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Do mo phG,rantan 



And God said, Let there be light: 
and there was light. 

THE FIRST BOOK OF MOSES, CALLED GENESIS 
Chapter 1, verse 3 

o what a bursting out there was, 
And what a blossoming, 

When we had all the summer-time 
And she had aU the spring! 

"A MAN YOUNG AND OLD" 

l.B. Yeats 
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ABSTRACT 

The thesis is concerned with the design, analysis, 

fabrication am evaluation of integrated optic lenses which are 

inhomogeneous either in physical shape or in refractive index 

profile. The thesis has nine chapters. Chapter one, the 

introduction, illustrates the importance of these lenses within 

the domain of integrated optiCS, where the complicated 

mathematical functions required to describe the lens profiles are 

most easily realised. Connections are made between the study of 

these lenses and the exciting new field of optical computing. 

A special class of non-uniform lenses which are conceptually 

perfect optical instruments forms the main area of interest in 

the present study. Historically, the development of these lenses 

has followed two distinct lines, related to two possible methods 

of physically obtaining the required variation in path of light 

rays passing through the lens. In one method the optical path is 

made to vary directly, whilst the other method involves 

controlling the fi'lysical path, and thus the optical path, through 

the principle of equivalence. The dual development has been 

continued in the field of integrated optiCS, where lenses based 

on direct control of the optical path are termed variable-index 

lenses and those based on physical path control are termed 

geodesic lenses. The perfect variable-index lens studied in this 

work was the well-known Luneburg lens. Perfect geodesic lens 

designs have also been published. The design formulae for both 

types of lens are presented in chapter two. A simpler lens, of 

spherical geometry, is also presented which is easily analyzed 

and characterised and which serves as an archetypal model against 

which the performance of the more sophisticated lenses can be 

assessed. 

Chapter three investigates the problems involved in 

modelling fabrication conditions in a thermal-evaporation-in­

vacuum environment so that lens profiles can actually be 

constructed. Chapter four goes into methods of tracing rays 

through these lenses in some detail. Ray-tracing has long been 
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the classical tool of optical designers, providing a useful guide 

to optical performance. Ray methods, which effectively provide 

image error evaluations, are not entirely-appropriate for those 

lenses which are conceptually perfect within the geometrical 

optics approximation. Diffraction effects prevent the lenses from 

attaining true perfection. In such cases the wave-field produced 

by the lenses in the image space is the important quantity. In 

chapter five, the beam-propagation method (BPM) is used to study 

diffraction arrl associated effects in inhomogeneous lenses. '!he 

method allows the propagation of complicated waveshapes in 

lnhomogeneous media, normally a difficult task. Furthermore, 

anlsotropic effects and the interaction between acoustic waves 

aoo optical waves can be studied with the method. Negative focal 

shifts are reported which are not predicted by geometrical optics 

or the usual approximate diffraction theories. 

The fabrication of lenses is considered in chapter six. 

Planar waveguide measurements car r ied out on the var ious 

materials used in the study are presented. A major problem in the 

fabrication of geodesic lenses, that of obtaining a uniform 

wavegulde layer over the complete lens area, is dealt with in 

some detail in chapter seven. In chapter eight, extensive tests 

on the experimental performance of several lenses are reported. 

Near diffraction-limited performance is reported for geodesic 

lenses. More limited performance figures are obtained for 

Luneburg lenses though the possibility of high performance is 

lndicated if profile resolution can be improved. The themes of 

the thesls are pulled together for discussion in chapter nine and 

conclusions are drawn as to the relative merits of the various 

lenses. Possible means of improving fabrication procedures, thus 

driving lenses closer to ultimate resolution limits, are 

presented. The greatest problem faced is that of scatter ing in 

the waveguide, which appears to be accentuated as the waveguide 

traverses the lens surface. If the scattering problem can be 

successfully dealt with it is concluded that integrated optical 

lenses could be important and viable components in addresslng the 

problem of fast, high-throughput data processing. 
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CHAPTER ONE 

INTRODUCTION 



Data-processing, interpreted as computing in its widest 

sense, is becoming progressively more complex [1]. Historically, 

many of the advances in processing have both driven and been 

driven by advances at the electronic component level. The 

phenomenon of 'silicon shrink', faster switching speeds and lower 

switching energies have triggered performance gains at the system 

level which have expanded data-processing horizons. There are 

signs, however, that the interdependence of electronics and data­

processing systems at the most ambitious levels is corning to an 

end. There are two reasons: 

1) the rate of advance in electronics at the component 

(ie chip-) level is slowing. Fundamental limits are being 

approached in terms of feature size and switching speeds 

2) systems designers are increasingly hide-bound by von 

Neumann-oriented architectures which operate in sequential 

fashion. Processors have been essentially memory-dr iven rather 

than data-driven, preventing many operations from taking place in 

real-time. Bottlenecks are created which impede data flow and 

lead to interconnection difficul ties with the real world. 

There is a strong impetus to develop new types of computing 

engine which will overcome these problems. These computers will 

be required to operate in a massively parallel fashion and thus 

display much larger space-bandwidth products than present day 

electronic systems. Furthermore, an increase in speed 

(corresponding to an increase in time-bandwidth product) is also 

desirable. Pattern recognition, real-time spectral analysis, 

synthetic aperture radar, machine-vision and artificial 

intelligence are areas in which processors having these improved 
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characteristics could be of value. Purely electronic systems, 

arguably, are unlikely to prove suitable for their construction. 

An alternative technology may thus be required. Q1e which is 

sui table on several counts is based on optics. Light beams are 

inherently, and massively, parallel. Conceptually at least, 

millions of resolvable spots are available, each of which 

represents an independent signal-channel substantially free of 

interference or cross-talk. Because of the high frequency of 

light each channel can support an enormous temporal bandwidth. 

Beams can propagate through each other in many media at high 

power densities without interacting, while useful interactions 

within suitable non-linear materials can take place on a femto­

second to pi co-second timescale. The advances in communication 

using optical fibres are further reasons for developing all­

optical processing, minimising the need for slow, power-costly 

photon-electron conversions. 

Optics has been of considerable interest for performing 

analogue signal-processing for at least two decades, mainly as a 

resul t of the development of highly coherent sources,ie lasers. 

The operations of convolution, correlation, spectral analysis and 

imaging are relatively easy to perform in optics and these 

operations have formed the building blocks for powerful but 

highly specialised systems. More recently, attention has turned 

to the possible implementation of numer ical (digi tal) optical 

processing as a means of obtaining systems of more general 

utility [2]. Classical optical elements such as lenses, mirrors, 

beam-splitters and prisms can be used in conjunction with 

acousto-optic and electro-optic interactions to perform algebraic 

operations, such as matrix-matrix and matrix-vector 

multiplications and additions. Analogue operations such as 

convolution can generally be configured as matrix-vector 

problems, so that a move towards numer ical optical processing 

offers the likelihood of performance gains associated with 

digital processing (eg increased accuracy and reliability) in 

those areas. 
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It is evident that optics is an exciting approach to fast 

numerical processing implemented in a parallel fashion. The 

parallelism derives from the extension of a light wave-field over 

a wide region of three-dimensional space in comparison with the 

wavelength of the light. Somewhat paradoxically, there are 

advantages to be obtained in not using the full dimensionality 

offered by bulk optics. Reducing the dimensionality by a factor 

of one (and sometimes two) by confining the light to a planar 

wave-guide offers much greater control over several of the 

different processes involved. Guided-wave optics implemented on 

flat substrates is now well-established am is generally known 

(perhaps misleadingly) as integrated optics. 

Some particular advantages quoted of integrated optics over 

bulk optics are, typically, decreased power consumption, 

convenient fabrication procedures, improved interaction 

efficiencies with other types of guided wave, longer interaction 

lengths owing to the non-spreading of the confined beam and gains 

in ruggedness, reliability, environmental immunity, small size 

and, particularly, the likelihood of compatibility with optical 

fibres. A major disadvantage is the loss of one transverse 

dimension leading to a much-reduced channel carrying capacity. 

Caulfield [3) has pointed out that while the lateral spatial 

parallelism of bulk optical processors is not fully realized in 

integrated optics, a compensating form of discrete longitudinal 

parallelism is gained in which the incoming optical signal 

extending over one transverse dimension is modulated by time­

varying and space-varying quantities such as presented by surface 

acoustic waves. Psaltis [4) makes some pertinent comments that 

may be quoted in full: 

, '!he 2-D Fourier transforming lens is the primary 

mechanism that is used to make all the possible 

inter-connections in a 2-D optical processor. 

However, only a relatively small number of linear 

operations can be performed with a processor based 

on the 2-D Fourier transform. It is in fact 
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possible to compute a wider class of linear 

operations through combinations of imaging l-D 

transforming (or integrating) lenses. Furthermore, 

greater flexibility exists in the design of such 

processors, ••• 

Psal tis does not have integrated optics in mind here - his 

'one-dimensionality' refers to a combination of non-guided-wave 

acousto-optic devices, light-source arrays and detectors, and 

bulk cylindrical lens elements - but the rationale is clear and 

a role for integrated optics seems possible. 

The crucial part which the classical optical element, the 

lens, has to play in optical processing is stated emphatically in 

the paragraph quoted above. It is well-known that the optical 

diffraction process, in the Fraunhofer (or far-field) zone, is 

essentially the Fourier transformation process. On the surface of 

a sphere with centre situated in the plane of the diffracting 

aperture, transparency or object, the amplitude of the field is 

directly proportional to the Fourier transform of the aperture 

function [5]. The major problem involved in using Fraunhofer 

diffraction to obtain the Fourier-transform is the need, in 

general, to use long observation distances. A thin lens can be 

used to overcome this problem, since the focusing action of the 

lens has the effect of compressing the distances involved. In the 

focal plane of a thin lens, the intensity of the diffraction 

field is proportional to the Fourier spectrum of the incident 

wave. 

Lenses can be used for tasks other than Four ier 

transforming, such as beam collimation and expansion, spatial 

filtering, imaging and as summation/integration elements. 

Real lenses fall short of the perfect optical imaging 

properties ascribed to ideal lenses. The errors introduced in 

imaging are quantifiable in terms of geometrical optics (less so 

in physical optics) and are called aberrations. The principal 

design tools available to lens-makers for correcting aberrations 
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have been, traditionally, the manipulation of surface-curvatures 

in lens elements based on spherical geometries. Combinations of 

these elements, sometimes including elements of different 

refractive index, have been used to minimise aberrations of a 

given type. It is not usually possible to minimise all 

aberrations simultaneously. Developments in machine tools enabled 

designers to introduce aspheric geometries readily into their 

designs, though aspheric lenses are still relatively rare, due to 

the not inconsiderable expense involved in their design and 

construction. 

The refractive index of the material used in the fabrication 

of a single lens element was not considered a design variable and 

was almost invariably held constant. Major advances have occurred 

in this area however, largely due to the infl uence of the appl ied 

mathematician, Rudolf Karl Luneburg (1903-1949). His synthesis of 

the disciplines of physical optics, geometrical optics and 

electro-magnetism (that had previously led largely separate 

though related existences) enabled him to formulate single 

element designs incorporating variable refractive index 

functions. The crucial aspect of these lenses was that they were 

perfect; no correction by other elements was required, and 

'perfection' (perfect imaging) was obtained Oller a solid angle of 
360 degrees. In the 1950's and 1960's wneburg lenses found some 

application in the microwave field, especially for high-fidelity 

radar-scanning and tracking purposes. The lenses were not 

extensively used in optics due to difficulties involved in 

construction. 

The importance of these lenses for integrated optics became 

clear for two reasons: one being that the effective refractive 

index dispersion with waveguide thickness offered the possibility 

of simple construction, albeit at the expense, once again, of 

reduced dimensionality; and the other being that the scattering 

losses associated with integrated optical waveguides, especially 

at index discontinuities such as interfaces, precluded the use of 

several cascaded elements to achieve good image correction. 
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The pr inciple of equivalent optical paths allows the 

construction in integrated optics of lenses analogous to wneburg 

lenses which depend on ·the controlled geometrical deformation of 

the waveguide for successful operation. Such lenses are termed 

configurational or geodesic lenses. Geodesic lenses are strongly 

aspheric in general and are therefore more expensive to 

manufacture than wneburg lenses. However advantages in terms of 

fabrication and performance over Luneburg lenses can be gained. 

A mul ti-disciplinary approach is required in the 

investigation of these lenses, as is the case with much of 

integrated optics. The design and analysis of lenses involves 

considerable theoretical and computational effort; lens 

fabrication involves both theoretical and practical aspects of 

materials science, thin-film and vacuum technology and machining, 

polishing and masking problems; the characterization of 

fabricated lenses draws upon classical optical practices 

supplemented by new techniques unique to integrated optics; and 

incorporating the lenses into actual data-processing systems 

involves all of these again, together with conventional 

electronic engineering techniques, as well as other disciplines 

such as acoustCH>ptics. 

This thesis describes the synthesis of several of the above­

mentioned disciplines in an effort to construct and operate two 

types of lens having common origins in the work of Luneburg. 

These lenses are likely to play major roles in the future 

development of integrated optics within the wider context of 

optical processing. In chapter two of the thesis the historical 

development of inhomogeneous lenses will be reviewed. The review 

will form the basis for an investigation into the design theory 

of inhomogeneous lenses for integrated optical aWlications. Two 

types of inhomogeneous lens will be identified which are closely 

related to one another; the thin-film Luneburg overlay lens and 

the geodesic surface-depression lens. The theory of formation of 

thin-film lenses using shadow masking techniques will be 

discussed in chapter three. Chapters four and five will both deal 

with the theoretical optical performance of inhomogeneous lenses. 
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Chapter four will analyse the performance of the lenses from a 

geometrical optics point of view, ray-tracing being used to 

quantify the aberrations that arise when the lens profiles 

obtained in the real world do not exactly correspond to the 

theoretically perfect profiles. Chapter five uses a numerical 

technique known as the beam-propagation method to investigate the 

characteristics of the lenses in terms of wave-optics. The 

technique has several advantages over conventional wave-optics 

methods. Diffraction problems, the effects of both small and 

large aberrations, off-axis incidence, beams of variable phase 

and amplitude, and propagation in inhomogeneous media are all 

readily dealt with by the method. 

Chapter six will deal with the fabrication of planar 

waveguides and thin-film overlay lenses. Chapter seven will deal 

with the problem of fabricating uniform waveguides on the highly 

curved geodesic lenses investigated. Experimental measurements on 

several lenses will be reported in chapter eight. Finally, the 

various threads of the thesis will be pulled together in chapter 
nine and recommendations for future work will be proposed. 
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CHAPTER TWO 

INHOMOGENEOUS LENS DESIGN 



I: :, ,e-;. :;., I .. 

2.1 Introduction 

Stigmatic imaging is feasible, conceptually, within the 

geometrical optics approximation [1]. An infinite number of rays 

emanating from a point source in object space may be made to pass 

through a single conjugate point in image space by an optical 

instrument using either reflection or refraction or a combination 

of both. 

An imaging process may further be described as perfect if 

all the points in the object space are imaged in the above 

fashion with the result that the image points are geometrically 

mapped in one-to-one correspondence with the object points. Such 

a process is an abstraction and is unrealizable. Plane mirrors 

am holographic elements come reasonably close, however. 

A more feasible and restr icted aim is to image perfectly 

all the points on a sheet (surface) or even a line function. The 

- demands made on the optical instrument are nevertheless still 

formidable. The use of the adjective 'perfect' in the remainder 

of this thesis will be intended to convey imaging in this 

restricted sense. 

2. 2 Exanples 

(a) The Cartesian Ovals 

A class of lenses which performs stigmatic imaging has been 

known for over two hundred and fifty years and yet optical 

designers have found little use for them as they are of aspheric 

geometry. Descartes first stipulated the required geometry and, 

in consequence, the lenses are known as the Cartesian ovals [2]. 

It is interesting to note that the Cartesian ovals predate the 

first reference to Snell's law of refraction and consequently a 
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controversy (which remains unresolved) arose as to whom the law 

should be credited, with Fermat and Descartes being the principal 

pro~gonists. 

rnte Cartesian ovals reduce to conic sections in the case of 

the imaging of a point situated on the optical axis at infinity. 

Workers in integrated optics only have two dimensions to contend 

with, generally, am it is reasonably ot1.dous that generating a 

non-circular geometry in a plane should be much easier than 

generating aspherical shapes in bulk optics. Consequently the 

Cartesian ovals have been of some utility in integrated optics 

and both plan~yperbolic [3] and elliptical [4] shapes have been 

utilised. rnte elliptical lens is remarkable in that it performs a 

positive focusing action while possessing a double-concave 

geometry. It manages to do this because the effective index 

within the lens is constrained to be lower than the effective 

index of the ambient waveguide. Such a situation is probably 

unheard of in bulk optics, and represents an added degree of 

freedom for design purposes. 

(b) The sphere 

Cartesian ovals are not capable, however, of performing 

perfect, geometr ical imaging of extended lines or surfaces. A 

structure that is capable of doing this is the sphere, where the 

object points are those on the surface of the sphere and the rays 

are assumed to be confined to the surface. The rays emanating 

from those points travel along the great circles (geodesics) of 

the sphere and thus meet again at the diametrically opposite 

point. A hemispherical lens has been made to demonstrate this in 

integrated optics [5]. 

(c) Maxwell's fish-eye lens 

An optical system with an index of refraction characterised 

by a rotationally symmetric function of the type: 

(2.1) 

10 



where nCr) is the refractive index, r is the radial coordinate 

and a and b are constants, is known as a Maxwell's fish-eye 

system [1]. The fish-eye lens is able to image perfectly one 

sphere onto another without distortion. 

(d) Luneoorg lenses, and other inhomogeneous lenses 

Refracting structures in which the optical rays follow 

curved rather than linear paths have aroused considerable 

interest over the past four decades, originally in the microwave 

field [6] and, more recently, in integrated optics [7]. The 

technologies required to produce the inhomogeneous lens 

structures which guide the rays are readily available in 

integrated optics, although the lenses of course operate only in 

two dimensions, as opposed to the three dimensions often 

envisaged by the original designers. Curved rays are not unknown 

in nature; the eyes of certain marine animals are known to 

produce this phenomenon [8]. Mirages and the propagation of radio 

waves in the upper atmosphere display similar characteristics. 

The interest in using inhomogeneous media derives from the 

possibilities of using such structures to yield perfect imaging. 

R.K. Luneburg, in a classic but almost unobtainable text 

[9], dealt with the mathematical problems of inhomogeneous lenses 

in considerable depth. He formulated mathematical descriptions of 

a class of perfect inhomogeneous optical lenses now known as 

Luneburg lenses. These will be discussed in detail in the next 

section. Firstly, however, two distinct lines of possible 

technological development of inhomogeneous lenses will be 

identified. 

2. 3 Two Lines of Development 

2.3.1 The principle of equivalence 

Tne wneburg lens and the Maxwell fish-eye lens are examples 

of lenses with variable refractive index distributions. The 
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P'lysical bouooar ies of these lenses are generally spher ical. '!be 

refractive index distributions can, however, be confined to a 

plane, in which case the bouooaries of the lenses are described 

by circles. 

Kunz [10] and Toraldo di Francia [11] discovered, 

independently, the possibility of finding a non-Euclidian (ie 

non-planar) two-dimensional space having the same optical 

properties as the planes in which inhomogeneous structures such 

as Maxwell fish-eye and Iuneburg lenses resided. Mathematically, 

in accordance with Fermat's principle, the tbysical path followed 

by a ray between two points A and B is such as to make the 

variation in the optical path length zero: 

(2.2) 

n is the refractive index and dL is a line element along 

the path. Zero var iation means that the optical path length along 

the ray is a local maximum or minimum (usually the latter). If 

the refractive irrlex of the medium is constant then the variation 

in the tbysical path length for all the rays is also zero: 

(2.3) 

'!he rays, consequently, follow the geodesics of the surface. 

In rotationally symmetric media, a surface of revolution is 

obtained by rotating a generating curve C around an axis of 

revolution z, as shown in Figure [21]. If s is taken as the arc­

length along the curve, and (r ,Q) taken as the remaining 

cylindrical coordinates, the physical distance between 

neighbouring points on the curve C is given by: 

(2.4) 
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The optical distance along these points is obtained by 

multiplying the physical distance by the index of refraction: 

(2.5) 

Equivalent optical surfaces are surfaces that identically 

preserve the relationship given by (2.5) without necessarily 

identically preserving the relationship given by (2.4). Put 

simply, equivalent optical surfaces have identical optical, 

though not necessarily physical, geometries. 

A non-Euclidian two-dimensional analogue of Maxwell's fish­

eye lens is the surface of the spherical lens described 

previously. Similar ily a non-Euclidian lens equivalent to the 

Luneburg lens exists and is called the Rinehart lens [10]. Non­

Euclidian two-dimensional lens surfaces may conveniently be 

called configurational lenses. In cases where the refractive 

irrlex of the medium is constant, the lenses may be referred to as 

geodesic lenses. 

Geodesic lenses are inhomogeneous in the sense that the 

profile curvature varies from point to point on the lens, in 

general. Lenses which have a point to point variation in 

refr active index are also inhomogeneous, am are called var iable­

index lenses for convenience. Two distinct paths of technological 

deveopment were available, therefore, for the designers of 

inhomogeneous lenses: the optical properties of the lens could be 

controlled by either continuously varyiB] the physical geometry 

of the lens, or by continously varying the refractive index 

function. 

The difficulties of physically obtaining aspheric 

structures, in bulk optics, are considerable; the problem of 

realizing a continuously varying radially~metric refractive 

index function is almost intractable. The dispersion of mode 

effective refractive index with waveguide thickness in guided­

wave optics, however, provides an accessible means of realizing 
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variable-irXIex lenses. Aspheric machining is a means available 

for producing the geodesic inhomogeneous lenses; the waveguide, 

whilst remainiD3 of more-or-less constant depth, may be deformed 

so that the optical path of rays traversing the lens may be 

controlled in a manner appropriate for perfect imaging. 

In this thesis, integrated optical lenses of both the 

geodesic and variable-index types will be discussed. It is 

worthwhile to trace the parallel development of these lenses from 

the pioneering work done by R.K. Luneburg, through the 

applications found for these lenses in microwaves, to the 

present-day interest in the lenses in the field of integrated 

optics. 

2.3.2 Variable-refractive-index lenses 

Luneburg [9] developed integral equations for variable 

refractive index lenses which were capable of imaging perfectly 

all the points on a sphere situated in homogeneous space on or 

outside the lens surface onto another conjugate sphere also 

situated outside the lens. In particular he fourrl an analytical 

solution for a lens that could perfectly image the points on a 

sphere coincident with the outer surface of the lens itself onto 

a sphere situated at infinity. He had thus described a method of 

produciD3, from a point-source feed, a perfectly collimated beam. 

Luneburg lenses which were capable of focusing a point at 

infinity to a point inside the lens itself were subsequently 

proposed by Brown [12] and Gutman [13]. The motivation of both 

Brown am Gutman in providing for a focus inside the lens was to 

increase the rapidity at which a point-source could mechanically 

scan the focal surface whilst maintaining the output beamwidth of 

the original design. Brown introduced the possibility of 

arbitrarily specifying the refractive irrlex function of an outer 

shell from which the refractive index function of the perfectly 

focusing inner shell could then be derived. He also considered 

the problems of diffraction connected with the finite wavelength 

of the emerging radiation and proposed a tapering of the beam 
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amplitude to counteract these effects, a process now well­

established in optics and elsewhere in wave systems and known as 

apodization. 

Morgan [14) produced a general theory of Luneburg lenses 

which allowed for any combination of conjugate foci am a finite 

number of refractive index discontinuities within the lens. The 

refractive index function was specified by combinations of 

definite integrals, most of which could only be evaluated using 

numerical methods. Particular examples of solutions in terms of 

tabulated values were specified for lenses having focal lengths 

of between one am two times the lens radius. 

These lenses subsequently found actual application in 

microwaves, either as collimating elements for point-sources or 

as wide-angle receiving antennae. One method of physically 

implementing the lenses involved approximating the required 

refractive index profile by constructing a number of concentric 

spherical shells, each shell having a different value of 

dielectric constant [6). A lens of 18" (43cm) in diameter, 

composed of 10 shells made of styro-foam of different densities 

was shown to produce a wavefront phase-error in the exit pupil of 

less than one-tenth of a wavelength, a value much less than the 

commonly quoted quarter-wave limit for defect-free imaging. 

In keeping with the philosophy first outlined by Miller 

[15), the new technology of integrated optics has borrowed 

extensively from microwaves. This has certainly been true for 

Luneburg lenses. The integrated optical designer is presented 

with a new degree of freedom compared with the bulk optics 

designer, though not compared wi th the microwave engineer, in 

having refractive index dispersion available as a tool. Ulrich 

and Martin [16] developed a two-dimensional geometrical optics 

theory which yielded ray and eikonal equations formally 

equivalent to those of classical optics [1]. Van Duzer [17] 

worked along similar lines in the related field of surface-guided 

acoustic waves. Consequently the design of surface guided-wave 

components was made amenable to ray methods. 
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Shubert and Harris [18] pointed out the favourable 

possibilities of integrated optical signal-processing in 

comparison with bulk optics, in spite of the inherent reduction 

in dimensionality, or parallelism, and went on to give a modal 

analysis of light propagation in multi-layered thin films that 

gave full scope for utilising the achievable variation in the 

surface~ave eigenvalues; effectively one had the possibility of 

control over refractive index by simply changing material 

parameters and varying deposi ted film thicknesses. Whilst not 

producing Luneburg lenses in the str ictest sense, these workers 

were among the first to recognize the potential of controlled 

inhomegeneity in integrated optical lenses. ~nses with f-numbers 

as low as f/2 were considered achievable, and various layer 

configurations were envisaged, including lenses over- and under­

laid with respect to the ambient waveguide. The use of cladding 

layers to reduce losses was also envisaged. A non-circular lens 

structure having a Gaussian effective refractive-index 

distr ibution in the propagation direction and a parabolic 

transverse distribution was presented, and motor-driven shadow 

masks for use in shaping thin films were stated to be capable of 

producing film lens and prism layers of any desired thickness 

profile. 

Suematsu et al [19] dealt with the focusing properties of a 

thin-film lenslike light guide having an approximately parabolic 

transverse film thickness profile. '!hey proposed using the lens 

for phase-matching in a thin-film optical second-harmonic 

generator. They reported use of a shadow-masking technique in 

order to modify the thickness profile, with the mask situated in 

the space between a sputtered source and the target substrate. 

The lenses so produced were conceptually similar to gas lenses 

and self-focusing (SELFOC) optical fibres. 

Zernike [20] was the first worker (to the author's 

knowledge) to expl ici tly advocate the use of the lens profiles 

formulated by Luneburg in integrated optics. He drew on the work 

of Tien et al [21], on tapering the regions interfacing two areas 
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of different effective refractive irdex, to realize the required 

profile. A shadow-masking geometry was used to produce a lens 

havil'l3 an <Nerall diameter of lLSmm. Niobium pentoxide (Nbi>S) 

was deposited in a controlled fashion onto planar waveguides on 

glass substrates. The shadow mask was bevelled in order to 

produce a slow tapering region between the outer waveguide and 

the central part of the lens. Little mention was made of the 

principles applied in either lens or mask design, and the 

presumption may perhaps be made that these were done on an ad hoc 

basis. Nevertheless the results obtained were reasonably good. A 

parallel burdle of rays fillil'l3 almost the entire lens aperture 

focused onto a point near the lens edge and then diverged at an 

angle of 110 degrees. A small amount of spherical aberration was 

manifested. Another lens, focusing at a point outside the lens 

surface produced a focal spot diameter of less than 30um from an 

inp.lt beamwidth of Smm. 

Two papers by Anderson et al [22,7] placed the Iuneburg lens 

squarely at the forefront of integrated optical technology. 

Lenses were to be incorporated as both collimating and spatial 

Fourier transforming elements in the integrated optical spectrum 

analyzer (IOOA). rrbe thin film lens was felt by Anderson and his 

colleagues to be the most viable planar lens for low substrate 

refractive index applications such as those based on SjOr-Of\~Si 

technology. For higher irrlex substrates such as lithium niobate 

~iNb03) it was felt that the configurational or geodesic type of 

lens would be more appropriate since few waveguide materials were 

available which could yield the refractive index changes 

necessary for the low f-number applications required. The fine 

resolution required of the rOSA demanded diffraction-limited, 

aberration-free performance from the lenses, thus also requiring 

precise control of the lens profiles. The exper imental resul ts 

quoted by these workers suffer from a lack of correspondence 

between figure captions and text, but the conclusions of the 

study were that thin-film Luneburg lenses could be produced which 

exhibited only a small degree of spherical aberration. 

W.H. Southwell [23] made a significant contribution to both 
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design am analysis of thin-film Umeburg lenses by approximating 

the hitherto cumbersome transcendental expressions for the 

refractive index functions with simpler analytical expressions 

which were readily incorporated in computations. The methods 

presented by Southwell were utilised extensively by the present 

author and will be reported in some detail. 

The most impressive achievments so far in the field of thin­

film Luneburg lenses have come from Yao et al [24,25]. Computer­

modelled shadow-masking geometries were optimised to achieve as 

close a synthesis as possible to the required thickness profiles. 

The results were excellent, near diffr action-l imi ted focusing 

properties being obtained. 

Recent developments in the field of overlay Luneburg lenses 

are reported in references [26,27,28,29]. Of particular interest 

is the work carried out by Busch et al [28] which parallels that 

of the author to some extent. Comparisons will be made between 

the author's findings and those reported in reference [28]. 

2.3.3 Configurational/geodesic lenses 

Rinehart [30] derived a geodesic analogue of the classical 

Iuneburg lens, which transformed the planar, variable refractive 

index Luneburg lens into a surface of revolution of constant 

refractive iooex which reproduced the optical properties of the 

planar system. Rinehart's motivation was to solve the problem of 

rapid scannirg for radar antennae over a large angular domain. 

Kunz [10] and Toraldo di Francia [11] extended the work of 

Rinehart and Luneburg by demonstrating that a family of 

configurational lenses of equivalent optical properties to the 

Luneburg lens existed. Table [2.1], taken from Kunz's paper, 

illustrates some of these possible equivalent optical systems, 

expressed in terms of the rotationally symmetric geometry of 

Figure [21] • Functions describing the P1ysical geometry of the 

generatirg curve are tabulated, as well as functions descr ibing 

the required refractive index distributions. It may be observed 

18 



TABLE [2.1] Lenses theoretically equivalent to the Luneburg lens 

(after KUNZ [10 ]) 

SURPACE 

1. Plane (Luneburg 
lens itself) 

2. Cone 

3. Cylinder 

4. Rinehart surface 

5. Generalized 
Rinehart surface 

6. Hemisphere 

GENERATING CURVE 

s = r 

s = kr 

r = 1 

s = 1/2(r + arcsin(r)) 

s = (l-k}r + k arcsin(r) 

S = arcsin(r) 

INDEX REQUIRED * 

[2 - r 2] 1/2 

r k- 1[2 _ r 2k] 1/2 

e -S[2 - e -2s] 1/2 

1 

2[1 + (l-r 2) 1/2] 2k ~ 1/2 

[1 + (l-r 2) 1/2] 2k 

2 [1 + (1 - r 2) 1/2] 2 r2] 1/2 

[1 + (1-r2) 1/2]2 

PERMISSmLE RANGE 

o < r < 1 

(0 < r < 1 if k > 0) 
(r > 1 if k < 0) 
s > 0 

o < r < 1 

o < r < t 

o < r < 1 

~ (lonn '" tl"lQd -to n= 1 ou-tsick ~ 



that the Rinehart surface havi~ a constant refractive iOOex of 1 
constitutes a geodesic system') (the fWlctions are tabulated for a 

system with an ambient refractive iooex of 1). 

Rudduck et al [31] developed non-planar lens geometries 

equivalent to the generalized Luneburg lenses of Morgan. Geodesic 

versions were implemented experimentally and excellent collimated 

radiation patterns were observed in the image space arising from 

a point-source feed situated at the focus. 

Van Duzer [17] described configurational surface-depression 

and surface-protrusion lenses that could be used for focusing 

surface acoustic waves. SubsequentlY$ Righini et al [32] gave 

formulae for producing aberration-free geodesic lenses analogous 

to the Rinehart lens for integrated optical purposes. Several 

types of lenses were constructed on glass substrates and tested 

successfully. Spiller and Harper [33] combined overlay films and 

spherical geodesic lenses in a single lens element, to minimise 

third-order and fifth-order spherical aberrations. Vahey and Wood 

[34] proposed that geodesic lenses be produced with aspheric 

geometries, again to minimise aberrations. A great deal of work 

has subsequently been carried out on geodesic lenses [35-41]. '!he 

particular interest in the present work is centred on the general 

solution to the problem of perfect geodesic lenses presented by 

Sottini et a1 [42]. A design based on their general solution was 

developed and constructed by Doughty et a1 [43,44] and results 

will be reportErl in this work. 

2. 4 Design of the 'lbin-fila Iuneburg lens 

2.4.1 The generalized solution given £( Luneburg 

The motivation for Luneburg's interest in the type of lens 

now namErl after him arose from a problem with the Maxwell Fish­

eye lens. The Fish-eye lens is a conceptually perfect instrument 

within the geometrical optics approximation. It forms a precise 

point-to-point image of one sphere onto another. Both image and 

object spheres are locatErl in regions where the refractive irrlex 

1) In general, a configurational lens t:a~ a variabl e refract 
index function and a variable, non-Euclldlan geometrY·.A g70de 
lens is a configurational~~ens with a constant refractlve lnde 



varies, a somewhat uooesirable fact. Luneburg inquired whether a 

refractive index function could not be found for the lens which 

allowed the conjugate spheres to reside in uniform, homogeneous 

space. Luneburg found appropriate solutions and these are 

entirely sufficient to describe the refractive-iooex profiles of 

the thin-film wneburg lenses investigated in this work. 

The geometry of the situation is shown in Figure [2.2] . 

Only the case of both conjugate foci external to the lens itself 

is considered. The refractive index of the medium outside the 

lens is normalized to 1, as is the radius of the lens. '!he object 

sphere is situated at a radial distance rO from the lens centre, 

with the image sphere situated at a distance rl. The polar 

coordinates (r*,g*) define the point of closest approach of a ray 

to the origin, where the ray is uniquely defined by an initial 

direction Q and pOSition (ro ' ~). The refractive index of the 

lens sphere is given by the SIilerically symmetric function n(r). 

It will be shown in chapter four, in connection with ray-tracing, 

that rays in a spherically symmetric medium are plane curves 

which lie in planes through the origin, such that: 

where: 

K = r sina o 

(2.6) 

(2. 7) 

is a quantity called the ray constant, for ob/ious reasons. 

A convenient variable may be defined which often arises in the 

theory of radially-symmetric media: 

p(r) = rn(r) (2.8) 

The function p(r) is assumed to be a monotonically increasing 

function of r, which excludes the possibil i ty of more than one 
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extreme value of r*. It is easily shown, using equation (2.6), 

that the equation of the light ray, after it has travelled beyond 

the point of closest awroach to the origin, is given by: 

* 
9 = 7r + K{ rv~rp2 _ K2) 

(2.9) 

so that the intersection point of the ray with the axis, (rl'O), 

is given by: 

(2.10) 

If the refractive index function is a given quantity, then 

equation (2.10) determines the intersection distance rl of a 

given ray as a function of K, ie, as a function of the initial 

direction of the ray. If rl is required to be constant, however, 

to yield perfect focusing, equation (210) represents an integral 

equation for the function p (r) for r < 1. For r> 1, p = r. Now, 

since: 

(2.11 ) 

the integration of equation (2.10) may easily be carried out for 

the regions outside the lens proper, ie: 
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(2.12) 

where the integrands have been omitted, for convenience. 

Consequently, the comi tion: 

(2.13) 

is obtained, where: 

f (K) = ~ { 7r + arcsin (K/rl) + arcsin {K/ro} - 2 arcsin {K} } 

2 

(2.14) 

The variable: 

n { p} = - log r ( p ) (2.15 ) 

may be introduced to enable equation (2.l3) to be solved. 

Equation (2.l3) then becomes: 

= f{K} (2.l6) 

which is an integral equation of Abel's type. 

It can be shown, [9], that the following theorem is valid: 

Theorem 

if the function f(K} is defined by the integral: 
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(2.16 ) 

in the interval 0 ~ K ~ A, then n (r') is determined by the 

integral: 

(2.17) 

Using equation (2.17) it can be shown that the solution of 

equation (2.16) is given py: 

n (,..0) - n (1) 

1 

= -log (;0) + 1 (l(arcsin (K/r1) + arcsin (K/ro! dK 

:l
p 

...j(K2 -;02) 

If the function: 

1 

w (~,s) = 11 arcsin(x/s)dx 

7r ;o...j(X2-P 2) 

is defined, then: 

(2.18) 

(2.19) 

log (f') - log (r) = log (.,.0 /r) = W (;0 ,ro) + w (,P ,rl) 

(2.20 ) 

since n (p) = -log r and n (1) = o. 

Finally, since;O = nr, the required parametr ic equation of the 

refractive iooex profile of the lens is obtained: 
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n (r) = exp{w (,...o,rO) + w (~,r 1) } (2.21 ) 

For the case of one sphere situated at infinity, w (P,OO) = 

a and (2. 21) becomes: 

n(;O,s) = exp{w(to,s)} (2.22) 

where s now describes the focal length of the sphere situated at 

the finite distance. This case will be deal t wi th exclusively 

henceforth. 

It can be seen that the desired refractive index profile 

n (r) = p (r)/r lies embedded in equation (2.22) due to the 

presence of the variable p in the integral equation (2.19). 

Equation (2.22) is, therefore, a transcendental relation. An 

analytical solution is available for the integral equation 

(2.19), for the case of an image sphere having a radius 

coincident with that of the lens. In such a case the required 

refractive index profile becomes: 

(2.23 ) 

Lenses possessing such profiles are commonly called 'classical' 

Luneburg lenses while all other index profiles arising from 

different combinations of conjugate foci fall within the category 

of 'generalized' Luneburg lenses. For generalized Luneburg 

lenses, numerical methoos must be used to evaluate the integral 

in equation (2.19). Southwell [23] developed a procedure for the 

numerical calculation which was adopted by the author. 

2.4.2 Southwell's nethod 

A change of variable, y = x -~ , is first introduced in 

equation (2.19). The equation then becomes: 
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w(,o,s) = 1 ("o 
1C}0 

arcsin [ (y+,/:) ) /s] ~ 

(y+2.tO )1f2y1/2 

(2.24 ) 

The y-1/2 singularity is dealt with by performing an integration 

by parts. The resul ting equation, which is not specified 

correctly in reference [23], becomes: 

w(jO,s) ::: 1 

I-tO 
1

2arcSin (l/s) (1-.1'-' )1/2 

(1+,10 )1/2 

2/ [(S2- (y+p) 2) -l/2-arcsin [ (y+~) /s]J r/2dy 

o 2 (y+2;.:» J (y+2"c )1/2 

(2.25) 

Equation (2.25), despite its apparent complexity, is in fact 

well-behaved and easily evaluated using numerical methods. 

Southwell divided the interval of integration in equation (2.25) 

into four regions and then performed a 32-point Gaussian 

quadrature on each • The present author found that a 64-point 

Gaussian quadrature over the complete interval was sufficient to 

obtain agreement to 1 part in 109 with Southwell's results. 

2.4.3 An analytical approxination to w (,,0 , s) 

Although the integral in equation (2.25) can be numerically 

evaluated as described above, the desired refractive index 

distribution nCr) is still embedded according to equation (2.22). 

It is desirable, before going on to extract the required 

distribution, to derive an analytical approximation to w(,o,s). 

Such a procedure has several advantages: 

(i) An analytical approximation (eg,a polynomial fit) to 

equation (2.25) can be constructed from a knowledge of the 

function at var ious points. The numer ical integration need only 

be carried out at a discrete number of points in order to 

describe the function accurately ~er the complete interval. 
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(ii) The procedure to find the refractive index is a root­

finding procedure. It is computationally more efficient to deal 

with an analytical approximation such as a polynomial fit than to 

have to perform a repetitive numerical integration. 

(iii) The analytical approximation is easily incorporated 

into ray-tracing algorithms which help to assess the lens 

performance. 

The behaviour of the function at limiting values can be 

investigated to give clues about the appropriate form of 

analytical representation. As ~ tends to 1 (close to the lens 

edge) the upper limit of integration in equation (225) terrls to 

O. The integrand of (2.24) then behaves as yl/2 so that the 

integral portion of (2.25) behaves as (1- to )3/2. This term is of 

higher order than the first term on the right hand side of 

(2.25). Hence as ;0 tends to 1, ecpation (2.25) behaves as: 

w (to,s) = 21/2arcsin ells) (1-;0)1/2 (2.26) 
~ 

It has already been observed that that the next-order term 

will have a- {l-,.o )3/2 behaviour, so that the following polynomial 

representation suggests itself: 

(2. 27) 

where the piS are the polynomial coefficients which remain to be 

determined. From (2.26): 

PI = 21/2arcsin(1/s) (2.28) 
1': 

Further constraints on the behaviour of the function (eg, at 

the limiting value as f) tends to 0) may be incorporated. However, 

with the information thus far obtained it is possible to fit a 
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curve such as that specified in (2.27) to data obtained from the 

numer ical calculation of e<pation (2. 25) in order to evaluate the 

remaining coefficients. 

The P coefficients obtained by the author for an s=2 lens 

are tabulated in Table [2.2], together with the published results 

of Southwell. The coefficients differ slightly in magnitude, 

tb:>ugh not in sign. '!he sums of squared errors CNer the complete 

aperture for lenses having various s-numbers are compared with 

Southwell's results in Table [2.3]. The values obtained by the 

author were slightly greater than those obtained by Southwell, 

but are still very small. 

2.4.4 Refractive index profiles of Luneburg lenses 

Newton's root-finding method is used to calculate the 

refractive index nCr) at a given radial distance r from the 

polynomial (2.27). From equation (2.22) a function F is defined 

as: 

F (n) = exp[w(P ,s)] - n (2.29) 

The value of nCr) which makes this function 'sufficiently small' 

is taken as the required refractive index of the lens at the 

point r. In practice, 'sufficiently small' may be taken as low as 

10-8 without significantly slowing the calculation or affecting 

the convergence of the solution. 

2.4.5 The thin-film overlay Luneburg lens 

So far, the method outlined here to obtain Luneburg lens 

profiles can be a:wlied to any medium of rotational symmetry in 

either two or three dimensions. Attention will now be restricted 

to applying the method in integrated optics, in which case a 

circularly synunetric profile is being considered. 
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TABLE [2. 2] Coefficients of polynomial fit 

to wep,s) curve. 

s==2 lens 

COEFFICIENT 

P1 

P2 

P3 

P4 

P5 

THIS WORK 

0.235 699 486 

-0.074 917 543 

0.007 348 242 

-0.005 984 959 

-0.000 609 453 

SOUTHWELL 

0.235 687 835 

-0.074 750 036 

0.006 728 945 

-0.005 144 471 

-0.000 989 300 



TABLE [2.3] Residual sum of squared 

errors derived from polynomial fit 

to w(p,s) curve. 

s-number THIS WORK SOUTHWELL -

s=2 4.8154 x10 -11 3.9101 x10 -11 

s=3 8.3664 x10 -12 5.8134 x10 -12 

s=5 2.5502 x10 -12 1.7893 x10 -12 

s=9 7.6218 x10 -13 5.3152 x10 -13 



A var iation of thickness in a thin-film optical waveguide 

causes a dispersion in the 'effective' refractive index of the 

waveguide for a given mode [45]. The effective irrlex is defined 
by: 

(2. 30) 

where (jm is the modal propagation constant and k is the free­

space wave-number. 

The situation envisaged for obtaining a refractive index 

variation such as that defined by equations (2.22) and (2.27) is 

shown in schematic form in Figure [2.3] • A substrate with 

material refractive irrlex n4 supports an ambient planar waveguide 

of material refractive index n3' with n3 > n4. A material of high 

refractive index n2 is used to form the lens. 

A cladding layer of index nl is shown as air in the 

Figure, although other materials could be used. 

In a sense, the thickness variation could be taken to mean 

that this lens should come into the configurational category. 

However, the variation is so small that any path length changes 

arising directly from the physical shape are negligible. The 

physical shape may be assumed to affect the optical path only in 

an indirect fashion through the variation of the effective irrlex. 

The depth, d, of the ambient waveguide is assumed to be 

constant. The thickness, t, of the overlay material is tailored 

to achieve a variation in effective index corresponding to a 

Iuneburg lens design. 

An assumption is made at this point. The mater ials used in 

the thin-film Luneburg lens are considered to be stepwise­

homogeneous in the y-direction, perpendicular to the waveguide 

plane. Such an assumption is not always str ictly correct; many 

waveguides have been fabricated which have a non-uniform 
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refractive index profile. Ti-indiffused waveguides are an 

example. Furthermore, the densi ty of deposi ted thin films can 

vary with increasirg deposition thickness. The electro-magnetic 

theory governing modal propagation in these cases is more 

complicated and an assumption of stepwise homogeneity greatly 

simplifies the calculations. The index difference obtained 

between ambient waveguides and LiNb03 substrates in the Ti­

indiffusion process is very much smaller than the index 

difference between the CNerlay material, Asi33' and the ambient 

waveguide. It can be shown that more complicated models of the 

ambient waveguide in such a case lead to no substantial 

differences in the profile calculations [46]. 

The multi-layer modal propagation theory of Shubert and 

Harris [18] may be used to derive film thickness profiles from 

the calculated refractive index profiles. Attention will be 

restr icted to 'IE mcrles. 'nle theory governing the case of 'IM mcrles 

is only slightly more complicated. 

'!be relationship between the effective refr acti ve index ne 

for TE modes and the layer dimensions and material indices shown 

in Figure [2.3] is given by: 

or: 

-hip = [l-(v/q)tan(vkd)]tan(hkt) + (h/v) [(v/g)+tan(vkd)] 

[l-(v/q)tan(vkd)] - (h/v) [(v/q)+tan(vkd)]tan(hkt) 

-hlp = [(q+v)exp (2vkd)+q-v] tan (hkt)+(h/v) [(q+v)exp(2vkd)-q+v] 

[(q+v)exp(2vkd)+q-v] - (h/v) tan (hkt) [(q+v)exp(2vkd)~+v] 

(2.31 ) 

where: 
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p= (lle 2-n1 2) 1/2 

h = (n22-lle 2)1/2 

q = (rle 2-n42)1/2 

and v = (n32-lle 2)1/2 for ne<n3 

= (rle 2_n32 )1/2 for ne~3 
(2. 32) 

The relationship between ne and t as defined in (2.31) is 

transcendental~ an explicit solution for rle for a given thickness 

is not available. It is possible, however, to obtain an explicit 

solution for t for a given ne: 

kht = tan-l(hll-<V/q)tan{vkd)]+{Iil/V) [(v/q)+tan(vkd)] ) 

(h2/v) [(v/q)+tan(vkd)]-p [l-(v/q) tan (vkd) ] 

kht = tan-I h [(g+v)exp(2vkd)+q-v]+(ph/v) [(q+v)exp(2vkd)-q+v] 

(h2/v) [(q+v)exp (2vkd)~+v]-p [(q+v) exp (2vkd)-+q-v] 

+ m7r for ne ~ n3 

(2.33 ) 

The abO\1e expressions differ slightly from the ones quoted 

by Southwell, which are incorrect as ~blished. 

Plots of the dispersion curves for the first seven TE modes 

of a four-layer structure are shown in Figure [2.4]. The 

substrate refractive iooex is 2.2025 which is representative for 

the case of TE modes propagating in the crystallographic x­

direction in y-cut LiNt03 at a free-space waveleD3th of D.6328um. 

The waveguide is assumed to be a step-index guide al though its 

refractive index, 2.2060, is actually typical of a waveguide 

formed by Ti-indiffusion (see chapter six of this thesis). The 

O\1erlay material is a chalc(XJenide film, Asi33' which has a high 

material refractive index of 2.6 • The depth d of the ambient 

waveguide is assumed to be 3.5um, and the thickness t of the 

overlayer varies between 0.0 and Lfum. 
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Equation (2.33) may be used to calculate the thickness 

profiles required to realize thin-film wneburg lenses. Index 

and thickness profiles are shown in Figures [2.5] and [2.6] for 

lenses with f-numbers of f/l, f/l.05, f/l.125, f/l.25, f/l.5, 

f/2, f/2.5, f/3 • 

The lowest f-number that can be realised depends on the 

maximum change in effective refractive irrlex that can be realised 

in the four-layer system. If the maximum index change is taken as 

the difference between bulk values of the substrate and overlay 

film indices, then a difference of awroximately 0.4 is available 

for the Asi'3/Ti:LiNb03 combination at a wavelength of 633nm. 

This index difference allows a lens of f/0.95 to be realized, 

theoretically. It is of interest to observe how the film 

thickness required at the centre of the lens depends on the 

desired f-number. The relationship is plotted in Figure [2.7]. An 

asymptotic behaviour is observed. For f-numbers in the the region 

of fjl, the centre thickness changes rapidly as a function of the 

required f-number. The thickness changes very slowly as a 

function of f-number beyond f/4. The significance of this 

behaviour for fabrication purposes may be illustrated by 

considering specific numerical values. An fjl lens requires a 

centre overlay thickness of 1928nm, whereas an f/l.05 lens 

requires a centre thickness of 762nrn. '!hus a change in thickness 

of l166nm only results in a 5 % change in the focal length. The 

focal length is, therefore, not very sensitive to thickness 

variations for low values of f-number. However, the sensitivity 

greatly increases at larger values of f-number. An f/5 lens 

requires a centre film thickness of l16nm whereas an f/5.5 lens 

requires a centre thickness of l13nrn. '!bus a 10% change in focal 

length occurs for a change in centre thickness of only 3.0nm • 

Clearly lenses of even moderately large f-number would be 

difficult to fabricate such that the focal length could be 

controlled accurately. It would seem that lenses of very low f­

number would be better candidates for fabrication. However, a re­

inspection of Figure [2.5] shows that lenses with very low f­

numbers display much more complicated overall profile behaviour 

than do lenses with larger f-numbers. Lenses with f-numbers fll 
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and f/l.OS possess substantial regions of upward curvature. It 

will be shown in chapter three that such profile behaviour is 

impossible to obtain using conventional fabrication techniques. 

lhe relationship between the film centre thickness and the 

required f-number may be changed substantially by choosing 

different combinations of mater ials for the substrate, ambient 

waveguide and overlayer. Figure [2.8] shows the effect of 

choosing Asi33 as the material for both the ambient waveguide and 

the lens overlayer, on a glass substrate. The minimum f-number 

that can be realised using such a combination increases, since 

the effective iooex difference that can be realized between the 

ambient waveguide and the overlayer is substantially reduced. 

The lens profiles of Figures [2.5] and [2.6] were computed 

using the dispersion curve of the lowest order TE mode in Figure 

[2.4] . It can be seen from Figure [2.4] that overlay film 

thicknesses of greater than 0.5 wavelengths (approximately 3lSnrn 

at a wavelength of 633nm) result in a substantially multi -moded 

regime. Figure [2. 7] then indicates that only f-numbers greater 

than flL 2 can be constructed for single-mode (or at most double­

rnoded) operation. 

In the light of the above considerations an f-number of f/2 

seemed a reasonable design goal for the purposes of the present 

work. 

2.5 Design of the as{ileric geodesic lens 

A solution to the problem of perfect focusing in a waveguide 

plane using a geodesic lens rather than an overlay lens has been 

given by Sottini et al [42]. Similar principles to the theory of 

Luneburg lenses apply, except that a geometrical rather than a 

refractive iooex profile is required. The design formulae will be 

given in this section without derivations. 

Rays propagate along curved paths in geodesic lenses. The 

paths are the paths of minimum optical length between points on 
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the rays, in accordance with Fermat's principle. Since the 

refractive index of the waveguide on the lens is assumed to be 

constant, the paths of minimum optical leBJth coincide with the 

paths of minimum physical length, ie, the geodesics of the 

surface. Since the focusiBJ properties of the lens are determined 

by the geometrical properties, the lens is achromatic, ie its 

properties do not change with the wavelength of the incident 

light. '!he geodesic lenses described by Sottini et al are similar 

to the Luneburg lenses previously in that they are capable of 

forming perfect geometrical images of two circles, one upon 

another. This is shown schematically in Figure [2.9] • Only 

imaging between circles external to the lens is considered here. 

The circle at radius a may be thought of as the object circle for 

convenience. '!he image circle is at radius b. In order for light 

to propagate smoothly from the ambient waveguide into the lens 

proper, a bridging region is incorporated between radial 

distances c and d, where c is the overall radius of the lens and 

the d is the radius of the inner focusing reg ion. 

For perfect focusing to occur, the meridional generating 

curve of the inner portion of the lens is given by: 

l' 

Z (r ) = j[ 1 ' (r) 2 - I] l/2dr 
o 

(2.34 ) 

where l'(r) is the first derivative of the arc-length, and may be 

shown to be given by: 

+ 2(d2_r2)1/2(c2_d2)1/2 

7rh2 
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where h is defined ~: 

am: 

h = c{7r - 21'12 - sin21'12)1/2 

1'13 + 1'14 

1'12 = arcsin (d/c) 

1'13 = arcsin(d/b) 

1'14 = arcsin{d/a) 

(0 ~ r ~ d) 

(2. 35) 

(2.36) 

The generating curve of the outer edge-rounding region is 

given ~: 

r 

z{r) = zed) + 

d 
Cd < r ~c) 

(2.37) 

The focal length of this lens is given by the usual Gaussian 
formula: 

f = ab 

a+b 

and the maximum usable f-nwnber is given by: 
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f-number = fj2d (2.39 ) 

A feature of the lens profile is that the tangents of the 

generati03 curves of the inner arrl outer portion of the lens are 

matched at r=d, and the outer portion and the ambient waveguide 

are similarly matched at r=c. Continuity of the generating 

function is thus obtained. It will be seen in chapter seven of 

this work that the second derivative of the lens is not 

continuous and this can give rise to waveguide uniformity 

problerrs. 

Doughty et al [43] fabricated lenses based on the above 

equations, with the intention of incorporati03 the lenses in an 

integrated optical spectrum analyzer (IOOA). '!he present author 

characterised the optical properties of these lenses from 

theoretical and exper imental points of view. '!he parameters of 

the lens were: 

a = 18.5nrn 

b = 00 

c = 5.Omn 
d = 3.7nm 

2.6 A sinple geodesic design 

The fabr ication of the geodesic lenses of section 2.5 is a 

difficult task since the profiles are strongly aspheri~ In some 

applications a simpler design based on spherical geometries can 

be utilised. Lenses based on spherical geometries generally 

suffer from image-defects or aberrations, but these can be 

minimiserl by operating the lenses at reduced apertures. 

The form of the lens generating curve is shown in Figure 

[2.10]. As is the case with the aspheric geodesic lens, an edge­

rounding region has to be incorporated in the design in order to 

effect a smooth low-loss transition between the lens proper and 

the ambient waveguide. A toroidal region is used for this 

purpose. The parameters Rg, a and e in Figure [2.10] completely 
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define the lens. Rs is the radius of the generating circle for 

the inner portion of the lens, a is the radius of the edge­

rounding reg ion and 9 is the half-angle subtended by the inner 

portion of the lens. A lens of this design was fabricated by G.F. 

Doughty et al for GEC Marconi Research Centre, Chelmsford, 

England and was characterised by the author. 

2. 7 ConclusUns 

The design principles of inhomogeneous overlay Luneburg 

lenses, aspheric geodesic lenses and geodesic lenses based on 

spherical geometries have been given in this chapter. The 

constraints of single wavelength and single mode operation, focal 

length sensitivity to changes in overlay thickness, and profile 

realizability considerations restrict the feasible f-numbers 

obtained with As~3/I'i:LiNb03 overlay lenses to a band between 

f/l.2 and f/4. An f-number of f/2 is considered to be a 
reasonable design goal. No such constraints apply to geodesic 

lenses and particular designs of both geodesic types have been 

specified which will be further considered in this thesis. 
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models of a Ti-diffused waveguide, each with an OV'erlay film of 

As 2S3. The models of the Ti-diffused waveguide were step, 

Gaussian and exponential with the lie depths of the latter two 

models both held equal to the depth of the step. The effective 

refractive irrlices of the canp:>site waveguide systems for five 

values of overlay film thickness are shown in the Table below. 

Little variation is seen and the conclusion may be made, 

therefore, that the actual form of the Ti-diffused waveguide will 

have only a very small bearing a1 the lens p~files calculated in 

this chapter. '!he reason is, of oourse, that the refractive index 

difference between the OV'erlay film arrl the outer waveguide is 

much greater than the refractive index difference between the 

outer waveguide and the sUbstrate. If the differences were 

comparable in magnitude, such as might be found were the outer 

waveguide to be fabricated using the proton-excharJ3e technique, 

for e~arnple (see chapter seven), then the actual form of the 

refractive irrlex p~file \tJOuld certainly be important. 

TABLE [2.4J Normalized effective indices 

for TEO mode in As2S3/Ti:LiNb03 

structure for three ambient waveguide 

refractive index profiles 

AMBIENT REFRACTIVE INDEX PROFILE 
Dverlayer 
thickness, urn STEP GAUSSIAN EXPONENTIAL 

0.06328 1.000128 1.000193 1.000155 

0.30058 1.128813 1.129252 1.129422 

0.63280 1.163570 1.164026 1.164202 

1.01248 1.172347 1.172804 1.172980 

1.40798 1.175458 1.175916 1.176093 



CHAPTER THREE 

- THE SEWJOW-J[4SKING PROBLEM 



3.1 Introduction 

The design of overlay Luneburg lenses was investigated in 

some detail in chapter two. In the present chapter necessary 

theory relevant to the problem of actually fabricating these 

lenses as closely as possible to a given design will be 

presented. All studies of overlay Luneburg lenses reported in the 

literature have thus far used a shadow-masking technique together 

with condensation-in-vacuum from a vapour-phase environment [1-

4], but these have varied considerably in implementation ranging 

from the use of a simple circular mask of truncated cone cross­

section to masks of aspheric geometry machined on NC lathes. 

In some respects the problem is similar to geometrical 

optics in that the trajectories of molecules travelling in the 

fabrication chamber can be closely approximated by straight 

lines. Unfortunately, as in geometrical optics, extreme 

complications can set in due to the many degrees of freedom which 

a given system can possess. Essentially one desires to predict 

the paths of molecules impinging upon a planar substrate such 

that an apertured mechanical blocking mask may create a 

geometrical shadow which will allow the film growth profile to be 

closely controlled. It is therefore necessary to have an accurate 

description of the pattern of the molecular flux emanating from 

the source of material. 

In section 3.2 of this chapter, the classical models of 

vacuum evaporation and deposition processes will be outlined. The 

possibility of approximating desired overlay lens profiles using 

the film thickness variation predicted by one of these models is 

investigated in section 3.3 • The approximations obtained are 

relatively poor. Yao's method of approximating the profiles in a 

sputtering environment by introducing mechanical masks between 

the source of deposited material and the target substrate is 
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discussed in section 3.4 • Yao's model is inappropr iate for 

vacuum evaporation environments. A shadow-masking model 

appropriate to evaporation environments is presented in section 

3.5, and the awroximate lens profiles computed using the model 

are given in section 3.6 • 

3. 2 Holland and Steckelmacher mdels 

Before embarking on a detailed study of the manipulation of 

molecular radiation patterns, it is worthwhile to return to a 

classic paper by Holland and Steckelmacher [5] which became the 

fundamental reference for most of the work on thin-film 

uniformity. Three important concepts may then be brought to 

light: (a) the nature of a point source; (b) the nature of a 

directed-surface-source; and (c) the significance of the 

equilibrium molecular mean free path. Only evaporated films are 

dealt with here, so that, for example, rf sputtering by heavy-ion 

bombardment is not necessarily described. A necessary condition 

to be satisfied is that the evaporation rate be sufficiently low 

so that the effect of molecular collisions in the vicinity of the 

vapour source may be neglected. One also assumes that the 

evaporation rate remains uniform throughout the deposition. A 

further assumption is that the temperature of the source is 

everywhere uniform, ie, the source is isothermal. 

A point source will have even emission in all directions in 

space. The amount of material dM passing through a solid angle dw 

per unit ti.rre is, therefore, given by: 

dM = m 

dw 4,.; 

(3.1) 

where m is the total mass of material emitted from the source per 

unit time. Consequently, the amount of material condensing on a 

surface element dS of a receiving substrate which has its 

normal at an angle e to the direction of the source from the 

element will be given by 
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(3.2) 

where r is the distance from the source to the surface element. 

A directed-surface source is a small, planar emitting 

surface which emits to one side only. A directed-surface-source 

has an additional directionality factor, cos ;>: 

dM = m cos 1> (3.3) 

dw "IT 

A proportionality constant of l/rr now appears because the 

source is planar. Equation (3.3) is known as Knudsen's cosine 

law. The amount of material condensing on a target substrate 

element, using a directed-surface source, is: 

dM = m cose cos¢ ciS 

n r2 

(3.4) 

If the deposited film has a density ~ and a deposited 

thickness per unit time d, then: 

dM = !» d dS (3.5) 

and the film thicknesses condensing on the infinitesimal surface 

area dS are given by: 

and: d = m cose cos¢ 
~ rrr2 

(3.6) 

(3. 7) 

for the point and directed-sources respectively. It is easy to 

show that a point source situated at the centre of a sphere would 

coat the wall of the sphere uniformly, whilst the directed-source 

would have to be situated on the sphere wall itself to obtain the 

45 



same effect. If a flat plate held directly above the source is 

considered as shown in Figure [3.1] then the above expressions 

lead to the following normalised deposited thicknesses: 

d t = dido = I (3.8) 
(1 + (r/h) 2) 3/2 

for the point source, am : 

(3.9) 

for directed-surface source, where it is assumed that the flat 

plate is plane-parallel with the source.· h is the perpemicular 

distance from source to substrate and r is the radial distance 

from the point on the substrate directly above the source where 

the deposited thickness is do. An eccentric rotation of one or 

both of the source am substrate, or a large source­

to-substrate distance, is required to overcome the film non­

uniformity implied by equations (3.8) and (3.9). 

If the film condensation takes place in an evaporation 

system (such as a thermal evaporator or electron-beam evaporator) 

where the pressure is held below ~O-4 torr, the molecular 

trajectories emanating from the source may be modelled as 

straight lines since the equilibrium mean free path of evaporated 

particles at such a pressure is generally much larger than both 

the source dimensions and the source-to-substrate distance. In 

sputtering environments pressures are higher am the equilibrium 

mean free path (and the non-equilibrium mean free path of 

sputtered molecules) is of the order of typical source-to­

substrate distances (tens of mm) [6]. 

The Knudsen/Lambertian law is not always valid. It is 

appropriate for a small source, but real sources have finite and 

sometimes complicated geometry and are furthermore prone to 

secondary evaporation effects associated with adsorption of the 

evaporated particles to the source enclosure walls, followed by 

migration and re-evaporation. So called Clausing correction 
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factors have been introduced to quantify these effects [7], which 

usually cause increased 'beaming' or focusing of the molecular 

flux. A more rigorous presentation w ill be presented in section 

3.5. Next, however, some simple calculations on Luneburg lens 

fabr ication condi tions based on the Knudsen directed-sur face 

source will be presented. 

3. 3 lens fabrication using a directed-surface source 

In this section, the non-uniformity of film deposition 

implied by equation (3.9) will be investigated to see whether the 

overlay Luneburg lens thickness profiles calculated in chapter 

two could not be synthesised using such variation. The deviation 

between the desired and approximate profiles will be quantified. 

A mask situated on the substrate is assumed to truncate the 

approximate lens profile at the required full aperture. 

Two lens designs are considered. One has an f-number of f/3, 

with a diameter of 4.Smm being somewhat arbitrarily selected so 

that the desired focal length is l3.Smm. The other lens has an f­

number of f/9 and a diameter of 4.Smm, corresponding to a focal 

length of 40.5mm. The variable r, the radial distance in equation 

(3.9) is allowed to range between O.Omm and 2.25mm at a constant 

value of h, the source-to-substrate distance. Curves of 

normalised deposi ted thickness (assuming a unity sticking 

coefficient) are shown in Figures [3.2] and [3.3] . Figure [3.2] 

shows that the source-to-substrate distance must be varied 

between 4.lmm and 6.3mm to obtain a 'reasonably close' fit to the 

f/3 lens, with 4.5mm to 9.0mm being the corresponding range for 

the f/9 lens as shown in Figure [3.3] These distances are 

obviously much smaller than those normally utilised in thin-film 

evaporation. If 'reasonably close'is defined as being determined 

by a least-squares deviation from the desired profile over the 

whole aperture, the best source-to-substrate distances are 4.3mm 

and 6.0mm respectively. Visually at least, the Knudsen curve 

approximations at these distances are not good, and other 

distances might seem more suitable. By inspecting Figure [3.3] 

more closely, for exarnple,a strong case could be made for making 
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9.0mm the best source-to-substrate distance for fabricating the 

f/9 lens, since the profiles match closely up to a radius of 

1.35mm. The least-squares criterion is, perhaps, 

disproportionately influenced by the points at the edge of the 

aperture. 

Figure [3.4] shows a plot of whole-profile-deviation as a 

function of source-to-substrate distance for four lens designs 

given by f/l.5, f/3, f/6, f/9. The whole-profile-deviation is 

calculated by first squaring the deviation between the desired 

profile and the approximate profile at each point at which the 

desired profile is specified (29 in all) and then calculating the 

sum over all 29 points. Each design was investigated at four 

diameters d=4, 8, 12 and l6mm respectively. The minima of the 

whole-profile-deviation curves correspond to the optimum source­

to-substrate distances for approximating the desired lens 

profiles. The graph is a complicated one, but several features 

are immediately apparent: 

(i) the minimum whole-profile-deviation obtainable is 

approximately constant for a given f-number; 

(ii) increasing the lens diameter, whilst holding the 

f-number constant has the effect of increasing the optimum 

source-to-substrate distance; 

(iii) all the whole-profile-deviation minima fall in 

the source-to-substrate range 2-20rnm, which are small distances, 

it may again be noted; 

(i v) at large source-to-substr ate distances the whole­

profile-deviation is a constant for a given f-number. Lenses 

. fabricated at these distances would be simple step-index lenses, 

analogous to spherical designs in bulk optics, and subject to 

image distortions (aberrations). 

Conclusions to be drawn from the evidence presented so far 

are: 
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(a) the profile approximations obtained with a 

directed-surface-source of the type envisaged by Knudsen do not, 

in general, fit closely at all to the desired profiles. 

Substantial aberrations would be expected from any of the 

profiles investigated. 

(b) Even if (a) were not the case, the source-to­

substrate distances required are so small that it would be 

difficult to measure or control the deposited film thickness 

under experimental conditions. 

(c) Furthermore, the small distances involved also 

result in a great sensitivity to substrate placement and 

alignment accuracy. 

(d) Small distances also increase the possibility of 

material spitting from the evaporation source onto the substrate. 

Evidently the deposited-film variation provided by a simple 

Knudsen directed-surface-source does not allow for easy or 

accurate fabrication of overlay Luneburg lenses. 

Four other phenomena which can affect the deposi ted-film 

profiles may be either present in the evaporation process or 

introducErl into it. These are: 

(i) Source extension: An aggregate of directed sources 

is then available for modification of the observed molecular flux 

patterns. 

(ii) The orifice geometry: A cylindrical orifice may be 

usErl to 'focus' the molecular beam. 

(iii) Shadow masking: A mask could be interposed 

between the source and substrate to shape the profile. The shadow 

mask would not, in general, be situated on the substrate itself, 

although a second mask would be present on, or near, the surface 
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in order to define the diameter of the lens. The second mask 

could, furthermore, playa role in defining the deposition 

profile near the lens edge. 

(iv) Secondary evaporation: These effects can 

considerably modify the molecular flux. 

3. 4 '!be Yao sbadow-masking BDdel 

In his paper [8], Yao points out that the shadow-masking of 

thin films to achieve controlled variations in film thickness is 

often carried out on an ad hoc, trial-and-error basis and is 

dependent to a large extent on the skill and exper ience of the 

operator using the equipment. with the motivation of improving 

upon such a largely intuitive approach, Yao successfully 

formulated an algorithm for generating generalized mask profiles 

which would closely synthesize thin-film overlay Luneburg lens 

profiles. A computer-aided design method was used which had as 

design goals precision, predictability am reproducibility: all 

necessary attributes for lenses intended to be incorporated in 

practical optical processing systems. 

After consideration of the generalized problem, ie one that 

makes allowances for 

(a) variable source-to-substrate distances, 

(b) finite, but complicated source geometries, 

and (c) variable mask geometries, 

Yao came to the conclusion that a computer model capable of 

covering all aspects of the general problem would be unwieldy and 

tedious. He restricted himself thereafter to the following cases: 

(a) one where an extended source is used whose 

dimensions are large compared to the distance between source and 
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substrate, 

(b) one where a shadow mask is included with a 

depth-to-diameter ratio so large that only small values of 
incident angle 0 need be considered. 

Such conditions closely approximate those found in a 

sputtering environment, and a simple, efficient computing model 

is easily constructed. The conditions unfortunately do not 

correspond so closely to those found in a typical evaporation 

unit where the source is relatively small and secondary 

evaporation effects can occur. Neither does Yao invoke the 

possibility of beam-shaping by introducing an orifice. Secondary 

evaporation effects are fortunately negligible for materials such 

as As2S3 evaporated from the tantalum crucibles which were used 

in the author's work, due to the low binding energies between 
glasses and metals [9]. 

3. 5 Masking the substrate 

It has previously been noted that the film variation 

produced by a source on its own is insufficient for the purposes 

of fabricating lenses directly. A mask may be introduced to 

increase the available variation as illustrated in the schematic 

of Figure [3.5]. The mask is modelled as an infinitely thin 

sheet, completely opaque to the molecular flux except for a small 

disc of radius Rl. Both source and mask aperture share the same 

axis of rotational symmetry, arrl the top surface of the source, 

the mask and the substrate are all plane-parallel. For 

mathematical convenience, the radius of the mask is assumed to be 

smaller than that of the source. A second mask is shown placed in 

close proximity to the substrate to improve the edge definition 

of the system. 

The precise geometry of the situation is shown in Figure 

[3.6]. '!be source is a cylindrical orifice of radius R am length 

~ The shadow-mask has a radius RI and is situated a distance LI 

from the source. The target substrate is situated a distance L2 

from the shadow-mask. The edge-definition mask is placed in close 
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proximity to the substrate and its influence may be neglected for 

the p..1rposes of the following analysis. Fach differential area dA 

of the orifice throat gives rise to a molecular contribution which 

follows the Knudsen law of equation (3.3). The total amount of 

mater ial condensing at a point P on the target substrate 

characterized by the angle e is then given by: 

J (9) = kl COSa dw dA (3.10) 

where the angle 0 and the solid angle dw are as shown on the 

Figure. It can be seen from the geometry of the Figure that: 

dw = dA coso 

112 

, 

s2 = (Ll-tL2)2tanLe + r2 - 2 (Ll-tL2) r tane cos {3 , 

cos 0 = (L + Ll -tL2) 

112 

1 I = ~ [(L + Ll + L2) 2 + S ~ • 

and 

Making the appropriate substitutions in equation (3.10): 

J (9) = k (L+Ll +L2) 2 

[(L-+Ll-tL2) 2+ (Ll-tL2) 2tanL.e] 2 

x dA 

[
1 + r2 - 2 (Ll-tL2)r tanS cos (3 J 2-

(L-tLl-tL2) 2 + (Ll-+L2) 2tan 2e 
A 

(3.11) 

In most cases of interest, e is small and r2« (L+Ll+L2) 2. 

The normalised deposition thickness at point P, characterised by 

the angle S, is then approximately given by: 

52 



JI~) ~ (L+L1+L2) 2 A 

[ (LiL1 iL2) 2+ (L1 iL2) 2tan2e] 2 (3.12 ) 

where A = fdA is the effective area of the orifice visible from 
point P. 

Four cases may be identified as being of separate character, 

as shown in the figure. The geometr ical shadow of the mask, as 

seen from point P, is cast onto the source, and the overlap 
defines the effective area. 

(a) for points P characterised by angles less than Sa' 
where: 

am: P a = Rl (L+Ll +L2) -RL2 

(L-tLl) 

the whole of the orifice area is seen. 

-

(3.13 ) 

(3.14) 

(b) for points P characterised by angles greater than ac ' 
where: -

am: Pc = Rl (L+Ll +L2) +RL2 

(L-tLl) 

(3.IS) 

(3.l6)) 

the orifice is entirely in shadow, and the deposited thickness is 

zero for all points in this region. 

(c) for points P distinguished by angles a, where Sa < e < 
9c the observable area will be defined by an integral to be 

evaluated below. 

(d) as an adjunct to case (a), situations can arise where 

the shadow cast by the mask is smaller than the orifice area. 
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This occurs for long source-to-substrate distances and for small 

mask radii. In cases where the radius of the shadow is smaller 

than that of the source, points P at radial distances less than 

Pd , where: 

Pd = (R-Rl) (L+Ll+L2) - R , 

(L-+Ll) 

will see a reduced effective area. 

(3.17) 

The most general case is (b). The area A seen by the point 

on the target is given by 

f. 
R' 

A = (R2~2)1/2dy +f (R,2~2)1/2ay , 

y' y' , 

(3.18) 

where the integration 1 imi ts are as shown in Figure [3.6] • We 

note first that, from the geometry of the Figure: 

Also, 

and 

tan¢ = (Ll +L2 ) taIi3 

L2 

= (y'-y") 

(L-+Ll) 

R' = (L+Ll +L2 ) 

Rl L2 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Combining (3.22) with (3.20) yields the integration lilnits: 

y' = (R ,2-R2) - (L+Ll)tan~ 

2 (L-+Ll) tan¢ 2 

(3.23 ) 

y" = y' + (L-+Ll) tan9 (3.24) 
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Carrying out the integration of (3.18), the orifice area seen 

from point P becomes: 

In 

In 

In 

A = .!./1T(R ,2-+R2) + yl (R2-y,2)1/2 

2 2 

-+R2sin-1 (f+y', /R) 

- yn(R.2-yn2)l/2 _ R.2Sin-1eyn/R')/ 

case (a), A = rrR2. 

case (c), A = O. 

case (d), A = rrR 1 2. 

(3. 25) 

The overall distribution is affected therefore by the five 

var iables L, R, LI, L2, and Rl. Such a dependence allows 

modification of the fabrication conditions so that an 

approximation to the required lens profile is obtained. 

3. 6 Lens awro:ximations 

A computer program has been written that calculates the 

whole-profile-deviation between the desired lens profile and the 

profile furnished by equation (3.12) over twenty seven profile 

points, as a function of the shadow-mask parameters. '!he source 

geometry is held constant while the mask radius Rl, the sum 

(Ll+L2) and the ratio (LI/L2) are allowed to vary over fixed 

ranges. '!he minimum whole-profile-deviation is then found and the 

values of LI, L2 and RI which give rise to it are taken as the 

optimum values for lens fabrication. '!he source geometry is taken 

as fixed since only one type of source was used in the present 

study. 

Figure [3.7] (a) shows the effects of varying the sum 

(Ll ~2), ie the source-to-substrate distance, over a 2mm to 200mm 

range. An f/2 lens of diameter 4rnm is being considered. '!he ratio 

(LIJL2) is held constant at the optimum value, am the error sum 
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function is calculated at five mask radii ranging from O.5mm to 

2.5mm. In Figure [3.7] (b) the source-to-substrate distance is 

held constant, whilst the ratio of Ll to L2 (which determines the 

mask placement) is allowed to vary between .1 and 10.0 , again at 

five mask radii. 

The curves are seen to be strongly dependent on the value of 

mask radius am a clear minimum is obtained for the radius L5mm. 

At larger mask radii than 1. 5mm the error curves flatten 

considerably indicating the uniformity of deposition obtained 

with an extended, unmasked source. As the best mask radius is 

approached the width of the dips in the curves of Figure widen, 

indicating that the best obtainable profile is not a strong 

function of the source-to-substrate distance. Furthermore Figure 

[3.7] (b) indicates that the best profile (the lowest error sum) 

is not a strong function of mask placement either, with virtually 

any mask distance below 50% of the source-to-substrate distance 

being suitable.The mask radius is seen to be the key parameter. 

Table [3.1] shows the optimum fabrication geometries for two 

f/2 lenses, one with a 4.0mm diameter and one with an 8.0mm 

diameter. As in the simple Knudsen case, the dimensions involved 

are not large, and poor thickness control and measurement would 

be expected in fabrication. A source of greater radius would 

undoubtedly improve matters, since more regions of the source 

would then be available for blocking by the shadow-mask. The mask 

am substrate could then be placed at greater distances from the 

source. This has been confirmed by other workers [2]. 

Figure [~8] shows the desired thickness profiles of the two 

lenses and their expected approximations. The approximations , 

whilst not perfect, might be expected to produce reasonable 

resul ts. The refractive index profile corresponding to the 4mm 

diameter lens, computed from the approximate thickness profile, 

is shown in Figure [3.9]. 
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Lens 

diameter 

4 mm-

8 mm 

Source- to­

substrate distance 

12 mm 

16 mm 

Source- to­

mask distance 

3.4 mm 

1.5 mm 

TABLE [3,1] Deposition geometries 

for s-4 lens 

Mask 

radius 

1.5 mm 

2.25 mm 
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3.7 Conclusions 

Vacuum evaporation models have been investigated. In order 

to obtain lens profiles close to the perfect Luneburg overlay 

profiles a theory of evaporation has been developed which allows 

for an extended, cylindrical source geometry and an infinitely 

thin shadow-mask of variable aperture, situated at variable 

distances from source and substrate. The theory predicts that 

reasonably good lens profiles can be obtained, if small source­

t~sk and mask-to-substrate distances can be tolerated. 
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CHAPTER FOUR 

RAYTR4CING 



4.1 Introduction 

The geometrical optics of inhomogeneous media, non-planar 

media and thin-film waveguides enabled lens designs to be 

formulated in chapter two, some of which were expected to be 

perfect whilst others were known to be susceptible to imaging 

errors, ie aberrations. Practical lenses suffer from a variety of 

fabrication errors which include non-conformity to design 

profiles, misalignment errors, non-uniform film densities leading 

to effective index errors. 

In such cases it is important to be able to model the 

passage of the light energy ( and, to some extent, the passage of 

spatial information) through the particular optical system under 

investigation. The most widely used method remains that of 

tracing rays, usually in bundles, through lenses and observing 

the imaged results. As Stavroudis points out [1], an important 

reason for ray tracing is that the presence of errors in the 

tr aced image 

' •.• contr ibutes distinctive geometrical characteristics 

to the structure of the image the appearances of which agree 

rather closely with what is seen in the laboratory.' 

Miyamoto [2] provides impressive confirmation of the 

representational capabilities of ray plots, showing spot diagrams 

obtained by ray tracing through bulk lenses side-by-side with 

photographs of images suffering from characteristic types of 

aberration. 

Classically, the tracing of rays was a tedious business 

requiring repeated and laborious calculations. Optical designers 
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consequently developed a sophisticated aberration theory that 

extracted as much information as possible from the tracing of 

only a few rays. Modern digital computers have enabled many-ray 

systems to be computed and this has led to different methods of 

analysing the traced data. Nevertheless classical representations 

are still useful, particularly from a conceptual point of view. 

Rays in isotropic systems are everywhere normal to the 

propagating wave phase-front [3]. The phase-fronts are parallel 

in the sense that subsequent surfaces are generated by stepping 

off equal distances along the ray normal to the original phase­

front. As such the rays represent the curves along which the 

light energy is transported, within the limiting approximation 

of geometrical optics ie that of a vanishingly small wavelength. 

Later in this work it will be found that the energy contours 

derived from a more comprehensive theory (which deals with the 

field directly ) do in fact closely resemble the rays seen in the 
present section. 

In this chapter the fundamental equations of geometrical 

optics will be given. Two algorithms for tracing rays through 

inhomogeneous lenses will then be presented. One algorithm is 

used to trace rays through lenses of the inhomogeneous overlay 

type of lens, and the other is used to trace rays through the 

geodesic type. Results obtained using such ray-tracing algorithms 

will be presented which illustrate the behaviour of different 

lenses. 

4. 2 Pee-tracing 

The requirements that lens ray-tracing procedures must meet 

are very simply stated. Given a single ray travelling in a 

prescribed direction which meets a lens at a prescribed 

intersection point , an algorithm is required which will obtain 

the corresponding position and direction at the point where the 

ray leaves the lens. Data collected for a bundle, or manifold, 

of rays provide a wealth of information on the imaging properties 

of a lens. 
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Ray-tracing concerns itself with establishing relationships 

between input and output quanti ties pertaining to the rays for 

the optical system through which the rays pass. A computational 

algorithm for tracing rays must be flexible enough to accomodate 

considerable variation of the input quantities. It is certainly 

desirable to control the following properties; 

(a) the position in the object space of the source 

of rays (a point source is generally assumed, which in the case 

of a point situated at infinity gives rise to a parallel manifold 
of rays), 

(b) the direction of each ray in the manifold with 

respect to the chosen axes, 

and (c) the position and lateral extent of any stops 

in the system. 

In addition, one might wish to include the capability of 

simultaneously tracing the rays at different wavelengths, to 

investigate the chromatic characteristics. In integrated optical 

applications the investigation of multi-mode effects could be 

inportant. 

4. 3 Fl.JOOamental equations of geauetr ical qti.cs 

The basic equation of geometr ical optics is the 'eikonal' 

equation [3], eikonal being derived from the Greek word 'eikon', 

meaning image. '!be equation has the form: 

(4.1) 

in isotropic media, where ~(£) is a real scalar function of 

position describing the optical path along a ray from a fixed 

point on the ray, and n (£) is a real scalar function descr ibing 

the refractive index distr ibution. The eikonal equation may be 
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derived by applying the limit of very small wavelength to the 

time-harmonic Maxwell electromagnetic equations for a non­

conducting, isotropic medium free of currents and charges [3]. 

More familiarly, it may also be derived from the calculus of 

variations by starting with Fermat's principle. Such an approach 

formed the basis of Hamilton's work on the optical characteristic 

functions [4]. 

The surfaces given by: 

'It (E) = constant (4.2) 

represent the geometr ical phase-fronts. The rays are everywhere 

orthogonal to the phase-fronts in an isotropic medium and may be 

shown to point in the direction of the time-average Poynting 

vector. Consequently, the rays may be interpreted as being the 

curves along which energy is transported. 

A unit vector !. may be defined: 

!.. = gr ad ('It ) 
n 

(4. 3) 

which indicates the ray direction. If £(s) denotes the position 

vector of a point P on a ray, with s being the physical path 

length along the ray from a fixed position on it, then: 

t = dr 

ds 

(4.4) 

from vector calculus [5], so that t is everywhere tangential to 

the ray. The eikonal equation may then be rearranged: 

n d£ = grad ( 'It ) 

ds 

(4.5) 

A simple physical interpretation of equation (4.5) is available. 

From vector calculus: 
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ds a x ds ay ds a z ds 

= (i a'lt + i a'lt + k a'lt). h dx + i dy + ~ dZ) 
ax ay az \ ds ds ds 

= grad 'It. dr 

ds 

= n (4.6) 

Hence the well known result that the rate of change of the 

optical path with respect to the physical path along a ray is 

equal to the refractive irrlex. 

The rays are specified by means of the function 'It in the 

eikonal equation. '!he rays can however be expressed directly in 

terms of the refractive index function by differentiating both 

sides of the eikonal equation (4.1) with respect to s. The 

equation: 

::jn dr) dS\ ds 

= grad(n) (4. 7) 

is obtained. Equation (4.7) is known as the differential equation 

of light rays or, more simply, the ray equation. It is the 

equation describing the paths followed by light rays as they 

traverse a material with refractive irrlex n. 

An important example is a medium with spherical symmetry, 

where the refractive index is a function only of the distance r 

from a fixed point O. In such a case it is possible to show that 

all the rays are plane curves situated in a plane through the 

origin. Along each ray: 
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nrsin¢ = constant (4.8) 

where $ is the angle between the position vector £ and the 

taD:3ent vector t as shown in Figure [4.1]. Since rsin$ represents 

the perpendicular distance d from the origin to the tangent, eq 

(4.8) may be written as: 

nd· = constant (4.9) 

Equation (4.9) is known as the fornula of Bouguer. 

An important relation concerning the ray curvature vector is 

often required in ray tracing. The curvature vector K of a curve 

whose points are specified by £(s) is defined by: 

= dt 

ds 

Using the vector calculus result: 

d (!..!) = 2t .dt 

ds ds 

(4.10 ) 

(4.11) 

which equals zero, since!. has a constant magnitude, the vectors 

K and!. are seen to be perpendicular to each other, with K 

pointing in the direction of the inward normal to the curve 

followed by the ray. Physically, since t has constant (unit) 

magnitude, K measures the rate of change of direction of t. The 

magnitude of K is the reciproca1 of the radius of curvature at 

the point £. 

Carrying out the differentiation with respect to s in the 

ray equation (4.7) by means of the product rule: 
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y 

! ray position vector 
1 ray direction vector 
K curvature vector (measures rate 

of change of the direction of t) 

s scalar distance along ray 

o----~----------------------~----x 

FIG U R E [4, 1 J G E (lv1 E TRY FOR TRACING RAYS 

THROUGH PLANAR INHOMOGENEOUS 

LENSES WITH CIRCULAR SYMMETRY 



Substituting K fram (4.10) and rearranging: 

nK = grad(n) - dn t 

ds 

= grad(n) - (grad(n).~) t 

where the general relationship: 

dg = grad (g) • ~ 
ds 

has been used. 

(4.12) 

(4.13) 

(4.14) 

In a medium with spherical symmetry it is a simple matter to 

show that: 

grad(n) = 1 dn r (4.15 ) 

r dr 

so that (4. 13) becanes: 

(4.16) 

The curvature vector is then fully specified in terms of the 

refractive index function. 

Finally, the rate of change of K with respect to s is 

sometimes required in raytracing. 'Ibis vector is defined by: 

(4.17) 

In a spherically symmetric medium, dK/ds can be found explicitly 
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by differentiati l"Y3 both sides of equation (4.16): 

where: 

and: 

dK = 1 df (E .• t) [!. - (!..t) t] 

ds r dr 

f = 1 dn 

nr dr 

~ = ~ {d~ -dn (.!. + ~ ~\l 
dr nr dr2 dr r n drJf 

(4.18) 

{ 4.l9} 

(4. 20) 

The above equations enable rays to be traced through any 

spherically· (or circularly) symmetric medium with a continuously 

differentiable refractive index function. 

4. 4 TcaciDJ rays through inhoo"geneous overlay lenses 

4.4.1 Introduction 

'!he trajectories followed by rays in inhomogeneous or non­

uniform media have long been of interest. In certain cases where 

the refractive index function and its derivatives are restricted 

to special forms, exact analytical solutions are known [4] which 

usually depend on invoking symmetry considerations. The 

syrnmetr ies are generally of the cylindr ical or spher ical kind. 

Unfortunately, as pointed out by Moore [6], the assumed gradients 

of the index do not always resemble those of practical concern 

and the resulting mathematical solutions are not of great value 

in the optimisation of designs. 

More useful methods involve approximations of the ray path 

and the refractive index gradient. Such methods are of general 
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applicability in that only a numerical representation of the 

refractive index is required- experimental values may be read off 

a graph, for example. Care however has to be observed with 

respect to two important considerations, namely numerical 

accuracy and calculational efficiency. For both of these 

problems, the tests by which the given algorithms are judged are 

index profiles for which the trajectories are known exactly and 

which represent demanding tasks- an example might be one which 

caused the rays to deviate considerably from paraxial conditions, 

such as obtained with lenses of low f-number. 

Moore suggested a procedure which involved taking power­

series expansions of both the refractive index and ray-position 

functions. He verified the procedure by comparing the results 

with Sands' third-order aberration theory [7]. His definition of 

accuracy was that the computed aberrations of analytically 

perfect (ie aberration-free) designs be no more than 10-6 times 

the Gaussian focal length, the aberrations being then of course 

artefacts of the algorithm. Moore also compared his results with 

the method developed by Montagnino [8]. Moore found excellent 

agreement with both Sands and Montagnino. In a later paper [9] he 

admitted that Montagnino's work was of more general validity in 

that it was not restricted to cases of spherical symmetry. 

Montagnino's method formed the basis of a later work by 

Southwell [10] on inhomogeneous overlay lenses in planar guided 

wave optics of the type considered herein. The method will be 

treated here in some detail as it is the one implemented by the 

author in his work. The development is substantially as given by 

Southwell. 

4.4.2 The Southwell-Montagnino Method 

The tracing of a single ray from the entrance surface to the 

exit surface of an inhomogeneous lens possessed of circular 

symmetry is considered. As the lens is taken to be of the planar 

inhomogeneous type, the trajectory of the ray is a plane curve 

lying in the plane of the ambient waveguide. 
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The method employs a Taylor expansion of both the ray 

position vector £ and its derivative, the ray direction vector ~ 

The refractive index function is specified either numerically (as 

a set of discrete data points) or as an analytical function of 

the radial coordinate r. The index derivatives may also be 

specified in analytical form but are generally evaluated using a 

numerical method. Both the index and its derivatives are assumed 
to be continuous. 

The ray position and direction vectors take the forms 

!. = xi + yj 

and t = ai + ~j (4.21) 

in a two-dimensional coordinate system. t is a unit vector 

tangential to the ray and thus may be represented, as in (4. 4), 

by 

t = dr 

ds 

(4.22) 

where s is the scalar, physical distance along tne ray curve. The 

components a and ~ are the direction cosines of the ray. 

Once the initial vectors have been specified at the lens 

entrance an iterated extrapolation procedure is used to propagate 

the ray from point to point, with the four coordinates that 

describe the ray being calculated from the values taken after the 

previous iteration, and the refractive index function and its 

derivatives. '!he position vector is expanded in a Taylor series 

about the known point specified by the path length at the point, 

(L.. . '11) 
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where h is a small incremental distance along the ray path. As 

already observed, dr/ds is the direction vector t. '!he second 

derivative is the curvature vector of the ray, as specified by 
equation (4.10). 

t may be expanded in a fashion similar to r ; 

!:. (so + h) = t (so ) + hI< + h2 dK + ••• 

2! ds 

(4.24) 

The problem becomes one of establishing the numerical values 

of the requi red der i vati ves K and dK/ds at the point £ (so), with 

the direction vector !:.(so) being presumed known, either at the 

entrance surface of the lens or from a previous Taylor's 

expansion for a point inside the lens. 

Explicit expressions for K and dK/ds in circularly symmetric 
media were given in equations (4.16) and (4.18) respectively. 

These equations require a knowledge of the refractive index 

function and its first and second derivative (with respect to the 

radial distance r from the centre of the lens) at the point 

.£(so). In certain circumstances all three of these functions may 

be specified analytically. In chapter two, for example, a 

polynomial expression was obtained that approximated closely the 

refractive index function for the particular type of 

inhomogeneous lens known as the Iuneburg lens, wh ich has per feet 

focusing properties. '!he expression is repeated here: 

n(r) = exp(w(~,F)) (4.25 ) 

where w(p,F) = PI (l-nr) 1/2 + P2 (1-nr)3/2 + P3 (l-nr)5/2 

+ P4 (I-nr)7/2 + P5 (l-nr)9/2 

(4.26) 
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with P = nr and F beirg the focal lergth of the normalized lens. 

The first derivative of the index with respect to the radial 

coordinate r may be found for the Luneburg lens profile specified 

by (4.25) using implicit differentiation. Differentiating both 

sides of (4.25) am droppiI'l:3 the use ofp am F: 

dn = exp (w) dw 

dr dr 

= row (4.27) 

dr 

dw/dr may be found by differentiating both sides of (4.26): 

where: 

dw = -PI (l-nr) -1/2 (n + rdn) 
dr 2 dr 

. . . etc 

= - (n + r ~)~ 
2 (l-nr)lj2 

G = PI + 3P2 (l-nr) + 5P3 (l-nr) 2 

+ 7P4(1-nr)3 + 9PS(1-nr)4 

(4.28) 

(4.29 ) 

Substitution of (4.28) into (4.27) yields an explicit analytical 

fonrula for dn/dr: 

dn = -n2 G (4.30) 
dr (2 (l-nr) 1/2 + nrG) 
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In order to obtain the second derivative, both sides of (4.27) 

are differentiated: 

Next, both sides of (4.28) are differentiated: 

- -((1+\~rH 

where: 

~ (I - (l r )312 

H = -PI + 3P2 (l-nr) + lSP3 (l-nr) 2 
+ 35P4 (1-nr)3 + 63Ps (1-nr)4 

(4.31 ) 

(4.33 ) 

Substituting (4.32) into (4.3J) and collecting the comp::ments of 

d2n/dr2 on the left hand side gives: 

-II ~ + r~il-j 

4 (l -nr?'z 
G- do + ----, d(' 

~-.,r)~ 

+ .l tci!1)1.. n 0.( 

whim yields: 

-(1 
~+ r~tH 
4 (t-t1 r ) 

+G-~ dr + 
dr'Z. 

(l - tlr) '11. + fl r 6-/'2. 

This expression is considerably different from the one quoted by 
t) 

Southwell in his paper on Luneburg lenses [11]. In fact if 

Southwell's expression is used in ray-tracing, the algorithm 

fails. The validity of the above expression may be checked by 

determining whether or not it yields the correct (known) value at 

the edge of the normalized lens, where n and r = 1. Substituting 

I)see also Addenda, Note (1) 71 
P ~,s-b 



these values of nand r into (4.35) gives: 

d~ 

dr 2
edge 

= -2 (4.36 ) 

which is indeed the correct value [12]. Southwell's expression, 

however, gives the value of the second derivative at the lens 

edge as (2-2/Pl) which implies a very small radius of curvature 

for the ray. 

The availability of analytical expressions for the 

refractive index and its derivatives is very important for the 

accuracy of ray-tracing calculations. In some cases, (where 

fabricated profiles have been measured, for example), no explicit 

formulae are available and the required derivatives must be 

calculated using finite difference methods [13], viz 

dn = n(t+6t) - n(t-~t) (4.37) 

dr ~t 

and d~ = n (t+~t) -2n (t) + n (t-~t) (4.38 ) 

dr 2 (6t)2 

'!he thickness function t(r) of the inhomogeneous overlay lens is 

assumed to be known from either measurements on the fabricated 

profile or from theoretical predictions such as those discussed 

in chapter three. 

The Taylor expansions given in equations (4.23) and (4.24) 

can now be used to predict the subsequent ray position ~ and 

direction t. The procedure is continued until the exit surface 

has been crossed. The test for determining whether or not the 

exit surface has been crossed is simply 

If r < R 

if r ~ R 
continue extrapolation procedure; 

exit surface of lens has been crossed. 

R is the rnaxiIm..D11 radius of the lens. 
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4.4.3 Exact point of crossing 

After the ray has crossed the exit surface, the actual point 

of crossing and the direction cosines at that point are only 

imprecisely determined, and certainly not to the accuracy 

required of the algor i thm which must yield errors of less than 

the diffraction limit. The accuracy could be improved by simply 

reduci l'l3 the path increment h to a value as small as desired but 

this would greatly reduce the computational efficiency of the 

algorithm. Instead, an interpolation method is used to determine 

accurately the exit boundary location of the ray. A function F is 
def ined, such that: 

F = R2 - r.r 

(4.39) 

with the origin of coordinates being taken at the centre of the 

lens. The function F represents the error with which the above 

algorithm is able to find the correct exit point for a given ray. 

The penultimate point calculated inside the lens is taken as 

the base point. The ultimate point of intercept may then -be 

considered as a function of a variable ray path increment, h. As 

such, F becomes functionally dependent on h according to the 

Taylor expansion given in equation (4.23). Newton's method is 

used to find the value h that makes F(h) as close as desired to 

zero, viz: 

h i +l = hi - F 

(aF/ah)h=hi 

(4.40) 

To use the method the partial derivative aF/ah must be obtained. 

It is sufficient to return to equation (~39) and to observe that 

aF = -2r. dr = -2r.t (4.41) 

ah dh 

73 



Since the partial derivative of F with respect to h is 

desired, the other variables in the Taylor expansion of (4.23) (r 

and t) must be held constant. In consequence, the partial 

derivative itself remains constant throughout the Newton 

iteration since it is functionally specified through (4.41). 

4.4.4 Interpolation procedure to allow larger stepsizes 

The incremental arclength step chosen determines both the 

computational efficiency and the final accuracy of the method. 

Too few steps leads to inaccurate results, whilst too many may 

mean that the trace may take up too much computer time. 

Richardson's extrapolation method [13] is used to achieve a high 

degree of accuracy in reasonable time. 

Each ray is traced a total of three times with each 

successive trace reducing the stepsize by a factor of two. It may 

then be shown that the formula: 

y = Yl - 2y2 + 8y3 (4.42 ) 

3 3 

accurately determines the ray exit height. 

The algorithm described above can be implemented with only a 

moderate amount of computer code by making judicious use of 

subroutines. It copes with lenses of very small f-numbers (down 

to flO. 5) with excellent results. 

4.5 TraciD3 rays through geodesic lenses 

4. 5, 1 Southwell's method 

Tracing rays through geodesic lenses requires a different 

technique from that used for overlay lenses. Southwell [14] has 

produced a suitable algorithm. 
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A curve z(r) is assumed to generate the profile when rotated 

about a central axis, as shown in Figure [4.2]. The points on the 

curve are assumed to te specified by either an analytic function, 

or by some other means. Fermat's principle of minimum optical 

path is the basis for calculating ray trajectories. 

'!he optical path length integral OP is given by: 

B 

OP = f ndL 

A 

(4.43 ) 

where A and B are separate points on a ray- trajectory on the 

surface of the lens, n is the refractive index and L is the 

~ysical length along the trajectory. n is assumed to be constant 

over the surface of a geodesic lens, so that the variational 

displacements involve only the ~ysical path. Fermat's principle 

of shortest path is then given by: 

B 

o(OP) = 0/ dL = 0 

A 

(4.44) 

where 0 indicates the var iation. The pr inciple states that the 

path-lel'lJth alol'lJ the curve followed by the ray is a minimum with 

respect to other curves in the vicinity. The paths so described 

are termed geodesics. A constraint is that the ray remain on the 

surface of the lens. '!he geometry of Figure [4.3] shows that: 

(4.45) 

where r,¢ are polar coordinates and S is orthogonal to rd¢. The 

variable S may be put in terms of the generating curve z(r), 

since the elements dS and rd¢ are orthogonal: 

(4.46) 

Thus equation (4.44) becomes: 
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z r 

dr 
dz 

FIGURE [4,2] Geodesic lens generating curve z(r) 

z 

---- - ray path 

FIGURE [4,3] Geodesic tens depression 



(4.47) 

The only dependent variable is ¢ since z(r) is assumed 

known. The solution is given by the solution of the Euler 

equation [1] : 

~(aF) + ~F = 0 
dr a¢' 0 ¢ 

where F is the integrand of equation (4.47) and: 

¢' = d¢ 

dr 

(4.48 ) 

(4.49 ) 

From equation (4.47) it is obvious by inspection that F does not 

depend explicitly on ¢ but rather on the first derivative ¢'. 
Thus the second term on the left-hand side of equation (4.48) 

vanishes. Integrating the remaining terms on the left-hand and 

right-hand sides yields: 

dF - c = 0 

09' 

(4.50) 

where c is a constant of integration over the path. Thus, from 

the definition of F, 

(4.51 ) 

By using equations (4.45) and (4.46), equation (4.51) becomes: 

(4.52) 
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If the angle between the meridional curve on the surface (defined 

by the angle ~) and the raYt=ath is called 9, then, on inspection 

of the infinitesimals of Figure [4.3]: 

sin9 = rd¢' , 

dL 

and hence equation (4.52) becomes: 

rsina = c 

(4.53 ) 

(4. 54) 

The ray enters the lens at the edge where the radial distance 

from the centre is rl makes the angle a l with respect to the 

meridional line at that point. Hence the constant c is determined 

by: 

(4. 55) 

The exit-angle that the ray makes with the meridional line as the 

ray leaves the lens must also be aI' since r again equals rl at 

that point. The angle a increases monotonically from the value al 

at the entrance and reaches a maximum value of TTj2 at the point 

where r reaches a minimum: 

rmin = c (4. 56) 

Thereafter, a decreases monotonically to al at the exit. Eq 

(4.56) shows that the constant h is the distance of closest 

awroach to the axis of rotational symnetry. 

The rays entering and leaving the lens may be characterised 

according to the geometry of Figure [4.4] which shows the 

projection of the ray-path onto the plane of the ambient 

waveguide. Two parameters define the ray uniquely, ie the 

position of the ray at the entrance is specified by the azimuthal 

angle ~l and the direction of the ray at that point is defined by 

9 1• The corresponding exit parameters are then ~out and 61. The 

values al and ¢l are generally set at the commencement of the 
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FIGURE [4,4] Projection of the ray path onto 

the waveguide plane 



ray-trace. Only ~out then remains to be determined. 

Squaring both sides of equation (4.51) allows a separation 

of variables to be obtained, and this then produces an integrable 

equation, viz: 

d¢ = c(l + z' (r)2)1/2 dr 

r (r2 - h2)1/2 

Observing, from the geometry of Figure [4.4], that 

¢out = 7T - ~l - 2¢c ' 

(4.57) 

(4.58) 

it is seen that ¢ varies from ¢l to ¢l+¢c while r varies from rl 

to c. Thus limits may be placed on the integral obtained from 

equation (4.57): 

(4.59) 

The upper limit of the integral produces a singularity in 

the integrand. The singularity is removed by integrating eq 

(4.59) by parts: 

¢>c = c r-2 (rl-c) 1/2 (1 fZ ' 2) 1/2 

l rl (rl +C) 1/2 

(4.60 ) 

In general, the integral of equation (4.60) must be evaluated 

numerically. The generating curve z (r) is specified at a large 

number of points (typically 1000) and the derivatives are 
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calculated usi~ finite difference methods. '!he integral is then 

calculated using Gaussian quadrature methods. The tracing of the 

ray through the lens is completed with the calculation of the 

integral. 

4.6 Results 

4.6.1 Introduction 

'!he ray-tracing algorithms developed in the previous section 

w ill be used to show how the behaviour of real lenses is likely 

to deviate from that of perfect lenses. In the case of overlay 

Luneburg lenses, the achievable, approximate lens-profile 

calculated in chapter three will be compared with the perfect 

Luneburg overlay lens. In the case of geodesic lenses, the 

behaviour of the perfect profile will be compared with: 

(a) that of a spher ical depression lens for which an 

analytical geometrical-optics theory is available, and 

(b) that of a profile designed to approximate closely the 

perfect geodesic lens when fabricated using computer-controlled 

single-point diamond-turning techniques [15]. 

The behaviour of a long-fecal-length spherical geodesic lens 

wi th a toroidal rounded-edge will also be investigated. On-axis 

propagation will be modelled throughout, so that only spherical 

aberrations need be considered. 

4.6.2 Ray-tracing through an overlay Luneburg lens and a 

possible approximation 

Figure [4.5] (a) shows a computed ray-trace thrbugh a 

perfect overlay Luneburg lens havi~ a full-aperture f-number of 

f/2. The lens is shown operating at a reduced aperture of f/2. 2 • 

All the incident rays are seen to converge at one axial point. 

This ray-trace was carried out using the quasi-analytical 

expressions for the refractive index and its derivatives 
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developed earlier in this chapter. Figure [4.5] (b) shows a 

comp.1ted ray-trace through the approximate overlay lens-profile 

calculated in chapter three. The approximate profile is one that 

is amenable to fabrication. The approximate profile is shown 

operatilXJ at a reduced f-number of f/4.2 • Attempts to trace rays 

through the approximate lens at wider apertures result in 

failure, due to non-convergent solutions for the ray-trajectories 

within the lens. Such noti-convergence indicates that the 

refractive index gradients within the lens are large at the lens 

marg ins. Figure [4.5] (c) shows a blow;.tp of the focal region of 

the approximate lens. The approximate lens is under-corrected 

with respect to the perfect lens, since the marginal rays are 

seen to focus at points closer to the lens than the paraxial 

rays. Since no analytical expressions were available for the 

refractive index profile of the approximate lens, this ray-trace 

was carried out by specifying the index profile at 29 points and 

usilXJ linear interpolation to calculate the iooex between these 

points. Numer ical finite-difference methods were used to 

calculate the derivatives of the refractive index am therefore 

numerical artefacts can creep into the calculations, as 

demonstrated by some slight asymmetries in Figure [4.5] (c). 

In order to interpret the aata obtained from these traces, a 

simple data-reduction method is employed. At each point z of 

interest along the optical axis of propagation, the transverse 

distance Yi of each ray i is measured. These distances are 

squared and summed over all the rays and a root-mean-square value 

is calculated, viz: 

N 

f(z)rms= L Yi 2 

i=l N 

(4.61) 

A similar formula over two transverse dimensions is used in 

bulk optics. The quantity is often called the 'radius of 

gyration' , in analogy with a quantity similarly defined in 

mechanics. 
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The function f(z) is plotted against the axial distance z in 

Figure [4.6] for the perfect lens and its approximation. The 

minimum of the function f (z) may be taken as the 'best' focus. In 

bulk optics, the best focus is generally known as the 'circle of 

least confusion'. The minimum of f (z) associated with the 

approximate profile is located at an axial distance of 3.2mm (the 

radius of the lens has been scaled, for convenience, to 1.0mm, 

the scaling being unimportant in geometr ical optics). In 

comparison, the perfect lens has a minimum at ~Omm, the correct 

value. Once again the approximate profile is seen to be 

under-corrected with respect to the perfect lens. Furthermore, 

the minimum associated with the approximate profile is not zero, 

indicating that the image is geometr ically spread and is not, 

therefore, diffraction-limited. 

The point at which a given ray intercepts the optical axis 

is the focus for that ray, and the difference between it and the 

paraxial or design focus is the longitudinal component of 

spherical aberration [16]. The longitudinal component of 

spherical aberration is plotted as a function of the position of 

the ray in the entrance manifold in Figure [4.7] for both the 

perfect and approximate lens. The perfect lens displays no 

spherical- aberration over the entire aperture. The approximate 

profile, however, displays considerable spherical aberration. The 

paraxial rays deviate from the focus of the perfect lens, in a 

positive direction (away from the lens), by 40 pm. Rays situated 

at 0.4 mm (f/eff = f/S) in the entrance manifold display the 

greatest amount of longitudinal spherical aberration, of 

approximately 900 pm in the negative direction (towards the 

lens). 'nlus paraxial rays passing through the approximate lens­

profile are slightly over-corrected with respect to the perfect 

lens, whilst the rays passing through most of the aperture are 

considerably uooer-corrected. The behaviour of the longitudinal 

spherical aberration function for the approximate lens is quite 

complicated, suggesting that simple third-order spher ical 

aberration is not the only contribution to the errors in the 

image, and that substantial higher orders are present. A good 

treatment of different orders of geometrical aberration and their 
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effect on the focal image is given by Nijboer [17]. 

At a given axial image distance z, the transverse distance 

of the ray from the axis may be recorded as a function of the 

position of the ray in the entrance manifold. Such functions 

represent the lateral component of spherical aberration. The 

lateral spherical aberration functions for the perfect and 

approximate profiles are shown in Figure [4.8] • The functions 

shown are calculated at the points of best focus for each lens. 

Once again, the perfect lens displays no aberration, whereas the 

approximate profile displays quite severe aberrations. Rays 

situated at ~24 mm from the axis in the entrance manifold (f/eff 

= f/8.3) are situated at 40 pm from the axis in the best image • 
. " 

'!he area under the curve of Figure [4.8] can be calculated using 

Simpson's rule. 'Ibis area, divided by the width of the entrance 

manifold, is a good measure of the geometrical spread, or 'blur­

spot'. The blur-spot of the approximate profile is 48 )lm in 

diameter. In physical optics, the diffraction-lind t of the lens 

is given approximately by: 

diffraction-limit = f-number A - (4.62) 
n 

where A is the operating wavelength. For an f/4.2 lens and a 

wavelength of 0.633 pm, in a medium with ambient refractive index 

of 2.2 (which is representative of possible operating 

conditions), the diffraction-limit turns out to be 1. 2 pm. 
Clearly, the approximate profile is not diffraction-limited. 

4.6.3 Discussion 

The performance of the approximate lens is easily 

interpreted by looking at the refractive index profile, in 

comparison with that of the perfect lens (chapter three, Figure 

[3.9]). Over most of the available aperture the refractive index 

of the approximate lens is greater than that of the perfect lens. 

Thus a more powerful focusing action action would be expected 

from the approximate lens. A focal-shift towards the lens would 

be expected as a result. Furthermore, the approximate profile is 
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relatively flat-topped, in comparison with the perfect profile, 

over a considerable part of the aperture. A flat profile implies 

that the approximate lens would behave somewhat similarly to a 

bulk-optics cylindrical lens with surfaces based on circular 

geometries. Thus spherical aberration would be expected. 

These findings imply that the vacuum-evaporation shadow­

masking method outlined in chapter three is not sufficiently 

sophisticated to produce good Luneburg overlay lenses. Other 

improvements to the method will be suggested in chapter seven of 

this thesis, but one particular improvement that could be carried 

out would be to operate the ray-tracing and shadow-masking 

computer programs conjointly. The criterion by which the 

approximate lens profile was chosen in chapter three was based on 

a least-squares fit to the physical profile of the ideal lens. An 

alternative criterion would be to assess the merits of the 

approximate profile purely on optical performance as measured by 

ray-tracing. 

4.6,4 Ray-tracing through geodesic lenses 

In Figure [4.9] ray-traces through a perfect geodesic lens 

and a spherical-depression geodesic lens are compared. The 

spherical-depression lens would be an unlikely candidate for 

fabrication, in reality, since the abrupt transition from the 

lens to the ambient waveguide would cause severe losses. The lens 

is, however, an interesting case from a conceptual point of view 

since its behaviour can be described analytically. Both the 

lenses of Figure [4. Cf] have an overall diameter of 10.Omm and a 

paraxial focal-length of 18.Smm, am are shown operating with an 

incident ray-manifold of width 7.4 mm , ie at an f-number of 

f/2S. The differences in optical behaviour are quite dramatic, 

and are further illustrated by the curves of longitudinal and 

transverse spherical aberration shown in Figures [4.10] and 

[4.11] • A theory of the aberrations produced by a spherical 

geodesic lens-depression has been given by Vahey [18]. For a lens 

wi th a radius of curvature C, a maximum depth H relative to the 

ambient waveguide am a paraxial focal-le03th fo' the third-order 
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spherical aberration coefficient is given ~: 

fl = (C/H - 1)2 + 1 

8fo 

(4.63 ) 

The focal length f (x) of a ray incident on the lens at height x 

is then given by, to third-order, 

(4.64 ) 

The longitudinal component of third-order spherical aberration, 

L-SA, is then given by : 

(4.65 ) 

For the spherical lens being considered, C=9.96 mm, 

H=1.346mm and fo=l& 5mm . A plot of the third-order component of 

longitudinal spherical aberration is shown together with the 

comp..1ted curve in Figure [4.10] • It is clear that the spherical­

depression geodesic lens produces significant amounts of higher­

order spherical aberration. 

In order to fabricate practical geodesic lenses using CNC 

lathes, the lens profile is approximated by a series of circular 

arcs [15]. The procedure is shown in Figure [4.12] • The arc­

fitting procedure fits a practical profile to the desired lens­

profile to within 0.1 pm over most of the profile, except at the 

boundaries between the edge-rounding region, the ambient 

waveguide and the inner portion of the lens. At these points the 

deviations from the desired profile can be up to 2. 5 ~m . Figure 

[4.13] shows the transverse spherical aberration arising from one 

such arc-fitting procedure, where 22 arcs are used. '!he optical 

path through the lens is clearly perturbed in a complicated but 

deterministic fashion. The transverse spherical aberration 

resul ting from the approximate profile is seen to be less than 

L4 pm CNer the aperture, am the geometrical blur-spot diameter 

is only 0. 4 pm . '!he arc-fitting procedure would therefore appear 

84 



. -
1·4 

12 

H:l 

E 
·8 

:::l. 

- ·6 
:z 
0 

t- ·4 « 
a:: 
a:: 
LLJ 
a:l ·2 « 

-1 
« 0 
LJ 

a:: 
LLJ 

~ --2 
V') 

~-4 
a:: 
LLJ 
> 
~-6 
« 
a:: 
~ 

- -·8 

-"0 

-1'2 

-1,4 

4 

~ 

C"""A~S 'lfnlSf(t " ,I, ((.,au 
.IU Altt COIfTIr,UClIJS WI',",' •• ( STt' 

1111 ,ltCS LDa' IltlD'" OV(I '"l 

~ 
A A 

- I 

FIGURE [4,12] METHOD OF FITTING 

CIRCULAR ARCS TO IDEAL LENS 

Fabricated lens ___ 

Ideal lens 
~ 

V 

V 

, . 
-4 -3 -2 -1 o 1 2 3 

RA Y EN"RY HE I GHT , mm 

FIGURE [4,13] CURVES OF TRANSVERSE SPHERI CAL ABERRATION 

-

4 



not to have greatly affected the lens properties. However, an 

inspection of the longitudinal spherical aberration reveals that 

the optical properties are adversely affected, as shown in Figure 

[4.14] • Again, complicated aberration behaviour is manifest, 

directly attributable to the perturbations of the ideal profile. 

The important point to note is that the rays intercept the 

optical axis within a band 25 pm to 55 pm short of the design 

focus, with the best image occuring at 34 pm from the design 

focus. Such a focal-shift could be unacceptable for high­

resolution requirements. In order to minimise the shift, an 

alternative series of 20 arcs was fitted to the desired profile. 

The resultant longitudinal spherical aberration is shown in 

Figure [4.15] . The focal shift is now reduced to 3.0 pm, at the 

expense of some large aberrations at the edge of the useful 

aperture. Since the lenses are only expected to utilise 

approximately 4.4 mm (or 60%) of the useful aperture, these large 

aberrations are unimportant. The geometrical blur-spot radii 

arising from the 20-arc approximate profile is compared with that 

of the ideal in Figure [ 4.16] • The prof ile is seen to be capable 

of yielding diffraction-limited performance over input-beamwidths 

as large as 6.0mm, corresponding to f/3.l operation. The 

performance is noticeably degraded for larger incident 

bearrwidths. 

Figure [4.17] shows a ray-trace through a geodesic lens with 

a spherical inner region am a toroidal edge-rouming region. '!be 

lens has a design focal length of 50.9 rom and an over all diameter 

of 10.462 mm. An input ray manifold of diameter 8.0 mm is shown 

incident on the lens, corresponding to an f-number of f/6.36 • 

The marginal rays clearly focus at points much further away from 

the lens than the paraxial focus. '!be image of least confusion is 

situated at 7L4 mm. '!be transverse spherical aberration at both 

the paraxial focal length and at the distance of least confusion 

is shown in Figure [4.18] • This graph shows how a shift in the 

point of observation of the light minimises the area under the 

transverse aberration curve, am the sharpest geometrical image 

thus obtained. In actual operation the input beamwidth would be 

only 3.0mm, corresponding to a speed of f/17. In this case the 
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focal shift required is much reduced, with the image of least 

confusion occurring at an axial distance of 52.2 rom, only L3 rom 

from ~ paraxial focus. '!he geometrical spot diameter is found 

to be just under 20 pm in such a case. 

4. 7 Conclusions 

Perfect geodesic and Luneburg overlay lenses have been 

compared with possible practical realisations. In the case of 

overlay lenses, the practical approximation to the desired 

profile diplays significantly degraded optical performance, 

including a negative focal shift of 20%, and a large geometrical 

spot-size of 24 pm. A first practical approximation to the 

perfect geodesic lens yielded a geometrical spot-size of only 0.4 

pm, but with a focal-shift of 34 pm. A second practical 

realisation reduced the focal-shift to 3 pm. A medium-performance 

long-focal-Iength spherical-depression lens with a toroidal 

rounded-edge displayed a large posi ti ve focal shift of 21.8mm at 

an effective f-number of f/6.36 but this was reduced to L3 mm at 

a reduced f-number of f/17, at which a geometrical blur-spot of 

diameter 20 pm is obtained. 
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CHAPTER FIVE 

THE BEAM PROPAGATION METHOD 



<lIAP.rER FIVE 00MPUrATIcmI, ANALYSIS: II 

(BPM) 

5.1 Introductioo 

A geometrical optics approach to the propagation of light in 

lenses, and in the homogeneous space surrounding the lenses, 

reveals much useful information about the lens properties, as was 

found in chapter two and chapter four. In particular, the a 

priori design of a lens can only be carried out using the 

pr inciples of geometr ical optics. However, in physical optics, 

phenomena associated with diffraction exist which are not 

adequately described by geometrical optics, and for which a 

second-order solution of wave propagation is ~equired. 

Diffraction calculations using classical methods are, generally, 

very complicated, even in homogeneous media. Diffraction effects 

associated with propagation in inhomogeneous media are rarely 

considered. 

A simple algorithm for calculating the propagation of wave­

fields in inhomogeneous media has been developed over recent 

years which relies upon numerical methods for solution. The 

algorithm is known as the Beam Propagation Method, or BPM. The 

BPM is based on solutions of the scalar wave-equation in the 

small-index-variation and paraxial approximations. It uses the 

elegant and extremely powerful techniques of Fourier optics 

extensively. An important feature of the method is that no 

special assumptions need be made about the form of the incident 

fields. Furthermore, large wave aberrations could be modelled, 

conceivably. 
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In this chapter, the FOurier optics representation of wave­

fields will be outlined, together with methods of implementing 

the Fourier representation on a computer. A well-known algorithm 

for the propagation of wave-fields in homogeneous media will then 

be given. Propagation in inhomogeneous space, such as is found in 

the lenses considered in this thesis, will then be considered and 

the BPM will be introduced. A single lens design will then be 

modelled using the BPM, under a variety of incident field 

conditions. Previous published work on the use of the BPM in 

relation to inhomogeneous lenses has not dealt with the detailed 

evolution of the field in the region of the focus. If the BPM is 

to be of use in the investigation of inhomogeneous lenses, it 

must adequately represent the focal field. Field patterns 

obtained using the present BPM model indicate that a negative 

focal shift is introduced which is compatible with recent results 
published by other workers. 

5.2 'Jhe angular spect.ron of plane waves 

The following discussion is similar to those found in the 

texts of Goodman [1] and Gaskell [2]. Consider a wave-field 

propagating in-a medium which extends over three-dimensional 

space. If the medium is homogeneous, so that its properties do 

not vary from point-to-point, and isotropic, so that its 

properties do not vary with direction, the propagation of the 

wave-field in the medium may be described very easily using 

Fourier transform techniques. 

The wave-field is assumed to be monochromatic and linearly­

polarized. The time variation of the field may be neglected due 

to its periodicity and the wave-field conveniently represented by 

its complex amplitude only. The complex amplitude describes the 

spatial variation of the magnitude and phase of the field and is 

given by the scalar function of position: 

u (x, y , z ) = a (x, y , z ) exp (j cI> (x, y , z) ) (5. 1) 
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As usual, the real part of equation (5.1) represents the real 
physical wave. 

A wave-field at a constant plane z=zi may be represented by 

a function ui (x,y). If the wave-field is physically realizable, 

it will possess a two-dimensional Fourier transform at this 
plane: 

(5.2) 

Consequently ui(x,y) may be expressed as the inverse Fourier 
transform of Ui(~'~): 

Now a plane wave propagating with direction cosines (a,/3,Y) may 
be represented by a function of the form: 

Plane wave = Aejk (ax + /3Y) 

(5.4) 

where A is a constant indicating the peak amplitude of the wave. 

If a = X. ~ and /3= x. ~ , the exponential term in equation (5.2) 

may be regarded as a unit-amplitude plane wave propagating with 

direction cosines (X.~,x.~ , "1 - x.2 (t2 + ~2) ). In accordance with 

the usual understanding of the Fourier transform, ui (x,y) may 

then be regarded as a linear superposition of plane wave 

components travelling in directions governed by the values of the 

direction cosines. The amplitude of each plane wave component is 

governed by the weighting function Ui(t,~). Thus Ui(~'~) is 

referred to as the angular spectrum of ui (x,y) and 
DO 

Ui a,~) = ff ui (x,y)e-j2rrax + ~y)dxdy 
_cO 

is given by: 

(5.5) 

Each plane wave component is infinite in extent and propagates 
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with a constant amplitude, but with varying phase. Since the 

direction of propagation for each plane wave component is 

different, each component undergoes a different phase change as 

the field propagates from one plane for which Z = constant to 

another. At some plane zl > zi' the phase will have increased by 
an amount: 

Since the amplitude remains unchanged, a transfer function can be 

easily defined which specifies the propagation of a wave-field 

from the plane z=Zi to the plane z=Zl: 

Uli~.L 7]1 = exp{ jk (zl-zi) [1 - ").2 (~2+7]2)]} (5. 7) 

Ui(~,7]) 

The benefits of representing an optical wave-field in terms 

of its angular spectrum are those classically accruing from the 

Fourier transform, ie the individual components are treated much 

more simply than the whole and the reconstruction of the field is 

simply carried out using the principle of superposition. 

5.3 Coopltational representation of a cooplex l-D wave-field in 

spatial and angular frequency domain 

In integrated optical lenses, the field variation in the 

dimension perpendicular to the plane of the wave-guide is usually 

considered unimportant, so that the propagation of a one­

dimensional wavefield u (x) as a function of a var iable Z may be 

considered. 

In order to perform computations on such wave-fields it is 

necessary to have a representation of the field consisting of 

discrete sampled values. The angular spectrum must also be 

sampled in this way. The continuous Fourier transform and its 

inverse may then be represented by the discrete Fourier transform 

(DPr) pair [3]. 

92 



The sampling interval required to avoid aliasing in both 

domains is given by the well-known Shannon criterion, which 

states that the interval must be less than or equal to half of 

the smallest period present in the signal, for the sampled signal 

to faithfully reproduce the original. 'Interval' and 'period' are 

used here instead of the more usual term 'frequency', to avoid 

possible ambiguities in the interpretation of sampling in both 

spatial and angular domains. 

Optical signals are usually of limited extent in the 

transverse direction in space due to the presence of a limiting 

aperture. If a signal is band-limited in one domain, it cannot be 

band limited in the other [3], so that a 'smallest period' cannot 

be defined. In practice, a period can be defined below which a 

negligible amount of signal energy is contained. '!he signal can 

then be sampled wi th arbi trar ily little distortion being 

introduced. 

Sampling of the truncated field introduces periodicity in 

the spectral domain, and vice versa. The wave field and its 

spectrum then have to be truncated numer ically so that only a 

finite number of samples N, extending over one period of the 

sampled signal is contended with. Sampling and truncation 

together introduce distortion in the signal. '!his is minimised by 

choosing the largest truncation interval and smallest sampling 

interval possible, commensurate with the speed and accuracy 

required of the calculations. 

'!he DFT pair is therefore an approximation to the continuous 

Fourier transform pair: 

00 

ui(x) = JCUi(~)ej2TI~Xd~ 
_00 

00 

Ui(~) = )(ui(X)e-j2n~XdX. 
-00 

(5.8) 

'nle angular spatial frequency, or wavenumber, kx is more commonly 

used than the spatial frequency variable ~ • The relationship 
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between them is: 

(5.9) 

The sampled field and spectrum both consist of N equidistant 

samples specified for computational purposes by: 

ui (m 6 x) = ! ~l uJ n )e j2nnrnf'N 

N n=O -\Ndx 

m = 0,1, •..• , N-l 

Ui (nf'Ndx) = N-l U· (mAx) e -j2rrnrnf'N L 1 
n=O 

n = 0,1, •.•• , N-l (5.10) 

The width of the field in the spatial domain is (N-l)6x, where ~x 

is the sampling interval in this domain. The corresponding width 

of the field in the spectral domain is (N-l)/(N~x). 

Inspection of (5 .lO] reveals that each of the N -samples in the 

transform require N multiplications and N additions, so that 2N 2 

arithmetic operations are required to calculate the complete 

spectrum. However, the Fast Fourier Transform algorithm developed 

by Cooley and Tukey [3], which was originated in work by Gauss 

[4], calculates the OFT with accuracy and greatly increased 

efficiency, since only NlogN operations are required owing to a 

clever matrix decomposition. The FFT allows numerical algorithms 

for modelling the propagation of optical wave-fields to be 

implemented with relative ease. 

5.4 An algorithm for co~ting the propagation of optical wave­

fields in homogeneous, isotrq»ic space 

The previous two sections, on the angular spectrum of plane 
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waves and on computational implementations of the Fourier 

transform may be taken together to model the propagation of 

arbitrary optical wave-fields in homogeneous, isotropic media. A 

simple algorithm might be: 

L Sample the optical wave-field at the input-plane of 

interest and obtain the angular spectrum using the 

FFI'. 

forward 

2. Propagate each plane-wave component separately to 

the next plane of interest, using the transfer function given in 

equation (5.7). The angular spectrum at the new plane is then 

obtained. 

3. Construct the optical wave-field at the new plane by 

taking the inverse FFI'. 

Such an algorithm has been found useful in the solution of 

many optical problems. In particular, it has proved competitive 

with evaluations of the Kirchhoff diffraction integral in near­

and far-field diffraction problems, as shown by Sziklas and 

Siegman [5]. 

5. 5 1.beory of the beam-proplgation method 

The algorithm given above for the propagation of waves in 

homogeneous, isotropic space cannot be used directly for the 

modelling of propagation in inhomogeneous space, since plane 

waves do not remain plane in such a case. It is desirable 

therefore to obtain a new algorithm for describing propagation in 

inhomogeneous space. The beam propagation method (BPM) is just 

such an algorithm. It is essentially a numerical method for 

solving the scalar wave equation in inhomogeneous media. 

For the purposes of the present work, the main interest in 

the use of the BPM lies in its ability to describe the 

development of the optical field in all its complexity within 
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inhomogeneous lenses without resorting to the methods of 

geometrical optics. Particularily, the effects of diffraction can 

be modelled very accurately without, importantly, making any 

assumptions about the field at the exit pupil of the lens. The 

usual methods for investigating diffraction effects generally 
display three important characteristics 

(i) the observation distances are large, and the angles 
with respect to the optical axis are small; 

(ii) the lens is considered to be thin, so that the 
amplitude distribution at the exit pupil can be assumed to be 

either constant or Gaussian, with the effects of beam-truncation 
also included; 

(iii) aberration effects are rarely modelled so that 

the phase-front leaving the lens is assumed to be perfectly 
spherical. 

'!be BFM displays, to some extent, the first characteristic 

but not the other two. '!be fact that the amplitude variation can 

be arbitrarily specified at the entrance pupil of a thick lens is 

important as it allows apodization effects to be modelled. 

'!be problem is to calculate the propagation of a wave-field 

u(x,z) through a medium with a refractive imex function n(x,z), 

given an initial wave-field ui(x,z). Van Roey et al [6] have 

derived a general theory of the BPM using a Green's function 

approach. '!be method is complicated, and a mathematical text such 

as that of Arfken [7] is indispensable as an aid to understanding 

it. A simpler derivation is possible however, and the published 

theories of Feit am Fleck [8,9] am Lagasse [10] are used in the 

following discussion. The theory given by Feit and Fleck is 

attractive in that the basic features of the technique are 

clearly laid out, for a 3-D medium with a refractive index 

variation in the directions transverse to propagation only. 

Lagasse extends the theory to media with a refractive index 

variation in the direction of propagation. '!be following theory 
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will be restricted to tWo-dimensional spaces. 

Three important assumptions are made: 

(i) the problem has to be descr ibed adequately by the 

scalar wave equation, thus restr icting the discussion to 

situations where separable (uncoupled) solutions can be derived 
for the 'IE and 'lM modes: 

(ii) the refractive index can be written as a sum of 
unperturbed and perturbed parts: 

n{x,z) = l1o{x) + ~n{x,z) (5.11 ) 

where ~n«no. A purely transverse index variation means that the 

perturbation is , further, a function of the variable x only. 

no (x) must be chosen such that the solutions of the scalar wave 
equation: 

(5.12) 

a~e known eigenfunctions, <Pn (x) e -jknz. If no (x) is chosen to be 

constant the eigenfunctions are given by the angular spectrum of 

plane waves. 

(iii) the variation of n(x,z) along z, if there is to 

be any, must not contain any sharp discontinuities or 

periodicities, both of which give rise to reflected waves which 

are not allowed with the BPM. 

Consider first a medium in which the index variation in the 

z-direction is constant. The scalar (Helmholtz) wave equation in 

such a rned iurn is: 

v2u + ko ~2 (x)u = 0 (5.13 ) 

where v 2 = "(/ + L I and ko is the free-space wave-number. 
dx2 dZ 2 
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The standard procedure for dealing with this equation is to 
assume: 

(5.14 ) 

with G(x,z} a slowly varying function. Substituting (5.14) into 

(5.l3) and neglecting second-order terms in z, one recovers a 

first-order differential equation in z which is variously known 

as the paraxial, parabolic or Fresnel form of the wave equation. 

This approach is used by Kogelnik and Li, for example, in the ir 

study of the propagation of Gaussian beams [11]. 

Instead of going for the Fresnel approximation directly, 

consider that the solution at z= 4Z may be written formally in 

terms of the field at z=O as: 

(5.15 ) 

~ation (5.15) may easily be shown to lead to the wave equation 

(5.13) if both sides of (5.15) are partially differentiated with 

respect to z). '!he square root in (5.15) can be rewritten: 

(5.16) 

If n in the first right-hand member of (5.16) is replaced by 

no' the unperturbed index, (5.16) becomes: 

('r.2+k
O 
~2) 1/2 ~ V"2 + k + k [(nino) -1] 

{V"1-H<2)1/2 + k (5.l7) 

where k = kono = no w Ie, with w beiJ'lC3 the aJ'lC3ular frequency am c 

being the velocity of light. 
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'!he approximation made in (5.17) is valid for sufficiently 
small perturbations in n (x,z). 

It is now convenient to express u (x,z) as the product of a 

complex field amplitude v(x,z) am a carrier wave moving in the 
positive z-direction: 

u{x,z) = v(x,z)e- jkz (5.l8) 

Substitution of (5.18) into (5.15) and taking the negative sign, 
indicating forward propagation, gives: 

where x(x) = k[(n{x)/no)-l] 

(5.19) can be rewritten in symmetrized split operator form, to 

secorrl order in A z, as: 

V(X,AZ) : expl-;6Z [(.J~)l/2J! exp(-jbz x ) 

x expf-;~L.J:~)l/2+kJ!V (x, 0) 

(5. 20) 

The splitting of the operators results in a separation of the 

propagation part of the calculation from another part which may 

be recognised as a correction factor to allow for the 

perturbation of the index. The operators inside the brackets of 

(5.19) do not commute, and so there is an error term since an 

approximation is invoked that holds only for limited propagation 

distances ~z. The operator splitting and its consequences are 

discussed in detail in reference [9]. 

The operation: 
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exP{-jAZ [~2 }V(XI 0) 
( 2-+k 2)1/2-+k 
~ ...... 

is equivalent to solving the Helmholtz wave equation for: 

(5.21 ) 

with u(x,O) as an initial condition, so that the operator defines 

the propagation in the unperturbed medium. If v} is neglected in 
. . th k 2 2· h . compar lson Wl 0 no ln t e denomlnator of (5.19) and (5.20), 

one recovers the paraxial, or Fresnel approximation: 

(5.22 ) 

The propagation in the unperturbed medium may be calculated 

exactly for the case of no = constant by finding the angular 

spectrum of plane waves and propagating the plane waves using the 

transfer function (5.7) • Advancing the solution for v(x,z) by 

repeated application of (5.21) is equivalent to propagating the 

beam through a periodic array of thin lenses, as shown in Figure 

[5.1] • The first lens is located at z =Az/2 and the remaining 

lenses are separated from one another by 6z. Each lens imposes a 

phase-front: 

¢(x) = AZ X (x) 

= b zk [ (nino) -1] 

(5.23 ) 

on the beam and the propagation between the lenses is given 

by (5.21). 
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It may be recalled that the above analysis was der ived for 

the case of a medium with a refractive index variation in the 

transverse direction only. '!he major advantage of studying this 

case is that the under lying reasons for treating an inhomogeneous 

medium with a small and slow variation in refractive index as a 

per iodic array of thin lenses are clearly illustrated. Lagasse 

[10] goes on to treat the case of propagation in a 2-D medium 

with a refractive index variation in both x and Z directions. Let 

it be assumed that the principle of propagation in the 

unperturbed medium followed by the application of a correction 

factor to allow for the index variation is still valid. 

The field U(X,AZ) is written, therefore, as the product of 

the field propagating in the unperturbed medium no and a phase­

updating correction factor e r : 

(5.24 ) 

where u' satisfies: 

(5.25) 

with: 

(5.26) 

and the solutions of (5.25) are the eigenfunctions: 

with: 

C() 

, _ L 0 -jkAz 
u (x,z) - n=l Bn ~n(x)e 

00 

Bno = !U(X,Zo) ~n*(x)dx 
-CX1 

(5.27) 

(5.28 ) 

In the case no = constant, equations (5.27) and (5.28) represent 

Fourier transforms. The scalar wave equation is: 

(5.29) 

Substituting (5.24) into (5.29), and taking (5.25) into 
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account, yields: 

Since A z can be chosen small, a series expansion for r is 

possible: 
DO 

r(x,z) = L 
n=l ~ (x) zn (5. 31) 

Substitution of (5.31) into (5.30) and equating the 

coefficients of zn to zero yields a set of equations for the An. 
The first equation, from the constant term zO, is: 

A 2 + 2 dU'A + ko
2 (n2-n_ 2) + 2A2 = 0 (5.32) I - _1 -'0 

u' dz 

The form of Al needs to be determined. For this some simplifying 

approximations are required. The presence of A2 complicates 

matters, and it would be beneficial if its effect could be 

ignored. Assume therefore that: 

A2 «ko2(n2-~2) 
2 

'Ibis condition can be justified by calculating A2 from the second 

equation resulting from the series expansion. (5.32) is then 

reduced to a quadratic equation for which the solution is: 

(5.3~) 

It is possible to calculate dU'/dz in the spectral domain, if 
necessary. However, if 

k 2 n2 (1 dU ,)-2 « 1 
o --

U'dZ 

is assLDned, then: 
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(5.34) 

Introducing paraxiality enables one to assume that u' consists of 

a wave travelling along the z-axis: 

Coefficient Al then becomes: 

Al = -jko (n2~2) 
2no 

= ~jko(n-~) (n+~) 
2no 

= -jkaAn, if (n+~) = 2no• (5.35) 

As in Feit and Fleck's theory the last approximation is valid for 

sufficiently small index perturbations. 

The correction factor r is finally given by: 

(5.36 ) 

which is of the same form as that given for media with only a 

tr ansverse var iation in refr acti ve index in equation (5.23) and 

is equivalent to the effect of a thin lens. 

The above developments are not unexpected, as the 

representation of an inhomogeneous medium as a periodic array of 

thin lenses within the approximations of paraxialty and small 

index var iation is well known (see, for example, reference [11]). 

Classical theories of diffraction have problems in dealing 

with three types of cooplication: 
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(i) complications in the field incident on the diffracting 

aperture. Gaussian, truncated-Gaussian and uniform amplitude 

distributions are generally the only cases considered; 

(ii) complications in the phase change introduced ~ the 

lens. Lenses almost always have to be thin. The thin lenses are 

generally assumed to give rise either to perfect phase changes or 

to small phase distortions described by simple analytic 

functions. Inhomogeneous lenses are thick, however, and can give 

rise to complicated phase distortions. For example, fabrication 

processes could perturb the refractive index functions in complex 

ways; 

(iii) complications in the amplitude transmission-function 

of the lens Lenses are generally not considered to introduce any 

amplitude distortion, or are assumed to introduce very simple 

one-dimensional variations of amplitude. 

'!he great advantage conferred by the B~ is that all of the 

above problems can be dealt with simply, in principle, so long as 

the conditions of validity are satisfied. 

5. 6 Conditions for the applicability of the B~ 

Van Roey [6] has listed several conditions for the 

applicability of the B~. '!he conditions are: 

(5.37) 

where ()~ax is the maximum perturbation in the refractive index 

over the propagation interval fl z, a is the maximum angle 

corresponding to a significant part of the angular spectrum of 

the forward-propagating beam and ). is the free-space wavelength; 

p» ). .y1 ' (5.38) 
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where p corresponds to the per iod of the highest spatial 

frequency component of the refractive index profile II n2(x), and 

no is the unperturbed reference refractive index over the 
propagation interval; 

p » ~ (2n A \Anlmax A z) 1/2 , 

no 

IT tan a l1z < < 1 , 
p 

G~tana 14nlmax y!2 Az « 1 

(5.39) 

(5.40) 

(5.41 ) 

These conditions amount to restrictions on the maximum index 

perturbation, arrl its gradient, am the maximum spatial frequency 

which the optical wave-field is allowed to take. The conditions 

can be used to calculate a propagation step-size suitable for 

propagating a wave-field through a particular structure, given 

the refractive index profile of the structure and the spatial 

frequency profile of the incident optical field. 

The examples of interest are inhomogeneous waveguide lenses 

which can have fairly large index perturbations (~n = O.lno) 

which vary slowly with wavelength, however. It turns out that the 

first condition, (5.37), is the most stringent in such a case. If 

the operating wavelength in vacuum is 633 nm, b n =0. 22 aoo the 

maximum angular aperture is 15 degrees, corresponding to the 

paraxiality limits, corrlition (5.37) gives: 

~z « 43 pm 

If ~ z=lO pm is taken as satisfying the coooition, a BPM model of 

an inhomogeneous lens of 10.0 mm diameter then requires 1000 

thin-lens elements and 1000 homogeneous spaces for accurate 

modelling. 
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5. 7 Dle saopliDJ interval 

The decomposition of the wave-field into the angular 

spectrum of plane waves is computed using the Discrete Fourier 

Transform (OFT). In the inhomogeneous region the OFT is 

implemented using the Fast Fourier Transform, for reasons of 

computational efficiency. Two constraints on the field sampling 
interval, f:Jx, exist: 

(i) the Sampling Theorem states that the spatial sampling 

rate must be greater than, or equal to, twice the highest spatial 

frequency present in the angular spectrum, for the sampled field 

to faithfully reproduce the properties of the original field. It 

can be shown that an optical system wi th focal length f, 

truncated by an aperture of radius, a, and operating at a free­

space wavelength A in a medium with refractive index n can only 

transmit spatial frequencies ~ such that: 

(5.42 ) 

[12] • Equation (5.42) sets a maximum value of spatial frequency 

for the optical field and, consequently, a maximum value for the 

sampling interval. In reality~ it is advisable to make the 

sampling interval smaller than the maximum value, so as to 

introduce a guard-band in the spectral domain which helps to 

prevent aliasing. 

(ii) the spatial sampling interval must not be so small, 

however, that the condition of paraxiality no longer holds. 

Paraxiality, rather conservatively perhaps, may be assumed to 

hold for plane-wave components of the spectrum that do not 

deviate by more than 10 degrees from the optical axis. This sets 

a minimum limit of approximately f/~85 on the f-number that can 

be modelled using the BFM. In terms of the corresponding maximum 

spatial frequency: 

~max = _1_ 

2 6Xmin 

= n tan 100 

ft (1 + tan2l00 )1/2 

(5.43 ) 
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Corrlitions (i) am (ii) may be taken together as follows: 

(5.44 ) 
2n tan 100 2na 

As an example, consider n = 2.206, ). = 0.633 pm, f = 18.5 mm and 

a = 1. 5 mn. ']ben: 

0.83 pm < AX < 1. 77 }JIt\ 

These limiting corrlitions on the sampling interval are shown in 

schematic form in Figure [5.2]. 

5. 8lDplementation of the Bat for inhooDgeneous lens structures 

'!be BPM is implemented in inhomogeneous lens structures in 

four stages. 

1. An incident field is created, in complex amplitude form. 

The field can be adjusted to any required incident angle or 

offset distance from the axis. The most commonly used field is of 

Gaussian shape, although other field shapes can be used. The 

Gaussian, having a beam diameter 2w, is truncated by a "hard­

aperture" of diameter 2a with transmission properties 

t = 1, Ix\~ a 
t = 0, Ixl> a 

The consequences of using such an aperture in conjunction wi th 

the DFT have been discussed in reference [9]. Generally, the 

dimensions of the aperture are chosen so that a large guard-band 

with zero-field exists in the vicinity of the boumaries of the 

computational grid. For example, a 4096 x 1.5 urn grid is used to 

initiate propagation through a lens of a plane wave-field 

truncated by an aperture of width 3.0mm. Thus only 2000 grid 

points are contained within the aperture, with the remaining 2096 

serving as a guard-band. A similar guard-band is present in the 
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anJular spectrum. Such guard-bams help to ensure accuracy with 
the DFT. 

2. The chosen lens-structure, whether it be of the over lay 

type or the geodesic type, is transformed into an equivalent 

variable refractive index lens. The profile is specified at a 

large number of points, with linear interpolation being used to 

calculate the refractive index between these points. 

3. The field is propagated through the lens, using the 

alternating propagation/phase-update components of the BPM 

algorithm. The field is monitored in both configurational and 

spectral spaces to ensure that significant amounts of energy 

within the band-limited waveforms do not approach the grid­

boundaries, a condition which effectively results in an aborted 

solution [9]. A truncated plane wave-field propagating through a 

geodesic lens, computed using the BPM, and showing the extent of 

the guard-bands is given in Figure [5.3]. Because of the guard­

bands, neither the field nor the spectrum approach the 

computational grid-boumaries. 

4. Prop:igation in the homogeneous region beyond the lens is 

carried out using the algorithm given in section (5.4). The DFT 

is used directly in this part of the calculation. A great deal of 

unnecessary information about transverse points well away from 

the focus would be calculated if the FFT were used, since the FFT 

requires that the computational grid be of fixed width throughout 

the calculation. No such requirement exists with the direct use 

of the OFT. Furthermore, the spacing between the gr id-points must 

remain fixed at the spacing set at the lens input wi th the FFT. 

Again, no such requirement exists with the OFT, so that a great 

deal of detailed information about the field in the focal region 

can be obtained. 

Van der Donk et al [13,14] have previously used the BPM to 
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model the propagation of wave-fields through geodesic lenses. 

They did not report, however, on the detailed structure of the 

field in the image space, particularly in the focal region. The 

correct prediction of the focal field, particularly in the 

diffraction-limited case, is an absolute necessity if the BPM is 

to be of real value in the analysis of inhomogeneous lenses. 

The aspheric geodesic lens specified in chapter two, having 

theoretically perfect focusing properties, was chosen as a 

demanding test for the BPM. The lens had an overall diameter of 

10.0 mm, an inner region of ~4 mm diameter which constituted the 

useful part of the lens, and a focal length of 18.5 mm. The lens 

had a relatively small effective f-number , therefore, of f/3. 

Since geodesic lenses are free of chromatic aberration, the 

choice of operating wavelength is arbitrary. A wavelength of 

0. 633 pm was chosen for the BPM tests since optical exper iments 

would be carried out at this wavelength. The refractive index of 

the homogeneous medium outside the lens was chosen to be 2.2065, 

a value comparable with the effective refractive index of single­

mode ti tanium-diffused guides in LiNb03. The lens and the 

surrounding region are further assumed to be isotropic; LiNb03 is 

anisotropic, but the inclusion of such a feature would have 

complicated the investigation unnecessarily, since it was the BPM 

itself that was under test rather than a given lens. Van der Donk 

has extended the BIM to include anisotropy [14]. 

Two types of incident field illumination were considered: 

(i) uniform illumination over the dimensions of the "hard 

aperture"; 

and (ii) Gaussian amplitude variation over the aperture, such 

that the aperture truncated the incident field at the lie 

amplitude points, corresponding to the 1/e2 irradiance points, 
-

where the irradiance ( sometimes called intensity) is given by 

the square of the modulus of the field amplitude. 

The field in the location of the focus was the quantity of 
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interest. The field was calculated in its complex form, so that 

the amplitude and the phase of the field could be studied, 

neglecting the harmonic time-var iation. Attention is confined 

here to the amplitude var iation. The field amplitude was 

calculated ooer a rectangular grid of 50 axial x 101 transverse 

points in the vicinity of the focus. An odd number of transverse 

points were calculated in order to obtain a field symmetric 

on both sides of the axis. The grid-spacing in the axial 

direction was either 20 pm or 40 pm, depending on the depth of 

field. The transverse grid-spacing was 0.6}lm . The area of the 

focal region calculated, therefore, was LO mm x 60 }llTI or 2.0 mm 

x 60 pm. 

Representative plots of the field propagating through the 

focus for both incident conditions (i) and (ii) will now be 

given. Two aperture widths, 0.6 mm and 3.0 mm will be considered, 

corresponding to effective f-numbers of f/30.83 and f/6.17 

respectively. A great deal of information is available from the 

computations and the plots are organized as follows: 

(a) isometric plots of field amplitude 

Figure no. 

Figure [5.4] 

" [5.5] 

" 
n 

[5.6] 

[5.7] 

Incidence conditions 

uniform illumination, 2a = 0.6 rnn 

Gaussian illumination, 2a = 0.6 rom 

uniform illumination, 2a = 3.0 rnn 

Gaussian illumination, 2a = 3.Omm 

(b) contour ~ of amplitude and encircled energy 

Figure no. 

Figure [5.8] 

n [5.9] 

" 
n 

[5.10] 

[5.11] 

Incidence conditions 

uniform illumination, 2a = o. 6 rnn 

Gaussian illumination, 2a = 0.6 rom 

uniform illumination, 2a = 3.0 rnn 

Gaussian illumination, 2a = 3.Omm 

'll1e term "encircled energy" is borrowed from bulk optics and 

denotes the amount of field energy enclosed by circles of 
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increasing radius from the optical axis. There are no such 

circles in planar optics, only increasing distances from the 

axis. The term is a common one, however, and is used here for 

that reason. The curves shown are normalised to the energy 

enclosed within a transverse distance of 30 um from the axis at 

the position where the field is a maximum. 

(c) plots of field amplitude along -the optical axis of 

propagation and of the oiameter of the central spot, measured 

along the same axis 

Figure ~ 

Figure [5.12] 
II 

II 

II 

[5.13] 

[5.14] 

[5.15 ] 

Incidence conditions 

uniform illumination, 2a = 0.6 mm 

Gaussian illumination, 2a = 0.6 mn 

uniform illumination, 2a = 3.0 mm 

Gaussian illumination, 2a = 3. Onm 

The minimum diameter of the central spot along the axis is the 

waist of the propagating field, and may be considered to locate 

the focus. Alternatively, the point of maximum field amplitude on 

the axis may be considered to locate the focus. '!he two locations 

need not necessarily coincide, though they do, in general. 

(d) plots of transverse enclosed energy at the locations of 

the axial field amplitude maxima 

Figure no. 

Figure [5.16] 
n 

n 

n 

[5.17] 

[5.18] 

[5.19] 

Incidence conditions 

uniform illumination, 2a = 0.6 mm 

Gaussian illumination, 2a = 0.6 mn 

uniform illumination, 2a = 3.0 rrm 

Gaussian illumination, 2a = 3. Onm 

(e) plots of transverse field aroplitude, on linear and 

logarithmic scales, at locations of axial field amplitUde maxima 

Figure no. 

Figure [5.20] 
n [5.21 ] 

Incidence conditions 

uniform illumination, 2a = 0.6 mn 

Gaussian illumination, 2a = 0.6 rnn 

III 



" 
n 

[5.22] 

[5.23] 

uniform illumination, 2a = 3.0 nun 

Gaussian illumination, 2a = 3. Ornn 

The following discussion will treat the five groups of plots 
(a) to (e) successively. 

The isometr ic plots of the fields propagating through the 

focus reveal some general characteristics immediately. Detailed 

numerical information will be given in later plots. The isometric 

plots reveal the considerably greater 'smoothness' of the focal 

field under conditions of truncated-Gaussian incident 

illumination than under uniform illumination. The peaks and 

valleys of the uniformly illuminated cases are much more 

pronounced than those resulting from truncated Gaussian 

illumination. The truncated-{;aussian incident fields do produce 

some structure in the focal region, however, as would be 

expected. 

Such behaviour, obtained using the BPM, is consistent with 

traditional diffraction analyses. The larger field amplitudes of 

the field outside the-central spot for the cases of uniform 

illumination occur as a result of the Fourier transforming 

properties of the lens, and indicate the presence of large­

amplitude, large-angle spectral components in the input field. 

Gaussian fields dampen the amplitude of these spectral 

components, am thereby reduce the height of the sidelobes in the 

focal region. The damping process can be equivalently obtained by 

modifying the transmission function of the lens, in which case it 

is known as 'apodization'. 

The different depths -of field obtained for different 

aperture widths are also illustrated in the isometric plots. The 

narrower apertures give rise to image field amplitudes and beam­

diameters that change very slowly with increasing axial distance, 

whereas the image fields under conditions of larger aperture 

change rapidly, giving rise to an abrupt focal spot, as is 
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particularly evident in the case of uniform illumination. A large 

depth of field is obtained, therefore, for narrow apertures 

whereas a small depth of field is obtained for large apertures, 
in keeping with the usual cases. 

A disconcerting feature of the isometric plots, and, 

consequently, the plots yet to be discussed, is that the foci do 

not occur at the distance predicted by geometr ical optics (the 

axial distances shown in the Figures are measured from the exi t 

edge of the lens, and should therefore have 5.0 mm added in order 

to measure from the centre of the lens). The focal shifts, which 

are all negative, will be discussed in more detail later. 

5. q. 2 Group (b) 

The contour maps are more informative than the isometric 

plots. Maps of both equi-amplitude contours and equi-energy 

contours are given for each case of incident illumination. The 

maps are similar to those presented by Born and Wolf [12]. As 

pointed out by them, the equi-energy contours may be considered 

analogous to the rays of geometr ical optics. 

For the case of narrow, uniform illumination, a distinct 

central field-amplitude structure is observed at the focus, 

surrounded by sidelobes. For the circularly symmetric bulk 

optical case, Born am Wolf described the central structure of 

the focal field, under conditions of uniform illumination, as 

1 tubular I, since a tube of light occurs which is circumscribed in 

all directions by the first minimum in the diffraction pattern. 

The amplitude pattern is symmetrical aOOut the optical axis, and 

looks symmetr ical about the transverse line through the focus. 

The encircled energy contours are not symmetrical about this 

transverse line, however, especially the contours furthest from 

the axis. Such asymmetry is not predicted by classical 

diffraction analyses [12], although recent work has indicated 

that asymmetries may indeed arise. The encircled energy contours 

do indeed have the appearance of geometrical rays, except for the 

highest-energy contours furthest from the axis. 
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As expected, the case of narrow, truncated-Gaussian 

illumination is somewhat similar to the case of narrow, uniform 

illumination. However, the tubular structure centred on the focus 

is not so distinctive indicating that the sidelobes are 

suppressed. The focal field does not rise as sharply as in the 

uniformly-illuminated case, as indicated by the density of 

contour lines. 

The contours enclosing the regions of lowest amplitude have 

been shaded for both cases of narrow incident fields, which helps 

to illustrate the wider extension of the focal field for the case 

of uniform illumination. 

The case of broad, uniform illumination gives rise to a very 

intense focal spot, again having a tubular structure in the close 

vicinity of the focus. Far from the focus, the amplitude contours 

display a four-pointed star shape. Such structure iooicates the 

considerable contribution made to the diffraction pattern by the 

field at the boundaries of the diffracting aperture. The boundary 

of the geometrical shadow is shown, and it is again apparent that 

the focal distance calculated using the BPM is not the one 

predicted by geometrical optics. '!he eqLli-energy contours display 

considerable distortion near the focus. 

In contrast, the case of broad, truncated-Gaussian 

illumination gives rise to equi-amplitude contours that are 

tubular near the focus and figure-of-eight shaped far from the 

focus. '!he star-structure is absent. '!he equi -energy contours are 

also much smoother. Chce more, the focus calculated by the BFM is 

not the one predicted by geometrical optics. 

S.q.3 Group (c) 

The axial amplitude and lie-diameter plots yield the actual 

values calculated for the foci for different illumination 
conditions. 
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For narrow, uniform illumination the axial amplitude maximum 

occurs at 10. 72 mm from the exit edge of the lens, ie 15. 72 mm 

from the centre of the lens. The beam-diameter at this point is 

15.20 pm. 'nle waist of the beam does not coincide with the axial 

amplitude peak and occurs at 15.8 mm from the lens centre. 

However, the waist diameter is 15.20 pm, as for the peak 

amplitude case, showing that the non-coincidence of amplitude 

maximum and waist is due to the large depth of field. The 

variation of the focal field width will be considered in detail 

later. 

The lie-diameter curve displays two step-like changes. The 

steps irrlicate that the central lobe has decreased in amplitude 

whilst the sidelobes have increased. Essentially, the propagating 

field is losing the one-dimensional Airy function shape [12] and 

re-acquir ing a flat-to:wed shape. 

The behaviour of the axial amplitude curve in the case of 

narrow, truncated-Gaussian illumination is similar to that for 

uniform illumination. The maximum values occur at the same 

distance, 15. 72 mm. The absolute maximum value of the amplitude, 

600 arbitrary units, is less than that of the uniformly 

illuminated case, 803 arbitrary units, as expected, since a 

uniform field carries more energy than does a truncated Gaussian 

of the same width and peak amplitude. The beam waist coincides 

with the maximum of the field and is 15.20 }lm. The beam diameter 

curve does not, however, display step-like changes, indicating 

smooth propagation. 

Broad, uniform illumination gives rise to an axial 

diffraction pattern similar to the transverse patterns. A number 

of local max ima and minima occur, together with the focal peak 

which is the absolute maximum am which occurs at a distance of 

18.34 mm from the centre of the lens. The focal peak is quite 

narrow in the axial direction, having a half-power width of just 

over 100 pm. The beam-diameter curve fluctuates until it 

approaches the focal region where a clearly-defined central lobe 

is present. '!he curve then decreases to a clearly defined minimum 
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at 18.34 mm from the centre of the lens. The waist is 2.55 p.m 

wide. At the design focal-length of 18.5 mm, the beam width is 

awroximately 30 pm am the amplitude is down to only 22% of the 

peak value. 

Broad, truncated-Gaussian illumination also gives rise to a 

sharp focal peak. However, other local minima and maxima are not 

so much in evidence. The beam-diameter curve is smooth through 

most of its length. The focal length is once more 18.34 mm from 

the centre of the lens, though the waist diameter at 2.98 pm is 

slightly larger than that for the uniformly-illuminated case. 

The encircled energy curves provide for further useful 

quantitative comparisons between the cases of truncated-Gaussian 

and uniform illumination. 

At the narrow aperture, the uniformly illuminated case and 

the truncated-Gaussian case lx>th give rise to similar encircled 

energy curves over the first 90% or so of energy, indicating the 

similarity between the central lobe of a sinc curve and a 

Gaussian of approximately the same width. Both curves show that 

nearly 90% of the energy in the focal field is contained wi thin 6 

}lm either side of the axis. However, the truncated-Gaussian case 

shows more favourable behavior in concentrating the remainder of 

the energy,with 98% of the energy concentrated within 12 pm of 

the axis, in comparison with the figure of 21 urn for the 

uniformly illuminated case. 

At broad apertures, truncated-Gaussian illumination is even 

more favourable, with 98% of the energy concentrated within 3 pm 
of the optical axis in comparison with 12 pm for the uniformly 

illumina ted case. 

5.q~ Group (e) 

Finally, the transverse amplitude profiles are shown for 
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each case of illumination. Well-defined sine functions are 

obtained for the case of uniform incident illumination. Similar 

functions are obtained for the case of truneated-Gaussian 

illumination, but with the sidelobes significantly reduced, the 

first sidelobe being more than 20 dB below the maximum value for 

both narrow and broad illumination. 

5.10 Discussion 

The focal-shift observed in the above Figures requires some 

explanation. Figure [5.24] shows the normalised focal-shift 

observed as a function of the width of the truncating aperture, 

for both uniform illumination of the aperture and Gaussian 

illumination. The curves are exactly the same for both types of 

illumination, irrlicating that the shift deperrls on the aperture 

width only, and not on the amplitude-profile of the beam 

illuminating the aperture. However, it might be expected that 

Gaussian beams with very weak truncation would display different 

characteristics. Such conditions were not investigated. The 

results were found to be stable to variations in the sampling 

interval within the allowed barrl of Figure [&2], to variations 

in the number of discrete points at -which the lens profile was 

specified, to variations in the propagation step and to 

var iations in the number of samples in the guard-bands. These 

checks helped to establish that the results were not artefacts of 

the BR-i itself. 

Focal-shifts have been widely reported in the literature 

[15-19]. The key features of the shift are: 

(i) that a focal-shift always results in the true focus 

being located closer to the lens than the geometrical focus; 

(ii) that the shift is largest for small angular apertures, 

ie for large effective f-numbers. 

Both of these characteristics were present in the results 
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computed above. The theoretical calculations presented in 

references [15-19] were carried out for thin-lenses having 

circular symmetry, immersed in air. It might be expected that the 

results would be different for thick planar lenses situated on a 

high-index substrate, such as the one investigated in the present 

chapter. The presence of the edge-rounding region in the geodesic 

lens could also influence the focal-field patterns, as has been 

observed by van der Donk [14]. However, it is worthwhile to 

compare quantitative results with those reported in the 

literature. An important number is the so-called Fresnel number 

of the aperture, given ~: 

Na = a~ (5.45) 

Af 

when viewed from the geometr ical focus. The quanti ties on the 

right-hand side have already been defined in this chapter. The 

focal-shift obtained for an aperture 2a of 0.3 mm may be 

investigated. The lens is then operating at the fairly large f­

number of f/61.7 • Using f = 18.5 mm, ) = 0.633 pm and n = 

2.2065, the Fresnel number of the aperture is then 4.24 . If the 

truncated Gaussian case is considered, a Fresnel number Nw may 

also be definea for which a in equation (5.45) is replaced by w, 

the Gaussian waist radius. Since w = a in the case considered, ~ 

= Na = 4.24. Li and Wolf [15] have published universal curves 

from which the focal-shift may be estimated from a knowledge of 

Nand N • For Nw = 4.24, the focal-shift should be between 6% w a 
and 8%. The value obtained in the present case was 20%. If it is 

allowed that the Fresnel number of the aperture takes into 

account the further 5.0 mm that the wave-field would have to 

travel from the aperture to the centre of the thick geodesic 

lens, ie if f = 23.5 mm is allowed, then the Fresnel number 

becomes 3.34. In such a case, the focal-shift pr~di cted by Li 

and Wolf would be greater than 10% • Furthermore, the percentage 

focal-shift obtained using the BPM would then be recalculated, 

using f = 23.5 mm, as 15.7%. Saga et al [17] have also published 

curves of focal-shift as a function of the truncation ratio a/w 

and a parameter P defined ~: 
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P = kw2 

f 

(5.46) 

where k is the wave-number in the material. If f = 23.5 mm is 

used in this case, then P = 20.99 • The focal-shift estimated 

from the curves of Saga et al would then be approximately 15% • 

The results presented for narrower apertures in Figure [5.24] 

are, therefore, plausible. At wider apertures the focal-shift is 

surprisingly large, being 160 pm for an input beam-width of 

~Omm. If such a shift indeed exists, the implications for lens­

design are quite otNiously disturbing. More work is required to 

determine the accuracy of these results. 

Parker-Givens [18] has given a physical interpretation of 

the reasons for the presence of a focal-shift in the diffracted 

field. The distance s from the point of observation on the axis 

to different points on the aperture is usually treated as a 

constant value, namely the geometrical focus f , in conventional 

theories of diffraction. If the distance s is treated as a 
~ 

variable, however, the results of the diffraction calculation are 

considerably altered, especially at small angular apertures. In 

bulk optics, with spherical lenses, the result is that an inverse 

square law acts in competition with the constructive interference 

caused by the progression of the wavefront to the geometrical 

focus, generating a focal-shift. 

'!be BEMgenerates near-diffraction limited field profiles, 

as shown in Figure [5.25]. 'nle theoretical lie beam-diameters as 

a function of beam-width for both Gaussian and uniform 

illumination are plotted, together with the results obtained 

using the BPM. An untruncated Gaussian beam having a l/e-beam­

diameter equal to a uniformly illuminated aperture will generate 

a smaller lie diffraction spot than the uniformly illuminated 

aperture, since the full aperture of the untruncated beam exterrls 

to infinity, theoretically. However, a Gaussian beam truncated at 

lie points equal to the width of a uniformly illuminated aperture 
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will generate a wider spot, since the uniformly illuminated 

aperture then carries more field energy at the edges of the 

aperture. Such behaviour is observed in Figure [5.25]. 

The final result of this chapter is given in Figure [5.26] 

where the evolution of an optical wave-field through the focus of 

the spherical geodesic lens with a rounded-edge specified in 

chapter two is shown. The incident field was a weakly truncated 

Gaussian, 1.0 mm in diameter and the field is focused at a 

distance of 50.23 mm from the centre of the lens, in comparison 

with the paraxial focus of 50.9 mm calculated in chapter four, a 

negative focal-shift thus also being exhibited in this case. The 

shift may be beneficial, as the lens suffers from geometrical 

aberrations which would terrl to move the best focus well beyorrl 

the paraxial value (away from the lens). 

5.11 Conclusions 

On the evidence of focal fields obtained using the BPM under 

a variety of incident conditions, the BPM has been confirmed as a 

useful tool in the analysis of inhomogeneous lenses. Negative 

focal shifts have been calculated, using the BPM, which are in 

moderate agreement with published results. The shifts may be 

beneficial in lenses which suffer from positive aberrations, but 

would be unattractive for nominally diffraction-limited lenses, 

for, although diffraction-limited performance is very nearly 

attained in terms of focal spot-sizes and sidelobe levels, the a 

priori specification of the focal-length of a lens would be 

exceedingly difficult. 
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CHAPTER SIX 

FABRICATION 



ClIAPl'ER SIX 

6.1 Introduction 

Experimental techniques used for fabricating waveguides and 

overlay lenses will be reported in this chapter. The substrate 

material used was lithium niobate, and ambient waveguides were 

formed usiRJ the technique of titanium in-diffusion. '!be mater ia1 

used for forming the lens was arsenic trisu1phide, a high­

refractive-index chalcogenide glass. The important properties of 

the substrate, the ambient waveguide and the overlay material 

will first be reviewed. '!be fabrication of planar waveguides and 

their observed optical properties will be discussed. Subsequent 

modifications of the fabr ication environment to allow the 

formation of overlay lenses will then be discussed, and measured 

lens-profiles will be presented. Finally, an alternative method 

of producing overlay lenses will be suggested. 

6. 2 Materials 

6.2.1 The substrate material 

Li thium niobate, LiNb03, is a uniaxial ferroe1ectr ic 

crystalline insulator at room temperature with a number of 

interesting properties; in combination, these make it perhaps the 

most commonly used substrate material in integrated optics. It 

has also found widespread use in other fields, for similar 

reasons. The ferroelectric property means that the crystal 

possesses a net e1ectr ic dipole moment which is reversible under 

an applied electr ic field. The ferroelectric characteristic is 

retained up to a very high temperature, t 14 OOe (Tc' the Cur ie 

temperature), which is only I lS °e below the melting point of the 

crystai~7kove Tc ' the crystal becomes parae1ectric, ie no net 

charge then exists in the medium. [1] 
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Two grades of crystal are commonly available: 

(a) electro-optic, or optical, high-pur ity 

gr ade which is nearly single domain am is optically 

highly homogeneous. This is the most difficult and 

therefore most expensive type to manufacture. 

(b) acoustic, or transducer grade which is 

of lower purity and can have micro-domains at the 

surface but which is required to be of good quality in 

other respects. 

The properties and characteristics of lithium niobate which 

make it of ~rtance in modern optics are: 

(a) a large negative birefringence at 

visible to infra-red wavelengths from 0.4-5.0 urn [2]; 

(b) fairly large absolute values of 

refractive index [2]; 

(c) good transmission properties in the 

visible and infra-red regions of the spectrum [2]; 

(d) a large non-linear optical coefficient, 

making the material an excellent one for non-linear 

optical investigations such as phase-matched second­

harmonic generation (SHG), sum- and difference­

frequency generation and parametric effects [2,3]. The 

phenomenon of optical damage in the material (see 

below) is a drawback, however,since optical power 

levels must be restricted; 

(e) strong piezoelectric surface-wave 

properties [4] which renders the material a crucial 

choice in many surface acoustic wave (SAW) 

applications; 
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(f) excellent acoustic properties, 

particularly with regard to propagation loss, at 

frequencies up to and beyooo lQiz [5,6h 

(g) good aoousto-<>ptic properties. White et 

al [7] have shown that this is largely due to an 

indirect effect in which an applied acoustic stress in 

the piezoelectric crystal generates an electric field 

that in turn causes a change in refractive index 

through the electro-optic effect. The direct 

photoelastic contribution is relatively small; 

(g) high electro-optic coefficients together 

with high electrical resistivity which allow for easy 

application of and good interaction wi th modulating 

fields, making the crystal excellent for electro-optic 

devices [8]. 

For these reasons, lithium niobate was the substrate 

material chosen for most of the investigations reported herein. 

A note of caution should be sounded in order to redress what 

otherwise seems to be a most favourable balance, for the material 

has some deficiencies. The crystal has been observed to suffer 

index inhomogeneities (optical damage) at fairly low values of 

optical power [9] • This effect is due to the photo-excitation of 

electrons in the material which then drift under the influence of 

fields internal to the crystal. The dr ifting causes local index 

inhomogeneities through the electro-optic effect. The extra­

ordinary index ne is most stongly affected with a decrease, 

albeit reversible, occurring. The effect of optical damage can be 

minimised by operating at longer wavelengths. A further problem 

is the crystal anisotropy. In some cases, eg mode conversion 

experiments in acousto-optics [10], anisotropy presents a 

distinctly favourable aspect. However for low f-number lens 

applications anisotropy introduces polarization effects that can 

require for example that vector field theor ies be used in 
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analysis [11]. Van der Donk [12] found that crystal anisotropy 

was not likely to cause significant effects in lenses of moderate 

f-number fabr icated on LiNb03' and as such anisotropic effects 

were not a major cause of concern in the present study. Vahey et 

al have indicated that anisotropic effects could be important 

[13] in geodesic lenses with very low f-numbers, especially for 

waveguide modes that are well-confined, ie far from cut-off. 

6.2.2 The ambient waveguide 

The technique of establishing a high-index waveguiding 

region on the surface of a lithium niobate substrate by means of 

titanium metal indiffusion has been known for over a decade 

[14,15]. Other metals such as nickel, vanadium [14], manganese, 

zinc, copper, cobalt, and chromium [16] have been tried but 

titanium has generally produced the best results. A thin (200-

1000A) film of titanium is evaporated onto the crystal surface 

under vacuum conditions and is then diffused into the crystal by 

heating in a high temperature furnace. Conditions of fabrication 

can vary quite considerably [15], but to a first approximation 

the maximum achievable index change depends only on d, the 

evaporated film thickness, whilst the effective guide depth is 

controlled by the diffusion time t and the diffusion temperature -

T (which is almost invar iably less than the Cur ie temperature) 

[14]. In consequence the most important parameters of the 

waveguide are controlled independently, in contrast to the 

situation that exists for another well known technique of 

fabricating a waveguide on lithium niobate, that of out""iiiffusing 

lithium ions by heating the virgin crystal at elevated 

temperatures [17]. 

The ti tanium concentration profiles, which determine the 

refractive index profiles, resemble complementary-error functions 

for short diffusion times and Gaussian functions [18,16] for 

longer diffusion times. Commonly used diffusion times are those 

for which the metal is just completely in-diffused, or slightly 

longer. Much research is still goiDJ on into the exact processes 

involved in waveguide formation. Other fabrication conditions 
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which have been found to bear upon the properties of the 

waveguide are: 

(a) the ambient gas (es) present dur ing the diffusion 

cycle, 

(b) the presence or absence of lithium niobate powder 

in the diffusion chamber. The powder is thought to 

suppress unwanted out-diffusion [19], 

and (c) the re-oxidation conditions. 

The precise conditions used in the present study will be 

reported in a later section. The method produced good planar 

guides possessed of low loss and in- and out-of-plane scatter. 

The question of obtaining waveguide uniformity will be 

discussed later in this chapter, and in chapter eight. It is 

extremely difficult to fabricate a uniform waveguide on geodesic 

lenses using vacuum deposition. Alternative techniques will be 

pointed out which may well obtain greater uniformity though at 

the expense of poorer waveguiding; a trade-off has then to-be 

established. 

Ti:LiNb03 has been used extensively in integrated optics for 

the formation of devices such as directional couplers [20], 

switches [21], high bandwidth amplitude and phase modulators of 

both the lumped element [22] and travelling-wave [23] types, 

gratings [24], fibre- to integrated-optic couplers [25], geodesic 

lenses [26,27], acousto-optic modulators and deflectors [10], 

integrated optical spectrum analyzers [28,29] and many others. 

6.2..3 Material used for the inhomogeneous overlay lens 

Amorphous arsenic tr isulphide (As~3) is a non-oxide 

chalcCX3enide which forms one of the most stable of the sulphide 

glasses [30]. It is thought to consist of a two-dimensional 

network structure with some short-range ordering [31] in the bulk 
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state. The short-range ordering is essentially the same as in 

crystalline Asi33. 

Films of arsenic trisulphide can be produced by rf 

sputtering [32] or by thermal evaporation from a resistance­

heated boat [33]. The properties of sputtered films conform 

closely to the bulk structure, but the as-evaporated films do not 

[34]; for example, the density, characteristic acoustic impedance 

and the refractive index are 6-13% lower than the bulk values 

[35]. If the films are subsequently annealed, however, the 

properties once more approach the bulk vitreous state. 

Bulk samples are reddish-brown in colour, whereas evaporated 

films fall somewhere between pale yellow am orange, depeooing on 

the film thickness. Ar senic tr isulphide is almost insoluble in 

water and exhibits a very low hygroscopicity (water absorption) 

[30], clearly a very desirable characteristic in a thin film 

optical material [36]. The material is soluble however in even 

mild alkaline solution and this can be used to fabricate 

patterns. Small amounts of hydrogen sulphide are given off in 

reaction with alkali. Because of the low solubility in water 

arsenic trisulphide is not thought to be acutely poisonous. 

However, like other arsenious compounds, it is easily absorbed 

through the skin and mucous membranes. Furthermore, under 

conditions of elevated temperatures such as can occur in thermal 

evaporation chambers, noxious compounds can form and in 

consequence reasonable caution has to be exercised when dealing 

with the material. 

The glass transition temperature, Tg is 4700 K [37]. The 

melting point of the glass is 4830 K [34]. Unannealed films are 

easily scratched and can be wiped off the underlying substrate by 

rubbing; annealed films are more resilient but must still be 

treated with care. 

One of the most interesting properties of arsenic 

trisulphide (a property shared with some other chalcogenides) 

will now be dealt with. The study by De Neufville, Moss and 
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Ovshinsky on photo-structural transformations in amorphous 

cha1cogenide films [34] was extremely important. Each of the main 

conclusions of the study triggered off new am useful -discoveries 

in optical engineering processing and components. '!he important 

optical characteristics of evaporated AszS3 films listed by de 

Neufvi11e et a1 were to have significant consequences for the 

present study. 

1) Slowly evaporated amorphous films of arsenic 

trisulphide differ from the bulk material as mentioned above. If 

exposed to radiation from a white-light (eg tungsten source), 

the films uooergo a structural transformation which may be termed 

photo-structural; 

2) a similar structural (thermo-structural) 

transformation takes place if the evaporated film is annealed at 

a temperature approximately equal to the glass transi tion 

temperature, Tg; 

3) both of the above changes lead to an irreversible 

increase in the refractive index of the films, which attain 

values close to that of the bulk material. This optical 

-transformation is thought, in both cases, to be associated with a 

polymer ization of the molecular units as initially deposi ted, 

itself an irreversible structural change; 

4) illumination of thermally-annealed films or, 

conversely, annealing of illuminated films leads to no further 

measurable change in refractive index; 

5) the evaporated films, once exposed to either 

annealing or illumination, possess optical and structural 

properties close to both the bulk samples and to sputtered films 

(sputtered films exhibit only weak photo- or thermo- structural 

effects) ; 

6) annealed films, if illuminated in the ultra-violet, 

exhibit a decrease in the absorption edge energy of approximately 
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O.03eV which can be reversed (bleached) by re-annealing. This 

reversible effect is called photo-darkening. 

Two modes of photo-response were distin:1ushed, therefore, by 

De Neufville et al in evaporated arsenic trisulphide films (the 

study also concerned itself with films of arsenic triselenide). 

Che, termed photo-structural, is characterized by changes in both 

the position of the optical absorption edge and the value of 

refractive index upon illumination. The other photo-effect, 

termed photo-darkening, is characterized by a reversible 

absorption edge shift. 

De Neufville et al also discovered that the chemical 

reactivity of As-P3 was enhanced after exposure to illumination. 

'!hey observed that exIX>sed films were invariably oxidised even in 

vacuums of less than 10-6 Torr, whilst unexposed films were not. 

In a later study, Suhara et al found that exposed As283 was 

preferentially etched by the action of mild NaOH solution 1. 79 

times faster than the uneXfX)sed film. '!his effect was utilised by 

them to form waveguide holograms with a diffraction efficiency of 

92% [38]. 

'!he thermally erasable photo-darkening effect has also been 

used to construct waveguide holograms, with a diffraction 

efficiency of up to 80% and good homogeneity of phase-relief 

[39]. Such a process is characterized by the absence of a 

development stage. As ~ 3 and other chalcogenide mater ials are 

consequently of increasing importance in the field of optical 

storage. 

Other developments incorporating As-P3 in integrated optics 

include the fabrication of planar am strip waveguides [32,40J, 

electro-optic modulators [41], a thin-film acousto-optic 

deflector possessing a deflection efficiency of 93% [42] (the 

acousto-optic figure-of-merit M2 of As??3 is among the highest of 

all mater ial s [43] ) , an acousto-optic convol ver [44], s w i tchin:1 

devices [45], fiber-waveguide taper couplers [33], graded index 

waveguide Fresnel lenses [46] and micro-gratin:1s [47]. '!he latter 
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two references are particularily interesting, as a further means 

of inducing photo-sensitivity was demonstrated. Electron-beam 

irrcrliati6n was used to cause refractive iooex changes of up to 

4%. Such a procedure is exciting because of the high resolution 

and placement accuracy that can be achieved using computer 

control. The ultimate line resolution of typical chalcogenide 

films is expected to be high, of the order of 10,000 lines/mm. 

A possible problem associated wi th the formation of thin­

films of As ~3 on LiNl:Q3 substrates is that the thermal expansion 

coefficients of the two materials are different. LiNb03 has 

anisotropic thermal expansion coefficients Q a = 16. 7xl0-6;OK and 

Qc = 2xl 0-6;oK [53] whereas As -p 3 has a thermal expansion 

coefficient of 24.6xlO-6;oK [37]. The fact that As 2S 3 has a 

higrer value is lIDdesirable since the result is that the film is 

constantly under tension rather than compression. Tension can 

lead to cracks and structural weaknesses, and may therefore be a 

factor contributing to the high in-plane scattering levels that 

are fOlIDd in these waveguides. 

'!he properties of As -p 3 that influenced its use in the work 

reported herein were: a high refractive iooex relative to LiNtQ3; 

high optical transmission at longer visible and infra-red 

wavelengths; easy fabrication of thin-films; and the possibility 

of tuning the focal characteristics using the photo-sensitive 

effects descr ibed aboV'e. 

6.3 Fabrication of planar waveguides 

6.3.1 Fabrication of Ti-diffused LfNb03 waveguides 

Acoustic-grade LiNb03 was used as the substrate for most 

planar waveguide experiments. High-quality substrates were used 

for lens fabrication. Y-cut LiNb03 was almost invariably used, 

with optical propagation intended to be in the crystal x­

direction. The rationale behind this choice was that, in 

applications where the lenses were to be used as spatial Fourier 

transforming elements with the input signal presented as a 
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surface aooustic wave, the highest achievable signal fractional 

bandwidths would be obtained with the acoustic wave travelling in 

the z-direction on a y-cut crystal [48]. 

Crystal plates as obtained from the manufacturer were SOmm 

in diameter and D.Smm or LOmm thick. The crystal z-direction was 

indicated by a flat. The plates were optically polished on one y­

face and roughly ground on the other to minimise unwanted 

reflections. The plates were sawn into 8mm (z-direction) x 20mm-

40mm (x-direction) substrates which were then checked for cracks 

and defects under 40x microscope magnification. Those that 

exhibited defects were rejected. O:>ughty [48], in his work on the 

fabrication of the geodesic lenses that were optically 

characterised by the present author, prepared several high­

quality LiNb03 substrates. The procedures used by him produced 

substrates which were defect-free under 100x magnification, flat 

to within 2 urn, and plane-parallel to within 20 seconds of arc. 

These substrates were all drawn from one high-purity boule and 

had dimensions of 55mm x 14mm x k95mm, in order to support two 

geodesic lenses of diameter 10mm and focal leD3th 1&5mm. Several 

of the substrates were made available to the present author to 

allow fabrication of inhomogeneous Luneburg lenses made from 

As ;f3 3' together with ambient waveguides. 

The substrates were cleaned prior to waveguide formation 

using a procedure standard to the Clean Room of the Department of 

Electronics and Engineering at the University of Glasgow. The 

procedure has been proved adequate to the preparation of 

substrates for the fabrication of stripe waveguides, a 

consider ably more demand ing task than that of producing planar 

waveguides. The procedure is as follows: 

1. Immerse sample in trichloroethylene and agitate 

ultrasonically for 10 minutes. 

k Rinse off tr ichloroethylene by immersing sample in 

methanol. Agitate ultrasonically for 1 minute. 
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3. Immer se sample in clean methanol and ag i ta te 

ultrasonically for 10 minutes. 

4. Immerse sample in acetone and agitate ultrasonically for 

10 minutes. 

5. Immerse sample in 5% DECON 90 solution and agitate 

ultrasonically for 10 minutes. 

6. Immerse sample in acetone and agitate ultrasonically for 

20 minutes. 

7. Immerse sample in methanol and agitate ultrasonically for 

5 minutes. 

The samples were not allowed to dry between any of the above 

stages as it has been found that contamination can often take 

place as a result. After stage 7 the samples were rinsed in 

distilled water, blown dry and placed in the high-vacuum 

evaporation system used for depositing titanium metal films. 

Titanium was then evaporated using an electron gun source and 

deposi ted onto the substr ate, at a vacuum of 1 x 10-5 Torr. The 

deposited film thickness was monitored using a calibrated quartz 

crystal monitor. Typical thicknesses required to produce a single 

mode waveguide were l8.0nm to 25.0nm, depending on subsequent 

diffusion conditions. Some substrates had thicker films deposited 

on them, in order to allow multi-moded waveguides to be studied. 

The deposited metal film thickness was checked after deposi tion 

by a Talystep stylus instrument. 

The procedure for diffusing the titanium metal into the 

LiNl:03 substrate has varied considerably among different groups 

of workers [49,50,19,14]. The degree ofin-plane scattering was 

of particular importance in the present study since scattering 

degrades the focal intensi ty pattern produced by a lens. 

Scattering has several causes, notably the surface roughness at 

the waveguide interfaces, especially the air/guide interface; 

defects or impurities associated with the bulk crystal; and 
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defects introduced during, or associated with, the waveguide 

fabrication process. '!he first two problems can be minimised by 

polishing ana selecting high-purity material respectively. The 

latter problem was dealt with in this study by investigating 

three reported techniques ana selecting the most favourable one. 

'!hree techniques -nich have been reported are: 

(i) diffusion of the Ti layer in the presence of congruent 

LiNb03 powder in a closed tube [19]. 'n1is technique is thought to 

suppress the out-diffusion of Li20 which can take place at 

elevated temperatures. Out-diffused Lit:> can cause parasitical 

waveguiding effects which interfere with the operation of stripe 

guides, for example; 

(ii) diffusion of the Ti layer in a flowing atmosphere of 

inert gas (usually argon) in an attempt to prevent oxidation of 

the Ti layer. Cooling subsequently takes place in oxygen gas in 

order to re-oxidise the LiNtQ3 [25]. This technique is thought to 

reduce susceptibility to optical damage; 

(iii) diffusion of the Ti-layer in a flowing air or oxygen 

atmosphere, -in order to inhibit the precipitation of LiNb30
S 

which can act as a local scattering centre [49]. The formation of 

LiNb30 S is inhibited when indiffusion is performed in a wet 

atmosphere [56]. 

Application of the first technique typically involved a ten 

hour diffusion time at lOOO°C. The second involved a nine hour 

diffusion in a flowing, wet argon atmosphere at lOOOoc, followed 

by flushing for 2 minutes in dry argon and finally a further one 

hour diffusion in dry oxygen. 'n1e third technique was similar to 

the secom except that wet air or oxygen was used throughout the 

diffusion. 

Results obtained under nominally identical conditions, in 

terms of initial Ti thickness, diffusion time and temperature, 

consistently showed that the first technique was the most 
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unfavourable. Prism-coupled m-lines using this technique 

displayed consider able scatter log with poor angular confinement 

of tre propagating mooes. The other two technIques displayed good 

confinement and had little to choose between them. '!he inert gas 

technique was chosen for convenience as it had fourrl favour with 

other workers in the department. Figure [6.1] shows a typical m­

line intensity scan obtained in the far-field from a waveguide 

fabricated using the inert gas technique. The light level at 10 

relative to the peak is -3ldB. Vahey [51] has reported -40dB at 

10. 

No attempt was made to measure the attenuation of these 

waveguides though no more than 2dB/ an was expected. 

6.3.2 Arsenic Trisulphide Waveguides 

6.3.2.1 Fabrication 

The fabrication system and conditions used in the formation 

of thin-film planar waveguides of As'E'3 in the present study were 

those described by Stewart et al [33]. After preparation of the 

substrates in the fashion described in section 6.3.1, films of 

As;!33 were thermally evaporated from a tantalum enclosed-crucible 

source. The bulk material had been stored in dark conditions to 

prevent any unwanted photostructural effects. The films were 

thermally annealed after deposition. The values of important 

par ameter s in the deposition and anneal ing processes are .,. 
summarised in Table [6.1]. An optical" thickness monitor was used 

to control the deposited film thickness to an accuracy of 10 nm. 

The monitor was also capable of detecting changes in film 

homogene i ty dur ing deposition. The oper ation of the monitor is 

described in detail in reference [33]. 

6.3.2.2 Evaluation 

After annealing in a dry nitrogen atmosphere for 50 minutes, 

the system was allowed to cool for 24 hours before the samples 

were removed. Annealed films were found to be much stronger and 
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harder than un-annealed films, whicb could be wiped off the 

substrates with vigorous rubbing. Scotch-tape adhesion tests 

revealoo however that even the annealed films could be peeled off 

both glass and LiNb03 substrates. 

The thickness of deposited films was measured, post­

fabr ication, using Talystep, ellipsometry and waveguiding 

techniques. The latter two methods were also used to measure the 

refractive irrlices of t.te films, although ellipsometry techniques 

were not particularily sensitive in this respect. The thickness 

measurements showed good correspondence with each other. The 

refractive indices of the annealed films averaged 2.596 at a 

wavelength of 633nm, with a small standard deviation of +/-

0.008 • 

A decrease in film thickness was fOlmd to occur as a resul t 

of the annealing process; for example, a film measuring 574nm 

before annealing was found to be 556nm thick after annealing. 

Assuming that such a change is purely due to an increase in film 

density rather than a result of partial re-evaporation, the 

corresporrling increase in film density is 3.2% • 

6.3.2.3 Optical evaluation 

As253 waveguides produced considerably higher levels of 

scattered light than did Ti:LiNb03 waveguides. This is evident 

from Figure [6.2] which shows contour plots of the scattered 

light intensity in the far-field for m-lines coupled out from 

both types of waveguide using a pr ism. The merle-line from the Ti­

diffused waveguide is well-confined, whereas the mode-line(s) 

from the As i' 3 waveguide are heavily scattered. Furthermore, 

parasitical coupling of energy into other modes of the waveguide 

is evident. 

A typical far-field scan of a 'rEO merle obtained from a 920run 

thick waveguide at a wavelength of 633nm is shown in Figure 

[6.3]. The amOlmt of scattered light is clearly considerable. At 

10 off-axis the intensity level with respect to the peak value is 
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-lO.7dB. At 20 a local peak displays an intensity level of -

8.6dB, and at 30 the intensity is still only -16.ldB. Further 

evidence of high scatter levels in As253 waveguides is presented 

in Figure [6.4]. '!hese photographs show the prism-coupled far­

field mode lines observed for a film 743nm thick, at two 

wavelengths. Rlotographs (a) and (b) of the figure were taken at 

633run, whereas photographs (c) and (d) were taken at l150run. The 

scatter ing levels are very high in (a) and (b) and, furthermore, 

a great deal of energy is being transferred to modes other than 

the one being excited at the input prism-coupler. At 1150nm 

photographs (c) and (d) show that the level of scatter ing is much 

reduced. No coupling of energy into parasitical modes was 

observed either, though the film was capable of supporting two 

modes at this wavelength. Improved performance of these 

waveguides at the longer wavelength was consistently observed. 

The length of the 'streak' ar ising from out-of-plane scattered 

light in the waveguide was rarely longer than 2.0cm at 633nm and 

fell much below 1.Ocm for very thin waveguides. Using Tien's 

method of estimating waveguide attenuation according to the 

sensitivity of the eye [54], such figures indicate losses of 

between 13dB/cm and 27dB/cm. Measurements made using a Hamamatsu 
-displc.y sys.tem 

TV intensity~under magnification indicated that losses of greater 

than 45dB/cm occurred for unannealed films. At longer wavelengths 

the scatter streaks lengthened consider ably and rarely failed to 

propagate right to the end of the waveguide. The best loss 

measurement obtained at a wavelength of 633nm was for a 1200nm 

thick film deposited onto a glass waveguide. The peak intensity 

variation as a function of the distance separating two prisms on 

the waveguide is shown in Figure [6.5]. A total loss of 7.55dB/cm 

is observed. 

Rloto-refr acti ve damage occurred at a wavelength of 633nm. 

Figures [6.6] and [6.7] show the effects of optical damage on the 

lEO merle, imaged onto a Hamamatsu camera and image-acquisition 

system. A three-to-four minute interval separated the acquisition 

of the two images. Before the secooo image could be acquired, the 

input prism-coupling angle had to be re-adjusted to optimise 

cot.pling of the mode, as indicated by the shift of the peak. &1ch 
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a re-adjustment indicated that the refractive index of the 
waveguide had increased. 

Films thicker than approximately 2500nm showed signs of 

'bloaning'- the films took on a milky grey hue- irrlicating that 

homogeneous growth is impossible at these thicknesses. Such films 

were not capable of guiding light waves. 

6.4 Fabrication of inhomogeneous overlay lenses 

6.4.1 Deposition of lenses 

Two masks were used to fabricate inhomogeneous overlay 

lenses. One mask, designated the profile mask, was intended to 

shape the deposited thin-film to a profile corresponding as 

closely as possible to the Luneburg lens design profile desired. 

The Luneburg lens profiles were given in chapter two. The theory 

governing the aperture and placement of the profile mask was 

presented in chapter three. A second mask, designated the edge­

definition mask, was intended to make fine adjustments to the 

edge-profile of the deposited lens. It was to be situated 

adjacent to the substrate and had an aperture diameter 

approximately equal to the desired lens diameter. Several masks 

of different aperture diameters were constructed to meet the 

design criteria for different lenses. 

A photograph of the shadow-masking system is shown in Figure 

[6.8]. The support jig and masks were both of stainless steel 

construction. One leg of the support jig was gradated and 

threaded in order to facilitate mask placement. The masks were 

secured by screws to movable supports. These supports were 

secured to the threaded leg by two ring-bolts. The mask 

positioning accuracy was estimated to be approximately O.5mm • 

Both profile and edge-definition masks were tapered to ensure 

that they acted as thin masks of the type investigated in chapter 

three. 

The geometry of the exper imental evaporation system is shown 
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FIGURE 
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in Figure [6.9). A tantalum crucible (of the enclosed type, to 

prevent spitting) contained the As~3 powder. '!be Asi'3 powder 

was stored in side-compartments of the crucible, to prevent the 

target substrate directly 'seeing' the source. A shutter situated 

just above the source was used to expose the substrates to the 

molecular flux. After the films were deposi ted the test 

substrates were transferred to a heater for thermal annealing. 

The thickness control and monitoring system used in the 

arrangement of Figure [6.9] was far from ideal. An optical 

thickness monitor had been used to monitor the fabrication of 

planar waveguides at a constant source-to-substrate distance of 

200.0mm • It was found impossible to utilize the optical monitor 

in the fabrication of overlay lenses, since the shadow masks 

prevented the optical beam from impinging upon the target 

substrate. Furthermore, the wide spread of experimental 

conditions under which the lenses were subsequently to be 

fabricated would have necessitated considerable effort in 

calibrating the system. A quartz crystal thickness monitor was 

used instead. The profile mask had two additional openiOjs one of 

which permitted the crystal thickness monitor to 'see' the As P3 
source, am another which supported a cover· slip that was later 

used as a check on the deposited film thickness. Both crystal and 

cover-slip were calibrated against samples lying on the edge­

definition mask. The edge of a second cover-slip was used to 

define a sharp edge on the sample that could later be measured 

with a Talystep. 

An al ternati ve method of controll ing the film thickness was 

to determine the rate of deposition uooer controlled deposition 

conditions. Considerable information on the deposition rate was 

available from the exper iments carr ied out on planar waveguides. 

6.4.2 Measurement of fabricated profiles 

A Talystep instrument adapted to operate in a long-range 

profile scanning mode was used to measure the profiles of as­

fabr icated lenses. The Talystep had a maximum traverse of 2.5mm 
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only, and was therefore of limited use in measuring entire 

profiles of large diameter lenses. It was mainly used to scan the 

edge-profiles of the lenses. 

Figure [6.10] shows the ex~rimental thickness profile of a 

relatively weak lens having a diameter of 2.0mm and a paraxial 

focal length of 29mm. The corresponding theoretical profile of 

the perfect Luneburg lens is also shown. The exper imental lens 

was fabricated on a glass substrate, with the lens and waveguide 

both made from As-p]- It was shown in chapter two that the use of 

the same material for waveguide and lens could lead to 

consider able gains on the tolerances required to produce a lens 

of a given f-number. lenses with long focal lengths could then be 

fabricated. The profiles were well matched in the central region. 

The overall profile was not unlike the profiles predicted in 

chapter three, except for the taper at the edge. An edge­

definition mask had not been introduced into the system at this 

stage. 

lenses produced using the Ti :LiNb03 - As i3 3 combination were 

much more difficult to fabricate due to the tolerances involved. 

As was shown in chapters two and three only lenses of small f­

num6er were feasible and these required small SQurce-to-substrate 

and SQurce-to-mask distances. '!he problems involved in thickness 

control then became considerable. It was decided to fabricate 

some lens profiles on a largely empirical, trial-and-error basis, 

at longer distances than those prescr ibed by the shadow-masking 

theory. Figure [6.11] (a) and (b) show a complete lens profile 

and edge scan obtained under such conditions. The profile was 

obtained using a stylus-operated computer-controlled Tencor 

profileometer which had a maximum traverse of 6.5mm. The profile 

theoretically required is also shown in the Figure. A well­

controlled centre thickness of 1850nm was obtained with this lens 

due to fabrication at a source-to-substrate distance of 50mm, 

with the shadow-mask situated at 12.0mm form the source. The 

overall profile of the lens fabricated, however, was flatter 

than required, as expected from the distances involved. 
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Attempts to fabr icate overlay lenses by reducing the 

distances between source, profile-mask and substrate to those 

given in chapter three met with no success. Even very short 

exposures of the substrate to the source resulted in very thick 

coatings of the substrate with As~3' so that the desired 

profiles were never realized. Such a failure may be easily 

understood by referring to Table [6.1], where a typical film­

deposition rate of 3 nm/sec is quoted for a source-to-substrate 

distance of 200mm. If a simple inverse-square-rule is assumed to 

apply, the corresponding film deposition-rate at a source-to­

substrate distance of l8.4mm ( required for fabr icating an f/2 

lens of 8mm diameter) is 355 nm/sec. Thus, even a ten second 

exposure would cause 3550 nm to be deposited at the lens centre. 

An exposure of approximately a half-second would be required to 

deposit only 185 nm of film, the required thickness at the 

centre. Even with slower deposition rates the problems were found 

to be unsurmountable. 

Busch et al [55], using the same materials combination and 

similar fabrication conditions, have reported better results than 

those reported herein. Better overall profile control was 

maintained, together with good thickness control. The reasons are 

two-fold: 

1) the cruc ible used by Busch et al was 18.5mm in diameter 

compared to the 6.25mm used in the present experiments, am was 

essentially of the knife-edge type, ie it had virtually no depth. 

Such a crucible would allow much greater variation of the source­

area 'seen' by different points on the substrate, at longer 

source-to-substrate and source-to-mask distances, thus allowing 

easier monitoring and better control; 

2) the As ~ 3 films deposi ted by Busch et al were not 

thermally annealed. As such the refractive index was 

approximately 2.44, compared to the refractive index of 

approximately 2.6 obtained in the present exper iments. The 

10weriI'XJ of the refractive iooex allows lenses of larger f-number 

to be fabricated, as observed in chapter three. larger f-number 
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lenses imply flatter lens profiles, which again imply longer 

source-to-substrate distances. 

'!he absence of a thermal annealing stage would likely have 

led to both physical am optical instabilty of the films, though 

this was not mentioned by Busch et ale I:eliberate t*loto-annealing 

was used by them to modify the focal characteristics of the 

deposited lenses. Such a technique does seem, therefore, to have 

advantages, although serious questions about the propagation 

losses, optical stability and mechanical ruggedness of unannealed 
films remain. 

An alternative technique for the manufacture overlay lenses 

may be to abandon hopes of using the variation of deposited 

thickness naturally obtained at short source/target distances, 

and to modify the deposited thickness in other ways. For example 

a long source-to-substrate distance could be used to obtain a 

more-or-less uniform deposited film in the absence of a masking 

aperture. An aperture with a variable diameter, i9 an iris, could 

then be introduced as closely as possible to the substrate. The 

iris diameter could then be controlled by a computer-driven motor 

such that true Luneburg profiles could be obtained. An extremely 

slow, uniform rate of deposition would be probably ~,)e required. 

Detailed calculations on the use of this technique remain to be 

car r ied out. 

6. 5 Conclusions 

The lens-profile design criteria established in chapter two 

and the investigation into vacuum-evaporation in a simple shadow­

masking environment presented in chapter three predicted that the 

accurate formation of inhomogeneous overlay lenses of the 

Luneburg type would be extremely difficul t, for the As zS 3 on 

Ti:LiN}:jJ3 combination. Attempts at fabricating such lenses have 

been reported in this chapter, and the theoretical predictions 

have been conf i rmed. It seems imposs ible to con trol 

simultaneously the absolute deposited film thickness and the 
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profile shape, given the small source-to-substrate am source-to­

mask distances required. A1 though true wneburg lenses were not 

obtained, lenses were fabricated and measured. The optical 

performance of fabricated Luneburg lenses will be reported in 

chapter eight. An al ternative technique for producing Luneburg 

overlay lenses was proposed. A further problem wi th the use of 

As zS 3 as an overlay rna ter ial was the very high level of 1 igh t­

scattering and waveguide loss observed. 
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CHAPTER SEVEN 

fA VEGUIDE UNIFORMITY 



FABRICATICfi II 

7.1 Introducuon 

The geodesic lenses used in the present study were 

fabr Icated by G.F. Doughty et al to function as collimation and 

Fourler-transforming elements in an lntegrated optical spectrum 

analyser (IOSA) [1] • Doughty [2] reported on many aspects of 

deslgn and fabrIcation of integrated optical geodesic lenses. 

Slngh [3] investigated the scattering properties of the Ti­

dlffused waveguides which were to guide light in both the planar 

and lens reg ions of the IOSA. However Singh's work was largely 

conflned to planar waveguides. This chapter will briefly discuss 

the problem of obtaining uniformity of Ti-dIffused waveguides 

situated In the lenses themselves. Theoretical calculations 

performed by the author indicate that the problem of achIeving 

waveguide uniformity, which has been largely ignored in the 

lIterature, is a significant one that is likely to cause a 

degradation In lens perform?nce. Alternative waveguide 

technologIes will be proposed WhIch should improve unIformity. 

7.2 Factors affecting transmission through lenses 

Vahey et al [4] have pointed out that aberrations are not 

the only phenomena that can affect lens performance in integrated 

optlCS applications. Aberrations are essentially phase-front 

dlstortions. However the amplitude profile of a wave-field 

propagati l19' through a lens can also be distorted in ways that may 

or may not be favourable for the optical propertles of the lens. 

It was observed in chapter five that a beam with a truncated 

Gaussian amplitude profile propagates much more smoothly in a 

lens than a sil19'le truncated plane-wave, resulting in improved 

focal plane characteristics, particularly in terms of sldelobe 

levels. A beneficial shaping of the beam may equivalently be 
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carr1ed out by controlling the transmission function of the lens 

itself, a process known as apodisation. In integrated optical 

geodesic lenses fabricated on anisotropic substrates two 

mechanisms can be identif1ed which affect the lens transmission 

properties [4] : 

(1) An1sotropy, in the form of birefr ingence, can give 

rise to leaky modes which cause power loss. Birefringence in a 

curved anisotropic substrate is a function of posit1on, as well 

as direction. Leaky modes arise as a result of coupling between 

TE and 'I'M polarizations 1n non-axial propagation directions. In 

y-cut LiNb03 high propagation loss can occur for the TE 

polar1zat1on, as shown by Sheem and co-workers [5]. 

(ii) The curvature of the substrate leads to radiation 

loss associated with the bending of the waveguide across the 

lens. In aspher ic lenses the curvature is a posi tion-dependent 

funct1on. 

Using a simple model, Vahey et al found that leaky-mode 

losses are dominant in cases of good f1eld confinement, far from 

cut-off. The losses are reasonably small in such cases, of the 

order of 3db/cm to 7db/cm. Leaky-mode loss becomes small for 

propagat1ng modes approaching cut-off. Lenses with low f-numbers 

experience greater leaky-mode losses than those with high f­

numbers, as would be expected Slnce signif1cant portions of the 

wave-field then propagate in directions far from the axis. For 

the same reason, leaky-mode losses are lowest for light 

propagating through the centre of the lens and highest at the 

marg1ns. The net spatial d1stribut1on of the losses is such that 

their effect 1S beneficial to lens operation, with the focal 

side-lobe intensity being reduced. 

On the other hand, losses associated with curvature were 

large and dominant in cases of poor field confinement, with the 

fundamental mode close to cut-off. With good field confinement, 

far from cut-off, curvature losses become very small. Losses due 

to curvature are greatest for light travelling through the centre 
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of the lens and smallest for light traversing the marginal parts 

of the lens. If curvature losses are large, the performance of 

the lens may be severely degraded as the losses cause an increase 

in sidelobe intens1ty. 

The transmission functions of geodesic lenses manufactured 

in LiNbO) substrates are, therefore, non-uniform and compl1cated 

owing to the 1nfluence of curvature and anisotropy, both of which 

are non-un1form, position-dependent functions. 

The curvature of the substrate also glves r1se to non­

uniformity in T1-diffused waveguides. Non-uniformity may then be 

a th1rd mechanism affecting the ampll tude transmission function 

of geodesic lenses. Furthermore, non-uniformi ty may also give 

r1se to phase-d1stortions. The degree of non-uniformity of 

t1tanium f1lms on geodesic lens substrates is investigated in the 

following section. 

7.3 Profiles of films deposited on geodesic lenses 

It was shown in chapter three that a directed-surface source 

was a good approximation to the type of source used in vacuum 

evaporation chambers. As the name 1mplies, such a source has 

directional emission properties. The thickness of film material 

deposited on a target surface is then a function of the source 

emission properties and the spatial orientation of the surface. 

It would be expected that thin-films deposited on geodesic lenses 

hav1ng strongly curved profiles would exhibit a considerable 

variat10n of thickness over the profiles. 

A simple geodes1c lens to analyse in terms of deposited 

f1lm uniformity is a lens possessing a spherical inner geometry 

and a toroidal rounded-edge to br idge between the inner reg ion 

and the ambient, planar waveguide. Such a lens is easily 

described analytically, and has previously been described in this 

thesis. A diagram of the generating curve of such a lens is 

shown 1n Figure [7.1] • The inner region has a rad1us of 

curvature Rg and the toroidal region has a radius of curvature a. 
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The dlmenslons and position of the toroldal region are chosen so 

that the tangents at the intersection points with both the planar 

substrate and the inner lens are matched. The profile may then be 

descrlbed as a smooth function of the axial coordinate r. The 

flrst derivative of the generating curve is also shown in Figure 

[7.1]. It IS eVident that the first derivative function is not 

smooth. The four intersection points on the profile are cusps, 

separating regions having dlstinctly different gradient. 

In many applications the substrate is required to support 

two lenses, one for collimation and another for Four ier 

transformlng purposes. Vacuum evaporation uni ts used for 

deposition of th~n films onto such substrates are often 

unsophistlcated, and the posi ton of substrate and source often 

has to be held constant throughout deposition. The procedure 

adopted to obtain a degree of uniformity in such a case is to 

make the source-to-substrate distance as large as poSSible, and 

to position the substrate so that the lenses are symmetrically 

aligned wi th respect to the source. Just how uniform a film is 

deposited may be Investigated using the concept of the directed­

surface source. 

The geometry of the system is shown in Figure [7.2]. A 

dlrected-surface source emits an amount of evaporated material in 

a given directlon which depends on the variable 9. The source is 

parallel wlth the horizontal axiS and with the planar portion of 

the substrate. The deepest pOlnt of the lens lies on the 

horizontal axis and the profile function, including the planar 

portlon, may be described by a function z(r). The thickness 

varlatlon along one axiS only IS therefore being considered. The 

planar portIon of the substrate IS si tuated a distance zp from 

the axiS, and the source is situated a distance Zo from the 

origIn. 

The dIrected-surface source causes a spatial distribution of 

deposited film thickness on the surface z(r). At a typical point 

Pysuch as shown in Figure [7.2] the thickness is given by 

on ~ ~ x'( J.. se ct:dV1 

155 



SOURCE 

Behaviour of 4> as a function of r 

o r--------T--~~~----~--~~~--~~--------+ 
r 

A-z n 

SUBSTRATE 

o D E F G H I r 

FIGURE [7,2]WAVEGUIOE DEPOSITION GEOMETRY 

, ., 



t(r) = k cos 9(r) cos ¢(r) 

R2 (r) 

(7.1) 

where a line drawn between the source and P defines the direction 

of emission, e is the angle between the source normal and the 

dIrection of emIssion, ¢ is the angle between the surface normal 

and the direction of emission and R is the distance between 

source and substrate along the dIrection of emission. Equation 

(7.1) was previously encountered in chapter three and is known as 

Knudsen's cosine law of emiSSion. k IS a constant factor under 

conditIons of source equilibrIum. At the point on the substrate 

directly below the source, the deposi ted thickness obtains 1 ts 

maXImum value and is gIven by 

to =_k_ 
R 2 

o 

(7.2) 

The deposIted thickness at the other points on the surface may be 

normalIsed to the m~imum value: 

t' = t/to = cos e cos ¢ R02 
R2 

(7.3) 

The var lables Rand e are defined In terms of the known 

quantitIes z(r), r , and zo: 

cos e (7.4) 

and 

(7.5) 

The remaining varIable ~ may be determined by the same quantities 

and the first derivative of the profile. In Figure [7.2] the 

tangent to the lens at point P is shown intersecting the 

hor izontal axis at an angle ~ . The magni tude of this angle IS 

given by ~ .-
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(7.6) 

The angles that make up triangle WXY define ~: 

9 = 9 + ~ (7.7) 

The relationship (7.7) will hold for all points with negative 

slope, ie for points between the origin and the centre of the 

lens. For points with positive slope the magnitude of ~ is given 

by 

\~I= Ie - ~\ (7.8) 

SubstItuting for e according to (7.4) and for ~ according to 

(7.6), the expression for ¢ becomes 

(7.9) 

Formulae (7.1) to (7.9) apply to any geodesic lens 

substrate, whether of spher ical or aspher ic_geometry. At large 

source-to-substrate distances , R and e vary slowly as a function 

of r. The var iable ¢ then exerts the strongest influence on the 

deposited thickness. The behaviour of ¢ for a spherical geometry 

lens may be determIned by considering the nine points A-I in 

FIgure [7.2]. The surface normals are shown for convenience at 

each of the points. 

The behaviour of p is sketched in Figure [7.2]. At points A 

and I corresponding to typical points on the plane surface of the 

substrate, and at point D at the centre of the lens, the first 

derIvative of the function is zero, and ¢ = 9 as a result. ~ 

behaves as the inverse tangent function with respect to r in 

these areas. Point B is the first point of intersection between 

the plane and the toroidal rounded-edge. Ule to the behaviour of 

the first derivative at this point, as seen in Figure [7.1], a 
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cusp occurs in the function ¢ .As the point of interest P moves 

from B to the polnt of lntersection C between the toroidal 

rounded-edge and the inner portion of the lens, ; increases, 

reaching a maXlmum at C. A second cusp occurs at C and 0 beglns 

to decrease thereafter. ¢ is non-zero at the centre of the lens 

but eventually becomes zero at point E where the surface normal 

and the direction of emission coincide. rp begins to rise again 

beyond E until a secpnd maximum occurs at point F, where the 

inner portion of the lens and the toroidal rounded-edge again 

intersect. This maximum lS again a cusp, following the behaviour 

of the first derivative of the profile function. Beyond point F ¢ 
decreases, reaching zero again at point ~ ¢ increases thereafter 

until the final cusp at H occurs. The function 9 then resumes 

lnver se tangent behaviour. 

The variation of ¢ as described above is reflected in the 

variation of deposited film thickness on geodesic lenses. Figures 

[7.3] and [7.4] show the thickness variation across the spherical 

lens with toroidal edge-rounding shown in chapter two. The lens 

dlameter is 10.462 mm and the centre of the lens is si tuated at 

an offset distance from the point directly below the source, a 

situation llkely to occur when two lenses are present on one 

wavegulde. In Figure [7.3] the offset distance is 10.0 mm. Three 

curves are plotted in Flgure [7.3], calculated for source-to­

substrate distances of 49.12 mm, 99.12 mm and 199.12 mm. The 

behaviour of each curve is closely related to the behaviour of 

the curve previously shown in Figure [7.2]. The most extreme 

behaviour is, as expected, manifested by the curve calculated for 

the shortest source-to-substrate distance and may be conSidered 

in detall. At the edge of the lens, closest to the point directly 

below the source, the film thickness falls to 98% of its maximum 

value. The thickness then rapidly falls to under 90% of its 

maximum value over the torOidal edge-rounding region and then 

settles again, changing very slowly over the major portion of the 

lens. A small increase in thickness occurs as the toroidal region 

is encountered a second time, until the substrate normal points 

dlrectly towards the source. Beyond this pOint, the thickness 

rapidly falls off, down to 84% of its maximum value untll the 
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FIGURE [7,3] 

FiLm deposItion thickness on LiNb03 substrate 

incorporatIng sphericaL geodesic Lens 

Lens, parameters: 

FocaL Length= 52.3mm 

FuLL aperture= 10.462mm; useFuL aperture= 4.0mm 

Deposition parameters: 

source to substrate distances= z mm 

horiz. dIstance From source to Lens centre= 10.00 mm 

ASSUMPTIONS: dIrected surFace source 

stickIng coeFFicIent of unity 
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ambient planar substrate is encountered, at which point the rate 

of change of thickness as a function of position across the 

substrate decreases. 

For source-to-substrate distances of 99.12 mm and 199.12 mm 

the behaviour is similar to the 49.12 mm case, except that the 

deposited thickness actually increases as a function of distance 

from the point directly uooer the source, over large portions of 

the inner section of the lens. A greater degree of uniformity is 

obta1ned for larger source-to-substrate distances, as would be 

expected, but a maximum var1ation of 6% 1S still obtained for the 

199.12 rom case. The rate of change of th1ckness in local areas is 

also qU1te substantial, even for large source-to-substrate 

distances. 

The calculations were repeated for a larger lens offset 

distance of 15.0 mm. The results are shown in Figure [7.4]. 

Qualitatively similar behaviour to that of F1gure [7.3] is 

obta1ned , though the actual variation in deposited film 

thickness over the substrate is larger. Again, more-or-less 

'flat' thickness profiles are obtained over the inner portion of 

the spherical lens with toroidal edge-rounding. 

'Flat' behaviour is certainly not obtained, however, over 

aspheric geodesic lenses such as were specified in chapter two. 

The curvature variation of the aspheric lenses is much stronger 

than that of lenses based on spherical geometry, and this is 

reflected in the variation of deposited film thickness. Figures 

[7.5] and [7.6] show deposited thickness curves calculated for 

the aspheric geodesic lens investigated by Doughty [2] and the 

present author under similar conditions to those used for Figures 

[7.3] and [7.4]. The deposited film profiles are considerably 

different from those of the spherical lens with edge-roundmg. At 

a source-to-substrate distance of 48.69 mm and for a centre­

offset distance of 10.0 mm, the depoSited thickness falls to 

below 75% of the maximum value at the first bourrlary between the 

edge-round ing reg ion and the inner lens. For the same source-to­

substrate distance, am an offset distance of 15.0 rom the minimum 
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depoSited thickness falls below 65%. Even for a long source-to­

substrate distance of 198.69 rom, the minimum thickness is only 82% 

for an offset distance of 10.0 mm, and less than 80% for an 

offest distance of 15.0 mm. Furthermore, the rate of change of 

deposited thickness across the lens is complicated. 

The consequences of such deposi ted film profile behaviour 

for the optical performance of these lenses are difficult to 

ascertain precisely. Only the profile variation along a 

meridional curve has been calculated, though the variation at 

other points could also be calculated relatively easily. It would 

then be possible, presumably, to transform the variation of 

thiCkness over the lens into an equivalent effective refractive 

index perturbation which could be incorporated in ray-tracing or 

BPM calculations. Without going into such detail, however, it is 

still possIble to make some general observations. 

1) The optical path length of rays traversing the lens would 

be perturbed by the effective index var iatlon ar ising from the 

deposited thickness variation. The focal characteristics would be 

affected by these perturbations of phase. To what extent they 

would be affected remains to be determined, though one might 

expect the effects to be small Since the refractive index change 

Induced by the titanium diffusion process is small anyway. 

2) If the cusps in the thickness profile were to manifest 

themselves in the refractive index profile after diffusion (which 

is, perhaps, unlikely) discontinuities would occur in the first 

derivative of the refractive index function. In these areas 

strong and unpredictable refraction would probably occur. 

3) The film thickness var iations could resul t in the 

waveguide falling below cut-off in certain areas, if the 

waveguide at the point of maximum thickness is not very far into 

the single-mode regl.Ine. 

4) The thickness var iation could lead to losses wi thin the 

lens. 
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If all the above observations are valid, waveguide non­

uniforml ty would be expected to introduce both ampl i tude- and 

phase-dIstortlons into the propagating optical field. 

Exper imental confIrmation of the theoretical results would 

be deSIrable. Improved uniformity of deposition could possibly be 

obtaIned using well-established thin-film techniques such as 

rotation of one, or both, of the substrate and the source; the 

use of two or more simul taneous sources; or the use of sources 

shaped such that the source curvature would complement the 

curvature of the lenses. All such solutions would require quite 

complicated mathematical analyses, and simpler solutions based on 

alternative waveguide technologies that do not involve 

evaporation or sputtering might be deSirable. One such technology 

would be the Li02 high-temperature out-diffusion technique 

mentIoned in chapter six. This technique, unfortunately, creates 

very deep optical waveguides which are not compatible with 

surface acoustic waves such as are used in the IOS~ A better 

solution mIght be the recently-developed technique of proton­

exchange. Very recent results indicate that proton-exchange using 

dIlute melts may be capable of superior performance to titanium­

diffusion as a method of fabricating wavegUides, with 0.5-

1.5dB/cm losses, -40dB levels of In-plane scatter at 0.50 and 

high resistance to optical damage being reported [6]. The 

refractIve index change obtained with the proton-exchange process 

is hIgh, however, and this would complicate matters in geodesic 

lenses, since the focusing mechanism could no longer be 

conSIdered to arise purely from the geometrical, rather than 

optIcal profile. 

7.4 Conclusions 

It has been suggested in this chapter that the problem of 

obtaining waveguide uniformity be added to the problems of 

anisotropy and curvature-loss in the study of factors affecting 

the optical performance of geodesic lenses. 
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Whilst. occassiooal c:anments Q'l this subject have been made 

in the literature of gecx1esic lenses, 00 work has been p.lblished 

of either a theoretical or experimental nature. One suspects that 

the assumption that reasonable uniformity is obtained at large 

eource-to-stibstratedistances is a widely-held one, although the 

present work shows that assumption to be manifestly false. The 

lack of uniformity in the deIX>sited thickness profile which would 

be expected to appear in the diffused profile also (to a lesser 

extent) would be urrlesirab1e in itself: but the rapid variation 

of the thickness in certain areas of the profile could 

considerably worsen the optical performance of these lenses. 

REFERfl'Di:S FOR (]JAPl'ER SEVm 

[1] Doughty,G.F., DeLaRue,R.M., Fin1ayson,N., Singh,J. and 

Snith,J.F. , 

Integrated optical microwave spectrum analyser (IOSA) using 

geodesic lenses, Proc. SPIE, 369 Max Born Conference, Frlinburgh, 

Scotland, 1982, 705-710 

[2 J Doughty, G.F., 

'Aspheric Geodesic Lenses for an Integrated Optical Spectrum 

Analyser', Ph.D. Thesis, University of Glascpw, 1983 

[3J Singh,J., 

'Studies Concerning the Dynamic Range of the Integrated Optic 

Spect.rlm1 Analyzer', Ph.D. Thesis, University of Glasgow, 1983 

[4J Vahey,D.W., Kenan,R.P. and Burns,W.K., 

Effects of anisotropic and curvature losses in Ti:LiNb03 

wav9:3uides, Appl. ~., 19(2), 1900, 270-275 

[5J Sheem,S.K., Burns,W.K. arrl Mi1t01,A.F., 

Leaky-mode propagation in Ti-diffused LiNb03 and LiTa03 

wav9:3uides , Optics Lett., ~ (3), 1978, 76-78 

[6J Wong,K.K., Parsons,N.J., 01droyd,A.R. and O'Donne11,A.C., 

High-quality optical wav9:3uides in LiNb03 by dilute-melt proton­

exchange, to be presented at Iax:./FJ:XX:. '85, Venice, October 1985 

162 



CHAPTER EIGHT 

OPTIC_4L EXPERIMENTS 



OPl'ICAL EXPERIMEN1'S 

8.1 Experimental objectives 

Having investigated various problems concerning the design, 

analysis and fabrication of inhomogeneous integrated optical 

lenses, the ultimate test is to determine how the fabricated 

lenses perform under a variety of experimental conditions. No 

single number characterizes the 'quality' of a lens. Several 

tests are required to establish the suitability of a lens for the 

tasks it wIll be required to perform. Integrated optical lenses 

are usually required to per form well in the back -focal-plane as 

opposed to providing good imaging at a given magnification. 

Attention may therefore be confined to the Gaussian image region 

of a sIngle point. In terms of geometric aberrations, defocus and 

spher ical aberrations are the quanti ties of interest. From the 

point of view of physical optiCS, (incorporating wave aberration 

and diffraction phenomena) image spot dimensions, sidelobe 

levels, sidelobe decay, image symmetry and scattering levels are 

important quanti ties. 

Four lens systems were available for investigation, viz. 

(i) a spher ical geodesic lens having a toroidal edge­

roundIng region bridging the inner portion of the lens and the 

ambient waveguide; 

(ii) an overlay Luneburg lens; 

(iii) a single aspheric geodesic lens of equivalent 

Luneburg lens design; 

and (i v) a two-lens aspher ic geodesic system expected to 

form the basis for an integrated optical radio-frequency spectrum 
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analyzer [19]. 

The objectIves of the experiments were to master and, if 

possIble, to improve upon techniques for optical characterisation 

of these lenses, to use these techniques to characterise each 

type of lens, and thereby to form a judgement, based on optical 

criteria alone, on the relative merits of each system. 

8.2 lenses selected for study 

The physical characterIstics of the four lens systems will 

now be dealt with in turn. In order to evaluate the performance 

of fabricated lenses representative of the several types dealt 

with in this thesis, a broad initial characterisation was carried 

out to establIsh those lenses that were likely to yield best 

resul ts. If, for example, excess i ve in- or out- of plane 

scatter ing levels were detected in the lenses or in the 

surrounding wavegUides, detailed characterisation of the optical 

performance was not necessary, as the focal pattern was always 

degraded accordingly. 

Four structures supporting a total of five lenses (one 

substrate carried two lenses) were chosen for de~ailed study. 

These will now be described and labelled. 

(i) LENS SLl 

Lens SLl was a spherical geodesic lens having a toroidal 

edge-rounding region. It was fabricated by G.F. Doughty and co­

workers of the Department of Electronics and Electrical 

Engineering at the University of Glasgow for the Microwaves and 

ACOUStICS Group at the Marconi Research Centre, Chelmsford, 

England who were the industr ial sponsors of the present author. 

The author, assisted by Mr A. Bodkin of Marconi Research, 

created a Ti-diffused waveguide on the lens and supporting 

substrate and characterised the optical performance of the 

resulting structure. The structure was intended to operate as the 

Fourier transforming element in an acousto-optic spectrum 
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analyzer of hybrid design (the light source, collimation element 

and detectors were situated off the substrate, with only the 

acousto-optic interaction region and the transforming lens being 

'integrated'). For the purposes of investigating the lens 

resolving power in conjunction with the acousto-optic 

interact1on, a bank of rf/SAW transducers were incorporated onto 

the structure after the opt1cal wavegUide had been formed. 

The physical d1mensions of the lens and the supporting 

substrate are shown in Figure [8.1]. The central spherical 

depression had a profile radius of curvature of 16.0 mm, with the 

projection of the depression extending to a radius of 4.782 mm in 

the waveguide plane. The edge-rounding region was of toroidal 

design with a radius of curvature of 1.5 mm, and extended a 

further radial distance of 0.448 mm in the wavegUide plane, thus 

giving the lens an overall radius, in the wavegUide plane, of 

5. 231mm. The paraxial focal length of the lens was intended to be 

50.0mm. Prec1se ray-tracing using Southwell's method indicated 

that the paraxial focal-length would in fact be 50.9mm. 

It is difficult to obtain high~uality boules of LiNt£)3 of 

diameter greater than approximately 50.0mm. It was accepted, 

therefore, that the converging beam in the image region would 

have to propagate partly in air. As can be seen from the Figure, 

the maximum distance from the centre of the lens to the edge of 

the substrate was only 27mm. Propagation outside the substrate 

results in a reduced paraxial focal length in accordance with the 

bending of the rays at the LiNb03/air interface. Using Snell's 

Law, and considering only paraxial quantities, the modified focal 

length of this lens becomes: 

f' = (f-27)/neff + 27mm (8.1) 

where neff is the effective refractive index of the light wave in 

the wavegUide and f and f' are measured in mm. At a wavelength of 

0.6328um the effective refractive index of the fundamental TE 

mode of the ambient waveguide was measured to be 2. 2065. Using f 

= 50.9mm the modified focal length then turns out to be 37.8mm. 
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'!hese are physical, not optical distances. A benefit of focusing 

outslde the substrate was that scattering was not too destructive 

in the far-fleld. ~ scattering arises mainly at the waveguide­

air interface and is associated with the mean surface-roughness 

of this interface. Focusing outside the waveguide caused the 

scattered light to diverge rapidly, while the unscattered llght 

was still caused to converge by the action of the lens. 

(ii) LENS LLI 

Lens LLI was an overlay lens approx imation to a true 

u.meburg lens, fabricated with AszS3 as the lens material. It was 

fabricated on a y-cut LiNb03 substrate on which a Ti-diffused 

waveguide had previously been formed. The diameter of the lens 

was 4.25 rnm. The thickness of As~3 film deposited at the centre 

was approximately ISS nm, which, if the lens were a true Luneburg 

lens, would yield a full aperture f-number of f/2, from the 

calculations carried out in chapter two. '!he focal length of the 

true Luneburg lens would be S.S mm in such a case. The profile of 

the lens was shown in chapter Six, and it was observed there that 

the lens profile over most of the full aperture was thicker than 

the true Luneburg lens. ~e lens would therefore perform in a 

slmilar fashion to the approximate profile studied, using ray­

tracing methods, in chapter four. Considerable spherical 

aberration would therefore be expected, together with a negative 

defocus, ie the focus would be expected to be closer to the lens 

than In the true Luneburg lens. 

(iii) LENS GLI 

GLI was an aspheric geodesic lens designed using the method 

of Sottlni, reported in chapter two and fabr icated by G.F. 

Doughty and co-workers. The author's task was to characterize the 

optical performance of the lens. The central depression (the 

focuslng region) had a diameter of 7.4mm and the edge-rounding 

region brought the total lens diameter up to lO.Omm. The design 

focal length of this lens was IS.Smm, implying an effective f-
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number of f/2.5 with the central focusing region fully utilised. 

rt should be borne in mind, with regard to the observations on 

waveguide uniformity made in chapter seven, that the waveguide on 

this lens was formed using an evaporation source situated 

directly above the lens centre, since only one lens was present 

on the substrate. 

(i v) LENSES GL2/a AND GL2/b 

These lenses formed a matching pair, designed for 

incorporation into an integrated optical spectrum analyzer 

(rOSA). One lens was intended to collimate the output from a 

semiconductor laser diode which was to be butt-coupled to the 

front end of the rOSA substrate. The other lens was intended to 

act as the Fourier-transforming element in the rOSA. The lens 

spec1fications were as for GLl. Here it should be borne in mind 

that the evaporation source for fabricating the waveguide was NOT 

held directly above either lens and was instead Situated at a 

point midway between the two lens centres. The dimensions of the 

lens and substrate are shown in Figure [8.2] • The edges were 

polished to allow edge-coupling of light into the waveguide. The 
-

polishing process reduced the distances from the centre of each 

lens to slightly less than the design focal length. 

8.3 Special tests am teclmiques 

Many techniques are available in order to make objective 

assessments of the quality of fabricated lenses. These help to 

determine whether a fabricated lens meets design specifications 

or to establish whether unforeseen limitations exist which 

restrict performance. 

Four categories of test have been implemented in the course 

of the present study. These range from purely qualitative 

assessments of images produced b¥ the lenses, through quaSi-ray 

methods designed to measure aberrations, to direct quantitative 

measurements taken from images recorded using photo-metric 
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technIques. One technique that ~as not used was that of 

Interferometry, although it may be noted in passing that this is 

the only means of entirely separating the geometr ical and 

interference/diffraction aspects of lens imagery [1]. 

Interferometry, however, is a difficult technique to apply to 

integrated optical lenses. 

A feature common to all the tests reported herein is that a 

point-source situated at infinity am lying on the optical axis 

is used throughout. '!be incident phase-front imping ing upon the 

lens is, therefore, essentially plane (though its amplitude 

distribution, in keeping with the usual situation for laser-beam 

illumination, is more nearly Gaussian). 

8.3.1 Foucault-, or 'knife-edge' testIng 

In this test, a sharp 'knife-edge' (eg. a razor-blade) is 

placed in a given image plane close to the expected focus. The 

edge is then drawn across the image in a direction perpendicular 

to the optical axis. Figure [8.3] is a schematic showing the 

method of implementation of the test. The diagrams on the left­

hand side of the figure show knife-edges introduced at selected 

points in the image space. These serve to block off some of the 

incident rays whilst allowing other rays to pass. The scene is 

viewed by an observer situated to the right of the knife-edge. 

'!be effect of the knife-edge on the observed images is seen 

in the diagrams on the right of Figure [8.3]. These diagrams 

represent images seen with conventional bulk lenses having 

circular symmetry, for purposes of clarity. Integrated optical 

lenses produce only the image observed through the central 

vertical aZimuth. 

FIgure [8.3] (b) is the most revealing and informative 

section. In this area of the image the rays emanating from the 

lens have begun to intersect each other. They intersect at 

various discrete points for a lens producing aberrations, whereas 

they intersect at only one point for an unaberrated image, within 
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the geometr ical optics approximation. An aberration-producing 

lens will form two dlstinct bright areas separated by a shadowed 

reglon. A perfect lens however will cause a smooth continuous 

tr ansi tion between shadowed and lmshadowed reg ions to occur as 

the knife-edge is drawn across the image. 

The technique just described is ideal for locating the best 

point of focus, lf the knife-edge is mounted on accurate 

horlzontal and vertical translation stages. The more compact the 

light distribution is in the image-plane, the more rapidly will 

the shadow move across the pupll. Under-corrected and over­

corrected lenses exhibit characteristic patterns under the 

conditions of knife-edge testing. Furthermore the technique is 

highly sensi tive to the degree of aberration produced by 

different zones across a lens aperture. The method represents a 

simple way of relating the spread of the light in the image plane 

to the zone of the lens from which the aberrations, if any, 

arise. 

In many cases of interest in integrated optics are-imaging 

lens has to be used to gain access to the image produced by the 

test lens. In such cases, the light has to depart from the 

surface waveguide. The small transverse dimension of the­

wavegUide then causes considerable beam spreading due to 

diffraction. Difficulties may consequently arise in correctly 

interpreting the patterns produced by the moving knife-edge. 

In the experiments described here knife-edge testing was 

largely used to provide a rapid, approximate evaluation of lens 

quali ty. If necessary, however, the method can be used to yield 

quantitative information so precisely that image errors as small 

as one-tenth of a wavelength can be detected [1]. 

8.3.2 The Hartmann Test 

The geometric aberrations of a ray can be measured directly 

by carrying out an exper lmental ray-trace. Tests which involve 

measurements on experimentally produced 'rays' are known as 
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HartmaM tests [1]. A schematic of the method is shown in Figure 

[8.4]. A broad diameter optical beam impinges on a diaphragm made 

of glass or some other material, which is opaque except for 

several circular apertures of small diameter. These apertures 

serve to convert the beam into a series of thin pencils which 

sImulate light rays (light rays are of course, conceptually, 

infinitely narrow). The diaphragm is placed as close to the 

aperture of the test lens as possible to minimise unwanted 

diffraction effects. The rays travel through the test lens and 

intercept each other in the image space at points determined by 

the aberrations produced by the zone of the lens aperture through 

which the rays pass. 

Photographs taken at two known image planes can yield the 

ray-intercept coordinates at these planes. The ray poSitions in 

the whole of the image space are then completely determined, if 

the space is homogeneous so that the rays follow straight lines. 

Photo-detector arrays [2] or calibrated microscopes [3] may be 

used to measure the aberrations instead of photographic plates. 

SIngle rays are not used due to the difficulty in obtaining a 

relIable reference position. Furthermore a single ray will in 

general gIve rise to an Airy diffraction disk in the given 

measurement plane which forms a diffuse patch of light a few 

tImes bigger than the aberration component itself. Complimentary 

pairs of rays are used instead, which enable the interception 

points of the two rays to be measured with a great deal of 

precision due to the formation of an interference pattern with a 

bright central spot. With photographic plates, the data resulting 

from the test may be examined at leisure, and thus multiple ray 

dIaphragms may be utIlised. When detector arrays or calibrated 

microscopes are used, however, the data points are recorded as 

the test is carr ied out and single pairs of rays should be used 

to avoid confUSion. 

The schematiC of Figure [8.4] shows a set-up for detecting 

directly or indirectly both components of spherical aberration. 

Where the focal region is accessible wi th precision, the image 

sensor may be used to measure TA, the lateral component and LA, 

170 



screen test lens 

FIGURE [8 , 4J 

HARTMANN TEST 

+-t111 
I 

/:~i:, 
LA ll'r:1- ;~ 

" d-1-i , -, 
, 'I 

'i :' 

-Pl 

~P2---

u ' 

2 

r-- - - ~ i 
I I 
I I 
I 

!.- ---, 

photographic plates, 
or calibrated microscope 



the longItudinal component directly. More commonly in integrated 

OptICS, the focal region is not accessible and measurements must 

be carried out in two planes distant from the paraxial image 

plane. A high-quality microscope objective may be used to magnify 

the distances involved. It is only slightly more complicated to 

devise a set-up for measuring off-axial aberrations such as coma. 

Planes 1 and 2 -shown in the Figure are the planes at which 

measurements are taken. The distances PI and P2 of the planes 

from the centre of the lens are presumed to be known. The spacing 

between the two planes is d and the measured ray intercepts at 

the two planes are given by TAl and TA 2• The paraxial focal 

length of the lens is assumed from design calculations to be f. 

(If the paraxial focal length turns out not to be f, this will be 

detected by the aberration curves). The required components of 

spherical aberration are TA and LA. ¢ is the angle which the 

given ray makes with the optic axis in the image space, and Y IS 

the ray entrance height. The signs of the quantities as shown in 

the diagram are: lA, TAl' TA 2, f, PI' P2, d all positive; 

Y, TA, if> all negative. From simple geometry: 

(TA 2-TAl ) = (TAI-TA) = TA = tan¢ 

Hence: 

aoo: 

d ~l-f) LA 

TA = TAl - (PI-f) (TA2-TAl ) 

d 

(8.2) 

(8.3) 

(8.4) 

The system, if used with care, can detect aberrations of 

tens of microns and can locate paraxial fOCi with an accuracy of 

5 to 10 microns. Aberrations an order of magnitude above this are 

easily detected. 
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Figure [8.S] shows the type of pinhole mask used to create 

ray pencils in the experiments reported here. Ten different hole 

pairs with spacings between O.2Smm and 9.0mm were produced on 

aluminium coated glass slides using photolithographic techniques 

to ensure a high degree of accuracy. The hole diameters used were 

O.12Srnm and O.2Srnm and this was found to give sufficiently high 

ray brightness and entrance pupil placement accuracy, together 

with low far-field diffraction, all factors which need to be 

balanced in order to optimise test accuracy. The Wider diameter 

holes were used to increase the light throughput in overlay 

Luneburg lenses where the lens material, as reported in chapter 

Six, is quite lossy. 

8.3.3 Resolution test using the interactIon between light 

and sound 

It is well-known that an acoustic wave can interact with an 

optical wave so that optical radiation may be diffracted into one 

or more subsidiary orders which are frequency-, irradiance-, and 

direction-dependent on quantities associated with the acoustic 

wave [4,S]. The acoustic wave causes a perturbation in the 

density of the material medium supporting it which, in turn, 

- perturbs the refractIve index of the mater ial. Consequently a 

grating is set up which deflects part of the incident optical 

radiation dependIng upon, among other things, the angle of 

incidence of the optical beam. If the angle between the optical 

and acoustic beams is 9, then constructive interference occurs 

for angles satisfying the condition: 

sin % = ). 

2nA 

(8.S) 

where '). is the wavelength of the optical beam in vacuum, A is 

the wavelength of the acoustic wave in the medium and n is the 

unperturbed value of the refractive index. 9s is known as the 

Bragg angle and equation (&S) is known as the Bragg corrlition. 

It transpires that surface acoustic waves (SAW), ie acoustic 
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waves which are constrained to travel at the surface of a medium, 

can deflect surface-guided light very efficiently, due to lof\~ 

;t1t~J?""" l1lNtu~S between the propagating optical arrl acoustic wave-fields, 

and the acoustIC power density implied by a surface-confined 

wave. This fact is exploited in the integrated optical spectrum 

analyzer. The interaction between the two types of surface wave 

can be used to test the resolving power of a lens. 

Surface acoustic waves are closely approximated for the 

purposes of the spectrum analyzer by unIformly weighted plane 

waves within a diffraction angle o¢ [6]. Two acoustic waves 

dIffering very slightly in frequency then approximate to two 

closely spaced point sources giving rise to optical waves 

impinging upon the lens. The deviation in angle between the two 

waves, each satisfying the Bragg condition, is 08, where: 

09 = (8.6) 

and where ofs is the difference in frequency between the two 

sound waves and v is the sound velocity, which is assumed 

constant for both waves. The diffracted optical waves may be 

consIdered to have constant amplitude over an aperture width D. 

In order to obtain separatIon between the two waves through the 

mechanism of Fraunhofer diffraction over a reasonable substrate 

distance, a lens (an element which causes contraction of the 

distances over which Fraunhofer diffraction takes place [7]) is 

used. The displacement between the beam-spots in the focal plane 

is given by: 

(8.7) 

where f is the focal length of the lens. The minimum frequency 

interval that can be resolved may be estimated using the Rayleigh 

crIterion [8]. It turns out to be of the order of: 

f = v;D = l(r smin (8.8) 
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T as deflned by equation (8.8) is the 'access-time' of the 

devlce, which may be interpreted as the time which the device 

takes to acquire a new frequency slot across its entire aperture, 

le, with maximum resolution. A real lens will be able to resolve 

a frequency interval ofsreal where ofsreal ~ofsmin· An 
experimental measure of the smallest resolvable frequency 

interval therefore serves to indicate how closely the lens comes 

to attaining optimal performance. 

8.3.4 Direct observation of the image-space irradiance 

profiles 

The measurement of light is the domain of a branch of optics 

called photometry. Detectors of light do not respond directly to 

the electrlc- or magnetic-field amplitude of an incident optical 

wave-field. Instead, they are sensitive to quantities such as the 

radiant energy density or the time rate of flow of radiant 

energy. The time rate of flow of radiant energy can be 

interpreted as the power associated with a wave-field, measured 

in watts. The rate per unit area at which radiant energy arrives 

at a surface for a wave-field impinging at normal incidence is 

the power density, a quantity called irradiance in optics [7]. 

The average rate per unlt area at which energy is carried in the 

direction of propagation is, however, commonly called intensity 

[8,9]. In recent times, a mlnor dispute has arisen in the optical 

literature as to which term is more appropriate when describing 

measured quantities, but irradiance will be the term used in the 

present work. 

It lS the variation of this quantity over a region in space, 

ie the irradiance distribution, that is measured when photo­

electric detectors are used. The irradiance is given by the 

squared modulus of the complex amplitude of the wave-field and 

thus irradiance distribution measurements provide detailed 

lnformation on the nature of the wave-field. In measurements of 

wave-fields in the image-space of a lens, the height and width of 

the central blur spot and any associated sidelobes are readily 
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ascertainable, as is the presence and quantity of background 

scatter Ing. Photo-electric methods can be used to provide 

electrical output linearly related to irradiance distributions 

over a range of greater than 10000 to 1, or 40dB. 

The irradiance distribution can be used to evaluate the 

energy encompassed over increasing dIstances from the centre of 

an Image. Encompassed energy curves were introduced in chapter 

fIve, and are more commonly known in the bulk optics of 

rotationally symmetric media as encircled energy curves. 

Encompassed energy curves are often the most useful and easily 

interpreted quality criteria of a fabricated lens. 

Irradiance distr ibution measurements were the tests most 

used to evaluate lens performance in the study reported herein. 

8.4 Comparisons between experiment and theory 

It is well-known that the irradiance pattern at the focal 

plane of an ideal lens can be regarded as a scaled and shifted 

measure of the angular-spectral distribution of the transmittance 

function at the entrance-pupil of the lens [7] (strictly_speaking 

the relevant complex amplitude quanti ties should be conSidered; 

however photo-detectors are insensitive to phase and the pattern 

can only be described in terms of real, measurable quantities 

such as irradiance). To a first approximation, the observed 

patterns reported here depend only on the transmittance function 

of the limiting stop in the system, WhICh may be the aperture of 

the lens itself and which is a purely real rectangular function, 

and the amplitude variation of the incident beam, which is 

usually conSidered Gaussian. In reality, the measured irradiance 

patterns are dependent on many factors includIng the aberrations 

produced by the test lens, the var iable tr ansmi ttance function of 

the input prism and the test lens Itself, and the properties of 

the re-imaging instruments. The net result is a complicated 

mul tiple-convolution integral. '!be truncated G:mssian incident­

field approximation may, however, be used to calculate the 

dIffraction pattern in the ideal case, and the closeness of 
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approach that the real lens makes to this ideal may be taken as a 

measure of its quality. 

The Gaussian varIation in the amplitude of the input optical 

beam may be described by: [10] 

(8.9) 

where the peak amplitude is here normalized to 1, and x is the 

transverse coordInate at the input plane. The phase-front is 

considered to be plane at the entrance-pupil of the lens, ie the 

incident beam waist occurs at the lens entrance. The parameter a 

is the l/e amplitude beam-diameter. Since the irradiance is given 

by: 

I (x) = ! A I 2 (8.10) 

the parameter "a" represents the 1/e2 diameter of the irradiance 

proflle. By taking the one-dimensional Fourier Transform of the 

input amplitude function, the optical amplitude distr ibution in 

the back-focal-plane of an ideal lens is obtained. In 

consequence: 
CD 

I (Xl) = fexp {-4x2 /a2)exp{ -j [(kxl)/f] x}dx 2 

-01) 

= C exp{-2(ak/4f)2X1 2} (8.11) 

where f is the focal length of the lens, k is the free-space 

optical propagation constant and Xl is the transverse coordinate 

in the focal plane. C is a constant related to the total input 

power. 

FAIuation (8.11) leads to a simple relationship between the 

beam-dlameters of the GaUSSian irradiance distributions at the 

mput plane and the focal plane, a and a' respectively: 

(8.12) 
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where Ao is the wavelength of light in free space, arrl n is the 

effective refractive index which the light encounters in the 

waveguide. 

Marom, Chen and Ramer [11] have calculated the effects of 

beam trunc~tion by an aperture with a rectangular transmission 

function. For aperture diameters smaller than the untruncated 

input beam diameter, the values given by expression (8.12) can 

underestImate the dIffraction-limited beam diameter at the focus. 

It is a simple matter to estimate the diffraction-limit in the 

case of uniform illumination of a rectangular aperture of width 

b. A sinc 2 irradiance pattern is observed at the focal plane in 

such a case: 

I(xl) = Sin (lfnbXl~ 
2 

fAo 

(8.13) 

vnbxl 

flo 

The functIon given by equation (8.13) is a one-dimensional 

version of tl1e Airy disc function. '!he 1/e2-diameter, b', of the 

central lobe of this function is related to the aperture diameter 

b by: 

b' = 4.4f~o 

lfnb 

(8.14) 

an expression very similar to the one obtained for untruncated 

GaussIan beams, equation (8.12). '!he spacing d' between the nulls 

of the function IS given by: 

d' = 2f A 0 

nb 

(8.15) 

Equation (8.11) should describe diffraction-limited 

performance when truncation occurs at diameters greater than the 

1/e
2 

irradiance diameter, whereas, for truncation at diameters 
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less than the 1/e2 diameter, equation (8.l3) should predict the 

diffraction-limited performance. 

8.5 ~atus am experimental procedures 

The experimental set-up used to investigate the distribution 

of light in the image-space is shown in Figure [8.6]. The set-up 

differed only slightly for the various other tests. 

A He-Ne gas laser was used as the light-source in all the 

exper iments. 'll1e laser operated at a wavelength of 0.6328um and 

had a power output, typically, of SmW. In order to reduce the 

chances of optical damage in the Ti-LiNb03 waveguide/substrate 

system, a variable optical attenuator was used to reduce the 

output power. 'll1e light was chopped mechanically at a frequency 

of 1kHz before being expanded USing an f/4 spatial fil ter and a 

collimator usually set to give a magnification of 12. Figure 

[8. 7] shows the exparrled beam profile. 'll1e 1/e2 irradiance points 

were separated by 7.2 mm. The lenses were investigated over a 

Wide range of input beam-Widths, the variation in width being 

accomplished by a variable rectangular stop. It was not feaSible 

to vary the degree of expansion and collimation continuously such 

that approximately GaUSSian profiles could be obtained 

throughout. 'Ibe stop was placed as close as possible to the input 

coupling-prism. 'll1e size of the aperture created by the stop, and 

therefore the effective diameter of the beam enter ing the test 

lens, was measured, using a measuring microscope, to an accuracy 

of 10.0 pm. In Hartmann tests, the mask used to generate narrow 

pencil-beams approximating to rays was interposed instead of the 

stop. 

'll1e coupling prism was made of rutile, a uniaxial crystal of 

high refractive irrlex. 'Ibe c-axis of the prism was parallel with 

the c-axis of the LiNb03 substrate (which is also a uniaxial 

crystal) arrl both were perperrlicular to the general direction of 

optical propagation. The result was that the extraordinary 

component of refractive index was used in all relevant 
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calculatlons, TE modes only beil'l3 excited. 

For a properly collimated and aligned beam the input prism 

introduced no aberrations, ie phase-distortions. rrhe prism did, 

however, affect the transmitted amplitude of the beam. The 

COuplll'l3 efficiency of the prism was not constant across the beam 

cross-sectlon because of the variable air-gap between prism and 

waveguide. '!he var iable air-gap ar ises as a result of the screw 

end-shape used to ensure firm contact between the pr ism and the 

wave-guide. The beam-profile was, in consequence, removed from 

being a purely truncated~aussian shape. 

The substrate was placed on a test-j ig that allowed 

continuous, accurate linear translation along three axes and 

rotational movement around two axes. Such a degree of flexibilty 

was required to ensure efficient coupling of the appropriate 

guided-wave modes. A 'Micro-controle' digital read-out was used 

to measure coupling angles to a precision of one-hundredth of a 

degree. 

After the beam had travelled through the test-lens and had 

begun to converge, a chOice of methods was available with which 

to couple the light back out of the waveguide. In cases where the 

focus lay close to, or beyond the edge of, the substrate, the 

edge was finely-polished and edge-coupling thereby facilitated. 

High-power microscope objectives did not have sufficient depth of 

field to 'gain access' to the focal region in cases where the 

focus lay inside the substrate, far from the edge. The substrates 

could then have been sawn and re-polished. However such a 

procedure was conSidered too risky and inaccurate. Another rutile 

pr ism was used lnstead to couple the light out from the 

waveguide. The problem with the output prism was that converging 

rays, in contrast with the parallel rays impinging upon the input 

prism at normal incidence, were refracted considerably by the 

several material interfaces involved. Aberrations were therefore 

introduced which served to distort the beamshape from that 

actually produced by the lens. These aberrations were not 

necessarlly destructive in terms of the quality of the resultant 
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Image. Over-corrected lenses produce marginal rays that 

intercepted the optical axiS at points beyond the paraxial focus. 

The aberrations introduced by a prism are of opposite sign to 

those produced by an over-corrected lens, and thus both sets of 

aberratIons tend to cancel, to a certain extent. For under­

corrected lenses, of course, the addition of prism-related 

aberrations to those already present is destructive. Regardless 

of these pros and cons, the prism effects were considered 

uooesIrable as they reduced the fidelity with which the optical 

characteristics of the test-lens itself could be measured. In 

this context, it should be observed that the ~Nb03/air interface 

at the edge of the substrate also introduces aberrations. These 

aberrations are more easily allowed for, as there is only one 

interface to be taken mto account. 

For Foucault tests a razor-edge was passed through the focal 

plane, either directly through the focus or through are-imaged 

version of It. A Tessar camera lens operating at a relative 

aperture of f/2.8 wi th a focal length of 55.0mm was used as the 

re-imaging lens. 

High-p:>wer Beck or Olympus microscope obj ecti ves were used 

for observing the light irradiance distributions in the focal 

plane. Magnification ratios were typically 20x, 40x or 100x. A 

l2x calIbrated eyepiece was used to measure ray aberrations and 

image widths. More usually, the image was projected at long back­

focal-plane distances to yield magnification factors of between 

l60x and 300x. The magnified images were then scanned using a 

large-area photo-detector, operating in the photo-conductive 

(lInear) mode, which was masked by a 40~m slit. At l60x 

magnification a slit of these dimenSions is theoretically capable 

of resolving 2 lines/JlIll. A motor-driven, variable-speed scanning 

system bUil t in the departmental workshop was used to scan the 

beam. 

The detected signal was amplified by a narrow-band amplifier 

locked to the frequency of the chopper. The Signal was then 

convertee to give a high-resolution logarithmic output, referred 
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to an electrical reference signal generated by the amplifier. The 

linearity of the electrical signal of the detector versus the 

incldent optical signal was checked using Neutral Density 

fllters. A linear range of over 20 dB was available. 

A Hamamatsu digital lmage acquisition system was used 

instead of the custom-buil t scanner in some exper iments. This 

system consisted of a CIOOO camera head and control unit. The 

camera head lncorporated a high-resolution, high-linearity 

Newvicon N4076 vidicon. A Nikon Micro~ikkor f/~8 camera lens of 

focal length 55mm was used. The camera control lIDit incorporated 

line-scan and frame-scan rates that were compatible with computer 

equipment. A maximum of 1024xl024 lines was available, with each 

pixel having 256 possible grey scale levels, corresponding to 

approximately 22dB of optical irradiance. The equipment was 

connected to a Hitachi moni tor. A useful character istic of this 

system was the availability of a Single-line intensity display 

which greatly facili tated the location of the focal waists and 

the polnts of maximum irradiance. The data acquired by the 

Hamamatsu system was down-loaded either directly onto an x-y 

chart recorder or sent to a DEC PDP-II mini-computer for more 

comprehensive analysis. 

A graph of measured video signal intensity against incident 

optical irradiance for the Newvicon vidicon is shown in Figure 

[8.8]. The relationship is extremely linear with a gamma factor 

of nearly unity, but a dc offset is present. 

Barr and Stroud Neutral Density filters were used throughout 

these experiments in order to calibrate measurements accurately. 

8.6 A note on results and discussion 

Contrary to usual practice, discussion of these results will 

follow each sub-section, since it would be impractical to discuss 

all the results obtained for all four lens-systems together. 
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8. 7 Iesul ts am discussion - lens SLl 

8.7.1 Image Irradlance distributions 

Focal plane irradiance patterns were recorded for this lens 

over a wide range of truncated bearnwidths from 0.52mm to 7.lmm. 

These beamwidths correspond to a range of 4.9% to 68% of the 

maximum available aperture, or to stopped-down f-numbers of 

between f/100 am f/7. 

FIgure [8.9] (a) shows a typical focal plane image as 

recorded on a Hitachi TV monitor. The appearance of a broad focal 

line instead of a small circular blur should not gIve rise to 

confusion; it is a consequence of lens SLI focusing outSide the 

substrate. The small dimensIon of the waveguide in the x-y plane 

(perpendicular to the plane of propagation, x-z ) caused the 

light to diverge considerably in this plane. The light levels 

were still sufficiently high to identify the quantities of real 

interest, ie the irradiance variation of the light in the z­

mer idian, corresponding to the vertical direction on the 

photograph. The situation -is analogous to investigating the most 

pertinent properties of a cylindrical lens in bulk optics. Figure 

[8.9] (b) shows the light transmitted through a grating of known 

periodIcity, which was used to calibrate the dimensions of the 

focal image. 

Figure [8.10] shows three representative irradiance 

distributions plotted using a chart-recorder connected to a 

Hamamatsu image-acquisition system. The truncated beam Widths 

were 0.81mm, 3.65mm and 6.01mm for Figure [8.10] (a), (b) and (c) 

respecti vely. The scales in this figure are linear. Theoretical 

{Sinx/x)2 curves having the same 1/e 2 spot-diameters as the 

exper imental curves are also shown. 'll1e theoretical curves serve 

to highlight the experimental sidelobe levels, positions and 

decay rates and degree of sidelobe symmetry. All three 

experimental curves fit the central lobes of the theoretical 

curves well. Figure [8.10] (a) shows that the experimental curve 
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fits the theoretical curve well over the entire scanned range, 

both 1n terms of sidelobe position and 1rradiance. '!be other two 

experimental curves show sidelobes at a generally higher level 

than in the theoretical case. There is a hint of a constant dc­

type level for which the nOise-floor level associated with the 

dark current of the imaging vidicon may be responsible. These 

la-tter curves show increased nOise, probably as a result of an 

increase in scattered light levels associated with larger beam­

w1dths. 

8.7.2 D1Scussion on observed patterns 

Some of the sidelobe positions coincide reasonably well with 

the theoretical positions while others do not. Higher-order 

exper1mental sidelobes tend to be further away from the main lobe 

than expected and a possible reason for this may be the presence 

of pin-cushion distortion somewhere in the re-imaging process. If 

the re-imaging system is faithful in reproduction, however, 

another explanation is available. The presence of irradiance 

nulls where peaks should occur and vice-versa is a phenomenon 

known as contrast-reversal. From the point of view of frequency 

analysis of imaging systems, contrast-reversal is indicative of a 

negative Optical Transfer Function (OTF) for a lens over a 

certain band of spatial frequencies [12]. Contrast-reversal is 

associated purely with the presence of aberrations, notably de­

focus and spherical aberrations in the case of symmetrical 

systems; diffraction-limited systems never display contrast­

reversal. Photographs presented in chapter nine of 'Principles of 

Optics' by Born and Wolf [8] and, strikingly, in the 'Atlas of 

Opt1cal Phenomena' by Cagnet, Francon and Thrierr [13], show 

clearly the effect of contrast reversal associated with varying 

degrees of pr imary spher ical aberration. The higher-order 

sidelobe irradiance levels can be greater than those of lower­

orders if sufficient amounts of aberration are present in the 

system. 

Beyond these quali~:ative observations on contrast-reversal 
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as eVldence of the presence of spherical wave-aberration, little 

can be inferred from the irradiance distributions as to the 

precise shape of the wave-fronts at the exit-pupil of the lens 

which give rise to the distributions. Partly, this is because of 

the difficulty (in current practice) of obtaining information on 

the optical {base. A more fundamental objection exists however. 

It is certainly true that the wave-front aberration function in 

the exit-pupil can be used to predict the irradiance distribution 

at the focal-plane [8]. Such a procedure falls within a domain in 

physics known, in scattering theory, as the 'direct-source class 

of problem'. However the retr ieval of the wave-front from the 

irradiance distribution falls Within a related though opposite 

domain, known in scattering theory as the 'inverse-source class 

of problem'. The very philosophy of this field rests on shaky 

fouooations, as pointed out by Ross et al [14] : 

, ••• the (inverse-source problem) cannot be solved simply 

by applying the deductive process in reverse direction: strictly 

speaklng the inverse problem cannot be solved at all.' 

Notwithstaooing this underlying peSSimism, Ross et al go on 

to expound cheer ily on how to '... approximate the truth by 

stages ••. ' • Approximating the truth for the type of problem 

conSidered here has been carried out by various authors 

[15,16,17]. These authors developed computational algorithms for 

retrieving the source wave-front from irradiance distributions in 

the presence of noise. The algorithms suffer however from 

problems of numerical instability, lack of convergence and non­

uniqueness of solution. No attempt was made to implement them by 

the present author. 

Only bald statements can therefore be made concerning the 

irradiance distributions shown in Figure [aID] : 

(i) the central lobes look reasonable, in that there is a 

good correspondence between the experimental and theoretical 

shapes; 
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(ii) the side-lobes are high but, given a spherical-geometry 

lens, perhaps not unreasonably SOi 

(iIi) the eVidence of contrast-reversal is indIcative of the 

presence (but not the degree) of spherical aberration and/or 

defocus. 

B.7.3 The variation of focal §pot-size with truncation width 

The measured l/e- and 1/e2-diameters of the central lobes of 

the irradiance distributions arising from 21 different truncation 

wIdths of the input beam are presented in Table [all. Several of 

these measurements were made by Mr. A. Bodkin of Marconi 

Research. An input beam-width of 3.65mm gave rise to the smallest 

focal spot-sizes, 5.4~m and 7.9pm for the l/e- and the 1/e2-

diameters respectively. The latter result is only 1.55 times the 

diffractIon-limit, a reasonably good figure. The relative 

aperture of the lens at this beam-Width is f/13.9. 

The results obtained using edge-coupling and prism-coupling 

are distinguished from each other in the table. The diffraction­

limit calculated using equation (B.13) is also shown. 

The results are plotted in Figure [all] • As the beam-Width 

Increases, the measured focal spot-sizes first decrease steadily 

and then broadly level out. A feature of the graph is that the 

prism-coupled results do not follow the general trend of the 

edge-coupled results and give greater estimates for the spot­

sizes. The reason is probably that the output prism produces 

aberrations of its own, as predicted earlier. 

The prism-coupled 1/e2-diameter results were ignored and a 

least-squares fit parabola calculated for the remaining points. 

The parabola, experimental points and the diffraction-limit curve 

are shown together in Figure [B.12]. The parabola is less than 

twice the diffraction-limit over almost the entire range. The 

parabola, diffraction-limit and a gyration-radius curve derived 
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TABLE [8,1] Experimentally-observed focal spot-sizes 
as a function of size of (truncated) 
input beam for lens SLl 

E Indicates result obtained using edge-coupling 

P indicates result obtained using prism-coupling 

Truncated beam- Focal spot-diameter, um Oiffraction-

diameter, mm l/e 1/e2 limit, J..Im 111 

'" 0.52 25.4 36.6 E 35.8 

0.81 16.3 23.0 E 23.0 

~ 1.05 16.1 22.0 E 17.7 

1.13 15.2 27.6 P 16.5 

1.23 14.7 21.0 P 15.1 

¥ 1.27 12.6 19.6 E 14.7 

¥ 1.63 8.3 14.1 E 11.4 

1.77 10.2 17.2 P 10.5 

1.82 7.8 11.5 P 10.2 

'* 1.92 .8-.3 11.4 E 9.7 

~ 2.19 8.0 11.4 E 8.5 

2.49 8.3 13.4 P 7.5 

2.6 8.5 17.4 P 7.2 

>If 2.62 7.7 10.6 E 7.1 
~ 

... 3.09 6.6 9.3 E 6.0 

3.65 5.4 7.9 E 5.1 

4.05 5.7 8.1 E 4.6 

.... 4.45 5.9 9.7 E 4.2 

ft 5.05 6.3 9.1 E 3.7 

6.01 6.5 9.3 E 3.1 

... 7.1 6.1 9.1 E 2.6 

NOTES: (1) diffraction-limit is calculated for a Gaussian beam 
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from ray tracing are plotted together in Figure [B.13]. A 

qualitative reason for choosing a parabolic fit is given below. 

B.7.4 Discussion 

WIth reference to Figure [B.13], it is apparent from theory 

that aberration effects are small at small beam-widths and that 

diffraction effects dominate. Gradually, as the beam-width is 

increased, aberration effects and the diminishing effects of 

dIffractIon tend to balance. At beam-widths approaching the full 

available aperture, aberration effects dominate. It should be 

pointed out that no attempt is made in FIgure [B.13] to quantify 

the relative weight of diffraction and aberration effects. For 

reasons that have long separated physical from geometrical 

optics, it would be unreasonable to do so. A definite minimum 

would be predicted, however, as the lens moves from being 

diffraction-linited to being aberration-lImited. Such behaviour 

was that seen under experimental condItions. 

B.7.5 Depth of focus 

The evolution of the image-plane irradiance profiles through 

the focal region is shown in Figure [~14]. The side-lobe pattern 

on only one side is presented. The other side of the pattern was 

not imaged on the screen because of the large magnification used. 

A truncated input beam-width of 3.65mm was used. 

A dip exists in the centre of the irradiance profile 

recorded at a distance of (f - 235pm) from the lens. The 

irradiance profile recorded at the other extremity, (f + 27~m) , 

exhIbits a flat tofPed central lobe. The minima of the profiles 

are not true nulls. The energy distribution in the Side-lobes, as 

characterised by the relatIve Side-lobe levels, does not falloff 

in a regular manner with increasing side-lobe order. All these 

details indicate that the lens at this aperture suffers from 

spherical aberration. 

The information obtained from these profiles is condensed in 
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F1gure [8.15] • Three curves are shown. The top curve shows the 

fall in peak 1rradiance relative to the peak irradiance at the 

plane of best focus. The middle curve shows the height of the 

first side-lobe relative to the peak irradiance at each image­

plane. The third curve shows the lie-diameter at each image­

plane, normal ized to the lie-diameter at the plane of best focus. 

The asymmetry of the curves 1S, once -again, characteristic of the 

presence of spherical aberration. 

These curves taken together constitute a basis for 

est1mating the depth of focus of the lens at the given aperture, 

and thus the tolerances which may be establlshed on the setting 

of the detector plane. The detector plane could be moved lSO}Jm 

further away from the lens than the best focal plane with only a 

IdB drop in peak irradiance, a IdB increase in nearest side-lobe 

lrradlance and a broadening of the beamwidth by a factor of 1.15. 

8.7.6 Direct measurement of spherical aberration 

A Hartmann test was conducted on lens SLI to measure the 

spherical aberration directly. Both lateral and longitudinal 

components were measured. The results are shown in Figures [8.16] 

and [8.17]. The computed curves obtained using Southwell's method 

(chapter four) are also shown. Theoretical and experimental 

curves are in excellent agreement. 

8.7.7 Acousto-optic resolution tests 

The ability of lens SLI to resolve two parallel beams with 

slightly different incidence angles was tested using the acousto­

optic method. Figure [a18] shows diode-array images in the focal 

-plane obtained after acousto-optic diffraction of a lmm 

truncated beam, for two values of input rf-signal electrical 

power. A re-imag Ing lens was used throlXJhout the acousto-optic 

tests to enable the diode-array to have easy access to the focal 

plane. Using NO fil ters to attenuate the optical beam by fixed 

amounts, the diffracted light Signal falling on a large-area 

photo-detector was fT12asured and compared with rf-signal 
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electrical power. The diffraction efficiency thus obtained was 

found to be 10-11.5%/watt. 

The broad-band diffraction band-shape in the focal plane for 

two settIngs of input optical beam height are shown in Figure 

[8.19]. The differences may be accounted for, possibly, by the 

evolution of the acoustic beam from a Fresnel to a Fraunhofer 

regime, Since "ringing" characteristic of Fresnel diffraction is 

observed in the upper photograph which appears to be absent in 

the lower photograph. A half-power bandwidth of 88MHz was 

observed. 

For the narrow-band resolution test an untruncated, 

unexparrled beam with a 1/e2-diameter of approximately 2.0mm was 

used. Figure [8.20] shows an achieved resolution of 2MHz at a 

centre frequency of 746MHz. A re-imaging lens had been used to 

allow a 'Reticon' fbotodetector array to access the signals. The 

magnification factor of the re-imaging system was optimised to 

allow the separate diffracted signals to be detected on the 

array. Each element of the array has an 'active' region 15 pm 

Wide, and adjoining elements are separated by a 'dead-band' 10 Jlm 
wide. Sparrow's -criterion [18] was invoked in this experiment. 

The cr iter ion states that if it is possible to detect the 

presence of two Signals, Without necessarily observing a dip 

between them (as Rayleigh's criterion requires), then the two 

signals are resolved. 

8.7.8 Discussion on achieved resolution 

The assumption is made that the re-imaging lens does not 

improve the angular resolution, since it would be expected that 

two diffracted signals which were not resolved in the front-focal 

plane of a lens would remain lIDresol ved in the back-focal plane. 

Furthermore, the following calculations are for propagation 

wholly In the substrate, for convenience. While such was not the 

case, the numbers serve to illustrate the quantities involved. 

The achieved resolution of 2MHz in the acousto-optic tests 
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corresponds to an achieved angular resolution in the substrate 

medium of 0.173mrad using the formula given in reference [6]: 

(&16) 

where ~fs is the smallest resolved acoustic frequency, n is the 

effective refractive index encountered by the guided optical 

wave, ). is the free-space wavelength, and vr is the velocity of 

the surface-acoustic wave. n = 2.21, vr = 34BBm/s am ). = 0.632B 

pm were used to calculate the angular resolution. When multiplied 

by the focal length (f=50.9mm), the angular resolution 

corresponds to a separation between the spots ar ising from the 

two acoustic signals of &79 )lIn. Now the claSSical criterion for 

resolution, given by Lord Rayleigh [B], is: 

Separation = 0.B2 ~ 

NA 

(B.l 7) 

for coherent illumination, where NA = nD/2f 1S the approximate 

value of the numerical aperture calculated using the effective 

beam-diameter D, Wh1Ch in the experiment was 2.0mm. Inserting the 

appropriate values in (&17) gives a smallest separable interval 

of l2.6pm. Thus a resolution better than the Rayleigh limit was 

apparently achieved. In reality, the Rayleigh 'limit' is not a 

true limit at all, and the scale factor of 0.B2 is somewhat 

arbitrary, depending on the actual form of the input optical 

signal. The signals were not resolved according to Rayleigh's 

criterion since no dip was observed between them. Sparrow's 

criterion may be invoked instead. The reason for this chOice is 

that adjacent, d1screte detector elements in an array were used 

in the exper1ment to pick up the diffracted optical signals. 

Clearly, no 'dip' could be observed in such a case. The minimum 

resolvable interval according to the Sparrow cr1terion is: 

Separation = 0.5) 

NA 

lB9 

(B.lB) 



FIG 

[8,19 ] 

I 
684 MHz 848 MHz 

~f = 88MHz 
3dB 

(0) 

I 
6BB MHz 

~f =68MHz 
(b) 3d8 

A/O diffraction bandshape w i t h 

(0 ) 1mm opt i cal beam , travNs i ng 

cen tr e of lens 

(b ) beam 1mm further away from ransdu c N 



(0) (b) 

(e) 

FIG Re solution of signals 2 MH z apart by rOSA 

[B,20] 

(0 ) ingle sia no.l 

(b) 2rd 51gnal 'ntrodueed , 15 t signal unaHKted 

te) p'ec tr lco l sp c tru of ~h two ' (;0 ,5 



which is 7.29pm in this, the present case. The experimental 

resolution was, therefore, only just above the theoretical 

minimum, indicating that near-diffraction limited performance is 

possible using spherical geodesic lenses, albeit at considerably 

restricted relative apertures. 

The above result was obtained at optimum acoustic 

frequencies. At other frequencies the resolution of the system 

decreased considerably, so that the diffracted signals were 

spread over several detector pixels at the same system 

magnification as used above. Proper broad-band characterisation 

of the device has not yet been carried out, although the device 

is equipped with SAW transducers which should allow broad-band 

operation. 

8.8 Overlay lens ILl 

8.8.1 Resul ts 

A photograph showing two pencils of light 

entering lens LLl, leaving the lens am intersecting at an axial 
wa~ ob-taitUd 

point." The light levels in the experIment were very low except at 

the entrance and exit surfaces of the lens, where a great deal of 

light was scattered out of the plane of the waveguide due, 

probably, to the fairly abrupt interface that existed between the 

over layer and the ambient waveguide. 

Lens LLl was 4.25mm in diameter. The two light pencils in 

the photograph were separated by 2.0mm at the entrance to the 

lens, and each pencil had a diameter of ~25mm. The intersection 

point of the two pencils along the optical axis was 6.4mm from 

the centre of the lens. A bright, diffuse glow w~sevident in the 

photograph at this point. The lens operat<2.a at an f­

number of f/3.2 • A true Luneburg lens having the same diameter 

and thIckness at the centre as the fab' __ icated lens would have 
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focused at 8.5mrn. '!he lens, therefore, intrcx:1uc ad a negative 

lOngItudinal component of spherical aberration of 2.1mrn • 

Light pencils spaced more than 2.5mrn apart did not propagate 

through the lens to the focus, probably due to the small angles 

of incidence with the lens at the margins. When a beam of light 

was used, rather than two narrow pencils, the focal region became 

a very diffuse patch, extending to several tenths of mm in the 

transverse dIrection and between one and two mm in the direction 

of propagation. This observation suggested that the paraxial 

portIon of the beam was focusing at further distances than the 

marginal portions. The spotsizes prcx:1uced by this lens and other 

ovarlay lenses were so large that they were not considered 

worth measuring in detail. 

8.8.2 DiSCUSSIon 

The observed behaviour of lens LLI was very similar to that 

predicted by the ray-tracing analysis presented in chapter four 

for the 'best-obtainable' approximation to the true Luneburg 

lens. The actual fabricated profile differed from the best 

approximation and the true illneburg lens in that it was thicker 

than both over most of the profile. The fabricated lens would be 

expected to be under-corrected with respect to the true lens, in 

similar fashion to the best approximation, only more so. Such was 

the case. The focal length of the best approximation was 

predicted to be smaller than that of the true Luneburg lens in 

the ratio 3.2/4.0, or 0.8 • In the case just examined, the ratio 

of the measured focal length to the desired focal length was 

6.4/8.5 or 0.75 • Furthermore, the paraxial rays also behaved as 

predicted in chapter four. 

'!he results, whilst expected, were disappointing, for As??3 

IS one of the few high-index materials available for use with 

LiNb03• 
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8. 9 Geodesic lens GLl 

8.9.1 Photographs of Irradiance patterns 

A photograph of the focal-plane image irradiance of lens 

GLl, a theoretically perfect geodesic lens of aspheric design, is 

shown under conditions of under-development, normal-development 

and over-development in FIgure [8.22] (b), (a) and Figure [8.23] 

respectively. The photograph was obtained by G.F. O:>ughty and is 

represented as FIgure [7.17] on page 222 of reference [19]. 

Showing the irradiance pattern at the focus under different 

conditions of development of the photograph serves to highlight 

dIfferent aspects of the image, from the well-represented central 

lobe in the under-developed case, to well-represented sidelobe 

structure in the over-developed case. 

An expanded Gaussian beam having a 1/e2-diameter of 4.0mm 

was truncated at a diameter of 3.0mm and used as the incident 

beam on the lens. The beam was coupled into and out of the 

waveguide using rutile prisms. The sidelobes arising as a result 

of truncation were very prominent, as seen in Figure [8.23]. 

USIng equation (8.14), the Width between the nulls of the image 

in the diffraction-limited case would have been 3.54 pm. The 

experimental value, measured with a calibrated microscope, was 

5.0 pm + 0.5 pm. 

8.9.2 A computer-acquired image 

A G3usslan beam having a 1/e2-diameter of 2.1 mm was coupled 

to the waveguide and lens GLI using a rutile prism. The beam had 

not been truncated outside the waveguide. Instead of coupling the 

light out of the waveguide with a prism after it had passed 

through GLl, the beam was allowed to propagate to the polished 

edge at the end of the substrate. The irradiance profile at the 

edge was then projected onto a Newvicon vidicon and recorded by 

the Hammamatsu image-acquisition system. A contour map of the 

image i~ shown in Figure [8.24] (a) • A br ight centr al spot is 
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evident, together with a considerable amount of sidelobe 

structure. The presence of sidelobes indicated that the input 

beam had not remained Gaussian, although the width of the beam at 

the input was considerably smaller than the limiting apertures of 

the input prism am the lens itself. 

A line-scan of the irradiance across the range of peaks of 

Figure [8.24] (a) is shown in part (b) of the same Figure. The 

spatial scale 1S slightly reduced. The 1/e2-diameterof the 

centr al lobe is 7.9 urn and the width bet ween the nulls is 

approximately 11.0 pm. USing equations (8.14) and (8.15), the 

corresponding theoretical widths for a uniformly-illuminated 

aperture are 3.54 pm and 5.1 pm respectively. The sidelobes are 

seen to be very high, with one sidelObe only 7 dB below the peak 

value. 'lhe sidelobes are also asymmetric and exhibit an 1rregular 

decay. Clearly, the lens introduced amplitude- and/or phase­

d1stort10ns into the propagating wave-field. These could be 

attributed to in-plane scattering, position-dependent curvature 

and leaky-mode loss or non-uniformity of the waveguide over the 

lens region. 

8.9.3 Direct measurernents- of the irradiance profiles 

The experimental set-up shown in Figure [8.6] was used to 

obtain further measurements at a Wider range of beam apertures. 

An expanded Gaussian beam having a 1/e2-diameter of 7.2mm was 

used. Irrad1ance profiles measured at the edge of the substrate 

for truncated beamwidths of 0.47 mm, 1.02 mm, 1.86 mm, 2.78 mm, 

3.16 rom, 3.22 rom, 4.18 rom and 6.97 rom are shown in Figure [8.25], 

parts (a) to (h) respectively. Also plotted on these graphs are 

sinc2 curves having the same 1/e2-diameter as the exper imental 

curves. The sinc2 curves are, therefore, not the diffraction­

limited curves. The sinc 2 curves are presented solely to 

highlight aspects of the sidelobe structure. A reasonable 

justification for this procedure is that the aperture external to 

the wavegu1de may not be the limiting aperture. If either the 

coupling prism or the lens itself has a transmission function 

with a width effectively smaller than the limiting aperture, the 
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diffraction pattern at the focus would be broadened accordingly. 

The coupl ing pr ism, in particular, is unl i kely to have a step 

transmission function. 

Some observations may be made about the measured irradiance 

profiles: 

(i) they are all asymmetr ical wi th respect to the central 

spot, with the sidelobes on the left of the patterns, as drawn, 

belng higher than those on the right, in general. Such asymmetry 

may arise from: 

(a) local scattering defects in the vicinity of the 

focal region, either in the planar waveguide, or at the end-face; 

(b) a deviation of the input beam from axial incidence, 

in which case the asymmetry could indicate the presence of coma; 

(c) an asymmetrical titanium evaporation at the 

waveguide formation stage. 

(ii) The sidelobe structure is not well-ordered in that a 

regular decay is not exhibited, indicating that phase-distortions 

were lmposed on the optical field; 

(iii) the sidelobe structure varies quite dramatically with 

aperture Width, as illustrated in the following Table. The 

varlation of sidelobe height as a function of aperture Width 

appears to be fairly random and asymmetric. 
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Aperture Width,rnrn Left Sidelobe,ci3 Right Sidelobe,dB 

0.47 -9.2 -7.9 

L02 -10.5 -11. 7 

1.86 -14.9 -19.4 

2. 78 -12.4 -16.8 

3.16 -10.5 -6.7 

3.22 -14.0 -21.6 

4.18 -9.2 -5.7 

6.97 -13.0 -6.7 

TABLE [8.2] Height of fIrst sidelobes in Figure [8.25] (a)-

(h) 

(iv) At an input aperture of 1.86 mm, the lens exhibits 

diffraction-limited performance, both in terms of central 

spotsize, and crljoining sidelobe height. '!he effective f-number 

at this aperture is approximately f/lO. 

The variation of the half-power spot-diameter, the l/e­

diameter and the 1/e2-diameter is shown in Table [8.3] and 

plotted in Figure [8.26]. At f/lO, these spot-sizes are 1.9 pm, 

2.9 ,urn and 3.8 pm respectively. At an input bearnwidth of 3.22 mm, 

corresponding to f/5.75, the 1/e2-diameter is 4.2 pm, twice the 

diffraction-limited value. As with the sidelobe structure, the 

variation in spotsize with input aperture Width follows an 

irregular development, as seen in Figure [&27], where the 1/e2-

diameter results, a parabolic least-squares fit and the 

diffraction-limited curve are plotted together. Clearly, a 

parabolic fit to the experimental data is not a good 

representation of spotsize behaviour. 

8.10 Substrate GL2 

The substrate GL2 supported two geodesic lenses intended to 

approximate closely the perfect profiles. As was shown in Figure 

[8.2], the end-polishing process had reduced the distances 

between the centres of the lenses am the ems of the substrates 

to 18.47 rnrn and 1&32 m:;t for lenses designated GL2(a) and GL2 (b) 
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TABLE [8,3) Experimentally-observed focal spot-sizes 

Truncated beam-

diameter, mm 

0.47 

1.02 

1.86 

2.78 

3.16 

3.22 

4.18 

6.97 

as a function of size of (truncated) input b~ 
for lens GLl 

Focal spot-diameter, ,um Diffraction-

-3 dB 1/e 1/e2 limit, }Jm (1) 

3.4 4.7 8.1 14.4 

2.8 3.4 6.4 6.6 

1.9 2.9 3.8 3.6 

1.7 3.6 5.1 2.4 

1.9 2.4 5.1 2.1 
'-

1.9 2.3 4.2 2.1 

2.9 3.3 6.2 1.6 

2.1 2.8 6.0 1.0 

NOTES: (1) diffraction-limit is calculated for a Gaussian beam 
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respectively. The design focal length was 18.5 mm. '!he substrate 

is shown under test in Figure [8.28] . 

A substrate of this type, supporting two geodesic lenses, 

was investigated in chapter seven of this thesis In an 

investigation into the uniformity of depth likely to be obtained 

in the waveguide • One of the conclusions of that chapter was 

that under certain circumstances, the waveguide in the lens 

reg ions could fall below cut-off if the waveguide in the planar 

region was not far into the single-mode regime. The conclusion 

was confirmed in studying GL2. A layer of ti tanium, 230 A thick 

at the centre of the substrate, was deposited from a distance of 

220 rom. '!he metal was dIffused into the substrate for 10 hours in 

a wet argon atmosphere at 10000e, followed by cooling in a wet 

oxygen atmosphere. '!he waveguide formed on the planar reg ion of 

the substrate supported one TE mode only, with an effective 

refractive index of 2.206 measured using prism-coupling 

techniques. The lenses were tested and found to transmit over 

most of theIr apertures, except for 1 rom bands in the centres. A 

further layer of titanium, 100 A thick at the centre of the 

substrate, was consequently deposited and diffused into the 

substrate. The waveguide in the planar region was then foum to 

support two TE modes, with effectIve indices of 2.212 and 2.207. 

The lenses were now found to transmit guided light for the 

lowest-order mode, though the other mode failed to pr op:lg ate. '!he 

shape of the transmission function of the lenses was not 

measured. Such a measurement would be useful and would best be 

carried out by sawing am polishing an em face close to a lens, 

to prevent focusIng, planar wavegUide propagation loss and 

diffraction from contributing to any irradiance changes. Ideally, 

the lens would be uniformly illuminated at the input (the 

entrance pupil). However, neither prism-coupling nor end-fire 

coupling is capable of doing this. 

An irradiance profile, measured at the best focal distance, 

as estimated by the eye through a microscope, is shown in Figure 

[8.29]. The incident field was an untruncated gaussian WIth a 

1/e2 be'"'m-diameter of 3.74 mm. The focus occurred at 18.75 mm, 
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Figure [8 ,28) Tw o - len s sy ste m mounted 

for optical testing 
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although focusing in air should have reduced the focal length 

below 18.5 mm. 'Ibis poSSibly indicates that an objective 

assessment of the best focus is not possible with the human eye 

and that measurements of the irradiance p:3.tterns over the focal 

vol ume are always required. At the time the ir r ad iance prof ile 

was obtaIned, the substrate dimensions had not been taken, and so 

focal volume irradiance profiles were not obtained. 

The half-power width of the measured field was 6.1 urn and 

the 1/e2-diameter was 14.3 pm. The diffraction limit for the lens 

for an incident field having a diameter of 3.74 mm is 1. 8 pm, so 

that the measured irradiance profile was not diffraction-limited, 

possibly OWIng to a measurement at a distance beyond the true 

focus. It is apparent from the Figure that the field is quite 

smoothly shaped, displaying little scattering noise and sidelobes 

at less than 20 dB below the central peak. 

The other lens on the substrate, GL2(b), dIsplayed 

considerably degraded optical performance, as shown in Figure 

[8.30]. The irradiance profile at the estimated best-focus is 

shown. '!be inCIdent field was a Gaussian having a 1/e2-diameter 

of 7.2 mm, truncated at 3.17 mm. The half-power Width of the­

field shown in the Figure is less than 5 pm WIde. The 1/e2-

dIameter is 17 pm, however, and a great deal of scatter is in 

eVIdence. 

8.11 Focal length of lens SLl 

In chapter five, the beam propagation method (BPM) was 

employed to calculate the optical field in the vicinity of the 

focus of diffraction-limited geodesic lenses. An important result 

of that chapter was that a shift of the focus occurred from the 

focal length predicted by geometrical optics. '!he shift occurred 

in a negative direction, ie towards the lens. 'Ibis shift was also 

observed WIth a spherical geodesic lens having a toroidal edge­

rounding region, a lens expected to produce posi tive spher ical 

aberratIon. In chapter five it was speculated that the negative 

defocus that is observed using a wave-optics analysis SUGh as the 
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BPM would compensate, to a degree, for the spherical aberrations 

predicted by the purely geometrical theory. 

Experimental eVidence appears to confirm that such 

aberration compensation occurs. Flgure [8.31] shows measured 

estimates of the focal length of lens SLI as a function of 

aperture width. '!he field incident on the variable aperture was 

approximately Gaussian, with a 1/e2 diameter of 10.0 mm • Two 

geometr ical curves are also shown in Figure [8.31], calculated 

from ray-tracing. One geometrical curve was calculated with a ray 

manlfold that had a Gaussian weighting and truncation imposed 

upon it, to simulate experimental conditions. The other 

geometr ical curve was calculated with a uniform we ighting. In 

both cases, the geometr ical 'focal length' for a given aperture 

Width was found by locating the point of least geometrical 

confusion. The difference between the geometrical focal length 

and the paraxial focus is a defocus arising from spherical 

aberration. To illustrate the amount of defocus that could be 

expected, the uniformly weighted ray-trace indicates that a 

positive defocus of up to 12 mm could be expected for an aperture 

Width of 7.5 mm. The Gaussian weighted curve indicates that a 

defocus of 7.0 mm could be expected for the- same aperture width. 

The experimental results show that the amount of defocus 

actually observed was much less than predicted by geometr ical 

optics. A least-squares parabola, which is a reasonably good fit 

is drawn through the exper imental points. At an aperture of 7.5 

mm the amount of defocus, read off the fitted curve, is only 2. 2 

mm. The evidence is that factors are present which compensate for 

the destructive geometrlcal effects. Doughty [19] postulated that 

a variable transmission function could reduce the amount of 

defocus, a conclusion borne out by the differences between the 

uniformly-welghted and the Gaussian-weighted ray-trace curves. 

The experimental data of Figure [8.31] is evidence that a 

tendency towards a negative focal shift, which only appears in 

optical propagation models based on a field analYSiS, 

counterbalances the effects of positive spherical aberration. The 

optical performance of a spherical geodesic lens with edge-
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rourrlill3 is, therefore, better than might be expected from purely 

geometr ical conslder ations. 

8.12 Conclusions 

Several types of inhomogeneous lens fabricated on LiNb0
3 

substrates have been characterisErl in terms of observErl optical 

performance. '!he lenses conslsted of : 

(a) a spher ical geodesic lens having a toroidal edge­
roundlllg region; 

(b) an overlay lens made from arsenic trisulphide, which was 

a fabricated approximation to a perfect Luneburg lens; 

(c) an aspheric geodesic lens fabrlcated as closely as 

poSSible to a theoretically perfect design; 

(d) a complementary pair of aspheric geodesic lenses of 

perfect design, supported on a single substrate. 

The spherical- geodesic lens exhibited good optical 

properties that resulted in an ability to discriminate between 

two acousto-optically diffracted signals separated by 2 MHz at a 

centre frequeny of 746 MHz. The optical properties of this lens 

have been explained by postulatlng a balance between the positive 

spherical aberration introduced by the lens and the tendency 

towards negative defocus that is known to occur in lenses at 

small angular apertures. 

'!he overlay lens exhibited poor optical performance, as had 

been predicted by ray-traCing techniques in chapter four. 

Negative spherical aberration was observed which resulted in a 

negative defocus of nearly 25%, in comparison with a theoretical 

value of 20%. '!he discrepancy was related to differences between 

the calculated approximate profile investigated in chapter four 

and the actual fabricated profile shown in chapter seven. 
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The single aspheric geodesic lens yielded diffraction­

lImited performance at a relative aperture of f/IO • At wider 

apertures the lens exhibited degraded optical performance. 

The width of the focal spot became several times the value of the 

dIffraction limit, and sidelobe levels became high. 

The geodesic lens pair on a single substrate exhibited 

different optical characteristics. One lens produced a smooth 

focal field, albeit Wider than the diffraction-limited case. The 

other lens exhibi ted a severely degraded focal field, probably 

due to the presence of local scatterers In the vicinity of the 

focus, either in the waveguide itself or at the polished end-face 

of the waveguide. 
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ClUPTER NINE 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 



CDCImICR> AND ~CR> FOR FUl'ORE t«EK -- -----~-

9.1 ReV1ew of thesis 

The goals of this work were: 

(i) to fabr icate integrated optical umeburg lenses of 
the overlay type; 

(ii) to characterise, experimentally, already­

fabricated integrated optical geodesic lenses; 

(Iii) to implement and test computer models of optical 

propagation through integrated optical inhomogeneous lenses, of 

which geodesic and Luneburg lenses are special cases. The models 

were (a) geometrical optical, based on ray-tracing techniques and 

(b) wave optical, based on the recently developed beam 

propagation method (BPM). 

All of the above goals have been met, with varying degrees 
of success. 

Chapter one, the introduction to the theSiS, has attempted 

to show that integrated optical components, and lenses 

partIcularly, could playa key role in the optical processing 

revolution which is widely predicted. In chapter two, the 

historical development of inhomogeneous lenses has been reviewed. 

Inhomogeneous lenses have been known, for some decades, to offer 

the possibility of achieving near-perfect optical performance. As 

has often been the case in integrated optics, many useful 

developments were initiated at microwave frequencies. 

The design principles and theory of inhomogeneous lenses 

have been presented. Luneburg lens refractive index profiles and 
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thin-film overlay thickness profiles which provide the required 

refractive index variation, through the dispersion of the 

effective propagation constant with thickness, have been 

computed. The lens material was arsenic trisulphide (As 2S3), a 

high refractive index material supported on a lithium niobate 

(LiNb03) substrate on the surface of which a titanium-diffused 

waveguide was the ambient guiding medium. Tolerances have been 

established which relate the sensitivity of lens focal-lengths to 

overlay-film thickness variations. It is found that lenses having 

large f-numbers are extremely sensitive to film thickness 

variations. Lenses having f-numbers as low as fll, on the other 

hand, dIsplay thickness profiles that are not likely to be 

realizable using simple fabr ication techniques. A goal of 

fabricating an f/2 lens is a reasonable choice, given these 

conditions. 

A theory of integrated optical geodesic lenses has been 

presented which is used to design lenses having an inner focusing 

region and an outer edge-rounding region bridging the inner 

reg ion am the ambient waveguide. The comtx>si te lens is capable 

of perfect focusing, theoretically, within the usable inner 

aperture. Lenses that have been fabricated by Dr. G.F. Doughty 

and co-workers at the Department of Electronics and Electrical 

EngineerIng at the univerSIty of Glasgow have a full aperture f­

number of fll. 85, of which only a relative aperture of f/2.5 is 

usable. 

A simple geodesic lens has also been fabricated which has a 

spherical inner focusing region and a torOidal outer edge­

roundIng region. This lens has a full-aperture f-number of 

f/4.98, of which only a relative aperture of fila or greater is 

usable, due to the aberrations introduced by the spherical 

geometry. 

The vacuum enVIronment to be used for.fabricating thin-film 

overlay lenses has been investIgated in chapter three. Simple 

models of the spatial flux properties of evaporation sources, 

includIng the well-known Knudsen model, have been presented in 
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this chapter. The variation of the thickness of a thin film 

deposited on a planar substrate, held above a small Knudsen 

source, has been computed am compared with deSired lens profiles 

for several source-to-substrate distances. The distances required 

to produce significant variation are small, of the order of a few 

mIllimetres. Furthermore, the variations do not correspond very 

well with the required profiles. However, the actual source used 

In fabrication is not small and, consequently, substantIally 

modified evaporant flux profiles are expected. Reports in the 

publ ished literature have also demonstrated that 'blocking', or 

'shadow' masks interposed between source and substrate can be 

used to control the evaporant flux properties and, consequently, 

the deposited film profiles. 

A computer model, incorporating a source of cylindrical 

geometry and a single infinitely-thin mask with a circular 

opening, has been developed which is used to predict the 

dIstrIbution of deposited material on a planar substrate. The 

geometry of the source IS held fixed at the dimensions of the 

experimental source. The radius of the mask opening and the 

placement dIstances of the mask, relative to source and 

substrate, are used as variables in the search for the best 

profIles. The 'best profile' is found by minimising the least~ 

squares deviation of the deposited profile from the required 

Luneburg lens. The approximate profiles obtained differ from the 

deSired profiles in that the central regions are flat-topped, and 

curve steeply at the edges. Optical aberrations were expected to 

occur, together wi th high scatter ing losses at the edge of the 

lenses. 

AlgorIthms for tracing rays through geodesic and overlay 

lenses have been given in chapter four. These algorithms were 

published by W.H. Southwell and have been implemented, with 

modifications, by the present author and J. van der Donk and P. 

Lagasse of the University of Gent, Belgium. 

Comparisons between ray-traces through the conceptually 

perfect f/2 Luneburg lens and the best approximate profile 
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obtained using the method discussed in chapter three have 

revealed that the approximate profile does indeed give rise to 

spherical aberration. The effective focal length is reduced by 

20% with respect to the design focal length, at half-full 

aperture. Rays outside the half-aperture are deflected at very 

large angles with respect to the axis of optical propagation, as 

a result of the steepness of the profile edges. 

Comparisons between ray-traces through the theoretical 

aspher ic geodesic lens and two achievable approximations have 

revealed that small spherIcal aberrations occur which oscillate 

rapidly as a function of the ray position in the aperture. The 

aberrations, being small, are unlikely to degrade the optical 

field significantly. Furthermore, the perturbations of the lens 

profile which gIve rise to the aberrations are expected to be 

greatly reduced by polishing. 

Ray-traces through the spherical geodesic lens with a 

rounded edge have indicated that the lens performance is 

significantly degraded by spherical aberration at wide apertures. 

Near full-aperture, a positive defocus of nearly 40% is required 

to locate the point of least confUSion. 

The geometr ical optics techniques used in chapter four are 

Insufficient to describe fully optical propagation through 

inhomogeneous lenses, since diffraction effects can not be 

modelled. In chapter five, a numerical method for propagating 

optical wave-fields through inhomogeneous lenses has been 

Introduced. The method is known as the beam-propagation method 

~PM) and relies heavily on the techniques of Fourier optics. The 

theory and practical implementation of the technique has been 

discussed in chapter five. The technique had been implemented by 

J. van der Donk and P. Lagasse, but had not been extensively 

tested. The BPM software was made available to, and modified by, 

the present author. 

ObtainIng correct results under dIffraction-limited 

condl tions represented a rigorous test of the capabili ties of 

207 



the BPM. The aspheric geodesic lens of theoretically perfect 

design presented in chapter two has been used to evaluate these 

capabilities. The software has been modified to give detailed 

information about the amplitude of the field in the region of the 

focus. The method has yielded generally excellent results, for a 

variety of incident field conditions. The amplitude and energy 

dlstrlbutlons closely resemble the claSSical results published in 

the literature and the striking differences between the focal 

fields arising from uniformly illuminated apertures and 

truncated-Gaussian illumination have been highlighted. 

A negative focal-shift has been observed with the BPM that 

has also been predicted by other recently-published diffraction 

analyses. The focal-shift obtained was comparable in magnitude to 

the published values. The focal-length of a spherical geodesic 

lens having a rounded-edge was shown to be less than that 

predicted by raytracing at a limited aperture. It is speculated 

that the tendency of the focus to move towards the lens will 

compensate, to an extent, for the positive geometrical 

aberrations of the spherical geodesic lens having a rounded edge. 

In chapter six, the fabrication of planar waveguides and 

overlay lenses has-been discussed. The properties of lithium 

niobate, titanium-dlffused waveguides and arsenic trisulphide 

have been reviewed. Arsenic trisulphide films are known to 

benefit from irreversible annealing, in terms of optical and 

mechanical stability. A reverSible annealing process has been 

reported which could allow for post-fabrication modification of 

arsenic trisulphide waveguide properties. 

Fabricated titanium-diffused waveguides have performed well, 

Wlth low in-plane scattering. In contrast, planar waveguides of 

arsenic trisulphide have performed quite poorly, exhibiting high 

levels of loss and in-plane scatter. 

It has been found that accurate control of the evaporation 

process used for fabricatlng arseniC trisulphide overlay lenses 

is lmpossible, due to the very small distances required for 
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achieving good profile approximations. Nevertheless, a measured 

lens proflle has been presented which comes close to the deSired 

profile. An alternative technique for the fabrication of overlay 
lenses has been proposed. 

In chapter seven, the problems of achieving good uniformity 

of titanium-diffused waveguides over geodesic lens surfaces have 

been discussed. It has been shown that a simple Knudsen source 

will yield a very uneven film of deposited titanium, which will 

lnfluence the dlffused waveguide in similar fashion. The degree 

of non-uniformity is especially severe for the highly-curved 

aspherlcal geodesic lenses. It is postulated that such non­

unlformity will affect the performance of these lenses adversely, 

influencing both the amplitude transmission properties and the 

phase-transformation properties. 

The optical properties of fabr icated lenses have been 

reported in chapter eight. A single thin-film overlay lens 

approxlmation to a Luneburg lens, a spherical geodesic lens with 

a rounded edge, a single aspheric geodesic lens, and an aspheric 

geodesic lens pair have been reported upon. The thin-film lens 
-

performs as predicted by ray-tracing, ie a negative defocus 

- arising from spherical aberratlon occurrs. The spherical geodesic 

lens performs surprisingly well, and is able to discriminate 

successfully between two closely-spaced acousto-optically­

diffracted signals. The focal-length of the lens varies much less 

as a functlon of aperture than is predicted by ray-tracing, in 

confirmation of a postulate arising from the BPM wave-optics 

analysis. 

The single aspheric geodesic lens yields diffraction-limited 

performance at a relative aperture of f/lO. At lower relative 

apertures the focal spot-size remains approximately constant. The 

sidelobe levels, however, are generally rather high and 

asymmetrical, possibly indicating an asymmetrical deposition of 

titanium before waveguide fabrication. The complementary palr of 

aspheric geodesic lenses exhibits different levels of optical 

performance, but both lenses perform significantly worse than the 
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single lens, which may be a further indication that wavegu1de 

un1formity 1S an important problem. 

9.2 Conclusions on overlay Wneburg lenses 

The overlay thin-film lenses perform poorly for the 
following reasons: 

(a) the choice of As'J?3 as the overlay material, dictated by 

its high refractive index with respect to titanium-diffused 

LiNb03, necessarily lowers expectation in other respects, 

notably in terms of in-plane scattering loss, absorption loss, 

mechanical and optical stability, 

(b) the need to improve the stability of the films by 

annealing, therefore raising the refractive index from the as­

evaporated state to a value close to the bulk state, shifts the 

curves of focal-length sensitivity to film thickness changes to 

regions of very low f-number. Unfortunately, the regions of low 

f-number are just the regions where the overall lens profiles are 

most difficult to manufacture using simple techniques; 

(c) the profiles require very short source-to-substrate and 

source-to-mask distances, as calculated by the shadow-masking 

model. Such distances preclude good control or on-line measurment 

of fabricated films; 

(d) the steep edges of the approximate profiles lead to 

extremely high values of scatter at the ambient wavegUide/lens 

interface, leading to very large throughput losses. 

9.3 RecaIIlemations for future work on overlay lenses 

Several recommendations can be made that would lead to much 

improved overlay Luneburg lens performance: 

(i) the optical problems associated with As 2S3 would be 
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alleviated by operating at a longer wave-length, in the near 

infra-red. '!he losses associated with scatter ing and absorption 

would decrease. The optical characteristics of the lenses at 

infra-red wavelengths, however, beIng Invisible to the eye are 
more dIfficult to assess. 

(ii) Following the success of Busch and co-workers with 

unannealed films (see chapter two for reference), annealing 

should be eliminated thereby reducing the refractive index 

dIfference between the lens and the surrounding waveguide. Such a 

reduction decreases the sensitivity of the focal length to 

changes in film thickness at larger f-numbers where the profiles 

will be flatter and, consequently, much easier to fabricate. 

However, a discontinuation of the annealing process raises 

questions about the long-term stability of the lenses. Other 

materials having a slightly lower refractive index than As 2S3 
could also be investigated. 

(IIi) Alternatively, if annealed films are necessary, the 

effective refractive index of the surrounding waveguide should be 

raised. This could be done by using As 2S3 itself as the ambient 

waveguide material. However, the other problems already mentioned 

would work against such a solution. A more exciting approach 

would be to use the constantly improving waveguIde technology of 

proton-exchange which allows well-controlled refractive index 

changes of up to 0.12 at visible wavelengths. 

(iv) Profiles based on the dispersion of the effective 

propagation constant of TM modes, rather than TE modes, tend to 

be flatter and are therefore relatively easier to fabricate as 

has been shown by Busch and co~orkers. 

(v) Sputtering techniques, which generally involve much 

larger source areas than evaporation techniques, would allow 

shadow-masking models with a larger 'choice' of regions to 

selectively block off from the substrate. A much-improved profile 

fi t would result. 
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(vi) '!he dimensions of the cylindr ical source in the shadow­

masklng model used here were held constant during the computer 

search for a close-fit profile. It would be useful to allow these 

dlmensions to vary to see whether closer fits could be obtained. 

(vii) A more sophisticated shape of mask than that used in 

the present work has been reported by Yao and co-workers, and 

also by Hatakoshl arrl co-workers (see chapter two). 'Ibese masks 

repay the costs of development and fabrication because, once the 

mask is fabricated, the fabrication of lenses becomes both cheap 

and reproducible. 

(vlii) The computer-controlled, motor-driven lris method 

proposed in chapter six would be extremely interesting once set­

up, since changes to the technique would be programmable. 

(ix) Finally, a theoretical investigation of Luneburg lens 

profiles that did not possess abrupt transitions between the 

surrounding waveguide and the lens would repay investigation. 

Brldging regions, analogous to the rounded edges of the geodesic 

lenses investigated in this study, would reduce scatter ing and 

reflection loss at the interface. 

9.4 Conclusions on geodesic lenses 

Spherical geodesic lenses with toroidally rounded-edges 

would appear to be reasonable candidates for low-to-medium 

performance specifications, in view of the optical 

characteristics measured in thlS work. The small change in focal 

length as a function of aperture, in comparison with the shift 

predicted by geometrical optics, is all the more surprising in 

view of the fact that the spherical aberration data measured 

USlng a Hartmann experimental ray-trace corresponded closely to 

the theoretical curves. 'Ibis may be taken as confirmation of the 

fact that the wave-optical negative focal shift does not deperrl 

on the geometrical characteristics but rather on whole-aperture 

field lnterference effects. 
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The large, unevenly distributed amounts of optical energy 

scattered lnto the regions outside the central spot in the 

aspheric geodesic lenses are indications, once again, that the 

problem of in-plane scattering is still one of the most pressing 

in lntegrated optics. Waveguide uniformity has shown itself to be 

a further problem, as demonstrated by the failure of the central 

regions of the complementary lens pair to transmit light after an 

initial wavegUide formation. For these reasons, the aspheric 

geodesic lenses are falling short of diffraction-limited 

performance at Wide apertures. 

9.5 ReccmneOOations for future work on geodesic lenses 

(i) Given the improvements in proton-exchange wavegUides, 

especially those fabricated in dilute melts, it is probably time 

to try this waveguide technology as a competi tor against 

titanium-diffusion. 

(ii) The variation of deposited thickness of titanium across 

geodesic lenses should be measured to see how the exper imental 

data compares with the theory given in chapter eight. The 

transmisslon properties of the l~nses as a function of aperture 

should be measured and a study carried out on whether a 

correlation exists between the waveguide uniformity and the 

transmission function. 

(iii) Lenses should be investigated under conditions of off­

axis incidence. The problem of anisotropy, which has been largely 

ignored in the present study, would almost certainly become more 

pressing under these conditions. One of the most easily 

controllable and accurate methods of varying the iricidence angle 

is also one of the most directly relevant, namely the Bragg 

interactlon of surface-acoustic waves with an optical beam. 

(iv) The possibilities of modifying geodesic lens properties 

should be investigated wi th regard to decreasing in-plane 

scatter, apodlzing to reduce sidelobe levels and changing the 
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focal length. The latter property is especially important if the 

edges of waveguides are to be close to the foci. The BPM 

technique shows that the depth of field at Wide apertures is very 

small, so that the field can decay rapidly at very short 

distances from the achieved focus. Post-fabrication modification 

of the focal length would enable the beam to be tuned to correct 

spatIal posi tions. One way of doing this would be to introduce 

loading layers of overlay material. 

(v) Exper imental observations of negative focal-shifts in 

dIffraction-limited circumstances, such as those predicted by the 

BPM and other diffraction analyses, are not known to the author. 

It would be extremely interesting to obtain such results. 

9.6 ConclUSions on optical propagation DrJdels 

'!he geometrical optics technique of ray-tracing was fouoo to 

give useful information about large aberrations, such as those 

exhibited by the overlay approximation to the Luneburg lens, and 

the spherical geodesic lens with a rounded edge. It was found 

more diffIcult to interpret the effects of vary small aberrations 

such as those exhibited by the achievable approximation to the 

aspheric geodesic lens. The main utility of ray-tracing is to 

obtain a relatively crude idea of the optical performance of a 

given lens system. Where aberrations are large, such as in low­

performance applications, ray-tracing is suffIcient to describe 

lens performance. 

The BPM, on the other hand, appears to be a very powerful 

technique for ascertaining optical performance in the form which 

is dIrectly measured. Some uncertainty still exists about the 

accuracy of the focal shift predicted by the method, although 

there is no doubt that negative focal shifts are a feature of 

systems that are perfect fram a geometrical optics point of view. 
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9.7 Reccmnemations for future work 

(i) Ray-tracing should be used in conjunction with shadow­

masking programs to investigate other overlay lens profiles that 

may provide for better approximations to the deSired profiles. 

The profiles would then be optimised optically, rather than in 

terms of physical closeness to a desired shape. 

(ii) Further tests should be carried out to establish the 

accuracy of the beam propagation method. These should consist of 

numer ical tests for convergence and more detailed compar isons 

with other theories and empirical data. 

(iii) Phase information is available with the BPM, since the 

complex amplitude of the wave-field is calculated. The phase 

behaviour of the field in diffraction-limited systems should be 

investigated and compared with that obtained using claSSical 

theories. In particular, the relationship of the phase-fronts 

to those predicted by geometr ical optics should be examined in 

light of the focal shift. 

(iv) The BPM should be used to investigate off-axial 

incidence cordi tions, the effects of aberrations on the optical 

field in the focal region, the effects of profile perturbations 

and apodisation effects. An anisotropic version of the BPM is 

available which should be tested for validity. Furthermore, the 

BPl-1 can be used to model acousto-optic diffraction but has been 

under-utilised in this respect. It 1S particularly important to 

investigate inter-modulation effects, which can degrade the 

resolution of optical processors. 
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9. 8 &mmary of original. .:rlt amt:.ained in this thesis 

This thesis has reported original work in at least eight 
respects: 

1. The thickness profiles and fabrication tolerances of 

overlay Luneburg lenses canp:>sed of anneal-stabilized films of 

As2S3, deIOsited ooto Ti:LiNb03 waveguides, have been calculated. 

2. The actual form of the refractive index profiles of the 

Ti-diffused waveguides has been shown to be unimpJrtant for the 

shape of the overlay Luneburg lenses when a high-index film is 

used to fabricate the lenses. 

3. An original model and ccmp..1ter optimization met.hcxl has 

been developed for the problem of fabricatiD3 Luneburg lenses in 

vacuum evaporation and shad~mBsk conditions. 

4. The mathematics of a well-known algorithm for tracing 

rays in Luneburg lenses has been corrected and properly 

establishoo. 

5. A significant focal shift from the geometrical optics 
-

val ue has been calculated using a wave propagaticn method. This 

is the first time that such a shift has been predicted in an 

integrated optics context. 

6. Waveguide uniformity problems on geodesic lenses have 

been investigatoo fran a theoretical point of view, for the first 

time in integrated cptics. 

7. A range of optical assessment methods have been oorrowed 

fram bulk optics and used extensively to good effect in testing 

integrated optical lenses. 

8. '!be spherical geodesic lens with a rounded edge has been 

shown to be more cornpeti ti tive with other types of integrated 

optical lens than had been previously thought. 



-------

Note ~(l) re. Equation (4. 35), Olapter Four --
The difference between the expression obtained by the 

present author for the second derivative of the Luneburg lens 

refractive index profile, am that d:>tained by Southwell (srown 

below) is quite important. In spite of the errors in his 

expression, Southwell presented ray-tracing results which, 

ostensibly, were based on the published algorithm. Since, 

however, the expression gives ridiculously high values of the 

second derivative which would normally cause the algorithm to 

fail, it must be assumed that Southwell himself did not utilise 

the expression as plblished and relied <Xl numerical calculations 

of the derivative instead. It would be expected that the 

expression given in (4.35) would lead to more accurate results 

than those obtained using numerical techniques. This is indeed 

found, and a gain in comp.1ting efficiency is also ootained. 

Southwell also got his differentiati<Xl mixed up in a paper 

on geodesic lenses ("Geodesic optical waveguide lens analysis", 

J.Opt.Soc.Am., 67(10), pp 1293-1299) as was pointed out 

subsequently by Marom and Ramer (E. Marom and O.G. Ramer, 

"Geodesic optical waveguide lens analysis: Comment", 

J.Opt.Soc.Am., 69(5), pp 791-792) and acknowledged by Southwell 

(same issue, pp 792-793). The present author is not aware, 

oowever, of a p..1blished correction to the mistake rep::>rted in the 

present work. 
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