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Abstract 

Autophagy is an intracellular catabolic process that involves the sequestration of proteins 
and whole organelles into specialized cargo vesicles (autophagosomes) and their delivery 
to lysosomes with subsequent degradation. Autophagy is active at low levels at any time in 
virtually all cells and can be induced upon a variety of different stimuli. The core function 
of autophagy is the degradation and recycling of intracellular material. However, how this 
impacts on cellular survival likely depends on the biological context.  
The role of autophagy in cancer is very complex and incompletely understood. It is 
therefore very surprising that few studies exists that employ genetically modified mouse 
models of human cancer to examine the role of autophagy in this context. This is even 
more true when considering, that pharmacological inhibition of autophagy is currently 
being used in several clinical trials to treat cancer of various origins. The goal of this study 
was to examine the role of autophagy in a mouse model of pancreatic cancer. To achieve 
this several mouse strains were crossed: a) Pdx1-Cre LSLKRasG12D/wt mice that develop 
Pancreatic Ductal Adenocarcinoma (PDAC) similar to humans initiated by oncogenic Ras 
and b) Atg5flox/flox or Atg7flox/flox mice that permit Cre-induced deletion of either one 
of the essential autophagy regulating genes 5 and 7 (Atg5, Atg7). Offspring allowed us to 
examine the role of autophagy in pancreatic function. 
Loss of autophagy in the pancreas leads to exocrine and endocrine tissue destruction and 
reduces survival in approx. 60% of animals. The early death in autophagy-deficient mice 
can be delayed by additional deletion of p53; the mortality rate however remains 
unchanged. Moribund mice show a diabetic phenotype with elevated blood glucose and 
fructosamine levels. In the absence of oncogenic Ras autophagy deletion does not lead to 
cancer formation or occurrence of pre-malignant lesions in mice aged up to 700d.  
In mice that express oncogenic Ras in the pancreas (Pdx1-CreKRasG12D/wt) additional, 
genetic deletion of autophagy leads to accumulation of pre-malignant Pancreatic 
Intraepithelial Neoplasias (PanINs) that unlike their autophagy proficient counterparts 
never progress to cancer. In this genetic context autophagy therefore serves as a tumour 
promotor. In stark contrast in mice expressing oncogenic Ras and lacking both copies of 
p53 (Pdx1-KRasG12D/wt p53-/-) inhibition of autophagy, either genetically by deletion of 
Atg5, Atg7 or pharmacologically by chloroquine, tumour onset is accelerated. Therefore in 
a p53-deficient situation autophagy is now a tumour suppressor. Tumours that developed 
from a p53-proficient background have increased autophagy compared to tumours that 
developed from a p53-null background. Furthermore p53-/- Atg7-/- tumours have 
increased glycolysis in vitro and in vivo and enhanced intracellular metabolites of the 
anabolic Pentose Phosphate Pathway (PPP) compared to p53-/- Atg7+/+ tumours.  
In summary it is the p53 status that determines the role of autophagy in PDAC 
development. In tumours developing from a p53-proficient background loss of autophagy 
completely prevents cancer development; whereas in tumours arising from p53-deficient 
tissue loss of autophagy accelerates tumour formation.   
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Introduction 

 

Cells rely on energy and building blocks to maintain their normal function and to 

proliferate. Amongst the most important mechanisms to sustain sufficient supply of ATP 

and biosynthetic precursors are cellular respiration and autophagy. In cancer cells these 

processes are frequently altered and it is conceivable that specific metabolic traits of cancer 

might be exploitable for treatment. While for example it is generally accepted that certain 

cancer cells derive significantly more energy from glycolysis than non-malignant cells 

even under normoxia (Warburg effect) [48] it is unclear how autophagy impacts on cancer. 

Published literature implies that autophagy is critically required for tumour cell survival at 

least in a subset of tumours. Based on this assumption several clinical trials are underway 

testing the impact of pharmacological autophagy-inhibition on different malignancies 

including pancreatic cancer and breast cancer (http://clinicaltrials.gov/, search terms: 

cancer + chloroquine). Strikingly, pre-clinical studies in mice to verify the impact of 

autophagy on cancer are scarce.  

To provide much needed in vivo data about the role of autophagy in cancer I examined the 

role of autophagy during pancreatic cancer development by using a genetically modified 

mouse model of Pancreatic Ductal Adenocarcinoma (PDAC) interbred with conditionally 

autophagy-defective mice.  

A mouse model of pancreatic ductal adenocarcinoma (Pdx1-Cre KRasG12D) cancer was 

chosen for several reasons: a) the mouse model closely recapitulates the multi-step 

carcinogenesis that is known from human PDAC [67], b) oncogenic KRas has been 

reported to impact on autophagy [160] and c) senescence is a proven tumour barrier in 

PDAC development and autophagy has been implicated in the senescence process [192].  

My data shows that in pancreatic tumours arising from p53-proficient cells autophagy is 

required for tumour formation and genetic ablation of autophagy completely blocks tumour 

development. Therefore in this situation autophagy is as a tumour promoter. In tumours 

that grow in the absence of p53 autophagy conversely acts as a tumour suppressor, and 

genetic or pharmacological ablation of autophagy accelerates tumour onset. Autophagy-

deficient tumours have discernible metabolic differences compared to autophagy-proficient 

tumours both in vitro and in vivo. In conclusion the p53 status determines the role of 

http://clinicaltrials.gov/
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autophagy in pancreatic cancer development and loss of p53 switches autophagy from 

being a tumour promoter to being a tumour suppressor.    

Before presenting the results of my work key processes required to understand the work 

will be explained.    

 

1.1 Autophagy 

The term autophagy subsumes three distinct processes that all describe lysosomal 

degradation of cytoplasmic material but differ in the route of cargo delivery to the 

lysosome: microautophagy, chaperone-mediated autophagy and macroautophagy. The term 

microautophagy is reserved for the direct engulfment of cytoplasmic material by 

lysosomes. Likewise chaperone-mediated autophagy is a form of direct lysosomal 

entrapment but in contrast to microautophagy only protein/chaperone complexes, i. e. only 

a subset of proteins containing an identifier motif are engulfed by lysosomes [194]. 

Macroautophagy is the most widely studied form of autophagy and is unique amongst all 

forms of autophagy in so far as it exclusively involves the formation of specialized cargo 

vesicles, called autophagosomes. Macroautophagy describes a process that leads to 

sequestration of intracellular material including macromolecules and whole organelles in 

aforementioned autophagosomes, which then fuse with lysosomes to allow degradation of 

their content [161].  My work solely focuses on macroautophagy which is hereafter 

referred to as autophagy for simplicity.   

Turnover of cytoplasmic content is the core function of autophagy and likely happens at 

any given moment in every cell at low, basal levels. Autophagy is adaptive and dynamic 

and can be rapidly induced by different stresses such as nutrient deprivation, hypoxia and 

activated oncogenes [160], [126], [7]. Depending on the stimulus and cellular context, 

autophagy breaks down different substrates, serves diverse purposes and can lead to 

different cellular outcomes [30], [166], [163]. It is therefore not surprising that autophagy 

is involved in a variety of different physiological and pathological processes, including 

inflammation, development, energy homeostasis, cancer, cell survival and cell death [110], 

[108]. Autophagy is believed to be primarily cytoprotective, possibly by providing energy 

and biosynthetic precursors for metabolic pathways from the breakdown of 

macromolecules when external nutrients are sparse and by limiting cellular stress through 
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clearance of damaged proteins and organelles. However, autophagy is also contributing to 

cell death, albeit probably not being a cell death program per se [127], [99], [98]. 

Surprisingly, on a molecular level it is an epigenetic, nuclear feature that appears to make 

the life or death decision for autophagy. Fuellgrabe and colleagues found that post 

translational acetylation of histone H4 at lysine 16 determines the outcome of autophagy. 

Acetylation (H4K19ac) promotes cell death, whereas deacetylation by the histone 

acetyltransferase hMOF supports cell survival [38]. A long standing question in autophagy 

research is: How does autophagy contribute to cancer development? This is an unresolved 

problem of high importance because clinical trials are currently underway, that target 

autophagy to treat cancer. On this note and on the fact that existing data supports both 

tumour promoting and tumour suppressive functions of autophagy, it is very surprising that 

in vivo data addressing this question is very limited. The conceptual ideas how autophagy 

might influence tumourigenesis will be discussed in a separate chapter.  

 

1.1.1 Autophagy: Vesicle formation 

Autophagy is regulated by a number of genes called AuTophaGy-related genes (ATGs), 

whose combined action leads to the formation of the earliest, detectable morphological 

structure of autophagy: the phagophore, also called the isolation membrane. The 

phagophore is a double membrane construct that engulfs intracellular material and 

elongates to finally form the closed, double-membrane-bound hallmark vesicle of 

autophagy: the autophagosome. In a process termed “maturation” autophagosomes then 

fuse with lysosomes, to form autolysosomes. Autolysosomes are single-membrane-bound 

degradative vesicles that contain digestive enzymes, most notably cathepsins, to break 

down macromolecules [161]. In a process termed autophagic lysosome reformation (ALR) 

functional lysosomes are regenerated from autolysosomes [193] (compare Figure 2).     
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1.1.2 Autophagy: Molecular basis of vesicle formation    

 

Chapters 1.1.2 to 1.1.4 including Figure 1 and Figure 2 are taken with permission (see 

appendix) from a review that I wrote myself, including the preparation of figures 

[161].  

 

Autophagy is activated in response to a whole host of stimuli including nutrient depletion, 

hypoxia and activated oncogenes. The majority of pro-autophagic events converge on the 

serine/threonine protein kinase mTOR (MTOR, mammalian/mechanistic target of 

rapamycin) [44], [81], [141]. Another important, nutrient-sensitive entry route to ATG 

signalling is the class III phosphatidylinositol 3-kinase complex (PI3K-III) consisting of 

hVps34 (PIK3C3, the orthologue of yeast Vps34), Beclin 1 (yeast Atg6) and p150/hVps35 

(PIK3R4; yeast Vps15) [141], [42]. Many of the aforementioned ATGs are restricted to a 

certain type of autophagy (see above). The ‘core’ autophagic machinery encompasses only 

those ATGs that are necessary for autophagosome formation in all subtypes and these can 

be divided into several distinct groups: (i) the unc-51-like kinase 1/2 (ULK1/2) complex 

(ii) the multi-spanning membrane protein Atg9, (iii) the PI3K-III complex and (iv) the 

ubiquitin-like ATG12 and microtubule-associated protein 1 light chain 3 alpha 

(MAP1LC3A) conjugation systems. The following sections detail how these proteins 

regulate the various stages of the autophagy process.  

 

1.1.3 The autophagy machinery  

Initiation and nucleation are terms used to describe the events that lead to the formation of 

the initial autophagic structure: the phagophore or isolation membrane. mTOR forms the 

catalytic subunit of two different protein complexes: mTORC1 and mTORC2. The former 

contains mTOR and RAPTOR (regulatory-associated protein of MTOR), whereas 

mTORC2 contains among others, mTOR and RICTOR (rapamycin-insensitive companion 

of MTOR) (11). In nutrient-rich states, mTORC1 but not mTORC2 forms a complex with 

ULK1/2 (orthologues of yeast Atg1), mAtg13, FIP200 (RB1CC1; mammalian orthologue 

of Atg17) and the newly identified ATG101, as a result of interaction between RAPTOR 
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and ULK1 [81], [69], [143]. mTOR phosphorylates ULK1 and Atg13 and thereby keeps 

the kinase activity of ULK1 in check. Upon treatment with rapamycin or in fasting 

conditions, mTORC1 breaks free from the ULK complex and the inhibitory 

phosphorylation of ULK1 is lost. ULK1 then autophosphorylates and activates Atg13 and 

FIP200. The activated ULK complex localizes to the developing phagophore. The 

relationship between mTOR and activation of the ULK complex is shown in Figure 1. 

Startlingly, the inverse relationship between mTOR activity and autophagy is not 

universal, as autophagy induced by 6-thioguanine has been reported to require activation 

and not inhibition of mTOR [196]. There are two mammalian orthologues of Atg9: 

ATG9L1 (mAtg9) is ubiquitously expressed, whereas expression of ATG9L2 is restricted 

to the placenta and pituitary gland. The exact function of mAtg9 currently remains elusive 

but it is required for LC3 lipidation and knockout mice die after birth as do Atg5-andAtg7-

knockout animals [186], [101], [96]. Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a 

prerequisite for the nucleation process. It is produced by the PI3K-III-hVps34 complex 

when bound to its core partners Beclin 1 and p150/hVps35 [42]. The complex is found on 

the phagophore and thought to facilitate recruitment of other ATGs to the developing 

vesicle. Importantly, autophagy can be positively and negatively modulated at the level of 

the Beclin 1–hVps34–p150/hVps35 complex depending on additional, regulatory binding 

partners of Beclin 1 (Figure 1) [160], [42]. ATG14/BARKOR (Beclin 1-associated 

autophagy-related key regulator), UVRAG (protein product of the ultraviolet radiation 

resistance gene) and activating molecule in Beclin 1-regulated autophagy are pro-

autophagic regulators of the PI3K-III complex. Simultaneous binding of both UVRAG and 

RUBICON (RUN domain and cysteine-rich domain containing) inhibits the autophagy-

promoting activity of the complex [76], [174], [200], [37], [114]. Elongation and closure 

describe the development of the characteristic double-membrane-bound autophagosome 

from its precursor structure and require two ubiquitin-like conjugation systems. The 

ubiquitin-like ATG12 is conjugated to ATG5 via the E1-like protein ATG7 and the E2-like 

ATG10. ATG16 then enters the complex and directs the large (L), newly formed ATG16L 

(ATG12-ATG5-ATG16) complex to the isolation membrane. The Atg16L complex is 

required for autophagosome formation, guides LC3 to the phagophore and promotes 

lipidation of LC3 (Figure 1) [41], [59], [170]. The ubiquitin-like yeast protein Atg8 has 

several orthologues in mammalian cells: MAP1LC3 (LC3), GABARAPL2 (GATE16), 

GABARAP and GABARAPL1 (ATG8L). LC3 is the most thoroughly investigated of 

these proteins and its modification during autophagy is exploited as a marker for autophagy 

[94], [83]. Newly synthesized LC3 is immediately cleaved at its C-terminal end by the 
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protease Atg4 into the cytoplasmic form LC3-I. If autophagy is active, LC3-I is then 

conjugated to phosphatidylethanolamine via ATG7 and the E2-like ATG3 [84]. In its 

conjugated form, LC3 is called LC3-II and is recruited via its lipid moiety to the inner and 

outer surfaces of the autophagosomal membrane, i.e. unlike LC3-I, LC3-II is not freely 

dispersed in the cytoplasm (Figure 1). The exact order of Atg activation is not clear and 

there is intensive crosstalk between the different Atg systems. However, it is generally 

accepted that the ULK1 kinase complex and the PI3K-III complex act upstream of the 

ubiquitination systems [172]. 

 

 

Figure 1: Core autophagic machinery. 
Autophagic core machinery. The ULK kinase complex, the PI3K-III complex, mAtg9 and 
the two ubiquitination systems are indispensable for autophagy. Members of the core 
machinery are shown in coloured boxes. Modulators that are not part of the core machinery 
are shown in white boxes. For details, see text.  
 

 

The maturation process encompasses the fusion of autophagosomes with lysosomes to 

form autolysosomes. Autolysosomes are singlemembrane-bound, acidic vesicles 

comprised of the outer membrane of autophagosomes and the lysosome that degrade the 

autophagosomal cargo via acidic hydrolases provided by the lysosome. The process is less 

well understood but involves the action of lysosomal proteins, such as lysosomal-

associated membrane protein 1/2 (LAMP1/2) and also again, Beclin 1 [157], [160]. Work 

by Yu et al. [193] has recently shed light on the ultimate fate of autolysosomes. During 

autophagy-initiation mTOR is inhibited but becomes reactivated at later stages as a result 

of the release of cellular constituents into the cytoplasm following the breakdown of 
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macromolecules within autolysosomes. Increased mTOR activity then inhibits autophagy 

and leads to the formation of proto-lysosomal extensions (LAMP1+, LC3-) from 

autolysosomes (LAMP1+, LC3+) [172]. Ultimately, these proto-lysosomal extensions 

detach from the autolysosome and mature into functional lysosomes. Inhibition of mTOR, 

or (auto-)lysosomal function, prevents autophagic lysosome reformation (Figure 2). 

Autophagy is therefore controlled by a negative feedback mechanism that is regulated by 

mTOR [193], [172]. Until recently, it was believed that the two ubiquitination systems are 

indispensible for autophagy. However, Nishida et al. [148] introduced the term ‘alternative 

macroautophagy’ to describe a degradative process in response to starvation and etoposide 

treatment that involves autophagosome-like structures that are not decorated by LC3-II. 

Strikingly, this process is independent of both ATG5 and ATG7 but critically relies on 

ULK1 and Beclin 1. Double-membrane bound vesicles that included cytoplasmic material 

were generated in a RAB9 (RAB9A, member RAS oncogene family)-dependent fashion by 

the fusion of isolation membranes and vesicles derived from the trans-Golgi and late 

endosomes [148]. Since this process occurs without involvement of crucial regulators for 

‘conventional’ or ‘canonical’ autophagy, it is debated whether this phenomenon is 

something altogether different from autophagy [95]. 

 

1.1.4 Origin of the phagophore/isolation membrane  

The first detectable structure during autophagy in mammalian cells is the isolation 

membrane or phagophore. Considerable insight has been gained in the last 2 years in 

relation to its sites of origin. Current consensus favours that in mammalian cells, the 

isolation membrane develops from at least three different, preformed sources: the 

endoplasmic reticulum (ER), the plasma membrane and mitochondria [5], [57], [178], 

[156]. Axe et al. [5] proposed that the phagophore is derived from so-called omegasomes 

(cup-shaped protrusions from the ER). Moreover, it has recently been confirmed that 

isolation membranes are physically connected to the ER and are cradled by two ER 

membranes, which is reminiscent of the omegasome [64], [191]. Upon starvation, the 

hVps34 kinase is recruited via ATG14L to the ER, where it creates a local increase in 

PtdIns(3)P, that is essential for autophagosome development [137]. Proteins that 

specifically recognize PtdIns(3)P are then recruited to the omegasome/cradle, WD repeat 

domain, phosphoinositide interacting 2 and ZFYVE1, zinc finger, FYVE domain 

containing 1, the latter of which can be used to pinpoint the location of the 
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omegasome/cradle [178], [153]. The phagophore extends from the PtdIns(3)P-rich region 

and is cradled by two ER membranes [139]. Small sections of ER are encapsulated within 

autophagosomes by this mechanism. The ULK complex and LC3 localize to the 

omegasome, as well as the ATG16L complex via ATG16 [139] (Figure 2). ATG16L1 has 

also been reported to be associated with the plasma membrane [156]. This association was 

mediated by an interaction between ATG16L1 and the heavy chain of clathrin and it is 

believed that this interaction is required for the formation of early autophagosome 

precursors (Figure 2). Inhibition of clathrin-mediated internalization reduces the formation 

of these pre-autophagosomal structures as well as mature autophagosomes [156]. It was 

proposed by the authors of this study that due to the size of the plasma membrane, this 

source of autophagosomes may be particularly important during intense autophagic activity 

[156]. A switch may therefore occur from sources of membrane utilized under basal 

conditions to the plasma membrane under stressed conditions in order to perhaps maintain 

intracellular organelle integrity. Mitochondria have also recently been proposed as an 

alternative route of phagophore generation [57]. Under starving conditions, ATG5 and 

LC3 localize to the outer membrane of mitochondria, which serves as a cornerstone for 

phagophore development. Mitofusin 2 connects mitochondria to the ER and thereby 

enables transfer of phosphatidylserine from the ER to mitochondria, which seems to be 

essential for autophagosome generation. In mitochondria, phosphatidylserine then gets 

processed to phosphatidylethanolamine, which becomes an essential component of the 

developing autophagosome as described previously [84]. Figure 2 illustrates the 

development and recycling of autolysosomes from early precursors and the involvement of 

the core autophagic machinery in each step. It seems appropriate to underline that the 

proposed models of autophagosome generation are not mutually exclusive and probably 

coexist. It is possible that depending on cellular context and activating triggers, one or all 

routes are initiated. However, in mammalian cells, each model points away from the 

assembly model (where phagophores develop de novo), unlike in yeast where the 

phagophore develops from a phagophore assembly site [147]. 
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Figure 2: Autophagy. 
Autophagic vesicle generation and recycling. The first steps of autophagosome formation 
are initiation and nucleation. The earliest detectable autophagic structure is the double-
membrane-bound phagophore/isolation membrane that evolves from the ER, mitochondria 
or the plasma membrane following activation of the ULK1 and Beclin 1 complexes 
(initiation/nucleation). Subsequently, the ATG16L complex, LC3-II and mAtg9 are 
recruited to the developing isolation membrane. The membraneous structure evolves 
(elongation) and encapsulates marcomolecules to become the closed hallmark structure of 
autophagy, the autophagosome. After fusion with a lysosome (maturation), the intra-
vesicular constituents of the autophagosome get degraded and released into the cytosol, 
thereby creating a local rise in nutrient availability. This leads to reactivation of mTOR and 
regeneration of a mature lysosome from autolysosomes in a process called autophagic 
lysosome regeneration. Members of the core autophagic machinery that are involved in 
each step and can be found on the corresponding structure/vesicle are shown in coloured 
boxes. For details, see text. 
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1.2 Cellular respiration serves energy production and 

anabolism 

 

Cellular respiration is an umbrella term for a number of intracellular, metabolic processes 

that convert nutrients into energy and also produce a diverse range of intermediates to fuel 

and maintain cell metabolism.  Important corner stones of cellular respiration are 

glycolysis, the citric acid cycle and oxidative phosphorylation. 

 

1.2.1 Glycolysis 

Glycolysis is the process of glucose breakdown into pyruvate with a net gain of two 

molecules of the central energy carrier ATP (adenosine triphosphate) and two molecules of 

the reducing agent NADH (reduced form of nicotinamide-adenine dinucleotide). 

Glycolysis is a cytosolic process and does not require oxygen. Hence the frequently used 

term “aerobic glycolysis” only means “glycolysis in the presence of oxygen”. This is to 

emphasize the fact that under certain conditions cells, especially cancer cells prefer to 

catabolize glucose to pyruvate (with subsequent fermentation to lactate) even in the 

presence of oxygen instead of completely breaking it down in mitochondria via the citric 

acid cycle and oxidative phosphorylation (OXPHOS) (see below) at a net gain of 31 

molecules of ATP. ATP production through glycolysis is approx. 18-times less efficient 

than ATP production from complete oxidation but this is compensated by a greatly 

increased reaction speed [61], [48].  

Glycolysis adapts to extra- and intracellular conditions and the flux through the glycolytic 

pathway can be regulated by changes in the enzymatic activity of three key enzymes: 

hexokinase, phosphofructokinase and pyruvate kinase [21], [1], [187], [123], [48]. 

Glycolysis is not to be misunderstood as a purely catabolic process to generate energy. Its 

metabolites are important pre-cursors for a host of anabolic process such as the Pentose 

Phosphate Pathway, gluconeogenesis and triglyceride synthesis (Galuzzi 2012). In 

summary, glycolysis is both a catabolic process to generate energy and a supplier for 

anabolic pathways to supply building blocks for cell growth and cellular homeostasis.  
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1.2.2 Citric Acid Cycle 

The Citric Acid Cycle, also called the TriCarboxylic Acid (TCA) cycle or Krebs cycle, is 

arguably the central metabolic node in all cells that contain mitochondria. In a series of 

mitochondrial reactions acetyl-coenzyme A (acetyl-CoA) from various sources is oxidized 

to oxaloacetate and NADH and FADH2 (reduced form of flavin adenine dinucleotide) are 

produced. In a process called oxidative phosphorylation (OXPHOS) ATP is then produced 

from NADH and FADH2. Importantly intermediates of the TCA cycle can be siphoned off 

for anabolic processes such as gluconeogenesis, lipid metabolism and amino acid synthesis 

[187], [123], [48].      

 

1.2.3 Oxidative phosphorylation 

The process of oxidative phosphorylation (OXPHOS) is carried out by a set of 

mitochondrial protein complexes and enzymes and serves to produce ATP in the presence 

of oxygen. In a chain of redox reactions called the respiratory chain, reduced hydrogen 

carriers such as NADH and FADH2 are oxidized and the released energy is conserved in 

the form of ATP. The majority of hydrogen carriers is derived from the TCA-cycle [187], 

[123], [48]. 

 

1.2.4 Pentose Phosphate Pathway 

The Pentose Phosphate pathway (PPP) or hexose monophosphate shunt is a cytosolic, bi-

phasic reaction and is a source of reducing power in the form of NADPH (to produce 

reduced glutathione). It also supports anabolic processes, such as fatty acid synthesis and 

nucleotide biosynthesis. Glucose is converted in a multi-step reaction to ribulose 5-

phosphate in the first, oxidative and irreversible phase. Then in a set of reversible 

reactions, that are called the non-oxidative phase of the PPP, fructose 6-phosphate and 

glyceralaldehyde 3-phosphate are generated. The first intermediate of the non-oxidative 

phase, ribose 5-phosphate, is a direct precursor of nucleotide biosynthesis. Fructose 6-

phosphate can a) re-enter the PPP via conversion to glucose 6-phosphate to produce more 

NADPH and reduce oxidative damage or b) enter the glycolytic pathway to be converted to 

pyruvate to fuel fatty acid synthesis.      
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1.3 Connections between autophagy and (glucose) 
metabolism 

 

Autophagy itself contributes to metabolic homeostasis but in reverse it is also regulated by 

the metabolic state of a cell [142], [31]. In the following key conductors that orchestrate 

autophagy and glucose utilizing pathways are exemplarily discussed: AMP-activated 

protein kinase (AMPK), glyceralaldehyde 3-phosphate dehydrogenase (GAPDH) and 

TP53-induced glycolysis and apoptosis regulator (TIGAR).  

The AMP-activated protein kinase (AMPK) is an important hub that synchronizes various 

metabolic pathways, including autophagy, to coordinate nutrient availability with energetic 

requirements and the demand for biosynthetic precursors [39], [74], [32].  AMPK 

primarily responds to the intracellular ATP/AMP ratio. A low ratio i. e., high levels of 

AMP as an indicator of a low-energy status, activate AMPK.  By and large, AMPK 

induces catabolic pathways to provide cells with ATP and down-regulates anabolic 

processes [39]. 

AMPK can activate autophagy via several different approaches that target critical 

regulators of autophagy. AMPK suppresses mTORC1 via interaction with the TSC 

complex and Raptor [74]. Phosphorylation of TSC2 by AMPK leads to inactivation of 

Rheb and thereby alleviates the inhibitory effect of Rheb on mTORC1 [56], [32]. Inoki et 

al. have shown that AMPK can phosphorylate Raptor and thereby inactivate mTORC1 

with subsequent activation of autophagy [75]. In glucose starved cells AMPK binds to and 

phosphorylates ULK1 on multiple sites to induce autophagy [32]. In order to prevent 

possibly detrimental and sustained autophagy ULK1 can phosphorylate and inactivate 

AMPK [111]. Kim and colleagues recently showed that AMPK also phosphorylates pro- 

and anti-autophagic class III phosphatidylinositol (PtdIns)-3 kinase, PIK3C3/VPS34 

complexes [92]. In hypoglycaemia Atg14 which is only present in the pro-autophagic 

BECN1/VPS34 complex switches AMPK phosphorylation sites on VPS34 and also allows 

AMPK phosphorylation of BECN1. This results in enhanced autophagy [91]. AMPK 

mediated phosphorylation with subsequent stabilisation and accumulation of the cyclin-
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dependent kinase inhibitor p27/kip1 protects cells from metabolic stress by induction of 

autophagy [115].      

Besides its influence on direct regulators of autophagy AMPK also closely regulates other 

metabolic processes such as glucose- and lipid metabolism as well as OXPHOS. AMPK 

has been shown to stimulate glucose uptake and glycolysis by increasing the activity of the 

glucose transporter GLUT1 [39] and by increasing the expression of GLUT4 and its 

translocation to the plasma membrane [39]. In another example that links AMPK, 

glycolysis and autophagy directly, Ferraro and colleagues showed that in apoptosome-

deficient cells exposed to cytotoxic stress, sustained ATP production via glycolysis is 

dependent on autophagy [36]. Furthermore, pharmacological inhibition of glycolysis via 2-

deoxyglucose leads to induction of reactive oxygen species (ROS) and AMPK dependent 

autophagy [184]. If cells cannot meet their metabolic needs from the breakdown of 

carbohydrates, especially glucose, then AMPK mediates a metabolic switch, allowing cells 

to generate energy primarily from lipids via enhanced mitochondrial fatty acid oxidation 

[74]. AMPK has also been shown to increase mitochondrial mass and mitochondrial 

oxidative capacity (OXPHOS) [39].  

 The glycolytic enzyme glyceralaldehyde 3-phophate dehydrogenase (GAPDH) directly 

connects glycolysis with a master regulator of autophagy: mammalian target of rapamycin 

(mTOR) [107]. Rheb (Ras homologue enriched in brain) binds and activates mTORC1 

(mTOR complex 1) and thereby inhibits autophagy. During hypoglycaemia GAPDH 

increasingly binds to Rheb which leads to inhibition of mTORC1 signalling and 

subsequent activation of autophagy. Notably, GAPDH is essential for glucose-dependent 

Rheb-mediated regulation of mTORC1 activity. AMPK and TSC1 (hamartin, tuberous 

sclerosis 1 protein) are not required for this interaction [107]. GAPDH protects cells from 

caspase-independent cell death following mitochondrial outer-membrane permeabilization. 

This survival function not only involves but also depends on increased glycolysis and 

autophagy, possibly to clear damaged mitochondria. GAPDH fulfils a plethora of functions 

aside from its role in glucose metabolism. Nuclear GAPDH takes part in transcription, cell 

cycle regulation and even DNA repair. Upon induction of MOMP (mitochondrial outer 

membrane permeabilization) in cells that are protected from caspase-independent cell 

death, GAPDH translocates to the nucleus and enhances expression of Atg12. Expression 

of Atg12 but not Atg5 can substitute for GAPDH in terms of protection from caspase-

independent cell death following MOMP [23].  
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TIGAR alleviates the activity of 6-phosphofructo-1-kinase (PKF-1) by reducing the levels 

of intracellular fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 enhances the affinity of 

the glycolytic enzyme PFK-1 for its substrate fructose 6-phosphate. As a result glycolysis 

is bypassed in favour of the Pentose Phosphate Pathway [9]. Loss of TIGAR has been 

shown to upregulate autophagy, possibly as a consequence of increased ROS production 

due to reduced flux through the PPP [8].  

The aforementioned links between glucose metabolism and autophagy are not exclusive 

and other connections have been reported. For example glycogen autophagy, i. e., the 

sequestration and degradation of glycogen via autophagy to glucose especially in 

hepatocytes, compensates postnatal hypoglycaemia by feeding into the glycolysis and 

pentose phosphate pathway [97]. Furthermore mouse embryonic fibroblasts (MEFs) that 

express oncogenic HRasV12 have reduced glycolysis when autophagy is abrogated by 

genetic deletion of Atg5 compared to autophagy competent cells (HRasV12/wt ATG5-/- 

MEFs vs HRasV12/wt ATG5+/+ MEFs) [119].    

In summary autophagy and glucose utilizing metabolic pathways share common regulators 

and are connected to collectively meet the energetic and biosynthetic requirements of a 

cell.    

 

1.4 P53 control of autophagy and metabolism 

The transcription factor p53 is mutated or lost in approx. 50% of all human cancers [58]. It 

regulates a plethora of cellular processes amongst which are failsafe programs like 

apoptosis and senescence to block cellular transformation. During the process of becoming 

malignant, cells encounter a variety of stresses such as genotoxic damage, oncogene 

activation and hypoxia that all activate p53 to facilitate cell death or to inhibit cell 

proliferation (and allow for recovery from the insult) [182]. Recent years saw an increased 

focus on metabolic regulation of cancer cells and sparked the hope that potential 

differences can be exploited for tumour therapy. Important metabolic processes such as 

glycolysis and autophagy are also regulated by p53 and these interactions are increasingly 

becoming a focus of p53-related research [48].  
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1.4.1 P53 and the regulation of autophagy and metabolism 

Autophagy is clearly regulated by p53 but it is difficult to ascertain the net effect of p53 on 

autophagy as it seems to be context dependent, i. e., does p53 induce or inhibit autophagy 

[160] [109]. In the absence of cellular stress basal levels of cytoplasmic but not nuclear 

p53 inhibit autophagy [176]. In contrast, it has also been shown that p53 induces 

autophagy. Activated p53 accumulates in the nucleus to initiate transcription of its target 

genes. Amongst these are several isoforms of the autophagy-inducer DRAM1 (damage-

regulated-autophagy modulator 1) [26], [124] as well as Sestrin1 [14] and Sestrin2 [14], 

[128]. In response to genotoxic stress Sestrins activate AMPK to inhibit mTORC1 possibly 

via TSC2 and activate autophagy [39]. TSC1 which inhibits RHEB and therefore leads to 

inhibition of mTORC1 and subsequent activation autophagy is a direct transcriptional 

target of p53 [31]. In summary the regulation of autophagy by p53 is complex with the 

emerging pattern that the subcellular localization of p53 is a determining factor for p53 to 

induce or inhibit autophagy. Almost certainly context specific aspects are likewise 

important and also impact on the role of p53-induced autophagy as either pro-survival or 

pro-death [109].      

As mentioned before metabolic regulation by p53 extends beyond the control of 

autophagy. In the presence of oxygen most normal cells generate ATP from OXPHOS, 

unlike tumour cells that have frequent mutations in p53 and a higher propensity to derive 

ATP from “aerobic glycolysis” [48]. Thus is does not really come as a surprise that p53 

mostly promotes OXPHOS and hinders glycolysis. P53 is important to sustain 

mitochondrial DNA and mass [100], [104] and controls the transcription of important 

regulators of OXPHOS like cytochrome c oxidase 2 (SCO2) [136], subunit I of 

cytochrome c oxidase and p52R2, a subunit of ribo-nucleotide reductase [48]. With regards 

to orchestrating glycolysis p53 has been shown to repress the transcription of glucose 

transporters directly (GLUT1, GLUT4) [167] or indirectly via inhibition of NF-κB 

(GLUT3) [88]. TIGAR is a direct target of p53 and diverts glucose utilization towards the 

pentose phosphate pathway and away from glycolysis [9]. Complicating factors are that 

p53 has also been described to induce glycolytic enzymes hexokinase-2 [135] and the 

muscle-specific phosphoglycerate mutase [164]. Importantly p53 promotes the antioxidant 

defence directly through regulation of TIGAR, sestrins and p53INP1 as well as indirectly 

through stabilization of the transcription factor Nrf2 (that induced a variety of “anti-

oxidant” genes) by p21 [48].   
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1.5 Autophagy and cancer 

In cancer cells failsafe mechanisms like cell death and senescence that normally prevent 

chronic and unrestricted growth are overruled by genetic mutations and epigenetic 

alterations. In 2000 Hanahan and Weinberg defined the core hallmarks of cancer: self-

sufficiency in growth signals, insensitivity to anti-growth signals, tissue invasion & 

metastasis, limitless replicative potential, sustained angiogenesis and evasion of cell death 

[60]. Eleven years later the same authors classified reprogrammed cellular metabolism as 

an emerging hallmark of cancer to complement the original core traits of malignancy [61].  

Undoubtedly the most common metabolic abnormality in cancer cells is the Warburg 

effect, i. e., the preferred production of lactate from glucose even in the presence of normal 

oxygen levels [185]. In contrast, under normoxia most normal cells feed the majority of 

glucose into the mitochondrial TCA-cycle and use OXPHOS for ATP generation. 

Notwithstanding they have the ability to shift towards glucose fermentation under hypoxia. 

Glucose fermentation comes at the cost of an approx. 18 fold less net gain of ATP when 

compared to full mitochondrial oxidation. This is compensated by an increased glucose 

uptake in cancer cells and is believed to provide additional benefits for neoplastic cells 

[48]. A) Glucose metabolites can be siphoned into biosynthetic pathways such as the PPP 

to provide biomass required for new cells. B) Lactate production leads to extracellular 

acidification, which harms normal cells but not cancer cells [47]. C) It is also postulated 

that increased aerobic glucose fermentation reduces oxidative stress “during the phases of 

the cell cycle where maximally enhanced biosynthesis and cell division do occur” [13]. As 

detailed before autophagy itself is a metabolic process and tightly interwoven with glucose 

metabolism. A large number of publications link autophagy and cancer but a unifying 

theme, i. e. when and how autophagy promotes or suppresses cancer has not yet emerged 

[4], [132].  

Inactivation or deletion of certain autophagy genes has been reported to increase the 

predisposition to tumour development [155], [195], [131], [175]. Mono-allelic loss of 

BECN1 (the gene encoding the essential autophagy gene Beclin 1) is frequently observed 

in human breast, ovarian and prostate cancer [116]. Likewise BECN1 heterozygosity in 

mice increases the propensity for cancer development [155]. Mice that are deficient in 

Atg4C have an increased susceptibility to develop fibrosarcomas, but only after subjection 

to a chemical carcinogenesis protocol [131]. In humans frame shift mutations of ATG2B, 
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ATG5 and ATG12 have been found in gastric and colorectal cancers [85]. Liver specific 

deletion of Atg7 or Atg5 in mice leads to growth of benign liver adenomas [175].  

One could easily assume now that impaired autophagy facilitates tumour development. 

However, it is not so easy because the exact opposite has also been shown.  

Myc-driven murine lymphomas utilize autophagy as a survival mechanism. In reverse 

inhibition of autophagy enhanced therapeutic outcome in the same study [3]. Autophagy 

allows ovarian cancer cells to enter a state of reversible dormancy in conditions that they 

could not survive when autophagy was pharmacologically inhibited [122].  

It is not unlikely that the desire to classify autophagy dogmatically either as pro 

tumorigenic or tumour suppressive can in reality not be fulfilled due to the complex 

involvement of autophagy in processes that influence tumour development and therapy: 

cell death, senescence, oxidative stress, inflammation, immunity and metabolism [61], 

[160], [161]. How autophagy modulates the decision between cell death and cell survival is 

context dependent [71], [99]. Two examples are the connection between autophagy and 

anoikis on the one hand and between autophagy and necrosis on the other hand. Anoikis is 

a form of cell death that occurs when cells detach from their surrounding extracellular 

matrix. Autophagy protects from anoikis [43] and thereby possibly facilitates metastatic 

spread. In this context it is conceivable that inhibition of autophagy might be beneficial for 

therapy.  

Cancer cells frequently endure metabolic stress in poorly vascularized tumour regions and 

apoptotic cell death is commonly disabled. In this scenario inhibition of autophagy leads to 

necrotic cell death and concomitant release of pro-inflammatory cytokines which 

ultimately promote mutational events and therefore tumour growth [27]. Furthermore, 

chemo- and radiotherapy have both been shown to induce autophagy with context 

dependent life- or death roles for autophagy [160], [161], [2]. 

Senescence is a clinically relevant tumour barrier and considered to be a sustained cell 

arrest that is reinforced by a characteristic secretion of immune modulatory cytokines. 

Impaired autophagy delays the onset of senescence and modifies the secretory phenotype 

which might affect the clearance of senescent cells [192].  
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Damaged organelles, especially mitochondria, are a source of oxidative stress. Damaged 

proteins, if not cleared, are akin to non-inheritable mutation. Autophagy ensures quality 

control and thereby removes the aforementioned threats to preserve cellular integrity and 

genomic stability [86], [134]. Here it clearly would be problematic to inhibit autophagy in 

tumour therapy. And indeed it has been shown that inhibition of autophagy increases 

oxidative stress with subsequent activation of the DNA damage response and promotion of 

genetic instability. As a result tumour formation is promoted [86].  

Chronic inflammation is recognized as a risk factor for cancer development [24]. As 

already mentioned impaired autophagy can cause necrotic death and thereby create a pro-

inflammatory environment. Furthermore impaired autophagy has also been implicated in a 

variety of inflammatory processes that are independent of necrotic cell death and could 

potentially precede the occurrence of cancer, e. g., inflammatory bowel disease [15], [165], 

[16], [117] and pancreatitis [129].  

Inhibition of autophagy potentially limits immune recognition of cancer cells through 

impairment of antigen presentation [113] and T-cell function [154].  

The connection between autophagy and glucose metabolism was detailed before (see 1.3). 

Autophagy furthermore controls lipid metabolism with potential implications for cancer 

biology. Impaired autophagy leads to reduced breakdown of triglycerides and possibly as a 

result impaired β-oxidation [173]. Thus the supply of acetyl-CoA for the TCA cycle is 

reduced and the production of energy and biosynthetic precursors is impaired. Recent work 

suggested that tumours driven by oncogenic Ras require autophagy to sustain OXPHOS. 

Inhibition of autophagy decreased metabolic intermediates of the TCA cycle (citrate and 

isocitrate) and therefore supposedly the supply chain of hydrogen carriers for 

mitochondrial OXPHOS is disrupted. It was concluded that autophagy is critically required 

for tumour survival in tumours driven by oncogenic Ras [189], [54], [55].  

In summary it is unclear when and how autophagy impacts on tumour development, partly 

because of its involvement in a plethora of different processes which have important 

ramifications for cancer. When reduced to its currently known core function, autophagy is 

a catabolic process that clears cytoplasmic material and supplies raw material for energy-

producing and anabolic pathways. Depending on the cellular requirements dictated by 

extra (e. g. hypoxia) and intracellular cues (e. g. oncogene activation) it might be that 

either a genome destabilizing situation is favourable for tumours (i. e. lack of autophagy) 
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or a situation in which autophagy supports growth through increased provision for anabolic 

pathways is beneficial for cancer growth. In the first instance, inhibition of autophagy 

might not be desirable as it would further increase the mutational capacity. In the latter 

instance impairment of autophagy could shut down the supply for anabolic pathways and 

thereby aid tumour therapy.  

The goal of my thesis is to examine the role of autophagy in cancer development in vivo. 

Despite having some very limited in vivo evidence (see beginning of this section) studies 

that examine the role of genetic and or pharmacological inactivation of autophagy in an 

oncogene-driven mouse model of cancer are sparse. We chose pancreatic cancer as our 

model system for several reasons: a) the murine model closely resembles the human 

disease, b) pancreatic cancer usually develops from  a set of premalignant lesions that are 

senescent, c) the KRas oncogene is mutated not only in pancreatic cancer but many other 

human cancers and has been shown to influence autophagy, and d) there was considerable 

experience with the mouse model in the institute.  

The following sections will introduce the pancreas and its physiological functions as well 

as give an overview about pancreatic cancer.   
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1.6 The Pancreas 

The pancreas is a vital, bi-functional, abdominal gland and is anatomically divided into the 

head that is in close proximity to the duodenum, the body part and extending to the left 

side of the body in direct neighbourhood to the spleen is the tail. The human pancreas has a 

diameter of approx. 1.5x3.5x2.5cm (LxHxW) and weighs approx. 60-80g in adults. Its two 

main functions are:  a) production of digestive enzymes in exocrine cells and b) production 

of hormones in endocrine cells, most notably insulin and glucagon in the islets of 

Langerhans to maintain glucose homeostasis [6], [150], [152], [181], 

(www.pancreaticcancer.org.uk, http://www.cancerresearchuk.org/cancer-

help/type/pancreatic-cancer/). 

 

1.6.1  The Exocrine Pancreas 

Every day the exocrine pancreas produces approx. 1-2l pancreatic juice that helps to 

neutralize and process acidic chyme (pre-digested food from the stomach). The secretion 

consists of an aqueous bicarbonate component and an enzymatic component. Pancreatic 

enzymes are produced in acinar cells and secreted into the acinar lumen that is connected 

to a drainage system formed by ductal cells (see below). Pancreatic enzymes are important 

for the digestion of proteins (proteolytic enzymes such as trypsinogen, chymotrypsingen), 

lipids (lipolytic enzymes such as lipase, phospholipase A, cholesterol esterase) and 

carbohydrates (amylolytic enzymes such as amylase). Importantly, autodigestion is 

prevented by two mechanisms: a) enzymes are produced and secreted as inactive pre-

cursors (zymogens) and b) protease-inhibitors found in acinar cells and pancreatic juice 

inhibit premature stimulation. Pancreatic enzymes are activated in the intestine by reaction 

with bile salts and duodenal enzymes.  

Ductal cells form a complex drainage system for the pancreatic juice and finally discharge 

into the main pancreatic duct. They secrete large quantities of bicarbonate into the 

pancreatic juice which is therefore alkaline in nature. The main pancreatic duct fuses with 

the common bile duct and drains into the duodenum.  

Pancreatic secretion is in under nervous and hormonal control. The parasympathetic 

nervous system, as well as hormones that are secreted from the duodenum (secretin, 

cholezystokinin) and from the stomach (gastrin) stimulate secretion. In contrast certain 

http://www.pancreaticcancer.org.uk/
http://www.cancerresearchuk.org/cancer-help/type/pancreatic-cancer/
http://www.cancerresearchuk.org/cancer-help/type/pancreatic-cancer/
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hormones released from the islets of Langerhans (glykagon, somatostatin) inhibit the 

production of pancreatic juice (http://www.cancerresearchuk.org/cancer-

help/type/pancreatic-cancer/, www.pancreaticcancer.org.uk). 

.  

1.6.2 The Endocrine Pancreas 

The endocrine part of the pancreas accounts for only 2% of total organ weight and can be 

easily distinguished in haematoxylin and eosin (H&E) stained histological sections as 

bright red islets scattered throughout exocrine parenchyma that stains dark red. These 

regions are highly vascularized and are called the islets of Langerhans. Unlike pancreatic 

enzymes the hormones are directly secreted into the blood from at least 5 different cell 

types found in islets: α-cells produce glucagon, β-cells are the majority of islet cells and 

produce insulin and amylin, δ-cells produce somatostatin, γ-cells (=PP cells) produce 

pancreatic polypeptide and ε-cells produce ghrelin. Insulin is the most important hormone 

to regulate glucose homeostasis (http://www.cancerresearchuk.org/cancer-

help/type/pancreatic-cancer/, www.pancreaticcancer.org.uk). 

 

  

http://www.cancerresearchuk.org/cancer-help/type/pancreatic-cancer/
http://www.cancerresearchuk.org/cancer-help/type/pancreatic-cancer/
http://www.pancreaticcancer.org.uk/
http://www.cancerresearchuk.org/cancer-help/type/pancreatic-cancer/
http://www.cancerresearchuk.org/cancer-help/type/pancreatic-cancer/
http://www.pancreaticcancer.org.uk/
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1.7 Pancreatic Cancer 

In the UK nearly 9000 patients are newly diagnosed with pancreatic cancer every year 

(www.pancreaticcancer.org.uk). The clinical signs of pancreatic cancer depend on the type 

of cancer (see below) and are largely not specific, especially in the case of Pancreatic 

Ductal Adenocarcinoma which accounts for 85% of all cases. Symptoms include: 

abdominal pain, jaundice, weight loss, altered stool, nausea, fever and sometimes diabetes. 

The genesis of pancreatic cancer is complex and multifactorial. However, it is believed that 

the most prevailing risk factors are cigarette smoking in up to 20% [11] and family history 

in 7-10% of all cases [152]. Other contributing factors include chronic pancreatitis, male 

sex, advanced age, obesity and diabetes mellitus [181]. The 5-year survival rate is only 3% 

and the median survival after initial diagnosis is 6 month. There are three main reasons for 

the dismal prognosis of pancreatic cancer: a) the tumour only becomes clinically 

symptomatic at late stages when curative treatment attempts are no longer an option, b) 

tests that allow reliable detection of early stages are not available and c) pancreatic cancer 

is largely resistant to radio- and chemotherapy [181], [6], [17], [150].  

Despite significant scientific advancements the only curative therapy still today is a 

surgical procedure pioneered in 1935 by Allen Oldman Whipple and colleagues called 

pancreatoduodenectomy or Whipple procedure. This is the surgical removal of the distal 

stomach, the duodenum, the gallbladder with the common duct and the head region of the 

pancreas. Still even after surgery with curative intent the 5-year survival rate does not 

exceed 20%. Neoadjuvant or adjuvant radiotherapy and/or chemotherapy do not provide 

remarkable survival benefits [6], [150].  

Every cell of pancreatic origin can progress to cancer. Hence different types of pancreatic 

cancer exist. They are separated into exocrine tumours arising from exocrine cells and 

endocrine tumours that develop from hormone producing cells. This strict differentiation is 

complicated by the fact that trans-differentiation from endocrine to exocrine tissue and vice 

versa has been described [201]. Tumours can develop in any part of the pancreas but form 

most frequently in the head region (65%) and less frequently in the body and tail region of 

the organ.  

 

http://www.pancreaticcancer.org.uk/
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1.7.1 Exocrine Pancreatic Cancer 

Exocrine pancreatic cancer is the most common (95%) of all malignancies originating from 

pancreatic tissue. Pancreatic ductal adenocarcinoma accounts for the vast majority (90%) 

of exocrine tumours.  

 

1.7.1.1 Development of Pancreatic Ductal Adenocarcinoma (PDAC)  

It is believed that the majority of pancreatic ductal adenocarcinomas emanate from non-

malignant precursor lesions called Pancreatic Intraepithelial Neoplasias (PanINs) and only 

in rare cases does it evolve from mucinous cystic neoplasms (MCN) or intraductal 

papillary neoplasms (IPMN) [181] [70]. PanINs are duct-like structures and can be divided 

into grades 1A, 1B, 2 and 3 depending on the degree of their cytogenetic abnormalities 

(compare Figure 17). Whereas nuclear abnormalities are lacking in PanIN1A/B they are 

increasingly present in PanIN2 and PanIN3. PanIN1 and PanIN2 are also classified as low-

grade and PanIN3 as high grade. Terhune et al. estimated the likelihood of a PanIN lesion 

to progress to invasive PDAC at 1% [177].  

Oncogenic KRas mutations are considered to be one of the earliest mutational events in 

pancreatic cancer development and have been found in 36% of PanIN1, 44% of PanIN2, 

87% of PanIN3 [112] and in nearly all cases of invasive cancer [29]. KRas is a small 

GTPase that hydrolyzes guanosine triphosphate (GTP) to guanosine diphosphate (GDP). It 

transmits extracellular signals from growth factors and cytokines to activate multiple 

downstream pathways that are involved in different processes such as cell death and 

proliferation. It is activated by extracellular cues including growth factors and 

inflammatory cytokines “which indirectly interact with guanine nucleotide exchange 

factors (GEFs)” [29]. GEFs bind to KRas and facilitate the normally very slow dissociation 

of inhibitory GDP from KRas to allow GTP binding to and activation of Ras. GTPase-

Activating proteins (GAPs) have the opposite function and terminate Ras signalling. GAPs 

enhance the conversion of GTP to GDP by Ras-proteins and thereby turn Ras signalling off 

[87]. Amino acid substitution at position 12 in KRAS, from a glycine (G) to an aspartic 

acid (D) (KRasG12D) is the most common mutation in the KRas proto-oncogene in 

pancreatic cancer. Oncogenic KRas has a significantly impaired ability to enter the OFF 

state and as a result proliferative extracellular signals are transmitted longer than intended 

[73], or KRas acts independent from extracellular influences and is considered to be 
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constitutively active [29]. KRas regulation is influenced by other factors such as 

subcellular localization and therefore GDP/GTP binding is not always the sole determinant 

of Ras-activity. Many healthy people harbour oncogenic KRas mutations in the pancreas 

but only a minority develops cancer [121], [149]. Merely a fraction of cells that express 

oncogenic KRas in genetically modified mouse models of cancer progresses to become 

invasive cancer [50]. This is in part attributed to the fact that most KRasG12D-expressing 

cells disappear from the pancreas and only a small proportion remains to form PanINs 

[145]. Furthermore, mounting evidence indicates that reaching certain threshold levels of 

oncogenic Ras activation as well as the time of KRas activation are critical determinants in 

a cells response to Ras signalling [73], [29], [180]. In conclusion the mere presence of 

oncogenic KRas is not sufficient for transformation of otherwise normal cells and 

additional factors are required to tear down the barrier to tumour formation.  

In line with this is the observation that, during progression from low grade to high grade, 

PanINs accumulate additional mutations and are increasingly dysplastic. Although it 

should not be interpreted as a scheduled timeline it is believed that telomere shortening and 

acquisition of oncogenic KRas are the earliest events in pancreatic neoplasia. In later 

stages tumour suppressors such as p16/CDKN2A (usually in PanIN2), SMAD4, BRCA2 

and TP53 (in PanIN3) are inactivated [181], [70]. Loss of other tumour suppressors such as 

PTEN [66], or altered microRNA expression and epigenetic changes have also been 

reported amongst other factors to contribute to PDAC development [181]. In conclusion, 

only the combined effects of an initiating mutation together with the acquisition of 

additional lesions are sufficient to bypass tumour barriers, importantly the disruption of the 

senescence barrier in PanINs, and allow the formation of invasive carcinoma.   

A striking, histological feature of pancreatic ductal adenocarcinoma is desmoplasia, i. e., 

tumour associated growth of fibrous and connective tissue plus an overabundance of 

inflammatory immune cells [53]. Especially inflammation has been shown to promote 

tumourigenesis in vivo. Adult pancreatic cells of the acinar/centroacinar lineage are 

resistant to transformation upon activation of oncogenic KRas. In contrast, in the same 

situation additional pharmacological induction of pancreatits with the cholezystokinin 

analogue cerulein allows formation of PanIN and ultimately the development of invasive 

cancer [51], at least in part through abrogating the senescence barrier of PanINs [49]. Rhim 

and colleagues recently showed that pancreatic epithelial cells from PanINs can 

metastasize before the onset of invasive carcinoma and that the inflammatory stroma is 

critically required for this phenomenon [158]. And it is not to be forgotten that chronic 
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pancreatitis is a risk factor for the development of pancreatic carcinoma in humans and 

anti-inflammatory drugs have been shown to reduce the mortality in human PDAC [162].  

In summary, pancreatic ductal adenocarcinoma accounts for the overwhelming majority of 

all pancreatic cancers and still today has a dismal prognosis. It develops from pre-

cancerous lesions that harbour an initiating mutation, usually in the KRas protooncogene. 

Additional genetic or epigenetic events are required for the genesis of invasive carcinoma. 

The microenviroment, especially inflammation supports cancer development. 

 

  



36 
 
1.7.1.2 Rare forms of Exocrine Pancreatic Cancer 

Exocrine pancreatic cancer other than PDAC is uncommon and encompasses the following 

malignancies: 

Acinar Cell Carcinoma develops directly from acinar cells and is mainly found in older 

men. 

Intraductal Papillary Mucinous Neoplasm (IMPN). IMPN are tumours that develop from 

cells lining the main pancreatic duct and its side branches. IMPN can be benign but are 

known to progress to invasive carcinoma.  

Mucinous Cystic Neoplasm (MCN). Pre-dominantly women are affected by this tumour 

entity. MCN are rarely found in the pancreatic head region. They can reach diameters of 

several cm and produce mucins. Like IMPN MCNs can develop into carcinomas.   

Extreme rarities amongst exocrine pancreatic tumours are Pancreatoblastomas, Serous 

Cystadenocarcinomas and Solid Pseudopapillary Neoplasms 

(www.pancreaticcancer.org.uk, http://www.cancerresearchuk.org/cancer-

help/type/pancreatic-cancer/). 

 

1.7.2 Endocrine Pancreatic Cancer 

Endocrine tumours originate as their name suggests from endocrine pancreatic cells. They 

are also called Neuroendocrine Tumours (NETs) or Islet Cell Tumours. All endocrine 

tumours combined make less than 5% of all pancreatic tumours. According to the cell of 

origin they are called Glucagonomas (from α-cells), Insulinomas (from β-cells), 

Somatostatinomas (from δ-cells) and VIPomas. Their clinical appearance is usually 

dictated by the symptoms that the respective, excessive hormone levels produce, e. g., 

severe hypoglycaemias in insulinomas [20], [198].     

  

http://www.pancreaticcancer.org.uk/
http://www.cancerresearchuk.org/cancer-help/type/pancreatic-cancer/
http://www.cancerresearchuk.org/cancer-help/type/pancreatic-cancer/


37 
 
2 Materials and Methods 

 

2.1 Animal experiments 

All mice were bred and housed in accordance with UK Home Office guidelines. Animal 

studies were done under the project license of Jennifer Morton (license number 60/4096) 

and my personal license (12198). Mice were housed under non-barrier conditions with a 

12h lights on, 12h lights off cycle and fed standard chow (Harlan Laboratories) with free 

access to water.   

For mouse husbandry the animals were at least 42d of age and pups were weaned between 

21d and 28d of age.  

Mice were either sacrificed with a schedule 1 method of the Animal Scientific Procedures 

Act (ASPA) at indicated time points or when they became clinically moribund and showed 

signs of disease such as: inappetence, weight loss, dehydration, abdominal swelling, 

piloerection, hunched appearance, altered breathing rate, polyuria or inertia. 

Very rarely mice, especially of old age, developed lymphoma or sarcoma. Anal papillomas 

and intussusceptions (a condition in which a part of the intestine has invaginated into 

another section of intestine) were observed on occasion in mice expression oncogenic 

KRas. All of those events were extremely rare, in line with previous experience [145] and 

not attributable to changes in autophagy. 

 

2.2 Mouse models 

All animals in this study were of mixed background (C57BL6/Sv129). 

By crossing the different mouse models detailed below it was possible to generate pancreas 

specific knockdown of autophagy in the presence or absence of mutant KRasG12D and or 

Trp53 and thereby examine the role of autophagy in pancreatic cancer development. It is 

important to be aware of the fact that all target genes were deleted and/or activated at the 

same time during embryonic development and therefore before tumours became manifest. 
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It clearly would also be desirable and informative to delete autophagy in pre-existing 

tumours but at the time of the study mouse models that would allow this were not available 

and this is therefore a worthy follow up question. 

 

2.2.1 Pdx1-Cre mouse 

During embryonic development the first discernible pancreatic progenitors arise in the 

dorsal and ventral endoderm at embryonic day 8 (E8.0) [45]. Pancreatic development 

amongst other factors critically depends on timely expression of key transcription factors 

in the pancreatic endoderm. Pancreatic and duodenal homeobox 1 (Pdx1) is the first 

important transcription factor to be identified during pancreatic development from E8.5 

and is necessary for development past initial pancreatic bud formation. Pdx1 deficiency is 

lethal and leads to arrested growth of pancreatic primordia with resulting complete 

pancreatic agenesis at birth [80]. Initially Pdx1 expression is confined to endodermal 

regions destined to become the pancreas. However from E9.5 it is also expressed in cells 

that will develop into the posterior part of the stomach, the duodenum and the bile duct. 

During embryonic development Pdx1 is strongly expressed throughout all pancreatic cell 

lineages i. e, both the endocrine and exocrine pancreas and over time becomes gradually 

restricted to islet-cells. In adult animals pancreatic Pdx-1 expression is virtually confined 

to islet cells, with very sparse expression in the exocrine pancreas [45], [67], [80]. In line 

with its expression pattern in adult mice, conditional inactivation of Pdx1 leads to diabetes 

[80]. 

Maureen Gannon and Christopher Wright generated a Pdx1-Cre transgenic mouse that 

allows Pdx1 driven deletion of “floxed” genes. Cre-expression is mosaic in all areas where 

Pdx1 is normally expressed [45]. Considering the appearance of Pdx1 during embryonic 

development it is clear that the pancreas is only the major but not the exclusive organ for 

Pdx1 expression. Therefore potential phenotypes in Pdx1 Cre recombined mouse models 

could be attributable to extra-pancreatic effects. All mouse cohorts used in this study 

clearly developed a pancreatic pathology and potential extra-pancreatic phenotypes were 

clinically irrelevant.  
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2.2.2 LSL-KRasG12D mouse 

The LSL-KRasG12D mouse was generated by Erica Jackson, Tyler Jacks and David 

Tuveson [77]. “A Lox-STOP-Lox construct was inserted into the the mouse genomic 

KRAS locus upstream of a modified exon 1 engineered to contain a G→A transition in 

codon 12. This mutation, commonly found in human PDA, results in a glycine to aspartic 

acid substitution in the expressed protein, compromising both its intrinsic and extrinsic 

GTPase activities and resulting in constitutive downstream signaling of Ras effector 

pathways”[67]. “Prior to breeding with Cre-expressing animals, LSL-KRAS G12D mice 

are functionally heterozygous for the wild-type allele (KRAS+/-). Excision of the silencing 

cassette and subsequent recombination allows for expression of the mutant allele, resulting 

in a heterozygous mutant condition (KRAS+/G12D).” [67]. When bred with Pdx-1 Cre 

transgenic mice (Pdx-1-Cre KRas+/G12D) expression of the mutant allele is achieved and 

leads to progressive acquisition of pancreatic ductal lesions that recapitulate the full 

spectrum of human pancreatic intraepithelial neoplasias (PanINs) in virtually all mice. In 

approximately 1/3 of mice these develop into invasive PDAC [67].   

 

2.2.3 Atg7flox/flox mouse 

Mice that allow conditional Cre-mediated deletion of the essential autophagy gene Atg7 

were created by Masaaki Komatsu and Tomoki Chiba [96]. A construct containing the 

fused cDNA of exon 14-17 replaced exon 14 which is essential for Atg7-mediated 

autophagy. This sequence was flanked by loxP sites (Atg7flox/flox). Uninduced mice 

express functional Atg7, have normal autophagy and do not have any pathological 

phenotype. After Cre-mediated induction the essential exon 14 (along with the fused 

cDNAs of subsequent exons) is excised, Atg7 is then no longer expressed and autophagy is 

completely blocked. Notably, embryonic, homozygous deletion of Atg7 achieved by 

crossing with oocyte specific Zp3-Cre leads to mice that are born without any overt 

abnormalities but succumb to death, like Atg5-/- mice, within 24h after birth. It is believed 

that this neonatal lethality is the result of being cut off from the maternal circulation and an 

inability to compensate (with autophagy) for the initial decline in nutrient supply. Force 

feeding can partly overcome that phenomenon [101] [96]. When bred to Pdx1 Cre 

transgenic mice (Pdx1-Cre Atg7flox/flox) pancreas specific excission of Atg7 is achieved 

and thereby the problem of neonatal lethality is circumvented. 
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2.2.4 Atg5flox/flox mouse 

The Atg5flox/flox mouse was made by Taichi Hara and Noboru Mizushima[62]. Here 

exon 3 is flanked by loxP sites and upon Cre-induced recombination it is excised rendering 

the affected tissue autophagy-incompetent. Mice carrying the floxed alleles are normal 

[62]. 

 

2.2.5 P53flox/flox mouse 

Mice that allow conditional Cre-mediated deletion of p53 were generated by Jos Jonkers 

and Anton Berns [78]. By inserting LoxP sites into introns 1 and 10 of Trp53 it was 

ensured that Cre-mediated excision removes nearly all coding sequences of Trp53 and thus 

avoids the production of biologically active p53 polypeptides. After recombination mice 

possess a Trp53∆2-10 allele and animals homozygous for the Trp53∆2-10 mutation 

behaved like Trp53-knockout mice in terms of tumour-susceptibility. Non-recombined 

Trp53flox∆2-10/ flox∆2-10 animals are normal [78].  

 

2.3 Materials 

All reagents were purchased from Sigma Aldrich (Sigma-Aldrich Company Ltd, 

Heatherhouse Industrial Estate, Irvine, Scotland) unless otherwise stated.  

 

2.4 Genotyping 

In line with standard procedure at the Beatson Institute genotyping was done from ear 

clippings by an external provider (Transnetyx Inc., Cordova, TN, USA, 

http://www.transnetyx.com/). The company determines the genotype of a mouse from ear 

clippings by using a proprietary method that is based on real-time PCR and DNA 

hybridisation.  

 

http://www.transnetyx.com/


41 
 
2.5 Tissue harvest 

Mice were humanely killed with a schedule 1 method of the animals scientific procedures 

act before tissue harvest. If blood samples were to be taken, then the mice were sacrificed 

by exposure to carbon dioxide in a rising concentration; otherwise the preferred method of 

killing was manual dislocation of the neck.  

The pancreas was removed immediately after death and preserved in two different ways: 

a) Formalin fixation: the pancreas was placed for a minimum of 24h in an 

adequate volume (approx. 25ml) of 10% neutral buffered formalin (Leica 

Biosystems, Newcastle Upon Tyne, United Kingdom, catalogue number 

#3800600E) at room temperature. 

b) Cryopreservation: the tissue was placed in a plastic bag and immediately 

covered with dry ice to achieve rapid cryopreservation. Frozen tissue was then 

stored at -80°C.  

 

2.6 Immunohistochemistry 

Tissue embedding in wax and immunohistochemistry other than Sa-β-Gal staining were 

done by the Beatson Institute for Cancer Research Histology Service headed by Colin 

Nixon. All antibody stainings were done on 4µm thick sections. We devised a protocol for 

in situ visualization of autophagosomes in formalin fixed tissue and the detailed 

experimental procedures can be found in [159]. Specifics of individual antibodies are listed 

below and the staining procedure followed a protocol that I developed myself and is 

outlined in [159].  

Antibody Clone Cat# Dilution Supplier 
p21 M-19 sc-471 1:400 Santa Cruz Biotechnology 
p53 CM5 VP-P956 1:200 Vector Laboratories 
ATG7 H-300 sc-33211 1:50 Santa Cruz Biotechnology 
LC3 5F10 0231-100 1:100 Nanotools 
cleaved caspase 3 ASP175 9661 1:50 Cell Signaling Technology 
SQSTM1/p62  BML-PW9860 1:1250 Biomol 
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2.6.1 Quantification of histology data   

To objectify histological images, quantification was done where necessary as detailed 

below. 

 

2.6.2 Quantification of PanINs 

The number of PanIN’s is expressed as PanIN/mm2 tissue and was calculated as follows: 

The number of PanINs/section was counted on HE slides and then the area in mm2 of the 

tissue section on the scanned slide was measured with ImageJ software. The PanIN count 

was then divided by the area to yield the numbers for the graph.   

 

2.6.3 Quantification of p53 and caspase-3 levels 

For each genotype and type point p53 and caspase-3 positive and negative cells were 

counted from on average >600 cells from Atg7-proficient and Atg7-deficient tissue per 

individual mouse (acinar tissue for Kraswt/wt mice and PanINs for KRasG12D/wt 

animals). The age and number of mice counted is stated in the figure legends.  

 

2.6.4 Senescence-associated-β-galactosidase (Sa-β-Gal) staining 

Staining was done on 10µm thick sections of cryopreserved tissue that were provided by 

the Beatson Institute for Cancer Research Histology Service. Tissue sections were fixed for 

15min at room temperature in freshly prepared in fixative solution (2% paraformaldehyde 

and 0.25% glutaraldehyde in PBS), followed by three washing steps (PBS, 1mM MgCl2, 

pH5.5). After the last wash step, the slides were immersed into freshly prepared staining 

solution (in PBS: 1mM MgCl2, 5mM K3Fe(CN)6, 5mM K4Fe(CN)6, 1mg/ml X-Gal, 

pH5.5).  The slides were incubated for 12-16h in the dark at 37°C in ambient atmosphere. 

After the staining, the slides were washed a minimum of three times in PBS and 3 times in 

70% ETOH to remove residual salts and/or X-Gal crystals. Samples were then allowed to 

air dry at room temperature and then counter-stained with Safranin O. Images were taken 

using conventional bright field microscopy. Critical steps in the staining procedure are to 



43 
 
keep the samples moist at all times (from cryopreservation onwards) until the staining is 

finished, to properly adjust the pH and to include MgCl2 as it is an important co-factor for 

the β-galactose reaction. 

 

2.7 Blood biochemical analysis 

Mice were killed by exposure to carbon dioxide in a rising concentration. Then blood was 

obtained by cardiac puncture and immediately transferred to lithium heparin polystyrene 

tubes (Teklab Ltd, Durham, United Kingdom). Plasma was separated from the cellular 

blood components by centrifugation at 1500g for 15min and stored at -20°C before further 

analysis. Biochemical analysis was done by the Veterinary Diagnostic Services Laboratory 

at Garscube Campus, University of Glasgow. Analysed parameters were a) for endocrine 

pancreatic function (glucose, fructosamine) and b) for exocrine pancreatic function 

(amylase, lipase, cholesterol, triglycerides).  

 

2.8 Analysis of fecal elastase 

Mice have a roughly ten bowel movements every hour [18].  Faecal pellets were secured 

from mice housed individually for approx. 10 min in a single cage before being culled. 

Faecal pellets were stored at -20°C before analysis.  

30mg faecal matter was mixed with 500µl solubilisation buffer (0.1% Triton X-100, 0.5M 

NaCl, 0.1M CaCl2). The faecal pellet was disrupted by sonication for 15min in a water 

bath (Diagenode Bioruptor XL, maximum setting H1, 30s on then 30s interval). After 

centriguation at 12000g for 15min the supernatant was transferred to a fresh tube and used 

for further analysis. All steps were carried out at 4°C. 1ml elastase standards of different 

concentrations (100mU/ml to 1mU/ml) were prepared from a 1:20 Elastase stock solution 

(Elastase, Sigma E1250, 10mg at 4U/mg, 20U/ml) by dilution in solubilisation buffer. 

100µl sample, standards and solubilisation buffer (=blanks) were pipetted into individual 

wells of Safire Black 96-well plates. 5µl of 0.2mM elastase substrate ((CBZ-Ala-Ala-Ala-

Ala)2-R110, Molecular Probes R6506, stock solution was 10mM in DMSO) was added to 

each well (10µM final concentration/well). Fluorescent emission as a readout of faecal 
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elastase activity was measured in 10min intervals for 90min in a Safire Fluorescent Plate 

Reader (excitation was at 498nm, emission at 521nm). The standard curve was then used to 

calculate the activity in mU/mg faecal matter. This protocol was adapted from [197].  

 

2.9 Cell culture 

For in vitro experiments primary pancreatic tumour cells from individual tumours were 

generated as described (2.9.1). The cells were cultured in Dulbecco’ s Modified Eagle 

Medium (DMEM) supplemented with 2mM L-glutamine, 10% fetal bovine serum (FBS), 

25U/ml penicillin and 25µg/ml streptomycin. Glucose concentrations are indicated in the 

results section and either 4.5g/l or 1g/l glucose were used. For maintenance the cells were 

kept in exponential growth phase and were routinely passaged 2/week. Cells were cultured 

in a humidified incubator at 37°C with 5% CO2 and ambient O2. From these stock cultures 

cells were taken for further experiments.  

 

2.9.1 Generation of cell lines 

Several cell lines were generated from tumours of individual mice and indicated 

genotypes. A tumour piece of approx. 3x3x3mm was minced with scalpels and re-

suspended in 10ml DMEM supplemented with 2mM L-glutamine,  20% FBS, 25U/ml 

penicillin, 25µg/ml streptomycin and 200µg/ml gentamycin. The tumour suspension was 

then left undisturbed under standard cell culture conditions (see 2.9) for 72h to allow cell 

adhesion to the culture dish. Thereafter medium was changed regularly 2/week until cells 

reached confluence (approx. 2-3 weeks). Subsequently the cells were passaged to larger 

cell culture dishes. Cell lines were frozen in FBS + 10% DMSO in liquid nitrogen after 

initial expansion. Established stock cell lines were grown in DMEM supplemented with 

2mM L-glutamine, 10% FBS, 25U/ml penicillin and 25µg/ml streptomycin. Early stocks 

of cells were used for experiments.   
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2.10 Immunofluorescence 

Cells were seeded on glass cover slips at equal densities in DMEM 1g/L glucose and 

cultured in exponential growth phase for 24h prior to fixation. For fixation medium was 

removed and then ice-cold methanol was added for 15min. During the fixation process the 

cell culture plates were kept at -20°C. Thereafter all plates (containing the cover slips with 

adherent and fixed cells) were washed 3x in PBS. Then a blocking step for 1h in PBS with 

3% BSA followed. For antigen visualization the coverslips were incubated “sunny side 

down” on a 25ul primary antibody solution drop (1:250 in PBS + 3%BSA; Cell Signaling, 

LC3B, #2775; New England Biolabs, Herts, United Kingdom) on parafilm for 24h at 4°C 

in the dark. Thereafter the coverslips were dipped several times in a large volume 

(>200ml) of PBS to wash away unbound primary antibody and then incubated as above in 

fluorescently labelled secondary antibody (1:800 in PBS + 3% BSA; Alexa Fluor® 488 

Donkey Anti-Rabbit IgG (H+L), A-21206, Life Technologies Ltd, Paisley, United 

Kingdom) for 2h at room temperature in the dark. After another wash step, the coverslips 

were mounted on glass slides using mounting medium that contains (1µg/ml) 4',6-

diamidino-2-phenylindole (DAPI) to visualize nuclei. Cells were imaged using a Zeiss 

Axioplan 2/ISIS confocal microscope (Carl Zeiss Ltd., Cambridge, United Kingdom) with 

the help of Margaret O’Prey (Beatson Institute for Cancer Research, Glasgow). 

 

2.11 Protein Analysis 

Cells used for protein analysis were taken from “maintenance cells” growing in 

exponential growth phase for at least 48h prior to the experiment and with regular medium 

change every 48-72h.  

 

2.11.1 Protein Extraction 

Cells were washed at least once in ice cold 1X PBS before incubation in cell lysis buffer 

for 30min on ice. The cell lysis buffer was prepared freshly for each experiment from a 

stock solution (50mM HEPES, 150mM NaCl, 100mM NaF, 10mM EDTA, 10mM 

Na4P2O7*10H20, 1% Triton X, 0.1% SDS) with freshly added protease inhibitor cocktail 

tablets (for 10ml lysis buffer one “complete, Mini Protease Inhibitor Cocktail Tablet”, 
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11836 153 001, Roche). 500ul lysis buffer was used to lyse an approx. 50% confluent 

100mm tissue culture dish. Cells were collected with a plastic scraper and the lysate 

transferred to 1.5ml microcentrifuge tubes. Lysates were then agitated in an Eppendorf 

Thermomixer at 4000rpm for 15min at 4°C and centrifuged at 12000g for 15min at 4°C. 

Thereafter the supernatant was transferred to fresh microcentrifuge tubes and stored at        

-80°C before further use. A small part of the lysate was put aside for protein quantification 

using the bicinochonic acid (BCA) method.  

 

2.11.2 Protein separation / Polyacrylamide Gel 
Electrophoresis (SDS-PAGE) 

Proteins were separated according to length and mass-to-charge ration using denatured 

conditions. Briefly, 14µg protein lysate in 10µl lysis buffer (see 2.11.1) were mixed with 

10µl 2x sample buffer (100mM TRIS pH 6.8, 2% SDS, 5% β-mercaptoethanol, 15% 

glycerol, trace amounts of bromophenol blue), boiled at 95°C for 5min and then loaded 

onto a freshly prepared gel composed of an upper stacking layer (4% acrylamide, 125mM 

Tris-HCl pH6.8, 0.1% SDS, 0.05% ammonium persulfate (APS), 0.1% N, N, N', N'-

tetramethylethylenediamine (TEMED) and a lower separating layer (15% acrylamide, 

375mM Tris-HCl pH8.8, 0.1% SDS, 0.05% APS, 0.1% TEMED). A 30% stock solution of 

37.5:1 parts acrylamide:bisacrylamide was used to pour gels. Proteins were resolved by 

applying a constant current of 400mA for approx. 2h.  

 

2.11.3 Protein Immobilisation 

Following polyacrylamide gel electrophoresis proteins were immobilized on a 

polyvinylidene fluoride (PVDF) membrane. A wet-transfer system was used and a constant 

current of 2A was applied for 1h to transfer the proteins from the polyacrylamide gel onto 

the PVDF-membrane.  
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2.11.4 Protein detection 

Non-specific binding-sites on the PVDF membrane were immediately blocked by 

incubation for 1h in blocking buffer (TBS-Tween 0.1%, 3% BSA) at room temperature. 

Next the membrane was rinsed 3x in wash buffer (TBS-Tween 0.1%), followed by three 

wash steps for 10min each in wash buffer. Then the membranes were incubated with 

primary antibodies at the indicated dilutions (see below) in PBS+3% BSA at 4°C 

overnight. Thereafter the antibody solution was removed and another washing step as 

before followed. Incubation in horseradish peroxidase (HRP) conjugated secondary 

antibody (Anti-rabbit IgG, HRP-linked Antibody, #7074, Cell Signaling; Anti-mouse IgG, 

HRP-linked Antibody, #7076. Cell Signaling) at a dilution of 1:3000 was for 1h at room 

temperature. After thorough washing the protein-antibody conjugate was visualized by 

chemiluminescence on autoradiographs using ECL Western Blotting Substrate. 

Densitometry using ImageJ software (http://rsb.info.nih.gov/ij/index.html) was used as a 

surrogate marker of protein levels. 

Antibody Clone Cat# Dilution Supplier 
Atg7  Sc33211 1:1000 Santa Cruz Biotechnology 
LC3B  CS2775S 1:1000 Cell Signaling 
P38  CS9212 1:1000 Cell Signaling 
 

   

2.12 Autophagic Flux analysis 

To measure autophagic flux, four p53-proficient and four p53-deficient pancreatic cancer 

cell lines, generated as detailed above (2.9.1), were used. Cells were seeded at equal 

density in medium containing 1g/L glucose and grown for 24h. For flux analysis lysosomal 

protease inhibitors Leupeptin (20µm) and NH4Cl (20mM) were added for 15min as 

indicated and then the cells were harvested into cell lysis buffer (see 2.11.1) immediately 

and subjected to Western-Blot analysis. The LC3-II/p38 ratio of individual cell lines was 

determined using densitometry with ImageJ software, and then averaged for genotype and 

treatment.  

 

http://rsb.info.nih.gov/ij/index.html
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2.13 Metabolic analysis 

 

2.13.1 Oxygen Consumption Rate (OCR) & Extracellular 
Acidification Rate (ECAR) 

OCR and ECAR were measured in a Seahorse FX24 Flux Analyzer (Seahorse Bioscience, 

Massachusetts, USA) from cells generated as described above. Tumour cells were grown 

in exponential growth phase for at least 24h in regular cell culture medium (1g/L glucose) 

and for experiments seeded at a target density of 10000 cells/well 12-24h prior to 

measurement in 24-well Seahorse plates. 1h before measurement in the Flux Analyzer 

medium was thoroughly aspirated and replaced with specialized, buffer-free, flux-medium 

(XF Assay Medium, 102352-000, Seahorse Bioscience) supplemented with 2% FBS, 1g/l 

glucose, and 1mM L-glutamine. The cells were kept at 37°C at ambient atmosphere for 1h 

to allow equilibrium and then placed into the Flux Analyzer to determine OCR & ECAR. 

Antimycin A to block mitochondrial respiration and 2-Deoxy-D-Glucose (2-DG) to block 

glycolysis were added automatically by the Flux-Analyzer were indicated. Raw-data was 

normalized to cell number. Normalized values of several individual cell lines from each 

genotype were averaged to obtain OCR and ECAR values. Values are expressed as average 

+/- SEM. The data is representative of no less than 3 independent experiments. 

 

2.13.2 Massspectrometry of metabolic intermediates 

Exo- and endo-metabolites were measured by LC-MS (Liquid Chromatography Mass 

Spectrometry) from cells grown in DMEM (10% FCS, 1mM L-glutamine, 0.11g/L 

pyruvate and P/S) supplemented with 4.5g/L glucose for endometabolites or 1g/L glucose 

for exometabolites. All assays were done with cells in logarithmic growth phase. Every 

cell line was seeded in triplicates and no less than 5 different biological replicates were 

used for each genotype. For measurement of 2-DG uptake cells were grown in DMEM 

(10% FCS, 1mM L-glutamine, 0.11g/L pyruvate and P/S) supplemented with 1g/L glucose 

and incubated for 6h with 10mM 2-DG. To measure metabolites 50000 cells/well were 

seeded in a 6-well plate and 24h later medium was exchanged with fresh medium. Then, 

after 24h supernatant was harvested to analyse endometabolites. 50µl supernatant were 

diluted with 150 MilliQ-water and 600µL acetonitrile. Samples were then shaken at 
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1400rpm for 15min at 4°C and then centrifuged for 15min at 14000g. Supernatants were 

stored at -80°C for 24h and then analysed by LC-MS. Exometabolites were harvested from 

cells with extraction solution (50% Methanol, 30% Acetonitrile, 20% MilliQ water) after 

removal of the supernatant and three washes with PBS. The volume of the required 

extraction solution was adjusted to 1x106 cells/ml. Extraction volumes were calculated 

from equally treated “counter wells”. All extractions were done using ice-cold reagents, 

pre-chilled tubes and pre-chilled centrifuges. For statistical analysis no less than 5 

biological replicates (taken in triplicates) for each genotype were compared. Metabolites 

were separated using the Thermo Scientific (Hemel Hempstead, UK) Accela liquid 

chromatography system. A ZIC-pHILIC column (Merck, Germany) was used for LC 

separation using gradient elution with a solution of 20mM ammonium carbonate, with 

0.1% ammonium hydroxide, and acetonitrile. Metabolites were detected using a Thermo 

Scientific Exactive high resolution mass spectrometer with electrospray (ESI) ionization, 

examining metabolites in both positive and negative ion modes, over the mass range of 75-

1000 m/z. Data acquisition and processing was done by Gilian McKay (Beatson Institute 

for Cancer Research, Glasgow). 

 

2.13.3 FDG-PET/CT 

All mice were fasted before FDG imaging. At 4-6 h before imaging all mice were given an 

intravenous injection of Fenestra LC iodine based liver contrast (Advanced Research 

Technologies, Canada). Mice were anesthetized and given an intravenous bolus of 18F-

FDG (~4MBq). After an uptake phase of 30min, positron emission tomography (PET) and 

computed tomography (CT) images were acquired using an Albira scanner (Bruker, 

Billerica, MA, USA). Static PET acquisitions were performed for 5minutes and 

reconstructed using the MLEM algorithm with 12 iterations. CT data was acquired for 12 

minutes in high-resolution mode (600 projections) using 45kV and 0.2mA settings. Fused 

PET-CT images were analysed using PMOD software (PMOD Technologies Ltd, Zurich, 

Switzerland) to perform qualitative and quantitative assessments of the data. FDG uptake 

was quantified by calculating the ratio of the maxim SUV (standardized uptake value) 

within the tumor to the mean SUV within a reference tissue (liver). Data acquisition and 

processing was done by Agata Mrowinska (Beatson Institute for Cancer Research). 

 



50 
 
2.14 Statistics 

Statistical analysis was done using PASW statistics (IBM, Armonk, New York, USA). 

Kaplan-Meier survival curves and boxplots were created with PASW statistics software 

and exported into Adobe Illustrator software (Adobe Systems Incorporated, San Jose, CA, 

USA). All other graphs were done using both Excel (Microsoft, Reading, Berkshire, 

United Kingdom) and Adobe Illustrator. Details about the statistical tests used for certain 

experiments are provided in the legend to each graph.  
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3 Results 

 

3.1 Effects of genetic deletion of autophagy in the 
pancreas 

3.1.1 Pdx1-Cre efficiently recombines the Atg7flox/flox and 
Atg5flox/flox alleles 

We first questioned the impact of autophagy deletion in the pancreas. To this extend we 

crossed Pdx1-Cre mice with Atg7flox/flox animals to obtain Pdx1-Cre Atg7+/+, and Pdx1-

Cre Atg7-/- mice. Pdx1-Cre Atg7-/- mice were born viable without any visible defects and 

developed normally before the clinical onset of pancreatic disease at approx. 3 month of 

age (see below).   

Histological examination of pancreata from adult mice showed, as expected, mosaic 

recombination in the exocrine compartment of the pancreas, i. e. autophagy-deficient and 

autophagy-proficient tissue exist in parallel in Pdx1-Cre Atg7-/- animals (Figure 3). A 

characteristic immunohistological staining pattern with three different antibodies was used 

to discern wild-type from autophagy deficient areas (Figure 3) [159]. Recombined tissue 

did not show any immunoreactivity with Atg7 antibody, enhanced & aggregated p62 

staining, and strong cytoplasmic, homogenous LC3-staining. In contrast, in autophagy-

proficient areas the staining pattern was as follow: strong cytoplasmic for Atg7, 

cytoplasmic & distinct punctate for LC3 and absent to low for p62 (Figure 3) [159]. 

Homogenous LC3-staining as opposed to a punctate pattern reflects the accumulation of 

the non-autophagosome-bound, dispersed cytoplasmic LC3-I. LC3-puncta represent the 

autophagosome-bound form of LC3: LC3-II. Of note, occasionally, large and round LC3 

structures were seen in Atg7-null tissue. As has previously been reported, these are LC3-I 

aggregates and not an indication of autophagosome formation [102], [171]. Similar to the 

results in Pdx1-Cre Atg7-/- mice, we saw mosaic recombination in Pdx1-Cre Atg5-/- 

animals with homogenous LC3-I staining, as well as p62-accumulation and aggregation in 

autophagy-deficient tissue (Figure 4). We did not have antibodies that worked in IHC 

against Atg5 or Atg12 at our disposal and therefore solely had to rely on a combination of 

LC3 and p62 staining to assess recombination in these mice. Due to the special features of 

each immunohistochemistry this is sufficient to discriminate between autophagy-

competent and autophagy-incompetent tissue.   
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Figure 3: Histological characterization of Pdx1-Cre Atg7-/- pancreata. 
Serial sections of the same region of a pancreas from a 150d old mouse stained with 
Hematoxylin-Eosin (HE), Atg7, LC3, p62, p53 and caspase-3 are shown. For each staining 
an overview panel (4x magnification) and 2 higher magnification panels (20x, 40x), as 
well as a magnified cropped region to show specific staining patterns are provided. The 
rectangles identify the zoomed areas. Recombined regions (Atg7-/-) are mosaic and can be 
identified by a lack of Atg7 immunoreactivity, combined with diffuse LC3 staining and 
p62 accumulation and aggregation in the same part of the pancreas. P53 accumulation and 
caspase-3 activation are confined to recombined regions and cannot be seen in Atg7+/+ 
areas. Non recombined, i. e., Atg7-proficient (Atg7+/+) have a strong Atg7-staining 
combined with a distinct punctate LC3-staining pattern and lack p62-accumulation. Scale 
bars represent 500µm (4x panels), 100µm (20x) or 50µm (40x).  



 
 

 

Figure 4: Loss of Atg5 in the pancreas mimics the phenotype of Atg7-loss. 
Serial sections of the same pancreatic region stained with HE, LC3, p62, p53 and caspase 3 showing Atg5-/- next to Atg5+/+ areas after Pdx1-Cre 
mediated mosaic recombination in a 101d old mouse. Recombined tissue (-/-) is in the lower right corner and Atg5-wt tissue in the upper right corner of 
the panels. Representative regions (+/+ and -/-) are cropped (from the area identified by the rectangle) and provided underneath the main panels.  Like 
their Atg7-/- counterparts Atg5-/- areas show strong diffuse staining for LC3, p62 aggregates, have increased levels of p53 and caspase-3 activation. Non-
recombined have a distinct, punctate LC3 staining pattern, do not accumulate p62 or p53 and do not activate caspase-3. Scale bars represent 50µm.   
 

  



 
 
3.1.2 Genetic ablation of autophagy in the pancreas reduces 

survival 

We were interested to learn how autophagy-deletion in the pancreas impacts on survival 

and therefore conducted a Kaplan-Meier survival analysis of Pdx1-Cre Atg7+/+ and Pdx1-

Cre Atg7-/- mice (Figure 5). Animals were either sacrificed when they showed signs of 

disease (compare 2.1) or reached 500d of age. Approx. 60% of Pdx1-Cre Atg7-/- mice 

became sick at a median age of 110d and had to be culled. Clinically they presented with a 

hunched posture, inappetence, piloerection and dehydration. These mice also suffered from 

polyuria (increased urination frequency), because the bedding was frequently found to be 

wet in cages that housed Pdx1-Cre Atg7-/- mice. Roughly 40% of animals had life spans 

comparable to wild-type mice and were culled in good health at the end of the experiment. 

We did not observe a gender specific bias in Pdx1-Cre Atg7-/- mice (Figure 5). As 

expected, Pdx1-Cre animals virtually did not show any signs of disease during the 

experiment. Similar results were obtained when comparing cohorts of Pdx1-Cre to Pdx1-

Cre Atg5-/- mice (Figure 6). 
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Figure 5: Loss of Atg7 in the pancreas increases mortality. 
Shown is a Kaplan-Meier analysis comparing overall survival of mice either wild-type 
(blue) or Atg7-/- (red) in the pancreas. Median survival +/- SDEV, number of mice (n) and 
male/female (m/f) are provided in the table. A log-rank test (Mantel-Cox) was used for 
statistical analysis. “n/a#”: 14/16 animals were culled > 500d when completely healthy.  
 

  



56 
 

 

Figure 6: Loss of Atg5 in the pancreas increases mortality.   
Kaplan-Meier analysis comparing overall survival of mice either Atg5+/+ (blue) or Atg5-/- 
(red) in the pancreas. Note the Atg5+/+ cohort is the same cohort as the Atg7+/+ cohort in 
Figure 1d (blue). These are Pdx1-Cre but otherwise wild-type mice. Median survival +/- 
SDEV, number of mice (n) and male/female (m/f) are provided in the table. A log-rank test 
(Mantel-Cox) was used for statistical analysis. As in Pdx1-Cre Atg7-/- mice loss of Atg5 
reduces survival in a large proportion of mice.  
  

 

  



57 
 
3.1.3 Pancreas specific deletion of autophagy causes destruction 

of endocrine and exocrine tissue 

In order to understand the histopathological features that underlie the strong differences in 

survival we sacrificed Pdx1-Cre and Pdx1-Cre Atg7-/- mice at fixed time points between 

35d and 150d of age and harvested pancreatic tissue for histological analysis (Figure 7, 

Figure 8). Whereas both the endocrine (Figure 8) and exocrine (Figure 7) compartment 

never showed any morphological irregularities in Atg7-wild-type mice at all times, there 

were striking anomalies in Pdx1-Cre Atg7-/- pancreata, especially at later time points. 

H&E stained sections revealed that normal pancreatic architecture was disrupted and an 

inflammatory cell infiltrate was present. Exocrine tissue was homogenous and glassy in 

appearance and cells seemed vacuolated on occasion, all of which are histological features 

of necrosis (Figure 7). Furthermore, especially at later time points the islets of Langerhans 

showed a grossly distorted morphology, i. e. ballooning of cells and vanishing of cell 

borders, again consistent with necrosis (Figure 8). Notably, histological changes appeared 

to be more extensive in endocrine tissue compared to the exocrine compartment, which 

retained its regular morphology to a certain degree. In addition, normal, i. e. non 

recombined acini were present in Pdx1-Cre Atg7-/- pancreata (compare Figure 3). This is 

in line with the mosaic expression pattern of Pdx1 especially in exocrine pancreatic tissue. 

In adult animals Pdx1 expression is virtually restricted to islet cells, where mosaicism is 

less pronounced [45], [67], [80]. Similar results were obtained from Pdx1-Cre Atg5-/- mice 

(Figure 4).  

We intended to shed light on the molecular factors that contribute to the pancreatic 

destruction in Pdx1-Cre Atg7-/- mice. P53 is an important inducer of cell death [120] and 

has been reported to interact with Atg7 [105]. Mice culled at fixed time points between 35-

150d of age were analysed (Figure 7, Figure 8). We found a striking induction of nuclear 

p53 in autophagy deficient, exocrine tissue but not in non-recombined areas (Figure 7). 

P53 accumulation was most pronounced at 35d of age and then declined and reached a 

plateau at later times (Figure 7, Figure 9). A similar spatio-temporal activation pattern was 

seen for cleaved caspase-3, which is a central executioner of apoptotic cell death [103] and 

is also involved in necrotic cell death [120] (Figure 7, Figure 9). The percentage of p53-

positive cells was always higher than the corresponding value for cleaved caspase-3 

(Figure 9). Interestingly, neither significant p53 accumulation nor cleaved caspase-3 was 

detected at all times in endocrine tissue (Figure 8). In other words, despite showing 

extensive destruction, islets cells did not stain positive for p53 and cleaved caspase-3.  
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Similar results were obtained in Pdx1-Cre Atg5-/- mice (Figure 10), albeit a time line was 

not possible due to the relatively small number of available animals compared to the 

leading Pdx1-Cre Atg7 cohort. 

To determine if p53 and caspase-3 activation are a consequence or at least partly causative 

for the early death of Pdx1-Cre Atg7-/- mice, we interbred p53flox/flox animals (see 2.2.5) 

to generate and compare Pdx1-Cre p53+/+ Atg7-/- and Pdx1-Cre p53-/- Atg7-/- mice. 

Figure 11 shows that p53-deletion significantly delays the early death observed in the 

Pdx1-Cre Atg7-/- cohort but does not rescue it. Cleaved caspase-3 levels are reduced in 

acini of Pdx1-Cre p53-/- Atg7-/- animals when compared to the age-matched Pdx1-Cre 

p53+/+ Atg7-/- group. Most strikingly the early peaked activation of caspase-3 at 35d is 

absent in p53-/- animals (Figure 12).  

We did not observe caspase-3 activation in endocrine tissue in both groups. Animals in 

both cohorts showed the same clinical signs of illness such as inappetence and polyuria. 

This implies a) that the acinar cell death is partly the result of p53 accumulation and 

caspase-3 activation and b) that the death mechanism in endocrine cells does not involve 

the induction of p53 and caspase-3. Taken together all aforementioned results suggested 

that necrosis might be the leading cause of pancreatic destruction and that an additional 

death program involving p53 and caspase-3 exists in exocrine tissue that accelerates death 

of both the organ and the mouse.  

The combination of clinical signs and the histopathological findings with acinar and 

extensive islet-destruction raised the possibility that animals died from pancreatic 

insufficiency. From the results presented so far this was likely but we wanted to prove 

pancreatic dysfunction biochemically and discern between global (exocrine & endocrine), 

isolated exocrine or isolated endocrine insufficiency. We therefore secured blood plasma 

and stool samples from moribund and age matched healthy animals of the indicated 

genotypes (Figure 13). For obvious reasons it was not possible to faste sick mice before 

acquisition of blood samples and therefore mice were considered to be in a randomly fed 

state which could theoretically affect blood glucose levels. To compensate for this 

potential pitfall we included fructosamine in the analysis of endocrine pancreatic function. 

Fructosamine is a term for ketoamine products that stem from the attachment of 

carbohydrates to proteins. Fructosamine reflects an average of blood glucose levels over a 

period of 2 to 3 weeks and is independent of short-lived glucose spikes (that could 

potentially result from ingestion of food or intermittent starvation periods) [146], [179]. To 
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assess exocrine pancreatic function we relied on blood parameters (amylase, lipase, 

cholesterol, triglycerides) and faecal elastase. Amylase breaks down dietary starch into 

sugars. Lipase turns over lipids and as a direct result, blood lipid content (cholesterol, 

triglycerides) can be influenced by the exocrine pancreas. When purely relying on those 

two parameters to assess exocrine pancreatic function, results are sometimes complicated 

by the fact that the exocrine pancreas is not the only source of these enzymes. 

Additionally, it is also possible that enzyme levels appear to be normal, despite impaired 

exocrine function. For example it is plausible, that in a combination of exocrine 

insufficiency (which lowers blood enzyme levels) and pancreatitis (which increases blood 

enzyme levels) amylase and lipase levels are within the normal range [90], [118]. We 

therefore included fecal elastase as a reliable indicator of pancreatic exocrine function 

[183]. The combination of blood borne and faecal parameters allows an accurate 

evaluation of the exocrine compartment (Figure 13). 

Moribund Pdx1-Cre Atg7-/- animals had significantly elevated glucose and fructosamine 

levels compared to age matched wild-type controls. This proved impaired glucose 

metabolism in sick Pdx1-Cre Atg7-/- mice and the diagnosis diabetes is complemented by 

the previously mentioned clinical signs inappetence and polyuria. Exocrine function was 

not affected (Figure 13). Similar results were obtained for Pdx1-Cre Atg5-/- mice (Figure 

14).   

Pdx1-Cre p53-/- Atg7+/+ mice did not develop disease within 200d of life and had normal 

pancreatic morphology and function (Figure 15). In Pdx1-Cre Atg7-/- animals p53-deletion 

did not influence the impaired glucose homeostasis, i. e. when mice were moribund they 

were diabetic, regardless of p53 status (Figure 15). Exocrine function was again not 

affected in all genotypes.   

In summary moribund Pdx1-Cre Atg7-/- with or without p53 suffer from isolated 

endocrine pancreatic insufficiency. Seemingly, the exocrine compartment is functionally 

not compromised despite prominent histopathological abnormalities. Possible explanations 

for this result are a) mosaic recombination in acinar tissue and therefore healthy exocrine 

tissue in Pdx1-Cre Atg7-/- mice sufficient to maintain function, b) comparatively high 

regenerative potential of acinar cells compared to islet cells and c) strong recombination in 

the endocrine compartment that has very little potential to sustain injury [140], [28]. 
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3.1.4 Genetic ablation of autophagy in the pancreas does not lead 

to cancer 

It is important to mention that we did not observe pre-malignant lesions or invasive 

pancreatic cancer in Pdx1-Cre Atg7-/- mice aged up to 500d, regardless of p53 status. 

Also, in all Atg7-proficient animals pancreatic cancer did not occur during their lifespan, 

again regardless if p53 was present or not.  

 

 

 

 

 



 
 

 

Figure 7: Effects of loss of autophagy on pancreatic acinar tissue over time.  
Representative examples of pancreatic acinar tissue stained with HE, p53 and caspase-3 from mice of the indicated genotypes. Animals have been 
sacrificed at specified time points. In wt-acini (KRaswt/wt Atg7+/+) p53 and caspase-3 staining is virtually completely negative during all times. In 
Atg7-/- acinar tissue p53-levels and caspase-3 activation are strikingly enhanced and peaked at 35d of age. At later time points p53-levels and caspase-3 
activation are maintained albeit at a lower level (quantified in Figure 9). Scale bars represent 50µm.   
 



 
 

 
Figure 8: Effects of loss of autophagy on pancreatic endocrine tissue (islets) over time.  
Representative examples of pancreatic endocrine tissue stained with HE, p53 and caspase-3 from mice of the indicated genotypes that have been 
sacrificed at defined time points. For better identification islets are encircled in most panels. Wt-islets (left three columns) are histologically normal at all 
time points; p53 and caspase-3 staining is virtually completely absent. HE staining of islets in Atg7-/- islets (Pdx1 Atg7-/-, right three columns) shows 
progressive morphological disintegration over time. At 35d of age islets look histologically largely normal but cells balloon and progressively 
disintegrate over time. This destruction is not accompanied by significant p53-accumulation or caspase-3 activation in islets at all times. Notably all 
increases in p53 levels and caspase-3 activation are confined to acinear tissue. Scale bars represent 50µm.  



 
 
 

 

 

Figure 9: Quantification of p53 accumulation and caspase-3 activation in Atg7-/- acinar 
tissue over time. 
Quantification (median, SEM) of p53 (black) and caspase-3 (green) activation in Atg7-
deficient acinar tissue (Pdx1-Cre Atg7-/-) of mice sacrificed at the indicated time points.  
P53- or caspase-3 activation in wt-pancreas is virtually absent at all times.   
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Figure 10: Effects of Atg5 deletion on exocrine and endocrine pancreatic tissue. 
Shown are representative HE, p53 and caspase-3 images of Atg5-deficient exocrine and 
endocrine (islets) pancreatic tissue from mice with an average age of 113d show increased 
p53 and caspase-3 activity only in acinar tissue but not in islets. Notably islets (encircled) 
display the same destructive morphological changes as Atg7-/- islets. Scale bars represent 
50µm.  
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Figure 11: Additional deletion of p53-/- in PDX-Cre Atg7-/- animals delays early death. 
Kaplan-Meier analysis comparing overall survival of Pdx1-Cre Atg7-/- that are either 
p53+/+ (red) or p53-/- (black). Median survival +/- SDEV, number of mice (n) and 
male/female (m/f) are provided in the table. Additional deletion of p53 in Atg7-/- pancreata 
only delays the early death but does not rescue it completely.  A log-rank test (Mantel-
Cox) was used for statistical analysis.  
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Figure 12: The absence of p53 in Pdx1-Cre Atg7-/- mice abgrogates exocrine caspase-3 
activation but does not prevent exocrine and endocrine tissue destruction. 
A) Representative HE, caspase-3 images from Atg7-deficient exocrine and endocrine 
tissue that is either p53+/+ (left two columns) or p53-/- (right two columns). For each 
genotype and staining a lower magnification (20x) and a higher (40x) magnification panel 
is shown containg both exocrine (acini) and endocrine (islets, encircled in 40x pancels) 
tissue. Acinar caspase-3 levels are significantly reduced in p53-/- Atg7-/- pancreata 
compared to p53+/+ Atg7-/- pancreata. Islets are caspase-3 negative and show similar 
destructive morphological changes in both groups. B) Caspase-3 activation is quantified 
(Median, SEM) and statistical analysis was done using a Mann-Whitney U test. The 
male/female ratio is provided. Scale bars represent 100µm (lower magnification panels) 
and 50µm (higher magnification).    
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Figure 13: Biochemical profiling of Pdx1-Cre Atg7+/+ and Pdx1-Cre Atg7-/- mice. 
Biochemical analysis of islet (endocrine) function in moribund Atg7-/- mice (red) or age 
matched healthy ctrl mice (blue). Exocrine function as assessed by a combination of 
parameters: a) blood cholesterol, blood trigycerades, blood amylase, blood lipase and b) 
fecal elastase. These were not altered in moribund Pdx1-Cre Atg7-/- mice compared to age 
matched wt-mice. Detailed information about the mice used for biochemical analysis is 
provided in the tables. For statistical analysis a Mann-Whitney U test was used. 
“***”=p<0.001, “**” = p<0.01.  
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Figure 14: Biochemical profile of Pdx1-Cre Atg5+/+ compared to Pdx1-Cre Atg5-/- mice. 
Assessment of endocrine (glucose, fructosamine) and exocrine blood serum parameters 
shows a diabetic phenotype (increased glucose and fructosamine) in moribund Pdx1-Cre 
Atg5-/- animals but not their age matched Atg5+/+ counterparts. Exocrine pancreatic blood 
parameters are not altered in moribund Atg5-/- mice. Detailed information about both 
groups is provided in the table. For statistical analysis a Mann-Whitney U test was used. 
“***”=p<0.001. E) Fecal elastase levels as a read-out for pancreatic exocrine function are 
not different between both groups.  
 

 



69 
 

 

Figure 15: Loss of p53 in the pancreas does not affect survival or pancreatic function. 
A) Kaplan-Meier analysis comparing overall survival of mice that are either p53-proficient 
(blue) or p53-deficient (green) in the pancreas. Atg7 is wt in both cohorts. Detailed 
information about the cohorts is provided in the table. No death was observed for 200d and 
mice were sacrificed in complete health. B) HE staining from pancreatic tissue of p53+/+ 
and p53-/- animals (93d of age) is provided in a lower overview magnification (20x, top 
row) and a higher magnification (40x, bottom row). Morphology is not altered in p53-/- 
pancreata. Scale bars represent 100µm (lower magnification panels) and 50µm (higher 
magnification). C)Assessment of endocrine (glucose, fructosamine) and exocrine blood 
parameters shows a diabetic phenotype (increased glucose and fructosamine) in moribund 
Pdx1-Cre p53-/- Atg7-/- animals but not their age matched Pdx1-Cre p53-/- Atg7+/+ 
counterparts. Exocrine pancreatic blood parameters are not altered in ill mice. For 
statistical analysis a Mann-Whitney U test was used. “**”=p<0.01, “*”=p<0.05. Fecal 
elastase levels as a read-out for pancreatic exocrine function are not different between both 
groups. Detailed information about the mice is provided. 
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3.1.5 Conclusions: autophagy-deletion in the pancreas 

We used a pancreas specific Pdx1-Cre recombinase to delete either one of the essential 

autophagy regulating genes Atg7 or Atg5 in the pancreas of mice. This causes, primarily in 

the exocrine compartment, a mosaic loss of autophagy. In contrast, the endocrine cells are 

more universally affected. The absence of autophagy causes widespread damage of both 

pancreatic compartments and reduces overall survival of approx. 60% of mice. Tissue 

destruction showed morphological features of necrosis in both the exocrine and endocrine 

pancreas. The exocrine compartment possessed an additional p53-dependent cell death 

component that could be rescued by p53-deletion. Autophagy-compromised, moribund 

mice were diabetic, regardless of the p53 status but the exocrine function appeared normal 

in mice of all genotypes and health statuses. Signs of pancreatic premalignancy or overt 

pancreatic cancer were not detected in mice of all aged up 500d.  
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3.2 Effects of autophagy deletion in the pancreas in the 

presence of oncogenic KRasG12D 

Having established that autophagy-deletion does not cause cancer in pancreata that express 

two copies of wild-type KRas we next questioned what is the situation if an oncogenic 

version of KRas is present. The protooncogene KRas is mutated in the vast majority of 

human pancreatic cancer. Its oncogenic activation is believed to be one of the earliest 

events in the genesis of pancreatic ductal adenocarcinoma that triggers the event from 

PanIN formation to development of invasive cancer [72], [125], [34]. We therefore crossed 

Pdx1-Cre KRasG12D/wt mice (compare 2.2.2) that accurately recapitulate the PanIN to 

PDAC sequence of human pancreatic cancer [67] with Atg7flox/flox animals to create 

Pdx1-Cre KRasG12D/wt Atg7+/+ and Pdx1-Cre KRasG12D/wt Atg7-/- cohorts.  

 

3.2.1 Genetic ablation of autophagy in the pancreas in mice 
expressing oncogenic KRas reduces survival 

Kaplan-Meier survival analysis showed that virtually all mice in the Atg7-null cohort 

succumb to death before they reached 250d of age. In contrast the median overall-survival 

time in the Pdx1-Cre KRasG12D/wt cohort was 348 days (Figure 16). Importantly Figure 

16 includes all deaths, i. e. death from pancreatic cancer and death from alternative causes 

such as pancreatic insufficiency (see below) or benign papilloma growth exceeding the 

limits defined in the project license (1.5cm in any diameter) and others (compare 2.1). A 

Kaplan-Meier survival analysis adjusted to only include death from pancreatic cancer is 

discussed in 3.2.4.  
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Figure 16: Overall survival of Pdx1-Cre KRasG12D/wt mice with (red) and without (blue) 
additional deletion of Atg7. 
Kaplan-Meier analysis comparing overall survival of KRasG12D/wt mice that are either 
Atg7+/+ (blue) or Atg7-/- (red). Detailed information about the analysed mice is provided 
in the table. A log-rank test (Mantel-Cox) was used for statistical analysis.  
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3.2.2 Pancreas specific deletion of autophagy leads to enhanced 

PanIN formation in mice expressing oncogenic KRas 

Histological examination showed a drastic increase in ductal lesions in pancreata from 

150d old Pdx1-Cre KRasG12D/wt Atg7-/- mice when compared to organs from Pdx1-Cre 

KRasG12D/wt Atg7+/+ animals of the same age (Figure 17). On H&E stained sections 

these lesions showed morphological features reminiscent of premalignant PanIN: flat or 

papillary columnar or cuboidal cells with different degrees of nuclear abnormalities [168]. 

The Alcian blue/PAS stain specifically stains mucins and therefore can be employed to 

differentiate normal ductal cells (that do not produce mucins) from PanIN cells that 

generate mucins [67]. As shown in Figure 17 on serial sections of the same area virtually 

all lesions in Pdx1-Cre KRasG12D/wt Atg7-/- mice stain bright purple and are therefore 

confirmed to be PanINs both morphologically (H&E) and with a specific dye (Alcian 

blue/PAS). By comparison age-matched autophagy competent mice (Pdx1-Cre 

KRasG12D/wt Atg7+/+) have far fewer precursor lesions (Figure 17). Figure 17 shows for 

both genotypes serial sections of the same pancreatic region processed with different 

histological stains. All PanINs from Pdx1-Cre KRasG12D/wt Atg7-/- pancreata show the 

staining pattern for absent autophagy: no immunoreactivity with Atg7 antibody, 

homogenous cytoplasmic LC3 reactivity and p62-aggregation. In contrast Atg7-proficient 

PanINs stain strongly with Atg7 immunoglobulins, have distinct LC3-puncta and absent 

p62 immunoreactivity (Figure 17). Similar results were obtained from Pdx1-Cre 

KRasG12D/wt Atg5-/- mice compared to Pdx1-Cre KRasG12D/wt Atg5+/+ animals 

(Figure 18).  

It is noteworthy that PanIN are initiated by oncogenic KRasG12D and are therefore the 

result of Pdx1-Cre induced recombination. Theoretically if recombination of one locus 

(lox-Stop-lox KRasG12D) occurs in a cell, then all other loxP sites should also be excised 

(i. e. the Atg7flox/flox and Atg5flox/flox regions). Therefore all PanINs are expected to be 

of the same genotype and mosaicism in precursor lesions should not occur as it does in 

acini from Pdx1-Cre Atg7-/- mice. In this regard, we never observed autophagy-proficient 

PanINs as determined by immunohistochemistry in Pdx1-Cre KRasG12D/wt Atg7-/- mice.      

A quantification of PanIN numbers showed that in Pdx1-Cre KRasG12D/wt Atg7-/- the 

PanIN count is higher in the first 150d of age, with a peak in 60d old mice. At 200d the 

PanIN number drops to levels of the control group. PanIN numbers in Pdx1-Cre 
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KRasG12D/wt Atg7+/+ animals steadily rise with time and by 200d match the count in the 

Pdx1-Cre KRasG12D/wt Atg7-/- cohort (Figure 19). 

 

 

  

 



 
 

 

Figure 17: 
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Figure 17: Effect of PDX-Cre mediated Atg7-loss in the pancreas of mice expressing mutant KRasG12D.  
Serial sections of the same region of pancreata from a 150d old mice that expresses mutant KRasG12D in the pancreas and are either Atg7+/+ (left 3 
columns) or Atg7-/- (right 3 columns) stained with Hematoxylin-Eosin (HE), Atg7, LC3, p62. For each staining an overview panel (4x magnification) 
and 2 higher magnification panels (10x, 40x) are provided. For LC3 and p62 cropped region to show specific staining patterns are added. The rectangles 
identify the zoomed areas. Scale bars represent 500µm (low magnification panels), 200µm (medium magnification panels) and 50µm (high magnification 
panels). 



 
 

 

Figure 18: Loss of Atg5 in the pancreas of PDX-Cre KRasG12D/wt mice mimics the 
phenotype of Atg7-loss in pancreata expressing mutant KRasG12D. 
Representative sections stained with HE, AB/PAS, LC3, p62, p53 and caspase 3 of 
pancreatic tissue from on average 93d old mice. PanIN number is increased compared to 
autophagy-proficient pancreata expressing mutant KRasG12D (overview HE and AB/PAS 
panels). PanIN stain positive for Alcian blue/PAS, p53 and p21. Loss of autophagy is 
shown by p62 accumulation and a diffuse LC3-staining pattern. Islets in the overview 
panels are encircled. Scale bars represent 200µm (dotted) and 50µm (solid). 
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Figure 19: Comparison of total PanIN numbers in Pdx1-Cre KRasG12D/wt mice that are 
either Atg7-/- (red) or Atg7+/+ (blue) over time. 
Quantification of PanIN from mice of the indicated genotype aged 35-200 days. Fold 
increase and the male/female ratio are shown for each time point. For statistical analysis a 
Mann-Whitney U test was used. “**”=p<0.01, “*”=p<0.05. Error bars are STDEV. 
 

 

  



79 
 
3.2.3 Autophagy-deficient PanINs activate a cell death program 

As detailed before in chapter 3.1, Atg7-deletion in the pancreas resulted in a strong 

induction of p53 and caspase-3 in acinar cells of mice expression two copies of wild-type 

KRas. Oncogenic KRasG12D has been shown to induce a p53-dependent senescence 

program as a barrier to tumour formation [145] and autophagy has been implicated in the 

regulation of senescence [192]. We wanted to know if deletion of autophagy modulates 

p53-levels and caspase-3 activation in PanIN cells. We also questioned if PanINs in Pdx1-

Cre KRasG12D/wt Atg7-/- mice show evidence of senescence like their Atg7-proficient 

counterparts do. To this extend we stained pancreatic sections from Pdx1-Cre 

KRasG12D/wt Atg7+/+ and Pdx1-Cre KRasG12D/wt Atg7-/- mice 35-150d for p53, 

caspase-3 and the senescence markers Sa-β-Gal (senescence associated β-galactosidase) 

and the cyclin-dependent kinase inhibitor 1 (p21/WAF1). Exemplary pictures from 150d 

old mice are shown in Figure 17 and Figure 20. A quantification of both parameters was 

undertaken for mice aged 90-150d (Figure 21). Earlier time points could not be assessed 

due to the lower number of PanIN lesions in younger Pdx1-Cre KRasG12D/wt Atg7+/+ 

pancreata. P53 was readily activated in PanINs of both genotypes. However, the Atg7-

status did not significantly impact on p53 levels. In contrast caspase-3 levels were 

significantly enhanced in autophagy-deficient PanINs (Pdx1-Cre KRasG12D/wt Atg7-/-) at 

all times (Figure 21).  

Notably senescent parameters p21 and Sa-β-Gal were visible in PanINs of both genotypes, 

implying that Atg7 is not required for induction of the senescence program in PanINs 

(Figure 20). Similar results were obtained when comparing Pdx1-Cre KRasG12D/wt Atg5-

/- mice to their autophagy-proficient counterparts (Figure 18). Again, due to the 

comparatively small cohort compared to the leading Atg7 mice a time course analysis was 

not possible.   

 

 



 
 

 

Figure 20: Atg7-deficient PanINs show markers of senescence and activate a cell death program. 
Shown are representative p53, casp3, p21 and SaβGal stainings from 150d old mice of both genotypes. Scale bars represent 50µm (solid). 



 
 
 

 

Figure 21: Quantification of p53 and caspase-3 activation in PanINs.  
P53 and caspase-3 activation of the indicated genotypes were quantified (median, SEM) in 
mice of 90 and 150d of age. The male/female ratio is provided.  For statistical analysis a 
Mann-Whitney U test was used. “**”=p<0.01, “*” = p<0.05.    
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3.2.4 Genetic ablation of autophagy blocks development of 

pancreatic cancer  

After having histologically analysed all Pdx1-Cre KRasG12D/wt Atg7-/- samples we never 

found evidence of invasive cancer in these mice. A Kaplan-Meier survival analysis 

adjusted to only include death from pancreatic cancer is presented below in Figure 22. 

While in line with published data [67] roughly 1/3 of autophagy competent animals (Pdx1-

Cre KRasG12D/wt Atg7+/+) succumbed to death from PDAC at a median age of 484 days, 

not a single mouse in the Pdx1-Cre KRasG12D/wt Atg7-/- cohort had developed even 

microscopic evidence of pancreatic cancer. This was against the background of an up to 

100-fold increased pre-malignancy burden (Figure 19) very surprising.  

Considering that all Pdx1-Cre KRasG12D/wt Atg7-/- animals were dead just before the 

control colony started succumbing to PDAC we were left with two possibilities: a) Pdx1-

Cre KRasG12D/wt Atg7-/- do not form tumours or b) they could form tumours but die 

from pancreatic insufficiency similar to Pdx1-Cre Atg7-/- animals before a potential onset 

of cancer. To address this we took advantage of the PanIN progression model, i. e. PanIN 

start out as low grade PanIN1A/B and over time progress to more dysplastic PanIN2 and 3 

[70]. We quantified (with the help of Jennifer Morton, Beatson Institute of Cancer 

Research) the percentage of PanIN1A/B, 2, 3 relative to the total number of PanINs per 

histological section from mice of both cohorts with a median age of 150d (Figure 23). 

Whereas Pdx1-Cre KRasG12D/wt Atg7+/+ pancreata contain significant numbers of 

PanIN 2 and even high grade PanIN3, the overwhelming majority of PanIN in Pdx1-Cre 

KRasG12D/wt Atg7-/- mice are low grade PanIN1A/B, with occasional PanIN2 and 

virtually no PanIN3 (Figure 23). This argues that in an autophagy-deficient situation PanIN 

progression is blocked and as a consequence tumour development is impaired.  

Kaplan-Meier analysis comparing tumour free survival of Pdx1-Cre KRasG12D/wt 

Atg5+/+ vs Pdx1-Cre KRasG12D/wt Atg5-/- animals showed that a subset of mice lacking 

Atg5 in the pancreas live up to 500d without ever developing tumours (Figure 24). This 

strongly reinforces the notion that the absence of autophagy blocks the PanIN to PDAC 

progression in mice. In other words autophagy is required for tumour formation in this 

context.      
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Figure 22: Tumour free survival of Pdx1-Cre KRasG12D/wt Atg7+/+ compared to Pdx1-Cre 
KRasG12D/wt Atg7+/+ mice. 
Kaplan-Meier analysis comparing PDAC-free survival of KRasG12D/wt mice that are 
either Atg7+/+ (blue) or Atg7-/- (red). Detailed information about the analysed mice is 
provided in the table.  
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Figure 23: PanIN grading in Pdx1-Cre KRasG12D/wt Atg7+/+ and Pdx1-Cre KRasG12D/wt 
Atg7-/- mice. 
PanIN grading of pancreata from 150d old PDX-Cre KRasG12D/wt mice that are either 
Atg7+/+ (blue) or Atg7-/- (red). Detailed information about the analysed mice is provided 
in the table. For statistical analysis a Mann-Whitney U test was used. “**”=p<0.01, 
“*”=p<0.05. Error bars are STDEV. PanIN grading was done with help from Jennifer 
Morton (Beatson Institute for Cancer Research, Glasgow). 
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Figure 24: Tumour free survival of Pdx1-Cre KRasG12D/wt Atg5+/+ compared to Pdx1-Cre 
KRasG12D/wt Atg5-/- mice. 
PDAC-free survival of KRasG12D/wt mice that lack Atg5 (red) compared to autophagy-
proficient KrasG12D/wt mice (blue). Median survival +/- SDEV, number of mice and 
male/female (m/f) ratio are also provided. The number of mice succumbing to PDAC is 
shown (ev), followed by the total number (all) of mice of the same genotype. “n/a#”: none 
of the animals succumbed to PDAC. A log-rank test (Mantel-Cox) was used for statistical 
analysis.  
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3.2.5 Genetic ablation of autophagy in the pancreas in mice 

expressing oncogenic KRas causes endocrine but not 
exocrine dysfunction 

Having established that deletion of autophagy blocks pancreatic cancer development we 

were left to clarify the cause of the early death in Pdx1-Cre KRasG12D/wt mice that lack 

either both copies of Atg7 or both copies of Atg5. In analogy to the results obtained for 

Pdx1-Cre Atg7-/- (with two copies of wild-type KRas), we found that moribund Pdx1-Cre 

KRasG12D/wt Atg7-/- mice suffered from endocrine but not exocrine insufficiency 

(Figure 25). We did not have a sufficient number of samples to do a similar analysis in 

Pdx1-Cre KRasG12D/wt Atg5-/- animals. Considering previous data that implies a strong 

resemblance between deletion of Atg7 or Atg5, I would consider it likely that a similar 

situation exists upon deletion of Atg5. 
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Figure 25: Biochemical profiling of Pdx1-Cre KRasG12D/wt mice with and without genetic 
deletion of  Atg7. 
Assessment of endocrine (glucose, fructosamine) and exocrine blood serum parameters 
shows a diabetic phenotype (increased glucose and fructosamine) in moribund PDX-Cre 
KRasG12D/wt Atg7-/- animals but not in their PDX-Cre KrasG12D/wt Atg7+/+ 
counterparts. Exocrine pancreatic blood parameters are not altered in ill mice. Fecal 
elastase levels as a read-out for pancreatic exocrine function are not different between both 
groups. Detailed information about the cohorts is provided in the tables. For statistical 
analysis a Mann-Whitney U test was used. “**”=p<0.01, “*”=p<0.05. 
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3.3 P53-modulates the effects of autophagy on 

pancreatic cancer development  

In the previous chapters I have outlined how autophagy deletion blocks tumour formation 

in mice that expressed two copies of wild-type p53. We decided to interbreed p53flox/flox 

mice to Pdx1-Cre KRasG12D/wt Atg7+/+ and Pdx1-Cre KRasG12D/wt Atg7-/- animals to 

generate and compare Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+ and Pdx1-Cre 

KRasG12D/wt p53-/- Atg7-/- colonies. We also generated the respective Atg5 cohorts. In 

short we were interested to see how autophagy deletion impacts on pancreatic cancer that 

arises from p53-deficient cells for several reasons. A) PDAC develops rapidly in p53-/- 

mice [65], [68] and usually at a time before pancreatic insufficiency becomes clinically 

apparent in our model system. B) We have shown that Atg7-deletion leads to p53-

accumulation in acinar cells that are believed to be a potential source of cancer (via 

transdifferentiation into ductal and PanIN cells) [6], [169]. C) P53 has been shown to 

coordinate metabolic processes, including autophagy [187], [123], [48]. 

 

3.3.1 Simultaneous, genetic deletion of p53 and autophagy in 
pancreata expressing oncogenic KRas permits and 
accelerates tumour development 

Kaplan-Meier tumour-free survival analysis showed that as expected nearly all mice in the 

Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+ cohort succumb to PDAC with a median onset of 

69d (Figure 26). Surprisingly the Atg7-deficient control colony (Pdx1-Cre KRasG12D/wt 

p53-/- Atg7-/-) not only developed cancer in virtually 100% of cases but also had to be 

culled significantly earlier with a median survival time of 50d (Figure 26). Of note, 

censored animals in both colonies were found dead and showed too much decay upon 

dissection to properly assess if a tumour was present or not.  

Tumours developing in Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- were histologically 

confirmed to be autophagy-deficient (Figure 27). 

Our results implied that in a p53-deficient situation genetic loss of autophagy might 

accelerate tumour formation in stark contrast to the p53-proficient situation where 

autophagy inhibition completely blocked tumourigenesis. Since Kaplan-Meier survival 

data presented in Figure 26 essentially only refers to time of death (with evidence of 
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pancreatic cancer). It does not give information about the time of tumour onset or rule out 

that the early death in the Atg7-/- cohort is due to a combination of ill pancreatic health 

(pancreatic insufficiency) with just the additional presence of a tumour. To address these 

issues we sacrificed mice of both genotypes at fixed time points between 21 and 35d of age 

and recorded if a tumour was present or not, the animal weight and the tumour weight 

(Figure 28).  

At 21d of age, tumours were absent in both cohorts. However, 28d old animals in the 

Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- cohort had pancreatic cancer in about 70% of 

cases compared to <20% in the Atg7+/+ control group (Figure 28). Furthermore tumours 

had significantly greater mass in the Atg7-/- group, both in absolute values and relative to 

bodyweight. The bodyweight did not differ between groups. A similar picture is seen in 

mice sacrificed at 35d of age, with 100% of cases now having a tumour in the Atg7-/- 

cohort and only 67% in the control group. Again autophagy-deficient tumours are heavier 

(Figure 28). Figure 29 shows representative H&E sections from mice of both cohorts 

sacrificed at the indicated time points. At 21d of age PDAC is absent but PanINs are 

visible in both groups. Notably at that stage PanIN number is equal in both groups (Figure 

30). At 29d of age nearly all pancreatic tissue is comprised of tumour in the Atg7-/- cohort, 

with no evidence of invasive cancer in the Atg7+/+ control group. At 35d of age, tumour 

cells infiltrate still broadly present normal pancreatic tissue in Pdx1-Cre KRasG12D/wt 

Atg7+/+ mice whereas the “pancreas” is virtually 100% tumour in the Atg7-/- cohort 

(Figure 29). Taken together this data clearly shows that pancreatic cancer developed earlier 

in Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- animals compared to Pdx1-Cre KRasG12D/wt 

p53-/- Atg7+/+ mice. 

Biochemical analysis of endocrine and exocrine pancreatic function from mice that were 

moribund did not show a difference between both cohorts (Figure 31). In other words 

Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- mice did not suffer from endocrine dysfunction. 

This proved that animals represented in Figure 26 die from pancreatic cancer and 

especially that Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- mice did not die prematurely due to 

a failure of endocrine or exocrine function.    

Similar survival results were obtained in the respective Atg5 cohorts (Figure 32). Pdx1-Cre 

KRasG12D/wt p53-/- Atg5-/- mice developed cancer in 100% of cases with a very rapid 

median time to death of 26d compared to the 69d of the control group (Figure 32).  
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Histological examination proved that tumours in Pdx1-Cre KRasG12D/wt p53-/- Atg5-/- 

mice were indeed autophagy incompetent (homogenous LC3 pattern, p62 aggregation) 

(Figure 33). We did not perform biochemical analysis of the Atg5-/- mice due to the fact 

that they were too small (approx. 5g) to obtain enough blood. However, a median time to 

death of 25d with 100% of mice bearing a tumour almost certainly excludes pancreatic 

insufficiency.  Regardless of genotype we never observed clinical pancreatic insufficiency 

in any mouse that was not at least 1-2 month older. 
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Figure 26: Tumour free survival of Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+ vs mice Pdx1-Cre 
KRasG12D/wt p53-/- Atg7-/-. 
Kaplan-Meier analysis comparing PDAC-free survival in KRasG12D/wt p53-/- mice that 
are either Atg7+/+ (blue) or Atg7-/- (red). Median survival +/- SDEV, number of mice and 
male/female (m/f) ratio are provided in the tables. The number of mice succumbing to 
PDAC is specified (ev), followed by the total number (all) of mice of the same genotype. A 
log-rank test (Mantel-Cox) was used for statistical analysis.  
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Figure 27: PDACs from Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- mice are autophagy deficient.  
Pancreatic tumours of the indicated genotypes stained for Atg7, LC3 and p62. Strong 
diffuse LC3-stain, p62 accumulation and aggregation and the absence of Atg7 
immunoreactivity confirm that tumours arise from Atg7-/- tissue in the absence of p53. 
Inserts are magnified crops from the same images to show specifics of LC3 and p62 
staining. Scale bars represent 50µm. 
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Figure 28: Early tumour onset in Pdx1-Cre KRasG12D/wt p53-/- mice, when Atg7 is deleted. 
Tumour incidence in mice from the indicated genotypes, sacrificed at 21, 29 and 38d of 
age. Numbers in the diagram represent tumour bearing mice vs all mice. Significance was 
assessed with a Fisher’s Exact test. “*” = p<0.05. Weight of tumours (median, SEM) from 
mice of the specified genotypes culled at the indicated time points. For statistical analysis a 
Mann-Whitney U test was used. “**” = p<0.01. 
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Figure 29: Representative H&E images reflecting the different tumour onset in Pdx1-Cre 
KRasG12D/wt p53-/- Atg7+/+ and Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- mice. 
Shown are representative HE stainings of pancreata from the indicated time points and 
genotypes. Scale bars represent 200µm. 
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Figure 30: Comparison of PanIN numbers in 21d old Pdx1-Cre KRasG12D/wt p53-/- mice 
Atg7+/+ and Pdx1-Cre KRasG12D/wt p53-/- Atg7-/-. 
ATG7 deletion (red, n=5) does not increase the number of PanIN/mm2 tissue in mice 
sacrificed 21d after birth compared to ATG7 proficient mice of the same age (blue, n=3) 
Detailed information about mice used for the analysis is provided.  
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Figure 31: Biochemical profiling of tumour-bearing, moribund Pdx1-Cre KRasG12D/wt p53-/- 
mice +/- Atg7. 
All mice represented in this figure were moribund and had to be sacrificed because of 
malignancy. Assessment of endocrine (glucose, fructosamine) and exocrine blood serum 
parameters does not show a difference between both genotypes. Likewise fecal elastase 
activity is not different between both groups. Information about the cohorts is provided in 
the tables. 
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Figure 32: Tumour free survival of Pdx1-Cre KRasG12D/wt p53-/- Atg5++ vs Pdx1-Cre 
KRasG12D/wt p53-/- Atg5-/- mice. 
Kaplan-Meier analysis comparing PDAC-free survival of KRasG12D/wt p53-/- mice that 
are either Atg5+/+ (blue) or Atg5-/- (green). Median survival +/- SDEV, number of mice 
and male/female (m/f) ratio are provided in the tables. The number of mice succumbing to 
PDAC is specified (ev), followed by the total number (all) of mice of the same genotype. A 
log-rank test (Mantel-Cox) was used for statistical analysis. 
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Figure 33: PDACs from Pdx1-Cre KRasG12D/wt p53-/- Atg5-/- mice are autophagy deficient. 
HE, LC3 and p62 staining of a tumour from a PDX-Cre KRasG12D/wt p53-/- Atg5-/- 
mouse confirms that the tumour is arising from autophagy deficient tissue as evidenced by 
strong, diffuse LC3-staining and p62-accumulation. For each staining a representative 
overview and a magnified cropped region to show LC3 and p62 staining specifics are 
identified by a dotted rectangle. Scale bars represent 100µm.  
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3.3.2 Pharmacological inhibition of autophagy in Pdx1-Cre 

KRasG12D/wt p53-/- mice accelerates tumour development 

Considering that bi-allelic deletion of either Atg5 or Atg7 in Pdx1-Cre KRasG12D/wt p53-

/- mice drastically accelerates tumour onset proves that it is indeed the lack of autophagy 

rather than an autophagy-independent effect of Atg7 or Atg5 that is responsible for the 

observed phenotypes. If genetic inhibition of autophagy accelerates tumour onset in certain 

scenarios this challenges the assumption that it is a beneficial option to impair autophagy 

in tumour therapy at least under certain conditions. We wanted to verify the genetic data 

and see if we could reproduce the findings in Pdx1-Cre KRasG12D/wt p53-/- animals with 

pharmacological inhibition of autophagy by means of chloroquine (CQ) injection (Figure 

34). CQ is a drug that is historically used to prevent malaria but has sparked the interest of 

cancer researchers in recent years because it has shown tumour suppressive properties in 

certain settings, that have been at least partially attributed to its inhibitory effect on 

autophagy [93], [2]. CQ inhibits lysosomal function by increasing the pH within lysosomes 

and as a result autolysosomal content is not degraded, i. e. autophagy is blocked. It is 

important to mention that it is increasingly challenged if the cell death promoting effects of 

CQ are the results of autophagy inhibition or are the consequence of alternative functions 

of the drug [138]. Nonetheless, it still remains the only clinically, readily available drug to 

inhibit autophagy in vivo.   

Pdx1-Cre KRasG12D/wt p53-/- mice were treated from 28d of age with CQ or vehicle 

control (PBS) until mice had to be culled because of tumour burden. CQ was administered 

daily by intraperitoneal injection at a dose of 30mg/kg body weight until mice developed 

signs of pancreatic cancer (abdominal distension, inappetence, hunched appearance). In 

line with the genetic data, pharmacological inhibition of autophagy reduced the survival 

time (Figure 34). Importantly, all mice in the treatment and control group succumbed to 

PDAC. Representative histological, H&E stained sections are provided in Figure 35.  

To assess if pharmacological inhibition, like genetic deletion, of autophagy increases 

PanIN burden we treated Pdx1-Cre KRasG12D/wt mice from 60d – 90d of age with 

chloroquine. At the end of the experiment we did not detect any histological differences 

between the two groups (Figure 36) and PanIN numbers were equal in both cohorts (Figure 

36). CQ treatment did not impact on pancreatic function as assessed by biochemical 

analysis (Figure 36). When combining the genetic and pharmacological data it is unlikely 
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that an increased PanIN burden is the cause of the accelerated tumour onset in the 

autophagy deficient situation.        
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Figure 34: Chloroquine (CQ) treatment accelerates tumour onset in Pdx1-Cre KRasG12D/wt 
p53-/- mice. 
Shown is a Kaplan-Meier analysis comparing PDAC-free survival KRasG12D/wt p53-/- 
mice that are treated with chloroquine (CQ, red) or vehicle (PBS, black). Untreated mice of 
the same genotype are in blue. Median survival +/- SDEV, number of mice and 
male/female (m/f) ratio are provided in the tables. The number of mice succumbing to 
PDAC is specified (ev), followed by the total number (all) of mice of the same genotype. A 
log-rank test (Mantel-Cox) was used for statistical analysis. 
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Figure 35: H&E sections of tumours from Pdx1-Cre KRasG12D/wt p53-/- mice +/- CQ 
treatment. 
Histology of tumours from PDX-Cre KRasG12D/wt p53-/- Atg7+/+ mice treated with 
Chloroquine. Shown are HE stains of representative tumours from Pdx1-Cre 
KRasG12D/wt p53-/- Atg7+/+ mice treated with vehicle ctrl (PBS) or chloroquine (CQ). 
Scale bars represent 100µm. 
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Figure 36: Chloroquine treatment does not affect pancreatic morphology and function in 
Pdx1-Cre KRasG12D/wt p53+/+ mice. 
A) Representative HE images of pancreata from Pdx1-Cre KRasG12D/wt treated with 
vehicle control (PBS) or chloroquine from 51-59d of age for 36d. For each group an 
overview panel and a representative higher magnification panel of exocrine pancreatic 
tissue (acini), endocrine tissue (islets) and a PanIN is provided. Scale bars represent 200µm 
(dotted) and 50µm (solid). There are no histological differences between both groups 
evident. B) PanIN quantification. CQ-treatment does not alter the number of PanINs. C) 
Assessment of endocrine (glucose, fructosamine) and exocrine blood serum parameters 
does not show a difference between both genotypes. D) Likewise fecal elastase activity is 
not different between both groups. Information about the cohorts is provided in the tables.  
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3.3.3 Conclusion: Autophagy deletion in the pancreas expressing 

oncogenic KRas 

In the previous chapters I have presented data to indicate that the role of autophagy in 

pancreatic cancer development is intrinsically linked to the p53 status.  

In pancreata expressing mutant KRasG12D and two copies of wild-type p53 genetic 

impairment of either one of the essential autophagy genes Atg7 or Atg5 blocks the PanIN 

to PDAC progression; albeit autophagy inhibition leads to a temporary, drastic overload 

with premalignant lesions. Autophagy deficient PanINs readily execute the senescence 

response with p53 accumulation, p21 induction and enhanced activity of Sa-β-Gal. Unlike 

their autophagy competent counterparts they activate a cell death program as shown by 

activation of caspase-3. Like autophagy-incompetent mice expressing two copies wild-type 

KRas (Pdx1-Cre Atg7-/- or Pdx1-Ctr Atg5-/-), animals that harbour a single allele of 

oncogenic KRas and lack autophagy in the pancreas (Pdx1-Cre KRasG12D/wt Atg7-/-) 

succumb to death early from endocrine pancreatic dysfuntion. 

This situation changes drastically when autophagy was genetically inactivated or 

pharmacologically impaired in mice expressing oncogenic KRas and lacking both alleles 

of p53 in pancreatic cells (Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- or Pdx1-Cre 

KRasG12D/wt p53-/- Atg5-/-). The absence of p53 permits tumour formation in virtually 

all pancreata that were rendered genetically or pharmacologically autophagy-deficient and 

also significantly accelerated tumour onset. Importantly we have shown that all tumours 

from Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- (or Atg5-/-) animals arise from autophagy-

deleted tissue. Pancreatic function was not different between autophagy-competent vs 

autophagy-deficient cohorts, effectively ruling out pancreatic insufficiency as the cause of 

the early lethality.  

In summary loss of p53 switches autophagy from being a tumour promoter (p53+/+) to 

being a tumour suppressor (p53-/-).         
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3.4 Characterization of ATG7 proficient and deficient 

pancreatic tumours 

We were keen to understand how and why the p53 status dictates the role of autophagy in 

pancreatic cancer development. As detailed before p53 can regulate autophagy and 

important metabolic processes [123] and we therefore focused our analysis thereon.  

  

3.4.1 Loss of p53 reduces autophagy in pancreatic tumours 

To see how the p53 status impacts on autophagy in pancreatic cancer in vivo we stained 

sections from tumours that arose in Pdx1-Cre KRasG12D/wt p53+/+ and Pdx1-Cre 

KRasG12D/wt p53-/- animals and stained with an antibody against LC3 (Figure 37).  

Tumours from p53-proficient animals harboured more LC3-puncta compared to tumour 

tissue from p53-deficient mice, raising the possibility that tumours from p53-proficient 

animals have increased autophagy compared to p53-/- tumours (Figure 37). Of course 

enhanced LC3 punctation is only a reflection of increased autophagosome accumulation 

and does not prove increased autophagic flux, i. e. the complete degradation of 

autophagsomal content and not just the entrapment of cytoplasmic material within 

autophagosomes [144]. We therefore needed to devise a way that allowed functional 

analysis of tumour cells. To this extent several different tumour cell lines were generated 

from individual tumours of the genotypes indicated in Figure 38. Mirroring the in vivo 

results, tumour cell lines that were generated from p53-proficient PDACs had more LC3-

puncta (Figure 38a) and increased levels of the autophagosome bound LC3-II compared to 

p53-deficient cell lines (Figure 38b). We were also able to generate cell lines from Atg7-

deficient tumours (Pdx1-Cre KRasG12D/wt p53-/- Atg7-/-) and propagate them under the 

same conditions as autophagy competent cell lines (Figure 38b). To finally prove that p53-

null cells have indeed reduced autophagic flux we employed the lysosomal protease 

inhibitors leupeptin and NH4Cl (Figure 38c). If autophagy procedes to lysosomal 

degradation (and therefore “fluxes”) then LC3-II levels are increased after treatment with 

the aforementioned inhibitors. If autophagy is blocked before the formation of 

autolysosomes then inhibitor treatment does not affect LC3-II levels [144]. Treatment of 

cell lines from both groups (p53-proficient, p53+ vs p53-deficient, p53-) showed that LC3-

II levels increase after treatment, regardless of genotype (Figure 38c). This indicates that 

cell lines of both genotypes execute full autophagy (they “flux”). However, the average 
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increase of LC3-II (quantified relative to p38) is approx. 2-fold higher in the p53-proficient 

than in the p53-deficient group. This means that in the same time approx. twice as much 

autophagsomes are turned over in p53+/+ cells than in p53-/- cells (Figure 38c). Therefore 

autophagic flux is increased in tumour cell lines generated from a p53-proficient 

background. In combination with the notion that in Pdx1-Cre KRasG12D/wt p53-/- mice, 

autophagy-deficient tumours develop these results suggest that p53-deletion reduces the 

requirement for autophagy below a certain threshold at which it is dispensable for cellular 

survival.   
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Figure 37: Increased LC3-puncta accumulation in PDACs from Pdx1-Cre KRasG12D/wt 
p53+/+ compared to Pdx1-Cre KRasG12D/wt p53-/- mice. 
Tumours from Pdx1-Cre KRasG12D/wt p53-/- Atg7wt/wt exhibit fewer autophagosomes 
than tumours from Pdx1-Cre KRasG12D/wt p53+/+ Atg7wt/wt mice.  Representative IHC 
images showing punctate staining of LC3 are shown. 
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Figure 38: Autophagic flux is increased in cell lines generated from PDACs that developed 
in Pdx1-Cre KRasG12D/wt p53+/+ vs Pdx1-Cre KRasG12D/wt p53-/- mice. 
Maximum projection of 15 confocal slices from representative images of cell lines derived 
from PDX KRasG12D/wt ATG7+/+ tumours that either developed from a p53-positive 
(p53+ & ATG7+) or p53-negative background (p53- & ATG7+). ATG7-negative tumour 



109 
 
cells (p53- & ATG7-) do not show any punctate staining and serve as a negative control. 
LC3-puncta are shown as red puncta and DAPI was used as nuclear counterstain. Statistics 
were done with a non-parametric Mann-Whitney test counting the puncta of no less than 
50 randomly chosen cells of each cell line (n=8 for p53-/- cell lines, n=7 for p53+/+ cell 
lines). For statistical analysis a Mann-Whitney U test was used. “**”=p<0.01. Scale bars 
represent 10µm. Cell lines from tumours which developed  in the absence of p53 show 
lower levels of LC3-II compared to those that developed in p53-proficient tissue.  Each 
lane represents a cell line derived from an individual tumour of the indicated genotypes.  
Quantification of LC3-II levels is provided as bar graph.  c, Western blot and densitometry 
analysis shows greater LC3-II accumulation in p53-proficient than in p53-deficient cell 
lines after treatment with lysosomal protease inhibitors Leupeptin/NH4Cl indicating 
greater autophagic flux in the former. A quantification of the increase in LC3-II 
(densitometry LC3-II/p38, average + SEM) is provided. Statistical analysis was done with 
a t-test. “*” = p<0.05.  
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3.4.2 Atg7 deficiency increases glycolysis and anabolism in p53-/- 

tumours in vitro 

Autophagy fulfils critical functions in cellular homeostasis, energy production and 

provision of biosynthetic precursors of which there is a high demand in rapidly growing 

cancer cells [61], [48]. We hypothesized that if autophagy is lost then the tumour cells 

must have acquired alternative means to sustain their rapid growth. One such 

compensatory mechanism could be the promotion and modification of glucose utilization, 

both of which have been shown to be regulated by the p53 status (see 1.4.1).    

The Seahorse Bioscience XF24 Extracellular Flux Analyzer allows real-time and 

simultaneous measurement of two key determinant of energy metabolism in a microplate: 

a) ExtraCellular Acidification Rate (ECAR) as a likely readout of glycolysis and b) 

Oxygen Consumption Rate (OCR) as readout of mitochondrial respiration and oxidative 

phosphorylation (OXPHOS).  

We assessed a number of early passage Pdx1-Cre KRasG12D/wt p53-/- cell lines that were 

either autophagy-proficient (Atg7+/+, n=8) or autophagy-deficient (Atg7-/-, n=7) for OCR 

and ECAR (Figure 39a). We did not observe a statistically significant difference in OCR 

between cell lines of both genotypes (Figure 39a). In contrast ECAR was significantly 

elevated in autophagy deficient cell lines (Pdx1-Cre KRasG12D/wt p53-/- Atg7-/-) 

compared to autophagy proficient controls (Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+) 

(Figure 39b). ECAR only measures the extracellular acidification rate but it does not 

clarify what is the source of the pH drop. This can arise through: a) increased lactate 

production and secretion or b) other causes such as extracellular accumulation of ketone 

bodies. To complicate matters further lactate is primarily derived from fermentation of 

glucose but in certain scenarios can also be generated from glutamine [22]. 2-Deoxy-D-

Glucose (2-DG) competitively inhibits glycolysis by competing with glucose for 

membrane-bound glucose transporters and by inhibition of the first rate-limiting enzyme of 

glycolysis, hexokinase II [25], [188]. We monitored ECAR in real-time after addition of 2-

DG and observed a nearly complete obliteration of the ECAR difference between 

autophagy proficient (Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+) and autophagy deficient 

cell lines (Pdx1-Cre KRasG12D/wt p53-/- Atg7-/-) (Figure 39c). This dealt with the two 

aforementioned caveats of ECAR measurement. Our results implied that the increased 

ECAR in autophagy deficient cells was at least mostly due to enhanced lactate production 

and glucose seemingly was the main source of lactate.   
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Using a liquid chromatography mass spectrometry (LC-MS) to measure exometabolites 

(extracellular metabolites) and endometabolites (intracellular metabolic intermediates) we 

substantiated our characterization of glucose utilization in autophagy competent and 

incompetent cells. Gillian McKay (Beatson Institute for Cancer Research) analysed the 

samples and processed the data to a format compatible with Microsoft Excel. Analysis of 

exometabolites revealed that autophagy defective cells (Pdx1-Cre KRasG12D/wt p53-/- 

Atg7-/-) were marked by a higher glucose consumption as well as an increased lactate 

secretion compared to their autophagy proficient controls (Pdx1-Cre KRasG12D/wt p53-/- 

Atg7+/+) (Figure 40). Furthermore we found significantly elevated levels of glucose, 

intracellular intermediates of glycolysis (glucose-6-phosphate, pyruvate) and intracellular 

intermediates of the anabolic pentose phosphate pathway (ribose-phosphate, 

seduheptulose-7-phosphate) in autophagy deficient cells (Figure 40).  

The TCA cycle (compare 1.2.2) is an indispensable metabolic node that generates redox 

carriers and intermediates that fuel a variety of anabolic processes. Our aforementioned 

analysis of endometabolites included intermediates of the TCA cycle. These were not 

significantly different between Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+ and Pdx1-Cre 

KRasG12D/wt p53-/- Atg7-/- cells and therefore in our system the TCA cycle is seemingly 

not compromised in autophagy deficient cells (Figure 41). 

Taken together we have shown that autophagy deletion in p53-null tumour cells leads to 

increased glucose uptake that is in part used to fuel the anabolic pentose phosphate 

pathway. Importantly autophagy-deficient PDAC cells are able to maintain the TCA cycle 

and therefore to feed anabolic pathways.  
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Figure 39: Metabolic profiling of Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+ and Pdx1-Cre 
KRasG12D/wt p53-/- Atg7-/- tumour cells. 
Average Oxygen Consumption Rate (OCR, a) and ExtraCellular Acidification Rate 
(ECAR, b) of 8 Atg7+/+ (blue) vs 7 Atg7-/- (red) cell lines shows increased ECAR in 
autophagy-deficient cells. C) Treatment with 2-DG (10mM) reduces ECAR and abrogates 
the difference between cell lines derived from Atg7+/+ and Atg7-/- tumours. Antimycin A 
was added where indicated to block mitochondrial respiration.  
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Figure 40: LCMS analysis of exometabolites and endometabolites in autophagy proficient 
and deficient tumour cells. 
LC-MS analysis revealed increased glucose consumption from medium and extracellular 
lactate accumulation in Atg7-/- cell lines (red) and compared to Atg7+/+ cell lines (blue). 
LC-MS of intracellular glycolytic and pentose phosphate pathway intermediates shows 
enhanced accumulation in Atg7-/- tumour cell lines. A Mann-Whitney U test was used to 
ascertain significance. “**” = p<0.01, “*” = p < 0.05.  
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Figure 41: ATG7-deficiency does not reduce intracellular TCA-cycle intermediates or Acetyl-
CoA levels.  
Intracellular TCA-cycle metabolites were assessed by LC-MS and expressed as fold 
difference compared to ATG7+/+ tumour cell lines (Pdx1-Cre KRasG12D/wt p53-/-). 
Values represent the average of no less than 5 biological replicates measured in triplicates 
for each genotype. Error bars are SEM. Differences are not significant (“NS”, Mann 
Whitney U test).   
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3.4.3 Atg7 deficient tumours have increased glucose uptake 

compared to Atg7 proficient tumours in vivo 

Cells cultured in vitro switch their metabolism towards glycolysis and therefore it is often 

difficult to transfer results obtained from cell lines to the in vivo situation [79]. Positron 

emission tomography (PET) with the glucose analogue 2-[fluorine-18] fluoro-2-deoxy-D-

glucose (18F-FDG) as positron emitting tracer in combination with computed tomography 

(CT) allows the detection of tumours and quantification of regional glucose uptake. Inside 

the cell 18F-FDG is phosphorylated to 18F-FDG-6-phosphate and then cannot be 

metabolized further or exit the cell. Hence the activity of 18F-FDG is a good indicator of 

localized glucose uptake. Merging the information from 18F-FDG PET scans with CT 

images enables the accurate localization of regional glucose uptake within its anatomical 

context [89], [35].  

On occasion CT imaging is improved by using contrast agents to highten the contrast 

mainly of soft tissue. Fenestra LC (ART Advanced Research Technologies Inc., Canada) is 

commonly used for demarcation of the liver in CT scans [199]. Fenestra agents contain 

contrast-enhancing iodinated lipids in combination with special substances that cause these 

lipids to accumulate in the hepatobiliary system and thereby to enhance liver 

discrimination (http://www.art.ca/en/imaging-agents/technology.php/). Fenestra does not 

interfere with glucose uptake.  

We subjected tumour bearing Pdx1-Cre KRasG12D/wt p53-/-Atg7+/+ and Pdx1-Cre 

KRasG12D/wt p53-/- Atg7-/- mice to 18F-FDG PET/CT imaging to study the glucose 

uptake in vivo (Figure 42). Images were taken, quantified and exported to a format 

compatible with AMIDE imaging software (http://amide.sourceforge.net/) by Agata 

Mrowinska (Beatson Institute for Cancer Research, Glasgow). In line with physiological 

high glucose uptake in the brain, enhanced tracer accumulation in the heart and bladder 

signal intensity was high in these organs. Liver demarcation was well defined and the 18F-

FDG PET signal was homogenously low in mice of both genotypes. Importantly we were 

able to detect and quantify locally enriched 18F-FDG uptake in pancreatic tumours 

(marked by the cross in Figure 42). All three Atg7-/- animals had a higher SUVmax 

(maximum standardized uptake value) compared to Atg7+/+ animals (Figure 42) 

confirming that autophagy deficient tumours have increased glucose uptake in vivo. 

Importantly by using SUVmax (i. e. the highest signal intensity in the region of interest), 

http://www.art.ca/en/imaging-agents/technology.php/
http://amide.sourceforge.net/
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our quantification of 18F-FDG uptake is independent of tumour size and animal weight. In 

other words it is excluded that a higher value is merely the reflection of a larger tumour. 

We were also able to reproduce the in vivo findings with 18F-FDG PET in vitro with 2-

DG. After 6h treatment with 2-DG we harvested Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+ 

and Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- cell lines and measured intracellular 

accumulation of 2-DG and its metabolite 2-DG 6-phosphate (2-DG-6P) by liquid 

chromatography mass spectrometry (Gillian McKay). As expected, 2-DG and 2-DG-6P 

accumulated more in autophagy deficient than in autophagy competent cells (Figure 43).  

 



 
 

 

Figure 42: 18F-FDG PET/CT imaging of autophagy proficient and autophagy deficient tumour in vivo.  
Irrespective of genotype, local and physiological enrichichment 18F-FDG uptake can be seen in the brain, heart and bladder (due to the section only in 
the Atg7-/- mouse) in the sagittal and coronal views (middle and right panels, respectively). This is due to enrichment of 18F-FDG in the blood, the high 
glucose uptake in the brain, and the 18F-FDG excretion into the urin. 18F -FDG uptake is seen in pancreatic tumours (marked by the intersection of the 
translucent lines in each panel). The signal is much higher in Atg7-/- animals compared to Atg7+/+ mice. Quantification of 18F-FDG uptake in 3 ATG7 
wild-type and 3 Atg7-deficient mice, expressed as a ratio the ratio of the maxim SUV within the tumour to the mean SUV within a reference tissue (liver) 
is shown on the right.  



 
 
 

 

Figure 43: 2-DG uptake and phosphorylation in Atg7-/- and Atg7+/+ tumour cell lines. 
LC-MS analysis show increased accumulation of 2-DG and its metabolite 2-DG-6-
Phosphate in Atg7-proficient (blue) and Atg7-deficient (red) cell lines. 
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3.4.4 Conclusion: Role of autophagy in p53-deficient tumours  

We have shown in vitro and in vivo that tumours arising from p53-deficient tissue have 

decreased autophagy when compared to PDACs that developed in mice that had two 

copies of wild-type p53. This lead as to believe that in the absence of p53, the requirement 

for autophagy to sustain cellular survival is lowered beneath a certain threshold at which it 

was completely dispensible. At the beginning of this chapter (3.4) we postulated that 

autophagy deficient tumour cells have adopted mechanisms that compensate for the loss of 

autophagy and that a modified glucose metabolism might be part of it. Indeed we found in 

vitro and in vivo that in autophagy defective tumours glucose uptake is increased relative to 

autophagy competent tumours. Using a mass spectrometry approach we furthermore saw 

an enhanced accumulation of metabolic intermediates of the anabolic pentose phosphate 

pathway in cell lines generated from Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- PDACs 

compared to their Atg7+/+ counterparts. Importantly neither OXPHOS nor the TCA cycle 

were impaired in cell lines derived from Pdx1-Cre KRasG12D/wt p53-/- Atg7-/- cell lines 

compared to Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+ cells. In summary autophagy-

deficient tumour cells have increased glucose uptake and use it to fuel both glycolytic and 

anabolic pathways, which considering their function can theoretically replace some core 

traits of autophagy. 
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4 Discussion 

In my thesis I addressed the question how deletion of autophagy impacts on pancreatic 

cancer development in vivo. This is important because autophagy is increasingly being 

targeted in cancer treatment but that rationale is based on relatively little scientific in vivo 

data.  

By breeding mice that express a Cre recombinase under the control of the pancreatic 

transcription factor Pdx1 to different mouse strains that contain an inducible allele of 

oncogenic KRas (LSL-KRasG12D), floxed alleles of p53 (p53flox/flox), or floxed alleles 

of either Atg7 or Atg5 (Atg7flox/flox, Atg5flox/flox), we were able to generate different 

mouse cohorts to genetically dissect the role of autophagy in pancreatic cancer. 

We first confined our analysis to mice that express two copies of wild-type KRas. Here, 

genetic deletion of autophagy in the pancreas caused cell death with morphological 

features of necrosis in the endocrine and exocrine compartment. Autophagy-deficient 

regions are marked by an inflammatory infiltrate completing the histological diagnosis of 

chronic pancreatitis. Mareninova and colleagues reported that in pancreatitis autophagy is 

impaired. As a consequence of deregulated lysosomal hydrolases (cathepsins B and L) the 

fusion of autophagosomes with lysosomes is retarded. This results in an imbalance 

between trypsin and and its inactive form trypsinogen in acinar cells and causes acinar 

vacuolation and necrotic cell death [129], [52]. Autophagosome accumulation after 

chemical induction of pancreatitis with the cholecystokinin analogue cerulein was also 

reported by Hashimoto and colleagues [63]. In the same study, mice that expressed a Cre-

recombinase under the control of the rat elastase I promoter/enhancer (EL-Cre2) were 

crossed to Atg5flox/flox mice [62] (compare 2.2.4) to obtain animals that are autophagy-

deficient (mosaic) in acinar tissue. Notably EL-Cre2 is not expressed in islet cells. 

Chemically induced pancreatitis was markedly reduced in EL-Cre2 Atg5-/- pancreata 

compared to wild-type controls. Interstingly, when monitored for up to two month EL-

Cre2 Atg5-/- animals did not show signs of acinar destruction ([63]). In summary the 

studies by Mareninova and Hashimoto imply that impaired autophagic flux is at least 

partially responsible for the pathological events in pancretitis and that inhibition of the 

early steps of autophagy alleviates the severity of chemically induced pancreatitis [129], 

[63]. At first sight this is difficult to reconcile with the findings of my study in which 

genetic deletion of autophagy invariably leads to pancreatitis with acinar vacuolation and 

inflammatory infiltration. It is possible that Hashimoto and colleagues did not see 
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pancreatic destruction in EL-Cre2 Atg5-/- mice because animals have been monitored for a 

comparatively short time (2 month) and complete deletion of autophagy has not 100% 

been ascertained. It can also not be ruled out that the differences are caused by diverse 

effects of the Pdx1-promoter and the rat elastase I promoter/enhancer. It is also 

conceivable that chemically induced pancreatitis has a different, underlying 

pathophysiology compared to pancreatitis after prolonged, genetic inhibition of autophagy. 

In this regard it is worth mentioning that genetic ablation of autophagy in the lung causes 

inflammation (pneumonia) that is certainly caused by a different mechanism than the 

proposed trypsin/trypsinogen imbalance in pancreatitis because trypsin is not expressed in 

the lung [55].    

Apparently restricted to acinar cells, an additional p53 dependent cell death program 

contributed to pancreatic damage in Pdx1-Cre Atg7-/- mice. Added genetic deletion of p53 

delayed, but did not rescue the demise of the animal. Loss of p53 seemingly had no impact 

on the destruction of Atg7-negative islet cells.  This was not surprising when taking into 

account that in our model system a) dying endocrine cells never accumulated p53 and b) 

the morphological extent of islet destruction appeared similar during all time points in 

Pdx1-Cre Atg7-/- mice regardless of p53 status. It has been suggested that the severity of 

pancreatitis is reflected in the cell death mechanism that is activated in acinar cells. Mild 

forms of acute pancreatitis are associated predominantly with apoptotic cell death that is 

marked by caspase activation, whereas necrosis primarily marks severe forms of the 

disease [10], [53]. Caspases are not merely executors of apoptosis in the context of 

pancreatitis but have also been shown to protect from a possibly more detrimental necrotic 

cell death [130]. This is consistent with my finding that Pdx1-Cre Atg7-/- animals have an 

early activation peak of p53 and caspase-3 that later plateaus at a lower level. It is feasible 

that genetic loss of Atg7 causes damage to which cells initially respond with apoptosis 

induction. Since autophagy never recovers, acinar cell injury persists, is unresolved and 

cells switch to necrotic cell death. In line with my data, additional deletion of p53 in Pdx1-

Cre Atg7-/- mice (Pdx1-Cre p53-/- Atg7-/-) then would abrogate the initial apoptotic death 

component which could explain the delayed death in Pdx1-Cre p53-/- Atg7-/- animals 

compared to Pdx1-Cre p53+/+ Atg7-/- mice.   
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Biochemical analysis of pancreatic function substantiated the claim that it is primarily the 

endocrine compartment that cannot withstand deletion of autophagy. We only found 

evidence of endocrine but never of exocrine insufficieny in moribund mice were autophagy 

had been deleted in the pancreas. Numerous studies have shown the importance of 

autophagy for β-cell function and survival [82], [40], [33], [133]. By interbreeding mice 

that express a Cre-recombinase under control of the rat insulin gene (Rip) [46] to 

Atg7flox/flox mice [96] (compare 2.2.3) two groups independently generated mice with 

genetic deletion of autophagy in pancreatic β-cells [82], [33]. It was found that Rip-Cre 

Atg7-/- mice develop diabetes and that autophagy-deficient islets have gross 

morphological alterations that resemble the changes described in my study. Interstingly 

neither of the two studies reported decreased survival of diabetic mice aged for at least 20 

weeks [82], [33]. Possible explanations for the increased mortality of diabetic mice in my 

study could be that a) Rip-Cre does not recombine in all β-cells [46], or b) that the 

additional inflammatory component of the exocrine pancreas (pancreatitis) which is not 

present in Rip-Cre Atg7-/- mice tips the balance in diabetic mice towards death, or c) mice 

have been culled when the animals could still cope with the consequences of impaired 

glucose metabolism.  

In summary, genetic deletion of autophagy in the pancreas causes destruction of both, the 

endo- and exocrine compartment. Histological, survival and biochemical data identified the 

progressive destruction of the islets of Langerhans as the primary cause of increased 

mortality in mice with genetic deletion of autophagy in the pancreas. Early premalignant 

lesions (PanINs) or invasive cancer did not occur in mice aged > 500d.  

We then questioned the role of autophagy in mice expressing one allele of oncogenic 

KRasG12D. Pdx1-Cre KRasG12D/wt mice develop multiple PanINs of which only a few 

in approx. 1/3 of mice finally progress to invasive carcinoma between 300-500d of age 

[67]. Our own mouse colony of the aforementioned genotype (Pdx1-Cre KRasG12D/wt 

Atg7+/+) essentially resembled previously published data. Strikingly, if in addition 

autophagy was deleted by removal of either Atg7 or Atg5 (Pdx1-Cre KRasG12D/wt Atg7-

/- or Pdx1-Cre KRasG12D/wt Atg5-/-) PanINs accumulated drastically but never 

progressed to cancer during the lifespan of the mice. There are several possible 

explanations why PanINs accumulate in pancreata that express oncogenic KRas and have 

additional, genetic deletion of autophagy. A) Genetic deletion of autophagy leads to 

widespread pancreatic inflammation. Chronic pancreatitis has been shown to be required 

for PanIN formation and PanIN to PDAC progression in adult Pdx1-Cre KRasG12D/wt 
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mice. Furthermore pharmacological induction of chronic pancreatitis exacerbates PanIN 

formation in pancreata expressing oncogenic Ras [51], [49]. B) Loss of autophagy delays 

the onset of senescence [192]. It is conceivable that a delayed proliferation arrest allows 

more time to form PanINs. My study has not clarified the reasons for the PanIN 

accumulation. A possible way to address this would be to treat Pdx1-Cre KRasG12D/wt 

Atg7-/- or Pdx1-Cre KRasG12D/wt Atg5-/- mice with anti-inflammatory drugs to alleviate 

pancreatitis. Thereby it would be possible to discern if the increased PanIN numbers are 

inherently a consequence of genetic deletion of autophagy or secondary due to 

inflammation. Whatever is the cause for the drastic PanIN accumulation, in autophagy-

deficient pancreatic tissue, they all have in common an inability to progress to invasive 

cancer. It is currently unclear why autophagy-deficient PanINs that arise from a p53-

proficient background cannot progress to PDAC. A contributing component may be that 

PanINs from Pdx1-Cre KRasG12D/wt Atg7-/- and Pdx1-Cre KRasG12D/wt Atg5-/- mice 

initiate a cell death program that involves the activation of caspase-3 and leads to their 

progressive decline where as autophagy-proficient PanINs are less prone to death. 

Oncogenic KRas increases glucose uptake in pancreatic tumours and diverts glycolytic 

intermediates into the anabolic pentose phosphate pathway (PPP) [190]. Autophagy has 

been reported to be required to sustain the vital TCA-cycle [54], [189]. It is therefore 

tempting to speculate that autophagy-deficient PanINs do not progress, stay senescent and 

ultimately demise because of a compromised TCA cycle that cannot fuel anabolic 

pathways and therefore the increased need for biosynthetic precursors in cancer cells 

cannot be met.   

We were interested to learn how autophagy impacts on tumour development in Pdx1-Cre 

KRasG12D/wt p53-/- mice because loss of p53 has broad implications for cellular 

metabolism [123], [187] and permits the rapid progression from PDAC to invasive cancer 

possibly by abrogating the senescence barrier [145]. From a practical point of view we also 

wanted to generate mouse cohorts with and without autophagy that developed carcinoma 

before they died from pancreatic insufficiency.  

We found that deletion of both copies of p53 created a permissive environment for 

KRasG12D driven pancreatic tumours to form in the absence of autophagy. Importantly 

this was the case if autophagy was either genetically deleted (Pdx1-Cre KRasG12D/wt 

p53-/- Atg7-/-, Pdx1-Cre KRasG12D/wt p53-/- Atg5-/-) or pharmacologically inhibited 

with chloroquine (CQ) in Pdx1-Cre KRasG12D/wt p53-/- mice. In a p53-null background 

virtually all mice developed tumours when autophagy was inhibited. Tumour onset was 
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significantly earlier compared to autophagy proficient PDACs (Pdx1-Cre KRasG12D/wt 

p53-/-). PDACs arising from p53+/+ pancreatic cells had increased levels of autophagy 

when compared to tumours developing from p53-/- cells. When additionally considering, 

that only in the absence of p53 genetic deletion of autophagy invasive cancer can develop 

then it is conceivable that loss of p53 lowers the requirement of autophagy below a certain 

threshold at which it is completely dispensable. Consequently we hypothesized that if p53-

null cells can progress to form tumours in the absence of autophagy, then they likely have 

acquired alternative means to fulfil important functions of autophagy. In line with this 

assumption, we found that autophagy deficient PDACs (Pdx1-Cre KRasG12D/wt p53-/- 

Atg7-/-) have increased glucose uptake in vivo and in vitro. Furthermore p53-null, 

autophagy-deficient pancreatic cancer cells (Pdx1-Cre KRasG12D/wt p53-/- Atg7-/-) 

compared to their autophagy-proficient counterparts (Pdx1-Cre KRasG12D/wt p53-/- 

Atg7+/+) have increased glycolysis and elevated levels of intermediates of the PPP in 

vitro. Importantly OXPHOS and the TCA-cycle are not significantly different between 

both groups.   

As mentioned before, in pancreatic cancer oncogenic KRas increases glucose flux through 

the glycolytic pathway and the PPP [190]. Loss of p53 increases glycolysis through a 

variety of different mechanisms [123], [48]. It is plausible therefore that the absence of p53 

facilitates increased uptake and diversion of glucose into the PPP and cells require 

autophagy less for the provision of biosynthetic precursors. This is in line with our finding 

that cell lines from p53-deficient tissue have reduced autophagy compared to cell lines 

from autophagy-proficient tissue. When in addition autophagy is absent (Pdx1-Cre 

KRasG12D/wt p53-/- Atg7-/-) glycolysis is increased and the PPP is fuelled compared to 

autophagy-competent cells (Pdx1-Cre KRasG12D/wt p53-/- Atg7+/+). Our data clearly 

shows that in the absence of p53 autophagy is not required for tumour formation or 

maintenance of cellular metabolism. The accelerated tumour onset is probably due to 

several factors.  It has been shown that autophagy protects from DNA damage and 

maintains genomic stability [86], [134]. The converse argument that loss of autophagy 

increases DNA damage and facilitates genomic instability to promote tumour progression 

has consequently been established in the same studies [86], [134]. Therein lies a possible 

explanation for the early onset of tumours from p53-null tissue that lack autophagy 

compared to p53-null, autophagy-proficient tumours.  Autophagy might no longer be 

required to maintain metabolism, but it still protects from genotoxic stress. In reverse it 

could mean that loss of autophagy can be metabolically compensated but increased 

genomic instability then promotes tumour development. Besides, increased glucose uptake 
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and provision for anabolic pathways as seen in the autophagy-deficient situation is also 

supportive for tumour growth [19], [123], [48]. Lactate itself is an energy-rich metabolite 

and it is an emerging concept that tumour cells themselves feed on lactate [12], [151]. It 

might be possible that autophagy-deficient cancer cells not only produce more lactate but 

also have increased usage of lactate to fuel growth. This clearly merits further 

investigation.  

It is important to mention, that while we showed that pharmacological treatment with the 

autophagy inhibitor CQ, like genetic inhibition, accelerates tumour onset, this result has to 

be interpreted carefully. CQ undoubtedly inhibits autophagy but its cytotoxic effects can be 

independent of autophagy [138]. Furthermore in our study CQ was systemically 

administered by repeated intraperitoneal injections. As a consequence not only PanINs and 

cancer cells are exposed to the drug but also the tumour microenvironment and circulating 

blood cells. It cannot be ruled out with absolute certainty that the tumour promoting effects 

are therefore not the result of autophagy inhibition within precursor lesions or cancer cells 

but are rather the consequence of “side effects” of the drug. In this regard it is also worth 

mentioning that CQ-treatment of mice with pancreatic cancer has been reported to prolong 

survival [189]. In contrast to our study tumours developed from a p53-proficient 

background and treatment started when tumours were most likely already established. We 

initiated chloroquine treatment in p53-null mice at 28d of age. At this time the mice were 

virtually tumour free. It is also possible, that in the study by Yang and colleagues [189], 

the cell death promoting effects of chloroquine superseded the potential consequences of 

genomic destabilization after inhibition of autophagy. 

It is unclear to what extent our results are transferable to other cancer entitites, i. e. 

tumours from different tissues and tumours driven by other oncogenes. A recent study by 

Guo and colleagues found that autophagy suppresses the progression of lung cancer driven 

by oncogenic KRas, even in the absence of p53 [55]. Aside from the obviously different 

tumour origin there is another critical difference to our study. Lung cancer initiation by 

KRasG12D with all additional genetic manipulation was triggered by administration of 

adenoviral Cre-recombinase in adult mice i. e. the animals were essentially wild-type mice 

into adulthood [55]. In contrast, recombination in our cohorts occurred embryonically 

(E8.5) and it is conceivable that this caused a “reprogramming” of cells. In line with this 

assumption are reports that have shown that cancer development from oncogenic KRas is 

highly context dependent [50], [106], [49]. Especially it was shown that while young 
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pancreatic cells are susceptible to oncogenic transformation after activation of oncogenic 

KRas, older cells are remarkably resistant to oncogene stress [49]. 

A caveat of the currently available data, including the work I presented in my thesis, is the 

fact that autophagy was inhibited at a time when tumours were absent. It is clearly 

desirable to do similar studies and inhibit autophagy (genetically and pharmacologically) 

after the onset of PDAC and other cancer entities.  

In summary our study has shown that the tumour suppressor p53 is a critical determinant 

for the role of autophagy in pancreatic cancer development. Loss of p53 converts 

autophagy from a tumour promoter to a tumour suppressor. This is the first study to report 

a molecular switch in vivo that explains the dichotomy of autophagy in cancer. 
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