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Do mo pharantan



And God said, Let there be light:
and there was light.

THE FIRST BOOK OF MOSES, CALLED GENESIS
Chapter 1, verse 3

0 what o bursting out there was,
“And what o blossoming,
Fhen we had all the summer-time
And she had all the spring!

"A MAN YOUNG AND OLD"
W.B. Yeats
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ABSTRACT

The thesis is concerned with the design, analysis,
fabrication and evaluation of integrated optic lenses which are
inhomogeneous either in physical shape or in refractive index
profile. The thesis has nine chapters. Chapter one, the
introduction, illustrates the importance of these lenses within
the domain of integrated optics, where the complicated
mathematical functions required to describe the lens profiles are
most easily realised. Connections are made between the study of
these lenses and the exciting new field of optical computing.

A special class of non-uniform lenses which are conceptually
perfect opticai instruments forms the main area of interest in
the present study. Historically, the development of these lenses
has followed two distinct lines, related to two possible methods
of physically obtaining the required variation in path of light
rays passing through the lens. In one method the optical path is
made to vary directly, whilst the other method involves
controlling the physical path, and thus the optical path, through
the principle of equivalence. The dual development has been
continued in the field of integrated optics, where lenses based
on direct control of the optical path are termed variable-index
lenses and those based on physical path control are termed
geodesic lenses. The perfect variable-index lens studied in this
work was the well-known Luneburg lens. Perfect geodesic lens
designs have also been published. The design formulae for both
types of lens are presented in chapter two. A simpler lens, of
spherical geometry, is also presented which is easily analyzed
and characterised and which serves as an archetypal model against
which the performance of the more sophisticated lenses can be

assessed.

Chapter three investigates the problems involved in
modelling fabrication conditions in a thermal-evaporation-in-
vacuum environment so that lens profiles can actually be
constructed. Chapter four goes into methods of tracing rays

through these lenses in some detail. Ray-tracing has long been
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the classical tool of optical designers, providing a useful guide
to optical performance. Ray methods, which effectively provide
image error evaluations, are not entirely appropriate for those
lenses which are conceptually perfect within the geometrical
optics approximation. Diffraction effects prevent the lenses from
attaining true perfection. In such cases the wave-field produced
by the lenses in the image space is the important quantity. In
chapter five, the beam-propagation method (BPM) is used to study
diffraction and associated effects in inhomogeneous lenses. The
method allows the propagation of complicated waveshapes in
inhomogeneous media, normally a difficult task. Furthermore,
anisotropic effects and the interaction between acoustic waves
and optical waves can be studied with the method. Negative focal
shifts are reported which are not predicted by geometrical optics

or the usual approximate diffraction theories.

The fabrication of lenses is considered in chapter six.
Planar waveguide measurements carried out on the various
materials used in the study are presented. A major problem in the
fabrication of geodesic lenses, that of obtaining a uniform
waveguide layer over the complete lens area, is dealt with in
some detail in chapter seven. In chapter eight, extensive tests
on the experimental performance of several lenses are reported.
Near diffraction-limited performance is reported for geodesic
lenses. More limited performance figures are obtained for
Luneburg lenses though the possibility of high performance is
indicated if profile resolution can be improved. The themes of
the thesis are pulled together for discussion in chapter nine and
conclusions are drawn as to the relative merits of the various
lenses. Possible means of improving fabrication procedures, thus
driving lenses closer to ultimate resolution limits, are
presented. The greatest problem faced is that of scattering in
the waveguide, which appears to be accentuated as the waveguide
traverses the lens surface. If the scattering problem can be
successfully dealt with it 1s concluded that integrated optical
lenses could be important and viable components in addressing the
problem of fast, high-throughput data processing.

iv
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CHAPTER ONE INTRODUCTTON

INHOMOGENEOUS LENS STRUCTURES FOR INTEGRATED OPTICS

Data-processing, interpreted as computing in its widest
sense, is becoming progressively more complex [1]. Historically,
many of the advances in processing have both driven and been
driven by advances at the electronic component 1level. The
phenomenon of 'silicon shrink', faster switching speeds and lower
switching energies have triggered performance gains at the system
level which have expanded data-processing horizons. There are
signs, however, that the interdependence of electronics and data-
processing systems at the most ambitious levels is coming to an

end. There are two reasons:

1) the rate of advance in electronics at the component
(ie chip-) level is slowing. Fundamental limits are being
approached in terms of feature size and switching speeds

2) systems designers are increasingly hide-bound by wvon
Neumann-oriented architectures which operate in sequential
fashion. Processors have been essentially memory-driven rather
than data-driven, preventing many operations from taking place in
real-time. Bottlenecks are created which impede data flow and
lead to interconnection difficulties with the real world.

There is a strong impetus to develop new types of computing
engine which will overcome these problems. These computers will
be required to operate in a massively parallel fashion and thus
display much larger space-bandwidth products than present day
electronic systems. Furthermore, an increase in speed
(corresponding to an increase in time-bandwidth product) is also
desirable. Pattern recognition, real-time spectral analysis,
synthetic aperture radar, machine-vision and artificial
intelligence are areas in which processors having these improved



characteristics could be of value. Purely electronic systems,
arguably, are unlikely to prove suitable for their construction.

An alternative technology may thus be required. One which is
suitable on several counts is based on optics. Light beams are
inherently, and massively, parallel. Conceptually at least,
millions of resolvable spots are available, each of which
represents an independent signal-channel substantially free of
interference or cross-talk. Because of the high frequency of
light each channel can support an enormous temporal bandwidth.
Beams can propagate through each other in many media at high
power densities without interacting, while useful interactions
within suitable non-linear materials can take place on a femto-
second to pico-second timescale. The advances in communication
using optical fibres are further reasons for developing all-
optical processing, minimising the need for slow, power-costly
photon-electron conversions.

Optics has been of considerable interest for performing
analogue signal-processing for at least two decades, mainly as a
result of the development of highly coherent sources,ie lasers.
The operations of convolution, correlation, spectral analysis and
imaging are relatively easy to perform in optics and these
operations have formed the building blocks for powerful but
highly specialised systems. More recently, attention has turned
to the possible implementation of numerical (digital) optical
processing as a means of obtaining systems of more general
utility [2]. Classical optical elements such as lenses, mirrors,
beam-splitters and prisms can be used in conjunction with
acousto—optic amd electro-optic interactions to perform algebraic
operations, such as matrix-matrix and matrix-vector
multiplications and additions. Analogue operations such as
convolution can generally be configured as matrix-vector
problems, so that a move towards numerical optical processing
offers the likelihood of performance gains associated with
digital processing (eg increased accuracy and reliability) in
those areas.



It is evident that optics is an exciting approach to fast
numerical processing implemented in a parallel fashion. The
parallelism derives from the extension of a light wave-field over
a wide region of three-dimensional space in comparison with the
wavelength of the light. Somewhat paradoxically, there are
advantages to be obtained in not using the full dimensionality
offered by bulk optics. Reducing the dimensionality by a factor
of one (and sometimes two) by confining the light to a planar
wave-guide offers much greater control over several of the
different processes involved. Guided-wave optics implemented on
flat substrates is now well-established and is generally known
(perhaps misleadingly) as integrated optics.

Some particular advantages quoted of integrated optics over
bulk optics are, typically, decreased power consumption,
convenient fabrication procedures, improved interaction
efficiencies with other types of guided wave, longer interaction
lengths owing to the non-spreading of the confined beam and gains
in ruggedness, reliability, environmental immunity, small size
and, particularly, the likelihood of compatibility with optical
fibres. A major disadvantage is the loss of one transverse

dimension leading to a much-reduced channel carrying capacity.

Caulfield [3] has pointed out that while the lateral spatial
parallelism of bulk optical processors is not fully realized in
integrated optics, a compensating form of discrete longitudinal
parallelism is gained in which the incoming optical signal
extending over one transverse dimension is modulated by time-
varying and space-varying quantities such as presented by surface
acoustic waves. Psaltis [4] makes some pertinent comments that
may be quoted in full:

' The 2-D Fourier transforming lens is the primary
mechanism that is used to make all the possible
inter-connections in a 2-D optical processor.
However, only a relatively small number of linear
operations can be performed with a processor based
on the 2-D Fourier transform. It is in fact



possible to compute a wider class of 1linear
operations through combinations of imaging 1-D
transforming (or integrating) lenses. Furthermore,
greater flexibility exists in the design of such
processors, ...'

Psaltis does not have integrated optics in mind here - his
'one-dimensionality' refers to a combination of non-guided-wave
acousto-optic devices, light-source arrays and detectors, and
bulk cylindrical lens elements - but the rationale is clear and
a role for integrated optics seems possible.

The crucial part which the classical optical element, the
lens, has to play in optical processing is stated emphatically in
the paragraph quoted above. It is well-known that the optical
diffraction process, in the Fraunhofer (or far-field) zone, is
essentially the Fourier transformation process. On the surface of
a sphere with centre situated in the plane of the diffracting
aperture, transparency or object, the amplitude of the field is
directly proportional to the Fourier transform of the aperture
function [5]. The major problem involved in using Fraunhofer
diffraction to obtain the Fourier transform is the need, in
general, to use long observation distances. A thin lens can be
used to overcome this problem, since the focusing action of the
lens has the effect of compressing the distances involved. In the
focal plane of a thin lens, the intensity of the diffraction
field is proportional to the Fourier spectrum of the incident

wave.

Lenses can be used for tasks other than Fourier
transforming, such as beam collimation and expansion, spatial

filtering, imaging and as summation/integration elements.

Real lenses fall short of the perfect optical imaging
properties ascribed to ideal lenses. The errors introduced in
imaging are quantifiable in terms of geometrical optics (less so
in physical optics) and are called aberrations. The principal
design tools available to lens-makers for correcting aberrations



have been, traditionally, the manipulation of surface-curvatures
in lens elements based on spherical geometries. Combinations of
these elements, sometimes including elements of different
refractive index, have been used to minimise aberrations of a
given type. It is not usually possible to minimise all
aberrations simultaneously. Developments in machine tools enabled
designers to introduce aspheric geometries readily into their
designs, though aspheric lenses are still relatively rare, due to
the not inconsiderable expense involved in their design and
construction.

The refractive index of the material used in the fabrication
of a single lens element was not considered a design variable and
was almost invariably held constant. Major advances have occurred
in this area however, largely due to the influence of the applied
mathematician, Rudolf Karl Luneburg (1903-1949). His synthesis of
the disciplines of physical optics, geometrical optics and
electro-magnetism (that had previously led largely separate
though related existences) enabled him to formulate single
element designs incorporating variable refractive index
functions. The crucial aspect of these lenses was that they were
perfect; no cérrection by other elements was required, and
'‘per fection' (perfect imaging) was obtained over a solid angle of
360 degrees. In the 1950's and 1960's Luneburg lenses found some
application in the microwave field, especially for high-fidelity
radar-scanning and tracking purposes. The lenses were not
extensively used in optics due to difficulties involved in

construction.

The importance of these lenses for integrated optics became
clear for two reasons: one being that the effective refractive
index dispersion with waveguide thickness offered the possibility
of simple construction, albeit at the expense, once again, of
reduced dimensionality; and the other being that the scattering
losses associated with integrated optical waveguides, especially
at index discontinuities such as interfaces, precluded the use of

several cascaded elements to achieve good image correction.



The principle of equivalent optical paths allows the
construction in integrated optics of lenses analogous to Luneburg
lenses which depend on the controlled geometrical deformation of
the waveguide for successful operation. Such lenses are termed
configurational or geodesic lenses. Geodesic lenses are strongly
aspheric in general and are therefore more expensive to
manufacture than Luneburg lenses. However advantages in terms of
fabrication and performance over Luneburg lenses can be gained.

A multi-disciplinary approach is required in the
investigation of these lenses, as is the case with much of
integrated optics. The design and analysis of lenses involves
considerable theoretical and computational effort; lens
fabrication involves both theoretical and practical aspects of
materials science, thin-film and vacuum technology and machining,
polishing and masking problems; the characterization of
fabricated lenses draws upon classical optical practices
supplemented by new techniques unique to integrated optics; and
incorporating the lenses into actual data-processing systems
involves all of these again, together with conventional
electronic engineering techniques, as well as other disciplines
such as acousto-optics.

This thesis describes the synthesis of several of the above-
mentioned disciplines in an effort to construct and operate two
types of lens having common origins in the work of Luneburg.
These lenses are likely to play major roles in the future
development of integrated optics within the wider context of
optical processing. In chapter two of the thesis the historical
development of inhomogeneous lenses will be reviewed. The review
will form the basis for an investigation into the design theory
of inhomogeneous lenses for integrated optical applications. Two
types of inhomogeneous lens will be identified which are closely
related to one another; the thin-film Luneburg overlay lens and
the geodesic surface-depression lens. The theory of formation of
thin-film lenses using shadow masking techniques will be
discussed in chapter three. Chapters four and five will both deal
with the theoretical optical performance of inhomogeneous lenses.



Chapter four will anaiyse the performance of the lenses from a
geometrical optics point of view, ray-tracing being used to
quantify the aberrations that arise when the lens profiles
obtained in the real world do not exactly correspond to the
theoretically perfect profiles. Chapter five uses a numerical
technique known as the beam-propagation method to investigate the
characteristics of the lenses in terms of wave-optics. The
technique has several advantages over conventional wave-optics
methods. Diffraction problems, the effects of both small and
large aberrations, off-axis incidence, beams of variable phase
and amplitude, and propagation in inhomogeneous media are all
readily dealt with by the method.

Chapter six will deal with the fabrication of planar
waveguides and thin-film overlay lenses. Chapter seven will deal
with the problem of fabricating uniform waveguides on the highly
curved geodesic lenses investigated. Experimental measurements on
several lenses will be reported in chapter eight. Finally, the
various threads of the thesis will be pulled together in chapter
nine and recommendations for future work will be proposed.
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CHAPTER TWO

THE DESIGN OF INHOMOGENEOUS LENSES

2.1 Introduction

Stigmatic imaging is feasible, conceptually, within the
geometrical optics approximation [1]. An infinite number of rays
emanating from a point source in object space may be made to pass
through a single conjugate point in image space by an optical
instrument using either reflection or refraction or a combination
of both.

An imaging process may further be described as perfect if
all the points in the object space are imaged in the above
fashion with the result that the image points are geometrically
mapped in one-to-one correspondence with the object points. Such
a process is an abstraction and is unrealizable. Plane mirrors

and holographic elements come reasonably close, however.

A more feasible and restricted aim is to image perfectly
all the points on a sheet (surface) or even a line function. The

- demands made on the optical instrument are nevertheless still

formidable. The use of the adjective 'perfect' in the remainder
of this thesis will be intended to convey imaging in this
restricted sense.

2.2 Examples

(a) The Cartesian Ovals

A class of lenses which performs stigmatic imaging has been
known for over two hundred and fifty years and yet optical
designers have found little use for them as they are of aspheric
geometry. Descartes first stipulated the required geometry and,
in consequence, the lenses are known as the Cartesian ovals [2].
It is interesting to note that the Cartesian ovals predate the

first reference to Snell's law of refraction and consequently a



controversy (which remains unresolved ) arose as to whom the law
should be credited, with Fermat and Descartes being the principal
protagonists.

The Cartesian ovals reduce to conic sections in the case of
the imaging of a point situated on the optical axis at infinity.
Workers in integrated optics only have two dimensions to contend
with, generally, and it is reasonably obvious that generating a
non-circular geometry in a plane should be much easier than
generating aspherical shapes in bulk optics. Consequently the
Cartesian ovals have been of some utility in integrated optics
and both plano-hyperbolic [3] and elliptical [4] shapes have been
utilised. The elliptical lens is remarkable in that it performs a
positive focusing action while possessing a double-concave
geometry. It manages to do this because the effective index
within the lens is constrained to be lower than the effective
index of the ambient waveguide. Such a situation is probably
unheard of in bulk optics, and represents an added degree of
freedom for design purposes.

(b) The sphere

Cartesian ovals are not capable, however, of performing
perfect, geometrical imaging of extended lines or surfaces. A
structure that is capable of doing this is the sphere, where the
object points are those on the surface of the sphere and the rays
are assumed to be confined to the surface. The rays emanating
from those points travel along the great circles (geodesics) of
the sphere and thus meet again at the diametrically opposite
point. A hemispherical lens has been made to demonstrate this in
integrated optics [5].

(c) Maxwell's fish-eye lens

An optical system with an index of refraction characterised
by a rotationally symmetric function of the type:

n(r) = a/(b%+r?) (2.1)
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where n(r)is the refractive index, r is the radial coordinate
and a and b are constants, is known as a Maxwell's fish-eye
system [l1]. The fish-eye lens is able to image perfectly one
sphere onto another without distortion.

(d) Luneburg lenses, and other inhomogeneous lenses

Refracting structures in which the optical rays follow
curved rather than linear paths have aroused considerable
interest over the past four decades, originally in the microwave
field [6] and, more recently, in integrated optics [7]. The
technologies required to produce the inhomogeneous lens
structures which guide the rays are readily available in
integrated optics, although the lenses of course operate only in
two dimensions, as opposed to the three dimensions often
envisaged by the original designers. Curved rays are not unknown
in nature; the eyes of certain marine animals are known to
produce this phenomenon [8]. Mirages and the propagation of radio
waves in the upper atmosphere display similar characteristics.
The interest in using inhomogeneous media derives from the
possibilities of using such structures to YieLd perfect imaging.

R.K. Luneburg, in a classic but almost unobtainable text
[9], dealt with the mathematical problems of inhomogeneous lenses
in considerable depth. He formulated mathematical descriptions of
a class of perfect inhomogeneous optical lenses now known as
Luneburg lenses. These will be discussed in detail in the next
section. Firstly, however, two distinct lines of possible
technological development of inhomogeneous lenses will be
identified.

2.3 Two Lines of Development

2.3.1 The principle of equivalence

The Luneburg lens and the Maxwell fish—eye lens are examples

of lenses with variable refractive index distributions. The

11



physical boundaries of these lenses are generally spherical. The
refractive index distributions can, however, be confined to a

plane, in which case the boundaries of the lenses are described
by circles.

Runz [10] and Toraldo di Francia [11] discovered,
independently, the possibility of finding a non-Euclidian (ie
non-planar) two-dimensional space having the same optical
properties as the planes in which inhomogeneous structures such
as Maxwell fish-eye and Luneburg lenses resided. Mathematically,
in accordance with Fermat's principle, the physical path followed
by a ray between two points A and B is such as to make the

variation in the optical path length zero:

B

éfndL =0 (2.2)

A

n is the refractive index and dL is a line element along

the path. Zero variation means that the optical path length along
the ray is a local maximum or minimum (usually the latter). If
the refractive index of the medium is constant then the variation

in the physical path length for all the rays is also zero:

B
f/dL =0 (2.3)
A

The rays, consequently, follow the geodesics of the surface.

In rotationally symmetric media, a surface of revolution is
obtained by rotating a generating curve C around an axis of
revolution z, as shown in Figure [21]. If s is taken as the arc-
length along the curve, and (r,9) taken as the remaining
cylindrical coordinates, the physical distance between
neighbouring points on the curve C is given by:

dL? = ds? + rése? (2.4)
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s = arc length along C s

= generating curve

axis of revolution
™

FIGURE[21] GENERATING CURVE OF A
'SURFACE OF REVOLUTION



The optical distance along these points is obtained by
multiplying the physical distance by the index of refraction:

(ndL)2 = n?[as? + r230?] (2.5)

Equivalent optical surfaces are surfaces that identically
preserve the relationship given by (2.5) without necessarily
identically preserving the relationship given by (2.4). Put
simply, equivalent optical surfaces have identical optical,
though not necessarily physical, geometries.

A non-Euclidian two-dimensional analogue of Maxwell's fish-
eye lens is the surface of the spherical lens described
previously. Similarily a non-Euclidian lens equivalent to the
Luneburg lens exists and is called the Rinehart lens [10]. Non-
Euclidian two-dimensional lens surfaces may conveniently be
called configurational lenses. In cases where the refractive
index of the medium is constant, the lenses may be referred to as
geodesic lenses.

Geodesic lenses are inhomogeneous in the sense that the
profile curvature varies from point to point on the lens, in
general. Lenses which have a point to point variation in
refractive index are also inhomogeneous, and are called variable-
index lenses for convenience. Two distinct paths of technological
deveopment were available, therefore, for the designers of
inhomogeneous lenses: the optical properties of the lens could be
controlled by either continuously varying the physical geometry
of the lens, or by continously varying the refractive index

function.

The difficulties of physically obtaining aspheric
structures, in bulk optics, are considerable; the problem of
realizing a continuously varying radially-symmetric refractive
index function is almost intractable. The dispersion of mode
effective refractive index with waveguide thickness in quided-

wave optics, however, provides an accessible means of realizing
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variable-index lenses. Aspheric machining is a means available
for producing the geodesic inhomogeneous lenses; the waveguide,
whilst remaining of more-or-less constant depth, may be deformed
so that the optical path of rays traversing the lens may be
controlled in a manner appropriate for perfect imaging.

In this thesis, integrated optical lenses of both the
geodesic and variable-index types will be discussed. It is
worthwhile to trace the parallel development of these lenses from
the pioneering work done by R.K. Luneburg, through the
applications found for these lenses in microwaves, to the
present-day interest in the lenses in the field of integrated
optics.

2.3.2 Variable-refractive-index lenses

Luneburg [9] developed integral equations for variable
refractive index lenses which were capable of imaging perfectly
all the points on a sphere situated in homogeneous space on or
outside the lens surface onto another conjugate sphere also
situated outside the lens. In particular he found an analytical
solution for a lens that could perfectly image the points on a
sphere coincident with the outer surface of the lens itself onto
a sphere situated at infinity. He had thus described a method of
producing, from a point-source feed, a perfectly collimated beam.

Luneburg lenses which were capable of focusing a point at
infinity to a point inside the lens itself were subsequently
proposed by Brown [12] and Gutman [13]. The motivation of both
Brown and Gutman in providing for a focus inside the lens was to
increase the rapidity at which a point-source could mechanically
scan the focal surface whilst maintaining the output beamwidth of
the original design. Brown introduced the possibility of
arbitrarily specifying the refractive index function of an outer
shell from which the refractive index function of the perfectly
focusing inner shell could then be derived. He also considered
the problems of diffraction connected with the finite wavelength
of the emerging radiation and proposed a tapering of the beam
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amplitude to counteract these effects, a process now well-
established in optics and elsewhere in wave systems and known as
apodization.

Morgan [14]) produced a general theory of Luneburg lenses
which allowed for any combination of conjugate foci and a finite
number of refractive index discontinuities within the lens. The
refractive index function was specified by combinations of
definite integrals, most of which could only be evaluated using
numerical methods. Particular examples of solutions in terms of
tabulated values were specified for lenses having focal lengths
of between one and two times the lens radius.

These lenses subsequently found actual application in
microwaves, either as collimating elements for point-sources or
as wide-angle receiving antennae. One method of physically
implementing the lenses involved approximating the required
refractive index profile by constructing a number of concentric
spherical shells, each shell having a different value of
dielectric constant [6]. A lens of 18" (43cm) in diameter,
composed of 10 shells made of styro-foam of different densities
was shown to produce a wavefront phase—error in the exit pupil of
less than one-tenth of a wavelength, a value much less than the
commonly quoted quarter-wave limit for defect-free imaging.

In keeping with the philosophy first outlined by Miller
[15], the new technology of integrated optics has borrowed
extensively from microwaves. This has certainly been true for
Luneburg lenses. The integrated optical designer is presented
with a new degree of freedom compared with the bulk optics
designer, though not compared with the microwave engineer, in
having refractive index dispersion available as a tool. Ulrich
and Martin [16] developed a two-dimensional geometrical optics
theory which yielded ray and eikonal equations formally
equivalent to those of classical optics [1]. Van Duzer [17]
worked along similar lines in the related field of surface—guided
acoustic waves. Consequently the design of surface guided-wave

components was made amenable to ray methods.
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Shubert and Harris [18] pointed out the favourable
possibilities of integrated optical signal-processing in
comparison with bulk optics, in spite of the inherent reduction
in dimensionality, or parallelism, and went on to give a modal
analysis of light propagation in multi-layered thin films that
gave full scope for utilising the achievable variation in the
sur face-wave eigenvalues; effectively one had the possibility of
control over refractive index by simply changing material
parameters and varying deposited film thicknesses. Whilst not
producing Luneburg lenses in the strictest sense, these workers
were among the first to recognize the potential of controlled
inhomegeneity in integrated optical lenses. Lenses with f-numbers
as low as f/2 were considered achievable, and various layer
configurations were envisaged, including lenses over- and under-
laid with respect to the ambient waveguide. The use of cladding
layers to reduce losses was also envisaged. A non-circular lens
structure having a Gaussian effective refractive-index
distribution in the propagation direction and a parabolic
transverse distribution was presented, and motor-driven shadow
masks for use in shaping thin films were stated to be capable of
producing film lens and prism layers of any desired thickness
profile.

Suematsu et al [19] dealt with the focusing properties of a
thin-film lenslike light guide having an approximately parabolic
transverse film thickness profile. They proposed using the lens
for phase-matching in a thin-film optical second-harmonic
generator. They reported use of a shadow-masking technique in
order to modify the thickness profile, with the mask situated in
the space between a sputtered source and the target substrate.
The lenses so produced were conceptually similar to gas lenses
and self-focusing (SELFQOC) optical fibres.

Zernike [20] was the first worker (to the author's
knowledge) to explicitly advocate the use of the lens profiles
formulated by Luneburg in integrated optics. He drew on the work
of Tien et al [21], on tapering the regions interfacing two areas
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of different effective refractive index, to realize the required
profile. A shadow-masking geometry was used to produce a lens
7having an overall diameter of 1L5mm. Niobium pentoxide ®Nb-Os)
was deposited in a controlled fashion onto planar waveguides on
glass substrates. The shadow mask was bevelled in order to
produce a slow tapering region between the outer waveguide and
the central part of the lens. Little mention was made of the
principles applied in either lens or mask design, and the
presumption may perhaps be made that these were done on an ad hoc
basis. Nevertheless the results obtained were reasonably good. A
parallel bundle of rays filling almost the entire lens aperture
focused onto a point near the lens edge and then diverged at an
angle of 110 degrees. A small amount of spherical aberration was
manifested. Another lens, focusing at a point outside the lens
surface produced a focal spot diameter of less than 30um from an
input beamwidth of 5mm.

Two papers by Anderson et al [22,7] placed the Luneburg lens
squarely at the forefront of integrated optical technology.
Lenses were to be incorporated as both collimating and spatial
Fourier transforming elements in the integrated optical spectrum
analyzer (IOSA). The thin film lens was felt by Anderson and his
colleagues to be the most viable planar lens for low substrate
refractive index applications such as those based on §;0zo0n-S¢
technology. For higher index substrates such as lithium niobate
(LiNbO3) it was felt that the configurational or geodesic type of
lens would be more appropriate since few waveguide materials were
available which could yield the refractive index changes
necessary for the low f-number applications required. The fine
resolution required of the I0OSA demanded diffraction-limited,
aberration-free performance from the lenses, thus also requiring
precise control of the lens profiles. The experimental results
quoted by these workers suffer from a lack of correspondence
between figure captions and text, but the conclusions of the
study were that thin-film Luneburg lenses could be produced which
exhibited only a small degree of spherical aberration.

W.H. Southwell [23] made a significant contribution to both
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design and analysis of thin-film Luneburg lenses by approximating
the hitherto cumbersome transcendental expressions for the
refractive index functions with simpler analytical expressions
which were readily incorporated in computations. The methods
presented by Southwell were utilised extensively by the present
author and will be reported in some detail.

The most impressive achievments so far in the field of thin-
film Luneburg lenses have come from Yao et al [24,25]. Computer-
modelled shadow-masking geometries were optimised to achieve as
close a synthesis as possible to the required thickness profiles.
The results were excellent, near diffraction-limited focusing
properties being obtained.

Recent developments in the field of overlay ILuneburg lenses
are reported in references [26,27,28,29]. Of particular interest
is the work carried out by Busch et al [28] which parallels that
of the author to some extent. Comparisons will be made between
the author's findings and those reported in reference [28].

2.3.3 Configurational /geodesic lenses

Rinehart [30] derived a geodesic analogué of the classical
Luneburg lens, which transformed the planar, variable refractive
index Luneburg lens into a surface of revolution of constant
refractive index which reproduced the optical properties of the
planar system. Rinehart's motivation was to solve the problem of
rapid scanning for radar antennae over a large angular domain.

Kunz [10] and Toraldo di Francia [11] extended the work of
Rinehart and Luneburg by demonstrating that a family of
configurational lenses of equivalent optical properties to the
Luneburg lens existed. Table [2.1}, taken from Kunz's paper,
illustrates some of these possible equivalent optical systems,
expressed in terms of the rotationally symmetric geometry of
Figure [2.1] . Functions describing the physical geometry of the
generating curve are tabulated, as well as functions describing
the required refractive index distributions. It may be observed
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TABLE (21 Lenses theoretically equivalent to the Luneburg lens

(after KUNZ [10])

SURFACE GENERATING CURVE INDEX REQUIRED * PERMISSIBLE RANGE
1. Plane (Luneburg s=r 2 - r2] 1/2 0<r<1

lens itself)

2. Cone s = kr rk_1[2 ~ r2k]1/2 (0<r<i if k > 0)
3. Cylinder r =1 e 2 - e-Zs] /2 £r>> 01 e
4. Rinehart surface s = 1/2(r + arcsin(r)) 1 0<r<1

5. Generalized s = (1-k)r + k arcsin(r) ol + (1-r 2) 1/2121( P2V gt

Rinehart surface

arcsin(r)

6. Hemisphere S

1+ (1) /2%

(1 + (HZ)I/ZJZ - r2]1/2 0<r<

[t + (1-r?) /3?2

¥ tormalized 1o n=1 outsidke lons



that the Rinehart surface having a constant refractive index of 1
constitutes a geodesic system') (the functions are tabulated for a
system with an ambient refractive index of 1).

Rudduck et al [31] developed non-planar lens geometries
equivalent to the generalized Luneburg lenses of Morgan. Geodesic
versions were implemented experimentally and excellent collimated
radiation patterns were observed in the image space arising from
a point-source feed situated at the focus.

Van Duzer [17] described configurational surface-depression
and surface-protrusion lenses that could be used for focusing
surface acoustic waves. Subsequently, Righini et al [32] gave
formulae for producing aberration-free geodesic lenses analogous
to the Rinehart lens for integrated optical purposes. Several
types of lenses were constructed on glass substrates and tested
successfully. Spiller and Harper [33] combined overlay films and
spherical geodesic lenses in a single lens element, to minimise
third-order and fifth-order spherical aberrations. Vahey and Wood
[34] proposed that geodesic lenses be produced with aspheric
geometries, again to minimise aberrations. A great deal of work
has subsequently been carried out on geode;sic lenses [35-41]. The
particular interest in the present work is centred on the general
solution to the problem of perfect geodesic lenses presented by
Sottini et al [42]. A design based on their general solution was
developed and constructed by Doughty et al [43,44] and results
will be reported in this work.

2.4 Design of the Thin—film Luneburg Lens

2.4.]1 The generalized solution given by Luneburg

The motivation for Luneburg's interest in the type of lens
now named after him arose from a problem with the Maxwell Fish-
eye lens. The Fish-eye lens is a conceptually perfect instrument
within the geometrical optics approximation. It forms a precise
point-to-point image of one sphere onto another. Both image and
object spheres are located in regions where the refractive index

1) In general, a configurational lens has a variable refract

i i i -Euclidian geometry. A geode
dex function and a variable, non . '
igns is a configurational lens with a constant refractive inde
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varies, a somewhat undeéirable fact. Luneburg inquired whether a
refractive index function could not be found for the lens which
allowed the conjugate spheres to reside in uniform, honiogeneous
space. Luneburg found appropriate solutions and these are
entirely sufficient to describe the refractive-index profiles of
the thin-film Luneburg lenses investigated in this work.

The geometry of the situation is shown ih Figure [2.2] .
Only the case of both conjugate foci external to the lens itself
is considered. The refractive index of the medium outside the
lens is normalized to 1, as is the radius of the lens. The object
sphere is situated at a radial distance rg from the lens centre,
with the image sphere situated at a distance rj. The polar
coordinates (r*,e*) define the point of closest approach of a ray
to the origin, where the ray is uniquely defined by an initial
direction « and position (r,, =). The refractive index of the
lens sphere is given by the spherically symmetric function n(r).
It will be shown in chapter four, in connection with ray-tracing,
that rays in a spherically symmetric medium are plane curves
which lie in planes through the origin, such that:

0 = K/ dr (2. 6)
r \/(nz(r)r2 - K2)

where:

~
I

I, sina (2.7)
is a quantity called the ray constant, for obvious reasons.

A convenient variable may be defined which often arises in the
theory of radially-symmetric media:

p(r) = rn(r) (2.8)

The function p(r) is assumed to be a monotonically increasing
function of r, which excludes the possibility of more than one
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FIGURE[2.2) GEOMETRY OF GENERALIZED
LUNEBURG LENS : CASE OF
TWO EXTERNAL FOCI



eitreme value of r*. It is easily shown, using equation (26),
that the equation of the light ray, after it has travelled beyond
the point of closest approach to the origin, is given by:

*
r r

© =7+ K dr - K/ dr
I, r‘\/( pz-Kz) r*r\/( PZ‘KZ)
(2. 9)

so that the intersection point of the ray with the axis, (ry,0),
is given by:

r ' rl
0 =7+ K - dr - K dr
r, ry(p? - K?) r* rV(PZ—KZ)

(2.10)

If the refractive index function is a given quantity, then
equation (2.10) determines the intersection distance r; of a
given ray as a function of K, ie, as a function of the initial
direction of the ray. If rj is required to be constant, however,
to yield perfect focusing, equation (Z10) represents an integral
equation for the function o (r) forr < 1. For r=1, p = r. Now,

since:

Kf dr = -arcsin(K/r) (2.11)
r \/(r2 - Kz)

the integration of egquation (2.10) may easily be carried out for
the regions outside the lens proper, ie:

1 r 1 Ly
0=TT+Kf—Kf -K/ -/
r, 1 r* 1
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| 1 1 r
=7r+Kf - X -K/ (2.12)
*
o r 1l

where the integrands have been omitted, for convenience.

Consequently, the condition:

K dr = f (K) (2.13)
r* r\/(pz - K2)

is obtained, where:

£(K) =1 {n’+ arcsin (K/ry) + arcsin(K/ry) - 2 arcsin(K)}
2

(2.14)
The variable:
Q(p) =-1logr(p) - (2.15)
may be introduced to enable equation (2.13) to be solved.

BEquation (2.13) then becomes:

-K an (e) = f(K) (2.16)

which is an integral equation of Abel's type.

It can be shown, [9], that the following theorem is valid:

Theorem

if the function f(K) is defined by the integral:
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A
fK) = - Kf an (») (2.16)
KV(PZ - K?)

in the interval 0<K=<\, then Q(R) is determined by the
integral:

A
Q) - 2(1) =g/ £K) &K (2.17)
"Jp V&2 - 0 2)

Using equation (2.17) it can be shown that the solution of

equation (2.16) is given by:

Qr) - Q)
1
= -log(o) + l'/‘ (arcsin(K/ry) + arcsin(K/r,)( &K
m 2 _ .2 -
2 V&2 - 02
(2.18)
If the function:
1
w(r,s) =1 arcsin(x/s)dx (2.19)
" Joylod-p2)

is defined, then:
log(p) - log(r) = log(R/r) = w(p,ry) +w(0,r))
(2. 20)
since Q(o) =-logr and (1) =0.
Finally, since A2 = nr, the required parametric equation of the

refractive index profile of the lens is obtained:
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n(r) = exp{w(,0,rg) +w(,0,ry)} (2.21)

For the case of one sphere situated at infinity, w(©,%) =
0 and (2.21) becomes:

n(2,s) = exp{w(©,s)} (2.22)

where s now describes the focal length of the sphere situated at
the finite distance. This case will be dealt with exclusively
henceforth.

It can be seen that the desired refractive index profile
n(r) =,0(r)/r lies embedded in equation (2.22) due to the
presence of the variable O in the integral equation (2.19).
Equation (2.22) is, therefore, a transcendental relation. An
analytical solution is available for the integral equation
(2.19), for the case of an image sphere having a radius
coincident with that of the lens. In such a case the required
refractive index profile becomes:

n(r) = (2-r2)' (2.23)7

Lenses possessing such profiles are commonly called ‘'classical’
Luneburg lenses while all other index profiles arising from
different combinations of conjugate foci fall within the category
of 'generalized' Luneburg lenses. For generalized Luneburg
lenses, numerical methods must be used to evaluate the integral
in equation (2.19). Southwell [23] developed a procedure for the
numerical calculation which was adopted by the author.

2.4.2 Southwell's method

A change of variable, y = x -~ © , is first introduced in

equation (219). The equation then becomes:

24



-0
w(e,s) =lf arcsin[(y+p)/é] dy (2.24)
oo w01/

The y‘l/ 2 singularity is dealt with by performing an integration
by parts. The resulting equation, which is not specified
correctly in reference ({23}, becomes:

w(/,s) =1 | 2arcsin(l/s)(-»)1/2

™ Q+0)1/2
1-2
2/ (s2- y+o 12)™1/2-arcsin| (y+~o)/s] ﬂ_cy
2(y+2,0) (y+2,0)1/2
(2. 25)

Equation (225), despite its apparent complexity, is in fact
well-behaved and easily evaluated using numerical methods.
Southwell divided the interval of integration in equation (225)
into four regions and then performed a 32-point Gaussian
quadrature on each . The present author found that a 64-point
Gaussian quadrature over the complete interval was sufficient to
obtain agreement to 1 part in 109 with Southwell's results.

2.4.3 An analytical approximation to w(A2,s)

Although the integral in equation (Z25) can be numerically
evaluated as described above, the desired refractive index
distribution n(r) is still embedded according to equation (222).
It is desirable, before going on to extract the required
distribution, to derive an analytical approximation to w(o,s).
Such a procedure has several advantages:

(i) An analytical approximation (eg,a polynomial fit) to
equation (2.25) can be constructed from a knowledge of the
function at various points. The numerical integration need only
be carried out at a discrete number of points in order to

describe the function accurately over the complete interval.
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(ii) The procedure to find the refractive index is a root-
finding procedure. It is computationally more efficient to @eal
with an analytical approximation such as a polyﬁomial fit than to
have to perform a repetitive numerical ihtegration.

(iii) The analytical approximation is easily incorporated
into ray-tracing algorithms which help to assess the lens
per formance.

The behaviour of the function at limiting values can be
investigated to give clues about the appropriate form of
analytical representation. As .0 tends to 1 (close to the lens
edge) the upper limit of integration in equation (Z25) tends to
0. Ther integrand of (2.24) then behaves as yl/2 so that the
integral portion of (2.25) behaves as (1—p)3/2. This term is of
higher order than the first term on the right hand side of
(2.25). Hence as © tends to 1, equation (2.25) behaves as:

w(.0,s) = gl/zarcsin (1/s) (l—p)l/2 (2. 26)

It has already been observed that that the next-order term
will have a (l-,<3)3/2 behaviour, so that the following polynomial
representation suggests itself:

w(0,8) =Py (1-0)1/2 + Py(1-0)3/2

+P3(1-0)°/2 + p,(1-00)7/?

+ P5(1—,<))9/2 (2. 27)

where the P's are the polynomial coefficients which remain to be
determined. From (2.26):

P; = 21/2arcsin(1/s) (2. 28)

x

Further constraints on the behaviour of the function (eg, at
the limiting value as © tends to 0) may be incorporated. However,
with the information thus far obtained it is possible to fit a
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curve such as that specified in (227) to data obtained from the
numer ical calculation of equation (2.25) in order to evaluate the
remaining coefficients.

The P coefficients obtained by the author for an s=2 lens
are tabulated in Table [22], together with the published results
of Southwell. The coefficients differ slightly in magnitude,
though not in sign. The sums of squared errors over the complete
aperture for lenses having various s-numbers are compared with
Southwell's results in Table [2.3]. The values obtained by the
author were slightly greater than those obtained by Southwell,
but are still very small.

2.4.4 Refractive index profiles of Luneburg lenses

Newton's root-finding method is used to calculate the
refractive index n(r) at a given radial distance r from the
polynomial (2.27). From equation (2.22) a function F is defined
as:

F(n) = exp[w(2,s)] -~ n (2. 29)

The value of n(r) which makes this function 'sufficiently small’
is taken as the required refractive index of the lens at the
point r. In practice, 'sufficiently small' may be taken as low as
1078 without significantly slowing the calculation or affecting
the convergence of the solution.

2.4.5 The thin-film overlay Luneburg lens

So far, the method outlined here to obtain Luneburg lens
profiles can be applied to any medium of rotational symmetry in
either two or three dimensions. Attention will now be restricted
to applying the method in integrated optics, in which case a
circularly symmetric profile is being considered.
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TABLE [2 2)Coefficients of polynomial fit

to w(p,s) curve.

s=2 lens

COLFFICIENT

THIS WORK

SOUTHWELL

P1
P2
P3
P4

P5

0.235 699 486
-0.074 917 543
0.007 348 242
-0.005 984 959

-0.000 609 453

0.235 687 835
-0.074 750 036
0.006 728 945
-0.005 144 471

-0.000 989 300



TABLE [23) Residual sum of squared

errors derived from polynomial fit

to w(p,s) curve.

s—number

THIS WORK

SOUTHWELL -

48154 x10 M
8.3664 x10 12
2.5502 x10 ~12

7.6218 x10 13

3.9101 x10 ~ '
58134 x10 ~ 12
17893 x10 ~12

53152 x10 ~ 13



A variation of thickness in a thin-film optical waveguide
causes a dispersion in the 'effective' refractive index of the

wav»eguide for a given mode [45). The effective index is defined
by:

ne = Bm/k (2.30)

where g is the modal propagation constant and k is the free-
space wave-number.

The situation envisaged for obtaining a refractive index
variation such as that defined by equations (2.22) and (2.27) is
shown in schematic form in Figure ([2.3] . A substrate with
material refractive index n4 supports an ambient planar waveguide
of material refractive index n3, with n3 > n4. A material of high

refractive index no is used to form the lens.

A cladding layer of index nj is shown as air in the
Figure, although other materials could be used.

In a sense, the thickness variation could be taken to mean
that this lens should come into the configurational category.
However, the variation is so small that any path length changes
arising directly from the physical shape are negligible. The
physical shape may be assumed to affect the optical path only in
an indirect fashion through the variation of the effective index.

The depth, 4, of the ambient waveguide is assumed to be
constant. The thickness, t, of the overlay material is tailored
to achieve a variation in effective index corresponding to a
Luneburg lens design.

An assumption is made at this point. The materials used in
the thin-film Luneburg lens are considered to be stepwise-
homogeneous in the y-direction, perpendicular to the wavequide
plane. Such an assumption is not always strictly correct; many
wavequides have been fabricated which have a non-uniform
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refractive index profile. Ti-indiffused waveguides are an
example. Furthermore, the density of deposited thin films can
vary with increasing deposition thickness. The electro-magnetic
theory governing modal propagation in these cases is more
complicated and an assumption of stepwise homogeneity greatly
simplifies the calculations. The index difference obtained
between ambient waveguides and LiNbOj substrates in the Ti-
indiffusion process is very much smaller than the index
difference between the overlay material, As,S3, and the ambient
waveguide. It can be shown that more complicated models of the
ambient waveguide in such a case lead to no substantial
differences in the profile calculations [46].

The multi-layer modal propagation theory of Shubert and
Harris [18] may be used to derive film thickness profiles from
the calculated refractive index profiles. Attention will be
restricted to TE modes. The theory governing the case of TM modes
is only slightly more complicated.

The relationship between the effective refractive index Ng
for TE modes and the layer dimensions and material indices shown
in Figure [2.3] is given by:

-h/p = [1-(v/AQ)tan(vkd)]tan (hkt) + (/) [ (v/q)+tan (vkd)]
[1-(v/Q)tan(vkd)] - (h/v)[(v/q)+tan(vkd)]tan(hkt)

for N, < n3
or:

—h/P = [ (1+V)GXP (2de)+Q"V] tan (hkt)+h/v) [ (a+v)exp kad)_q+v] ‘
[ (@+v) exp (2vkd)+g-v] - (h/v)tan(hkt) [ (g+v)exp (2vkd) —q+v]

for N, > n3
(2.31)

where:
k = 2 W/A
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(nez -n12)1/2
= (n22_ne2)1/2
(nez_n42)1/2
(n:,‘z-nez)l/2 for ng<n3
= (nez-n32)l/ 2 for ngons

< Q9 - "
I

and

(2.32)

The relationship between ng and t as defined in (2.31) is
transcendental; an explicit solution for n, for a given thickness
is not available. It is possible, however, to obtain an explicit
solution for t for a given ng:

kht = tan‘l( h [1-(v/q) tan (vkd) 1+ (ph/v) [ (v/q) +tan (vkd) ]
(h2/v) [ (v/q)+tan (vkd) ]-p [1- (v/q) tan (vkd)]

+ mr for ng < n3
kht = tan™1 h[ (g+v)exp (2vkd)+g-vl+(ph/v) [ (g+v)exp (2vkd)—g+v]

(h2/v) [ (q+v) exp (2vkd) -g+v]-p[ (g+v) exp (2vkd) +g-v]
+ mm  for n, > nj

(2. 33)

The above expressions differ slightly from the ones quoted
by Southwell, which are incorrect as published.

Plots of the dispersion curves for the first seven TE modes
of a four-layer structure are shown in Figure ([2.4]. The
substrate refractive index is 22025 which is representative for
the case of TE modes propagating in the crystallographic x-
direction in y-cut LiNbO3 at a free-space wavelength of 0.6328um.
The waveguide is assumed to be a step-index guide although its
refractive index, 2.2060, is actually typical of a waveguide
formed by Ti-indiffusion (see chapter six of this thesis). The
overlay material is a chalcogenide film, As,Sj3, which has a high
material refractive index of 2.6 . The depth 4 of the ambient
waveguide is assumed to be 3.5um, and the thickness t of the
overlayer varies between 0.0 and l.6éum.
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Equation (2.33) may be used to calculate the thickness
profiles required to realize thin-film Luneburg lenses . Index
and thickness profiles are shown in Figures [2.5] and [2.6]7 for
lenses with f-numbers of f/1, £/1.05, £/1.125, £/1.25, £/1.5,
£/2, £/2.5, £/3 .

The lowest f-number that can be realised depends on the
max imum change in effective refractive index that can be realised
in the four-layer system. If the maximum index change is taken as
the difference between bulk values of the substrate and overlay
film indices, then a difference of approximately 0.4 is available
for the As,S3/Ti:LiNbO3 combination at a wavelength of 633nm.
This index difference allows a lens of £/0.95 to be realized,
theoretically. It is of interest to observe how the film
thickness required at the centre of the lens depends on the
desired f-number. The relationship is plotted in Figure [27]. An
asymptotic behaviour is observed. For f-numbers in the the region
of £/1, the centre thickness changes rapidly as a function of the
required f-number. The thickness changes very slowly as a
function of f-number beyond f/4. The significance of this
behaviour for fabrication purposes may be illustrated by
considering specific numerical values. An f/1 lens requires a
centre overlay thickness of 1928nm, whereas an f/1.05 lens
requires a centre thickness of 762nm. Thus a change in thickness
of 1166nm only results in a 5% change in the focal length. The
focal length is, therefore, not very sensitive to thickness
variations for low values of f-number. However, the sensitivity
greatly increases at larger values of f-number. An £/5 lens
requires a centre film thickness of 1ll6nm whereas an f£/5.5 lens
requires a centre thickness of 113nm. Thus a 10% change in focal
length occurs for a change in centre thickness of only 3.0nm .
Clearly lenses of even moderately large f-number would be
difficult to fabricate such that the focal length could be
controlled accurately. It would seem that lenses of very low f-
number would be better candidates for fabrication. Bowever, a re-
inspection of Figure [2.5] shows that lenses with very low f-
numbers display much more complicated overall profile behaviour
than do lenses with larger f-numbers. Lenses with f-numbers f/1
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and £/1.05 possess substantial regions of upward curvature. It
will be shown in chapter three that such profile behaviour is
impossible to obtain using conventional fabrication techniques.

The relationship between the film centre thickness and the
required f-number may be changed substantially by choosing
different combinations of materials for the substrate, ambient
waveguide and overlayer. Figure [2.8] shows the effect of
choosing As;S3 as the material for both the ambient waveguide and
the lens overlayer, on a glass substrate. The minimum f-number
that can be realised using such a combination increases, since
the effective index difference that can be realized between the
~ ambient waveguide and the overlayer is substantially reduced.

The lens profiles of Figures [2.5] and [2.6] were computed
using the dispersion curve of the lowest order TE mode in Figure
[224] . It can be seen from Figure [2.4] that overlay film
thicknesses of greater than 0.5 wavelengths (approximately 315nm
at a wavelength of 633nm) result in a substantially multi-moded
regime. Figure [2 7] then indicates that only f-numbers greater

than £/L2 can be constructed for single-mode (or at most double-
moded) operation.

In the light of the above considerations an f-number of £/2

seemed a reasonable design goal for the purposes of the present
work.

2.5 Design of the aspheric geodesic lens

A solution to the problem of perfect focusing in a waveguide
plane using a geodesic lens rather than an overlay lens has been
given by Sottini et al [42]. Similar principles to the theory of
Luneburg lenses apply, except that a geometrical rather than a
refractive index profile is required. The design formulae will be
given in this section without derivations.

Rays propagate along curved paths in geodesic lenses. The
paths are the paths of minimum optical length between points on
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the rays, in accordance withrFe'rmat‘s principle. Since the
refractive index of the waveguide on the lens is assumed to be
constant, the pai:hs of minimum optical length coincide with the
paths of minimum physical length, ie, the geodesics of the
surface. Since the focusing properties of the lens are determined
by the geometrical properties, the lens is achromatic, ie its
properties do not change with the wavelength of the incident
light. The geodesic lenses described by Sottini et al are similar
to the Luneburg lenses previously in that they are capable of
forming perfect geometrical images of two circles, one upon
another. This is shown schematically in Figure [2.9] . Only
imaging between circles external to the lens is considered here.
The circle at radius a may be thought of as the object circle for
convenience. The image circle is at radius b. In order for light
to propagate smoothly from the ambient waveguide into the lens
proper, a bridging region is incorporated between radial
distances ¢ and 4, where c is the overall radius of the lens and

the d is the radius of the inner focusing region.

For perfect focusing to occur, the meridional generating
curve of the inner portion of the lens is given by:

r
z(r) =‘/}l'(r)2 - 111/23¢ (2. 34)
(o]

where 1'(r) is the first derivative of the arc-length, and may be
shown to be given by:

-0. 5(1. 0+ cz-rz)
h2

2(a2-r2)1/2(c2-a2)1/2
7rh2

1'(r)

-+

m

- 0.5arcsinfr2+p2-232
P2 g2

- Q._Sarcsin(r2+a2-2d2
m a2-r2
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+ (rz-cz)varcsin r2+c2—2d2
7~ h2 c2-r2

0 rgad
(2. 35)
where h is defined by:
h = c(r - 27, - sin27,)1/?
713+ Y14
(2. 36)

ard:

= arcsin(d/c)

<
f—
[
!

Y13 = arcsin(d/b)

arcsin(d/a)

<

—t

N
]

The generating curve of the outer edge-rounding region is
given by:

r

z(r) = z(d4) + c2-r2\2 4 2 (22 1/24¢
h2 (hz)

d

(d < r o)
(2.37)

The focal length of this lens is given by the usual Gaussian
formula:

f = ab (2. 38)
atb

and the maximum usable f-number is given by:
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f-number = £/24 (2.39)

A feature of the lens profile is that the tangents of the
generating curves of the inner and outer portion of the lens are
matched at r=d, and the outer portion and the ambient waveguide
are similarly matched at r=c. Continuity of the generating
function is thus obtained. It will be seen in chapter seven of
this work that the second derivative of the lens is not

continuous and this can give rise to waveguide uniformity
problems.

Doughty et al [43] fabricated lenses based on the above
equations, with the intention of incorporating the lenses in an
integrated optical spectrum analyzer (IOSA). The present author
characterised the optical properties of these lenses from
theoretical and experimental points of view. The parameters of
the lens were:

= 18. 5mm
.0,

= 5. Omm
= 3, 7mn

0 Q o o
]

2.6 A simple geodesic design

The fabrication of the geodesic lenses of section 2.5 is a
difficult task since the profiles are strongly aspheric. In some
applications a simpler design based on spherical geometries can
be utilised. Lenses based on spherical geometries generally
suffer from image-defects or aberrations, but these can be

minimised by operating the lenses at reduced apertures.

The form of the lens generating curve is shown in Figure
[210]. As is the case with the aspheric geodesic lens, an edge-
rounding region has to be incorporated in the design in order to
effect a smooth low-loss transition between the lens proper and
the ambient waveguide. A toroidal region is used for this

purpose. The parameters Ry, a and © in Figure [2.10] completely
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FIGURE [210] GEOMETRY OF SPHERICAL GEODESIC
LENS WITH TOROIDAL EDGE-ROUNDING



define the lens. Rg is the radius of the generating circle for
the inner portion of the lens, a is the radius of the edge-
rounding region and © is the half-angle subtended by the inner
portion of the lens. A lens of this design was fabricated by GF.
Doughty et al for GEC Marconi Research Centre, Chelmsford,
England and was characterised by the author.

2.7 Conclusions

The design principles of inhomogeneous overlay Luneburg
lenses, aspheric geodesic lenses and geodesic lenses based on
spherical geometries have been given in this chapter. The
constraints of single wavelength and single mode operation, focal
length sensitivity to changes in overlay thickness, and profile
realizability considerations restrict the feasible f-numbers
obtained with As,S3/Ti:LiNbO3 overlay lenses to a band between
£f/1.2 and £/4. An f-number of f£/2 is considered to be a
reasonable design goal. No such constraints apply to geodesic
lenses and particular designs of both geodesic types have been
specified which will be further considered in this thesis.
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TABLE [2-.4] Normalized effective indices
for TEO mode in As2S3/Ti:LiNb03

structure for three ambient waveguide

refractive index profiles

AMBIENT REFRACTIVE INDEX PROFILE

Overlayer

thickness, um STEP GAUSSIAN EXPONENTIAL
0.06328 1.000128 1.000193 V 1.000155
0.30058 A 1.128813 - 1.129252 1.129422
0.63280 1.163570 1.164026 1.164202
1.01248 1.172347 1.172804 1.172980
1.40798 1.175458 1.175916 1.176083
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CHAPTER THREE

THE SHADOW-MASKING PROBLEM

3.1 Introduction

The design of overlay Luneburg lenses was investigated in
some detail in chapter two. In the present chapter necessary
theory relevant to the problem of actually fabricating these
lenses as closely as possible to a given design will be
presented. All studies of overlay Luneburg lenses reported in the
literature have thus far used a shadow-masking technique together
with condensation-in-vacuum from a vapour-phase environment [1-
4], but these have varied considerably in implementation ranging
from the use of a simple circular mask of truncated cone cross-
section to masks of aspheric geometry machined on NC lathes.

In some respects the problem is similar to geometrical
optics in that the trajectories of molecules travelling in the
fabrication chamber can be closely approximated by straight
lines. Unfortunately, as in geometrical optics, extreme
complications can set in due to the many degrees of freedom which
a given system can possess. Essentially one desires to predict
the paths of molecules impinging upon a planar substrate such
that an apertured mechanical blocking mask may create a
geometrical shadow which will allow the film growth profile to be
closely controlled. It is therefore necessary to have an accurate
description of the pattern of the molecular flux emanating from

the source of material.

In section 3.2 of this chapter, the classical models of
~ vacuum evaporation and deposition processes will be outlined. The
possibility of approximating desired overlay lens profiles using
the film thickness variation predicted by one of these models is
investigated in section 3.3 . The approximations obtained are
relatively poor. Yao's method of approximating the profiles in a
sputtering environment by introducing mechanical masks between

the source of deposited material and the target substrate is
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discussed in section 3.4 . Yao's model is inappropriate for
vacuum evaporation environments. A shadow-masking model
appropriate'to evaporation environments is presented in section
3.5, and the approximate lens profiles computed using the model
are given in section 3.6 .

3.2 Holland and Steckelmacher models

Before embarking on a detailed study of the manipulation of
molecular radiation patterns, it is worthwhile to return to a
classic paper by Holland and Steckelmacher [5] which became the
fundamental reference for most of the work on thin-film
uniformity. Three important concepts may then be brought to
light: (a) the nature of a point source; (b) the nature of a
directed-surface-source; and (c) the significance of the
equilibrium molecular mean free path. Only evaporated films are
dealt with here, so that, for example, rf sputtering by heavy-ion
~bombardment is not necessarily described. A necessary condition
to be satisfied is that the evaporation rate be sufficiently low
so that the effect of molecular collisions in the vicinity of the
vapour source may be neglected. One also assumes that the
evaporation rate remains uniform throughout the deposition. A
further assumption is that the temperature of the source is

everywhere uniform, ie, the source is isothermal.

A point source will have even emission in all directions in
space. The amount of material dM passing through a solid angle dw

per unit time is, therefore, given by:

dM =m (3.1)
dw

where m is the total mass of material emitted from the source per
unit time. Consequently, the amount of material condensing on a
surface element dS of a receiving substrate which has its
normal at an angle © to the direction of the source from the
element will be given by

44



M =m cos® & (3.2)
411’r2

where r is the distance from the source to the surface element.

A directed-surface source is a small, planar emitting
surface which emits to one side only. A directed-surface-source
has an additional directionality factor, cos ¢:

dM = m cos ¢ (3.3)
dw A\l

A proportionality constant of 1lAr now appears because the
source is planar. Equation (3.3) is known as Knudsen's cosine
law. The amount of material condensing on a target substrate

element, using a directed-surface source, is:

dM = m cos® cosg AS (3.4)
T r?

If the deposited film has a density ¢ and a deposited

thickness per unit time 4, then:

dM = e d dasS (3.5)

and the film thicknesses condensing on the infinitesimal surface

area dS are given by:

d = m cosO (3.6)
49Wr2
and: d = m cos© cosg (3.7)
PTTrz

for the point and directed-sources respectively. It is easy to
show that a point source situated at the centre of a sphere would
coat the wall of the sphere uniformly, whilst the directed-source
would have to be situated on the sphere wall itself to obtain the
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same effect. If a flat plate held directly above the source is
considered as shown in Figure [3.1] then the above expressions
lead to the following normalised deposited thicknesses:

d' =d/4, = 1 (3.8)
A + (x/h)%)3/2

for the point source, and :

a' = 1 (3.9)
A + (r/h)%)2

for directed-surface source, where it is assumed that the flat
plate is plane-parallel with the source. h is the perpendicular
distance from source to substrate and r is the radial distance
from the point on the substrate directly above the source where
the deposited thickness is d,. An eccentric rotation of one or
both of the source and substrate, ‘or a large source-
to-substrate distance, is required to overcome the film non-

uniformity implied by equations (3.8) and (3.9).

If the film condensation takes place in an evaporation
system (such as a thermal evaporator or electron-beam e&aporator)
where the pressure is held below 1074 torr, the molecular
trajectories emanating from the source may be modelled as
straight lines since the equilibrium mean free path of evaporated
particles at such a pressure is generally much larger than both
thé source dimensions and the source-to-substrate distance. In
sputtering environments pressures are higher and the equilibrium
mean free path (and the non-equilibrium mean free path of
sputtered molecules) is of the order of typical source-to-

substrate distances (tens of mm) [6].

The Knudsen/Lambertian law is not always valid. It is
appropriate for a small source, but real sources have finite and
sometimes complicated geometry and are furthermore prone to
secondary evaporation effects associated with adsorption of the
evaporated particles to the source enclosure walls, followed by
migration and re-evaporation. So called Clausing correction

46



/— ’ SUBSTRATE

SOURCE

-

FIGURE[31] SOURCE - SUBSTRATE GEOMETRY



factors have been introduced to quantify these effects [7], which
usually cause increased 'beaming' or focusing of the molecular
flux. A more rigorous presentation will be presented in section
3.5. Next, however, some simple calculations on Luneburg lens

fabrication conditions based on the Knudsen directed-surface
source will be presented.

3.3 Lens fabrication using a directed-surface source

In this section, the non-uniformity of film deposition
implied by equation (3.9) will be investigated to see whether the
overlay Luneburg lens thickness profiles calculated in chapter
two could not be synthesised using such variation. The deviation
between the desired and approximate profiles will be gquantified.
A mask situated on the substrate is assumed to truncate the
approximate lens profile at the required full aperture.

Two lens designs are considered. One has an f-number of £/3,
with a diameter of 4.5mm being somewhat arbitrarily selected so
that the desired focal length is 13.5mm. The other lens has an f-
number of £/9 and a diameter of 4.5mm, corresponding to a focal
length of 40.5mm. The variable r, the radial distance in eguation
(3.9) is allowed to range between 0.0mm and Z25mm at a constant
value of h, the source-to-substrate distance. Curves of
normalised deposited thickness (assuming a unity sticking
coefficient) are shown in Figures [3.2] and [3.3] . Figure [3.2]
shows that the source-to-substrate distance must be varied
between 4.1mm and 6.3mm to obtain a 'reasonably close' fit to the
£f/3 lens, with 4.5mm to 9.0mm being- the corresponding range for
the £/9 lens as shown in Figure [3.3] These distances are
obviously much smaller than those normally utilised in thin-film
evaporation. If 'reasonably close' is defined as being determined
by a least-squares deviation from the desired profile over the
whole aperture, the best source-to-substrate distances are 4.3mm
and 6.0mm respectively. Visually at least, the Knudsen curve
approximations at these distances are not good, and other
distances might seem more suitable. By inspecting Figure [3.3]

more closely, for example,a strong case could be made for making
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9.0mm the best source-to-substrate distance for fabricating the
f/9 lens, since the profiles match closely up to a radius of
1.35mm. The least-squares criterion is, perhaps,

disproportionately influenced by the points at the edge of the
aperture.

Figure [3.4] shows a plot of whole-profile~deviation as a
function of source-to-substrate distance for four lens designs
given by £/1.5, £/3, £/6, £/9. The whole-profile-deviation is
calculated by first squaring the deviation between the desired
profile and the approximate profile at each point at which the
desired profile is specified (29 in all) and then calculating the
sum over all 29 points. Each design was investigated at four
diameters d=4, 8, 12 and 16mm respectively. The minima of the
whole-profile-deviation curves correspond to the optimum source-
to-substrate distances for approximating the desired lens
profiles. The graph is a complicated one, but several features

are immediately apparent:

(i) the minimum whole-profile-deviation obtainable is

approximately constant for a given f-number;

(ii) increasing the lens diameter, whilst holding the
f-number constant has the effect of increasing the optimum

source-to-substrate distance;

(iii) all the whole-profile-deviation minima fall in
the source-to-substrate range 2-20mm, which are small distances,

it may again be noted;

(iv) at large source-to-substrate distances the whole-
profile-deviation is a constant for a given f-number. Lenses
fabricated at these distances would be simple step-index lenses,
analogous to spherical designs in bulk optics, and subject to

image distortions (aberrations).

Conclusions to be drawn from the evidence presented so far

are:
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(a) the profile approximations obtained with a
directed-surface-source of the type envisaged by Rnudsen do not,
in general, fit closely at all to the desired profiles.

Substantial aberrations would be expected from any of the
profiles investigated.

(b) Even if (a) were not the case, the source-to-
substrate distances required are so small that it would be
difficult to measure or control the deposited film thickness

under experimental conditions.

(c) Furthermore, the small distances involved also
result in a great sensitivity to substrate placement and
alignment accuracy.

(d) Small distances also increase the possibility of
material spitting from the evaporation source onto the substrate.

Evidently the deposited-film variation provided by a simple
Knudsen directed-surface-source does not allow for easy or
accurate fabrication of overlay Luneburg lenses.

Four other phenomena which can affect the deposited-film
profiles may be either present in the evaporation process or

introduced into it. These are:

(1) Source extension: An aggregate of directed sources

is then available for modification of the observed molecular flux

patterns.

(ii) The orifice geometry: A cylindrical orifice may be

used to 'focus' the molecular beam.

(iii) Shadow masking: A mask could be interposed
between the source and substrate to shape the profile. The shadow

mask would not, in general, be situated on the substrate itself,
although a second mask would be present on, or near, the sur face
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in order to define the diameter of the lens. The second mask
could, furthermore, play a role in defining the deposition
profile near the lens edge.

(iv) Secondary evaporation: These effects can
considerably modify the molecular flux.

3.4 The Yao shadow-masking model

In his paper [8], Yao points out that the shadow-masking of
thin films to achieve controlled variations in film thickness is
often carried out on an ad hoc, trial-and-error basis and is
dependent to a large extent on the skill and experience of the
operator using the equipment. With the motivation of improving
upon such a largely intuitive approach, Yao successfully
formulated an algorithm for generating generalized mask profiles
which would closely synthesize thin-film overlay Luneburg lens
profiles. A computer-aided design method was used which had as
design goals precision, predictability and reproducibility: all
necessary attributes for lenses intended to be incorporated in

practical optical processing systems.

After consideration of the generalized problem, ie one that

makes allowances for
(a) variable source-to-substrate distances,
(b) finite, but complicated source geometries,
and (c) variable mask geometries,
Yao came to the conclusion that a computer model capable of
covering all aspects of the general problem would be unwieldy and

tedious. He restricted himself thereafter to the following cases:

(a) one where an extended source is used whose

dimensions are large compared to the distance between source and
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" substrate,
(b) one where a shadow mask is included with a

depth-to-diameter ratio so large that only small values of
incident angle O need be considered.

Such conditions closely approximate those found in a
sputtering environment, and a simple, efficient computing model
is easily constructed. The conditions unfortunately do not
correspond so closely to those found in a typical evaporation
unit where the source is relatively small and secondary
evaporation effects can occur. Neither does Yao invoke the
possibility of beam-shaping by introducing an orifice. Secondary
evaporation effects are fortunately negligible for materials such
as As,S3 evaporated from the tantalum crucibles which were used
in the author's work, due to the low binding energies between
glasses and metals [9].

3.5 Masking the substrate

It has previously been noted that the film variation
produced by a source on its own is insufficient for the purposes
of fabricating lenses directly. A mask may be introduced to
increase the available variation as illustrated in the schematic
of Figure [3.5]. The mask is modelled as an infinitely thin
sheet, completely opaque to the molecular flux except for a small
disc of radius R1. Both source and mask aperture share the same
axis of rotational symmetry, and the top surface of the source,
the mask and the substrate are all plane-parallel. For
mathematical convenience, the radius of the mask is assumed to be
smaller than that of the source. A second mask is shown placed in
close proximity to the substrate to improve the edge definition
of the system.

The precise geometry of the situation is shown in Figure
[3.6]. The source is a cylindrical orifice of radius R and length
L. The shadow-mask has a radius Rl and is situated a distance L1
from the source. The target substrate is situated a distance L2
from the shadow-mask. The edge-definition mask is placed in close
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proximity to the substrate and its influence may be neglected for

the purposes of the following analysis. Each differential area dA

of the orifice throat gives rise to a molecular contribution which
follows the Knudsen law of equation (3.3). The total amount of
material condensing at a point P on the target substrate
characterized by the angle © is then given by:

J@E) = kf cosa dw dA (3.10)
A

where the angle « and the so0lid angle dw are as shown on the

Figure. It can be seen from the geametry of the Figure that:

dw = dA cosa ’
2
1;

s? = (L142)%tan% + r? - 2(L14L2) r tand cos g ,

cose = (L +L1 H2) and
1,2

11 =‘/|:(L + L1 +L2)2+s2].

Making the appropriate substitutions in equation (3.10):

J©) = k @+L1412)2
[ (L4L14L.2) 2+ (L14L2) 2tan20]2
X dAa

2
1 +r2 - 2@L142)r tand cosp
@4L140.2)2 + (@l42)%tan’e
A _
(3.11)

In most cases of interest, © is small and r2<< (L+L1+L2)2.

The normalised deposition thickness at point P, characterised by
the angle ©, is then approximately given by:
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J3e) ~ @4L141,2)2 A
[ (L4L14L2) 2+ (L14L2) 2tan20]2 (3.12)

where A =fdA is the effective area of the orifice visible from
point P,

Four cases may be identified as being of separate character,
as shown in the figure. The geometrical shadow of the mask, as
seen from point P, is cast onto the source, and the overlap
defines the effective area.

(a) for points P characterised by angles less than O/

where:
e, = tan™1 (P_/(L14L2)) (3.13)
a a .
and: P, = Rl (L+L14L2)-RL2 (3.14)
(L4L1) |

the whole of the orifice area is seen.

(b) for points P characterised by angles greater than AP

where: -
6. = tan™! P,/ (L14L12)) (3.15)
and: P, = Rl (L+L1+L2)+RL2 (3.16))
(L+L1)

the orifice is entirely in shadow, and the deposited thickness is

zero for all points in this region.

(c) for points P distinguished by angles 6, where €, <6 <
©. the observable area will be defined by an integral to be
evaluated below.

(d) as an adjunct to case (a), situations can arise where
the shadow cast by the mask is smaller than the orifice area.
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This occurs for long source-to-substrate distances and for small
mask radii. In cases where the radius of the shadow is smaller
than that of the source, points P at radial distances less than
Pq, where:

Py = (R-Rl) (L+L14L2) - R, (3.17)
(L+L1)

will see a reduced effective area.

The most general case is (b). The area A seen by the point
on the target is given by
Rl
A= ®R?y?)1/ 2%y +f ®'2y2) 128y , (3.18)
yl yl ]

where the integration limits are as shown in Figure [3.6] . We
note first that, from the geometry of the Figure:

tang = (L1+L2)tan® (3.19)
L2
(L4L1)
Also,
R' = (I+L14L2) (3.21)
R1 L2
and R2y'2 = R12yn2 (3.22)

Combining (3.22) with (3.20) yields the integration limits:

y' = ®R'2R2) - (@L+L1)tang
2 (L+L1) tang 2
(3. 23)
y" = y' + (L+L1)tang (3.24)
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Carrying out the integration of (3.18), the orifice area seen
from point P becomes:

21 2
R%in"L (|1 /R)

- yn (R-Z_ynZ)l/Z - R'2sin"1 (y"/R')
(3.25)

In case (a), A = nR2,
In case (¢), A = 0.
In case (d), A =wR'2.

The overall distribution is affected therefore by the five
variables L, R, L1, L2, and R1l. Such a dependence allows
modification of the fabrication conditions so that an

approximation to the required lens profile is obtained.
3.6 Lens approximations

A computer program has been written that calculates the
whole-profile—deviation between the desired lens profile and the
profile furnished by equation (3.12) over twenty seven profile
points, as a function of the shadow-mask parameters. The source
geometry is held constant while the mask radius Rl, the sum
(L14L2) and the ratio (L1/L2) are allowed to vary over fixed
ranges. The minimum whole-profile-deviation is then found and the
values of L1, L2 and R1 which give rise to it are taken as the
optimum values for lens fabrication. The source geometry is taken
as fixed since only one type of source was used in the present

study.

Figure [3.7] (a) shows the effects of varying the sum
L14.2), ie the source-to-substrate distance, over a 2mm to 200mm
range. An f/2 lens of diameter 4mm is being considered. The ratio
(L.1/L2) is held constant at the optimum value, and the error sum
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function is calculated at five mask radii ranging from 0.5mm to
2.5mm. In Figure [3.7] (b) the source-to-substrate distance is
held constant, whilst the ratio of L1 to L2 (which determines the
mask placement) is allowed to vary between .1 and 10.0 , again at
five mask radii.

The curves are seen to be strongly dependent on the value of
mask radius and a clear minimum is obtained for the radius 1.5mm.
At larger mask radii than 1.5mm the error curves flatten
considerably indicating the uniformity of deposition obtained
with an extended, unmasked source. As the best mask radius is
approached the width of the dips in the curves of Figure widen,
indicating that the best obtainable profile is not a strong
function of the source-to-substrate distance. Furthermore Figure
[3.7] (b) indicates that the best profile (the lowest error sum)
is not a strong function of mask placement either, with virtually
any mask distance below 50% of the source-to-substrate distance
being suitable.The mask radius is seen to be the key parameter.

Table [3.1] shows the optimum fabrication geometries for two
f/2 lenses, one with a 4.0mm diameter and one with an 8.0mm
diameter. As in the simple Knudsen case, the dimensions involved
are not large, and poor thickness control and measurement would
be expected in fabrication. A source of greater radius would
undoubtedly improve matters, since more regions of the source
would then be available for blocking by the shadow-mask. The mask
and substrate could then be placed at greater distances from the
source. This has been confirmed by other workers [2].

Figure [3.8] shows the desired thickness profiles of the two
lenses and their expected approximations. The approximations ,
whilst not perfect, might be expected to produce reasonable
results. The refractive index profile corresponding to the 4mm

diameter lens, computed from the approximate thickness profile,

is shown in Figure [3.9].
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Lens Source— to- Source— to— Mask

diameter substrate distance mask distance radius
4 mm- 12 mm 3.4 mm 1.5 mm
8 mm 16 mm 1.5 mm 2.25 mm

TABLE [3,1] Deposition geometries
' for s—4 lens
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3.7 Conclusions

Vacuum evaporation models have been investigated. In order
to obtain lens profiles close to the perfect Luneburg overlay
profiles a theory of evaporation has been developed which allows
for an extended, cylindrical source geometry and an infinitely
thin shadow-mask of variable aperture, situated at variable
distances from source and substrate. The theory predicts that
reasonably good lens profiles can be obtained, if small source-
to-mask and mask-to-substrate distances can be tolerated.
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CHAPTER FOUR QOMPUTATIONAL ANALYSIS I

TRACING RAYS THROUGH INHBOMOGENEOUS LENSES

4.1 Introduction

The geometrical optics of inhomogeneous media, non-planar
media and thin-film waveguides enabled lens designs to be
formulated in chapter two, some of which were expected to be
perfect whilst others were known to be susceptible to imaging
errors, ie aberrations. Practical lenses suffer from a variety of
fabrication errors which include non-conformity to design
profiles, misalignment errors, non-uniform film densities leading
to effective index errors.

In such cases it is important to be able to model the
passage of the light energy ( and, to some extent, the passage of
spatial information) through the particular optical system under
investigation. The most widely used method remains that of
tracing rays, usuaily in bundles, through lenses and observing
the imaged results. As Stavroudis points out [1], an important
reason for raytracing is that the presence of errors in the

traced image

'...contributes distinctive geometrical characteristics
to the structure of the image the appearances of which agree
rather closely with what is seen in the laboratory.'

Miyamoto [2] provides impressive confirmation of the
representational capabilities of ray plots, showing spot diagrams
obtained by raytracing through bulk lenses side-by-side with
photographs of images suffering from characteristic types of

aberration.

Classically, the tracing of rays was a tedious business
requiring repeated and laborious calculations. Optical designers
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consequently developed a sophisticated aberration theory that
extracted as much information as possible from the tracing of
only a few rays. Modern digital éomputers have enabled many-ray
systems to be computed and this has led to different methods of
analysing the traced data. Nevertheless classical representations
are still useful, particularly from a conceptual point of view.

Rays in isotropic systems are everywhere normal to the
propagating wave phase-front [3]. The phase-fronts are parallel
in the sense that subsequent surfaces are generated by stepping
off equal distances along the ray normal to the original phase-
front. As such the rays represent the curves along which the
light energy is transported, within the limiting approximation
of geometrical optics ie that of a vanishingly small wavelength.
Later in this work it will be found that the energy contours
derived from a more comprehensive theory (which deals with the
field directly ) do in fact closely resemble the rays seen in the
present section.

In this chapter the fundamental equations of geometrical
optics will be given. Two algorithms for tracing rays through
inhomogeneous lenses will then be presented. One algorithm is
used to trace rays through lenses of the inhomogeneous overlay
type of lens, and the other is used to trace rays through the
geodesic type. Results obtained using such ray-tracing algorithms
will be presented which illustrate the behaviour of different

lenses.
4.2 Pre-tracing

The requirements that lens ray-tracing procedures must meet
are very simply stated. Given a single ray travelling in a
prescribed direction which meets a lens at a prescribed
intersection point , an algorithm is required which will obtain
the corresponding position and direction at the point where the
ray leaves the lens. Data collected for a bundle, or manifold,
of rays provide a wealth of information on the imaging properties

of a lens.
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Ray-—tr;cing concerns itself with establishing relationships
between input and output quantities pertaining to the rays for
the optical system through which the rays pass. A computational
algorithm for tracing rays must be flexible enough to accomodate
considerable variation of the input quantities. It is certainly
desirable to control the following properties;

(@) the position in the object space of the source
of rays (a point source is generally assumed, which in the case

of a point situated at infinity gives rise to a parallel manifold
of rays), ‘

(b) the direction of each ray in the manifold with
respect to the chosen axes,

-

and (c) the position and lateral extent of any stops
in the system.

In addition, one might wish to include the capability of
simultaneously tracing the rays at different wavelengths, to
investigate the chromatic characteristics. In integrated optical

applications the investigation of multi-mode effects could be
important.

4.3 Fundamental equations of geometrical optics

The basic equation of geometrical optics is the ‘'eikonal’
equation [3], eikonal being derived from the Greek word 'eikon',

meaning image. The equation has the form:
(grad(¥))2 = n? @.1)

in isotropic media, where V¥ (r) is a real scalar function of
position describing the optical path along a ray from a fixed
point on the ray, and n(r) is a real scalar function describing
the refractive index distribution. The eikonal equation may be

61



derived by applying the limit of very small wavelength to the
time-harmonic Maxwell electromagnetic equations for a non-
conducting, isotropic medium free of currents and charges [3].
More familiarly, it may also be derived from the calculus of
variations by starting with Fermat's principle. Such an approach
formed the basis of Hamilton's work on the optical characteristic
functions [4].

The surfaces given by:
V¥ (r) = constant (4. 2)

represent the geometrical phase-fronts. The rays are everywhere
orthogonal to the phase-fronts in an isotropic medium and may be
shown to point in the direction of the time-average Poynting
vector. Consequently, the rays may be interpreted as being the

curves along which energy is transported.
A unit vector t may be defined:

t = grad(v) (4.3)
- ,

which indicates the ray direction. If r (s) denotes the position
vector of a point P on a ray, with s being the physical path
length along the ray from a fixed position on it, then:

t =dr

(4. 4)

ds

from vector calculus [5], so that t is everywhere tangential to
the ray. The eikonal equation may then be rearranged:

n dr = grad(vy) (4.5)
ds

A simple physical interpretation of equation (4.5) is available.
From vector calculus:
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dy =9dv dx +9y dy + oV dz
ds dx ds 9dy ds 9z ds

igv + jov tkgylfidx + jdy +k dz
ox 5y_ az ds ds ds

grad ¥ .dr

ds
=n : (4. 6)

Hence the well known result that the rate of change of the
optical path with respect to the physical path along a ray is
equal to the refractive index.

The rays are specified by means of the function ¥ in the
eikonal equation. The rays can however be expressed directly in
terms of the refractive index function by differentiating both
sides of the eikonal equation (4.1) with respect‘ to s. The
equation: .

d [n dr | = grad(n) (4.7)
ds\ ds

is obtained. Equation (4.7) is known as the differential equation
of light rays or, more simply, the ray equation. It is the
equation describing the paths followed by light rays as they

traverse a material with refractive index n.

An important example is a medium with spherical symmetry,
where the refractive index is a function only of the distance r
from a fixed point O. In such a case it is possible to show that
all the rays are plane curves situated in a plane through the
origin. Along each ray:
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nrsing = constant | (4.8)

where ¢ is the angle between the position vector r and the
tangent vector t as shown in Figure [4.1]. Since rsin¢ represents
the perpendicular distance d from the origin to the tangent, eq
(4.8) may be written as:

nd = constant (4.9)
Equation (4.9) is known as the formula of Bouguer.
An important relation concerning the ray curvature vector is

often required in raytracing. The curvature vector K of a curve
whose points are specified by r(s) is defined by:

K = a
ds?
= dt (4.10)
ds
Using the vector calculus resulf:
d(t.t) = 2t.dt (4.11)

E ds

which equals zero, since t has a constant magnitude, the vectors
K and t are seen to be perpendicular to each other, with K
pointing in the direction of the inward normal to the curve
followed by the ray. Physically, since t has constant (unit)
magnitude, K measures the rate of change of direction of t. The
magnitude of K is the reciprocal of the radius of curvature at
the point r.

Carrying out the differentiation with respect to s in the
ray equation (4.7) by means of the product rule:
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n dz_r_ + dn dr = grad(n) (4.12)
d52 ds ds

Substituting K from (4.10) and rearranging:

nkK = grad(n) - dn t
ds
= grad(n) - (grad(n).t) t (4.13)

where the general relationship:

dg = grad(g).t (4.14)

ds
has been used.

In a medium with spherical symmetry it is a simple matter to
show that:

grad(n) =1 dnr (4.15)
r dr

so that (4.13) becomes:

R =1 dn(g- (r.t) g) (4.16)
nr dr

The curvature vector is then fully specified in terms of the

refractive index function.

Finally, the rate of change of K with respect to s is
sometimes required in raytracing. This vector is defined by:

d3

&K = a3 (4.17)
ds s

In a spherically symmetric medium, dK/ds can be found explicitly

65



by differentiating both sides of equation (4.16):

dk =1df (r.t)lx - (c.t) tI

ds rdr
- £ [(.K) t + (r.t) K] (4.18)
where:
nr dr
and: af =1 cﬁ—d_Q(_l_+lgn_ (4. 20)
dr nr dr2 dr \r n dr

The above equations enable rays to be traced through any
spherically (or circularly) symmetric medium with a continuously
differentiable refractive index function.

4.4 Tracing rays through inhomogeneous overlay lenses

4.4.]1 Introduction

The trajectories followed by rays in inhomogeneous or non-
uniform media have long been of interest. In certain cases where
the refractive index function and its derivatives are restricted
to special forms, exact analytical solutions are known [4] which
usually depend on invoking symmetry considerations. The
symmetries are generally of the cylindrical or spherical kind.
Unfortunately, as pointed out by Moore [6], the assumed gradients
of the index do not always resemble those of practical concern
and the resulting mathematical solutions are not of great value

in the optimisation of designs.

More useful methods involve approximations of the ray path
and the refractive index gradient. Such methods are of general

66



applicability in that only a numerical representation of the
refractive index is required- experimental values may be read off
a graph, for example. Care however has to be observed with
respect to two important considerations, namely numerical
accuracy and calculational efficiency. For both of these
problems, the tests by which the given algorithms are judged are
index profiles for which the trajectories are known exactly and
which represent demanding tasks- an example might be one which
caused the rays to deviate considerably from paraxial conditions,
such as obtained with lenses of low f-number.

Moore suggested a procedure which involved taking power-
series expansions of both the refractive index and ray-position
functions. He verified the procedure by comparing the results
with Sands' third-order aberration theory [7]. His definition of
accuracy was that the computed aberrations of analytically
perfect (ie aberration-free) designs be no more than 1070 times
the Gaussian focal length, the aberrations being then of course
artefacts of the algorithm. Moore also compared his results with
the method developed by Montagnino [8]. Moore found excellent
agreement with both Sands and Montagnino. In a later paper [9] he
admitted that Montagnino's work was of more general validity in

that it was not restricted to cases of spherical symmetry.

Montagnino's method formed the basis of a later work by
Southwell [10] on inhomogeneous overlay lenses in planar guided
wave optics of the type considered herein. The method will be
treated here in some detail as it is the one implemented by the
author in his work. The development is substantially as given by
Southwell.

4.4.2 The Southwell-Montagnino Method

The tracing of a single ray from the entrance surface to the
exit surface of an inhomogeneous lens possessed of circular
symmetry is considered. As the lens is taken to be of the planar
inhomogeneous type, the trajectory of the ray is a plane curve

lying in the plane of the ambient waveguide.

67



The method employs a Taylor expansion of both the ray
position vector r and its derivative, the ray direction vector t.
The refractive index function is specified either numerically (as
a set of discrete data points) or as an analytical function of
the radial coordinate r. The index derivatives may also be
specified in analytical form but are generally evaluated using a

numerical method. Both the index and its derivatives are assumed
to be continuous.

The ray position and direction vectors take the forms

xi +vyj
ai + B3 (4.21)

fer |m
[

and

in a two-dimensional coordinate system. t is a unit vector
tangential to the ray and thus may be represented, as in (4.4),

by

t=dr (4.22)

where s is the scalar, physical distance along the ray curve. The
components « and B are the direction cosines of the ray.

Once the initial vectors have been specified at the lens
entrance an iterated extrapolation procedure is used to propagate
the ray from point to point, with the four coordinates that
describe the ray being calculated from the values taken after the
previous iteration, and the refractive index function and its
derivatives. The position vector is expanded in a Taylor series
about the known point specified by the path length at the point,

SO 4

r(sq +h) = r(sqy ) +hg£_+£2 dz_r_ " h3 dgf t+.. (L-23)
ds 2! Gds

J
2
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where h is a small incremental distance along the ray path. As
already observed, dr/ds is the direction vector t. The second

derivative is the curvature vector of the ray, as specified by
equation (4.10).

t may be expanded in a fashion similar to r;

Elsg +h) = t(sy ) + bK + h? &K +...
2! ds
(4.24)

The problem becomes one of establishing the numerical values
of the required derivatives K and dK/ds at the point r(sy), with
the direction vector t(s,) being presumed known, either at the
entrance surface of the lens or from a previous Taylor's

expansion for a point inside the 1lens.

Explicit expressions for K and dK/ds in circularly symmetric
media were given in equations (4.16) and (4.18) respectively.
These equations require a knowledge of the refractive index
function and its first and second derivative (with respect to the
radial distance r from the centre of the lens) at the point
r(sy)- In certain circumstances all three of these functions may
be specified analytically. In chapter two, for example, a
polynomial expression was obtained that approximated closely the
refractive index function for the particular type of
inhomogeneous lens known as the Luneburg lens, which has perfect

focusing properties. The expression is repeated here:
n(r) = exp(w(,0,F)) (4. 25)
where w(,0,F) = Py (1-nr)1/2 + P5(1-nr)3/2 + py(1-nr)5/2

+ P4 (l—nr)7/2 + P5 (l--nr)g/2
(4. 26)
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with ©=nr and F being the focal length of the normalized lens.

The first derivative of the index with respect to the radial
coordinate r may be found for the Luneburg lens profile specified
by (4.25) using implicit differentiation. Differentiating both
sides of (4.25) and dropping the use of p and F:

dn = exp(w)dw
dr dr
= ndw (4. 27)
dr

dw/dr may be found by differentiating both sides of (4.26):

dw = -Py (1-nr)'1/2 (n + rdn>
dar 2 dr

-3pP, (l—nr)]'/2 <n + rdn)
2 dr

- ... etc

dr
2(1-nr) 1/2

= - (n +r dn) (4. 28)
N K<

where:
G =Py + 3P, (l-nr) + 5P3(l-nr)?
+ 7P4 (1-nr)3 + 9p; (1-nr)? (4.29)

Substitution of (4.28) into (4.27) yields an explicit analytical
formula for dn/dr:

an = -n? G (4.30)
ar (2Q-nr)/? + nrG)
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In order to obtain the second derivative, both sides of (4.27)
are differentiated:

d%n = na +l(dn)2 | (4.31)

dr2 dr2 n\dr

Next, both sides of (4.28) are differentiated:

2 2
dwW _ _faecdayy - & r—d_/szflé”_) (32
dr? 3 2.(1-nr)z dr dc
k(1-nc)l
where:

H = -P; + 3P,(l-nr) + 15P5(1-nr)?
+ 35p, 1-nr)3 + 63pg (1-nr)* (4.33)

Substituting (4.32) into (4.3!) and collecting the components of
dzn/dr2 on the left hand side gives:

2 1
S I G G R
dr? 2(1-nr)% L (! ._nr>3/z Q-ﬂr)‘é '

(L.su.)

which yields:

+ rdny?
d*n _ _n (gl H + Gl 4 Q'nr>|lz(@)2
det k (1-nr) 4 n dr
((,_Qr)‘/’l. + nr'6'/2
L-35)

This expression is considerably different from the one quoted by
Southwell in his paper on Luneburg lenses [ll]p In fact if
Southwell's expression is used in ray-tracing, the algorithm
fails. The validity of the above expression may be checked by
determining whether or not it yields the correct (known) value at
the edge of the normalized lens, where n and r = 1. Substituting

nsee also Addenda, Note (1) 71
P 21Sh



these values of n and r into (4.35) gives:

a%n = o (4.36)
dr zedge

which is indeed the correct value [12]. Southwell's expression,
however, gives the value of the second derivative at the lens
edge as (2-2/P) which implies a very small radius of curvature
for the ray.

The availability of analytical expressions for the
refractive index and its derivatives is very important for the
accuracy of ray-tracing calculations. In some cases, (where
fabricated profiles have been measured, for example), no explicit
formulae are available and the required derivatives must be
calculated using finite difference methods [13], viz

dn = n(t+At) - n(t-At) (4.37)
dr 2At

and d%n = n(t+At) -2n(t) + n(t-At) (4. 38)
dar? (at) 2

The thickness function t(r) of the inhomogeneous overlay lens is
assumed to be known from either measurements on the fabricated
profile or from theoretical predictions such as those discussed

in chapter three.

The Taylor expansions given in equations (4.23) and (4.24)
can now be used to predict the subsequent ray position r and
direction t. The procedure is continued until the exit surface
has been crossed. The test for determining whether or not the

exit surface has been crossed is simply

If r <R continue extrapolation procedure;
if r >R exit surface of lens has been crossed.

R is the maximum radius of the lens.
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4.4.3 Exact point of crossing

After the ray has crossed the exit surface, the actual point
of crossing and the direction cosines at that point are only
imprecisely determined, and certainly not to the accuracy
required of the algorithm which must yield errors of less than
the diffraction limit. The accuracy could be improved by simply
reducing the path increment h to a value as small as desired but
this would greatly reduce the computational efficiency of the
algorithm. Instead, an interpolation method is used to determine
accurately the exit boundary location of the ray. A function F is
defined, such that:

=R2 _ (2 (4. 39)

with the origin of coordinates being taken at the centre of the
lens. The function F represents the error with which the above
algorithm is able to find the correct exit point for a given ray.

The penultimate point calculated inside the lens is taken as
the base point. The ultimate point of intercept may then be
considered as a function of a variable ray path increment, h. As
such, F becomes functionally dependent on h according to the
Taylor expansion given in equation (4.23). Newton's method is
used to find the value h that makes F(h) as close as desired to

zero, viz:

h1+1 = hl -F (4.40)

(9F/0h) h=hi

To use the method the partial derivative 3F/ah must be obtained.
It is sufficient to return to equation (4.39) and to observe that

#F = -2r. dr = -2r.t (4.41)

oh dh
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Since the partial derivative of F with respect to h is
desired, the other variables in the Taylor expansion of (4.23) (r
and t) must be held constant. In consequence, the partial
derivative itself remains constant throughout the Newton
iteration since it is functionally specified through (4.41).

4.4.4 Interpolation procedure to allow larger stepsizes

The incremental arclength step chosen determines both the
computational efficiency and the final accuracy of the method.
Too few steps leads to inaccurate results, whilst too many may
mean that the trace may take up too much computer time.
Richardson's extrapolation method [13] is used to achieve a high
degree of accuracy in reasonable time.

Each ray is traced a total of three times with each
successive trace reducing the stepsize by a factor of two. It may
then be shown that the formula:

Y = Y1 - 2y + 8y3 (4.42)
3 3

accurately determines the ray exit height.
The algorithm described above can be implemented with only a
moderate amount of computer code by making judicious use of

subroutines. It copes with lenses of very small f-numbers (down
to £/0.5) with excellent results.

4.5 Tracing rays through geodesic lenses

4.5.1 Southwell's method

Tracing rays through geodesic lenses requires a different
technique from that used for overlay lenses. Southwell [14] has
produced a suitable algorithm.
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A curve z(r) is assumed to generate the profile when rotated
about a central axis, as shown in Figure [4.2]). The points on the
curve are assumed to be specified by either an analytic function,
or by some other means. Fermat's principle of minimum optical
path is the basis for calculating ray trajectories.

The optical path length integral OP is given by:

B
OP = fndL (4. 43)
A

where A and B are separate points on a ray- trajectory on the
surface of the lens, n is the refractive index and L is the
physical length along the trajectory. n is assumed to be constant
over the surface of a geodesic lens, so that the variational
displacements involve only the physical path. Fermat's principle
of shortest path is then given by:

6(0P) = é/ﬂdL =0 , (4.44)

where § indicates the variation. The principle states that the
path-length along the curve followed by the ray is a minimum with
respect to other curves in the vicinity. The paths so described
are termed geodesics. A constraint is that the ray remain on the
surface of the lens. The geometry of Figure [4.3] shows that:

dL = (as? + r2ag?)l/? (4.45)
where r,$ are polar coordinates and S is orthogonal to rdg. The
variable S may be put in terms of the generating curve z(r),
since the elements dS and rdg are orthogonal:

as? = ar? + dz? (4. 46)

Thus equation (4.44) becomes:
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B ,
[ [1 +(d_z)2 + r2 a¢ 2 ]1/25r =0 (4. 47)
dr (dr)

The only dependent variable is ¢ since z(r) is assumed

known. The solution is given by the solution of the Euler
equation [1] :

d(aF>+ 3F =0 (4. 48)
ar\eg' o¢

where F is the integrand of equation (4.47) and:

@' = dg¢ (4. 49)
dr

From equation (4.47) it is obvious by inspection that F does not
depend explicitly on ¢ but rather on the first derivative d&'.
Thus the second term on the left-hand side of equation (4.48)
vanishes. Integrating the remaining terms on the left-hand and
right-hand siées yields:

OF —c =0 (4. 50)
d¢'

where ¢ is a constant of integration over the path. Thus, from
the definition of F,

L r2 dg = cC (4.51)
1 + (dz\2 + r2<d¢ 2]1/2 dr
dr/ dr
By using equations (4.45) and (4.46), equation (4.51) becomes:
23¢ =
r“dg¢ = c (4.52)

dL
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If the angle between the meridional curve on the surface (defined
by the angle ¢) and the ray-path is called ©, then, on inspection
of the infinitesimals of Figure [4.3]:

sin® = t@é , (4.53)
dL

and hence equation (4.52) becomes:
rsin® = ¢ (4.54)

The ray enters the lens at the edge where the radial distance
from the centre is r; makes the angle ©; with respect to the
meridional line at that point. Hence the constant ¢ is determined
by:

c = rlsinel (4. 55)

The exit-angle that the ray makes with the meridional line as the
ray leaves the lens must also be ©;, since r again equals rj at
that point. The angle © increases monotonically from the value ©;
at the entrance and reaches a maximum value of T/2 at the point

where r reaches a minimum:
Tmin = C (4. 56)

Thereafter, © decreases monotonically to ©; at the exit. Eg
(4.56) shows that the constant h is the distance of closest

approach to the axis of rotational symmetry.

The rays entering and leaving the lens may be characterised
according to the geometry of Figure [4.4] which shows the
projection of the ray-path onto the plane of the ambient
waveguide. Two parameters define the ray uniquely, ie the
position of the ray at the entrance is specified by the azimuthal
angle g7 and the direction of the ray at that point is defined by
8,. The corresponding exit parameters are then @out and 6y. The

values ©; and ¢; are generally set at the commencement of the
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FIGURE [4.4) Projection of the ray path onto
the waveguide plane



ray-trace. Only ¢,,+ then remains to be determined.

Squaring both sides of equation (4.51) allows a separation
of variables to be obtained, and this then produces an integrable
equation, viz:

d¢ = c(1 +2° (r)2)1/2 dr (4.57)
r(rl - hz)l/2

Observing, from the geometry of Figure [4.4], that

fout = T~ $1 ~ 20¢ - (4.58)

it is seen that ¢ varies from ¢y to $1+8. while r varies from ry
to c. Thus limits may be placed on the integral obtained from
equation (4.57):

B1+8 o)
6 =f d=cf Q+z'()?) a (4.59)
% r1 £ (c2n2)172

The upper 1limit of the integral prbduces a singularity in
the integrand. The singularity is removed by integrating eq
(4.59) by parts:

¢C = C _2 (rl_c)1/2(1+z|2)1/2
4] (r1+c)1/2

Cc

—2/(r-c)1/2(l+z'2)1/2 (z'z" -1-1 )dr

ry r(r+c)1/2 (1+z'2) r 2(r+c)

(4. 60)

In general, the integral of equation (4.60) must be evaluated
numerically. The generating curve z(r) is specified at a large
number of points (typically 1000) and the derivatives are
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calculated using finite difference methods. The integral is then
calculated using Gaussian quadrature methods. The tracing of the
ray through the lens is completed with the calculation of the
integral.

4.6 Results

4.6.1 Introduction

The ray-tracing algorithms developed in the previous section
will be used to show how the behaviour of real lenses is likely
to deviate from that of perfect lenses. In the case of overlay
Luneburg lenses, the achievable, approximate 1lens-profile
calculated in chapter three will be compared with the perfect
Luneburg overlay lens. In the case of geodesic lenses, the
behaviour of the perfect profile will be compared with:

(a) that of a spherical depression lens for which an

analytical geometrical-optics theory is available, and

(b) that of a profile designed to approximate closely the
perfect geodesic lens when fabricated using computer-controlled
single-point diamond-turning techniques [15].

The behaviour of a long-focal-length spherical geodesic lens
with a toroidal rounded-edge will also be investigated. On-axis
propagation will be modelled throughout, so that only spherical
aberrations need be considered.

4.6.2 Ray-tracing through an overlay Luneburg lens and a

possible approximation

Figure [4.5] (a) shows a computed ray-trace through a
perfect overlay Luneburg lens having a full-aperture f-number of
f/2. The lens is shown operating at a reduced aperture of f/2.2 .
All the incident rays are seen to converge at one axial point.
This ray-trace was carried out using the quasi-analytical

expressions for the refractive index and its derivatives
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developed earlier in this chapter. Figure [4.5] (b) shows a
computed ray-trace through the approximate overlay lens-profile
calculated in chapter three. The approximate profile is one that
is amenable to fabrication. The approximate profile is shown
operating at a reduced f-number of £/4.2 . Attempts to trace rays
through the approximate lens at wider apertures result in
failure, due to non-convergent solutions for the ray-trajectories
within the lens. Such non-convergence indicates that the
refractive index gradients within the lens are large at the lens
margins. Figure [4.5]) (c) shows a blow-up of the focal region of
the approximate lens. The approximate lens is under-corrected
with respect to the perfect lens, since the marginal rays are
seen to focus at points closer to the lens than the paraxial
rays. Since no analytical expressions were available for the
refractive index profile of the approximate lens, this ray-trace
was carried out by specifying the index profile at 29 points and
using linear interpolation to calculate the index between these
points. Numerical finite-difference methods were used to
calculate the derivatives of the refractive index and therefore
numerical artefacts can creep into the calculations, as

demonstrated by some slight asymmetries in Figure [4.5] (c).

In order to interpret the data obtained from these traces, a
simple data-reduction method is employed. At each point z of
interest along the optical axis of propagation, the transverse
distance yj of each ray i is measured. These distances are
squared and summed over all the rays and a root-mean-square value
is calculated, viz:

N
£(Z) s = D, ¥i° (4. 61)
i=] N

A similar formula over two transverse dimensions is used in
bulk optics. The quantity is often called the 'radius of
gyration' , in analogy with a quantity similarly defined in
mechanics.
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The function f(z) is plotted against the axial distance z in
Figure [4.6] for the perfect lens and its approximation. The
minimum of the function f(z) may be taken as the 'best' focus. In
bulk optics, the best focus is generally known as the 'circle of
least confusion'. The minimum of f(z) associated with the
approximate profile is located at an axial distance of 3.2mm (the
radius of the lens has been scaled, for convenience, to 1l.0mm,
the scaling being unimportant in geometrical optics). 1In
comparison, the perfect lens has a minimum at 4.0mm, the correct
value. Once again the approximate profile is seen to be
under-corrected with respect to the perfect lens. Furthermore,
the minimum associated with the approximate profile is not zero,
indicating that the image is geometrically spread and is not,
therefore, diffraction-limited.

The point at which a given ray intercepts the optical axis
is the focus for that ray, and the difference between it and the
paraxial or design focus is the longitudinal component of
spherical aberration [16]. The longitudinal component of
spherical aberration is plotted as a function of the position of
the ray in the entrance manifold in Figure [4.7] for both the
perfect and approximate‘lens. The perfect lens displays no
spherical aberration over the entire aperture. The approximate
profile, however, displays considerable spherical aberration. The
paraxial rays deviate from the focus of the perfect lens, in a
positive direction (away from the lens), by 40 pm. Rays situated
at 0.4 mm (£/cff = f/5) in the entrance manifold display the
greatest amount of longitudinal spherical aberration, of
approximately 900 pm in the negative direction (towards the
lens). Thus paraxial rays passing through the approximate lens-
profile are slightly over-corrected with respect to the perfect
lens, whilst the rays passing through most of the aperture are
considerably under-corrected. The behaviour of the longitudinal
spherical aberration function for the approximate lens is quite
complicated, suggesting that simple third-order spherical
aberration is not the only contribution to the errors in the
image, and that substantial higher orders are present. A good
treatment of different orders of geometrical aberration and their
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effect on the focal image is given by Nijboer [17].

At a given axial image distance z, the transverse distance
of the ray from the axis may be recorded as a function of the
position of the ray in the entrance manifold. Such functions
represent the lateral component of spherical aberration. The
lateral spherical aberration functions for the perfect and
approximate profiles are shown in Figure [4.8] . The functions
shown are calculated at the points of best focus for each lens.
Once again, the perfect lens displays no aberration, whereas the
approximate profile displays quite severe aberrations. Rays
situated at 0.24 mm from the axis in the entrance manifold (f/q¢¢
= £/8.3) are situated at 40)Jm from the axis in the best image.
The area under the curve of Fi:;ure [4.8] can be calculated using
Simpson's rule. This area, divided by the width of the entrance
manifold, is a good measure of the geometrical spread, or 'blur-
spot'. The blur-spot of the approximate profile is 48 pm in
diameter. In physical optics, the diffraction-limit of the lens
is given approximately by:

diffraction-limit = f-number A (4. 62)

i n
where \ is the operating wavelength. For an f/4.2 lens and a
wavelength of 0.633 jm, in a medium with ambient refractive index
of 2.2 (which is representative of possible operating
conditions), the diffraction-limit turns out to be 1.2 um.

Clearly, the approximate profile is not diffraction-limited.

4.6.3 Discussion

The performance of the approximate lens is easily
interpreted by looking at the refractive index profile, in
comparison with that of the perfect lens (chapter three, Figure
[3.9]). Over most of the available aperture the refractive index
of the approximate lens is greater than that of the perfect lens.
Thus a more powerful focusing action action would be expected
from the approximate lens. A focal-shift towards the lens would
be expected as a result. Furthermore, the approximate profile is
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relatively flat-topped, in comparison with the perfect profile,
over a considerable part of the aperture. A flat profile implies
that the approximai:e lens would behave somewhat similarly to a
bulk-optics cylindrical lens with surfaces based on circular
geometries. Thus spherical aberration would be expected.

These findings imply that the vacuum-evaporation shadow-
masking method outlined in chapter three is not sufficiently
sophisticated to produce good Luneburg overlay lenses. Other
improvements to the method will be suggested in chapter seven of
this thesis, but one particular improvement that could be carried
out would be to operate the ray-tracing and shadow-masking
computer programs conjointly. The criterion by which the
approximate lens profile was chosen in chapter three was based on
a least-squares fit to the physical profile of the ideal lens. An
alternative criterion would be to assess the merits of the
approximate profile purely on optical performance as measured by

ray-tracing.

4. 6.4 Ray-tracing through geodesic lenses

In Figure [4.9] ray-traces through a perfect geodesic lens
and a spherical-depression geodesic lens are compared. The
spherical-depression lens would be an unlikely candidate for
fabrication, in reality, since the abrupt transition from the
lens to the ambient waveguide would cause severe losses. The lens
is, however, an interesting case from a conceptual point of view
since its behaviour can be described analytically. Both the
lenses of Figure [4.9] have an overall diameter of 10.0mm and a
paraxial focal-length of 18.5mm, and are shown operating with an
incident ray-manifold of width 7.4 mm , ie at an f-number of
f/2.5 . The differences in optical behaviour are quite dramatic,
and are further illustrated by the curves of longitudinal and
transverse spherical aberration shown in Figures [4.10] and
[4.11] . A theory of the aberrations produced by a spherical
geodesic lens-depression has been given by Vahey [18]. For a lens
with a radius of curvature C, a maximum depth H relative to the

ambient waveguide and a paraxial focal-length f., the third-order
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spherical aberration coefficient is given by:

£1 = (CH -1)2 +1 (4. 63)
8f

o

The focal length f(x) of a ray incident on the lens at height x
is then given by, to third-order,

£(x) = £, + flx2 (4.64)

The longitudinal component of third-order spherical aberration,
L-SA, is then given by :

L-6A = fyx2 (4. 65)

For the spherical lens being considered, C=9.96 mm,
H=1.346mm and £f,=18.5mm . A plot of the third-order component of
longitudinal spherical aberration is shown together with the
computed curve in Figure [4.10] . It is clear that the spherical-
depression geodesic lens produces significant amounts of higher-
order spherical aberration.

In order to fabricate practical geodesic lenses using CNC
lathes, the lens profile is approximated by a series of circular
arcs [15]. The procedure is shown in Figure [4.12] . The arc-
fitting procedure fits a practical profile to the desired lens-
profile to within 0.1 um over most of the profile, except at the
boundaries between the edge-rounding region, the ambient
waveguide and the inner portion of the lens. At these points the
deviations from the desired profile can be up to Z5 um . Figure
[4.13] shows the transverse spherical aberration arising from one
such arc-fitting procedure, where 22 arcs are used. The optical
path through the lens is clearly perturbed in a complicated but
deterministic fashion. The transverse spherical aberration
resulting from the approximate profile is seen to be less than
1.4 um over the aperture, and the geometrical blur-spot diameter
is only 0.4 pm . The arc-fitting procedure would therefore appear
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not to have greatly affected the lens properties. However, an
inspection of the longitudinal spherical aberration reveals that
the optical properties are adversely affected, as shown in Figure
[4.14] . Again, complicated aberration behaviour is manifest,
directly attributable to the perturbations of the ideal profile.
The important point to note is that the rays intercept the
optical axis within a band 25 pm to 55 um short of the design
focus, with the best image occuring at 34 pm from the design
focus. Such a focal-shift could be unacceptable for high-
resolution requirements. In order to minimise the shift, an
alternative series of 20 arcs was fitted to the desired profile.
The resultant longitudinal spherical aberration is shown in
Figure [4.15] . The focal shift is now reduced to 3.0 pm, at the
expense of some large aberrations at the edge of the useful
aperture. Since the lenses are only expected to utilise
approximately 4.4 mm (or 60%) of the useful aperture, these large
aberrations are unimportant. The geometrical blur-spot radii
arising from the 20-arc approximate profile is compared with that
of the ideal in Figure [4.16] . The profile is seen to be capable
of yielding diffraction-limited performance over input-beamwidths
as large as 6.0mm, corresponding to £f/3.1 operation. The
performance is noticeably degraded for larger incident
beamwidths. A

Figure [4.17] shows a ray-trace through a geodesic lens with
a spherical inner region and a toroidal edge-rounding region. The
lens has a design focal length of 50.9 mm and an overall diameter
of 10.462 mm. An input ray manifold of diameter 8.0 mm is shown
incident on the lens, corresponding to an f-number of £/6.36.
The marginal rays clearly focus at points much further away from
the lens than the paraxial focus. The image of least confusion is
situated at 7.4 mm. The transverse spherical aberration at both
the paraxial focal length and at the distance of least confusion
is shown in Figure [4.18] . This graph shows how a shift in the
point of observation of the light minimises the area under the
transverse aberration curve, and the sharpest geometrical image
thus obtained. In actual operation the input beamwidth would be
only 3.0mm, corresponding to a speed of £/17. In this case the
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focal shift required is much reduced, with the image of least
confusion occurring at an axial distance of 52.2 mm, only L3 mm

from the paraxial focus. The geometrical spot diameter is found
to be just under 20 uym in such a case.

4, 7 Conclusions

Perfect geodesic and Luneburg overlay lenses have been
compared with possible practical realisations. In the case of
overlay lenses, the practical approximation to the desired
profile diplays significantly degraded optical performance,
including a negative focal shift of 20%, and a large geometrical
spot-size of 24 pm. A first practical approximation to the
perfect geodesic lens yielded a geometrical spot-size of only 0.4
pm, but with a focal-shift of 34 um. A second practical
realisation reduced the focal-shift to 3 pm. A medium-performance
long-focal-length spherical-depression lens with a toroidal
rounded-edge displayed a large positive focal shift of 21.8mm at
an effective f-number of £f/6.36 but this was reduced to L3 mm at
a reduced f-number of f/17, at which a geometrical blur-spot of
diameter 20 um is obtained.
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CHAPTER FIVE OOMPUTATIONAL ANALYSIS:TI

THE BEAM-PROPAGATION METHOD (BPM)

5.1 Introduction

A geometrical optics approach to the propagation of light in
lenses, and in the homogeneous space surrounding the lenses,
reveals much useful information about the lens properties, as was
found in chapter two and chapter four. In particular, the a
priori design of a lens can only be carried out using the
principles of geometrical ‘optics. However, in physical optics,
phenomena associated with diffraction exist which are not
adequately described by geometrical optics, and for which a
second-order solution of wave propagation is required.
Diffraction calculations using classical methods are, generally,
very complicated, even in homogeneous media. Diffraction effects
associated with propagation in inhomogeneous media are rarely

considered.

A simple algorithm for calculating the propagation of wave-
fields in inhomogeneous media has been developed over recent
years which relies upon numerical methods for solution. The
algorithm is known as the Beam Propagation Method, or BPM. The
BPM is based on solutions of the scalar wave-equation in the
small-index-variation and paraxial approximations. It uses the
elegant and extremely powerful techniques of Fourier optics
extensively. An important feature of the method is that no
special assumptions need be made about the form of the incident
fields. Furthermore, large wave aberrations could be modelled,

conceivably.
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In this chapter, the Fourier optics representation of wave-
fields will be outlined, together with methods of implementing
the Fourier representation on a computer. A well-known algorithm
for the propagation of wave-fields in homogeneous media will then
be given. Propagation in inhomogeneous space, such as is found in
the lenses considered in this thesis, will then be considered and
the BPM will be introduced. A single lens design will then be
modelled using the BPM, under a variety of incident field
conditions. Previous published work on the use of the BPM in
relation to inhomogeneous lenses has not dealt with the detailed
evolution of the field in the region of the focus. If the BPM is
to be of use in the investigation of inhomogeneous lenses, it
must adequately represent the focal field. Field patterns
obtained using the present BPM model indicate that a negative
focal shift is introduced which is compatible with recent results
published by other workers.

5.2 The angular spectrum of plane waves

The following discussion is similar to those found in the
texts of Goodman [1] and Gaskeil [2]. Consider a wave-field
propagating in a medium which extends over three-dimensional
space. If the medium is homogeneous, so that its properties do
not vary from point-to-point, and isotropic, so that its
properties do not vary with direction, the propagation of the
wave-field in the medium may be described very easily using

Fourier transform techniques.

The wave-field is assumed to be monochromatic and linearly-
polarized. The time variation of the field may be neglected due
to its periodicity and the wave-field conveniently represented by
its complex amplitude only. The complex amplitude describes the
spatial variation of the magnitude and phase of the field and is

given by the scalar function of position:

u(x,y,z) = a(x,y,z) exp(j ¢ (x,y,2)) (5.1)
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As usual, the real part of equation (5.1) represents the real
physical wave.

A wave-field at a constant plane 2=z; may be represented by
a function u; (x,y). If the wave-field is physically realizable,
it will possess a two-dimensional Fourier transform at this
plane:

Ui(fl"’) = FF(ui (x,¥)) (5.2)

Consequently u; (x,y) may be expressed as the inverse Fourier

transform of U; (&,7):
o0

ug (%,y) =f/ U; (£,m)eI2 T (Ex + 1Y) geq,
o0 (5.3)

Now a plane wave propagating with direction cosines (a,8,Y) may
be represented by a function of the form:

Plane wave = Aelk(ex +8Y)

= peJ2T(ax/\ + BY/)\) (5.4)

where A is a constant indicating the peak amplitude of the wave.
If a= )¢ and = A7 , the exponential term in equation (5.2)
may be regarded as a unit-amplitude plane wave propagating with

direction cosines (\¢(,A7n, \/l - )\2 (52 + 172) ). In accordance with
the usual understanding of the Fourier transform , uy (x,y) may
then be regarded as a linear superposition of plane wave
components travelling in directions governed by the values of the
direction cosines. The amplitude of each plane wave component is
governed by the weighting function U;(§,7). Thus U;(&,7) is

referred to as the angular spectrum of u;(x,y) and is given by:
00

U; (£,7) =//ui (x,y)e I2TEX + 1Y) gxay

T o (5.5)

Each plane wave component is infinite in extent and propagates
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with a constant amplitude, but with varying phase. Since the
direction of propagation for each plane wave component is
different, each componeni undergoes a different phase change as
the field propagates from one plane for which z = constant to

another. At some plane zy > z;, the phase will have increased by
an amount:

kv(z1-25) = k(z1-z5) YI1 - 22(t%47%)]  (5.6)

Since the amplitude remains unchanged, a transfer function can be
easily defined which specifies the propagation of a wave-field
from the plane z=z; to the plane z2=2zq:

Up(£,m) = expiik(zy—z;) [1 - 32(527%)) ) (5.7)
U; (£,m)

The benefits of representing an optical wave-field in terms
of its angular spectrum are those classically accruing from the
Fourier transform, ie the individual components are treated much
more simply than the whole and the reconstruction of the field is

simply carried out using the principle of superposition.

5.3 Computational representation of a complex 1-D wave-field in
spatial and anqular frequency domain

In integrated optical lenses, the field variation in the
dimension perpendicular to the plane of the wave-guide is usually
considered unimportant, so that the propagation of a one-
dimensional wavefield u(x) as a function of a variable z may be

considered.

In order to perform computations on such wave-fields it is
necessary to have a representation of the field consisting of
discrete sampled values. The angular spectrum must also be
sampled in this way. The continuous Fourier transform and its

inverse may then be represented by the discrete Fourier transform

(DFT) pair [3].
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The sampling interval required to avoid aliasing in both
domains is given by the well-known Shannon criterion, which
states that the interval must be less than or equal to half of
the smallest period present in the signal, for the sampled signal
to faithfully reproduce the original. 'Interval' and 'period' are
used here instead of the more usual term 'frequency', to avoid
possible ambiguities in the interpretation of sampling in both
spatial and angular domains.

Optical signals are usually of limited extent in the
transverse direction in space due to the presence of a limiting
aperture. If a signal is band-limited in one domain, it cannot be
band limited in the other [3], so that a 'smallest period' cannot
be defined. In practice, a period can be defined below which a
negligible amount of signal energy is contained. The signal can
then be sampled with arbitrarily little distortion being
introduced.

Sampling of the truncated field introduces periodicity in
the spectral domain, and vice versa. The wave field and its
spectrum then have to be truncated numerically so that only a
finite number of samples N, extending over one period of the
sampled signal is contended with. Sampling and truncation
together introduce distortion in the signal. This is minimised by
choosing the largest truncation interval and smallest sampling
interval possible, commensurate with the speed and accuracy

required of the calculations.

The DFT pair is therefore an approximation to the continuous
Fourier transform pair:
Qo
uy (x) = /Ui({)ejzmxdi
- 00

o o]

U; (8) = fui(x)e‘jz“fxdx. (5.8)
—00

The angular spatial frequency, or wavenumber, k, is more commonly
used than the spatial frequency variable ¢ . The relationship
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between them is:

ky = 2n¢ (5.9)

The sampled field and spectrum both consist of N equidistant
samples specified for computational purposes by:

u; (mAx) = lN'l Uifn )ejZan/N
N n=0 NAx '
m=20,1,...., N-1

2

=0
n=01,...., N-1 (5. 10)

U; (nAax) = N6 o, (max) e~ 320N
n

The width of the field in the spatial domain is ®N-1)Ax, where Ax
is the sampling interval in this domain. The corresponding width
of the field in the spectral domain is @®N-1)/MNAx).

Inspection of (5.10) reveals that each of the N samples in the
transform require N multiplications and N additions, so that 2
arithmetic operations are required to calculate the complete
spectrum. However, the Fast Fourier Transform algorithm developed
by Cooley and Tukey [3], which was originated in work by Gauss
[4], calculates the DFT with accuracy and greatly increased
efficiency, since only NlogN operations are required owing to a
clever matrix decomposition. The FFT allows numerical algorithms
for modelling the propagation of optical wave-fields to be

implemented with relative ease.
5.4 An algorithm for computing the propagation of optical wave-
fields in homogeneous, isotropic space

The previous two sections, on the angular spectrum of plane
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waves and on computational implementations of the Fourier
transform may be taken together to model the propagation of

arbitrary optical wave-fields in homogeneous, isotropic media. A
simple algorithm might be:

1. Sample the optical wave-field at the input-plane of

interest and obtain the angular spectrum using the forward
FFT. '

2. Propagate each plane-wave component separately to
the next plane of interest, using the transfer function given in
equation (5.7). The angular spectrum at the new plane is then
obtained.

3. Construct the optical wave-field at the new plane by
taking the inverse FFT.

Such an algorithm has been found useful in the solution of
many optical problems. In particular, it has proved competitive
with evaluations of the Kirchhoff diffraction integral in near-
and far-field diffraction problems, as shown by Sziklas and

Siegman [5].

5.5 Theory of the beam-propagation method

The algorithm given above for the propagation of waves in
homogeneous, isotropic space cannot be used directly for the
modelling of propagation in inhomogeneous space, since plane
waves do not remain plane in such a case. It is desirable
therefore to obtain a new algorithm for describing propagation in
inhomogeneous space. The beam propagation method (BPM) is just
such an algorithm. It is essentially a numerical method for

solving the scalar wave equation in inhomogeneous media.
For the purposes of the present work, the main interest in
the use of the BPM lies in its ability to describe the

development of the optical field in all its complexity within
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inhomogeneous lenses without resorting to the methods of
geometrical optics. Particularily, the effects of diffraction can

" be modelled very accurately without, importantly, makingrany
assumptions about the field at the exit pupil of the lens. The
usual methods for investigating diffraction effects generally
display three important characteristics

(i) the observation distances are large, and the angles
with respect to the optical axis are small;

(ii) the lens is considered to be thin, so that the
amplitude distribution at the exit pupil can be assumed to be

either constant or Gaussian, with the effects of beam-truncation
also included;

(iii) aberration effects are rarely modelled so that
the phase-front leaving the lens is assumed to be perfectly
spherical.

The BPM displays, to some extent, the first characteristic
but not the other two. The fact that the amplitude variation can
be arbitrarily specifiediat the entrance pupil of a thick lens is

important as it allows apodization effects to be modelled.

The problem is to calculate the propagation of a wave-field
u(x,z) through a medium with a refractive index function n(x,z),
given an initial wave-field uj (x,z). Van Roey et al [6] have
derived a general theory of the BPM using a Green's function
approach. The method is complicated, and a mathematical text such
as that of Arfken [7] is indispensable as an aid to understanding
it. A simpler derivation is possible however, and the published
theories of Feit and Fleck [8,9] and Lagasse [10] are used in the
following discussion. The theory given by Feit and Fleck is
attractive in that the basic features of the technique are
clearly laid out, for a 3-D medium with a refractive index
variation in the directions transverse to propagation only.
Lagasse extends the theory to media with a refractive index
variation in the direction of propagation. The following theory
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will be restricted to two-dimensional spaces.
Three important assumptions are rﬁade:

(1) the problem has to be described adequately by the
scalar wave equation, thus restricting the discussion to

situations where separable (uncoupled) solutions can be derived
for the TE and ™ modes:;

(1i) the refractive index can be written as a sum of
unperturbed and perturbed parts:

n(x,z) = ny(x) +an(x,z) (5.11)

where and<n,. A purely transverse index variation means that the
perturbation is , further, a function of the variable x only.
no(x) must be chosen such that the solutions of the scalar wave
equation:

V% +kn2(x)¢ =0 (5.12)

are known eigenfunctions, ¢n(x)e_jknz. If no(x) is chosen to be
constant the eigenfunctions are given by the angular spectrum of

plane waves.

(iii) the variation of n(x,z) along z, if there is to
be any, must not contain any sharp discontinuities or
periodicities, both of which give rise to reflected waves which
are not allowed with the BPM.

Consider first a medium in which the index variation in the
z-direction is constant. The scalar (Helmholtz) wave equation in

such a medium is:
va +ky2n? (x)u = 0 (5.13)

where vl = 5_2 + i , and k, is the free-space wave-number.
ox% dz2
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The standard procedure for dealing with this equation is to
assume:

u(x,z) = G(x,z)e"IKonz (5.14)

with G(x,z) a slowly varying function. Substituting (5.14) into
(5.13) and neglecting second-order terms in z, one recovers a
first-order differential equation in z which is variously known
as the paraxial, parabolic or Fresnel form of the wave equation.
This approach is used by Kogelnik and Li, for example, in their
study of the propagation of Gaussian beams [11].

Instead of going for the Fresnel approximation directly,
consider that the solution at z= Az may be written formally in
terms of the field at z=0 as:

u(x, z) = expl+jaz (%, n%)1/2)u(x,0) (5.15)
where:vi = 32
3 x2

(Equation (5.15) may easily be shown to lead to the wave equation
(5.13) if both sides of (5.15) are partially differentiated with
respect to z). The square root in (5.15) can be rewritten:

(k)12 = G2 +kgpn o (5.16)
(F+, %)/ 24k n

If n in the first right-hand member of (5.16) is replaced by

Ny, the unperturbed index, (5.16) becomes:
2 -
N +k + k[(n/ng)-1]
(22172 + k (5.17)

where k = kyng = Ny w/c, with w being the angular frequency and ¢
being the velocity of light.
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The approximation made in (5.17) is valid for sufficiently
small perturbations in n(x,z).

It is now convenient to express u(x,z) as the product of a

complex field amplitude v(x,z) and a carrier wave moving in the
positive z-direction:

u(x,z) = v(x,z)e-jkz (5.18)

Substitution of (5.18) into (5.15) and taking the negative sign,
indicating forward propagation, gives:

v(x,42) = exp —jAZ[ V_E + x(x)} {v(x,0)
(Fk )12 (5.19)

where x(x) = k[(n(x)/no)—l]

(5.19) can be rewritten in symmetrized split operator form, to

second order in az, as:

v(x,az) = exp;-iAg[ < -|§ exp (-jaz x )
2 | Fw2)1 2]
X exp{—j_A_g v_,_z }v(x, 0)
2 | @) 2
+0 (8z)3 (5. 20)

The splitting of the operators results in a separation of the
propagation part of the calculation from another part which may
be recognised as a correction factor to allow for the
perturbation of the index. The operators inside the brackets of
(5.19) do not commute, and so there is an error term since an
approximation is invoked that holds only for limited propagation
distances az. The operator splitting and its consequences are

discussed in detail in reference [9].

The operation:
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exp{-jAZ[ <2 -l}v(x, 0)

(Fx2)1/ 24

b

is equivalent to solving the Helmholtz wave equation for:

u +3%u +k 2y =0 (5.21)
3x%  3z°

with u(x,0) as an initial condition, so that the operator defines
the propagation in the unperturbed medium. If VJ? is neglected in
comparison with k02n02 in the denominator of (5.19) and (5.20),

one recovers the paraxial, or Fresnel approximation:

N

v(x,0z) = exp%-jAz[v; + x(x)] }v(x,O) (5. 22)
2k

The propagation in the unperturbed medium may be calculated

exactly for the case of n, = constant by finding the angular
spectrum of plane waves and propagating the plane waves using the
transfer function (5.7) . Advancing the solution for v(x,z) by
repeatéd application of (5.21) is equivalent to propagating the
beam through a periodic array of thin lenses, as shown in Figure
[5.1]) . The first lens is located at z =8z/2 and the remaining
lenses are separated from one another by Az. Each lens imposes a

phase-front:

¢(x) = Az x(x)

Azk [(n/ng)-1]

A zko [n-n,]

azk an (5.23)

on the beam and the propagation between the lenses is given
by (5.21).
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FIGURE [5,11 BPM algorithm replaces variable-index medium by periodic
array of thin-lenses. In between lenses field satisfies the Helmholtz
equation for a homogeneous medium.



It may be recalled that the above analysis was derived for
the case of a medium with a refractive index variation in the
transverse direction only. The major advantage of studying this
case is that the underlying reasons for treating an inhomogeneous
medium with a small and slow variation in refractive index as a
periodic array of thin lenses are clearly illustrated. Lagasse
[10] goes on to treat the case of propagation in a 2-D medium
with a refractive index variation in both x and z directions. lLet
it be assumed that the principle of propagation in the
unperturbed medium followed by the application of a correction
factor to allow for the index variation is still valid.

The field u(x,s2) is written, therefore, as the product of

the field propagating in the unperturbed medium n, and a phase-
r,

updating correction factor e
u(x,zo+Az) = u'(x,zo+Az)er (5. 24)
where u' satisfies:
<A + k2t =0 (5. 25)
with:

u' (x,zo) = u(x,zo) (5. 26)

and the solutions of (5.25) are the eigenfunctions:

00
u' (x,2z) = nX=:1 B ¢, (x)e IKAZ (5.27)
0
. *
with: Bno = fu(x,zo) ¢ (X)dX (5. 28)
-0

In the case ny = constant, equations (5.27) and (5.28) represent

Fourier transforms. The scalar wave equation is:
<%+ ky2n?(x,z)u = 0 (5. 29)
Substituting (5.24) into (5.29), and taking (5.25) into
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acoount, yields:
“'vzl‘ + u']vr]2 + 2vubrt koz(nz—noz)u' =0 (5.30)

Since Az can be chosen small, a series expansion for T is
possible:
o0

I(x,2) = ;‘:‘1 A (x) 2" (5.31)

Substitution of (5.31) into (5.30) and equating the
coefficients of z" to zero yields a set of equations for the AL
The first equation, from the constant term zo, is:

A12 + 2 ju'd; +k,ZmPn %) + 28, =0 (5.32)

u' 9z

The form of A; needs to be determined. For this some simplifying
approximations are required. The presence of A, complicates
matters, and it would be beneficial if its effect could be
ignored. Assume therefore that:

Ay, K koz(nz—noz)
2

This condition can be justified by calculating A, from the second
equation resulting from the series expansion. (5.32) is then
reduced to a quadratic equation for which the solution is:

Ay = 13u' [—1 + [1-(; du') "% 2 (n2—n02)]1/LJ
u'oz u'oz (5.33)

It is possible to calculate du'/yz in the spectral domain, if

necessary. However, if

k02 nz(l ag_')'2 <1
u'oz

is assumed, then:
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A} = *y%(n%n,?)u' (5. 34)

2 u'/ z

Introducing paraxiality enables one to assume that u' consists of

a wave travelling along the z-axis:
a' = e—jkonoz
Coefficient Ay then becomes:

Ay = -3ky (n®-n )
2nO

= =3k, (n=ny) (n+ng)

2n,

= -jkopn,  if (n4ng)= 2n,. (5.35)

BAs in Feit and Fleck's theory the last approximation is valid for
sufficiently small index perturbations.

The correction factor I is finally given by:
= —jkyanaz (5.36)
which is of the same form as that given for media with only a
transverse variation in refractive index in equation (5.23) and
is equivalent to the effect of a thin lens.
The above developments are not unexpected, as the
representation of an inhomogeneous medium as a periodic array of

thin lenses within the approximations of paraxialty and small

index variation is well known (see, for example, reference [11]).

Classical theories of diffraction have problems in dealing

with three types of complication:
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(i) complications in the field incident on the diffracting
aperture. Gaussian, truncated-Gaussian and uniform amplitude

distributions are generally the only cases considered;

(ii) complications in the phase change introduced by the
lens. Lenses almost always have to be thin. The thin lenses are

generally assumed to give rise either to perfect phase changes or
to small phase distortions described by simple analytic
functions. Inhomogeneous lenses are thick, however, and can give
rise to complicated phase distortions. For example, fabrication
processes could perturb the refractive index functions in complex

ways;

(iii) complications in the amplitude transmission-function

of the lens Lenses are generally not considered to introduce any

amplitude distortion, or are assumed to introduce very simple

one—-dimensional variations of amplitude.

The great advantage conferred by the BPM is that all of the
above problems can be dealt with simply, in principle, so long as

the conditions of validity are satisfied.

5.6 Conditions for the applicability of the BPM

Van Roey [6] has listed several conditions for the

applicability of the BPM. The conditions are:

An_,.sin%a a2z << 1, (5.37)
X

where An . is the maximum perturbation in the refractive index
over the propagation interval Az, a is the maximum angle
corresponding to a significant part of the angular spectrum of

the forward-propagating beam and 2 is the free-space wavelength;

P> ava ¢ (5.38)

Ny
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where p corresponds to the period of the highest spatial
frequency component of the refractive index profile Anz(x), and

N, is the unperturbed reference refractive index over the
propagation interval;

p> 1 @2ni|an| . a2)1/?, (5. 39)
ng '
Ttana 8z <1 , (5. 40)
P
(27Ttana Mn\mx>l/2 bz << 1 (5. 41)
pA

These conditions amount to restrictions on the maximum index
perturbation, and its gradient, and the maximum spatial frequency
which the optical wave-field is allowed to take. The conditions
can be used to calculate a propagation step-size suitable for
propagating a wave-field through a particular structure, given
the refractive index profile of the structure and the spatial
frequency profile of the incident optical field.

The examples of interest are inhomogeneous waveguide lenses
which can have fairly large index perturbations (4n = 0.1ng)
which vary slowly with wavelength, however. It turns out that the
first condition, (5.37), is the most stringent in such a case. If
the operating wavelength in vacuum is 633 nm, An =0.22 and the
maximum angular aperture is 15 degrees, corresponding to the

paraxiality limits, condition (5.37) gives:

8z << 43pm
If Az=10 pm is taken as satisfying the condition, a BPM model of
an inhomogeneous lens of 10.0 mm diameter then requires 1000

thin-lens elements and 1000 homogeneous spaces for accurate
modelling.
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5.7 The sampling interval

The decomposition of the wave-field into the angular
spectrum of plane waves is computed using the Discrete Fourier
Transform (DFT). In the inhomogeneous region the DFT is
implemented using the Fast Fourier Transform, for reasons of

computational efficiency. Two constraints on the field sampling
interval, Ax, exist: '

(i) the Sampling Theorem states that the spatial sampling
rate must be greater than, or equal to, twice the highest spatial
frequency present in the angular spectrum, for the sampled field
to faithfully reproduce the properties of the original field. It
can be shown that an optical system with focal length f,
truncated by an aperture of radius, a, and operating at a free-
space wavelength A in a medium with refractive index n can only

transmit spatial frequencies £ such that:
§< na/fa (5.42)

[12] . Equation (5.42) sets a maximum value of spatial frequency
for the optical field and, consequently, a maximum value for the
sampling interval. In reality, it is advisable to make the
sampling interval smaller than the maximum value, so as to
introduce a guard-band in the spectral domain which helps to

prevent aliasing.

(ii) the spatial sampling interval must not be so small,
however, that the condition of paraxiality no longer holds.
Paraxiality, rather conservatively perhaps, may be assumed to
hold for plane-wave components of the spectrum that do not
deviate by more than 10 degrees from the optical axis. This sets
a minimum limit of approximately f/2.85 on the f-number that can
be modelled using the BPM. In terms of the corresponding maximum

spatial frequency:

€ max = = n tan 10° (5.43)

1
2 ax s M (1 + tan?100)1/2
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Conditions (i) and (ii) may be taken together as follows:

A+ tan21091/2 ¢ ax < £2 (5. 44)
2n tan 10° 2na

As an example, consider n = 2.206, A = 0.633 pm, £ =18.5 mm and
a = 1.5 mm. Then:

0.83}.1m < Ax < 1.77pm

These limiting conditions on the sampling interval are shown in
schematic form in Figure [5.2].

5. 3 Implementation of the BMM for inhomogeneous lens structures

The BPM is implemented in inhomogeneous lens structures in
four stages.

1. An incident field is created, in complex amplitude form.
The field can be adjusted to any required incident angle or
offset distance from the axis. The most commonly used field is of
Gaussian shape, although other field shapes can be used. The
Gaussian, having a beam diameter 2w, is truncated by a "hard-

aperture” of diameter 2a with transmission properties

t=1, |xil€a
0, [x|>a

ﬁ
]

The consequences of using such an aperture in conjunction with
the DFT have been discussed in reference [9]. Generally, the
dimensions of the aperture are chosen so that a large guard-band
with zero-field exists in the wvicinity of the boundaries of the
computational grid. For example, a 4096 x 1.5 um grid is used to
initiate propagation through a lens of a plane wave-field
truncated by an aperture of width 3.0mm. Thus only 2000 grid
points are contained within the aperture, with the remaining 2096

serving as a guard-band. A similar guard-band is present in the
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angular spectrum. Such guard-bands help to ensure accuracy with
the DFT.

2. The chosen lens-structure, whether it be of the overlay
type or the geodesic type, is transformed into an equivalent
variable refractive index lens. The profile is specified at a
large number of points, with linear interpolation being used to
calculate the refractive index between these points.

3. The field is propagated through the lens, using the
alternating propagation/phase-update components of the BPM
algqrithm. The field is monitored in both configurational and
spectral spaces to ensure that significant amounts of energy
within the band-limited waveforms do not approach the grid-
boundaries, a condition which effectively results in an aborted
solution [9]. A truncated plane wave-field propagating through a
geodesic lens, computed using the BPM, and showing the extent of
the guard-bands is given in Figure [5.3]. Because of the guard-
bands, neither the field nor the spectrum approach the
computational grid-boundaries.

4. Propagation in the homogeneous region beyond the lens is
carried out using the algorithm given in section (5.4). The DFT
is used directly in this part of the calculation. A great deal of
unnecessary information about transverse points well away from
the focus would be calculated if the FFT were used, since the FFT
requires that the computational grid be of fixed width throughout
the calculation. No such requirement exists with the direct use
of the DFT. Furthermore, the spacing between the grid-points must
remain fixed at the spacing set at the lens input with the FFT.
Again, no such requirement exists with the DFT, so that a great
deal of detailed information about the field in the focal region
can be obtained.

5.4 Results
Van der Donk et al [13,14] have previously used the BPM to

108



7+3-07

-1-5¢

~3-07

(a)

+5-5

O , deg

o]
- 55

(b)

FIGURE [5,3] Beam propagating through geodesic lens
with computational grid boundaries shown

(a) spatial field (b) angular spectrum



model the propagation of wave-fields through geodesic lenses.
They did not report, however, on the detailed structure of the
field in the image épace, particularly in the focal region. The
correct prediction of the focal field, particularly in the
diffraction-limited case, is an absolute necessity if the BPM is
to be of real value in the analysis of inhomogeneous lenses.

The aspheric geodesic lens specified in chapter two, having
theoretically perfect focusing properties, was chosen as a
demanding test for the BPM. The lens had an overall diameter of
10.0 mm, an inner region of 7.4 mm diameter which constituted the
useful part of the lens, and a focal length of 18.5 mm. The lens
had a relatively small effective f-number , therefore, of f/3.
Since geodesic lenses are free of chromatic aberration, the
choice of operating wavelength is arbitrary. A wavelength of
0.633 um was chosen for the BPM tests since optical experiments
would be carried out at this wavelength. The refractive index of
the homogeneous medium outside the lens was chosen to be 22065,
a value comparable with the effective refractive index of single-
mode titanium-diffused guides in LiNbO3. The lens and the
surrounding region are further assumed to be isotropic; LiNbOj is
anisotropic, but the inclusion of such a feature would have
complicated the investigation unnecessarily, since it was the BPM
itself that was under test rather than a given lens. Van der Donk
has extended the BPM to include anisotropy [14].

Two types of incident field illumination were considered:

(i) uniform illumination over the dimensions of the "hard
aperture”;

and (ii) Gaussian amplitude variation over the aperture, such
that the aperture truncated the incident field at the 1/e
amplitude points, corresponding to the 1/e2 irradiance points,
where the irradiance ( sometimes called intensity) is gi;ien by
the square of the modulus of the field amplitude.

The field in the location of the focus was the quantity of
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interest. The field was calculated in its complex form, so that
the amplitude and the phase of the field could be studied,
neglecting the harmonic time-variation. Attention is confined
here to the amplitude variation. The field amplitude was
calculated over a rectangular grid of 50 axial x 101 transverse
points in the vicinity of the focus. An odd number of transverse
points were calculated in order to obtain a field symmetric
on both sides of the axis. The grid-spacing in the axial
direction was either 20 jpm or 40 um, depending on the depth of
field. The transverse grid-spacing was 0.6 um . The area of the

focal region calculated, therefore, was L0 mm x 60 pm or 20 mm
x 60 jam.

Representative plots of the field propagating through the
focus for both incident conditions (i) and (ii) will now be
given. Two aperture widths, 0.6 mm and 3.0 mm will be considered,
corresponding to effective f-numbers of £/30.83 and f/6.17
respectively. A great deal of information is available from the

computations and the plots are organized as follows:

(a) isometric plots of field amplitude

Figure no. Incidence conditions

Figure [5.4] uniform illumination, 2a = 0.6 mm
" [5.5] Gaussian illumination, 2a = 0.6 mm
" [5. 6] uniform illumination, 2a = 3.0 mm
" [5.7] Gaussian illumination, 2a = 3.0mm

(b) contour maps of amplitude and encircled energy

Figure no. Incidence conditions

Figure [5.8] uniform illumination, 2a = 0.6 mm
" [5.9] Gaussian illumination, 2a = 0.6 mm
n [5.10] uniform illumination, 2a = 3.0 mm
" [5.11] Gaussian illumination, 2a = 3.0mm

The term "encircled energy" is borrowed from bulk optics and
denotes the amount of field energy enclosed by circles of
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increasing radius from the optical axis. There are no such
circles in planar optics, only increasing distances from the
axis. The term is a common one, however, and is used here for
that reason. The curves shown are normalised to the energy
enclosed within a transverse distance of 30 um from the axis at
the position where the field is a maximum.

(c) plots of field amplitude along the optical axis of

propagation and of the diameter of the central spot, measured
along the same axis '

Figure no. Incidence conditions

Figure [5.12] uniform illumination, 2a = 0.6 mm
" [5.13] Gaussian illumination, 2a = 0.6 mm
" [5.14] uniform illumination, 2a = 3.0 mm
" [5.15] Gaussian illumination, 2a = 3.0mm

The minimum diameter of the central spot along the axis is the
waist of the propagating field, and may be considered to locate
the focus. Alternatively, the point of maximum field amplitude on
the axis may be considered to locate the focus. The two locations
need not necessarily coincide, though they do, in general. .

(d) plots of transverse enclosed energy at the locations of

the axial field amplitude maxima

Figure no. Incidence conditions

Figure [5.16] uniform illumination, 2a = 0.6 mm
" [5.17] Gaussian illumination, 2a = 0.6 mm
" [5.18] uniform illumination, 2a = 3.0 mm
n [5.19] Gaussian illumination, 2a = 3.0mm

(e) plots of transverse field amplitude, on linear and

logarithmic scales, at locations of axial field amplitude maxima

Figure no. Incidence conditions
Figure [5.20] uniform illumination, 2a = 0.6 mm
" [5.21)] Gaussian illumination, 2a = 0.6 mm
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n [5.22] uniform illumination, 2a = 3.0 mm
" [5. 23] Gaussian illumination, 2a = 3.0mm

The following discussion will treat the five groups of plots
(@) to (e) successively.

5.9.1 Group (a)

The isometric plots of the fields propagating through the
focus reveal some general characteristics immediately. Detailed
numerical information will be given in later plots. The isometric
plots reveal the considerably greater 'smoothness' of the focal
field under conditions of truncated-Gaussian incident
illumination than under uniform illumination. The peaks and
valleys of the uniformly illuminated cases are much more
pronounced than those resulting from truncated Gaussian
illumination. The truncated-Gaussian incident fields do produce
some structure in the focal region, however, as would be
expected.

Such behaviour, obtained using the BPM, is consistent with
traditional diffraction analyses. The larger field amplitudes of
the field outside the central spot for the cases of uniform
illumination occur as a result of the Fourier transforming
properties of the lens, and indicate the presence of large-
amplitude, large-angle spectral components in the input field.
Gaussian fields dampen the amplitude of these spectral
components, and thereby reduce the height of the sidelobes in the
focal region. The damping process can be equivalently obtained by
modifying the transmission function of the lens, in which case it

is known as 'apodization'.

The different depths of field obtained for different
aperture widths are also illustrated in the isometric plots. The
narrower apertures give rise to image field amplitudes and beam-
diameters that change very slowly with increasing axial distance,
whereas the image fields under conditions of larger aperture

change rapidly, giving rise to an abrupt focal spot, as is
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FIGURE [5,5]
Beam propagation through
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X=GX1Sy Mm; Yy-ax1s, mm

z-ax1s, arbitrary units

Z AXIS *i1@
X AXIS ¥1@



- 3.50
—3.00
.00 — L
s - 2.50
.50 — L
- —2.00
.00 - L
_ —1.50
.50 — L
| - 1.00
.00 - -
i L .50
.50 — s
.00 S
] S F ’
.50 — = . ,- il Q“‘
= S _‘
‘ f"’.°' ‘ “‘\\‘\\ \\‘
11,5 0,
17,7 \‘ “‘0“"‘ ||
i 2 I‘“‘ s‘ ’“‘3"' Iy ’il "l 1.0
; .
1 .‘o, .!.
’3125 i
78& Z AXIS ¥1@
. 3.0 X AXIS %18
FIGURE [5,6]

Beam propagation through
10SA Lens; 3.0mm plane-wave truncated at 3.0mm
X=aX1Sy pm; y=ax1is, mm

z-axis, arbitrary units



3.00 —
2.50
2 ‘ @Q ] ‘ ';:‘: o= S AR RN
\‘ ‘\\“\\%“‘ﬁ?\:;t‘
i G@&Ssﬁ ““”
\ w&&ﬁ&“
1.50 I‘\“‘}“\ .h AR
‘\xﬁw'
"\\- v‘\“ ‘\ ’! \. \‘
1.00 — o.\\ “‘.v.ii‘.._ R
..v.' '“ 7 ‘ /\\ !o\ .‘\\\08:. N “.,» ki'
. = '3'0 0 ‘ 3.5'\ o ol "';
.50 sl 1‘
\ |
129,
758
1
Y AXIS %180

FIGURE [5,7 ]

Beam propagation through

10SA Lens; 3.0mm gaussian truncated at 3.0mm
X=GX1Sy pMmy Y=axX15y; mm

z-ax1s, arbitrary units

Z AXIS *1@
X AXIS *1@



particularly evident in the case of uniform illumination. A large
depth of field is obtained, therefore, for narrow apertures

whereas a small depth of field is obtained for large apertures,
in keeping with the usual cases.

A disconcerting feature of the isometric plots, and,
consequently, the plots yet to be discussed, is that the foci do
not occur at the distance predicted by geometrical optics (the
axial distances shown in the Figures are measured from the exit
edge of the lens, and should therefore have 5.0 mm added in order
to measure from the centre of the lens). The focal shifts, which
are all negative, will be discussed in more detail later.

5.9.2 Group (b)

The contour maps are more informative than the isometric
plots. Maps of both equi-amplitude contours and equi-energy
contours are given for each case of incident illumination. The
maps are similar to those presented by Born and Wolf [12]. As
pointed out by them, the equi-energy contours may be considered
analogous to the rays of geometrical optics.

For the case of narrow, uniform illumination, a distinct
central field-amplitude structure is observed at the focus,
surrounded by sidelobes. For the circularly symmetric bulk
optical case, Born and Wolf described the central structure of
the focal field, under conditions of uniform illumination, as
'tubular', since a tube of light occurs which is circumscribed in
all directions by the first minimum in the diffraction pattern.
The amplitude pattern is symmetrical about the optical axis, and
looks symmetrical about the transverse line through the focus.
The encircled energy contours are not symmetrical about this
transverse line, however, especially the contours furthest from
the axis. Such asymmetry is not predicted by classical
diffraction analyses [12], although recent work has indicated
that asymmetries may indeed arise. The encircled energy contours
do indeed have the appearance of geometrical rays, except for the
highest-energy contours furthest from the axis.
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As expected, the case of narrow, truncated-Gaussian
illumination is somewhat similar to the case of narrow, uniform
illumination. However, the tubular structure centred on the focus
is not so distinctive indicating that the sidelobes are
suppressed. The focal field does not rise as sharply as in the
uniformly-illuminated case, as indicated by the density of
contour lines.

The contours enclosing the regions of lowest amplitude have
been shaded for both cases of narrow incident fields, which helps
to illustrate the wider extension of the focal field for the case

of uniform illumination.

The case of broad, uniform illumination gives rise to a very
intense focal spot, again having a tubular structure in the close
vicinity of the focus. Far from the focus, the amplitude contours
display a four-pointed star shape. Such structure indicates the
considerable contribution made to the diffraction pattern by the
field at the boundaries of the diffracting aperture. The boundary
of the geometrical shadow is shown, and it is again apparent that
the focal distance calculated using the BPM is not the one
predicted by geometrical optics. The equi-energy contours display
considerable distortion near the focus.

In contrast, the case of broad, truncated-Gaussian
illumination gives rise to equi-amplitude contours that are
tubular near the focus and figure-of-eight shaped far from the
focus. The star-structure is absent. The equi-energy contours are
also much smoother. Once more, the focus calculated by the BPM is
not the one predicted by geometrical optics.

5.49.3 Group (c)

The axial amplitude and 1/e-diameter plots yield the actual

values calculated for the foci for different illumination
conditions.
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For narrow, uniform illumination the axial amplitude maximum
occurs at 10.72 mm from the exit edge of the lens, ie 15.72 mm
from the centre of the lens. The beam-diameter at this point is
15.20 pm. The waist of the beam does not coincide with the axial
amplitude peak and occurs at 15.8 mm from the lens centre.
However, the waist diameter is 15.20 pm, as for the peak
amplitude case, showing that the non-coincidence of amplitude
maximum and waist is due to the large depth of field. The
variation of the focal field width will be considered in detail
later.

The 1/e-diameter curve displays two step-like changes. The
steps indicate that the central lobe has decreased in amplitude
whilst the sidelobes have increased. Essentially, the propagating
field is losing the one-dimensional Airy function shape [12] and
re-acquiring a flat-topped shape.

The behaviour of the axial amplitude curve in the case of
narrow, truncated-Gaussian illumination is similar to that for
uniform illumination. The maximum values occur at the same
distance, 1572 mm. The absolute maximum value of the amplitude,
600 arbitrary units, is less than that of the uniformly
illuminated case, 803 arbitrary units, as expected, since a
uniform field carries more energy than does a truncated Gaussian
of the same width and peak amplitude. The beam waist coincides
with the maximum of the field and is 15.20 pm. The beam diameter
curve does not, however, display step-like changes, indicating

smooth propagation.

Broad, uniform illumination gives rise to an axial
diffraction pattern similar to the transverse patterns. A number
of local maxima and minima occur, together with the focal peak
which is the absolute maximum and which occurs at a distance of
18.34 mm from the centre of the lens. The focal peak is quite
narrow in the axial direction, having a half-power width of just
over 100 pm. The beam-diameter curve fluctuates until it
approaches the focal region where a clearly-defined central lobe
is present. The curve then decreases to a clearly defined minimum
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at 18.34 mm from the centre of the lens. The waist is 2.55 am
wide. At the design focal-length of 18.5 mm, the beam width is

approximately 30 pm and the amplitude is down to only 22% of the
peak value.

Broad, truncated-Gaussian illumination also gives rise to a
sharp focal peak. However, other local minima and maxima are not
so much in evidence. The beam-diameter curve is smooth through
most of its length. The focal length is once more 18.34 mm from
the centre of the lens, though the waist diameter at 2.98 pm is
slightly larger than that for the uniformly-illuminated case.

5.9.4 Group (d)

The encircled energy curves provide for further useful
quantitative comparisons between the cases of truncated-Gaussian

and uniform illumination.

At the narrow aperture, the uniformly illuminated case and
the truncated-Gaussian case both give rise to similar encircled
energy curves over the first 90% or so of energy, indicating the
similarity between the central lobe of a sinc curve and a
Gaussian of approximately the same width. Both curves show that
nearly 90% of the energy in the focal field is contained within 6
jam either side of the axis. However, the truncated-Gaussian case
shows more favourable behavior in concentrating the remainder of
the energy,with 98% of the energy concentrated within 12/um of
the axis, in comparison with the figure of 21 um for the

uniformly illuminated case.

At broad apertures, truncated-Gaussian illumination is even
more favourable, with 98% of the energy concentrated within 3 pm
of the optical axis in comparison with 12 pm for the uniformly

illuminated case.

5.9.5 Group (e)

Finally, the transverse amplitude profiles are shown for

116



Encircled energyy arb. units

—
Y

.90
.80,
.70
.60
.0
.40
.30
.20

]
P

N
JaN]

g

3 6 -9 12 15 18 2t 294 27
Transverse position, um

FIGURE [5,16 ] 0-6mm plane wave

.Encircled energy of transverse Field

at axial distanceyz= 18,72 mm
values are here normalised to energy at

plane of maximum ampl1tude

3¢



Encircled energy, arb. units

1.00

ol | |

. EUEU S 1 L C—
3 6 9 12 15 18 21 24 27 30
Transverse position, um

FIGURE [5,17 1 0-6 mm gaussian

Encircled enerq, of transverse fField

at axial distance,z= 10.72 mm

values are here normelised 1o energy ot

plane of maximum ampl1tude



Encircled energy, arb. units

1.00

3 6 9 12 15 18 21 24 27
Transverse position, um

FIGURE [5,18 ] 3-0mm plane wave
Encircled energy of transverse Field
at axial distance,z= 13.3% mm

values are here normalised to energy at

plane of maximum ampl1tude

30



Encircled enerqgy, arb. units

1.00

.60

.70

.60

.20

.49

.30

.20

1

.00

3 6 9 12 15 18 21 24 27
Transverse positions pm .

FIGURE [5,19 ] 3-0mm . gaussian

Encircled energy of transverse Field

at axial distance,z= 13.34 mm
values are here normalised to energy at

plane of maximum amplitude

39



X192
8.03

7,23
6.47 R
5,62 |
4.82 . |

4,02 L

3.21 \
2.41 /

" N A
P ARVARLY T T

-39 -24 -18 -12 -6 @ 6 12 18 24 30
Transverse position, um
-10 /

- N
2~ N / \
EVIRVEL [ \{

T

Amplitude, arb. units

//,
\
%
)

Amplitude, dB
|
S
e
-

-3¢ -24 -18 -1Z2 -6 8 6 12 18 24 30

Transverse position, pm
(b) '

FIGURE [5,20] Transverse Field
. at axial distanceyz= 18.72 mm
(a) linear
(b) logarithmic

0-6mm plane wave



X102
6.00

5,40
1.8@ — D D _
4,20 o

3.6 / J\ 7

3.00

2.40 / \

1.86 / \

1,20 / \

Amplitude, arb. units

.60 / \

T/ N

-3¢ -24 -18 -12 -6 @ 6
Transverse position, um
(a)

-19 / B

1T
-20 _ |

NNA \

A

\
-50

Amplitude, dB

-60)

30 -24 -18 -12 6 8 6
Transverse position, pm
(b)

FIGURE [5,21] Transverse Field
at axial distance,z= 18.72 mm
(a) linear

(b) logarithmic

0-6 mm gaussian



X193
3.86

3.47

3,08

2.78

2.31

/.93

1.54

1.16]

7

Amplitude, arb. units

|
|
|
|
|
|

.39

ST

.00

Lo AT TG

-3¢ -24 -18 -12 -6 @8 6

Iransverse position, um
(a)

12

18

29 30

iy

/\/&V\/\/\/jv1 V

-4

VT |

Ampl1tude, dB

-9

VVV'

-6

+

-3¢ -24 -18 -12 -6 8 6

FIGURE(5, 22

Transverse position, jm
(b)

] Transverse Field
at axial distancesz= 13.34 mm
(a) (1near

(b) logarithmic

3:0 mm plane wave

12

18

24 30



X183
2.89

2.60)
2.311 |
2.02
.74 g
/.45 ;’
1,16 |
87 |
.58 |
29 /

-3¢ -24 -18 -12 -6 @ 6 12 18 24 30

Transverse position, pm
(a)

Amplitude, arb. units

I Y I LAV
\N WV v [ V\V\/v

Amplitude, dB
|
S

!w

-3¢ -24 -18 -12 -6 @ 6 12 18 24 30
Transverse position, Mm '
(b)

FIGURE [5,23] Transverse Field
at axial distance;z= 13.34 mm
(a) linear

(b) logarithmic

3-0mm gaussian



each case of illumination. Well-defined sinc functions are
obtained for the case of uniform incident illumination. Similar
functions are obtained for the case of truncated-Gaussian
illumination, but with the sidelobes significantly reduced, the

first sidelobe being more than 20 dB below the maximum value for
both narrow and broad illumination.

5. 10 Discussion

The focal-shift observed in the above Figures requires some
explanation. Figure [5.24] shows the normalised focal-shift
observed as a function of the width of the truncating aperture,
for both uniform illumination of the aperture and Gaussian
illumination. The curves are exactly the same for both types of
illumination, indicating that the shift depends on the aperture
width only, and not on the amplitude-profile of the beam
illuminating the aperture. However, it might be expected that
Gaussian beams with very weak truncation would display different
characteristics. Such conditions were not investigated. The
results were found to be stable to variations in the sampling
interval within the allowed band of Figure [82], to Qariations
in the number of discrete points at which the lens profile was
specified, to variations in the propagation step and to
variations in the number of samples in the guard-bands . These
checks helped to establish that the results were not artefacts of
the BPM itself.

Focal-shifts have been widely reported in the literature
[15-19]. The key features of the shift are :

(i) that a focal-shift always results in the true focus

being located closer to the lens than the geometrical focus;

(ii) that the shift is largest for small angular apertures,

je for large effective f-numbers.
Both of these characteristics were present in the results
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computed above. The theoretical calculations presented in
references [15-19] were carried out for thin-lenses having
circular symmetry, immersed in air. It might be expected that the
results would be different for thick planar lenses situated on a
high-index substrate, such as the one investigated in the present
chapter. The presence of the edge-rounding region in the geodesic
lens could also influence the focal-field patterns, as has been
observed by van der Donk [14]. However, it is worthwhile to
compare quantitative results with those reported in the
literature. An important number is the so-called Fresnel number
of the aperture, given by:

N, = a’m (5. 45)
Af

when viewed from the geometrical focus. The quantities on the
right-hand side have already been defined in this chapter. The
focal-shift obtained for an aperture 2a of 0.3 mm may be
investigated. The lens is then operating at the fairly large f-
number of £/61.7 . Using £ = 18.5 mm, A = 0.633 ym and n =
2.2065, the Fresnel number of the aperture is then 4.24 . If the
truncated Gaussian case is cons_idered, a Fresnel number N may
also be defined for which a in equation (5.45) is replaced by w,
the Gaussian waist radius. Since w = a in the case considered, N,
=Ny = 4.24 ., Li and Wolf [15] have published universal curves
from which the focal-shift may be estimated from a knowledge of
N,, and N;. For Ny, = 4.24, the focal-shift should be between 6%
and 8% The value obtained in the present case was 20% . If it is
allowed that the Fresnel number of the aperture takes into
account the further 5.0 mm that the wave-field would have to
travel from the aperture to the centre of the thick geodesic
lens, ie if f = 23.5 mm is allowed, then the Fresnel number
becomes 3.34 . In such a case, the focal-shift predicted by Li
and Wolf would be greater than 10% . Furthermore, the percentage
focal-shift obtained using the BPM would then be recalculated,
using f = 23.5 mm, as 15.7% . Saga et al [17] have also published
curves of focal-shift as a function of the truncation ratio a/w
and a parameter P defined by:
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P = kw (5.46)

where k is the wave-number in the material. If f = 23.5 mm is
used in this case, then P = 20.99 . The focal-shift estimated
from the curves of Saga et al would then be approximately 15%.
The results presented for narrower apertures in Figure [5.24]
are, therefore, plausible. At wider apertures the focal-shift is
surprisingly large, being 160 pm for an input beam-width of
3.0mm. If such a shift indeed exists, the implications for lens-

design are quite obwiously disturbing. More work is required to
determine the accuracy of these results.

Parker-Givens [18] has given a physical interpretation of
the reasons for the presence of a focal-shift in the diffracted
field. The distance s from the point of observation on the axis
to different points on the aperture is usually treated as a
constant value, namely the geometrical focus £ , in conventional
theories of diffraction. If the distance s is treated as a
variable, however, the results of the diffraction calculation are
considerably altered, especially at small angular apertures. In
bulk optics, with spherical lenses, the result is that an inverse
square law acts in competition with the constructive interference
caused by the progression of the wavefront to the geometrical

focus, generating a focal-shift.

The BPM generates near-diffraction limited field profiles,
as shown in Figure [5.25]. The theoretical 1/e beam-diameters as
a function of beam-width for both Gaussian and uniform
illumination are plotted, together with the results obtained
using the BPM. An untruncated Gaussian beam having a 1/e-beam-
diameter equal to a uniformly illuminated aperture will generate
a smaller 1/e diffraction spot than the uniformly illuminated
aperture, since the full aperture of the untruncated beam extends
to infinity, theoretically. However, a Gaussian beam truncated at
1/e points equal to the width of a uniformly illuminated aperture
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will generate a wider spot, since the uniformly illuminated
aperture then carries more field energy at the edges of the
aperture. Such behaviour is observed in Figure [5.25].

The final result of this chapter is given in Figure [5.26]
where the evolution of an optical wave-field through the focus of
the spherical geodesic lens with a rounded-edge specified in
chapter two is shown. The incident field was a weakly truncated
Gaussian, 1.0 mm in diameter and the field is focused at a
distance of 50.23 mm from the centre of the lens, in comparison
with the paraxial focus of 50.9 mm calculated in chapter four, a
negative focal-shift thus also being exhibited in this case. The
shift may be beneficial, as the lens suffers from geometrical
aberrations which would tend to move the best focus well beyond

the paraxial value (away from the lens).

5.1 Conclusions

On the evidence of focal fields obtained using the BPM under
a variety of incident conditions, the BPM has been confirmed as a
useful tool in the analysis of inhomogeneous lenses. Negative
focal shifts have been calculated, using the BPM, which are in
moderate agreement with published results. The shifts may be
beneficial in lenses which suffer from positive aberrations, but
would be unattractive for nominally diffraction-limited lenses,
for, although diffraction-limited performance is very nearly
attained in terms of focal spot-sizes and sidelobe levels, the a
priori specification of the focal-length of a lens would be
exceedingly difficult.
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CHAPTER SIX FABRICATION I

WAVEGUIDES AND INHOMOGENEOUS OVERIAY LENSES

6.1 Introduction

Experimental techniques used for fabricating waveguides and
overlay lenses will be reported in this chapter. The substrate
material used was lithium niobate, and ambient waveguides were
formed using the technique of titanium in-diffusion. The material
used for forming the lens was arsenic trisulphide, a high-
refractive-index chalcogenide glass. The important properties of
the substrate, the ambient waveguide and the overlay material
will first be reviewed. The fabrication of planar waveguides and
their observed optical properties will be discussed. Subsequent
modifications of the fabrication environment to allow the
formation of overlay lenses will then be discussed, and measured
lens-profiles will be presented. Finally, an alternative method
of producing overlay lenses will be suggested.

6. 2 Materials

6.2.1 The substrate material

Lithium niobate, LiNbO3, is a uniaxial ferroelectric
crystalline insulator at room temperature with a number of
interesting properties; in combination, these make it perhaps the
most commonly used substrate material in integrated optics. It
has also found widespread use in other fields, for similar
reasons. The ferroelectric property means that the crystal
possesses a net electric dipole moment which is reversible under
an applied electric field. The ferroelectric characteristic is
retained up to a very high temperature , 1L OO¢ (T, the Curie

temperature), which is only! 15°C below the melting point of the
: 67

crysta .;\bove T.s the crystal becomes paraelectric, ie no net
charge then exists in the medium. [1]
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Two grades of crystal are commonly available:

(a) electro-optic, or optical, high-purity
grade which is nearly single domain and is optically
highly homogeneous. This is the most difficult and

therefore most expensive type to manufacture.

(b) acoustic, or transducer grade which is
of lower purity and can have micro-domains at the
surface but which is required to be of good quality in

other respects.

The properties and characteristics of lithium niobate which

make it of importance in modern optics are:

(a) a large negative birefringence at
visible to infra-red wavelengths from 0.4-5.0 um [2];

(b) fairly large absolute values of

refractive index [2];

(c) good transmission properties in the
visible and infra-red regions of the spectrum [2];

(d) a large non-linear optical coefficient,
making the material an excellent one for non-linear
optical investigations such as phase-matched second-
harmonic generation (SHG), sum- and difference-
frequency generation and parametric effects [2,3]. The
phenomenon of optical damage in the material (see
below) is a drawback, however,since optical power
levels must be restricted;

(e) strong piezoelectric surface-wave
properties [4] which renders the material a crucial
choice in many surface acoustic wave (SAW)

applications;
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(f) excellent acoustic properties,
particularly with regard to propagation loss, at
frequencies up to and beyond 1Gz [5,6];

(g) good acousto-optic properties. White et
al [7] have shown that this is largely due to an
indirect effect in which an applied acoustic stress in
the piezoelectric crystal generates an electric field
that in turn causes a change in refractive index
through the electro-optic effect. The direct
photoelastic contribution is relatively small;

(g) high electro-optic coefficients together
with high electrical resistivity which allow for easy
application of and good interaction with modulating
fields, making the crystal excellent for electro-optic

devices [8].

For these reasons, lithium niobate was the substrate

material chosen for most of the investigations reported herein.

A note of caution should be sounded in order to redress what
otherwise seems to be a most favourable balance, for the material
has some deficiencies. The crystal has been observed to suffer
index inhomogeneities (optical damage) at fairly low values of
optical power [9] . This effect is due to the photo-excitation of
electrons in the material which then drift under the influence of
fields internal to the crystal. The drifting causes local index
inhomogeneities through the electro-optic effect. The extra-
ordinary index n, is most stongly affected with a decrease,
albeit reversible, occurring. The effect of optical damage can be
minimised by operating at longer wavelengths. A further problem
is the crystal anisotropy. In some cases, eg mode conversion
experiments in acousto-optics [10], anisotropy presents a
distinctly favourable aspect. However for low f-number lens
applications anisotropy introduces polarization effects that can
require for example that vector field theories be used in
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analysis [11]. Van der Donk [12) found that crystal anisotropy
was not likely to cause significant effects in lenses of moderate
f-number fabricated on LiNbO3, and as such anisotropic effects
were not a major cause of concern in the present study. Vahey et
al have indicated that anisotropic effects could be important
[13] in geodesic lenses with very low f-numbers, especially for
waveguide modes that are well-confined, ie far from cut-off.

6.2.2 The ambient waveguide

The technique of establishing a high-index waveguiding
region on the surface of a lithium niobate substrate by means of
titanium metal indiffusion has been known for over a decade
[14,15]. Other metals such as nickel, vanadium ([14], manganese,
zinc, copper, cobalt, and chromium [16] have been tried but
titanium has generally produced the best results. A thin (200-
1000A) film of titanium is evaporated onto the crystal surface
under vacuum conditions and is then diffused into the crystal by
heating in a high temperature furnace. Conditions of fabrication
can vary quite considerably [15], but to a first approximation
the maximum achievable index change depends only on 4, the
evaporated film thickness, whilst the effective guide depth is
controlled by the diffusion time t and the diffusion temperature
T (which is almost invariably less than the Curie temperature)
[14]. In consequence the most important parameters of the
waveguide are controlled independently, in contrast to the
situation that exists for another well known technique of
fabricating a waveguide on lithium niobate, that of out-diffusing
lithium ions by heating the virgin crystal at elevated

temperatures [17].

The titanium concentration profiles, which determine the
refractive index profiles, resemble complementary-error functions
for short diffusion times and Gaussian functions [18,16] for
longer diffusion times. Commonly used diffusion times are those
for which the metal is just completely in-diffused, or slightly
longer. Much research is still going on into the exact processes

involved in waveguide formation. Other fabrication conditions
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which have been found to bear upon the properties of the

waveguide are:

(a) the ambient gas(es) present during the diffusion

cycle,

(b) the presence or absence of lithium niobate powder
in the diffusion chamber. The powder is thought to
suppress unwanted out-diffusion [19],

and (c) the re-oxidation conditions.

The precise conditions used in the present study will be
reported in a later section. The method produced good planar
guides possessed of low loss and in- and out-of-plane scatter.

The question of obtaining waveguide uniformity will be
discussed later in this chapter, and in chapter eight. It is
extremely difficult to fabricate a uniform waveguide on geodesic
lenses using vacuum deposition. Alternative techniques will be
pointed out which may well obtain greater uniformity though at
the expense of poorer waveguiding; a trade-off has then to be
established. _

Ti:LiNbO3 has been used extensively in integrated optics for
the formation of devices such as directional couplers (20},
switches [21], high bandwidth amplitude and phase modulators of
both the lumped element [22] and travelling-wave [23] types,
gratings [24], fibre- to integrated-optic couplers [25], geodesic
lenses [26,27], acousto-optic modulators and deflectors [10],
integrated optical spectrum analyzers [28,29] and many others.

6.2.3 Material used for the inhomogeneous overlay lens

Amorphous arsenic trisulphide (AsS3) is a non-oxide
chalcogenide which forms one of the most stable of the sulphide
glasses [30]. It is thought to consist of a two-dimensional
network structure with some short-range ordering [31] in the bulk
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state. The short-range ordering is essentially the same as in

crystalline Aszs}

Films of arsenic trisulphide can be produced by rf
sputtering [32] or by thermal evaporation from a resistance-
heated boat [33]. The properties of sputtered films conform
closely to the bulk structure, but the as-evaporated films do not
[34]; for example, the density, characteristic acoustic impedance
and the refractive index are 6-13% lower than the bulk values
[35]. If the films are subsequently annealed, however, the
properties once more approach the bulk vitreous state.

Bulk samples are reddish-brown in colour, whereas evaporated
films fall somewhere between pale yellow and orange, depending on
the film thickness. Arsenic trisulphide is almost insoluble in
water and exhibits a very low hygroscopicity (water absorption)
[30], clearly a very desirable characteristic in a thin film
optical material [36]. The material is soluble however in even
mild alkaline solution and this can be used to fabricate
patterns. Small amounts of hydrogen sulphide are given off in
reaction with alkali. Because of the low solubility in water
arsenic trisulphide is not thought to be acutely poisonous.
However, like other arsenious compounds, it is easily absorbed
through the skin and mucous membranes. Furthermore, under
conditions of elevated temperatures such as can occur in thermal
evaporation chambers, noxious compounds can form and in
consequence reasonable caution has to be exercised when dealing
with the material.

The glass transition temperature, Tg is 4709k [37]. The
melting point of the glass is 483°K [34]). Unannealed films are
easily scratched and can be wiped off the underlying substrate by
rubbing; annealed films are more resilient but must still be

treated with care.
One of the most interesting properties of arsenic
trisulphide (a property shared with some other chalcogenides)

will now be dealt with. The study by De Neufville, Moss and
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Ovshinsky on photo-structural transformations in amorphous
chalcogenide films [34] was extremely important. Each of the main
conclusions of the study triggered off new and useful discoveries
in optical engineering processing and components. The important
optical characteristics of evaporated As,S3 films listed by de
Neufville et al were to have significant consequences for the

present study.

1) Slowly evaporated amorphous films of arsenic
trisulphide differ from the bulk material as mentioned above. If
exposed to radiation from a white-light (eg tungsten source),
the films undergo a structural transformation which may be termed
photo-structural;

2) a similar structural (thermo-structural)
transformation takes place if the evaporated film is annealed at
a temperature approximately equal to the glass transition

temperature, Tg;

3) both of the above changes lead to an irreversible
increase in the refractive index of the films, which attain
values close to that of the bulk material. This optical
-transformation is thought, in both cases, to be associated with a
polymerization of the molecular units as initially deposited,

itself an irreversible structural change;

4) illumination of thermally-annealed films or,
conversely, annealing of illuminated films leads to no further

measurable change in refractive index;

5) the evaporated films, once exposed to either
annealing or illumination, possess optical and structural
properties close to both the bulk samples and to sputtered films
(sputtered films exhibit only weak photo- or thermo- structural
effects);

6) annealed films, if illuminated in the ultra-violet,
exhibit a decrease in the absorption edge energy of approximately
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0.03eV which can be reversed (bleached) by re-annealing. This
reversible effect is called photo-darkening.

Two modes of photo-response were distingushed, therefore, by
De Neufville et al in evaporated arsenic trisulphide films (the
study also concerned itself with films of arsenic triselenide).
One, termed photo-structural, is characterized by changes in both
the position of the optical absorption edge and the value of
refractive index upon illumination. The other photo-effect,
termed photo-darkening, is characterized by a reversible
absorption edge shift.

De Neufville et al also discovered that the chemical
reactivity of As,S3 was enhanced after exposure to illumination.
They observed that exposed films were invariably oxidised even in
vacuums of less than 107° Torr, whilst unexposed films were not.
In a later study, Suhara et al found that exposed Aszs3 was
preferentially etched by the action of mild NaOH solution 1.79
times faster than the unexposed film. This effect was utilised by
them to form waveguide holograms with a diffraction efficiency of
92% [38].

The thermally erasable photo-darkening effect has also been
used to construct waveguide holograms, with a diffraction
efficiency of up to 80% and good homogeneity of phase-relief
[39]. Such a process is characterized by the absence of a
development stage. As,S3 and other chalcogenide materials are
consequently of increasing importance in the field of optical

storage.

Other developments incorporating As,S; in integrated optics
include the fabrication of planar and strip waveguides [32,40],
electro-optic modulators [4l1l], a thin-film acousto-optic
deflector possessing a deflection efficiency of 93% [42] (the
acousto-optic figure-of-merit M2 of As,S; is among the highest of
all materials [43]), an acousto-optic convolver [44], switching
devices [45], fiber-waveguide taper couplers [33], graded index
waveguide Fresnel lenses [46] and micro-gratings [47]. The latter
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two references are particularily interesting, as a further means
of inducing photo-sensitivity was demonstrated. Electron—beam
irradiation was used to cause refractive index changes of up to
4%. Such a procedure is exciting because of the high resolution
and placement accuracy that can be achieved using computer
control. The ultimate line resolution of typical chalcogenide
films is expected to be high, of the order of 10,000 lines/mm.

A possible problem associated with the formation of thin-
films of As,S3 on LiNtO5 substrates is that the thermal expansion
coefficients of the two materials are different. LiNbOj has
anisotropic thermal expansion coefficients a, = 16.7x10'6/°K and
o, = 2x10'6/°K [53] whereas As,S; has a thermal expansion
coefficient of 24.6x107%/°K [37]. The fact that As,S; has a
higher value is undesirable since the result is that the film is
constantly under tension rather than compression. Tension can
lead to cracks and structural weaknesses, and may therefore be a
factor contributing to the high in-plane scattering levels that

are found in these waveguides.

The properties of As,S; that influenced its use in the work
reported herein were: a high refractive index relative to LiNbOg;
high optical transmission at longer visible and infra-red
wavelengths; easy fabrication of thin-films; and the possibility
of tuning the focal characteristics using the photo-sensitive
effects described above.

6.3 Fabrication of planar waveguides

6.3.1 Fabrication of Ti-diffused LiNbO; waveguides

Acoustic-grade LiNbO; was used as the substrate for most
planar waveguide experiments. High-quality substrates were used
for lens fabrication. Y-cut LiNbO3 was almost invariably used,
with optical propagation intended to be in the crystal x-
direction. The rationale behind this choice was that, in
applications where the lenses were to be used as spatial Fourier

transforming elements with the input signal presented as a
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surface acoustic wave, the highest achievable signal fractional
bandwidths would be obtained with the acoustic wave travelling in
the z-direction on a y-cut crystal [48].

Crystal plates as obtained from the manufacturer were 50mm
in diameter and 0.5mm or 1.Omm thick. The crystal z-direction was
indicated by a flat. The plates were optically polished on one y-
face and roughly ground on the other to minimise unwanted
reflections. The plates were sawn into 8mm(z—direction) x 20mm-
40mm (x—direction) substrates which were then checked for cracks
and defects under 40x microscope magnification. Those that
exhibited defects were rejected. Doughty [48], in his work on the
fabrication of the geodesic lenses that were optically
characterised by the present author, prepared several high-
quality LiNbO3 substrates. The procedures used by him produced
substrates which were defect-free under 100x magnification, flat
to within 2 um, and plane-parallel to within 20 seconds of arc.
These substrates were all drawn from one high-purity boule and
had dimensions of 55mm x 1l4mm x 2.95mm, in order to support two
geodesic lenses of diameter 10mm and focal length 185mm. Several
of the substrates were made available to the present author to
allow fabrication of inhomogeneous Luneburg lenses made from

As 253, together with ambient waveguides. -

The substrates were cleaned prior to waveguide formation
using a procedure standard to the Clean Room of the Department of
Electronics and Engineering at the University of Glasgow. The
procedure has been proved adequate to the preparation of
substrates for the fabrication of stripe waveguides, a
considerably more demanding task than that of producing planar
waveguides. The procedure is as follows:

l. Immerse sample in trichloroethylene and agitate
ultrasonically for 10 minutes.

2. Rinse off trichloroethylene by immersing sample in
methanol. Agitate ultrasonically for 1 minute.
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3. Immerse sample in clean methanol and agitate

ultrasonically for 10 minutes.

4. Immerse sample in acetone and agitate ultrasonically for

10 minutes.

5. Immerse sample in 5% DECON 90 solution and agitate
ultrasonically for 10 minutes.

6. Immerse sample in acetone and agitate ultrasonically for

20 minutes.

7. Immerse sample in methanol and agitate ultrasonically for
5 minutes.

The samples were not allowed to dry between any of the above
stages as it has been found that contamination can often take
place as a result. After stage 7 the samples were rinsed in
distilled water, blown dry and placed in the high-vacuum
evaporation system used for depositing titanium metal films.
Titanium was then evaporated using an electron gun source and
deposited onto the substrate, at a vacuum of 1 x 1072 Torr. The

deposited film thickness was monitored using a calibrated quartz
crystal monitor. Typical thicknesses required to produce a single
mode waveguide were 18.0nm to 25.0nm, depending on subsequent
diffusion conditions. Some substrates had thicker films deposited
on them, in order to allow multi-moded waveguides to be studied.
The deposited metal film thickness was checked after deposition
by a Talystep stylus instrument. |

The procedure for diffusing the titanium metal into the

LiNbO3 substrate has varied considerably among different groups

of workers [49,50,19,14]. The degree of in-plane scattering was
of particular importance in the present study since scattering
degrades the focal intensity pattern produced by a 1lens.
Scattering has several causes, notably the surface roughness at
the waveguide interfaces, especially the air/gquide interface;
defects or impurities associated with the bulk crystal; and
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defects introduced during, or associated with, the waveguide
fabrication process. The first two problems can be minimised by
polishing and selecting high-purity material respectively. The
latter problem was dealt with in this study by investigating
three reported techniques and selecting the most favourable one.

Three techniques which have been reported are:

(i) diffusion of the Ti layer in the presence of congruent
LiNbO3 powder in a closed tube [19]. This technique is thought to
suppress the out-diffusion of Li,O which can take place at
elevated temperatures. Out-diffused Li0 can cause parasitical
waveguiding effects which interfere with the operation of stripe'

guides, for example;

(1i) diffusion of the Ti layer in a flowing atmosphere of
inert gas (usually argon) in an attempt to prevent oxidation of
the Ti layer. Cooling subsequently takes place in oxygen gas in
order to re-oxidise the LiNbO3 [25]. This technique is thought to
reduce susceptibility to optical damage;

(1ii) diffusion of the Ti layer in a flowing air or oxygen
atmosphere, -in order to inhibit the precipitation of LiNb308
which can act as a local scattering centre [49]. The formation of
LiNb3Og is inhibited when indiffusion is performed in a wet
atmosphere [56].

Application of the first technique typically involved a ten
hour diffusion time at 1000°C. The second involved a nine hour
diffusion in a flowing, wet argon atmosphere at 1000°C, followed
by flushing for 2 minutes in dry argon and finally a further one
hour diffusion in dry oxygen. The third technique was similar to
the second except that wet air or oxygen was used throughout the

diffusion.
Results obtained under nominally identical conditions, in
terms of initial Ti thickness, diffusion time and temperature,

consistently showed that the first technique was the most
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unfavourable. Prism-coupled m-lines using this technique
displayed considerable scattering with poor angular confinement
of the propagating modes. The other two techniques displayed good
confinement and had little to choose between them. The inert gas
technique was chosen for convenience as it had found favour with
other workers in the department. Figure [6.1] shows a typical m-
line intensity scan obtained in the far-field from a waveguide

fabricated using the inert gas technique. The light level at 10

relative to the peak is -31dB. Vahey [51] has reported -40dB at
1°,

No attempt was made to measure the attenuation of these

waveguides though no more than 2dB/cm was expected.

6.3.2 Arsenic Trisulphide Waveguides

6.3.2.1 Fabrication

The fabrication system and conditions used in the formation
of thin-film planar waveguides of As,S3 in the present study were
those described by Stewart et al [33]. After preparation of the
substrates in the fashion described in section 6.3.1, films of
As 253 were thermally evaporated from a tantalum enclosed-crucible
source. The bulk material had been stored in dark conditions to
prevent any unwanted photostructural effects. The films were
thermally annealed after deposition. The values of important
parameters in the deposition and annealing processes are
summarised in Table [6&1l]. An optica"l*"‘ thickness monitor was used
to control the deposited film thickness to an accuracy of 10 nm.
The monitor was also capable of detecting changes in film
homogeneity dur ing deposition. The operation of the monitor is
described in detail in reference ([33].

6.3.2.2 Evaluation

After annealing in a dry nitrogen atmosphere for 50 minutes,
the system was allowed to cool for 24 hours before the samples
were removed. Annealed films were found to be much stronger and
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harder than un-annealed films, which could be wiped off the
substrates with vigorous rubbing. Scotch-tape adhesion tests
revealed however that even the annealed films could be peeled off
both glass and LiNbO; substrates. '

The thickness of deposited films was measured, post-
fabrication, using Talystep, ellipsometry and waveguiding
techniques. The latter two methods were also used to measure the
refractive indices of the films, although ellipsometry techniques
were not particularily sensitive in this respect. The thickness
measurements showed good correspondence with each other. The
refractive indices of the annealed films averaged 2.596 at a
wavelength of 633nm, with a small standard deviation of +/-
0.008 .

A decrease in film thickness was found to occur as a result
of the annealing process; for example, a film measuring 574nm
before annealing was found to be 556nm thick after annealing.
Assuming that such a change is purely due to an increase in film
density rather than a result of partial re-evaporation, the

corresponding increase in film density is 3.2% .

6.3.2.3 Optical evaluation

As oS3 waveguides produced considerably higher levels of
scattered light than did Ti:LiNbO3 waveguides. This is evident
from Figure [6.2] which shows contour plots of the scattered
light intensity in the far-field for m-lines coupled out from
both types of waveguide using a prism. The mode-line from the Ti-
diffused waveguide is well-confined, whereas the mode-line(s)
from the As,S5 waveguide are heavily scattered. Furthermore,
parasitical ocoupling of energy into other modes of the waveguide

is evident.

A typical far-field scan of a TE; mode obtained from a 920nm
thick waveguide at a wavelength of 633nm is shown in Figure
[6.3]. The amount of scattered light is clearly considerable. At
1° off-axis the intensity level with respect to the peak value is
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-10.7dB . At 2° a local peak displays an intensity level of -
8.6dB, and at 3° the intensity is still only -16.1dB. Further
evidence of high scatter levels in As,S3 waveguides is presented
in Figure [6.4]. These photographs show the prism-coupled far-
field mode lines observed for a film 743nm thick, at two
wavelengths. Photographs (a) and (b) of the figure were taken at
633nm, whereas photographs (c) and (d) were taken at 1150nm. The
scattering levels are very high in (a) and (b) and, furthermore,
a great deal of energy is being transferred to modes other than
the one being excited at the input prism-coupler. At 1150nm
photographs (c) and (d) show that the level of scattering is much
reduced. No coupling of energy into parasitical modes was
observed either, though the film was capable of supporting two
modes at this wavelength. Improved performance of these
waveguides at the longer wavelength was consistently observed.
The length of the 'streak' arising from out-of-plane scattered
light in the waveguide was rarely longer than 20cm at 633nm and
fell much below l.0cm for very thin waveguides. Using Tien's
method of estimating waveguide attenuation according to the
sensitivity of the eye [54], such figures indicate losses of
between lﬁ?éﬂsiggmﬂdB/m. Measurements made using a Hamamatsu
TV intensitypunder magnification indicated that losses of greater
than 45dB/cm occurred for unannealed films. At longer wavelengths
the scatter streaks lengthened considerably and rarely failed to
propagate right to the end of the waveguide. The best loss
measurement obtained at a wavelength of 633nm was for a 1200nm
thick film deposited onto a glass waveguide. The peak intensity
variation as a function of the distance separating two prisms on
the waveguide is shown in Figure ([6.5]. A total loss of 7.55dB/cm

is observed.

Photo-refractive damage occurred at a wavelength of 633nm.
Figures [6.6] and [6.7] show the effects of optical damage on the
TEy mode, imaged onto a Hamamatsu camera and image-acquisition
system. A three-to-four minute interval separated the acquisition
of the two images. Before the second image could be acquired, the
input prism-coupling angle had to be re-adjusted to optimise
coupling of the mode, as indicated by the shift of the peak. Such
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FIGURE [6,2] Contour plots of scaftered light

intensity in output m-lines
(8) Ti- diffused waveguide

(b) AsZS3 thin-film wavequide
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a re-adjustment indicated that the refractive index of the
waveguide had increased.

Films thicker than approximately 2500nm showed signs of
'bloaming’'- the films took on a milky grey hue- indicating that
homogeneous growth is impossible at these thicknesses. Such films
were not capable of guiding light waves. |

6.4 Fabrication of inhomogeneous overlay lenses

6.4.1 Deposition of lenses

Two masks were used to fabricate inhomogeneous overlay
lenses. One mask, designated the profile mask, was intended to
shape the deposited thin-film to a profile corresponding as
closely as possible to the Luneburg lens design profile desired.
The Luneburg lens profiles were given in chapter two. The theory
governing the aperture and placement of the profile mask was
presented in chapter three. A second mask, designated the edge-
definition mask, was intended to make fine adjustments to the
edge-profile of the deposited lens. It was to be situated
adjacent to the substrate and had an aperture diameter
approximately equal to the desired lens diameter. Several masks
of different aperture diameters were constructed to meet the

design criteria for different lenses.

A photograph of the shadow-masking system is shown in Figure
[6.8]. The support jig and masks were both of stainless steel
construction. One leg of the support jig was gradated and
threaded in order to facilitate mask placement. The masks were
secured by screws to movable supports. These supports were
secured to the threaded leg by two ring-bolts. The mask
positioning accuracy was estimated to be approximately 0.5mm .
Both profile and edge-definition masks were tapered to ensure

that they acted as thin masks of the type investigated in chapter

three.
The geometry of the experimental evaporation system is shown
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in Figure [6.9]. A tantalum crucible (of the enclosed type, to
prevent spitting) contained the As 553 powder. The As oS 3 powder

was stored in side-compartments of the crucible, to prevent the
target substrate directly 'seeing' the source. A shutter situated
just above the source was used to expose the substrates to the
molecular flux. After the films were deposited the test
substrates were transferred to a heater for thermal annealing.

The thickness control and monitoring system used in the
arrangement of Figure [6.9] was far from ideal. An optical
thickness monitor had been used to monitor the fabrication of
planar waveguides at a constant source-to-substrate distance of
200.0mm . It was found impossible to utilize the optical monitor
in the fabrication of overlay lenses, since the shadow masks
prevented the optical beam from impinging upon the target
substrate. Furthermore, the wide spread of experimental
conditions under which the lenses were subsequently to be
fabricated would have necessitated considerable effort in
calibrating the system. A quartz crystal thickness monitor was
used instead. The profile mask had two additional openings one of
which permitted the crystal thickness monitor to 'see' the A<5253
source, and another which supported a cover slip that was later
used as a check on the deposited film thickness. Both crystal and
cover-slip were calibrated against samples lying on the edge-
definition mask. The edge of a second cover-slip was used to
define a sharp edge on the sample that could later be measured

with a Talystep.

An alternative method of controlling the film thickness was
to determine the rate of deposition under controlled deposition
conditions. Considerable information on the deposition rate was

available from the experiments carried out on planar waveguides.

6.4.2 Measurement of fabricated profiles

A Talystep instrument adapted to operate in a long-range
profile scanning mode was used to measure the profiles of as-
fabricated lenses. The Talystep had a maximum traverse of 2.5mm
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only, and was therefore of limited use in measuring entire
profiles of large diameter lenses. It was mainly used to scan the

edge-profiles of the lenses.

Figure [6.10] shows the experimental thickness profile of a
relatively weak lens having a diameter of 2.0mm and a paraxial
focal length of 29mm. The corresponding theoretical profile of
the perfect Luneburg lens is also shown. The experimental lens
was fabricated on a glass substrate, with the lens and waveguide
both made from As,S3 It was shown in chapter two that the use of
the same material for waveguide and lens could lead to
considerable gains on the tolerances required to produce a lens
of a given f-number. Lenses with long focal lengths could then be
fabricated. The profiles were well matched in the central region.
The overall profile was not unlike the profiles predicted in
chapter three, except for the taper at the edge. An edge-
definition mask had not been introduced into the system at this
stage.

Lenses produced using the Ti:LiNbOj - As;S; combination were

much more difficult to fabricate due to the tolerances involved.
As was shown in chapters two and three only lenses of small f-
number were feasible and these required small source-to-substrate
and source-to-mask distances. The problems involved in thickness
control then became considerable. It was decided to fabricate
some lens profiles on a largely empirical, trial-and-error basis,
at longer distances than those prescribed by the shadow-masking
theory. Figure [6.11] (a) and (b) show a complete lens profile
and edge scan obtained under such conditions. The profile was
obtained using a stylus-operated computer-controlled Tencor
profileometer which had a maximum traverse of 6.5mm. The profile
theoretically required is also shown in the Figure. A well-
controlled centre thickness of 1850nm was obtained with this lens
due to fabrication at a source-to-substrate distance of 50mm,
with the shadow-mask situated at 12.0mm form the source. The
overall profile of the lens fabricated, however, was flatter

than required, as expected from the distances involved.
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Attempts to fabricate overlay lenses by reducing the
distances between source, profile-mask and substrate to those
given in chapter three met with ho success. Even very short
exposures of the substrate to the source resulted in very thick

coatings of the substrate with AspS3s SO that the desired
profiles were never realized. Such a failure may be easily
understood by referring to Table [6.1], where a typical film-
deposition rate of 3 nm/sec is quoted for a source-to-substrate
distance of 200mm. If a simple inverse-square-rule is assumed to
apply, the corresponding film deposition-rate at a source-~to-
substrate distance of 18.4mm ( required for fabricating an f/2
lens of 8mm diameter) is 355 nm/sec. Thus, even a ten second
exposure would cause 3550 nm to be deposited at the lens centre.
An exposure of approximately a half-second would be required to
deposit only 185 nm of film, the required thickness at the
centre. Even with slower deposition rates the problems were found
to be unsurmountable.

Busch et al [55], using the same materials combination and
similar fabrication conditions, have reported better results than
those reported herein. Better overall profile control was
‘maintained, together with good thickness control. The reasons are
two-fold:

1) the crucible used by Busch et al was 18.5mm in diameter
compared to the 6.25mm used in the present experiments, and was
essentially of the knife-edge type, ie it had virtually no depth.
Such a crucible would allow much greater variation of the source-
area 'seen' by different points on the substrate, at longer
source-to—substrate and source-to-mask distances, thus allowing

easier monitoring and better control;

2) the As,S3 films deposited by Busch et al were not

thermally annealed. As such the refractive index was
approximately 2.44, compared to the refractive index of
approximately 2.6 obtained in the present experiments. The
lowering of the refractive index allows lenses of larger f-number
to be fabricated, as observed in chapter three. larger f-number
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lenses imply flatter lens pfofiles, which again imply longer
source-to-substrate distances.

The absence of a thermal annealing stage would likely have
led to both physical and optical instabilty of the films, though
this was not mentioned by Busch et al. Deliberate photo-annealing
was used by them to modify the focal characteristics of the
deposited lenses. Such a technique does seem, therefore, to have
advantages, although serious questions about the propagation
losses, optical stability and mechanical ruggedness of unannealed
films remain.

An alternative technique for the manufacture overlay lenses
may be to abandon hopes of using the variation of deposited
thickness naturally obtained at short source/target distances,
and to modify the deposited thickness in other ways. For example
a long source-to-substrate distance could be used to obtain a
more-or-less uniform deposited film in the absence of a masking
aperture. An aperture with a variable diameter, iz an iris, could
then be introduced as closely as possible to the substrate. The
iris diameter could then be controlled by a computer-driven motor
such that true Luneburg profiles could be obtained. An extremely
slow, uniform rate of deposition would be probably e required.
Detailed calculations on the use of this technique remain to be

carried out.

6.5 Conclusions

The lens-profile design criteria established in chapter two
and the investigation into vacuum-evaporation in a simple shadow-
masking environment presented in chapter three predicted that the
accurate formation of inhomogeneous overlay lenses of the
Luneburg type would be extremely difficult, for the A8253 on
Ti:LiNpO3 combination. Attempts at fabricating such lenses have
been reported in this chapter, and the theoretical predictions
have been confirmed. It seems impossible to control
simultaneously the absolute deposited film thickness and the
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profile shape, given the small source-to-substrate and source-to-
mask distances required. Although true Luneburg lenses were not
obtained, lenses were fabricated and measured. The optical
performance of fabricated Luneburg lenses will be reported in
chapter eight. An alternative technique for producing Luneburg
overlay lenses was proposed. A further problem with the use of
As,S3 as an overlay material was the very high level of light-

scattering and waveguide loss observed.
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CHAPTER SEVEN

WAYEGUIDE UNIFORMITY



 CHAPTER SEVEN FABRICATION II

GEODESIC LENS WAVEGUIDES

7.1 Introduction

The geodesic lenses used in the present study were
fabricated by G.F. Doughty et al to function as collimation and
Fourier-transforming elements in an integrated optical spectrum
analyser (IOSA) [1] . Doughty [2] reported on many aspects of
design and fabrication of integrated optical geodesic lenses.
Singh [3] investigated the scatteting properties of the Ti-
diffused waveguides which were to guide light in both the planar
and lens regions of the IOSA. However Singh's work was largely
confined to planar waveguides. This chapter will briefly discuss
the problem of obtaining uniformity of Ti-diffused waveguides
situated 1n the lenses themselves. Theoretical calculations
performed by the author indicate that the problem of achieving
waveguide uniformity, which has been largely ignored in the
literature, 1is a significant one that is likely to cause a
degradation 1n lens performance. Alternative waveguide

technologies will be proposed which should improve uniformity.
7.2 Factors affecting transmission through lenses

Vahey et al [4] have pointed out that aberrations are not
the only phenomena that can affect lens performance in integrated
optics applications. Aberrations are essentially phase—front
distortions. However the amplitude profile of a wave-field
propagating through a lens can also be distorted in ways that may
or may not be favourable for the optical properties of the lens.
It was observed in chapter five that a beam with a truncated
Gaussian amplitude profile propagates much more smoothly in a
lens than a single truncated plane-wave, resulting in improved
focal plane characteristics, particularly in terms of sidelobe

levels. A beneficial shaping of the beam may equivalently be
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carried out by controlling the transmission function of the lens
itself, a process known as apodisation. In integrated optical
geodesic lenses fabricated on anisotropic substrates two
mechanisms can be identified which affect the lens transmission
properties [4] :

(1) Anisotropy, in the form of birefringence, can give

rise to leaky modes which cause power loss. Birefringence in a
curved anisotropic substrate is a function of position, as well
as direction. lLeaky modes arise as a result of coupling between
TE and TM polarizations in non-axial propagation directions. In
y-cut LiNbO3 high propagation loss can occur for the TE
polarization, as shown by Sheem and co-workers [5].

(11) The curvature of the substrate leads to radiation

loss associated with the bending of the waveguide across the
lens. In aspheric lenses the curvature is a position-dependent

function.

Using a simple model, Vahey et al found that leaky-mode
losses are dominant in cases of good field confinement, far from
cut-off. The losses are reasonably small in such cases, of the
order of 3db/cm to 7db/cm. Leaky-mode loss becomes small for
propagating modes approaching cut-off. Lenses with low f-numbers
experience greater leaky-mode losses than those with high f-
numbers, as would be expected since significant portions of the
wave-field then propagate in directions far from the axis. For
the same reason, 1leaky-mode losses are lowest for light
propagating through the centre of the lens and highest at the
margins. The net spatial distribution of the losses is such that
their effect 1s beneficial to lens operation, with the focal

side-lobe intensity being reduced.

On the other hand, losses associated with curvature were
large and dominant 1in cases of poor field confinement, with the
fundamental mode close to cut-off. With good field confinement,
far from cut-off, curvature losses become very small. Losses due

to curvature are greatest for light travelling through the centre
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of the lens and smallest for light traversing the marginal parts
of the lens. If curvature losses are large, the performance of
the lens may be severely degraded as the losses cause an increase
in sidelobe intensity.

The transmission functions of geodesic lenses manufactured
in LiNbO; substrates are, therefore, non-uniform and complicated
owing to the influence of curvature and anisotropy, both of which
are non—uniform, position—dependent functions.

The curvature of the substrate also gives rise to non-
uniformity in Ti-diffused waveguides. Non-uniformity may then be
a third mechanism affecting the amplitude transmission function
of geodesic lenses. Furthermore, non-uniformity may also give
rise to phase-distortions. The degree of non-uniformity of
titanium films on geodesic lens substrates is investigated in the

following section.
7.3 Profiles of films deposited on geodesic lenses

It was shown in chapter three that a directed-surface source
was a good approximation to the type of source used 1n vacuum
evaporation chambers. As the name implies, such a source has
directional emission properties. The thickness of film material
deposited on a target surface is then a function of the source
emission properties and the spatial orientation of the surface.
It would be expected that thin-films deposited on geodesic lenses
having strongly curved profiles would exhibit a considerable

variation of thickness over the profiles.

A simple geodesic lens to analyse in terms of deposited
film uniformity is a lens possessing a spherical inner geometry
and a toroidal rounded-edge to bridge between the inner region
and the ambient, planar waveguide. Such a lens 1is easily
described analytically, and has previously been described in this
thesis. A diagram of the generating curve of such a lens is
shown in Figure [7.1] . The inner region has a radius of

curvature Rg and the toroidal region has a radius of curvature a.
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The dimensions and position of the toroidal region are chosen so
that the tangents at the intersection points with both the planar
substrate and the inner lens are matched. The profile may then be
described as-a smooth function of the axial coordinate r. The
first derivative of the generating curve is also shown in Figure
[7.1]. It 1s evident that the first derivative function is not
smooth. The four intersection points on the profile are cusps,

separating regions having distinctly different gradient.

In many applications the substrate is required to support
two lenses, one for collimation and another for Fourier
transforming purposes. Vacuum evaporation units used for
deposition of thin films onto such substrates are often
unsophisticated, and the positon of substrate and source often
has to be held constant throughout deposition. The procedure
adopted to obtain a degree of uniformity in such a case is to
make the source-to-substrate distance as large as possible, and
to position the substrate so that the lenses are symmetrically
aligned with respect to the source. Just how uniform a film is
deposited may be investigated using the concept of the directed-

surface source.

The geometry of the system is shown in Figure [7.2]. A
directed-surface source emits an amount of evaporated material in
a given direction which depends on the variable ©. The source is
parallel with the horizontal axis and with the planar portion of
the substrate. The deepest point of the lens lies on the
horizontal axis and the profile function, including the planar
portion, may be described by a function z(r). The thickness
variation along one axis only 1s therefore being considered. The
planar portion of the substrate 1s situated a distance z, from

p
the axis, and the source is situated a distance z, from the

origin.

The directed-surface source causes a spatial distribution of
deposited film thickness on the surface z(r). At a typical point
vauch as shown in Figure [7.2] the thickness is given by
On'ﬁu.cazﬂax se ctiom
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t(r) = k cos ©(r) cos @(r) (7.1)
| R%(r)

where a line drawn between the source and P defines the direction
of emission, © is the angle between the source normal and the
direction of emission, ¢ is the angle between the surface normal
and the direction of emission and R is the distance between
source and substrate along the direction of emission. Equation
(7.1) was previously encountered in chapter three and is known as
Knudsen's cosine law of emission. k 1s a constant factor under
conditions of source equilibrium. At the point on the substrate
directly below the source, the deposited thickness obtains 1ts

maximum value and is given by

t. =k (7.2)

The deposited thickness at the other points on the surface may be

normalised to the maximum value:

2 (7.3)

t' = t/t, = cos © cos @ R,
R2

The variables R and © are defined 1in terms of the known

quantities z(r), r , and Z5t

cos © = cos(tan-l r (7.4)
zo—z(r)

and

2 _ 2

RZ = (z,-2(r))? + (7.5)

The remaining variable ¢ may be determined by the same quantities
and the first derivative of the profile. In Figure [7.2] the
tangent to the lens at point P is shown intersecting the

horizontal axis at an angle § . The magnitude of this angle 1s

given by :
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8] = tan'l(}d_z) (7.6)
dr

The angles that make up triangle WXY define ¢:
g=0+0 (7.7)

The relationship (7.7) will hold for all points with negative
slope, ie for points between the origin and the centre of the
lens. For points with positive slope the magnitude of ¢ is given
by

Ig|= e - 6| (7.8)

Substituting for 8 according to (7.4) and for 8 according to
(7.6), the expression for ¢ becomes
- -1 -1
Sb—tan ( r ) + tan ~( dz ) (7.9)

26=2 (r) dr

Formulae (7.1) to (7.9) apply to any geodesic lens
substrate, whether of spherical or aspheric geometry. At large
source-to-substrate distances , R and © vary slowly as a function
of r. The variable 95 then exerts the strongest influence on the
deposited thickness. The behaviour of ¢ for a spherical geometry
lens may be determined by considering the nine points A-I in
Figure [7.2]. The surface normals are shown for convenience at

each of the points.

The behaviour of ¢ is sketched in Figure [7.2]. At points A
and I corresponding to typical points on the plane surface of the
substrate, and at point D at the centre of the lens, the first
derivative of the function is zero, and § = © as a result. ¢
behaves as the inverse tangent function with respect to r in
these areas. Point B is the first point of intersection between
the plane and the toroidal rounded-edge. Due to the behaviour of

the first derivative at this point, as seen in Figure [7.1], a
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cusp occurs in the function ¢ .As the point of interest P moves
from B to the point of 1intersection C between the toroidal
rounded-edge and the inner portion of the lens, ¢ increases,
reaching a maximum at C. A second cusp occurs at C and o begins
to decrease thereafter. ¢ is non-zero at the centre of the lens
but eventually becomes zero at point E where the surface normal
and the direction of emission coincide. ¢ begins to rise again
beyond E until a second maximum occurs at point F, where the
inner portion of the lens and the toroidal rounded-edge agailn
intersect. This maximum 1s again a cusp, following the behaviour
of the first derivative of the profile function. Beyond point F ¢
decreases, reaching zero again at point G. ¢ increases thereafter
until the final cusp at H occurs. The function ¢ then resumes

inverse tangent behaviour.

The variation of ¢ as described above is reflected in the
variation of deposited film thickness on geodesic lenses. Figures
[7.3] and [7.4] show the thickness variation across the spherical
lens with toroidal edge-rounding shown in chapter two. The lens
diameter is 10.462 mm and the centre of the lens is situated at
an offset distance from the point directly below the source, a

situation likely to occur when two lenses are present on one

waveguide. In Figure [7.3] the offset distance is 10.0 mm. Three
curves are plotted in Figure [7.3], calculated for source-to-
substrate distances of 49.12 mm, 99.12 mm and 199.12 mm. The
behaviour of each curve is closely related to the behaviour of
the curve previously shown in Figure [7.2]. The most extreme
behaviour is, as expected, manifested by the curve calculated for
the shortest source-to—substrate distance and may be considered
in detail. At the edge of the lens, closest to the point directly
below the source, the film thickness falls to 98% of its maximum
value. The thickness then rapidly falls to under 90% of its
maximum value over the toroidal edge-rounding region and then
settles again, changing very slowly over the major portion of the
lens. A small increase in thickness occurs as the toroidal region
is encountered a second time, until the substrate normal points
directly towards the source. Beyond this point, the thickness

rapidly falls off, down to 84% of its maximum value until the
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FIGURE [7,3]
Film deposition thickness on LiNb03 substrate

incorporating spherical geodesic lens

Lens parameters:

Focal length= 52.3mm

Full aperture= 10,462mm; useful aperture= 4.0mm
Deposition parameters:

source to substrate distances= z mm

horiz. distance From source to lens centre= 10.00 mm
ASSUMPTIONS: directed surface source

sticking coefficient of unity
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Film deposition thickness on Li1NbO3 substrate
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ambient planar substrate is encountered, at which point the rate
of change of thickness as a function of position across the
substrate decreases.

For source-to-substrate distances of 99.12 mm and 199.12 mm
the behaviour is similar to the 49.12 mm case, except that the
deposited thickness actually increases as a function of distance
from the point directly under the source, over large portions of
the inner section of the lens. A greater degree of uniformity is
obtained for larger source-to-substrate distances, as would be
expected, but a maximum variation of 6% 1s still obtained for the
199.12 mm case. The rate of change of thickness in local areas is
also quite substantial, even for large source-to-substrate

distances.

The calculations were repeated for a larger lens offset
distance of 15.0 mm. The results are shown in Figure [7.4].
Qualitatively similar behaviour to that of Figure [7.3] is
obtained , though the actual variation in deposited film
thickness over the substrate is larger. Again, more-or-less
'flat' thickness profiles are obtained over the inner portion of
the spherical lens Qith toroidal edge-rounding.

'Flat' behaviour is certainly not obtained, however, over
aspheric geodesic lenses such as were specified in chapter two.
The curvature variation of the aspheric lenses is much stronger
than that of lenses based on spherical geometry, and this is
reflected in the variation of deposited film thickness. Figures
[7.5] and [7.6] show deposited thickness curves calculated for
the aspheric geodesic lens investigated by Doughty [2] and the
present author under similar conditions to those used for Figures
[7.3] and [7.4]. The deposited film profiles are considerably
different from those of the spherical lens with edge-rounding. At
a source-to-substrate distance of 48.69 mm and for a centre-
offset distance of 10.0 mm, the deposited thickness falls to
below 75% of the maximum value at the first boundary between the
edge-rounding region and the inner lens. For the same source-to-

substrate distance, and an offset distance of 15.0 mm the minimum
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FIGURE [7,6]
Film deposition thickness on LiNbO3 substrate

incorporating Sottini geodesic lens
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Focal length= 18.5mm
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deposited thickness falls below 65% Even for a long source-to-

substrate distance of 198.69 mm, the minimum thickness is only 82%
for an offset distance of 10.0Amm, and less than 80% for an

offest distance of 15.0 mm. Furthermore, the rate of change of

deposited thickness across the lens is complicated.

The consequences of such deposited film profile behaviour
for the optical performance of these lenses are difficult to
ascertailn precisely. Only the profile variation along a
meridional curve has been calculated, though the variation at
other points could also be calculated relatively easily. It would
then be possible, presumably, to transform the variation of
thickness over the lens into an equivalent effective refractive
index perturbation which could be incorporated in ray-tracing or
BPM calculations. Without going into such detail, however, it is

still possible to make some general observations.

1) The optical path length of rays traversing the lens would
be perturbed by the effective index variation arising from the
deposited thickness variation. The focal characteristics would be
affected by these perturbations of phase. To what extent they
would be affected remains to be determined, though one might
expect the effects to be small since the refractive index change
induced by the titanium diffusion process 1s small anyway.

2) If the cusps in the thickness profile were to manifest
themselves in the refractive index profile after diffusion (which
is, perhaps, unlikely) discontinuities would occur in the first
derivative of the refractive index function. In these areas

strong and unpredictable refraction would probably occur.

3) The film thickness variations could result in the
waveguide falling below cut-off in certain areas, if the
waveguide at the point of maximum thickness is not very far into

the single-mode regime.

4) The thickness variation could lead to losses within the

lens.
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If all_the above observations are valid, waveguide non-
uniformity would be expected to introduce both amplitude- and
phase—distortions into the propagating optical field.

Experimental confirmation of the theoretical results would
be desirable. Improved uniformity of deposition could possibly be
obtained using well-established thin-film techniques such as
rotation of one, or both, of the substrate and the source; the
use of two or more simultaneous sources; or the use of sources
shaped such that the source curvature would complement the
curvature of the lenses. All such solutions would require quite
complicated mathematical analyses, and simpler solutions based on
alternative waveguide technologies that do not involve
evaporation or sputtering might be desirable. One such technology
would be the LiO, high-temperature out-diffusion technique
mentioned in chapter six. This technique, unfortunately, creates
- very deep optical waveguides which are not compatible with
surface acoustic waves such as are used in the IOSA. A better
solution might be the recently-developed technique of proton-
exchange. Very recent results indicate that proton—exchange using
dilute melts may be capable of superior performance to titanium-
diffusion as a method of fabricating waveguides, with 0.5-
1.5dB/cm losses, —-40dB levels of in-plane scatter at 0.5° and
high resistance to optical damage being reported [6]. The
refractive index change obtained with the proton-exchange process
is high, however, and this would complicate matters in geodesic
lenses, since the focusing mechanism could no 1longer be
considered to arise purely from the geometrical, rather than

optical profile.
7.4 Conclusions

It has been suggested in this chapter that the problem of
obtaining waveguide uniformity be added to the problems of
anisotropy and curvature-loss in the study of factors affecting

the optical performance of geodesic lenses.
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Whilst occassional comments on this subject have been made
in the literature of geodesic lenses, no work has been published
of either a theoretical or experimental nature. One suspects that
the assumption that reasonable uniformity is obtained at large
source-to-substrate distances is a widely-held one, although the
present work shows that assumption to be manifestly false. The
lack of uniformity in the deposited thickness profile which would
be expected to appear in the diffused profile also (to a lesser
extent) would be undesirable in itself; but the rapid variation
of the thickness in certain areas of the profile could

considerably worsen the optical performance of these lenses.
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CHAPTER EIGHT

OPTICAL EXPERIMENTS

8.1 Experimental objectives

Having investigated various problems concerning the design,
analysis and fabrication of inhomogeneous integrated optical
lenses, the ultimate test is to determine how the fabricated
lenses perform under a variety of experimental conditions. No
single number characterizes the 'quality' of a lens. Several
tests are required to establish the suitability of a lens for the
tasks 1t will be required to perform. Integrated optical lenses
are usually required to perform well in the back-focal-plane as
opposed to providing good imaging at a given magnification.
Attention may therefore be confined to the Gaussian image region
of a single point. In terms of geometric aberrations, defocus and
spherical aberrations are the quantities of interest. From the
point of view of physical optics, (incorporating wave aberration
and diffraction phenomena) image spot dimensions, sidelobe
levels, sidelobe decay, image symmetry and scattering levels are

important quantities.
Four lens systems were available for investigation, viz.
(i) a spherical geodesic lens having a toroidal edge-
rounding region bridging the inner portion of the lens and the
ambient waveguide;

(i1) an overlay Luneburg lens;

(iii) a single aspheric geodesic lens of equivalent

Luneburg lens design;

and (iv) a two-lens aspheric geodesic system expected to

form the basis for an integrated optical radio-frequency spectrum
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analyzer [19].

The objectives of the experiments were to master and, if
possible, to improve upon techniques for optical characterisation
of these lenses, to use these techniques to characterise each
type of lens, and thereby to form a judgement, based on optical

criteria alone, on the relative merits of each system.
8.2 Lenses selected for study

The physical characteristics of the four lens systems will
now be dealt with in turn. In order to evaluate the performance
of fabricated lenses representative of the several types dealt
with in this thesis, a broad initial characterisation waé carried
out to establish those lenses that were likely to yield best
results. If, for example, excessive in- or out- of plane
scattering levels were detected in the lenses or 1in the
surrounding waveguides, detailed characterisation of the optical
performance was not necessary, as the focal pattern was always

degraded accordingly.
Four structures supporting a total of five lenses (one
substrate carried two lenses) were chosen for detailed study.

These will now be described and labelled.

(i) LENS SL1

Lens SL1 was a spherical geodesic lens having a toroidal
edge-rounding region. It was fabricated by G.F. Doughty and co-
workers of the Department of Electronics and Electrical
Engineering at the University of Glasgow for the Microwaves and
Acoustics Group at the Marconi Research Centre, Chelmsford,
England who were the industrial sponsors of the present author.
The author, assisted by Mr A. Hodkin of Marconi Research,
created a Ti-diffused waveguide on the lens and supporting
substrate and characterised the optical performance of the
resulting structure. The structure was intended to operate as the

Fourier transforming element in an acousto-optic spectrum
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analyzer of hybrid design (the light source, collimation element
and detectors were situated off the substrate, with only the
acousto-optic interaction region and the transforming lens being
'integrated'). For the purposes of investigating the lens
resolving power in conjunction with the acousto-optic
interaction, a bank of rf/SAW transducers were incorporated onto
the structure after the optical waveguide had been formed.

The physical dimensions of the lens and the supporting
substrate are shown in Figure [8.1]. The central spherical
depression had a profile radius of curvature of 16.0 mm, with the
projection of the depression extending to a radius of 4.782 mm in
the waveguide plane. The edge-rounding region was of toroidal
design with a radius of curvature of 1.5 mm, and extended a
further radial distance of 0.448 mm in the waveguide plane, thus
giving the lens an overall radius, in the waveguide plane, of
5.231mm. The paraxial focal length of the lens was intended to be
50.0mm. Precise ray-tracing using Southwell's method indicated

that the paraxial focal-length would in fact be 50.9mm.

It is difficult to obtain high-quality boules of LiNbO3 of
diameter greater than approximately 50.0mm. It was accepted,
therefore, that the converging beam in the image region would
have to propagate partly in air. As can be seen from the Figure,
the maximum distance from the centre of the lens to the edge of
the substrate was only 27mm. Propagation outside the substrate
results in a reduced paraxial focal length in accordance with the
bending of the rays at the LiNbO3/air interface. Using Snell's
Law, and considering only paraxial quantities, the modified focal
length of this lens becomes:

£' = (£-27)/ngge + 27mm - (8.1)

where n ¢¢ is the effective refractive index of the light wave in
the waveguide and f and f' are measured in mm. At a wavelength of
0.6328um the effective refractive index of the fundamental TE
mode of the ambient waveguide was measured to be 2.2065. Using f
= 50.9mm the modified focal length then turns out to be 37.8mm.
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These are physical, not optical distances. A benefit of focusing
outside the substrate was that scattering was not too destructive
in the far-field. The scattering arises mainly at the waveguide-
air interface and is associated with the mean surface-roughness
of this interface. Focusing outside the waveguide caused the
scattered light to diverge rapidly, while the unscattered light
was still caused to converge by the action of the lens.

(1i) LENS LL1

Lens LLl1 was an overlay lens approximation to a true
Luneburg lens, fabricated with As,S3 as the lens material. It was
fabricated on a y-cut LiNbO3 substrate on which a Ti-diffused
waveguide had previously been formed. The diameter of the lens
was 4.25 mm. The thickness of As,53 film deposited at the centre
was approximately 185 nm, which, if the lens were a true Luneburg
lens, would yield a full aperture f-number of f/2, from the
calculations carried out in chapter two. The focal length of the
true Luneburg lens would be 8.5 mm in such a case. The profile of
the lens was shown in chapter six, and it was observed there that
the lens profile over most of the full aperture was thicker than
the true Luneburg lens. The lens would therefore perform in a
similar fashion to the approximate profile studied, using ray-
tracing methods, in chapter four. Considerable spherical
aberration would therefore be expected, together with a negative
defocus, ie the focus would be expected to be closer to the lens
than 1n the true Luneburg lens.

(iii) LENS GL1

GL1 was an aspheric geodesic lens designed using the method
of Sottini, reported in chapter two and fabricated by G.F.
Doughty and co-workers. The author's task was to characterize the
optical performance of the lens. The central depression (the
focusing region) had a diameter of 7.4mm and the edge-rounding
region brought the total lens diameter up to 10.0mm. The design

focal length of this lens was 18.5mm, implying an effective f-
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number of £/2.5 with the central focusing region fully utilised.
It should be borne in mind, with regard to the observations on
waveguide uniformity made in chapter seven, that the waveguide on
this lens was formed using an evaporation source situated
directly above the lens centre, since only one lens was present
on the substrate.

(iv) LENSES GL2/a AND GL2/b

These lenses formed a matching pair, designed for
incorporation into an integrated optical spectrum analyzer
(I0SA). One lens was intended to collimate the output from a
semiconductor laser diode which was to be butt-coupled to the
front end of the IOSA substrate. The other lens was intended to
‘act as the Fourier-transforming element in the IOSA. The lens
specifications were as for GLl. Here it should be borne in mind
that the evaporation source for fabricating the waveguide was NOT
held directly above either lens and was instead situated at a

point midway between the two lens centres. The dimensions of the

lens and substrate are shown in Figure [8.2] . The edges were
polished to allow edge—coupling of light into the waveguide. The
poliéhing process reduced the distances from the centre of each

lens to slightly less than the design focal length.

8.3 Special tests and techniques

Many techniques are available in order to make objective
assessments of the quality of fabricated lenses. These help to
determine whether a fabricated lens meets design specifications
or to establish whether unforeseen limitations exist which

restrict performance.

Four categories of test have been implemented in the course
of the present study. These range from purely qualitative
assessments of images produced by the lenses, through quasi-ray
methods designed to measure aberrations, to direct quantitative

measurements taken from images recorded using photo-metric
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techniques. One technique that was not used was that of
interferometry, although it may be noted in passing that this is
the only means of entirely separating the geometrical and
1nterferehce/diffraction aspects of lens imagery [1].
Interferometry, however, is a difficult technique to apply to
integrated optical lenses.

A feature common to all the tests reported herein is that a
point-source situated at infinity and lying on the optical axis
is used throughout. The incident phase-front impinging upon the
lens is, therefore, essentially plane (though its amplitude
distribution, in keeping with the usual situation for laser-beam

illumination, 1is more nearly Gaussian).

8.3.1 Foucault-, or 'knife-edge' testing

In this test, a sharp 'knife-edge' (eg. a razor-blade) is
placed in a given image plane close to the expected focus. The
edge 1s then drawn across the image in a direction perpendicular
to the optical axis. Figure [8.3] is a schematic showing the
method of implementation of the test. The diagrams on the left-
hand side of the figure show knife-edges introduced at selected
points in the image space. These serve to block off some of the
incident rays whilst allowing other rays to pass. The scene is

viewed by an observer situated to the right of the knife-edge.

The effect of the knife—edge on the observed images is seen
in the diagrams on the right of Figure [8.3]. These diagrams
represent images seen with conventional bulk lenses having
circular symmetry, for purposes of clarity. Integrated optical
lenses produce only the image observed through the central

vertical azimuth.

Figure [8.3] (b) is the most revealing and informative
section. In this area of the image the rays emanating from the
lens have begun to intersect each other. They intersect at
various discrete points for a lens producing aberrations, whereas

they intersect at only one point for an unaberrated image, within

168



(a)

(b)

FIGURE [8,3] THE FOUCAULT TEST



the geometrical optics approximation. An aberration-producing
lens will form two distinct bright areas separated by a shadowed
region. A perfect lens however will cause a smooth continuous
transition between shadowed and unshadowed regions to occur as

the knife-edge is drawn across the image.

The technique just described is ideal for locating the best
point of focus, 1f the knife-edge is mounted on accurate
horizontal and vertical translation stages. The more compact the
light distribution is in the image-plane, the more rapidly will
the shadow move across the pupil. Under-corrected and over-
corrected lenses exhibit characteristic patterns under the
conditions of knife-edge testing. Furthermore the technique is
highly sensitive to the degree of aberration produced by
different zones across a lens aperture. The method represents a
simple way of relating the spread of the light in the image plane
to the zone of the lens from which the aberrations, if any,

arise.

In many cases of interest in integrated optics a re—-imaging
lens has to be used to gain access to the image produced by the
test lens. In such cases, the light has to depart from the
surface waveguide. The small transverse dimension of the
waveguide then causes considerable beam spreading due to
diffraction. Difficulties may consequently arise in correctly

interpreting the patterns produced by the moving knife-edge.

In the experiments described here knife-edge testing was
largely used to provide a rapid, approximate evaluation of lens
quality. If necessary, however, the method can be used to yield
quantitative information so precisely that image errors as small

as one-tenth of a wavelength can be detected [1].

8.3.2 The Hartmann Test

The geometric aberrations of a ray can be measured directly
by carrying out an experimental ray-trace. Tests which involve

measurements on experimentally produced 'rays' are known as
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Hartmann tests [1]. A schematic of the method is shown in Figure
[8.4]. A broad diameter optical beam impinges on a diaphragm made
of glass or some other material, which is opagque except for
several circular apertures of small diameter. These apertures
serve to convert the beam into a series of thin pencils which
simulate light rays (light rays are of course, conceptually,
infinitely narrow). The diaphragm is placed as close to the
aperture of the test lens as possible to minimise unwanted
diffraction effects. The rays travel through the test lens and
intercept each other in the image space at points determined by
the aberrations produced by the zone of the lens aperture through
which the rays pass.

Photographs taken at two known image planes can yield the
ray—-intercept coordinates at these planes. The ray positions in
the whole of the image space are then completely determined, if
the space is homogeneous so that the rays follow straight lines.
Photo-detector arrays [2] or calibrated microscopes [3] may be
used to measure the aberrations instead of photographic plates.
Single rays are not used due to the difficulty in obtaining a
reliable reference position. Furthermore a single ray will in
general give rise to an Airy diffraction disk in the gi_ven
measurement plane which forms a diffuse patch of light a few
times bigger than the aberration component itself. Complimentary
pairs of rays are used instead, which enable the interception
points of the two rays to be measured with a great deal of
precisiori due to the formation of an interference pattern with a
bright central spot. With photographic plates, the data resulting
from the test may be examined at leisure, and thus multiple ray
diaphragms may be utilised. When detector arrays or calibrated
microscopes are used, however, the data points are recorded as
the test is carried out and single pairs of rays should be used

to avoid confusion.

The schematic of Figure [8.4] shows a set-up for detecting
directly or indirectly both components of spherical aberration.
Where the focal region 1s accessible with precision, the image

sensor may be used to measure TA, the lateral component and LA,
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FIGURE [8.4]

photographic plates,
HARTMANN TEST or calibrated microscope



the longitudinal component directly. More commonly in integrated
optics, the focal region is not accessible and measurements must
be carried out in two planes distant from the paraxial image
plane. A high—-quality microscope objective may be used to magnify
the distances involved. It is only slightly more complicated to

devise a set-up for measuring off-axial aberrations such as coma.

Planes 1 and 2'shown in the Figure are the planes at which
measurements are taken. The distances P; and P, of the planes
from the centre of the lens are presumed to be known. The spacing
between the two planes is d and the measured ray intercepts at
the two planes are given by TAy and TA,. The paraxial focal
length of the lens is assumed from design calculations to be f.
(If the paraxial focal length turns out not to be f, this will be
detected by the aberration curves). The required components of
spherical aberration are TA and LA. ¢ is the angle which the
given ray makes with the optic axis in the image space, and Y 1s
the ray entrance height. The signs of the quantities as shown in
the diagram are: LA, ’I‘Al, TA2, £, Pl' P2, d all positive;

Y, TA, ¢ all negative. From simple geometry:

(TA,-TA1) = (TA;-TA) = TA = tang

d (Pl-f) 1A (8.2)
Hence:
TA = TA1 - (Pl-f) (TAZ—TAl) (8.3)
d
and:
IA =dTA (8.4)
(TA,—TA;)

The system, if used with care, can detect aberrations of
tens of microns and can locate paraxial foci with an accuracy of
5 to 10 microns. Aberrations an order of magnitude above this are

easily detected.
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Figure [8.5] shbws the type of pinhole mask used to create
ray pencils in the experiments reported here. Ten different hole
pairs with spacings between 0.25mm and 9.0mm were produced on
aluminium coated glass slides using photolithographic techniques
to ensure a high degree of accuracy. The hole diameters used were
0.125mm and 0.25mm and this was found to give sufficiently high
ray brightness and entrance pupil placement accuracy, together
with low far-field diffraction, all factors which need to be
balanced in order to optimise test accuracy. The wider diameter
holes were used to increase the light throughput in overlay
Luneburg lenses where the lens material, as reported in chapter
Six, 1S quite lossy.

8.3.3 Resolution test using the interaction between light

and sound

It is well-known that an acoustic wave can interact with an
optical wave so that optical radiation may be diffracted into one
or more subsidiary orders which are frequency-, irradiance-, and
direction—dependent on quantities associated with the acoustic
wave [4,5]. The acoustic wave causes a perturbation in the
density of the ﬁaterial medium supporting it which, in turn,
"perturbs the refractive index of the material. Consequently a
grating is set up which deflects part of the incident optical
radiation depending upon, among other things, the angle of
incidence of the optical beam. If the angle between the optical
and acoustic beams is ©, then constructive interference occurs

for angles satisfying the condition:

sin QB = 2 (8.5)
2nA

where 2 1is the wavelength of the optical beam in vacuum, A is
the wavelength of the acoustic wave in the medium and n is the
unperturbed value of the refractive index. €z is known as the
Bragg angle and equation (8.5) is known as the Bragg condition.

It transpires that surface acoustic waves (SAW), ie acoustic
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FIGURE [8,5] PINHOLE MASK FOR HARTMANN TEST
pinhole diameters: 0-125/0-25 mm
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waves which are constrained to travel at the surface of a medium,
can deflect surface-quided light very efficiently, due to long
lamqThg between the propagatingioptical and acoustic wave-fields,
and the acoustic powerrdensity implied by a surface-confined
wave. This fact is exploited in the integrated optical spectrum
analyzer. The interaction between the two types of surface wave

can be used to test the resolving power of a lens.

Surface acoustic waves are closely approximated for the
purposes of the spectrum analyzer by uniformly weighted plane
waves within a diffraction angle é¢ [6]. Two acoustic waves
differing very slightly in frequency then approximate to two
closely spaced point sources giving rise to optical waves
impinging upon the lens. The deviation in angle between the two

waves, each satisfying the Bragg condition, is 66 , where:

b0 =  \ofg

nv

(8.6)

and where 6fs is the difference in frequency between the two
sound waves and v is the sound velocity, which is assumed
constant for both waves. The diffracted optical waves may be
considered to have constant amplitude over an aperture width D.
In order to obtain separation between the two waves through the
mechanism of Fraunhofer diffraction over a reasonable substrate
distance, a lens (an element which causes contraction of the
distances over which Fraunhofer diffraction takes place ([7]) is
used. The displacement between the beam-spots in the focal plane

is given by:

by = £ 8f (8.7)

nv
where f is the focal length of the lens. The minimum frequency

interval that can be resolved may be estimated using the Rayleigh

criterion [8]. It turns out to be of the order of:
fomin = V/D = 1/T (8.8)

173



T as defined by equation (8.8) is the ‘access-time' of the
device, which may be interpreted as the time which the device
takes to acquire a new frequency slot across its entire aperture,
ie, with maximum resolution. A real lens will be able to resolve
a frequency interval 6fg .4 where dfg .51 > emin An
experimental measure of the smallest resolvable frequency
interval therefore serves to indicate how closely the lens comes

to attaining optimal performance.

8.3.4 Direct observation of the image-space irradiance

profiles

The measurement of light is the domain of a branch of optics
called photometry. Detectors of light do not respond directly to
the electric- or magnetic-field amplitude of an incident optical
wave-field. Instead, they are sensitive to quantities such as the
radiant energy density or the time rate of flow of radiant
energy. The time rate of flow of radiant energy can be
interpreted as the power associated with a wave-field, measured
in watts. The rate per unit area at which radiant energy arrives
at a surface for a wave-field impinging at normal incidence is
the power density, a quantity called irradiance in optics [7].
The average rate per unit area at which energy is carried in the
direction of propagation 1is, however, commonly called intensity
[8,9]. In recent times, a minor dispute has arisen in the optical
literature as to which term is more appropriate when describing
measured quantities, but irradiance will be the term used in the

present work.

It 1s the variation of this quantity over a region in space,
ie the irradiance distribution, that is measured when photo-
electric detectors are used. The irradiance is given by the
squared modulus of the complex amplitude of the wave-field and
thus irradiance distribution measurements provide detailed
information on the nature of the wave-field. In measurements of
wave-fields in the image-space of a lens, the height and width of

the central blur spot and any associated sidelobes are readily
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ascertainable, as is the presehce and quantity of background
scattering. Photo-electric methods can be used to provide
electrical output 11nearly related to irradiance distributions

over a range of greater than 10000 to 1, or 40dB.

The irradiance distribution can be used to evaluate the
energy encompassed over increasing distances from the centre of
an image. Encompassed energy curves were introduced in chapter
five, and are more commonly known in the bulk optics of
rotationally symmetric media as encircled energy curves.
Encompassed energy curves are often the most useful and easily

interpreted quality criteria of a fabricated 1lens.

Irradiance distribution measurements were the tests most

used to evaluate lens performance in the study reported herein.
8.4 Comparisons between experiment and theory

It is well-known that the irradiance pattern at the focal
plane of an ideal lens can be regarded as a scaled and shifted
measure of the angular-spectral distribution of the transmittance
function at the entrance-pupil of the lens [7] (strictly speaking
the relevant complex amplitude quantities should be considered;
however photo-detectors are insensitive to phase and the pattern
can only be described in terms of real, measurable quantities
such as irradiance). To a first approximation, the observed
patterns reported here depend only on the transmittance function
of the limiting stop in the system, which may be the aperture of
the lens itself and which is a purely real rectangular function,
and the amplitude variation of the incident beam, which is
usually considered Gaussian. In reality, the measured irradiance
patterns are dependent on many factors including the aberrations
produced by the test lens, the variable transmittance function of
the input prism and the test lens 1tself, and the properties of
the re-imaging instruments. The net result is a complicated
multiple-convolution integral. The truncated Gaussian incident-
field approximation may, however, be used to calculate the

diffraction pattern in the ideal case, and the closeness of
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approach that the real lens makes to this ideal may be taken as a

measure of its quality.

The Gaussian variation in the amplitude of the input optical
beam may be described by: [10]

A(x) = exp (—4x2/a2) ] (8.9)

where the peak amplitude is here normalized to 1, and x is the
transverse coordinate at the input plane. The phase-front is
considered to be plane at the entrance-pupil of the lens, ie the
incident beam waist occurs at the lens entrance. The parameter a
is the 1/e amplitude beam-diameter. Sihce the irradiance is given

by:
Ix) = |A] 2 (8.10)

the parameter "a" represents the l/e2 diameter of the irradiance
profile. By taking the one—-dimensional Fourier Transform of the
input amplitude function, the optical amplitude distribution in
the back-focal-plane of an ideal lens is obtained. 1In

consequence :

I(xq) = /exp(-4x2/a2)exp{—j[(kxl)/f]x}dx 2
4.5

= C exp{-2(ak/4£)%x; ) (8.11)

where f is the focal length of the lens, k is the free-space
optical propagation constant and x; is the transverse coordinate
in the focal plane. C is a constant related to the total input

power .

Equation (8.11) leads to a simple relationship between the
beam—diameters of the Gaussian irradiance distributions at the

input plane and the focal plane, a and a' respectively:

a' = 4f), (8.12)
mna
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where Ao is the wavelength of light in free space, and n is the
effective refractive index which the light encounters in the

waveguide.

Marom, Chen and Ramer [11] have calculated the effects of
beam truncation by an aperture with a rectangular transmission
function. For aperture diameters smaller than the untruncated
input beam diameter, the values given by expression (8.12) can
underestimate the diffraction-limited beam diameter at the focus.
It is a simple matter to estimate the diffraction-limit in the
case of uniform illumination of a rectangular aperture of width

2

b. A sinc”® irradiance pattern is observed at the focal plane in

such a case:

o

I(xq) = |sin (n'nbxl 12 (8.13)
)
Tnbx,
N 2 N

The function given by equation (8.13) is a one-dimensional
version of the Airy disc function. The l/ez—diameter, b', of the
central lobe of this function is related to the aperture diameter
b by:

b' = 4. 4f)o (8.14)
nb

an expression very similar to the one obtained for untruncated

Gaussian beams, equation (8.12). The spacing d' between the nulls

of the function 1is given by:
a' = 2f A (8.15)
Equation (8.11) should describe diffraction-limited
performance when truncation occurs at diameters greater than the

2 . : _
l/e® irradiance diameter, whereas, for truncation at diameters
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less than the 1/e2 diameter, equation (8.13) should predict the

diffraction-limited performance.

8.5 Apparatus and experimental procedures

The experimental set-up used to investigate the distribution
of light in the image-space is shown in Figure [8.6]. The set-up
differed only slightly for the various other tests.

A He-Ne gas laser was used as the light-source in ali the
experiments. The laser operated at a wavelength of 0.6328um and
had a power output, typically, of 5mW. In order to reduce the
chances of optical damage in the T1-LiNbOj waveguide/substrate
system, a variable optical attenuator was used to reduce the
output power. The light was chopped mechanically at a frequency
of lkHz before being expanded using an £/4 spatial filter and a
collimator usually set to give a magnification of 12. Figure
[8.7] shows the expanded beam profile. The l/e2 irradiance points
were separated by 7.2 mm. The lenses were investigated over a
wide range of input beam-widths, the variation in width being
accomplished by a variable rectangular stop. It was not feasible
to vary the degree of expansion amd collimation continuously such
that approximately Gaussian profiles could be obtained
throughout. The stop was placed as close as possible to the input
coupling-prism. The size of the aperture created by the stop, and
therefore the effective diameter of the beam entering the test
lens, was measured, using a measuring microscope, to an accuracy
of 10.0 pm. In Hartmann tests, the mask used to generate narrow
pencil-beams approximating to rays was interposed instead of the

stop.

The coupling prism was made of rutile, a uniaxial crystal of
high refractive index. The c-axis of the prism was parallel with
the c-axis of the L1Nb03 substrate (which is also a uniaxial
crystal) and both were perpendicular to the general direction of
optical propagation. The result was that the extraordinary

component of refractive index was used in all relevant
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calculations, TE modes only being excited.

For a properly collimated and aligned beam the input prism
introduced no aberrations, ie phase-distortions. The prism did,
however, affect the transmitted amplitude of the beam. The
ocoupling efficiency of the prism was not constant across the beam
cross—section because of the variable air—-gap between prism and
waveguide. The variable air-gap arises as a result of the screw
end-shape used to ensure firm contact between the prism and the
wave—guide. The beam-profile was, in consequence, removed from
being a purely truncated-Gaussian shape.

The substrate was placed on a test-jig that allowed
continuous, accurate linear translation along three axes and
rotational movement around two axes. Such a degree of flexibilty
was required to ensure efficient coupling of the appropriate
guided-wave modes. A 'Micro—controle' digital read-out was used
to measure coupling angles to a precision of one-hundredth of a

degree.

After the beam had travelled through the test-lens and had
begun to converge, a choice of methods was available with which
to couple the light back out of the waveguide. In cases where the
focus lay close to, or beyond the edge of, the substrate, the
edge was finely-polished and edge-coupling thereby facilitated.
High-power microscope objectives did not have sufficient depth of
field to 'gain access' to the focal region in cases where the
focus lay inside the substrate, far from the edge. The substrates
could then have been sawn and re-polished. However such a
procedure was considered too risky and inaccurate. Another rutile
prism was used 1instead to couple the light out from the
waveguide. The problem with the output prism was that converging
rays, in contrast with the parallel rays impinging upon the input
prism at normal incidence, were refracted considerably by the
several material interfaces involved. Aberrations were therefore

introduced which served to distort the beamshape from that

actually produced by the lens. These aberrations were not

necessarily destructive in terms of the quality of the resultant
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image. Over-corrected lenses produce marginal rays that
intercepted the optical axis at points beyond the paraxial focus.
The aberrations introduced by a prism are of opposite sign to
those produced by an over-corrected lens, and thus both sets of
aberrations tend to cancel, to a certain extent. For under-
corrected lenses, of course, the addition of prism-related
aberrations to those already present is destructive. Regardless
of these pros and cons, the prism effects were considered
undesirable as they reduced the fidelity with which the optical
characteristics of the test-lens itself could be measured. In
this context, it should be observed that the L1Nb03/air inter face
at the edge of the substrate also introduces aberrations. These
aberrations are more easily allowed for, as there is only one

interface to be taken 1into account.

For Foucault tests a razor—edge was passed through the focal
plane, either directly through the focus or through a re-imaged
version of 1t. A Tessar camera lens operating at a relative
aperture of £/2.8 with a focal length of 55.0mm was used as the

re-imaging lens.

High-power Beck or Olympus microscope objectives were used
for observing the light irradiance distributions in the focal
plane. Magnification ratios were typically 20x, 40x or 100x. A
12x calibrated eyepiece was used to measure ray aberrations and
image widths. More usually, the image was projected at long back-
focal-plane distances to yield magnification factors of between
160x and 300x. The magnified images were then scanned using a
large—-area photo-detector, operating in the photo-conductive
(l1inear) mode, which was masked by a 40um slit. At 160x
magnification a slit of these dimensions is theoretically capable
of resolving 2 lines/pm. A motor-driven, variable~-speed scanning
system built in the departmental workshop was used to scan the
beam.

The detected signal was amplified by a narrow-band amplifier
locked to the frequency of the chopper. The signal was then

convertec to give a high-resolution logarithmic output, referred
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to an electrical reference signal generated by the amplifier. The
linearity of the electrical signal of the detector versus the
incident optical signal was checked using Neutral Density

filters. A linear range of over 20 dB was available.

A Hamamatsu digital 1mage acquisition system was used
instead of the custom-built scanner in some experiments. This
system consisted of a C1000 camera head and control unit. The
camera head incorporated a high-resolution , high-linearity
Newvicon N4076 vidicon. A Nikon Micro-Nikkor f/2.8 camera lens of
focal length 55mm was used. The camera control unit incorporated
line-scan and frame-scan rates that were compatible with computer
equipment. A maximum of 1024x1024 lines was available, with each
pixel having 256 possible grey scale levels, corresponding to
approximately 22dB of optical irradiance. The equipment was
connected to a Hitachi monitor. A useful characteristic of this
system was the availability of a single-line intensity display
which greatly facilitated the location of the focal waists and
the points of maximum irradiance. The data acquired by the
Hamamatsu system was down-loaded either directly onto an x-y
chart recorder or sent to a DEC PDP-11 mini-computer for more

comprehensive analysis.

A graph of measured video signal intensity against incident
optical irradiance for the Newvicon vidicon is shown in Figure
[8.8]. The relationship 1s extremely linear with a gamma factor

of nearly unity, but a dc offset is present.

Barr and Stroud Neutral Density filters were used throughout

these experiments in order to calibrate measurements accurately.

8.6 A note on results and discussion
Contrary to usual practice, discussion of these results will

follow each sub-section, since it would be impractical to discuss
all the results obtained for all four lens-systems together.
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8.7 Results amd discussion - lens SL1

8.7.1 Image irradiance distributions

Focal plane irradiance patterns were recorded for this lens
over a wide range of truncated beamwidths from 0.52mm to 7.1lmm.
These beamwidths correspond to a range of 4.9% to 68% of the
maximum available aperture, or to stopped-down f-numbers of
between £/100 and £/7.

Figure [8.9] (a) shows a typical focal plane image as
recorded on a Hitachi TV monitor. The appearance of a broad focal
line instead of a small circular blur should not give rise to
confusion; it is a consequence of lens SL1 focusing outside the
substrate. The small dimension of the waveguide in the x-y plane
(perpendicular to the plane of propagation, x-z ) caused the
light to diverge considerably in this plane. The light levels
were still sufficiently high to identify the quantities of real
interest, ie the irradiance variation of the light in the z-
meridian, corresponding to the vertica-l direction on the
photograph. The situation "is analogous to investigating the most
pertinent properties of a cylindrical lens in bulk optics. Figure
[8.9] (b) shows the light transmitted through a grating of known
periodicity, which was used to calibrate the dimensions of the

focal image.

Figure [8.10] shows three representative irradiance
distributions plotted using a chart-recorder connected to a
Hamamatsu image—acquisition system. The truncated beam widths
were 0.8lmm, 3.65mm and 6.0lmm for Figure [810] (a), (b) and (c)
respectively. The scales in this figure are linear. Theoretical
(sinx/x)2 curves having the same 1/e2 spot-diameters as the
experimental curves are also shown. The theoretical curves serve
to highlight the experimental sidelobe levels, positions and
decay rates and degree of sidelobe symmetry. All three
experimental curves fit the central lobes of the theoretical

curves well. Figure [8.10] (a) shows that the experimental curve
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fits the theoretical curve well over the entire scanned range,
both i1n terms of sidelobe position and irradiance. The other two
experimental curves show sidelobes at a generally higher level
than in the theoretical case. There is a hint of a constant dc-
type level for which the noise~-floor level associated with the
dark current of the imaging vidicon may be responsible. These
latter curves show increased noise, probably as a result of an
increase in scattered light levels associated with larger beam-
widths.

8.7.2 Discussion on observed patterns

Some of the sidelobe positions coincide reasonably well with
the theoretical positions while others do not. Higher-order
experimental sidelobes temd to be further away from the main lobe
than expected and a possible reason for this may be the presence
of pin—cushion distortion somewhere in the re-imaging process. I1f
the re-imaging system is faithful in reproduction, however,
another explanation is available. The presence of irradiance
nulls where peaks shbuld occur and vice-versa is a phenomenon
known as contrast-reversal. From the point of view of frequency
analysis of imaging systems, contrast-reversal is indicative of a
negative Optical Transfer Function (OTF) for a lens over a
certain band of spatial frequencies [12]. Contrast-reversal is
associated purely with the presence of aberrations, notably de-
focus and spherical aberrations in the case of symmetrical
systems; diffraction-limited systems never display contrast-
reversal. Photographs presented in chapter nine of 'Principles of
Optics' by Born and Wolf [8] and, strikingly, in the 'Atlas of
Optical Phenomena' by Cagnet, Francon and Thrierr ([13], show
clearly the effect of contrast reversal associated with varying
degrees of primary spherical aberration. The higher-order
sidelobe irradiance levels can be greater than those of lower-
orders if sufficient amounts of aberration are present in the

system.
Beyond these qualitative observations on contrast-reversal
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as evidence of the presence of spherical wave-aberration, little
can be inferred from the irradiaﬁce distributions as to the
precise shape of the wave-ffonts at the exit-pupil of the lens
which give rise to the distributions. Partly, this is because of
the difficulty (in current practice) of obtaining information on
the optical phase. A more fundamental objection exists however.
It is certainly true that the wave-front aberration function in
the exit-pupil can be used to predict the irradiance distribution
at the focal-plane [8]. Such a procedure falls within a domain in
physics known, in scattering theory, as the 'direct-source class
of problem'. However the retrieval of the wave-front from the
irradiance distribution falls within a related though opposite
domain, known in scattering theory as the 'inverse-source class
of problem'. The very philosophy of this field rests on shaky
foundations, as pointed out by Ross et al [14] :

' ... the (inverse-source problem) cannot be solved simply
by applying the deductive process in reverse direction: strictly
speaking the inverse problem cannot be solved at all.'

Notwithstanding this underlying pessimism, Ross et al go on
to expound cheerily on how to '... approximate the truth by
stages ...' . Approximating the truth for the type of problem
considered here has been carried out by various authors
(15,16,17]. These authors developed computational algorithms for
retrieving the source wave—-front from irradiance distributions in
the presence of noise. The algorithms suffer however from
problems of numerical instability, lack of convergence and non-
uniqueness of solution. No attempt was made to implement them by

the present author.

Only bald statements can therefore be made concerning the

irradiance distributions shown in Figure [8.10]
(1) the central lobes look reasonable, in that there is a

good correspondence between the experimental and theoretical
shapes;
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(ii) the side-lobes are high but, given a spherical-geometry
lens, perhaps not unreasonably so;

(i11) the evidence of contrast-reversal is indicative of the

presence (but not the degree) of spherical aberration and/or
defocus.

8.7.3 The variation of focal spot-size with truncation width

The measured 1/e- and 1/e2-diameters of the central lobes of
the irradiance distributions arising from 21 different truncation
widths of the input beam are presented in Table [8.1]. Several of
these measurements were made by Mr. A. Hodkin of Marconi
Research. An input beam-width of 3.65mm gave rise to the smallest
focal spot-sizes, 5.4um and 7.9nm for the 1l/e- and the l/ez—
diameters respectively. The latter result is only 1l.55 times the
diffraction-limit, a reasonably good figure. The relative

aperture of the lens at this beam-width is £/13.9.

The results obtained using edge—coupling and prism-coupling
are distinguished from each other in the table. The diffraction-

limit calculated using equation (8.13) is also shown.

The results are plotted in Figure [8.11] . As the beam-width
increases, the measured focal spot-sizes first decrease steadily
and then broadly level out. A feature of the graph is that the
prism-coupled results do not follow the general trend of the
edge-coupled results and give greater estimates for the spot-
sizes. The reason is probably that the output prism produces

aberrations of its own, as predicted earlier.

The prism-coupled l/ez—diameter results were ignored and a
least-squares fit parabola calculated for the remaining points.
The parabola, experimental points and the diffraction-limit curve
are shown together in Figure [8.12]. The parabola is less than
twice the diffraction-limit over almost the entire range. The
parabola, diffraction-limit and a gyration-radius curve derived
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TABLE [8,1) Experimentally—observed focal spot—sizes
as_a function of size of (truncated)
input beam for lens SL1

E : Indicates result obtained using edge—coupling
P : indicates result obtained using prism—coupling
Truncated beam-— focal spot—diameter, um Diffraction—
diameter, mm 1/e 1/e2 limit, ym (1)
¥ 0.52 25.4 36.6 E 35.8
0.81 16.3 23.0 E 23.0
¥ 1.05 16.1 22.0 E 17.7
1.13 15.2 27.6 P 16.5
1.23 14.7 21.0 P 15.1
¥y 1.27 12.6 19.6 E 14.7
1.63 8.3 , 14.1 E 11.4
1.77 10.2 17.2 P 10.5
1.82 7.8 11.5 P 10.2
¥ 1.92 8.3 ‘ 1.4 E 9.7
*» 2.19 8.0 11.4 E 8.5
2.49 8.3 13.4 P 7.5
2.6 8.5 17.4 P 7.2
* 2.62 7.7 10.6 E 7.1
* 3.09 6.6 9.3 E 6.0
3.65 5.4 7.9 E 5.1
4.05 5.7 8.1 E 4.6
¥ 4,45 5.9 9.7 E 4.2
¥ 5,05 6.3 9.1 E 3.7
6.01 6.5 9.3 E 3.1
¥ 71 _ 6.1 9.1 E 2.6 -

NOTES: (1) diffraction—limit is calculated for a Gaussian beam
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from raytracing are plotted together in Figure [8.13]. A
qualitative reason for choosing a parabolic fit is given below.

8.7.4 Discussion

With reference to Figure [8.13], it is apparent from theory
that aberration effects are small at small beam-widths and that
diffraction effects dominate. Gradually, as the beam-width is
increased, aberration effects and the diminishing effects of
diffraction tend to balance. At beam-widths approaching the full
available aperture, aberration effects dominate. It should be
pointed out that no attempt is made in Figure [8.13] to quantify
the relative weight of diffraction and aberration effects. For
reasons that have long separated physical from geometrical
optics, it would be unreasonable to do so. A definite minimum
would be predicted, however, as the lens moves from being
diffraction-linited to being aberration-limited. Such behaviour

was that seen under experimental conditions.

8.7.5 Depth of focus

The evolution of the image-plane irradiance profiles through
the focal region is shown in Figure [814]. The side-lobe pattern
on only one side is presented. The other side of the pattern was
not imaged on the screen because of the large magnification used.
A truncated input beam-width of 3.65mm was used.

A dip exists in the centre of the irradiance profile
recorded at a distance of (f - 235pm) from the lens. The
irradiance profile recorded at the other extremity, (f + 275um) ,
exhibits a flat topped central lobe. The minima of the profiles
are not true nulls. The energy distribution in the side-lobes, as
characterised by the relative side-lobe levels, does not fall off
in a regular manner with increasing side-lobe order. All these
details indicate that the lens at this aperture suffers from

spherical aberration.

The information obtained from these profiles is condensed in
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Figure [8.15] . Three curves are shown. The top curve shows the
fall in peak irradiance relative to the peak irradiance at the
plane of best focus. The middle curve shows the height of the
first side-lobe relative to the peak irradiance at each image-
plane. The third curve shows the 1/e-diameter at each image-
plane, normalized to the l/e-diameter at the plane of best focus.
The asymmetry of the curves 1s, once again, characteristic of the
presence of spherical aberration.

These curves taken together constitute a basis for
estimating the depth of focus of the lens at the given aperture,
and thus the tolerances which may be established on the setting
of the detector plane. The detector plane could be moved 150um
further away from the lens than the best focal plane with only a
1dB drop in peak irradiance, a 1dB increase in nearest side-lobe

irradiance and a broadening of the beamwidth by a factor of 1.15.

8.7.6 Direct measurement of spherical aberration

A Hartmann test was conducted on lens SL1 to measure the
spherical aberration directly. Both lateral and longitudinal
components were measured. The results are shown in Figures [8.16]
and [8.17]. The computed curves obtained using Southwell's method
(chapter four) are also shown. Theoretical and experimental

curves are in excellent agreement.

8.7.7 Acousto—optic resolution tests

The ability of lens SL1 to resolve two parallel beams with
slightly different incidence angles was tested using the acousto-
optic method. Figure [8.18] shows diode—array images in the focal
-plane obtained after acousto-optic diffraction of a lmm
truncated beam, for two values of input rf-signal electrical
power. A re—-imaging lens was used throughout the acousto-optic
tests to enable the diode-array to have easy access to the focal
plane. Using ND filters to attenuate the optical beam by fixed
amounts, the diffracted light signal falling on a large-area

photo-detector was mz2asured and compared with rf-signal
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electrical power. The diffraction efficiency thus obtained was
found to be 10-11.5%/watt.

The broad-band diffraction band-shape in the focal plane for
two settings of input optical beam height are shown in Figure
[8.19]. The differences may be accounted for, possibly, by the
evolution of the acoustic beam from a Fresnel to a Fraunhofer
regime, since "ringing" characteristic of Fresnel diffraction is
observed in the upper photograph which appears to be absent in
the lower photograph. A half-power bandwidth of 88MHz was
observed.

For the narrow-band resolution test an untruncated,
unexpanded beam with a l/ez—diameter of approximately 2.0mm was
used. Figqure [8.20] shows an achieved resolution of 2MHz at a
centre frequency of 746MHz. A re-imaging lens had been used to
allow a 'Reticon' photodetector array to access the signals. The
magnification factor of the re-imaging system was optimised to
allow the separate diffracted signals to be detected on the
array. Each element of the array has an 'active' region 15 pm
wide, and adjoining elements are séparated by a 'dead-band' 10 pm
wide. Sparrow's criterion [18] was invoked in this experiment.
The criterion states that if it is possible to detect the
presence of two signals, without necessarily observing a dip
between them (as Rayleigh's criterion requires), then the two
signals are resolved.

8.7.8 Discussion on achieved resolution

The assumption is made that the re-imaging lens does not
improve the angular resolution, since it would be expected that
two diffracted signals which were not resolved in the front-focal
plane of a lens would remain unresolved in the back-focal plane.
Furthermore, the following calculations are for propagation
wholly i1n the substrate, for convenience. While such was not the
case, the numbers serve to illustrate the quantities involved.

The achieved resolution of 2MHz in the acousto-optic tests
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corresponds to an achieved angular resolution in the substrate
medium of 0.173mrad using the formula given in reference [6]:

59 = Qsfg (8.16)

nvr

where §f; is the smallest resolved acoustic frequency, n is the
effective refractive index encountered by the guided optical
wave, A is the free-space wavelength, and v, is the velocity of
the surface-acoustic wave. n = 221, v, = 3488m/s and A = 0.6328
Mm were used to calculate the angular resolution. When multiplied
by the focal length (£=50.9mm), the angular resolution
corresponds to a separation between the spots arising from the
two acoustic signals of 8.79 pm. Now the classical criterion for

resolution, given by Lord Rayleigh [8], is:

Separation = 0.82 A ' (8.17)

"

NA

for coherent illumination, where NA = nD/2f 1s the approximate
value of the numerical aperture calculated using the effective
beam—diameter D, which in the experiment was 2.0mm. Inserting the
appropriate values in (8.17) gives a smallest separable interval
of 12.6pm. Thus a resolution better than the Rayleigh limit was
apparently achieved. In reality, the Rayleigh 'limit' is not a
true limit at all, and the scale factor of 0.82 is somewhat
arbitrary, depending on the actual form of the input optical
signal. The signals were not resolved according to Rayleigh's
criterion since no dip was observed between them. Sparrow's
criterion may be invoked instead. The reason for this choice is
that adjacent, discrete detector elements in an array were used
in the experiment to pick up the diffracted optical signals.
Clearly, no 'dip' could be observed in such a case. The minimum

resolvable interval according to the Sparrow criterion is:

Separation = 0.5 (8.18)
NA
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which is 7.29um in this, the present case. The experimental
resolution was, therefore, only just above the theoretical
minimum, indicating that near-diffraction limited performance is
possible using spherical geodesic lenses, albeit at considerably
restricted relative apertures.

The above result was obtained at optimum acoustic
frequencies. At other frequencies the resolution of the system
decreased considerably, so that the diffracted signals were
spread over several detector pixels at the same system
magnification as used above. Proper broad-band characterisation
of the device has not yet been carried out, although the device
is equipped with SAW transducers which should allow broad-band
operation.

8.8 Overlay lens LL1

8.8.1 Results

A photograph showing two pencils of 1light

entering lens dLLl' leaving the lens and intersecting at an axial
was obtaing

point." The light levels in the experiment were very low except at

the entrance and exit surfaces of the lens, where a great deal of

light was scattered out of the plane of the waveguide due,

probably, to the fairly abrupt interface that existed between the

overlayer and the ambient waveguide

Lens LL1 was 4.25mm in diameter. The two light pencils in
the photograph were separated by 2.0mm at the entrance to the
lens, and each pencil had a diameter of 0.25mm. The intersection
point of the two pencils along the optical axis was 6.4mm from
the centre of the lens. A bright, diffuse glow was evident in the
photograph at this point. The lens operated at an f-
number of £/3.2 . A true Luneburg lens having the same diameter

and thickness at the centre as the fabricated lens would have
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focused at 8.5mm. The lens, therefore, introduc ed a negative
longitudinal component of spherical aberration of 2.1mm .

Light pencils spaced more than 2.5mm apart did not propagate
through the lens to the focus, probably due to the small angles
of incidence with the lens at the margins. When a beam of light
was used, rather than two narrow pencils, the focal region became
a very diffuse patch, extending to several tenths of mm in the
transverse direction and between one and two mm in the direction
of propagation. This observation suggested that the paraxial
portion of the beam was focusing at further distances than the
marginal portions. The spotsizes produced by this lens and other
ovarlay lenses were so large that they were not considered

worth measuring in detail.

8.8.2 Discussion

The observed behaviour of lens LL]1 was very similar to that
predicted by the ray-tracing analysis presented in chapter four
for the 'best-obtainable' approximation to the true Luneburg
lens. The actual fabricated profile differed from the best
approximation and the true Luneburg lens in that it was thicker
than both over most of the profile. The fabricated lens would be
expected to be under-corrected with respect to the true lens, in
similar fashion to the best approximation, only more so. Such was
the case. The focal length of the best approximation was
predicted to be smaller than that of the true Luneburg lens in
the ratio 3.2/4.0, or 0.8 . In the case just examined, the ratio
of the measured focal length to the desired focal length was
6.4/8.5 or 0.75 . Furthermore, the paraxial rays also behaved as

predicted in chapter four.

The results, whilst expected, were disappointing, for Aszs3
1s one of the few high-index materials available for use with
Lle3o
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8.9 Geodesic lens GL1

8.9.1 Photographs of irradiance patterns

A photograph of the focal-plane image irradiance of lens
GL1, a theoretically perfect geodesic lens of aspheric design, is
shown under corditions of under—development, normal-development
and over-development in Figure [8.22] (b), (a) and Figure [8.23]
respectively. The photograph was obtained by G/F. Doughty and is
represented as Figure [7.17] on page 222 of reference [19].
Showing the irradiance pattern at the focus under different
conditions of development of the photograph serves to highlight
different aspects of the image, from the well-represented central
lobe in the under-developed case, to well-represented sidelobe
structure in the over—developed case.

An expanded Gaussian beam having a l/ez—diameter of 4.0mm
was truncated at a diameter of 3.0mm and used as the incident
beam on the lens. The beam was coupled into and out of the
waveguide using rutile prisms. The sidelobes arising as a result
of truncation were very prominent, as seen in Figure [8.23].
Using equation (8.14), the width between the nulls of the image
in the diffraction-limited case would have been 3.54 pm. The
experimental value, measured with a calibrated microscope, was

5.0 pm + 0.5 jm.

8.9.2 A computer-aocguired image

A Gaussian beam having a l/ez-diameter of 21 mm was coupled
to the waveguide and lens GL1 using a rutile prism. The beam had
not been truncated outside the waveguide. Instead of coupling the
light out of the waveguide with a prism after it had passed
through GL1, the beam was allowed to propagate to the polished
edge at the end of the substrate. The irradiance profile at the
edge was then projected onto a Newvicon vidicon and recorded by
the Hammamatsu image-acquisition system. A contour map of the

image i< shown in Figure [8.24] (a) . A bright central spot is
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evident, together with a considerable amount of sidelobe
structure. The presence of sidelobes indicated that the input
beam had not remained Gaussian, although the width of the beam at
the input was considerably smaller than the limiting apertures of
the input prism and the lens itself. |

A line-scan of the irradiance across the range of peaks of
Figure [8.24] (a) is shown in part (b) of the same Figure. The
spatial scale 1s slightly reduced. The l/ez—diameterof the
central lobe is 7.9 um and the width between the nulls is
approximately 11.0 um. Using equations (8.14) and (8.15), the
corresponding theoretical widths for a uniformly-illuminated
aperture are 3.54 pm and 5.1 pm respectively. The sidelobes are
seen to be very high, with one sidelobe only 7 dB below the peak
value. The sidelobes are also asymmetric and exhibit an irregular
decay. Clearly, the lens introduced amplitude- and/or phase-
distortions into the propagating wave-field. These could be
attributed to in-plane scattering, position-dependent curvature
and leaky-mode loss or non-uniformity of the waveguide over the
lens region.

8.9.3 Direct measurements of the irradiance profiles

The experimental set-up shown in Figure [8.6] was used to
obtain further measurements at a wider range of beam apertures.
An expanded Gaussian beam having a l/ez—diameter of 7.2mm was
used. Irradiance profiles measured at the edge of the substrate
for truncated beamwidths of 0.47 mm, 1.02 mm, 1.86 mm, 2.78 mm,
3.16 mm, 3.22 mm, 4.18 mm and 6.97 mm are shown in Figure [8.25],
parts (a) to (h) respectively. Also plotted on these graphs are

2 curves having the same l/e2—d1ameter as the experimental

2

sinc
curves are, therefore, not the diffraction-
2

curves. The sinc
limited curves. The sinc® curves are presented solely to
highlight aspects of the sidelobe structure. A reasonable
justification for this procedure is that the aperture external to
the waveguide may not be the limiting aperture. 1f either the
coupling prism or the lens itself has a transmission function

with a width effectively smaller than the limiting aperture, the
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diffraction pattern at the focus would be broadened accordingly.

The coupling prism, in particular, is unlikely to have a step
transmission function.

Some observations may be made about the measured irradiance
profiles:

(1) they are all asymmetrical with respect to the central
spot, with the sidelobes on the left of the patterns, as drawn,
being higher than those on the right, in general. Such asymmetry
may arise from:

(a) local scattering defects in the vicinity of the

focal region, either in the planar waveguide, or at the end-face;

(b) a deviation of the input beam from axial incidence,

in which case the asymmetry could indicate the presence of coma;

(c) an asymmetrical titanium evaporation at the

waveguide formation stage.

(11) The sidelobe structure is not well-ordered in that a
regular decay is not exhibited, indicating that phase-distortions
were imposed on the optical field;

(iii1) the sidelobe structure varies quite dramatically with
aperture width, as illustrated in the following Table. The
variation of sidelobe height as a function of aperture width

appears to be fairly random and asymmetric.
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Aperture Width,mm Left Sidelobe,d Right Sidelobe,dB

0.47 9.2 ~7.9
1.02 -10.5 ~11.7
1.86 -14.9 -19.4
2.78 ~12.4 -16.8
3.16 -10.5 6.7
3.22 -14.0 -21.6
4.18 9.2 5.7
6.97 ~13.0 6.7

TABLE [8.2] Height of first sidelobes in Figure [8.25)] (a)-

(h)

(iv) At an input aperture of 1.86 mm, the lens exhibits
diffraction-limited performance, both in terms of central
spotsize, and adjoining sidelobe height. The effective f-number
at this aperture is approximately f/10.

The variation of the half-power spot-diameter, the 1l/e-
diameter and the 1/e2—diameter is shown in Table [8.3] and
plo{:ted in Figure [8.26]. At £/10, these spot-sizes are 1.9 pm,
2.9 um and 3.8 pm respectively. At an input beamwidth of 3.22 mm,
corresponding to £/5.75, the l/ez—diameter is 4.2 pm, twice the
diffraction-limited value. As with the sidelobe structure, the
variation in spotsize with input aperture width follows an
irregular development, as seen in Figure [8.27], where the l/e2-
diameter results, a parabolic least-squares fit and the
diffraction-limited curve are plotted together. Clearly, a
parabolic fit to the experimental data 1s not a good

representation of spotsize behaviour.
8.10 Substrate GL2

The substrate GL2 supported two geodesic lenses intended to
approximate closely the perfect profiles. As was shown in Figure
[8.2], the end-polishing process had reduced the distances
between the centres of the lenses and the ends of the substrates
to 18.47 mm and 18.32 mm for lenses designated GL2(a) and GL2(b)
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TABLE [8,3) Experimentally—observed focal spot—sizes
as a function of size of (truncated) input b«
for lens GL1

Truncated beam-— Focal spot—diamefer, um Diffraction—
diametfer, mm -3 dB 1/e 1/e2 limit, ym (1)
0.47 3.4 4.7 8.1 14.4
1.02 2.8 3.4 6.4 6.6
1.86 1.9 2.9 3.8 3.6
2.78 1.7 3.6 5.1 2.4
3.16 1.9 B 2.4 5.1 2.1
3.22 1.9 2.3 4.2 2.1
4.18 2.9 3.3 6.2 1.6
6.97 2.1 2.8 6.0 1.0

NOTES: (1) diffraction—limit is calculated for a Gaussian beam
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respectively. The design focal length was 18.5 mm. The substrate
is shown under test in Figure [8.28] .

A substrate of this type, supporting two geodesic lenses,
was 1nvestigated in chapter seven of this thesis 1n an
investigation into the uniformity of depth likely to be obtained
in the waveguide . One of the conclusions of that chapter was
that under certain circumstances, the waveguide in the lens
regions could fall below cut-off if the waveguide in the planar
region was not far into the single-mode regime. The conclusion
was confirmed in studying GL2. A layer of titanium, 230 A thick
at the centre of the substrate, was deposited from a distance of
220 mm. The metal was diffused into the substrate for 10 hours in
a wet argon atmosphere at 1000°C, followed by cooling in a wet
oxygen atmosphere. The waveguide formed on the planar region of
the substrate supported oné TE mode only, with an effective
refractive index of 2.206 measured using prism-coupling
techniques. The lenses were tested and found to transmit over
most of their apertures, except for 1 mm bands in the centres. A
further layer of titanium, 100 A thick at the centre of the
substrate, was consequently deposited and diffused into the
substrate. The waveguide in the planar region was then fourmd to
support two TE modes, with effective indices of 2212 and 2.207.
The lenses were now found to transmit guided light for the
lowest—-order mode, though the other mode failed to propagate. The
shape of the transmission function of the lenses was not
measured. Such a measurement would be useful and would best be
carried out by sawing and polishing an end face close to a lens,
to prevent focusing, planar waveguide propagation loss and
diffraction from contributing to any irradiance changes. Ideally,
the lens would be uniformly illuminated at the input (the
entrance pupil). However, neither prism-coupling nor end-fire

coupling is capable of doing this.

An irradiance profile, measured at the best focal distance,
as estimated by the eye through a microscope, 1is shown in Figure
[8.29]). The incident field was an untruncated gaussian with a

l/e2 be-m-diameter of 3.74 mm. The focus occurred at 18.75 mm,
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Figure 18,281 Two -lens system mounted

for optical testing



Irradiance , dB

100 50 0 50 100

FIGURE [8,29]

Transverse distance , ym

FOCAL PLANE IRRADIANCE PROFILE, GL




although focusing in air should have reduced the focal length
below 18.5 mm. This possibly indicates that an objective
assessment of the best focus is not possible with the human eye
and that measurements of the irradiance patterns over the focal
volume are always required. At the time the irradiance profile
was obtained, the substrate dimensions had not been taken, and so
focal volume irradiance profiles were not obtained.

The half-power width of the measured field was 6.1 um and
the 1/e2—diameter was 14.3 um. The diffraction limit for the lens
for an incident field having a diameter of 3.74 mm is 1.8 ym, so
that the measured irradiance profile was not diffraction-limited,
possibly owing to a measurement at a distance beyond the true
focus. It is apparent from the Figure that the field is quite
smoothly shaped, displaying little scattering noise and sidelobes
at less than 20 dB below the central peak.

The other lens on the substrate, GL2(b), displayed
considerably degraded optical performance, as shown in Figure
[8.30]. The irradiance profile at the estimated best-focus is
shown. The incident field was a Gaussian having a 1/e2—diameter
of 7.2 mm, truncated at 3.17 mm. The half-power width of the
field shown in the Figure is less than 5 pm wide. The l/e2-
diameter is 17 pm, however, and a great deal of scatter is in

evidence.
8.11 Focal length of lens SLl1

In chapter five, the beam propagation method (BPM) was
employed to calculate the optical field in the vicinity of the
focus of diffraction-limited geodesic lenses. An important result
of that chapter was that a shift of the focus occurred from the
focal length predicted by geometrical optics. The shift occurred
in a negative direction, ie towards the lens. This shift was also
observed with a spherical geodesic lens having a toroidal edge-
rounding region, a lens expected to produce positive spherical
aberration. In chapter five it was speculated that the negative
defocus that is observed using a wave-optics analysis such as the
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BPM would compensate, to a degree, for the spherical aberrations
predicted by the purely geometrical theory.

Experimental evidence appears to confirm that such
aberration compensation occurs. Figure [8.31] shows measured
estimates of the focal length of lens SL1 as a function of
aperture width. The field incident on the variable aperture was
approximately Gaussian, with a l/e2 diameter of 10.0 mm . Two
geometrical curves are also shown in Figure [8.31], calculated
from ray-tracing. One geometrical curve was calculated with a ray
manifold that had a Gaussian weighting and truncation imposed
upon 1it, to simulate experimental conditions. The other
geometrical curve was calculated with a uniform weighting. In
both cases, the geometrical 'focal length' for a given aperture
width was found by locating the point of least geometrical
confusion. The difference between the geometrical focal length
and the paraxial focus is a defocus arising from spherical
aberration. To illustrate the amount of defocus that could be
expected, the uniformly weighted ray-trace indicates that a
positive defocus of up to 12 mm could be expected for an aperture
width of 7.5 mm. The Gaussian weighted curve indicates thét a
defocus of 7.0 mm could be expected for the same aperture width.

The experimental results show that the amount of defocus
actualiy observed was much less than predicted by geometrical
optics. A least-squares parabola, which is a reasonably good fit
is drawn through the experimental points. At an aperture of 7.5
mm the amount of defocus, read off the fitted curve, is only 2.2
mm. The evidence is that factors are present which compensate for
the destructive geometrical effects. Doughty [19] postulated that
a variable transmission function could reduce the amount of
defocus, a conclusion borne out by the differences between the
uniformly-weighted and the Gaussian-weighted ray-trace curves.
The experimental data of Figure [8.31] 1s evidence that a
tendency towards a negative focal shift, which only appears in
optical propagation models based on a field analysis,
counterbalances the effects of positive spherical aberration. The

optical performance of a spherical geodesic lens with edge-
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rounding is, therefore, better than might be expected from purely
geometrical considerations.

8.12 Conclusions

Several types of inhomogeneous lens fabricated on LiNbO,
substrates have been characterised in terms of observed optical
performance. The lenses consisted of :

(a) a spherical geodesic lens having a toroidal edge-
rounding region;

(b) an overlay lens made from arsenic trisulphide, which was

a fabricated approximation to a perfect Luneburg lens;

(c) an aspheric geodesic lens fabricated as closely as

possible to a theoretically perfect design;

(d) a complementary pair of aspheric geodesic lenses of

perfect design, supported on a single substrate.

The spherical geodesic lens exhibited good optical
properties that resulted in an ability to discriminate between
two acousto-optically diffracted signals separated by 2 MHz at a
centre frequeny of 746 MHz. The optical properties of this lens
have been explained by postulating a balance between the positive
spherical aberration introduced by the lens and the tendency
towards negative defocus that is known to occur in lenses at

small angular apertures.

The overlay lens exhibited poor optical performance, as had
been predicted by ray-tracing techniques in chapter four.
Negative spherical aberration was observed which resulted in a
negative defocus of nearly 25%, in comparison with a theoretical
value of 20%. The discrepancy was related to differences between
the calculated approximate profile investigated in chapter four
and the actual fabricated profile shown in chapter seven.
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The single aspheric geodesic lens yielded diffraction-
limited performance at a relative aperture of f/lb. At wider
apertures the lens exhibited degraded optical performance.
The width of the focal spot became several times the value of the
diffraction limit, and sidelobe levels became high.

The geodesic lens pair on a single substrate exhibited
different optical characteristics. One lens produced a smooth
focal field, albeit wider than the diffraction-limited case. The
other lens exhibited a severely degraded focal field, probably
due to the presence of local scatterers in the vicinity of the
focus, either in the waveguide itself or at the polished end-face
of the waveguide.
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CHAPTER NINE

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

9.1 Review of thesis
The goals of this work were:

(1) to fabricate integrated optical Luneburg lenses of
the overlay type;

(ii1) to characterise, experimentally, already-
fabricated integrated optical geodesic lenses;

(111) to implement and test computer models of optical
propagation through integrated optical inhomogeneous lenses, of
which geodesic and Luneburg lenses are special cases. The models
were (a) geometrical optical, based on ray-tracing techniques and
(b) wave optical, based on the recently developed beam

propagation method (BPM).

All of the above goals have been met, with varying degrees

of success.

Chapter one, the introduction to the thesis, has attempted
to show that integrated optical components, and lenses
particularly, could play a key role in the optical processing
revolution which is widely predicted. In chapter two, the
historical development of inhomogeneous lenses has been reviewed.
Inhomogeneous lenses have been known, for some decades, to offer
the possibility of achieving near-perfect optical performance. As
has often been the case in integrated optics, many useful

developments were initiated at microwave frequencies.

The design principles and theory of inhomogeneous lenses

have been presented. Luneburg lens refractive index profiles and
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thin-film overlay thickness profiles which provide the required
refractive index variation, through the dispersion of the
effective propagation constant with thickness, have been
computed. The lens material was arsenic trisulphide (As,53), a
high refractive index material supported on a lithium niobate
(LiNbO3) substrate on the surface of which a titanium-diffused
waveguide was the ambient guiding medium. Tolerances have been
established which relate the sensitivity of lens focal-lengths to
overlay-film thickness variations. It is found that lenses having
large f-numbers are extremely sensitive to film thickness
variations. Lenses having f-numbers as low as £/1, on the other
hand, display thickness profiles that are not likely to be
realizable using simple fabrication techniques. A goal of
fabricating an f£/2 lens is a reasonable choice, given these

conditions.

A theory of integrated optical geodesic lenses has been
presented which is used to design lenses having an inner focusing
region and an outer edge-rounding region bridging the inner
region and the ambient waveguide. The composite lens 1is capable
of perfect focusing, theoretically, within the usable inner
aperture. Lenses that have been fabricated by Dr. G.F. Doughty
and co-workers at the Department of Electronics and Electrical
Engineering at the University of Glasgow have a full aperture f-
number of £/1.85, of which only a relative aperture of £/2.5 is
usable.

A simple geodesic lens has also been fabricated which has a
spherical inner focusing region and a toroidal outer edge-
rounding region. This lens has a full-aperture f-number of
f/4.98, of which only a relative aperture of £/10 or greater is
usable, due to the aberrations introduced by the spherical

geometry.

The vacuum environment to be used for fabricating thin-film

overlay lenses has been investigated in chapter three. Simple
models of the spatial flux properties of evaporation sources,
including the well-known Knudsen model, have been presented in
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this chapter. The variation of the thickness of a thin film
deposited on a planar substrate, held above a small Knudsen
source, has been computed and compared with desired lens profiles
for several source-to-substrate distances. The distances required
to produce significant variation are small, of the order of a few
millimetres. Furthermore, the variations do not correspond very
well with the required profiles. However, the actual source used
in fabrication is not small and, consequently, substantially
modified evaporant flux profiles are expected. Reports in the
published literature have also demonstrated that 'blocking', or
'shadow' masks interposed between source and substrate can be
used to control the evaporant flux properties and, consequently,
the deposited film profiles.

A computer model, incorporating a source of cylindrical

geometry and a single infinitely-thin mask with a circular

opening, has been developed which is used to predict the
distribution of deposited material on a planar substrate. The
geometry of the source 1s held fixed at the dimensions of the
experimental source. The radius of the mask opening and the
placement distances of the mask, relative to source and
substrate, are used as variables in the search for the best
profiles. The 'best profile' is found by minimising the least-
squares deviation of the deposited profile from the required
Luneburg lens. The approximate profiles obtained differ from the
desired profiles in that the central regions are flat-topped, and
curve steeply at the edges. Optical aberrations were expected to
occur, together with high scattering losses at the edge of the

lenses.

Algorithms for tracing rays through geodesic and overlay
lenses have been given in chapter four. These algorithms were
published by W.H. Southwell and have been implemented, with
modifications, by the present author and J. van der Donk and P.

Lagasse of the University of Gent, Belgium.

Comparisons between ray-traces through the conceptually

perfect f/2 Luneburg lens and the best approximate profile
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obtained using the method discussed in chapter three have
revealed that the approximate profile does indeed give rise to
spherical aberration. The effective focal length is reduced by
20% with respect to the design focal length, at half-full
aperture. Rays outside the half-aperture are deflected at very
large angles with respect to the axis of optical propagation, as
a result of the steepness of the profile edges.

Comparisons between ray-traces through the theoretical
aspheric geodesic lens and two achievable approximations have
revealed that small spherical aberrations occur which oscillate
rapidly as a function of the ray position in the aperture. The
aberrations, being small, are unlikely to degrade the optical
field significantly. Furthermore, the perturbations of the lens
profile which give rise to the aberrations are expected to be

greatly reduced by polishing.

Ray-traces through the spherical geodesic lens with a
rounded edge have indicated that the lens performance is
significantly degraded by spherical aberration at wide apertures.
Near full-aperture, a positive defocus of nearly 40% is required
to locate the point of least confusion. 7

The geometrical optics techniques used in chapter four are
insufficient to describe fully optical propagation through
inhomogeneous lenses, since diffraction effects can not be
modelled. In chapter five, a numerical method for propagating
optical wave-fields through inhomogeneous lenses has been
introduced. The method is known as the beam-propagation method
(BPM) and relies heavily on the techniques of Fourier optics. The
theory and practical implementation of the technique has been
discussed in chapter five. The technique had been implemented by
J. van der Donk and P. Lagasse, but had not been extensively
tested. The BPM software was made available to, and modified by,

the present author.

Obtaining correct results under diffraction-limited

conditions represented a rigorous test of the capabilities of
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the BPM. The aspheric geodesic lens of theoretically perfect
design presented in chapter two has been used to evaluate these
capabilities. The software has been modified to give detailed
information about the amplitude of the field in the region of the
focus. The method has yielded generally excellent results, for a
variety of incident field conditions. The amplitude and energy
distributions closely resemble the classical results published in
the literature and the striking differences between the focal
fields arising from uniformly illuminated apertures and
truncated-Gaussian illumination have been highlighted.

A negative focal-shift has been observed with the BPM that
has also been predicted by other recently-published diffraction
analyses. The focal-shift obtained was comparable in magnitude to
the published values. The focal-length of a spherical geodesic
lens having a rounded-edge was shown to be less than that
predicted by raytracing at a limited aperture. It is speculated
that the tendency of the focus to move towards the lens will
compensate, to an extent, for the positive geometrical

aberrations of the spherical geodesic lens having a rounded edge.

In chapter six, the fabrication of planar waveguides and
overlay lenses has been discussed. The properties of lithium
niobate, titanium-diffused waveguides and arsenic trisulphide
have been reviewed. Arsenic trisulphide films are known to
benefit from irreversible annealing, in terms of optical and
mechanical stability. A reversible annealing process has been
reported which could allow for post-fabrication modification of

arsenic trisulphide waveguide properties.

Fabricated titanium—diffused waveguides have performed well,
with low in-plane scattering. In contrast, planar waveguides of
arsenic trisulphide have performed quite poorly, exhibiting high

levels of loss and in—plane scatter.

It has been found that accurate control of the evaporation
process used for fabricating arsenic trisulphide overlay lenses

is i1mpossible, due to the very small distances required for
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achieving good profile approximations. Nevertheless, a measured
lens profile has been presented which comes close to the desired

profile. An alternative technique for the fabrication of overlay
lenses has been proposed.

In chapter seven, the problems of achieving good uniformity
of titanium-diffused waveguides over geodesic lens surfaces have
been discussed. It has been shown that a simple Knudsen source
will yield a very uneven film of deposited titanium, which will
influence the diffused waveguide in similar fashion. The degree
of non-uniformity is especially severe for the highly-curved
aspherical geodesic lenses. It is postulated that such non-
uniformity will affect the performance of these lenses adversely,
influencing both the amplitude transmission properties and the
phase-transformation properties.

The optical properties of fabricated lenses have been
reported in chapter eight. A single thin-film overlay lens
approximation to a Luneburg lens, a spherical geodesic lens with
a rounded edge, a single aspheric geodesic lens, and an aspheric
geodesic lens pair have been reported upon. The thin-film lens
performs as prédicted by ray-tracing, ie a negative defocus
arising from spherical aberration occurrs. The spherical geodesic
lens performs surprisingly well, and is able to discriminate
successfully between two closely-spaced acousto-optically-
diffracted signals. The focal-length of the lens varies much less
as a function of aperture than is predicted by ray-tracing, in
confirmation of a postulate arising from the BPM wave-optics

analysis.

The single aspheric geodesic lens yields diffraction-limited
performance at a relative aperture of £/10. At lower relative
apertures the focal spot-size remains approximately constant. The
sidelobe levels, however, are generally rather high and
asymmetrical, possibly indicating an asymmetrical deposition of
titanium before waveguide fabrication. The complementary pair of
aspheric geodesic lenses exhibits different levels of optical

per formance, but both lenses perform significantly worse than the
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single lens, which may be a further indication that waveguide

uniformity 1s an important problem.
9.2 Conclusions on overiay Luneburg lenses

The overlay thin-film lenses perform poorly for the
following reasons:

(a) the choice of As,S; as the overlay material, dictated by
its high refractive index with respect to titanium-diffused
LiNbO3, necessarily lowers expectation in other respects,
notably in terms of in-plane scattering loss, absorption loss,
mechanical and optical stability,

(b) the need to improve the stability of the films by
annealing, therefore raising the refractive index from the as-
evaporated state to a value close to the bulk state, shifts the
curves of focal-length sensitivity to film thickness changes to
regions of very low f-number. Unfortunately, the regions of low
f-number are just the regions where the overall lens profiles are

most difficult to manufacture using simple techniques;
(c) the profiles require very short source-to-substrate and
source-to-mask distances, as calculated by the shadow-masking

model. Such distances preclude good control or on-line measurment

of fabricated films;

(d) the steep edges of the approximate profiles lead to
extremely high values of scatter at the ambient waveguide/lens
interface, leading to very large throughput losses.

9.3 Recammendations for future work on overlay lenses

Several recommendations can be made that would lead to much

improved overlay Luneburg lens performance:
(i) the optical problems associated with As 5,54 would be
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alleviated by operating at a longer wave-length, in the near
infra-red. The losses associated with Scattering and absorption
would decrease. The optical characteristics of the lenses at
infra-red wavelengths, however, being invisible to the eye are
more difficult to assess.

(11) Following the success of Busch and co-workers with
unannealed films (see chapter two for reference), annealing
should be eliminated thereby reducing the refractive index
difference between the lens and the surrounding waveguide. Such a
reduction decreases the sensitivity of the focal length to
changes in film thickness at larger f-numbers where the profiles
will be flatter and, consequently, much easier to fabricate.
However, a discontinuation of the annealing process raises
queStions about the long-term stability of the lenses. Other
materials having a slightly lower refractive index than As S5
could also be investigated.

(111) Alternatively, if annealed films are necessary, the
effective refractive index of the surrounding wavequide should be
raised. This could be done by using As,53 itself as the ambient
waveguide material. However, the other problems already mentioned
would work against such a solution. A more exciting approach
would be to use the constantly improving waveguide technology of
proton-exchange which allows well-controlled refractive index

changes of up to 0.12 at visible wavelengths.

(iv) Profiles based on the dispersion of the effective
propagation constant of TM modes, rather than TE modes, tend to
be flatter and are therefore relatively easier to fabricate as

has been shown by Busch and co-workers.

(v) Sputtering techniques, which generally involve much
larger source areas than evaporation techniques, would allow
shadow-masking models with a larger 'choice' of regions to
selectively block off from the substrate. A much-improved profile

fit would result.

211



(vi) The dimensions of the cylindrical source in the shadow-
masking model used here were held constant during the computer
search for a close-fit profile. It would be useful to allow these

dimensions to vary to see whether closer fits could be obtained.

(vii) A more sophisticated shape of mask than that used in
the present work has been reported by Yao and co-workers, and
also by Hatakoshi and co-workers (see chapter two). These masks
repay the costs of development and fabrication because, once the
mask is fabricated, the fabrication of lenses becomes both cheap
and reproducible.

(viii) The computer-controlled, motor-driven 1iris method
proposed in chapter six would be extremely interesting once set-

up, since changes to the technique would be programmable.

(ix) Finally, a theoretical investigation of Luneburg lens
profiles that did not possess abrupt transitions between the
surrounding waveguide and the lens would repay investigation.
Bridging regions, analogous to the rounded edges of the geodesic
lenses investigated in this study, would reduce scattering and

reflection loss at the interface.

9.4 Conclusions on geodesic lenses

Spherical geodesic lenses with toroidally rounded-edges
would appear to be reasonable candidates for low-to-medium
performance specifications, 1in view of the optical
characteristics measured in this work. The small change in focal
length as a function of aperture, in comparison with the shift
predicted by geometrical optics, is all the more surprising in
view of the fact that the spherical aberration data measured
using a Hartmann experimental ray-trace corresponded closely to
the theoretical curves. This may be taken as confirmation of the
fact that the wave-optical negative focal shift does not depend
on the geometrical characteristics but rather on whole-aperture

field interference effects.
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The large, unevenly distributed amounts of optical energy
scattered 1nto the regions outside the central spot 1in the
aspheric geodesic lenses are indications, once again, that the
problem of in-plane scattering is still one of the most pressing
in i1ntegrated optics. Waveguide uniformity has shown itself to be
a further problem, as demonstrated by the failure of the central
regions of the complementary lens pair to transmit light after an
initial waveguide formation. For these reasons, the aspheric

geodesic lenses are falling short of diffraction-limited

performance at wide apertures.
9.5 Recommendations for future work on geodesic lenses

(1) Given the improvements in proton-exchange waveguides,
especially those fabricated in dilute melts, it is probably time
to try this waveguide technology as a competitor against

titanium—-diffusion.

(11) The variation of deposited thickness of titanium across
geodesic lenses should be measured to see how the experimental
~data compares with the theory given in chaptér eight. The
transmission properties of the lenses as a function of aperture
should be measured and a study carried out on whether a
correlation exists between the waveguide uniformity and the

transmission function.

(iii) Lenses should be investigated under conditions of off-
axis incidence. The problem of anisotropy, which has been largely
ignored in the present study, would almost certainly become more
pressing under these conditions. One of the most easily
controllable and accurate methods of varying the incidence angle
is also one of the most directly relevant, namely the Bragg

interaction of surface-acoustic waves with an optical beam.

(iv) The possibilities of modifying geodesic lens properties
should be investigated with regard to decreasing in-plane

scatter, apodizing to reduce sidelobe levels and changing the
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focal length. The latter property is especially important if the
edges of waveguides are to be close to the foci. The BPM
technique shows that the depth of field at wide apertures is very
small, so that the field can decay rapidly at very short
distances from the achieved focus. Post-fabrication modification
of the focal length would enable the beam to be tuned to correct
spatial positions. One way of doing this would be to introduce
loading layers of overlay material.

(v) Experimental observations of negative focal-shifts in
diffraction-limited circumstances, such as those predicted by the
BPM and other diffraction analyses, are not known to the author.
It would be extremely interesting to obtain such results.

9.6 Conclusions on optical propagation models

The geometrical optics technique of ray-tracing was found to
give useful information about large aberrations, such as those
exhibited by the overlay approximation to the Luneburg lens, and
the spherical geodesic lens with a rounded edge. It was found
more difficult to interpret the effects of vary small aberrations
such as those exhibited by the achievable approximation to the
aspheric geodesic lens. The main utility of ray-tracing is to
obtain a relatively crude idea of the optical performance of a
given lens system. Where aberrations are large, such as in low-
performance applications, ray-tracing is sufficient to describe

lens performance.

The BPM, on the other hand, appears to be a very powerful
technique for ascertaining optical performance in the form which
is directly measured. Some uncertainty still exists about the
accuracy of the focal shift predicted by the method, although
there is no doubt that negative focal shifts are a feature of

systems that are perfect fram a geometrical optics point of view.
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9.7 Recammendations for future work

(1) Ray-tracing should be used in conjunction with shadow-
masking programs to investigate other overlay lens profiles that
may provide for better approximations to the desired profiles.
The profiles would then be optimised optically, rather than in
terms of physical closeness to a desired shape.

(11) Further tests should be carried out to establish the
accuracy of the beam propagation method. These should consist of
numerical tests for convergence and more detailed comparisons

with other theories and empirical data.

~ (i11) Phase information is available with the BPM, since the
complex amplitude of the wave-field is calculated. The phase
behaviour of the field in diffraction-limited systems should be
investigated and compared with that obtained using classical
theories. In particular, the relationship of the phase-fronts
to those predicted by geometrical optics should be examined in
light of the focal shift.

(i;l) The BPM should be used to investigate off-axial
incidence corditions, the effects of aberrations on the optical
field in the focal region, the effects of profile perturbations
and apodisation effects. An anisotropic version of the BPM is
available which should be tested for validity. Furthermore, the
BPM can be used to model acousto-optic diffraction but has been
under-utilised in this respect. It 1s particularly important to
investigate inter-modulation effects, which can degrade the

resolution of optical processors.
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9.8&mm'yofa'igimlum'kamtainedintmsthesis

This thesis has reported original work in at least eight

respects:

1. The thickness profiles and fabfication tolerances of
overlay Luneburg lenses camposed of anneal-stabilized films of
As,S,, deposited onto 'I‘i:LiNbO3,waveguides, have been calculated.

2. The actual form of the refractive index profiles of the
Ti-diffused waveguides has been shown to be wmimportant for the
shape of the overlay Luneburg lenses when a high-index film is
used to fabricate the lenses.

3. An original model and computer optimization method has
been developed for the problem of fabricating Luneburg lenses in

vacuum evaporation and shadow-mask conditions.

4. The mathematics of a well-known algorithm for tracing
rays in Luneburg lenses has been corrected and properly
established.

5. A significant focal shift from the geometrical optics
value has been calculated using a wave propagation method. This
is the first time that such a shift has been predicted in an

integrated optics context.

6. Waveguide uniformity problems on geodesic lenses have
been investigated fram a theoretical point of view, for the first

time in integrated optics.

7. A range of optical assessment methods have been borrowed
fram bulk optics and used extensively to good effect in testing
integrated optical lenses.

8. The spherical geodesic lens with a rounded edge has been
shown to be more competititive with other types of integrated
optical lens than had been previously thought.
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Note (1) re. Bquation (4.35), d'lapter Four

The difference between the expression obtained by the
present author for the second derivative of the Luneburg lens
refractive index profile, and that obtained by Southwell (shown
below) is quite important. In spite of the errors in his
expression, Southwell presented ray-tracing results which,
ostensibly, were based on the published algorithm. Since,
however, the expression gives ridiculously high values of the
second derivative which would normally cause the algorithm to
fail, it must be assumed that Southwell himself did not utilise
the expression as published and relied on numerical calculations
of the derivative instead. It would be expected that the
expression given in (4.35) would lead to more accurate results
than those obtained using numerical techniques. This is indeed

found, and a gain in computing efficiency is also obtained.

Southwell also got his differentiation mixed up in a paper
on geodesic lenses ("Geodesic optical waveguide lens analysis",
J.Opt.Soc.Am., 67(10), pp 1293-1299) as was pointed out
subsequently by Marom and Ramer (E. Marom and O.G. Ramer,
“Geodesic optical waveguide lens analysis: Comment",
J.Opt.Soc.Am., _6_?_(5), pp 791-792) and acknowledged by Southwell
(same issue, pp 792-793). The present author is not aware,

however, of a published correction to the mistake reported in the

present work.

ECIWJ'L'@YI (lh) from  Keteremu ("} of Charrw’ Foor :

dto _ 20 (GE(i-em)T M),
e [2 (1—rn)'/z N an]:( F(B_F)

215b



PUBLICATIONS

[1] " Integrated optical microwave spectrum analyser (IOSA)

[2]

[3]

[4]

using geodesic lenses. "

G.F. Doughty, R.M. DeLaRue, N. Finlayson, J. Singh
and J.F. Smith

Proceedings of the Society of Photo-Instrumentation
Engineers, volume 369, 1982, 705-710

Integrated Optical Techniques for Acousto-Optic

- Receivers. "

S.M. Al-Shukri, A. Dawar, R.M. DeLaRue, G.F. Doughty,
N. Finlayson and J. Singh

Chapter eight, ' Advanced Signal Processing', edited by
D.J. Creasey. Peter Pergrinus, Stevenage, Herts, UK, 1984

" Acousto—-optic techniques in integrated optics. "

A. Dawar, R.M. DeLaRue, G.F. Doughty, N. Finlayson,
S.M. Al-Shukri and J. Singh

Proceedings of the Society of Photo-Instrumentation

Engineers, volume 517, 1984, 64-73

" Integrated Optic Lenses. "

N. Finlayson and R.M. DelaRue

Post—deadline paper presented at 1985 Summer School on
Surface Excitations, Erice, Sicily. To appear 1n

proceedings of School.

216



	378197_0001
	378197_0002
	378197_0003
	378197_0004
	378197_0005
	378197_0006
	378197_0007
	378197_0008
	378197_0009
	378197_0010
	378197_0011
	378197_0012
	378197_0013
	378197_0014
	378197_0015
	378197_0016
	378197_0017
	378197_0018
	378197_0019
	378197_0020
	378197_0021
	378197_0022
	378197_0023
	378197_0024
	378197_0025
	378197_0026
	378197_0027
	378197_0028
	378197_0029
	378197_0030
	378197_0031
	378197_0032
	378197_0033
	378197_0034
	378197_0035
	378197_0036
	378197_0037
	378197_0038
	378197_0039
	378197_0040
	378197_0041
	378197_0042
	378197_0043
	378197_0044
	378197_0045
	378197_0046
	378197_0047
	378197_0048
	378197_0049
	378197_0050
	378197_0051
	378197_0052
	378197_0053
	378197_0054
	378197_0055
	378197_0056
	378197_0057
	378197_0058
	378197_0059
	378197_0060
	378197_0061
	378197_0062
	378197_0063
	378197_0064
	378197_0065
	378197_0066
	378197_0067
	378197_0068
	378197_0069
	378197_0070
	378197_0071
	378197_0072
	378197_0073
	378197_0074
	378197_0075
	378197_0076
	378197_0077
	378197_0078
	378197_0079
	378197_0080
	378197_0081
	378197_0082
	378197_0083
	378197_0084
	378197_0085
	378197_0086
	378197_0087
	378197_0088
	378197_0089
	378197_0090
	378197_0091
	378197_0092
	378197_0093
	378197_0094
	378197_0095
	378197_0096
	378197_0097
	378197_0098
	378197_0099
	378197_0100
	378197_0101
	378197_0102
	378197_0103
	378197_0104
	378197_0105
	378197_0106
	378197_0107
	378197_0108
	378197_0109
	378197_0110
	378197_0111
	378197_0112
	378197_0113
	378197_0114
	378197_0115
	378197_0116
	378197_0117
	378197_0118
	378197_0119
	378197_0120
	378197_0121
	378197_0122
	378197_0123
	378197_0124
	378197_0125
	378197_0126
	378197_0127
	378197_0128
	378197_0129
	378197_0130
	378197_0131
	378197_0132
	378197_0133
	378197_0134
	378197_0135
	378197_0136
	378197_0137
	378197_0138
	378197_0139
	378197_0140
	378197_0141
	378197_0142
	378197_0143
	378197_0144
	378197_0145
	378197_0146
	378197_0147
	378197_0148
	378197_0149
	378197_0150
	378197_0151
	378197_0152
	378197_0153
	378197_0154
	378197_0155
	378197_0156
	378197_0157
	378197_0158
	378197_0159
	378197_0160
	378197_0161
	378197_0162
	378197_0163
	378197_0164
	378197_0165
	378197_0166
	378197_0167
	378197_0168
	378197_0169
	378197_0170
	378197_0171
	378197_0172
	378197_0173
	378197_0174
	378197_0175
	378197_0176
	378197_0177
	378197_0178
	378197_0179
	378197_0180
	378197_0181
	378197_0182
	378197_0183
	378197_0184
	378197_0185
	378197_0186
	378197_0187
	378197_0188
	378197_0189
	378197_0190
	378197_0191
	378197_0192
	378197_0193
	378197_0194
	378197_0195
	378197_0196
	378197_0197
	378197_0198
	378197_0199
	378197_0200
	378197_0201
	378197_0202
	378197_0203
	378197_0204
	378197_0205
	378197_0206
	378197_0207
	378197_0208
	378197_0209
	378197_0210
	378197_0211
	378197_0212
	378197_0213
	378197_0214
	378197_0215
	378197_0216
	378197_0217
	378197_0218
	378197_0219
	378197_0220
	378197_0221
	378197_0222
	378197_0223
	378197_0224
	378197_0225
	378197_0226
	378197_0227
	378197_0228
	378197_0229
	378197_0230
	378197_0231
	378197_0232
	378197_0233
	378197_0234
	378197_0235
	378197_0236
	378197_0237
	378197_0238
	378197_0239
	378197_0240
	378197_0241
	378197_0242
	378197_0243
	378197_0244
	378197_0245
	378197_0246
	378197_0247
	378197_0248
	378197_0249
	378197_0250
	378197_0251
	378197_0252
	378197_0253
	378197_0254
	378197_0255
	378197_0256
	378197_0257
	378197_0258
	378197_0259
	378197_0260
	378197_0261
	378197_0262
	378197_0263
	378197_0264
	378197_0265
	378197_0266
	378197_0267
	378197_0268
	378197_0269
	378197_0270
	378197_0271
	378197_0272
	378197_0273
	378197_0274
	378197_0275
	378197_0276
	378197_0277
	378197_0278
	378197_0279
	378197_0280
	378197_0281
	378197_0282
	378197_0283
	378197_0284
	378197_0285
	378197_0286
	378197_0287
	378197_0288
	378197_0289
	378197_0290
	378197_0291
	378197_0292
	378197_0293
	378197_0294
	378197_0295
	378197_0296
	378197_0297
	378197_0298
	378197_0299
	378197_0300
	378197_0301
	378197_0302
	378197_0303
	378197_0304
	378197_0305
	378197_0306
	378197_0307
	378197_0308
	378197_0309
	378197_0310
	378197_0311
	378197_0312
	378197_0313
	378197_0314
	378197_0315
	378197_0316
	378197_0317
	378197_0318
	378197_0319
	378197_0320
	378197_0321
	378197_0322
	378197_0323
	378197_0324
	378197_0325
	378197_0326
	378197_0327
	378197_0328
	378197_0329
	378197_0330
	378197_0331
	378197_0332
	378197_0333
	378197_0334
	378197_0335
	378197_0336
	378197_0337
	378197_0338
	378197_0339
	378197_0340
	378197_0341
	378197_0342
	378197_0343
	378197_0344
	378197_0345
	378197_0346
	378197_0347
	378197_0348
	378197_0349
	378197_0350
	378197_0351
	378197_0352
	378197_0353
	378197_0354
	378197_0355
	378197_0356
	378197_0357

