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Abstract

This thesis presents a complete architecture for space-variant VISIOnand fully automated

saccade generation. The system makes hypotheses about scene content using visual

information sampled by a biologically-inspired self-organised artificial retina with a non-

uniform pseudo-random receptive field tessellation. Saccades direct the space-variant

sampling machinery to spatial locations In the scene deemed 'interesting' based on the

hypothesised visual stimuli and the system's current task.

Chapter I of this thesis introduces the author's work and lists his motivation for conducting

this research. The self-imposed constraints on this line of research are also discussed. The

chapter contains the thesis statement, an overview of the thesis and outlines the contributions

of this thesis to the current literature.

Chapter 2 contains details about the self-organisation of a space-variant retina with a pseudo-

random receptive field tessellation. The self-organised retina has a uniform foveal region

which seamlessly merges into a space-variant periphery. In this chapter, concepts related to

space-variant sampling are discussed and related work on space-variant sensors is reviewed.

The chapter contains experiments on self-organisation and concludes with the retina

tessellation which was used for space-variant vision.

Chapter 3 explains the feature extraction machinery implemented by the author to extract

space-variant visual information from input stimuli based on sampling locations given by the

self-organised retina tessellation. Retina receptive fields with space-variant support regions

based on local node density extract Gaussian low-pass filtered visual information. The author

defines cortical filters which are able to process the output of retina receptive fields or other

cortical filters to perform hierarchical feature extraction. These cortical filters were are to



extract space-variant multi-resolution low-pass and band-pass visual information USIng

Gaussian and Laplacian of Gaussian retina pyramids.

Chapter 4 describes how the information in the Laplacian of Gaussian retina pyramid is used

to extract local representations of visual content called interest point descriptors. Interest

points are extracted at stable extrema in the scale-space built from Laplacian of Gaussian

pyramid responses. Local gradients within the interest point's support region are accumulated

into the scale and rotation invariant descriptor using Gaussian support regions. The chapter

concludes with matching interest point descriptors and the accumulation of visual evidence

into a Hough accumulator space.

Chapter 5 details the machinery for generating saccadic exploration of a scene based on high

level visual evidence and the system's current task. The evidence of visual content in the

scene is mediated with information from the current task of the system to generate the next

fixation point. Three different types of high-level object-based saccadic behaviour is defined

based on targeting influence. Visual object search tasks are used to demonstrate different

types of saccadic behaviour by the implemented system. The convergence of the hypothesis

of high level visual content as well as the difference between bounded and unbounded search

are quantitatively demonstrated.

Chapter 6 concludes this thesis by discussing the contributions of this work and highlighting

further directions for research.

The author believes that this thesis is the first reported work on the extraction of local visual

reasoning descriptors from non-uniform sampling tessellations and as well as the first

reported work on fully automated saccade generation and targeting of a space-variant sensor

based on hypotheses of high-level visual scene content.
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Chapter 1

Introduction

The first chapter of this thesis begins with a brief introduction to space-

variant vision and the task of a vision system. The author justifies the

rationale for undertaking the research contained in this thesis and summarises

the contribution of this thesis to the current literature. The chapter also

contains the thesis statement for this work as well as an overview of the

space-variant vision and saccade generation model described and

implemented as part of this thesis. The chapter will conclude with an outline

of the contents of the thesis.

1.1. Introduction

This thesis presents a complete architecture for space-variant vision using a biologically-

inspired artificial retina with a non-uniform pseudo-random receptive field tessellation. The

author believes that this is the first reported work on the extraction of local visual reasoning

descriptors from non-uniform sampling tessellations, as well as the first reported work on

fully automated saccade generation and targeting of a space-variant sensor based on

hypotheses of high-level visual scene content.



Introduction 1.1 Introduction

1.1.1. Space-variant vision

There is an interest in biologically-motivated information processing models because of the

undisputed success of these models in nature(Srinivasan and Venkatesh, 1997). Biological

vision systems have evolved over millions of years into efficient and extremely robust entities

with a level of perception and understanding that greatly surpasses the creations of modem

machine vision. Vision systems found in nature are quite different from those developed in

conventional machine vision. One of the striking differences between biological and

conventional machine vision systems is the space-variant processing of visual information.

The term space-variant is used to refer to the non-uniform spatial allocation of sampling and

processing resources to an information processing system's input stimulus, specifically to the

smooth variation of visual processing resolution in the human visual system (Schwartz et al.,

1995).

In human retinae, the highest acuity central region in the foveola has a diameter of

about 1Y2degrees around the point of fixation in our field-of-view. This corresponds to about

lcm at arms length. The rest of our field-of-view is sampled at reduced acuity by the rest of

the fovea (with a diameter of 5 degrees) and at increasingly reduced detail in the large

periphery (up to a diameter of 150 degrees). This reduction in sampling density with

eccentricity isn't just because of the difficulty of tightly packing biological sensor elements in

our retinae. The visual information extracted by our retinae undergoes extensive processing in

the visual cortex. Based on the biological computational machinery dedicated to the human

fovea, our brains would have to weigh about 60kgs if we were to process our whole field-of-

view at foveal resolution!

When a space-variant sampling strategy which allocates sampling resources unevenly

across the system's input is used, an effective system for dispensing precious resources is

essential to efficiently extract all 'necessary' visual information for the task that the system is

trying to achieve. In vision, this whole process of allocating limited sampling and processing
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Introduction 1.1 Introduction

resources is referred to as attention. Humans use ballistic eye movements, saccades, to

allocate sampling resources to the scene by targeting the high resolution foveal region of our

retinae on different visual regions such that we perceive a seamless integrated whole and are

rarely consciously aware that our visual system is based on a space-variant sensor.

There seems to be an apparently intractable discrepancy between the representations

and sampling strategies found within biological vision systems and those available with

modern computational techniques. In this thesis the author demonstrates that it is viable to

implement a complete vision system that samples, represents, processes and reasons with

visual information extracted with a biologically-inspired retina that has similar space-variant

characteristics to primate retinae. The author will describe the generation of a space-variant

retina tessellation with a local non-uniform pseudo-random hexagonal-like pattern, with a

smooth global variation between a central high density foveal region and a surrounding space-

variant periphery. Processing machinery that can operate upon visual information extracted

with a non-uniform sampling will be developed as part of a complete vision system capable of

task-based visual reasoning behaviour.

1.1.2. Vision Tasks

It seems that biology provides us with the only existential proof that the general vision

problem can be solved. If not for the fact that humans and other animals survive in the general

environment, proficiently using their vision systems, one would be tempted to conclude that

the general vision problem was impossible to unravel. How can a biological or machine

system which just captures a two dimensional visual projection of a view of a cluttered visual

field even attempt to reason with and function in the environment? An accurate detailed

spatial model of the environment is difficult to compute and the whole problem of scene

analysis is ill-posed (Hadamard, 1902).

3



Introduction 1.2 Motivation

However, biological systems have not solved the general vision problem. This deals

with understanding all phenomena that gave rise to the two-dimensional stimulus on a vision

system's sensor ~ from the spatial position, scale, pose and reflectance of objects in the scene

to illumination sources and inter-reflection. Biological systems use visual perception to

perform a certain limited set of tasks, from pursuing prey to finding a mate. Therefore, the act

of vision must not be disassociated from the (current) task the system is trying to perform.

Nature has evolved to perform only the bare minimum of visual processing to efficiently

execute these tasks necessary for survival. Domain knowledge and information about the

current task are used to constrain the vision problem in relation to the system's current task,

providing the vital contextual information that finally makes vision and understanding

possible.

The author will demonstrate the implemented space-variant vision system exhibiting

task-specific saccadic targeting behaviours. Hypotheses about the high-level visual content of

a scene, such as the label, scale and pose of objects will be constructed and pursued by the

system depending on its current task.

1.2. Motivation

This section outlines the author's rationale for conducting the research described in this thesis.

• While an exhaustive simulation of the exact chemical interactions in neural

projections and other minutiae of a biological vision system may not be appropriate to

solve real-world computer vision problems using current computational machinery, a

qualitative model resembling vision systems in nature may provide us with new

insight and a valuable approach to problems we have been trying to solve for decades.

• Space-variant visual processing, similar to that found in biology, reduces the

dimensionality of a sensor's extracted visual information, exhaustively processing

4



Introduction 1.2 Motivation

information in the central (foveal) region of the field-of-view while constraining the

processing resources dedicated to peripheral regions. The focusing of processing

resources at a single temporal instant to a region of fixation controls the complexity

and reduces the combinatorial explosion of information processing in a vision system.

A computational system capable of space-variant processing of visual information

would benefit from the advantages biological vision has reaped from this approach.

While many retina models have been reported in the literature (Section 2.3) and used

in computer vision tasks, none of the implemented models have solved the problem of

having a retina with a uniform central foveal region which seamlessly merges into an

increasingly sparse periphery. There was clearly a dearth in the literature worthy of

investigation.

• The processing machinery used in conventional computer vision is based upon a

uniform rectilinear array representation. Visual information in the form of images or

video is stored, manipulated and reasoned with using this representation. There is a

wide body of work dealing with image processing routines available for this array

representation of visual stimuli. However, the uniform rectilinear array does not have

the flexibility to represent and manipulate information output at constant confidence

from any arbitrary (sampling) visual source (Section 3.4.3.1). Providing such

computational machinery, capable of storing and reasoning with visual descriptors

from any arbitrary sampling sensor or visual representation would be a useful tool for

future research as we no longer need to be tied to a fixed rectilinear array for

performing computer vision.

• The saccadic targeting of the foveal region of a space-variant sensor based on high-

level coarse cues observed in peripheral regions of the system's field-of-view is still

unsolved. Recent advances in computer vision in representing visual content using

local interest point descriptors holds much promise and saccade generation using
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• high-level groupings such as visual objects may now be possible, yet has not been

reported in the computer vision literature.

1.3. Constraints

Because of the wide scope of the challenge encouraged by the previous section, the author

decided upon the following constraints to focus the work on an achievable goal.

• The implemented system and model shall only perform feed-forward processing in

connections between processing layers. Feed-back processing may help the

convergence of visual reasoning (Grossberg, 2003) but is outside the scope of this

thesis.

• The implemented vision system shall only be presented with a single (monocular)

image (without any explicit depth or stereo cues). Issues raised by the targeting of a

binocular space-variant system and vergence of a pair of sensors shall not be

addressed (Siebert and Wilson, 1992).

• The implemented system shall only process static visual stimuli contained in

conventional images. While temporal information may have interesting processing

implications for space-variant vision (Traver, 2002), this shall not be considered in

this thesis.

• Only visual images previously captured using conventional imaging techniques shall

be used as stimuli for the system. The system will not directly capture the visual

scene using hardware sensor (van der Spiegel et al., 1989).

• The space-variant vision and saccade generation model and all computational

machinery shall be implemented in software. While models and algorithms developed
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• in this thesis may be highly suitable for parallel hardware implementation, the author

shall implement all algorithms in software for flexibility and financial cost benefits.

• Training appearance views of known objects shall be presented to the system and the

system's domain shall be restricted to occurrences of the specific known visual

content. The system shall not be required to generalise to a class of objects and shall

perform recognition not categorisation (Leibe and Schiele, 2003) tasks.

• The implemented system must be fully automated and receive no manual intervention

or cues regarding object segmentation, object location, fiducial locations on the

object, saliency biasing etc.

• All internal operations in the system shall be performed on the space-variant visual

information extracted using the artificial retina. No other external sources of visual

information shall be provided to the system.

1.4. Thesis Statement

"A computer vision system based on a biologically-inspired artificial retina with a non-

uniform pseudo-random receptive field tessellation is capable of extracting a useful space-

variant representation of visual content observed in its field-of-view, and can exhibit task-

based and high-level visual content-based saccadic targeting behaviour."

1.5. Overview of the model

In this section the author gives the reader a brief outline of the space-variant vision and

saccade generation model described in this thesis.
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The implemented computational model extracts visual information at several scales

and generates a space-variant continuous scale-space representation for the extracted local

visual descriptors reflecting the continuum of scales present in visual scenes. Besides this

scale hierarchy within the implemented system, there is also an abstraction hierarchy of

processing resulting in the feature extraction of less spatially instantiated and more abstract

concepts as information travels from the retinal sampling component of the model to the

reasoning component (Figure 1-1). Retinal responses at a certain spatial location in the retinal

sampling component, are encapsulated into a descriptor with a large support region in the

feature extraction component, and may finally contribute to a hypothesis of the presence of an

object in the reasoning component of the model.

The model that is being presented conceptually resembles the human visual pathway

with generic space-variant visual components (retinal sampling and feature extraction)

resembling the human retina and lower visual cortex, a spatial component (saccadic targeting)

representing world or scene coordinates for targeting the space-variant components and

resembling the superior colliculus structure, as well as a high level abstract reasoning

component which would conceptually resemble the frontal lobe in humans (Felleman and Van

Essen, 1991). The implementation of the model is completely automated and the reasoning

component is the only component which inserts a (external) task dependent bias.

Retinal
Sampling

Space-variant
visual ,----------, Interest point r---------,

infonnation I Feature descriptors
--~, Ii ~., Extraction Reasoning

'\. '~:;~~':.~:1
Next fixation ""

Saccadic
Targeting

~own
biasing

Figure 1-1. Feed-forward model for space-variant vision and saccade generation.
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1.5.1. Retinal Sampling

This component of the model will extract space-variant visual information from the input

visual stimulus based on the fixation location provided by the saccadic targeting mechanism.

The visual information extracted from this component is reasoned with and stored as

imagevectors (Section 3.6) which correspond to a coordinate domain in relation to the retina

tessellation and independent of world (scene) coordinates. Multi-resolution space-variant low

pass filtering operations on the input visual stimuli, as well as contrast detection using

isotropic centre-surround receptive fields are performed in this component.

Because of the non-uniform pseudo-random sampling locations of the retinal

sampling component, all constituent visual processing machinery units are uniquely

(pre)computed to conform to the connectivity and scale of the unit's position in the retina.

This approach is used throughout the author's space-variant vision model and is analogous to

biological vision systems where the same computational feature extraction processing unit

does not operate on the whole field-of-view but has a specific limited spatial receptive field.

1.5.2. Feature Extraction

The feature extraction component processes the output of the retinal sampling component,

extracting scale and orientation invariant local interest point descriptors for higher level

reasoning operations. As before, all visual machinery is uniquely defined for the specific

spatial location and connectivity of its spatial support. The interest point information

extracted in this component is more abstract than that from the retinal sampling component.

The spatial descriptiveness of the interest point descriptors are not as accurate as the

imagevectors extracted by the retinal sampling. However, the visual information contained in

interest point descriptors has increased invariance and is therefore more suitable for being

transmitted to the saccadic targeting and higher level reasoning components in the model.
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The feature extraction component sparsifies the visual information extracted by the

ViSIOnsystem, reducing redundant information (with respect to the system's typical task

repertoire). While the visual information input into the feature extraction component is in the

form of imagevectors, the output interest point descriptors are located as discrete locations on

the field-of-view (however still on a coordinate frame related to the retina tessellation and

independent of world coordinates).

1.5.3. Saccadic Targeting

A saccadic targeting component of the model generates the space-variant system's next

saccadic fixation location on the visual scene and also serves as the system's only spatial

visual memory and only representation in world (visual scene) coordinates. The saccadic

targeting component receives visual information in the form of interest point descriptors from

the feature extraction component as well as top-down (task-biased) information from the

high-level reasoning component. The top-down information from the reasoning component

and bottom-up information from the feature extraction component is represented as scalar

weightings on a single global saliency map using world (scene) coordinates.

The saccadic targeting component orientates the space-variant retinal sampling

machinery so the central high acuity foveal region inspects important or salient regions in the

scene. The only output of this part in the space-variant vision model is a spatial location for

the next fixation location by the retina. Generating this location is not a trivial task. It is not

possible to know a priori with confidence whether a visual region is useful before looking at

it in detail with the fovea. Only a hypothesis or guess can be made about visual content before

high resolution analysis is performed by targeting the visual region with the fovea of the

space-variant machinery.

In this thesis the author will generate saccadic targeting mechanisms based on high-

level visual concepts such as the grouping of low-level features into semantic objects. The
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saccade generation will exhibit serialised saccadic behaviour depending on the

current hypothesised visual content in the scene and the system's current task.

1.5.4. Reasoning

The reasoning component is the only part of the model which inserts a task bias into the

perception-action cycle of the system's behaviour. This component is the most abstract in the

model, with reasoning structures having no direct or very limited spatial relationship to

locations in the system's field-of-view. The reasoning component will make associations

between incoming interest point descriptors and descriptors from previously observed known

object appearances. The only output from the reasoning component is to the saccadic

targeting system. This output would contain information about unknown (from current

fixation) and known (from a previous training example) interest point descriptor matches as

well as object labels for spatial reasoning and task based fixations by the saccadic targeting

component.

1.6. Contributions

This thesis distinguishes itselfby making the following original contributions to the literature.

• The description of an overall architecture for and implementation of a completely

automated space-variant vision system capable of fully automated saccadic

exploration of a scene biased by fixation-independent object appearance targets. The

integration of space-variant feature extraction, higher level reasoning decisions and

saccade generation mechanisms into a theoretical, as well as implemented, working

computational system.
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• Generation of an artificial retina sampling mechanism based on a non-uniform

irregular self-organised retina tessellation. The retina receptive field density is

uniform in the central foveal region and seamlessly merges into a space-variant

periphery with a hexagonal-like pseudo-random local organisation.

• Construction of visual processing machinery capable of extracting local interest point

descriptors based on the sampling density of a vision system or sensor with any

arbitrary sampling tessellation including non-uniform irregular tessellations. The

visual machinery is used to extract descriptors from information sampled by the self-

organised retina yet is fixation independent and represented in world-coordinates.

• The description and construction of a multi-resolution space-variant Gaussian and

associated Laplacian of Gaussian retina pyramid. This enables the efficient extraction

of multi-resolution information at several discrete scales at each spatial location of

field-of-view on the self-organised retina. The multi-resolution visual information

extracted near the foveal region is at a higher spatial frequency than that from more

peripheral areas of the same retina pyramid layer.

• Construction and reasorung with local visual descriptors on a space-variant

continuous scale-space. Visual information is present in a continuum of scales, yet

space-variant systems previously reported in the literature have extracted and

reasoned with visual information only at discrete scales for a single fixation location

(Sun, 2003). The author extracted local space-variant visual descriptors at continuous

scale and spatial locations, as well as detected feature orientations at continuous

orientation angles.

• Top-down and bottom-up saliency calculations based on interest point descriptors.

Interest point descriptors have been used for image retrieval (Schmid et al., 2000),

object recognition (Lowe, 2004) and robot navigation (Se et al., 2002) tasks yet have
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not yet been used for computing saliency and performing space-variant vision. The

local representation of visual content is a powerful visual reasoning approach and is

used for targeting the author's space-variant machinery based on high-level (abstract)

visual content such as objects.

• Fully automated fixation-independent object appearance based saccade generation

using a space-variant system has not been previously reported in the literature. The

author's space-variant vision system is attentive to spatial locations in the visual

scene corresponding to stimuli that form high level (abstract) visual object concepts.

• The author demonstrates fully automated saccadic behaviour based on the current

task that the space-variant system is attempting to perform and the hypothesised high-

level visual content present in the visual scene.

1.7. Thesis Outline

The thesis consists of six chapters:

Chapter 1: Introduction. This chapter contains the author's motivation for conducting the

research contained in this thesis, as well as the self-imposed constraints on the research. The

chapter also contains the thesis statement, an overview of the thesis and the significance of

this thesis in relation to the current literature.

Chapter 2: Retina tessellation. This chapter contains details about the design and

construction of a space-variant retina with a pseudo-random receptive field tessellation.

Concepts related to space-variant sampling are discussed and related work previously

reported in the literature is reviewed. The Self-Similar Neural Network model for self-

organisation is introduced and the author details experiments for the construction of a retina

tessellation for space-variant vision.
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Chapter 3: Feature Extraction. In this chapter the author defines space-variant receptive

fields based on the local node density of the self-organised retina tessellation. These receptive

fields will be used to extract low pass visual information which is stored in a structure

referred to as an imagevector with each location in the structure having a spatial association

with a location on the non-uniform pseudo-random retina tessellation. Cortical filters which

can process visual information stored in imagevectors are defined, and are used to efficiently

extract space-variant multi-resolution visual information at discrete scales using a Gaussian

and Laplacian of Gaussian retina pyramid.

Chapter 4: Interest Points. The information in the Laplacian of Gaussian retina pyramid is

used to extract interest point descriptors. Interest points are detected at space-variant

Laplacian of Gaussian extrema on a continuous scale-space. An interest point descriptor

invariant to rotation and scale is computed with a space-variant support region surrounding

the interest point location. The chapter concludes with a description of a mechanism for

matching interest point descriptors and voting of visual evidence into a Hough accumulator

space.

Chapter 5: Saccadic Vision. This chapter is about the saccade generation mechanism that

targets the space-variant visual machinery on 'interesting' areas in a scene depending on the

system's current task. The evidence of visual content in the scene (encapsulated in Hough

space) is mediated with information from the current task of the system to generate the next

fixation point. The author divided the object appearance based saccadic behaviour of the

implemented system into three types: type I (targeting of the hypothesised object centre), type

II (targeting of the hypothesised object's expected constituent parts) and type III (targeting of

interest points which contributed to the object hypothesis). The different saccadic behaviour

of the space-variant vision system when performing visual tasks is demonstrated and the

convergence of the system's interpretation of a visual scene with saccadic exploration is

shown.
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Chapter 6: Conclusion. In this chapter the author overviews the contribution of this thesis

and its significance to the current literature. The chapter concludes with directions for further

work based on this thesis.
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Chapter 2

Retina Tessellation

The objective of this chapter is to detail the design and construction of a

space-variant retina tessellation that can be used as a basis to construct an

artificial retina. The author will introduce the space-variant sampling of a

vision system's field-of-view based on a foveated retina tessellation.

Conventional retina models will be reviewed and the need for self-organising

a retina tessellation will be justified. The Self-Similar Neural Networks

model will be described and the chapter will conclude with the author's

experiments in self-organisation and the selection of self-organisation

parameters to generate a plausible retina tessellation for space-variant vision.

2.1. Introduction

The vision of all higher order animals is space-variant. Unlike most conventional computer

vision systems, in these animals, sampling and processing machinery are not uniformly

distributed across the animal's angular field-of-view. The term space-variant was coined to

refer to (visual) sensor arrays which have a smooth variation of sampling resolution across

their workspace similar to that of the human visual system (Schwartz et aI., 1995). In the

human retina and visual pathway, visual processing resources are dedicated at a much higher
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density to the central region of the retina called the fovea. The retina regions surrounding the

fovea (which will be referred to as the periphery) are dedicated increasing less processing

resources, with resources reducing with distance from the fovea. There is a smooth, seamless

transition in the density of the processing machinery between the central dense foveal region

and the increasingly sparse periphery. The size and shape of the foveal region in an animal's

retinae will vary depending on its particular evolutionary niche. While vertically or

horizontally stretched foveal regions can be found in nature (Srinivasan and Venkatesh,

1997), the human (and primate) foveal region is a roughly circular region in the centre of the

retina. Sensors with a central dense (foveal) sampling region are referred to as foveated to

reflect their similarity with space-variant biological retinae.

A retina comprises of receptive fields which sample visual information from the

scene within a visual system's field-of-view. A receptive field is defined as the area in the

field-of-view which stimulates a neuron in (esp) the visual pathway (Levine and Shefner,

1991). This stimulation may be inhibitory or excitatory. As this thesis is concerned with

constructing a software vision system with processing inspired from biology, the physical

location of the artificial neuron (which is stimulated by a particular receptive-field) in

computer memory is not a functional issue. The neuron's location in memory can be

independent of its receptive field's sampling location in the field-of-view. However the

location of the visual stimulatory region of the neuron, i.e. the location of its receptive field

in the retina, is a crucial element in the design of a space-variant vision system as it affects

the entire internal representation of visual information in the vision system. As a hardware

retina is not physically present in this work, the retina of the implemented vision system is

essentially its constituent receptive-fields which sample visual information. The field-of-

view of the system is governed by the point in the scene targeted by the retina. This chapter

will deal with the design decisions made in calculating the locations of the receptive fields

on the artificial software retina. As the receptive fields that make up the retina consist of
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overlapping support regions that tile the entire field-of-view, the term retina tessellation will

be used to refer to the pattern or mosaic of the spatial locations of a retina's receptive fields.

The scale and profile of receptive field spatial supports will be discussed in Chapter

Three. In this chapter, the locations of receptive fields in the retina tessellation will be

completely described by the spatial locations of the centre of the receptive-field spatial

support region.

2.2. Concepts

2.2.1. Dimensionality reduction

Vision tasks tend to involve the processing of a huge flood of information from input visual

stimuli. Even modern computational machinery has very limited processing capabilities when

dealing with vision processing tasks. When the whole field-of-view of a vision system is

given equal processing emphasis there is a combinatorial explosion of information and

processing operations throughout the processing hierarchy of a vision system. A sensor with a

foveated, space-variant retina tessellation reduces the dimensionality and bandwidth of visual

data that is being sampled and processed by concentrating on the region in the scene on which

the retina is fixated. The region in the scene examined with the central foveal region of the

retina is sampled with a very high sampling density. Sufficient information must be extracted

to process and reason with to perform the system's current task. At the same time, since the

vision system considered in this thesis will be sampling image data, the foveal region of the

retina must not sample an image with a super-Nyquist sampling density and thereby extract

redundant, highly correlated information which needlessly increases the dimensionality of the

information processed and represented internally in the vision system.
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2.2.2. Attention

The visual information extracted at the peripheral regions of the retina is of a much coarser

resolution than that from the fovea. This information may not be directly used to perform

task-based reasoning, but instead will be used to select areas in the visual scene which are

potential targets for future retinal fixations. Tentative hypotheses may be made about scene

objects which lie in the peripheral regions of the current field-of-view which could be verified

by a subsequent saccadic fixation. The peripheral regions of the retina tessellation must be

detailed enough for a space-variant vision system to extract coherent information for attention

behaviour and not neglect potential salient areas in the scene, while minimising the density of

processing machinery outside the fovea to reduce computational workload.

2.2.3. Frequency shift and uniform processing machinery

It is conceptually and functionally elegant to have uniform processing machinery to operate

on visual stimuli to simplify the design and analysis of visual processing operations. The

primate primary visual cortex comprises uniform parallel units of neurological machinery that

process visual information from the whole visual field-of-view (Hubel and Wiesel, 1979).

Since the retina has sampled the field-of-view with a space-variant sampling, a frequency

shift takes place in the sampled visual information. The continuous space of incoming visual

stimuli is sampled only at discrete space-variant intervals. The frequency shift results in

uniform 'cortical' radial spatial frequencies for exponentially increasing retinal radial spatial

frequencies with respect to the point of fixation. Hubel (1987) commented on the remarkable

uniform topography of ocular-dominance columns in the visual cortex and the decidedly non-

uniform magnification in the cortex. Magnification is defined by the linear cortical

magnification function (Daniel and Whitteridge, 1961), as the distance over the cortical

surface corresponding to a 'distance' of a degree in the visual field parameterised by visual

eccentricity. In primates, the cortical magnification in the fovea is about 36 times that in the

periphery.
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2.2.4. Ensemble of messages

Wilson (1983) showed that retinal structures could extract information such that the uniform

cortical machinery would output an 'ensemble of messages' that does not change with

differences in the scale and orientation of an object for a given point of fixation. In order to

achieve image coding uniformity, it is necessary to implement a retina tessellation model that

similarly preserves sampling continuity to avoid artefacts in the extracted 'ensemble of

messages' caused by discontinuities in the sampling retina's receptive field tessellation.

2.2.5. Topological mapping

In the primate visual pathway the responses of retinal receptive-fields (captured by retinal

ganglion cells) are projected along the optic nerve to a neural structure called the Lateral

Geniculate Nucleus. This mapping has motivated the development of many conventional

artificial retina models found in the literature (Schwartz, 1977, 1980; 1989). The mapping or

projection is topological and conformal. Nearby points in the visual hemisphere (i.e. the

retina) are mapped to adjacent neural locations and local angles in the visual hemisphere are

preserved in the mapped structure. This mapping is also called a retinotopic mapping, as it is

a topological mapping based on the retinal structure. Topological mappings can be found in

all neural projections of sensory information. For example, the somatosensory cortex in the

brain processes information related to touch, pain and muscle/joint movement. This neural

structure in our brains spatially resembles a small deformed human body, and is sometimes

called the Homunculus which means 'little man.' This distortion is due to biased processing

giving priority to areas such as the hands and tongue. Similarly, in the Lateral Geniculate

Nucleus, the neural area that processes the foveal region of the visual hemisphere is much
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larger than the neural area that processes the periphery. These topological mappings have

evolved as an efficient way of wiring neural circuitry. Since sensory stimuli are related

spatially (or even temporally) to other adjacent stimuli, it makes sense to map these to

adjacent cortical regions where they could be processed together. Most neural connections are

local with neurons in a single layer in (for example) the visual pathway being highly

connected and interacting with each other, and long axons projecting the result of these

computations to the next level in the visual (cortical) pathway.

2.3. Related Work

2.3.1. Hardware retinae

The work presented in this thesis does not use a space-variant electronic sensor to capture

vision information from the environment. Researchers such as Giulio Sandini in van der

Spiegel et al. (1989) and Ferrari et al. (1995) used Charge-Coupled Devices (CCD) and

Complementary Metal-Oxide Semiconductor (CMOS) chips respectively, varying the

placement of photo detectors to capture a space-variant representation of a scene. Recently

the work in Sandini's LIRA-Lab has matured to use hardware-based artificial retinae in their

Babybot robot (Orabona et al., 2005). The robot was shown to be capable of learning object

descriptions and performing fixation and grasping actions. Babybot uses an attention

mechanism for fixation based on color regions or color texture regions. A conventional

complex-log (Schwartz, 1977) type retina sensor, sometimes with a uniform fovea region,

was used to extract visual information. Their approach suffers only slightly from the

problems of using a sensor based on the complex-log transform (Section 2.3.3 and 2.3.5)

because the sensor directly samples light from the visual scene and not from a pre-captured,

bandwidth limited image. While their attention model is robust because it uses color blob
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regions for cues, there have been many advances in computer vision, especially in interest

point based object recognition, which the author believes can be used for top-down object

attention.

Since the author of this thesis was working with digital images that had already been

captured using conventional techniques, a computational system to extract a space-variant

representation of visual information in images had to be researched and implemented. This

approach is much more flexible than using hardwired chips, although a host of convoluted

issues arise from sampling a rectilinear uniform image with a simulated (software) space-

variant sensor.

(a) (b)

Figure 2-1. Foveated Vision chips (a) reprinted from Van der Spiegel et. al. (1989) who

used a CCD chip and (b) reprinted from Ferrari et. al.(1995) who used a CMOS chip.

2.3.2. Foveated Pyramid

Multi-resolution analysis of images using Gaussian and Laplacian of Gaussian pyramids (Burt

and Adelson, 1983) has become an integral part of computer vision within the last twenty

years. Image pyramids divide visual information into spectral low-pass (Gaussian) or band-

pass (Laplacian or Difference of Gaussian) layers, allowing the researcher to process visual

information 'independently' at several scales, reflecting the intrinsic multi-scale property of
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natural scenes where different object sizes, object decomposition into constituent parts and

perspective projection result in image information being present in a continuum of scales.
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Figure 2-2. A foveated pyramid can be created by using a window the size of the coarse

layer (top layer in the figure) at all levels of the pyramid.

A foveated pyramid (Burt, 1988) is formed by reducing the processed field-of-view in

the image pyramid from coarse to fine layers. Generally, a window the size of the coarse layer

is used to progressively reduce the angular field-of-view of finer layers. The window can

move over the finer layers of the image pyramid to change focus of attention. Kortum and

Geisler (1996) proposed such a foveated pyramid to reduce the transmitted bandwidth of

image data. The processing of the foveated pyramid is analogous to the coarse-to-fine search

in applications such as stereo-matching. Search results at the coarse level are used to reduce

the search space at finer levels in the pyramid. Siebert and Wilson (1992) and Boyling and

Siebert (2004) constructed a binocular robot head and used a foveated pyramid based

approach for calculating multi-resolution foveated vergence and gaze control, and were able

to demonstrate space-variant scene reconstruction.

The foveated pyramid achieves space-variant extraction of visual information by

discrete quantization of the extracted scales. There isn't a smooth continuum in the space-

variant extraction of spectral information. A small translation of a visual feature in the field-

of-view may result in large changes in the extracted visual information if the feature subtends

an edge of the attention window in the foveated pyramid.
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2.3.3. Log-polar transform

The topological mapping of biological retina afferents to the Lateral Geniculate Nucleus has

inspired the mathematical projection of visual stimuli at coordinates in the input image to

those in an image structure often referred to as the cortical image. These analytic projections

are often called retina-cortical transforms, and the most widely used is the log(z), complex-

log or log-polar transform (Schwartz, 1977), which is claimed to approximate the space-

variant mapping in primates from the retina to Lateral Geniculate Nucleus (and higher visual

areas in the primary visual cortex).

In the log-polar transform, if the ~2 coordinate (x, y) in the input image can be also

given by the following metric preserving mapping

z = x+iy

= Izl[ cos (8) + i sin (8) ] (Equation 2-1)

where O=arctan(ylx) and n c 71.. The retino-cortical projection into the cortical image

is given by log(z).

log (z) = log (Izlei(8+2nJr))

= log(lzl)+i8
= log(eccentricity)+ i(ang/e)

(Equation 2-2)

While Schwartz (1977) directly projected the pixel intensities from input coordinates

(x, y) to associated cortical coordinates (lz], 8), a better approach is to reduce aliasing by

sampling the input coordinates with (overlapping) receptive fields (Chapter 3).

24



Retina Tessellation 2.3 Related work

y

(a)

[z]

x 8
(b)

Figure 2-3. (a) Log-polar retina tessellation (input image sampling locations) for a

retina based on the log-polar transform. (b) Cortical image generated by the log-polar

transform of the standard greyscale Lena image. The cortical image was created by

placing overlapping Gaussian receptive fields on the log-polar retina tessellation.

The log-polar mapping results in a cortical image representation which is biased

towards the foveal region of the field-of-view (Figure 2-3b). All higher level processing

operations are conducted on the cortical image resulting in space-variant processing in the

image domain. The log-polar mapping has interesting properties. Rotation or scaling in the

input image results in a translation in the cortical image. Therefore, researchers such as

Tunley and Young (1994) have found log-polar representations useful for the computation of

first order optical flow.

2.3.3.1. Space-complexity of a sensor

Rojer and Schwartz (1990) defined what they called the space-complexity ofa sensor or FIR

quality as the ratio of a sensor's field-of-view to its maximum resolution.

sensor field-of -viewSpace-complexity = - _ _.;;___ ,--_-
maximum resolution

(Equation 2-3)
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The FIR ratio of a sensor gives an indication of the compression or bandwidth

reduction achieved by a sensor. The FIR ratio of conventional space-invariant sensors scale

quadratically with the rank of the sensor matrix while space-variant log(z) sensors' space-

complexity scale logarithmically (Schwartz et aI., 1995). Space-complexity is also a measure

of the spatial dynamic range of a sensor. Schwartz et al.( 1995) estimated that if humans were

to achieve the same dynamic range we have using space-variant vision (i.e. coarse wide angle

vision and high acuity centre) with space-invariant vision (uniform acuity across the field-of-

view), our brains would have to weigh between 5000-300001bs to process the extracted visual

information.

In the author's opinion the space-complexity measure is lacking in that it does not

take into account that, unlike a space-invariant sensor, a space-variant sensor must change its

focus of attention (i.e. point of fixation on the scene) to absorb a complete representation of

visual information in the continuum of scale-space (Chapter 4). The overhead of these

saccadic fixations (Chapter 5) will be related to the spatial complexity of the visual

information in the scene.

The space-complexity measure also does not reflect the tapering of the sampled

resolution of a space-variant sensor with eccentricity. A very sharp rate of change of

resolution would give an optimal space-complexity as the sensor will have a wide field-of-

view for a given high maximum resolution. However the author believes that saccadic search

for objects with such a sensor would suffer from the reduction of visual information density at

intermediate scales between the coarse periphery (which generates hypothesises for future

fixations) and the maximum resolution fovea. This results in the space-variant sensor needing

more fixations to target and home in on a feature observed in the periphery.
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2.3.3.2.Nyquist criterion

The Shannon-Nyquist sampling theorem states that when sampling an input analog signal, the

sampling rate must be greater than twice the bandwidth of the input signal in order to

accurately reconstruct the input signal. Assuming the input signal has been low-pass filtered,

which is justified for natural images, the Nyquist criterion is that the sampling frequency w,

must be greater than twice the input image's maximum frequency wmax•

(Equation 2-4)

The frequency WN is known as the Nyquist rate. If a signal is sampled at lower than

its Nyquist rate, input frequencies greater than w, / 2 will generate artefacts in the sampled

information in a process called aliasing. Sampling at a frequency much higher than the

Nyquist rate results in the sampled signal containing highly correlated (redundant)

information. This is an inefficient use of finite sampling resources referred to as super-

Nyquist sampling.

In this thesis the author processes digital images which are limited to a maximum

frequency of half a cycle per pixel. Because an image has an underlying minimum spatial

frequency, any attempts to sample an image at higher spatial frequencies would result in a

highly correlated output. Therefore sampling a digital image at much higher than a sample per

pixel will result in super-Nyquist sampling.

There is always super-Nyquist sampling In the foveal region of the log-polar

transform of a digitised image as the sampling rate of the transform approaches a singularity

at the centre. Large areas of redundant information can be observed in the cortical image in

Figure 2-3b. A large percentage of the cortical image is highly correlated information and the

log-polar sampling process has not optimally reduced the dimension of the extracted visual

information. As the cortical image is the internal representation of visual information

processed by higher order machinery in a space-variant vision system, there has been a sub-

optimal allocation of limited processing resources on redundant visual data. The author
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therefore concludes that the log-polar transform is not a suitable basis for space-variant vision

systems that extract visual information from pre-digitised media such as digital images or

digital cinema.

2.3.4. The log(z+a) transform

The processing of the visual pathway in vertebrates is divided between the two lobes of the

brain. The visual cortex in the right lobe processes the left visual hemisphere from both left

and right eyes, and the cortex in the left lobe processes the right visual hemisphere from both

eyes. Schwartz (1980) proposed a log(z+a) model which would split the cortical image along

the vertical meridian into two visual hemispheres and which would also try to address the

problem of the super-Nyquist sampling in the fovea of the log-polar transform.

In the log(z+a) model, a real parameter a is added to the image space complex

coordinate as follows

z+a=x+iy+a

= I~(x+a)'+ y' I(cot:a )+iSi{:a)) (Equation 2-5)

I
~ 2 21 {arcta{:a )+2nJr )= (x+a)+y e

The resulting coordinate is projected into cortical space (the cortical image) using the

log-polar transform,

(Equation 2-6)

= 109(I~(x+a)2+ll)+iarctan(x:a)
The real a term has in effect sliced off a central vertical (corresponding to the real

axis) slice in the log(z) retina tessellation. The super-Nyquist central sampling region in the

pure log-polar model can be reduced or removed completely depending on the chosen value

for a.
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In the log(z+a) model, the two visual hemispheres in the input image are processed

separately. The ex term is positive for the right hemisphere and negative for the left

hemisphere.

y

(a)

e

x
(b)

Figure 2-4. (a) log(z+a) retina tessellation. (b) Cortical image generated by the log(z+a)

transform of the standard greyscale Lena image. The cortical image is split along the

vertical meridian. Overlapping Gaussian receptive fields were used to sample the input

image.

2.3.4.1. Distorted sampling tessellation

While the exparameter avoids the singularity in the centre of the logfz) model and reduces

oversampling in the foveal region, it distorts the isotropic retina tessellation sample locations,

vertically elongating the central fovea. Values for ex which do not drastically distort the

topology of the associated retina (such as in Figure 2-4) result in super-Nyquist sampling in

the fovea.
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2.3.5. Uniform fovea retina models

To solve the super-Nyquist sampling problem in the centre of space-variant retinae,

researchers have attempted to use a different sampling topology or representation in the fovea.

Bolduc and Levine (1996) sampled the foveal region of their input uniformly and projected

the visual information to a separate image structure while maintaining a mapping of the

peripheral region of the retina to a log(z) cortical image (Figure 2-5).

y

x

(b)

RF fowa
;11111111111111111111111111111111 0-

e
(a) (c)

Figure 2-5. (a) Receptive fields of a retina with a uniform rectilinear foveal region.

(b) Structure containing information mapped from the foveal region, this is a copy of

the foveal data in the retina. (c) Cortical image with the log(z) transformed data from

the periphery. Reprinted from Bolduc and Levine (1996).

Gomes (Gomes, 2002) used a retina with a hexagonal receptive field tessellation and

uniform foveal region. Both the hexagonally tessellated fovea and periphery were mapped to

a single rectilinear cortical structure based on a coordinate lookup (Figure 2-6). The

rectilinear cortical image was not completely populated with projected data but instead

tapered towards the foveal region as the angular receptive field density reduced in the log(z)

transform.
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Figure 2-6. (a) Retina tessellation with a hexagonal receptive field tiling and uniform

foveal region. (b) Cortical image created by mapping receptive fields with a uniform

foveal region (reprinted from Gomes (2002».

2.3.5.1. Discontinuities in representation and topology

Separating the processing of foveal and peripheral regions as in Bolduc and Levine (1996)

creates a discontinuity in the internal representation of visual information in a space-variant

system. There are difficulties in reasoning with features that cross the foveal and peripheral

representations. Although creating a tapering cortical image as in (Gomes, 2002) solved the

problem of storing the space-variant visual information in a single structure, this approach

necessitates a lookup calculation to map coordinates into the rectilinear cortical image. Higher

order processing of the rectilinear array containing the cortical image would have to deal with

border problems where visual data is not present in the tapered cortical image. The sudden

change in the topological structure of the retina tessellation (Figure 2-6) between the fovea

and periphery will disrupt the continuum in sampled scale-space because the approach does

not maintain a seamless merging of the foveal topology to the peripheral topology.
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2.3.6. Conclusion

Biological retinae appear to exhibit an almost uniform hexagonal receptor packing structure in

the fovea that transforms seamlessly into an exponential sampling structure (resembling log-

polar) towards the peripheral field. The log(z) and other similar mappings (Johnston, 1989)

attempt to approximate the retino-cortical transform in primates. The author has not found any

analytic or geometric mapping reported in the literature with a closed form solution that can

describe the change in topography of the receptive field centres between the fovea and periphery

of a retina tessellation. These reported retino-cortical transform approaches do not address the

question of the actual ~2 locations (retina tessellation coordinates) where a computer vision

system should extract visual information from an image or video. The work in the literature is

based on the projection of the radial component of retinal coordinates (with respect to the point

of fixation) to a cortical space and does not effectively deal with the angular relationships

between the coordinates in the input retinal plane when performing the projection. This failing

results in images being over-sampled in the foveal region during the construction of plausible

retinae that sample pre-digitised media.

The exponential sampling strategy of the log(z) retina periphery appears to have many

desirable properties, capable of ameliorating some subsequent visual information processing tasks.

But the topology of the periphery must transform into a uniform fovea without generating

discontinuities to allow a single set of uniform 'coding units' to be constructed for higher order

processing in the cortex (Wilson, 1983). These coding units would then be able to represent

Wilson's "ensemble of messages" which are generated across a continuum in scale-space aiding

visual search. Researchers have not been able to define a retina with the properties of a space-

variant peripheral retina topology that searnlessly merges into a uniform foveal region with a

hexagonal tessellation that will optimally tile 20 space (Hales, 200 1) without over-sampling the

image or creating discontinuities in the retina tessellation. Solving the problem of generating a

viable retina model will allow biologically motivated space-variant vision to progress,
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circumventing the mentioned limitations and driving attentional structures which are part of an

overall space-variant vision system.

2.4. Self-Organised Retina Tessellation

2.4.1. Introduction

During his search for a retinal tessellation that would be space-variant and sample 20 space,

the author questioned the need to base the retina on a closed form retino-cortical transform. It

is not possible to generate a continuous regular retina tessellation with a uniform density in

the foveal region and a log-polar density in the peripheral region using a purely analytic

transform based on image plane coordinate eccentricity. If a researcher were not concerned

with projecting the afferents of a retina to a topological cortical image, the positions of the

retina receptive fields (retina tessellation) could be independently determined to satisfy the

criterion of a uniform fovea region and space-variant periphery.

This section describes the design, implementation and evaluation of a space-variant,

continuous, regular retinal tessellation generated using self-organisation. Self-organisation is

a form of unsupervised learning where neural systems are trained without a target output

pattern or class. Self-organisation was able to mediate between the influences of the

constraints for the retinal tessellation (uniform fovea and space-variant periphery) and to

generate a seamless transition between these two influences in the retinal mosaic. A self-

organisation technique similar to Kohonen Feature Maps (Kohonen, 1995) called Self-Similar

Neural Networks (Clippingdale and Wilson, 1996) generated retinal tessellations that best

33



Retina Tessellation 2.4 Self-organised retina tessellation

merged the foveal and peripheral regions of a retina. However the retinal tessellations

generated usmg self-organisation do not have an explicit associated cortical image data

structure found in conventional artificial retinae based on retino-cortical transforms. Chapter 3

will describe visual processing machinery that can reason with the information extracted

using a self-organised artificial retina.

2.4.2. Self-Similar Neural Networks

This approach's main distinction from Kohonen Feature maps and other self-organising

techniques is that the stimulatory input for the network is derived by applying a composite

transformation to the network weights themselves. The network weights Xi in the model

represent the coordinates of (in our case) receptive fields in R2 space.

For a network of N units, each characterised by a two dimensional network weight

vector x,{n), the input stimulus y,{n) at iteration n is calculated by the following,

Yi(n) = T(n) xi(n -I) (Equation 2-7)

where Xi (n - I) is the i th network unit at iteration n - I and I ::::;i::::; N. To generate a space-

variant retina with a uniform fovea the following (ordered) composite transform T similar to

that in Clippingdale and Wilson (1996) can be used

1. A random rotation about the centre of the coordinate space between 0 and 2n.

2. A dilation (increase in eccentricity from the centre of the coordinate space) of the

exponent of a dilation factor which is random between 0 and log(8). This results

in network units in the periphery being transformed more than those in the fovea.

3. A random translation between 0 and f, where f is associated with the required

foveal percentage of the resultant retina.

(Equation 2-8)

Any input stimuli Yi(n) which lie outside the bounds of the coordinate space are culled before

the network weights Xi (n - 1) are stimulated to calculate Xi (n) . In this model's training
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methodology the final configuration of the network weights are governed by the composite

transformations T. Clippingdale and Wilson (1996) list other composite transformation to

generate networks with regular lattice, circle, disc, toroidal and other configurations.

The network is initialised with a random weight configuration and recursively iterated

with the described composite transformation T and the following learning rule to find the

updated weight vector xln):

Xi(n)=Xi(n-I)+a(n) L (Yi(n)-X;(n-I»
iEA;(n)

(Equation 2-9)

{
i: IIYI(n) - xi(n -1)11 }

i\j(n) =
< IIYi(n)-Xk(n-I)II,k:t:. j

(Equation 2-10)

Ai(n) contains the indices to the input stimuli yln) to which Xi (n - 1) is the closest

network vector. a(n) is a learning parameter which controls the stimulation of the network

weights. The learning parameter a is linearly reduced (annealed) throughout the self-

organisation to increase the speed of convergence of the network weights to a stable

configuration, although Clippingdale and Wilson (1996) proved the convergence of Self-

Similar Neural Networks in a circle network configuration even with a constant learning

parameter. Intuitively, one can visualise the effect of the learning rule as each network weight

Xi (n - 1) being updated individually by the input stimuli y;(n) that are closer to that weight

than any other in the network.

2.5. Experiments

In this section of the thesis, the author will present the results of self-organising retina

tessellations with different self-similar neural network composite transformations T. The goal

of the self-organisation is to converge onto a retina tessellation with a circular uniform central
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foveal topology that smoothly transitions into a surrounding space-variant peripheral

topology. The first and second steps in the composite transformation in Equation 2-8 will be

retained and the variation of the third step in the composite transformation T will be

investigated in this section.

In all self-organisation experiments, the radius of the coordinate frame for self-

organisation was unity and the learning rate a was annealed from 0.1 to 0.0005 between

iterations. The initial value for a was retained for the first quarter of the total number of

iterations to induce large updates in topography before being linearly reduced to the final

value at the end of the self-organisation. Figure 2-7 contains a plot of the learning rate during

a self-organisation with 20000 iterations.

Leaming Rate a

0.11--------,
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0.02

7500 10000 12500 15000 17500 20000
iteration

Figure 2-7. The learning rate u was reduced (annealed) during self-organisation.

2500 5000

2.5.1. Vertical and horizontal translations

The author generated the retina tessellation in Figure 2-8 by using vertical and horizontal

translations in the composite transformation T as indicated in Equation 2-8 for self-organising

a network of weights using Self-Similar Neural Networks. Therefore a node at (x, y) in the

coordinate frame will be translated to (x+lx, y+/y) where lx, /y -+ 1./ The horizontal Ix and

vertical r, translations were random up to 20% (/ = 0.2) of the radius of the coordinate space
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r.e. 20% of the radius of the resulting retina field-of-view. The network comprises of 4096

nodes and was self-organised for 5000 iterations.

Figure 2-8. A retina tessellation with 4096 nodes self-organised for 5000 iterations and

generated with translations made in horizontal and vertical directions up with.f-=0.2.

The topology of the resultant retina tessellation has a central foveal region that

seamlessly coalesces into a space-variant peripheral region without any major first or second

order discontinuities in node density.

The spacing between nodes in the tessellation can be subjectively seen to be irregular

in some regions of the retina mosaic. The next figure (Figure 2-9) contains the result of a self-

organisation over a very high number of iterations in comparison to other tessellations in this

thesis (250000 iterations) to demonstrate the effect of a high iteration count on the resulting

weight configuration mosaic.
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Figure 2-9. A retina tessellation with 4096 nodes self-organised for 250000 iterations

and translations made in horizontal and vertical directions withf-=0.2.
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Figure 2-10. The inverse of mean distance to a node's neighbours for all nodes of the

retina tessellation self-organised with translations made in horizontal and vertical

directions plotted against the node's eccentricity (Figure 2-9). The highest value

corresponds to the retina tessellation's space-complexity. The ideal curve with

exponential decay of the mean distance to a node's neighbours in the periphery and

with a uniform foveal region with radius 0.2 is also displayed.
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The weight configuration of the self-organisation has converged into a very regular

tessellation with a local topology approaching a regular hexagonal tiling. Slight deviations

from the hexagonal packing may be observed at some nodes on the tessellation (Figure 2-11).

These occur at the region between the foveal and peripheral regions of the tessellation.

The vertical and horizontal translation components of the composite transformation T

have had a strong influence on the convergent tessellation. The size of the uniform central

fovea-like region roughly corresponds to the f parameter used in the translations (Figure

2-10). The highest value in Figure 2-10 corresponds to the space-complexity (Equation 2-3)

of the retina tessellation. The foveal region of the tessellation has a distinctly square shape

which the author hypothesises was caused by performing the translations in the vertical and

horizontal directions. Therefore in the next section a different translation methodology will be

used in an attempt to generate a more plausible retina tessellation with a circular central

foveal region.
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Figure 2-11. Magnified areas of a self-organised retina that show different packing

mosaics. The area in figure (b) is from a region in the tessellation where the foveal

topology merges into the peripheral.
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2.5.2. Translation in a radial direction

The author obtained the following retina tessellation by changing the translation. in the

composite transformation T, from a random vertical and a random horizontal translation to a

random translation in the radial direction away from the centre of the coordinate space.

Therefore a node at (r, 8) In polar coordinates frame will be translated to (r+/r. 0) where

/r ---4 1./ As with previous experiments, the translation in a radial directionj, was random up

to 20% (j = 0.2) of the radius of the coordinate space. The network consisted of 4096 nodes

and was self-organised for 20000 iterations.

Figure 2-12. A retina tessellation with 4096 nodes self-organised for 20000 iterations

and translations made in a radial direction away from the centre of the retina (FO.2).

Unlike previous retina tessellations, that resulting from a translation m a radial

direction (Figure 2-12) has a central circular fovea like region. However this approach

resulted in a mosaic with a higher packing density in the fovea for the same f parameter as the
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experiment in Section 2.5.1. The density of the foveal region increases sharply towards the

centre of the coordinate space (Figure 2-13) but the foveal topology does not reach singularity

(Figure 2-14).
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Figure 2-13. The inverse of mean distance to a node's neighbours for all nodes of a

retina tessellation self-organised with translations made in a radial direction

(Figure 2-12) plotted against the node's eccentricity. The highest value corresponds to

the retina tessellation's space-complexity. The ideal curve with exponential decay of

the mean distance to a node's neighbours in the periphery and a uniform foveal region

with radius 0.2 is also displayed.
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Figure 2-14: A magnified view of the fovea from the retina illustrated in Figure 2-12

(the radius of the retina is I unit).
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In the next section of this thesis, a self-organisation experiment will be conducted that

combines the influences translations in the vertical/horizontal and the radial directions.

2.5.3. Translations in the vertical, horizontal and radial directions

Here the composite transformation T contains translations in the vertical, horizontal and radial

directions. First a node at (x, y) in the coordinate frame will be translated to (x+.fx, y+f,.) where

Ix,f,. ~ 1./ Then the polar coordinate of the node (r, 8) will be translated to (r+/r, 0) where

/r ~ l.f As earlier, f,was random up to 20% (f-=0.2) of the radius of the coordinate space,

while Ix and f,. were random up to 6.6% (f-=0.066). The network consisted of 4096 nodes and

was annealed for 20000 iterations.

Figure 2-15: A retina tessellation with 4096 nodes self-organised for 20000 iterations

and translations made in horizontal (f-=0.066), vertical (f-=0.066) directions and radially

away from the centre of the retina (f-=0.2).
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The tessellation resulting from self-organising with vertical, horizontal and radial

translations (Figure 2-15) has a circular central uniform foveal region(Figure 2-17). The size

of the fovea roughly corresponds to the vertical and horizontal translations (f=0.066). The

node density of the retina was uniform in the central foveal region and gradually reduced

pseudo-logarithmically in the periphery. Very slight increases and first order irregularities in

the node density can be observed between the fovea and periphery and in the edge of the

retina tessellation (Figure 2-16).
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Figure 2-16. The inverse of mean distance to a node's neighbours for all nodes of the

retina tessellation self-organised with translations made in a vertical, horizontal and

radial directions (Figure 2-15). The ideal curve with exponential decay of the mean

distance to a node's neighbours in the periphery and a uniform foveal region with

radius 0.2 is also displayed.
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Figure 2-17. A magnified view of the fovea from the retina generated with vertical,

horizontal and radial translations (the radius of the complete retina is 1 unit).
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Figure 2-18 Standard deviation of the distance to a node's immediate neighbours for all

the nodes in the self-organised retina tessellation with translations made in horizontal,

vertical directions and radially away from the centre of the retina sorted on eccentricity.

The standard deviation of the distances between nodes in the retina tessellation

(Figure 2-18) increases in the foveal region and also drops sharply in the edge of the

coordinate space. The author hypothesises that the increase in the fovea region is caused by

conflicting affects of a space-variant periphery and uniform central fovea. The low variation

at the far periphery may be because these peripheral nodes are not completely surrounded by

adjacent neighbours.
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While the generated retina topology has a uniform dense central foveal region

surrounded by a sparse, space-variant periphery, the transition between the densities of the

two regions is not completely seamless. In the next and final section of results in this chapter

the author will demonstrate retina tessellations with a smooth transition between foveal and

peripheral topographies.

2.5.4. Random translation

The author obtained the following retina tessellation by changing the translation, in the

composite transformation T, to a random translation in a random direction in the coordinate

space. Therefore a node at (x, y) in the coordinate frame will be translated to (x+cos(O)xJH,

y+sin(O)xJH) where JH ~ 1./and O~ 1..21t, The radial translation JH was random up to 20%

(f = 0.2) of the radius of the coordinate space (i.e. radius of the retina) and the direction of

the translation 0 was random from 0 to 21t. A network with 4096 nodes was self-organised for

20000 iterations,

'. '.

' .... . . .

···0 '0 '.'.'.'.. . '., : ':'.': .'::: >:->::': :':'::-:::::.::, : .' .
,0,0. :. '0 '0 •••••• " •• •

•
:,' .' •• '0 ••• '. ' .' • eo': . '.' ... '. :.:.:.::: '0 :' .'. 0 : .' •

• •••••• 0 ... 0 •• 0 •• °. '0 .'........... ·0· .. 0.· ... 0 ..",

o ••••. ' ... . . . .. . . .. . . . .. .. . . ..... .. ' .
. -.';: .. '.

'0· ••

• ,0 ••

• '0' •••••••• ,0',

o •• '.

" .. . " .. ' .'
'.' .

•• :: '0'.' . ·0···0··· "
.. : ,0. '0' . : : '.' .: ,0.: .

• '0 '0", '0.0 ..... ·0··.. '. . .' .
Figure 2-19. A retina tessellation with 4096 nodes self-organised for 20000 iterations

with a random translation andf=O,2,
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Figure 2-20. The inverse of mean distance to a node's neighbours for all nodes of the

retina tessellation self-organised with a random translation plotted against node

eccentricity (Figure 2-19). The ideal curve with exponential decay of the mean distance

to a node's neighbours in the periphery and a uniform foveal region is also displayed.

The space-complexity of the retina tessellation is given by the maximum of the curve .
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Figure 2-21. Standard deviation of the distance to a node's immediate neighbours for

all the nodes in the self-organised retina tessellation with a random translation sorted on

eccentricity (Figure 2-19).

The node density of the retina tessellation generated using a random translation has a

smooth seamless transition between foveal and peripheral regions (Figure 2-20). The

maximum density of nodes in the fovea is approximately that of the tessellation generated in

Section 2.5.3 which had vertical, horizontal and radial translations. The standard deviation of

the distance to a nodes neighbours (Figure 2-21) for the tessellation is also much lower than

previously (Figure 2-18).
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The retinal topology self-organised with a random translation was used for saccadic

vision and other experiments in this thesis. As a multi-resolution pyramid of retinae will be

used to extract visual information from images in this thesis, the author generated retina

tessellations with differing number of nodes.
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Figure 2-22. A retina tessellation with 1024 nodes self-organised for 20000 iterations

with a random translation andj=0.2.

. .. . ..

Figure 2-23. A retina tessellation with 256 nodes self-organised for 20000 iterations

with a random translation and.f-=0.2.
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A space-variant retina pyramid based on retina tessellations with 4096 (Figure 2-19),

1024 (Figure 2-22) and 256 (Figure 2-23) nodes will extract approximately octave-separated

space-variant visual information. To efficiently implement the retina pyramid, a 8192 node

retina (with tessellation illustrated in Figure 2-24) was also generated. Only this layer of the

retina pyramid sampled the input image, all others sampled low-pass filtered information

from immediately higher frequency layers in the retina pyramid (Chapter 3).

Figure 2-24. A retina tessellation with 8192 nodes self-organised for 20000 iterations

with a random translation and.t=0.2.
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Figure 2-25. The inverse of mean distance to a node's neighbours for all nodes in retina

tessellations with 4096, 1024 and 256 nodes self-organised with a random translation

plotted against the node's eccentricity. The retina pyramid based on these tessellations

will extract approximately octave separated visual information.

2.6. Discussion and Conclusion

The principle achievement in this chapter is the creation of a self-organised retina receptive

field tessellation. Researchers (Schwartz, 1977, 1980; Wilson, 1983; Gomes, 2002) have tried

to use an analytical retino-cortical transform that maps locations in the field-of-view to a

continuous cortical image, thereby creating a data structure that can store extracted visual

information. However the actual retinal tessellations or locations of retinal receptive fields

that are needed to generate these continuous cortical images are inadequate, exhibiting

singularities and over-sampling the fovea or having discontinuities and distortions in the

sampling mosaic. No analytic approach or geometric mapping that can describe the gradual
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change in topography of the retina between a uniform fovea and space-variant periphery has

been reported in the computer vision literature.

The author used a self-organisation methodology (Clippingdale and Wilson, 1996) to

generate retinal tessellations that, while foregoing a defining closed form analytic mapping,

had continuity in sampling density between a uniform fovea and space-variant periphery. The

retina has a uniform foveal region which seamlessly coalesces into a space-variant periphery

and the tessellation does not have a singularity in the fovea.

The tiling structure of the retina locally resembles a hexagonal lattice with occasional

deviations in the hexagonal topology in some locations where there is a transition between the

dominant influences on the local network topology. These deviations enable the retina

tessellation to maintain a sampling density continuum at a macroscopic level and regularity in

node positions, while the retina's uniform foveal region seamlessly coalesces into a space-

variant periphery. At the transition between the foveal and peripheral topological influences

there is an increase in entropy in the system, observable as an increase in the variance of

neighboring intra-node distances at 0.03 and 0.95 of the radius of the retina in Figure 2-21.

The author surmises that this is caused by the retina tessellation trying to maintain regularity

in its mosaic while being subject to increased contradictory forces from foveal (uniform) and

peripheral (space-variant) topological influences.

The hexagonal lattice structure of the self-organised retina is interesting but expected.

A hexagonal tessellation is the approximate pattern in which receptive fields are found in

biological retinae (Polyak, 1941) and is a pattern commonly found throughout nature

(Morgan, 1999). Retina receptive fields placed on this tessellation would be equidistant from

their immediate neighbours and Dudgeon and Mersereau (1984) showed that such a

hexagonal tessellation is the optimal sampling (tiling) scheme for a 2D space.

The non-uniform, almost pseudo-random sampling locations generated by self-

organisation have properties that help reduce aliasing artefacts in their associated retina's
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extracted visual information. Pharr and Humphreys (2004) discussed how the random

jittering of sampling locations turns aliasing artefacts into noise. It is possible that

biologically retinae have similarly benefited by the non-uniform locations of visual

machinery.

A retina tessellation is not yet a retina. To prevent aliasing, visual information must

be gathered over a large support region around each coordinate in the retina tessellation. In

the next chapter the author will define the receptive fields that will extract features at

locations indicated by the space-variant retina tessellation.

An explicit closed form analytic mapping from the retina tessellation coordinates to a

retinotopic cortical image data structure that could be used to store and manipulate extracted

image information is not available for the self-organised retina. In the next chapter the author

will describe processing structures that can operate on space-variant visual information

extracted using a retina with a self-organised or in fact any arbitrary receptive field

tessellation.
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Chapter 3

Feature Extraction

The objective of this chapter is to describe the feature extraction operations

performed by a vision system based on the self-organised retina tessellation

implemented as part of this thesis. The primate visual pathway will be

reviewed by the author as inspiration for biologically motivated computer

vision. Relevant conventional image processing approaches and reported

work on space-variant image processing will also be investigated in this

chapter. Computational machinery to extract features generated from a

pseudo-random sampling tessellation will be developed and the feature

extraction hierarchy of the implemented vision system, from processing of

retinal receptive fields, to multi-resolution space-variant Gaussian and

Laplacian of Gaussian retina pyramids, and the detection of Laplacian of

Gaussian scale-space extrema will be described.

3.1. Introduction

In the previous chapter the author described the self-organisation of a retina tessellation.

However, a retina tessellation does not a retina make. Visual information from input stimuli

must be sampled at the space-variant locations indicated by the retina tessellation. This
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information cannot be gathered by point sampling the locations indicated by the tessellation.

The sampling frequency of the retina tessellation (inverse of the interval between retina

sampling locations) is frequently lower than the spatial frequencies contained in the visual

scene or image (especially in the periphery of the retina). Therefore point sampling intensities

in the visual information would cause aliasing in the extracted visual information as higher

spatial frequencies in the image cause artefacts at the lower sampling rate. To avoid aliasing,

visual information is extracted using a large support region around each sampling location.

The support regions will have profiles which will low pass or band pass the information to

approximately half the (local) Nyquist rate of the space-variant retina tessellation.

The support region around the sampling locations given by the retina tessellation will

be referred to as the retinal receptive field in this thesis. This reflects the definition of a

receptive field used in neuroscience, where the receptive field of a nerve cell (in the visual

pathway) is the area in the field-of-view in which the cell is stimulated. This stimulation may

be excitatory or inhibitory. Feature extraction machinery found in biology and in machines

generally consists of a hierarchy of operations which progressively extract more complex (and

eventually potentially abstract) features with progressively larger receptive fields from the

input. Connectivity need not be restricted to adjacent layers in the processing hierarchy. The

features generated at the terminal stage of the processing hierarchy are used for higher level

reasoning such as object recognition and tracking.

The idea of a hierarchy of feature detectors assembling progressively more complex

or abstract features and concepts has existed in the computer vision community for

surprisingly long. In his seminal work, Vision, (Marr, 1982) described a "primal sketch"

image representation comprising of image primitives such as blobs, edges and corners. It is

generally regarded that the Pandemonium model (Selfridge, 1959) was the first well reported

approach for the hierarchical extraction of iconic features for pattern recognition. The work

arose at a time where experimental probe recordings were beginning to reveal the receptive
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fields of neurons in the biological visual pathway, from the relatively crude centre-surround

receptive fields in retinal ganglion cells (Barlow et al., 1957), to the orientated receptive fields

of simple cell in the lower visual cortex (Hubel and Wiesel, 1959). The Pandemonium model

consists of many processing units with limited capability called demons. In the first layer of

the model, there is a single image demon which observes the world (analogous to an imaging

sensor). The output of the image demon was processed by a multitude oifeature demons each

looking out for the presence of a specific pattern. The output of the feature demons were in

tum processed by cognitive demons. Cognitive demons would become active depending on

their connectively to and stimulation from feature demons. Because of their pooling of feature

demon afferents, cognitive demons would detect complex features of an object class over a

large receptive field. Processing in the Pandemonium model terminates with the decision

demon which decides the content of the world by the activity of the cognitive demons.

Recently similar models have been reported (Riesenhuber and Poggio, 1999) with advances,

such as the non-linear pooling of units responses, validating the general approach of the

hierarchical extraction of progressively complex/abstract features.

Most of the feature extraction hierarchies found in modem computer vision have

feed-forward pathways with processing unit afferents being projected to higher levels in the

processing hierarchy. Experimental findings have revealed that a large percentage of cortical

connections are in fact feedback pathways (Felleman and Van Essen, 1991). These feedback

connections can include a task or top-down bias to the operations of the processing units in a

feature extraction hierarchy. Theories in visual psychology also support a more holistic

approach to vision than simple feed-forward processing. Furthermore, it has also been

suggested that vision machinery should not be regarded in isolation without other sensory and

motor information from the environment in which the vision system behaving. Therefore

Granlund (Granlund, 1999) proposed a hierarchical processing model with feedback

connections between layers of visual processing units, down from a high level task/goal, as

well as connections from other modalities. Feedback connections based on hypothesis goals
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or hypothesis feature configurations will constrain the reasoning within a processing

hierarchy providing contextual task information that helps prevent the combinatorial

explosion of active connections.

3.2. Concepts

Some form of feature extraction can be seen in almost all computing applications dealing with

the analysis and reasoning of data as diverse as images, video, audio to text documents. Effort

is made to detect certain 'interesting' patterns in the data or map the data into another space

before higher level reasoning. But why can't the data be analysed directly in its original form?

For example, why aren't image pixels processed directly without a convoluted feature

extraction process? Why do we need feature extraction?

3.2.1. Invariance

Information which is considered to belonging to intrinsically the same data item, class or

entity can be observed in the environment. For example, the same cup object may be observed

under different noise conditions, positions, pose orientations, spatial scales, etc., resulting in

different stimulated image pixel arrays. The pixel intensities of the cup object image are not

invariant under many of the transformations to which the cup object may be exposed in the

environment. Invariance refers to a quantity or measure which remains unchanged under

certain classes of transformations of the object or entity. In a vision system, the features

extracted from an object may be invariant to noise in the image or the rotation and scaling of

the objects in the scene. Almost all feature extraction (or even signal processing) operations in

a vision system can be viewed in the context of increasing the invariance of the extracted

feature information.
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The formal definition of invariance shall be given as follows, where function (or

measure) f is invariant under transformation T if the following holds

f(T(x)) = T(f(x)) (Equation 3-1 )

However, general usage of the term invariance in computer vision literature implies a

relaxed interpretation of the above equation. Stability under the transformation T instead of

strict equality in the above equation is desired for measure! Furthermore, f(T(x)) == f(x)

or even f(T(x)) == S(f(x)) is frequently implied by the term invariance in computer vision

where S is a closed form function related to T. For example, the log(z) transform is considered

to be invariant to rotation of the image centred around the point of fixation because a specific

rotation in the retinal image corresponds to an associated translation in the cortical image.

3.2.2. Modality

The feature extraction operations applied in the analysis of data are intimately related to the

modality of the data. The stable, characteristic features extracted from video, images, audio,

text documents, etc., may be quite different from one another. This form of feature extraction

regularly falls under the domain of general signal processing. For example, in most signal

processing hierarchies there is an initial low-pass filtering feature extraction step which

prevents aliasing in the data. Without this step, the data will lack any invariance whatsoever

to even slight transformations such as a translation of a single pixel.

3.2.3. Dimensionality reduction

Many feature extraction approaches involve reduction in the dimension of input data. Since

processing and internal memory resources are limited even in modem computers

dimensionality reduction benefits the efficacy of their operating machinery. There are a

couple of other benefits of dimensionality reduction which enhances the extracted features:
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(1) Sparsification - Much of the content in data vectors may be redundant, correlated

information. Reducing the data to its minimal essential elements while retaining most of

its information content aids higher level reasoning operations in the system.

(2) Increase variance - The high dimensional data input into a computational system may be

highly correlated. In a classification task, the inter-class variance of the data classes may

be low in the high dimensional input data resulting in classification errors. It is possible to

use statistical techniques such as PCA, LOA, etc. to project the data into a lower

dimensional basis space to increase the variance between data points.

3.2.4. Discrimination

Information from the input data after feature extraction must still contain sufficient

information to perform the task at hand. As the feature or measurement of data becomes more

invariant to transformations, a computational system is able to generalise from the specific

data example to the entire class of objects. For example, in a highly utopian situation, the

invariant features from an image of a red cup will enable a machine vision classifier to

generalise to the category of all cup images.

As features become more invariant they lose the ability to discriminate between

specific examples of the data. At an extreme, the features that a classifier uses will become so

invariant that all input data will appear to be the same. There is an inherent dichotomy

between the invariance of a feature and its discrimination ability. If a feature generalises too

much, all data will appear the same; if the features are too descriptive and discriminate, they

can't generalise to new examples of the data or other items in the data class.

3.2.5. Psychophysics evidence

Psychophysics is a branch of psychology dealing with the perception of physical stimuli. The

field conducts experiments using the human body as the measuring instrument in the hope of
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inferring the inner working of our perceptual and cognitive processing machinery. A leading

theory in visual psychology was proposed by Wertheimer (Wertheimer, 1923), Koftka

(Koffka, 1922) and Kohler (Kohler, 1925), who identified certain fundamental principles

called the Gestalt Principles of Perceptual Organization. The approach encourages a holistic

view to perception which complements the simple feed-forward aggregation of visual

precepts to a whole. Paraphasing Wertheimer, " ... what takes place in each single part already

depends upon what the whole is." The following are considered to be some of the Gestalt

Laws of Organisation

(I) Proximity - Similar parts that are close together In time or space appear to belong

together and tend to be perceived together.

(2) Similarity - Parts that are similar in some respect tend to be perceived together.

(3) Good Continuity - There is a tendency to perceive contiguous parts following a

continuous direction.

(4) Closure - Parts are perceived together if they tend to complete some entity and there

is a tendency in our perception to complete the entity.

(5) Figure and Ground segmentation - Perceptions tend to be organised by distinguishing

between a figure and a background

Figure 3-1. Marroquin's figure (Marroquin, 1976) demonstrates the perception of

Gestalt structure and relationships. Different holistic structures emerge as our attention

shifts between details in the figure.
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3.2.6. Illusions

In a feature extraction hierarchy, complex features are formed from the input stimuli.

Global/holistic organisations, prior knowledge and feedback information can influence the

system when reasoning about the content of input stimuli. An interesting consequence of such

a feature extraction hierarchy is the perception of illusions. Optical stimuli have been

developed in the psychophysics community that can stimulate illusionary contours in human

observers. Figure 3-2 contains a Kanizsa triangle (Kanizsa, 1955) where a human observer

perceives the most likely interpretation of the scene - a white triangle in front of the stimulus.

The illusionary white triangle is perceived to be brighter than background.

7
v

Figure 3-2. The Kanizsa triangle (Kanizsa, 1955) demonstrates the illusory perception

of a white triangle where none is present in the figure.
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3.3. Feature extraction in the biological visual pathway

This section provides a brief overview of the human visual pathway to give the reader an

insight into a feature extraction hierarchy operating in biology relevant to this thesis. While

amazing insight into human visual perception has been gained by recording the structure and

processing of our visual pathway, it is striking how much is as yet unknown.

3.3.1. The Retina

The vision of most primates is tri-chromatic. There are three types of cone photoreceptors in

the primate retina: those sensitive to red, green and blue light. However the terms red, green

and blue are in fact misnomers, as these cone photoreceptors are sensitive to a wide chromatic

range of light. Based on their response curves it has been experimentally found that out of the

6 to 7 million cones in the retina, 64% of the cones are sensitive to "yellowish-red" (L-cones),

32% are sensitive to "yellowish-green" (M-cones) and just 2% sensitive to "blue" (S-cones)

(Hecht, 1975). However because of interactions between horizontal and bipolar cells in the

retina and more importantly retinal ganglion cells with spatially opponent centre-surround

receptive fields (Barlow et al., 1957), colour intensity information is not directly transferred

from the retina to higher processing structures (Ratliff, 1965).

Retinal ganglion cells with centre-surround isotropic receptive fields project an

achromatic contrast channel, based on spatial contrast in L and M cones responses, and

chromatic contrast channels, based on red (L cone) and green (M cone) colour opponency

and on blue (S cone) and yellow colour opponency, from the retina (Hering, 1964). Here

'yellow' is the aggregation of the responses from L and M cones. The few S cones in the

retina are mainly distributed outside the fovea, where we have high acuity vision. Therefore

these do not constitute much visual information and are not used to compute the achromatic

channel.
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Figure 3-3. A mosaic of cone photoreceptors in the (A) foveal, and (B) peripheral

regions of the human retina. The scale bar in (B) is 1Ourn. (reprinted from Curcio et al.,

1990). Cone photoreceptors human retinae vary in size between the fovea and

periphery. These are larger in the periphery and spaced farther apart than in the fovea.

The gaps between cones in the periphery are filled by rod photoreceptors.

3.3.2. Lateral Geniculate Nucleus

Nerve afferents from the primate retina carry retinal ganglion cell responses to a mass in the

thalamus called the Lateral Geniculate Nucleus (LGN). The LGN contains distinct layers with

cells which have been categorised into two separate pathways. The parvocellular (P) pathway

primarily processes visual information related to form, colour and texture. Processing is

comparatively slow and is regarded to be the pathway which tells us "what" we are seeing.

This is in contrast to the magnocellular (M) pathway, which is responsible for the quick

processing of motion and flicker, and contains information regarding "where" something is

(Livingstone and Rubel, 1988). Because the author has constrained this thesis to static visual

stimuli, the magnocellular pathway shall not be investigated further. The LGN projects its

neural afferents to the lower visual cortex from which it also receives many strong feedback

connections from other cortical areas.
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Figure 3-4. Section of a left Lateral Geniculate Nucleus body from a macaque monkey

cut parallel to the monkey's face. There are six layers of cells stacked upon each other

like, using Hubel's analogy, a club sandwich. The layers are folded over each other and

alternate between cells stimulated by the left and the right eye. The direction

perpendicular to the layers is indicated by the dashed line. Taken from Hubel (1987).

3.3.3. Visual Cortex

The author shall give a very brief outline of the processing of the parvocelluar pathway in the

visual cortex. The achromatic information in the P pathway is processed by simple cells

(Hubel and Wiesel, 1959) in the striate cortex (VI). These simple cells have been found to

have anisotropic receptive fields. The receptive fields are elongated and are thought to be

used to extract edge (and end-stop) information from the isotropic centre-surround receptive

field responses emitted from the retina. The simple cells have orientated receptive fields at

different angles and scales and perform a great deal of processing on the visual information

from the retina. Output of simple cells is processed by complex cells. These consist of almost

~ of the cells in the striate cortex and have receptive fields which are larger than simple cells

resulting in the detection of features over a larger region of the field-of-view. Complex cells

seem to be optimally stimulated by orientated edges (similar to simple cells), but these stimuli
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must be swept across the cells respective field in a selected direction (Hubel, 1987). It is

thought that chromatic information in the parvocellular pathway is processed by double

opponent cells (Hubel, 1987). These are circularly symmetric centre-surround cells found in

the "blob" regions of the primary visual cortex and are believed to help provide colour

constancy to human vision.

Visual and other sensory information proceed from dedicated low-level feature

extraction neural structures in the rear of the brain to frontal areas where higher level

reasoning and memory associations are computed.

Figure 3-5. Map of the Macaque brain, taken from Felleman and Van Essen (1991).

Areas in the brain predominantly associated visual activities are coloured. The visual

cortex lies at the back of the brain with VI, the lower visual cortex at the rear. The

processing machinery of the visual hierarchy generally proceeds from the rear to the

front of the brain where higher level reasoning and memory associations take place.
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3.3.4. Evidence of hierarchical processing in the primate visual pathway

Evidence from physiological studies of the visual pathway complement psychophysics

theories for the hierarchical organisation of the feature extraction in vision. Centre-surround

receptive fields in retinal ganglion cells evolve into orientated receptive fields in the striate

cortex (V I). There are direct feed-forward connections from V I and feedback connections to

VI originating from V2(complex features), V3(orientation, motion, depth), MT(motion),

MST(motion), and FEF(saccades spatial memory) parts of the visual cortex, as well as pure

feedback connections to V I originating from LIP (saccade planning) and IT (recognition)

(Schrnolesky, 2005). Receptive fields of units in the feature extraction hierarchy get larger,

more complex as one ascends the hierarchy. At higher layers in the primate visual pathway

one may expect direct spatial relationships to have been absorbed into a group of processing

units (perhaps also related to memory) which represent abstract concepts or labels such as a

human face (Bruce and Young, 1986).

Therefore, paraphrasing Hubel (1987), once we have garnered sufficient knowledge

of the processing mechanisms in the human brain we may not need the word mind at all. And

the author of this thesis hypothesises that implementing similar machinery in artificial brains

may result in the immergence of behaviour normally associated with biological

consciousness.
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3.4. Background

This section contains a brief review of the computer vision literature relevant to the feature

extraction and space-variant image processing operations implemented by the author.

3.4.1. Functions used for image processing

Computer vision researchers have attempted to discover closed-form functions which

resemble receptive fields in the biological visual pathway.

Image processing filters based on the Gaussian function are used for blurring

operations. The Gaussian filter has smooth low-pass characteristics and is therefore useful for

dampening high-frequency noise and aliasing artefacts in images. The normalised 1-

dimensional Gaussian function over t with standard deviation (1 and zero mean is given below.

g(t)
1 (-2~~)

--==e(jJ2i (Equation 3-2)

The Fourier transform of the Gaussian function is as follows, where w is circular

frequency (W=27Cf)

G(m) = e (Equation 3-3)

In his seminal work, Vision, Marr (1982) identified the second derivative of the

Gaussian (V2G) or Laplacian of Gaussian filter (Marr and Hildreth, 1980) as resembling the

centre-surround receptive-fields of retinal ganglion cells. The following is the Laplacian of

Gaussian (LoG) function centred around zero, with Gaussian standard deviation (1 in the

spatial domain.

n2 ()_(t2_(j2J 1 (-2~2)
V g t - 4 r::;-::_ ea (j,,2:r

(Equation 3-4)
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The Laplacian of Gaussian in the frequency domain is given by the following where

ro is the circular frequency,

-~-
V2G(w) = _w2 e 2 (Equation 3-5)

The peak circular frequency of a Laplacian of Gaussian is given by,

(Equation 3-6)

Marr (1982) stated that the Laplacian of Gaussian may be approximated by the

difference of Gaussian function when the ratio r between the standard deviation of the

excitory and inhibitory Gaussians is 1.6. The following is the un-normalised difference of

Gaussian (DoG) spatial domain function centred around zero and with standard deviations (I~

and a, for the constituent excitatory and inhibitory Gaussian functions.

( r' ) ( r' )I -2a' I -1a'
dog(t) = e" - e ->,

a,.fii a, .fii
(Equation 3-7)

a
r=-' =1.6

a,.
(Equation 3-8)

The Fourier transform of the difference of Gaussian gives its frequency domain

function, where cois the circular frequency.

_ 0/0/ _ W101:!

DOG ( ro) = e 2 - e 2 (Equation 3-9)

At the peak circular frequency WI'<!lJA of the difference of Gaussians,

d (DOG( Wl'fak )) = 0
dw

Differentiating and simplifying Equation 3-9 at W,I<'ak gives the following,

1-a; e

- ,
_ WI't'<lka,-

2 =0
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Simplifying the above results in

Taking the natural logarithm on both sides

Which gives the peak circular frequency of a di fference of Gaussians function

OJ = ±peak

4 In[ (ji)
v. (Equation 3-10)

Response of difference of Gaussians at peak circular frequency,

DOG (peak (0) = exp -

Substituting with Equation 3-8,

2In(r) 2In(r) 2

DOG (peak (l)) = e- (,2 - J) _ e-R' (Equation 3-11 )

Image processing filters based on Laplacian of Gaussian and difference of

Gaussian functions have band-pass characteristics and are therefore useful for extracting

sparse contrast information from an image.

Oaugman (1985) and Granlund (1978) independently proposed the two dimensional

Gabor wavelet to minimise uncertainly for the localisation of a feature in space and

frequency. Oaugman (1985) additionally showed that the 20 Gabor wavelet resembles the

receptive fields of simple cells in the striate cortex. A Gabor wavelet pair consists of a sine

and a cosine function localised with a Gaussian envelope. The formulation of a Gabor wavelet
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with an asymmetric Gaussian envelope as given in Kyrki (2002) follows. This formulation

aids steering the orientation of the wavelet along the sine/cosine wave propagation direction

by modulating the angle e, while y and" are the standard deviations of the Gaussian envelope

along the direction of propagation and perpendicular to the direction of propagation

respectively.

lI'(x, y)= (Equation 3-12)

x'= xcosO+ ysinO (along direction of wave propagation)

y'= -xsinO+ ycosO (Equation 3-13)

The Fourier transform of the Gabor wavelet formulation in Equation 3-12 follows,

!r( , " ')-~ r(U'-/"f+TP'-
\II(u, v) = e t.. (Equation 3-14)

u' = u cos 0+ vsin 0 (along direction of wave propagation)

v'= -usinO+vcosO (Equation 3-15)

3.4.2. Multi-scale feature extraction

Features are present in images at a continuum of scales. Therefore, it useful to analyse an

image at several scales and extract features at their associated intrinsic scale. Witkin (1983)

proposed considering scale as a continuous parameter, sowing the seeds of modem scale-

space theory. Koenderink (1984) showed that scale-space must satisfy the diffusion equation

which led to the use of the Gaussian function for the construction of Gaussian scale-space.

The multi-scale representation of the image is extracted by convolving the image with

Gaussian kernels with differing standard deviations.
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Because it satisfies the diffusion equation, extrema (maxima or minima) will not be

found within a Gaussian scale-space. Therefore researchers have used scale-normalised

Laplacian of Gaussian (Lindeberg, 1994; Mikolajczyk, 2002) and difference of Gaussian

(Lowe, 2004) scale-space for the detection of scale-space extrema. These normalised

Laplacian of Gaussian extrema positions in scale-space will be used in Chapter 4 for the

detection of interest point locations. Un-normalised Laplacian of Gaussian kernels are not

suitable for the detection of scale-space extrema because the amplitude of a Laplacian of

Gaussian filter generally decreases with scale. Lindeberg (1994) and Mikolajczyk (2002)

showed that the scale-normalised derivative D of order m centred on (x, y) with standard

deviation (scale) a is given by

(Equation 3-16)

The am term helps to somewhat normalise the image derivative L; response to scale.

Therefore for the Laplacian (second derivative) ofa Gaussian we get

(Equation 3-17)

Instead of generating a continuous scale-space it is possible to compute Gaussian

filter responses at discrete scales within scale-space. Furthermore, instead of repeatedly

filtering the original image as several spatial scales it is possible to filter the immediately finer

discrete scale reducing computation load. As the coarser scales contain redundant correlated

visual information it is possible to sub-sample and low-pass filter in a single operation

creating a Gaussian pyramid (Burt and Adelson, 1983). Subtracting adjacent layers in the

Gaussian pyramid gives a difference of Gaussian pyramid which approaches a Laplacian

pyramid (Burt and Adelson, 1983).

Greenspan et al. (1994) extended Burt and Adelson's (1983) work by constructing an

orientated Laplacian pyramid through the formation of a Filter-Subtract-Decimate Laplacian

pyramid and modulating each level of the pyramid with oriented sine waves. The resulting

log-Gabor kernel was used for rotation invariant texture classification.
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3.4.3. Space-variant image processing

This section will review prior work on processing visual stimuli that has been extracted using

a space-variant sensor or sampling technique. The reader must note that this does not refer to

the extraction of responses from the scene using retinal receptive fields. but rather to the

subsequent processing of the retinal responses to perform operations such as blurring or the

extraction of gradients.

Most conventional space-variant approaches are based on projecting and representing

space-variant responses in a conventional continuous rectilinear array (i.e. the cortical image).

Image processing operations are performed uniformly on the array resulting in space-variant

processing in the retina domain. Operations such as optical flow computation (Tistarelli and

Sandini, 1993; Traver, 2002), edge detection and saliency calculation (Bernardino, 2004) are

computed on the cortical image. Because the extracted space-variant visual information is

represented as a conventional rectilinear image, conventional image processing operations can

be used to operate on the structure. While this approach enable researchers working on space-

variant vision to use the huge library of image processing machinery implemented for image

array representations, they are shackled by the previously discussed shortcomings of the

retino-cortical transform based approaches that generate continuous rectilinear cortical images

(Section 2.3).

Gomes (2002) used a coordinate mappmg to represent and store the responses

extracted using a retina within a rectilinear array structure which was discontinuous in the

fovea. Interestingly, he also learnt visual features using a neural network to process contrast

normalised responses of a retina with a uniform fovea and a local hexagonal organisation. An

iconic feature subsumed the support region of a retinal receptive field and its immediate

neighbouring 18 receptive fields on the hexagonal tessellation (geodesic distance of two

nodes away from the centre of the iconic feature). Principal Component Analysis was then

used to derive an iconic vector which increased variation between the receptive field
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responses for classification with the neural network. The system was trained with blob, edge

and end-stop features presented to the retina over each feature's support region.

While learning the distinctive features extracted from a retina is a promising

approach, it is not straightforward to structure a fast learning process that learns distinctive

features directly from natural images themselves. It is also not possible to interpolate between

the responses of the learnt features as there is no explicit relationship between the features

unlike, for example, the Gabor wavelets orientated at different predefined angles in a Gabor

jet. Games (2002) normalised his features for orientation invariance but there were no scale

invariant properties described.

Out-fovea

log-polar

I,
YtSl't.:IlIP,) 1.11'.114.11

~.JO l.IIU 10
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Figure 3-6. Mapping of node coordinates from a 5 ring retina with a 3 ring fovea to a

cortical image. Reprinted from Gomes (2002)

Wallace et. al. (1994) considered image processing using space-variant structures in a

paper titled 'Space-variant image processing.' They used connectivity graphs to encode

adjacency relations between nodes in the retina sensor, where graph nodes represent sensor

pixels and graph edges represent adjacency relations between pixels. This work primarily

dealt with retinal tessellations and sensors based on analytical retina-cortical transforms

(Schwartz, 1977, 1980) and therefore connectivity was based on the associated analytic

transform. Conventional cortical image data structures were used to store the extracted visual

information. Image transformations, pyramid operations and connected components analysis
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(also in Montanvert et a1.(l99 I)) were conducted on the cortical images based on the

connectivity graph. They also performed simple contrast detection operations by subtracting

the pixel value of adjacent nodes from the pixel value of a node, as well as simple pyramidal

operations such as adaptive local binarisation.

The approach by Wallace et. al. (1994) was a significant contribution to the

processing of visual information extracted using a space-variant retina. Yet there are several

advances to this approach which the author shall make within this thesis. While Wallace et. al.

defined neighbourhood support regions, they failed to define receptive fields with an analytic

profile function. Therefore image processing operations such as the space-variant filtering of

visual information with a given kernel were not discussed. For example, a simple vertical

Sobel operator filtering responses extracted from a space-variant retina will detect very fine

vertical edges near the foveal region, and coarse vertical edges at the peripheral region of the

retina.

An important aspect of the approach by Wallace et. al. is that connectivity IS

determined by adjacency in the retina and not adjacency in the cortical image. Similar

mechanisms govern the formation of retino-tectal connections (Willshaw and von der

Malsburg, 1976) and cortical receptive fields (Zhang et al., 2005) within the visual pathway.

It is adjacency and neighbourhood relationships in the retina that govern the formation of

filter coefficients and connectivity in a feature extraction hierarchy and not the structure that

the visual information is stored (i.e. the cortical image), although retinotopic organisation

causes a convergence in relationships between nodes in the retina and between associated

projected nodes in the cortical image. Since processing operations are governed by spatial

relationships in the retina, from a computer vision standpoint, the reader must question the

need for a uniform array cortical image representation of visual data. After all, since space-

variant vision is going to be implemented in software, why do we need the retinotopic cortical

image at all? The author of this thesis proposes that the responses extracted by the retina can
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be stored in any arbitrary structure (even a one-dimensional vector), as long as the addressing

mechanism into this structure is consistent. All spatial relationships between nodes in the

structure are determined by adjacency of associated retinal receptive fields in the retina.

Figure 3-7. The connectivity graph for a log-polar sensor taken from Wallace et al.

(1994). Connectivity based on retina nodes neighbourhoods (Left) are represented as

relationships between nodes on the cortical image (Right).

3.4.3.1 Normalised convolution

In many signal processing applications data may be missing or have low confidence at some

locations in the sampling array. Knutsson and Westin (1993) and Piroddi and Petrou (2003)

described the normalised convolution which was able to convolve data from a pseudo

irregular tessellation or with varying confidence better than conventional convolutions. If fit)

generates regularly spaced samples of a signal with associated confidence values c(t) and the

required conventional convolution kernel is given by get), then the normalised convolution

output h(t) which has a regular tessellation is given by

het) = J(t) * g(t)
e(t) * get) (Equation 3-18)
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For an irregular tessellation the missing values inf(t) have a zero associated value in

c(t). This approach for signal analysis is suitable for a regularly tessellated sensor with

outputs which have dynamically changing associated confidence values, but is not appropriate

for a sensor with a fixed irregular tessellation. The normalised convolution approach attempts

to resample the irregular data into a regular grid. In a feature extraction hierarchy the ensuing

regular data would then be used for higher level processing. However there is a waste of

processing and storage resources in this approach by creating regularly spaced data with low

confidence. The resulting regular data will have a much higher dimensionality than the

irregularly (retinally) sampled data and will be highly correlated in many regions.

After reviewing relevant work in vision literature the reader must be aware that

performing feature extraction operations on visual data extracted by the self-organised non-

uniformly tessellated retina in this thesis is not trivial. In this chapter the author will describe

the formulation of space-variant retina receptive fields, as well as space-variant cortical filters

in higher layers in the feature extraction hierarchy that can (re)sample and analyse irregularly

sampled visual data.

3.S. Retina receptive fields

In the previous chapter the author described the generation of an irregular, self-organised

retina tessellation which characterised the locations for space-variant sampling of visual

information from an image. As discussed earlier (Section 3.1) the locations described in the

retina tessellation must be sampled over a support region to prevent aliasing artefacts. The

size of the sample support region (receptive field size) could also have been self-organised

together with sample location (Clippingdale and Wilson, 1996) but this would have created

retinae with receptive fields without sampling continuity in Gaussian scale-space. While such
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a retina capable of multi-resolution sampling within a single irregularly spaced node layer (in

space and scale) may seem elegant, performing hierarchical feature extraction operations on

the responses extracted using such a retina would exceed the scope of this thesis. Therefore

the author adopted self-organisation only to establish receptive field positions. Receptive field

support sizes were determined based on local receptive field density.

A single retinal layer is restricted to extracting visual information at a single narrow

frequency range from a particular location in the scene at a single retinal fixation. Multi-

resolution space-variant feature extraction was performed by using a pyramid of retinae that

efficiently extracted visual information at several scales.

3.5.1. Adjacency in the retina tessellation

The self-organised retina tessellation IS a mosaic of coordinate locations without any

accompanying adjacency information. In order to define retina receptive field sizes and

compute support regions for feature extraction operations, it is useful to define adjacency and

neighbourhood regions about nodes (receptive fields) on the retina tessellation. These

adjacency criteria will be based on a structure which will be referred to as the cortical graph

which will be formed by Delaunay triangulation of the retinal tessellation.

If P = [Ph Pz, ... , Pn] are the set of 'sites' (i.e. retinal tessellation nodes) in a two-

dimensional Euclidean plane, it is possible to assign every point x in the plane to its nearest

site. The Voronoi region of site pi, given by V(pJ, consists of all points at least as close to Pi

as to any other site (O'Rourke, 1994).

V(p,) ={x: Ipi -xl Slpi -xl, vi= i} (Equation 3-19)

The set of points in V(Pi) for T:;f i that have more than one nearest neighbour form the

Voronoi diagram V(P) for the set of sites P.
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Figure 3-8. Voronoi diagram for a retina tessellation with 256 receptive fields. The

receptive field centres are plotted as dots in their associated Voronoi region.

The dual graph G for a Voronoi diagram V (P) is constructed by connecting node

sites with an arc if the sites' corresponding Voronoi regions share a Voronoi edge in the

Voronoi diagram. Delaunay showed drawing straight lines in the dual graph results in the

planar triangulation of the Voronoi sites P if no four sites are co-circular. The resulting

structure is called the Delaunay triangulation 9)(P) of P.

Figure 3-9. Cortical graph constructed by Delaunay triangulation of a retina tessellation

with 256 receptive fields. The vertices in the graph are receptive field centres.

The cortical graph structure is created by Delaunay triangulation of the associated

retina tessellation. The length of a graph edge on the cortical graph is defined as unity.
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Therefore the cortical graph has the useful property that graph distance on the cortical graph

results in space-variant distances in the image plane. The graph distance is defined as the

shortest path or graph geodesic between two nodes in the graph. Distance is measured as the

number of graph edges along a path between two graph vertices.

3.5.2. Space-variant receptive field sizes

Node positions on the retina tessellation were defined during self-organisation on a coordinate

frame which spans from -I to + I, vertically and horizontally. The node positions on the retina

tessellation have to be scaled up to the dimensions of the input image stimuli which the retina

receptive fields will be sampling. There are two criteria governing the scaling

I) Minimum spacing (in pixels) between adjacent retinal receptive fields

2) Required field-of-view of the retina

A value Dmin for the minimum distance between adjacent receptive fields in the retina

which samples the image was chosen mediating these two criteria. This may be sub-optimal

for larger images where the constraint of a large field-of-view necessitates a foveal sampling

well below the Nyquist limit of the rectilinear image. A value for Dmin of 1.5 pixels was used

for this work to generate retinae with a field-of-view of 360 pixels on a conventional array

image. This was the width of images in the SOIL (Koubaroulis et al., 2002) object database.

If dmin is the minimum distance between adjacent nodes (receptive fields) in the retina

tessellation after self-organisation, Ai.) is the Euclidean distance matrix for the retinal

tessellation sorted along rows, (Xi, Yi) are the coordinates of nodes on the retina tessellation

and (Xi, Y;) are the coordinates of receptive field centres on the retina that samples the image,

the following was defined,

d.~A,J·=2,Vi
mm 1,/

(Equation 3-20)
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(Equation 3-21)

Y=D _li_ ~(-l +1)i min d . ,~Vi ..
mm

A retinal tessellation is not yet a retina. To prevent aliasing, visual information must

be gathered over a large support region around each sampled retinal coordinate. To avoid

super-Nyquist sampling, the standard deviation (and in turn size) of low-pass filter support

regions is related to the local spatial sampling rate of retinal receptive fields. Basing a retinal

receptive field's size on local node density also results in space-variant retinal receptive

fields. At the foveal region, where visual information is densely sampled, receptive fields will

have a narrow spatial support, while large receptive fields will be placed at the periphery with

its widely spaced sampling points. If Gaussian receptive fields were used to low-pass filter

visual stimuli before space-variant (sub )sampling, the following was used to determine the

standard deviation a, of the Gaussian support region of retina receptive field i.

k,

"A.
~ 1.,1

a = A _E___ pixels
I k -1

I

(Equation 3-22)

k, is the neighbourhood size for determining local retina tessellation receptive field

density. The author determined k, as the number of nodes (receptive fields) in the cortical

graph with a graph distance equal to one. In the above equation the standard deviation of the

retinal receptive field is assigned to the average distance to the receptive field's immediate

neighbours scaled by A.. The fixed scaling constant A. expands the retina receptive field's

standard deviation to prevent aliasing of the sub-sampled extracted retinal responses.

The sampling rate of a conventional image can be considered as one sample per

pixel(width). Space-variant retinal sampling of the image with the self-organised retina

changes the sampling rate to one sample per graph edge on the cortical graph. The scaling

factor A. is chosen to reduce aliasing caused by retinal sub-sampling by locally blurring the

input image to reduce frequencies above the local retinal sampling Nyquist limit.
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Figure 3-10. Responses of a Gaussian retinal receptive field at different values for A.

The preceding figure contains the plots of the response of low-pass Gaussian retinal

receptive fields for different values for A.. Circular frequency is defined over the cortical graph

assuming the local sampling rate (node density) on the retina tessellation is constant. The

Nyquist limit after retinal sampling is half the sampling rate f resulting in a circular frequency

(w=27if) of 1C radians per graph edge on the cortical graph.

If the signal-to-noise ratio is defined as follows,

SNR= 2010 Signal
glo N .oise

I= 20 log., ---------
Response at Nyquist limit

(Equation 3-23)

a value of ,l. = 0.5 results in a Gaussian receptive field with a significant response at the

Nyquist limit with a SNR of 10.72dB, causing aliasing artefacts. At ,l. = 2, the Gaussian

receptive fields do not have a significant response at the Nyquist limit with a SNR of

171.45dB, but this value will result in very large spatial receptive fields. At,l. = I the Gaussian

receptive field's response at the Nyquist limit is 0.0072 with a signal-to-noise ratio of

42.85dB.
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Figure 3-11. Space-variant sizes of Gaussian receptive fields for a self-organised retina

tessellation with 256 nodes. Spatial support at the standard deviation is displayed for

each Gaussian receptive field (A=I).

The support region of a continuous Gaussian function is infinite. However the kernel

used for image processing is discrete with a limited spatial support. The above figure

indicates the support region of Gaussian receptive fields with a support region radius at one

standard deviation. Only 68.27% of the Gaussian support is within one standard deviation. In

this thesis Gaussian kernels with a support region radius of two standard deviations (95.45%

of Gaussian support) or three standard deviations (99.73% of Gaussian support) were used to

approach the ideal Gaussian kernel with its infinite spatial support.

3.5.3. Retina receptive fields

The calculated receptive field centres (Xi, Yi) are generated at floating point coordinates.

Sampling discrete image pixels (x, y) with an square image processing kernel based on the

receptive fields centred at (Xi. Y,,) requires the calculation of the horizontal and vertical sub-

pixel offset (Pi, Q,) of the receptive field centre floating point position from the actual kernel

integer location. The equation for a symmetric un-normalised two-dimensional Gaussian
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kernel with standard deviation a., used to place Gaussian receptive field support regions on an

image with sub-pixel accuracy is given below

G(X,y,Xi,Y"lTi,P;,Q) = e

(x-rQund(X, )+1\)' +(y-round(Y, )+Q, )'

2a? (Equation 3-24)

The computation of the sub-pixel offset (Pi, Qi) differs depending on whether the

rounded integer size of the support region (with diameter 4a or 6a) is odd or even. This is

because the change (error) in position of a receptive field centre by the rounding operation is

quite different when the resulting kernel is even or is odd.
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Figure 3-12. Calculating the centre ofa kernel for even and odd sized kernels

[

P, =round(X,)-Xi
odd: Q = round(Y,) - Y,

(Equation 3-25)

(
P; = round (X; )+sign( Xi +round (Xi ))xO.5-Xi

even:
Q = round(Y,) + sign( Y, +round (Y,) )XO.5 - Y,

The filter coefficients of the Gaussian support region G(x,y'x;,Yi,ai,Pi,Qi) were

normalised to sum to unity to satisfy the following equation

L G(x,y,Xp Y"lTi,P"Q) = 1
'Vx.\;/y

(Equation 3-26)
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2 4 6 8 10 12

Figure 3-13. Kernel coefficients of a Gaussian receptive field spanning 12xl2 image

pixels. Note the slight sub-pixel offset of the filter coefficients to reflect the error in the

integer position of the kernel.

The response of receptive field R(i) was generated by multiplying the underlying

image pixels with the co-located Gaussian filter coefficients Gi as indicated by the following

equation. The parameter a is the scaling of the kernel support region radius to 2 or 3 Gaussian

standard deviations a;

'Vm.'7n

(Equation 3-27)

The resulting retinal receptive field responses R(i) do not have an associated cortical

image data structure. Therefore the author stored these as a one dimensional vector R(i) which

will be referred to as an imagevector. The allocation of a location on the imagevector for a

particular retinal receptive field response is not important as long as the allocation is

consistent. A variable in the imagevector corresponds to the response of one retinal receptive

field. In this thesis the author allocated responses to the vector based on the magnitude of the

associated receptive field's eccentricity (distance from the centre of the tessellation).
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Image
Retinal

receptive
fields
rY'I'"'"

Receptive field
responses

Figure 3-14. The responses of retina receptive fields are represented and stored as a

one-dimensional vector which will be referred to as the imagevector. Each receptive

field is allocated a consistent location on the vector.

Figure 3-15. Responses of Gaussian retina receptive fields on a retina with 8192 nodes,

displayed based on the receptive field's associated Voronoi region on the cortical

graph. The retina was fixated upon the centre of the standard greyscale Lena image.

CA = 1).
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3.5.3.1 Visualising receptive field responses

The one dimensional imagevector containing retinal receptive field responses is not an

intuitive representation of the retinal sampling for visualisation. However, variables on the

imagevector have a spatial relationship with associated receptive fields and nodes on the

retina tessellation. The author used the Voronoi region (Section 3.5.1) of the associated node

for visualisation; pixels within the node's Voronoi region were displayed with the receptive

field's response (Figure 3-15).

3.5.3.2 Back-projecting receptive field responses

It is also possible to visualise the responses of the space-variant sampling by back-projecting

the responses through the receptive field to the image plane. This action is equivalent to the

probe mapping of receptive fields in the biological visual pathway by neurophysiologists.

Except instead of measuring the responses of a neuron for a certain visual stimuli, the author

reconstructed the visual stimuli that would cause the stimulation of a particular neuron. This

approach will be used throughout this chapter to map the receptive fields of layers of units in

the feature extraction hierarchy. The response of the retinal receptive field at (Xi, Y;) is back-

projected to the image domain as indicated in the following assignment operation.

I (round{ Xi)+ m,round{ Y;)+ n):= I (round{ Xi)+ m.round i Y;)+ n) +

R(i)xGi (m,n,Xi,Y;,0'"P;,Q,)x(2a)2, m.n -+ -aO' ..+aO', m.n e Z, Vi

(Equation 3-28)

The sampling operation of the whole retina is visualised by aggregating the back-

projected responses of all the retina's constituent receptive fields. A scaling factor equal to the

area of the Gaussian receptive field's support, (2ai, was used to prevent the decay in the

intensity of the backprojected image with eccentricity. In the following figure, Gaussian

support regions were implemented with a kernel with radius of three standard deviations. The

minimum distance between receptive fields (kernels) on the retina was chosen at Dmin = 1.5

pixels so the retina had a field-of-view with a diameter of approximately 360 pixels.
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Figure 3-16. Back-projected Gaussian retinal receptive field responses from a retina

tessellation with 8192 nodes (2 = 1). The retina was fixated upon the centre of the standard

greyscale Lena image.

3.6. Processing irregular visual information

The internal representation of visual information in the described system (which processes

information extracted using a self-organised space-variant retina) is quite different from the

representation used in conventional vision systems. Most current systems give equal

processing emphasis to the whole field of view of the camera or image frame, and work with

visual information which can be stored in a uniform rectilinear data structure. For example,

greyscale information extracted by a conventional CCO imager in a digital camera can be

stored in a rectilinear two dimensional array structure. Image processing operations for

analysis and feature extraction can be easily applied to this array. Convolution operations are

simple to implement by raster scanning a mask or kernel over the array and performing the
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necessary multiply and accumulate operations. Similarly the visual information can be easily

sub-sampled to reduce its resolution. Rotation and other translation operations are also trivial.

This simply is because the local connectivity between adjacent nodes of information in the

array is uniform. Pixels have equidistant neighbours above, below and to their left and right

(except on the border of the array).

However the described space-variant imaging system does not process all visual

information equally. The central or foveal region of the retina has a very high acuity. The

image is finely sampled by filters in this retinal region, generating many retinal responses. As

we increase eccentricity and move away from the central area of the retina, the acuity of the

retina gradually reduces to the periphery where the image is only coarsely sampled,

generating few retina responses for a given spatial area.

Connectivity in the self-organised retinal tessellation is not uniform. While most

receptive fields have six adjacent neighbours (determined by connectivity after Delaunay

triangulation) some have five or even seven adjacent neighbours. The local connectivity of a

given node in the tessellation to its neighbours cannot be effectively predicted before self-

organisation. The tessellation lacks geometric regularity and only maintains sampling density

continuity. Because of this non-uniform connectivity of nodes in the tessellation, a fixed

convolution kernel cannot be used for filtering operations as in image processing operations

on conventional images.

While the imagevector is one dimensional, each location on the vector has a

consistent spatial semantic relationship with an associated location on the retinal tessellation.

This is akin to a pixel's spatial location on the image being related to the spatial location of

the related area in the scene. With the irnagevector, spatial relationships between regions

aren't as explicit as in a conventional image array. Therefore the author implemented

computational machinery within the space-variant vision system which was able to reason
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with the imagevector visual information by maintaining internal lookup tables of the spatial

relationships between nodes in the retina tessellation.

Cortical filter near fovea

Retinal receptive field
support Cortical filter

Input image

Figure 3-17. Support regions of cortical filters

Processing machinery in the implemented space-variant vision system that accept

imagevectors as input and output imagevectors shall be referred to as cortical filters. Because,

as discussed, the local topography of the retina tessellation is non-uniform, a fixed kernel

cannot be used for image processing operations such as convolutions. Convolution operations

on the imagevector necessitates the pre-computing of the unique filter kernel coefficients (and

associated lookup addresses) for each location on the image vector.

Unlike most computer vision approaches, in biology a fixed kernel is not raster

scanned over the field-of-view. A biological neuron in the visual cortex has inter-cortical or

retina-cortical connections that result in a single receptive field in the field-of-view. A similar

approach had to be used by the author because of the non-uniform fixed retina tessellation

that was used to sample images.
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3.6.1. Cortical filter support region

The nodes in any retina tessellation Vi are within the neighbourhood Q( v,) of the cortical filter

centred on VC' on the same or even another tessellation if the following is satisfied

(Equation 3-29)

r, is the diameter of the cortical filter support. As before, the cortical filter support

region was made space-variant by making the size of the support related to the local node

density of the cortical filter's (vc's) tessellation.

(Equation 3-30)

Ai.! is the Euclidean distance matrix for vc's retinal tessellation from Equation 3-20

and k, is the neighbourhood size for determining local retina tessellation receptive field

density. )" is a scaling constant. Because Ai.! has been sorted in ascending order, the summation

from 2 to k; and division by k,-l will give the mean distance to cortical filter vc's neighbours

with a neighbourhood size of k.,

3.6.2. Cortical filter response

The response of the cortical filter O(c) centred on VC' in the form of an imagevector is

computed by the following equation. The computation is applied for all elements in the

imagevector from I to N. The number of elements N in the output imagevector could be

different to that in the input imagevector.

M

O(c) = IR(pc (m»)xF;. (m),c = I..N
m=1

(Equation 3-31)

R is the input in the form of an imagevector. F, are the 1xM filter kernel coefficients

over the neighbourhood Q( vC> for the cortical filter kernel on v,. Whereas p, is the 1xM

indices of elements in the imagevector R with which F,'s are multiplied in the local

convolution operation. The filter coefficients F, are calculated based on a particular filter
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support profile based on the spatial positions on the field-of-view of the elements P, in the

input imagevector.

Input
imagevector

R

Kernel
c

Output
imagevector

o

O(c)

Coefficients
Fe

Indices
Pc

2

M

Figure 3-18. Computation involved in a convolution operation on visual information on

a non-uniform tessellation.

The author visualised the output imagevector using Voronoi regions (Section 3.5.3.1)

and by back-projecting all associated responses in 0 back to the R(i) using a similar

methodology as described in 3.5.3.2. Back-projection was performed using the same Fc(m)

coefficients as in Equation 3-31 to visualise the stimuli that would cause the stimulation of a

particular neuron. The reader should note that in instances, such as pyramidal decomposition,

o and R may be based on different (retina) tessellations.

R(i):=R(i)+ IO(c)F:.(m) ,c=l..N,ViE pc(m)
'ric

(Equation 3-32)
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The back-projection computation in Equation 3-32 may be repeated back down the

space-variant feature extraction hierarchy until the retinal receptive field responses (Section

3.5.3.2) can be back-projected to the image.

The ability of operating on visual information stored as imagevectors enables the

system to perform feature extraction operations on the responses sampled by the space-variant

retina receptive fields. Blurring operations for a multi-resolution pyramid (Section 3.7), edge

responses based on neighbourhood differences (Chapter 4) or Gabor wavelet filters

(Balasuriya and Siebert, 2003) can be computed. It is no longer necessary to represent and

deal with data as rectilinear frame arrays to perform processing in a feature extraction vision

hierarchy.

3.7. Retina pyramid

Sampling with a space-variant retina extracts visual information from the field-of-view with

information density and spatial frequency varying with eccentricity. However, at a single

location in the field-of-view, visual information is extracted only as a single central

frequency. As scene content may be present at many intrinsic scales in the scene, multi-

resolution image analysis becomes an important component of vision. The author was

motivated by pyramidal decomposition in conventional image processing to create a space-

variant retina pyramid.

3.7.1. Gaussian retina pyramid

The multi-resolution processing of an image using a Gaussian retina pyramid is more efficient

than placing ever larger Gaussian filters on the image to extract coarse features. The

construction of the Gaussian retina pyramid of cortical filters necessitates the pre-computing

of a large number of kernel coefficients Fe and associated sampling indices pC' This overhead
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is justified by the reduction in dimensionality of data being processed at coarser layers. In an

octave decomposition (where the central frequency of the next coarse layer in the pyramid is

half that of the current layer), the dimensionality reduction in the next (coarse) layer will be

N/4, where N is the number of nodes in the retina tessellation associated with the current

layer.

Cortical filter
receptive field -.,.--

supports

Cortical filters

Cortical filter
support region

Cortical filters

Cortical filter
support region

Retinal
.. . Retinal

receptive fields

Input image

Figure 3-19. Sampling of the retina pyramid. Only the retina receptive field layer

samples the image. Visual information is processed by cortical filters in the form of

image vectors.

The filter-subsample operations by retinal receptive fields and cortical filters reduces

the dimensionality of the visual information as the content get coarser, maintaining a constant

intrinsic blurring in the visual content. In the case of the self-organised retina tessellation,

Gaussian layers in the pyramid should blur the input image vector (or input image) so that

after filter-subsampling the output imagevector has the same blur as the input.
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If p is the sub-sample factor (p=2' for octave sub-sampling), a, the (constant)

Gaussian blurring of visual information at each layer, and a, and a,., the intrinsic blurring of

imagevectors in layers iand i-I in the pyramid, the following holds

g(pai) = g(ai_,)® g(a,)

The symbol ® indicates the convolution operation and g denotes a Gaussian function

in the spatial domain. The above equation can be simplified in the Fourier domain

Expanding out the Gaussian function and simplifying gives,

Taking the logarithm of both sides leads to the follow result

I~' ,a =- a +a
I pI-I ( (Equation 3-33)

a, = O"i-' = O"init for constant blurring in the pyramid equal to the initial visual input.

(Equation 3-34)

For octave sub-sampling within the retina pyramid p=2 the applied constant blurring

in each layer of the Gaussian pyramid,

(Equation 3-35)

Therefore, assuming the intrinsic blurring in the responses from the retina receptive

fields is 1 graph edge on the space-variant retina tessellation (the blurring in the input image

not being significant in most of the field-of-view in comparison to the large Gaussian

receptive field size), the constant blurring (standard deviation) of the Gaussian retina pyramid

layers is 0", = 1.7321x 1 graph edges = 1_7321 graph edges. Therefore)' = 1.7321 in Equation

3-30_ The reader should remember that basing the applied blurring on the above equation

results in space-variant standard deviations of receptive fields in a layer in the Gaussian retina

pyramid.
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The retinal tessellations for coarser layers in the octave-separated space-variant retina

pyramid were created by self-organising N/4 nodes where N is the number of nodes (receptive

fields) in the immediately preceding (finer) layer in the retina pyramid (the author empirically

found that decimation of the N node layer to create coarser layer did not generate regular

retinae). The retina tessellations of the coarser layers (Xi, y,) were scaled up to the size of the

image by multiplying with Dmim the minimum distance between adjacent retina receptive

fields (in the finest retina pyramid layer which samples the input image) and dividing by dmin,

the minimum distance between adjacent retina receptive fields (in the finest later). Only the

Gaussian retina receptive field layer directly samples the input image. All other layers operate

on imagevectors which are generated by previous layers in the Gaussian retina pyramid. The

imagevector at layer N was obtained from layer N-I using Equation 3-31.

The following equation was used to determine the F", the profile of the two

dimensional Gaussian cortical filter centred over vertex v,. The reader should note that in the

Gaussian retina pyramid n(vJ will be defined over the preceding finer retina tessellation.

(
/1 J1 .2IT 1 2 2 2 •

gc(t,o-._) = --2 e ',t = X +Y ,(X,Y)E Q(vc) (Equation 3-36)
2lra,

A multi-scale hierarchy of Gaussian retina pyramid layers with 4096, 1024, 256, 64

and 16 filters were created for the following results (Figure 3-20). A 8192 retina receptive

field layer was created to sample the input image and the resulting imagevector was used for

pyramidal decomposition. The need for the additional 8192 node layer will become apparent

in the next section where a Laplacian pyramid is constructed using the imagevectors from the

Gaussian retina pyramid. A 8192 node layer was self-organised because implementation

limitations prevented the self-organisation of a 16384 node retina tessellation.

As before, retina pyramid sampling results are visualised based on associated

Voronoi regions (Figure 3-20) and by back-projecting filter responses to the rectilinear array

image plane (Figure 3-21). Slight variations in the back-projected image's pixel values may
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be observed because small variations in the retina tessellation's local node density result in

• t920 ......... toy ..

changes in the overlap of the neighbouring receptive field supports .

Figure 3-20 : Responses from layers of an octave separated Gaussian retina pyramid

with (upper left) 8196, (upper right) 4096, (lower left) 1024 and (lower right) 256 node

layers displayed based on the response's associated Voronoi region (J. = 1 for retina

receptive fields, A. = 1.7321 for cortical filters). The retina was fixated upon the centre

of the standard greyscale Lena image.

The space-variant nature of the processing of the retina pyramid can be observed.

The pyramid was fixated upon Lena's right eye, which has been sampled at a higher
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spatial frequency at all retina layers than more peripheral regions of the image. The multi-

resolution (space-variant) decomposition is apparent with the increasingly blurred (Figure

3-21) and spatially separated (Figure 3-20) responses in the coarser layers of the retina

pyramid.

8196 Gaussian layer

1024 Gaussian layer

4096 Gaussian layer

256 Gaussian layer

Figure 3-21: Back-projected responses from an octave-separated Gaussian retina

pyramid from the (upper left) 8196, (upper right) 4096, (lower left) 1024 and (lower

right) 256 node layers. The retina was fixated upon the centre of the standard greyscale

Lena image.

The system has a restricted field of view which can be altered by changing the

Gaussian filter spacing in the retina receptive field (finest) layer. When implemented only this
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layer needs to be fixated upon the image at a given salient fixation point as other

layers in the retina pyramid sample the output of the retina receptive field layer. The cortical

filters in the retina pyramid hierarchy extract increasingly coarser, low-pass filtered visual

information from the input. The term cortical filter is a slight misnomer in this context as

analogous low-pass processing in biology occurs in the retina and not the visual cortex.

However in the described software implementation, cortical filters process the output of the

retina receptive fields to extract coarse scale low-pass visual information.

3.8. Laplacian of Gaussian retina pyramid

The Laplacian of Gaussian (LoG) filter is of interest in biologically motivated computer

vision due to the filter's resemblance to the profile of biological retinal ganglion cell receptive

fields (Marr and Hildreth, 1980). The LoG filter is a spatial frequency band pass filter, able to

detect contrast in visual information. Because of the Laplacian of Gaussian filter's band-pass

characteristics it is not possible to create a multi-resolution Laplacian pyramid in isolation

without a parallel low-pass pyramid. The author sampled the imagevector responses from the

Gaussian retina pyramid to create a space-variant Laplacian of Gaussian retina pyramid.

The following equation was used to compute the cortical filter coefficients Fe for a

Laplacian of Gaussian cortical filter centred over vertex Vc that samples the imagevector from

a higher spatial frequency layer in the Gaussian retina pyramid within the neighbourhood

Q( v.). Because of the irregular support of the cortical filter, positive subfields of the Laplacian

of Gaussian cortical filter must be scaled to equate the negative subfield so the response of the

cortical filters to a uniform stimulus is zero.
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, . \

[/2 a2J I I . ...:._I- 'l(1'~ i, 1 1

Lit.tr; = --. - --, e - " r = x- +~'-,(X,Y)E Q(V)
if 2~- , (Equation 3-37)

Since the imagevector input to the LoG cortical filter has already been blurred by the

Gaussian pyramid, the effective blurring of the LoG, crolT, will be different to that of the

applied blurring in the Laplacian of Gaussian cr. If the sub-sampling by the Laplacian of

Gaussian cortical filters of the imagevector is by a factor of p, and the blurring of the

Gaussian layer that was sub-sampled by the Laplacian of Gaussian cortical filter was crg, the

following holds

L (t, patll ) = L (t, a) ®G(=.)
Expanding in the Fourier domain,

tJJ (pat'lf )2 al(j~ _ aJa/

-oj e 2 = -ol e 2 x e 2

And simplifying gives the required blurring of the Laplacian of Gaussian, G, to

achieve the effective blurring G,lf.

(Equation 3-38)

For an effective Laplacian of Gaussian blurring equal to that of the Gaussian

pyramid, Gel] = Gg , and in turn Gg = Ginit. Therefore the following applied blurring for the

Laplacian of Gaussian cortical filter is obtained.

(Equation 3-39)

This is similar to the result for the Gaussian pyramid cortical filters. p=2 for an

octave change in sampling rate between the Laplacian of Gaussian layer and the sampled

Gaussian layer in the pyramid.

a = I. 7321ainit (Equation 3-40)

With Gintl = I graph edge as with the Gaussian pyramid gives, G = 1.7321 graph

edges and )_= 1.7321 for the Laplacian of Gaussian cortical filters (Equation 3-30).
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3.8.1. Increasing granularity of laplacian of Gaussians pyramid

To increase the granularity of sampling scale by the pyramid, Laplacian of Gaussian

cortical filters with different effective blurring standard deviations were used on the same

retina tessellation. The blurring was changed to extract contrast information with retina

pyramid layers with central frequencies spanning the octave decomposition. The visual

information in the resulting imagevectors will contain different intrinsic blurring (because the

sub-sampling was constant for different blurring) but this is a computationally efficient

approach to space-variant contrast detection at many finely separated spatial scales.

The effective blurring (standard deviation) for the i th Laplacian of Gaussian layer in

the octave is given by

a.>.a si, i-t-l..n-2
I 0

(Equation 3-41)

where a; is the effective blurring of the finest layer in the octave. s is a scaling factor

for the blurring. Since for the detection of Laplacian of Gaussian extrema in the octave

requires two additional retina layers (one finer and one coarser), the scaling factor s for a

Laplacian of Gaussian retina pyramid with n-2 layers per octave is

(Equation 3-42)
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Gaussian Retina Pyramid Laplacian of Gaussian
Retina Pyramid

256 nodes

256 nodes
___ 1074 nodes

Figure 3-22 : Gaussian and associated Laplacian of Gaussian retina pyramids. Each

layer sub-samples the immediately finer Gaussian layer. Only the finest Gaussian retina

layer (with 8192 receptive fields in the figure) is fixated upon the input image and

samples input image pixels.

3.8.2. Normalising Laplacian of Gaussian scale trace

The responses of a filter as its standard deviation (blurring) is changed is referred to as its

scale trace. The scale traces of un-normalised Laplacian of Gaussian responses rarely contain

extrema. As discussed in Section 3.4.2, the amplitude of a Laplacian of Gaussian filter

generally decreases with scale. A normalising multiplier of the effective blurring squared, if

(Equation 3-17), is used to reduce the attenuation in the response of the filter with scale.
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While the (J 2 term helps to somewhat normalise the Laplacian of Gaussian cortical

filter's response with scale, the author found that this normalisation was not sufficient to

generate scale-space extrema equitably on retina layers within an octave of the retina

pyramid. Table 1 contains the number of discrete scale-space extrema (greater or less than all

its adjacent neighbours in space and scale) detected on Laplacian of Gaussian cortical filter

layers in the retina pyramid within each octave. As indicated in the table, most extrema are

found in coarser scales of an octave of the retina pyramid even after normalising with (J 2.

4096 octave LoG 1024 octave LoG 256 octave LoG
layers layers I<!yers

Scaling of support
SO Si S2 3 S4 SO Si S2 S3 S4 SO Si S2 S3 S4region s

No. of (J2V' 2g 18 0 0 0 0 0 0 0 0 0 0 0 I 0 0scale-space extrema

No. of (J2V' 's
extrema after 55 52 38 31 34 19 11 13 10 6 I 7 5 4 I
normalising with
random response

Table I : Number of Laplacian of Gaussian discrete scale-space extrema in the retina

pyramid when fixated upon the centre of the standard greyscale Lena image. Discrete

peaks locations cannot be found for Laplacian of Gaussian retina layers S-I and S5 as

peaks are located using finite differences.

Extrema were detected equitably across scales by normalising each Laplacian of

Gaussian cortical filters in the retina pyramid with its mean response to random stimuli. The

retina pyramid was repeatedly fixated upon many examples of random dot stimuli. It was

assumed that the random dot stimulus (on average) contains all spatial frequencies above the

Nyquist limit. Normalising by the random stimulus response increases the scale invariance of

the cortical filter by normalising the dynamic range of its responses.
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If [(00, V" a) contains the mean of the absolute responses to random dot stimuli for a

Laplacian of Gaussian cortical filter at node v" the normalised responses L",wm (I, vc' er) of

the cortical filter is given by the following

L I L(l,v,a-)(va-) - (
norm ' c' - L(oo V ), e,a-

(Equation 3-43)

The following figure contains the scale trace (responses across scale) of scale

normalised Laplacian of Gaussian cortical filters on the retina pyramid octave with 1024

filters. The cortical filters are collocated on the centre of the retina tessellation and fixated

upon the standard greyscale Lena image. Seven Laplacian of Gaussian layers were computed

for each octave in the retina pyramid and the responses from layer a,s-1 to layer 17,,/ are

plotted.
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Figure 3-23 : Responses of the Laplacian of Gaussian cortical filters in the retina

pyramid when fixated at the centre of the standard greyscale Lena image. The scale

traces are for the filter at centre of the retina tessellation before (Left) and after (Right)

normalising its response with [(00, ve,a).

Although scale normalising the LoG responses with a 2 did reduce the variation of the

filter with respect to scale, it is only after normalising the LoG cortical filter with its mean

response to random stimuli that the scale trace effectively is able to detect extrema in scale.

The authors also investigated Gamma normalisation of the LoG responses (Mikolajczyk,
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2002), but this had little impact on the scale trace. Extrema were only effectively detected

after normalising with the response to random stimuli.

Without normalising most extrema are detected in the coarse layers of each octave

while after normalising, extrema are detected more equitably across the octave. The mean

response to random stimuli for each filter in the entire retina pyramid was obtained after

presenting the system with 1000 independently generated random dot images. All extrema

were detected between LoG layers SO and S4 in the normalised scale trace. No extrema were

detected in the un-normalised scale trace. This was typical of almost all scale traces in the

retina pyramid.

3.8.3. Visualising the responses from the Laplacian of Gaussian retina pyramid

Responses of the Laplacian of Gaussian cortical filter layers were visualised using similar

methodologies to that for Gaussian retina layers. The Voronoi regions of the tessellation

associated with the Laplacian of Gaussian layer was used for visualising responses (Figure

3-24). All Laplacian of Gaussian responses will be displayed with a colour map that spans the

dynamic range of the image.

The Laplacian of Gaussian responses were also visualised by back-projecting to the

immediately finer Gaussian layer using Equation 3-32, progressively back to the 8192

Gaussian receptive field layer (Equation 3-32), and then to the rectilinear array image plane

(Equation 3-28). A further scaling of the Lnorm (I, Vc' a) LoG responses was used to reduce the

attenuation (Figure 3-25) of the reconstructed Image with eccentricity.

L.,,,m(/' v"a)1 [(00, vc,a) was used as the value that was back-projected down the feature

extraction hierarchy to the image plane (Figure 3-27). The following figures contain

visualisation of the Laplacian of Gaussian retina pyramid.
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Figure 3-24. Responses from layers

of an octave separated Laplacian of

Gaussian retina pyramid with (top)

4096, (middle) 1024 and (bottom)

256 node layers displayed based on

the cortical filter's associated

Voronoi region The retina was

fixated upon the centre of the

greyscale Lena image. (A=1 for the

Gaussian layers and A=1.7321 for the

Laplacian of Gaussian layers).
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4096 LoG layer S5 1024 LoG layer S5

Figure 3-25. Attenuation of the back-projected LnormU,vc,a) response from Laplacian

of Gaussian cortical filters.

4096 loG layer s5

256 LoG layer S5

1024 LoG layer s5

Figure 3-26. The back-projected

responses from Laplacian of Gaussian

layer, S5, in each octave of a three

octave (4096, 1024 and 256 cortical

filters) retina pyramid (A.=l for the

Gaussian layers and A.=1.7321 for the

Laplacian of Gaussian layers).
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1024 too layer S-I

1024 teo layer Sl

1024 teo layer S3

1024 loG layer SO

1024 LoG layer i

1024 teo layer S4

Figure 3-27. The back-projected Laplacian of Gaussian responses within an octave of

the retina pyramid, ;'=1 for the Gaussian layer and 2=1.7321 for the Laplacian of

Gaussian layer. Layers from S-1 to S4 are shown (Equation 3-41). Aliasing can be

observed in the back-projected responses from high frequency layers in the octave.
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1024 LoG layer S-I 1024 LoG layer SO

1024 too layer Si

1024 teo layer S3

1024 LoG layer s2

1024 teo layer S4

Figure 3-28. The back-projected Laplacian of Gaussian responses within an octave of the

retina pyramid, 2=1.25 for the Gaussian layer and 2=2.1651 for the Laplacian of Gaussian

layer. Layers from S-I to S4 are shown (Equation 3-41). Obvious signs of aliasing cannot be

found but the extracted visual contrast information is at a coarse spatial frequency.
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3.9. Conclusion

This chapter analysed the construction of a feature extraction hierarchy that is based on the

sampling of an irregularly tessellated multi-resolution retina pyramid. A Gaussian retina

pyramid was used to extract multi-resolution space-variant low-pass information from the

input stimulus while an associated Laplacian of Gaussian retina pyramid extracted multi-

resolution contrast visual information.

By placing space-variant retina receptive fields on the retina tessellation, the author

extracted space-variant, Gaussian low-pass filtered visual information from an input image.

Calculating retinal receptive field size based on local node density resulted in space-variant

filters that varied in size in parallel with the topological changes of the self-organised

tessellation. Retinal filters with small spatial supports were produced in the central dense

foveal region and the widely spaced filters at the retina's coarse periphery had large spatial

supports. The resulting visual information was represented as a one-dimensional imagevector.

The puzzle of representing and operating on visual information extracted using a non-

uniform sampling tessellation was solved using the non-intuitive imagevector representation

and associated operating machinery. The author demonstrated the construction of multi-

resolution space-variant pyramidal sub-sampling operations and Laplacian of Gaussian

filtering operations. A cortical graph was introduced, based on the Delaunay triangulation of

the retina tessellation, which enabled the author to define cortical filters that had receptive

fields with space-variant spatial support regions. The coefficients for cortical filters were

calculated for nodes within the cortical filter's spatial support on the cortical graph. The

methodology used for processing the irregular space-variant tessellation can be extended to

other filtering operations such as orientated processing, feature abstraction hierarchies that

extract complex visual features and other non-uniform sampling tessellations.
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Multi-resolution image analysis has become a mainstay of computer vision and is

used in a variety of automated tasks from object recognition to stereo matching. The

pyramidal sub-sampling of Gaussian retina filters was an efficient approach to construct a

multi-resolution space-variant representation of the visual information extracted using the

retina with the self-organised tessellation. By avoiding having to repeatedly sample the input

image to generate responses for the coarser layers in the Gaussian retina pyramid it becomes

possible to drastically reduce the computational cost of multi-resolution retinal filtering. In

this chapter, the filters in the retina pyramid were allocated such that decomposition would

approximate octave separation. Each layer in the Gaussian retina pyramid approximately

filters a spatial frequency twice that of the preceding layer.

If the Gaussian retina pyramid is considered to be analogous to the photoreceptors in

biological retinae, the derived Laplacian of Gaussian retina pyramid resembles the processing

of retina ganglion cells. These band-pass 'cortical' filters extracted space-variant, foveated,

contrast information from the irregularly tessellated Gaussian retina pyramid. To increase the

granularity of sampling in scale, the octave separated Gaussian retina pyramid was processed

at several scales using Laplacian of Gaussian cortical filters on the retina pyramid. For

experiments in this thesis, each octave was allocated seven Laplacian of Gaussian layers

containing cortical filters with increasing spatial support. When these cortical filter responses

are used for discrete scale-space extrema detection, only five retina layers produce extrema.

The seven Laplacian of Gaussian layers were organised such that there were five layers within

octave separation, with one finer and one coarser retina layer.

Each cortical filter in the Laplacian of Gaussian pyramid was normalised by its

response to random stimuli. This caused Laplacian of Gaussian scale-space extrema along the

scale trace to be equitably distributed among the retina pyramid layers; reflecting reality

where the intrinsic scale of visual stimuli are distributed in a continuum across scale. The
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location of these scale-space extrema, in both scale and space, are stable visual regions in

which to extract feature information for higher-level task-based reasoning.

This chapter has achieved the multi-resolution extraction of space-variant contrast

information from visual stimuli contained in images sampled with a non-uniformly tessellated

retina. In the next chapter the author will describe detection of interest points in the space-

variant visual output of the Laplacian of Gaussian retina pyramid and the formulation of a

feature descriptor based on visual information in the interest point's area of spatial support.
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Chapter 4

Interest Points

Interest points are stable locations on the image which can be reliably and

robustly detected under variable imaging conditions and object deformations.

This chapter will describe the detection of interest points based on the space-

variant visual information extracted by the self-organised artificial retina as

described in the previous chapter on feature extraction. A feature descriptor

that is invariant to scale and rotation will be extracted at interest point

locations in scale-space to represent the support region of the interest point.

Interest point matching and the accumulation of evidence from interest point

matching based on the Hough transform will be described and the chapter

will conclude with results of the described processing machinery.

4.1. Introduction

In the previous chapter the author described a feature extraction hierarchy that was able to

extract space-variant multi-resolution Laplacian of Gaussian contrast information from the

artificial retina. The extracted information was represented as imagevectors. Information in

this form is not ideal for high level visual reasoning operations such as object recognition and

visual search. A global representation of visual information from the whole field-of-view

(albeit couched in a space-variant representation) is not optimal for reasoning. Instead, the

encoding of visual information in local regions in the field-of-view around interest point

locations will be used in this thesis.
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Representing visual content based on interest points falls under the auspices of

appearance-based vision. The descriptors extracted at interest point locations are matched to

those extracted during training from a specific appearance, view or deformation of the object

related to the degrees of freedom that the object's projection to the view plane such as

translation, rotation or articulation angle. These specific, discrete appearances of the object

are determined during the system's training stage. The appearance-based approach contrasts

with the model-based vision approach where the specific appearance or pose of the object

matched to the test stimulus is determined during the test stage itself. Typically a geometric

model of the object is captured during training and the model is transformed during test and

matched to the test stimulus (Stein and Medioni, 1992.). Recent work in image retrieval

(Schmid and Mohr, 1997) and robotics (Se et aI., 2002) have demonstrated that appearance-

based vision approaches using interest points can be used in real-world applications under

robust conditions. The representation of local object view appearances for visual reasoning is

a significant advance in computer vision. Experiments on monkeys by Logothetis et al. ( 1995)

have shown that the appearance based approach to object recognition may also be biologically

plausible. When monkeys were trained on novel paperclip or amoeba-like objects (with

unfamiliar geometry), cells in their inferior temporal cortex were found to be tuned to specific

views of the objects.

4.1.1. Overview of algorithm for interest point descriptor extraction

In this chapter the visual information contained in the Laplacian of Gaussian retina pyramid

(Section 3.8) will be used to extract invariant interest point descriptors that shall represent

space-variant visual content. The following figure contains a diagrammatic overview and

algorithm pseudo-code for the operations which the author shall describe in this chapter.
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Scale-space Scale-space
,------, extrema .-------, extrema at ,-------,

corners Interest Point
Descriptor -+ Interest Point

descriptors

Laplacian of Gaussian Scale-space
Retina Pyramid -+ extrema

detection

Corner
detection extraction

Algorithmic overview of interest point descriptor extraction operations:

Scale-space extrema detection (Section 4.3.1)

1. Detect discrete scale-space extrema locations

2. Accurate scale-space extrema location by fitting scale-space polynomial Lnorm

Corner detection (Section 4.3.2)

1. Compute determinant and trace of the Hessian matrix of Lnorm

2. Detect whether scale-space extrema is at a comer location

Interest point descriptor extraction (Section 4.4)

1. Determine interest point support region in LoG retina pyramid around spatial

position and scale of interest point (Section 4.4.1)

2. Calculate magnitude and angel of local orientation vectors within the interest

points support (Section 4.4.2)

3. Compute descriptor orientation histogram H by binning local orientation

vectors over a discrete set of orientations (Section 4.4.2.1)

4. Find the discrete peaks in the descriptor orientation histogram (Section 4.4.2.2)

5. Fit a polynomial to H and find accurate peak which is the interest point's

canonical orientation (Section 4.4.2.2)

6. Place descriptor sub-regions bins on interest point support region orientated to

canonical orientation and scaled to interest point scale (Section 4.4.3).

7. Compute descriptor sub-region orientation histograms Hhin by weighted

aggregation of local orientation vectors into sub-regions (Section 4.4.3).

8. Generate interest point descriptor by concatenating information in descriptor

sub-region orientation histograms Hhin. Interest point spatial location, scale and

canonical orientation information are also included in the descriptor.

Figure 4-1. Overview of the interest point descriptor extraction algorithm
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4.2. Related work

This section contains a review of the computer vision literature relevant to the interest point

detection and feature descriptor extraction.

4.2.1. Interest Points

Representing objects in a scene based on local features extracted at characteristic, stable

locations, referred to as interest (or fiducial) points has proven to be a successful approach for

recognition tasks in the recent computer vision literature such as image retrieval and object

recognition (Schmid and Mohr, 1997; Lowe, 2004), even though local interest points were

first used in stereo matching over two decades ago (Moravec, 1981). The local appearance of

parts of objects extracted at interest points is far more invariant to occlusion and object

transformation than the object's appearance as a whole. Interest points need to be extracted

reliably, robust to low levels of noise and moderate object transformation in the scene.

Therefore interest points tend to be found in areas in the image where there is strong bi-

directional variation and not on edges or lines where variation in only a single direction leads

to poor two-dimensional localisation and stability.

Comers in images are stable locations for the detection of interest points. (Beaudet,

1978) used the determinant of the Hessian matrix H of the image intensity surface I as a

rotation invariant measure of 'comemess'.

d2
/ d2

/

H=
dx2 dxdy

d2
/ d2

]

dydx dy2

(Equation 4-1 )

(Equation 4-2)
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A similar approach using the autocorrelation matrix later led to the widely used

Harris comer detector (Harris and Stephens, 19R8). The Harris comer detector uses the

Plessey operator applied to a local image region weighted by a centred Gaussian G

IGXdl dl
dxdy

IGx(~~J
(Equation 4-3)

where dx and dy are derivatives of the local image patch (window) in the x and y directions

respectively. If 0. and fJ are the first and second eigenvalues of M, the following formulation

avoids explicitly computing the eigenvalue decomposition of M.

(dI)2 (dI)2Tr(M)=a+/3= dx + dy (Equation 4-4)

(Equation 4-5)

Tr(M) and Det(M) are the trace and determinant of M. Note that the determinant (afl)

must be positive to avoid saddle points in I. In the following Harris comer detector R, a comer

is detected when R is positive. A value of 0.06 for the k parameter has been advised based on

empirical evidence (Schmid et al., 2000).

R = Det{M)-k(Tr( M))2 (Equation 4-6)

Lowe(2004) used a similar measure for eliminating SIFT keypoint descriptors

detected at edges from his system, where r is the ratio between the principal curvatures of the

intensity surface (approximated by the two eigenvectors of M).

(Tr(M)t = (a+/3)2 _ (r/3+/l)2 = (r+l)2
Det(M) a/3 - r/32

(Equation 4-7)
r

The interest point is over an image area with bi-directional curvature in the intensity

surface if the following inequality holds. Lowe (2004) advised a value ofr=lO.
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( Tr (M) f (r + 1)2
....:....___ -,--<....:....__...:...._

Det(M) r
(Equation 4-X)

Extrema of scale-space have also been used for the detection of stable interest point

locations. The detection of interest point locations based on scale-space extrema enables the

extraction of features not only at salient spatial locations in the image but also at the

characteristic scale of the particular salient feature. Since extrema (maxima or minima) are

not found within Gaussian scale-space, scale-normalised Laplacian of Gaussian (Lindeberg,

1994; Mikolajczyk, 2002) and difference of Gaussian (Lowe, 2004) scale-space have been

used for the detection of scale-space extrema.

4.2.2. Interest point descriptor

The previous section described the detection of interest points at stable spatial positions and

scales in visual stimuli. A representative description of the content in the visual stimuli can be

obtained by encoding invariant visual content at (and around) interest point locations. The

resulting descriptor can be stored (with associated location, scale and orientation information)

during a system training stage and matched against when performing tasks such as object

recognition, visual search, and image/video retrieval.

Wiskott et al. (1997) used Gabor jets at interest points or 'node' locations determined

by Elastic Bunch Graph matching for a face recognition task. A Gabor jet comprises of

responses of local visual content to scaled and rotated versions of a 'mother' Gabor wavelet

(Section 3.4.1). The approach fared well when tested on the FERET database (Phillips et al.,

2000) of faces with different expressions and poses. Face recognition is a more constrained

and well-defined task in comparison to general object recognition or information retrieval

where a wide spectrum of content may be represented and queried. Simple Gabor jets may

therefore not perform robustly in less well-constrained domains.
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Figure 4-2. (Left) Locations of fiducial points registered on to a face image with

different pose orientations. (Right) Elastic Bunch Graph representation of a face with

Gabor jet responses at different orientations and scales centred at fiducial points. Taken

from Wiskott et aI.(1997)

Descriptors for the iconic region around an interest point have been developed in the

image retrieval and object recognition communities which display a degree of invariance to

rotation and scaling. Schmid and Mohr (1997), in their seminal paper 'Local Greyvalue

Invariants for Image Retrieval,' used a tensor derived from differential invariants of Gaussian

derivatives. These comprise measures such as average luminance, square of the gradient

magnitude and Laplacian of Gaussian. The Harris comer detector was used to detect interest

points in a multi-scale approach.

A robust local feature descriptor called the SIFT feature (Scale Invariant Feature

Transform) was recently proposed by Lowe (2004) and has proved to be effective in real-

world vision applications in robotics (Se et al., 2002). A descriptor motivated by Lowe's

which can process space-variant visual information extracted from arbitrary tessellations,

such as that of a self-organised retina, will be used to encode interest point iconic regions in

this thesis. Lowe's descriptor resembles the previous work discussed in this section in that

local gradients around an interest point are grouped into the descriptor. However, as indicated

in Figure 4-3, the descriptor region is divided into subparts which independently aggregate
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gradients within sub-region supports. First, a canonical orientation of the descriptor is

computed by aggregating gradients within the whole descriptor. The descriptor is made

invariant to rotation by rotating the gradients, as well as the descriptor sub-regions to the

canonical orientation of the underlying iconic image region. Gradients are weighted by a

Gaussian window to reduce the influence of gradients at the extremity of the descriptor

support. This reduces aliasing-like effects as gradients fall within or outside an interest point's

limited support region with even a small translation. The gradients were aggregated into the

sub-regions of the descriptor using tri-linear interpolation to equitably distribute the local

orientation responses to the descriptor sub-regions.

f, :¥
**I

Image gradients Keypoint descriptor

Figure 4-3. Keypoint descriptor taken from Lowe (2004) created by aggregating image

gradient magnitudes and orientations weighted by a Gaussian window. Gradients are

binned into orientation histograms over sub-regions in the descriptor (right).

4.2.3. Distance metrics

Vision systems based on interest points recognise known physical objects in the scene by

matching feature descriptors obtained from the scene to descriptors extracted during training.

A winner-take-all match could be made or confidences or distances assigned to descriptors

based on a metric. A metric is defined as a non-negative function that describes the 'distance'
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between points and satisfies the triangle inequality, positivity and symmetry conditions. The

following distance metrics are frequently used in computer vision applications.

4.2.3.1 Euclidean distance

The Euclidean distance between the unknown descriptor a and the known (labelled)

descriptor b is the root sum of the squared differences between variables in the descriptor

vectors.

(Equation 4-9)

The Euclidean distance can be heavily prejudiced by variables with large values (i.e.

large variances). Therefore the cosine distance is used to ignore the influence of a descriptor

vector's magnitude.

4.2.3.2 Cosine distance

The cosine distance measures the relative scalar differences between vectors assuming that

scale is uniform. While this solves the problem of the metric being biased by large variables,

the descriptiveness of the metric is lower since vector magnitude is ignored completely.

Cos(a,b)=I- ~ I~>~~~>~
i i

(Equation 4-10)

4.2.3.3 Mahalanobis distance

The Mahalanobis distance is superior to Euclidean distance because it takes the distribution of

the variables (correlations) of the descriptor vectors into account when computing the metric.

The distance between two descriptors is scaled by the statistical variation in each variable.

(Equation 4-1 1)

(( is the covariance matrix of the variables, obtained from the known descriptor (b;).

The Mahalanobis distance is able to mediate the influence of the different statistical variation
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of variables by weighting the Euclidean distance with the covariance matrix. However, in

many applications such as in this thesis, many examples of the known vector (descriptor) are

not available to compute the covariance matrix ([ required for the Mahalanobis distance.

4.2.3.4 l- distance

The x: distance, resembles the Euclidean distance, but each term in the metric is weighted by

the inverse of the variable in the known descriptor b. The metric thereby attempts to achieve

variance standardisation without having to compute the statistical variance of the variables in

the descriptors. The X2distance was used as a distance metric in this thesis.

(Equation 4-12)

4.2.3.5 Log-likelihood ratio

The log-likelihood ratio is used as a statistic to reject a null hypothesis. In the context of

matching descriptors, the hypothesis H would be that unknown descriptor a and known

descriptor b come from the same interest point. The null hypothesis is that the unknown

descriptor a and known descriptor b are not from the same interest point, i.e. a is close to

another interest point extracted during training. Therefore the log-likelihood ratio is given as

follows where the null hypothesis Ho is rejected for larger values of the log-likelihood ratio.

L(b / a) = _log_H = _Iog-=-p___:.(a___;/_b)___:.
Ho ~ p(a/b)

(Equation 4-13)

The log-likelihood ratio therefore is able to encapsulate the confidence of an

unknown interest point descriptor's match with that from training.
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4.2.4. Hough Transform

Besides the identification of object label by matching feature descriptors, it is also possible to

make a hypothesis of the unknown object's (appearance) pose in the scene by the spatial

configuration of the matched interest point feature descriptors. The Hough transform (Ballard,

1981) identifies clusters of features that have a consistent interpretation of an object

hypothesis. This object hypothesis in the scene is not only the object label but also its

position, scaling and rotation. Other degrees of freedom such as soft body deformations may

also be included. The Hough transform is especially useful when there are a high proportion

of outliers in the matched feature descriptors (i.e. most feature descriptor matches are

incorrect).

When feature descriptors (j) are extracting during view-based training of an object

appearance (Section 4.2.2) the x, y position of the features, the canonical angle of the feature 0

and the scale of the feature s are stored with the extracted feature vector along with the known

object label.

label x y f) s fi h h 14 Is It, .h /8 h fio fil fi2

Figure 4-4. The feature descriptor extracted during training of an objects appearance.

The object label and feature descriptor location, canonical angle and scale information

are appended to feature measurement data r,

During testing, when an image is presented to the vision system, feature vectors (j)

are extracted with associated spatial position, canonical angle and scale information.

x' y' 0' s' r. r. /'3 f4 r, f6 f7 f8 r. /'10 fll fl2

Figure 4-5. The feature descriptor extracted during testing with an image with unknown

content. Feature descriptor location, canonical angle and scale information are

appended to feature measurement dataj",

The descriptors extracted during training and testing are matched by computing the X2

distance between measurements / and f', This match may be a winner take all match or an
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associated matching score may also be computed between all feature pairs. These matches

maybe consistent with several objects being present within the image at many different poses

and locations. Given the well known ill-posed nature of vision problems, many perhaps even

most, of the matches between feature descriptors extracted during training and during testing

will be incorrect. The Hough transform maps descriptor matches from spatial coordinates in

the visual scene to a hypothesis voting accumulator space to weed out outlying object,

position or pose hypotheses which accumulate fewer votes. Feature descriptor matches vote

into the Hough accumulator space which is parameterised by the underlying degrees of

freedom considered within the problem domain. Since in this thesis visual objects were

considered to translate (in plane), rotate (in plane) and scale in size, the Hough accumulator

space has four dimensions.

The Hough accumulator space is discrete and therefore quantised along its

dimensions (if a contiguous Hough space is implemented). This quantisation must be coarse

enough to tolerate noise in the object hypothesis, reduce computational complexity and

storage requirements. Feature descriptor matches (or match scores) may be allocated in a

winner-take-all manner to a single Hough space cell or distributed among neighbouring cells

using a spread function such as a Gaussian to reduce aliasing in the vote distribution.

4.2.5. Affine Transformation

Hough accumulator space is evaluated to find peaks in object hypothesis using a threshold

and/or region shrinking. Because of the coarse quantisation of Hough space, the resulting

object hypothesis is not accurate. Lowe (2004) demonstrated that accurate object parameters

may be obtained by analysing the parameters of the feature descriptor matches if, /') that

contributed to peaks in the Hough space. This will reduce outliers as only matches which

consistently contributed to a strong object hypothesis are considered.

If ./{x,y) and f'(x ',y ') are the feature descriptors from training and test respectively, the

transformation of the object from the training image to the test image may be accurately given
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as follows

(Equation 4-14)

where m i mz- m3.m, and In II" are the parameters of the affine transformation of the object

from the training appearance view to the test scene. These may determined by solving the

following least squares system where a single match f{x,y) and f'(x ',y ') is indicated. Many

such matches may be included in the system. As there are 6 unknowns at least 3 match pairs

(6 equations) will be needed to determine transformation parameters.

ml

x' x y 0 0 1 0 m2

y' 0 0 X Y 0 1 m)
(Equation 4-15)

...................... m4

...................... It

ty

4.3. Interest points on the self-organised retina

This section will describe the detection of interest point locations in visual information

extracted by the space-variant feature extraction hierarchy. The reader is reminded that visual

information extracted by the hierarchy is stored in imagevectors which have an associated

spatial relationship with an area (receptive field) in the field-of-view. Separate imagevectors

contain contrast visual information extracted at different levels of the Laplacian of Gaussian

retina pyramid.
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4.3.1. Laplacian of Gaussian scale-space extrema detection

The scale traces of the normalised Laplacian of Gaussian responses in the retina pyramid were

demonstrated to have extrema in the previous chapter. These (discrete) extrema locations on

the retina pyramid were detected using finite differences by comparing the normalised

response of the Laplacian of Gaussian receptive fields Lnorm (I, v" 0') in the retina pyramid

with their neighbouring receptive fields' responses. The classification of a Laplacian of

Gaussian receptive field (vc, rr') in the pyramid at the /h level in an octave of layers, centred at

retina tessellation coordinate vertex VI is given by the following

{

extrema: (ve,ai
) > V(v*,ai ),j = i-1...i + 1: vk E N(v,)

(v" er') = extrema: (v" a' ) < V (vk .a' ),j = i-1...i + I : vk E N (v, )

not extrema: otherwise

(Equation 4-16)

Node Vk is a neighbour of node v,, in space and scale (d) in the Laplacian of Gaussian

retina pyramid. The neighbourhood ~(v,.) is unique for each receptive field in the retina

pyramid and was pre-computed based on adjacency in the Delaunay triangulated retina

tessellation.

4096 octave layers 1024octave layers 256 octave layers

No. of discrete Laplacian of Gaussian 417 132 33
scale-space extrema

Table 4-1. The number of Laplacian of Gaussian scale-space extrema detected at the

discrete locations within separate octaves of the retina pyramid. Data was generated

from an example retina pyramid fixation on the centre of the standard greyscale Lena

Image.

Extrema detected on the retina tessellation are present only at the discrete locations

and scales where there are sampling cortical filters. However features in visual stimuli are not

bound to certain preferred discrete scales or locations but are present in a continuous scale-

space.
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Because of the space-variant nature of the sampling in the self-organised retina,

receptive fields in far peripheral regions of the retina are widely spaced from each other. The

localisation of scale-space extrema in a continuous scale-space based on the responses on the

retina pyramid will be especially inaccurate in the far periphery of the retina's field-of-view

where receptive fields are widely spaced from one another. Therefore the author found the

accurate location of extrema in scale and then in space by fitting quadratics to the Laplacian

of Gaussian responses from the retina pyramid. While ideally the location of extrema in scale

and space should be optimised within a single system, these were solved separately to reduce

the order of the system to a quadratic polynomial.

The offset of the accurate extrema location from v, in scale was determined by fitting

the quadratic Lnorm (I, vc' 0) = aa' +ba+ c. Since a scale offset is being calculated, the

absolute value of (J is not required. Therefore, the scale values (1;.) = -1, (J;.) = 0, (J;.) = 1 were

used to solve the following determined system.

(Equation 4-17)

The offset of the extrema in scale is therefore the zero-crossing of the first derivative

of the quadratic, -b/2a, and the Laplacian of Gaussian response at the scale extrema is given

by -b2/4a+c. The extrema location in scale is given by the following.

a -a - bl
extrema - I /2a (Equation 4-18)
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Scale extrema
(solve quadratic)

Neighbouring responses
in same scale

(solve quadratics)

I Scale space extrema

: I"'~ b"q,"rn'"I

~__,..........,...~--~

Discrele extrema location
I I
I I
I

Figure 4-6. Accurate Laplacian of Gaussian scale-space extrema localisation within an

octave of the Laplacian of Gaussian retina pyramid. The retina mosaic tessellation

within an octave is constant and is indicated by blue dots.

The Laplacian of Gaussian response of all Vk e ~(vc) are computed at (Je.xtrema.the scale

extrema of Vc, using Equation 4-18 and solving for (Jextrema"giving Lnorm(l, v*,O'extremJ.

Lnorm (I, {vc, Vk}, 0'extrema) is then solved for the accurate scale-space location of the extrema.

The bi-quadratic Lnorm(l,x,y,O' extrema)= a +bx+cx' + dy + ey2 + fxy is solved where x and

yare the spatial positions of {vc, vd, At least six equations (a receptive field surrounded by

five neighbours in the self-organised retina tessellation) are needed to solve this system. The

self-organisation most often caused more than five neighbours to surround a node resulting in

over-determined bi-quadratics Lnorm (l, {vc' vk}, 0'extrema)' Therefore the solution to the

following system was determined using Gaussian elimination (Press et aI., 1992).

a

y l (Equation 4-19)

e

f
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If v e {vn vd, at the spatial extrema of L"orm (I,x, Y, CYerlremJ '

dLnorm (/, x, y,<:» I dx = 0

b+ 2Cxntrema + hextn'ma = 0 (Equation 4-20)

and, dLnorm(I,x'Y'CYextremJI dy = 0

d + 2eYextremll + jXntremll = 0 (Equation 4-21)

Solving the above gives the accurate spatial location of the extrema (x('xtr('m",Y,'xtr('mll)'

Note that this may be a maxima, a minima or a saddle point in Lnorm(l,x,Y,CY.,rtremJ.

2be- fd
x =--=--~
extrema [2 -4ec

2cd- jh
Y"tI"'mu = r' 4- ec

(Equation 4-22)

The over-determined system in Equation 4-19 sometimes resulted in extrema (xntremm

Yextrema) being inaccurately detected outside the neighbourhood support region ~(vJ of the

system. Such scale-space extrema were rejected as interest points as these were probably

caused by extrema generated by very small inflections in the scale-space function.

4096 octave layers 1024 octave layers 256 octave layers

No. of discrete Laplacian of Gaussian
417 132 33

scale-space extrema

No. of Laplacian of Gaussian extrema 411 118 32
detected on a continuous scale-space

Table 4-2. Reduction in the number of generated Laplacian of Gaussian scale-space

extrema after rejecting extrema lying outside the support of the bi-quadratic for each

interest point. Data was generated from an example retina pyramid fixation on the

centre of the standard greyscale Lena image.

4.3.2. Corner detection

The previous section described the detection of interest points by locating Laplacian of

Gaussian continuous scale-space extrema in the extracted visual information. Although

interest points were detected at local extrema, these might not be well localised if the interest
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points were detected along a global edge in the image. There will also be ambiguity in the

spatial location of the interest point caused by similarity of the associated feature descriptors

along the edge. Therefore the detected scale-space extrema were checked for being co-located

with a corner in the extracted Laplacian of Gaussian visual features. Extrema not located at

corners were rejected and not considered as locations for interest points.

The determinant and trace of the Hessian matrix (Equation 4-1) of the Laplacian of

Gaussian information at the extrema location and scale was obtained from the coefficients of

the solution to Lnorm (/, x, Y, (Yet/n'm,) (Equation 4-19).

Del (H) = d
2

Lnorm d
2

Lnorm _ ( d
2

Lnorm J2
dx' dy' dxdy

=4ce- f2

(Equation 4-23)

Tr (H) = d
2
Lnorm + d

2
Lnorm

dx: dy'

=2c+2e

(Equation 4-24)

Equation 4-8 was used as a comer detector and r=10 was used as in Lowe (2004).

(Tr(M))2 (r+l)2
-'-----'-- < ...:.__~-
Del(M) r

(2c+2e)2 (r+l)2
-'-----':- < -'-----'-
4ce- f2 r

(Equation 4-25)

To avoid detecting interest points at saddle points in Lnflrm (I,x, y, aa/remll) the

following must also hold (Equation 4-5).

4ce- f2 >0
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4096 octave layers 1024 octave layers 256 octave layers

No. of discrete Laplacian of Gaussian
417 132 33scale-space extrema

No. of Laplacian of Gaussian extrema
411 118 32detected on a continuous scale-space

No. of Laplacian of Gaussian maxima or
minima detected at comers on a 192 50 17

continuous scale-space

Table 4-3 : Reduction in the number of generated Laplacian of Gaussian scale-space

extrema after removing extrema detected at edge locations and saddle points. Data was

generated from an example retina pyramid fixation on the centre of the standard

greyscale Lena image.

All Extrema in 4096 LoG Retina Octave All Extrema in 1024 LoG Retina Octave

Figure 4-7 : Laplacian of Gaussian scale-space extrema found in the retina pyramid in

layers in the 4096 (Left) and 1024 (Right) filter octaves. The extrema are displayed on

the back-propagated retina filter responses from the 4096 and 1024 Gaussian layers

respectively. The retina pyramid was fixated upon on the centre of the standard

greyscale Lena image.
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4.3.3. Interest point spatial stability

The Laplacian of Gaussian extrema detected at corners were used as interest point locations in

scale-space. The spatial locations of these interest points on objects are clearer in Figure 4-8

which illustrates interest points on two objects from the SOIL collection (Koubaroulis et aI.,

2002) captured in front of a uniform black background. It is apparent that some interest points

have poor localisation caused by a large support region or have been generated by noise on

the image, as the background in SOIL image is not exactly uniform. While the field-of-view

of the retina pyramid spans the width of the SOIL images, interest points were not detected

near borders of the image because of the large support regions of the interest point descriptor.

Figure 4-8 : Laplacian of Gaussian scale-space extrema found on greyscale images of

two objects from the SOIL collection for a fixation in the centre of the image. Interest

point spatial locations are indicated by a dot.

The stability of interest points was measured as the percentage of interest points

repeatedly detected at the same spatial location (±20 pixels), scale (greater than or less than

1.5 times training object appearance) and canonical angle (± 1[/5) with the same feature

descriptor (Section 4.4). The stability of the extracted interest points for a fixation at the

centre of a subset of eight objects from the SOIL image collection against the variance of

additive Gaussian noise can be found in Figure 4-9. Variance of the Gaussian noise is
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expressed as the percentage of the maximum possible intensity, resulting in noise invariant to

the intensity scaling of the input image. The number of repeatedly detected interest points can

be clearly seen to reduce with the addition of Gaussian noise.

60

~
l! 75
c:.[
1;;•.! 70
.5

"~..•i'65
0::

~L'----~02----~O~3----~O~4----~O~5----~O~6----~O~7----~O~8-----70~9----~

Gaussian noise variance %

60,-----,-----,------,-----,,-----,-----,------,-----,------,

55

50

JJ

~,L----~----~L-----7-----~5~----~6----~~----~----~-----7,,0
Gaussian noise variance %

Figure 4-9. The percentage of repeatedly detected interest points for the same retina

pyramid fixation on the centre of the image as a function of the variance of additive

Gaussian noise for a subset of objects from the SOIL object collection (Koubaroulis et

al.,2002).
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4.4. Interest polnt descriptor

In the preceding section of this thesis the author described the detection of interest point

locations in the visual information output by the space-variant feature extraction hierarchy.

These interest point locations can be robustly detected in the scene. Therefore interest points

can be used as locations for encoding visual information which can be reliably detected and

matched for higher level reasoning tasks. The visual information encoded at interest point

locations is extracted over a wide spatial support region around the interest point to create an

interest point descriptor that provides a detailed representation of the information around the

interest point location. The interest point has been detected at a stable location and scale in the

space-variant Laplacian of Gaussian visual information contained in an imagevector.

Therefore, the match to its associated descriptor will be invariant to changes in the interest

point's detected scale. Additionally the descriptor is created such that it is also invariant to

rotation by rotating the descriptor to the canonical orientation of the interest point's support

region.

4.4.1. Interest point support

The support region around an interest point should reflect the detected scale of the interest

point in scale-space. Interest points generated near the retina's point of fixation will tend to

have a small spatial support with respect to the field of view while those generated in the

periphery will have a large support.

The author defined the support of an interest point based on adjacency in the

associated retina layer's Delaunay triangulation (Section 3.5.1). Nodes on the retina layer

with a graph geodesic less than or equal to j away from the interest point's associated discrete

extrema v, (Section 4.3.1) were considered to be within the interest point's space-variant

support. This will be denoted as VN e ~j (vJ, where ~j (vc) is the set of nodes within graph
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geodesic j of vc' A value of j=4 was used for experiments in this thesis to give a support

region with approximately 60 nodes in the retina tessellation except near the periphery.

The responses of the cortical filters within the interest point's spatial support region

VN€ Nj(vc), at the scale (Jextremawas determined by solving Equation 4-18 for VN and (Jextrema

giving Lnorm(I,vN,fJextrema)' Since the author has to assign a local gradient vector to node(s)

VN, the response Lnorm(I, Vi,fJextrema) at immediately adjacent neighbours Vi e N(VN) was

calculated at (Jextrema using Equation 4-18.

0.1

o.ce • • • • •
0.00 • • • • ••
0.1J.4 • • •• • • •
0.02 • • • •• •• •

v~• • v. •* . •
~.02 exextrema- .Yexrl'cma) •

• • • •
.(J1J.4 •

• • •-(l.OO •
•

• • • •.(Jre •
•

.(J.l -0.05 0 0.05 0.1

Figure 4-10. An interest point's (xextrema, Yextrema) support VN e NJCvc) and the assignment

of a local gradient vector to a node in VN using its immediately adjacent neighbours v,

Local gradients are assigned to all VN'

When aggregating local orientation gradients at VN, a Gaussian weighting was used to

reduce the influence of local gradient vectors at the extremes of the interest point's support.

Varying numbers of interest points may fall inside or outside the interest point's support

region as a result of even a small change in the location of the scale-space extrema and

therefore would cause aliasing and instability in the descriptor values with a lack of spatial

sampling continuity.

136



Interest Points 4.4 Interest point descriptor

The spatial standard deviation \jI of the Gaussian' for an interest point descriptor's

support region was based on the size of the co-located cortical filter on the retina pyramid

(Equation 3-41). This resulted in a space-variant standard deviation. As the scale-space

extrema is detected on a continuous scale-space, receptive field size is modulated with the

offset of the scale extrema on the octave on the retina pyramid (Equation 4-18).

If j is the graph geodesic size of the support region on the retina tessellation, a, as

given in Equation 3-41 is the standard deviation of the collocated cortical filter on the retina

pyramid, '1 the number of nodes in the support region VN and s as given in Equation 3-42, the

standard deviation for the interest point's Gaussian support region ",(vc) is given below where

VN e ~j (vc) and Vc is the closest node on the retina pyramid to the interest point location

(Xextremw Yextrema, aextrema) given in Equations 4-18 and 4-22. s(;o,- is therefore the scale offset of

the interest point from the closest discrete Laplacian of Gaussian retina pyramid layer.

(Equation 4-26)

Scale

Figure 4-11. Calculating the standard deviation of the support of the interest point

descri ptor Gaussian ",(vc). The star indicates the (continuous) scale-space location of

(xextrema, Yextrema> aextrema). The value generated for aextrema, ranging from -1 to +1 is used

to generate the actual scale blurring ",(vc) in Equation 4-26.

The weights within the Gaussian support region encompassing nodes VN are

calculated relative to the continuous scale-space location of the interest point (xe:arema, Yextrema,
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(Jextrema)' If X and y give the spatial location of nodes in the retina pyramid, the interest point's

support weights using an un-normalised Gaussian support is given below

( , "
~ (III·., )~ ,,,,,,.•,, )- +( ,~,., )~I·,.,,,,_,,t ..'

G( 'P( ») 2'1'(1, ) I
Vs , Xl'Xlrl'ma ' .YnlrtOma ' Vc = e (Equation 4-27)

The Gaussian weighting will be used to aggregate local gradient vectors within the

interest point support. The next section will describe the creation of local gradient vectors.

4.4.2. Interest point orientation

Local orientation vectors are calculated for VN€ ~ _AvJ with response Lnorm (I,VN ' antr!'m') based

on contrast with immediately adjacent neighbours Vi with response Lnorm (I, v" a"'trl'ma) .

Because the self-organisation results in the non-uniform placing of nodes Vi around VN.

gradients were calculated based on the gradient orientation and the gradient contrast between

nodes. Therefore the resulting vertical and horizontal components of the local gradient at VN

after combining the square roots in the denominator are:

o (v I V (J' ) =I(x( V ) _ x( V )) Lnorm (I, Vi' (J'extrl'ma) - Lnorm (I, VN' (J'l'.arl'm,)
.r N" c' eXlremai. N (X(V,)-X(VN))2 +(Y(Vi)- Y(VN»)2

o (V, I V (J' )=I(y(V.)-y(V ))Lnorm(I,vi,(J'ex,rema)-Lnorm(I,v",(J'"x,rema)
y t..', c: extrema i I N (x(v,}-X(VN»)2+(Y(V,)-Y(VN))2

(Equation 4-28)

where x( v,) and y( v;) are functions that return the spatial coordinate of node Vi. The magnitude

and orientation of the local gradient at VN are as follows

(Equation 4-29)

( )
-I a v ( VN , I,vc' al!Xlrt'ma) .

aangle vN,I, v",aexlrema = tan a (v I V a ) (Equation 4-30)
of N" (" extrema
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The calculations for achromatic local gradients 0, and O, can be extended to

chromatic gradients (simultaneously extracting spatial and chromatic contrast information) by

sampling Lnorm(I, Vi,l1"xlremJ and Lnorm(I,vN,l1,'xlrcmJ from separate chromatic channels.

For example, sampling Lnorm (I, Vi' O"nlrcmJ from a red channel LoG retina pyramid and

Lnorm(I, v"" l1exlrema) from a green channel LoG retina pyramid would result in a gradient with

spatial and red-green Laplacian of Gaussian opponent contrast.

4.4.2.1 Descriptor orientation histogram

A canonical orientation for the local descriptor was obtained by binning the local gradient

vectors, represented by Omag(VN) and Oang/e(VN), over a discrete set of orientations () separated

by /).0. The author used eight orientations: () = 0, 1tI4, 7[/2, 37t14, 7[, 57t14, 67t14, 77t14 (/10 = 7[/4)

for experiments in this thesis. Redundant representation of local gradient vector components

within the descriptor orientation histogram Gaussian support region was prevented by only

binning the positive cosine component of a local gradient vector. Failure to do so would

encode correlated information (positive and negative directions of the same gradient) in the

descriptor orientation histogram. Therefore the descriptor orientation histogram at interest

point (Xnlremm Yexlrem", ae>lrem,,)is as follows:

H (I, Xnlrt'nw' Y('tlrl'ma' O"'X'Tt'f7UI ' '¥ (v(. ), 8) = LG( v:v ,xt'xln'mtl 'Yt'xtrt'mu ' 'f' (VI"» X 0 mull.(Vi'" , I, Vc' G"'Xlrt'mu)
N

X COS( 0anKle (V N ' I, Vc' CYetlrema) - 0),COS( 0unKle (V\, ) - 0) ~ 0

(Equation 4-31 )
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..' - ---_._-------,--------------.------

21

/

/
\ /~ /''''v "',,-.__1

19 __l~_._ . L_ _ L _
o 2 J • 5

Angle (radillns)

Figure 4-12. Discrete responses of a descriptor orientation histogram H with orientations 0 at 0,

ro'4, 7rl2, 3ro'4, 1[, 5ro'4, 67rl4, 77rl4. The canonical orientations (orientation peaks) of the interest

point are between 7ro'4 and 7rl4as well as the lower response canonical orientation between 3ro'4

and 57rl4. The next section describes calculating the exact continuous canonical orientation(s) of

the interest point descriptor (-0.3602 and 2.7552 radians in the above example).

25

4.4.2.2 Canonical orientation

The canonical orientation(s) Op~akof the descriptor was found by computing the peaks over the

discrete orientations in the descriptor orientation histogram H( I, Xt!Wtm:l> Y~ (JL'<1MPkl> Ip(v,.),O).

B",.ClIc E B, H (I, X",f/n'mu 'Yt'.tlrf'ma ,G":Clrf'tna ,V'(v(. ),0pt'uk) > H (I, X,>.tlrt'ma ,Y, -.nrf'mu 'O',';t/rt'ma ,'I'(vc )'(}pt'uJc - flBpt'tlk)

/\ H(I, Xex/m",,' Yew-emu ' (J'~'/"mu ' V'(Vc ), () fWUk ) > H(I, X"f/rem.' Y"f/n-mu ' (Term'mu ' V'( v,_ ), () "..uk + !l(),,,,,,. )
(Equation 4-32)

The largest peak in the orientation histogram will be ()mcupeukwhere

(Jmaxpeak : H (I, xe.rlrema' Yexlre"",' (jexlremu' 'II( vc), (Jp) s H (I, xexlrema' Yexlrema' (jexlrema' 'II( vc), (Jmcupeak)'

v (Jp E (Jpeak

(Equation 4-33)

To reduce the affect of noise and increase stability in the descriptor, only orientation

peaks of a magnitude over a pre-defined threshold are used for further processing. Orientation

peaks with a magnitude of over 0.4 x ()muxpeuk were used in experiments in this thesis.

(J > OAx(J _
peak maxpeak (Equation 4-34)

Separate interest point descriptors (orientated differently) were created for each

canonical orientation Opeak The exact canonical orientation of the descriptors were determined
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by fitting the quadratic polynomial H(l,x,'xlrem",Yexlremal7erllemm'l'(v,),O) = aff+hO+c at ()",'ar/l.{),

(8pl'llk - ~8f 8"..ak - ~8
8 2 8
peak prak (

aJ [H(! ,X"xlrema' Y"llremu' <:». 11/(V,.), 8"t'lIk - ~8)J
b = H (!,X,'xlrema ' Yellrem(/ , O'l'xlrl'ma ' 11/(V, ), 8"I'(/k )

C H(!, Xexlrt'ma' Ynlrl'm(/' O'n/n'ma' 11/(V('), 8''''(/k +~8)
(Equation 4-35)

The canonical orientation of the descriptor will be given by

8 =_bl
canonical 12a (Equation 4-36)

4.4.3. Descriptor sub-region orientation histograms

In the previous section the author described the calculation of the canonical orientation

Omnoni(ul of a descriptor located at (Xt'xlremuoYt'xtrema,lT"xlrema) with a spatial space-variant support

region of '1'( v.) on the retina pyramid. Based on the canonical orientation and support region

of the descriptor it is possible to divide the descriptor into sub-regions. Encoding orientation

information subsumed by sub-regions of the descriptor increases the acuity of the descriptor

to represent spatial variation. However the dimensionality of the descriptor increases from

21t//l.e as in H(I,x,'x,remu,Yexlrt'ma,r7exrremuo'l'(v,.},fJ) to 21tnl/l.e where n is the number of sub-regions

in the descriptor.

The spatial locations of the sub-region centres within the descriptor were chosen as

indicated in the figure below. Nine sub-regions were placed as a rectilinear grid separated by

k'l'(v,) and orientated with the canonically orientation of the descriptor. A value of k = 0.4 was

chosen for experiments in this thesis. The standard deviation of the spatial support of the

Gaussian centred at each sub-region centre was also chosen as k'l'( v,.}.
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Canonical orientation

Gaussianweighting of
gradients based on distance
to interest point location Gaussian weighting and accumulation

into descriptor sub-regions based on the
',,- /canonical orientation .and scale of the\Y Interest point

\

)

Figure 4-13. Placement of descriptor sub-regions on the descriptor support A

descriptor with nine sub-regions is illustrated, with the spatial support at one standard

deviation indicated. Local gradient vectors are aggregated into the sub-regions using

Gaussian weighting.

If Xbin and Ybin are the X and Y coordinates of the descriptor sub-region bin, its

associated orientation histogram Hbin is given below:

H bin (1, XexlremCJ' Yextrema' Uexlrema , '¥ (v.), ()canonical' Xbin, Y bin' 8) =
L G(VN,Xbin'Ybin' k'l'(vc »X G(VN ,X""trema 'Yextrema' '¥(VJ) X Omog (VN, I, Vc' aextremu)X
N

cos(Oangle( VN' I,Vc,(j extrema) - 8), coS(Oangle(VN) - 8) ~ 0

(Equation 4-37)

The reader should note that the local gradients are weighted by the Gaussian

G(VN' Xexlrema,Yexlrema. IfI(vc)) before being aggregated into the sub-region orientation histogram

Hbin to avoid aliasing in the allocation of local gradients near the edge of the support region of

the descriptor. As previously in Equation 4-31, only the positive cosine orientation

components of the local gradient vector are binned into the orientation histogram. Failure to

do so would unnecessarily encode correlated information in the descriptor orientation

histogram (positive and negative directions of the same gradient).
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4.4.4. Interest point descriptor

The author used the orientation histograms from the (nine) descriptor sub-regions described in

the previous section as a representation of the iconic visual content at the interest point's

location in scale-space. The sub-region orientation histograms Hhin were concatenated to form

an interest point descriptor that was used to represent content in images. The interest point

location in scale (xeX1rt'mu, Yexlremu), size of support region (",(VC» and canonical angel OcunoniC'tlI

are attached to the descriptor for high-level reasoning operations after interest point matching.

With chromatic gradients, while both red-green and blue-yellow spatial and chromatic

contrast was extracted and is represented in the interest point descriptor, O,unoniml is determined

only by the canonical orientation of the red-green local gradients.

Xextrema Yexln'ma 1jI(vJ 8('{}mmh'lJl HI H2 H3 H4 H5 H6 H7 H/I H9

Figure 4-14. The interest point descriptor containing sub-region orientation histograms

The orientation histograms in the interest point descriptor are normalised to unity

magnitude to increase invariance of the descriptor to contrast changes. Influence of large

orientation histogram values in the normalised descriptor were reduced by clipping the value

at 0.2, which was experimentally determined by Lowe(2004). The features of the resulting

global descriptor (HI"') was once again normalised to unity magnitude.

All visual reasoning and visual information representation in this thesis will be using

interest point descriptors. These provide a representation of iconic visual information at stable

Laplacian of Gaussian extrema in the space-variant information extracted by the retina

pyramid. When calculating interest point descriptors, the author economised processing

resources of the space-variant vision system by only making computations at nodes on the

retina pyramid which had significant responses. The strategy of sparsifing the visual

information to significant responses resulted in the emergence of interest point descriptors at

distinctive interest points or locations where there is substantial activity in the data-driven

visual information stream.
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Figure 4-15. The canonical orientation and scales of interest point descriptors extracted from

two objects from the SOIL object database. Arrow direction indicates canonical orientation

()canonical and arrow size is proportional to scale l.fI(ve).

4.5. Interest point matching

The interest point descriptors extracted during a retinal fixation on an image can be matched

with others extracted during training of an object appearance. The X2distance (Section 4.2.3.4)

was used as a distance metric between interest points extracted from the current retinal

sampling and those extracted during training. If the interest point descriptor Hlesl extracted

from the retina sampling of an image with unknown content has the closest X2 distance to

descriptor Hlralna extracted during training, followed by descriptor Hlrain!3 also extracted during

training, the log likelihood ratio statistic testing the hypothesis that Hlesl and Hlraina are from

the same iconic visual content is as follows

L(H . IH ) = _IOg(X2
(H,es' ,H,ra;no)J

irama test X2 (H H.)
lest' tramp

(Equation 4-38)
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The log-likelihood ratio L(Ht~,tIHtmim') is a useful statistic that encapsulates the

confidence of interest point descriptor Htes/s match with Htminll by USIng the

discriminativeness of Hte.lt. The distribution for the hypothesis is approximated by the l
distance from the unknown descriptor Hte.,t to its closest descriptor Htminll in the training

dataset. The distribution for the null hypothesis, placed in the denominator, is approximated

by the X2 distance from the unknown descriptor Hle.'1 to the second closest descriptor in the

training set Htrain/i' The author also used the 'l distance to the mean feature descriptor for the

null hypothesis. A highly discriminant descriptor which is very different to all others in the

training set will generate a high log-likelihood ratio statistic when matched with similar visual

stimuli.

xv.-----~----~,_----._----_,------._----_.------,_----_,

°O~----~O~5----~--~==~15~~==~2==~==~25~~~~=---~3~5~~~
Log- Likelihood ratio statistic
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Figure 4-16. Log-likelihood ratio statistic for a typical interest point descriptor Hlesl•

The static is low for most descriptors Hlruin/i with a high value (close match) registering

for only a few interest points Hlraina'

In the next section of this thesis that author will investigate the invariance of the interest

point extraction and matching systems to the rotation (in an axis perpendicular to the image

plane) and scaling of an object in front ofa uniform background.
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4.5.1. Invariance to rotation and scaling

The author investigated the invariance of the interest point extraction and matching mechanisms

by implementing a uniform density rectilinear version of the previously described space-variant

vision machinery. The rectilinear version of the vision system isolated the system's interest

point extraction and matching performance from effects from the space-variant sampling of

visual information and the saccadic targeting of the retina sensor. The rectilinear system

consisted of an octave separated 4-layer pyramid with a 1OOxl00 receptive field image sampling

layer and a field-of-view of 100 pixels by 100 pixels. Interest points were detected on a scale-

space continuum and extracted at canonical scales and orientations using the methodology

described in Sections 4.3 and 4.4. Rotated and scaled versions of the frontal-view image of the

47 objects m the SOIL database (Koubaroulis et aL, 2002) were used in the interest point

matching experiments using a winner-take-all match. A 70 pixel by 70 pixel down-sampled

version of the object's frontal-view image was used for training by extracting interest points

using the rectilinear visual machinery .
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Figure 4-17. (Left) The rectilinear uniform resolution vision system sampling locations

with a field-of-view of 100 pixels by 100 pixels. (Right) Frontal view images of the 47

objects in the SOIL database (Koubaroulis et al., 2002).
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Matched percentage of test image interest points as a function of the

counter-clockwise rotation from the training image.

Invariance of the interest point extraction and matching mechanism to rotation of the

object in an axis perpendicular to the image plane was investigated by rotating the training

image from the SOIL database an angle of 0, I, 2, 5, 10, 20, 45, 90 and 180 degrees in a

counter-clockwise direction, and extracting and matching interest points from the resulting (test)

image.

The percentage of correctly matched test interest points (Section 4.3.3) reduces sharply

from a rotation of zero to 10 degrees from the training image's orientation. The matched

percentage then levels off with approximately 11% of the interest points being correctly

matched even when the object is completely inverted (180 degrees rotation). The rectilinear

vision system could not extract interest points for the frontal view training image of the 41 SI

object in the SOIL database (the yellow watering can in Figure 4-17) causing the slight

reduction in matching performance observable in Figure 4-18 even with a zero degrees rotation.
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Figure 4-19. Matched percentage of test image interest points as a function of scaling

from the training image

Invariance to the scaling of the object was investigated by scaling the frontal-view

training image by a scaling factorofO.5, 0.6, 0.7, 0.8,0.9, l(no scaling), 1/0.9, 110.8and 1/0.7.

Interest points were extracting and matching from the resulting scaled (test) image and the

percentage of correctly matched test interest points (Section 4.3.3) was computed (Figure 4-19).

The percentage of correctly matched interest points to the training image's interest points drops

sharply as the object is scaled away from the trained size. Correctly matched interest points

using a winner-take-all mechanism can be found only with a scaling of the object between 0.6

and 1.5.

By matching test image interest points to those from a known object labelled training

image it is possible to assign an object label to previously unclassified interest points generated

from a retina sampling. The Hough transform (Section 4.2.4) is able to also assign an object

scale and pose hypothesis based on the spatial arrangement of the extracted (and matched)

interest points. Matches between test and training interest point descriptors are used as evidence

that votes into a discrete Hough accumulator space. The Hough transform is able to reason with

visual evidence, even coping with the low percentage of correctly matched interest points

between test and training object examples. The next section of this thesis will describe the

methodology for the allocation of votes into Hough accumulator space cells.
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4.5.2. Voting into the Hough accumulator space

The decision of which cell(s) in the discrete Hough accumulator space receive the vote from a

match between known (training) and unknown (test) feature descriptors depends upon the

spatial location, angle and scale parameters of the matched interest point descriptors. The

problem may be formulated as: if during training descriptor H,rain was found at location X,rlllm

Y'min at scale 'IIlmin( v,.} with canonical angle B,mi", what rotation R, scaling S and translation Tis

consistent with finding descriptor H,el" (which was matched with H,min) at location XICS!> Yr.", at

scale 'l'le."'<V') and canonical angle B'el'r in the scene?

[
XI!'I'I ] = SR [Xlram ] + T
Ylt'.\"t Ytram

(Equation 4-39)

Homogenous coordinates were not used in the above equation so translation is not a

multiplication and therefore the equation can be simply solved for T.

T = [X'''''' ] _ SR [Xlram ]
Y,el" Y,ram

(Equation 4-40)

The scaling and rotation parameters may be determined based on the match between

interest point descriptors:

[

'Ple"r (V()~ . V 0 ]
S = ftp Imm( c)

o \f'es' (vc)/
/'P 'rain (v.)

(Equation 4-41 )

(Equation 4-42)

From Equations 4-40 to 4-42, the translation T of the object from the training image

to the test image is as follows:

T [Tx ] [x '-"1scos (B '- B) x-"1s sin (B '- B) Y] (Equation 4-43)

= T, = y'+"1s sin(8'-8)x-"1s cos(8'-8)y
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The vote is accumulated at continuous coordinate [object, T" T", VJI<'SI(v.)/ VJlmin( v), Olnl - Olrain]

in the Hough accumulator space. The author used the log-likelihood ratio statistic between the

training and test descriptors as the vote. As Hough space is quanti sed into discrete cells that

span a certain parameter range (for example, image width for T", and 21t for Oft." - (Jlrain) the

continuous coordinate in Hough space is divided by its associated parameter range and

multiplied by associated cell quantisation to give the required discrete Hough accumulator

space cell. In this thesis the author used a coarsely quanti sed Hough space that could

accumulate sparse evidence from the periphery of the space-variant vision system's field-of-

view. A quantisation of 7 cells for vertical T, and horizontal T" spatial translation Hough

space dimensions, 5 cells for scaling and 5 cells for rotation Hough space dimensions was

used for experiments in this thesis.

4.5.3. Affine Transformation

The Hough transform was able remove outlier interest point descriptor matches that were not

constant with a stable object hypothesis in the test image. As discussed in Section 4.2.5 it is

possible to create an affine transformation of the training interest points to the test interest

points based on the system in Equation 4-15. As the author has calculated a log-likelihood

ratio score L(HlminIHlel'l) for the interest point matches this was also used to bias the Gaussian

elimination (Press et al., 1992) when solving Equation 4-15 by multiplying both sides of the

equation with the associated confidence of the interest point descriptor match as indicated by

the log-likelihood score. The affine transformation parameters mi. m], m3. m, and In tv are

obtained by solving the system and are used to perform a geometric transform of the pixels in

the training image to render a scene hypothesis for the current retina sampling.

rn,

[

UH ••,.III""IXX",,] [/,(I1"",.III."IXX""" L(H"".IH~,lxy".. 0 0
L(H.",.I ff"" Ix""" = 0 0 L(H"",.I H.,,1 x x,,",. L(II,,,,," III." Ixy"".

: :

o ] rn,rn,
L(II"".I H"" I

: m ..
, I,

I,

(Equation 4-44)
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Training image. The retina pyramid was

fixatated on the centre of the image.

Responses from the 4096 node Gaussian

retina pyramid layer indicating the vision

system's space-variant sampling.

Test image (training image rotated by 45°)

The retina pyramid was once again

fixatated on the centre of the image.

Affine transformation of the (vertical)

training image based on matched interest

point descriptors from a fixation at the

centre of the image.

Figure 4-20. Scene hypothesis of the space-variant vision system generated by affine

transformation of the training image based on matched interest point descriptors. As

most descriptors are generated near the high resolution foveal region there is not

enough evidence to correctly determine the length of the Oval tine container object.

Time limitations caused testing the pose estimation of the system for a single fixation

on a larger number of objects to be outside the scope of this thesis.
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4.6. Conclusion

In this chapter, the author described how Laplacian of Gaussian space-variant contrast

information was used to compute interest point descriptors located at stable scale-space

extrema locations within a non-uniformly tessellated space-variant architecture. Spatial

locations in scale-space and gradient orientations of descriptors were computed on a

continuous domain reflecting the intrinsic continuum of visual stimuli in nature. The interest

point descriptors contained information based on local spatial contrast (and chromatic

contrast) gradients on a support region modulated by a Gaussian window centred on the

interest point. An effort was made to create interest point descriptors which were invariant to

the orientation and spatial scale of visual stimuli by rotating the descriptor to a canonical

orientation and extracting interest points only at scale-space extrema. Methodologies to match

interest points and generate a hypothesis for the vision system on the content of the scene

were also presented.

The significant contribution of this chapter is the description of computational

machinery that can extract a visual representation based on local interest point descriptors

from any arbitrary visual information sampling, applicable to any vision system from that

based on an internal representation of a conventional rectilinear array to that of a non-uniform

pseudo-randomly tessellated retina. The only constraint is that sampling locations are

organised as layers.

The visual information from which scale-space extrema and interest point descriptors

were calculated were in the form of imagevectors (Chapter 3). Imagevector variables had an

associated spatial relationship with associated receptive fields in the retina pyramid. Because

of the non-uniform tessellation of the retina, extracting local gradient orientations or even the

location of scale-space extrema was not trivial unlike conventional image processing using

rectilinear arrays of pixels. All reasoning and analysis was done based on fitting local
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polynomials on the sampled visual information, extracting the spatial location of scale-space

extrema and local gradient orientation on a continuous domain. While a great deal of

associated (pre-computed) computational machinery is required for these operations on non-

uniformly sampled data, the author is able to now construct a complete two-dimensional

appearance based vision system for any arbitrary uniform or non-uniform sampling

tessellation or sensor. From the extraction of low pass information from visual stimuli to the

generation of local descriptors of visual content, a vision system with any arbitrary sampling

tessellation can now extract and represent the visual content it 'sees.'

It is interesting that machinery found in biological vision systems have evolved a

similar approach in which computational machinery is wired to a specific a receptive field, as

opposed to the same computational unit operating on the whole field-of-view. This approach

is quite unlike conventional image processing (for example convolutions) or even

conventional computing science applications (iterative algorithms). The author did not set out

to build these large computational machinery structures when he started on this work, but

almost unknowingly converged to a biologically plausible approach of having unique

machinery for each processing unit because of the common problem of operating on non-

uniformly sampled visual stimuli.

A space-variant vision system that samples visual information at high acuity in its

central foveal region and at coarser resolutions in surrounding peripheral regions of its field-

of-view is incomplete without a machinery to target the sensor on interesting or salient

regions in the scene. The benefits of space-variant vision, such as data reduction and clutter

suppression based on the point of fixation, implies that a visual scene is searched by directing

the sensor to important areas.

Without such an attention mechanism, the vision system will not sample a complete

scale-space of the visual stimuli from the scene. In this chapter the space-variant vision

system was shown to extract evidence of visual content and make a hypothesis about the pose
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and position of an object in its field-of-view. In the next chapter the author will

demonstrate the targeting of the vision system's sampling mechanism based on bottom-up and

top-down attention. The system will perform saccades, examining images and performing

behaviours depending upon the task it is trying to achieve.
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Chapter 5

Saccadic Vision

A saccade is the change in the point of fixation of a space-variant sensor in a

biological or machine vision system as it explores a visual scene. This

chapter will contain information about the mechanisms that the author used to

target the self-organised retina pyramid and associated feature extraction

machinery on 'interesting' regions in images. The concepts of attention and

salience will be introduced, bottom-up and top-down attention mechanisms

will be discussed and used to change the behaviour of the implemented

space-variant vision system. Demonstrations of the saccadic behaviour of the

vision system under different environments and tasks will be provided

throughout the chapter. The attention mechanisms will use the interest point

feature descriptors extracted by the hierarchical processing described in

previous chapters to find salience, not only in low-level visual stimuli such as

stable comers in the scene, but also in higher level conceptual groupings of

features such as specific objects or specific object poses depending on the

task that the implemented vision is currently performing.

5.1. Introduction

In the previous chapters the author described the extraction of interest point feature

descriptors based on the sampling of a self-organised space-variant artificial retina.

Information was extracted at a high resolution in the foveal region near the point of fixation

156



Saccadic Vision 5.1 Introduction

and at coarser resolutions in the surrounding periphery. Thus far space-variant sampling

machinery, in the form of the retina pyramid, has been targeted only at the centre of the input

image stimulus. Visual information spatially distant from the centre of the image was not

sampled at a high resolution. In this chapter the vision system will decide where to 'look' or

fixate upon on the image based on (especially) the coarse resolution cues presented from

visual evidence gathered at the peripheral region of its field of view.

The problem of targeting a space-variant sensor so that the central high acuity foveal

region inspects 'interesting' or important regions in the scene is not a trivial task. It is not

possible to definitely know a priori with confidence that a spatial region is useful before

looking at it in detail with the fovea. The regions in the scene which are important to the

system will differ depending not only on the visual content in these regions but also by the

task that the system is currently trying to achieve.

The approach of considering feature extraction processing machinery involved with

perception (specifically vision) as isolated entities may not be beneficial. This machinery

exists in the context of a processing system which is attempting to perform a specific (current)

task (Granlund, 1999). Furthermore, biological systems continually generate overt responses

to visual stimuli, from saccadic fixation to the mechanical manipulation of physical scene

contents. Perhaps a biological or machine system's perception or consciousness cannot be

separated from the task it is trying to achieve and the overt responses (output) it is generating.

Many systems, especially space-variant vision systems, exist within a perception-action cycle

which is used to constrain the operation of internal processing machinery, preventing the

combinatorial explosion of processing outcomes of unconstrained reasoning.
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5.2. Concepts

The author has listed the following general principles relevant to a machine vision

implementation for targeting of a space-variant sensor on regions in a visual scene.

5.2.1. Attention

Many information processing systems are subjected to a very high dimensional input.

overloading limited sampling capability and resulting in a combinatorial explosion of the

system's possible processing outcomes. Attention can be defined as a mechanism that deals

with the allocation or regulation of limited system resources to the afferent data in the system.

In many systems, performance is limited by a restricted input bandwidth. This is

called the von Neumann bottleneck in computing and specifically is refers to the bottleneck

between a large memory and a powerful CPU processor within a computer (Backus. 1978).

Attention should efficiently allocate a system's limited sampling resources to a subset of the

afferent data depending on the system's current task, thereby improving the performance of

that specific task (potentially at the expense of performing other tasks). Such an approach in

vision, where a space-variant sensor is explicitly targeted at a region in the visual scene, is

defined as overt attention.

The limited sampling resources of a vision system may still result in afferents to

operating machinery that cause a combinatorial explosion of processing outcomes. Covert

attention is defined as the allocation of system processing resources to afferents to reduce the

uncertainty of a system's reasoning and aid its convergence to a stable processing outcome or

hypothesis by suppressing some of the incoming (noise) afferent information.

These attention mechanisms work in space-variant vision by targeting system

sampling resources towards and allocating processing resources to salient regions in the

visual scene.
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5.2.2. Saliency

Saliency deals with the conspicuousness or importance of regions In the visual field.

Computations involving saliency based on bottom-up attention are defined as data driven and

are completely independent of the task that the system is trying to achieve. These involve

dimensionality reduction, sparsification and feature extraction operations that suppress

extraneous visual information such as noise or redundant stimuli retaining only salient data. In

biological vision systems, saliency based on bottom-up attention may be based on centre-

surround spatial receptive fields, chromatic contrast, orientated edges, etc. Saliency

computations based on bottom-up attention may be considered to be involuntary in

organisation because these operate without any conscious effort of the machine or biological

system.

A goal-directed system may also find afferent data particularly salient because of the

current task that the system is performing. In a vision system this may simply be the

chromatic features corresponding to a face in a face detection task or the characteristic spatial

configuration of edge features of an object appearance in an object recognition task. These

regions are found salient because of top-down attention, in which the current task of the

system biases the saliency determination mechanism.

The saliency information of a machine vision system may be encoded in a saliency

map which is a topographic encoding of scene saliency value in world coordinates. A scalar

value is used to represent the saliency of the visual region, combining the result of bottom-up

and top-down attention mechanisms in one single representation. As a vision system explores

the scene and gathers more visual evidence, new saliency information can be aggregated into

the saliency map and saliency from temporally older evidence may be atrophied.
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5.2.3. Sacca des

Space-variant sensors have a wide field of view but a spatially limited high resolution foveal

centre. The movement which changes the fixation target of the sensor so the high resolution

foveal region is directed at a salient visual region is called a saccade. In humans, these

ballistic saccadic eye movements target different scene locations such that we perceive a

seamless integrated whole and are rarely consciously aware that our visual system is based on

a space-variant retina.

Yarbus (1967) showed that the location and sequence of the saccadic exploration of a

scene is not random and is related to the task the user is trying to perform. Space-variant

machine vision systems should similarly target highly salient locations in the visual scene in a

serial process represented by high value areas in the saliency map. While exploring high

saliency regions in the visual field, a vision system would simultaneously gather more visual

evidence for saliency calculations, potentially spawning further saccadic behaviour.

Figure 5-1. Eye movements of a subject viewing an image of the bust of Nefertiti from

Yarbus (1967).
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Besides voluntary (often large) saccadic movements, human and other primates

exhibit small, pseudo-erratic, involuntary eye movements called micro-saccades. The reason

for the existence of micro-saccades in humans is still unclear. Suggestions from their affect in

stabilising the extracted visual information by changing the stimulated cortical receptive

fields, correcting retinal drift to stopping the retina image from fading have been proposed

(Martinez-Conde et aI., 2004).

A space-variant machine vision system that examines a static image will not gain any

information sampling advantages by fixating upon previously visited locations in the scene.

While the largest value on the saliency map can be used to determine the next point of

fixation, an inhibition of return map is used to identify and inhibit visual regions which have

been previously visited. The size of this inhibitory region will depend on the foveal size of the

vision system's space-variant sensor. The inhibition of return map will resemble the saliency

map in that it is expressed in world coordinates.

5.3. Background

Recent work in machine vision has spawned many models for saliency calculation and

attention. The author will review and critique a selection of this work relevant to the

development of a space-variant vision system that uses bottom-up and top-down attention

priming to modulate its behaviour.

The unification of separate visual feature channels into a single structure representing

saliency was addressed by Treisman and Gelade (1980) with their Feature Integration

Theory. While separate spatial feature maps represent visual information such as colour,

orientation, spatial frequency, brightness or direction of movement, these are synthesised

together by focus of attention which binds the features present in a fixation into a single

object. Quoting Treisman and Gelade (1980), "focal attention provides the glue which
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integrates the initially separable features into unitary objects." Koch and Ullman (19H5) and

later Itti et al. (1998) proposed and implemented a computational model based on this

approach by using centre-surround processing of the separate feature maps followed by a

linear combination into a single saliency map which was used for attention. Locations for

fixation were chosen in a winner-take-all manner and inhibition-of-return was used to prevent

revisiting previously explored visual regions.

While this model is currently widely used in computer vision it may be considered

lacking as a model for space-variant attention. A space-variant sampling or sensor was not

used to extract visual formation for saliency calculation. Therefore their attention mechanism

would previously know the visual contents of an unattended region in the scene before

fixating upon it with a focus of attention spotlight, negating the benefit and justification of

having an overt attention mechanism. This may be considered to be a computational

simulation of covert attention, but the author is yet to be convinced that there is justification

in implementing covert attention as a serial spatial process instead of using feedback or serial

top-down approaches. ltti et al. (1998) only considered bottom-up saliency and did not

introduce any top-down, task-based biasing into their system's attention behaviour.

The top-down priming of features for object search is reported in the literature by

Swain et al. (1992). They used low resolution colour histogram cues to drive the saccades of

their system in an object search task. A coarse resolution, down-sampled version of the input

image was used to mimic the low resolution periphery of a retina. Saliency information based

on colour cues in the coarse image was used to modulate the search for an object. This was an

early implementation of top-down biasing of a multi-resolution search which did not use a

space-variant sensor with sampling density continuity between foveal and peripheral regions.

The primitive colour cues used for top-down attention in that study are not robust and their

visual representation was not descriptive of the spatial configuration of features on objects.
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Schiele and Crowley (1996) presented a fixation model based on their work on

probabilistic object recognition using a local appearance visual representation called

'multidimensional receptive field histograms' which is somewhat similar to that in

Lowe(2004). However, this representation generated features at salient locations on an image

based on the discriminability of the local feature for object classification. This credible

approach which enabled the top-down generation of object hypothesis was however not based

on a space-variant extraction of visual information and therefore did not address the problems

of extraction and reasoning with space-variant information and the construction of hypotheses

about objects based on low resolution, sparse visual evidence.

Rao( 1994) presented work on top-down gaze targeting based on a cortical Image

generated by the space-variant log-polar transform (Schwartz, 1977). Visual content was

represented by the responses of regions in the cortical image to Gaussian derivatives at five

different scales. A goal or target image was used to create a saliency map in an object search

task. The work is lacking because the system needed to be provided with a 'scaling

correction' to reason between visual information extracted in its fovea and its periphery. The

top-down search algorithm was not effective without this external scaling correction input

which occurs when one naively extracts visual content using a space-variant sensor. This

early work also did not use a local, interest point based visual representation which would

increase robustness and efficiency, but instead the system processed the whole cortical image

for saliency.

Recently Sun (2003) presented an hierarchical attention model based on object

groupings in visual stimuli. Visual information was extracted using a space-variant retina

(Gomes, 2002) and low-level saliency information was computed based on intensity, colour

and orientation responses. Overt and covert attention was modelled as a serial process with

focus attended to plausible regions in the visual scene corresponding to groupings of visual

features into objects. The author questions whether there is computational justification for
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implementing covert attention as a spatially serial process. Overt attention, the targeting of a

space-variant sensor, is obviously serial, as the sensor can only fixate upon a single point on

the view sphere at a time. However, covert attention is an internal mechanism within a vision

system. Therefore a vision system may implement covert attention in parallel between spatial

receptive fields. This must be contrasted with the testing of high-level hypotheses, which

anecdotally seems to occur in series. Covert attention may be useful in preventing the

combinatorial explosion of visual processing by a coarse-to-fine search for bottom-up or top-

down primed features. Sun's (2003) work may not be considered a fully automated machine

vision system as the top-down hierarchical grouping of features into objects was performed

manually.

There are relatively few examples of complete vision systems that classify or conduct

recognition tasks with information extracted from a space-variant retina. Smeraldi and Bigun

(2002) developed a facial landmark detection and face authentication system based on low-

level features extracted using multi-scale Gabor filters placed on a coarse retina-like sampling

grid. They used Support Vector Machine (Vapnik, 1998) classifiers to detect facial landmarks

comprising of two eyes and the mouth. The search for facial landmarks was conducted by

centring their retina on the sampling point that resulted in a local maximum of SVM output.

This appears to be the most complete attempt reported in the literature to date where an active

space-variant retina has been used for a high-level vision task. However the Smeraldi and

Bigun(2002) retina contained just 50 receptive fields. They did not develop a biologically

plausible feature extraction hierarchy and instead steered anisotropic (Gabor) filters and other

complex filters on the retina itself which is inefficient. Smeraldi and Bigun (2002) have

shown the efficacy of space-variant processing in a well-defined vision task dealing with face

Images.

The author believes in this chapter he is attempting to address a dearth in the current

machine vision literature on a complete fully automated space-variant vision system using
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bottom-up and top-down saliency evidence for attention behaviour and capable of performing

generic object search tasks.

5.4. Model for space-variant vision

The model the author presents for space-variant vision and saccade generation is a simple

modular feed-forward system integrating the retinal sampling and feature extraction hierarchy

mentioned in previous chapters in this thesis (Chapters 3 and 4) with higher-level reasoning

and saccadic targeting subsystems. Figure 5-2 contains an abstract overview of the

implemented model indicating the feed-forward flow of visual information between

component modules.

Retinal
Sampling

Space-variant
visual ...--------, Interest point ,....- --,

information Feature descriptors
---~) Extraction ) Reasoning

Intere~t pOint
descriptors

Next fixa

Saccadic
Targetting

.:biasing
Figure 5-2. Feed-forward model for space-variant vision and saccade generation.

5.4.1. Retinal sampling

The retinal sampling component of the model implements the space-variant extraction of

multi-resolution visual information from the input scene using an artificial retina. As

described in Chapters 2 and 3, this would comprise of circularly symmetric (retinal) receptive
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fields which densely populate the central foveal region of the retina and are increasingly

sparse in peripheral regions of the system's field-of-view. The space-variant visual output of

the retinal sampling is projected to the feature extraction component of the model which

reduces the dimensionality and increases the invariance of the visual information. Optionally

the output of the retinal sampling may also be projected to the saccadic targeting component

for low latency overt attention behaviours using primitive visual information.

5.4.2. Feature extraction

The retina output is processed by the feature extraction module which, as described

previously in this thesis (Chapter 4), can extract invariant visual features in the form of

interest point descriptors. The descriptors can optionally also contain additional visual feature

modalities such as motion vectors, seamlessly integrated into a single representation. Later

processing operations in the implemented space-variant vision model solely use these interest

point descriptors. Descriptors are projected together with associated spatial, scale and

orientation information to the saccadic targeting and reasoning components using simple

feed-forward efferent connections.

5.4.3. Saccadic targeting

The saccadic targeting component of the model contains spatial information (memory) about

salient and previously fixated regions in the scene. The space-variant visual information from

the feature extraction component is used to generate saliency information represented in the

saliency map. The saccadic targeting component transforms the coordinate domain of the

visual information from the space-variant retinotopic spatial domain extracted by the retinal

sampling and feature extraction components to a spatial world coordinate system

corresponding to the visual scene. Conceptually all accurate spatial reasoning should be done

in the saccadic targeting module; therefore the Hough accumulator space representation

described in the previous chapter is placed in this component of the model.

166



Saccadic Vision 5.4 Model for space-variant vision

The saccadic targeting component integrates bottom-up (generic, data-driven)

saliency information from the feature extraction component and top-down (specific, task-

biased) saliency information from the reasoning component into a single world coordinate

spatial saliency map that represents the importance or usefulness of locations in the scene.

The next spatial location in the visual scene for fixation by the retina sensor is determined by

the saccadic targeting component based on high saliency locations in the saliency map.

Besides integrating different sources of saliency information, the saccadic targeting

component also continually accumulates visual saliency information from different saccadic

fixations as the space-variant sensor explores the scene. The inhibition-of-retum mechanism

functions in this module, preventing the space-variant sensor fixating upon information which

has already been sampled and processed.

5.4.4. Reasoning

The reasoning component is the only part of the implemented space-variant model which

introduces a task bias into the system. The generation of hypotheses and the biasing of visual

features based on the space-variant vision system's current task are conducted in this

component. The spatial reasoning conducted in the reasoning component will only manipulate

very coarse (perhaps even only relative) spatial knowledge. Accurate spatial knowledge is

contained only in the saccadic targeting component. The reasoning component of the model

should only be capable of manipulating abstract concepts such as object labels or coarse

object spatial locations and orientations.

The reasoning component introduces the influence of the system's task into the

system's processing cycle. Potential goal states, a priori information and the context of the

visual information are used in this module to bias the currently available visual information to

the task. The output from the reasoning component comprises matched pairs of interest point

descriptors (unknown from current fixation matched to known from training) which are
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diagnostic to the system's current task and the desired pursued hypothesis. This information is

projected to the saccadic targeting component.

The reasoning component also generates hypotheses based on the semantic grouping

of features discovered by the saccadic exploration of the scene and makes task specific

judgements such as the high level interpretation of visual contents in the scene. Besides visual

information from the current fixation and past fixations, the reasoning engine will use other

contextual information for its reasoning. This may include previous reasoning judgements

generated from previous fixations, domain specific knowledge and optionally even spatial

information from the saccadic targeting component for the detailed spatial examination of the

scene, which is outside the scope of this thesis. Once the task-biased saliency information is

incorporated into the saliency map, the space-variant vision system will be attentive to and

will saccade to scene locations that may help solve the current task.

5.4.5. Processing pathways in the model

There are three potential types of processing pathways from which visual stimuli extracted by

retinal sampling could result in a saccade generated to a new fixation location.

(1) Saccade generation based solely on bottom-up saliency information.

It is possible to generate task independent saccadic fixations by implementing (pre-attentive)

saccade generation without any biasing from the reasoning component. This naive approach

finds salient regions and the next overt fixation location in the scene using only bottom-up

(data-driven) saliency information. Image regions with high levels of activity or entropy of

low-level image features such as edges and colour are considered salient and will be fixated

upon by the space-variant sensor. Unbounded visual search (Tsotsos, 1989) for target stimuli

would be based solely on the available visual data. The overall target or goal state of such

vision systems does not provide any influence to the search process and may only be used as a

cost function for computing a match or reasoning decision output.
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Space-variant
,--------, visual ,---------,

information
)

Retinal
Sampling

Feature
Extraction

Ne~flX.~ Ilnterest point
descriptors

Saccadic
Targetting

Figure 5-3. Saccade generation based on bottom-up saliency.

(2) Saccade generation based on top-down saliency information.

A more advanced approach is to use top-down (task/goal directed) saliency to drive saccade

generation. Influences from the goal of the vision system and context of the system's task are

used to bias the saliency information and provide the saccade generation component with

locations in the visual scene which are specifically diagnostic to the current task. Bounded

visual search (Tsotsos, 1989) will be performed where saccades are generated and the sensor

will only explore areas in the visual scene which are determined to be useful by top-down

biasing.

Space-variant
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Figure 5-4. Saccade generation based on top-down saliency.

169



Saccadic Vision 5.5 Bottom-up saliency

(3) Saccade generation based on top-down and bottom-up saliency in/ormation.

The processing pathways in the complete saccade generation model combine top-down and

bottom-up saliency information in a single saliency map in the saccadic targeting component.

In the author's implementation, increased scaler saliency values are given to scene regions

resulting from top-down saliency. Focus of attention is allocated to visual regions salient due

to bottom-up attention only when the current top-down salient visual regions have been

visited. Saccadic fixation on bottom-up salient visual regions could then potentially spawn

new top-down salient regions depending on the system's current task.

Therefore, the combination of bottom-up and top-down saliency information for

saccade generation constrains the search space for a stimuli useful for the current task while

providing a robust, efficient means of exploring visual content.

5.5. Bottom-up saliency

In this section the author will demonstrate the saccadic behaviour of the space-variant vision

system solely using naive bottom-up information based first on low-level feature activity and

later based on the interest point descriptors described in the Chapter 4.

5.5.1. Saliency based on low level features

The responses from cortical filters (Chapter 3) with centre-surround receptive fields

extracting achromatic spatial contrast, chromatic contrast, double opponent chromatic contrast

and achromatic orientated receptive fields (Balasuriya and Siebert, 2003) were utilized as

bottom-up saliency information from the space-variant sensor's current fixation. Saliency

information S(c) from the current retina fixation was obtained by standardising responses

from the different feature modalities O,{c) by subtracting the population mean and dividing

by population standard deviation from a series of retina fixations on several input images. The

saliency information S(c) and feature responses O,{c) are represented in the vision system as
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one-dimensional imagevectors as described in Chapter 3. If the standardisation is represented

by N, the saliency information at node c generated by cortical filters corresponding to a retina

layer with N nodes is given below

S(c) = IN(OF (c»), I <S: c <S: N
F

(Equation 5-1)

5.5.1.1. Saliency Map

The saliency map represents the usefulness or importance of the visual scene (i.e, input

image) that the space-variant vision system was fixating upon and has the same dimensions

(domain) as the input image. However bottom-up saliency information from the current

fixation is in the form of a one-dimensional imagevector. The saliency information from the

current fixation S(e) was mapped to a rectilinear domain representation S(x, y) corresponding

to the input image using the back-projection of cortical filters methodology presented in

Section (3.5.3.2) and reproduced below for convenience.

S(round(x,) +m,round(y,) + n):= S(round(x,) +m,round(y,) + n) +

S( c) x G, (m - aa; ,n - aa, ,O""p,.,Q,) x (2a)2, m, n ~ -aO",...+aa; Tic
(Equation 5-2)

The standard deviation (1; of the Gaussian G; was chosen corresponding to the spatial

support of the cortical filter at node i. The back-projection of saliency values reflected not

only the degree or significance of the saliency value but also the spatial scale (related to retina

eccentricity) of the represented region in the saliency map Sex, y) for the current fixation.

Therefore, space-variant saliency values S(x,y) have been generated for the current fixation.

5.5.1.2. Aggregating saliency values from multiple retinal fixations

As the space-variant retina explores the visual scene, saliency information Sex, y) will be

continually generated at each fixation. The accumulated saliency map sex. y) for the scene is
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calculated by aggregating saliency values from the current retina fixation using the following

equation where height and width are the dimensions of the input image stimulus.

{
. .

• S(X, v) if S(x, v) ~ S(x, v)
S(x,y) = . .' " 1:-:;; x:-:;; width, 1:-:;; y:-:;;height (Equation 5-3)

S(x,y) if S(x,y) < S(x,y)

The accumulated saliency map S(x, y) is used to decide the next location in the visual

scene for fixation by the space-variant sampling machinery.

5.5.1.3. Inhibition-of-return map

There is no direct sampling advantage in the space-variant retina re-inspecting locations on a

static image. An inhibition-of-return map was implemented to prevent the vision system

repeatedly re-fixating upon highly salient locations on the image by suppressing the saliency

of visual regions visited by the retina's central fovea. The continually evolving inhibition-of-

return map In was calculated by placing two-dimensional Gaussians with standard deviation

a (corresponding to the foveal size of the retina) and problem specific scaling factor A at

each saccadic fixation point (xI, YI)' The inhibition-of-retum map for the (n+ I )th fixation is

(Equation 5-4)

It is possible to optionally temporally decay the inhibition-of-retum map to encourage

the retina to re-fixate upon previously discovered highly salient locations on the image after

exploring other regions.

5.5.1.4. Saccade generation

The saccade to the next point of fixation was generated based on the maximum location on

the difference between the accumulated saliency map and the inhibition-or-retum map.

Therefore the next fixation point (xI, Yj) for the space-variant sensor satisfies the following

(Equation 5-5)
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The space-variant VISIOn system explored the visual scene until the following

equation was satisfied for the next point of fixation (i.e. there are no unvisited regions in the

scene which have high saliency).

S(Xf,Y!)- In(xf'Yf) < 0 (Equation 5-6)

Figure 5-5 displays the result of saccade generation based solely on bottom-up

saliency from low-level features. A 4096 receptive field artificial retina was initially targeted

on the centre of the colour mandrill image and the space-variant system explored the image

until Equation 5-6 was satisfied at 17th fixation. As the radius of the foveal region of the retina

(Chapter 2) was approximately 30 pixels, this was used as the standard deviation of the

Gaussian in the inhibition-of-retum map.

The retina almost spans the whole mandrill image when fixated upon the centre of the

Image. Space-variant saliency information, detailed and high frequency in the fovea and

coarse in the periphery, has been extracted and can be clearly observed in the saliency map

for the fixation on the centre of the image.

It is interesting to note that high saliency values were assigned to the eyes of the

mandrill and the space-variant system immediately fixated upon these locations. These

regions have a strong spatial and chromatic contrast which may have caused the high bottom-

up saliency values.

While only a single retina layer, instead of a multi-resolution pyramid of retinae, was

used for this demonstration, because of the space-variant structure of the retinal sampling and

the different fixation locations on the image, the accumulated saliency map L~(X, y) contains

saliency information from different spatial frequencies at co-located salient locations on the

saliency map.
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Figure 5-5. Conventional bottom-up saliency based saccade generation (Top-left) First

five saccades on the standard colour mandrill image based on bottom-up saliency from

low level features. (Top-right) Inhibition-of-return map after 17 retina fixations on the

mandrill image. (Bottom-left) Saliency information Sex,y) from retina fixation on the

centre of the Mandrill image. (Bottom-right) Accumulated saliency map sex, y) after

16 saccades.
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Figure 5-6. Saliency values during the saccadic exploration of the colour Mandrill

image. (Left) A plot of S(Xf,Yf)- In(xf,Yf) where (xf,Yj) is the prospective next fixation

point. (Right) Saliency value S(xf,Yf) at the point of fixation.
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When exploring an image, the space-variant vision model can not determine the true

salience of a location until it is examined with the fovea. Therefore the salience value at the

point of fixation may not monotonically decrease as the retina examines the image. Figure 5-6

contains the maximum value of the accumulated saliency map inhibited by the inhibition-of-

return map ,(;(x.y)-In(x. y). This value corresponds to the location of the retina's next fixation

point (Xj.Yj) and even determines whether the model should continue saccadic exploration. It

is interesting to observe that even these values do not monotonically decrease during

exploration as a new highly salient region may be discovered causing the sudden peaks in

S(x/.y/)-ln(xj.Yj) seen in the third and 14thfixation.

5.5.2. Bottom-up saliency based on interest points

Saliency mechanisms in the machine vision literature have been based on the excitation or

entropy of low-level visual features (ltti et aI., 1998). These low-level features may not be the

best internal representation for visual information in a vision system. The encoding of local

appearance of objects using interest points has proven to be revolutionary in machine vision

for reasoning with visual content (Chapter 4). The author has not revealed any reported work

where sparsely encoded interest point descriptors of local visual information that were

internal to a vision system being used for saliency calculations.

In the previous chapter the author demonstrated the detection of interest points and

extraction of interest point descriptors for a retina pyramid fixation at the centre of a stimulus

image (Section 4.3.3). Interest point descriptors were extracted and labelled with associated

spatial location on the image (xextrema, Yextremu), spatial scale ",(vc) and canonical angle ()canonical.

The (accumulated) saliency map of the visual scene was computed using saliency from

interest point descriptors using the following equation for all interest points.
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S(round (x~\tr~ma ), round (Y~xtr~ma )) := S(round (X,'xtmna ), round (Yntrmlll )) + '1'(v)
(Equation 5-7)

Interest points with large support regions ",(vC> (Equation 4-26) were assigned higher

scalar saliency values than those with a smaller support. Saccade generation based on values

in this saliency map would be attentive to dominant coarse scale interest points in the visual

scene. As the internal visual representation of the vision system is based on interest point

descriptors, it is more effective for the extraction of visual information if the space-variant

sensor is targeted at interest point locations. Interest points with large support regions would

often be found in the coarse resolution, peripheral regions of the retina pyramid's field-of-

view. Saccading to these locations would often result in the discovery of new visual content in

the form of fine resolution interest point descriptors. Inhibition-of-retum was used with a

similar saccade generation strategy (Equation 5-5) to explore an input stimulus image based

on bottom-up interest point locations. Instead of Gaussian suppression regions (Equation 5-4),

a uniform suppression region with a radius equal to the foveal radius was used to generate the

evolving inhibition-of-retum map.

The methodology of saccade generation based on bottom-up saliency based on

interest points was used for the training of (known) appearances of objects as indicated in

Figure 5-7.
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The first five saccades during training of a

colour appearance view of an object from

the SOIL database. The initial fixation

was at the centre of the image.

Interest point locations found after 24

fixations. Saccadic exploration of the

scene terminated when Equation 5-6 was

satisfied

Chromatic responses from the 4096 node

Gaussian retina pyramid layer at the initial

fixation indicating the vision system's

space-variant sampling and resolution.

Accumulated saliency map suppressed by

the Inhibition-of-return map (S-In) at the

is" fixation. Saliency generated by

(unvisited) interest points can be observed

as the discrete white dots. Saliency in

areas previously visited by the fovea has

been nullified.

Figure 5-7. Saccadic exploration during the extraction of 348 interest point descriptors

from a 288x320 pixel appearance view of an SOIL object in a using bottom-up

attention based on interest point locations. The fovea of the retina has a radius of 15

pixels.
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During the saccadic exploration during training of an object appearance, redundant

visual information in scale-space may be continually extracted by the retina pyramid

machinery. Therefore, new interest points extracted at the same location in scale-space, with

the same canonical angle and descriptor features were disregarded from the feature extraction

process. Furthermore, to ensure that stable locations in scale-space had been represented by

the system, a single micro-saccade type movement of 5 pixels in a random direction was used

to generate another fixation location. Only interest points which were stable between the

micro-saccade (similar descriptor features, canonical angle and as well as location in scale-

space) were extracted to represent the appearance view of the training object.

The interest point descriptors associated with a known appearance of an object are

used for high-level interpretation and visual reasoning tasks in the next section. The space-

variant sensor will not naively explore a visual scene but instead target visual regions spatially

corresponding to the hypothesis location of a high-level visual cue.

5.6. Top-down saliency

The reasoning component of the model for space-variant vision and saccade generation

(Figure 5.2) combines the interest point descriptors into high-level semantic groupings such

as object appearances in the visual scene. The author uses the term high-level to distinguish

this abstract interpreted visual content (such as object labels, poses) from the low-level iconic

spatial visual features (for example, contrast responses) operated on by retinal sampling and

feature extraction components of the model.

The Hough transform described in Section 4.2.4 provides a mechanism for mapping

local visual low-level evidence to form high-level hypotheses about the content of a visual

scene. If the cells of a discrete Hough accumulator space, with considered degrees of freedom

of object label, horizontal and vertical translation, scaling and in plane rotation are given by
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Hough(obj, dx, dy, ds, d8), a particular high-level reasoning visual concept (such as the

presence of a particular object in the scene) will result in high votes in a cell or subset of cells.

Cells with high number of votes will correspond to the vision system's hypotheses about

scene content. Depending on the current task that the vision system is attempting to perform.

a subset of these hypotheses may be pursued. Hypotheses about visual content (probably

discovered in the wide, coarse resolution periphery) are investigated by performing a saccade

that targets the high-level abstract concept's associated spatial visual area in the scene with

the fine resolution foveal region of the space-variant vision system.

5.6.1. Covert attention

The evidence accumulated within the Hough transform may frequently be pathological with

high spatial frequency evidence contributing a large percentage of the Hough vote without

any low spatial frequency evidence in support. This is analogous to deciding that a face is

being perceived with only the evidence of observing lots of skin pores. A form of covert

attention heuristic that rewards interest point matches (or rather a Hough space cell) which

contribute to a single consistent visual hypothesis at several scales was needed. Because

visual stimuli can be found in a continuum of scale, instead of using absolute values, the

covert attention heuristic was based on the variance and mean of the contributing evidence in

a discrete Hough space cell. The following heuristic is calculated for every Hough

accumulator space cell at every fixation as evidence is gathered during saccadic exploration.

H(obj, dx,dy, ds,d8) := H(obj,dx,dy,ds,d8)x var(V/(vlrain »x var(V/(vlrsl))
mean(V/( vlrain »x mean(V/( v/es/)

(Equation 5-8)

'II( V/rain) and 'II( vle,,/) are the spatial scale of the training and test interest point descriptors which

contributed to Hough(obj, dx, dy, ds, dB). The assignment in Equation 5-8 penalises visual

evidence with low spatial support bandwidth.
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5.6.2. Type I object appearance based saccade

An affine transformation (Section 4.2.5) of the visual evidence (matched interest point

descriptors in Section 4.5) in the discrete Hough accumulator space cell associated with the

pursued high-level hypothesis is used to determine the accurate spatial location (and pose) of

the object in the scene (Xohj, Yohj)' As in the author's implementation. the centre of the object is

assumed to be the centre of the training appearance image, the centre of the object in the test

image (Xohj, Yohj) is given by the following equation.

[
X
Ohj

] = [rnl rn2l[Wi~lh /2 ] +[I.x]
Yohj m, m, height /2 t ,.

(Equation 5-9)

where mi. m}, m3. m, and t.; Iy are solved the parameters of the affine transformation from

Equation 4-46 and width and height are the dimensions of the training object appearance

image. The author stresses that the spatial location (Xohj, Yohj) in the visual scene corresponds

to the hypothesised central location of the high-level object concept, not the necessarily the

centre of the object's constituent low-level features in the scene.

This approach should be contrasted with that by other top-down attention approaches

reported in the literature (Swain et al., 1992; Rao, 1994) which increase the saliency of a

pursued hypothesis' associated low-level features. They are not top-down attentive to the

spatial location of high-level visual semantic groupings in scene content such as objects.

A saccade to the hypothesised location of the object centre (Xohj' Yohj) in the author's

approach will focus the space-variant machinery on the hypothesised object's associated low-

level features, generating new visual evidence for reasoning and saccadic targeting. This

corresponds to processing pathways identified in the space-variant vision and saccade

generation model and achieves fully automated object appearance based attention based on

high-level visual content.
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The saliency information c""1 (corresponding to an hypothesis confidence) for a top-

down generated object spatial location (x"hi' Y"h/) is aggregated into a global saliency map

S(X. y). The author used a value for Cohl greater than all other values in the saliency map to

prioritise saliency information from the target object's spatial location (x""I' Y""/)'

S(round( xohl ),round (Y"hl)):= S(round (xohl), round (YOI'!)) +<; (Equation 5-10)

Saccadic targeting to a next fixation at the maxima location on the saliency map will

result in the system actively searching for the target object appearance based on its current

hypothesis and shall be referred to as a type I object appearance based saccade. As previously,

with saccade generation using bottom-up saliency based on interest points, the retina is

prevented from revisiting visual content previously sampled with the high resolution fovea by

an inhibition-of-retum map which suppressed the saliency map with a uniform circular region

the size of the retina's fovea.

5.6.3. Type II object appearance based saccade

If the space-variant vision system had previously visited the hypothesis location of a pursued

hypothesis object centre (and therefore all type I object appearance based saliency

information is suppressed by the inhibition-of-retum mechanism), a type II object appearance

based saccade was used to generate saccadic exploration of the spatial location of top-down

hypothesised or expected constituent parts of the object in the unknown test image.

These expected object feature spatial locations (xexf1,.cr~d, Yexf1~(,/t'd) in the unknown

image are generated by transforming all the training interest point locations (X/raim Y/rain) of the

known object appearance using the solved affine transformation parameters (Equation 4-44).

(Equation 5-11)
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The saliency information from the expected training object feature locations

(Xexpnl~d, y~<f"'(led) is temporarily aggregated into a saliency map based on the spatial support of

the training interest point 'I'(vJ.

s (round ( xexpecled), round (Yex"ecle" )) := S(round (xt"'l"'clcd), round (Yt","'I/Cd )) + 'II( vc)

(Equation 5-12)

By using type I and type II top-down object appearance based saccade exploration,

the space-variant system will initially fixate upon the scene to determine the spatial location

of a hypothesised object and then examine the top-down expected constituent parts of the

object in the test image to determine an accurate object scale and pose.

5.6.4. Type III object appearance based saccade

Besides type I and type II object appearance based saccade generation which are based on a

top-down hypothesis of an object position, scale and pose, conventional (Swain et al., 1992;

Rao, 1994) top-down saliency information by priming the spatial location of test interest point

descriptors which contributed to the object hypothesis can also be given increased weighting

in a temporary saliency map resulting in what shall be referred to as type III object

appearance based saccades. If (xleSI>Ylesl" 'I'(Vlesl), Oles" Hlt'sll, ....... ) are the interest point

descriptors from the (unknown) scene which matched with (Xlrain. Ylruin" 'I'(Vlrain), Olrain.HlrtJinl,

....... ) from a training appearance view with log-likelihood ratio L(Hlmin .Hle'/) to contribute

votes to the Hough cell that generated the pursued hypothesis, the visual scene's saliency map

is updated as follows for all test

s(round (s.; ),round (Ylesl ) ) := S(round (Xlt-,11 ) , round (Yle,,1 ) ) + L( Hlmin IHlesl)

(Equation 5-13)
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5.6.5. Overview of the algorithm for object appearance based saccades

By allocating increased scalar values to saliency from top-down object appearance based

(high-level) attention Coh; (Equation 5-10 and 5-11) than that from top-down feature based

(Equation 5-12) or bottom-up attention processing (Equation 5-7), the author caused the

system to be biased towards spatial regions which are strongly associated with the system's

current task. Once all available object appearance based top-down saliency spatial regions in

the visual scene had been explored (and suppressed by the inhibition-of-return map), the

saccadic vision system would be attentive to unexplored salient visual regions generated by

top-down feature-based saliency or bottom-up processing.

Compute type I object
based saccadic 1+------------<
fixation location

YES
-<;

~on location::----~< rcviouslyvisit~/
/

NO

Compute type II
object based saccadic
fixation location(s)

YES

NO cached maximum
umber of li\ati(~,>'

/'
./

NO

Saccade to
computed next

fixation

Have matched test
interest points"!

NO Compute bottom-up
saliency based

saccadic fixation
location(s)

YES
Compute type III

object based saccadic 1----+<
fixation location(s)

NO

L..-- ....NO
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Halt saccadic
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Fixation location
~viously visit~ YES

~//

Figure 5-8. Flow chart for object appearance based saccadic exploration of a scene.
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5.7. Top-down object visual search

The following demonstrations of object appearance based visual search uses top-down and

bottom-up saliency mechanisms to generate saccadic behaviour. The space-variant system

was presented with a scene with multiple objects taken from the SOIL database (Koubaroulis

et aI., 2002) and given the task of finding the Ovaltine object which the space-variant vision

system observed previously (during training) using bottom-up attention based saccade

generation. The images have been captured under real-world conditions, have a high intrinsic

noise and there are lighting differences, occlusions and pose variations occurring between the

instance of the training appearance view of the target object and the object in the test

composite scene. In all saccadic explorations, space-variant machinery was initially fixated

upon the centre of the image and the high-resolution foveal region of the self-organised space-

variant retina is approximately the size of the X on the SAXA salt object.

_ 1.2
C

.~ m1 ground truth for m,.m.~ 1~~-~-=-~~------------------------~~
<I> <,

o '\
o ".... 0.8 - _
<I>a;
~ 0.6
III
Co
C 0.4
o
~E 0.2

.2 _._._._._._._ ground truth lor m2.m3~ O~~-=~~~----~~~---------------
]l
~ -0.2
~«

-0.40!------5~----1:':-0-----:';15----~20,-----~25;--------;;30·

Saccadic fixation

Figure 5-9. (Left) Training appearance of the Ovaltine container target object and test

composite scene. (Right) Convergence of target object's hypothesised pose parameters

to the (estimated) ground truth with the saccadic exploration of the composite image.
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The graph in Figure 5-9Error! Reference source not found. illustrates convergence

of the Ovaltine object's hypothesised pose parameters m, ..mol from Equation 4-44 to the

ground truth with object appearance based saccadic exploration of the scene. As the accurate

ground truth for the composite scenes were not available from the SOIL object database

(Koubaroulis et al., 2002), the ground truth for the pose of the Oval tine object was estimated

as the object being vertical as the same scale as in the training appearance (m,=l, m:=O, mJ=I,

mol=O). The interest point database for matching comprised of descriptors extracted during

bottom-up training of the three objects in the scene. The increase in the accuracy of the

estimation of the object pose with saccadic exploration of the scene can be confirmed with the

hypothesis being asymptotic to its final state by the zo" saccadic fixation.

Note the sudden improvement in the pose estimation at the sixth fixation resulting in

the accurate localisation of the target object with a type I object appearance based saccade to

the seventh fixation location. This location in the test image approximately corresponds to the

centre of the Ovaltine object appearance (Figure 5-9). Note that the Ovaltine object is slightly

below the centre of the image in the training appearance from the SOIL database.
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Retina responses Hypothesis Retina responses Hypothesis Retina responses Hypothesis

Figure 5-10. Saccadic behaviour of the Implemented space-variant vision system in a

visual search task for the Ovaltine container. The responses of the 4096 retina pyramid

layer Gaussian receptive fields and the hypothesised target the scene at each fixation

are illustrated. The size of the high resolution foveal region of the system roughly

corresponds to the size of' the X on the SAXA salt object in the composite size.
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Figure 5-10 illustrates the space-variant system's fixation locations and evolving

hypothesis of the target Ovaltine object as top-down object appearance based visual search for

the target is performed. The fixation number is indicated above the Gaussian layer responses

of each targeting and a white cross indicates the fixation location. Visual evidence is

continually aggregated into Hough space driving high-level visual content based saccadic

exploration. The reader is encouraged to note the fixations based on type I saccades. The

system decided to use type I saccades for only the second and seventh fixations (based on top-

down saliency information at the initial and sixth fixation). All other fixations were targeted

based on the type II object appearance based saccade generation machinery which inspected

the expected spatial locations of the constituent parts (features) of the pursued object. A type I

saccade tends to occur when there is a large change in the hypothesised object location (to an

unattended region in the scene). Type II saccades explore the spatial locations in the scene

where parts of the target object are expected to be found, improving the system's

interpretation of the target object's position, pose and scale hypothesis. The system did not

have to resort to type III saccades or bottom-up saliency information based saccades in the

visual search for the Ovaltine container object

Figure 5-11. Saliency information driving the next type II object appearance based

saccade at the fifth and the seventh fixation. The transformed training interest point

locations are illustrated as dots with the calculated location of the next fixation

(Equation 5-12) indicated with a cross.
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The saccadic behaviour of the implemented space-variant system given the same

visual stimulus from the SOIL database but with the visual search task of finding the Beans

object is illustrated in Figure 5-13. The evolving pose hypothesis for the target Beans object

can be found in Figure 5-12. The pose of the object has not converged to the estimated ground

truth, most probably because of the partial occlusion of the Beans object by the Saxa salt

object in the scene. However the spatial location of the object is close to the ground-truth and

the visible upper section of the hypothesised Beans object roughly corresponds to that in the

scene.

Studying the behaviour of the system during the initial few saccades gives interesting

insights into its visual reasoning mechanism (Figure 5-13). At the initial fixation. the system

discovered several possible hypotheses for the location, scale and pose of the Beans object.

Unfortunately, the hypothesis with the maximum confidence was completely wrong. A

saccade to this location (2nd fixation) did not contribute any significant visual evidence and

the saliency in this visual region (in Hough space) was reduced by the covert attention

heuristic (Equation 4-8). Therefore the space-variant vision system made a type I object

appearance based saccade to the new maximum confidence hypothesis which resulted in a

line of visual reasoning close to the ground truth. The space-variant system only needed type I

and II saccades for the visual search for the Beans object.

Section 5.7.1 compares the performance of the author's space-variant vision system

given the exact same task, finding the Beans object, without top-down biasing of saccade

generation. Section 5.7.2 demonstrates a task where the system resorted to bottom-up saliency

based saccade generation, thereby exhibiting the space-variant vision system combining top-

down and bottom-up attention to solve visual reasoning problems.
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10 15 20

Saccadic fixation
25 30

Figure 5-12. (Left) Training appearance of the Beans target object and the test

composite scene. (Right) Convergence of target object's hypothesised pose parameters

to the (estimated) ground truth with the saccadic exploration of the composite image.

Retina responses Hypothesis Retina responses Hypothesis Retina responses Hypothesis

Figure 5-13. Saccadic behaviour of the implemented space-variant vision system in the

visual search task for the Beans object in the same multiple object scene. The

responses of the 4096 retina pyramid layer Gaussian receptive fields and the

hypothesised target the scene at each fixation are illustrated.

189



Saccadic Vision 5.7 Top-down object visual search

s.7.1. Comparison with unbounded visual search

The use of top-down information in saccade generation optimises the sampling of the visual

scene scale-space with respect to the task that the vision system is attempting to perform. This

is sometimes referred to as bounded visual search in contrast to unbounded visual search

where only data-driven, bottom-up information is used to perform search as envisioned by

Marr (1982). Tsotsos (1989) proved that unbounded visual search is NP-complete, yet

bounded visual search has a time-complexity linear in the number of test image pixel

locations.

The author forced the space-variant architecture to perform unbounded visual search

by disconnecting the saccadic targeting component from the reasoning component (Figure

5-14). Therefore all top-down biasing to saccade generation has been removed. The reasoning

component is still functioning yet does not drive search. Figure 5-15 illustrates the saccadic

behaviour and the hypothesised iocation, scaie and pose of the target beans object using

unbounded visual search.

Space-variant
r--------, visual r--------, Interest point

information Feature descriptors ~

---~) Extraction ) L::JRetinal
Sampling

Intere~t pOin1
descriptors

Next f1xa

Saccadic
Targeting

Figure 5-14. The space-variant vision and saccade generation model is modified by

disconnecting the saccadic targeting component from the reasoning component to

force unbounded visual search.
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Figure 5-15. Unbounded visual search for the Beans object. The same space-variant

machinery was used on the same stimulus, and given the same task as before, except

the saccadic targeting component was disconnected from the reasoning component.

Saccade generation was based only on bottom-up saliency information.
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The continually generated visual evidence in the form of interest point descriptors

gathered using unbounded search has not contributed to a stable, correct hypothesis for the

location of the Beans object. While at the second fixation the object hypothesis was close to

the ground truth, this evidence was not used to target the retina resulting in a competing

incorrect object hypothesis emerging and becoming dominant.

350

ground truth for x
300

Co

bounded y

unbounded y
- ~-- ~----------
I

ground trUUllofy

%'~------~~------~10~------~15~-------~20~------~25~---~O
Saccadic fixation

Figure 5-16. The hypothesised spatial location of the Beans object using bounded and

unbounded visual search. The accuracy of the result, as well as converge to the final

hypothesis is superior with bounded visual search.

The hypothesised target object position using bounded visual search almost

monotonically approaches the ground truth while that from unbounded visual search is not

well behaved, with the unbounded hypothesis continually changing until an (incorrect)

dominant hypothesis for the object location is constructed.
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5.7.2. Top-down and bottom-up saliency

The proposed and implemented model supports the interaction between top-down and

bottom-up information for saccade generation. This scenario does not occur often as saliency

information from top-down biasing supersedes that from bottom-up processes. A bottom-up

saliency based saccadic fixation will only be made when there are no significant hypotheses

for top-down bounded visual search to pursue.

The task of searching for the Saxa salt object using the same input stimulus as

previous demonstrations gives an insight into the working of the saccadic targeting system

with respect to bottom-up attention. The Saxa salt object (which is near the lower edge of the

image) was not detected with an accurate pose hypothesis, potentially because of the lack of

evidence of the object's pose caused by the large spatial support region of interest point

descriptors falling outside the domain of the image. Padding the SOIL database image with

zeros may solve this problem, but fortunately this particular visual search task reveals

interaction between bottom-up and top-down saliency mechanisms for saccadic targeting

(Figure 5-15).

At the first and second saccadic fixations the vision system was not able to construct

a significant hypothesis about Saxa salt object. The Hough accumulator space cells would

contain visual evidence from no more that a single match of known training and unknown test

interest point descriptors, i.e. the system was unable to extract consistent visual evidence for

the presence of the Saxa salt object at a given location, scale and orientation. In such a

situation, bottom-up saliency drove saccadic exploration of the visual scene (for two

fixations) until there was a reliable top-down hypothesis of the pursued object for a type I

object appearance based saccade followed by type II object appearance based saccadic

exploration of the visual scene.
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Equation 5-14. Saccadic behaviour of the implemented space-variant vision system in

the visual search task for the Saxa salt object in the same multiple object scene. The

responses of the 4096 retina pyramid layer Gaussian receptive fields and the

hypothesised target pose, position and scale at each fixation are illustrated.

5.8. Conclusion

In this chapter, the space-variant visual processing machinery implemented in Chapters Two,

Three and Four was targeted on salient locations on the visual scene based on high-level

194



Saccadic Vision 5.8 Conclusion

visual content hypotheses and the system's current task. The author rendered the evolving

visual hypothesis of the system during saccadic exploration and demonstrated the

convergence of target hypotheses to the ground truth with saccadic exploration, as well as the

difference between bounded and unbounded visual search for a visual object target

The author demonstrated targeting of the space-variant machinery using previously

un-reported top-down attention mechanisms. The saccadic targeting component used type I

object appearance based saccades to fixate upon spatial regions in the visual scene which

correspond to the centre of a hypothesised target object, and type II object appearance based

saccades to fixate upon spatial regions where target object constituent parts are expected to be

found based on the pursued hypothesis. Type III object appearance based saccades which use

conventional top-down priming of target object features and well as bottom-up attention

based saccades were defined based on interest point descriptors.

Top-down saliency information was generated by a fully automated reasoning process

based on interest point descriptors extracted from previously learnt (known) object

appearances. Computing top-down and bottom-up saliency information for space-variant

vision using interest point descriptors has not been previous reported in the literature.

The accumulation of visual evidence gathered by matching (known) training and

(unknown) test interest point descriptors into a discrete Hough space parameterised by object

label, horizontal and vertical translation, rotation (in image plane) and scaling, is able to

remove the large number of outlier evidence with respect to a target hypothesis and the

remaining consistent evidence is used to generated a location, pose and scale hypothesis for

the target object.

During experiments with the composite scene from the SOIL database, the size of the

high resolution foveal region of the space-variant machinery had a diameter of only 15 pixels
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which approximately corresponds to the size of the X on the SAXA salt object in the

scene. Therefore the hypothesis for the location of the next saccadic fixation was cued by the

coarse, wide-angle visual evidence computed by machinery in the space-variant vision

system's large peripheral area.

The test stimuli from the SOIL database may not be optimally suited for test space-

variant vision. The angle subtended by visual objects in the database in the space-variant

machinery's field-of-view is very large compared to typical scenarios in human vision.

Images with smaller objects may be more suitable as visual stimuli for space-variant vision.

The visual information extracted by the space-variant machinery using scale and abstraction

hierarchies result in the loss of spatial detail in the retina. A retina tessellation with the same

field of view and a higher resolution fovea region, may improve object appearance based

saccade generation and the space-variant system's visual perception.

The author believes work presented in and implemented as part of this chapter is a

useful tool for the future investigation of space-variant vision and saccade generation and

provides a foundation for the construction of complete computer vision systems capable of

task based attention behaviour.
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Chapter 6

Conclusion

This chapter summarises the author's research undertaken as part of this

thesis and indicates the significance of the work in light of the current

literature. The chapter concludes with potential directions for research

initiated by this thesis.

6.1. Introduction

In this thesis the author presented a fully automated complete computational model for space-

variant vision and high-level visual content based saccade generation. This research addressed

and computationally demonstrated fundamental concepts in visual perception including

space-variant sampling, hierarchical feature extraction, retinotopic processing, attention and

recognition. Many inadequacies in the literature were addressed, resulting in contributions to

the study of computer vision and perception. Similar work on fully automated space-variant

vision and high-level object based saccade generation using local interest points can not be

found in the literature.
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Figure 6-1. Implemented computational model for space-variant visron and

saccade generation

Revisiting the thesis statement that began this journey ...

"A computer vision system based on a biologically-inspired artificial retina with a non-

uniform pseudo-random receptive field tessellation is capable of extracting a useful space-

variant representation of the observed visual content in its field-of-view, and can exhibit task-

based and high-level visual content-based saccadic targeting behaviour."

The research conducted by the author verified the hypothesis underlying this thesis by

extending the known literature with descriptions and computational implementations of the

following

(I) The implemented space-variant vision system is based on a sclf-organised retina

tessellation with a central uniform density foveal region which seamlessly merges into a

space-variant periphery, with a local pseudo-random hexagonal-like receptive field

tessellation.
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(2) Receptive fields are placed, with space-variant spatial support depending on local node

density, upon the self-organised retina tessellation and Gaussian low-pass filtered space-

variant visual information was extracted from visual images and stored as imagevectors.

(3) Cortical filters which perform image processing operations on imagevectors are

constructed enabling the author to create Gaussian and Laplacian of Gaussian retina pyramids

which efficiently extract multi-resolution low-pass and band-pass filtered space-variant visual

information from the input image stimulus.

(4) Interest points are detected at Laplacian of Gaussian retina pyramid scale-space extrema

to extract scale and orientation invariant local visual descriptors. These form a robust visual

representation of observed space-variant visual content in the system's field-of-view. Interest

point descriptors are used for higher-level visual reasoning by matching descriptors from the

(current) retina fixation upon unknown visual content with those previously gathered from

known (training) object appearances.

(5) High-level visual evidence, in the form of high-level object labels and associated

position, scale and pose information, is calculated based on interest point matches and

accumulated into a discrete Hough space which helps to remove inconsistent, outlier visual

evidence.

(6) Hypotheses about the high-level spatial content in the unknown visual scene are formed

based on the visual evidence in gathered Hough space. The current task of the vision system

combined with hypothesis about observed visual content generates fully automated top-down

task and object-based bounded saccadic exploration of an unknown visual scene.
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6.2. Contributions

6.2.1 Fully automated space-variant vision and saccade generation

Visual perception based on fully automated space-variant vision and saccade generation was

achieved by combining the author's research on self-organised retina tessellations (Chapter

2), feature extraction on irregular sampling schemes (Chapter 3), scale-space extrema

detection and interest point descriptor extraction (Chapter 4), and high-level visual content

based and task based saccade generation (Chapter 5) into a single, integrated computational

model and implemented system (Chapter 6). The processing machinery within the vision

system operated only upon space-variant information extracted by the self-organised retina.

The sole other influence on the system's behaviour (besides the input visual stimulus) was its

current visual task.

Similar work on a fully automated space-variant vision system can not be found in the

current literature. The space-variant version of the top-down gaze targeting system presented

by Rao (1994) based on the log(z) retina (Schwartz, 1977) needed to be manually provided

with a 'scaling correction' to reason between visual evidence gathered in the fine resolution

foveal and coarse resolution peripheral regions. The object based attention model in Sun

(2003) required manual pre-processing of the input providing the system with top-down

grouping and saliency information. Grove and Fisher (1996) used blob and bar detectors on a

log-polar representation of an image to create a world coordinate interest map. However they

only demonstrated saccadic exploration based on bottom-up attention. This work was

extended in Fisher and MacKirdy (1998), where an iconic human face was represented by

eye, nose, mouth and full face models. In this work, models were registered to an iconic

image feature that may attract the space-variant system's attention. Therefore the approach is

incomplete as top-down attention based on tentative target hypotheses formed by matches to

models which are not fixated upon by the vision system cannot be implemented. In Fisher and

MacKirdy (1998) saccadic exploration was based on the bottom-up attention mechanism
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described in Grove and Fisher (1996) as well as predicted model positions based on observed

image parts. An automated approach for training the space-variant system was also not

described.

The space-variant computer vision system described in this thesis used interest point

descriptors to construct high-level visual groupings into visual concepts such as object

appearances (Chapter 4). By training the system on (known) object appearances it was

possible to perform visual search tasks based on high-level visual concepts resulting in the

top-down directed bounded saccadic exploration of an unknown test image with the space-

variant machinery (Chapter 5). The author believes no other fully automated space-variant

vision system reported in the literature is capable of such behaviour.

6.2.2 Completely flexible visual processing machinery

A vision system based on the self-organised retina was constructed by implementing visual

processing machinery (Chapters 3 and 4) capable of extracting interest point descriptors from

any arbitrary sampling tessellation. The machinery needs only to be provided with multi-

resolution visual sampling locations in several laminar layers. Receptive field and interest

point descriptor spatial support sizes are automatically calculated based on the local density of

the sampling. The only constraint to the multi-resolution sampling locations is that they are

organised as layers (even space-variant layers which are curved in scale-space are

permissible ).

Other approaches such as the normalised convolution (Piroddi and Petrou, 2003)

transform irregularly sampled visual information into a rectilinear grid for image processing.

Their approach is suitable for irregular sampling locations which are continually changing

spatial locations or have varying degrees of associated confidence. When visual information

is generated from ajixed sensor array or sampling tessellation, the visual information can not

be optimally extracted with the normalised convolution without reducing the local Nyquist
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limit of the visual information. Information from a space-variant retina processed by the

normalised convolution would lose the high resolution foveal visual information or over-

represent the sparse periphery depending on the granularity of the convolution.

The author's approach of uniquely defining each receptive field on the (potentially)

irregular sampling (Chapter 3) is biologically plausible and provides a mechanism for

extracting features an arbitrary irregular sampling. Hierarchical feature extraction (Chapter 3)

as well as the detection and extraction of interest point descriptors (Chapter 4) demonstrated

the versatility of the imagevector to visual analysis. The penalty for such a processing

architecture is the necessity to pre-compute coefficients for a large number of processing units

in the system because of the unique local support of each unit. The analogy of this

architecture with biological neurons in the visual pathway is appropriate because of the

unique connectivity and coefficients of retina receptive field and cortical filters (neuron

weights).

6.2.3 Sampling visual stimuli with a self-organised retina

The self-organisation methodology in Clippingdale and Wilson (1996) enabled the author to

generate a non-uniform space-variant retina tessellation with a uniform density in the central

foveal region which seamlessly merged into a space-variant periphery. The tessellation had a

local hexagonal-like pseudo-random organisation which optimally sampled space-variant

visual information (Dudgeon and Mersereau, 1984). While Clippingdale and Wilson (1996)

self-organised similar retina tessellations, the literature contains no previous work on retinae

that can sample images and whole vision systems based on self-organised retina tessellations.

6.2.4 Retina pyramid

Multi-resolution image analysis using image pyramids (Burt and Adelson, 1983) is wide

spread in computer vision. While multi-resolution analysis on cortical images has been

previously reported in the literature (Sun, 2003; Bernardino, 2004), prior to this thesis, no
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reported work can be found for the efficient multi-resolution extraction of space-variant visual

information from the input stimulus image itself. The octave separated Gaussian retina

pyramid and associated Laplacian of Gaussian retina pyramid described in this thesis

efficiently extracted multi-resolution space-variant low-pass and band-pass filtered visual

information from the input image using hierarchical layers of irregularly places retina

receptive fields and cortical filters (Section 3).

6.2.5 Space-variant continuous scale-space

The space-variant visual information was calculated on a continuous domain reflecting the

continuum of scales present in visual stimuli. While a global scale-space function was not

used to generate the continuous visual information, quadratic polynomials were fit between

the discretely sampled space-variant visual locations in space and scale to generate and

localise visual information such as Laplacian of Gaussian scale-space extrema (Chapter 4).

Interest point descriptor orientations were detected at continuous angles.

By constructing machinery that extracted visual information on a continuous domain

it was possible to extract visual information from irregular (non-rectilinear) sampling

schemes.

6.2.6 Saliency calculations using interest points

Since top-down visual reasoning was conducted based on visual information gathered at

interest points, the implemented vision system was biased towards looking for these interest

points during bottom-up training of a known object appearance (Chapter 5). Interest points

with a large spatial support were found more salient using bottom-up saliency than those with

a small support, encouraging the system to discover large visual structures and visual content

in its coarse periphery. When presented with unknown visual stimuli, the system would find

spatial grouping of interest points which contribute to a target hypothesis salient. By using

interest points for top-down saliency, manual grouping (or segmentation) of visual features
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(Sun, 2003) was not needed, and the system could independently decide to whether to fixate

upon high-level (abstract) visual content such as objects in the scene.

6.2.7 Fully automated object-based and task-based saccadic behaviour

The author implemented a saccadic targeting component which explored spatial regions in

input stimuli corresponding to high-level visual content depending on the current task of the

vision system. Saccadic behaviour was divided into the following hierarchy of fixation types

depending on targeting influence.

(1) Type I object based saccade. This mechanism generated a saccade to the hypothesised

spatial location of the centre of the pursued object in the visual scene.

(2) Type II object based saccade. This saccade targeted the spatial visual regions where

constituent parts of the target object were expected to be found based on the

hypothesised location, pose and scale parameters of the target object. Most top-down

object based saccades used this mechanism.

(3) Type III object based saccade. This conventional top-down saccade targeted interest

points in the visual scene which contributed to the object hypothesis (Swain et aI., 1992;

Rao, 1994).

(4) Bottom-up saliency based saccade. The conventional saccadic targeting of data-driven

visual information independent of any task bias (ltti et aI., 1998).

Saliency generated for visual regions in the static scene was suppressed by an

inhibition-of-return mechanism before the next fixation location was calculated. Saccadic

influences higher in the above hierarchy dominated those at lower levels. Therefore, if there is

a valid target object hypothesis, a fixation would be made to the spatial region corresponding

to the hypothesised object centre using a type I object based saccade unless this region is
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suppressed by the inhibition-of-return mechanism causing other saccadic influences (type II.

type III and bottom-up saliency) to come to the fore.

When given the bounded search task of searching for a target object, top-down

influences help constrain the visual search, preventing distracting visual evidence leading the

system astray as was demonstrated with unbounded visual search (Section 5.7.1). Because of

the high number of outlier evidence inherent in vision tasks, unbounded visual search results

in potentially incorrect paths of visual reasoning to emerge based on the accumulation of

erroneous evidence into Hough space. In contrast bounded visual search resulted in the well-

behaved convergence of the target object hypothesis to a solution which was frequently close

to the ground truth.

6.3. Future Work

The author proposes the following directions for further investigation based on the research in

this thesis.

6.3.1 System parameter optimisation

With this thesis the author concentrated on implementing and integrating individual

components into a complete working model for space-variant vision and saccade generation.

Many of the design decisions made during the construction of the system were motivated by

prior work, especially that by Lowe (2004). These parameters may not be optimal for the

implemented system. The author identifies the following parameters which should be

prioritised for optimisation. The optimisation could be based on matched interest point

percentage under additive noise.
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• Scale separation between layers in the Gaussian retina pyramid (Section 3.7.1) and

the granularity of sampling scale in the Laplacian of Gaussian pyramid (Section

3.8.1). The author implemented an octave separated Gaussian retina pyramid which

was sampled by the Laplacian of Gaussian retina pyramid at many scales within an

octave to extract multi-resolution space-variant contrast information. Investigation

into half-octave or alternate pyramidal decomposition factors, as well as finding the

optimum number of layers in the Laplacian of Gaussian pyramid will improve the

detection of scale-space extrema.

• The comer detector that removed interest points detected at areas in the visual scene

with high bi-directional spatial variation depended on an r parameter threshold

(Section 4.3.2). The efficacy of the corner detector may be improved by finding the

optimum r for the space-variant system.

• Interest point descriptors needed a large support region on the retina pyramid. The

neighbourhood j of an interest point on the retina pyramid and the spatial scale of the

interest point's Gaussian support region (Section 4.4.1) should be minimised to

reduce computational complexity, increase spatial acuity and reduce the need to pad

input stimuli.

• Local gradient vectors were accumulated into the interest point descriptor depending

on their magnitude and orientation. The number of orientation bins in orientation

histograms (Section 4.4.2.1) should be optimised to mediate between the need for

constructing a robust representation of visual content and reducing the dimensionality

of the descriptor.

• The number, spatial scale and spatial layout of the sub-regions of the interest point

descriptor (Section 4.4.3) can be studies to determine the best configuration for the

space-variant system.
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• The implemented system conducted higher-level top-down reasoning based on the

visual evidence gathered in a quanti sed Hough space (Section 4.5.1). The number of

discrete cells and degrees of freedom in the Hough accumulator space has a

significant effect on the behaviour of the system and should be investigated.

6.3.2 Saccade generation

The fully automated saccadic exploration of the implemented space-variant system may be

compared to that from psychophysics results on the saccadic path of humans for different

visual stimuli and visual search tasks (Rao et al., 200 I). A more plausible saccading strategy

close to human vision may be devised based on eye-tracking data. Mechanisms such as

Gaussian weighting could visual focus search to local regions in the field-of-view preventing

the space-variant machinery making repeated saccades across the whole visual scene

(especially during bottom-up saliency based saccade generation).

The saccadic exploration and path of an overt attention system should be related to

the space-variant nature of the sampling sensor and associated space-variant processing

machinery. Novel research into different optimal saccadic strategies for various retina

configurations could be undertaken to study the relationship between these two factors in

space-variant vision.

The visual objects contained in images from the SOIL database (Koubaroulis et al.,

2002) and used as test stimuli in this thesis subtend a very large angle on the retina's field-of-

view. Visual stimuli with high-level spatial content which subtend smaller visual angles may

be more plausible.

The large support region of interest point descriptors resulted in the inability to

represent visual content near the borders of the SOIL database image. Padding the images

with zeros would prevent interest point descriptors exceeding the dimensions of the image

when extracting local gradients (Section 4.4.1).
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6.3.3 Retina tessellation

The composite transform T which generated the self-organised retina tessellation (Section

2.4.2) contained an exponential dilation component which resulted in the space-variant

organisation. Johnston (1989) has fit an analytic function to primate cortical magnification

function data which could be used to develop a more biologically plausible self-organised

retina tessellations. The learning rule from the Self-Similar Neural Network (Clippingdale and

Wilson, 1996) self-organisation methodology can be used regularise retina tessellation

generated based on any arbitrary cortical magnification function. The composite transform T

can only contain a rotation, evenly distributing the sampling locations on the retina

tessellation (Section 2.4).

A retinotopic rectilinear cortical data structure to store retina receptive field responses

from the self-organised retina would be an interesting visualisation and storage representation.

Generative Topographic Mapping (Bishop et al., 1998) could be used to find a topological

mapping from locations on the irregular self-organised retina to that in (any arbitrary) cortical

structure.

6.3.4 High level reasoning and contextual information

Object recognition with multiple objects in a composite scene can be formulated by extending

the implemented top-down visual object search mechanism. Target hypotheses are generated

by the system based on evidence in Hough space. These hypotheses are pursued using top-

down visual search with a terminating criterion which halts the pursuit of a hypothesis when

its pose parameters are stable, causing the system to pursue another target hypothesis.

The top-down pose hypotheses of objects in the visual scene were determined without

any constraints. Constraints on the degrees of freedom based on prior knowledge about visual

objects, as well as occlusion information, can improve the pose hypothesis generated by the

system. This will reduce the generation of implausible poses such as the skewed Beans
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container (Section 5.7). Constraints were not used in thesis to isolate the interaction between

the saccade generation and interest point matching mechanisms.

Besides optimising the quantisation and degrees of freedom of Hough space (Section

6.3.1), mechanisms for the construction of visual hypothesis from Hough space needs to be

researched, including the thresholding of Hough space, Hough space hypothesis peak

localisation, and visual evidence vote allocation.

The visual evidence gathered during bounded visual search may not have uniform

confidence with respect to saccadic fixation. Evidence gathered during saccadic exploration

could be temporally decayed to remove potential outliers gathered during the initial fixations

of bounded visual search.

6.3.5 Interest point descriptors

The visual information extracted in the implemented system and stored as interest point

descriptors will be highly correlated. Matching interest points on a PCA subspace will

increase matching performance. Visual evidence (interest point matches) could also be

explicitly weighted based on the entropy of contributing interest point descriptors (Schiele,

1997). In the currently implemented system, the log-likelihood ratio statistic is used to

encapsulate the informativeness of a interest point match.

The interest point support region grouped local gradients into a scale and orientation

invariant descriptor. Local spatial relationships between interest point descriptors could be

used to create an even higher level of grouping of visual information before accumulating

evidence into the Hough space. Granlund and Moe (2004) described a methodology for

encoding triplets of local spatial descriptors for 3D object recognition.

The experiments In this thesis only used a subset of the whole SOIL database

(Koubaroulis et al., 2002). To store and efficiently access the multi-dimensional data
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contained in interest point descriptors from many object classes and appearances, efficient

(with regards to computational complexity and storage) indexing schemes such as k-d trees

should be used to access the visual data.

6.3.6 Covert attention

The author's research concentrated on the overt orientating of space-variant visual processing

machinery. More research needs to be conducted on an improved covert attention mechanism

that will help to further improve system performance under robust environments such as

visual stimuli with cluttered backgrounds and high noise levels.

6.3.7 Hardware

The author's implemented model conceptually resembles biological hardware with dedicated

processing units for each spatial receptive field in the field-of-view. Such a model may be

highly suitable for a DSP hardware implementation and acceleration. This would enable near

real-time operation of the system in applications such as robotics.

The only overt responses of the implemented space-variant system were saccades to

highly salient visual regions in the scene. In a robotics scenario, the mechanical manipulation

of the environment could be absorbed into the model for space-variant vision and saccade

generation.

6.3.8 Video

Space-variant vision using a fixed retina-based sampling mechanism evolved in nature to

reason with a dynamic changing visual environment (i.e. video). Animal eyes are bombarded

with an ever changing visual environment as the animal navigates in its surroundings or the

environment itself changes. If a vision system was analysing a static scene, such as that

depicted in an image, a Quadtree-type decomposition where the sampling topology morphs

211



Conclusion 6.3 Future work

depending on the visual stimuli, would be more appropriate. During saccadic exploration, a

space-variant vision system would extract redundant areas in scale-space (Figure 6-2).

However, if the visual environment is always changing it isn't temporally feasible to

transform the sampling topology to match the particular scene in the field-of-view resulting in

a fixed space-variant sensor being the optimal sampling strategy for many vision systems

found in nature. The extension of the author's implemented system to video processing would

spawn many interesting research challenges.

The spatia-temporal differences from temporally adjacent video frames could drive

the space-variant system to be attentive to motion. Dealing with dynamic visual content

involves interesting problems such as a global saliency map for the ever changing visual

world of the space-variant system. Issues related to the tracking of multiple moving objects in

a dynamic visual scene while being restricted to reasoning with a single attentional spotlight

at the point of fixation is worthy of investigation.
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igure 6-2. The sampling of scale-space by a multi-resolution space-variant

vi ion y tern. The curved line indicates the maximum sampled spatial

frequencies of the vision system for a point of fixation.
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6.3.9 Perception

The extraction of visual information in the author's implemented system resembles the

processing of the biological ventral pathway. Gauthier et al.(2002) showed that the biological

ventral visual pathway is used for view-point dependant object recognition while the dorsal

visual pathway is used for mental manipulation of visual objects such as rotation. The

integration of the processing of the dorsal and ventral pathways in a computer vision system

could potentially join the two fields of appearance based and model based object recognition.

The computer vision research conducted as part of this thesis has been inspired by

numerous fields from psychology to neuroscience. It is hoped that in the future the models

developed by computer scientists will in tum help psychologists and neuroscientists in their

investigations into nature. We can then close the interaction loop between these three fields

which can so easily complement each other in a symbiosis that results in the deep

understanding of how machines and animals can see.
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