the superiority of their models.  

The idea of combining forecasts to improve prediction accuracy originates from 

Bates and Granger (1969), who suggested combining rules based on variances-covariances 

of the individual forecasts. Since then, many forecasting combination methods have been 

proposed and applied in financial research. Donaldson and Kamstra (1999) use 

combination techniques, such as weighted OLS, to benchmark the performance of artificial 

NN forecasts of S&P 500 stock index and conclude that the NNs are more statistically 

accurate. Hu and Tsoukalas (1999) combine the individual volatility forecasts of four 

models with simple averaging, ordinary least squares model and a NN. Their result suggest 

that the NN combination model performed better during the August 1993 crisis, especially 

in terms of root mean absolute forecast error. De Menezes and Nikolaev (2006) present 

promising forecasting results with their polynomial neural network forecasting system, 
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which combines genetic programming with NN models. Altavilla and De Grauwe (2008) 

compare the performance of linear and nonlinear models in forecasting exchange rates. 

Although linear models are better at short forecasting horizons and nonlinear models 

dominate at longer forecasting horizons, they suggest that combining different forecasting 

techniques generally produces more accurate forecasts. Guidolin and Timmermann (2009) 

combine forecasts of future spot rates with forecasts of macroeconomic variables and 

conclude that this improves the out-of-sample forecasting performance of US short-term 

rates. Andrawis et al. (2011) attempt to predict the daily cash withdrawal amounts from 

ATM machines. In their application, they forecast over one hundred time series with eight 

classes of linear and non- linear models. Their results show that a simple average of NN, 

Gaussian process regression and linear models’ forecasts is the optimal. Ebrahimpour et al. 

(2011) apply and compare three NN combining methods and an Adaptive Network-Based 

Fuzzy Inference System to trend forecasting in the Tehran stock exchange. The mixture of 

MLP experts is the model that presents the best hybrid model in this competition, but all 

NN combining models present promising forecasting performance. 

The rest of the chapter is organized as follows. Section 5.2 gives a detailed 

description of the EUR/USD ECB fixing series, used as a dataset. Section 5.3 is an 

overview of the benchmark and NNs models, while section 5.4 describes the forecast 

combination methods implemented. The statistical and trading performance of these 

models is presented in Sections 5.6 and 5.7. Finally, conclusions are given in Section 5.8. 

 

5.2 The EUR/USD Exchange Rate and Related Financial Data 

 

Similarly to the rational of the chapter 4, the ECB fixings of EUR/USD are selected for 

this forecasting and trading application. The ECB daily fixings of the EUR exchange rate 

are tradable levels and using them is a more realistic alternative to, say, London closing 

prices. In this chapter, the EUR/USD is examined over the period of 1999-2012 in three 

rolling forecasting exercises (F1, F2 and F3) on a daily basis. Each exercise studies a 

decade of the EUR/USD using the last two years for out-of-sample evaluation. F1 focus on 

the decade of 1999-2008 while F2 and F3 examine the periods 2001-2010 and 2003-2012 

respectively. Table 5-1 presents these three sub-periods.   

 



  

 
   

 

  

 

 

Table 5-1: The EUR/USD Dataset and Neural Networks’ Training Sub-periods for the three forecasting exercises 

 

Figure 5-1: EUR/USD Frankfurt daily fixing prices and the three out-of-sample periods under study

F1 F2 F3 

PERIODS DAYS PERIOD DAYS PERIOD DAYS PERIOD 

Total Dataset 2540 01/02/1999 - 31/12/2008 2560 02/01/2001 - 31/12/2010 2564 02/01/2003 - 31/12/2012 
Training Dataset 

(In-sample) 1517 01/02/1999 - 31/12/2004 1535 02/01/2001 - 29/12/2006 1537 02/01/2003 - 31/12/2008 

Test Dataset 
(In-sample) 512 03/01/2005 -29/12/2006 511 02/01/2007 -31/12/2008 514 02/01/2009 -31/12/2010 

Validation Dataset 
(Out-of-sample) 511 02/01/2007 -31/12/2008 514 02/01/2009 -31/12/2010 513 03/1/2011 -31/12/2012 
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The in-sample datasets for each exercise are further divided in two sub-periods, the 

training and test sub-period. This is done for training purposes of the NNs. The three 

rolling forward sub-periods add validity to the forecasting exercise and increase the 

robustness of the results. The out-of-sample periods are dominated by the effects of the 

debt and the mortgage crises. Using a rolling forward the estimation is an attempt to 

capture the effect of these crises to the extent that is possible. The rolling forward 

estimation and the fact that the parameterization of the models is conducted entirely in-

sample acts as a shield against data-snooping bias’ effects.  

The previous figure shows the total dataset of the EUR/USD and its volatile trend. 

The out-of-sample periods of each exercise are also highlighted. The EUR/USD time 

series, shown above, is non-normal and non-stationary. Jarque-Bera statistics confirm its 

non-normality at the 99% confidence interval with slight skewness and high kurtosis. To 

overcome the non-stationary issue, the EUR/USD series is transformed into a daily series 

of rate returns. So given the price level P1, P2, …, Pt  the return at time t is calculated as: 

                                                             
1

1t
t

t

PR
P−

 
= − 
 

                                            (5.1) 

The Jarque-Bera statistic confirms again that the EUR/USD return series is non-

normal at the 99% confidence interval. For more details on Jarque-Bera statistics see 

Jarque and Bera (1980). 

 

5.3 Forecasting Models 

5.3.1 Benchmark Forecasting Models 

 

As mentioned previously, three traditional forecasting strategies, namely a RW, an ARMA 

and a STAR are used in order to benchmark the efficiency of the NN models. The aim of 

these models is to forecast the one day ahead return of the series under study for each 

forecasting exercise. 
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5.3.1.1 Random Walk (RW) 

 

The RW is a process where the current value of a variable is calculated from the past value 

plus an error term. The error term follows the standard normal distribution. The 

specification of the model is: 

            1
ˆ , ~ (0,1)t t t tY Y e e N−= +                         (5.2) 

In this equation t̂Y  is the forecasted value for period t and 1tY − is the actual value of 

period t-1. The RW is a non-stationary process with a constant mean, but not a constant 

variance.  

 

5.3.1.2 Auto-Regressive Moving Average Model (ARMA) 

 

The ARMA model specification is described in chapter 4. Using as a guide the information 

criteria in the in-sample subset the optimal ARMA structures are selected. In all cases, the 

null hypotheses that all coefficients (except the constant) are not significantly different 

from zero and that the error terms are normally distributed are rejected at the 95% 

confidence interval. The specifications of the ARMA models selected for out-of-sample 

estimation in each exercise are presented below: 

 

1

2

[ ]
1 2 5 9 1 2

5 9

{ ]
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5
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t
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t t t t t t t
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 
 
 
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 
 
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 
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      (5.3) 
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5.3.1.3 Smooth Transition Autoregressive Model (STAR) 

 

STARs initially proposed by Chan and Tong (1986) are extensions of the traditional 

autoregressive models (ARs). The STAR combines two AR models with a function that 

defines the degree of non- linearity (smooth transition function). The general two-regime 

STAR specification is the following: 

1 2
ˆ (1 ( , , )) ( , , )t t t t t tY F z F z uζ λ ζ λ′ ′= Φ Χ − +Φ Χ +                      (5.4) 

Where: 

• t̂Y  the forecasted value at time t 

• ,0 ,1 ,( , ,... ), 1, 2i i i i p iϕ ϕ ϕΦ = =    and ,0 ,1 ,, ,...i i i pϕ ϕ ϕ   the regression coefficients of the two 

AR models  

• (1, )t tχ′ ′Χ =   with 1( ,..., )t t t pY Yχ − −′ =  

• 0 ( , , ) 1tF z ζ λ≤ ≤  the smooth transition function  

• , 0t t dz Y d−= >  the lagged endogenous transition variable 

• ζ the parameter that defines the smoothness of the transition between the two 

regimes 

• λ the threshold parameter 

• ut  the error term 

 

The main characteristic of a STAR is that t̂Y  is calculated at any given t as a 

weighted average of two AR models. The weights of the two AR models are defined based 

on the value of ( , , )tF z ζ λ . The regime-switching ability of STARs derives from the fact 

that at each t a regime is selected based on the values of zt and ( , , )tF z ζ λ . In this chapter 

the series is best modelled as an Exponentional STAR process, following Lin and 

Terasvitra (1994). 
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. 5.3.2 Neural Networks (NNs) 

 

This chapter attempts to evaluate the performance of a MLP, RNN and PSN architecture in 

forecasting and trading the Euro/Dollar (EUR/USD) exchange rate. The specifications of 

these models are given in chapter 3 in detail. For training purposes of the NNs, the in-

sample dataset is further divided in two sub-periods, the training and test sub-period. 

Similarly to the route taken in chapter 4, the sensitivity analysis on a pool of potential 

inputs in each one of the in-sample datasets is needed. In this application, the training sub-

period is used to select as inputs the set of variables that provides the higher trading 

performance in the test sub-period. This optimization procedure is the most popular in NNs 

and superior to cross validation for datasets of that size (Zhu and Rohwer, 1996). The set 

of inputs for the F1, F2 and F3 can be found in appendix C.1. 

The training process of the previous chapter is extended in these three exercises. The NNs 

are specially designed for financial purposes. Therefore, a novel fitness function is applied. 

This specialised fitness function focuses on achieving two goals at the same time. First of 

all, the annualised return in the test period should be maximized and secondly the Root 

Mean Square Error (RMSE) of the networks output should be minimized. Based on the 

above the fitness function for all the NNs takes the following form and equation 5.4 is 

maximized: 

                               Fitness = Annualised_Return – 10*RMSE                   (5.4) 

After the optimization of the networks, the predictive value of each model is 

evaluated by applying it to the validation dataset (out-of-sample dataset). Since the starting 

point for each network is a set of random weights, forecasts can slightly differ between 

same networks. In order to eliminate any variance between the NN forecasts and add 

robustness to the results, a simple average of a committee of 20 NNs is used. This 

committee comprises of these NNs that provided the highest profit in each in-sample sub-

period of F1, F2 and F3. This is necessary, because otherwise outlier networks can be 

included to the committee, used for the final forecasts. The characteristics of these NNs for 

each forecasting exercise are also presented in Appendix C.1.  

Several NNs trading applications suffer for the data snooping effect. Data-snooping 

occurs when a given set of data is used more than once. This can leads to the possibility 

that the results achieved may be due to chance rather than an inherent merit in the method.  
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In order to avoid this effect, the guidelines of James et al. (2012) are followed. The data 

are clearly subdivided in in-sample (training and test subsets) and out-of-sample 

(validation subset). The out-of-sample subset is not used in any part of the NN parameter 

selection procedure. A final ‘safe-lock’ against data-snooping is provided by the 

implementation of the Hansen (2005) test. As benchmark for this comparison, a simple 

martingale model is used. The results indicate that the NNs committees (the forecasting 

performance of which is presented in the following sections) are free from the data 

snooping bias at the 5% level in all out-of-sample subsets. 

 

5.4 Forecasting Combination Techniques 

 

The techniques that are used to combine the NNs forecasts are presented in this section. 

Similarly to the approach of the previous chapter, RW, ARMA and STAR are discarded 

from the forecast combinations. The reason is that they all present considerably worse 

trading performances than their NNs’ counterparts both in-sample and out-of-sample, 

throughout all exercises (as it will be shown in the next sections). 

 

5.4.1 Simple Average 

 

The first forecasting combination technique used in this chapter is a Simple Average, 

which can be considered a benchmark forecast combination model. Given the three NNs’ 

forecasts , ,t t t
MLP RNN PSNf f f  at time t, the combination forecast at time t and exercise Fi is 

calculated as:   

[ ] [ ] [ ] [ ] 3 , 1, 2,3( ) /MLP RNN PSN
i i i i

NNs

F F F Ft t t t
c if f f f == + +              (5.5)
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5.4.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

 

The LASSO Regression is also used to combine the individual forecasts from the 

qualifying NN committees. The exact specification of this method is explained in chapter 

4. In this chapter, the best results in terms of trading performance are acquired, when the 

constraints take the following forms:  

1 1 1

2 2 2

3 3 3

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

 3.1

 1.9

 2.3

F F F
MLP RNN PSN

F F F
MLP RNN PSN

F F F
MLP RNN PSN

β β β

β β β

β β β

 + + ≤
  + + ≤ 
 

+ + ≤  

              (5.6) 

Subject to the above, the final LASSO forecast combinations are given by the 

following set of equations:  

     

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

0.125 0.723 1.534

0.021 0.218 1.452

0.095 0.314 1.684

NNs

NNs

NNs

F F F F Ft t t t
c MLP RNN PSN t

F F F F Ft t t t
c MLP RNN PSN t

F F F F Ft t t t
c MLP RNN PSN t

f f f f

f f f f

f f f f

ε

ε

ε

 = + + +
  = + + + 
 

= + + +  

      (5.7) 

Each constraint makes the model adaptive, since it creates a penalization balance 

on each estimate by leading some coefficients to zero or close to zero. In all cases, the 

weight of the PSN forecast is higher than the rest ones. 

 

5.4.3 Kalman Filter 

 
The Kalman Filter is an efficient recursive filter that is described in chapter 3 and appendix 

A. The time-varying coefficient combination forecast suggested in this chapter is shown 

below. These are the final states for the respective three exercises: 
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1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

0.152 0.785 1.485

0.081 0.976 1.322

0.108 0.655 1.271

NNs

NNs

NNs

F F F F Ft t t t
c MLP RNN PSN t

F F F F Ft t t t
c MLP RNN PSN t

F F F F Ft t t t
c MLP RNN PSN t

f f f f

f f f f

f f f f

ε

ε

ε

 = + + +
  = + + + 
 

= + + +  

        (5.8) 

 

From the above set of equations it is obvious that the Kalman filtering process, as 

in the case of LASSO, favors PSN forecasts regardless the period under study. This is what 

one would expect, since it is the model that performs best individually. 

 

 

5.4.4 Genetic Programming (GP) 

 

Genetic Programming (GP) algorithms are a class of Genetic Algorithms and their 

description is given in chapter 3. In this chapter the NNs’ individual forecasts are used as 

inputs. The parameters of the GP application are defined based on which model presents 

optimized trading results in the in-sample sub-period. These parameters, finally, remain the 

same throughout exercises F1, F2 and F3 and are given in appendix C.2. 

 

5.4.5 Support Vector Regression (SVR) 

 

The Support Vector Regression (SVR) and its theoretical background are thoroughly 

explained in chapter 3. Except the utility of Kalman Filter and GP, the SVR algorithm is 

explored as forecasting combination techniques. As mentioned previously, the RBF kernels 

are the most common in similar SVR applications (see and Ince and Trafalis (2006b and 

2008)). This is based on the fact that they efficiently overcome over-fitting and seem to 

excel in directional accuracy.   
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Having made that choice of Kernel, this application follows Cherkassky’s and Ma’s 

(2004) RBF application of optimal choice of C through a standard parameterization of the 

SVR solution. Based on their approach: 

       * *

1 1 1
( ) ( ) ( , ) ( ) ( , ) ( , )

sv sv svn n n

i i i i i i i
i i i

f x a a K x x a a K x x C K x x
= = =

≤ − ≤ − ⋅ ≤ ⋅∑ ∑ ∑        (5.9) 

For 2( , ) exp( ) 1i iK x x x xγ= − − ≤ , the upper bound of the SVR function is obtained as: 

     ( ) svf x C n≤ ⋅                      (5.10) 

Thus, the estimation of C independently of the number of support vectors nsv is given by 

( )C f x≥  for all training samples. In other words, the optimal choice of C is equal to the 

range of the output values of the training data. In order to overcome outliers, the final C is 

computed as: 

          max( 3 , 3 )y yC y yσ σ= + −                                     (5.11) 

where , yy σ is the mean and the standard deviation of the training responses respectively.  

Based on that the parameters for every exercise are calculated as CF1=0.02, 

CF2=0.022 and CF3=0.0021. In most SVR studies, the model parameters are determined 

one at a time by letting each parameter taking a range of different values and then 

identifying the value that corresponds to the best model performance assessed by cross-

validation (see Chalimourda et al. (2004) and Smola and Scholkopf (2004)). In this case it 

is applied a 5-fold cross-validation for calculating the optimal v and γ in the in-sample 

datasets, having set the parameter C for the respective exercise. During this cross-

validation process, the in-sample period is partitioned into five equal subsamples. From 

those subsamples, a single subsample is retained as the validation data for testing the 

model and the remaining four subsamples are used as training data. The cross-validation 
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process is then repeated five times with each one of the subsamples used only once as the 

validation data. As suggested by Duan et al. (2003) keeping the number of folds moderate, 

i.e. five, offers efficient parameter estimation with constraining substantially computational 

costs.   

For example, regarding the exercise F1 the cross-validation is performed for the v 

parameter with CF1=0.02 and fixed values of γF1. This selection is based on the best trading 

performance in the F1 in-sample dataset. Nonetheless, the value of the parameter γF1 is not 

constrained. In order to overcome this issue, the proposed SVR model encompasses a 

pseudo-R2 criterion (Veall and Zimmermann, 1996). This criterion is calculated based on 

the residual sum of squared errors of each model (RSSv) and a ‘default model’ (RSSdef). 

This is the model which does not use information from the independent variables for the 

prediction of the dependent variable. According to the least square principle, the default 

model is simply the mean of the dependent variable computed in the training sample: 

                         2 1
def

RSSpseudo R
RSS

ν− = − , where ( )def i trainRSS y y= −∑                

(5.12) 

The pseudo-R2 criterion allows firstly the retain of those v values that present 

simultaneously high trading performances and higher criterion values and secondly 

constrain the range of the fixed values of γ, saving a great amount of computational time. 

For 1 1.33Fγ ≥  the criterion obtains values close to zero or even negative, which is 

evidence of over- fitting. Based on the above, the optimal vF1=0.64 is calculated. The final 

step is to perform again the cross-validation process for γ parameter, with CF1=0.02 and 

vF1=0.64, but also with the constraint provided by the pseudo-R2criterion, namely

1 1.33Fγ ≤ . Based on this procedure, the final F1 forecast combinations are derived with 

CF1=0.02, vF1=0.54 and γF1=0.63 selected as parameters for the RBF v-SVR model. 
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Similarly, for F2 and F3 I obtain CF2=0.022, vF2=0.71, γF2=1.41 and CF3=0.021, vF3=0.32, 

γF3=0.98 respectively. Small values of γ are in general welcome because they result in 

smoother marginal decisions. The restrictiveness of the SVR ‘tube’ though depends on all 

three parameters and therefore it is difficult to assess if the proposed model is more 

adaptive in one exercise than another. 

 

5.5 Statistical Performance  

 

As it is standard in the literature, in order to evaluate statistically the forecasts, the RMSE, 

the MAE, the MAPE and the Theil-U statistics are computed. For all four of the error 

statistics retained the lower the output, the better the forecasting accuracy of the model 

concerned. Their mathematical formulas are presented in Appendix B.4.  

Table 5-3 summarizes the in-sample statistical performances of every model in 

each exercise. The results of the table suggest that the SVR presents the best in-sample 

statistical in all out-of-sample sub-periods. All forecast combinations are statistically more 

accurate than the NNs. Concerning the individual models, the PSN architecture seems 

superior for the statistical measures retained from the individual forecasts, having a close 

performance with the Simple Average. RNN and MLP are following with the second and 

third more statistically accurate forecasts for individual models, while the RW, ARMA and 

STAR strategies present the less accurate in-sample forecasts for the series and periods 

under study. The worse realizations of the statistics are given in F2, while the best ones are 

attained during F3.  

The statistical performances of the models in every out-of-sample period are 

provided in table 5-4. The statistical accuracy ranking of the models does not change from 

the in-sample to the out-of-sample periods. The SVR confirms its forecasting superiority 

for all the statistical measures and forecast combinations retained. Similarly with the in-

sample periods, the PSN is outperforming the RNN and MLP which remain the second and 

third best individual models in statistical terms. During 2009 – 2010 the models present the 

worse statistical performance. This period coincides with the start of the EU debt crisis. In 

the next sub-period, the models perform considerably better. This is happening despite the 

fact that the EMU debt crisis is in peak and the euro presents a volatile behavior.   



  

   

 

 
 

 

 

 

 

 

 

 

 

 

  
 

Table 5-2: Summary of In-Sample Statistical Performance 

  

 
TRADITIONAL  
STRATEGIES 

NEURAL 
NETWORKS 

FORECAS T 
COMBINATIONS 

IN-SAMPLE RW ARMA STAR MLP RNN PSN AVERAGE LASSO KALMAN GP SVR 

 
F1 

MAE 0.0068 0.0053 0.0051 0.005 0.0051 0.0048 0.0047 0.0043 0.0041 0.0038 0.0036 
MAPE 207.25% 125.38% 110.27% 105.97% 101.15% 98.53% 97.44% 93.66% 91.42% 88.79% 84.61% 
RMSE 0.0089 0.0075 0.0071 0.0069 0.0068 0.0065 0.0063 0.0061 0.0058 0.0054 0.0049 

THEIL-U 0.7551 0.7494 0.7225 0.6955 0.6814 0.6629 0.6517 0.6328 0.6005 0.5718 0.5306 

F2 

MAE 0.0088 0.0064 0.0061 0.0057 0.0057 0.0055 0.0054 0.0052 0.005 0.0047 0.0044 
MAPE 215.33% 128.84% 115.39% 106.05% 102.44% 99.84% 98.42% 95.78% 93.17% 92.44% 89.27% 
RMSE 0.0095 0.0082 0.0078 0.0071 0.0067 0.0065 0.0064 0.0063 0.0061 0.0058 0.0054 

THEIL-U 0.9153 0.8715 0.8244 0.7264 0.7128 0.6925 0.6897 0.6559 0.6205 0.5847 0.5749 

F3 

MAE 0.0083 0.0061 0.0058 0.0047 0.0046 0.0044 0.0043 0.0041 0.0039 0.0037 0.0033 
MAPE 167.68% 119.52% 109.24% 98.69% 94.73% 91.38% 90.51% 89.53% 86.46% 84.37% 81.52% 
RMSE 0.0083 0.0071 0.0066 0.0062 0.0059 0.0057 0.0055 0.0052 0.0051 0.0049 0.0046 

THEIL-U 0.7484 0.7211 0.6859 0.6519 0.6367 0.6117 0.6052 0.5843 0.5602 0.5497 0.5133 
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Table 5-3: Summary of Out-of-Sample Statistical Performance 

 

 

 
 

  
Note: MDM1and MDM2 are the statistics computed for the MSE and MAE loss function respectively. 

Table 5-4: Summary results of Modified Diebold-Mariano statistics for MSE and MAE loss function  

 
TRADITIONAL  
STRATEGIES 

NEURAL 
NETWORKS 

FORECAS T 
COMBINATIONS 

OUT-OF-
SAMPLE RW ARMA STAR MLP RNN PSN AVERAGE LASSO KALMAN GP SVR 

F1 

MAE 0.0081 0.0065 0.006 0.0058 0.0056 0.0053 0.0052 0.0047 0.0046 0.0043 0.0039 
MAPE 221.18% 129.58% 116.23% 106.87% 104.25% 101.28% 98.37% 95.71% 92.49% 89.54% 86.67% 
RMSE 0.0094 0.0083 0.0075 0.0074 0.0072 0.0069 0.0066 0.0063 0.0061 0.0057 0.0053 

THEIL-U 0.8867 0.8355 0.7854 0.7578 0.7519 0.7226 0.6951 0.6795 0.6732 0.6429 0.6117 

F2 

MAE 0.0096 0.0079 0.0073 0.0063 0.0061 0.0059 0.0059 0.0056 0.0055 0.0052 0.0048 
MAPE 234.17% 131.22% 121.76% 107.48% 105.37% 103.72% 101.56% 99.27% 98.13% 95.27% 92.84% 
RMSE 0.0152 0.0094 0.0081 0.0074 0.0072 0.007 0.0069 0.0066 0.0064 0.0061 0.0058 

THEIL-U 0.9815 0.9125 0.8654 0.7972 0.7895 0.7664 0.7351 0.7005 0.6886 0.6758 0.6328 

 
 

F3 

MAE 0.0079 0.0063 0.0059 0.0051 0.0049 0.0048 0.0047 0.0045 0.0043 0.0041 0.0037 
MAPE 186.21% 123.68% 114.78% 99.52% 98.06% 96.84% 95.73% 93.12% 89.57% 87.33% 85.27% 
RMSE 0.0086 0.0077 0.0074 0.0066 0.0065 0.0064 0.0061 0.0058 0.0055 0.0053 0.0051 

THEIL-U 0.8358 0.7841 0.7059 0.6529 0.6458 0.6297 0.6218 0.6014 0.5788 0.5617 0.5419 

 RW ARMA STAR MLP RNN PSN AVERAGE LASSO KALMAN GP 

F1 
MDM1 -12.71 -11.24 -10.97 -9.37 -9.13 -8.08 -7.95 -6.25 -5.15 -4.26 
MDM2 -15.85 -14.37 -13.49 -12.64 -11.97 -10.05 -8.57 -7.06 -6.53 -5.56 

F2 
MDM1 -14.08 -13.19 -12.91 -11.18 -10.27 -8.57 -8.16 -7.59 -6.87 -6.31 
MDM2 -17.28 -15.21 -14.08 -13.57 -12.37 -10.58 -9.18 -8.17 -9.25 -8.19 

F3 
MDM1 -11.39 -10.23 -9.25 -7.69 -7.81 -6.28 -5.24 -4.38 -4.09 -3.67 
MDM2 -13.77 -12.19 -10.88 -10.32 -10.11 -9.84 -7.93 -6.81 -5.48 -4.39 
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In order to further verify the statistical superiority of the best proposed architecture, 

the Modified Diebold-Mariano (MDM) statistic for forecast encompassing is computed, as 

proposed by Harvey et al. (1997). The null hypothesis of the test is the equivalence in 

forecasting accuracy between a couple of forecasting models. The MDM statistic is an 

extension of the Diebold-Mariano (1995) test (see appendix B.5.) and its statistic is 

presented below: 

( ) 1/21/2 11 2 1MDM T T k T k k DM− − = + − + −                                  (5.13) 

where T the number of the out-of-sample observations and k the number of the step-ahead 

forecasts. In this case the MDM test is applied to couples of forecasts (SVR vs. another 

forecasting model). A negative realization of the MDM test statistic indicates that the first 

forecast (SVR) is more accurate than the second forecast. The lower the negative value, the 

more accurate are the SVR forecasts. The MDM test follows the student distribution with 

T-1 degrees of freedom. 

The use of MDM is common practice in forecasting because it is found to be robust 

in assessing the significance of observed differences between the performances of two 

forecasts (Barhoumi et al., 2010). MDM also overcomes the problem of over-sized DMs in 

moderate samples (Dreger and Kholodilin, 2013). The statistic is measured in each out-of-

sample period, while MSE and MAE are used as loss functions. Table 5-5 given previously 

presents the values of the statistics, comparing the GA-SVR with its benchmarks. The 

MDM null hypothesis of forecast encompassing is rejected for all comparisons and for 

both loss functions at the 1% confidence interval. The table results confirm the statistical 

superiority of the SVR forecasts as the realizations of the MDM statistic are all negative 

for both loss functions.  

 

5.6 Trading Performance  

 

Further to a statistical evaluation, the proposed models are evaluated also in terms of 

trading efficiency. It is indeed interesting to see if their trading performance is consistent 

with their statistical accuracy. The trading performance of the models and the effect of the 

proposed fitness function are analysed in section 5.6.1. below. In section 5.6.2 a more 
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sophisticated trading strategy is introduced and the results test if its application can 

increase the models’ profitability. 

 

5.6.1 Trading Performance without Leverage 

 

The trading strategy is to go or stay ‘long’ when the forecast return is above zero and go or 

stay ‘short’ when the forecast return is below zero. The ‘long’ and ‘short’ EUR/USD 

position is defined as buying and selling Euros at the current price respectively. The 

transaction costs for a tradable amount, say USD 5-10 million, are about 1 pip (0.0001 

EUR/USD) per trade (one way) between market makers. The EUR/USD time series is 

considered as a series of middle rates, so the transaction costs are one spread per round 

trip. The average of EUR/USD is 1.421, 1.36 and 1.338 for the F1, F2 and F3 out-of-

sample period respectively. Therefore, the respective costs of 1 pip are equivalent to an 

average cost of 0.007%, 0.0074% and 0.0075% per position.  

The trading performance measures and their calculation are presented in appendix 

B.4. Table 5-6 that follows presents the in-sample trading performances of the models and 

forecast combinations after transaction costs for each exercise. These results show that all 

the NN and forecast combination models present a positive trading performance after 

transaction costs. From the single forecasts, the PSN outperforms each NN and statistical 

benchmark in terms of annualised return and information ratio. The other two NNs 

architectures, the RNN and the MLP, present the second and third best trading 

performance respectively. This ranking is consistent in all three exercises. Concerning the 

forecast combinations, it is obvious that the SVR model is superior in all periods with an 

average annualised return of 28.71% and an information ratio of 2.89 after transaction 

costs. It is also worth noting that all the forecast combinations outperform the best single 

forecast, the PSN, in terms of trading performance.  

The out-of-sample trading performances of the models are summarized in table 5-7 

that also follows. The results indicate that the PSN continues to outperform all other single 

forecasts in terms of trading efficiency. For the three out-of-sample periods the PSN 

presents on average 2.59 % higher annualised return and 0.25 higher information ratio 

compared to the second best single model, the RNN. On the other hand, all forecast 

combination models present improved out-of-sample trading performance, verifying a 

‘combining for improvement’ trend. The SVR forecast combination continues to 
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outperform its benchmarks achieving on average 4.12% and 2.42% higher annualized 

return compared to the Kalman Filter and GP model respectively. The trading performance 

of the models in F1, F2 and F3 sub-period coincides with the statistical one. The best 

trading results are obtained during F3 and the worst during F2. In addition to the above, it 

is noted that combining forecasts decreases the maximum drawdown, the essence of risk 

for an investor in financial markets.  

Concerning the proposed fitness function in equation 5.4, the results from the 

statistical and trading evaluation of the individual and combining forecasts seem 

promising. Firstly, all the NNs present significant profits after transaction costs in all out-

of-sample sub-periods. Moreover, there are not large inconsistencies in the statistical and 

trading performance of the NNs models between the in-sample and out-of-sample. Large 

inconsistencies could indicate that the training of the NNs is biased to either statistical 

accuracy or trading efficiency. This could possibly lead to promising in-sample forecasts 

but disastrous out-of-sample results. In the next section, a trading strategy is introduced to 

further improve the trading performance of the models.  

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 5-5: Summary of In-Sample Trading Performance  

 
 
 

TRADITIONAL 
 STRATEGIES  

NEURAL 
NETWORKS 

FORECAST 
COMBINATIONS 

IN-SAMPLE RW ARMA STAR MLP RNN PSN AVERAGE LASSO KALMAN GP SVR 

F1 

Information Ratio 
(including costs) 

-0.25 0.42 0.60 1.57 1.71 1.98 2.12 2.38 2.84 2.71 2.90 

Annualised Return 
(including costs) 

-2.59% 4.57% 6.28% 15.41% 16.86% 19.39% 21.27% 23.18% 25.86% 26.95% 29.51% 

Annualised Volatility 10.27% 10.79% 10.44% 9.82% 9.84% 9.77% 10.05% 9.75% 9.12% 9.96% 10.17% 

Maximum Drawdown -25.78% -19.15% -15.37% -13.41% -15.55% -16.17% -13.25% -11.28% -10.94% -10.71% 
-

10.06% 

F2 

Information Ratio 
(including costs) 

-0.28 0.33 0.53 1.23 1.44 1.65 1.66 1.81 2.06 2.16 2.35 

Annualised Return 
(including costs) -3.18% 3.89% 5.89% 13.27% 14.75% 16.42% 17.56% 18.25% 20.29% 22.17% 25.11% 

Annualised Volatility 11.32% 11.79% 11.07% 10.78% 10.23% 9.95% 10.59% 10.07% 9.87% 10.25% 10.67% 

Maximum Drawdown -32.45% -22.21% -17.52% -15.68% -16.32% -16.75% -14.33% -11.96% -11.27% -10.98% 
-

10.85% 

F3 

Information Ratio 
(including costs) 

-0.12 0.52 0.82 1.79 1.99 2.22 2.47 2.79 2.92 3.11 3.42 

Annualised Return 
(including costs) 

-1.22% 5.67% 8.26% 17.33% 19.49% 21.37% 23.68% 25.64% 26.03% 27.58% 31.52% 

Annualised Volatility 10.32% 10.89% 10.13% 9.67% 9.78% 9.61% 9.59% 9.18% 8.92% 8.87% 9.22% 

Maximum Drawdown -22.18% -15.43% -13.48% -12.39% -14.78% -13.88% -11.26% -10.83% -10.71% -10.57% -9.84% 
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Table 5-6: Summary of Out-of-Sample Trading Performance 

 

 

 TRADITIONAL  
STRATEGIES  

NEURAL 
NETWORKS 

FORECAST 
COMBINATIONS 

OUT-OF-SAMPLE RW ARMA STAR MLP RNN PSN AVERAGE LASSO KALMAN GP SVR 

F1 

Information Ratio 
(including costs) 

-0.11 0.21 0.32 1.03 1.35 1.58 1.46 1.68 1.93 2.05 2.10 

Annualised Return 
(including costs) 

-1.18% 2.29% 3.41% 9.15% 12.08% 14.49% 14.68% 16.23% 18.05% 19.94% 22.18% 

Annualised Volatility 10.35% 11.05% 10.67% 8.92% 8.94% 9.19% 10.08% 9.68% 9.35% 9.74% 10.55% 

Maximum Drawdown -15.57% -17.26% -16.55% -15.18% -14.73% -13.25% -12.37% -11.79% -11.81% -10.91% -10.82% 

F2 

Information Ratio 
(including costs) 

-0.37 0.18 0.27 0.80 0.83 1.14 1.32 1.56 1.66 1.68 1.73 

Annualised Return 
(including costs) -4.52% 1.86% 3.02% 7.81% 8.22% 11.26% 12.08% 14.14% 15.37% 16.17% 18.43% 

Annualised Volatility 12.22% 10.51% 11.12% 9.78% 9.96% 9.84% 9.15% 9.06% 9.25% 9.65% 10.67% 

Maximum Drawdown -21.42% -19.58% -18.49% -13.73% -14.21% -12.88% -12.44% -12.03% -11.95% -12.15% -11.94% 

F3 

Information Ratio 
(including costs) 

0.02 0.41 0.51 1.14 1.46 1.68 1.81 2.00 2.01 2.28 2.77 

Annualised Return 
(including costs) 

0.27% 4.33% 5.51% 11.26% 14.08% 16.41% 17.32% 19.91% 20.19% 22.62% 25.37% 

Annualised Volatility 11.55% 10.67% 10.92% 9.88% 9.64% 9.78% 9.56% 9.97% 10.02% 9.92% 9.17% 

Maximum Drawdown -19.45% -13.67% -13.88% -11.76% -11.23% -11.65% -10.83% -10.67% -10.83% -10.84% -10.13% 
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5.6.2 Trading Performance exploiting Hybrid Leverage 

 

In order to further improve the trading performance of the models, this section introduces a 

hybrid leverage based on two time-varying factors, a leverage based on daily volatility 

forecasts (L1) and a leverage based on market shocks (L2). The proposed leverage for 

every trading day is simply the average of L1 and L2. In the next sections it is explained 

how L1 and L2 are assigned. 

 

5.6.2.1 Volatility Leverage (L1) 

 

The intuition of the Volatility Leverage (L1) is to avoid trading when volatility of the 

exchange rate returns is very high, while at the same time exploiting days with relatively 

low volatility. Firstly, I forecast with a GJR (1, 1)9 the one day ahead realised volatility of 

the EUR/USD exchange rate in the test and validation sub-periods. Then, I split these two 

periods into six sub-periods, ranging from periods with extremely low volatility to periods 

experiencing extremely high volatility. The process of forming these six periods is the 

same as in chapter 4. For each sub-period a daily leverage factor L1 is assigned starting 

with 0 for periods of extremely high volatility to a L1of 2 for periods of extremely low 

volatility. Table 5-8 below presents the sub-periods and their relevant L1s. 

 

Table 5-7: Classification of Volatility Leverage (L1) in sub-periods 

  

                                                                 
9 It is also explored the RiskMetrics, GARCH (1, 1) and GARCH-M models for forecasting 
volatility. Their statistical accuracy in all three test sub-periods is slightly worse compared 
with the GJR (1, 1) daily volatility forecasts. Moreover, when their utility is measured in 
terms of trading efficiency for our models within the context of our strategy in the test sub-
period, the results in terms of annualised returns are slightly better with GJR (1, 1) for most 
of the models. The ranking of the models in terms of information ratio and annualised 
return is the same whether I use GJR (1, 1) or the other explored alternatives.  

 Extremely 
Low Vol. 

Medium  

Low Vol. 

Lower  

Low Vol. 

Lower 

 High Vol. 
Medium 

High Vol. 
Extremely 
High Vol. 

L1 2 1.5 1 1 0.5 0 
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The parameters of the strategy (μ and σ) are updated every three months by rolling forward 

the estimation period, similarly to the update of chapter 4.  

 

5.6.2.2 Index Leverage (L2) 

 

The L1 measure presented above exploits periods of low volatility, but it does not take into 

account the effects on the EUR/USD exchange rate deriving from possible daily shocks in 

the EU and USA stock markets. For that reason, this section introduces an Index Leverage 

(L2), based on two representative indices, the Dow Jones Industrial Average Index (DJIA) 

and the Dow Jones EuroStoxx 50 Index (SX5E). These indices efficiently reflect any 

shocks in the USA and EMU economies and are used as their proxies in a wealth of 

relevant studies (see amongst others Charles and Darne (2006), Tastan (2006), Hemminki 

and Puttonen (2008) and Awartani et al. (2009)).  

The intuition of this leverage is to capture the shocks that the models are unable to 

incorporate in the short-run (for example the devaluation from a rating agency of an EMU 

country or a change in US interest rates). These changes will be instantly reflected in the 

affected stock market and the next day in the ECB EUR/USD fixing. However, the models 

will need some period to adjust to these shocks and are certainly unable to reflect them in 

the short-run.  

The methodology is similar to the one followed for L1. Firstly, it is defined the 

daily difference δE-U as:  

 5E U SX E DJIAR Rδ − = −                                 (5.14) 

where  5SX ER  and DJIAR   are the daily SX5E and DJIA stock index returns respectively.10 

The mean of that difference (μ΄) and its standard deviation (σ΄) are calculated. Then based 

on δE-U, μ΄ and σ΄, I split again every three months of the test and the out-of-sample into six 

sub-periods. The parameters of the strategy (μ΄ and σ΄) are updated every three months by 

rolling forward the estimation period. The sub-periods are generated as in L1. Namely, the 

periods where the difference δE-U is between μ΄ and one σ΄ are classified as ‘Lower High δE-

                                                                 
10 DJIA’s closing time is at 4:30 a.m. (ECT), while SX5E is closing at 6:00 p.m. (ECT). Since ECB’s daily 
fixing is available at  2.15 p.m. (ECT), I calcu late today’s δE-U with the first lags of the stock index returns 
RSX5E and RDJIA. Both RSX5E and RDJIA are calculated as in equation (1). 
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U Periods’. Similarly, ‘Medium High δE-U’ (between μ΄+σ΄ and μ΄+2σ΄) and ‘Extremely 

High δE-U’ (above μ΄+2σ΄) periods can be defined. Periods with low difference δE-U are also 

defined following the same 1σ΄ and 2σ΄ approach, but with a minus sign. When δE-U is 

considerably higher than the average (a positive shock in the euro zone), the EUR is 

expected to appreciate.  

In order to justify the application of this leverage, though, the trading days must be 

further separated based on the sign of the daily forecast. Thus, the following two scenarios 

are possible:  

• If the sign of the forecast is positive (‘long’ position), a leverage (L2+) of more than 

1 is applied.  

• If the sign of the forecast is negative (‘short’ position), a leverage (L2-) of less than 

1 is applied. 

When the δE-U is considerably lower than the average (a negative shock in the euro zone), a 

depreciation of the euro should be expected. Thus, the assigned leverage has the opposite 

trend in the corresponding scenario. The final classification of L2 is shown in the 

following table.  

 

Table 5-8: Classification of Index Leverage (L2+ and L2-) in sub-periods 

 

5.6.2.3 Hybrid Leverage Performance 

 

From the above, the L1 and L2 (depending on the scenario, L2+ or L2-) factors are 

available for each trading day. The daily hybrid leverage applied is equal to the simple 

average of L1 and L2. The next step is to examine if this trading strategy improves the 

profitability of the models. For the model with the best statistical and trading performance, 

the SVR NN forecast combination, the L1 and L2 factors for F1, F2 and F3 exercises are 

presented in figure 5-2.  

 Extremely 
Low  δE-U 

Medium 
Low  δE-U 

Lower 

 Low  δE-U 

Lower  

High  δE-U 

Medium  

High  δE-U 

Extremely  

High  δE-U 

L2+ 0 0.5 1 1 1.5 2 

L2- 2 1.5 1 1 0.5 0 
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Figure 5-2: The Volatility Leverage (L1) and Index Leverage (L2) values assigned to the 

SVR model for each period under study 

 

From the figure above it is noted that the volatility based leverage (L1) takes 

mainly low values during 2008, through the F2 and the first semester of the F3 sub-period.  

Regarding L2, the trend is more irregular and in general more extreme, going from very 

low values to high ones in short period intervals. This can be attributed to the economic 

turbulence that dominates the out-of-sample periods and the shocks in the two benchmark 

markets. The L1 and L2 graphs for the other NN and forecast combination models present 

similar behaviors for the three periods.  
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The cost of leverage (interest payments for the additional capital) is calculated at 

0.504% p.a. (that is 0.002% per trading day11). The final results are presented in table 5-10 

that follows. Based on these results, it is obvious that the hybrid trading strategy is 

successful for all the models and periods. The SVR forecast combination seems to exploit 

the trading strategy well and achieves on average an annualized return of 25.08% after 

costs, increasing its profitability by 3.05%, 4.16% and 2.05% during F1, F2 and F3 sub-

periods respectively. GP and Kalman Filter remain the second and the third most profitable 

models, achieving both on average annualised returns over 20%, regardless the period 

under study. In general all forecasting models increase their trading performance by 1.69% 

on average, while their maximum drawdown is decreased on average by 1.01%.  In all 

three sub-periods, the EUR/USD exchange rate is dominated by shocks and high volatility. 

The proposed leverage factors manage to exploit this environment and increase the trading 

performance of all the models, in a period where uncertainty is present in the market.  

 

 

 

 

 

 

 

 

 

 

 

                                                                 
11 The interest costs are calculated by considering a 0.504% interest rate p.a. (the Euribor rate at the time of 
calculation) d ivided by 252 trading days. In reality, leverage costs also apply during non-trading days. Hence, 
the interest costs should be calculated using 360 days per year. But for the sake of simplicity, the 
approximation of 252 t rading days is used to spread the leverage costs of non-trading days equally over the 
trading days. This approximation allows the practit ioner not to keep track of how many non-trading days a 
position is hold. 
 



  

 
 

 

  

 

 

 

 

 

 

 

 

 

Note: Not taken into account the interest that could be earned during times where the capital is not traded (non-trading days) or 
not fully invested and could therefore be invested. 

Table 5-9: Summary of Out-of-Sample Trading Performance - final results 

 TRADITIONAL  
STRATEGIES  

NEURAL 
NETWORKS 

FORECAST 
COMBINATIONS 

OUT-OF-SAMPLE RW ARMA STAR MLP RNN PSN AVERAGE LASSO KALMAN GP SVR 

F1 

Information Ratio 
(including costs) 

-0.06 0.21 0.46 1.32 1.43 1.71 1.68 1.92 2.04 2.30 2.60 

Annualised Return 
(including costs) 

-0.58% 2.33% 4.54% 12.33% 13.26% 15.67% 15.78% 18.35% 19.37% 21.58% 25.23% 

Annualised Volatility 10.41% 10.95% 9.87% 9.32% 9.25% 9.18% 9.37% 9.55% 9.48% 9.39% 9.71% 

Maximum Drawdown -14.66% -14.59% -13.85% -14.08% -14.13% -13.03% -11.18% -10.43% -10.17% -10.07% -9.86% 

F2 

Information Ratio 
(including costs) 

-0.10 0.29 0.27 1.00 1.11 1.33 1.35 1.71 1.82 2.04 2.42 

Annualised Return 
(including costs) 

-1.29% 3.17% 3.96% 9.95% 10.97% 12.87% 13.43% 16.26% 17.15% 18.67% 22.59% 

Annualised Volatility 13.12% 11.03% 10.05% 9.94% 9.84% 9.71% 9.96% 9.51% 9.44% 9.17% 9.33% 

Maximum Drawdown -20.56% -19.17% -17.88% -13.27% -13.57% -12.41% -11.89% -11.57% -11.04% -10.85% -10.21% 

F3 

Information Ratio 
(including costs) 

0.04 0.46 0.79 1.38 1.71 1.95 1.92 2.08 2.29 2.47 2.80 

Annualised Return 
(including costs) 

0.44% 4.68% 7.84% 12.98% 16.44% 18.25% 18.74% 20.57% 21.94% 23.28% 27.42% 

Annualised Volatility 10.95% 10.12% 9.93% 9.42% 9.59% 9.35% 9.74% 9.88% 9.56% 9.43% 9.81% 

Maximum Drawdown -15.54% -13.04% -13.15% -11.12% -10.92% -10.97% -10.41% -10.08% -9.76% -9.57% -9.48% 

116 



  

117 
 

5.7 Conclusions 

 

The aim of this chapter is to examine the performance of a Multi-Layer Perceptron (MLP), 

a Recurrent Neural Network (RNN) and a Psi-Sigma Network (PSN) architecture in 

forecasting and trading the Euro/Dollar (EUR/USD) exchange rate and explore the utility 

of Kalman Filter, Genetic Programming (GP) and Support Vector Regression (SVR) 

algorithms as forecasting combination techniques. As benchmarks for the NNs I use a RW, 

an ARMA and a STAR, while for the forecast combination techniques a Simple Average 

and a Least Absolute Shrinkage and Selection Operator (LASSO). A new fitness function 

is also introduced for NNs in trading applications and a hybrid leverage trading strategy, in 

order to evaluate if their application can improve the trading performance of the models. 

In terms of the results, the PSN from the individual forecasts and the SVR from the 

forecasting combination techniques outperform their benchmarks in terms of statistical 

accuracy and trading efficiency. All NN forecast combinations achieve higher annualised 

returns and information ratios, presenting a “combining for improvement” pattern. 

Concerning the hybrid leverage strategy, it is noted that all models exploit it by increasing 

annualised returns and decreasing maximum drawdowns. The hybrid leverage factors 

applied serve their purpose, since they are more effective in periods of increased market 

volatility and risk. Moreover, the proposed fitness function for NNs is promising as all 

networks produce high profitability in both in- and out-of-sample periods and present a 

consistency between their statistical and trading ranking. Finally, it is observed that the 

ranking of all models is consistent in statistical and trading terms.   

The remarkable trading performance of the SVR indicates that it can be considered 

as the optimal forecasting combination for the models and time-series under study. The 

successful application of the proposed hybrid trading strategy and fitness function 

demonstrates the necessity for a shift from purely statistically based models to models that 

are optimized in a hybrid trading and statistical approach.  In general, the results should go 

some way towards convincing scientists and investment managers to experiment beyond 

the bounds of traditional models and trading strategies. 
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Chapter 6 

Modeling and Trading the EUR Exchange Rates 

with Hybrid Genetic Algorithms – Support Vector 
Regression Forecast Combinations 

 

 

 

6.1 Introduction 

 

Forecasting financial time series appears to be a challenging task for the scientific 

community because of its non-linear and non-stationary structural nature. On one hand, 

traditional statistical methods fail to capture this complexity while on the other hand, non-

linear techniques present promising empirical evidence. However, their practical 

limitations and the expertise required to optimize their parameters are creating skepticism 

on their utility.  

The motivation for this chapter is to introduce a novel hybrid Genetic Algorithm – 

Support Vector Regression (GA-SVR) algorithm for optimal parameter selection and 

feature subset combination, when applied to the task of forecasting and trading the 

EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed model genetically 

searches over a feature space (pool of individual forecasts) and then combines the optimal 

feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by 

applying a fitness function specialized for financial purposes. This function not only 

minimizes the error of the forecasts, but also increases the profitability of the final forecast 

combinations. This is crucial in financial applications where statistical accuracy is not 

always synonymous with the financial profitability of the deriving forecasts. The GA-SVR 

algorithm is benchmarked with SVR models with non-genetically optimized parameters, 
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such as ε-SVR and v-SVR. The statistical and trading performance of all models is 

investigated during the period of 1999-2012, using the last two years for out-of-sample 

testing.  

To the best of my knowledge, the proposed methodology has not been applied in 

relevant applications. In the literature there are similar hybrid applications which are either 

limited in classification problems (Min et al. (2006), Huang and Wang (2006), Wu et al. 

(2007) and Dunis et al. (2013)) or the GA does not extend to optimal feature subset 

selection (Pai et al. (2006), Chen and Wang (2007), Yuang (2012)). The novelty of the 

model lies in its ability to genetically optimize the SVR parameters, combine the optimal 

feature subsets and apply a fitness function, which aims to maximize not only the 

statistically accuracy of the forecasts but also their financial profitability. Compared to 

non-adaptive algorithms presented in the literature, this proposed architecture does not 

require from the practitioner to follow any time consuming optimization approach (such as 

cross validation or grid search) and is free from the data snooping bias. The latter is 

achieved because all parameters of the GA-SVR model are optimized in a single 

optimization procedure. 

From this analysis it emerges that the GA-SVR presents the best performance in 

terms of statistical accuracy and trading efficiency for all exchange rates under study. GA-

SVR’s trading performance and forecasting superiority not only confirms the success of 

the implemented fitness function. In additions it is validated from the results that applying 

GAs in this hybrid model to optimize the SVR parameters is more efficient compared to 

the optimization approaches (cross validation and grid search algorithms) that dominate the 

relevant literature. 

The rest of the chapter is organized as follows. Section 6-2 describes the 

EUR/USD, EUR/GBP and EUR/JPY ECB fixing series, used as dataset, while section 6-3 

summarizes the theoretical background needed for the complete understanding of the 

proposed methodology. In section 6-4 follows the complete description of the hybrid GA-

SVR model. The statistical and trading performance of the models is presented in sections 

6-5 and 6-6 respectively. Finally, some concluding remarks are provided in section 6-7. 
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6.2 The EUR/USD, EUR/GBP and EUR/JPY Exchange Rates and 
Related Financial Data 

 

The European Central Bank (ECB) publishes a daily fixing for selected EUR exchange 

rates. These reference mid-rates are based on a daily concentration procedure between 

central banks within and outside the European System of Central Banks. The rational of 

the selection of the ECB daily fixings is explained in previous chapters. The main intuition 

is that many financial institutions are ready to trade at the EUR fixing, leaving orders with 

a bank for business to be transacted at this level. Thus, the ECB daily fixings of the EUR 

exchange rate are tradable levels and using them is a realistic choice.  

This chapter examines the ECB daily fixings of EUR/USD, EUR/GBP and 

EUR/JPY exchange rates over the period of 1999-2012, as described in Table 1 below.  

 

 

Table 6-1: The Total Dataset - Neural Networks’ Training Datasets 

 

The graph below shows the total dataset for the three exchange rates under study.  

 

 

PERIODS TRADING DAYS START DATE END DATE 
Total Dataset 3395 01/02/1999 30/04/2012 

In-sample Dataset  2878 01/02/1999 29/04/2010 
Out-of-sample Dataset  517 30/04/2010 30/04/2012 



  

 
 

 

 

 

Figure 6-1: The EUR/USD, EUR/GBP and EUR/JPY total dataset 
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The three observed time series are non-normal (Jarque-Bera statistics (1980) 

confirm their non-normality at the 99% confidence interval) containing slight skewness 

and high kurtosis. They are also non-stationary and hence I transform them into three daily 

series of rate returns12 using the following formula: 

                                         
1

ln t
t

t

PR
P−

 
=  

 
                                            (6.1) 

Where  Rt   is the rate of return and Pt is the price level at time t.  

The summary statistics of the EUR/USD, EUR/GBP and EUR/JPY return series 

reveal that the slight skewness and high kurtosis remain. In addition, the Jarque-Bera 

statistic confirms again their non-normality at the 99% confidence interval. The aim is to 

forecast and trade the one day ahead return (E (Rt)) of the three exchange rates. As a first 

step, the three return series are estimated with several linear and non- linear models. Then 

these estimations are used as potential inputs to the proposed GA-SVR algorithm. 

 

6.3 Theoretical Background 

 

As mentioned before, the intention of this chapter combine and integrate the virtues of 

GAs to an SVR process. The reason is to face and efficiently cope with issues of optimal 

parameter tuning and feature selection. For that reason, a short theoretical background on 

all these issue is crucial to fully understand the attributes of the GA-SVR and identify its 

novelty. The explanation of the SVR process and the optimization of its parameters are 

given in detail in chapter 3. Feature selection is an optimization problem that refers to the 

search over a space of possible feature subsets in order to find those that are optimal with 

respect to specific criteria. Chapter 3 is also engaged with this issue in detail. Therefore, 

these issues are not further elaborated in this chapter, relieving the reader from unnecessary 

repetitions.  

  

                                                                 
12 Confirmat ion of their stationary property is obtained at the 1% significance level by both the Augmented 
Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics. 
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6.4 Hybrid Genetic Algorithm – Support Vector Regression (GA-
SVR) 

 

The hybrid Genetic Algorithm – Support Vector Regression (GA-SVR) model for optimal 

parameter selection and feature subset combination is presented in this section. Initially, 

the generic architecture of the methodology is described. Then the feature space, in which 

the model searches for the optimal subsets and combinations, is identified along with the 

models that are going to be used as benchmarks. 

 

6.4.1 Architecture 

 

The proposed model genetically searches over a feature space (pool of individual forecasts) 

and then combines the optimal feature subsets (SVR forecast combinations) for each 

exchange rate. In order to achieve this, a simple GA is used. Each chromosome includes 

feature genes that encode the best feature subsets and parameter genes that encode the best 

choice of parameters. The model is explained in detail in chapter 3. 

A two-objective fitness function is applied to the hybrid approach in order to 

achieve the optimal selection of the feature subsets (individual forecasts). Firstly the 

annualised return of the SVR forecast combinations should be maximized and secondly the 

Root Mean Square Error (RMSE) of the output should be minimized in the test sub-period. 

Based on the above, the fitness function takes the form of equation 6.2.: 

 

Fitness = Annualised_Return – 10*RMSE          (6.2)  

 

The aim is to maximize the previous equation13, since in genetic modelling the fitness 

function have to be increasing functions. This function aims to bring a balance between 

trading profitability (first factor of equation) and statistical accuracy (second factor of the 

equation). In trading applications this is a very important virtue, because the statistical 

accuracy does not always imply financial profitability.  

                                                                 
13 The RMSE is multiplied by 10 so the two factors in our equation are more or less equal in levels. 
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The size of the initial population is set to 40 chromosomes while the maximum 

number of generations is set to 200. The algorithm, though, terminates when the number of 

generations is 60 on average, regardless the series under study. This number must be 

reached in combination with a termination method that stops the evolution, when the 

population is deemed as converged. As mentioned in chapter 3, the population is deemed 

as converged when the average fitness across the current population is less than 5% away 

from the best fitness of the current population. The summary of the GA’s characteristics is 

presented in table 6-2 below. Finally, the detailed flowchart of the proposed methodology 

is depicted in figure 3-6 in chapter 3. 

 

Population Size 40 

Maximum Generations 200 

Selection Type Roulette Wheel Selection 

Elitism Best member of every population is maintained in the next generation. 

Crossover Probability 0.9 

Mutation Probability 0.1 

Fitness Function Annualised_Return – 10*RMSE 

 

Table 6-2: GA Characteristics and Parameters 

 

6.4.2 Feature Space, Feature Subset Selection and Benchmark 
Models 

 

The forecasting ability of the proposed methodology is evaluated over a feature space 

(pool of individual forecasts) that is synthesized by individual linear and non- linear 

forecasts of each exchange rate. More specifically, the pool comprises of a series of 

Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA) 

linear models and five non-linear algorithms, namely a Nearest Neighbours Algorithm (k-

NN) a Multi-Layer Perceptron (MLP), a Recurrent Neural Network (RNN), a Higher Order 

Neural Network (HONN) and a Psi-Sigma Neural Network (PSN). A summary of the 

linear models is presented in table 6-3 below, while the non- linear models are explained in 

Appendix D. 
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LINEAR MODELS DESCRIPTION 

RW ( ) , ~ (0,1)t t tE R e e Nµ= + where μ the in-sample mean 

AR (p) 0
1

( )
p

t i t i
i

E R Rβ β −
=

= +∑ where p=1,…,20 and β0, βi the regression coefficients  

MA (q) 1 1( ) ( ... ) /t t t qE R R R q− − += + + , where q=3...25 

ARMA (m, n) 
0 0

1 1
( )

m n

t j t j k t k
j k

E R R a w aϕ ϕ − −
= =

= + + +∑ ∑ ,where m, n=1,..,15, φ0,φj are the 

regression coefficients, α0, at-k  the residual terms and wk the weights of the residual 

terms 

 

Table 6-3: The summary description of the linear models 

 

Note: (a) shows a possible selected feature subset. This subset gene includes the forecasts of AR (2), AR (i), 

MA(1), MLP and PSN. (b) refers to the parameters gene which includes the three parameters C, δ2, ν (δ2=γ). 

The two genes together comprise the output chromosome, while the three encoded parameters are used to 

provide the final SVR forecast for the given example. 

Figure 6-2: The GA-SVR chromosome  
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In this chapter, the algorithm genetically searches the above feature space and 

finally selects as optimal feature subsets the MLP, RNN and PSN individual forecasts for 

all three exchange rates under study. This means that the proposed methodology rejects all 

linear approaches, the k-NN and the HONN models over the MLP, RNN and PSN. 

Regarding the linear models, that is expected because of the non- linearity that dominates 

financial time series. Concerning the k-NN and HONNs models, the algorithm identifies 

that their individuals forecasts are either not adding any value as inputs to the GA-SVR 

algorithms or their forecasts are encompassed to the ones selected. Knowing the feature 

subsets that qualify from the feature space, the final stage of this methodology can be 

reached. This is the combination of the individual forecasts of MLP, RNN and PSN with 

SVR to produce the final forecasts. In this final step, the optimized parameters are used, as 

the GA produced for the specific set of inputs during the previous selection process (see 

figure 6-2 above).  

The statistical and trading efficiency of the hybrid model is evaluated by benchmarking 

GA-SVR with more traditional SVRs, such as ε-SVR and v-SVR, whose parameters are 

not genetically optimized. The ε-SVR and v-SVR alternatives are described in detail in 

chapter 3. The RBF kernel and the optimal selected inputs (MLP, RNN and PSN 

individual forecasts) are used in all SVR benchmarks in order to achieve a fair comparison 

with the proposed model. Based on this research background, the following benchmark 

alternatives are identified: 

• An ε-SVR model that implements a 5-fold cross-validation and a simple data-

driven calculation on the in-sample dataset to calculate parameters ε, γ and C 

respectively (ε-SVR1) (see SVR process of chapter 5). 

• A v-SVR model that calculates its parameters v, γ and C as the ε-SVR1 (v-SVR1). 

• An ε-SVR and v-SVR model that all parameters are selected based on a grid-search 

algorithm in the in-sample dataset (ε-SVR2 and v-SVR2). 

For more on the ε-SVR1 and v-SVR1 approaches see Duan et al. (2003) and Cherkassky 

and Ma (2004), while for the ε-SVR2 and v-SVR2 see Scholkopf and Smola (2002). The 

parameters of the benchmark SVRs and the proposed GA-SVR are shown in the following 

table: 
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Table 6-4: The parameters of the SVR model for each exchange rate under study 

 

6.5 Statistical Performance 

 

As it is standard in the literature, in order to evaluate statistically of the forecasts, the Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE) and Theil-U statistics are computed. The mathematical formulas of these 

statistics are presented in Appendix B.4. For all four statistical measures retained, the 

lower the output the better the forecasting accuracy of the model concerned. The Pesaran-

Timmermann (PT) test (1992) examines whether the directional movements of the real and 

forecast values are in step with one another. In other words, it checks how well rises and 

falls in the forecasted value follow the actual rises and falls of the time series. The null 

hypothesis is that the model under study has no power on forecasting the relevant 

exchange rate.  

The in-sample statistical performance of the models for the EUR/USD, EUR/GBP 

and EUR/JPY exchange rates is presented in table 6-5 below.  

 PARAMETERS ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVR 

EUR/USD 

C 3.15 10.75 4.68 8.28 6.23 

ε 10.91 4.12 - - - 

v - - 0.87 0.53 0.75 

γ 5.28 17.69 8.51 10.25 14.78 

EUR/GBP 

C 2.55 9.83 5.57 11.84 8.19 

ε 8.17 2.47 - - - 

v - - 0.57 0.81 0.64 

γ 7.42 12.16 9.41 19.93 17.12 

EUR/JPY 

C 1.98 6.88 4.42 5.75 4.33 

ε 12.66 3.46 - - - 

v - - 0.34 0.59 0.41 

γ 11.23 15.24 13.67 12.51 11.47 
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 IN-SAMPLE ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVR 

EUR/USD 

MAE 0.00445 0.00428 0.00399 0.00364 0.00328 
MAPE 90.41% 89.94% 86.22% 81.66% 75.27% 
RMSE 0.00613 0.00569 0.00561 0.00529 0.00488 
Theil-U 0.58874 0.56416 0.53672 0.51407 0.46310 

PT-statistic 8.34 9.55 10.89 11.95 14.82 

EUR/GBP 

MAE 0.00436 0.00402 0.00388 0.00356 0.00317 
MAPE 89.59% 88.67% 86.22% 82.29% 78.14% 
RMSE 0.00568 0.00537 0.00514 0.00483 0.00443 
Theil-U 0.59148 0.56416 0.53472 0.50526 0.47538 

PT-statistic 7.86 9.15 10.66 11.55 14.21 

EUR/JPY 

MAE 0.00485 0.00453 0.00433 0.00401 0.00358 
MAPE 92.47% 91.68% 89.41% 86.28% 81.79% 
RMSE 0.00627 0.00598 0.00561 0.00522 0.00478 
Theil-U 0.52338 0.49954 0.47852 0.44771 0.40659 

PT-statistic 9.17 10.21 11.51 13.21 15.07 
 

Table 6-5: Summary of In-Sample Statistical Performance 

 

From the results above it is suggested that the GA-SVR presents the best in-sample 

statistical performance for every exchange rate under study and for all four statistical 

measures retained. The PT-statistics rejects the null hypothesis of no forecasting power at 

the 1% confidence interval for all models and series under study. It seems that none of the 

SVR approaches projects poor directional change forecasts in the in-sample period. 

Moreover, it is noted that the v-SVR models (v-SVR1 and v-SVR2) seem to have better 

realizations of the statistical measures than the ε-SVR ones (ε-SVR1 and ε-SVR2).  Table 

6-6 summarizes the statistical performance of the models in the out-of-sample period. 

 

 OUT-OF-SAMPLE ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVR 

EUR/USD 

MAE 0.00491 0.00475 0.00437 0.00404 0.00358 
MAPE 95.51% 93.69% 90.78% 85.74% 80.68%  
RMSE 0.00653 0.00637 0.00593 0.00568 0.00519 
Theil-U 0.63415 0.62478 0.57038 0.53874 0.48994 

PT-statistic 7.89 8.01 9.14 10.21 12.77 

EUR/GBP 

MAE 0.00474 0.00428 0.00408 0.00386 0.00344 
MAPE 94.25% 91.95% 88.61% 86.11% 81.95%  
RMSE 0.00571 0.00542 0.00522 0.00507 0.00555 
Theil-U 0.63914 0.60144 0.58194 0.65276 0.62334 

PT-statistic 6.38 7.15 8.41 9.27 12.15 

EUR/JPY 

MAE 0.00525 0.00507 0.00480 0.00448 0.00394 
MAPE 97.17% 94.53% 91.22% 87.16% 82.19%  
RMSE 0.006825 0.00649 0.00618 0.00579 0.00583 
Theil-U 0.60571 0.59341 0.55948 0.50489 0.48921 

PT-statistic 7.42 8.23 9.21 11.26 13.75 
 

Table 6-6: Summary of Out-of-Sample Statistical Performance  
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From the results of table 6-6 it is obvious that the proposed methodology retains its 

forecasting superiority for the statistical measures applied in the out-of-sample period. 

Once more, the v-SVR approaches outperform the ε-SVR models and the PT-statistics 

indicate that all models forecast accurately the directional change of the exchange rates 

under study. Finally, it also obvious that the v-SVR model that optimizes its parameters 

with the grid-search algorithm (v-SVR2) retains the second more accurate statistical 

performance after the hybrid proposed methodology.  

Similarly to previous chapters, the statistical superiority of the best proposed architecture, 

the GA-SVR, is evaluated also by computing the Diebold-Mariano (1995) DM statistic for 

predictive accuracy (see appendix B.5.). In this study, both MSE and MAE are considered 

as loss functions. Table 6-7 below presents the DM statistic comparing the GA-SVR with 

its benchmarks. 

 Loss Functions ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 

EUR/USD sMSE -6.258 -5.997 -4.841 -3.957 
sMAE -11.539 -10.165 -8.412 -5.331 

EUR/GBP sMSE -5.894 -5.233 -4.014 -3.108 
sMAE -9.568 -7.129 -5.743 -4.157 

EUR/JPY sMSE -8.027 -7.549 -6.138 -4.147 
sMAE -11.622 -12.057 -10.619 -7.219 

 

Table 6-7: The Diebold-Mariano statistics of MSE and MAE loss functions 

The table validates that the null hypothesis of equal predictive accuracy is rejected 

for all comparisons and for both loss functions at the 1% confidence interval (absolute 

values higher than the critical value of 2.33). Moreover, the statistical superiority of the 

GA-SVR forecasts is confirmed as the realizations of the DM statistic are negative for both 

loss functions14. It is also found that the second best model in statistical terms, the v-SVR2, 

has the closest forecasts with the GA-SVR model.  

Under the above given computational and statistical context, it is worth repeating that the 

proposed GA-SVR methodology is fully adaptive. The practitioner does not need to 

experiment with the parameters of the algorithm in order to optimize the forecasts. The 

GA-SVR structure and parameters are generated in a single optimization procedure, a 

procedure which prevents the data snooping effect.   

                                                                 
14  In this chapter the Diebold-Mariano test is applied to couples of forecasts (GA-SVR vs. another 
forecasting model). A negative realizat ion of the Diebold-Mariano test statistic indicates that the first forecast 
(GA-SVR) is more accurate than the second forecast. The lower the negative value, the more accurate are the 
GA-SVR forecasts. 
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6.6 Trading Performance 

 

In the previous section the forecasts are evaluated through a series of statistical accuracy 

measures and tests. However, statistical accuracy is not always synonymous with financial 

profitability. In financial applications, the practitioner’s utmost interest is to produce 

models that can be translated to profitable trades. It is therefore crucial to further examine 

the proposed model and evaluate its utility through a trading strategy. The trading strategy 

applied is simple. The trading signals are ‘long’ when the forecast return is above zero and 

‘short’ when the forecast return is below zero. The ‘long’ and ‘short’ EUR/USD, 

EUR/GBP or EUR/JPY position is defined as buying and selling Euros at the current price 

respectively. Appendix B.4 includes the specification of the trading performance measures 

used in this chapter. 

Based on the trading rational of chapters 4 and 5, the transaction costs for a 

tradable amount are about 1 pip per trade (one way) between market makers. The 

EUR/USD, EUR/GBP and EUR/JPY time series are considered a series of middle rates, 

the transaction cost is one spread per round trip. For the given dataset a cost of 1 pip is 

equivalent to an average cost of 0.0074%, 0.0117% and 0.0091% per position for the 

EUR/USD, the EUR/GBP and the EUR/JPY respectively.  

Table 6.8 that follows presents the summary of the out-of-sample trading 

performance of the models for each exchange rate under study. From the results of this 

table it is suggested that the GA-SVR demonstrates the superior trading performance in 

terms of annualised return and information ratio for all exchange rates in the in-sample 

period.  The GA-SVR yields on average 4.13% higher annualised returns than v-SVR2, 

which is the second most profitable SVR approach. Referring to the statistical performance 

of the models during the same period (see table 6-5), the statistical ranking of the models 

is similar to their ranking in trading terms.  
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 IN-SAMPLE ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVR 

E 
U 
R 
/ 
U 
S  
D 

Annualised Return (excluding costs) 30.22% 32.94% 35.30% 38.53% 41.83% 

Annualised Volatility 10.39% 10.34% 10.31% 10.26% 10.21% 

Information Ratio (excluding costs) 2.91 3.19 3.42 3.76 4.10 

Maximum Drawdown -11.25% -11.35% -10.52% -10.30% -11.17% 

Annualized Transactions 120 114 106 116 113 

Transaction Costs 0.89% 0.84% 0.78% 0.86% 0.84% 

Annualised Return (including costs) 29.33% 32.10% 34.52% 37.67% 40.99% 

Information Ratio (including costs) 2.82 3.10 3.35 3.67 4.01 

E 
U 
R 
/ 
G 
B 
P 

Annualised Return (excluding costs) 28.57% 31.10% 32.77% 35.82% 40.61% 

Annualised Volatility 8.03% 7.88% 7.85% 7.80% 7.78% 

Information Ratio(excluding costs) 3.56 3.95 4.17 4.59 5.22 

Maximum Drawdown -7.92% -7.64% -7.34% -7.83% -8.33% 

Annualized Transactions 132 156 136 153 150 

Transaction Costs 1.54% 1.83% 1.59% 1.79% 1.76% 

Annualised Return (including costs) 27.03% 29.27% 31.18% 34.03% 38.85% 

Information Ratio (including costs) 3.37 3.71 3.97 4.36 4.99 

E 
U 
R 
/ 
J 
P 
Y 

Annualised Return (excluding costs) 29.45% 32.31% 34.81% 37.98% 42.25% 

Annualised Volatility 11.55% 12.08% 12.47% 12.22% 12.04% 

Information Ratio (excluding costs) 2.55 2.67 2.79 3.11 3.51 

Maximum Drawdown -14.29% -13.93% -13.28% -12.21% -12.19% 

Annualized Transactions 122 120 127 120 122 

Transaction Costs 1.11% 1.09% 1.16% 1.10% 1.11% 

Annualised Return (including costs) 28.34% 31.22% 33.65% 36.88% 41.14% 

Information Ratio(including costs) 2.45 2.58 2.70 3.02 3.42 

 

Table 6-8: Summary of In-Sample Trading Performance 

 

The trading performance of the models in the out-of-sample period is presented in 

table 6-9. The GA-SVR continues to outperform all other SVR forecast combination 

models in terms of trading efficiency. On average, it presents a 3.53% higher annualised 

return and 0.32 higher information ratio compared to the second best model, the v-SVR2. 

The proposed methodology clearly outperforms its benchmarks in terms of statistical 

accuracy and financial profitability.  It is interesting to extrapolate that the profitability 

divergence between the different SVR models.  For instance, between GA-SVR and ε-

SVR1 there is an average difference of 12.37% in annualised return after transaction costs 
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for the three exchange rates. Smaller differences are also evident in the other SVR 

approaches. In general, the above results indicate that SVR’s trading performance is very 

sensitive to the parameters optimization process. 

Regarding the fitness function integrated in the GA, the results are extremely 

promising, since the selection of MLP, RNN and PSN as optimal feature subsets leads to 

genetic (GA-SVR) or non-genetic (ε-SVR1, ε-SVR2, v-SVR1 and v-SVR2) forecast 

combinations with high annualised returns and information ratios after transaction costs. 

Finally, it is interesting that the statistical ranking of the proposed models coincides with 

their trading performance for all exchange rates and sub periods.  

 

 OUT-OF-SAMPLE ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVR 

E 
U 
R 
/ 
U 
S  
D 

Annualised Return (excluding costs) 20.17% 23.35% 26.82% 29.78% 33.75% 

Annualised Volatility 10.81% 11.08% 11.05% 11.02% 10.97% 

Information Ratio (excluding costs) 1.87 2.11 2.43 2.70 3.08 

Maximum Drawdown -11.04% -10.85% -10.65% -11.35% -13.74% 

Annualized Transactions 152 146 140 144 144 

Transaction Costs 1.13% 1.08% 1.04% 1.07% 1.07% 

Annualised Return (including costs) 19.04% 22.27% 25.78% 28.71% 32.68% 

Information Ratio (including costs) 1.76 2.01 2.33 2.61 2.98 

E 
U 
R 
/ 
G 
B 
P 

Annualised Return (excluding costs) 19.97% 22.11% 24.91% 28.64% 30.49% 

Annualised Volatility 8.45% 8.24% 8.21% 8.16% 8.13% 

Information Ratio(excluding costs) 2.36 2.68 3.03 3.51 3.75 

Maximum Drawdown -12.11% -14.90% -12.60% -13.03% -14.90% 

Annualized Transactions 105 154 103 153 152 

Transaction Costs 1.23% 1.80% 1.21% 1.79% 1.78% 

Annualised Return (including costs) 18.74% 20.31% 23.70% 26.85% 28.71% 

Information Ratio (including costs) 2.22 2.46 2.89 3.29 3.53 

E 
U 
R 
/ 
J 
P 
Y 

Annualised Return (excluding costs) 20.79% 23.56% 26.39% 29.66% 34.33% 

Annualised Volatility 13.18% 13.47% 13.45% 13.42% 13.37% 

Information Ratio (excluding costs) 1.58 1.75 1.96 2.21 2.57 

Maximum Drawdown -13.21% -14.18% -12.90% -13.05% -10.20% 

Annualized Transactions 130 138 121 142 132 

Transaction Costs 1.18% 1.26% 1.10% 1.29% 1.20% 

Annualised Return (including costs) 19.61% 22.30% 25.29% 28.37% 33.13% 

Information Ratio(including costs) 1.49 1.66 1.88 2.11 2.48 
 

Table 6-9: Summary of Out-of-Sample Trading Performance - final results  



  

133 
 

6.7 Conclusions 

 

In this chapter the hybrid Genetic Algorithm – Support Vector Regression (GA-SVR) 

model for optimal parameter selection and feature subset combination is introduced. It is 

applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY 

exchange rates. The proposed model genetically searches over a feature space and then 

combines the optimal feature subsets for each exchange rate. This is achieved by applying 

a fitness function specialized for financial purposes. The individual forecasts are derived 

from several linear and non- linear models. Finally, the GA-SVR is benchmarked with non-

genetically optimized SVRs, such as ε-SVR and v-SVR.  

The GA-SVR model presents the best performance in terms of statistical accuracy 

and trading efficiency for all the exchange rates under study. GA-SVR’s superiority not 

only confirms the success of the implemented fitness function, but also validates the 

benefits of applying GAs to SVR models. Regarding the fitness function integrated to the 

GA, the results are interesting. The selection of MLP, RNN and PSN as optimal feature 

subsets leads to genetic (GA-SVR) or non-genetic (ε-SVR1, ε-SVR2, v-SVR1 and v-SVR2) 

forecast combinations with high annualised returns and information ratios after transaction 

costs. Finally, it is interesting that the statistical ranking of the proposed models coincides 

with their trading performance for all exchange rates and sub periods.  

 The large differences in the trading performance of the models under study, 

indicates the sensitivity of SVRs to their parameters optimization processes. Consequently, 

with the empirical evidence of this chapter a contribution is made to the extensive literature 

that covers the issues of parameter tuning. In conclusion, the results point out that the SVR 

practitioners should experiment beyond the bounds of traditional SVRs. 

 

  



  

134 
 

Chapter 7 

Inflation and Unemployment Forecasting with 

Genetic Support Vector Regression 

 

 

 

7.1 Introduction 

 

Developing highly accurate techniques for predicting the inflation and the unemployment 

is a crucial problem for economists and bankers. The forecasts for the unemployment and 

inflation play a crucial role in almost any monetary and policy decision process. As a result 

the empirical literature on forecasting macroeconomic variables is wealthy and extensive. 

Several statistical, technical and econometrical techniques have been applied to the 

problem with ambiguous results. Although researchers seem able to capture the pattern of 

the macroeconomic variables under normal market conditions, these models fail to provide 

accurate results during periods of recessions and economy shocks (Ager et al. (2009), 

Cogley et al. (2010) and Li (2012)). This can be explained by the fact that the relevant 

literature is dominated by linear models and/or models based on a fixed set of predictors. 

Inflation and unemployment though are affected by a number of different macroeconomic 

indicators and the underlying relation is likely to be changing depending on the state of the 

economy (D’Agostino et al., 2013).  

In this chapter a hybrid Genetic Algorithm – Support Vector Regression (GA-SVR) 

model in economic forecasting and macroeconomic variable selection is introduced. 

Extending the GA-SVR model of chapter 6, in this application the GA-SVR does not 

perform genetic SVR forecast combinations. The proposed algorithm is applied to the task 

of forecasting the US inflation and unemployment. The GA-SVR genetically optimizes the 

SVR parameters and adapts to the optimal feature subset from a feature space of potential 

inputs. The feature space includes a wide pool of macroeconomic variables that might 

affect the two series under study. The forecasting performance of the GA-SVR is 
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benchmarked with a random walk model (RW), an Autoregressive Moving Average model 

(ARMA), a Moving Average Convergence/Divergence model (MACD), a Multi-Layer 

Perceptron (MLP), a Recurrent Neural Network (RNN) and a Genetic Programming (GP) 

algorithm. In terms of the results, GA-SVR outperforms all benchmark models and 

provides evidence on what macroeconomic variables can be relevant predictors of US 

inflation and unemployment in the specific period under study. 

The novelty of this model lies in its ability to capture the asymmetries and 

nonlinearities in the given sample of predictors, select the optimal feature subsets and 

provide a single robust SVR. In that way, the GA-SVR sheds more light on the quest of 

nonlinear mapping of macroeconomic variables. From a technical point of view, the 

proposed model is superior to non-adaptive algorithms presented in the literature. It does 

not require analytic parameter calculation as Cherkassky and Ma (2004) propose, but also 

avoids time consuming optimization approaches (cross validation or grid search) that are 

used in similar applications ( Lu et al. (2009) and Kim and Sohn (2010)). Additionally it is 

free from the data snooping bias, since all parameters of the GA-SVR model are optimized 

in a single optimization procedure.  

The GA-SVR is applied to the task of forecasting the US inflation and 

unemployment and attempts to capture the complex and non- linear behavior that 

dominates the two series. As potential inputs, the proposed algorithm uses a pool of 110 

potential predictors. This increases the model’s flexibility and allows it to explore a large 

universe of potential relationships between the 110 predictors and the US inflation and 

unemployment. The selection of the proposed model’s inputs and parameters is based on a 

GA algorithm, while the pool of potential inputs is only limited by the data availability. All 

models present forecasts for the periods from January 1974 to December 2012. The periods 

from January 1997 to December 2000, January 2001 to December 2004, January 2005 to 

December 2008 and January 2009 to December 2012 act as out-of-samples by rolling 

forward the estimation by four years. From an econometric perspective the rolling forward 

estimation adds validity to the results of the forecasting exercise. From an economic 

perspective, the unique architecture of the GA-SVR model will allow to study if variables 

that are significant in forecasting the inflation and the unemployment in the pro-crisis 

period (1997-2004) remain significant in crisis and after crisis period (2005-2012). The 

above selection of the out-of-sample periods tests if the forecasting power of the models is 

reduced during the recession period, as it is repeatedly reported in the recent relevant 

literature.     
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During the last decades the dynamics of US inflation have changed considerably. 

Inflation forecasters have implemented a wide variety of multivariate models, such as 

Cogley and Sargent (2005) and Cogley et al. (2010). These models attempt to outperform 

simple univariate models like the Atkeson-Ohanian’s (2001) random walk model or time 

varying models with unobserved components as presented by Stock and Watson (2007). 

Their success though is inconsistent and their inflation forecasts are unstable. A concise 

survey of the instability of these models is given by Stock and Watson (2009).  Stock and 

Watson (2003, 2004) also propose that the best predictive performance is attained through 

simple averaging of inflation forecasts derived from a very large number of models. 

McAdam and McNelis (2005) perform an inflation forecasting exercise in US, Japan and 

Euro area, where GAs are combined with NNs in order to achieve optimal non- linear 

Phillips curve specifications. Based on their results, the authors conclude that the payoff of 

the NN strategy comes in periods of structural change and uncertainty. Ang et al. (2007) 

compare and combine the forecasting power of several linear and non-linear models of 

forecasting U.S. inflation with survey-based measures. Their study shows that the use of 

surveys’ information can lead to superior individual forecasts. Furthermore, Inoue and 

Kilian (2008) apply the method of bootstrap forecast aggregation to the task of forecasting 

the US CPI inflation, also known as bagging. The empirical evidence confirms the 

superiority of this method to the Bayesian model averaging or Bayesian shrinkage 

estimators used by other researchers (see amongst others Groen et al. (2010), Koop and 

Korobilis (2012) and Stock and Watson (2012)). The authors, though, note that the utility 

of the bagging method should be further explored in other empirical cases. All these 

approaches attempt to pool forecasts from many macroeconomic predictors, but they are 

highly demanding computational tasks. The proposed GA-SVR algorithm is able to exploit 

a large pool of potential inputs computationally efficiently, since it can be implemented 

with the help of any modern laptop in a couple of hours.    

Forecasting unemployment rates is also a well-documented case study in the 

literature (Rothman (1998), Montgomery et al. (1998)). Swanson and White (1998) 

forecast several macroeconomic time series, including US unemployment, with linear 

models and Neural Networks (NNs). In their approach, NNs present promising empirical 

evidence against the linear VAR models. Moshiri and Brown (2004) apply a back-

propagation model and a generalized regression NN model to estimate post-war aggregate 

unemployment rates in the USA, Canada, UK, France and Japan. The out-of-sample results 

confirm the forecasting superiority of the NN approaches against traditional linear and 

non- linear autoregressive models. Smooth transition vector error-correction models are 

also used to forecast the unemployment rates, as in the non-Euro G7 countries’ study of 
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Milas and Rothman (2008). The proposed model outperforms the linear autoregressive 

benchmark and improves significantly the forecasts of the US and UK unemployment rate 

during business cycle expansions. Wang (2010) combines several rival individual US 

unemployment forecasts with directed acyclical graphs. The results indicate that models 

that are not directly causally linked can be combined to project a more accurate composite 

forecast. Chua et al. (2012) present a latent variable approach to the same forecasting task. 

Their model exploits the time series properties of US unemployment, while satisfying the 

economic relationships specified by Okun’s law and the Phillips curve. The specification is 

advantageous since it provides an unemployment forecast consistent with both theories, but 

at the same time is less computational demanding than equivalent atheoretical models like 

VAR and BVAR. Finally, Olmedo (2013) performs a competition between non- linear 

models to forecast different European unemployment rate time series. The best results are 

provided by a vector autoregressive and baricentric predictor, but as the forecasting 

horizon lengthens the performance deteriorates.  

The rest of the chapter is organized as follows. Section 7-2 describes the dataset 

used for this study, while a brief description of the benchmark models is given in section 7-

3. In Section 7-4 follows the description of the hybrid GA-SVR model. The empirical 

results are presented in sections 7-5. The final section 7-6 includes the concluding remarks 

of this chapter.  

 

7.2 Data Description 

 

This chapter implements two forecasting exercises with monthly data over the period of 

January 1974 to December 2012. The first exercise attempts to forecast the percentage 

change in the US inflation. As a proxy for the US inflation, the US Consumer Price Index 

(CPI) is employed. The second one focuses on predicting the percentage change of the US 

unemployment rate (UNEMP). Figure 7-1 below presents the two series under study in 

levels. 
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Figure 7-1: The historical monthly series of US CPI and Unemployment Rate in levels 

 

Following similar studies (Wright (2009) and Koop and Korobilis (2012)), eleven 

predictors are selected that can explain the economic premises of inflation and 

unemployment or are found to be useful in forecasting them. The pool of the potential 

inputs includes the first ten autoregressive terms of these predictors. Thus, the feature 

space consists of hundred ten series of monthly percentage changes. All series are 

seasonally adjusted, where applicable. The sources of the data are the Federal Reserve 

Bank of St. Louis (FRED) and Bloomberg (BLOOM). Table 7-1 below summarizes the 

variables used for the purpose of this forecasting exercise. 
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No MNEMONIC DESCRIPTION SOURCE 

1 CPI US Consumer Price Index for All  
Urban Consumers: All Items (SA) FRED 

2 UNEMP US Civilian Unemployment Rate (SA) FRED 
3 JPY JPY/USD Exchange Rate (NSA) FRED 
4 GBP GBP/USD Exchange Rate (NSA) BLOOM 

5 HOUSE US Housing Starts Total: New Privately  
Owned Housing Units Started (SA) FRED 

6 INDP US Industrial Production Index (SA) FRED 
7 M1 US M1 Money Stock (SA) FRED 

8 EMPL US All Employees:  
Total nonfarm (SA) FRED 

9 PCE US Personal Consumption  
Expenditures (SA) FRED 

10 PI US Personal Income (SA) FRED 

11 TBILL US 3-Month Treasury Bill:  
Secondary Market Rate (NSA) FRED 

12 WAGE US Average Hourly Earnings of Production  
and Nonsupervisory Employees: Manufacturing (SA) FRED 

13 DJIA Dow Jones Industrial Average (NSA) BLOOM 
Note: CPI and UNEMP2 are observed variables. The pool of predictors consists of the first ten 

autoregressive terms o f variables 3-13 (110 series in total). FRED refers to the FRED database of the St. 

Louis Federal Reserve Bank, while BLOOM stands for Bloomberg. All series are in monthly percentage 

changes.SA and NSA means that the series is seasonally adjusted and not seasonally adjusted 

respectively. 

Table 7-1: List of all the variables 

 

7.3 Benchmark Forecasting Models 

 

The proposed GA-SVR model is benchmarked with a Random Walk model (RW), an 

Autoregressive Moving Average model (ARMA), a Moving Average 

Convergence/Divergence Model (MACD), a Multi-Layer Perceptron (MLP), a Recurrent 

Neural Network (RNN) and a Genetic Programming (GP) algorithm. This section provides 

a brief description of these models. 
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7.3.1 Random Walk Model (RW) 

 

The RW is a process where the current value of a variable is calculated from the past value 

plus an error term. The error term follows the standard normal distribution. The 

specification of the model is: 

         1
ˆ , ~ (0,1)t t t tY Y e e N−= +                           (7.1) 

where t̂Y  is the forecasted inflation/unemployment for period t and 1tY − is the actual 

inflation/unemployment of period t-1. The RW is a non-stationary process with a constant 

mean, but not a constant variance.  

 
 

7.3.2 Auto-Regressive Moving Average Model (ARMA) 

 

An ARMA model embodies autoregressive and moving average components. The exact 

specification of the model is given in chapter 4. The ARMA models are selected using the 

correlogram and the information criteria in the in-sample period as a guide, as described in 

previous chapters. The back-casting technique is used to obtain pre-sample estimates of the 

error terms (Box and Jenkins, 1976). The null hypotheses that all coefficients (except the 

constant) are not significantly different from zero and that the error terms are normally 

distributed are rejected at the 95% confidence interval. 

 

7.3.3 Moving Average Convergence/Divergence Model (MACD) 

 

A moving average model is defined as: 

   ( )1 2 1... /t t t t nM Y Y Y n− − − += + + +                     (7.2) 
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Where:     

• Mt : moving average at time t 

• n: the number of terms in the moving average 

• Yt-1,…, Yt-n+1: the actual inflation/unemployment at periods t-1,…,t-n+1  

 

The MACD line derived by two moving average series with different lengths (short 

and long) is used to forecast the two series under study. The short and long terms used in 

the estimation of the moving averages are commonly determined based on the forecaster’s 

judgment and practical previous knowledge. In this case, the combinations that perform 

best over the in-sample sub-period are retained for out-of-sample evaluation.  

 

7.3.4 Neural Networks (NNs) 

 

The Multi-Layer Perceptron (MLP) and the Recurrent Neural Network (RNN) are the two 

traditional NNs used as benchmarks for this forecasting application. Their specifications 

are presented in chapter 3. Here it should be noted that the specialized function that trained 

the NNs in chapters 5 and 6 it has no practical use in the forecasting exercised 

implemented in this chapter. The obvious reason for that is that there is no trading 

application. The rationale behind the selection of the inputs of NNs is explained thoroughly 

in the applications of previous chapters. The aim is to select as inputs those sets of 

variables that provide the best statistical performance for each network in the in-sample 

period. Based on the guidelines (Lisboa and Vellido (2000) and Zhang (2009)) of NN 

modelling, I experiment with the first fifteen autoregressive terms of each forecasted series 

in all in-sample periods. More details about the design and training characteristics the NNs 

are included in appendix E. 

 

7.3.5 Genetic Programming (GP) 

 

Genetic Programming (GP) algorithms are a class of Genetic Algorithms and their 

description is given in chapter 3. In chapter 5, the GP is applied in a forecasting 

combination scheme. The inputs in that case are individual forecasts. I include the GP in 

these forecasting exercises in order to give a viable ‘genetic opponent’ to the GA-SVR 
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approach. The large pool of relevant predictors is given as input to the algorithm and 

through its genetic adaptive nature (see chapter 3) it achieves the final forecast. The 

parameters of the GP in this application are defined based on which model presents the 

best statistical performance in the in-sample sub-period and are presented in appendix E.  

 

7.4 Hybrid Genetic Algorithm – Support Vector Regression (GA-
SVR) 

 

The proposed hybrid Genetic Algorithm – Support Vector Regression (GA-SVR) model is 

provided in this section. The theoretical background needed for the deeper understanding 

of the methodology is the same as in chapter 6. In addition, the extensive description of the 

model is given in chapter 3. The algorithm genetically searches over the feature space. 

Differently from the previous chapter, the pool of inputs described by table 7-1 does not 

include individual forecasts of inflation or unemployment, but indicators that considered 

relevant to these two series. 

 Extending the GA-SVR model of chapter 6, in this application the GA-SVR is 

able to capture the asymmetries and nonlinearities in the given sample of predictors, select 

the optimal feature subsets and provide a single robust SVR. In order to achieve this, a GA 

is used which evaluates chromosomes, similar to figure 6-2 in the previous chapter. The 

chromosome again consists of feature genes and parameter genes. But in this case, the 

feature gene encodes the selected autoregressive terms of the inflation or unemployment 

series. The parameter genes include the optimal parameters for this feature gene and are 

used to give the final SVR forecast. This forecast is evaluated over the out-of-sample 

period. The function used to evaluate the fitness of each chromosome is specified as: 

Fitness= 1/ (1+MSE)                                                        (7.3)             

The function is maximized. The size of the initial population is set to 400 chromosomes 

while the maximum number of generations is set to 5000. The algorithm terminates at 

3000 generations on average. This number must be achieved, as long as convergence of the 

population has not already happened (see chapter 3). The flowchart of the GA-SVR 

methodology is depicted in detail in figure 3-6 of chapter 3. The summary of the GA’s 

characteristics is presented in the following table. 
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Population Size 400 
Maximum Generations 5000 

Selection Type Roulette Wheel Selection 

Elitism Best member of every population is maintained in the next generation. 
Crossover Probability 0.85 
Mutation Probability 0.15 

Fitness Function 1/(1+MSE) 
 

Table 7-2: GA Characteristics and Parameters 

 

7.5 Empirical results 

 

The empirical results of the proposed methodology are presented in this section. Here the 

adaptive selection of the macroeconomic variables is described for each forecasting 

exercise. Then, the statistical evaluation of the optimized GA-SVR forecasts follows in 

regard to its benchmarks and a robustness test.   

 

7.5.1 Selection of Predictors 

 

The macroeconomic contribution of this chapter is based on the fact that GA-SVR 

algorithm is able to genetically adapt in the most relevant predictors for the US inflation 

and unemployment. The selected variables for both forecasting exercises and all out-of-

sample periods are presented Table 7-3. This selection corresponds to the chromosomes 

that provide the best forecasts of CPI and UNEMP.   
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Note: The bold predictors in the second column represent the commonly selected variables for both 
exercises regardless the out-of-sample period. The bold values in the fourth and sixth column are the 
common predictors for both forecasting exercises in the respective out-of-sample sub-periods. * CPI: 
Population=60, Generations=440, C=61.5, γ=0.015, v=0.47, UNEMP: Population=200, 
Generations=500, C=143.8, γ=0.91, v=0.54. **CPI: Population=110, Generations=280, C=54.3, 
γ=0.03, v=0.55, UNEMP: Population=300, Generations=400, C=121.4, γ=0.75, v=0.63. *** CPI: 
Population=80, Generations=220, C=37.8, γ=0.042, v=0.31, UNEMP: Population=140, 
Generations=250, C=94.6, γ=0.88, v=0.77. **** CPI: Population=75, Generations=550, C=51.5, 
γ=0.025, v=0.59, UNEMP: Population=130, Generations=430, C=135.3, γ=0.56, v=0.37. 

Table 7-3: The selected predictors for US inflation and unemployment (best CPI and UNEMP 
chromosome)  

O UT-O F-SAMPLE 
PERIO DS 

ALL 
PREDICTO RS 

CPI  
PREDICTO RS 

SELECTED 
LAGS 

UNEMP  
PREDICTO RS 

SELECTED 
LAGS 

 

01/1997 – 12/2000* 

JPY - - - - 
GBP - - - - 

HOUSE HOUSE 1,2 HOUSE 2,3,4 
INDP INDP 1,2,3 INDP 1,2,3,4 
M1 M1 2,3 M1 3,4 

EMPL EMPL 1,4 EMPL 2,3 
PCE PCE 4 PCE 4 

PI PI 3,4 PI 1,3,5 
TBILL -  TBILL 2,3 
WAGE WAGE 1,2,3 WAGE 2,4,5 
DJIA DJIA 5 DJIA 3 

TOTAL 8 16 9 21 
 

 

 

01/2001 – 12/2004** 

 

 

JPY - - - - 
GBP - - - - 

HOUSE HOUSE 2,3,4 HOUSE 1,2 
INDP INDP 3,4,5 INDP 1,2,3,4 
M1 M1 2 M1 2,3 

EMPL EMPL 1,3,4 EMPL 3 
PCE PCE 1,4 PCE 2,3,4 

PI PI 4 PI 4,5 
TBILL - - TBILL 1 
WAGE WAGE 2,3 WAGE 1,2,4 
DJIA DJIA 4,5 DJIA 2,5 

TOTAL 8 17 9 20 

 

01/2005 – 12/2008*** 

JPY - - - - 
GBP - - - - 

HOUSE - - - - 
INDP INDP 1,2 INDP 1,2,3,4 
M1 M1 2,3 M1 3 

EMPL - - EMPL 2,3 
PCE PCE 1,2 PCE 1,3 

PI - - PI 1,2 
TBILL TBILL 1,2 - - 
WAGE WAGE 1,2,3 WAGE 2,4 
DJIA - - - - 

TOTAL 5 11 6 13 

 

01/2009 –  12/2012**** 

JPY - - - - 
GBP - - - - 

HOUSE - - - - 
INDP INDP 1 INDP 1,2,3,4 
M1 M1 1,2 M1 2 

EMPL - - EMPL 1 
PCE PCE 1,2 PCE 2 

PI PI 1,2,3 - - 
TBILL - - - - 
WAGE - - WAGE 2,3 
DJIA - - - - 

TOTAL 4 8 5 9 
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Concerning the inflation exercise, the results show that the algorithm retains 

maximum seventeen time series from the overall one hundred ten as inputs. During the 

1997-2000 and 2001-2004 those series are autoregressive terms up to the order of five of 

eight variables, the HOUSE, INDP, M1, EMPL, PCE, PI, WAGE and DJIA. For the 2005-

2008 sub-period, the GA-SVR discards the HOUSE, EMPL, PI, DJIA variables and adds 

the TBILL. It seems that in this period, there is a structural break for inflation and the set 

of variables that have explanatory value has changed. In the last sub-period, the algorithm 

selects eight inputs (autoregressive terms of the INDP, M1, PCE and PI variables). The 

second lag of M1 is always selected as input from the model. The different set of inputs in 

each sub-period reveals that inflation is difficult to predict and models with a constant or a 

limited set of independent variables will have no value in the long-run.  

In the case of unemployment, the GA-SVR selects more macroeconomic variables 

and respective lags than in the inflation exercise. This might indicate that forecasting the 

US unemployment is a more complex and demanding task that requires a larger set of 

independent variables than the US inflation. The set of potential inputs suggests that the 

second lag of WAGE is always selected and that the first four autoregressive lags of IND 

are a popular choice from the algorithm. The set of inputs changes for each sub-period. 

This indicates that structural breaks dominate unemployment forecasting as the set of 

explanatory variables is constantly changing.  

INDP, M1 and PCE are the only common economic indicators in the four periods 

under study for both inflation and unemployment. In each out-of-sample, though, the 

algorithm accepts different autoregressive lags of them as common inputs. For example, 

the first three autoregressive terms of INDP, the third of M1 and the fourth of PCE are 

common predictors of inflation and unemployment during 1997-2000. In the period of 

2001-2004 the algorithm selects the third and fourth lag of INDP, the second lag of M1 

and the fourth lag of PCE for forecasting both series. Similarly during 2005-2008, the first 

two autoregressive terms of INDP, the third of M1 and the first of PCE qualify as potential 

predictors for both CPI and UNEMP. Finally, in 2009-2012 the first lag of INP and the 

second of M1 and PCE are kept in the inputs’ pool for each exercise. The exchange rates 

are found to be irrelevant for all the out-of-samples. The HOUSE variable is pooled during 

1997- 2000 and 2001-2004, but discarded for the periods 2005-2008 and 2009-2012 

(during and after the US housing bubble burst). It is interesting to note that autoregressive 

terms of the potential inputs with order of six or higher have no value for the model. More 
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specifically for the periods 2005-2008 and 2009-2012 the majority of the selected inputs 

are first and second autoregressive lags of the respective macroeconomic variables.  

From a technical point of view, the selection process of GA-SVR does not suffer 

from over- fitting since in both exercises and all out-of-sample periods the parameter γ is 

relatively small (see table 7-3 note). Small values of γ are in general welcome because they 

result in smoother marginal decisions. The restrictiveness of the SVR ‘tube’ though 

depends on all three parameters and therefore it is difficult to assess if the genetic SVR 

procedure is more adaptive in the CPI or UNEMP forecasting exercise. In general, the 

algorithm requires more time (iterations15) to converge in UNEMP optimal chromosomes 

than CPI ones. 

 

7.5.2 Statistical Performance 

 

Similar to previous chapters, the forecasts are evaluated by means of Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) 

and Theil-U statistics. The mathematical formulas of these statistics are presented in 

Appendix B.4. For all four statistical measures retained, the lower the output the better the 

forecasting accuracy of the model concerned.  

The in-sample statistical performances of the models for the CPI and UNEMP during all 

relevant periods are presented in table 7.4 that follows. The results indicated that GA-SVR 

presents the best in-sample statistical performance for both series under study for all the 

statistical measures. The second best model is GP. It outperforms both NNs and the 

traditional strategies, but it is always inferior to the GA-SVR. Although the models 

perform differently during each period in both forecasting tasks, the ranking of the models 

remains the same throughout 1974-2008. The worst performances are observed in the 

1982-2004 and 1986-2008. Table 7-5 summarizes the statistical performances of the 

models in the relevant out-of-sample periods for CPI and UNEMP. From the results of 

Table 7-5, it is obvious that GA-SVR retains its forecasting superiority for the statistical 

measures applied in all four out-of-sample sub-periods. The statistical ranking of the 

models remains consistent with the in-sample results. Once more, the GP outperforms the 

MLP and RNN, while traditional models like RW, ARMA and MACD present the worst 

forecasts in term of statistical accuracy. The worst statistical results are attained in the 

                                                                 
15 Iterations = Population * Generations 
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2005-2008 and 2009-2012 sub-periods. It seems the US subprime crisis increases the 

difficulty in this forecasting exercise.  Nonetheless, the performance of the GA-SVR seems 

robust in both periods of economic instability.  

 

 IN-SAMPLE PERIODS MODELS 

 
C 
P 
I 

01/1974 – 12/1996 RW ARMA MACD  MLP RNN GP GA-SVR 

MAE 0.0153 0.0151 0.0087 0.0058 0.0056 0.0051 0.0047 
MAPE 102.23% 101.86% 98.54% 62.67% 63.14% 59.79% 53.44% 

RMSE 0.0095 0.0091 0.0084 0.0069 0.0068 0.0061 0.0055 
Theil-U 0.8561 0.8456 0.6758 0.5881 0.5721 0.5377 0.5112 

U 
N 
E 
M 
P 

01/1974 – 12/1996 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0171 0.0168 0.0093 0.0062 0.0059 0.0055 0.0052 

MAPE 101.21% 98.67% 87.94% 62.89% 61.34% 57.51% 56.47% 
RMSE 0.0175 0.0169 0.0144 0.0124 0.0099 0.0092 0.0087 

Theil-U 1.2595 1.2568 0.9884 0.8197 0.8155 0.7823 0.7514 

 
C 
P 
I 

01/1978 – 12/2000 RW ARMA MACD  MLP RNN GP GA-SVR 

MAE 0.0155 0.0154 0.0084 0.0055 0.0054 0.0052 0.0046 
MAPE 105.98% 102.15% 98.85% 63.03% 63.19% 58.99% 53.17% 

RMSE 0.0121 0.0102 0.0081 0.0068 0.0066 0.0063 0.0056 

Theil-U 0.8573 0.8511 0.6692 0.5775 0.5659 0.5412 0.5067 

U 
N 
E 
M 
P 

01/1978 – 12/2000 RW ARMA MACD  MLP RNN GP GA-SVR 

MAE 0.0188 0.0187 0.0089 0.0063 0.0058 0.0054 0.0053 
MAPE 98.15% 97.88% 86.53% 63.27% 62.14% 58.71% 55.84% 

RMSE 0.0166 0.0158 0.0139 0.0116 0.0098 0.0094 0.0089 
Theil-U 1.1884 1.1825 0.9992 0.8341 0.8216 0.8013 0.7673 

 
C 
P 
I 

01/1982 – 12/2004 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0239 0.0233 0.0094 0.0074 0.0072 0.0069 0.0064 

MAPE 132.09% 131.84% 103.25% 69.88% 67.26% 64.21% 61.42% 
RMSE 0.0132 0.0129 0.0091 0.0076 0.0077 0.0072 0.0069 

Theil-U 0.9764 0.9715 0.8469 0.7198 0.7145 0.6755 0.6211 

U 
N 
E 
M 
P 

01/1982 – 12/2004 RW ARMA MACD  MLP RNN GP GA-SVR 

MAE 0.0202 0.0196 0.0098 0.0081 0.0079 0.0075 0.0068 
MAPE 124.11% 123.27% 90.37% 73.89% 71.26% 68.55% 63.37% 

RMSE 0.0215 0.0189 0.0157 0.0101 0.0099 0.0096 0.0093 

Theil-U 1.3965 1.3947 1.2558 0.9377 0.9358 0.9122 0.8847 

 
C 
P 
I 

01/1986– 12/2008 RW ARMA MACD  MLP RNN GP GA-SVR 

MAE 0.0191 0.0188 0.0092 0.0071 0.0069 0.0064 0.0061 
MAPE 118.64% 113.58% 99.56% 64.55% 63.17% 62.44% 59.83% 

RMSE 0.0129 0.0098 0.0085 0.0072 0.0072 0.0069 0.0065 
Theil-U 0.9322 0.9126 0.7941 0.6853 0.6751 0.6239 0.5845 

U 
N 
E 
M 
P 

01/1986 – 12/2008 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0112 0.0106 0.0088 0.0075 0.0073 0.0068 0.0064 

MAPE 102.87% 100.68% 84.57% 68.12% 67.89% 64.58% 60.29% 
RMSE 0.0175 0.0168 0.0135 0.0097 0.0096 0.0093 0.0091 

Theil-U 1.2801 1.2745 0.9957 0.9254 0.9136 0.8947 0.8667 

 

Table 7-4: Summary of In-Sample Statistical Performances  
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 OUT-OF-SAMPLE 
PERIODS MODELS 

 
C 
P 
I 

01/1997 – 12/2000 RW ARMA MACD MLP RNN GP GA-SVR 
MAE 0.0165 0.0162 0.0091 0.0059 0.0059 0.0052 0.0049 

MAPE 104.25% 103.58% 100.54% 66.15% 66.86% 62.47% 57.34% 
RMSE 0.0098 0.0094 0.0086 0.0071 0.007 0.0065 0.0058 

Theil-U 0.8755 0.8632 0.6955 0.6013 0.5971 0.5521 0.5317 

U 
N 
E 
M 
P 

01/1997 – 12/2000 RW ARMA MACD MLP RNN GP GA-SVR 

MAE 0.0182 0.0178 0.0098 0.0065 0.0063 0.0059 0.0055 
MAPE 103.88% 100.12% 91.74% 65.38% 64.59% 61.13% 59.11% 

RMSE 0.0178 0.0174 0.015 0.0134 0.0107 0.0094 0.009 
Theil-U 1.2708 1.2647 1.0294 0.8465 0.8334 0.8037 0.7867 

 
C 
P 
I 

01/2001 – 12/2004 RW ARMA MACD MLP RNN GP GA-SVR 

MAE 0.0161 0.0158 0.0086 0.0061 0.0057 0.0055 0.0051 
MAPE 105.87% 105.19% 99.65% 65.11% 64.83% 61.35% 55.62% 

RMSE 0.0128 0.0116 0.0084 0.007 0.0068 0.0065 0.0059 
Theil-U 0.8914 0.8845 0.7259 0.6018 0.5845 0.5633 0.5297 

U 
N 
E 
M 
P 

01/2001 – 12/2004 RW ARMA MACD MLP RNN GP GA-SVR 
MAE 0.0264 0.0213 0.0092 0.0067 0.0061 0.0057 0.0055 

MAPE 102.67% 99.66% 89.45% 66.76% 64.88% 60.24% 56.84% 
RMSE 0.0167 0.0161 0.0142 0.0135 0.0102 0.0097 0.0092 

Theil-U 1.2298 1.2254 1.105 0.8656 0.8417 0.8229 0.7837 

 
C 
P 
I 

01/2005 – 12/2008 RW ARMA MACD MLP RNN GP GA-SVR 

MAE 0.0325 0.0311 0.0112 0.0078 0.0075 0.0071 0.0067 
MAPE 146.15% 144.21% 105.83% 72.57% 70.64% 67.41% 64.23% 

RMSE 0.01447 0.0135 0.0096 0.0079 0.0078 0.0075 0.0072 
Theil-U 1.0156 1.0051 0.8657 0.7403 0.7367 0.7147 0.6647 

U 
N 
E 
M 
P 

01/2005 – 12/2008 RW ARMA MACD MLP RNN GP GA-SVR 

MAE 0.0285 0.0215 0.0103 0.0084 0.0081 0.0078 0.0073 
MAPE 128.55% 125.64% 92.54% 75.21% 74.83% 71.75% 67.28% 

RMSE 0.0209 0.0197 0.0162 0.0129 0.0117 0.0099 0.0096 
Theil-U 1.4338 1.4269 1.2783 0.9531 0.9457 0.9314 0.9158 

 
C 
P 
I 

01/2009– 12/2012 RW ARMA MACD MLP RNN GP GA-SVR 
MAE 0.0214 0.0208 0.0097 0.0074 0.0071 0.0068 0.0064 

MAPE 118.27% 116.17% 102.68% 69.82% 68.93% 66.71% 62.67% 
RMSE 0.0116 0.0108 0.0088 0.0075 0.0074 0.0070 0.0068 

Theil-U 0.9455 0.9384 0.8211 0.7139 0.6957 0.6483 0.6144 

U 
N 
E 
M 
P 

01/2009– 12/2012 RW ARMA MACD MLP RNN GP GA-SVR 

MAE 0.0119 0.0114 0.0092 0.0081 0.0078 0.0071 0.0067 
MAPE 108.84% 102.67% 88.98% 72.55% 71.39% 68.27% 64.17% 

RMSE 0.0194 0.0172 0.0145 0.0102 0.0099 0.0097 0.0093 
Theil-U 1.3274 1.3128 1.1296 0.9485 0.9318 0.9133 0.8926 

 

Table 7-5: Summary of Out-of-Sample Statistical Performances  
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The statistical superiority of the best proposed architecture is further validated by the 

Modified Diebold-Mariano (MDM) statistic for forecast encompassing, as proposed by 

Harvey et al. (1997). The MDM statistic is an extension of the Diebold-Mariano (1995) 

statistic (DM) and its formula is the following: 

    ( ) 1/21/2 11 2 1MDM T T k T k k DM− − = + − + −                     (7.4) 

where T the number of the out-of-sample observations and k the number of the step-ahead 

forecasts.  

The use of MDM is common practice in forecasting because it is found to be robust 

in assessing the significance of observed differences between the performances of two 

forecasts (Hassani et al. (2009) and Barhoumi et al. (2012)). MDM also overcomes the 

problem of over-sized DMs in moderate samples. The statistic is measured in each out-of-

sample period and the MSE and the MAE are used as loss functions. The MDM test 

follows the Student’s t-distribution with f-1 degrees of freedom, where f is the number of 

forecasts. Table 7-6 below presents the values of the statistics, comparing the GA-SVR 

with its benchmarks. 

 

PERIODS VARIABLES STATISTICS RW ARMA MACD MLP RNN GP 

01/1997 – 
12/2000 

 
CPI 

MDM1 -7.22 -7.19 -6.65 -4.54 -3.92 -3.15 
MDM2 -9.81 -9.45 -8.77 -7.19 -6.98 -5.19 

 
UNEMP 

MDM1 -5.21 -5.09 -4.91 -4.13 -4.08 -3.02 
MDM2 -7.71 -7.68 -7.43 -5.51 -4.98 -4.51 

01/2001 – 
12/2004 

 
CPI 

MDM1 -7.07 -6.96 -6.53 -4.24 -3.97 -3.22 
MDM2 -9.34 -8.97 -8.58 -7.81 -7.12 -6.79 

 
UNEMP 

MDM1 -5.23 -5.03 -4.84 -4.19 -4.10 -3.26 
MDM2 -7.90 -7.82 -7.48 -5.40 -4.97 -4.87 

01/2005 – 
12/2008 

 
CPI 

MDM1 -8.14 -8.05 -7.54 -7.19 -6.88 -6.34 
MDM2 -9.84 -9.80 -9.30 -8.95 -8.80 -8.62 

 
UNEMP 

MDM1 -9.25 -9.16 -8.73 -8.15 -7.51 -7.07 
MDM2 -10.37 -10.27 -9.81 -9.54 -9.17 -8.75 

01/2009 – 
12/2012 

 
CPI 

MDM1 -6.46 -6.27 -5.92 -5.71 -5.48 -4.77 
MDM2 -7.95 -7.88 -7.71 -7.44 -7.32 -7.04 

 
UNEMP 

MDM1 -7.82 -7.66 -7.08 -6.77 -6.33 -6.09 
MDM2 -8.75 -8.54 -8.28 -7.83 -7.39 -7.25 

Note: MDM1and MDM2 are the statistics computed for the MSE and MAE loss function respectively. 

Table 7-6: Modified Diebold-Mariano statistics for MSE and MAE loss functions 
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The MDM null hypothesis of forecast encompassing is rejected for all comparisons and for 

both loss functions at the 1% confidence interval. The statistical superiority of the GA-

SVR forecasts is also confirmed as the realizations of the MDM statistic are always 

negative 16. GP is found to have the closest forecasts with the GA-SVR model and remains 

the second best model in statistical terms. From the MDM values it is safe to claim that 

there is no conclusive evidence of encompassing between the GA-SVR forecasts of 

inflation and unemployment and their benchmarks. Finally, the in-sample and out-of-

sample results indicate that the models implementing genetic approaches, GP and GA-

SVR, project in general more accurate forecasts in comparison with popular NN 

techniques (MLP, RNN) or traditional linear models (RW, ARMA, MACD). 

 

7.6 Conclusions 

 

The motivation of this chapter is to introduce a hybrid Genetic Algorithm – Support Vector 

Regression (GA-SVR) model in economic forecasting and macroeconomic variable 

selection. The proposed algorithm is applied to the task of forecasting the US inflation and 

unemployment. The GA-SVR genetically optimizes the SVR parameters and adapts to the 

optimal feature subset from a feature space of potential inputs. The feature space includes a 

wide pool of economic indicators that might affect the two series under study. The 

forecasting performance of the GA-SVR is benchmarked with a Random Walk model 

(RW), an Autoregressive Moving Average model (ARMA), a Moving Average 

Convergence/Divergence model (MACD), a Multi-Layer Perceptron (MLP), a Recurrent 

Neural Network (RNN) and a Genetic Programming (GP) algorithm. More specifically, the 

statistical performance of all models is investigated in four rolling samples during the 

period of 1974-2012.  

In terms of the results, the GA-SVR outperforms all benchmark models for both 

forecasting exercises. The model is able to genetically adapt to a small number of relevant 

variables and project superior forecasts at the same time. This performance is consistent 

also in periods of economic turmoil, which proves that the genetic SVR selection of the 

predictors is both computationally and statistically efficient. With this variable selection 

process, GA-SVR attempts to provide evidence on what inputs can be important predictors 

                                                                 
16 The MDM test is applied to couples of forecasts (GA-SVR vs. another forecasting model). A negative 
MDM value indicates that the first forecast (GA-SVR) is more accurate than the second forecast. The lower 
the negative value, the more accurate are the GA-SVR forecasts.  
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of US inflation and unemployment in the specific periods under study. The autoregressive 

lags of the past quarter are found to be of great importance, while information going back 

more than a semester seems irrelevant.  The in-sample and out-of-sample results show that 

the models implementing genetic approaches, GP and GA-SVR, project the most accurate 

forecasts and outperform their benchmarks. This superiority is further validated by the 

MDM test. In general, the two forecasting exercises of this chapter attempt to shed more 

light on the difficult quest of nonlinear mapping of macroeconomic variables over different 

sample periods. 
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Chapter 8 

Rolling Genetic Support Vector Regressions: An 
Inflation and Unemployment Forecasting 
Application in EMU. 

 

 

8.1 Introduction 

 

Predicting inflation and unemployment changes is an issue of paramount importance for 

economists, bankers and government officials. Many monetary and policy decisions are 

made by appraising such forecasts. As a result the empirical literature on forecasting 

macroeconomic variables is voluminous (see amongst others Ang et al. (2007), Stock and 

Watson (2009) and Cogley et al. (2010). The challenge, though, is that in periods of 

economic instability, traditional statistical models do not project accurate results (Ager et 

al., 2009). In such periods of recessions and structural breaks, suggested linear models 

based on a fixed set of predictors are not efficient. Therefore, the following idea can be 

generally postulated: Realistic inflation and unemployment forecasts in a constantly 

changing world should depend on a number of different macroeconomic variables, rather 

than on fixed underlying relationships.  

The economies of the European Monetary Union (EMU) members are perfect 

examples to evaluate the validity of the above statement. In 2009 the sovereign debt crisis 

broke out in Greece and then spread in all Europe. This contagion originated from the 

unstable integration of peripheral countries in the common currency and the inability of 

core countries to lead to decisive changes in the EMU’s monetary and fiscal policy 

(Lapavitsas et al. (2010)). Austerity measures, political instability, negative Euro 

speculation provided regular economic shocks in countries, such as Greece, Ireland, Italy, 

Portugal and Spain. The effects of this contagion are evident throughout all Europe today 
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and heavily endanger the EMU’s future. Therefore, traditional core countries, such as 

Belgium, France and Germany, also cannot ‘feel safe’ through this turmoil. 

In this chapter a hybrid Rolling Genetic – Support Vector Regression (RG-SVR) model is 

introduced in economic forecasting and macroeconomic variable selection. The proposed 

algorithm is applied to a monthly rolling forecasting task of inflation and unemployment in 

the abovementioned eight EMU countries. The RG-SVR genetically optimizes the SVR 

parameters and adapts to the monthly optimal feature subset from a feature space of 

potential inputs. The feature space includes a wide pool of macroeconomic indicators that 

might affect the two series under study of every country. The forecasting performance of 

the RG-SVR is benchmarked with a ‘fixed’ Random Walk model (f-RW), an Atkeson and 

Ohanian Random Walk (AO-RW) and a Smooth Transition Autoregressive Model 

(STAR). The study engages with two rolling forecasting exercises over the period of 

August 1999 to April 2013. The first exercise focuses on forecasting the inflation of these 

countries, while the second one attempts to predict their unemployment. The statistical 

performance of RG-SVR is benchmarked with a f-RW, an AO-RW and a STAR. The 

results prove that RG-SVR statistically outperforms all benchmark models. It also presents 

evidence on what macroeconomic variables can be relevant predictors of the monthly 

inflation and unemployment and how these vary in each EMU country during the specific 

period under study. 

 The novelty of the model lies in its ability to capture the monthly asymmetries and 

nonlinearities in the given sample of predictors, select the optimal feature subsets and 

provide robust rolling SVR forecasts for the specific country and series under study. As 

potential inputs, the proposed algorithm uses a pool of one hundred sixty eight potential 

predictors. From an economic perspective, this increases the model’s flexibility and allows 

it to explore a large universe of potential relationships between those predictors of each 

country’s inflation and unemployment. The selection of the proposed model’s inputs and 

parameters is based on a GA algorithm, while the pool of potential inputs is only limited 

by the monthly data availability. From an econometric perspective the rolling forward 

estimation makes the results of the forecasting exercise more realistic and robust. From a 

technical point of view, the proposed model is superior to non-adaptive algorithms 

presented in the literature. Similarly to the GA-SVR proposed and implemented in 

previous chapters, RG-SVR does not require analytic parameter calculation as Cherkassky 

and Ma (2004) propose, but also avoids time consuming optimization approaches (cross 

validation or grid search) that are used in similar applications ( Lu et al. (2009) and Kim 

and Sohn (2010)). An additional attribute of RG-SVR in comparison to GA-SVR is that 
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SVR optimization is achieved with the minimum number of support vectors, while its 

single optimization procedure restrains data snooping bias effects. 

The rest of the chapter is organized as follows. Section 8.2 describes the dataset 

used for this study, while a brief description of the benchmark models is given in section 8-

4. Section 8-5 describes the hybrid RG-SVR model. Finally, the empirical results and 

conclusions are presented in Section 8-6 and 8-7 respectively.  

 

8.2 Data Description 

 

This chapter implements two rolling forecasting exercises with monthly data over the 

period of August 1999 to April 2013. The first exercise attempts to forecast the percentage 

change of the inflation of eight European countries, namely Belgium, France, Germany, 

Greece, Ireland, Italy, Portugal and Spain. The Consumer Price Index (CPI) of each 

country is used as a proxy of its inflation. The second exercise focuses on predicting the 

percentage change of the unemployment rate (UNEMP) of the above countries.  

Following similar studies (Stock and Watson (2003), Wright (2009) and Groen 

et.al (2012)), I select fourteen predictors that can explain the economic premises of 

inflation and unemployment or are found to be useful in forecasting them. Four predictors 

are individual macroeconomic indicators of each country. Since the RG-SVR model is 

applied to a Eurozone case study, the rest ten predictors are country non-specific indicators 

that qualify as explanatory variables of the euro area economic activity and structure. The 

final pool of the potential inputs includes the first twelve autoregressive terms of these 

predictors. Thus, the feature space consists of hundred sixty eight series of monthly 

percentage changes. The sources of the data are Bloomberg (BLOOM) and the Statistical 

Data Warehouse of the European Central Bank (ECB). The series are seasonally adjusted, 

where applicable. Table 8-1 below summarizes the list of variables used in this application.  

  



  

155 
 

 

No MNEMONIC DESCRIPTION SOURCE 

1 CPI Consumer Price Index (SA) BLOOM 

2 UNEMP Eurostat Unemployment Rate (SA) BLOOM 

3 INDP Eurostat Industrial Production: Total Industry  
excluding Construction Nace 2 Rev. (SA) BLOOM 

4 ESI European Commission Economic Sentiment Indicator 
(SA) BLOOM 

5 LOAN EU MFI Balance Sheet Outstanding Amounts:  
Government Loans to Euro area residents (SA) BLOOM 

6 TRBAL Eurostat External  
Trade Balance (SA) BLOOM 

7 EUM1 ECB Money Supply M1 (SA) BLOOM 

8 USD EUR/USD Exchange Rate (NSA) BLOOM 

9 JPY EUR/JPY Exchange Rate (NSA) BLOOM 

10 GBP EUR/GBP Exchange Rate (NSA) BLOOM 

11 FTSE FTSE 100 Index (NSA) BLOOM 

12 STOXX50 Eurostoxx 50 Index (NSA) BLOOM 

13 GDAX Deutsche Borse AG  
German Stock Index (NSA) BLOOM 

14 OIL Brent Crude Oil 1-month Forward  
(fob) per barrel (SA) ECB 

15 SP1 Spread between swaps 6-month Euribor and 
 benchmark bonds of 2-year maturity (SA) ECB 

16 SP2 Spread between swaps 6-month Euribor and  
benchmark bonds of 10-year maturity (SA) ECB 

Note: CPI and UNEMP are the two observed variables. INDP, ESI, LOAN and TRADE are 

individual indicators of each country. The rest are country non-specific Eurozone indicators. 

The pool of predictors consists of the first twelve autoregressive terms of variables 3-16 (168 

series in total). BLOOM refers to the Bloomberg database, while ECB stands for the Statistical 

Data Warehouse of the European Central Bank. All series are in monthly percentage changes. 

SA and NSA means that the series is seasonally adjusted and not seasonally adjusted 

respectively. 

Table 8-1: List of all the variables 

 

The proposed methodology evaluates depending on the country the underlying 

domestic and external economic forces that could rule the inflation and unemployment 

changes in Eurozone.  For example, INDP, LOAN and TRBAL are commonly selected as 

relevant individual indicators in similar studies (see Schirm (2003), Stock and Watson 

(2004) and Rondorf (2012)). Including each country’s ESI into the pool of potential inputs 

adds extra validity to this effort, since it is considered a leading macroeconomic indicator 

for every EMU country (see Banerjee et al. (2005), Diron (2008) and Giannone et al. 

(2012)). Based on Eurostat’s definition, ESI is a composite indicator that comprises of four 

confidence indicators with different weights, namely the Industrial confidence indicator 
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(weight 40%), Consumer confidence indicator (weight 20%), Construction confidence 

indicator (weight 20%) and Retail trade confidence indicator (weight 20%). Those 

indicators are derived from business and consumer surveys, which provide a realistic 

consensus of the business activity, consumers’ purchasing power and price trend. Other 

researchers believe that the EMU economy can be appraised as a whole and based on that 

premise they form their analysis (Marcellino (2004) and Ruth (2008)). For that reason, 

country non-specific EMU indicators, such as EUM1, main ECB exchange rates and stock 

indices, OIL, SP1 and SP2 are also used in each country’s analysis.  

 

8.3 Benchmark Forecasting Models 

 

The forecasting efficiency of the RG-SVR model is benchmarked with three traditional 

models, namely a ‘fixed ρ’ Random Walk (f-RW), an Atkeson and Ohanian Random Walk 

(AO-RW) and a Smooth Transition Autoregressive Model (STAR). These benchmark 

models aim to forecast the one month ahead inflation and unemployment value in 

percentage changes. 

 

8.3.1 ‘Fixed ρ’ Random Walk (f-RW) 

 

The simple RW is a non-stationary process, where the current value of a variable is 

calculated from the past value plus an error term. The error term follows the standard 

normal distribution. Instead of using a simple RW, this application follows Faust and 

Wright (2012) that use a ‘Fixed ρ’ forecast as their baseline inflation benchmark. Thus, 

both target series are fitted to an AR (1) process with a fixed slope coefficient ρ. The 

specification of the model is the following: 

      1
ˆ , ~ (0,1)t t t tY Y e e Nρ −= +                                (8.1) 
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Where t̂Y  is the forecasted value for period t, 1tY − is the actual value of period t-1 and 

ρ=0.4617. 

 

8.3.2 Atkeson and Ohanian Random Walk (AO-RW) 

 

Atkenson and Ohanian (2001) note that inflation indicators cannot show the short term 

changes of inflation reliably. Therefore, they suggest that a RW forecasting the current 

value of a variable based on its previous four lags is preferable to a simple RW. Following 

again Faust and Wright (2012), the AO-RW is adopted as a benchmark forecasting model 

and specified as below:  

                  1 2 3 4
1ˆ ( ) , ~ (0,1)
4t t t t t t tY Y Y Y Y Nε ε− − − −= + + + +                               (8.2) 

Where: 

• t̂Y  is the forecasted value at time t 

• Yt-1,Yt-2, Yt-3 and Yt-4 are the four previous actual values  

• εt  is the error term 
 
 

8.3.3 Smooth Transition Autoregressive Model (STAR) 

 

The STAR combines two AR models with a function that defines the degree of non-

linearity (smooth transition function). The general two-regime STAR specification is the 

following: 

1 2
ˆ (1 ( , , )) ( , , )t t t t t tY F z F z uζ λ ζ λ′ ′= Φ Χ − +Φ Χ +         (8.3) 

  

                                                                 
17 Based on Faust and Wright (2012) the value of ρ is the slope coefficient that is derived  from fitting  an AR 
(1) to the 1985Q1 vintage GDP deflator inflation from 1947Q2 to 1959Q4. 
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Where: 

• t̂Y  the forecasted value at time t 

• ,0 ,1 ,( , ,... ), 1, 2i i i i p iϕ ϕ ϕΦ = =    and ,0 ,1 ,, ,...i i i pϕ ϕ ϕ   the regression coefficients of the two 

AR models  

• (1, )t tχ′ ′Χ =   with 1( ,..., )t t t pY Yχ − −′ =  

• 0 ( , , ) 1tF z ζ λ≤ ≤  the smooth transition function  

• , 0t t dz Y d−= >  the lagged endogenous transition variable 

• ζ the parameter that defines the smoothness of the transition between the two 

regimes 

• λ the threshold parameter 

• ut  the error term 

The main characteristic of a STAR is that t̂Y  is calculated at any given t as a 

weighted average of two AR models. The weights of the two AR models are defined based 

on the value of ( , , )tF z ζ λ . The regime-switching ability of STARs derives from the fact 

that at each t a regime is selected based on the values of zt and ( , , )tF z ζ λ . In this chapter, 

both series are best modeled as Logistic STAR (LSTAR) processes for all eight 

countries.18 The LSTAR approach allows the association of the two regimes with large and 

small values of zt relatively to λ. Such a regime-switching is useful to identify expansions 

and recessions in the business cycle (Lin and Terasvitra (1994)). 

 

8.4 Rolling Genetic – Support Vector Regression (RG-SVR) 

 

This sections includes the description and specification of the hybrid Rolling Genetic – 

Support Vector Regression (RG-SVR) model for rolling optimal SVR parameter and 

monthly macroeconomic variable selection. This model genetically searches over a feature 

space (the pool of macroeconomic predictors as in Table 8-1) and then provides a single 

optimized SVR rolling forecast for each series under study. The required theoretical 

background of SVR, GAs and genetic feature selection and the extension of this model in 
                                                                 
18 I also experimented with a Multip le Reg ime STAR (MRSTAR) of more than two  reg imes, as described in 
detail by Dijk and Franses (1999). LSTAR though presented better statistical performance than MRSTAR in  
all cases. This plus the lower model complexity of LSTAR allows me to disqualify MRSTAR from our 
benchmark models’ selection. 
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comparison to the GA-SVR is given in detail chapter 3. Extending the GA-SVR model of 

chapter 7, in this application the RG-SVR is able to capture the monthly asymmetries and 

nonlinearities in the given sample of predictors, but most importantly select the optimal 

monthly feature subsets. The GA in this case evolves chromosomes, similar to figure 6-2 

in chapter 6. The chromosome again consists of feature genes and parameter genes.  

In order to better distinguish the extension of RG-SVR to GA-SVR, the forecasting 

process needs to be explained. The RG-SVR model performs a rolling window forecasting 

exercise as follows. The window size is always equal to hundred twenty five observations 

(months). The algorithm requires the window size to be further divided in a training and 

test subset in order to validate the goodness of fit of each chromosome. The first eighty 

nine observations are the training subset. The rest thirty six form the test subset. The 

population of chromosomes is initialized in the training sub-period. The optimal selection 

of chromosomes is achieved, when their forecasts minimize the MSE in the test-sub 

period. Then, the optimized parameters and selected predictors of the best solution are 

used to train the SVR and produce the final optimized forecast for the next observation. 

After this is completed, the window rolls forward by one observation and the procedure is 

repeated. In that way, the RG-SVR model presents forty monthly rolling forecasts. For 

each of these forecasts, the algorithm stores its optimized C, γ and v parameters and set of 

optimal predictors.19Obviously, the GA-SVR technique is not able to do that and the only 

way to approximate RG-SVR performance is to drastically decrease the length of the 

rolling periods that are evaluated (see the three periods of chapter 7). These would incur 

many repetitions and increase substantially the computational demands of the task. 

Nonetheless, the RG-SVR rolling procedure as explained before can also be 

computationally heavy. Its accuracy depends on the trade-off between a high-complexity 

model (over – fitting) and a large-margin (incorrect setting of the ‘tube’). The number of 

support vectors can vary from few to every single observation (complete over- fitting). 

Algorithms attempting to use efficiently extensive datasets and simultaneous take into 

account large sets of variables suffer from computational complexity. This complexity 

burden makes them practically infeasible and their results cannot be used in realistic terms. 

RG-SVR is able to overcome this issue by giving optimal SVR forecasts with the 
                                                                 
19 The monthly data start on August 1999 and end on April 2013. In order to derive the first 
forecast (January 2010), RG-SVR uses the first 89 months (August 1999 - December 2006) 
as a training subset and the rest 36 months (January 2007-December 2009) as a test subset. 
The second forecast (February 2010) is similarly given by rolling forward the previous 
samples by one month. Thus, the second training subset is from September 1999 till 
January 2007, while the second test subset extends from February 2007 till January 2010. 
The exercise ends when all the RG-SVR forecasts from January 2007 until April 2013 are 
gathered (40 months). 
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minimum number of support vectors, which further contributes to the algorithm’s novelty. 

Indicative is the fact that RG-SVR is implemented in a modern mainstream computer 

within a couple of hours for this specific dataset. 

In genetic algorithm modeling the fitness functions need to be increasing functions. 

Therefore, the algorithm is minimizing the MSE by maximizing the following function: 

  Fitness= 1/ (1+MSE)                                          (8.4)             

The size of the initial population is set to 600 chromosomes while the maximum number of 

generations is set to 5000. The algorithm in general terminates when the number of 

generations is 4000 on average. This process is also associated with the convergence of the 

evaluated population (see chapter 3). Convergence is needed in order to keep populations 

that can lead to more efficient ones as the process goes on. The summary of the GA’s 

characteristics is presented in the following table, while the detailed flowchart is given in 

figure 3-6 of chapter 3. 

 

Population Size 600 
Maximum Generations 5000 

Selection Type Roulette Wheel Selection 
Elitism Best member of every population is maintained in the next generation. 

Crossover Probability 0.80 
Mutation Probability 0.20 

Fitness Function 1/(1+MSE) 
Window size 125 

Support Vectors Minimized 
 

Table 8-2: GA Characteristics and Parameters 

 

8.5 Empirical Results 

 

This section summarizes the empirical results of this application. The macroeconomic 

contribution of this chapter is based on the fact that proposed algorithm is able to 

genetically adapt in the most relevant variables for forecasting the inflation and 

unemployment of eight EMU countries. The first subsection describes the predictor 

selection for each country for both exercises, while the second one evaluates statistically 

the derived CPI and UNEMP forecasts.   
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8.5.1 Selection of predictors 

 

The RG-SVR algorithm examines the cases of three core countries (Belgium, France and 

Germany) and five peripheral ones (Greece, Ireland, Italy, Portugal and Spain), mapping 

their relevant indicators for forty months (January 2010 – April 2013). In every table20 

presenting the selected predictors, seven specific months are highlighted. These months 

could be considered as structural breaks in the Eurozone economy during this volatile 

period. These derive from EU central financial and political decisions, events and news’ 

reports, which lead to positive or negative speculation in the Euro area in general. More 

details regarding the highlighted months are given in appendix F.1. 

 

8.5.1.1 Inflation Exercise 

 

The following three tables refer to the three core countries, namely Belgium, France and 

Germany. Table 8-3 presents the selected predictors of CPI for the case of Belgium. The 

results show that INDP, ESI, STOXX50, GDAX and OIL are selected almost in all months 

as potential inputs, while FTSE is always discarded. LOAN, TRBAL, EUM1, USD, JPY, 

GBP are all not found important before April 2011. SP1 and SP2 are pooled only after 

January 2012. The selected macroeconomic variables of CPI for the French case follow in 

Table 8-4. From this table is suggested that only OIL is always selected for all the months. 

SP1 and SP2 are discarded, except of one month for SP1. EMU1, USD and FTSE are 

found irrelevant before February 2012, while STOXX50 and GDAX after February 2012. 

ESI is always kept in the pool after April 2011. The German monthly pool of predictors is 

given in Table 8-5. The German EUM1, USD, GDAX and OIL are included in the pool 

during all months, while LOAN, JPY, GBP and FTSE are not. INDP is not selected only 

during five months, whereas STOXX50 is included only for three months. ESI and 

TRBAL are relevant indicators after September 2011, while SP1 and SP2 after September 

2010. 

                                                                 
20 In every table the numbers represent the orders of the autoregressive terms. For example, the number 1 in 
the column of IND means that RG-SVR selects as input the first autoregressive term of the Industrial 
Production. 
 



  

 
 

 

 

 

 

 

 

 

 

 

 

 

  

  
 

Table 8-3: The selected predictors for the Belgian inflation  

BELGIUM 
CPI INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 

Jan-10 2, 3 2, 4 - - - - - - - 1, 3 1, 4 3, 5 - - 
Feb-10 1, 3 1, 2 - - - - - - - 3, 4 4, 5 1, 3 - - 
Mar-10 1, 3 1, 3, 4 - - - - - - - 1 1, 3 3 - - 
Apr-10 3 2, 3, 5 - - - - - - - 4 3, 5 1, 2, 4 - - 
May-10 1, 2, 5, 6 2, 3 - - - - - - - 2, 4 1, 2, 6 1, 2, 4 - - 
Jun-10 1,2, 4, 5 1, 4 - - - - - - - 5 3 4, 5 - - 
Jul-10 2, 4 6 - - - - - - - 2, 3, 5 1 5 - - 
Aug-10 - 1 - - - - - - - 1, 4 3, 4, 5 1, 2 - - 
Sep-10 - 1 - - - - - - - 1, 2 4, 6 2, 3, 5 - - 
Oct-10 2, 4, 6 2, 4 - - - - - - - 1 2, 4 6 - - 
Nov-10 2, 4, 6 4 - - - - - - - 1, 2, 4 1, 2, 3 3, 5 - - 
Dec-10 4 5 - - - - - - - 1 2, 3, 5 1, 2 - - 
Jan-11 1 5 - - - - - - - 5, 6 1, 2 4 - - 
Feb-11 1, 5, 6 1, 2 - - - - - - - 2, 4 2, 3, 6 1, 4 - - 
Mar-11 1, 5 3 - - - - - - - 2, 3, 6 1 5 - - 
Apr-11 2, 3, 4, 5, 6 4, 5 - 2, 5 2, 3 6 2, 5 1, 2, 4 - 5 3, 4 2 - - 
May-11 1, 4 1, 3 - 3, 5 1, 2 4 1, 2 4, 5 - 1 1, 4 6 - - 
Jun-11 6 4 - 4 5 1 2, 3 3, 5 - 5 6 3 - - 
Jul-11 6 5 - 1 2, 3 1 2 4 - 5, 6 2, 3, 6 3 - - 
Aug-11 1 2, 3 - 3 1, 2 1, 3, 4 1 5 - 1, 5 1, 2 5 - - 
Sep-11 2, 3, 5 4 2,3,5 3, 4, 5 5 - - - - 5 6 2 - - 
Oct-11 - 2, 5 4 1 3, 5 - - - - 1, 4 3, 5 4 - - 
Nov-11 - 4 1 2, 3, 5 1, 4 - - - - 1, 2 3, 4 2, 3, 6 - - 
Dec-11 3, 6 1, 2 1, 5, 6 5, 6 5 - - - - 1, 3, 4 1, 3 1, 4 - - 
Jan-12 3, 6 1, 5 3, 4 - - - - - 1, 2, 4 3 2, 4 - - 
Feb-12 1, 4, 5, 6 3, 5, 6 3, 4 2, 3 - 1 1, 3 1, 5 - 5 3 1, 3, 4 2 5 
Mar-12 1, 2, 4, 5 1 1, 2, 4 1, 5 1 3, 4, 5 4, 5 1, 3 - 3, 4, 5 1 1, 2 4, 5 5 
Apr-12 1, 2, 4 1 1, 3 2 2, 4 - 1, 3 3, 4, 5 - 1, 2 2, 3, 5 - 1, 3 5 
May-12 2, 3, 6 1 3 2 2, 3, 5 - 2, 4 1, 3, 5, 6 - 2 1, 4 - 5, 6 3, 4, 5 
Jun-12 1, 4 1 1, 3 2, 5 2 - 1 1,2,4 - 3, 4, 5 2 - 1, 5 4 
Jul-12 1, 4, 5, 6 1 3 2, 5 1, 5 5, 6 1,2,4 - - 2, 4 2, 3 - 2, 3 2, 4 
Aug-12 1, 2 3, 4 2, 4, 5 1, 2, 4 - - - - - 3 3, 5 3 3, 4, 5 4, 5 
Sep-12 - 2, 4 5 2, 3, 5 - - - - - 3 3, 4, 5 1, 2 1, 5 4, 5 
Oct-12 - 2 3 5, 6 - - - - - 1, 4 3, 4 2, 4 1, 4 3, 5 
Nov-12 - 3 4, 5 4, 5 - - - - - 5 3, 6 3, 5 2, 4 6 
Dec-12 5 5, 6 5 1, 4 - - - - - 5 1 5, 6 4 5 
Jan-13 1, 2, 6 1, 2 1 1, 2, 3 - - - - - 1, 3, 4 2, 3, 5 1, 2, 3 3, 5 3, 4, 5 
Feb-13 5, 6 3, 5 5, 6 2, 4 - - - - - 3, 4 2 1, 2, 3 2 6 
Mar-13 1, 3, 5 1, 4 1, 3, 4 1, 2 - - - - - 5 2, 5 2, 4 2, 4 1, 5 
Apr-13 2, 6 4 2 1, 2 - - - - - 1, 2 2, 4 4, 5 1, 2 4, 5 
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Table 8-4: The selected predictors for the French inflation  

FRANCE 
CPI INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 

Jan-10 1, 4 5 2, 3 1 - - - - - 2 2, 4 1, 2 - - 
Feb-10 1, 4 4 2, 4 3, 4, 5 - - - - - 2, 3 4 3, 4, 5 - - 
Mar-10 3, 4 5 2 3, 6 - - - - - 3, 6 4, 5, 6 3 - - 
Apr-10 3, 4 5 2 2, 3 - - - - - 6 4,5 4 - - 
May-10 3, 4 2 1, 2 - - - - - - 3, 4, 5 - 4 - - 
Jun-10 1, 5 2, 3 3 - - - - - - 3 - 2, 3 - - 
Jul-10 3, 4, 6 2 4, 6 - - - - - - 3 - 2 - - 
Aug-10 2, 4 4, 5, 6 3 - - - - - - 1, 2, 3 - 2, 4 - - 
Sep-10 2 - 2, 4, 6 - - - - - - 3 - 1, 3, 4 - - 
Oct-10 2 - 5, 6 1, 5 - - - - - 1 - 2 - - 
Nov-10 1 - 6 2, 3 - - - - - 2, 5 - 3, 4 - - 
Dec-10 4, 5 - 3, 6 1, 2 - - - - - 2, 3 - 1, 3, 6 - - 
Jan-11 1, 3, 6 - 3 4, 6 - - - - - 1, 2 - 2 - - 
Feb-11 3, 4, 6 - 3 3, 6 - - - - - 1, 4, 5 - 2 - - 
Mar-11 1, 2 - 4, 6 6 - - - - - 2 - 3, 4, 5 - - 
Apr-11 - - 3, 6 - - - - - - 2 - 6 - - 
May-11 - 2, 3, 6 2 - - - 5 1, 2 - 1, 3 3 5 - - 
Jun-11 - 5, 6 2, 5 - - - 2 2, 3 - 3 3, 4, 5 6 - - 
Jul-11 - 2, 3, 4, 5, 6 3, 6 - - - 2, 5 1, 5, 6 - 5, 6 4 2, 5, 6 - - 
Aug-11 - 2, 3, 4 5 - - - 2, 3 4 - 1, 3, 5 4 4, 6 - - 
Sep-11 - 3, 4 5 - - - 2, 4 4 - 2 4 2 - - 
Oct-11 1, 6 2 1, 4 - - - 1, 4, 5 4 - 2 4 3, 4 - - 
Nov-11 3, 4 2, 3 2, 4 - - - 2 2, 3 - 2 2, 4 2, 5 3, 4, 5 - 
Dec-11 2, 5, 6 4 5 - - - 2, 3 2, 6 - 4, 5 4, 6 2, 5, 6 - - 
Jan-12 4, 5 4, 5 6 - - - 1, 4, 5, 6 5, 6 - 6 4 2 - - 
Feb-12 1, 4, 5 6 - - 3 2, 4 1 2, 5, 6 - - - 2, 4 - - 
Mar-12 3 2, 6 - 4 4, 5, 6 4, 6  5 4 2 - - 1 - - 
Apr-12 4 2, 5 - 4, 5 1, 2 4 1, 3 4 2 - - 1 - - 
May-12 1, 3 1, 2, 5 - 3 3 5 5 4 1 - - 1, 4, 5 - - 
Jun-12 4 1, 4 - 4 2, 3 4  2 2, 3 1, 2 - - 1 - - 
Jul-12 - 5, 6 - 1, 4 3 4 3, 5 - 5 - - 1 - - 
Aug-12 - 1, 3, 5 3 3, 4 3 1 1, 6 - 5 - - 2 - - 
Sep-12 - 4, 5 3 1, 3, 4 3, 4 2 1, 2 - 5, 6 - - 2, 5 - - 
Oct-12 - 1, 5 1 3, 5 4 1, 2 2 - 2, 6 - - 2, 6 - - 
Nov-12 - 1, 5 3 5 4, 5 1, 2 2, 4 - 2, 3 - - 1, 2 - - 
Dec-12 - 5 3, 5 3, 4, 5 3 2 2, 4 - 2, 3 - - 2, 4, 5 - - 
Jan-13 - 5 3, 4 1, 2 1, 2, 5, 6 2 1, 2 - 2 - - 3 - - 
Feb-13 - 1, 2 3 1 4, 5, 6 6 2 - 6 - - 3 - - 
Mar-13 - 1, 2 2,3 1 4, 5 6 2 3 4, 5 - - 3, 6 - - 
Apr-13 - 3 4 1 4 5, 6 2, 3 2, 4, 5, 6,  3, 5 - - 2, 3 - - 
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Table 8-5: The selected predictors for the German inflation 

GERMANY 
CPI INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 

Jan-10 2 - - - 1 2 - - - - 1 1 - - 
Feb-10 2 - - - 2, 4 1, 2 - - - - 3, 4 4 - - 
Mar-10 2 - - - 3, 4, 5 2 - - - - 2, 3, 6 4 - - 
Apr-10 2, 3 - - - 4, 5 2, 5 - - - - 4, 6 4 - - 
May-10 3 - - - 2 3, 5 - - - - 3, 5 4 - - 
Jun-10 3 - - - 1 1, 4 - - - - 3, 4 2, 4 - - 
Jul-10 1 - - - 1 2 - - - - 3, 6 2, 5 - - 
Aug-10 - - - - 1 4, 5 - - - - 4, 6 4 - - 
Sep-10 - - - - 2 4, 5 - - - - 3, 4, 5 4 - - 
Oct-10 - - - - 2 1, 2, 5 - - - - 4, 5 4 - - 
Nov-10 - - - - 2, 3 5, 6 - - - - 2, 3 4 3 - 
Dec-10 - - - - 3 2, 4 - - - - 1, 2 3, 5 3 - 
Jan-11 1, 3 - - - 2, 3 1, 2, 5 - - - - 1, 2, 5 5 2 - 
Feb-11 3 - - - 3 3, 5 - - - - 2 1, 4 2, 5 - 
Mar-11 3 - - - 1 1, 4 - - - - 2 5 3 - 
Apr-11 5 - - - 6 1, 6 - - - - 2, 6 5 3, 5 1 
May-11 5, 6 - - - 4, 6 6 - - - - 2, 3 5 2 1 
Jun-11 4, 5 - - - 2, 4 6 - - - - 1, 3, 4 5 2 1 
Jul-11 5 - - - 4, 6 6 - - - - 3 4 2, 1 1 
Aug-11 5 - - - 3, 5 6 - - - - 3, 5 2, 4 1 2, 5 
Sep-11 5 - - - 3 1 - - - - 3 1, 5 1, 2 1 
Oct-11 5 2, 3 - - 1, 2, 5 1, 2 - - - 2 3 1, 4 3 1 
Nov-11 1, 4 3 - - 3 2 - - - - 1, 3 4 3 2, 5 
Dec-11 4 3, 4 - - 3 2, 4 - - - - 3 4 3 1 
Jan-12 4 3, 5 - - 2 2, 5 - - - - 3 4, 5 3 2 
Feb-12 4, 5 1, 2 - 2, 3 2 4, 5 - - - - 3 5, 6 3 2 
Mar-12 1, 2, 4 2 - 3, 4 2 3, 5 - - - - 1 1 3 2 
Apr-12 3, 4 2 - 1, 2, 5 2 5, 6 - - - - 1 2 3 1 
May-12 2, 3, 4 1, 3 - 4 2 5 - - - - 2, 4 2 2, 4 1 
Jun-12 4 1, 2 - 5, 6 1, 2 2, 5 - - - - 1 2, 3 3 2 
Jul-12 4, 5 6 - 1, 5 2, 4 1, 3 - - - 2, 4 3, 6 3 3 1 
Aug-12 2 4, 5 - 5 3 3, 5 - - - - 6 3, 4 1, 3 3 
Sep-12 3 5 - 5, 6 3 3, 6 - - - - 6 4, 6 3 3 
Oct-12 1 5 - 1, 5 3, 5 5, 6 - - - - 5, 6 3, 5 1, 2, 5 5, 6 
Nov-12 1 5, 6 - 1, 4 5 3, 4, 6 - - - - 3, 5 6 1 6 
Dec-12 1, 2 3 - 2, 6 1, 6 3, 5 - - - - 4, 6 6 3 2, 5 
Jan-13 2 2 - 3 3, 4 3 - - - 2, 5 4 6 3, 4 3, 5 
Feb-13 6 1, 2 - 1, 5 4 1, 4 - - - - 1, 3, 6 6 3, 5 2, 5 
Mar-13 5 2 - 5 4, 6 1 - - - - 1, 2, 5 1 3, 6 2, 4 
Apr-13 5, 6 1, 4 - 6 6 1, 3 - - - - 3, 5, 6 1 5 5, 6 
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The results of the previous three tables indicate that OIL is a common relevant 

predictor for the core countries during all months under study. ESI is always kept in the 

pool of potential inputs after October 2011, while JPY, GBP and FTSE always discarded 

before April 2011. All monthly forecasts are derived by less than thirty inputs from the 

hundred sixty eight in total, which are autoregressive terms with order up to six. Finally, 

the average number of terms selected for a monthly forecast is seventeen. 

The next five tables present the same information for the five peripheral countries, 

namely Greece, Ireland, Italy, Portugal and Spain. In Table 8-6 the results for the Greek 

case are summarized. TRBAL, USD, JPY, GBP and OIL are not useful to predict the 

Greek CPI. On the other hand, autoregressive terms of EUM1, SP1 and SP2 are always 

used for this task. ESI is selected only before June 2010 and after August 2011.The rest of 

the predictors are included in the pool of potential inputs only for limited number of 

months. Table 8-7 describes the Irish inflation predictors, selected by the RG-SVR. This 

pool of predictors indicates that only SP2 is found irrelevant for all months. All the other 

variables are found important during different months. For example, INDP is selected after 

January 2011, except from the period of September 2011 to February 2012. ESI is found 

insignificant mainly July 2011, while LOAN from November 2010 to March 2012. FTSE 

and SP1 are included only in the last months of the exercise. Finally, JPY, GBP, FTSE and 

GDAX are all not found relevant macroeconomic indicators of Irish inflation before July 

2011. Next, the Italian case is analyzed. Table 8-8 shows that GBP is found important in 

all the forecast period, while FTSE is not. SP2 is kept in the Italian pool of predictors only 

after April 2012. The rest of the indicators are selected in various patterns. ESI, TRBAL, 

EMU1 and GDAX all disqualify as potential inputs during May 2011 to September 2011. 

Similarly, INDP, EMU1, JPY and GDAX are not selected during February 2012 till May 

2012. The Portuguese relevant macroeconomic variables are presented in table 8-9. From 

the above it is obvious that TRBAL and FTSE are common variables throughout the forty 

months.  On the other hand, INDP, LOAN, USD, JPY, GBP and OIL are not kept in the 

pool of potential inputs. SP1 is not selected only from September 2010 to April 2010. ESI, 

EMU1, STOXX50, GDAX and SP2 are found irrelevant during almost the whole 2012. 

Finally, the Spanish inflation predictors are summarized in the table 8-10. In this case RG-

SVR discards many indicators during the forecast period (LOAN, TRBAL, USD, JPY, 

GBP, FTSE, OIL, SP1 and SP2), but always keeps as potential inputs autoregressive terms 

of ESI and EMU1. INDP, STOXX50 and GDAX are also macroeconomic variables used 

throughout most of the forty months, except some consecutive months. 

  



  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8-6: The selected predictors for the Greek inflation  

GREECE  
CPI INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 

Jan-10 - 1, 3 - - 1, 3 - - - - - 1, 4 - 1, 2, 3, 4 3 
Feb-10 - 2, 4 - - 3, 4 - - - - - 1, 2, 3, 4 - 2, 3 3 
Mar-10 - 4 - - 4 - - - - - 3 - 2, 3, 4 1, 3 
Apr-10 - 4 - - 4 - - - - - 1, 3 - 3, 4 3 
May-10 - 1,4 - - 1 - - - - - 3, 4 - 4, 5 1, 2 
Jun-10 - 1 - - 2 - - - - - 1 - 1, 2 2 
Jul-10 - - - - 1, 2 - - - - - 1 - 1, 3 2, 3, 4 
Aug-10 - - - - 2 - - - - - 1 - 1, 2 3, 4 
Sep-10 - - - - 1, 3 - - - - - 1 - 1, 2 2, 4 
Oct-10 - - - - 2, 1 - - - - - 1 - 1, 2, 3 4 
Nov-10 - - - - 1, 4 - - - - - 1 - 1, 4 4 
Dec-10 - - - - 3 - - - - - 1, 4 - 4 1 
Jan-11 - - - - 3, 4 - - - - - 1, 4 - 3, 4 1, 2, 3 
Feb-11 - - - - 2, 4 - - - - - 3 - 4 1 
Mar-11 - - - - 3 - - - - - 3, 4 - 4 1 
Apr-11 - - - - 3 - - - - - 4 - 4 1 
May-11 1,  2 - 3, 4 - 3 - - - - - 4 - 1 1, 3 
Jun-11 2 - 2, 4 - 3 - - - - - 1, 2 - 1 1 
Jul-11 2 - 3 - 3 - - - - - 2, 4 - 1, 2, 3 1 
Aug-11 2, 3 1 4 - 1, 3 - - - - - 2, 4 - 2 1 
Sep-11 3, 4 1, 3 1, 3 - 1 - - - - - 1, 4 - 2 1, 2, 3, 4 
Oct-11 2,3 1 3 - 1 - - - - - 1,  3 - 1, 3 2, 4 
Nov-11 3 1 3 - 3 - - - - - 3 - 1, 3 2, 3, 4 
Dec-11 3 1 - - 2 - - -  1 2, 3 - 3, 4 4 
Jan-12 - 3, 4 - - 2, 4 - - - 3, 4 1 3 - 3, 4 4 
Feb-12 - 1 - - 1, 2 - - - 4 1,2 3, 4 - 4 1 
Mar-12 - 1 - - 3, 4 - - - 4 3, 4 1, 2 - 4 1, 2 
Apr-12 - 1 - - 1, 4 - - - 2 2 4 - 1, 2 1 
May-12 - 1 - - 3, 4 - - - - - 3 - 1, 2, 3 4 
Jun-12 - 1, 3 - - 1, 2, 4 - - - - - 3 - 2, 3, 4 1, 3 
Jul-12 - 1, 3 - - 3, 4 - - - - - 3, 4 - 1 2 
Aug-12 - 2 - - 1, 2, 4 - - - - - 1 - 2, 4 2 
Sep-12 - 2 - - 1, 3 - - - - - 1, 3 - 4 2, 3, 4 
Oct-12 - 1, 2, 3 - - 3, 4 - - - - - 1 - 4 2, 3 
Nov-12 - 1, 3 - - 1, 2 - - - - - 1 - 2, 3, 4 3 
Dec-12 - 1, 2, 3, 4 - - 1, 2, 3, 4 - - - - - 1, 2 - 1, 4 1, 2 
Jan-13 - 3, 4 - - 4 - - - 4 1 2 - 1, 3, 4 1, 3 
Feb-13 4 2, 3,4 - - 3, 4 - - - 2, 4 1, 3 1, 3, 4 - 3, 4 1 
Mar-13 3, 4 3 4 - 1 - - - 3 2, 3 4 - 1, 2 1, 2 
Apr-13 4 4 4 - 1, 2 - - - 3,4 3 4 - 1, 2, 3, 4 1, 2, 3 
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Table 8-7: The selected predictors for the Irish inflation  

IRELAND  
CPI INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 

Jan-10 3 1, 4 5 2 4 2, 5 - - - 5 - 1, 2 - - 
Feb-10 - 5 5 1, 2 4, 5 1, 6 - - - 2 - 2 - - 
Mar-10 - 2, 5 2, 5 - 1, 4 2, 3 - - - 2, 5, 6 - 3, 4 - - 
Apr-10 - - 1, 3 - 1, 6 2 - - - 2, 3, 4 - 2, 4 - - 
May-10 - - 3, 4 - - 2 - - - 2, 4 - 1, 2 - - 
Jun-10 - - 5 - - 1, 3 - - - 1, 2, 4 - 2 - - 
Jul-10 - - 1, 2, 3, 5 - - 1, 2 - - - 1, 2 - 4, 5 - - 
Aug-10 - - 2, 4, 6 - - 2 - - - 5, 6 - 2, 4 - - 
Sep-10 - - 1, 2 - - 3, 4, 5 - - - 2, 3, 4 - 1, 2 - - 
Oct-10 - 1, 4 4 - - 2, 4 - - - 1 - 4 - - 
Nov-10 - 4, 6 - - -  - - -  5, 6 - 1, 4 - - 
Dec-10 - 6 - 3 - 2, 4 - - - 1, 3 - 1, 3 - - 
Jan-11 - 6 - 1, 3 - 4 - - - 5 - 5, 6 - - 
Feb-11 4, 5, 6 4 - 1 - 2, 4 - - -  2, 4, 5 - 2, 3 - - 
Mar-11 3, 4 4, 6 - 1 - 5 - - - 3, 5 - 2, 4, 5 - - 
Apr-11 3, 4 1, 3, 4 - 3 - 2, 3, 5 - - - 1, 6 - 2 - - 
May-11 1, 3 4, 5 - 2 - 1, 4 - - - 1, 2 - 1, 3 - - 
Jun-11 1, 2 1, 4 - 2, 4 - 1, 2 - - - 2 - 5 - - 
Jul-11 3 1, 5 - 1, 2 - 2, 4 - - - 2, 4 - 4, 5, 6 - - 
Aug-11 1, 2, 4 - - 3 - 2, 3, 6 - - - 2 2, 4 1, 2, 5 - - 
Sep-11 - - - 1, 2 - 5 2 -  1, 3 2, 3,6 5 - - 
Oct-11 - - - 1 3, 6 1 2, 5 -  3 2 1, 4 - - 
Nov-11 - - - 1, 2, 4 1, 3, 6 1, 2 1, 2 - - 2 3, 5 1, 2 - - 
Dec-11 - - - 3, 4 3 - 2 - - 2, 3 2 1, 3, 4 - - 
Jan-12 - - - 1, 2, 4 2, 4 - 3, 4, 5 - - - 1, 3 1, 2, 6 - - 
Feb-12 - - - 1, 3 5 - 2, 4 - - - 3, 4, 6 5 - - 
Mar-12 2, 3, 5 - - 3, 4 1, 2 - 1, 2 - - - 1, 3 3, 4, 5 - - 
Apr-12 1, 4, 5 - 1, 2 1, 2 2 - 2 - - - 1, 2, 4 2, 3 - - 
May-12 2, 4 - 2 1, 2, 3, 4 3, 4, 5 - 3, 4, 5 1, 3, 4 - - 2 2 - - 
Jun-12 5 - 3, 5 5, 6 2, 3 - 2, 3 2, 5 - - 2 2 - - 
Jul-12 2, 3, 5 - 2, 4 - 4, 5 - 2 1, 2, 5 - - 2, 4 1, 3 - - 
Aug-12 1, 2 - 1, 4 - 3, 5 - 2 1, 6 - - 3 3 - - 
Sep-12 2 - 5 - 5, 6 - 1, 3 6 - - 1, 4 , 5 3 2, 5 - 
Oct-12 3, 4, 5 - 3, 4 - 5 - 4, 6 2, 4 - - 3, 6 1, 4 5 - 
Nov-12 3, 4 - 5 - 2, 5 - 1, 3 5 - - 2, 5, 6 5 1, 4 - 
Dec-12 1, 2 - 1, 2 - 1, 3 - 3, 4 2, 3, 5 2, 4 2, 3 1, 4, 5, 6 5 4, 5, 6 - 
Jan-13 1, 2, 3, 4 - 5 - 3 - 1, 2, 4, 6 1 1, 2 2, 4 1, 2, 4 1, 3, 4 1, 2 - 
Feb-13 2, 3 - 5 - 1, 4 1 3, 5, 6 2, 3 3 2, 4 2, 3, 5 3, 4 2, 5 - 
Mar-13 2 - 1, 2 - 2 1, 3 1, 4 3, 5 1, 4 1, 2 2, 5 5 2 - 
Apr-13 2 - 2 - 1 3, 4 2, 4, 6 1, 4, 5, 6 5 2 5, 6 1, 2 2,4 - 
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Table 8-8: The selected predictors for the Italian inflation  

ITALY 
CPI INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 

Jan-10 1, 3, 5 2 - 4 1 1, 3, 5 3 2 - 1, 5 1, 2, 4 1, 2 2, 5 - 
Feb-10 2 1, 3 - 2, 5 1 1, 3 1, 3 2 - 1 3, 5 2 1, 5 - 
Mar-10 2, 4 3 - 3, 5 1, 2, 3 1, 4 1 1, 2, 3 - 2 5, 6 2, 4 2, 4 - 
Apr-10 3, 5 4 - 1, 4 2,3 3, 5 1 2 - 2 1 3, 4 2 - 
May-10 5 1, 4, 5 - 4, 5 5, 6 4 3 3, 5 - 2, 3 1 1, 2 2 - 
Jun-10 1, 4 1, 3 - 2, 3 3 - 2 1, 4 - 1, 2  1 2 2, 3 - 
Jul-10 1, 2 5, 6 - 3 1, 5 - 2, 4 1, 5 - 1 1 3, 5 1, 2, 4 - 
Aug-10 2, 4 2, 3 - 3, 5 3, 5 - 1, 2, 4 2 - 1 1, 2 3, 4 2 - 
Sep-10 2, 3, 6 2, 3 4, 5 6 3 - 3, 4 4, 5 - 3 1 1, 2 1, 4, 5 - 
Oct-10 2 2, 4 1, 5 5, 6 3, 6 - 1, 2, 4 2 - 3, 4 1 4 1, 4 - 
Nov-10 1, 3, 4, 5 1, 2 2, 3, 4 6 3 1, 3 1, 3 2, 5 - 4, 5 1 1, 4 2 - 
Dec-10 2, 4 2 1, 4 1, 2 1, 3 3, 4 4 1, 4 - 5, 6 3 1, 3 2, 5 - 
Jan-11 2, 4 5 2, 5 2 2 3, 4 4 1, 3 - 5 3, 5 1, 6 4, 5 - 
Feb-11 4 4, 6 2, 5 3, 5 1, 3 5 3, 5 4, 6 - 5 3 1, 3 2, 4 - 
Mar-11 2, 4 1, 2, 5 1, 2, 5 - 1, 2 4, 5 2, 4 1, 3 - 5 3 1, 4, 5 5, 6 - 
Apr-11 5 - 3, 5 - - 1, 2 4 3, 4 - 1, 2 3 2 1, 3, 5 - 
May-11 2, 3, 5 - 1, 3 - - 1, 2, 3 2 1, 2, 4, 6 - 2, 3 - 1, 3 2, 4 - 
Jun-11 1, 4 - 3 - - 1, 3, 4 3, 4 3, 5, 6 - 2, 5 - 5 - - 
Jul-11 2 - 5 - - 3, 4, 6 - 1, 4 - 2, 4, 6 - 4, 6 - - 
Aug-11 1, 3 - 2, 4 - - 1, 2 - 2, 6 - 1, 4 - 1, 5 - - 
Sep-11 5 - 3, 5 - - 3, 4 - 5 - 1 - 5 - - 
Oct-11 5 - 4 5, 6 - 4 - 2 - 3 - 1, 4 - - 
Nov-11 1 - 1 6 - 4 - 2, 5, 6 - 3 - 1, 2, 3 - - 
Dec-11 1, 2 5 1, 3 6 - 2 - 2 - 3 - 1,  4 - - 
Jan-12 - 4, 5 2, 4 2 - 2 - 2, 5 - 4 - 2, 6 - - 
Feb-12 - 1, 3, 5 1, 3, 4 2 - 1, 2, 3 - 1, 4 - 4 - 1 1, 6 - 
Mar-12 - 5 1, 2 2, 4 - 2 - 1, 2, 3 - 1, 2 - 1 1, 2 - 
Apr-12 - 1, 4 3, 5, 6 2, 5 - 4, 5 - 5, 6 - 2, 4 - 1, 4 2 2,5 
May-12 - 2, 3 1, 2 2 - 1, 2 - 1, 3, 4 - 4 - 2 2, 4 1 
Jun-12 - 3 3 2 - 1, 3 - 1 - 1, 6 4, 5 2, 4 3, 5 1 
Jul-12 - 3 1, 2, 5 1, 4 - 1, 3, 4 4  5, 6 - 6 5, 6 1, 3 3 2 
Aug-12 - 1, 4 1, 2, 4 2, 3 - 3, 4 5, 6 2, 3 - 6 6 2 1, 4 2 
Sep-12 - 5, 6 4, 5 3 - 3, 4 6 5 - 6 6 3 3, 5 4 
Oct-12 - 1, 3 1 3, 5 2, 3, 4, 6 1, 3 4, 6  2, 4, 5 - 6 3, 6 5 1, 3, 4 4, 5 
Nov-12 3, 4 3 2, 5 1, 2 1, 3 3, 4 6 3, 5, 6 - 5, 6 3, 5 1, 3 1, 3, 4 1, 4 
Dec-12 1, 3 3 1, 2, 4 2 5, 6 2, 4, 5 1, 2 1, 2, 6 - 5, 6 5 3, 5 4 3, 4 
Jan-13 3 2, 4 2, 4, 5 3, 5 3, 4 4 2 1, 2 - 5. 6 5 4 4 1 
Feb-13 3 1, 5 5, 6 5, 6 3 1 3, 4 2 - 1, 2 5 2,  6 1, 4, 6 1 
Mar-13 1, 2, 4 5 4, 5 6 2, 3 2, 4 1, 2 2, 4 - 2, 3 1 5 2, 2 
Apr-13 3 1, 6 2, 3 1,2 1, 4 4 1, 2, 3, 4 2, 3 - 2 1 3 1, 4 4 
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Table 8-9: The selected predictors for the Portuguese inflation  

PORTUGAL 
CPI INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 

Jan-10 - 2 - 1 2 - - - 2, 4 1 2 - 2 2, 3 
Feb-10 - 2, 4 - 1 - - - - 1, 3 1 2, 4 - 2,3 1, 2 
Mar-10 - 3 - 1, 2 - - - - 2 1 2 - 3 1, 3 
Apr-10 - 3 - 2, 4 - - - - 1, 4 1 2, 3 - 1, 4 1, 5 
May-10 - 2, 4 - 1 - - - - 1, 2 3 2 - 1 1 
Jun-10 - 4 - 1 - - - - 2, 4 4 4 - 1 1 
Jul-10 - 4 - 2, 3 - - - - 2 3 4 - 1 1 
Aug-10 - 4 - 2 - - - - 1, 2 3 4 - 1 1, 4 
Sep-10 - 1, 2 - 1 - - - - 3 - - - - 1, 3 
Oct-10 - 2 - 2, 4 - - - - 1 - - - - 1, 3 
Nov-10 - 2 - 3 3, 4 - - - 4 - - - - 1, 3 
Dec-10 - 1, 3 - 3 3 - - - 1 - - - - 1, 4 
Jan-11 - 3 - 1, 3 2, 4 - - - 1, 4 - - - - 1, 2 
Feb-11 - - - 3 2, 4 - - - 2, 3 - - - - 1 
Mar-11 - - - 3 2 - - - 3 - - - - 1 
Apr-11 - - - 2, 4 1, 3 - - - 3 - - - - 3 
May-11 - - - 1, 4 - - - - 1 - - - 4 3, 4 
Jun-11 - - - 4 - - - - 2 - - - 4 3 
Jul-11 - - - 1, 3 - - - - 3, 4 - - - 4 - 
Aug-11 - - - 4 - - - - 4 - - - 4 - 
Sep-11 - - - 4 - - - - 4 - - - 4 - 
Oct-11 - - - 3, 4 - - - - 1, 2 - - - 3 - 
Nov-11 - - - 4 - - - - 3, 4 - - - 3 - 
Dec-11 - - - 1, 3 - - - - 1, 2 - - - 3, 4 - 
Jan-12 - - - 2 - - - - 1, 4 - - - 1, 2 - 
Feb-12 - - - 1, 2 - - - - 2, 3 - - - 1 - 
Mar-12 - 3, 4 - 2 - - - - 1 2, 3 2, 4 - 1 - 
Apr-12 - 1, 2 - 1 1 - - - 1 2, 4 4 - 1 - 
May-12 - 2, 3 - 2 2, 4 - - - 1 1 3, 4 - 1 - 
Jun-12 - 3 - 1, 2 2, 3 - - - 1 1 4 - 1 - 
Jul-12 - 3 - 3 1, 2 - - - 1 - 4 - 2, 3 - 
Aug-12 - 1 - 1 3 - - - 1 - 1, 3 - 3 - 
Sep-12 - 1 - 2, 4 3 - - - 1 - 1, 4 - 3 - 
Oct-12 - 1 - 2, 3 3 - - - 3, 2 - 1, 2 - 3 1, 3 
Nov-12 - 1 - 1, 3 4 - - - 2 - 1 - 3 2 
Dec-12 - 1, 2, 4 - 2 4 - - - 2, 5 - 1 - 2, 4 2 
Jan-13 - 2, 3 - 3 1, 2 - - - 4 - 1, 3 - 3 2 
Feb-13 - 4 - 4 2, 4 - - - 4 - 3 - 3 3, 4 
Mar-13 - 1, 2 - 3 1, 2, 3, 4 - - - 1, 3 - 3 - 1, 3 1, 2 
Apr-13 - 2 - 1, 2 1, 2 - - - 3 - 1 - 4 2 
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Table 8-10: The selected predictors for the Spanish inflation  

SPAIN 
CPI INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 

Jan-10 1, 2 2, 3 - - 1, 3 - - - - 2 3 - - - 
Feb-10 2 2 - - 3 - - - - 2 3 - - - 
Mar-10 2, 4 3, 5 - - 4, 6 - - - - 1, 2, 3 3, 4 - - - 
Apr-10 1 1, 5 - - 5, 6 - - - - 1 4 - - - 
May-10 1 6 - - 2 - - - - 1, 4 1, 6 - - - 
Jun-10 3 6 - - 2 - - - - 1, 5, 6 4 - - - 
Jul-10 3, 5 2, 3, 6 - - 1, 3 - - - - - 3 - - - 
Aug-10 4 6 - - 1 - - - - - 4, 5 - - - 
Sep-10 2, 6 3 - - 1, 2 - - - - - 1 - - - 
Oct-10 1 4 - - 1 - - - - - 3 - - - 
Nov-10 - 1, 3 - - 5 - - - - - 2, 3 - - - 
Dec-10 - 1, 2, 3 - - 5, 6 - - - - - 3 - - - 
Jan-11 - 2, 3 - - 1 - - - - 2, 4 2, 6 - - - 
Feb-11 - 3 - - 2 - - - - 2 3 - - - 
Mar-11 - 3 - - 5 - - - - 1, 2 4 - - - 
Apr-11 - 1 - - 1 - - - - 3 1, 2, 3 - - - 
May-11 - 1, 2 - - 1 - - - - 1, 2, 3 2 - - - 
Jun-11 - 1 - - 1, 2 - - - - 3 2, 4, 6 - - - 
Jul-11 - 1, 3, 5 - - 1, 3 - - - - 3, 5 2 - - - 
Aug-11 - 2 - - 1 - - - - 3 - - - - 
Sep-11 - 2, 4 - - 2 - - - - 3 - - - - 
Oct-11 4, 5, 6 1, 2, 4 - - 2, 4, 5 - - - - 4, 5, 6 - - - - 
Nov-11 4, 5 1 - - 1 - - - - 4 - - - - 
Dec-11 1, 2, 4 1, 2, 4 - - 2 - - - - 3, 5 - - - - 
Jan-12 4 1 - - 2, 6 - - - - 4 - - - - 
Feb-12 1 3 - - 2 - - - - 4, 6 - - - - 
Mar-12 2 3, 5, 6 - - 2, 3 - - - - 1, 4 - - - - 
Apr-12 2, 3 3 - - 3 - - - - 2 - - - - 
May-12 2 3, 6 - - 2 - - - - 4, 5 - - - - 
Jun-12 1, 3, 4 3 - - 4, 5 - - - - 4 - - - - 
Jul-12 1 4 - - 4, 6 - - - - 1, 2 - - - - 
Aug-12 1, 2, 4 4, 6 - - 1, 2 - - - - 2, 4 - - - - 
Sep-12 1 5 - - 3, 6 - - - - 1 1 - - - 
Oct-12 1, 2, 4 5, 6 - - 6 - - - - 2, 3 4, 5, 6 - - - 
Nov-12 2 5 - - 4, 6 - - - - 2 6, 4, 5 - - - 
Dec-12 2, 3, 4 1, 4, 5 - - 6 - - - - 2, 4 2, 4, 5 - - - 
Jan-13 2 5 - - 4, 5 - - - - 2 1, 3, 6 - - - 
Feb-13 3, 4, 5 5 - - 4 - - - - 3 3 - - - 
Mar-13 3 1, 3 - - 4 - - - - 2, 4 6 - - - 
Apr-13 1, 2, 4 1 - - 4 - - - - 4 6 - - - 
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Taking under consideration the results from the previous five tables, FTSE is found 

to be a common relevant indicator for all periphery countries, except Portugal, for the 

majority of the months. Prior to August 2011, JPY and GBP are always discarded from the 

pool of potential inputs with the Italian case to be the only exception. GDAX and EMU1 

are common predictors for all these five countries before September 2010 and after 

September 2012 respectively. The same is confirmed for ESI after March 2012, but not for 

Ireland. The monthly forecasts of the periphery countries are also derived by less than 

thirty inputs from the hundred sixty eight in total. Those inputs are autoregressive terms 

with order up to six. The exception is the Greek CPI, which is forecasted by autoregressive 

terms with order of four or lower. Finally, the average number of terms selected for a 

monthly forecast is twelve. Summarizing the predictor selection evidence from this 

inflation exercise leads to the following conclusions. ESI is a common inflation indicator 

for all countries under study after March 2012, with Ireland being the only exception. On 

the other hand, JPY and GBP are discarded prior to April 2011, except from the Italian 

case. 

 

8.5.1.2 Unemployment Exercise 

 

The next three tables, as previously, refer to the three core countries and their 

unemployment predictor selection. Initially the Belgium case is presented in Table 8-11. It 

is found that ESI, GDAX and OIL qualify as potential predictors of Belgian unemployment 

in the majority of the months under study. The opposite happens in terms of GBP and 

STOXX50. ESI, TRBAL, USD, JPY and FTSE are constantly included in the predictors’ 

pool after September 2011. SP1 and SP2 are both relevant predictors within April 2011 

and February 2012, but both are discarded before that time. Table 8-12 below describes 

France’s pool of potential inputs. In this case LOAN and OIL are always included in this 

pool. The same applies for ESI, EUM1 and FTSE in the majority of the months, but not for 

USD, JPY, SP1 and SP2. GBP is a relevant input only after September 2011. Finally, 

autoregressive terms of INDP, ESI, LOAN, GBP, STOXX50 and OIL are repeatedly 

considered in the pool after July 2012. Next follow the German predictors (table 8-12). The 

results indicate that EUM1, STOXX50, OIL and LOAN, USD, JPY, GBP, FTSE are found 

relevant and not relevant indicators in the whole sample respectively. INDP and TRBAL 

are selected after October 2011, while SP1 and SP2 are not included in the selection prior 

to February 2012.   



  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 8-11: The selected predictors for the Belgian unemployment 

 

BELGIUM 
UNEMP INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 
Jan-10 5, 6 2, 3, 6 3, 4, 6 - 5, 6 1, 5 - 2, 3, 6 - - 2 3, 5 - - 
Feb-10 1, 2 1, 4 3 - 5, 6 1, 5 - 1, 4 - - 2, 4 - - - 
Mar-10 - 1, 4 3 - 1, 2 5 - 5 - - 1, 2 2, 5 - - 
Apr-10 - 1, 4 5 - 2, 3,4 - - 5, 6 - - 5, 6 - - - 
May-10 - 1, 4 2 - 2, 3,4 - - 2, 3, 4, 5, 6 - - 2 - - - 
Jun-10 - 5, 6 4 - 1, 4, 5 - - - - - 2, 4 1, 4, 5, 6 - - 
Jul-10 - 1, 2, 3, 4 2, 3, 6 - 2 1, 2 - - - - 5 1, 4, 5 - - 
Aug-10 - 5 1, 4 - 2, 3 2 - - - - 3, 4, 6 2, 4 - - 
Sep-10 - 2 2, 4 - 1, 4, 5, 6 3, 5 - - - - - 2, 4 - - 
Oct-10 - 1, 2 1, 3, 4 - 1 - - - - - - - - - 
Nov-10 1, 2 3, 5 1, 2 - 3, 4, 5 - - - - - 1, 2 1, 4, 5 - - 
Dec-10 5, 6 3, 5 3 - 1, 3, 3 - - - - - 1, 3, 3 - - - 
Jan-11 2, 3, 5 5, 6 4 - 5 - - - - - 1, 4, 5, 6 2, 3, 6 - - 
Feb-11 2 5, 6 4 - 1, 2 - - - - - 2, 5, 6 - - - 
Mar-11 4 - 4 - 3, 5 - - - - - 3, 5 - - - 
Apr-11 1, 6 - - 1, 4, 5 1, 6 - - - - 1, 4 3 - 2 1, 3, 3 
May-11 1, 2, 4 - - 3 2 - - - - 1, 4, 5 3, 4, 6 3, 5 2, 5 1, 3 
Jun-11 4 - - 2, 3,4 2 - - - - 4 1, 4 3, 4, 5 2, 4 3, 4, 5 
Jul-11 4 - - 3 2, 4 - - - - 4 4 4 5 3 
Aug-11 4 - - 1, 4 2, 4 - - - - 1, 4 - 1, 3, 4 2, 5 3 
Sep-11 4 - - 4, 5, 6 1, 2 2, 3, 4, 5, 6 1, 3, 4 - 2 - - 5, 6 5 3 
Oct-11 5, 6 1, 4, 5 - 3, 4 3, 4, 5 1, 3 3, 5 - 2, 3 - - 3 3, 5 2, 4 
Nov-11 - 3 - 5 - 5, 6 2, 5 - 3, 4, 6 - 3, 4, 5 1, 3, 4 3, 6 3, 4, 6 
Dec-11 - 4 - 3, 4, 6 - 1, 2 4, 5 - 2, 3,4 - - 3 3, 5 2, 4 
Jan-12 - 3, 4, 6 - 1 - 5, 6 2,6 - 2, 3 - - 1, 2 3, 4, 5 5, 6 
Feb-12 - 1, 4, 5, 6 - 1, 4, 5, 6 - 1, 5  2, 3, 6 - 2 - 2, 3, 4, 5, 6 3 - - 
Mar-12 - 3, 5 - 1, 2 4, 5 5, 6 1 - 5, 6 - 2, 5 1, 2 - - 
Apr-12 - 1 - 1, 5 5 3 1, 4, 5 - 1 - 3, 5 2, 4 - - 
May-12 - 3 - 5 - 1, 5 4 - 2, 5 - 5 1, 4, 5 - - 
Jun-12 - 5, 6 - 1 - 1, 4, 5 4 - 2, 3, 6 - 3, 5 1, 2 - - 
Jul-12 2, 3, 5 2 3 5, 6 - 1, 5, 6 4 - 1, 4, 5, 6 - 5 1, 2 3 5, 6 
Aug-12 1, 3 3, 5, 6 3, 4, 5 1 2, 3,4 2, 5 5, 6 - 4 - 5, 6 1, 4, 5 1, 4, 5, 6 1 
Sep-12 3, 4 1, 3, 6 1, 6 3 1, 2 2, 3 2, 4 - 1, 2, 3 - - 2 - 3 
Oct-12 3, 4, 5, 6 2, 5 5 1, 3, 4 1, 2 1, 4, 5, 6 1 - 4 - - 3, 4, 6 - 1, 2, 4 
Nov-12 1, 2, 4 4 3 1, 4, 5 1, 2 3, 4 1 - 1, 2 - - 2, 3,4 - 3 
Dec-12 5, 6 4 1, 2, 3 1, 4, 5 2, 3,4 1, 4 3, 4, 5 - 4 - 1, 4, 5 3 3, 5 1, 2 
Jan-13 2, 4 3, 4, 6 3 3 5 5 1 - 1 - 5 3 5 1, 3 
Feb-13 1, 2, 3 2 4 1, 2 5 2, 4, 5 1, 3, 6 - 2, 3,4 - 5, 6 3, 4 3 1, 3 
Mar-13 3, 5 3 1, 2 1, 6 2, 5 1, 5 1, 5 - 3 - 5 1 1 5 
Apr-13 5, 6 1, 2 2 1, 2 1 2 2, 3,4 - 2, 5 - 1, 4, 5 1, 2 2, 3 2, 5 
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Table 8-12: The selected predictors for the French unemployment  

FRANCE 
UNEMP INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 
Jan-10 2, 3 1,3 5, 6 4 4, 6 - - - 3, 5 1, 2 2 4, 5 - - 
Feb-10 1, 4, 5 1, 4 3 4 3,4 - - - 4 2 1, 2 5 - - 
Mar-10 4, 5 1, 2 1 - 1, 3 - - - 4 2 2, 3 5 - - 
Apr-10 3, 5 3 1 - 3 - - - 2, 5 1 2, 4 3 - - 
May-10 - 2, 3, 6 2 - 1, 2, 5 - - - 3, 5 - - 4, 6 - - 
Jun-10 - 4, 6 1, 4, 5 - 1, 2 - - - 1, 4 - - 4 - - 
Jul-10 - 3, 4 2, 4, 5 - 5, 6 - - - 4, 5 - - 2, 3 - - 
Aug-10 - - 4, 5 - 2, 4, 5 - - - 2, 4 - - 4 - - 
Sep-10 - - 1 - 1 - - - 1, 4, 5 - - 1, 2, 5 - - 
Oct-10 2, 5, 6 - 1, 2 2, 3 1, 2 - - - 1, 2 - - 1 - - 
Nov-10 1, 5, 6 - 1, 4 3 3 - - - 2 - - 3,4 - - 
Dec-10 5, 6 - 1,3 3,4 1, 4, 5 - - - 2 - - 1 - - 
Jan-11 2, 3 - 2, 3 3 3 - - - 2 - - 1, 2 - - 
Feb-11 5, 6 - 3 3 1, 4 - - - 2, 4 - - 1 - - 
Mar-11 5 - 3 - 2, 3 - - - 2, 5 - - 4, 5 - - 
Apr-11 5, 6 - 3 - 3 - - - 3, 5 - - 3, 4 - - 
May-11 1, 2 - 1 - 3, 5 - - - 1, 4 - - 4 - - 
Jun-11 2 - 1, 6 - 6 - - - 2, 4, 5 - - 3 - - 
Jul-11 3, 4 - 2, 5 - 5, 6 - - - 4, 5 - - 5 - - 
Aug-11 1, 6 - 4, 5 - 6 - - - 3, 4, 5 - - 2, 5, 6 - - 
Sep-11 - - 3 - 6 - - - 1, 2 - - 1 - - 
Oct-11 - 3, 5, 6 1, 2, 5 - 2, 3 - - 3 2 - - 1 - - 
Nov-11 - 4, 6 2, 5 - 3 - - 2, 3, 6 3, 5 - - 1 - - 
Dec-11 - 1, 2 2, 5 - 1, 2 - - 4, 6 - 2 4, 5 2, 3 - 3, 4 
Jan-12 - 1, 3, 4 2, 4 - 2, 5, 6 - - 3, 5 - 2 5 1 - - 
Feb-12 - 4, 6 6 - - - - 3, 7 - 6 2, 3 1 - - 
Mar-12 - 2, 5, 6 6 - - - - 3, 6 - 5, 6 5 1 - - 
Apr-12 - 3, 4 3, 6 - - - - 4, 6 - 2, 4, 5 3, 5 1 - - 
May-12 - 1, 2, 5 5, 6 - - - - 3, 4, 5 - 4 1, 3 2, 3, 6 - - 
Jun-12 - 2 3, 4 - - - - 4, 5 - 1, 4, 5 3 1 - - 
Jul-12 2, 5, 6 2 2, 5, 6 - - - - 2, 3 - 1 - 1 - - 
Aug-12 2, 3 6 2 - - - - 1, 2 - 3 - 3 - - 
Sep-12 4, 5 6 1, 5 - - - - 1, 2, 5 1, 4 3 - 2, 3 - - 
Oct-12 1 5, 6 4, 5 - 4, 6 - - 2 4 1, 2, 5 - 4, 6 - - 
Nov-12 5, 6 5 5, 6 - 3 - - 2 4, 5 3 - 1, 2, 5 - - 
Dec-12 1 5, 6 6 - 1, 2 - - 2, 6 1, 4, 5 5, 6 - 3, 4 - - 
Jan-13 2 2, 5, 6 6 - 4, 6 - - 2, 3 3, 4 3 - 2, 5, 6 - - 
Feb-13 2 1 2, 3, 6 - 1, 5 - - 1, 3, 4 1 1 - 4 - - 
Mar-13 2 1 2 - 5 - - 3 1 1, 2 - 1, 4, 5 - - 
Apr-13 4, 6 2 2 - 5 - - 3, 5 1, 4 2 - 4 - - 
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Table 8-13: The selected predictors for the German unemployment  

GERMANY 
UNEMP INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 
Jan-10 2, 4 5, 6 - - 1, 2, 5 - - - - 5, 6 3 1, 2, 5 - - 
Feb-10 3 2, 4 - - 2, 4 - - - - 5, 6 3 3, 6 - - 
Mar-10 4 1, 2 - - 2 - - - - 1, 2 3 2, 4 - - 
Apr-10 - 2, 3 - - 1, 3, 6 - - - - 2, 3,4 1, 2 1, 4 - - 
May-10 -  - - 3,4 - - - - 2, 3, 4 5 1 - - 
Jun-10 -  - - 1, 2 - - - - 1, 4, 5 5 2, 3 - - 
Jul-10 - - - - 1 - - - - 2 3, 5 3, 4, 5 - - 
Aug-10 - - - - 1 - - - - 2, 3 5 3 - - 
Sep-10 - - - - 5 - - - - 1, 4, 5, 6 5, 6 3, 5 - - 
Oct-10 - - - - 1, 3, 4,5 - - - - 1 1 2, 4 - - 
Nov-10 - - - - 4, 5 - - - - 3, 4, 5 1, 2 1 - - 
Dec-10 - - - - 5 - - - - 1, 3, 5 2, 4 1 - - 
Jan-11 - - - - 2, 4 - - - - 5 - 1 - - 
Feb-11 - - - - 5 - - - - 1, 2 - 1, 4 - - 
Mar-11 - - - - 3, 4, 5 - - - - 3, 5 - 1 - - 
Apr-11 - - - - 1, 2, 5 - - - - 1, 6 - 5 - - 
May-11 - - - - 3, 4 - - - - 2 - 1 - - 
Jun-11 - - - - 4 - - - - 2 - 1, 2 - - 
Jul-11 - 2, 3 - - 4 - - - - 2, 4 - 1 - - 
Aug-11 - 2, 3 - - 5 - - - - 2, 4 - 1, 3, 6 - - 
Sep-11 - 2, 4 - - 4, 5 - - - - 1, 2 - 1 - - 
Oct-11 - 2, 3 -  1 - - - - 3, 4, 5 - 2 - - 
Nov-11 1, 3 1, 2 - 2, 4 1, 2 - - - - 5, 6 - 1, 2 - - 
Dec-11 4 2, 3 - 1, 3, 6 2, 4 - - - - 6 - 2, 4 - - 
Jan-12 4 3 - 5 3 - - - - 6 - 4 - - 
Feb-12 3, 5 3 - 5 3 - - - - 1, 2 - 4 - - 
Mar-12 2, 4 2, 4 - 1, 2 1, 2, 5 - - - - 1, 2 - 1, 4 - - 
Apr-12 4 2 - 2 1, 2 - - - - 2 4 4, 5 3, 5 4 
May-12 4 2 - 3 2 - - - - 2 4 3 4, 6 4, 5 
Jun-12 4 3 - 3 2 - - - - 2 3, 4 1, 4 2, 4 5, 6 
Jul-12 4 3 - 3 1, 2 - - - - 2, 3 3 1, 2, 5 6 1, 2 
Aug-12 4 2, 4 - 6 4, 5 - - - - 3, 4, 5 1, 5 3, 6 6 2 
Sep-12 4 1 - 2, 6 4, 5 - - - - 3 ,4 4 - 6 3 
Oct-12 5, 6 - - 3, 4, 6 5 - - - - 1 5 - 6 2, 4 
Nov-12 6 - - 4, 5 3, 4, 5 - - - - 1, 2, 5 4, 5 - 3, 4, 5 2 
Dec-12 4, 6 - - 5 5, 6 - - - - 1 3, 4 1, 2 6 2, 3 
Jan-13 6 - - 5 3, 5 - - - - 1, 2 4 5 6 3 
Feb-13 1, 2 - - 5 1, 4 - - - - 2 3, 4 4 6 2, 4 
Mar-13 2 - - 2, 4 2 - - - - 2 4 5 2, 4 4 
Apr-13 3, 4 - - 6 1 - - - - 1, 2 5 1 6 6 
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The previous three tables indicate that OIL is a common unemployment predictor 

for the core countries during the period under study. ESI is always kept in the pool of 

potential inputs from September 2011 till July 2012. The same applies for INDP and 

EUM1 after July 2012 and up to October 2011. GBP is also constantly selected, except in 

the period between May 2010 and September 2011. On the other hand, JPY is discarded 

prior to September 2011, whereas SP1 and SP2 are not kept in the pool prior to April 2011. 

Similarly to the inflation exercise, all monthly forecasts are obtained by using less than 

thirty inputs from the hundred sixty eight in total. From the inputs autoregressive terms 

with order higher than six are always rejected. The average number of terms used for each 

monthly forecast of the core countries is fifteen. 

The rest five tables present the cases of the periphery countries, starting with the 

results for the Greek UNEMP. Table 8-14 shows that the autoregressive terms of ESI, 

LOAN, EUM1 and GDAX always qualify as potential inputs, while TRBAL, USD, JPY, 

GBP, FTSE and STOXX50 ones do not. INDP, OIL and SP2 are also consistently included 

except during some short periods (i.e. after July 2012 for OIL). Table 8-15 summarizes the 

Irish UNEMP predictors. The Irish LOAN, TRBAL, FTSE and OIL are kept in the pool for 

all forty months, but EUM1, USD, JPY, STOXX50 and GDAX are not. ESI is not selected 

within September 2010 and September 2011. Finally, SP1 and SP2 are discarded prior to 

April 2011, while INDP after September 2011. The Italian case is described in table 8-16. 

These results show that LOAN and FTSE are found always relevant indicators of Italian 

UNEMP. On the other hand, USD, JPY and GBP do not. EMU1, STOXX50 and SP1 are 

included into the pool after April 2011. Few autoregressive terms of INDP and ESI are 

obtained, while the algorithm uses OIL and SP2 prior to April 2011. The next table focuses 

on Portugal. In this case the proposed algorithm always uses autoregressive lags of LOAN, 

EMU1, FTSE and OIL to forecast UNEMP. INDP’s and SP1’s term are constantly pooled 

prior to April 2011, while ESI, USD, JPY, STOXX50 and GDAX only after July 2012. 

SP2 is also not selected as potential input after May 2010. Finally, the Spanish relevant 

macroeconomic variables are presented in table 8-18. This pool of predictors suggests that 

ESI and EMU1 are always found to be relevant indicators. However, LOAN, TRBAL, 

USD, JPY, GBP, FTSE, OIL, SP1 and SP2 are totally excluded from this pool. The 

remaining variables, INDP, STOXX50 and GDAX, are not included in the potential inputs 

except in specific short periods of consecutive months (i.e. September 2010-September 

2011 for IND).  

 



  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Table 8-14: The selected predictors for the Greek unemployment  

GREECE  
UNEMP INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 
Jan-10 1 2 4 - 1, 3 - - - - - 3, 4 1, 3 1, 3  
Feb-10 2 2 4 - 3, 4 - - - - - 3 2 2 - 
Mar-10 1, 2 2 1, 4 - 4 - - - - - 2, 4 1, 3 2 - 
Apr-10 2,3 2, 3 4 - 4 - - - - - 1, 4 3, 4 1, 2 - 
May-10 3 3 2 - 1 - 1, 3 - - - 2 1, 3, 4 1, 4 - 
Jun-10 3 3 2, 3 - 1 - - - - - 2, 3 1, 3, 4 4 - 
Jul-10 3 3 3 - 1 - - - - - 3, 4 3 4 - 
Aug-10 - 3 3 - 1 - - 1, 2, 3 - - 1, 3 1, 3 1, 3 2, 3 
Sep-10 - 1 1 - 1 - - - - - 1, 2, 3 2 2 1 
Oct-10 - 1, 2 3 - 1, 2 - - - - - 3, 4 3 2 2 
Nov-10 - 2 3 - 1, 2 - - - - - 1, 3, 4 2, 3 2 3 
Dec-10 - 2, 3 3 - 2 - - - - - 1, 3, 4 3, 4 2 1, 3 
Jan-11 1, 3 3 3,4 - 1 - - - - - 1, 2, 3, 4  1, 3 1, 2, 4 2 
Feb-11 3 1, 2, 3 3 - 1 - - - - - 1, 3 2 4 3 
Mar-11 3 2, 3 3 - 1 - - - - - 2 2 4 1, 3, 4 
Apr-11 1, 3 1, 3 1, 3 - 1 - - - - - 2 2 1 2, 3 
May-11 2 3, 4 2 - 1, 3 - - - - - 2 1, 2 1,4 3, 4 
Jun-11 2 4 3 - 1 - - - - - 3, 5 1, 4 4 1 
Jul-11 2 1, 2 1, 2, 4 - 1 - - - - - 1, 4 4 4 1, 2 
Aug-11 2 1, 4 4 - 1, 3 - - - - - 1 4 1, 2 2 
Sep-11 2 4 2 - 3 - - - - - 1 1, 3 1, 3 2 
Oct-11 2 4 2, 3 - 3 - - - - - 1, 2, 3 2 2 1 
Nov-11 2, 3 1, 2, 3 2 - 3 - - - - - 1, 2 2, 4 2 1 
Dec-11 3 3 2 - 3 - - - - - 2 1, 3 1, 2, 3, 4 1, 2 
Jan-12 3 3 1, 3 - 3 - - - - - 2 2 1, 2 2,3 
Feb-12 1 3 2 - 3 - - - - - 2, 4 3 3, 4 3 
Mar-12 1, 2 1, 3, 4 2 - 2, 4 - - - - - 3 1 1 3, 4 
Apr-12 2 4 3 - 4 - - - - - 1, 3 3 1 3 
May-12 1, 2, 3 4 1 - 2, 4 - - - - 4 2 3 2 3,4 
Jun-12 3 1, 2 1, 2 - 2, 4 - - - - - 1 3 1, 3 3 
Jul-12 3 2 2 - 1, 4 - - - - - 1 - 2 1, 3 
Aug-12 3 2, 3 2, 3 - 4 - - - - - 1, 2, 3 - 1, 3 2 
Sep-12 3 1, 3, 4 4 - 1, 3 - - - - - 1, 2, 4 - 2 4 
Oct-12 3 4 3 - 1, 4 - - - - - 3 - 2 2 
Nov-12 3 3 3 - 1 - - - - - 3 - 1 1, 3 
Dec-12 3 3 2, 3 - 1 - - 2 - - 1, 2, 3, 4 - 3 2 
Jan-13 1, 2,3 2, 3 1 - 1 - - - - - 1, 2 - 2, 3 1 
Feb-13 2, 3 1 3 - 1, 4 - - - - 2, 4 3, 4 - 1 1, 2 
Mar-13 1, 2, 3 1, 2 2, 3 - 4 - - - - - 2, 3 - 1 2, 4 
Apr-13 1, 2 1 1 - 1, 2 - - - - - 1, 2, 3 - 1 4 

176 



  

 

IRELAND  
UNEMPL INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 
Jan-10 1, 5 2, 3 6 1, 2, 4 - - - 3, 6 2, 4 - - 3, 5 - - 
Feb-10 3, 5, 6 4, 5 3, 5 1, 3 - - - 4, 5 2, 5 - - 1, 3 - - 
Mar-10 1 3, 6 1, 2 3, 4 - - - 4 4, 5 - - 5, 6 - - 
Apr-10 1 1, 3, 6 4 3 - - - 1, 2, 4 3, 5 - - 1, 2 - - 
May-10 1 1, 3 1, 4 3 - - - 5, 6 6 - - 3, 5 - - 
Jun-10 - 3 4, 5 3 - - - 3 1 - - 1, 3 - - 
Jul-10 - 2 5 1, 4 - - - 1, 3, 4 1, 2 - - 3, 5 - - 
Aug-10 1, 4 2, 3 1, 2 3, 4 - - - 3 2 - - 1, 4 - - 
Sep-10 6 - 5 1, 2, 4 - - - 1, 4 2, 5 - - 2, 3, 6 - - 
Oct-10 1 - 2 3, 4 - - - 3 3, 5 - - 5 - - 
Nov-10 2, 3 - 6 4 - - - 1, 2 1, 2 - - 3, 4, 5 - - 
Dec-10 4 - 4, 5 4 - - - 2, 4 3, 5 - - 1, 2, 5 - - 
Jan-11 3, 5 - 1, 5 1 - - - 1, 3, 5 1, 3 - - 5 - - 
Feb-11 1, 4 - 2, 3, 6 1, 4 - - 2, 4 1, 2 3 - - 4, 5 - - 
Mar-11 3 - 1, 4 3, 4 - - - 1, 2 5 - - 1 - - 
Apr-11 4, 5 - 2, 4 1, 3 - - - 1, 5 5, 6 - - 1, 2 - - 
May-11 1, 3 - 1, 3, 4 2, 1 - - - 2 5, 6 - - 2 - - 
Jun-11 2, 3, 5 - 1, 2 1, 4 - - - 3, 4 3, 4, 6 - - 2, 3 5, 6 2, 4 
Jul-11 2, 3 - 3, 5 3 - - - 2, 3,4 6 - - 3, 5 3 2, 4 
Aug-11 1, 4 - 1, 3 1, 2, 5 - - - 3 1 - - 5, 6 1, 5 1, 2 
Sep-11 - - 3 3, 4 - - - 3 1, 2 - - 3 2, 3 2, 3 
Oct-11 - - 5 4 - - - 3, 5 2 - - 1, 5 6 1, 4, 5, 6 
Nov-11 - - 2 4 - - - 1, 2 2, 4 - - 1, 4, 5 6 2, 3,4 
Dec-11 - 1, 2 6 5 - 5 - 1, 2 3, 5 - - 5, 6 1, 2, 5, 6 1, 4, 5 
Jan-12 - 3 3, 5 4, 5 - - - - 5, 6 - - 1, 4 1,2, 4, 5 2 
Feb-12 - 4, 5 1, 2 1, 2 - - - - 5 - - 5, 6 1, 5 5, 6 
Mar-12 - 1, 5 3 2 - - - - 2, 5 - - 3 5, 6 1, 2 
Apr-12 - 3, 5, 6 1, 2, 4 2 - - - - 1, 3 - - 6 - 2, 3,4 
May-12 - 2, 4 1, 2, 4 1, 2 - - - - 3, 5 - - 6 2, 4, 6 - 
Jun-12 - 1, 2 4, 5 3, 4 - - - - 2, 5 - - 4 2, 3, 6 - 
Jul-12 - 1, 4 1 1, 4 - - - - 3, 5 - - 4, 6 4 - 
Aug-12 - 4 1 5 - - - - 1, 4 - - 2, 5 - 
Sep-12 - 3, 5, 6 1, 3 2 - - - 1, 4 2 - - 1, 4 1, 4, 5 - 
Oct-12 - 1, 2 2 3, 4 - - - 4, 6 3, 4, 6 - - 5 1, 5 - 
Nov-12 - 1, 3 2, 4 4, 5 - - - 1, 2, 5, 6 3, 5 - - 2, 4 3, 5 - 
Dec-12 - 5, 6 1, 3 5 - - - 2, 5 2 - - 2,5 6 - 
Jan-13 - 1, 2 2 2, 4 - - - 2 1, 2 - - 1 2, 3 - 
Feb-13 - 3, 5, 6 3 5 - - - 2, 5 2 - - 1 4 - 
Mar-13 - 1, 4, 5 1 1, 4, 6 - - - 1 2, 5 - - 1 5, 6 - 
Apr-13 - 2 1, 6 1, 2, 4, 5, 6 - - - 1 1, 4 - - 1 6 - 

Table 8-15: The selected predictors for the Irish unemployment  
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Table 8-16: The selected predictors for the Italian unemployment  

ITALY 
UNEMP INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 
Jan-10 - 3, 4 2, 4 - 1, 2 - - - 3, 5 - 2 2 4 1, 2 
Feb-10 - 4, 5 1, 2 - 3 - - - 1, 3 - 2 2, 4 4 2 
Mar-10 - 4 1, 3, 4 - 1, 6 - - - 5, 6 - 2 1, 2 4 2 
Apr-10 - 4 1, 4 - 3 - - - 1, 2 - 2 2 4 2 
May-10 - 1, 4 6 - 2, 5, 6 - - - 3, 5 - 2 3, 4, 6 1 2, 5 
Jun-10 - 4 1 - 1, 6 - - - 1, 3 - 2 2, 4 - 1 
Jul-10 - 4 1 - 6 - - - 2 - 2, 3 1, 2 - 1 
Aug-10 - - 2, 4 - 4, 6 - - - 1, 2 - 3 2 - 4, 5 
Sep-10 - - 1 - - - - - 3 - 1 3, 4, 5 - 6 
Oct-10 - - 2, 4 - - - - - 5 - 1 2, 4 - 6 
Nov-10 - - 4 - - - - - 3, 4, 5 - 1 2 - 6 
Dec-10 - - 5 - - - - - 1, 2, 5 - 1, 4 2 - 1, 3 
Jan-11 - - 5 - - - - - 5 - 4 1, 5 - 2 
Feb-11 - - 1, 2 - - - - - 3, 5 - 4 4, 6 - 2 
Mar-11  - 3 - - - - - 5 - - 1, 3 - 1, 5 
Apr-11 2 - 6 - - - - - 6 1, 4 - 3, 4 - 5 
May-11 2, 3 - 3, 6 - 2, 3 - - - 2, 6 3 - 1, 2, 5, 6 3 1 
Jun-11 3 - 3 - 2, 4 - - - 1, 2 1, , 5 - 6 3 1 
Jul-11 3 - 3 - 2 - - - 1 3, 4 - 1, 4 3 - 
Aug-11 4 - 2, 3 - 2 - - - 1 4 - 2, 6 1, 5 - 
Sep-11 5, 6 - 4 - 1, 2 - - - 1, 4 4 - 1, 2 2 - 
Oct-11 - - 2, 5 - 3 - - - 3 1 2, 4 1, 5 2 - 
Nov-11 - - 4 - 1, 3, 4 - - - 3 1, 5 2, 4  6 2 - 
Dec-11 - - 1, 2 - 2, 3, 5 - - - 3 1, 2 2, 5 1, 2 1, 4 - 
Jan-12 - - 1, 5 - 2, 3 - - - 3 2, 4 2, 6 1, 4 4 - 
Feb-12 - - 3, 5, 6 - 1, 4 - - - 3 2 1, 2 2, 5 4 - 
Mar-12 - - 1 - 6 - - - 3 1, 2 1, 2, 3 1, 3, 5 5 - 
Apr-12 - - 1 - 2, 4 - - - 3 3, 5 4 4 5 - 
May-12 - - 5 - 2 - - - 3, 4 1, 6 4 4 5 - 
Jun-12 - - 2, 3 - 3 - - - 3, 5 5, 6 4 5, 6 1, 4 3, 6 
Jul-12 - - 4 - 5, 6 - - - 3 1, 2 5, 6 - 3 5 
Aug-12 1, 2 - 2, 5 - 5 - - - 3 1, 4 1, 3 - 2, 5 5 
Sep-12 2 - 4 - 1, 4 - - - 3 2, 5 3, 4 - 3 3, 5 
Oct-12 2, 4 3, 5 2 - 2, 4 - - - 1, 4 1, 2, 5 4 - 5 2, 4 
Nov-12 4 5 3 - 3 - - - 4  6 4 - 5 1, 6 
Dec-12 4 6 1, 2 - 4, 6 - - - 1, 5 3, 6 4 - 1 5 
Jan-13 5 6 3, 5 - 3 - - - 5 1, 4 4 2 1, 5 5 
Feb-13 5 1, 2 1, 4 - 2, 4, 6 - - - 1, 2 5 1, 2 2, 3 3 5 
Mar-13 1, 2 2 4 - 5, 6 - - - 1, 5 3, 4, 5 2 3 2 1, 2 
Apr-13 1, 2 1, 4 4 - 6 - - - 6 5, 6 2 1, 2, 3 2 2 
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Table 8-17: The selected predictors for the Portuguese unemployment  

PORTUGAL 
UNEMP INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 
Jan-10 1, 3 1, 2 2 - 4 - - 2, 3, 4 2, 3 - - 2 1, 3 2, 3 
Feb-10 1, 3 2, 4 2 - 1, 3 - - 3 1, 2 - - 2, 3 1, 3 2 
Mar-10 3 2 2, 3 - 2 - - 3, 4 1, 3 - - 3, 4 1, 2 1, 4 
Apr-10 3, 4 2, 3 2 - 1, 4 - - 3 1,4 - - 1, 2 2 1, 2, 3 
May-10 3 - 3, 4 - 1, 2 - - - 1 - - 3 4 1, 2, 3, 4 
Jun-10 3 - 3 1, 4 2, 4 - - - 1 - - 1 1  
Jul-10 3 - 3, 4 4 2 - - - 1, 4 - - 2, 4 1, 2 - 
Aug-10 3, 4 - 4 4 1, 2 - - - 1 - - 1 1, 3 - 
Sep-10 3 - 1 3 4 - - - 2, 4 - - 3 4 - 
Oct-10 3, 4 - 2, 3 3, 4 3 - - - 1, 3 - - 1, 2 4 - 
Nov-10 1, 3 - 3 2, 4 4 - - - 1, 4 - - 1 1, 4 - 
Dec-10 1, 3 - 2, 3 1, 2 3 - - - 1, 3 - - 1 2, 4 - 
Jan-11 4 - 3 2 3 - - - 3 - - 4 1 - 
Feb-11 1, 4 - 4 - 3, 4 - - - 1, 4 - - 3, 4 1, 3 - 
Mar-11 4 - 1, 3 - 1, 2 - - 1, 2, 3, 4 1, 3 - - 3 1, 4 - 
Apr-11 2, 4 - 1 - 3 - - 3, 4 4 - - 2 - - 
May-11 2, 4 - 3 - 1 - - 1, 4 1, 4 - - 3, 4 - - 
Jun-11 3, 4 - 4 - 2 - - 1, 4 1, 2 - - 3 - - 
Jul-11 - - 1, 2 - 3 - - 2, 4 3 - - 1, 2 - - 
Aug-11 - - 1, 4 - 2, 4 - - 1, 2 1 - - 3 - - 
Sep-11 - - 3 - 4 - - 1, 2 2, 4 - - 4 - - 
Oct-11 - - 1 - 1, 2 - - 3, 4 1, 3, 4 - - 1, 4 - - 
Nov-11 - - 4 - 1, 4 - - 2, 4 1, 4 - - 1 - - 
Dec-11 - - 2, 3 - 3, 4 - - 2, 3, 4 1 - - 3, 4 - - 
Jan-12 - - 1, 2 1, 2 1, 2 - - 1, 2, 4 1, 2 - - 4 - - 
Feb-12 - - 2, 4 1 2, 3 - - 1, 2 1, 2 - - 4 - - 
Mar-12 - - 2, 3 3, 4 3 - - 1 4 - - 1, 2, 3 - - 
Apr-12 - - 2, 4 4 3 2, 4 1, 2, 3 1 2 2, 3, 4 1, 2, 3 1 - - 
May-12 - - 4 2, 4 1, 3 2, 3 1, 2, 4 1, 3 3, 4 2, 4 1 4 - - 
Jun-12 - 4 3 4 1 2 2, 4 - 3, 4 1, 2 1, 2 1 - - 
Jul-12 - 4 2 1 1 3 2 - 4 1, 2 1, 4 3 - - 
Aug-12 - 4 4 1, 3 1 2, 4 3 - 4 2, 3 1 3 - - 
Sep-12 - 2 3, 4 1, 4 1 4 1 - 1 2 2, 4 4 - - 
Oct-12 - 2, 3 3 1 3, 4 2, 3 1 - 1, 3 2 4 2 - - 
Nov-12 - 3 1 1, 4 2 1, 3 1, 2 - 1, 4 2,4 1, 2, 3 1 - - 
Dec-12 - 4 2 - 1, 5 1, 3 1, 2 - 2, 3 1, 2 4 1 - - 
Jan-13 - 1, 2, 4 2, 3 - 4 1, 2 4 - 1 1 1, 2 1 - - 
Feb-13 - 2, 3 1 - 3, 4 2 1, 2 - 1 1 2 2 - - 
Mar-13 - 1, 3, 4 3 - 1 2 4 - 1 1 3, 4 1 - - 
Apr-13 - 2 1 - 3 3 1, 3, 4 - 1 1, 2, 3, 4 4 1, 2 - - 
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Table 8-18: The selected predictors for the Spanish unemployment 

SPAIN 
UNEMP INDP ESI LOAN TRBAL EUM1 USD JPY GBP FTSE STOXX50 GDAX OIL SP1 SP2 
Jan-10 1, 2 2, 3 - - - - - 3, 5 4 3 - 4 - - 
Feb-10 1, 4 2, 5 - - - - - 3 4 3, 5 - 3, 5 - - 
Mar-10 1, 5 3 - - - - - 4, 5 4 3 - 4 - - 
Apr-10 - 2, 5 - - - - - - 4 3 - 4, 5 - - 
May-10 - 2, 5 - - - - - - 4 1, 4 - 4 - - 
Jun-10 - 1 - - - - - - 4 1, 4 2 1, 2 - - 
Jul-10 - 4, 6 - - - - - - 5 1 1 4 - - 
Aug-10 - 1 - - - - - - 5 1, 2 5, 6 4, 6 - - 
Sep-10 - 1, 2 - - - - - - - - - 2 - - 
Oct-10 - 6 - - - - - - - - - 5 - - 
Nov-10 - 1, 2, 4 - - - - - - - - - 2 - - 
Dec-10 - 1 - - - - - - - - - 5, 6 - - 
Jan-11 - 3 - - - - - 2, 5 - - - 5 - - 
Feb-11 - 5, 6 - - - - - 3 - - - 1, 5 - - 
Mar-11 - 5, 6 - - - - - 4, 6 - - - 5 - - 
Apr-11 - 5 - - - - - 5 - - - 2 - - 
May-11 5, 6 6 - - - - - 1 - - - 5 - - 
Jun-11 5 6 - - - - - 2 - - - 2 - - 
Jul-11 4, 5 4, 6 - - - - - 2 - - - 1, 3, 4 - - 
Aug-11 1, 5 2, 6 - - - - - 1 - - - 1 - - 
Sep-11 5 6 - - - - - 2 - - - 1 - - 
Oct-11 3, 6 - 2 2 1, 5 - - 3 - - - 1, 2 - - 
Nov-11 4, 6 - 2, 5 2, 6 5 - - 4 - - - 1, 2 - - 
Dec-11 6 - 3 4 5 - - 5 - - - 2 - - 
Jan-12 4, 5 - 3, 6 2, 6 5 - - - - - - 1 - - 
Feb-12 1, 2, 3, 5, 6 - 4 2 5 - - - - - - 1, 3 - - 
Mar-12 1, 2, 5 - 4, 5 4 2 - - - - - - 2 - - 
Apr-12 3 - 4 4, 5  1, 2 - - - - - - 5 - - 
May-12 3, 4 - 2, 3 4 3 - - - - - - 3, 4, 5 - - 
Jun-12 2 - 3 4 4 - - - - - - 2 - - 
Jul-12 2 - - 1, 2, 4 6 - - - - - - 3 - - 
Aug-12 2, 3, 4 1, 2 - 4 3 - - - 4 2 3, 4, 5, 6 3, 6 - - 
Sep-12 2 1, 2 - 4 2, 3 - - - 4, 6 2 3 3 - - 
Oct-12 2 1, 4 - 1, 2, 3 3 - - - 5, 6 2, 3 5, 6 2, 6 - - 
Nov-12 2, 5 1, 3 - 2 3 - - - 5, 6 1, 3 6 3 - - 
Dec-12 1 1, 2, 4 - 3 3, 5 - - - 1 1, 5 4, 6 1, 5 - - 
Jan-13 2, 5 1, 2, 4 - 1, 3 1 - - - 3, 4 1, 6 5, 6 2, 4 - - 
Feb-13 1 1, 2 - 2 3 - - - 3 1, 2 6 2 - - 
Mar-13 4, 5, 6 2, 5 - 1 5 - - - 2, 4 3, 5 1, 2, 4, 6 1, 3, 6 - - 
Apr-13 4, 6 2, 4 - 1 1 - - - 5 4, 4 1 2 - - 
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Observing the previous five tables, OIL is found to be a relevant unemployment 

indicator for all peripheral countries. Consistent to that is also the EUM1, with Ireland 

being the only exception. On the contrary, USD and JPY are rejected from the pool of 

potential inputs prior to February 2012. GBP is also discarded from this selection, except 

in Portugal’s case. Finally, autoregressive terms of LOAN are constantly obtained by RG-

SVR algorithm, except during the period of September 2011 to July 2012 in the Spanish 

analysis. The forecasts of the peripheral countries are again derived by less than thirty 

inputs from the hundred sixty eight in total. Those inputs are autoregressive terms with 

order of four or lower. Similar to the first exercise the exception is again the Greek CPI, 

which is forecasted by autoregressive terms with order of up to four. The average number 

of terms selected for a monthly forecast is thirteen in the periphery countries’ cases. The 

predictor selection of the unemployment exercise concludes that EMU1 and OIL qualify 

almost in all cases and months as a relevant macroeconomic indicator for Eurozone 

unemployment. This is different than the inflation case. JPY, though, is never included in 

the previous eight pools prior to September 2011, which is consistent with the CPI 

analysis.   

In general, both exercises establish an erratic mapping of the predictors in every 

month per month and country per country analysis. This proves that structural breaks 

dominate the Eurozone inflation and unemployment, making their forecasting a very 

challenging task. Consequently, models with a constant or a limited set of independent 

variables have no value in the long-run. Non- linear time-varying approaches, such as the 

proposed hybrid model, can prove more efficient and realistic. The RG-SVR provides an 

output of the changing composition of the relevant macroeconomic indicators for each 

country, giving a glimpse of its economic and financial micro-structure. This can in a sense 

extend to an ability of capturing structural breaks. In all cases the selected predictors seem 

to follow and change patterns associated with the specific highlighted months. Very often 

predictors are accepted or rejected from the potential pool before, after or within some of 

these months. This is more clearly observed in core countries than in periphery ones. This 

would be an expected outcome, since the peripheral EU economy is indeed much more 

unstable compared to the core one, especially during the forty months under study.  

  All the forecasts are obtained by taking under consideration always autoregressive 

lags less than thirty. The tables of the first exercise show that there are many cases where 

individual variables are pooled with three or more autoregressive terms. This is not so 

common in the second one, where usually up to two autoregressive lags seem sufficient to 

describe each variable’s contribution to the final monthly forecast. The RG-SVR excludes 
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autoregressive terms with order higher than six. Nonetheless, the previous sixteen tables 

show that the first four autoregressive terms are usually more evident.  This suggests that 

the practitioner should focus on the past quarter, while information going back more than a 

semester seems irrelevant. In the periphery cases, the RG-SVR model obtains optimal 

forecasts by using less five predictors on average in comparison to the core cases. It would 

be interesting to see if the abovementioned optimal RG-SVR variable selection leads to 

statistically robust forecasts. 

 

8.5.2 Statistical Performance 

 

The statistical performance of the RG-SVR forecasts follows in comparison to their 

benchmarks. Similar to previous chapters, the RMSE, MAE, MAPE and Theil-U statistics 

are computed in order to evaluate statistically these forecasts. This is standard in literature 

and the mathematical formulas of these statistics are presented in Appendix B.4. For all 

four statistical measures retained, the lower the output the better the forecasting accuracy 

of the model concerned. As mentioned in the description of the model, GA-SVR stores 

also the SVR parameters per month (encoded in the monthly optimal chromosome). These 

parameters for both exercises are given in Appendix F.2. 

 

8.5.2.1 Inflation Exercise 

 

The following table presents the statistical performance of all models for each country, 

when forecasting inflation. 
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CPI COUNTRIES STATISTICS  MODELS 
f-RW AO-RW STAR RG-SVR 

C 
O 
R 
E 

BELGIUM 

MAE 0.2445 0.2421 0.2308 0.2083 
MAPE 83.76% 80.01% 82.25% 76.09%  
RMSE 0.3264 0.3101 0.2822 0.2484 

THEIL-U 0.6928 0.5676 0.5615 0.4610 

FRANCE 

MAE 0.1564 0.1522 0.1504 0.1352 
MAPE 71.10% 70.75% 68.48% 64.70%  
RMSE 0.1959 0.1907 0.1885 0.1594 

THEIL-U 0.7306 0.6970 0.6058 0.5613 

GERMANY 

MAE 0.1972 0.1802 0.1658 0.1366 
MAPE 94.81% 89.24% 82.51% 78.18%  
RMSE 0.2543 0.2291 0.2014 0.1854 

THEIL-U 0.8039 0.7301 0.7025 0.6558 

P 
E 
R 
I 
P 
H 
E 
R 
Y 

GREECE 

MAE 0.4508 0.4052 0.3558 0.3095 
MAPE 167.91% 162.58% 159.51% 149.66%  
RMSE 0.5742 0.5427 0.5158 0.4865 

THEIL-U 0.8619 0.8423 0.8047 0.7810 

IRELAND 

MAE 0.5236 0.4950 0.4751 0.4544 
MAPE 171.76% 164.23% 159.47% 144.34%  
RMSE 0.6653 0.6357 0.6258 0.5786 

THEIL-U 0.8998 0.8696 0.8422 0.8021 

ITALY 

MAE 0.2988 0.2636 0.2428 0.2276 
MAPE 99.87% 95.17% 93.17% 89.03%  
RMSE 0.4232 0.4075 0.3741 0.3267 

THEIL-U 0.7895 0.7253 0.6851 0.6639 

PORTUGAL 

MAE 0.4377 0.4031 0.3729 0.3488 
MAPE 160.84% 153.81% 151.25% 147.10%  
RMSE 0.4663 0.4459 0.4137 0.3803 

THEIL-U 0.8023 0.7814 0.7419 0.7065 

 
SPAIN 

 

MAE 0.4186 0.3931 0.3515 0.3268 
MAPE 114.48% 133.06% 130.47% 122.66%  
RMSE 0.4321 0.4129 0.3911 0.3418 

THEIL-U 0.7914 0.7599 0.7155 0.6728 
 

Table 8-19: Out-of-Sample statistical performances for the inflation exercise 

 

The RG-SVR presents the best statistical performance in all cases for every 

statistical measure applied in the inflation analysis. The ability of the algorithm to project 

superior inflation forecasts suggests that the predictor selection of this exercise is 

successful. The second best model is STAR, since it outperforms both f-RW and AO-RW. 

Reviewing the core countries’ results, the best forecasts are obtained for French inflation 

and the worse for the Belgian one. Turning to the periphery cases, the Irish inflation seems 

the hardest to forecast, where the Italian statistics are the closest to the Belgian ones. The 

second best performance from the periphery countries is confirmed in the Spanish analysis, 

since Portugal and Greece have less accurate results.  In general, the performance is always 

statistically better in the core countries than in the periphery ones. Although all models 

perform differently in every case, their ranking remains the same regardless the country 
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under study. It would be interesting to see if the success of the proposed algorithm in this 

inflation exercise extends also in the unemployment one. 

 

8.5.2.2 Unemployment Exercise 

 

The table below summarizes the statistical performance of the models regarding the 

unemployment of all eight countries under study. 

 

UNEMP COUNTRIES STATISTICS  MODELS 
f-RW AO-RW STAR RG-SVR 

C 
O 
R 
E 

BELGIUM 

MAE 0.1610 0.1432 0.1214 0.1104 
MAPE 53.13% 51.25% 48.11% 47.04%  
RMSE 0.1887 0.1728 0.1601 0.1351 

THEIL-U 0.5713 0.5352 0.5039 0.4626 

FRANCE 

MAE 0.2567 0.2206 0.2118 0.1827 
MAPE 58.68% 57.75% 54.48% 51.61%  
RMSE 0.2215 0.2076 0.1887 0.1603 

THEIL-U 0.6178 0.5916 0.5624 0.5273 

GERMANY 

MAE 0.1470 0.1374 0.1254 0.1028 
MAPE 49.33% 46.88% 45.74% 44.22%  
RMSE 0.1771 0.1638 0.1484 0.1259 

THEIL-U 0.5504 0.5233 0.4958 0.4624 

P 
E 
R 
I 
P 
H 
E 
R 
Y 

GREECE 

MAE 0.4458 0.4202 0.4098 0.3570 
MAPE 105.19% 100.93% 95.51% 89.64%  
RMSE 0.4129 0.3854 0.3408 0.3016 

THEIL-U 0.8254 0.8017 0.7881 0.7436 

IRELAND 

MAE 0.4135 0.4005 0.3855 0.3321 
MAPE 88.37% 84.78% 81.15% 76.41%  
RMSE 0.3554 0.3314 0.3151 0.2837 

THEIL-U 0.7758 0.7525 0.7219 0.6855 

ITALY 

MAE 0.3201 0.2906 0.2748 0.2453 
MAPE 69.90% 64.91% 62.55% 57.85%  
RMSE 0.2673 0.2313 0.2178 0.1758 

THEIL-U 0.6491 0.6246 0.6115 0.5675 

PORTUGAL 

MAE 0.3681 0.3518 0.3243 0.2958 
MAPE 84.48% 80.23% 73.89% 68.13%  
RMSE 0.3214 0.3023 0.2871 0.2744 

THEIL-U 0.7055 0.6891 0.6627 0.6218 

 
SPAIN 

 

MAE 0.3499 0.3144 0.2814 0.2539 
MAPE 74.54% 70.47% 68.28% 61.53%  
RMSE 0.3009 0.2883 0.2615 0.2288 

THEIL-U 0.6764 0.6407 0.6358 0.5917 
 

Table 8-20: Out-of-Sample statistical performances for the unemployment exercise  
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The above summary suggests that RG-SVR retains its statistical superiority in all 

cases of the unemployment exercise, as in the inflation one. STAR continues to outperform 

the other two RW benchmarks. The analysis of the core countries reveals that the German 

unemployment forecasts are the most accurate statistically. The second best core results are 

given in the Belgian case. Regarding the periphery countries, the Italian unemployment 

seems the easiest to forecast, while the opposite applies in the Greek case. The Spanish 

analysis provides with the second lower statistic values from the rest of the periphery 

countries. In Portugal more accurate results are observed in comparison with Ireland. In 

general, core countries present constantly lower values than peripheral ones in all four 

statistics retained in this study. Finally, the model statistical ranking in the unemployment 

exercise is consistent with the inflation one. 

The statistical evidence from both exercises lead to some interesting conclusions. 

The proposed RG-SVR statistically outperforms all benchmark models for all countries, 

regardless if CPI or UNEMP is under study. The STAR and AO-RW models are the 

second and third best models, leaving f-RW last in the statistical ranking. Hence, non-

linear models with time-varying parameters are statistically more efficient from traditional 

random walk approaches. All the statistics indicate that core EMU inflation is always 

easier to forecast than the periphery one. Especially in the cases of Greece or Ireland this 

task is even more challenging. The RG-SVR statistical performance in Italy’s case is the 

only one that somewhat approaches the core countries’ performances. These results show 

that the previous selection process is promising. The periphery countries are those more 

affected by the Eurozone sovereign debt crisis, adopting vast austerity and economic 

reform measures through the period under study. It could be expected that the algorithm 

would perform poorly in those cases. The opposite, though, happens. RG-SVR adapts 

efficiently to the underlying market shocks in the periphery economy by accepting or 

rejecting several macroeconomic variables. This genetic mapping leads to improved 

periphery CPI and UNEMP forecasts compared to tradition models such as, f-RW, AO-

RW and STAR. 

 

8.6 Conclusions 

 

The motivation of this chapter is to introduce a hybrid Rolling Genetic – Support Vector 

Regression (RG-SVR) model in economic forecasting and monthly optimal 
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macroeconomic variable selection. The proposed algorithm is applied in a monthly rolling 

forecasting task of inflation and unemployment in eight EMU countries. The RG-SVR 

genetically optimizes the SVR parameters and adapts to the optimal feature subset from a 

feature space of potential inputs. The feature space includes a wide pool of macroeconomic 

variables that might affect the two series under study of every country. The forecasting 

performance of the RG-SVR is benchmarked with a ‘fixed’ Random Walk model (f-RW), 

an Atkeson and Ohanian Random Walk (AO-RW) and a Smooth Transition 

Autoregressive Model (STAR). More specifically, the statistical performance of all models 

is investigated over the period of August 1999 to April 2013.  

In terms of the results, the proposed RG-SVR statistically outperforms all 

benchmark models for all countries in both exercises. The other non-linear model, the 

STAR, is always second in the statistical ranking. The RW models are less efficient in this 

application, but AO-RW always beats f-RW. The performance of the model is consistent in 

core and periphery cases, although core EMU inflation is proved easier to forecast than the 

periphery one. Hence, the rolling genetic SVR selection of the predictors is both 

computationally and statistically efficient. Every monthly forecast is obtained by 

maximum thirty autoregressive term of several predictors, which is a significant decrease 

from the total one hundred sixty eight available. From those the terms with order higher 

than six are rejected, while the first four autoregressive terms are usually more evident. 

Thus, the practitioner should focus on the past quarter, while information going back more 

than a semester seems irrelevant.  

In general, this chapter sheds more light on the difficult quest of non- linear 

mapping of macroeconomic variables over different EMU countries. The rolling nature of 

both forecasting exercises establishes erratic patterns in the selected predictors. This proves 

that structural breaks dominate the Eurozone inflation and unemployment, making their 

prediction a very challenging task. Consequently, models with a constant or a limited set of 

independent variables are not efficient in the long-run. On the other hand, non- linear time-

varying approaches like the proposed hybrid model can prove more efficient and realistic. 
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Chapter 9 

General Conclusions 

 

Nowadays, the necessity to perform human tasks with minimum cost and higher speed, 

along with the need to process voluminous data, justifies the expansion of computational 

intelligent models in various scientific fields, such as Finance. Adding to this the fact that 

financial forecasting is inherently connected with the high degree of uncertainty ruling the 

modern world, such adaptive techniques can be efficient alternatives to traditional models. 

In order to achieve that, computer engineers must put much effort into their proper 

financial task-specific calibration. Nonetheless, generalizing the performance of these 

models can be a ‘wall’ standing between their financial or economic interpretability and 

their statistical success. The scope of this thesis is to ‘breach the wall’ by combining the 

virtues of several computational intelligence models into superior hybrid architectures. 

Chapter 4 -6 apply techniques, such as Neural Networks, Support Vector 

Regressions and Genetic Algorithms in exchange rate forecasting and trading exercises. 

Within this application framework, more specific contributions are made. Firstly, 

stochastic and genetic forecast combinations are found to be successful, adding to the 

existing literature of model selection and combination. Secondly, time-varying leverage 

strategies are found to cope with the instability deriving from economy shocks and prove 

their success in periods of market turmoil. Thirdly, architectures enabled with efficient 

recursive estimation power always outperform traditional models with fixed parameters. 

Finally, the empirical evidence prove that genetic tuning of the SVR parameters is 

successful. Therefore, hybrid models deriving from the previous techniques are robust in 

terms of statistical accuracy and trading efficiency.   

The utility of these hybrid architectures is extended in macroeconomic forecasting 

in chapters 7 and 8. The genetic support vector regression hybrids are providing rolling 

robust estimations for inflationary and unemployment changes in US and EU, attempting 

to capture and assess their world-wide constantly changing dynamics. The proposed hybrid 

models feature several novelties in terms of their econometric and computational 

modelling, while their ability to adapt in set of relevant predictors of changing composition 

extends their realistic economic interpretability. Their genetic adaptive nature allows them 
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to capture underlying asymmetries and nonlinearities evident in the given set of predictors, 

while the optimal feature selection (rolling or not) is extremely promising. The main 

reason for that is that the models are providing superior forecasts in periods of recessions 

(global financial crisis, Eurozone sovereign debt crisis) and win forecasting competitions 

with traditional linear models or architectures with fixed sets of explanatory variables. 

Hence, their introduction extends the voluminous literature, which suggests that non- linear 

time-varying approaches are more efficient and realistic in similar studies. 

In general, this thesis addresses issues and provides extensions to the knowledge of 

the field of Finance. Although universal approximations can never been embraced in 

scientific research, the evidence of previous chapters have strong implications on decision 

making. Their impact on financial or economic decisions, especially, is greater within the 

context of structural instabilities, market shocks and non- linearities in the information 

extrapolated from large datasets. In addition, more light is shed in the demanding issue of 

achieving statistical and trading efficiency in the foreign exchange markets through 

computational intelligent models. Traders and hedge fund managers should experiment 

beyond the boundaries of traditional models. Their trading decisions should be based on 

forward-looking expectations from models and strategies that are optimized in a hybrid 

trading and statistical approach. Government, institutional and central banking policies can 

also be affected in the same context. All these parties do have constant interest in the 

monitoring of large numbers of variables that could affect the inflation or unemployment, 

and as a consequence the economy. The architectures proposed could be found particular 

useful in this monitor process, while their relevant indicator mapping  ability could help 

with the realistic evaluation of implemented or future policies within a specific timeframe 

or geographical spectrum. Nonetheless, there are still many paths to be taken in the search 

of efficient calibration of computational intelligent models for financial and economic 

forecasting tasks. 
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Appendices 
 

 

 

Appendix A (Chapter 3) 

 

A.1 Kalman Filter and Smoothing Process 

 

A generalized linear state space model of the nx1 vector yt is defined as: 

( )2, ~ 0,t t t t t ty c Z a NID εε ε σ= + +          (A.1) 

2
1 , ~ (0, )t t t t t t na d T a n n NID σ+ = + +         (A.2) 

In these equations,αt is a mx1 vector of possible state variables and ct, Zt, dt and Tt are 

conformable vectors and matrixes. The εt and nt vectors are assumed to be serially 

independent, with contemporaneous variance structure: 

var
'

t t t
t t

t t t

H G
n G Q
ε   

Ω = =   
   

         (A.3) 

Ηt is a nxn symmetric variance matrix, Qt is a mxm symmetric variance matrix and Gt is a 

nxm matrix of covariances (Welch and Bishop, 2001). 

Considering the conditional distribution of the state vector αt, given information available 

at time t-1, the Kalman Filter can define the mean and variance matrix of the conditional 

distribution as: 

| 1 1( )t t t ta E a− −=                                                       (A.4) 

| 1 1 | 1 | 1[( )( ) ']t t t t t t t t tP E a a a a− − − −= − −                                      (A.5) 
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Thus, the recursive algorithm of the Kalman filter calculates the following three: 

1. The one-step ahead mean αt|t-1 and one-step ahead variance Pt|t-1 of the states. 

Under the Gaussian error assumption, αt|t-1 is the minimum mean square error 

estimator of αt and Pt|t-1 is the mean square error (MSE) of αt|t-1.  

2. The one-step ahead estimate of yt as: 

         | 1 1 | 1 | 1ˆ ( ) ( | )t t t t t t t t t t t ty y y E y a c Z a− − − −= = Ε = = +                           (A.6) 

3. The one-step ahead prediction errors and their variances respectively as: 

| 1 | 1ˆ ˆt t t t t ty yε ε − −= = −                                              (A.7) 

| 1 | 1 | 1
ˆ var( ) 't t t t t t t t t tF F Z P Z Hε− − −= = = +                                             (A.8) 

 

In this case it is set 0ˆ 0y =  and P0=1. If P0 was also set equal to zero, that would 

mean that there is no noise, so all the estimates would be equal to the initial state. Then, the 

next step is to embody a smoothing algorithm to this process. The smoothing algorithm, 

which uses all the information observed, in other words the whole sample T, to form 

expectations at any period until T, is known as fixed- interval smoothing. In this way it is 

possible to estimate the smooth estimates of the states and the variances: 

|ˆ ( )t t T T ta E aα = =                                                  (A.9) 

var ( )t T tV a=                                                       (A.10) 

Additionally, the smoothed estimates of yt and their variances can be calculated based on 

equations A.6, A.7 and A.8 abovementioned, but also the smoothed estimates of the εt and 

nt vectors and their corresponding smoothed variance matrix: 

|ˆ ( )t t T T tEε ε ε= =        (A.11) 

|ˆ ( )t t T T tn n E n= =         (A.12) 

                    

ˆˆˆˆ var
ˆ ˆˆ '

t t t
t t

t t t

H G
n G Q

ε   
Ω = =   

            (A.13)  
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Appendix B (Chapter 4) 

 

B.1 The ARMA model 

 

Figure B-1 shows the output of the ARMA model selected. The null hypothesis that all the 

coefficients are not significantly different from zero is rejected at 95% confidence interval. 

 

Figure B-1: The ARMA model detailed output  
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B.2 NNs’ Training Characteristics 

 

Table B-1 presents the characteristics of the neural networks with the best trading 

performance in the test sub-period which are used in the NN committees. The choice of 

these parameters is based on an extensive experimentation in the in-sample sub-period and 

on the relevant literature (Tenti (1996), Dunis and Chen (2005) and Ghazali et al. (2006)). 

For example for the number of iterations, the experimentation started from 10.000 

iterations and stopped at the 200.000 iterations, increasing in each experiment the number 

of iterations by 5.000. 

 

Table B-1: The NNs’ training characteristics 

 

B.3 Bayesian Information Criteria 

 

AIC measures the relative goodness of fit of a statistical model, as introduced by Akaike 

(1974). On the other hand, SIC (also known as BIC or SBIC (Schwarz, 1978)) is 

considered a criterion to select the best model among models with different numbers of 

parameters. If N is the sample size of the dataset, k the total number of parameters in the 

equation of interest and s2 the maximum likelihood estimate of the error variance, then 

AIC and BIC are calculated as shown below : 

 

Parameters MLP RNN PSN 
Learning algorithm Gradient descent Gradient descent Gradient descent 

Learning rate 0.001 0.001 0.5 
Momentum 0.003 0.004 0.5 

Iteration steps 100000 60000 40000 
Initialisation of 

weights N(0,1) N(0,1) N(0,1) 

Input nodes 9 9 9 
Hidden nodes 7 5 4 
Output node 1 1 1 
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2

2

log( ) 2
log( ) log( )

AIC N s k
SIC N s k N

 = + 
 

= +  
                     (B.1) 

 

Table B-2 describes the estimation of the Bayesian Information Criteria for the 

cases of MLP, RNN and PSN forecasts, based on the B.1 set of equations above:  

 

 

Table B-2: Calculation of weights for the AIC and SIC Bayesian Averaging model 

 

B.4 The Statistical and Trading Performance Measures 

 

The statistical and trading performance measures are calculated as shown in table B-3 and 

table B-4 respectively. These measures are used also for the purposes of next chapters.  

 

Table B-3: Statistical Performance Measures and Calculation 

 

 

 AIC SIC ΔAIC ΔSIC wAIC wSIC 
MLP 1.825879871 1.832039254 0.004476988 0.004476604 0.334209988 0.334210009 
RNN 1.846203174 1.852362557 0.024800291 0.024799907 0.330831059 0.330831081 
PSN 1.821402883 1.827562265 0 0 0.334958953 0.33495891 

STATISTICAL PERFOMANCE MEASURES DESCRIPTION 

Mean Absolute Error 
1

1 ˆ( )
t n

t
MAE Y Y

n τ τ
τ

+

= +

= −∑
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the forecasted value 
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1
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t
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+

= +

−
= ∑  

Root Mean Squared Error 2

1
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t n

t
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τ

+

= +

= −∑  
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TRADING PERFOMANCE MEASURES DESCRIPTION 
 

Annualised Return 1

1252* *( )
N

A
t

t
R R

N =

= ∑     where tR the daily return 

 
Cumulative Return ∑

=

=
N

t
t

C RR
1

 

 
Annualised Volatility ( )∑

=

−
−

=
N

t
t

A RR
N 1

2*
1

1*252σ  

 
Information Ratio 

A

A

RSR
σ

=  

Maximum Drawdown 
Maximum negative value of ( )∑ tR  over the period 









= ∑

===

t

ij
jNtti

RMinMD
,,1;,,1 

 

 

Table B-4: The Trading Performance Measures and Calculation 

 

B.5 Diebold-Mariano Statistic for Predictive Accuracy 

 

The Diebold-Mariano (1995) statistic tests the null hypothesis of equal predictive accuracy. 

If n is the sample size and e1
i , e2

i (i=1,2…n) are the forecast errors of the two competing 

forecasts, then the loss functions are estimated as: 

1 1 2 2 2 2
1 2( ) ( ) , ( ) ( )MSE MSE

i i i iL e e L e e= =                      (B.2)

 1 1 2 2
1 2( ) , ( )MAE MAE

i i i iL e e L e e= =                                 (B.3) 

The Diebold-Mariano statistic is based on the loss differentials: 

1 2
1 2( ) ( )MSE MSE MSE

i i id L e L e= −                      (B.4) 

1 2
1 2( ) ( )MAE MAE MAE

i i id L e L e= −                                            (B.5) 

The null hypotheses tested based on the sMSE and sMAE are: 

• 0 : ( ) 0MSE
iH E d =  against the alternative  1 : ( ) 0MSE

iH E d ≠  

• 0 : ( ) 0MAE
iH E d =  against the alternative  

1 : ( ) 0MAE
iH E d ≠  

The Diebold-Mariano test statistic s is estimated as: 
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(0,1)
ˆ( )

di

i

d N
V d

s = →                                        (B.6)  

where    

1
1

0
1

ˆ ˆ( ) 2
n

i k
k

V d n γ γ
−

−

=

 = +  
∑  and 1

1
( )( )

n

k i i i k i
i k

n d d d dγ −
−

= +

= − −∑        (B.7) 

 

B.6 RiskMetrics Volatility Model 

 

The RiskMetrics Volatility Model is a special case of the general Exponential Weighted Moving 

Average Model (EWMA). The EWMA suggests that the variance of a financial asset can be 

calculated using the formula: 

2 2 2
1 1(1 )t t trσ λσ λ− −= + −                         (B.8) 

where 2
1tσ − is the EWMA variance at time t-1, 2

1tr −  the squared returns at time t-1 and λ a weight 

between 0 and 1.   

The RiskMetrics Volatility Model assumes that the weight λ=0.94. So in the case of this 

chapter, the daily volatility is estimated with the formula below: 

2 2
1 10.94 0.06t tRiskMetricsVol rσ − −= +                                   (B.9) 
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Appendix C (Chapter 5) 

 

C.1 NNs’ Training Characteristics and Inputs  

 

Table C.1 summarizes the characteristics of the NNs with the best trading performance in 

the in-sample sub-period, which are used in the applied committees. The choice of these 

parameters is based on sensitivity tests in all in-sample sub-periods and on the relevant 

literature (Tenti (1996), Zhang et al. (1998), Dunis et al. (2011) and Ghazali et al. (2006)). 

 

C.2 Genetic Programming Characteristics 

 

Table C-3 presents the parameters selected in this GP application. These parameters are 

optimized in every exercise. Nonetheless, the final parameters remain the same regardless 

which out-of-sample is evaluated. 

 

 

 

 

 

 

 

 

 



  

 
   

 

 

 

 

 

 

 

 

Table C-1: The NNs training characteristics 

MLP Lags* RNN Lags PSN Lags 
Explanatory 

Variables F1 F2 F3 Explanatory 
Variables F1 F2 F3 Explanatory 

Variables F1 F2 F3 

EUR/USD Exch. Rate 1 1 1 EUR/USD Exch. Rate 1 1 2 EUR/USD Exch. Rate 1 3 1 
EUR/USD Exch. Rate 3 4 2 EUR/USD Exch. Rate 2 3 3 EUR/USD Exch. Rate 4 4 2 
EUR/USD Exch. Rate 5 5 5 EUR/USD Exch. Rate 3 5 6 EUR/USD Exch. Rate 7 5 5 
EUR/USD Exch. Rate 9 6 8 EUR/USD Exch. Rate 6 7 8 EUR/USD Exch. Rate 8 7 6 
EUR/USD Exch. Rate 10 7 9 EUR/USD Exch. Rate 9 11 11 EUR/USD Exch. Rate 9 9 8 
EUR/USD Exch. Rate 11 8 12 EUR/USD Exch. Rate 10 12 - EUR/USD Exch. Rate - 10 11 
EUR/GBP  Exch. Rate 2 1 1 EUR/GBP  Exch. Rate 1 1 2 EUR/GBP  Exch. Rate 3 2 2 
EUR/GBP  Exch. Rate 4 3 - EUR/GBP  Exch. Rate 4 4 - EUR/JPY Exch. Rate 4 1 - 
EUR/JPY Exch. Rate - 2 - EUR/JPY Exch. Rate 1 3 2 EUR/JPY Exch. Rate 4 - - 

*In this case the term ‘Lag 1’ means that today’s closing price is used to forecast tomorrow’s one. F1, F2 and F3 columns present the 
lags selected for every NN in each forecasting exercise. 
Table C-2: Explanatory variables for each NN 

Parameters MLP RNN PSN 

Exercise F1 F2 F3 F1 F2 F3 F1 F2 F3 

Learning algorithm Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Learning rate 0.001 0.002 0.008 0.002 0.003 0.005 0.003 0.003 0.007 
Momentum 0.003 0.004 0.009 0.004 0.004 0.007 0.005 0.005 0.009 

Iteration steps 60000 80000 80000 75000 80000 90000 80000 65000 85000 
Initialisation of 

weights N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 8 9 7 9 9 7 8 8 7 
Hidden nodes 6 7 6 5 6 6 4 6 6 
Output node 1 1 1 1 1 1 1 1 1 
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Table C-3: GP parameters’ setting 

 

 

 

  

GENETIC PROGRAMMING PARAMETERS 

Population Size 250 

Termination Criterion  90000 

Max. tree depth 8 

Function Set +, -, *, /, ^, ^2, ^3, ^1/2, ^1/3, Exp, If, sin, cos, tan 

Fitness evaluation 
function Mean Squared Error 

Tournament Size 8 

Crossover trials 1 

Mutation Probability 0.75 
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Appendix D (Chapter 6) 

 

D.1 Non-linear Models 

 

This appendix section includes a brief description of the non- linear forecasting models that 

are included in the pool of potential inputs of the proposed GA-SVR algorithm of chapter 

6.  

 

D.1.1 Nearest Neighbours Algorithm (k-NN) 

 

Nearest Neighbours is a nonlinear and non-parametric forecasting method. Its intuition is 

that pieces of time series in the past present patterns, resembling patterns of the future. 

This algorithm locates such patterns as ‘nearest neighbours’ using the Euclidean distance 

and then they are used to predict the future. It only uses local information to forecast and 

makes no attempt to fit a model to the whole time series at once.  

The user defines parameters such as the number of neighbours K, the length of the 

nearest neighbour’s pattern m and the weighting of final prices in a neighbour α. When α is 

greater than 1, a greater emphasis is given to similarity between the more recent 

observations. Guégan and Huck (2004) suggest that a good choice of the parameters K and 

m can be efficiently approximated based on the size of the information set. In their study 

the parameter m is chosen from the interval: 

 

                                                     m = [R(ln(T)), R(ln(T)+2)]                                         (D.1) 

 

where R is the rounding function, approximating the immediate lower figure and T the size 

of the dataset.  
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Guégan and Huck (2004) also approximate K  by multiplying m with 2. For this 

dataset m lies between 8 and 10 and K lies between 16 and 20. Based on the above 

guidelines and Dunis and Nathani (2007), who apply Nearest Neighbours in financial 

series, I experiment in the in-sample dataset and select the set of parameters that provide 

the highest trading performance in the in-sample period. These sets of parameters for each 

exchange rate under study are presented in Table D-1 below. 

 

 

 

 

 

 

 Table D-1: Nearest Neighbours Algorithm Parameters 

 

 

D.1.2 Neural Networks 

 

In this application, the feature space includes the forecasts of MLP, RNN, PSN and 

HONN. The specifications of the first three are given in detail in chapter 3. HONN is a 

primitive architecture to the PSN and its specification can be found in Dunis et al. (2010 

and 2011) and Sermpinis et al. (2012a).  

Concerning the inputs of the NN models, in the absence of any formal theory 

behind their selection, the trading sensitivity analysis is used as explained in chapters 4 and 

5. The different set of inputs of the four NNs is presented in table D-2 below for the three 

series under study. 

 

 

 

 m K a 

EUR/USD 8 17 1.3 

EUR/GBP 8 17 1 

EUR/JPY 9 19 1.1 



  

201 
   

 

 

 

  

*EUR/USD (1) means that as input is used the EUR/USD 
exchange rate lagged by one day. Thus, today’s closing price is 
used to forecast the tomorrow’s one. 

Table D-2: Neural Network Inputs 

 

The following table summarizes the design and training characteristics of all the 

above NN architectures. 

  

 MLP RNN HONN PSN 

E 
U 
R 
/ 
U 
S 
D 

EUR/USD (1)* EUR/USD (3) EUR/USD (2) EUR/USD (1) 

EUR/USD (2) EUR/USD (5) EUR/USD (6) EUR/USD (5) 

EUR/USD (5) EUR/USD (6) EUR/USD (7) EUR/USD (6) 

EUR/USD (6) EUR/USD (8) EUR/USD (9) EUR/USD (8) 

EUR/USD (8) EUR/USD (10) EUR/USD (10) EUR/USD (11) 

EUR/USD (10) EUR/USD (11) EUR/USD (12) EUR/USD (12) 

EUR/USD (11) EUR/USD (12) EUR/GBP (3) EUR/GBP (1) 

EUR/GBP (1) EUR/GBP (5) EUR/GBP (5) EUR/GBP (3) 

EUR/GBP (7) EUR/GBP (7) EUR/JPY (4) EUR/GBP (4) 

EUR/JPY (2) EUR/JPY (1) EUR/JPY (7) EUR/JPY (4) 

E 
U 
R 
/ 
G 
B 
P 

EUR/USD (2) EUR/USD (1) EUR/USD (4) EUR/USD (3) 

EUR/USD (3) EUR/USD (2) EUR/USD (5) EUR/USD (4) 

EUR/USD (5) EUR/USD (5) EUR/USD (7) EUR/USD (6) 

EUR/USD (7) EUR/USD (9) EUR/USD (8) EUR/USD (7) 

EUR/USD (8) EUR/USD (10) EUR/USD (11) EUR/USD (10) 

EUR/USD (10) EUR/USD (12) EUR/USD (12) EUR/USD (11) 

EUR/GBP (1) EUR/GBP (5) EUR/GBP (1) EUR/USD (15) 

EUR/GBP (5) EUR/GBP (6) EUR/GBP (3) EUR/GBP (3) 

EUR/JPY (4) EUR/GBP (8) EUR/JPY (2) EUR/GBP (5) 

EUR/JPY (5) EUR/JPY (6) EUR/JPY (4) EUR/JPY (4) 

E 
U 
R 
/ 
J 
P 
Y 

EUR/USD (1) EUR/USD (2) EUR/USD (1) EUR/USD (3) 

EUR/USD (2) EUR/USD (5) EUR/USD (2) EUR/USD (6) 

EUR/USD (5) EUR/USD (6) EUR/USD (4) EUR/USD (7) 

EUR/USD (8) EUR/USD (7) EUR/USD (7) EUR/USD (9) 

EUR/USD (9) EUR/USD (10) EUR/USD (8) EUR/USD (10) 

EUR/USD (12) EUR/USD (11) EUR/USD (9) EUR/USD (12) 

EUR/GBP (3) EUR/GBP (2) EUR/GBP (2) EUR/GBP (1) 

EUR/GBP (4) EUR/GBP (3) EUR/GBP (4) EUR/GBP (4) 

EUR/JPY (2) EUR/GBP (7) EUR/GBP (5) EUR/JPY (6) 

EUR/JPY (2) EUR/JPY (5) EUR/JPY (1) EUR/JPY (7) 
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Table D-3: Neural Network Design and Training Characteristics 

 

The fitness function used in the training of these NNs is the one presented in chapter 5. The 

reason for that is that in this way the individual NN forecasts are derived under the same 

context of fitness of the GA-SVR. 

 

  

 PARAMETERS MLP RNN HONN PSN 

E 
U 
R 
/ 

U 
S 
D 

Learning algorithm Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Learning rate 0.004 0.002 0.4 0.3 
Momentum 0.005 0.003 0.5 0.4 

Iteration steps 40000 30000 20000 20000 
Initialisation of weights N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 10 8 10 7 
Hidden nodes 8 7 5 12 
Output node 1 1 1 1 

E 
U 
R 
/ 
G 
B 
P 

Learning algorithm Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Learning rate 0.002 0.003 0.5 0.4 
Momentum 0.004 0.005 0.5 0.5 

Iteration steps 35000 30000 30000 30000 
Initialisation of weights N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 8 8 9 8 
Hidden nodes 9 7 5 9 
Output node 1 1 1 1 

E 
U 
R 
/ 
J 
P 
Y 

Learning algorithm Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Learning rate 0.003 0.003 0.5 0.3 
Momentum 0.005 0.005 0.5 0.4 

Iteration steps 45000 35000 30000 20000 
Initialisation of weights N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 10 9 8 9 
Hidden nodes 13 11 6 10 
Output node 1 1 1 1 
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Appendix E (Chapter 7) 

 

E.1 Technical Characteristics of NN’s and GP 

 

This appendix section includes the technical characteristics of the computational models 

used as benchmarks in this application. The parameter setting of the GP follows in table E-

1. In table E-2 I present the design and training characteristics of the NNs for each period. 

The selection of the NN’s inputs is based on a sensitivity analysis on the in-sample period. 

Similarly to previous chapters,  the in-sample period is divided into two sub-periods, the 

training and the test sub-periods. The test sub-period is consisted by the last four years of 

the in-sample. I experiment with the characteristics and inputs of the NNs in the training 

sub-period and only architectures that provided the best statistical performance in the test 

sub-period are retained. No part of the out-of-sample period is involved in the NN 

parameterization in any forecasting exercise. This approach is common in NN modelling 

and avoids problems such as the over-fitting and the data-snooping (Lisboa and Vellido 

(2000) and Zhang (2009)). 

 

GENETIC PROGRAMMING PARAMETERS 

Population Size 200 Fitness evaluation 
function MSE 

Termination Criterion  75000 Tournament 
 Size 20 

Max. tree depth 12 Crossover trials 1 

Function Set 
+, -, *, /, ^, ^2, ^3, ^1/2, 
 ^1/3, Exp, If, sin, cos, 

tan 
Mutation Probability 0.8 

 

Table E-1: GP parameters setting 

 

 

 

 

 



  

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table E-2: Neural Network Design and Training Characteristics for all periods under study 

  

 PARAMETERS 01/1974 – 12/2000 01/1978 – 12/2004 01/1982-12/2008 01/1986/12/2012 
MLP RNN MLP RNN MLP RNN MLP RNN 

 
 
 

C 
P 
I 

Learning 
algorithm 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Learning rate 0.003 0.002 0.005 0.002 0.004 0.003 0.002 0.002 
Momentum 0.004 0.003 0.006 0.003 0.005 0.005 0.004 0.003 

Iteration steps 50000 45000 50000 40000 35000 25000 60000 40000 
Initialisation of 

weights N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 9 7 8 7 7 7 9 8 
Hidden nodes 6 5 6 6 4 3 5 6 
Output node 1 1 1 1 1 1 1 1 

 
 
 

U
N
E
M
P 

Learning 
algorithm 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Learning rate 0.002 0.003 0.002 0.002 0.004 0.002 0.003 0.002 
Momentum 0.005 0.005 0.004 0.003 0.006 0.005 0.005 0.004 

Iteration steps 35000 30000 35000 30000 35000 30000 35000 30000 
Initialisation of 

weights N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 7 6 8 6 9 6 8 7 
Hidden nodes 6 4 5 5 7 3 4 4 
Output node 1 1 1 1 1 1 1 1 
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Appendix F (Chapter 8) 

 

F.1 Highlighted Months and Related Information 

 

Table F-1 gives a summary of the related EMU policy decisions, political events, news and 

reports for seven months. These months are highlighted in all the tables, presenting the 

selection of the relevant predictors. 

 

F.2 Optimized Parameters 

 

Tables F-2 to F-9 summarize the monthly optimized parameters, as selected by RG-SVR 

for every forecasting exercise, per country and month. 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The source of the above information is the on-line interactive application of  The Guardian: Eurozone Crisis, a timeline of key events (www.theguardian.com). 

Table F-1: Highlighted Months and Related Information

MONTHS INFORMATION 

May 2010 
• Huge Greek protests against unprecedented austerity cuts needed for an EU and IMF loans worth as  much as €120bn ( 1st  May ) 
• EU ministers agree €500bn fund to save euro from disaster (10th  May) 
• Spain's credit rating downgraded by Ratings agency Fitch, saying austerity measures will affect growth (28th May) 

September 2010 

• Speculation that Greece’s exit from Eurozone is eminent (5th September) 
• Ireland's economic recovery stalls as figures reveal national output dropped by 1.2% in the second quarter of 2010 (23rd 
September) 
• Demonstrations planned in Brussels and dozens of European cities against austerity measures (29th September) 
• Spain loses top credit rating (30th September) 

April 2011 • Portugal's Prime Minister makes last resort plea for a rescue package could total €80bn (7th April) 

September 2011 
• Ireland gets £1.2bn IMF payout (3rd September) 
• Italy approves €54bn austerity package (14th September) 
• Europe's debt crisis prompts central banks to provide dollar liquidity (15th September) 

February  2012 

• Greece approves extra austerity cuts to secure Eurozone bailout and avoid debt default (13rd February) 
• Eurozone economy shrinks for first time since 2009 (15th February) 
• Dow passes 13,000 before quickly dropping back, as Greek bailout package and strong corporate earnings boost US stocks (21st  
February) 

July 2012 

• Cyprus becomes fifth Eurozone country to ask for outside financial help after it is caught in backwash of Greek crisis (1st July) 
• Ireland returns to the debt markets with €500m sale of treasury bills (5th July) 
• Spanish Prime Minister announces €65bn in austerity measures for Spain (11th July) 
• Spain in crisis talks with Germany over €300bn bailout (23rd July) 
• Troika heightens fears of Greek exit from Euro (25th July) 

February 2013 

• France could join list of Eurozone ‘casualties’ in a fresh crisis (1st February) 
• Cyprus faces bailout row over fears of 'haircuts' for investors and savers (3rd February) 
• European Union leaders agree €34.4bn cut over next seven years after all-night discussions (8th February) 
• Eurozone recession to continue, European commission backtracks on previous forecasts (22nd February) 
• US stock markets drop as Italy election reignites fears of Europe debt crisis (25th February) 
• Spain falls further into recession as GDP plunges by 0.8% (28th February) 
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Table F-2: Optimized SVR parameters for Belgium 

  

BELGIUM 
CPI UNEMP 

C γ v C γ v 
Jan-10 779.76 0.01 0.80 390.58 0.52 0.65 
Feb-10 307.07 8.47 0.86 889.47 0.22 0.54 
Mar-10 423.96 0.03 0.41 1000.47 0.53 0.80 
Apr-10 872.43 3.41 0.32 69.85 0.34 0.51 
May-10 623.26 0.01 0.63 738.33 0.23 0.79 
Jun-10 245.69 0.30 0.80 849.46 0.32 0.23 
Jul-10 864.90 9.46 0.96 81.53 0.44 0.44 
Aug-10 866.83 14.46 0.72 281.19 0.59 0.39 
Sep-10 557.26 9.06 0.91 971.92 0.38 0.61 
Oct-10 953.08 14.55 0.14 955.78 0.70 0.25 
Nov-10 797.27 4.27 0.77 129.67 0.62 0.05 
Dec-10 575.47 9.91 0.76 594.47 0.30 0.38 
Jan-11 949.26 5.45 0.72 181.96 1.80 0.17 
Feb-11 770.23 3.51 0.45 837.13 1.40 0.45 
Mar-11 113.22 0.83 0.34 104.89 0.57 0.25 
Apr-11 507.38 13.54 0.32 164.04 9.64 0.32 
May-11 818.80 12.75 0.42 417.36 6.70 0.45 
Jun-11 685.97 10.77 0.59 46.37 0.33 0.31 
Jul-11 739.34 13.88 0.03 620.31 13.78 0.27 
Aug-11 368.88 7.72 0.67 761.54 14.44 0.65 
Sep-11 664.10 14.43 0.10 612.75 0.49 0.81 
Oct-11 1007.44 14.54 0.07 36.05 5.34 0.34 
Nov-11 429.72 8.09 0.91 830.64 8.70 0.40 
Dec-11 501.86 3.18 0.14 180.91 8.60 0.74 
Jan-12 590.82 5.35 0.58 917.19 8.09 0.02 
Feb-12 309.54 8.61 0.10 830.25 15.03 0.51 
Mar-12 188.92 7.56 0.61 421.79 10.70 0.10 
Apr-12 837.63 6.79 0.68 868.29 14.19 0.29 
May-12 0.53 7.63 0.27 788.23 13.92 0.06 
Jun-12 216.09 4.41 0.41 123.54 3.81 0.94 
Jul-12 644.96 2.00 0.07 909.31 0.72 0.74 
Aug-12 390.86 11.34 0.92 352.45 2.39 0.58 
Sep-12 86.62 4.36 0.30 601.62 15.28 0.93 
Oct-12 0.55 2.56 0.22 561.80 9.75 0.95 
Nov-12 183.11 2.39 0.74 691.61 12.58 0.45 
Dec-12 363.66 15.84 0.08 676.07 3.48 0.46 
Jan-13 824.17 0.32 0.34 232.82 1.67 0.18 
Feb-13 807.50 3.38 0.50 828.24 5.35 0.87 
Mar-13 969.81 7.58 0.12 469.51 7.65 0.98 
Apr-13 179.92 0.56 0.66 161.13 8.90 0.29 
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FRANCE 
CPI UNEMP 

C γ v C γ v 
Jan-10 4.50 263.85 0.27 794.06 0.24 0.88 
Feb-10 0.05 552.48 0.66 514.38 0.13 0.06 
Mar-10 5.10 836.05 0.55 192.33 0.17 0.38 
Apr-10 12.14 563.57 0.04 1010.71 14.39 0.97 
May-10 10.37 916.63 0.99 227.31 0.04 0.11 
Jun-10 8.25 582.28 0.49 383.14 0.05 0.91 
Jul-10 2.96 796.07 0.56 621.30 0.14 0.62 
Aug-10 0.03 160.00 0.81 92.49 0.12 0.74 
Sep-10 15.61 336.05 0.07 488.77 0.09 0.60 
Oct-10 0.28 57.78 0.69 91.11 0.10 0.56 
Nov-10 1.46 813.21 0.49 405.98 0.07 0.05 
Dec-10 0.27 899.92 0.68 153.57 0.17 0.08 
Jan-11 0.35 723.84 0.34 985.53 0.17 0.94 
Feb-11 1.24 931.64 0.19 1000.78 0.19 0.58 
Mar-11 0.22 98.52 0.85 742.04 0.27 0.27 
Apr-11 14.81 358.17 0.89 6.35 0.01 0.25 
May-11 0.25 69.17 0.81 3.68 0.02 0.57 
Jun-11 0.16 275.51 0.93 440.52 0.25 0.86 
Jul-11 0.64 688.28 0.23 153.65 0.13 0.92 
Aug-11 0.36 121.26 0.55 214.52 0.27 0.97 
Sep-11 0.26 415.22 0.15 420.23 0.16 0.87 
Oct-11 0.16 247.99 0.25 478.71 0.15 0.67 
Nov-11 0.14 130.50 0.77 582.79 0.13 0.64 
Dec-11 2.45 487.60 0.89 195.15 0.10 0.73 
Jan-12 13.50 539.67 0.58 2.50 0.04 0.43 
Feb-12 11.30 102.62 0.05 201.02 9.16 0.51 
Mar-12 5.18 409.29 0.75 20.95 0.51 0.93 
Apr-12 10.46 771.30 0.77 544.99 0.57 0.60 
May-12 2.63 400.92 0.26 1012.69 15.64 0.16 
Jun-12 7.73 131.14 0.19 780.22 11.50 0.55 
Jul-12 6.89 84.43 0.63 702.37 6.94 0.75 
Aug-12 5.30 215.19 0.30 184.52 0.90 0.35 
Sep-12 7.81 339.25 0.31 286.25 11.15 0.81 
Oct-12 15.83 38.16 0.08 672.15 2.53 0.90 
Nov-12 11.01 520.26 0.57 78.65 1.71 0.09 
Dec-12 0.29 984.67 0.92 383.44 8.21 0.18 
Jan-13 0.39 157.85 0.63 747.46 1.88 0.09 
Feb-13 0.31 429.44 0.03 107.52 2.48 0.97 
Mar-13 0.35 532.97 0.71 952.93 3.00 0.45 
Apr-13 0.87 517.95 0.82 813.18 2.49 0.04 

 

Table F-3: Optimized SVR parameters for France 
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GERMANY 
CPI UNEMP 

C γ v C γ v 
Jan-10 757.03 14.73 0.20 397.31 0.50 0.21 
Feb-10 793.43 7.13 0.77 493.34 0.32 0.19 
Mar-10 96.33 12.82 0.92 657.77 1.87 0.93 
Apr-10 936.76 2.71 0.90 513.34 1.01 0.87 
May-10 182.74 15.38 0.60 690.10 1.56 0.68 
Jun-10 400.34 2.35 0.72 569.17 1.55 0.47 
Jul-10 465.09 8.33 0.15 1003.05 2.41 0.15 
Aug-10 994.49 6.85 0.46 314.56 8.18 0.94 
Sep-10 69.02 9.59 0.64 798.20 0.98 0.56 
Oct-10 923.67 7.37 0.43 37.01 3.84 0.09 
Nov-10 279.02 14.18 0.20 723.22 8.06 0.80 
Dec-10 309.83 10.99 0.09 137.43 6.67 0.13 
Jan-11 585.79 0.34 0.87 404.39 6.73 0.02 
Feb-11 55.71 0.15 0.01 414.04 4.46 0.92 
Mar-11 241.24 0.32 0.74 96.65 4.35 0.91 
Apr-11 590.57 0.09 0.95 921.75 11.29 0.49 
May-11 442.78 12.42 0.22 842.79 7.66 0.88 
Jun-11 792.67 6.22 0.34 707.39 7.70 0.21 
Jul-11 114.70 0.00 0.23 974.66 5.68 0.91 
Aug-11 270.62 0.08 0.94 157.32 10.67 0.13 
Sep-11 734.75 13.96 0.93 849.16 2.52 0.76 
Oct-11 398.06 0.32 0.49 287.86 10.26 0.57 
Nov-11 1011.84 0.13 0.64 673.25 0.58 0.56 
Dec-11 886.43 12.43 0.65 97.55 7.55 0.74 
Jan-12 850.50 11.09 0.09 919.37 0.57 0.52 
Feb-12 163.23 11.05 0.15 70.27 8.38 0.34 
Mar-12 1003.09 14.88 0.90 585.15 1.07 0.15 
Apr-12 215.39 1.94 0.52 524.49 12.43 0.41 
May-12 851.42 6.53 0.27 440.99 6.42 0.57 
Jun-12 204.63 12.09 0.05 652.30 0.25 0.67 
Jul-12 466.95 7.38 0.69 185.05 7.65 0.64 
Aug-12 220.31 7.80 0.27 69.24 9.59 0.45 
Sep-12 43.59 6.50 0.94 427.42 9.03 0.99 
Oct-12 732.46 0.25 0.80 953.86 9.56 0.63 
Nov-12 299.66 14.71 0.59 720.43 10.88 0.90 
Dec-12 313.74 0.34 0.52 31.76 8.62 0.25 
Jan-13 413.53 1.97 0.23 449.61 7.59 0.92 
Feb-13 643.27 4.41 0.61 763.50 6.75 0.39 
Mar-13 103.40 1.20 0.07 12.65 5.01 0.13 
Apr-13 300.68 0.41 0.97 5.41 2.15 0.82 

        
         Table F-4: Optimized SVR parameters for Germany  
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GREECE 
CPI UNEMP 

C γ v C γ v 
Jan-10 156.66 5.01 0.35 803.04 6.04 0.31 
Feb-10 179.10 11.16 0.07 436.62 0.47 0.04 
Mar-10 85.01 1.04 0.15 443.55 6.63 0.78 
Apr-10 98.34 12.02 0.27 996.35 8.34 0.22 
May-10 109.38 16.01 0.86 321.83 6.49 0.51 
Jun-10 198.15 9.23 0.52 435.08 9.37 0.38 
Jul-10 880.52 3.86 0.42 541.89 13.03 0.41 
Aug-10 318.95 13.99 0.65 217.01 8.84 0.74 
Sep-10 827.25 4.15 0.18 171.27 0.49 0.71 
Oct-10 605.18 9.83 0.07 828.29 8.99 0.95 
Nov-10 403.35 6.01 0.40 459.04 20.05 0.20 
Dec-10 155.99 6.62 0.07 58.69 15.06 0.03 
Jan-11 255.18 10.54 0.58 525.58 5.07 0.02 
Feb-11 528.03 3.68 0.36 215.75 1.05 0.36 
Mar-11 686.51 9.17 0.60 892.95 0.76 0.83 
Apr-11 264.60 13.09 0.73 209.78 8.57 0.53 
May-11 971.18 1.08 0.08 461.77 0.06 0.11 
Jun-11 167.84 12.04 0.60 550.36 5.59 0.18 
Jul-11 175.97 9.01 0.09 480.28 0.06 0.16 
Aug-11 320.85 12.92 0.83 542.78 3.60 0.82 
Sep-11 609.85 1.78 0.13 930.40 17.08 0.20 
Oct-11 117.82 13.40 0.39 386.07 10.06 0.56 
Nov-11 369.28 9.89 0.43 659.03 8.17 0.09 
Dec-11 589.70 9.49 0.43 871.79 4.97 0.37 
Jan-12 875.25 8.69 0.65 801.76 2.07 0.65 
Feb-12 777.68 9.57 0.34 525.18 8.09 0.94 
Mar-12 12.61 1.98 0.16 608.23 7.01 0.61 
Apr-12 952.96 13.12 0.95 706.87 7.15 0.28 
May-12 329.39 12.30 0.10 228.15 11.14 0.79 
Jun-12 665.21 10.16 0.37 874.67 9.63 0.15 
Jul-12 715.65 5.32 0.19 256.39 11.13 0.97 
Aug-12 142.96 8.43 0.15 128.97 24.51 0.48 
Sep-12 722.84 0.75 0.85 847.67 9.21 0.77 
Oct-12 100.39 5.87 0.54 381.49 11.03 0.31 
Nov-12 138.23 9.90 0.45 714.79 15.78 0.64 
Dec-12 385.71 14.94 0.98 659.71 7.98 0.87 
Jan-13 955.00 1.02 0.57 731.86 4.08 0.83 
Feb-13 194.06 12.49 0.83 234.44 14.14 0.42 
Mar-13 249.93 5.43 0.86 853.04 6.18 0.77 
Apr-13 534.15 3.73 0.76 544.09 14.16 0.24 

 

Table F-5: Optimized SVR parameters for Greece  
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IRELAND 
CPI UNEMP 

C γ v C γ v 
Jan-10 162.70 0.14 0.70 744.65 3.58 0.79 
Feb-10 234.31 0.07 0.43 900.94 4.28 0.84 
Mar-10 648.37 0.28 0.53 499.86 8.07 0.25 
Apr-10 625.21 0.07 0.48 473.20 1.88 0.65 
May-10 596.93 0.06 0.44 547.30 15.14 0.26 
Jun-10 255.50 0.07 0.86 991.76 1.55 0.30 
Jul-10 955.89 0.09 0.92 439.58 2.44 0.24 
Aug-10 513.59 0.14 0.01 626.04 5.81 0.39 
Sep-10 376.94 0.06 0.34 743.98 4.12 0.41 
Oct-10 850.17 0.13 0.20 566.87 3.03 0.15 
Nov-10 133.72 0.25 0.85 620.65 4.97 0.74 
Dec-10 987.09 0.16 0.09 817.56 6.22 0.32 
Jan-11 381.87 0.13 0.70 798.26 5.13 0.99 
Feb-11 749.22 0.13 0.94 928.93 4.66 0.53 
Mar-11 76.92 0.26 0.89 529.13 9.10 0.40 
Apr-11 443.39 0.32 0.89 74.37 1.07 0.68 
May-11 324.90 0.15 0.01 502.73 10.67 0.79 
Jun-11 69.31 0.15 0.53 800.59 10.79 0.34 
Jul-11 62.66 0.23 0.42 858.52 5.06 0.96 
Aug-11 784.43 0.14 0.92 554.94 3.32 0.43 
Sep-11 263.96 0.10 0.20 855.55 0.05 0.37 
Oct-11 745.55 0.07 0.29 375.45 1.08 0.44 
Nov-11 751.66 0.03 0.85 90.66 5.16 0.60 
Dec-11 537.78 0.15 0.03 873.49 0.07 0.10 
Jan-12 494.96 0.15 0.84 745.52 0.06 0.70 
Feb-12 687.53 0.09 0.90 377.68 0.03 0.25 
Mar-12 638.68 0.14 0.47 830.30 0.11 0.90 
Apr-12 889.14 0.13 0.11 373.44 0.07 0.09 
May-12 467.79 0.13 0.77 981.59 6.10 0.95 
Jun-12 774.98 0.13 0.20 980.45 8.75 0.68 
Jul-12 578.16 0.13 0.36 663.22 6.34 0.38 
Aug-12 84.82 0.28 0.34 622.58 9.26 0.04 
Sep-12 657.47 0.15 0.61 545.00 11.71 0.16 
Oct-12 322.28 0.12 0.77 467.37 15.79 0.79 
Nov-12 337.59 0.12 0.01 172.40 9.55 0.50 
Dec-12 118.09 0.10 0.34 1016.05 12.33 0.31 
Jan-13 950.70 0.13 0.52 226.29 3.97 0.91 
Feb-13 569.21 0.26 0.16 627.47 10.44 0.36 
Mar-13 296.46 0.05 0.86 54.66 7.89 0.46 
Apr-13 13.40 0.13 0.76 546.73 14.36 0.95 

                   

         Table F-6: Optimized SVR parameters for Ireland 
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ITALY 
CPI UNEMP  

C γ v C γ v 
Jan-10 842.21 12.50 0.62 579.48 0.08 0.98 
Feb-10 399.82 7.78 0.33 846.46 13.63 0.21 
Mar-10 635.64 5.61 0.66 100.62 8.93 0.45 
Apr-10 167.21 10.61 0.75 445.01 14.17 0.59 
May-10 239.50 10.34 0.44 520.52 0.19 0.99 
Jun-10 341.66 7.96 0.40 151.18 5.56 0.42 
Jul-10 163.41 8.97 0.50 589.69 1.74 0.05 
Aug-10 345.02 5.48 0.66 66.10 0.42 0.62 
Sep-10 924.00 1.84 0.75 985.74 13.16 0.62 
Oct-10 948.88 15.46 0.53 466.34 7.80 0.81 
Nov-10 568.30 4.96 0.52 872.09 0.51 0.84 
Dec-10 707.46 0.51 0.13 250.65 7.48 0.13 
Jan-11 923.14 7.52 0.35 952.98 0.14 0.28 
Feb-11 341.32 8.14 0.02 333.40 0.17 0.18 
Mar-11 858.11 0.12 0.97 598.61 0.50 0.41 
Apr-11 606.55 11.40 0.56 726.35 0.25 0.43 
May-11 788.36 0.11 0.84 283.88 0.16 0.86 
Jun-11 695.69 14.52 0.77 865.10 0.18 0.17 
Jul-11 596.43 4.83 0.19 834.61 0.35 0.23 
Aug-11 837.30 11.65 0.37 708.28 0.06 0.85 
Sep-11 241.01 8.91 0.20 921.19 0.13 0.62 
Oct-11 602.63 3.90 0.37 880.42 0.21 1.00 
Nov-11 735.72 5.08 0.22 636.05 0.17 0.05 
Dec-11 54.96 0.15 0.42 701.73 0.14 0.08 
Jan-12 416.03 0.42 0.03 586.34 0.15 0.90 
Feb-12 941.29 0.11 0.68 448.80 0.38 0.51 
Mar-12 55.83 0.28 0.70 154.45 0.08 0.42 
Apr-12 645.25 0.09 0.29 100.89 0.13 0.05 
May-12 456.12 0.26 0.57 95.65 8.94 0.29 
Jun-12 976.26 0.27 0.55 381.27 0.25 0.34 
Jul-12 630.70 0.07 0.30 133.93 0.16 0.94 
Aug-12 397.30 0.04 0.95 633.81 0.21 0.03 
Sep-12 60.50 0.13 0.66 991.02 0.29 0.02 
Oct-12 507.84 0.27 0.59 698.25 0.30 0.21 
Nov-12 679.07 0.18 0.34 757.17 0.21 0.33 
Dec-12 870.48 0.03 0.26 548.83 0.27 0.94 
Jan-13 344.59 0.11 0.17 110.33 0.07 0.54 
Feb-13 824.27 0.12 0.64 201.57 3.42 0.74 
Mar-13 767.11 14.31 0.17 553.79 7.44 0.15 
Apr-13 512.56 0.24 0.92 58.37 0.17 0.41 

 

Table F-7: Optimized SVR parameters for Italy  
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PORTUGAL 
CPI UNEMP 

C γ v C γ v 
Jan-10 692.40 8.56 0.35 712.64 0.18 0.22 
Feb-10 115.90 4.40 0.62 380.33 10.07 0.07 
Mar-10 727.53 13.18 0.07 39.93 0.00 0.56 
Apr-10 227.33 3.57 0.15 597.17 0.09 0.24 
May-10 244.70 12.00 0.12 893.72 0.15 0.21 
Jun-10 795.69 1.80 0.62 992.96 0.05 0.53 
Jul-10 749.80 9.42 0.26 493.54 0.17 0.70 
Aug-10 909.46 11.23 0.13 733.11 0.24 0.88 
Sep-10 496.39 15.59 0.87 909.26 14.41 0.07 
Oct-10 71.52 10.01 0.40 539.63 0.25 0.29 
Nov-10 496.19 0.26 0.56 993.17 0.15 0.84 
Dec-10 284.47 15.96 0.16 23.05 0.26 0.95 
Jan-11 87.59 14.63 0.66 44.48 0.21 0.49 
Feb-11 755.50 13.60 0.40 900.44 0.16 0.24 
Mar-11 816.00 9.71 0.64 856.34 0.11 0.93 
Apr-11 981.18 1.62 0.74 865.71 0.18 0.63 
May-11 647.13 9.44 0.83 856.96 0.21 0.79 
Jun-11 652.82 1.68 0.02 170.62 0.19 0.87 
Jul-11 266.64 0.13 0.46 264.40 0.18 0.76 
Aug-11 914.72 2.52 0.21 898.38 0.15 0.81 
Sep-11 581.80 13.82 0.91 876.80 0.26 0.38 
Oct-11 738.02 2.65 0.01 279.03 0.21 0.15 
Nov-11 360.38 0.27 0.65 735.47 0.08 0.63 
Dec-11 203.30 4.43 0.70 641.58 0.15 0.71 
Jan-12 3.16 2.64 0.24 854.50 0.11 0.32 
Feb-12 327.01 15.87 0.70 7.30 0.06 0.80 
Mar-12 912.23 14.83 0.91 133.13 0.13 0.89 
Apr-12 537.21 10.08 0.39 399.11 0.18 0.46 
May-12 50.59 10.59 0.69 474.12 0.16 0.08 
Jun-12 311.92 11.19 0.71 216.01 0.21 0.68 
Jul-12 153.68 4.22 0.81 365.97 0.13 0.33 
Aug-12 9.46 4.87 0.19 917.25 0.25 0.53 
Sep-12 332.05 14.83 0.51 619.59 0.22 0.23 
Oct-12 421.55 12.57 0.67 324.12 0.27 0.02 
Nov-12 263.67 13.65 0.35 814.90 0.20 0.78 
Dec-12 444.28 0.21 0.58 391.17 0.17 0.41 
Jan-13 404.50 1.06 0.84 700.79 0.19 0.05 
Feb-13 568.78 0.76 0.78 53.73 0.18 0.32 
Mar-13 108.28 11.33 0.29 667.96 0.06 0.01 
Apr-13 458.77 4.01 0.73 1000.30 0.30 0.42 

 

Table F-8: Optimized SVR parameters for Portugal  
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SPAIN 
CPI UNEMP 

C γ v C γ v 
Jan-10 276.35 6.80 0.17 463.48 0.49 0.64 
Feb-10 29.00 0.09 0.71 777.71 1.46 0.28 
Mar-10 919.36 3.84 0.97 627.44 0.88 0.52 
Apr-10 768.65 6.53 0.86 727.94 0.49 0.78 
May-10 898.11 12.84 0.33 467.27 0.39 0.01 
Jun-10 543.76 14.91 0.28 793.96 6.41 0.35 
Jul-10 656.04 3.51 0.01 49.24 6.19 0.51 
Aug-10 106.33 1.00 0.44 876.70 8.95 0.71 
Sep-10 717.35 0.39 0.25 501.07 0.39 0.19 
Oct-10 960.08 4.23 0.13 583.59 0.39 0.07 
Nov-10 922.19 7.69 0.57 942.23 0.78 0.15 
Dec-10 568.78 7.34 0.55 634.74 0.29 0.55 
Jan-11 270.50 7.60 0.03 827.66 0.68 0.49 
Feb-11 390.15 2.13 0.57 858.39 1.86 0.32 
Mar-11 492.03 0.84 0.02 835.86 0.88 0.83 
Apr-11 396.36 4.80 0.01 920.81 0.39 0.57 
May-11 358.94 12.20 0.15 294.50 2.05 0.11 
Jun-11 209.76 5.06 0.56 858.22 1.76 0.01 
Jul-11 690.68 0.13 0.37 995.26 3.22 0.70 
Aug-11 932.10 0.10 0.18 721.95 1.66 0.72 
Sep-11 746.58 5.41 0.14 509.96 3.71 0.88 
Oct-11 95.95 1.44 0.55 592.71 3.22 0.51 
Nov-11 631.08 14.96 0.43 536.88 7.03 0.07 
Dec-11 553.03 0.68 0.56 702.63 10.55 0.27 
Jan-12 69.34 15.67 0.35 292.32 6.45 0.95 
Feb-12 995.55 2.54 0.10 229.95 10.35 0.56 
Mar-12 413.80 4.87 0.42 709.18 9.84 0.85 
Apr-12 559.02 12.38 0.10 839.79 1.41 0.81 
May-12 435.30 1.70 0.72 63.44 3.36 0.34 
Jun-12 273.75 13.55 0.13 469.05 2.83 0.97 
Jul-12 1003.93 8.30 0.91 53.81 2.62 0.94 
Aug-12 84.70 10.18 0.83 626.84 3.69 0.86 
Sep-12 696.32 0.07 0.79 862.92 7.66 0.57 
Oct-12 984.95 3.09 0.96 914.73 4.12 0.85 
Nov-12 54.73 8.64 0.36 432.98 8.87 0.20 
Dec-12 990.60 2.02 0.47 783.45 8.71 0.52 
Jan-13 955.81 8.73 0.95 982.48 7.30 0.04 
Feb-13 850.60 9.90 0.71 346.88 7.66 0.37 
Mar-13 25.57 15.60 0.27 810.65 1.76 0.15 
Apr-13 864.47 12.98 0.12 615.22 0.92 0.60 

 

Table F-9: Optimized SVR parameters for Spain 

  



  

215 
 

Bibliography 

 

 

 

[1] Abu-Mostafa, Y.S. and Atiya, A.F. (1996) Introduction to Financial 

Forecasting, Applied Intelligence, 6 (3), pp. 205-213. 

[2] Adya, M. and Collopy, F. (1998) How effective are neural networks at 

forecasting and prediction? A review and evaluation, Journal of Forecasting, 17 (5-

6), pp. 481–495. 

[3] Ager, P., Kappler, M. and Osterloh, S. (2009) The accuracy and efficiency 

of the Consensus Forecasts: A further application and extension of the pooled 

approach, International Journal of Forecasting, 25 (1), pp. 167–181.  

[4] Aggarwal, S. and Krishna, V. (2011) CS698o: Project Report Stock Price 

Direction Prediction, Indian Institute of Technology Kanpur, Working Paper. 

[5] Ahn, H. and Kim, K.J. (2009) Bankruptcy prediction modeling with hybrid 

case-based reasoning and genetic algorithms approach, Applied Soft Computing, 9 

(2), pp. 599–607. 

[6] Akaike, H. (1974) A new look at the statistical model identification, IEEE 

Transactions on Automatic Control, 19 (6), pp.716-723. 

[7] Alexander, S.S. (1961) Price movements in speculative markets: trends or 

random walks, Industrial Management Review, 2 (1), pp. 7–26. 

[8] Alfaro, E., García, N., Gamez, M. and Elizondo, D. (2008) Bankruptcy 

forecasting: An empirical comparison of AdaBoost and neural networks, Decision 

Support Systems, 45(1), pp.110-122. 

[9] Allen, F. and Karjalainen, R. (1999) Using genetic algorithms to find 

technical trading rules, Journal of Financial Economics, 51 (2), pp. 245–271. 

[10] Altavilla, C. and De Grauwe, P. (2008) Forecasting and combining 

competing models of exchange rate determination, Applied Economics, 42 (27), pp. 

3455-3480. 

[11] Amjady, N. and Keynia, F. (2009) Short-term load forecasting of power 

systems by combination of wavelet transform and neuro-evolutionary algorithm, 

Energy, 34 (1), pp. 46–57. 



  

216 
 

[12] Anandalingam, G. and Chen, L. (1989) Linear combination of forecasts: A 

general Bayesian model, Journal of Forecasting, 8 (3), pp.199-214. 

[13] Andersen, T.G, Bollerslev, T., Diebold, F.X. and Vega, C. (2003) Micro 

Effects of Macro Announcements: Real-Time Price Discovery in Foreign 

Exchange, American Economic Review, 93, pp. 38-62. 

[14] Andrawis, R.R., Atiya, A.F. and El-Shishiny, H. (2011) Forecast 

combinations of computational intelligence and linear models for the NN5 time 

series forecasting competition, International Journal of Forecasting, 27(3), pp. 

672–688. 

[15] Ang, A., Bekaert, G. and Wei, M. (2007) Do Macro Variables, Asset 

Markets, or Surveys Forecast Inflation Better? Journal of Monetary Economics, 54 

(4), pp.1163–212. 

[16] Atkeson, A.and Ohanian, L.E. (2001) Are Phillips Curves Useful for 

Forecasting Inflation?, Federal Reserve Bank of Minneapolis Quarterly Review, 25, 

pp.2-11. 

[17] Awartani, B., Corradi, V. and Distaso, W. (2009) Assessing Market 

Microstructure Effects via Realized Volatility Measures with an Application to the 

Dow Jones Industrial Average Stocks, Journal of Business & Economic Statistics, 

27 (2), pp. 251-265. 

[18] Bacchettaa, P. and Wincoop, E.V. (2013) On the unstable relationship 

between exchange rates and macroeconomic fundamentals, Journal of International 

Economics, 91 (1), pp. 18-26. 

[19] Bajgrowicz, P. and Scaillet, O. (2012) Technical trading revisited: False 

discoveries, persistence tests, and transaction costs, Journal of Financial 

Economics, 106 (3), pp. 473–491. 

[20] Banerjee, A., Marcellino, M. and Masten, I. (2005) Leading Indicators for 

Euro-area Inflation and GDP Growth, Oxford Bulletin of Economics and Statistics, 

67, pp. 785-813. 

[21] Barber, B.M., Lehavy, R., McNichols, M. and Trueman, B. (2006) Buys, 

holds, and sells: The distribution of investment banks’ stock ratings and the 

implications for the profitability of analysts’ recommendations, Journal of  

Accounting and Economics, 41 (1–2), pp. 87–117. 

[22] Barhoumi, K., Darne, O. and Ferrara, L. (2010) Are disaggregate data 

useful for factor analysis in forecasting French GDP?, Journal of Forecasting, 29 

(1-2), pp. 132–144. 



  

217 
 

[23] Bates, J. M. and Granger, C. W. J. (1969) The Combination of Forecasts, 

Operational Research Society, 20 (4), pp. 451-468. 

[24] Basak, D., Pal, S. and Patranabis, D.C. (2007) Support Vector Regression, 

Neural Information Processing - Letters and Reviews, 10 (10), pp. 203-224. 

[25] Bertolini, L. (2010) Trading Foreign Exchange Carry Portfolios, PhD 

Thesis, Cass Business School, City University London. 

[26] Bessembinder, H. and Chan, K. (1995) The profitability of technical trading 

rules in the Asian stock markets, Pacific-Basin Finance Journal, 3 (2-3), pp. 257–

284. 

[27] Bezdek, J. (1994) What is computational intelligence?, in: Zurada, L., 

Marks, R. and Robinson, C. (eds.), Computational Intelligence Imitating Life, IEEE 

Press, NY, pp. 1-12. 

[28] Bissoondeeal, R.K., Binner, J.M., Bhuruth, M., Gazely, A. and Mootanah, 

V.P. (2008) Forecasting exchange rates with linear and nonlinear models, Global 

Business and Economics Review, 10 (4), 414-429. 

[29] Box. G.E.P. and Jenkins, G.M. (1976) Time Series Analysis: Forecasting 

and Control, Revised Edition, Oakland, CA: Holden-Day 

[30] Brock, W., Lakonishok, J. and LeBaron, B. (1992) Simple Technical 

Trading Rules and the Stochastic Properties of Stock Returns, The Journal of  

Finance, 47 (5), pp. 1731-1764. 

[31] Brooks, C. (2008) Introductory econometrics for finance, 2nd revised ed., 

Cambridge University Press, Cambridge 

[32] Buckland, S.T., Burnham, K.P. and  Augustin, N H. (1997) Model 

Selection: An Integral Part of Inference, Biometrics, 53 (2), pp. 603-618.  

[33] Cao, L.J., Chua, K.S. and Guan, L.K. (2003) C-ascending support vector 

machines for financial time series forecasting, Proceedings of Computational 

Intelligence for Financial Engineering, pp. 317-323. 

[34] Castellano, G., Fanelli, A.M. and Pelillo, M. (1997) An iterative pruning 

algorithm for feed-forward neural networks, IEEE Transactions on Neural 

Networks, 8 (3), pp. 519 – 531.  

[35] Chalimourda, A., Schölkopf, B. and Smola, A.(2004) Experimentally 

optimal ν in support vector regression for different noise models and parameter 

settings, Neural Networks, 17 (1), pp. 127-141. 

[36] Chan, K.S. and Tong, H. (1986) On estimating thresholds in autoregressive 

models, Journal of Time Series Analysis, 7(3), pp. 178-190. 



  

218 
 

[37] Chan, Y. L., Stock, J. H. and Watson, M. W. (1999) A dynamic factor 

model framework for forecast combination, Spanish Economic Review, 1 (2), 91-

121. 

[38] Chang, J., Jung, Y., Yeon, K., Jun, J., Shin, D. and Kim, H. (1996) 

Technical indicators and analysis methods, Jinritamgu Publishing, Seoul. 

[39] Charles, A. and Darné, O. (2006) Large shocks and the September 11th 

terrorist attacks on international stock markets, Economic Modelling, 23 (4), pp. 

683-698. 

[40] Chen, A.S., Leung, M.T. and Daouk, H. (2003) Application of neural 

networks to an emerging financial market: forecasting and trading the Taiwan 

Stock Index, Computers & Operations Research, 30 (6), pp. 901–923. 

[41] Chen, K.Y. and Wang, C.H. (2007) Support Vector Regression with genetic 

algorithms in forecasting tourism demand, Tourism Management, 28 (1), pp. 215-

226. 

[42] Chen, S.H. (2002) Genetic algorithms and genetic programming in 

computational finance, Boston: Kluwer Academic Publishers. 

[43] Cherkasssky, V. and MA, Y. (2004) Practical selection of SVM parameters 

and noise estimation for SVM regression, Neural Networks, 17 (1), pp. 113-126. 

[44] Chiarella, C., He, X.Z. and Hommes, C. (2006) A dynamic analysis of 

moving average rules, Journal of Economic Dynamics and Control, 30 (9–10), pp. 

1729–1753. 

[45] Chong T.T.L and Ng, W.K. (2008) Technical analysis and the London stock 

exchange: testing the MACD and RSI rules using the FT30, Applied Economics 

Letters, 15 (14), pp. 1111-1114. 

[46] Chua, C.L, Lim, G.C. and Tsiaplias, S. (2012) A latent variable approach to 

forecasting the unemployment rate, Journal of Forecasting, 31(3), pp. 229–244. 

[47] Clyde, W.C. and Osler, C.L. (1998) Charting: Chaos theory in disguise?, 

Journal of Futures Markets, 17 (5), pp. 489–514. 

[48] Cogley, T., Primiceri, G.E. and Sargent, T.J. (2010) Inflation-gap 

Persistence in the U.S., American Economic Journal: Macroeconomics, 2 (1), pp. 

43-69. 

[49] Cogley, T and Sargent, T.J. (2005) Drifts and volatilities: monetary policies 

and outcomes in the post WWII U.S, Review of Economic Dynamics, 8 (2), pp. 

262–302. 



  

219 
 

[50] Corrado, C.J. and Lee, S.H. (1992) Filter Rule Tests of the Economic 

Significance of Serial Dependencies in Daily Stock Returns, Journal of Financial 

Research, 15 (4), pp. 369-387. 

[51] Coulson, N.E. and Robins, R.P. (1993) Forecast combination in a dynamic 

setting, Journal of Forecasting, 12 (1), pp. 63-67. 

[52] Coutts, J.A. and Cheung, K.C. (2000) Trading rules and stock returns: some 

preliminary short run evidence from the Hang Seng 1985-1997, Applied Financial 

Economics, 10 (6), pp. 579-586. 

[53] D'Agostino, A., Gambetti, L. and Giannone, D. (2013). Macroeconomic 

forecasting and structural change, Journal of Applied Econometrics, 28 (1), pp. 82–

101. 

[54] De Gooijer, J.G. and Hyndman, R.J. (2006) 25 years of time series 

forecasting, International Journal of Forecasting, 22 (3), pp. 443-473. 

[55] De Menezes, L.M. and Nikolaev, N.Y. (2006) Forecasting with genetically 

programmed polynomial neural networks, International Journal of Forecasting, 22 

(2), pp. 249-265. 

[56] Deboeck, G. (1994) Trading on the edge: neural, genetic, and fuzzy systems 

for chaotic financial markets, New York: Wiley. 

[57] Dempster, M.A.H. and Jones, C.M. (2001) A real- time adaptive trading 

system using genetic programming, Quantitative Finance, 1 (4), pp. 397-413. 

[58] Dempster, M.A.H. and Leemans, V. (2006) An automated FX trading 

system using adaptive reinforcement learning, Expert Systems with Applications, 30 

(3), pp. 543–552. 

[59] Deutsch, M., Granger, C.W. J. and Teräsvirta, T. (1994) The combination of 

forecasts using changing weights, International Journal of Forecasting, 10 (1), pp. 

47-57. 

[60] Diebold, F. X. and Mariano, R. S. (1995) Comparing Predictive Accuracy, 

Journal of Business and Economic Statistics, 13 (3), pp. 253-263. 

[61] Diebold, F.X. and Pauly, P. (1987) Structural change and the combination 

of forecasts, Journal of Forecasting, 6 (1), pp. 21-40. 

[62] Dijk, D.V. and Franses, P.H. (1999) Modeling Multiple Regimes in the 

Business Cycle, Macroeconomic Dynamics, 3(3), pp. 311-340. 

[63] Diron, M. (2008) Short-term forecasts of euro area real GDP growth: an 

assessment of real-time performance based on vintage data, Journal of  

Forecasting, 27 (5), pp. 371-390. 



  

220 
 

[64] Ding, Y., Song, X. and Zen, Y. (2008) Forecasting financial condition of 

Chinese listed companies based on support vector machine, Expert Systems with 

Applications, 34 (4), pp. 3081-3089. 

[65] Donaldson, R.G. and Kamstra, M. (1999) Neural network forecast 

combining with interaction effects, Journal of the Franklin Institute, 336 (2), pp. 

227-236. 

[66] Dooley, M.P. and Shafer, J. R. (1983) Analysis of Short-Run Exchange 

Rate Behaviour: March 1973 to November 1981, in: Bigman, D. and Taya, T. 

(eds.), Exchange Rate and Trade Instability: Causes, Consequences, and Remedies, 

Cambridge. 

[67] Dreger, C. and Kholodilin, K.A. (2013) Forecasting Private Consumption 

by Consumer Surveys, Journal of Forecasting, 32 (1), pp. 10–18. 

[68] Duan, K, Keerthi, S.S. and Poo, A.N. (2003) Evaluation of simple 

performance measures for tuning SVM hyperparameters, Neurocomputing, 51, pp. 

41-59. 

[69] Dunis, C.L. and Chen, Y.X. (2005) Alternative volatility models for risk 

management and trading: Application to the EUR/USD and USD/JPY rates, 

Derivatives Use, Trading and Regulation, 11, pp.126-156. 

[70] Dunis, C.L., Giorgioni, G., Laws, J. and Rudy, J. (2010) Statistical 

Arbitrage and High-Frequency Data with an  Application to Eurostoxx 50 Equities, 

Working Paper, Liverpool Business School. 

[71] Dunis, C.L. and Huang, X. (2002) Forecasting and trading currency 

volatility: an application of recurrent neural regression and model combination, 

Journal of Forecasting, 21 (5), pp. 317-354. 

[72] Dunis, C.L., Laws, J. and Evans, B. (2005) Modelling and trading the 

soybean-oil crush spread with recurrent and higher order neural networks: A 

comparative analysis, Neural Network World, 6 (1), pp. 509–523. 

[73] Dunis, C.L., Laws, J. and Evans, B. (2006) Trading futures spreads: an 

application of correlation and threshold filters, Applied Financial Economics, 16 

(12), pp. 903-914. 

[74] Dunis, C.L., Laws, J. and Sermpinis, G. (2011) Higher order and recurrent 

neural architectures for trading the EUR/USD exchange rate, Quantitative Finance, 

11 (4), pp. 615-629. 

[75] Dunis, C.L., Likothanassis, S.D., Karathanasopoulos, A.S., Sermpinis, G. 

and Theofilatos, A. (2013) A hybrid genetic algorithm–support vector machine 



  

221 
 

approach in the task of forecasting and trading, Journal of Asset Management, 14 

(1), pp. 57-71. 

[76] Dunis, C.L. and Miao, J. (2005) Optimal trading frequency for active asset 

management: Evidence from technical trading rules, Journal of Asset Management, 

5 (5), pp. 305-326. 

[77] Dunis, C.L. and Miao, J. (2006) Volatility filters for asset management: An 

application to managed futures, Journal of Asset Management, 7 (3), pp. 179-189. 

[78] Dunis, C.L. and Nathani, A. (2007) Quantitative Trading of Gold and Silver 

using Nonlinear Models’, Neural Network World, 16 (2), pp. 93-111. 

[79] Dunis, C. L. and Shannon, G. (2005) Emerging Markets of South-East and 

Central Asia: Do they Still Offer a Diversification Benefit?, Journal of Asset  

Management, 6 (3), pp.168-190. 

[80] Dunis, C.L. and Williams, M. (2002) Modelling and Trading the EUR/USD 

Exchange Rate: Do Neural Network Models Perform Better?, Derivatives Use, 

Trading and Regulation, 8, pp. 211-239. 

[81] Ebrahimpour, R., Nikoo, H., Masoudnia, S., Yousefi, M.R. and Ghaemi, 

M.S. (2011) Mixture of MLP-experts for trend forecasting of time series: A case 

study of the Tehran stock exchange, International Journal of Forecasting, 27(3), 

pp. 804-816.  

[82] Edwards, R.D. and Magee, J. (1997) Technical analysis of stock trends, 

John Magee, Chicago. 

[83] Elman, J.L. (1990) Finding Structure in Time, Cognitive Science, 14 (2), pp. 

179-211. 

[84] Evans, B. (2008) Trading futures spread portfolios: applications of higher 

order and recurrent networks, The European Journal of Finance, 14 (6), pp. 503-

521. 

[85] Evans, K.P. and Speight, A.E.H. (2010) Dynamic news effects in high 

frequency Euro exchange rates, Journal of International Financial Markets, 

Institutions and Money, 20 (3), pp. 238–258.  

[86] Fama, E.F. (1970) Efficient capital markets: A review of theory and 

empirical work, The Journal of Finance, 25 (2), pp. 383–417. 

[87] Fama, E.F. (1991) Efficient capital markets: II, The Journal of Finance 46 

(5), pp. 1575–1617. 

[88] Fama, E.F. and Blume, M.E. (1966) FRs and stock-market trading, The 

Journal of Business, 39 (1), pp. 226–241. 



  

222 
 

[89] Faust, J. and Wright J.H. (2012) Forecasting Inflation, Handbook of 

Forecasting, Johns Hopkins University. 

[90] Fernández-Rodrı́guez, F., González-Martel, C. and Sosvilla-Rivero, S. 

(2000) On the profitability of technical trading rules based on artificial neural 

networks: Evidence from the Madrid stock market, Economics Letters, 69 (1), pp. 

89–94.  

[91] Flannery, M.J. and Protopapadakis, A.A. (2002) Macroeconomic Factors 

Do Influence Aggregate Stock Returns, Review of Financial Studies, 15 (3), pp. 

751-782.  

[92] Fong, W.M. and Yong, H.M. (2005) Chasing trends: recursive moving 

average trading rules and internet stocks, Journal of Empirical Finance, 12 (1), pp. 

43–76.  

[93] Forner, C. and Marhuenda, J. (2003) Contrarian and Momentum Strategies 

in the Spanish Stock Market, European Financial Management, 9 (1), pp. 67–88. 

[94] Friesen, G.C, Weller, P.A and Dunham, L.M. (2009) Price trends and 

patterns in technical analysis: A theoretical and empirical examination, Journal of  

Banking & Finance, 33 (6), pp. 1089–1100. 

[95] Frisch, R. (1933) Propagation problems and impulse problems in dynamic 

economics, in: Åkerman, J. and Cassel, G. (eds.) Economic Essays in Honor of 

Gustav Cassel, London: Allen & Unwin, pp. 171–205. 

[96] Gençay, R. (1998) Optimization of technical trading strategies and the 

profitability in security markets, Economics Letters, 59 (2), pp. 249–254. 

[97] Gençay, R. (1999) Linear, nonlinear and essential foreign exchange 

prediction, Journal of International Economics, 47 (1), pp. 91–107. 

[98] Ghazali, R., Hussain, A. J. and  Merabti, M. (2006) Higher Order Neural 

Networks for Financial Time Series Prediction, The 10th IASTED International 

Conference on Artificial Intelligence and Soft Computing, Palma de Mallorca, 

Spain, pp. 119-124.  

[99] Ghosh, J. and Shin, Y. (1991) The Pi-Sigma Network: An efficient Higher-

order Neural Networks for Pattern Classification and Function Approximation, 

Proceedings of International Joint Conference of Neural Networks, 1, pp. 13-18. 

[100] Ghosh, J. and Shin, Y. (1992) Efficient Higher-Order Neural Networks for 

Classification and Function Approximation, International Journal of Neural 

Systems, 3 (4), pp. 323-350. 



  

223 
 

[101] Giannone, D., Henry, J., Lalik, M. and Michele Modugno, M. (2012) An 

Area-Wide Real-Time Database for the Euro Area, Review of Economics and 

Statistics, 94 (4), pp. 1000-1013. 

[102] Gifford, E. (1995) Investor's guide to technical analysis: predicting price 

action in the markets, London. 

[103] Goh, S. L. and Mandic, D. P. (2007) An Augmented Extended Kalman 

Filter Algorithm for Complex-Valued Recurrent Neural Networks, Neural 

Computation, 19 (4), pp.1039-1055. 

[104] Granger, C. W. J. and Ramanathan, R. (1984) Improved methods of 

combining forecasts, Journal of Forecasting, 3 (2), pp. 197-204. 

[105] Groen J, Paap R, Ravazzolo F. (2010) Real-time Inflation Forecasting in a 

Changing World, Federal Reserve Bank of New York, Staff Report Number 388. 

[106] Grossmann, A. and McMillan, D.G (2010) Forecasting exchange rates: 

Non-linear adjustment and time-varying equilibrium, Journal of International 

Financial Markets, Institutions and Money, 20 (4), pp. 436-450.  

[107] Guégan, D. and Huck, N. (2004) Forecasting relative movements using 

transitivity? Working paper, Institutions et Dynamiques Historiques de l’Economie. 

[108] Guegan, D. and Huck, N. (2005) On the Use of Nearest Neighbours to 

Forecast in Finance, Revue de l'Association française de Finance, 26, pp. 67-86. 

[109] Guidi, F. and Gupta, R. (2013) Market efficiency in the ASEAN region: 

evidence from multivariate and co- integration tests, Applied Financial Economics, 

23 (4), pp. 265-274. 

[110] Guidolin, M. and Timmermann, A. (2009) Forecasts of US short-term 

interest rates: A flexible forecast combination approach, Journal of Econometrics, 

150 (2), pp. 297-311. 

[111] Gunasekarage, A. and Power, D.M. (2001) The profitability of moving 

average trading rules in South Asian stock markets, Emerging Markets Review, 2 

(1), pp. 17-33.  

[112] Hamilton, J.D. (1994) Time series analysis, Princeton University Press, 

Princeton, N.J. 

[113] Hansen, P.R. (2005) A test for superior predictive ability, Journal of 

Business & Economic Statistics, 23 (4), pp. 365–380. 

[114] Harrald, P.G. and Kamstra, M. (1997) Evolving artificial neural networks to 

combine financial forecasts. IEEE Transactions on Evolutionary Computation 1, 

pp. 40-52. 



  

224 
 

[115] Harvey, A.C. (1990) Forecasting, structural time series models and the 

Kalman filter, Cambridge University Press, Cambridge. 

[116] Harvey, D., Leybourne, S. and Newbold, P. (1997) Testing the equality of 

prediction mean squared errors, International Journal of Forecasting, 13 (2), pp. 

281–291. 

[117] Hassani, H., Heravi, S. and Zhigljavsky, A. (2009) Forecasting European 

industrial production with singular spectrum analysis. International Journal of 

Forecasting, 25 (1), pp. 103–118. 

[118] Hastie, T., Tibshirani, R. and Friedman, J.H. (2009) The elements of 

statistical learning: data mining, inference, and prediction, 2nd ed., Springer, New 

York. 

[119] Hemminki, J. and Puttonen, V. (2008) Fundamental indexation in Europe, 

Journal of Asset Management, 8, pp. 401-405. 

[120] Holland J. (1995) Adaptation in Natural and Artificial Systems: An 

Introductory Analysis with Applications to Biology, Control and Artificial 

Intelligence. Cambridge MA: MIT Press.  

[121] Hsieh, T., Hsiao, H. and Yeh, W. (2011) Forecasting stock markets using 

wavelet transforms and recurrent neural networks: An integrated system based on 

artificial bee colony algorithm, Applied Soft Computing, 11(2), pp. 2510-2525. 

[122] Hsu, S.H., Hsieh, J.J.P.A., Chih, T.C. and Hsu, K.C. (2009) A two-stage 

architecture for stock price forecasting by integrating self-organizing map and 

support vector regression, Expert Systems with Applications, 36(4), pp. 7947-7951. 

[123] Hsu, P.H. and Kuan, C.M. (2005) Re-examining the Profitability of 

Technical Analysis with Data Snooping Checks, Journal of Financial 

Econometrics, 3 (4), pp. 608-628. 

[124] Hu, M.Y. and Tsoukalas, C. (1999) Combining conditional volatility 

forecasts using neural networks: an application to the EMS exchange rates, Journal 

of International Financial Markets, Institutions and Money, 9 (4), pp. 407–422. 

[125] Hua, Z., Wang, Y., Xu, X., Zhang, B. and Liang, L. (2007) Predicting 

corporate financial distress based on integration of support vector machine and 

logistic regression, Expert Systems with Applications, 33 (2), pp. 434–440. 

[126] Huang, C.F. (2012) A hybrid stock selection model using genetic 

algorithms and support vector regression, Applied Soft Computing, 12 (2), pp. 807–

818. 



  

225 
 

[127] Huang, C.L. and Wang, C.J. (2006) A GA-based feature selection and 

parameters optimization for support vector machines, Expert Systems with 

Applications, 31 (2), pp. 231-240. 

[128] Huang, S.C., Chuang, P.J., Wu, C.F. and Lai, H.J. (2010) Chaos-based 

support vector regressions for exchange rate forecasting, Expert Systems with 

Applications, 37(12), pp. 8590-8598. 

[129] Huang, S.C., Wang, N.Y, Li, T.Y, Lee, Y.C, Chang, L.F. and Pan, T.H. 

(2013) Financial Forecasting by Modified Kalman Filters and Kernel Machines, 

Journal of Statistics and Management Systems, 16 (2-03), pp. 163-176 

[130] Hudson, R., Dempsey, M. and Keasey, K. (1996) A note on the weak form 

efficiency of capital markets: the application of simple technical trading rules to 

UK stock prices -1935 to 1994, Journal of Banking and Finance, 20 (6), pp. 1121–

1132. 

[131] Hussain, A. J., Ghazali, R., Al-Jumeily, D. and Merabti, M. (2006) 

Dynamic Ridge Polynomial Neural Network for Financial Time Series Prediction, 

IEEE International conference on Innovation in Information Technology, pp. 1-5.  

[132] Ince, H. and Trafalis, T. B. (2006a) A hybrid model for exchange rate 

prediction, Decision Support Systems, 42 (2), pp. 1054-1062. 

[133] Ince, H. and Trafalis, T.B. (2006b) Kernel methods for short-term portfolio 

management, Expert Systems with Applications, 30 (3), pp. 535-542. 

[134] Ince, H. and Trafalis, T.B. (2008) Short term forecasting with support 

vector machines and application to stock price prediction, International Journal of  

General Systems, 37 (6), pp.  677-687. 

[135] Inoue, A. and Kilian, L. (2008) How useful is bagging in forecasting 

economic time series? A case study of U.S. consumer price inflation, Journal of the 

American Statistical Association, 103 (482), pp. 511–522 

[136] Izumi, K., Toriumi, F. and Matsui, H. (2009) Evaluation of automated-

trading strategies using an artificial market, Neurocomputing, 72, (16–18), pp. 

3469–3476. 

[137] James, J., Marsh, I. And Sarno, L. (2012) Handbook of Exchange Rates, 

Chicago,Wiley. 

[138] Jarque, C. M. and Bera, A. K. (1980) Efficient tests for normality, 

homoscedasticity and serial independence of regression residuals, Economics 

Letters, 6 (3), pp. 255-259. 



  

226 
 

[139] Jegadeesh, N. and Titman, S. (1993) Returns to Buying Winners and 

Selling Losers: Implications for Stock Market Efficiency, The Journal of  

Finance, 48 (1), pp. 65–91. 

[140] Jensen, M.C. (1978) Some anomalous evidence regarding market 

efficiency, Journal of Financial Economics, 6 (2–3), pp. 95–101. 

[141] Jensen, M. and Benington, G. (1970) Random Walks and Technical 

Theories: Some Additional Evidence, The Journal of Finance, 25 (2), pp. 469-482. 

[142] Jolliffe, I. (1986) Principal Component Analysis, NY: Springer-Verlag. 

[143] Kaastra, I. and Boyd, M. (1996) Designing a Neural Network for 

Forecasting Financial and Economic Time Series, Neurocomputing, 10 (3), pp. 

215-236. 

[144] Kao, L.J., Chiu, C.C., Lu, C.J. and Chang, C.H. (2013) A hybrid approach 

by integrating wavelet-based feature extraction with MARS and SVR for stock 

index forecasting, Decision Support Systems, 54 (3), pp. 1228-1244 

[145] Kestner, L.N (2003) Quantitative trading strategies: harnessing the power 

of quantitative techniques to create a winning trading program, Boston: McGraw-

Hill. 

[146] Khemchandani, R., Jayadeva, I. and Chandra, S. (2009) Regularized least 

squares fuzzy support vector regression for financial time series forecasting, Expert 

Systems with Applications, 36 (1), pp. 132–138. 

[147] Kiani, K. and Kastens, T. (2008) Testing Forecast Accuracy of Foreign 

Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural 

Network Architectures,  Computational Economics, 32 (4), pp. 383-406. 

[148] Kim, H.S. and Sohn, S.Y. (2010) Support vector machines for default 

prediction of SMEs based on technology credit, European Journal of Operational 

Research, 201(3), pp. 838–846. 

[149] Kim, K.J (2006) Artificial neural networks with evolutionary instance 

selection for financial forecasting, Expert Systems with Applications, 30 (3), pp. 

519–526. 

[150] Kim, K.J. and Han, I. (2000) Genetic algorithms approach to feature 

discretization in artificial neural networks for the prediction of stock price index, 

Expert Systems with Applications, 19 (2), pp. 125–132. 

[151] Koop, G. and Korobilis, D. (2012) Forecasting Inflation Using Dynamic 

Model Averaging, International Economic Review, 53 (3), pp.867–886. 

[152] Koza, J. (1992) Genetic programming: On the programming of computers 

by means of natural selection, Cambridge: MIT Press, 1992.  



  

227 
 

[153] Koza, J. and Adre, D. (1996). Evolution of iteration in genetic 

programming, in: Fogel, L.J., Angeline, P.J. and Bäck, T, Evolutionary 

Programming V: Proceedings of the Fifth Annual Conference on Evolutionary 

Programming, Cambridge, MIT Press. 

[154] Koza, J., and Poli, R., (2005) Genetic Programming, in:  Burke, E.K.,  

Kendall, G. (eds.), Search Methodologies, Introductory Tutorials in Optimization 

and Decision Support Techniques, Springer, pp.127-164. 

[155] Kozyra, J. and Lento, C. (2011) FRs: follow the trend or take the contrarian 

approach?, Applied Economics Letters, 18(3), pp. 235-237. 

[156] Kröse, B. and Smagt, P.V.D. (1996) An introduction to neural networks, 8th 

ed. University of Amsterdam, pp. 15. 

[157] Kwon, Y.K. and Moon, B.R. (2007) A Hybrid Neurogenetic Approach for 

Stock Forecasting, IEEE Transactions of Neural Networks, 18, pp. 851-864. 

[158] Lam, M. (2004) Neural network techniques for financial performance 

prediction: integrating fundamental and technical analysis, Decision Support  

Systems, 37 (4), pp. 567-581. 

[159] Lapavitsas, C., Kaltenbrunner, A., Lindo, D., Michell, J., Painceira, J.P, 

Pires, E., Powell, J., Stenfors, A. and Teles, N. (2010) Eurozone crisis: beggar 

thyself and thy neighbor, Journal of Balkan and Near Eastern Studies, 12, (4), pp. 

321-373. 

[160] LeBaron, B. (1999) Technical trading rule profitability and foreign 

exchange intervention, Journal of International Economics, 49 (1), pp. 125–143. 

[161] LeBaron, B. and Blake, D. (2000) The Stability of Moving Average 

Technical Trading Rules on the Dow Jones Index, Derivatives Use, Trading and 

Regulation, 5 (4), pp.12-34. 

[162] LeBaron, B. and Vaitilingam, R. (1999) The Ultimate Investor, Dover, NH: 

Capstone Publishing. 

[163] Lee, Y., Lin, Y. and Wahba, G. (2004) Multicategory Support Vector 

Machines, Journal of the American Statistical Association, 99 (465), pp. 67-81 

[164] Leigh, W., Purvis, R. and Ragusa, J. M. (2002) Forecasting the NYSE 

composite index with technical analysis, pattern recognizer, neural network, and 

genetic algorithm: a case study in romantic decision support, Decision Support  

Systems, 32 (4), pp. 361-377. 

[165] Lento, C., Gradojevic, N. and Wright, C.S. (2007) Investment information 

content in Bollinger Bands?, Applied Financial Economics Letters, 3 (4), pp. 263-

267 



  

228 
 

[166] LeRoy, S.F. and Porter, R.D. (1981) The present-value relation: Tests based 

on implied variance bounds, Econometrica, 49 (3), pp. 555–574. 

[167] Lesage, J. and Magura, M. (1992) A Mixture-Model Approach to 

Combining Forecasts, Journal of Business & Economic Statistics, 10 (4), pp. 445-

452  

[168] Leung, J.M.J. and Chong, T.T.L. (2003) An empirical comparison of 

moving average envelopes and Bollinger Bands, Applied Economics Letters, 10 (6), 

pp. 339-341. 

[169] Levich, R.M. and Thomas, L.R. (1993) The significance of technical trading 

rule profits in the foreign exchange market: a bootstrap approach, Journal of  

International Finance and Money, 12 (5), pp. 451–74. 

[170] Levis, M. and Liodakis, M. (1999) The Profitability of Style Rotation 

Strategies in the United Kingdom, The Journal of Portfolio Management, 26 (1), 

pp. 73-86.  

[171] Levitt, M.E. (1998) Market Time Data™ : Improving Technical Analysis 

and Technical Trading, Working paper. 

[172] Li, K.W. (2012) A study on the volatility forecast of the US housing market 

in the 2008 crisis, Applied Financial Economics, 22 (22), pp.1869-1880. 

[173] Lim, K.P. and Brooks, R. (2011) The Evolution of Stock Market Efficiency 

over time: A Survey of the Empirical Literature, Journal of Economic Surveys, 

25(1), pp. 69–108. 

[174] Lin, C.J. and Terasvirta, T. (1994) Testing the Constancy of Regression 

Parameters against Continuous Structural Changes, Journal of Econometrics, 62 

(2), pp. 211-228. 

[175] Lin, C.L., Wang, J.F., Chen, C.Y., Chen, C.W. and Yen, C.W. (2009) 

Improving the generalization performance of RBF neural networks using a linear 

regression technique, Expert Systems with Applications, 36 (10), pp.12049–12053. 

[176] Lin, F., Yeh, C.C. and Lee, M.Y. (2013) Hybrid Business Failure Prediction 

Model Using Locally Linear Embedding and Support Vector Machines, Journal for 

Economic Forecasting, 1 (1), pp. 82-97. 

[177] Ling, S.H., Leung, F.H.F., Lam, H.K., Yim-Shu, L. and Tam, P.K.S. (2003) 

A novel genetic-algorithm-based neural network for short-term load forecasting. 

IEEE Transactions on Industrial Electronics, 50, pp. 793-799. 

[178] Lisboa, P.J.G and Vellido, A. (2000) Business Applications of Neural 

Networks, in: Lisboa, P.J.G, Edisbury, B. and Vellido, A. (eds.), Business 



  

229 
 

Applications of Neural Networks: The State-of-the-Art of Real-World Applications, 

World Scientific: Singapore; vii-xxii. 

[179] Liu, Y. and Shen, X. (2006) Multicategory ψ-Learning, Journal of the 

American Statistical Association, 101 (474), pp. 500-509. 

[180] Lo, A. (2000) Finance: A Selective Survey, Journal of the American 

Statistical Association, 95 (450), pp. 629-635. 

[181] Lo, A., Mamaysky, H. and Wang, J. (2000) Foundations of technical 

analysis: Computational algorithms, statistical inference and empirical 

implementation, The Journal of Finance, 55 (4), pp. 1705–1765. 

[182] Lozano, M., Herrera, F., and Cano, J.R. (2008) Replacement strategies to 

preserve useful diversity in steady-state genetic algorithms.  Information Sciences, 

178 (23), pp. 4421-4433. 

[183] Lu, C.J., Lee, T.S. and Chiu, C.C. (2009) Financial time series forecasting 

using independent component analysis and support vector regression, Decision 

Support Systems, 47 (2), pp. 115-125. 

[184] Lucke, B. (2003) Are technical trading rules profitable? Evidence for head-

and-shoulder rules, Applied Economics, 35 (1), pp. 33-40. 

[185] Mahfoud, S. and Mani, G. (1996) Financial forecasting using genetic 

algorithms, Applied Artificial Intelligence: An International Journal, 10 (6), pp. 

543-566. 

[186] Makridakis, S., Andersen, A. , Carbone, R., Fildes, R., Hibon, M., 

Lewandowski, R., Newton, J., Parzen, E. and Winkler, R. (1982) The accuracy of 

extrapolation (time series) methods: Results of a forecasting competition, Journal 

of Forecasting, 1 (2), pp.111-153. 

[187] Malkiel, B.G. (2003) The efficient market hypothesis and its critics, The 

Journal of Economic Perspectives, 17 (1), pp. 59–82. 

[188] Malkiel, B.G. (2007) A Random Walk Down Wall Street: The Time-Tested 

Strategy for Successful Investing, New York: Norton. 

[189] Marcellino, M. (2004) Forecasting EMU macroeconomic variables, 

International Journal of Forecasting, 20 (2), pp. 359-372. 

[190] Marshall, B.R., Cahan, R.H. and Cahan, J.M. (2008) Does intraday 

technical analysis in the U.S. equity market have value?, Journal of Empirical 

Finance, 15 (2), pp. 199–210. 

[191] McAdam, P. and McNelis, P. (2005) Forecasting inflation with thick 

models and neural networks, Economic Modelling, 22(5), pp. 848–867. 



  

230 
 

[192] Meese, R.A. and Rogoff, K. (1983a) Empirical exchange rate models of the 

seventies: Do they fit out of sample?, Journal of International Economics, 14 (1-2), 

pp. 3–24. 

[193] Meese, R.A. and Rogoff, K. (1983b) The out-of-sample failure of empirical 

exchange rate models: sampling error or misspecification?, in: Frankel, J.A. (ed.) 

Exchange rates and international macroeconomics, University of Chicago Press, 

pp. 67-112. 

[194] Menkhoff, L. and Schmidt, U. (2005) The use of trading strategies by fund 

managers: some first survey evidence, Applied Economics, 37 (15), pp.1719-1730. 

[195] Milas, C. and Rothman, P. (2008) Out-of-sample forecasting of 

unemployment rates with pooled STVECM forecasts, International Journal of  

Forecasting, 24 (1), pp.101–121. 

[196] Milionis, A.E and Papanagiotou, E. (2011) A test of significance of the 

predictive power of the moving average trading rule of technical analysis based on 

sensitivity analysis: application to the NYSE, the Athens Stock Exchange and the 

Vienna Stock Exchange. Implications for weak-form market efficiency testing, 

Applied Financial Economics, 21 (6), pp. 421-436. 

[197] Min, J.M. and Lee, Y.C. (2005) Bankruptcy prediction using support vector 

machine with optimal choice of kernel function parameters, Expert Systems with 

Applications, 28 (4), pp 603-614.  

[198] Min, S.H., Lee, J. and Han, I. (2006) Hybrid genetic algorithms and support 

vector machines for bankruptcy prediction, Expert Systems with Applications, 31 

(3), pp. 652-660. 

[199] Montana, G. and Parrella, F. (2008) Learning to Trade with Incremental 

Support Vector Regression Experts Hybrid Artificial Intelligence Systems, in: 

Corchado, E., Abraham, A. and Pedrycz, W. (Eds.), Hybrid Artificial Intelligence 

Systems. Springer Berlin, Heidelberg, pp. 591-598. 

[200] Montgomery, A.L., Zarnowitz,V., Tsay, R.S. and Tiao, G.C. (1998) 

Forecasting the U.S. Unemployment Rate, Journal of the American Statistical 

Association, 93 (442), pp. 478-493. 

[201] Moshiri, S. and Brown, L. (2004) Unemployment variation over the 

business cycles: a comparison of forecasting models,  Journal of Forecasting, 23 

(7), pp. 497–511. 

[202] Mundra, P.A and Rajapakse, J.C. (2007) SVM-RFE with Relevancy and 

Redundancy Criteria for Gene Selection, Pattern Recognition in Bioinformatics, 

Lecture Notes in Computer Science Volume 4774, pp 242-252. 



  

231 
 

[203] Murphy, J.J (1999) Technical Analysis of the Financial Markets: A 

Comprehensive Guide To Trading Methods And Applications. New York Institute 

of Finance. 

[204] Murphy, J.J. (2012) Charting Made Easy, Ellicott City: Wiley. 

[205] Newbold, P. and Granger, C. W. J. (1974) Experience with Forecasting 

Univariate Time Series and the Combination of Forecasts, Journal of the Royal 

Statistical Society, 137 (2), pp. 131-165. 

[206] Olmedo, E. (2013) Forecasting Spanish Unemployment Using Near 

Neighbor and Neural Net Techniques, Computational Economics, DOI 

10.1007/s10614-013-9371-1. 

[207] O’Neill, M., Brabazon, A., Ryan, C. and Collins, J.J. (2001) Evolving 

Market Index Trading Rules Using Grammatical Evolution, Applications of  

Evolutionary Computing, Lecture Notes in Computer Science, 2037, pp. 343-352. 

[208] Pai, P.F., Lin, C.S., Hong, W.C. and Chen, C.T. (2006) A Hybrid Support 

Vector Machine Regression for Exchange Rate Prediction, Internation Journal of  

Information and Management Sciences, 17 (2), pp. 19-32. 

[209] Palm, F.C. and Zellner, A. (1992) To combine or not to combine? Issues of 

combining forecasts, Journal of Forecasting, 11(8), pp. 687-701. 

[210] Park, A. and Sabourian, H. (2011) Herding and Contrarian Behaviour in 

Financial Markets, Econometrica, 79 (4), pp. 973–1026. 

[211] Park, C.H. and Irwin, S.H. (2007) What do we know about profitability of 

technical analysis?, Journal of Economic Surveys, 21 (4), pp. 786–826. 

[212] Pearce, K.D. and Solakoglu M.N. (2007) Macroeconomic news and 

exchange rates, Journal of International Financial Markets, Institutions and 

Money, 17 (4), pp. 307–325. 

[213] Pesaran, M.H. and Timmermann, A. (1992) A Simple Nonparametric test of 

Predictive Performance, Journal of Business and Economic Statistics, 10 (4), pp. 

461-465. 

[214] Pindyck, R.S. and Rubinfeld, D L. (1998) Econometric models and 

economic forecasts, 4th  ed., Irwin/McGraw-Hill, Boston. 

[215] Prechelt, L. (2012) Early Stopping - but when?, Neural Networks: Tricks of 

the Trade', Lecture Notes in Computer Science volume 7700, pp. 53-67. 

[216] Pring, M.J. (2002) Technical Analysis Explained: The Successful Investor's 

Guide to Spotting Investment Trends and Turning Points, New York: McGraw-Hill. 



  

232 
 

[217] Qi, M. and Wu, Y. (2006) Technical Trading-Rule Profitability, Data 

Snooping, and Reality Check: Evidence from the Foreign Exchange Market, 

Journal of Money, Credit and Banking, 38 (8), pp. 2135-2158. 

[218] Rapach, D. E. and Strauss, J.K. (2008) Forecasting US employment growth 

using forecast combining methods, Journal of Forecasting, 27 (1), pp. 75-93. 

[219] Rondorf, U. (2012) Are bank loans important for output growth?: A panel 

analysis of the euro area, Journal of International Financial Markets, Institutions 

and Money, 22 (1), pp. 103-119.  

[220] Rothman, P. (1998) Forecasting Asymmetric Unemployment Rates, The 

Review of Economics and Statistics, 80 (1), pp. 164-168. 

[221] Ruth, K. (2008) Macroeconomic forecasting in the EMU: Does 

disaggregate modeling improve forecast accuracy?, Journal of Policy Modeling, 30 

(3), pp. 417-429. 

[222] Scholkopf, B., Bartlett, P., Smola, A. and Williamson, R. (1999) Shrinking 

the tube: a new support vector regression algorithm, in: Kearns, M.J., (ed.), 

Advances in neural information processing systems 11. Cambridge, Mass, MIT 

Press, pp. 330-336. 

[223] Scholkopf, B. and Smola, A. (2002) Learning with kernels, Cambridge: 

MIT Press. 

[224] Schirm, D.C. (2003) A Comparative Analysis of the Rationality of 

Consensus Forecasts of U.S. Economic Indicators, The Journal of Business, 76 (4), 

pp. 547-561 

[225] Schwarz, G. (1978) Estimating the Dimension of a Model, Annals of 

Statistics, 6 (2), pp. 461-464. 

[226] Sermpinis, G., Laws, J., Karathanasopoulos, A. and Dunis, C.L. (2012a) 

Forecasting and trading the EUR/USD exchange rate with Gene Expression and Psi 

Sigma Neural Networks, Expert Systems with Applications, 39 (10), pp. 8865–

8877. 

[227] Sermpinis, G., Theofilatos, K., Karathanasopoulos, A., Georgopoulos, E. 

and Dunis, C.L (2012b) Forecasting foreign exchange rates with adaptive neural 

networks using radial-basis functions and Particle Swarm Optimization, European 

Journal of Operational Research, 225 (3), pp. 528–540. 

[228] Sessions, D.N. and Chatterjee, S. (1989) The combining of forecasts using 

recursive techniques with non-stationary weights, Journal of Forecasting, 8 (3), pp. 

239-251. 



  

233 
 

[229] Sewell, M. (2011) History of Efficient Market Hypothesis, UCL Department 

of Computer Science, Research Note. 

[230] Shapiro, A.F. (2000) A Hitchhiker's guide to the techniques of adaptive 

nonlinear models, Insurance: Mathematics and Economics, 26 (2-3), pp. 119-132. 

[231] Shapiro, F.A. (2002) The merging of neural networks, fuzzy logic, and 

genetic algorithms, Insurance: Mathematics and Economics, 31(1), pp. 115–131. 

[232] Shen, L. and Loh, H.T. (2003) Applying rough sets to market timing 

decisions, Decision Support Systems, 37 (4), pp. 583–597. 

[233] Siedlecki, W. and Sklansky, J. (1989) A note on genetic algorithms for 

large-scale feature selection. Pattern Recognition Letters, 10 (5), pp. 335-347. 

[234] Siegel, J.J. (2002) Stocks for the long run, 3rd ed. New York: McGraw-Hill. 

[235] Smola, A., Murata, N., Scholkopf B. and Muller, K.R. (1998) 

Asymptotically optimal choice of ε-loss for support vector machines, in: Niklasson, 

L., Boden, M. and Ziemke, T. (eds.) Proceedings of the International Conference 

on Artificial Neural Networks, Perspectives in Neural Computing, Berlin, Springer, 

pp.105–110. 

[236] Smola, A. and Scholkopf, B., (2004). A tutorial on support vector 

regression, Statistics and Computing, 14, pp. 199-222. 

[237] Stock, J.H. and Watson, M.W. (2003) Forecasting output and inflation: the 

role of asset prices. Journal of Economic Literature, 41 (1), pp. 788–829. 

[238] Stock, J.H. and Watson, M.W. (2004) Combination forecasts of output 

growth in a seven country dataset, Journal of Forecasting, 23 (6), pp. 204–430. 

[239] Stock, J.H. and Watson, M.W. (2007) Why Has U.S. Inflation Become 

Harder to Forecast?, Journal of Money, Credit and Banking, 39 (1), pp. 3-33. 

[240] Stock, J.H. and Watson, M.W. (2009) Phillips Curve Inflation Forecasts, in: 

Fuhrer, J., Kodrzycki, Y., Little, J. and Olivei, G. (eds.) Understanding Inflation 

and the Implications for Monetary Policy, Cambridge, MIT Press, pp. 101-186. 

[241] Stock, J.H. and Watson, M.W. (2012) Generalized Shrinkage Methods for 

Forecasting Using Many Predictors, Journal of Business & Economic Statistics, 30 

(4), 481-493. 

[242] Sun, Z., Bebis, G., Miller, R. (2004) Object detection using feature subset 

selection, Pattern Recognition, 37 (11), pp. 2165–2176 

[243] Sundberg, R. (2002) Shrinkage Regression, in: El-Shaarawi, A.H. and 

Piegorsch, W.W.  (eds.), Encyclopedia of Environmetrics, John Wiley & Sons, 

Ltd., pp. 1994-1998. 



  

234 
 

[244] Suykens, J.A.K., Brabanter, J.D., Lukas, L. and Vandewalle, L. (2002) 

Weighted least squares support vector machines: robustness and sparse 

approximation, Neurocomputing, 48 (1-4), pp. 85-105. 

[245] Swanson, N.R. and White, H. (1997) A Model Selection Approach to Real-

Time Macroeconomic Forecasting Using Linear Models and Artificial Neural 

Networks, Review of Economics and Statistics , 79 (4), pp.540-550. 

[246] Swanson, N.R. and Zeng, T. (2001) Choosing among competing 

econometric forecasts: Regression-based forecast combination using model 

selection, Journal of Forecasting, 20 (6), pp. 425-440. 

[247] Sweeney, R.J. (1986) Beating the Foreign Exchange Market, Journal of 

Finance, 41(1), pp. 163–182. 

[248] Szafarz, A. (2012) Financial crises in efficient markets: How 

fundamentalists fuel volatility?, Journal of Banking & Finance, 36 (1), pp. 105–

111.  

[249] Tastan, H. (2006) Estimating time-varying conditional correlations between 

stock and foreign exchange markets, Physica A: Statistical Mechanics and its 

Applications, 360 (2), pp. 445-458. 

[250] Tay, F.E.H. and Cao, L. (2001) Application of support vector machines in 

financial time series forecasting, Omega, 29 (4), pp. 309–317. 

[251] Tay, F.E.H. and Cao, L. (2002) Modified support vector machines in 

financial time series forecasting, Neurocomputing, 48 (1-4), pp. 847–861. 

[252] Tenti, P. (1996) Forecasting foreign exchange rates using recurrent neural 

networks, Applied Artificial Intelligence, 10 (6), pp. 567-581. 

[253] Teräsvirta, T., Dijk, V.D. and Medeiros, M.C. (2005) Linear models, 

smooth transition autoregressions, and neural networks for forecasting 

macroeconomic time series: A re-examination, International Journal of  

Forecasting, 21(4), pp. 755-774. 

[254] Terui, N. and Dijk, H.K.V. (2002) Combined forecasts from linear and 

nonlinear time series models, International Journal of Forecasting, 18 (3), pp. 421-

438. 

[255] Thawornwong, S, Enke, D. and Dagli, C. (2003) Neural Networks as a 

Decision Maker for Stock Trading: A Technical Analysis Approach, International 

Journal of Smart Engineering System Design, 5 (4), pp. 313-325. 

[256] Theil, H. (1966) Applied Economic Forecasting, North-Holland Pub. Co., 

Amsterdam and Rand McNally, Chicago. 



  

235 
 

[257] Tibshirani, R. (2011) Regression shrinkage and selection via the lasso: a 

retrospective, Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), 73 (3), pp. 273-282. 

[258] Timmermann, A. and Granger, C.W.J. (2004) Efficient market hypothesis 

and forecasting, International Journal of Forecasting, 20 (1), pp. 15–27. 

[259] Trafalis, T.B. and Ince, H. (2000) Support vector machine for regression 

and applications to financial forecasting, Proceedings of International Joint 

Conference on Neural Networks, 1, pp. 348-353. 

[260] Tsaih, R., Hsu, Y. and  Lai, C.C.  (1998) Forecasting S&P 500 stock index 

futures with a hybrid AI system, Decision Support Systems, 23 (2), pp. 161-174. 

[261] Vapnik, V. N. (1995) The nature of statistical learning theory, Springer. 

[262] Veall, M.R. and Zimmermann, K.F. (1996) Pseudo-R2 measures for some 

common limited dependent variable models, Journal of Economic Surveys, 10 (3), 

pp. 241-259 

[263] Vecci, L, Piazza, F. and Uncini, A. (1998) Learning and Approximation 

Capabilities of Adaptive Spline Activation Function Neural Networks, Neural 

Networks, 11 (2), pp. 259-270. 

[264] Wang, Z. (2010) Directed graphs, information structure and forecast 

combinations: an empirical examination of US unemployment rates, Journal of  

Forecasting, 29 (4), pp. 353–366. 

[265] Wang, F., Yu, P.L.H. and Cheung, D.W. (2012) Complex stock trading 

strategy based on Particle Swarm Optimization, Computational Intelligence for 

Financial Engineering & Economics (CIFEr), IEEE Conference, 1- 6.  

[266] Wang, H., Li, G. and Jiang, G. (2007) Robust Regression Shrinkage and 

Consistent Variable Selection Through the LAD-Lasso, Journal of Business and 

Economic Statistics, 25 (3), pp. 347-355. 

[267] Wang, L. and Shen, X. (2007) On L1-Norm Multiclass Support Vector 

Machines,  Journal of the American Statistical Association, 102 (478), pp. 583-594. 

[268] Wang, T., Qin, Z., Jin, Z. and Zhang, S. (2010) Handling overfitting in test 

cost-sensitive decision tree learning by feature selection, smoothing and pruning, 

Journal of Systems and Software, 83(7), pp. 1137-1147. 

[269] Welch, G. and Bishop, G. (2001) An Introduction to the Kalman Filter, 

Design, 7 (1), pp. 1-16. 

[270] Wright, J.H. (2009) Forecasting US Inflation by Bayesian Model 

Averaging, Journal of Forecasting, 28 (2), pp.131–144. 



  

236 
 

[271] Wu, C.H., Tzeng, G.H., Goo, J.Y. and Fang, W.C. (2007) A real-valued 

genetic algorithm to optimize the parameters of support vector machine for 

predicting bankruptcy, Expert Systems with Applications, 32 (2), pp. 397-408. 

[272] Wu, Y. and Liu, Y. (2007) Robust Truncated Hinge Loss Support Vector 

Machines, Journal of the American Statistical Association, 102 (479), pp. 974-983. 

[273] Yang, Y. (2004) Combining Forecasting Procedures: Some theoretical 

results, Econometric Theory, 20 (1), pp. 176-222. 

[274] Ye, C. and Huang, J.P. (2008) Non-classical oscillator model for persistent 

fluctuations in stock markets, Physica A: Statistical Mechanics and its 

Applications, 387 (5–6), pp. 1255–1263. 

[275] Yeh, C.Y., Huang, C.W. and Lee, S.J. (2011) A multiple-kernel support 

vector regression approach for stock market price forecasting, Expert Systems with 

Applications, 38(3), pp. 2177-2186. 

[276] Yen, G. and Lee, C.F. (2008) Efficient market hypothesis (EMH): Past, 

present and future, Review of Pacific Basin Financial Markets and Policies, 11 (2), 

pp. 305–329. 

[277] Yuan, M. and Lin, Y. (2007) On the non-negative garrotte estimator, 

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69 (2), 

pp. 143-161 

[278] Yuang, F.C. (2012) Parameters Optimization Using Genetic Algorithms in 

Support Vector Regression for Sales Volume Forecasting, Applied Mathematics, 3 

(1), pp. 1480 - 1486. 

[279] Zhang, M. (2009) Artificial Higher Order Neural Networks for Economics 

and Business, IGI Global: Hershey. 

[280] Zhang, G. Hu, M.Y., Patuwo, B.E. and Indro, D.C. (1999) Artificial neural 

networks in bankruptcy prediction: General framework and cross-validation 

analysis, European Journal of Operational Research, 116 (1), pp. 16–32. 

[281] Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998) Forecasting with artificial 

neural networks: The state of the art, International Journal of Forecasting, 14 (1), 

35-62   

[282] Zhu, H. and  Rohwer, R.(1996) No free lunch for cross-validation, Neural 

Computation, 8 (7), pp. 1421-1426. 

[283] Zhu, Y. and Zhou, G. (2009) Technical analysis: An asset allocation 

perspective on the use of moving averages, Journal of Financial Economics, 92 (3), 

pp. 519–544. 


	[139] Jegadeesh, N. and Titman, S. (1993) Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency, The Journal of Finance, 48 (1), pp. 65–91.

