
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 

 

Onyiaodike, Christopher C (2014) A study of metabolic and inflammatory 
pathways throughout gestation. PhD thesis. 
 
http://theses.gla.ac.uk/4979/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



 
 

 

 

 

 

 

A study of metabolic and inflammatory pathways throughout gestation 

 

 

 

 

 

 

 

 

 

Christopher Chidiebere Onyiaodike                                                   
B.Sc. (Biomedical science) 

 

Submitted in fulfilment of the requirements for the degree of  

Doctor of Philosophy 

 

 

 

Reproductive and Maternal Medicine 

College of Medical, Veterinary and Life Sciences 

University of Glasgow 

 

February 2014 

    



ii 

Abstract 

The effect of metabolic and inflammatory parameters on pregnancy success in terms of 

implantation, metabolic adaptation to pregnancy and fetal programming is yet to be fully 

understood. This thesis explores the activity of metabolic and inflammatory pathways in 

pregnancy, highlighting their importance throughout gestation.  

In a cell culture study, a model of in vivo blastocyst-uterine adhesion to study the effect of 

insulin during uterine implantation was explored. JAR spheroid-RL95-2 monolayer 

adhesion reached 98% by 24 hours in the absence of insulin. A low dose (0.03nM) of 

added insulin concentrations resulted in 26% adhesion, or 74% inhibition; a high level 

(0.24nM) inhibited the JAR spheroid-RL95-2 monolayer adhesion by 9%. Therefore insulin 

did not have a dose-dependent on JAR spheroid-RL95-2 monolayer adhesion in the cell 

culture model of implantation. Polymerase chain reaction (PCR) studies revealed laminin 

α1 RNA detection on JAR cells only, CD44 on RL95-2 cells only, no trophinin on both cell 

types, FBLN-1 and -2 on JAR and FBLN-1 on RL95-2 cells only and an insulin receptor in 

both cell types. Western blot and immunohistochemistry (IHC) studies showed laminin α1 

detection and stains on the JAR cell extracellular matrix.  

In a prospective human study, the metabolites of lipid and carbohydrate metabolism and 

inflammatory mediators very early (between day 0 and day 45) in gestation and their link 

to successful pregnancy in women undergoing natural cycle frozen embryo transfer (FET) 

in assisted conception, was investigated. Plasma triglyceride (TG), total cholesterol (TC), 

high-density lipoprotein cholesterol (HDL-C), glucose, c-reactive protein (CRP) and non-

esterified fatty acid (NEFA) were measured on routine biochemistry; insulin, interleukin 

(IL)-6, plasminogen activated inhibitor (PAI)-1 and PAI-2 on ELISA; IL-8 (CXCL8), CCL2, 

CCL3, CCL4 and CCL11 on BioPlex; and human chronic gonadotrophin (hCG) on an 

Immulite system. For all 196 FET cycles, participants' demographics and plasma 

parameters of pregnant (n=36) and non-pregnant (n=106) women were explored. Neither 

obesity, the plasma parameters nor insulin resistance were predictive of successful 

pregnancy, but ICSI (predominately associated with male factor infertility) was. Overall, 

the hCG, insulin, rebound TG and HDL-C (except TC), homeostasis model assessment 

(HOMA), CRP and PAI-2 levels were higher, whereas CXCL8, CCL2, CCL11 and PAI-1 

were significantly lower by day 45. Baseline obesity related to positive changes in plasma 

insulin, HDL-C and HOMA and negative changes in CXCL8, CCL3 and CCL4.  

In a cross-sectional study in late pregnancy, offspring's reflection of parameters in women 

with preeclampsia (PE) (n=29) and intrauterine growth restriction (IUGR) (n=14), 

compared to BMI-matched healthy groups (n=87) and (n=42), respectively, was explored. 
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Fetal cord was found to be hyperlipidaemic, normoglycaemic and had reduced 

inflammatory response, while mothers who suffered PE had altered plasma TG, TC, 

NEFA, glucose, leptin and IL-10 compared to controls. IUGR babies were dyslipidaemic. 

The role of cholesterol transporters was assessed in PE (n=20) and IUGR (n=9) BMI-

matched controls (n=20 and n=9) respectively. Among fifteen steroidogenic acute 

regulatory protein (STAR)-related lipid transfer domains, only STARD6 and STARD15 

were not detected in the placenta via PCR. IHC studies were also explored on the 

placentae. The real-time PCR (RT-PCR) of messenger RNA of low-density lipoprotein 

receptor (LDLR), STARD3 and ATP-binding cassette A1 (ABCA1) without protein were 

higher in PE compared to controls. LDLR, STARD3 and ABCA1 localisation and detection 

were consistent to placental lipid (cholesterol) transport systems.  

In summary, all this led to the conclusion of the importance of metabolic and inflammatory 

pathways in all stages of pregnancy in leading to pregnancy success; these pathways 

may influence implantation, adaptation to pregnancy and, potentially, fetal programming of 

offspring. 
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Preface 

The importance of metabolic and inflammatory pathways in leading to pregnancy success, 

in terms of implantation, adaptation to pregnancy and fetal programming of offspring, is 

yet to be completely understood. This thesis explores the activity of metabolic and 

inflammatory pathways in pregnancy and highlights their importance in all stages of 

pregnancy. Prediction of pregnancy success, using very early metabolic and inflammatory 

parameters or obesity by the first 45 days of gestation, was made feasible. An in vitro 

model of implantation using cell culture was developed. This was in order to ascertain the 

effect of a metabolic parameter (insulin) during adhesion of JAR spheroids (representing 

the embryo) onto an RL95-2 monolayer (representing the endometrial epithelium), and the 

influence on key adhesion molecules involved during blastocyst/embryo-uterine 

endometrial epithelium adhesion. Very early changes in metabolic and inflammatory 

parameters were assessed in women undergoing natural cycle FET. In late pregnancy, 

offspring's cord blood reflection of their mother's parameters in healthy pregnancies as 

well as those with extreme pregnancies complicated by PE, were explored. Cases of 

IUGR were used as a control due to the absence of hypertension and endothelial cell 

dysfunction.  

Only ICSI, usually associated with male factor infertility predicted pregnancy success by 

<7 weeks' gestation; none of the other parameters studied did so, and neither did obesity 

or insulin resistance. Insulin was not seen to play a significant role in JAR spheroid-RL95-

2 monolayer adhesion, but insulin may perhaps influence laminin α1 adhesion molecule 

regulation during implantation. Very early changes in metabolic and inflammatory 

parameters were detectable by the first 45 days of gestation. Obesity played a role in 

some of the parameters changes in very early stage of pregnancy. Obesity and insulin 

resistance did not predict whether participants had pregnancy success or not. Fetal cord 

hyperlipidaemia was reflective of maternal levels in pre-eclamptic cases of pregnancy. 

This reflection in the fetus was suggested to be due to the upregulation of molecules 

involved in lipid transport, in particularly cholesterol, across the maternal-fetal interface. 

This is due to the  upregulation of mRNA of LDLR, STARD3 and ABCA1, but not of 

protein, in the pre-eclamptic group. Reduced cord blood inflammatory parameters in PE 

cases, were suggested to be due to downregulation of fetal immune system response. A 

preliminary study using HUVEC from the umbilical cord as an index of endothelial cell 

function provided a platform for future studies. Overall, the findings of this thesis pinpoint 

the importance of metabolic and inflammatory pathways at all stages of pregnancy in 

leading to pregnancy success; these pathways may influence implantation, adaptation to 

pregnancy and, potentially, fetal programming of offspring.  
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1 Introduction 

Successful reproduction in humans requires a spectrum of processes, from conception to 

the birth of a healthy infant, which are both biological and epidemiologically complex. The 

difficulties that arise during the course of the reproductive process define the 

complications of pregnancy as evident in epidemiological studies. With normal pregnancy, 

conception requires viable sperm to reach the ovum and fertilise it, and this must progress 

to implantation. The first weeks of gestation of normal development depend on the 

differentiation and migration of cells, events that must follow precise timing, leading to the 

formation of diverse organs and systems and subsequent fetal growth and development. 

A deviation from the optimal pathway at any point may perhaps result in the development 

of complications in pregnancy. In 2004, Hoozemans et al. noted that a pregnancy rate per 

cycle of approximately only 15% suggests that human reproduction is an inefficient 

process (Hoozemans et al. 2004). Of all fertilised oocytes, 40% are lost after fertilisation 

but before the end of gestation and, of those that survive, 7% of infants are born 

prematurely and 4% of newborns that go to term are born with birth anomalies. 

Gynaecologists and reproductive scientists have encountered the increasing reproductive 

problem of obesity, evident by the growing number of women diagnosed with disorders of 

infertility and other significant sequelae (Sharpe and Franks 2002). The effect of 

environment and lifestyle on sperm count, oocyte development/ovulation, fertilisation and 

implantation are most likely to impact infertility. As the reproductive system and its 

hormonal control systems are established in fetal life, maternal factors that affect the 'fetal 

environment' may also influence the fetal vascular system. Because of its own 

physiological processes, the fetus adapts to its environment, and such adaptation may 

result in adverse effects. The increasing rate of maternal obesity provides a major 

challenge to obstetric practice. The high prevalence of (and increasing trend to) obesity in 

developed societies means that it is only a matter of time before real concern emerges 

over pregnancy in the developing world.  

1.1 Maternal obesity and its adverse effects 

In the UK alone, obesity has assumed epidemic proportions, and is one of the most 

important threats to reproductive success, with almost half of the women of childbearing 

age being overweight or obese. A report of body mass index (BMI) in the Scottish 

population of women attending antenatal care in 2002-04 (compared with 1990) shows 1 

in 5 of this female population is classified as obese (Kanagalingam et al. 2005). In 

England, the proportion of women reported to be obese at start of pregnancy increased 

significantly from 7.6% to 15.6% (P<0.01) over 19 years between 1989 and 2007 
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(Heslehurst et al. 2010). In the United States, the mean maternal weight was observed to 

have increased by some 20% between 1980 and 1999, with an increase in maternal BMI 

greater than 29kg/m2 from 16.3% to 36.4% in the same period (Lu et al. 2001). Another 

United States population-based study of the prevalence of obesity among women of 

childbearing age (20-44 years) in 2004 revealed that 24.5% were overweight (BMI 25-

29kg/m2) and 23% were obese (BMI ≥30kg/m2) (Vahratian 2009). A Canadian based-

study of women of childbearing age (19-44 years) highlighted that almost 72% of 

participants were overweight or obese, with average BMI of 29.7(7.9)kg/m2 (Schaefer et 

al. 2011). Maternal obesity in pregnancy carries significant risk to the mother, and has 

long-term adverse effects on the offspring's health (Freeman 2010; Jarvie et al. 2010). A 

number of obesity-related effects with adverse outcomes for mother and child are listed in 

Table 1-1.   

Table ‎1-1:  Consequences of increased maternal obesity. 
 

Pregnancy outcomes 
 

№ of Subjects 
 

Author 
 

Menstrual disorders 726 (Wei et al. 2009) 

Infertility (PCOS)   72 (Jungheim et al. 2009) 

Preterm birth 187,290 (Smith et al. 2007) 

Pre-eclamptic pregnancy 17,773 (Mostello et al. 2010) 

PIH 6,534 (Jaques et al. 2010) 

Fetal macrosomia  4,830 (Yogev and Langer 2008) 

Neonatal death 187,290 (Smith et al. 2007) 

Gestational diabetes 3,798 (Roman et al. 2011) 

Intensive care admission 764,387 (Knight et al. 2010) 

Iatrogenic  4,341 (Bergholt et al. 2007) 

Congenital anomalies 974 (Anderson et al. 2005) 

Stillbirth (fetal) death  40,932 (Tennant et al. 2011) 

Miscarriage; pregnancy loss 4,932; 204 (Lashen et al. 2004; Landres et al. 2010) 
 

PCOS indicates polycystic ovarian syndrome; PIH, pregnancy induced hypertension. 

 

The adaptive response of obesity during pregnancy is described elsewhere in this 

chapter, but obesity significantly alters metabolic and inflammatory parameters in 

gestation. Various reports describe the change of parameters, in particular those involved 

in lipid and carbohydrate metabolism and inflammation throughout gestation (Catalano et 
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al. 1999; Redman et al. 1999; Stewart et al. 2007). The exacerbation of such parameters 

is linked to risk of poor pregnancy outcomes (Redman and Sargent 2004; Catalano 2010).  

1.2 Implantation and placental development 

Implantation is a unique process in mammals characterised as a pivotal step for 

pregnancy success. Successful implantation always predetermines the outcome of a 

pregnancy, and failure is primarily associated with numerous adverse pregnancy 

outcomes (Norwitz et al. 2001). However, for a successful implantation to occur, a 

functional blastocyst/embryo and a receptive uterus must be present. Studies on animal 

models classified the implantation process into three phases: apposition, adhesion and 

invasion (Bischof and Campana 1997; Enders and Lopata 1999; Simon et al. 1999). Each 

stage involves highly controlled orchestrated events, including paracrine dialogues and 

coordination of molecular activities. Onset of implantation is characterised by hatching of 

the free blastocyst from its adhesive coat the zona pellucida, as it drifts to the uterine 

cavity prior to apposition (Enders et al. 1986). 

1.2.1 Timing of implantation 

The timing of implantation depends on the relationship between events involved in 

implantation; this remains an ongoing area of study (Aboussahoud et al. 2010; Almog et 

al. 2010). Menstruation, occurring approximately on day 14 in a 28-day cycle, comprises 

one of four phases identified as follicular, ovulatory, luteal and menstrual phases. These 

phases are regulated by the endocrine system, the prime initial pathway in implantation. In 

the first place, a luteinising hormone (LH) surge precedes oocyte release by 24-36 hours, 

and is a definable standard clinical marker of ovulation. The oocyte has a life-span of 

around 24 hours from its burst from the ovary during ovulation, whereas some sperm can 

live in the right environment (such as the fallopian tube, uterus and cervix) for up to 5 

days. However, most sperm die within 1-2 days after ejaculation, even in the right 

environment. The endometrium undergoes morphological and physiological changes that 

prepare the endometrial layer for implantation under the influence of progesterone. In the 

absence of fertilisation, the endometrial layer sloughs off as menstruation. But if viable 

sperm encounter an ovulated oocyte, usually in the ampulla of the oviduct, they surround 

it as they force their way through the cumulus mass. Shortly after fertilisation 

(approximately (~) 24-48 hours) (Red-Horse et al. 2004), when female and male pronuclei 

unite, the zygote rapidly divides to allow replication of maternal and paternal 

chromosomes and prepare the first cleavage. The first cleavage forms a compact mass of 

cells called the morula, as it moves along to the endometrial cavity. Further aggregation of 

cells ends in formation of the blastula, containing approximate 12 to 16 cells protected by 
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a non-adhesive coat called the zona pellucida. The blastocoel, a fluid-filled cell blastocyst, 

reaches the uterine cavity by day 3 to 4, and hatches out just before adhesion onto the 

uterine wall occurs. The hatched blastocyst constitutes two distinct cell populations known 

as an inner cell mass and an outer layer, the trophectoderm, which surrounds the inner 

cell mass (Adjaye et al. 2005; Cauffman et al. 2009). Consequently, while the inner cell 

mass differentiates into the fetus, the trophoblasts become responsible for the placenta 

formation. The blastocyst usually implants between day 6 to 10 post ovulation, LH+7 to 

LH+11, and/or day 20 to 24 post last menstrual period (LMP) (Aplin 1996; Wilcox et al. 

1999; Lessey et al. 2000; van Mourik et al. 2009). This defined span of time is called the 

implantation window. 

1.2.2 In vitro models of implantation 

Implantation requires contact between the blastocyst and maternal uterine epithelium, a 

contact which is the defining step for successful implantation. Completing this step is 

paramount for achieving normal pregnancy outcome. Studies of embryonic implantation 

are extremely difficult because of poor accessibility and availability of embryonic tissues. 

Ethical concerns with regards to experimentation using primary human tissue during this 

period of life have necessitated the need to develop in vitro models to study the basic 

mechanism involved. For instance, the sub-cellular and molecular activities during 

implantation cannot be studied in vivo, and this is difficult even ex vivo. The in vitro model 

of blastocyst implantation is therefore based on assumptions that implantation of the 

blastocyst into the endometrium is a process that is very similar to tumour invasion of the 

host tissue. The cytotrophoblastic cells of a first trimester pregnancy retain almost all the 

properties of the trophectodermal cells of the blastocyst, and can be used as surrogates to 

study the implantation process in vitro (Bischof and Campana 1996). 

1.2.3 Factors of importance for implantation 

The uterus is mainly constituted by the epithelium and stromal cell components. Cellular 

changes transform the fibroblast-like endometrial stromal cell into the larger and rounded 

decidual cell, and cause the growth and development of the secretory gland and the 

emergence of pinopodes, i.e large apical protrusions, and microvilli on the luminal 

epithelium (Paria et al. 2002; Dunn et al. 2003). All of these changes modulate expression 

of major molecules involved in successful implantation, which include hormones, growth 

factors, cytokines/chemokines and adhesion molecules (Paria et al. 2002; Jabbour et al. 

2009; Dekel et al. 2010). This thesis focuses on the hormonal and immune responses and 

adhesion molecules which are part of the complex process that requires interplay of these 

and many other systems during implantation (van Mourik et al. 2009). 
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1.2.3.1 Hormonal regulation 

To date, human chorionic gonadotropin (hCG), a glycoprotein hormone, is used as an 

indicator of pregnancy. Its synthesis is found to start before day 7 of the blastocyst stage 

(Lopata and Hay 1989; Bansal et al. 2012) and the synthesis is later taken over by the 

placenta. Even so, primary and transformed trophoblast cells show a cytotrophoblastic 

phenotype producing hCG to a lesser extent than do syncytiotrophoblastic cells (White et 

al. 1988). In the same report, detectable hCG in urine at 2 weeks’ gestation reaches a 

peak by 8 weeks, supporting corpus luteum recues between 8-10 weeks. As hCG has the 

ability to downregulate maternal inflammatory response against trophoblastic paternal 

antigen (Bansal et al. 2012), the corpus rescue is necessary until the functional placenta 

takes over hCG production. Consequently, the risk of compromised trophoblast invasion is 

reduced. Also, hCG clearly promotes angiogenic activity of extravillous trophoblasts 

(EVT), as its impairment has been shown to lead to poor placentation (Bansal et al. 2012). 

The signals originating from the human hypothalamic-pituitary-ovarian axis end in the 

endometrium (Tabibzadeh 1998). Usually, there is intricate communication between the 

mother, placenta and fetus in order to maintain a balance supply of steroid hormone for 

optimal embryonic development. Preparation of the uterus for implantation and 

maintenance of pregnancy is regulated by progesterone. This crucial hormone is initially 

produced by the corpus luteum that forms immediately after ovulation. Cholesterol is a 

sterol that is a precursor to steroids in the steroidogenesis by its conversion into 

pregnenolone via the cholesterol side-chain cleavage enzyme (P450scc) (Voutilainen et 

al. 1986; Guibourdenche et al. 2009). In their report, Guibourdenche et al. mention that 

the pregnenolone is then converted into progesterone by the 3β-hydroxysteroid 

dehydrogenase type 1 (3βHSD1) localised in the mitochondria of steroidogenic tissues 

(but not placenta). There are five major classes of steroid hormones (oestrogen, 

progestin, androgen, glucocorticoid and mineralocorticoids), all use pregnenolone as a 

common precursor (Hu et al. 2010). The oestrogen and progesterone control the cellular 

and molecular mediators of endometrial receptivity, including growth factors, cytokines, 

adhesion molecules, pinopodes and homeobox genes (Kodaman and Taylor 2004). 

Oestrogen, naturally occurs in women as oestrone, oestradiol and oestriol 

(Guibourdenche et al. 2009), which induces rapid tissue proliferation, whereas the 

secretory pattern is controlled by progesterone, and both hormones are mediated via their 

receptors (Paria et al. 2002; Kodaman and Taylor 2004; Cha et al. 2012). The production 

of oestrogen and progesterone by the human placenta increases exponentially after week 

6, following the involution of ovarian sex steroid production (Newbern and Freemark 

2011). This importance of these steroid hormones cannot be overstated, as pregnancy 

cannot occur without them. Some of the functions carried out by oestrogen and 
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progesterone toward embryo implantation are summarised in Table 1-2 (Hoozemans et al. 

2004). 

Table ‎1-2:  A summary of oestrogen and progesterone actions. 

Oestrogen 
 

Progesterone 
 

Proliferative, follicular phase. 
 

Secretory, luteal phase. 
Endometrial proliferation. Morphological changes in endometrium. 
Upregulation of progesterone receptors. Pinopode formation. 
Upregulation of VEGF, IGF-1, heparin binding  Upregulation of colony stimulating factor,   
epidermal growth factor and L-selectin. IL-1, prostaglandins, VEGF, glycodelin A, 
  IGF-2, heparin binding epidermal growth  
 factor, fibronectin, mucin-1 and L-selectin. 
 Downregulation of LIF and β-integrin. 
 Downregulation of ER and oestrogen  
 activity. 

 

VEGF represents vascular endothelial growth factor; IGF-1, insulin-like growth factor-1; 
IGF-2, insulin-like growth factor-2; IL-1, interleukin-1; LIF, leukaemia inhibitory factor; ER, 
oestrogen receptor. 

 

The pre-ovulatory elevation of oestrogen (oestradiol-17β) and progesterone stimulate the 

proliferation of uterine epithelial cells (Gude et al. 2004). The oestrogen receptor (ER) 

alpha, ER beta1 and ER beta2 mRNA expression in human luteal cells assist in the 

rescue and maintenance of the life-span of the corpus luteum (van den Driesche et al. 

2008). In humans, the corpus luteum remains the source of progesterone for 4-5 weeks 

after implantation, at which time progesterone production is gradually taken over by the 

placenta to maintain pregnancy (Csapo and Pulkkinen 1978). The corpus luteum 

secreting progesterone is called the corpus luteum graviditatis. In the absence of 

fertilisation, and after placental sufficiency, the corpus luteum regresses and becomes 

corpus albican. The regression of corpus luteum is induced by prostaglandin F2 alpha 

(Wang et al. 2003). To date, the progesterone concentrations needed to maintain early 

pregnancy in humans are not known (Azuma et al. 1993). The presence in multiple 

species of progesterone increase at implantation indicates that the increase perhaps has 

a functional significance. Also after ovulation, numerous molecules in gap-junctions of the 

membrane of the ovary appear between the developing cumulus cells, including connexin 

43 (Furger et al. 1996), and oocyte LH receptor expression is increased by activation of 

3βHSD1 (Hamel et al. 2008). These molecules play a positive role in the synthesis of 

progesterone in particular. The 3βHSD1 is upregulated in follicles; this increase is 

involved in steroidogenesis, resulting in pregnancy success. The blastocyst/embryo, en 

route to the uterine cavity, must be prevented from adhering to areas where it will have a 

poor chance of implantation by the activity of a molecule such as mucin-1. This molecule 

lines the epithelial surface of the fallopian tube and uterus. Mucin-1 is a member of the 

mucin family of the highly glycosylated high-molecular weight integral membrane 

glycoproteins. Its anti-adhesion activity means that the highly adhesive blastocyst is 
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guided onto the proper site of the endometrium at the precise spot for adhesion. In 

humans, mucin-1 upregulation during the period of implantation happens under the 

influence of progesterone (Meseguer et al. 2001). This progesterone-dependent 

regulation of mucin-1 is thought to be partly responsible for determining endometrial 

receptivity (Horne et al. 2006). 

1.2.3.2 Localised immune response 

Immunological changes associated with pregnancy involve both local properties and 

broader systemic effects, which are described in the latter part of this chapter. Stanley 

Cohen first introduced the term lymphokine, or monokine, which is currently referred to as 

cytokine, a multifunctional protein ranging from 8-40kDa (Cohen et al. 1974). These 

proteins regulate peptides and glycoproteins, and are produced by virtually every cell in 

the body, as well as stimulating many different cell types. Redundancy generally exists 

within the cytokine families, and different cytokines often exert similar and overlapping 

functions on certain cells (Salamonsen et al. 2007). A specific type of cytokines, called 

chemokines, are small chemotactic molecules best known for leukocyte recruitment and 

activation. Approximately 50 chemokines and 20 receptors have been identified in 

humans (Zlotnik and Yoshie 2000). Chemokines are classified into four families based on 

their cysteine amino acid residue presence, namely CXC, CC, C (lymphotactin) and CX3C 

(fractalkine). The variable ʻXʼ represents amino acids involved in some group; a capital ʻLʼ 

is added to identify the ligand, as distinct from the ʻRʼ added to identify the receptor. The 

number of receptors is much less than the number of ligands (Salamonsen et al. 2007). 

Thus, there is promiscuous ligand-receptor binding and significant redundancy and 

overlap of functions. 

Cytokines and chemokines are involved in achieving implantation success (Dimitriadis et 

al. 2010), placentation, cervical ripening and uterine activation of labour. The 

cytokines/chemokines are synthesised by several cell types at the maternal-fetal interface, 

such as leukocytes, endothelium, connective tissue cells and endometrial epithelium. 

Those produced by the endometrial epithelium may be secreted on the apical membrane 

of the uterine lumen, where they influence blastocyst development, migration and 

adhesion, or even basally, with effects on the transformation of underlying stroma 

(Salamonsen et al. 2007; van Mourik et al. 2009). None of this could be possible without 

polarity, important at several levels of embryonic implantation. At first, the polarity present 

within the oocyte and developing blastocyst is essential for optimal differentiation. Other 

levels of polarity are established when the blastocyst approaches the endometrium and 

adopts a specific orientation in association with the endometrium. In humans, the inner 
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cell mass of the blastocyst is directed toward the endometrium (Lee and DeMayo 2004) 

as the conceptus moves to the uterus.  

While the mechanism by which the blastocyst orients itself as it migrates to the uterine 

cavity remains completely unknown, embryonic chemotaxis is among the hypotheses that 

have been put forward. This hypothesis involves a chemokine gradient in the 

endometrium (Dominguez et al. 2005), which is within the uterus, set up by cytokine 

activation, and thus guides the trophectoderm of blastocyst to the site of implantation. This 

interaction, called tethering, allows leukocytes to be drawn towards the endothelium, and 

this similar concept is proposed as being involved during blastocyst/embryo-endometrial 

epithelium interaction. A similar hypothesis has established a role for the chemokine in the 

attraction of leukocyte to the endometrial tissue during implantation (Red-Horse et al. 

2001). At the precise site of the uterine wall where the blastocyst implants, the 

degradation of mucin-1 occurs. It is thought that mucin-1 at this spot is degraded by 

mediators from immune cells. This is because dendritic cells and macrophages secrete 

cytokine/chemokine that induces uterine stroma local degradation of mucin-1 (Dekel et al. 

2010; Mor et al. 2011).  

Next is the apposition phase, encompassing similar leukocyte-endothelial cell interactions, 

a process similar to that observed in the circulations as leukocyte extravasates across 

vascular subendothelial space. Then, is adhesion/attachment detailed below. This phase 

is a period by which the blastocyst interacts with endometrium, which the mechanism is 

yet fully understood, but, like the leukocyte-endothelium interaction, it relies on the 

dialogue of cytokine and chemokine parameters (Hannan and Salamonsen 2008).  

Leukocytes do not usually cross blood vessels but they do so at sites where inflammatory 

responses occur through leukocyte chemotaxis. Studies on humans and animals have 

detected a number of chemokine receptors, such as CCR1, CCR2, CCR3, CCR5, CXCR1 

and CXCR2, and the motif ligands they bind: monocyte chemotactic protein-1 (MCP-1), 

also known as CCL2, CCL3, CCL4, CCL7, CCL11, CCL14 and interleukin-8 (IL-8), also 

referred to as CXCL8. All of these are detectable in trophoblasts, epithelium and 

endometrium (Kayisli et al. 2002; Ulukus et al. 2005; Hannan et al. 2006; Dimitriadis et al. 

2010; Chau et al. 2013). Their detectable presence in these tissues supports their 

potential role in blastocyst orientation. These chemokine receptors and motif ligands may 

also be required for effective leukocyte recruitment to support the trophoblast for 

decidualisation as the embryo implants. CCL2 and CXCL8 have been localised in the 

human uterus (Kayisli et al. 2002) and have an active role as chemoattractants of 

neutrophils, T cells, mast cells, natural killer (NK) cells and monocytes. In addition to this, 

there are nonimmune functions of these molecules in placentation, differentiation of 
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cytotrophoblast and uterine tissue remodelling, as well as removal of maternal-fetal debris 

and dead cells with the advance of pregnancy, which is well established (Li and Huang 

2009; Hazan et al. 2010). 

1.2.3.3 Adhesion molecules 

Classical work dating from 1959 by Hertig et al. shows that inadequate adhesion of the 

embryo results in recurrent pregnancy loss (Hertig et al. 1959). This is an indication that 

adhesion molecules are necessary during the implantation window. The apical surface of 

the endometrial layer (epithelium) is in a non-adhesive setting compared to the basolateral 

surface. Adhesion occurs at the apical region of the trophectoderm of the blastocyst and 

the endometrium as a cell-to-cell interaction involving adhesion molecules' expression at 

the apical cell membrane. Cell adhesion molecules are composed of four members, 

termed integrin, cadherin, selectin and immunoglobulin (Achache and Revel 2006). The 

efforts to identify important adhesion molecules involved in embryo implantation have led 

to an increase in vitro studies (Heneweer et al. 2002; Sugihara et al. 2008).  

A number of cell adhesion molecules have been implicated in the embryo-endometrial 

epithelium interaction. Trophinin (Fukuda et al. 1995), Indian blood type (CD44 molecule) 

(Campbell et al. 1995) and laminin α1 (Dziadek and Timpl 1985; Nissinen et al. 1991) are 

among the surface adhesion molecules expressed in human blastocysts and/or uterine 

epithelial basement membranes during embryonic implantation. Trophinin is an intrinsic 

plasma membrane glycoprotein containing 749 amino acids (Fukuda et al. 1995) that 

allows direct homophilic cell adhesion. Trophinin must interact with the cytoplasmic 

protein tastin, and both are bridged by the protein bystin forming a functional complex 

(Suzuki et al. 1998). CD44 expression in embryonic tissue occurs throughout 

preimplantation until the blastocyst stage highlights its potential function in embryo-

endometrial epithelium adhesion (Campbell et al. 1995). CD44 is a highly polymorphic 

membrane glycoprotein, with a molecular weight of 80-200kDa, encoded by a single and 

highly conserved gene (Screaton et al. 1992). This adhesion molecule is a well-

characterised member of the hyaluronic acid receptor family. Interaction of CD44 

molecules with hyaluronate on many cell types (Aruffo et al. 1990) allows binding of cells 

to extracellular matrix ligands. CD44 is expressed on cellular surfaces of most vertebrate 

reproductive tissues, including the cervix (Tsubaki et al. 2005) and endometrial epithelium 

(Aplin et al. 1994). 

A direct role for laminin α1 in the adhesion of the embryo to the endometrial epithelium 

was suggested when higher levels of IgG anti-laminin-1 autoantibodies were observed in 

women with recurrent miscarriage than in healthy pregnant and healthy non-pregnant 
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controls (Inagaki et al. 2001; Inagaki et al. 2003). Laminin-1 mRNA is present in JAR cells 

(Nissinen et al. 1991) and in mouse preimplantation embryos (Shim et al. 1996). Laminin-

1 (also known as laminin-111) exists as part of at least 16 laminin isoforms, all recognised 

to have a role in cellular adhesion (Aumailley et al. 2005). These isoforms are comprised 

of different subunits: α1 to 5, β1 to 4 and γ1 to 3 (Miner and Yurchenco 2004; Miner 

2008). Laminin α1 is a heavy chain, with molecular weight of 400kDa (Tiger et al. 1997), 

and its N-terminal domain interacts with β1 and β2 (also referred to as laminin γ1) chains. 

Laminin α1 is localised specifically at the basement membrane of the epithelium. Laminin 

α1 has a large, 100kDa C-terminal globular (G) domain (Sasaki et al. 1988) that functions 

as a recognition site for proteins such as integrin receptors which promote cell adhesion 

(Nomizu et al. 1995). Laminin α1 interacts with extracellular matrix components. One 

example is the fibulin (FBLN) protein family that comprises extracellular matrix proteins 

that serve to modulate cellular behaviour and the function of other proteins in the 

extracellular matrix (Argraves et al. 1990; de Vega et al. 2009). FBLN-1 has a molecular 

weight of 100kDa whereas that of FBLN-2 is 195kDa (de Vega et al. 2009). There are 

limited data showing that FBLN-1 (Timpl et al. 2000) and FBLN-2 (Utani et al. 1997) 

interact with laminin α1. FBLN-1 interacts with the C-terminal LG domain of laminin α1, 

while FBLN-2 binds to the N-terminal domain (Utani et al. 1997). 

1.2.4 Trophoblastic invasion 

The term invasiveness simply means the ability to cross anatomical barriers. The first 

barrier to implantation is the layer of endometrial epithelial cells; immediately beneath 

them is a specialised type of matrix known as the basement membrane, a thin continuous 

layer. This third and final phase of implantation is completed by invasive trophoblast cells 

penetrating the endometrial epithelium basement membrane into the endometrial stroma 

(Bischof and Campana 1997). Invasion permits the creation of the haemochorial placenta. 

Human trophoblasts are characterised by strong invasiveness which ensures adequate 

contact to maternal blood circulation. The invasive process is tightly regulated, as the 

embryo trophoblast cells invasion is limited to the decidualised endometrium up to the 

proximal third myometrium in normal pregnancy (Cartwright et al. 2010). As Cartwright et 

al. report, the importance of these events occurring in a regulated fashion is illustrated by 

complicated pregnancies associated with insufficient spiral arteries remodelling. Usually, 

the blastocyst is too large to squeeze through the endometrial layer, adhered trophoblasts 

uses the paracrine activity to induce apoptotic reaction, degrading underlying endometrial 

epithelium, as has been found in rodents (Galán et al. 2000). The basement membrane 

extracellular matrix then migrates into the decidual stroma. Eventually, the cytotrophoblast 

invades the entire endometrium, the uterine vasculature and into the inner third of the 

myometrium. The access to the uterine vessel creates the lacunae network comprising 
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the uteroplacental circulation that places the placental trophoblast in direct contact with 

maternal blood. This contact allows placenta to serve the transfer organ role for nutrients, 

gases, waste products, hormones and growth factors between mother and fetus. 

The invasion is made possible by some protease/proteinase, such as serine protease, 

collagenase and metalloproteinase, which are capable of digesting the endometrial 

extracellular matrix, as is well reported. Examples of protease mobilised by the embryo as 

it embeds into/penetrates the maternal endometrium include matrix metalloproteinase 

(MMP) and plasminogen activator (PA) (Harvey et al. 1995; Nagaoka et al. 2003; Anacker 

et al. 2011). MMPs are a family of approximately 20 human zinc-dependent 

endopeptidases, collectively able to degrade all components of an extracellular matrix. 

MMP action is vital for the invasion of trophoblast cells; at the same time, it is regulated by 

the tissue inhibitors of metalloproteinase (TIMPs) that act to counterbalance excessive 

trophoblast invasion (Bischof and Campana 2000; Staun-Ram et al. 2009). Anacker et al. 

showed almost all MMPs, and all four TIMPs are expressed at the messenger ribonucleic 

acid (mRNA) level (Anacker et al. 2011) in uterine NK cells, decidual fibroblasts and 

trophoblasts, apart from MMP-20 and -25. PA is serine residue protease and is in two 

forms, tissue-type (t)PA and urokinase-type (u)PA. These proteins are secreted as a 

single chain with tPA but not uPA being catalytically active. These substrate-specific 

serine-proteases cleave the Arg-Val peptide bond and converts plasminogen to plasmin, 

which controls blood clotting by modulating fibrinolysis (Fay et al. 2007). Cleavage of the 

single chain form of uPA by plasmin leads to uPA becoming catalytically active. In the 

serine protease PA system (tPA or uPA) there exists a cognate receptor on the cell 

surface with two specific inhibitors, referred to as plasminogen activator inhibitors-1 (PAI-

1) and -2 (PAI-2) (Ulisse et al. 2009). PAI-1, a mediator of the clotting process, is 

produced by vascular cells, whereas PAI-2 is derived from the placenta. Both PAI-1 and -

2 have proteolytic implications for physiology, pathophysiology, uterine degradation, tissue 

remodelling and coagulatory processes. This broad spectrum of MMP expression in the 

maternal interface reflects its role in trophoblast invasion and uterine tissue remodelling. 

TIMP, PAI-1 and PAI-2 modulate PA activity, preventing excess invasion of the implanting 

embryo (Harvey et al. 1995; Ulisse et al. 2009).  

The fetal growth depends on adequate transformation of uterine spiral arteries by a 

specific subset of EVT (Harris 2011). Since detailed knowledge of implantation in humans 

is lacking, studies in macaques show that the first invasion occurs during implantation via 

an invasive syncytiotrophoblast (Enders 2007). This multinucleated layer moves between 

epithelial cells and invades the upper layer of the decidual interstitium. It may already 

erode the first capillaries and glands. A similar pathway is thought to take place in humans 

(James et al. 2012). In a recent review, a widespread reorganisation of the 
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syncytiotrophoblast was evident in the first two weeks after implantation (Huppertz et al. 

2013). The syncytiotrophoblast develops into a layer that completely surrounds the 

embryo, developing internal fluid-filled lacunae which are penetrated by the 

mononucleated cytotrophoblast in addition to embryo-derived mesenchymal cells. By the 

5th week, the cytotrophoblast has penetrated through the syncytiotrophoblast, reaching 

the outer surface of this layer, the decidual tissue. At this point, trophoblastic cell columns 

develop and they proliferate the part facing the developing villous structure (anchoring 

villi) and the invasive part that faces the maternal tissues. The proliferating part comprises 

cells which are still in contact with the basement membrane of the anchoring villous. Once 

they lose contact with the basement membrane, simply by proliferative pressure, the cells 

start to differentiate and change their properties to those of an invasive phenotype 

(Kaufmann et al. 2003). Using the cell column as the proliferating source, EVT are now 

known to start to invade the maternal tissue, migrate through the decidual interstitium and 

reach the inner third of the myometrium within the next two weeks. 

In normal pregnancy, EVT invade the decidua and inner third of myometrium. Invasion 

occurs via two pathways: the interstitial and endovascular EVT (Pijnenborg et al. 1980). 

The interstitial EVT invade through the decidua from anchoring villi and cytotrophoblast 

shell, the endovascular EVT arise from either direct intravascular invasion or transmural 

migration of interstitial EVT into spiral arteries. The invasive properties of EVT establish a 

route of nutrient supply from the mother to the placenta.  

1.2.5 Human placentation 

The placenta formation is named 'placentation' and completes the implantation window 

and establishes the means to support the fetus throughout gestation. The human placenta 

is described as haemochorial type I (Wildman 2008; Enders 2009), characterised by direct 

contact between the maternal blood (haemo) and epithelium of chorion (trophoblast). The 

uniqueness of human implantation has made animal model studies only vaguely 

applicable to humans. The placenta originates from the extra-embryonic membrane of the 

trophectoderm of the blastocyst after fertilisation, as the inner cell mass forms the 

conceptus and umbilical cord (Cauffman et al. 2009). In this stage of the early placenta, at 

the maternal-fetal interface, the human trophoblast differentiates along two pathways: the 

villous trophoblast pathway, involving the cytotrophoblastic cells that differentiate by fusion 

to form the syncytiotrophoblast, which covers the entire surface of villi and the EVT 

pathways (Huppertz 2008; Guibourdenche et al. 2009).  

Villous trophoblasts are non-migratory. At about day 13 post conception the trabeculae 

begin to develop their first side branches, which may simply be syncytiotrophoblast 
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protrusion (syncytial sprouts) or may contain a core filled with cytotrophoblasts (Kaufmann 

et al. 2003). Cytotrophoblasts proliferate, differentiate and then fuse, forming an outer 

epithelial layer of chorionic villi: the syncytiotrophoblast (Gude et al. 2004). Evagination of 

the syncytiotrophoblast with the cytotrophoblast forms the primary villi. The next step 

happens when the fetal mesenchyme proliferate into the cytotrophoblast and form 

secondary villi; haematopoietic progenitor cells develop and start to differentiate (Huppertz 

2008). These secondary villi later develop into fetal capillaries by 3 weeks’ gestation, 

within which villous mesenchyme form tertiary villi (Gude et al. 2004). As gestation 

progresses, decidua on the uterine luminal pole regress (as well as the villi attached to 

them) resulting in placenta villi in the discoid region. Chorionic villi present on the surface 

of the entire chorion grow as pregnancy progresses. Usually, partial exchange occurs via 

the terminal villi projected into the intervillous space (Gude et al. 2004). The villi tips attach 

to the basal plate and form anchoring villi, resulting in an invasive cytotrophoblast cell 

column. Formation of these villi reflects a very basic stage of development of new villi, and 

the process occurs throughout gestation. 

In the EVT pathway, trophoblasts migrate. This begins with the blastocyst firmly attached 

to the uterine epithelium; the polar trophoblast overlying the inner cell mass undergoes 

differential steps (described as the syncytial fusion of mononucleated cells) to form the 

first oligonucleated syncytiotrophoblast (Huppertz 2008). This syncytiotrophoblast displays 

invasive features as it penetrates the uterine epithelium, and, by the next few days, the 

embryo embeds itself into the decidual stroma, with the syncytiotrophoblast of the 

blastocyst forming a complete mantle surrounding the conceptus. The remaining 

mononucleated trophoblast (called a cytotrophoblast) is found in the second row, and 

does not make contact with the maternal tissue. The cytotrophoblast acts as a stem cell 

that rapidly divides, and later fuses with the syncytiotrophoblast (Pötgens et al. 2002), and 

this fusion forms a syncytium as pregnancy advances to term. Fluid-filled space occurs 

within the syncytiotrophoblast by day 8 post conception and soon coalesces to form larger 

lacunae. After this point, the remaining syncytiotrophoblastic mass within the lacunae, 

termed trabeculae, forms a villous tree (Huppertz 2008). From day 12 post conception, the 

cytotrophoblast penetrates the syncytiotrophoblastic mass of trabeculae until it reaches 

the maternal side of the placenta by the 15th day, marking the first time the 

cytotrophoblast establishes maternal contact. Only at 5 weeks' gestation does the 

cytotrophoblast leave the placenta proper and differentiate into the extravillous 

cytotrophoblast. Formation of the extravillous cytotrophoblast aids in the forming of the 

cytotrophoblastic shell at the maternal-fetal interface (Gude et al. 2004). Kaufmann et al. 

summarised that all trophoblast cells reside outside the placental villi under the EVT 

(Kaufmann et al. 2003). The endovascular trophoblasts invade the uterine spiral arteries, 

but the EVT – the interstitial trophoblasts – invade the decidua (Cartwright et al. 2010), 
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promoting the circumferential placental expansion by 8 weeks’ gestation, as mucosa 

decidua become colonised. Maternal uterine decidua arterioles dilate in response to 

unresponsive maternal vasomotor regulation, promoting the maternal blood supply to the 

placenta by 30%, with maternal cardiac output increasing by 30-40% (Khong et al. 1986). 

The interstitial trophoblast is transformed into the multinucleated forming placental bed, 

the end-point of the extravillous or EVT pathways (Gude et al. 2004). Many factors assist 

in degradation of the uterine vascular bed. This includes the Hofbauer cells that support 

trophoblast cells in removing apoptotic cells and cellular debris, as well as assisting them 

in uterine vasculature remodelling and production of protease, which degrades the uterine 

extracellular matrix (Reister et al. 2001; Huppertz 2008; Hazan et al. 2010). 

On the whole, by day 7-13 post ovulation, the growing trophoblast expands into masses of 

cytotrophoblasts and syncytiotrophoblasts, reaching the maternal vessel to form the 

lacunae networks (Tabibzadeh and Babaknia 1995). Jaffe et al. noted that not until 10-12 

weeks’ gestation does maternal blood supply, through spiral arteries into the intervillous 

space, begin (Jaffe et al. 1997). Placental development continues throughout gestation 

but begins to diminish from the 20th week (Pijnenborg et al. 1983). 

1.2.6 Placental function 

The placenta carries out several functions in order to ensure optimal fetal growth and 

development. Here this thesis focuses on hormonal and growth factor, which are vital for 

fetal growth and development. 

1.2.6.1 Hormonal production 

The function of the placenta is to facilitate the intricate communication between mother 

and fetus, which takes place in order to maintain a balanced supply of steroid hormone for 

optimal embryonic development. Placental hormones are essential for establishing and 

maintaining pregnancy, adaptation of the maternal organism to pregnancy and fetal 

growth. The EVT secrets a high amount of various hormones from the early placenta. An 

example is hCG, detectable as early as 48 hours after implantation from the 

cytotrophoblast (White et al. 1988). As pinpointed above, hCG prevents regression of 

corpus luteum for synthesis of progesterone after fertilisation. At 10-12 weeks' gestation, 

the syncytiotrophoblast is a major source of the polypeptide and steroid hormones which 

enter the maternal circulation, taking over the maternal metabolism to increase energy flux 

to the fetus (Guibourdenche et al. 2009). Placental progesterone synthesis, (as mentioned 

above, Section 1.2.3.1) is dependent on the delivery of cholesterol-rich lipoproteins from 

the maternal circulation and intracellular hydrolysis of cholesterol esterase to free 
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cholesterol for placental steroidogenesis. A detailed pathway for steroidogenesis is 

described in the latter part of this chapter. Briefly, the cholesterol is captured for 

steroidogenesis from a number of sources, including plasma low-density lipoprotein (LDL) 

and high-density lipoprotein (HDL), as shown in steroidogenic tissues (Grummer and 

Carroll 1988; Guibourdenche et al. 2009; Hu et al. 2010). Uptake of LDL cholesterol (LDL-

C) carried by LDL occurs through apolipoprotein (apo) B-100 on the LDL and uptake of 

HDL cholesterol (HDL-C) through apo E on HDL particle. Both apolipoproteins (apo B and 

E) are recognised by the LDL receptor (LDLR) (Blasiole et al. 2008; Hu et al. 2010), which 

is present on surface of the placental syncytiotrophoblasts, by forming a lipoprotein-

receptor complex via receptor-mediated endocytosis (Fuchs and Ellinger 2004). However, 

most of the cholesterol supplied by HDL mediates into cells leaving behind the HDL 

particle through a receptor called scavenger receptor class B member 1 (SR-B1), a 

process called selective pathway (Acton et al. 1996; Hu et al. 2010). Hu et al. pinpoint that 

the term selective cholesterol uptake (i.e. selective pathway) is used when cell surface 

bound cholesterol-rich lipoproteins (LDL or HDL, regardless of the lipoprotein 

composition), release cholesteryl ester without the parallel uptake and lysosomal 

degradation of the lipoprotein particle itself (Hu et al. 2010). Conversion of cholesterol to 

pregnenolone occurs in the inner mitochondrial membrane (IMM) producing progesterone, 

the prime source of other steroid hormones. The syncytiotrophoblast produced 

progesterone is useful in maintaining several functions, including uterine quiescence 

(Guibourdenche et al. 2009). Oestrogen enhances receptor mediated uptake of LDL-C for 

placental steroidogenesis and increases uteroplacental blood flow and endometrial 

prostaglandin production (Newbern and Freemark 2011). Other hormones, such as 

human placental lactogen (hPL), insulin, leptin and adiponectin, as well as relaxin, 

prolactin and oxytocin, are reportedly produced by the placenta. The hPL and prolactin 

increase high food intake by inducing central leptin resistance and promoting beta-cell 

expansion, which results in insulin resistance (Newbern and Freemark 2011). In their 

review, Pepe and Albrecht highlight that the placental hormones e.g. progesterone, are 

capable of stimulating erythropoiesis and consequently increasing red cell mass (Pepe 

and Albrecht 1995). This increase and subsequent change in blood viscosity, together 

with the hormonal effects on the vascular bed, have important regulatory effects on 

uterine and systemic vascular resistance.  

1.2.6.2 Growth factor synthesis 

Vasculogenesis is the process whereby new blood vessels are derived de novo from   

mesenchymal cells via haemangiogenic stem cell differentiation, whereas angiogenesis is 

the process that forms new blood vessels from already existing vessels (Charnock-Jones 

et al. 2004). Placental growth factor (PIGF) regulates placenta development (Maglione et 
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al. 1991), whilst vascular endothelial growth factor (VEGF) (also called VEGFα) is a potent 

angiogenic molecule that controls growth and the chemotactic activities of endothelial 

cells during vascular proliferation. These growth factors act to preserve normal vascular 

endothelial function. During gestation, the vascularisation of the placental villi occurs by 

day 21 post conception (Knoth 1968). Sequential steps of vasculogenesis and 

angiogenesis are observed within placental tissues (Demir et al. 2004). Both of these 

processes are regulated by angiogenic growth factors at each local villous and they aid in 

the establishment of fetal circulation, which starts with haemangiogenic stem cell induction 

through VEGF, forming prevascular networks in a stepwise manner. Cytotrophoblast, 

Hofbauer and differentiated perivascular cell (smooth muscle cell (SMC)) are all sources 

of growth factors. The study by Schiessl et al. on the expression of the VEFG family 

(VEGF-A, VEGF-C, VEGF-D) and their respective receptors (VEGF-R1, VEGF-R2 and 

VEGF-R3) and of the angiopioetin (Ang) family (Ang-1, Ang-2 and their receptor Tie-2) 

across the gestational placenta bed found lower VEGF-C, VEGF-R1, VEGF-R2, Ang-1, 

Ang-2 and Tie-2 expression on intramural EVT of the earlier placental bed (Schiessl et al. 

2009). In their study, they conclude that this implies that VEGF and Ang families may play 

a role in spiral artery remodelling in normal pregnancy. So these factors are important, as 

the placenta is a key source of growth factors utilised for the developing fetus.  

1.3 Assisted conception and the impact of obesity on 
infertility 

Assisted reproductive technology (ART) has undoubtedly provided medical intervention 

options for couples with infertility disorder and a low chance of conception. These 

technologies, by definition, involve handling of human gametes and/or embryos in vitro 

(Zegers-Hochschild et al. 2009). A report by the International Committee for Monitoring 

Assisted Reproductive Technology (ICMART) highlights that ART accounted for 

approximately 219,000 to 246,000 offspring born worldwide in 2002 alone (de Mouzon et 

al. 2009). In 2003, an estimated 433,427 initiated cycles resulted in 232,980 babies born, 

a 10% increase in treatments from the previous year (Nygren et al. 2011); in 2004, a total 

of 954,743 cycles resulted in an estimated 237,809 births, a 2.3% increase in the number 

of reported cycles from 2003 (Sullivan et al. 2013). This is taking into account the missing 

or partial data from some reporting centres. To date, ART employs numerous variations of 

clinical practice to achieve pregnancy for infertile and subfertile patients. 

1.3.1 In vitro fertilisation (IVF) and other procedures 

IVF is an ART procedure where a human oocyte is fertilised in vitro outside the body; it 

was originally developed for patients with tubal dysfunction. Ovulation is induced using a 
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daily follicle stimulating hormone (FSH) determined by recipient age. Oocytes are 

retrieved after ovarian induction of follicular growth, and they are fertilised by mixing with 

high-quality fresh sperm that are allowed to fertilise oocytes before undergoing several 

cleavages to form a blastocyst/embryo in vitro. Implementation of the IVF-embryo transfer 

technique has contributed to high pregnancy rates through implementing a diverse range 

of modifications developed since the first birth, that of Louise Brown in 1978 (Steptoe and 

Edwards 1978). Gamete intra-fallopian transfer (GIFT), zygote intra-fallopian transfer 

(ZIFT), intrauterine insemination (IUI) and intra-cytoplasmic sperm injection (ICSI) are 

other procedures utilised in ART. There is also extended embryo culture, oocyte donation 

and embryo cryopreservation (Lieberman et al. 1992; Gelbaya et al. 2006). The GIFT 

infertility treatment employs a similar approach to IVF, with the replacement of both male 

and female gametes to allow fertilization to occur within the body. Conversely, ZIFT is a 

treatment option for infertility due to blockage of fallopian tubes that limits normal binding 

of sperm to the egg. Oocytes are removed from the ovary and in vitro fertilised before 

being replaced at pronuclei stages (zygote) in the oviduct, with laparoscopy, as described 

previously (Aslan et al. 2005). Aslan et al. also report that ZIFT did not demonstrate a 

difference in pregnancy success compared to a normal IVF-embryo transfer group. This 

finding is contradictory to others who observed higher pregnancy rates with ZIFT 

compared to IVF-embryo transfer (Levran et al. 1998; Levran et al. 2002). Overall, such a 

difference may occur due to the difference in sample collection patients and employed 

laboratory practice. In IUI, sperm is directly placed via the cervix into the uterus at the time 

of ovulation. This procedure was developed initially to treat women whose male partners 

suffer from low sperm count, premature ejaculation or poor sperm quality. A report by 

Kucuk shows that IUI improves pregnancy rates significantly, up to 23.5% (64/272) in 

women who had more ruptured follicles as seen on transvaginal ultrasonography 

compared to 8.8% (27/306) of those with an absence of detectable follicle rupture (Kucuk 

2008). This is an indication that IUI improves conception rates in patients with appropriate 

ovarian follicular rupture because of oocyte accessibility by sperm.  

ICSI is a technique that involves direct injection of sperm into the ovum with a 

micropipette penetrating the zona pellucida (Anifandis et al. 2010). This procedure 

improves pregnancy success with assisted conception, with a 56.6% pregnancy rate 

compared to that of 47.6% for other procedures in 2000, and rates of 75.9% recently 

reached in Latin America and 92.4% in the Middle East by 2002 (de Mouzon et al. 2009). 

A higher ICSI fertilisation rate was statistically linked to improved implantation rate (25.2% 

vs 17.8%), and remained significant compared to conventional insemination after 

adjustment for variables associated with implantation (Rosen et al. 2010). However, IVF 

and ICSI were found to have similar pregnancy and delivery rates (de Mouzon et al. 

2009). Despite eliminating problems of low sperm count and poor quality, a new problem 
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of ICSI has emerged. This risk is the challenging dilemma transferring genetic anomalies 

that otherwise would not have been transmitted. This has led to preimplantation genetic 

diagnosis (PGD) an assessment tools adopted to identify embryo(s) at risk to avoid 

abnormal genetic transmission in couples before embryo transfer. PGD is widely reported 

in those suffering unexplained and recurrent miscarriage (Carp et al. 2004). 

Despite the success of ART in overcoming infertility, the issue of aberrant embryo 

implantation remains a rate-limiting factor for successful IVF. Efforts to improve 

implantation success rates in ART have led to the practice of replacing more than one 

embryo. As a consequence, this led to multiple pregnancies attributable to successful 

multiple embryo transfer and survival to live birth. Multiple embryo transfer strategies are 

now recognised to be associated with the problem of high multiple pregnancy rates and 

deliveries (Giannini et al. 2004). Recognition and development of policies that aim to 

reduce the number of embryos transferred has assisted in reducing the multiple birth rate 

associated with assisted conception (Lieberman et al. 1992; de Mouzon et al. 2009). 

1.3.2 Predicting pregnancy success  

The efficacy of ART has resulted in its increased use, and this has led to ART becoming 

an emerging risk factor for several complications of pregnancy. Whether it is the ART 

procedure itself or factors associated with the condition of infertility that contribute to 

adverse outcomes is under study; reports are conflicting. Some suggest it is the specific 

procedure of ART which is responsible for risk (Shih et al. 2008), others conclude that 

laboratory procedures involved in IVF could not be responsible, but rather the risk factor is 

related to the health of the infertile women (Romundstad et al. 2008). The latter view is 

somewhat supported by studies in subfertility populations (Thomson et al. 2005; Jaques et 

al. 2010). For the embryos that survive in this practice, there is a higher risk of pregnancy 

loss than for those from natural conception, either because of the underlying problem for 

which ART intervention was needed or because of the assisted conception procedure by 

which pregnancy was achieved. Distinctly, aberrant implantation is identified as the rate-

limiting factor in IVF/ICSI practice.  

Thus, predicting pregnancy success is necessary for those undergoing assisted 

conception, but remains problematic. A major problem is the question of which sort of 

hormone and/or what amount to administer for optimal follicle growth. Maternal age plays 

a role in determining the protocol employed. Women of <36 years have 225IU and those 

of >36 years receive 300IU per day for follicle stimulation (Nelson et al. 2007). La Marca 

et al. observe that anti-Müllerian hormone levels have been shown to predict live birth 

rates, and measurement of this hormone could facilitate individualisation of the therapy 
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prior to the first ART cycle (La Marca et al. 2011). The degree to which obesity influences 

early pregnancy metabolic and inflammatory parameters and how this may impact on 

pregnancy success is still unclear. Obesity is a significant risk factor for altering metabolic 

metabolites and inflammatory mediators throughout gestation (Stewart et al. 2007). 

Maternal body fat may affect the parameters (including lipid and carbohydrate metabolites 

and inflammatory mediators, as well as hormones such as insulin and leptin) early in 

pregnancy. Exacerbation of this mechanism may provoke maternal insulin resistance and 

exaggerated lipid deposition in pregnancy. These changes may predetermine pregnancy 

success, because of their being linked with (so far unknown) changes in the metabolic 

and inflammatory parameters. 

1.3.3 Evaluating natural cycle frozen embryo transfer (FET) 

The treatments for assisted conception are continually advancing and improving. In a 

typical ART cycle, fresh cleavage stage embryos are transferred (Steptoe and Edwards 

1978; Mettler et al. 1984). The merits of blastocyst/embryo(s) culture and cryopreservation 

and thawed cleavage stage embryo replacement (Nyboe Andersen et al. 2009) are 

evident by the increasing trend of ART. Because limitations arising from maternal age and 

parity are independently linked to abnormal pregnancy outcome (Bai et al. 2002), this 

suggests that individual factors determine the best ART approach for treatment. In natural 

cycle FET the embryo is transferred at a time relative to the endogenous LH surge 

depending on the embryonic stage of development, without artificial construction of the 

cycle with steroids (Al-Shawaf et al. 1993). The procedure is attractive and advantageous 

to women, as it eliminates the need for gonadotropin-releasing hormone (GnRH) agonist 

treatment with prior steroid administrations that suppress ovarian function and induce 

endometrial synchronisation. In women with a regular menstrual cycle (encompassing 212 

natural cycles), using FET demonstrated a 14.1% implantation rate and 20 clinical 

pregnancies, while 205 women with pituitary-desensitised hormonal controlled cycles had 

a 13.5% implantation rate and 18 clinical pregnancies (Gelbaya et al. 2006). Nonetheless, 

the inherent problem with natural cycle protocol is that it is only feasible for women that 

have a regular menstrual cycle. Timing of the ovulation may pose difficulties to women 

with irregular menstrual cycles, resulting in high rates of cancellation. The workload 

associated with the unpredictability and number of natural cycle FETs per day can result 

in a centre being required to reduce the number of patients accepted. It also introduces a 

lack of certainty in the planned dates of embryo thaw and transfer. Usually, GnRH agonist 

treatment shows more complete pituitary suppression and effective cycle control than 

freeze-thawed embryo transfer in downregulated hormone replacement therapy (HRT), 

thus providing advantages compared to natural cycle FET. The centres need to be able to 
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organise staffing and workload systematically. For that reason, stress, fear and anxiety 

may be eliminated by patients having the ability to choose the embryo replacement date. 

Whilst FET also lowers the number of multiple births (de Mouzon et al. 2009), it was found 

that FET clinical practices predetermined a higher proportion of pregnancy loss (14.5%) 

compared to (9%) fresh embryo transfer (Aflatoonian et al. 2010). In spite of the improve 

efficiency of the combination of the increases in pregnancy rates by fresh embryo transfer 

and the reduced cost (by reducing patients’ waiting time at the clinic), the practice leads to 

a high risk of multiple births. Nygren et al. identified FET as having a 22.9% pregnancy 

rate versus a 17.1% death rate per transfer (Nygren et al. 2011). For ovarian failure 

therapy patients enrolled in a donation program, the advantage of frozen-thawed embryo 

transfer is the ability to eliminate the need for synchronisation between donor and 

recipient, as this is no longer necessary for successful replacement (Salatbaroux et al. 

1988). Oocyte donor programmes of cryopreserved embryos allow flexibility in the timing 

of replacement procedures of thawed embryos (Bennun et al. 1989). Also, natural cycle 

FET overall allows for maintenance of normal pregnancy physiology close to that of 

natural pregnancy physiology in comparative HRT patients. 

1.3.4 Insulin resistance links to infertility 

The inadequate understanding of the outcomes of poor/improper implantation remains a 

challenge in tackling them. Some data suggest that the two greatest clinical predictors of 

poor outcomes of gonadotrophin ovulation induction in women with normogonadotrophic 

anovulatory infertility are obesity and insulin resistance (Ramsay et al. 2006). Encouraging 

weight loss maximises the chance of pregnancy success before starting to treat 

anovulatory subfertility. This implies a necessity to improve insulin resistance for optimal 

implantation. To date, access to data remains a problem in understanding the effect of 

metabolic and inflammatory parameters such as insulin. It is well known that insulin 

signals influence phosphorylation of several proteins and enzymes; they upregulate 

genes, synthesise lipids and glycogen and facilitate glucose translocation, as well as its 

actions being interfered by inflammation. 

The mechanism by which insulin affects the human implantation window is unknown. 

Studies using animal models have demonstrated that insulin enhances blastocyst 

proliferation in mice, rats and rabbits (Harvey and Kaye 1990; De Hertogh et al. 1991; 

Herrler et al. 1998). In mouse models, insulin enhances embryo cleavage (Gardner and 

Kaye 1991) and stimulates cell numbers of blastocysts, resulting in an increase in inner 

cell mass (Harvey and Kaye 1990). The addition of insulin to preimplantation mammalian 

embryos leads to a physiological response similar to that in other insulin-responsive cells. 
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This suggests that insulin may have a direct role in the regulation of preimplantation 

embryo development. The underlying process in the metabolic disturbance of obesity 

which causes insulin resistance is complex. Being overweight is linked to reproductive 

dysfunction. In obese women, irregular menstrual cycle, low pregnancy rate and 

miscarriage are well documented (Lashen et al. 2004; Jungheim et al. 2009; Wei et al. 

2009). In clinical situations, obese, polycystic ovary syndrome (PCOS) and diabetic 

women (conditions associated with higher insulin levels) are more likely to miscarry 

(Penney et al. 2003; Dokras et al. 2006; Jungheim et al. 2009; Beauharnais et al. 2012; 

Chang et al. 2013). All these conditions are indications of the negative effect of high 

insulin on the blastocyst/embryo stage at preimplantation (Cardozo et al. 2011). Obesity 

per se may impair fertility; there is a relationship between overweight/obesity and PCOS 

(Jungheim et al. 2009). Many women with PCOS have a BMI consistent with obesity 

(Norman et al. 2007). This syndrome is named due to the ovaries containing many small 

follicles; it is one of the commonest causes of infertility and is linked to failure of ovulation 

(Franks 1995).  

1.4 Maternal adaptation to pregnancy 

Human pregnancy physiology is besieged with extensive metabolic adaptation of different 

maternal systems. The changes mean that the mother’s body has to work harder in order 

to meet the demand of the developing fetus and still be able to sustain maternal energy 

requirements. Maternal adaptation involves amplified biochemical parameters that 

influence this and other physiological changes. These are reflected in the level of 

hormones and metabolic and inflammatory parameters. Homeostatic complexes in 

mothers act to control and maintain internal environment insults arising due to such 

changes; however, breaches occur occasionally. This not only leads to inadequate or 

exaggerated metabolic and inflammatory parameters but also implicates upregulation 

and/or downregulation of the metabolic and inflammatory pathways. All this may create a 

vicious cycle throughout gestation, affecting several systems in mother and fetus. 

1.4.1 The maternal metabolism and inflammation 

Adaptation to pregnancy in humans involves major anatomic, physiological and metabolic 

changes in the mother which serve to support and provide for her nutritional and 

metabolic needs, as well as those of the growing fetus (Torgersen and Curran 2006). The 

exact time change in metabolic and inflammatory parameters in gestation is unknown. 

Since this change may predispose physiological adaptation by the late first trimester, this 

means that this change in parameters may perhaps happen during the first weeks of 

gestation. Normally, there is a shift in the homeostatic balance of pregnant mothers which 



CC ONYIAODIKE, 2014                                                                                               Chapter 1-22 

does not occur in their non-pregnant counterparts. This is mostly in response to the 

conceptus. When problems arise, there may be an inability of the maternal systems to 

cope. Over time in gestation, this inability may result in alterations in metabolic and 

inflammatory parameters, evident in extreme pregnancy cases. 

1.4.1.1 Hormones 

A number of hormones are vital at various time points throughout gestation in order to 

achieve pregnancy success. They include those involved in conception (hCG, FSH, LH, 

oestrogen and progesterone), implantation (hCG, oestrogen and progesterone), maternal 

adaptation (hPL, insulin, leptin and adiponectin, as well as oestrogen and progesterone) 

and, by term, those useful prior to and after delivery (relaxin, hPL, prolactin and oxytocin). 

As mentioned above, steroid hormone synthesis requires cholesterol conversion to 

pregnenolone in the IMM that first produces progesterone, used in turn for other steroid 

hormone synthesis (Miller and Auchus 2011). LDL has consistently been reported as 

stimulating ovarian steroidogenesis, by the provision of cholesterol as a steroidogenic 

substrate. HDL can also deliver cholesterol to support progesterone synthesis as 

observed in human granulosa-lutein cells (Ragoobir et al. 2002). A range of mechanisms 

is involved in utilisation of cholesterol content of lipoproteins for steroidogenesis. More 

than 95% of the mass of HDL cholesteryl ester entering the cell does so through the 

nonlysosomal (selective) pathway (Azhar et al. 1998). Here the cholesteryl esters 

released from HDL are taken up directly by cells without internalisation of apoprotein. 

Once inside, the cholesteryl esters are either hydrolysed and employed for 

steroidogenesis or stored as the cholesteryl ester until required.  

As highlighted above, the cholesterol delivery to steroidogenic tissue for steroidogenesis 

occurs through LDL and HDL via receptor-mediated endocytosis and SR-B1 selective 

pathway (Grummer and Carroll 1988; Acton et al. 1996; Guibourdenche et al. 2009). The 

LDL-LDLR complex within the cell endosome (pH<6.5) draws upon a calcium-dependent 

mechanism (Zhao and Michaely 2009), dissociates and LDLR are recycled to the cell 

surface to bind additional lipoprotein. LDL-C and/or HDL-C reaches the steroidogenic 

tissues and the cholesterol is stored or utilised.  Different cells may have a preference for 

the type of cholesterol employed for various purposes (Grummer and Carroll 1988). In 

their report, Grummer and Carroll assert that adrenal and ovarian tissues were shown to 

be able to use LDL-C for steroidogenesis. Ovarian tissue utilises LDL-C primarily for 

steroidogenesis, while fibroblasts use cholesterol primarily for membrane synthesis. Also, 

the rate of LDL-C uptake is slower for steroid-secreting cells than for fibroblasts, and 

preclustering of LDLR in coated pits appears unique to fibroblasts. Others report of HDL-C 

mediation into cells and tissues without HDL particle via the SR-B1 (Acton et al. 1996; Hu 
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et al. 2010). All of these unesterified cholesterols now inside the cells precede delivery to 

the cholesterol-poor outer mitochondrial membrane (OMM) appears to be transported by 

cholesterol transport proteins. Increasingly, data imply that steroidogenic acute regulatory 

proteins (STAR) facilitate the movement of cholesterol into the mitochondria (Miller 2007; 

Guibourdenche et al. 2009; Miller and Bose 2011). Steroidogenesis is initiated by the 

P450scc residing on the IMM, where cholesterol is converted to pregnenolone, the rate-

limiting step of all steroid hormones syntheses (Hu et al. 2010; Miller and Auchus 2011).  

Human pregnancy is characterised by a gestational rising of insulin resistance from 

pregnancy onset. Hyperglycaemia (Siegmund et al. 2008), a decline in insulin sensitivity, 

parallels the development of the feto-placental unit for transport of glucose to the fetus 

(Catalano et al. 1991). This decline is thought to be indicative of placental growth and 

fetus nutrient needs (Briana and Malamitsi-Puchner 2009). Pancreatic islets undergo 

major structural and functional changes during pregnancy to fulfil this increased demand 

for insulin, as shown in rat models (Weinhaus et al. 2007). In turn, increased insulin 

hormone secretion leading to gestational increase in insulin resistance occurs in order to 

maintain glucose tolerance (Catalano et al. 1993; Catalano et al. 1999; Stewart et al. 

2007). Various components of the growth hormone axis (insulin-like growth factor binding 

protein-1 (IGFBP-1)), adipose tissue function (leptin and triglyceride (TG)) and placenta 

(leptin) also lead to insulin sensitivity during normal pregnancy (McIntyre et al. 2010).  

The underlying mechanisms of insulin resistance are yet to be completely elucidated. A 

Catalano et al. report, utilised an oral glucose tolerance test and hyperinsulinaemic-

euglycaemic clamp to study insulin sensitivity at conception, 12-14 weeks' and 34-36 

weeks' gestation in non-obese women (control) and gestational diabetes women 

(Catalano et al. 1993). In both groups, there is a significant decrease in insulin sensitivity 

as gestation advances. In addition, women who developed gestational diabetes had even 

lower decreased insulin sensitivity than women in the control group. Usually, glucose 

tolerance is normal or slightly improved with peripheral sensitivity to insulin during early 

pregnancy (Catalano et al. 1993; Butte 2000). However, the precise mechanism is still 

unclear, since peripheral insulin sensitivity and hepatic glucose production are not 

different between past pregnancies. It is suggested that alterations in the hormonal 

influence of cortisol and progestin in lipogenesis and fat storage (Butte 2000) implicate 

insulin sensitivity. Placental hormones, including progesterone and cortisol, are proposed 

as the cause of decreased insulin sensitivity (Ryan and Enns 1988; Wada et al. 2010). 

Oestrogen also reduces insulin sensitivity in pregnancy (Huda et al. 2009), and possibly 

so do hPL and prolactin (Newbern and Freemark 2011). 
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1.4.1.2 Metabolism 

The metabolic adaptations of pregnancy are orchestrated by hormones produced by the 

maternal pituitary gland and placenta (Newbern and Freemark 2011). Pregnancy is an 

intensive energy demand period. Lipid and carbohydrate metabolism play a vital role in 

meeting the high-energy demands of both mother and fetus. TG and cholesterol, the basic 

lipids, are products of the liver which are packaged into lipoprotein particles for transport 

in the bloodstream (Grummer and Carroll 1988). Excess amounts of both are exported 

from the liver into the blood in the form of very low-density lipoprotein (VLDL), when there 

are high amounts in the body. The TG in VLDL is hydrolysed by lipoprotein lipase (LPL) in 

the capillaries as free fatty acid called non-esterified fatty acid (NEFA), which are taken up 

and stored in the cells. The cholesterol-rich remnant, the intermediate-density lipoprotein 

(IDL), can be taken up by the liver as IDL cholesterol (IDL-C) for processing or can be 

converted into LDL by removing the TG.  

A typical lipoprotein is surrounded by a shell of phospholipids and unesterified 

cholesterols. Usually, plasma chylomicron, VLDL and LDL (through their apo B content) 

are the main carriers of TG, phospholipids and cholesterols (Kane et al. 1980; Cardin et 

al. 1986). There are four forms of apo B which have been identified: apo B-26, apo B-48, 

apo B-74 and apo B-100. As noted above, apo B-48 is synthesised in the intestine as a 

major polypeptide constituent of chylomicron, whereas the larger form, apo B-100, is 

primarily synthesised in the liver and is the predominant protein in VLDL and LDL 

(Olofsson et al. 1983; Uchida et al. 1998). Uptake of LDL-C through apo B-100 is 

mediated by its binding to specific high affinity receptors on the cell membrane which 

direct the LDL-C to the proper cells (Goldstein and Brown 1977). The role of LDL is to 

transport cholesterol to peripheral tissue and regulate de novo cholesterol synthesis at the 

site. HDL has antiatherogenic properties and plays a role in picking up cholesterol 

released into the plasma from dying cells and from membranes undergoing turnover, via 

reverse cholesterol transport. The enzyme acyl-CoA:cholesterol acyltransferase (ACAT) in 

HDL esterifies the cholesterol into cholesteryl ester (Spector and Haynes 2007), which 

returns to the liver by HDL. 

In pregnancy, maternal tissues rely mostly on TG as their energy source, whereas 

glucose is the primary energy fuel used by the fetal tissues, as it is readily available for 

transplacental transfer (Battaglia and Meschia 1978). Normal pregnancy is 

hyperlipidaemic due to steady gestational increase in plasma TG, total cholesterol (TC), 

VLDL cholesterol, IDL-C, LDL-C, HDL-C, lipoproteins particles, phospholipids and 

distribution of lipoproteins containing apo A-I, apo A-II and apo B (Mazurkiewicz et al. 

1994; Martin et al. 1999; Winkler et al. 2000). All circulating lipids are typically increased 
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with TG rising to 200-400% (Lippi et al. 2007; Huda et al. 2009). These changes 

necessitate several changed physiological functions. Maternal metabolism during 

pregnancy adapts to benefit fetal growth and development, and can be divided into two 

phases. During the initial two thirds of gestation, the fetal energy demands are limited and 

maternal fat storage increases (Villar et al. 1992). All of these changes cause an increase 

in behavioural change, such as hyperphagia (Douglas et al. 2007) and increased 

lipogenesis (Ramos et al. 2003). Early in pregnancy, insulin sensitivity is typically normal, 

as is peripheral sensitivity to insulin and hepatic basal glucose production (Catalano et al. 

1991).  

The changed metabolic state (in addition to pregnancy-related endocrine changes 

involving progesterone, oestrogen and cortisol), favour lipogenesis and TG accumulation, 

as shown in an in vitro model (Ryan and Enns 1988). Usually, anabolism that occurs 

during the first stage of pregnancy changes to catabolism by the second stage, with a 

striking rise in the lipolysis rate and corresponding rises in maternal NEFA and glycerol 

(Catalano et al. 1998; Huda et al. 2009). In rat models, these changes are enhanced by 

increased hormone sensitive lipase (HSL) activity and mRNA level, and a decrease in LPL 

activity (Martin-Hidalgo et al. 1994). Overall TG (fat) levels increased by the activity of LPL 

in adipose tissue, which was found to be higher in the femoral region of women (whose 

rate of hydrolysis of stored TG was examined) than their abdominal region. This 

heightened activity was found until 8-11 weeks' gestation (Rebuffe-Scrive et al. 1985). 

Such oxidation of NEFA is necessary for energy metabolism in mothers. A general 

adipogenesis and lipogenesis pathway is described in Figure 1-1. 
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The cholesterol is used by the placenta for steroidogenesis (Simpson et al. 1979) and 

membrane biosynthesis. The change in TC level reflects changes in lipoprotein fractions 

and is also found to rise as the pregnancy advances (Lippi et al. 2007). These data imply 

that the changes in lipid metabolism are necessary in either supplying energy for mother 

and conceptus or supplying building blocks (for processes including steroidogenesis, 

membrane formation and cellular fluidity) in early and mid-gestation as well as until term. 

Carbohydrates are carbon-based molecules rich in hydroxyl groups. Their simplest form is 

monosaccharide (also called simple sugar), which serves not only as a fuel molecule but 

as a fundamental constituent of the living system (as does deoxyribose, a backbone of 

deoxyribonucleic acid). Glucose is hexose and is an essential energy source for virtually 

all forms of life. In pregnancy, glucose is the most abundant nutrient crossing the 

placenta. Its transfer is aided by glucose transporters such as glucose transporters 1 

(GLUT1) and GLUT3, which are detected at the maternal-fetal interface as early as 7-13 

weeks' gestation (Sato et al. 2002; Brown et al. 2011). This suggests that the glucose 

Figure ‎1-1: Sequential regulation of adipogenesis and lipogenesis. (1) CCAT/enhancer 
binding proteins (C/C/EBPᵟ and C/EBPβ) upregulate peroxisome proliferator-activated 
receptor gamma (PPAR)ץ and C/EBPα; (2) (PPAR)2ץ upregulates C/EBPα and vice versa 
resulting in adipocyte differentiation; (3) PPAR2ץ upregulates lipogenic transcription factor 
sterol regulatory element binding protein (SREBP)1c; (4) SREBP1c upregulates extracellular 
lipolytic enzyme, lipoprotein lipase facilitating fatty acid uptake by adipocytes; (5) SREBP1c 
upregulates lipogenic enzyme, fatty acid synthase facilitating lipogenesis within adipocytes; (6) 
Intracellular lipolytic enzyme, hormone sensitive lipase (HSL) acts on TG to release fatty acid 
from adipocyte. Modified from Desai and Ross (Desai and Ross 2011). 
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taken up from maternal circulation may not only be needed for placental function but also 

for successful implantation by trophoblast invasion and proliferation, and that it has a 

support role of providing energy for maternal leukocytes (Korgun et al. 2005).  

1.4.1.3 Systemic immune response 

The maternal immune system is aware of the semiallogeneic conceptus and develops 

strategies to tolerate it. The maternal immune system undergoes profound transformation 

already at the very beginning of pregnancy (Zenclussen 2013). Such changes are 

essential to protect the fetus from a detrimental immune response. Usually, the maternal 

immune system becomes aware of the conceptus and paternal antigens rather than 

treating them as foreign, and thus actively protects them during pregnancy. This transient 

condition is explicit to the paternal antigen (Tafuri et al. 1995). As Tafuri et al. report, 

maternal T cells are aware of paternal alloantigens during pregnancy. After validation in 

mice models, it was suggested that maternal T cells acquire a transient state of tolerance 

specific to the paternal alloantigens. Also, a number of substances secreted, by the fetal 

trophoblast itself contribute to changes of adaptive immune response. The fetus is actively 

able to protect itself by generating tolerance to maternal antigens (Mold et al. 2008). In the 

report of Mold et al., it was shown that the human fetal immune system takes advantage 

of a mechanism that generates T regulatory cells (Treg) that suppress fetal immune 

response. In the same report, it was clear that a considerable number of maternal cells 

cross the placenta to reside in fetal lymph nodes, where the development of 

CD4+CD25highFoxP3+ Treg suppresses fetal antimaternal immune response, which persists 

until adulthood. This means that the fetal immune system is already programmed to 

tolerate the mother and thus survive the pregnancy until term. 

IL-4, IL-10 and leukaemia inhibitory factor (LIF) support the development and 

maintenance of the early fetus (Piccinni et al. 1998). It was found that decidual T cells had 

reduced IL-4, IL-10 and LIF in women with recurrent pregnancy loss compared to controls. 

LIF downregulates excessive leukocyte infiltration of the in utero tissue during 

implantation; maternal endometrium and decidua assist in generating the localised 

immuno-suppressive environment (Piccinni et al. 1998). This suppressive effect of some 

immune cells supports the paradigm of T helper cell (Th)1/Th2 balance, which postulates 

pregnancy as a Th2-mediated event. Progesterone suppresses maternal cell-mediated 

immunity to prevent rejection of the fetus, which expresses paternal antigens (Druckmann 

and Druckmann 2005). Druckmann and Druckmann highlight a significant factor, termed 

the progesterone induced blocking factor (PIBF) acting as immunomodulator protein. As 

Laskarin et al. report, PIBF mediates progesterone induced suppression of decidual 

lymphocytes cytotoxicity (Laskarin et al. 2002). The data were further supported by report 
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of patients presenting a Th1 phenotype in cases of miscarriage due to poor PIBF levels, 

versus a Th2 in normal pregnancies (Raghupathy 1997). Nonetheless, this known 

Th1/Th2 paradigm was disproved with the report of normal pregnancies in knockout mice 

for IL-10, and even in double-deficient mice (Svensson et al. 2001). After this disproof, it 

became apparent that the Th1/Th2 ratio is a marker predicting success or failure but not 

causing it.  

Adaptive immune response in maternal pregnancy occurs from pregnancy onset, with 

features evident long after birth. Implantation, trophoblast invasion, uterine remodelling, 

placentation and decidualisation are all potential sources of shed debris. Such shed debris 

are perhaps implicated in eliciting maternal systemic response in normal pregnancy 

(Redman and Sargent 2003). This suggests that such debris may be due to syncytial 

apoptotic and necrotic events. These events are controlled to regulate eliciting maternal 

immune response while tolerating the fetus and paternal alloantigen. Pregnancy activities 

mean that the homeostatic switch from the non-pregnancy to pregnancy state occurs in 

order to maintain optimal homeostatic balance while protecting the developing fetus. 

These observable events categorise pregnancy as an adaptive or innate, acute or chronic 

immune response (Mor 2008; Li and Huang 2009) or even as a pro- or anti-inflammatory 

condition – depending on the stage of gestation. In the innate immune response, resident 

cells in the uterus (dendritic cells and macrophages), muscular tissue, mucous membrane 

and complement systems with basophils, NK cells, granulocyte and mast cells are all 

involved. The chronic immune response encompasses the leukocyte subpopulation of 

adaptive immune cell, T cells, B cells and plasma cells, and monocytes/macrophages (via 

antigen presentation). Depending on the response, this predetermined pathway is active 

throughout gestation. Data from ART shows evidence of a systemic maternal immune 

response early in gestation. Almagor et al. observed increased c-reactive protein (CRP) 

levels in women undergoing IVF as early as 14 days after embryo transfer (Almagor et al. 

2004). In another group, there were raised  concentrations of maternal CRP at 4 weeks’ 

gestation (Sacks et al. 2004). By the late stages of pregnancy, there remained a 

significantly higher number of circulating maternal monocytes and granulocytes in healthy 

pregnancies compared to the non-pregnant groups (Sacks et al. 1998). 

Specialised immune cells, including decidual leukocyte, infiltrate the pregnant uterus and 

are also useful for other nonimmune processes. These immune cells account for at least 

15% of all cells in the decidualised uterine wall which are identifiable throughout gestation. 

The decidual leukocyte number is unique, being composed mainly (~70%) of an unusual 

type of NK cell (CD45bright/CD16-), accompanied by T cells (~15%) and macrophages 

(~15%) (Bulmer et al. 1991; Red-Horse et al. 2001). Red-Horse et al. highlight that 

chemokines are also useful in nonimmune function, including cytotrophoblast 
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differentiation (Red-Horse et al. 2001). Also, a specialised chemokine scavenger decoy 

(D6) receptor (that regulates chemokine bioavailability to leukocyte trafficking) is present 

in the uterine tissue of human (Madigan et al. 2010) and an animal model (Wessels et al. 

2011). These D6 receptors are distributed among trophoblast-derived cells in the human 

placenta, decidua and gestational membrane throughout pregnancy (Madigan et al. 

2010). Madigan et al. report that endogenous D6 can mediate a progressive chemokine 

scavenging with D6 ligand CCL2, which is specifically linked to human syncytiotrophoblast 

in the pregnancy term placenta in situ. Thus, binding of the decoy prevents signalling 

transmission and hence controls excessive inflammatory response mediators. These data 

highlight the regulation of immune response, preventing fetal allograft rejection and thus 

playing a protective role in ensuring the survival of the conceptus and developing fetus, 

throughout gestation.  

1.4.2 Maternal metabolic and inflammatory changes  

Evaluating a number of metabolic and inflammatory parameter changes in healthy 

pregnancy helps in understanding events in extreme cases. This is due to observations 

that women who suffer unhealthy pregnancies having altered metabolic and inflammatory 

parameters. These patients commonly incur long-term high cardiovascular risk. Insulin is 

recognised to play a fundamental role in maternal metabolic and inflammatory pathways 

during gestation. Saltiel et al. show that insulin regulates glucose metabolism with 

glycogen, protein and lipids as by-products (Saltiel and Kahn 2001). This regulation 

occurs when circulating glucose levels are high. Insulinaemia, dyslipidaemia and 

hypertension predispose women to increased risk of cardiovascular disease (Davidson 

1995; Steinberger and Daniels 2003; Gaspard 2009). With regard to inflammatory 

pathways, a healthy pregnancy is associated with upregulated IL-6, CRP and a high 

leukocyte count, which all are definitive cardiovascular risks (Schmidt et al. 1999). 

Interaction between lipid or carbohydrates metabolites and orchestrated inflammatory 

response contributes to insulin resistance.  

As described in detail in a later part of the chapter, maternal insulin resistance manifests 

in preeclampsia (PE) (Brewster et al. 2008), intrauterine growth restriction (IUGR) 

(Berends et al. 2008) and gestational diabetes (Uzelac et al. 2010). In short, the 

relationship between insulin secretion and sensitivity triggers insulin resistance due to 

aberrant compensatory ability of beta-cell insulin secretions, which initiates cardiovascular 

disturbances. Restoration of the endothelial function ameliorates insulin resistance and 

assists in recovering insulin sensitivity, alleviating endothelial dysfunction (Kim et al. 2006) 

and subsequent abnormal vascular conditions. In order to eliminate the devastating 

impact of maternal vascular disturbance, there is a new urgency to determine the best 
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early intervention time point during the peri-menopausal years. This determination should 

help prepare mothers who suffer extreme pregnancies with conditions including PE, IUGR 

and gestational diabetes to combat abnormal vascular condition. Emphasis on monitoring 

such patients, requiring them to attend routine screening for coronary heart disease and 

advising them on how to improve physical activity and lifestyle can provide better maternal 

health later in life. 

1.4.3 Pregnancy as a stress test 

Complicated pregnancies leading to health problems warrant attention in female 

reproductive medicine. Hypertension, dyslipidaemia, diabetes, obesity-related metabolic 

disorder and inflammatory disturbances are closely associated with the pathogenesis of 

cardiovascular disorder. A model proposed by Sattar and Greer, identified links between 

pregnancy maternal metabolic, inflammatory and vascular complications to risk of 

cardiovascular disorder later in life; this model is defined as a 'stress test' (Sattar and 

Greer 2002). Obesity or excessive weight gain predisposing women to insulin resistance 

may also exist as sub-clinical conditions in healthy women (Catalano et al. 1999; Innes et 

al. 2001; Dokras et al. 2006). Women exposed to a spectrum of altered metabolic and 

inflammatory response changes during pregnancy or previous sub-clinical status are at 

increased risk of them manifesting in subsequent gestation. Given that parameter 

alterations may facilitate the development of cardiovascular diseases which may re-

emerge permanently later in life, there is a need to identify those women with these 

metabolic syndromes during pregnancy.  

Shortly after conception, pregnant women develop hypercoagulability, raised inflammatory 

response and increased white cell counts (Sacks et al. 1998) as well as heightened 

cardiac output (Bosio et al. 1999). These changes can compromise maternal organs to 

become impaired during pregnancy, and it may be unlikely that they are subsequently fully 

repaired, in spite of such altered mediators receding postpartum. Assessment of women 

with a history of PE and IUGR and gestational diabetes shows exhibition of high risk of 

future cardiovascular disease, including dyslipidaemia, hypertension, obesity and insulin 

resistance, compared to women with uncomplicated pregnancies (Ray et al. 2005; Manten 

et al. 2007). Maternal death or admission due to ischemia heart disease are related to low 

birth weight, preterm birth and PE (Smith et al. 2001). Gestational diabetes that occurs 

either due to pancreatic beta-cell deficiency in increased insulin secretion or to pre-

existing insulin resistance is related to increased risk of cardiovascular disease in women 

(Carr et al. 2006). Ordinarily, insulin resistance disappears after birth but reappears in 

subsequent pregnancies and women who developed gestational diabetes are likely to 

develop type II diabetes mellitus (Kim et al. 2002; Cheung and Byth 2003). 
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It therefore appears that suffering certain complications of pregnancy leads to individual 

susceptibility to future maternal cardiovascular diseases. This implies that such 

complications may serve as an effective diagnostic tool to monitor women with increased 

risk of maternal cardiovascular disease later in life. As put forward by Sattar and Greer, 

altered metabolic and inflammatory parameters manifesting in these metabolic pregnancy 

disorders could be considered as a stress-test outlook for long-term maternal health 

(Sattar and Greer 2002). This diagnostic tool may perhaps provide an opportunity for 

preventing the reoccurrence in women who have suffered complications of pregnancy, 

including PE, IUGR and gestational diabetes (Sattar and Greer 2002). Clinical advice to 

improve lifestyle, diet and physical activity could be provided for affected patients. 

1.5 Impact of obesity on adaptive response and 
mechanistic links to poor implantation/placentation 
manifested as miscarriage, stillbirth, PE, IUGR and 
gestational diabetes                                                                     

Obesity increases the demand of cell synthetic machinery in some secretory organ 

systems. This increase defines obesity as a chronic positive energy imbalance due to 

excess fat (TG) storage in adipose tissue that results in adipocyte hypertrophy and 

hyperplasia during adipogenesis in human (Heilbronn et al. 2004; Avram et al. 2007) and 

rat models (Faust et al. 1978). Obesity is associated with mechanical stress, excess lipid 

accumulation, abnormal intracellular energy fluxes and nutrient availability. This is 

perhaps due to the large number of adipocytes in obese subjects compared to lean 

subjects (Spalding et al. 2008). Spalding et al. report approximately 10% total fat cell 

renewal by ongoing adipogenesis and adipocyte death per annum at all adult ages and 

BMI levels. Another consequence of the adipose tissue acting as an energy storage factor 

is the production of soluble molecules, adipocytokines. It was found that expression of 

adipokine varies depending on the site of adipose deposit (Ouchi et al. 2011). The deposit 

of excess body fat (regional fat distribution) is a major determinant of degree of excess 

morbidity and mortality due to obesity (Lefebvre et al. 1998). At least three components of 

body fat are associated with obesity-related adverse health outcomes: the total amount of 

body fat (expressed as percentage of body weight), the amount of subcutaneous adipose 

tissue (SAT) or abdominal fat (upper body fat), and the amount of visceral adipose tissue 

(VAT) located in the abdominal cavity (Freedland 2004; Desai and Ross 2011). SAT is 

made of smaller, more insulin-sensitive adipocytes that act as a sink or buffer, avidly 

absorbing circulating fatty acids and TG in the postprandial period (Desai and Ross 2011). 

In contrast, excessive VAT increases secretion of fatty acid, adipokine and inflammatory 

molecules, which all contribute to insulin resistance, dyslipidaemia, glucose intolerance 

and hypertension. As knowledge of obesity-induced inflammation increases, evidence 
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relates obesity to chronic low-grade inflammation (Hotamisligil 2006; Ouchi et al. 2011) or 

a complex highly active metabolite source of various inflammatory mediators (Berg and 

Scherer 2005).  

1.5.1 Impact of obesity in pregnancy 

Adipose tissue metabolism plays an essential role in maternal energy homeostasis during 

gestation. Obesity is a significant risk factor for changes of metabolic and inflammatory 

parameters during pregnancy that affect adaptation. There are reports throughout 

gestation of the metabolic and inflammatory parameters revealing high levels of leptin, 

TG, CRP and IL-6, and low levels of HDL-C in obese mothers compared to women of 

normal BMI (Ramsay et al. 2002; Stewart et al. 2007; Madan et al. 2009). Stewart et al. 

found significantly higher levels of CRP in obese women by 13 to 14 weeks’ gestation, 

compared to lean women (Stewart et al. 2007). This implies that the effect of obesity on 

inflammatory mediators is present early in pregnancy. Plasma TNF-α, PAI-1, IL-6, 

adiponectin (insulin sensitivity) and leptin (energy balance and appetite) production by fat 

cells are involved in inflammation in obese women (Huda et al. 2010). Obesity reduces 

placental villous proliferation and increases apoptosis; this raises susceptibility to 

complications of pregnancy (Higgins et al. 2013). Obesity exposes the placenta to the 

alterations of metabolic and inflammatory parameters in pregnancy. This is shown in the 

report by Challier et al., who observe a high accumulation of placental macrophage 

expression of proinflammatory cytokines that include IL-1, IL-6 and TNF-α in obese 

women compared to a lean group (Challier et al. 2008). Levels of resident CD68+ and 

CD4+ cells macrophage in the placentae of obese pregnant women are 2-3 times higher 

than in lean women. Other researchers found raised CRP and TNF-α levels in the 

amniotic fluid of obese pregnant women (Bugatto et al. 2010), suggesting a link to fetal 

production, as most inflammatory mediators usually do not cross the placenta (Aaltonen et 

al. 2005). Importantly, it appears that some inflammatory mediators, including IL-6 and 

TNF-α, are capable of stimulating the expression and secretion of leptin and adiponectin 

from adipose tissue and the placenta (Chen et al. 2006; Briana and Malamitsi-Puchner 

2009). These findings highlight pregnancy obesity as implicative of insulin resistance 

(Steinberger and Daniels 2003; Catalano 2007) and oxidative stress, both of which induce 

endothelial dysfunction (Perticone et al. 2001). This also demonstrates that obesity effects 

are evident in all stages of gestation that affect adipose tissue and the placenta, resulting 

in the manifestation of a vicious cycle for metabolic and inflammatory parameter changes. 
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1.5.2 Mechanistics of poor implantation and placentation 

Pregnancy loss, PE, IUGR and gestational diabetes (Gauster et al. 2012) are in part 

products of poor/improper implantation that in most cases, lead to abnormal placentation, 

whether through natural and spontaneous or assisted conception. 

1.5.2.1 Poor implantation 

Many identifiable factors affect implantation. The first is chromosomal abnormality, 

especially in couples who suffer pregnancy loss. In ART, early pregnancy loss was 

reportedly increased between patient in their mid thirties and late forties which links 

maternal age and chromosomal aberrations (Liu and Case 2011). Another report shows 

that abnormal embryos were significantly more frequent in patients that had recurrent 

miscarriage compared to controls (Rubio et al. 2003). In essence, abnormal 

chromosomes trigger poor implantation, as embryo(s) with inadequate numbers of 

chromosomes are arrested. As Fragouli et al. report, the rate of chromosomal aneuploidy 

was lower for the blastocyst (38.8%) compared to the (51%) embryo at early implantation, 

but chromosomal errors, including monosomy and complex aneuploidy, persisted at the 

final stage of preimplantation development (Fragouli et al. 2008). Many single gene 

defects or polygenic multifactorial syndromes, such as trisomy and translocation, lead to 

early pregnancy loss. In chromosomal translocation, the embryo may receive too much or 

too little genetic material, and this excess or lack readily results in pregnancy loss. As a 

result, aberrant embryos are likely to implant poorly and to be afterwards lost. 

Studies have demonstrated that the anatomical factor can also result in poor implantation 

and complications of pregnancy. This is also evident in pregnancy loss and infertile 

women. An example is uterine anomalies, which can be acquired or congenital. Distorted 

uterine morphology may lead to inappropriate adhesion of the blastocyst onto the 

endometrium, resulting in poor implantation. A morphological study of uterine anomalies in 

women, with or without a history of recurrent miscarriage, reveals no difference in the 

relative frequency of various anomalies or depth of fundal distortion between the groups 

(Salim et al. 2003). In the same report, the arcuate and subseptate uteri were shorter and 

distortion was higher in those with recurrent pregnancy loss. Another study shows that 

arcuate uterus was the most common anomaly in the general and recurrent miscarriage 

population, while septate uterus was the most common anomaly in the infertile population 

(Saravelos et al. 2008).  

Shoenfeld et al. note the prevalence of autoimmune disease and its association with a 

significant rise of the antiprothrombin antibody in infertile women than in control group 
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(odd ratio OR 5.15 (95% confidence interval CI 2.12, 12.74)); more prevalent in recurrent 

pregnancy loss than in controls 5.42 (2.4, 12.50) (Shoenfeld et al. 2006). This study also 

reveals that the antibody level was more closely linked to secondary abortion (miscarriage 

after live birth) than primary miscarriage (all pregnancies terminated in miscarriage). 

Others show that autoantibodies (antiphospholipid antibodies) directed to phospholipids, 

β2-glycoprotein I, cardiolipin and lupus anticoagulants molecules present in the 

trophoblast membrane lead to exposure of the external surface of trophoblasts during 

tissue remodelling, contributing to pregnancy loss (Chamley 1997; Zenclussen 2013). All 

these autoantibodies affect cell division during embryogenesis and trophoblast 

proliferations, resulting in comprised trophoblast invasion during implantation, and the 

conceptus is normally lost at some point, whether in early/late pregnancy or even in 

advanced gestation as stillbirth. 

1.5.2.2 Poor placentation resulting from the above issues 

PE, IUGR and gestational diabetes are all consequences arising from improper 

implantation. These have a relationship to placental dysfunction directly and/or indirectly. 

Usually, the developing fetus obtains oxygen and nutrients from the mother through 

placental transport. As the placenta is a distinctive organ that differentiates per se, it 

organises fetal growth throughout gestation. EVT invade the uterine endometrium (Lyall 

2005), establishing sufficient blood flow from maternal circulation, as noted above. A 

common view, referred to as the 'poor placentation hypothesis', holds that EVT failing to 

invade the placental bed sufficiently partly predisposes women to complications of 

pregnancy. Placentation occurs around 6-18 weeks of pregnancy (Pijnenborg et al. 1980; 

Redman and Sargent 2003). The first wave of trophoblast invasion starts by the late first 

trimester, around 8 weeks' gestation, and the second phase takes place between 18 and 

20 weeks' gestation (Hossain and Paidas 2007). The spiral arteries are transformed into 

large structureless conduits that can supply the hugely expanded blood flow of the third 

trimester placenta (Redman and Sargent 2003). The process of trophoblast invasion is 

usually completed by 20 to 22 weeks' gestation in normal pregnancy. In PE cases, it has 

been found that cytotrophoblast invasion of the uterine spiral arterioles is often incomplete 

by this time, and spiral arteries fail to lose their muscular elastic components (Brosens et 

al. 1972).  

Two abnormalities affecting the spiral arteries, which are the end-arteries that supply the 

intervillous space, are that the arteries may be too small due to deficient placentation or 

obstructed because of acute atherosis, or both (Brosens et al. 1972). In PE and IUGR, 

endovascular trophoblasts do not invade the myometrial segment, and the physiological 

changes are restricted to decidual segments (Gerretsen et al. 1981; Pijnenborg et al. 
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2006). The inability of EVT to enable the muscular spiral arteries to invade the myometrial 

portion converts the arteries into 'low-resistance' capacitance vessels. Thus, acute 

atherosis is likely to develop in the myometrial spiral arteries, with a focal rather than  

generalised feature, and is often associated with thrombosis, possibly due to maternal 

systemic inflammatory response (Redman and Sargent 2003). This results in impairment 

of blood supply to the placenta, leading to infarction and, if widespread, resulting in 

impairment of fetal growth. As a result, placental reduced perfusion and placenta hypoxia 

are hallmarks of PE, resulting in turn in abnormally low flow and high resistance in pre-

eclamptic placentae (Burton et al. 2009). In contrast, in excessive trophoblast invasion, 

the placenta may attach onto the myometrium (accreta), into the myometrium (increta) 

and completely through the myometrium (percreta) (Brahma et al. 2007).  

There are reports that the placenta is partly responsible for releasing factors that cause 

endothelial dysfunction in maternal circulation called soluble fms-like tyrosine kinase-1 

(sFlt-1) (Nagamatsu et al. 2004; Gilbert et al. 2008). sFlt-1 is a naturally occurring 

circulatory antagonist of VEGF-A and PIGF detected in maternal sera (Levine et al. 2004) 

and placenta (Maynard et al. 2003). Normally, the binding of sFlt-1 to the VEGF-A and 

PIGF blocks the action of both vascular and/or placental mediators. Higher sFlt-1 levels 

are found in PE (Chaiworapongsa et al. 2005), whereas PIGF and VEGF are deficient 

prior to and during clinical manifestation of PE, compared to healthy pregnancy 

(Reuvekamp et al. 1999; Livingston et al. 2000). These data suggest that PE promotes 

vasospasm coagulation and the increase of microvascular permeability, arising from the 

effect of inflammation and endothelial injury. 

In gestational diabetes, aberrant villous vascularisation, disbalance of vasoactive 

molecules and enhance oxidative stress is apparent (Gauster et al. 2012). These changes 

affect the transplacental nutrient supply and impair fetal oxygenation. The combination of 

inflammation, placental ischemia and hypoxia from defected placental trophoblast 

invasion and poor remodelling of the uterine spiral arteries influences exaggerated 

metabolic and inflammatory response via the placenta (Benyo et al. 1997). In this way 

implantation and placentation may prompt complications of pregnancy such as pregnancy 

loss (early/late or stillbirth), PE, IUGR and gestational diabetes. 

1.5.3 Manifested complications of pregnancy 

Not all pregnancy complications are necessarily equal in regard to their aetiology and 

consequences. A number of complications that develop through the course of pregnancy 

can be detrimental to the mother’s and fetus’ health. Examples include pregnancy loss, 

whether early/late or stillbirth, placental previa, placental abruption, pregnancy-induced 
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hypertension, PE, IUGR and gestational diabetes. As stated above, most of these cases 

occur in part due to poor or excessive trophoblast invasion, which may be followed by 

systemic endothelial dysfunction and/or (in gestational diabetes patients) become glucose 

intolerance (Roberts et al. 1989; Metzger et al. 2007; Healy et al. 2010; Boyadzhieva et al. 

2012; Gauster et al. 2012). The best approach to assessing pregnancy outcome is to 

monitor pregnancies from conception until birth. This period allows a higher chance of 

identifying the onset of complications at any point in time by pinpointing a specific incident 

throughout the course of gestation. Increasingly, research focus has been shifted to 

understanding metabolic and inflammatory pathways with regard to complications of 

pregnancy. Some such complications of pregnancy are highlighted in detail below. 

1.5.3.1 Pregnancy loss 

Pregnancy loss consists of early/late pregnancy loss and stillbirth. Miscarriage is the 

accepted formal term for early loss (before 12 weeks) of fetal viability or late loss (after 12 

weeks) of pregnancy (Farquharson et al. 2005). Stillbirth is the intrauterine death of any 

conceptus at any time during gestation. The legal definitions vary, requiring the recording 

of fetal death at different gestational ages (16, 20, 22, 24 or 28 weeks) or birth weights 

(350, 400, 500 or 1000g). The United States has eight different definitions by 

combinations of gestational age and weight (Nguyen and Wilcox 2005; Mohangoo et al. 

2013). Pregnancy loss is a common disorder in over 20% of pregnancies (Savitz et al. 

2002), although it is notoriously difficult to detect with accuracy, especially in the early 

stages of gestation. Pregnancy loss is no doubt psychologically devastating to affected 

couples, causing immense grief, depression and emotional distress. It is accepted that 

couples having regular intercourse without contraception have a 25-30% chance of 

starting recognisable pregnancy in a single menstrual cycle (Savitz et al. 2002). In those 

that do not become pregnant in any one cycle, it is presumed that there has been either a 

failure of fertilisation or that fertilisation has occurred but the embryo has been lost before 

the first missed period. Of those pregnancies lost after 4 weeks’ gestation, when clinical 

recognition is possible, many are unrecognised because the women were unaware of the 

pregnancy. A major mechanism underlying pregnancy loss is maternal inflammation. 

There is evidence in women who have recurrent pregnancy loss of having an increased 

altered cellular activation of peripheral blood CD56+ NK cells (Emmer et al. 2000; King et 

al. 2010), which suggests the involvement of the innate immune system. NK cells produce 

signatures of Th1 cytokine, such as interferon-gamma (INF-ץ), and the activation of such 

signature could explain the role of Th1 as a cause of recurrent pregnancy loss 

(Raghupathy 1997). As stated above, LIF involvement in embryo implantation allows a 

shift from Th1/Th2 response at the maternal-fetal interface that ensures pregnancy 

success. The decrease in production of LIF, IL-4 and IL-10 by decidual T cells was 
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observed in women with unexplained recurrent pregnancy loss compared to women with 

normal pregnancy (Piccinni et al. 1998). This observation demonstrates that poor 

antiinflammatory response to the suppression of proinflammatory response, increases the 

risk of pregnancy loss. 

1.5.3.2 Pre-eclamptic pregnancy 

PE is a multisystem disorder of pregnancy diagnosed after 20 weeks’ gestation. It is 

characterised by the onset of hypertension, proteinuria and oedema. This disorder 

contributes to 40% of premature births and is linked to maternal and fetal morbidity and 

death (Chappell et al. 1999; Hendler et al. 2005). To date, the definitive treatment of PE 

remains to expedite delivery. PE prevalence varies, affecting 2-5% of pregnancies in the 

UK alone, and approximately 4 million pregnancies per annum worldwide. Although the 

underlying cause(s) and pathogenesis remain poorly understood, impaired trophoblast 

invasion of the placental spiral arteries is a recognisable feature of pre-eclamptic disorder 

(Brosens et al. 1972; Kadyrov et al. 2006) and implicative of abnormal placentation 

(Furuya et al. 2008). In PE, many homeostatic changes are exaggerated. This 

exaggeration is evident in the changes of metabolic and inflammatory parameters long 

having been shown to be disturbed in pre-eclamptic pregnancy. An example of the 

change of these parameters is the lipid adaptation indicated by a gestational 

(Enquobahrie et al. 2004; Baker et al. 2009) and cross-sectional report at term (Rodie et 

al. 2004; Adiga et al. 2007) of maternal plasma dyslipidaemia, including increased TG, TC 

and low HDL-C level in PE compared to controls. A classical pathological lesion (acute 

atherosis) seen in the pre-eclamptic placental bed potentially results from accumulated 

lipid-laden macrophages around the areas of fibrinoid necrosis of the spiral arteries 

(Brosens et al. 1972). Such lipid accumulation at the site of endothelial damage implies 

the possible role of lipid impact in vascular injury of PE. Huda et al. indicate that whatever 

the precise nature of the stimulating placental factor in PE, perhaps provokes the 

disturbance in lipid metabolism which contributes to vascular damage (Huda et al. 2009). 

Women who later develop PE have increased maternal sera CRP early in gestation 

(Thilaganathan et al. 2010). Widespread activated immune cells are evidence of 

inflammatory response, as reported in pre-eclamptic pregnancy (Sacks et al. 1998; 

Redman and Sargent 2004; Thilaganathan et al. 2010). This response includes activated 

leukocyte exaggeration of the level of plasma TNF-α and CRP in women who have PE, 

compared to controls (Teran et al. 2001; Ramsay et al. 2004; Lockwood et al. 2008). 

Human decidual cells of PE were found to be involved in the raising of plasma IL-6 due to 

significantly higher IL-6 immunohistochemical (IHC) staining and mRNA levels, but this 

was not found in the control group (Lockwood et al. 2008). This systemic inflammatory 
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response is now linked to stimulating hypoxia and maternal endothelial activation and 

dysfunction in PE (Roberts et al. 1989; Ramsay et al. 2004; Royle et al. 2009; Lee et al. 

2012). Adaptive response of vascular abnormality during pregnancy is assessed using 

both PAI-1 and -2. PE is related to increased PAI-1 levels in the blood, whereas it is 

related to reduced PAI-2 levels by term compared to normal pregnancy (Reith et al. 1993). 

To date, PAI-1/PAI-2 ratio is use to assess the index of placental function, with a low and 

high index implicating good and poor placental function respectively (Reith et al. 1993). 

The idea that (in almost all cases) the effects of PE regress shortly after delivery of the 

placenta but persist if placental tissue is retained implicates the placenta as both 

necessary and sufficient for pre-eclamptic disorder. The placenta is involved in 

orchestrating oxidative stress, and a vast proinflammatory response is witnessed in PE 

(Redman and Sargent 2000; Cindrova-Davies 2009). Work on primary cytotrophoblast 

culture shows that lowering of percentage oxygen from 20% → 8% → 2%, promoted 

cytotrophoblast proliferation (Nagamatsu et al. 2004). In their report, the reduced oxygen 

tension resulted in the increase of sFlt-1 mRNA levels and sFlt-1 secretion, and 

diminished PIGF release (without detection of VEGF) in the culture media. Another study 

note a significantly higher placental TNF-α in PE that is positively correlated to lipid 

peroxide (Wang and Walsh 1996). The TNF-α also induce hypoxic stress through 

ischemia-injury on the endothelial cell (Hung et al. 2004), causing monocyte apoptosis 

and inhibiting trophoblast proliferation (Seki et al. 2007).  

1.5.3.3 Intrauterine growth restriction 

Data about IUGR is conflicting. Fetal growth provides a means of monitoring the fetal 

development in utero and can predict postnatal health and development. IUGR is a 

pathological condition of reduced growth velocity which compromises fetal well-being. 

IUGR pathology shares a number of similarities with PE, such as involvement of 

prothrombotic and inflammatory process, increased apoptosis and decreased cell growth; 

however, generally, there is an absence of endothelial damage. IUGR aetiology remains 

unknown and most of the available knowledge about the physiology and pathology of fetal 

growth is extrapolated from animal studies. Apart from the common factor of compromised 

nutrient supply across the placenta to the fetus, Sankara and Kyle highlight other causes 

resulting from early-onset insult to cellular hypoplasia, which are unlikely to be amendable 

through treatment (Sankaran and Kyle 2009). They also highlight that normal fetal growth 

is the result of a complex sets of activities involving maternal, placental and fetal factors. 

IUGR is related with reduced uterine blood flow or poor uteroplacental perfusion, both 

paramount for placental and fetal growth in IUGR (Khong et al. 1986). The disorder has 
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long been identified as one of the main causes of perinatal morbidity and mortality in both 

index and subsequent pregnancies (Ounsted et al. 1981; Rasmussen et al. 1999). 

Offspring and maternal birthweight are inversely related with maternal cardiovascular 

disease. Established and novel cardiovascular risk factors, including vascular, metabolic 

and inflammatory function in women who delivered small-for-gestational age offsprings 

indicate altered lipids, including higher TG, cholesterol:HDL ratio, CRP, IL-6 and ICAM-1 

compared to controls (Kanagalingam et al. 2009). A previous report of lipoprotein in IUGR 

cases and controls shows the cases women had significantly lower TC, LDL-C, IDL mass, 

VLDL2 mass and total LDL mass than the control (Sattar et al. 1999). When Rodie et al. 

observed the offspring of women with IUGR, they found that increased fetal lipid (TG) 

which but no impact of maternal lipid (Rodie et al. 2004). Insulin resistance is a major 

metabolic milieu arising from altered placental leptin expression, which is thought to be 

paramount in the (IUGR) perinatal disorder (Tzschoppe et al. 2010). Debate on the 

maternal leptin role in IUGR, due to the varying levels compared to healthy women 

generally (Laivuori et al. 2006; Kyriakakou et al. 2008), implies that poor placenta 

perfusion leads to the development of IUGR. The fact that IUGR patients are normally 

lean implies that higher plasma leptin in some women drives increased placental leptin 

mRNA levels, reflecting the severity of placental dysfunction. IUGR women who are lean 

generally give birth to IUGR babies. IUGR babies are at increased risk of adult obesity. 

This is due to data from developmental programming studies that highlights the link 

between IUGR and the obesity epidemic (Desai and Ross 2011). 

1.5.3.4 Gestational diabetes 

Gestational diabetes is a disorder characterised by impaired glucose intolerance that 

appears from the second half of gestation. It affects 3-10% of pregnancies, with regard to 

the studied population, and as a result may be a natural phenomenon. The exact process 

underlying gestational diabetes remains unclear. The hallmark of the disorder is thought to 

be its interference with insulin action as it binds to the insulin receptor. As mentioned 

above, insulin resistance disappears after birth but reappears in subsequent pregnancies 

and women who have developed gestational diabetes are likely to develop type II 

diabetes mellitus (Kim et al. 2002; Cheung and Byth 2003). Gestational diabetes generally 

occurs in women with pre-existing insulin resistance and is influenced by maternal obesity 

(Lashen et al. 2004; Roman et al. 2011). The impact of obesity on gestational diabetes 

patients is related to neonatal hypoglycaemia (Roman et al. 2011).  

The insulin resistance present in gestational diabetes is due to exaggerated maternal 

glucose levels, and has been found to be responsible for fetal macrosomia (Voldner et al. 
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2010). A singleton pregnancy of those suffering from gestational diabetes reveals first-

trimester fasting glucose levels increasing from 1.0% in the lowest to 11.7% in the highest 

category (adjusted OR 11.92 (5.39, 26.37)) and large-for-gestational age (LGA) neonates 

and/or macrosomia increasing from 7.9% to 19.4% (2.82 (1.67, 4.76)) (Riskin-Mashiah et 

al. 2009). Apart from poor glucose tolerance in gestational diabetes mothers, there is also 

elevated plasma leptin, IL-6 and TNF-α, which are absent in controls (Ategbo et al. 2006). 

This partly implies inflammatory pathway involvement. Recent data highlights placental 

dysfunction as a factor in gestational diabetes. This is because the incidence of delayed 

villous maturation increases in pre-gestational diabetes patients compared to non-diabetic 

groups (Higgins et al. 2012). Aberrant villous vascularisation, an imbalance of vasoactive 

molecules and enhanced oxidative stress in gestational diabetes patients, is also reported 

(Daskalakis et al. 2008; Gauster et al. 2012). The consequences may be changed 

transplacental nutrient supply and impaired fetal oxygenation.   

1.6 The offspring adaptive response  

Adaptive response in the fetus is not completely understood. Fetal demand for growth and 

development assists in modulating maternal metabolic and inflammatory parameters to 

the fetus (Chandler-Laney et al. 2011). Because of difficulties in studying developing 

human fetuses, much current knowledge of human fetal adaptation has its origin in animal 

and cell culture models, although most is pertinent to humans. Less information has been 

obtained from primate models. In the available human data, obtained mostly at term, the 

offspring and mother differ profoundly. 

1.6.1 The fetal metabolism and inflammation 

1.6.1.1 Fetal hormones 

The endocrine system of the fetus acts as a modulator of the classical physiology of organ 

system. One example is that of a basic function of the cardiovascular system to transport 

nutrient and waste products and perfuse the tissue with blood. However, the blood volume 

and osmolality is controlled by the action of the endocrine feedback process. Most peptide 

hormones circulate at a low level in the developing fetus and are not bound to 

transporters; thus are completely free from interactions with cell surface receptors. IGFs 

(IGF-1 and IGF-2) bind their receptors (Lelbach et al. 2005; Murphy et al. 2006), allowing 

fetal adjustment to their local levels; thereby modulating cellular growth and differentiation. 

Placental hormones dominate the endocrine milieu in human gestation. The placenta has 

two steroidogenic pathways (Miller and Auchus 2011). First, as noted above, placenta 
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(like most steroidogenic tissues) can initiate steroidogenesis derived from cholesterols 

converted to pregnenolone and, then to progesterone; second, it can take C19 steroids 

(androgens) produced by the fetal adrenal, converting them to oestrogen. In primates, 

including humans, the placenta is a major source of oestrogen, since the biosynthesis 

depends upon an intact feto-placental unit (Ishimoto and Jaffe 2011). Human placenta 

lack the 17α-hydroxylase/17,20-lyase (P450c17) that catalyses both 17α-hydroxylase and 

17,20-lyase activities (Voutilainen et al. 1986), whereas the enzyme is express in the 

adrenal and gonads (Miller and Auchus 2011). As Guibourdenche et al. report, the 

placenta is able to synthesise large amounts of oestrogen, as it receives a supply of 

oestrogen biosynthetic precursors from the maternal and fetal adrenal cortex 

(Guibourdenche et al. 2009). In the fetal zone, the fetal adrenal cortex have 3βHSD2 but 

lacks 3βHSD1 and 17βHSD1 (as in mothers) and cannot therefore convert either 

pregnenolone to progesterone or 17α-hydroxypregnenolone to 17α-hydroxypregesterone. 

Thus fetal (and maternal) adrenal cortex secretes dehydroepiandrosterone and 

dehydroepiandrosterone sulfate, as well as from fetal liver in response to the 

adrenocorticotropic hormone. These steroidogenic intermediates are taken up by the 

placenta utilising it 3βHSD1 in the oestrogen biosynthesis, bypassing the lack of P450c17 

(Guibourdenche et al. 2009; Miller and Auchus 2011). The biosynthesised oestrogen is 

released into the fetal bloodstream and creates an endocrine environment that allows for 

fetal growth and development. Increased fetal oestrogen by the time of delivery is thought 

to arise because of the increase in myometrial contractility which initiates labour, perhaps 

allowing maternal oestrogen influx. An investigation of maternal and offspring insulin at 

birth reported on association between mother and baby (Chiesa et al. 2008); maternal 

insulin is related positively to babies' ponderal index and birthweight at birth. 

1.6.1.2 Fetal metabolism 

Appropriate fetal growth at gestation depends on genetic factors (such as the combination 

of material from the father and mother) as well as epigenetic factors, nutrient supply and 

general uterine environment, including the placenta (Huppertz et al. 2013). Nutrient supply 

across the maternal-fetal interface is of utmost importance for fetal growth and 

development. At first, nutrients and oxygen from the mother must reach the placenta 

before being further directed to the fetus. This is made possible by establishment of the 

EVT. The fetal metabolism is thought to be governed solely by the requirements of the 

fetus. Transplacental nutrient delivery promotes a rise in fetal insulin, which, together with 

a late-gestational surge in fetal cortisol levels, promotes fetal fat deposition and fetal 

growth (Murphy et al. 2006; Newbern and Freemark 2011). Amino acids, lipids and 

glucose are directed into the pathways for fetal cell growth, which are largely controlled by 

nutrient supply from the mother's circulation. This is due to the absence of some pathways 
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of essential amino acid homeostasis and glucose synthesis (requiring higher dependency 

on the mother) and low activity of the pathway for fatty acids in the fetus (Innis 2007; Tea 

et al. 2012). To date, it is well known that appropriate fetal growth is essentially 

determined by nutrient availability, which depends on nutrient transport and fetal 

metabolism. As a result, undernutrition in utero appears to be associated with persistent 

changes in the endocrine, metabolic and immune functions (Barker 1997; Kaser et al. 

2001). Other changes, including cholesterol metabolism and insulin response to glucose, 

are affected by poor nutrition in utero (Barker 1997).  

1.6.1.3 Fetal immune system 

A concept postulated for some time, the existence and the need for a protective adaptive 

immune response to protect the fetus (Tafuri et al. 1995), led investigators to focus on the 

cells responsible for this state of active tolerance. As noted above, Treg cells mediate to a 

large extent the state of active immune tolerance which prevents maternal lymphocytes 

from causing cytotoxic damage to the fetus (Aluvihare et al. 2004). Thus Treg cells protect 

the fetus from immunological attack by the mother.  

1.6.2 Offspring manifestation of the above in complicated 
cases  

In this thesis, the emphasis has been on pregnancies that are problematic due to poor 

trophoblast invasion and placental function, including pregnancy loss, PE, IUGR and 

gestational diabetes. Using pre-eclamptic cases, for example, in both loss- and gain-of-

function genetic mouse models, expression of adrenomedullin by fetal trophoblast cells is 

essential and sufficient to promote appropriate recruitment of uterine NK cells to the 

placenta (Li et al. 2013) and ultimately promote remodelling of maternal spiral arteries. 

Placental growth hormone levels in umbilical cord blood were higher in cases of PE (Mittal 

et al. 2007), an indicative of stressed placenta. Early pregnancy features intense secretory 

activity of placental cell types contributing to increased local and systemic inflammatory 

response mediators. Hofbauer cells, known as the placental resident macrophage, play a 

role in cytokine synthesis, as do syncytiotrophoblast and cytotrophoblast cells (Hauguel-

de Mouzon and Guerre-Millo 2006). These molecules respond as part of a non-specific 

immune response to tissue injury and antigenic agents. As early as 1967, Brosens et al. 

proposed plaque build-up within the placental vascular bed as a likely indicator of excess 

circulatory immune cells (Brosens et al. 1967). As mentioned above, cord blood TG and 

TC levels were significantly higher in patients with PE compared to controls (Rodie et al. 

2004). All of these data suggest that there is manifested impact on the fetal hormone, 

metabolism and immune system response on the offspring of pre-eclamptic women. 
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1.6.3 Placental role in communicating the above responses 

The transport of metabolites and oxygen across the maternal-fetal interface is a prime 

function of the placenta, with exchanges of nutrients/gas and waste products between the 

mother and the developing fetus. The biochemical mechanisms involved in the transfer of 

maternal nutrients to the fetus include passive, facilitated and active diffusion 

(Economides et al. 1989), endocytosis or exocytosis (Sibley et al. 1997). Water, vitamins, 

amino acids such as L amino acid transporter (Roos et al. 2009), inorganic ions and 

minerals are all transported across the placenta to the fetus. Pregnant women use more 

fatty acid and less glucose as energy sources, particularly in the latter two thirds of 

pregnancy (Villar et al. 1992). This leaves more of the glucose available to nourish the 

growing fetus and means that the placenta plays a role in glucose transport across to the 

fetus (Korgun et al. 2005) by varied glucose transporter proteins. 

A specific example is cholesterol that has a prominent role in steroidogenesis, cellular 

membrane biosynthesis, central nervous development, such as in the brain, myelin sheath 

formation and synthesis of bile acids, and has to be transferred to required targets. It is 

use for propagations and activations of the sonic hedgehog (SHH) signalling (Lewis et al. 

2001) necessary for the function of the central nervous system. Napoli et al. showed that 

there is enhanced fetal atherosclerotic plaque lesion formation in the offspring of mothers 

with hypercholesterolaemia (Napoli et al. 1997). Work on the Smith Lemli Opitz syndrome 

(SLOS) highlights that maternal-derived cholesterol can be effluxed from trophoblast to 

fetal HDL and plasma (Jenkins et al. 2008). Jenkins et al. report that approximately 50% 

more effluxed HDL from SLOS patients via trophoblast cell lines were smaller in size, 

constituting low cholesterols to phospholipids than that of unaffected counterparts; still, 

plasma from SLOS fetus effluxed similar percentage as unaffected fetal plasma. These 

reports suggest that cholesterol placental transporters' involvement in the cholesterol 

transfer is inevitable. As detailed in Chapter 4 of this thesis, cholesterol transporters' 

upregulation is perhaps vital for cholesterol transport across the maternal-fetal interface. 

Some studies highlight that the cholesterol uptake involves upregulation of key cholesterol 

transporter molecules (Simpson et al. 1979; Bhattacharjee et al. 2010).  

1.6.4 Role of maternal obesity/overnutrition 

Maternal obesity is a risk factor for the mother as well as the fetus. Obesity raises the risk 

of offspring shoulder dystocia (Cedergren 2004), caesarean section (Bergholt et al. 2007), 

high postnatal high blood pressure and congenital anomalies such as heart defects (Mills 

et al. 2010) and neural tube defect (Shaw et al. 2000). The offspring of obese pregnant 

women consistently present related issues of high meconium aspiration, preterm birth, 
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instrumental birth, fetal distress, LGA and death (Sebire et al. 2001; Cedergren 2004; 

Yogev and Langer 2008; Chen et al. 2009). Data suggests a long-term consequence of 

obesity in utero is fetal programming (Catalano 2003). Obesity is associated with 

significant risk in altering metabolic metabolites, including less dense LDL, which indicates 

higher TG content in pregnancy (Meyer et al. 2013). Therefore, in pregnant women 

obesity exacerbates metabolic and inflammatory parameters. An Australian singleton 

women study of validated food-frequency between 18-24 weeks' and 36-40 weeks' 

gestation revealed a relation of food frequency to fetal adiposity and distribution (Blumfield 

et al. 2012). This study indicated that overnutrition also perhaps imposes on offspring 

metabolic milieu. Other studies have found that fetuses of obese women had altered cord 

IL-6 and leptin compared with those of lean women (Catalano et al. 2009). In addition, 

second trimester amniotic fluid was shown to have significantly higher TNF-α and CRP in 

obese and overweight women compared to lean women (Bugatto et al. 2010), suggestive 

of the impact of maternal obesity. When mothers and neonates were classified into three 

tertiles, constituting 309±25g in the first trimester, 478±40g in the second trimester and 

529±39g at term neonates with fatness classified at term and second trimester had higher 

cord ET-1, C-peptide and leptin levels than neonates of the first trimester (Radaelli et al. 

2006). These higher levels influence endothelial dysfunction and insulin resistance in the 

offspring. Overall, this means that maternal obesity perhaps sets up a vicious cycle in that 

changes in fetal metabolic and inflammatory parameters could increase the risk of in utero 

programming during fetal development. 

1.7 Consequence of complicated metabolic and 
inflammatory environment 

It has been shown that PE, IUGR and cardiovascular disease share similar metabolic 

disturbances and enhanced systemic inflammatory response (Bujold et al. 2003). As 

stated above, PE is linked with higher cord TC, TG and LDL-C levels than in controls 

(Rodie et al. 2004; Howlader et al. 2009). In the absence of maternal obesity, higher cord 

TNF-α levels were noted in cases of PE compared to a healthy pregnant group 

(Laskowska et al. 2006). There is also the finding that cord blood CD18, CD11b and 

CD11c neutrophils activation was significantly higher in women who had PE compared to 

infants from normotensive women (Saini et al. 2004). In cases of IUGR, despite the cord 

leptin and adiponectin not differing with respect to appropriate-for-gestational age (AGA) 

size, higher cord leptin was observed between IUGR and 1 day old offspring (Kyriakakou 

et al. 2008). These observable changes in metabolic and inflammatory parameters, as 

seen in PE and IUGR offspring are noticeably indicative of poor vascular function. 
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1.7.1 Endothelial function  

A profound change of pregnancy is the impact on maternal vascular physiology. This is 

because of derived markers from endothelial cells during pregnancy (Anumba et al. 1999). 

Impaired production of such markers has been shown to be disturbed in some extreme 

pregnancies known to feature alteration of metabolic and inflammatory parameters. 

Endothelial cells are a key factor involved in the maintenance of vascular homeostasis, 

and are identified at the epicentre of vascular biology. Usually, intact endothelial cells 

have anti-adhesive and anti-coagulant features, which control the permeability and 

modulation of vasoconstrictor molecules to the vascular wall (Haller et al. 1996). This 

adds to the persistent role of normal endothelial activities that allows up- and/or 

downregulation of coagulation, vascular tone, vascular growth, fibrinolysis and interactions 

of leukocytes within the blood vessel wall (Avogaro and de Kreutzenberg 2005). 

Endothelium-leukocyte adhesion is mediated by classes of adhesion molecules: selectin, 

carbohydrates containing selectin ligands, integrins and immunoglobulin-like molecules 

(Hordijk 2006). Although the endothelium activation process is linked to adverse effects, it 

plays an important role. Cao et al. report that endothelial cell activation is paramount for 

trophoblast induction of inflammatory response in uterine endothelium, enhancing 

trophoblast invasion and transmigration (Cao et al. 2008). Leukocytes employ this 

mechanism for extravasation across subendothelial space during inflammatory response; 

it is also required for monocyte transformation into macrophage. A number of markers 

localised at and secreted by the endothelium are used to assess endothelial cell function 

and dysfunction as a measure of vascular tone are shown in Table 1-3. 

Table ‎1-3:  Molecules derived from the endothelial cells. 

 

 

Molecule 
 

Main source(s) 
 

Biological function 
 

CD31 Platelet, EC EC/platelet-leukocyte interaction 

eNOS EC Synthesis of nitric oxide 

ET-1 EC, VSMC Upregulate adhesion molecule expression    

HIF-α1 EC Regulator of oxygen homeostasis 

ICAM-1 EC, leukocyte Promote leukocyte adherence and migration 

PAl-1 EC Principal inhibitor of tPA 

VCAM-1 EC, VSMC Promote leukocyte adherence 

vWF Platelet, EC Platelet adhesion 

CD31 indicates platelet/endothelial cell adhesion molecule; EC, endothelial cell; eNOS, 
endothelial nitric oxide synthase;  ET-1, endothelin-1; HIF-α1, hypoxia-inducible factor alpha 
1; ICAM-1, intracellular adhesion molecule-1; VCAM-1, PAI-1, plasminogen activator 
inhibitor-1; vascular adhesion molecule-1; VSMC, vascular smooth muscle cell; vWF, von 
Willebrand factor 
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Examples of major endothelial cell markers include VCAM-1, ET-1, nitric oxide (NO) and 

ICAM-1 (Haller et al. 1997; Wang et al. 2003; Zhou et al. 2011). HIF-α1, vWF and CD31 

are also reported (Friedman et al. 1995). These markers have been useful in accessing 

endothelial cell function but remain an area of study in vascular biology. PAI-1, a mediator 

of the clotting process, is produced by vascular cells and is also useful in assessment of 

endothelial (dys)function. The past three decades have provided substantial evidence that 

uterine environment perhaps influences fetal growth and development and offspring well-

being. Mounting evidence suggests that nutritional milieu during critical stages of 

development early in life can program the fetus to develop metabolic syndromes in adult 

life (Khan et al. 2003; Alfaradhi and Ozanne 2011). Poor fetal nutrition between the 

second and late third trimester influence inappropriate fetal growth (Khan et al. 2003). 

Undernutrition and reduced utero-placental blood flow at the maternal-fetal interface have 

negative consequences on the fetus. Fetal organs and systems deprived of nutrition 

indicate the possibility of programming for future disease evident in adult life. Other 

studies now suggest that overnutrition causes an effect resulting in large birthweight and 

potential future risk of cardiovascular disorders, including obesity, type II diabetes and 

heart disease (Mcmillen and Robinson 2005; Desai and Ross 2011). Thus, the two ends 

of the nutritional spectrum may affect the developing fetus in utero as it depends on 

nutrient availability during pregnancy.   

1.7.2 Fetal endothelial function 

Endothelium lines and protects the integrity of the inside of the outermost hollow layer of 

vascular tissue used for circulation, including blood vessels. Blood circulation through the 

blood vessel wall is controlled by many vasodilators (e.g. NO) and vasoconstrictors that 

are derived from the endothelium (Celermajer 1997). This is important to ensure normal 

endothelial function and activity in order to maintain optimal vascular homeostasis. When 

there is deviation from the normal physiology of endothelium, the result is dysfunction of 

endothelial cells. Consequently the endothelium becomes activated, and this leads to 

vascular disturbances ranging from excessive vasospasm to vasoconstriction, increased 

thrombosis and abnormal vascular growth. This disturbance defines the pathogenesis of 

coronary vasoconstriction, atherosclerosis, hypertension and myocardial infarction. 

Although the pathophysiological mechanism and biological significance are yet unclear, 

epidemiological data identifies pregnancy-associated disorders (Srivatsa et al. 2001) as 

an important factor in early vascular tissue damage. It emerges that most complications of 

pregnancy linked to metabolic and inflammatory pathway disturbance in extreme cases 

(including PE, IUGR and gestational diabetes) affect fetal abnormal vascular health. Thus, 

endothelial function must be maintained in order to prevent the development of a 

dysfunctional state, as shown in Figure 1-2. 
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1.7.3 Fetal programming 

The origin of offspring disease later in life has occasioned intense debate but still lacks 

proof, since the initial proposal thirty years ago has not provided a reasonable 

interpretation of fetal programming. It is widely accepted that offspring who had 

disproportionate size in utero or in the first year of life are associated with risk factors of 

heart disease, hypertension, obesity and diabetes later in life. New attention to 

developmental biology has led to the formulation of the fetal origins hypothesis. Simply 

put, this hypothesis suggesting that conditions very early in development (even in utero) 

can leave lasting imprints on an organism's physiology, imprints that may affect 

susceptibility to disease with onsets occurring many decades later (Barker et al. 2002). 

These conditions impose direct damage on the internal memory that becomes deleterious, 

resulting in impaired cellular morphological and physiological 'setting' with underlying 

stimuli (Lucas 1994). While fetal programming is widely demonstrated across species and 

human populations, the adaptive significance of the effect and underlying mechanisms 

remain a matter of debate. Desai and Ross report that IUGR and maternal obesity/high-fat 

diet pregnancy indicates programmed adipocytes, given that intrinsic enhanced 

Figure ‎1-2: Physiological role of normal endothelium. Factors secreted into the lumen 
(upward arrows) include prostacyclin and t-PA, which influence coagulation. Cell surface 
adhesion molecules such as ICAM-1 and VCAM-1 regulate leukocyte adhesion. Factors 
secreted abluminally, towards the smooth muscle cell (downward arrow), may powerfully 
influence vascular tone and growth. Modified from Celermajer (Celermajer 1997). 
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lipogenesis and adipocyte  proliferation contribute to the development  of obesity (Desai 

and Ross 2011). 

1.7.3.1 Undernutrition and overnutrition 

Fetal tissues and organs go through a 'critical period' of development (Godfrey and Barker 

2001). Insults during this 'critical period' of in utero growth and development or early life 

are not only detrimental to fetal growth but predetermine long-term offspring future health 

(Lucas 1991). Fetal adaptation, of for example an organ, caused by poor nutrition during 

the sensitive period of development may result in permanent changes to its function and 

structure in adult life (Fall et al. 1995). After the fetal origin hypothesis was first put 

forward, a great amount of data focussed on undernutrition or offspring low birthweight as 

prime implicative factors. This focus formed the basis of the 'thrift phenotype' hypothesis, 

proposing that poor fetal nutrition drives metabolic adaptation in order to maximise the 

chance of survival in a state of ongoing nutritional deprivation (Hales and Barker 1992). 

The fetus is forced to prioritise its limited nutrient supplies for essential organs, such as 

brain growth, at the expense of musculo-skeletal and abdominal organ growth. 

Undernutrition can alter maternal and fetal levels of hormones such as IGFs, insulin, 

growth hormone, leptin and certain placental hormones. Since most of these molecules 

cross the placenta, this implies that reflection of altered metabolites influences fetal 

endocrine glands (Fowden et al. 2005). This is important, as in the complex and dynamic 

process of growth and development in utero, interaction between the mother, placenta, 

fetus and macro- and micro-nutrients (involving endocrine signals) is one of the key early 

processes in uterine life (Warner and Ozanne 2010). All these fetal adaptive responses to 

poor nutrition result in metabolic, endocrine and cardiovascular abnormalities (Barker 

2000; Mcmillen and Robinson 2005). A newly recognised primary cause of the obesity 

epidemic is the developmental programming effect of IUGR newborns exposed in utero to 

undernutrition (James et al. 2001), and normal or excessive weight newborns exposed to 

maternal obesity and high-fat diets (Ogden et al. 2007). This suggests that the impact of 

fetal programming can be attributed to under- and overnutrition (Desai and Ross 2011). 

Studies in human (Alfaradhi and Ozanne 2011; Blumfield et al. 2012) and animal models 

have shown that maternal overnutrition is reflected in high offspring birthweight (Howie et 

al. 2009; McCurdy et al. 2009). Consequently, changes made in fetal life or early in the 

offspring's life, because of under- or overnutrition perhaps affect morphological and 

physiological processes in the offspring in later life. An instance of these changes is the 

impact on offspring vascular architecture, resulting in poor vascular health of offspring that 

becomes evident in adult life. This under- or overnutrition may result in inappropriate 

weight acquisition and organ/system abnormality, including poor vascular health. 
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1.7.3.2 Uterine environment 

The 'thrifty phenotype' hypothesis (Hales and Barker 1992), was extended to 'predictive 

adaptive response' hypothesis which proposes that the fetus makes adaptations in utero 

based on the predicted postnatal environment (Gluckman and Hanson 2004). Time points 

and processes that can be affected range from peri-conception, implantation, nutrient and 

oxygen supply and hormonal imbalance for the developing blastocyst, and improper 

distribution of cells between the trophoblast and inner cell mass (Fowden et al. 2005). 

Exposure to an adverse fetal and/or early postnatal life may enhance susceptibility to a 

number of chronic diseases. In this context, uterine/early environment may play a part in 

the causation of future disease (Phillips and Jones 2006). After birth, 'elastic' completion 

of organ/tissue development occurs ex vivo. This is apparent in activation of sweat glands, 

where the reduced activity of sweat glands means incomplete closure in utero, with the 

glands becoming functional only when activated after birth (Diamond 1991; Osmond and 

Barker 2000). An anecdote of a Japanese military soldier settling in an unfamiliar hotter 

climate, and shows this individual having more functioning sweat glands and cooling down 

faster. At birth, humans have a similar number of sweat glands, but none are functional. 

However, in the first three years, some of the glands become functional, depending on the 

exposure to temperature. The hotter the temperature, the greater the number of sweat 

glands programmed to function. By the end of three years programming is complete, and 

the number of the sweat glands is fixed. The actions of sweat glands encapsulate the 

essence of programming. In the 'critical period', the system is plastic and sensitive to the 

environment. This period is followed by loss of plasticity and fixed functional capacity 

(Barker 2000; Osmond and Barker 2000). 

1.7.3.3 Epigenetic 

Offspring birth weight has been identified as an indicator of risk of inheritable degenerative 

disease influenced by direct genetic modification of growth in utero (Waterland and Garza 

1999). Examples of such identification are observed in the modification of gene 

expression of hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor (GR) 

(Andrews and Matthews 2004; Weaver et al. 2004). In fetal animal models, epigenetic 

alterations of HPA axis activity and responsiveness are associated with disturbances in 

normal adult behaviour and stress responsiveness (Andrews and Matthews 2004; Oitzl et 

al. 2010). These alterations happen through insults inducing changes to the phenotype of 

the offspring in response to the prenatal environment. These changes take place at a 

specified time point, with permanent alteration of the HPA axis function which persists 

throughout the lifespan (Andrews and Matthews 2004). Rat models also show that 

increased maternal licking and grooming during the first week of life alters the methylation 
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pattern of the GR gene in the hippocampus of the offspring (Weaver et al. 2004). Changes 

persist to adulthood and alter the expression of the GR gene throughout life due to 

modification of the chromatin structure. Stable changes in gene transcription may result in 

altered functions of metabolic pathways and homeostatic control processes (Burdge et al. 

2009). Altered gene function and cellular dysregulation manifest when the encoding gene 

is exposed to inappropriate environmental signals. Enhanced or diminished 

consequences of the epigenetic changes may readily occur in complications of pregnancy 

compared to healthy pregnancies. Pregnant rats fed with a protein-restricted diet showed 

stimulated changes in gene expression involved in energy balance and glucocorticoid 

activity (Burdge et al. 2009). Aberrant expression of transcription factors affect multiple 

pathways that worsen under prenatal undernutrition and nutrient homeostasis, such as 

glucocorticoid and PPAR activities (Bertram et al. 2001; Burdge et al. 2007; Burdge et al. 

2009). Perhaps these effects involve transcription factor modification affecting activities of 

metabolic and vascular functions. Thus, a molecular mechanism for programming of 

genes in utero may relate to disease outcomes (Fowden et al. 2005). 

1.7.4 Future offspring disorders 

The hypothesis of fetal programming was proposed as a possible explanation of metabolic 

memory predisposing offspring to future metabolic syndromes (Heerwagen et al. 2010; 

Alfaradhi and Ozanne 2011). It has never been more urgent to understand the origin of 

obesity. A lack of detailed information on the underlying mechanism of fetal programming 

precludes firm statements determining the effect of obesity in utero. Studies showing that 

obese pregnant women are likely to have obese offspring suggest that the programming 

in utero of obesity is inevitable. Offspring born of obese mothers are likely to develop 

obesity by pre-school years, and obesity has been related to prepregnancy maternal BMI 

(Whitaker 2004). The childhood period appears to be a predictive factor for obesity in 

adulthood (Hofman et al. 2004; Boney et al. 2005). Being born with a higher birthweight 

increases the risk of obesity in adolescents as well as in adults (Garn et al. 1976; Lawlor 

et al. 2010). In another report, Catalano highlights that obese pregnancy is associated 

with metabolic anomalies in the intrauterine environment, leading to subsequent offspring 

future obesity (Catalano 2003). This suggests that the milieu of metabolism and 

inflammation parameters in utero potentially implicates the susceptibility of offspring to 

future vascular disorder, including obesity due to increased fetal exposure to maternal 

high free fatty acid, percentage of fat and hyperglycaemia (Ramsay et al. 2002; Armitage 

et al. 2008). On the whole, the inevitable consequence of all these condition, is an 

increase risk of future offsprings vascular disorders. 
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1.8 Hypotheses 

There are several routes in which additional studies will be beneficial in order to gain 

insight into metabolic and inflammatory pathways over the course of pregnancy. These 

are summarised in the hypotheses below. 

1. In Chapter 2, it is hypothesised that insulin plays an important role in the adhesion of 

the blastocyst to the uterine wall during human implantation by regulating the 

expression of adhesion molecules pivotal for implantation. 

2. In Chapter 3, it is hypothesised that prepregnancy parameters of metabolic status and 

inflammatory mediators predict successful implantation. There are detectable changes 

in plasma metabolic and inflammatory parameters in the first 6 weeks of pregnancy. 

Also hypothesised is that obesity is associated with decreased pregnancy success and 

increased parameters of metabolism and inflammation evident over the first 6 weeks. 

3. In Chapter 4, it is hypothesised that fetal cord metabolic and inflammatory parameters 

at birth reflect maternal parameters in the third trimester. It is also hypothesised that 

reflected offspring hyperlipidaemia, in particular cholesterol, is due to upregulated 

placental cholesterol transporter gene expression involved in cholesterol transfer 

across the maternal-fetal interface. 

4. In Chapter 5, it is hypothesised that preparation of a clean HUVEC can be obtained at 

birth using a density gradient separation technique. It is also hypothesised that the 

established procedure would be useful in the selection and set up of a model of 

assessing disturbed offspring lipids, particularly TC in obese pregnancy, and, after an 

extreme case such as PE, for the impact on vascular health, using HUVEC as an index 

of endothelial cell function. 
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2 The effect of insulin on JAR/RL95-2 cell 
interaction: an in vitro model of blastocyst 
adhesion 

2.1 Introduction 

Implantation is a pivotal step for pregnancy success. Failure of the embryo to optimally 

implant has been linked to several adverse pregnancy outcomes in humans. These 

include early pregnancy loss and disorders of poor placentation such as PE, IUGR and 

gestational diabetes. Studies on animal models have classified implantation into three 

phases: apposition, adhesion and invasion. For implantation to occur, a functional 

blastocyst and receptive uterus are required. The process is initiated by apposition of the 

blastocyst trophectoderm to the endometrial epithelium, followed by adhesion. The 

blastocyst then penetrates the endometrial layer and the underlying basal lamina of the 

endometrium, and then trophoblast invasion occurs via stromal decidualisation to the 

ultimate destination: the maternal vasculature. Although all these steps are important, 

adhesion between the blastocyst and the maternal uterine wall defines an early rate-

limiting step for successful implantation. 

In humans, the embryonic implantation of the trophoblast onto maternal endometrial 

epithelium cannot be studied in vivo, and it is also difficult to study ex vivo (Hannan et al. 

2010). Few laboratories worldwide have access to donated human embryos for research 

purposes, and this has limited the study of embryo-maternal uterine interaction during the 

implantation window. Endometrial curettage biopsies obtained at appropriate times of the 

menstrual cycle and first-trimester placenta after termination are available but less 

relevant. The uniqueness of the human implantation process means that no other 

mammal provides an appropriate animal model (Bischof and Campana 2000). This, along 

with the ethical concerns regarding experimentation using primary human tissues during 

this period of life, has necessitated the search for in vitro models using trophoblast and 

uterine cell lines. 

Primary epithelial cells of the endometrium and trophoblasts are the closest representative 

cells relevant to the in vivo situation for in vitro studies. However, isolating sufficient 

primary epithelial and trophoblast cells from tissues for meaningful studies is difficult if not 

impossible. Also, there are extreme phenotypic changes of endometrial epithelial cells 

between the proliferative to the mid-secretory phase of the menstrual cycle and at the time 

when the endometrium becomes receptive for implantation in vivo. These differences can 

complicate the interpretation of experiments using primary cells. While one cell phenotype 

may be used to study one aspect of function, it may be an inappropriate choice to study 
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another (Hannan et al. 2010). This also means that epithelial cell lines are not necessarily 

representative of the in vivo state due to changes arising from cellular differentiation and 

loss of function. Indisputably, this suggests that the decision to choose an appropriate cell 

line for any particular experiment is not easy. Human choriocarcinoma (JAR cells) (John 

et al. 1993; Aboussahoud et al. 2010), and human endometrial carcinoma cells (RL95-2 

cells) (John et al. 1993; Harduf et al. 2007), are among the cell lines that have been used 

extensively for implantation research. JAR cells can be grown and transformed into 

aggregates known as multi-cellular spheroids, which are a good model of the 

trophectoderm layer of the blastocyst. JAR cells existing as spheroids secrete human 

chorionic gonadotropin, progesterone and oestradiol into culture media in proportion to the 

spheroid size (White et al. 1988). These are key features of the in vivo blastocyst. RL95-2 

cells serve as a model of receptive endometrial epithelium and are good for the 

investigation of apical adhesiveness (Harduf et al. 2007). 

While previous studies have shown that embryo implantation requires the participation of 

various cytokines, growth factors and hormones, the effect of insulin during this process in 

humans has not been studied. Insulin is a pleiotropic hormone, capable of activating 

various intracellular pathways that lead to a cascade of multiple responses, including DNA 

synthesis, mRNA turnover, protein synthesis and degradation, and cell division. Insulin 

has a key role in cellular glucose metabolism and transport. Studies have demonstrated 

that the addition of insulin to the cell culture medium of preimplantation mammalian 

embryos leads to a physiological response similar to that in other insulin-responsive cells. 

For example, insulin enhances blastocyst proliferation in mouse, rat and rabbit models 

(Harvey and Kaye 1990; De Hertogh et al. 1991; Herrler et al. 1998). This suggests that 

insulin may have a direct role in the regulation of preimplantation embryo development. 

Some data suggest that clinical predictors of poor outcome from gonadotrophin ovulation 

induction in women with normogonadotrophic anovulatory infertility are obesity and insulin 

resistance (Ramsay et al. 2006). As weight loss increases, the chance of pregnancy 

success decreases. Before starting to treat anovulatory subfertility, insulin resistance must 

be improved; this suggests the importance of insulin. In obese women, irregular menstrual 

cycle, low pregnancy rate and miscarriage are well documented (Lashen et al. 2004; 

Jungheim et al. 2009; Wei et al. 2009). Obesity and PCOS are associated with increased 

insulin resistance, and affected women are less likely to become pregnant or are infertile 

(Jungheim et al. 2009), possibly due to insulin effects in pre- and peri-implantation. 

Little is known about the molecular mechanisms that mediate blastocyst-endometrial 

epithelium adhesion. A current popular concept is that the implanting trophectoderm 

surface and the apical uterine wall bind opposing membranes directly through bridging 

molecules (Lopata 1996). In vitro studies suggest that the blastocyst-endometrial 
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epithelium interaction is regulated by the expression of key cellular adhesion molecules 

(Thie et al. 1998; Hans-Peter et al. 2000). Expression of adhesion molecules may result 

from a series of highly orchestrated events under hormonal and paracrine control. One 

proposal suggests that progesterone and oestradiol (Basak et al. 2002; Jha et al. 2006) 

regulate adhesion molecule expression at the endometrial epithelium (Figure 2-1). 

 

 

In Section 1.2.3.3, it is suggested that cell adhesion molecules are involved in the embryo-

endometrial epithelium interaction. Trophinin (Fukuda et al. 1995), CD44 (Campbell et al. 

1995) and laminin α1 (Dziadek and Timpl 1985; Nissinen et al. 1991) are among the 

surface adhesion molecules expressed in human blastocysts and/or uterine epithelial 

basement membranes. Laminin α1 interacts with other extracellular matrix components 

including FBLN-1 and FBLN-2, during embryonic development.   

Figure ‎2-1: Paracrine induction of endometrial receptivity for the blastocyst in humans. 
A) The hatched blastocyst apposes to the epithelium of the endometrium, with the inner cell 
mass apposed proximally. The epithelium is converted by direct or indirect steroidal action 
from B) i a non-receptive state to B) ii a receptive state. One hypothesis predicts the 
appearance of adhesion molecules on the epithelium apical domain, which coincides with 
receptivity and attachment. Modified from the work of Aplin (Aplin 1997). 
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2.2 Hypothesis 

The hypothesis explored in this chapter is that insulin plays an important role in the 

adhesion of the blastocyst to the uterine wall during human implantation by regulating the 

expression of adhesion molecules pivotal for implantation. 

2.3 Aims 

The aims of this chapter are to gain insight into the role of insulin during blastocyst-uterine 

adhesion, using an in vitro implantation model incorporating the binding of JAR spheroids 

to an RL95-2 monolayer, and to explore the effect of recombinant human insulin on key 

candidate adhesion molecule expression in the in vitro cell co-culture model. 

2.4 Objectives 

1. To establish and validate a human trophoblast cell (JAR cells) and human 

endometrial epithelial cell (RL95-2 cells) co-culture model of blastocyst-uterine 

adhesion. 

2. To assess the effects of recombinant human insulin on JAR spheroid-RL95-2 

monolayer adhesion in the in vitro culture model. 

3. To determine expression in JAR cells and RL95-2 cells of trophinin, CD44, laminin 

α1, FBLN-1, FBLN-2 and insulin receptors, in order to select a relevant adhesion 

molecule to study. 

4. To examine the effects of insulin on cell adhesion molecules and receptor expression 

in JAR and RL95-2 cells. 

5. To investigate the involvement of the selected molecule as a cell adhesion molecule 

implicated in JAR spheroid-RL95-2 monolayer adhesion. 
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2.5 Materials and Methods 

2.5.1 Media and buffers 

Blocking solution (5%) was prepared by dissolving 5g non-fat milk (Marvel) in 100mL 

phosphate buffered saline (PBS) pH 7.3. 

Citrate buffer 0.01M (pH 6.0) was prepared by dissolving 1.9g of citric acid in 1L of 

deionised water (DH2O), adjusted to pH 6.0 with10mM NaOH. 

3,3'-diaminobenzidine tetrahydrochloride (DAB) solution was made up by dissolving 1 

tablet of DAB (Sigma) and 12μL H2O2 in a final volume of 15mL of 50mM Tris-HCl (pH 

7.5). 

Diethlpyrocarbonate (DEPC) nuclease-free DH2O was prepared by treating DH2O with 

0.1% DEPC and incubating overnight at room temperature (RT) and then autoclaving (at 

least 15 min) to inactivate traces of DEPC. 

DNA 0.1µg/µL ladder was prepared by diluting 10μL of 1000µg/mL 2-log DNA ladder (0.1-

10.0kb) and 10µL 10X sample loading buffer (for PCR) in a volume of 80µL DH2O. 

Tris-HCl buffer 50mM (pH 7.5) was made by dissolving 6.1g Tris-HCl in a final volume of 

1L of DH2O and adjusting the pH to 7.5 with 10mM NaOH. 

Solubilised membrane protein extraction solution was prepared by dissolving 10mM-

0.744g EDTA, 10μg/mL aprotinin, 2mL 1% Triton X-100, 2mM 2-mercaptoethanol, 

0.232g/mL CaCl2 and 4 tablets of Protease Inhibitor Cocktail in a final volume of 200mL of 

0.2M Tris-HCl (pH 7.5). 

PBS (0.2M) was made by dissolving 1.2g NaH2PO4 and 9.0g NaCl in a final volume of 1L 

of DH2O and bringing to pH 7.3 or 7.6 with 10mM NaOH. 

PBSTween-20 (pH 7.3) buffer of 0.1% and 0.05% Tween-20 were made by adding 

1000µL and 500µL Tween-20, respectively, to a total volume of 1L of 0.2M PBS (pH 7.3). 

Protein extraction lysis buffer was made by dissolving 1 tablet Protease Inhibitor Cocktail 

in a final volume of 10mL CelLyticMT MT mammalian tissue lysis/extraction reagent. 

Protein loading sample buffer was prepared by adding 25µL 14.3M mercaptoethanol to a 

total volume of 475µL of Laemmli sample buffer (Bio-Rad Laboratories), making a final 
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composition of 62.5mM Tris-HCl (pH 6.8), 2% SDS, 20% 2-mercaptoethanol and 0.01% 

bromophenol blue. 

A final 1X concentration of running buffer was prepared by diluting 40mL (20X) pre-mixed 

NuPAGE® MOPS SDS Running Buffer (formulation: 50mM MOPS, 50mM Tri-Base, 0.1% 

SDS, 1mM EDTA, pH 7.7) in a volume of 760mL DH2O. 

Sample loading buffer (10X) for PCR was made up by dissolving 0.1g SDS, 0.37g 

Na2EDTA.2H2O, 0.01g bromophenol blue, 0.01g xylene cyanole ff and 5mL glycerol in a 

total volume of 10mL DH2O. 

A 1.1M Tris-borate 0.1M EDTA buffer (TBE), 5X solution pH 8.3 was prepared by 

dissolving 136.25g tris-base, 69.7g boric acid and 18.75g EDTA in a final volume of 5L of 

DH2O and then bringing to pH 8.3 using 5M NaOH. The final concentration of TBE 

components in 1X buffer was then made up by diluting 100mL of 5X stock in 400mL of 

DH2O. 

Transfer buffer was made by diluting 50mL 20X NuPAGE® Transfer buffer and 100mL 

20% methanol in a final volume of 1L DH2O. 

Tris-HCl buffer (pH 7.5) 0.2M was made by dissolving 1.66g Tris-HCl in a final volume of 

1L of DH2O and adjusting the pH to 7.5 with 10mM NaOH. 

2.5.2 JAR and RL95-2 cell culture 

The human choriocarcinoma JAR cell line and the human endometrial carcinoma RL95-2 

cell line were obtained from ATCC Manassas, VA, USA. The JAR cells were originally 

derived from a Caucasian fetal male (Pattillo RA et al. 1971), while the RL95-2 cells were 

originally derived from a moderately differentiated adeno-squamous carcinoma of the 

endometrium of a 65-year-old female Caucasian (Way et al. 1983). A safety cabinet flow-

hood was used to prepare the growth media and handle cell line cultures in aseptic 

conditions. The media was allowed to reach 37°C in a water bath for 10 min before use. 

Frozen JAR cells were thawed in a 37°C water bath for 2 min, resuspended in 9mL RPMI 

and centrifuged (125g, 5 min) in a Jouan CR4-R centrifuge. The supernatant was 

decanted and cells were resuspended in 10mL complete growth media and transferred 

into 25cm2 polystyrene culture flasks (Greiner Bio-one, Germany). Flasks were incubated 

at 37°C in a 5% CO2 and 95% air. JAR complete growth media was made up of 1% 

Penicillin-Streptomycin (P-S) (100U/mL-100μg/mL) and 10% FBS in a volume of 500mL of 

formulated RPMI 1640 (ATCC: high glucose). The media was changed every two days 
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until 70-90% confluence was reached (one week). The JAR cells were collected and sub-

cultured at a 1 in 5 dilution, i.e. approximately 6 x 106 cells/mL, and incubated in a 5% 

CO2:95% air. The RL95-2 cells were similarly thawed, washed, pelleted, resuspended and 

transferred into 25cm2 polystyrene culture flasks and subsequently seeded 1 in 4 dilution 

in culture flasks containing approximately 6 x 106 cells/mL and incubated in a 5% CO2 and 

95% air. The RL95-2 cells were maintained in DMEM/F12 (1:1) complete culture media 

containing 7.5% Na2CO3, 75g/L HEPES, 10mg/mL insulin, 1% P-S (100U/mL-100μg/mL) 

and 10% FBS DMEM/F12 (1:1). The media was changed three days per week until 70-

90% confluence was reached. The JAR and RL95-2 cell subculture was carried out by 

dispersing the cells with 2mL and 5mL of 0.25% trypsin-EDTA respectively. The JAR and 

RL95-2 flasks were incubated at 37°C in a humidified condition (5% CO2:95% air) for 2 

min and 5 min respectively, to allow the cells to disperse. The JAR cells were 

resuspended in 5mL complete growth media. However, the RL95-2 cells were washed in 

5mL serum-free media, pelleted at 125g in a Jouan CR4-R centrifuge for 5 min and then 

resuspended in 5mL of complete DMEM/F12 (1:1) growth medium. To estimate JAR and 

RL95-2 cell number and viability, cells were stained with 50% trypan blue and counted 

using a haemocytometer (see Section 2.5.3). 

For storage, both the JAR and the RL95-2 cells were harvested at the end of passage 7, 

centrifuged (125g, 5 min) and then resuspended in a freezing medium in a final cell 

concentration between 3-5 x 106 cells/mL for JAR and 8-10 x 106 cells/mL of RL95-2 cells. 

The freezing medium was made up of 10mL 20% FBS, 10% DMSO and 100µL (100U/mL-

100μg/mL) P-S, added to a volume of 6.9mL RPMI 1640 for JAR or DMEM/F12 (1:1) for 

RL95-2 cells. Then 1mL of the cell suspension was transferred into cryo-vials (Greiner 

bio-one) and immediately placed into a Mr Frosty Cryo 1°C Freezing Container (Thermo 

Fisher Scientific) that ensured a temperature decrease of 1°C per minute. The vials were 

left at -80°C for up to 24 hours and then stored in liquid nitrogen or at -150°C until 

required. 

2.5.3 Assessment of cell growth rates and morphology 

In order to identify the optimal point in the growth cycle at which to carry out experimental 

studies, so that cells could be used at the same passage number, cell growth rates after 

defrosting were assessed. Frozen JAR and RL95-2 cells (Section 2.5.2) were thawed. 

The JAR and RL95-2 cells were seeded in a 24-well plate (divided into 8 sections of 3 

wells) at a starting density of 4 x 105 cells/mL in the appropriate growth media for up to 8 

days. Media were changed every 48 hours by gentle aspiration with clean pipette tips. 

Cells were harvested after the addition of 1mL of 0.25% trypsin-EDTA. The JAR and 

RL95-2 cells were stained in 1:1 of trypan blue, placed in a haemocytometer and then 
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viewed under an Olympus Model CK2 inverted microscope (Olympus Japan) to count 

viable cells. The cell growth rate was examined by counting the total number of cells in 

triplicate wells per 24 hours to obtain the population doubling time: [0.0301 (Tx-Tzero) 

divided by logNx-logNzero], where ʻTʼ is time and ʻNʼ is the average number at the time; 

ʻxʼ, the average number at ʻTxʼ, was then calculated. The JAR and RL95-2 cells were 

seeded at a density of 5 x 106 cells per 75cm2 polystyrene culture flask and then cultured 

for 48 hours to examine their morphological appearance. 

2.5.4 JAR spheroid and RL95-2 monolayer preparation 

Flasks containing actively dividing JAR cells were harvested by incubating at 37°C in a 

solution of 0.25% trypsin-EDTA in a 5% CO2:95% air for 2 min. The JAR cells were 

washed in serum-free RPMI media and then resuspended at a final concentration of 0.6 x 

106 cells/6mL in complete JAR media in a 25mL autoclaved Erlenmeyer flask (VWR 

International). The Erlenmeyer flasks were incubated on a gyratory shaker (MTS 2/4 

digital microtiter shaker) at 300 rpm at 37°C in humidified conditions of a 5% CO2:95% air. 

The JAR cells formed multi-cellular spheroids which were harvested after 72 hours. The 

spheroids in the Erlenmeyer flasks were gently collected using wide bore pipette tips and 

then transferred into 1.5mL tubes. The spheroids were washed in serum-free RPMI media 

and allowed to settle, and the supernatant of the mixture were decanted by gentle 

aspiration. They were carefully resuspended in 100μL RPMI, and 50μL was gently 

collected and delivered onto a superfrost glass slide and viewed under a light microscope 

for quantitation. 

The RL95-2 cells were thawed, resuspended in a clean culture flask and cultured for six 

days. They were then subcultured and incubated for an additional four days, at which 

point the cells were in the log phase of growth. These actively dividing cells were 

harvested (at 70-90% confluence). Clean sterile coverslips (12mm diameter Harvard 

Apparatus, Kent, UK) were gently placed into 24 multi-well plates and coated with 

50μg/mL (70000-150000kDa) poly-D-lysine (Sigma), as described (Kouranova et al. 

2008). The glass coverslips were gently shaken to allow equal coating in poly-D-lysine 

and then incubated at 37°C for 5 min in a humidified atmosphere of 5% CO2 and 95% air. 

The coated glass coverslips were allowed to air dry under a laminar flow hood. The RL95-

2 cells were plated at 0.2 x 105 cells/mL in complete growth media DMEM/F12 (1:1) into 

wells of 24-well plates containing the coverslips. The RL95-2 cell medium was changed 

twice, at 48 hours and 96 hours. 
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2.5.5 Adhesion assay 

The cell adhesion assay was a modification of a previously reported method (John et al. 

1993; Hans-Peter et al. 2000). After 96 hours, the RL95-2 medium in the coverslip 

cultures was replaced by the JAR (RPMI 1640) medium, and the RL95-2 cells were then 

incubated at 37°C for 1 hour in a humidified atmosphere of 5% CO2:95% air. After 1 hour 

approximately 20 JAR spheroids in 50μL complete RPMI 1640 JAR medium were applied 

to the centre of each RL95-2 monolayer on a coverslip using a wide pipette tip. The cells 

were then incubated together at 37°C for up to 48 hours in a 5% CO2:95% air. At the end 

of the co-culture period, the coverslips were carefully removed from the growth media with 

wide tip forceps and placed into a 10mL conical test tube (Greiner bio-one, CA, USA) 

containing 2mL serum-free RPMI 1640, with the surface covered with cells facing 

downwards. The conical test tubes were gently centrifuged (12g for 5 min) using a swing-

out bucket rotor to remove the JAR spheroids that had not firmly adhered to the cell 

monolayer. The coverslips were then placed in a multi-well plate containing serum-free 

RPMI 1640. The multi-well plates were observed under an Olympus CK Japan Model CK2 

microscope, and the adherent spheroids counted. Data were presented as spheroids 

bound as a percentage of the total spheroids applied. 

2.5.6 Selecting a positive control for the adhesion assay 

In order to control for specificity of spheroid binding in the adhesion assay, preparations of 

JAR and RL95-2 cell membranes were made and tested for their ability to inhibit JAR 

spheroid-RL95-2 monolayer binding. Cells were grown in a 75cm2 culture flask and, at the 

actively dividing phase, were washed twice with 0.2M Tris (pH 7.5) solution and then 

scraped from the surface of the flask and incubated on wet ice for 15 min in a 2mL protein 

extraction solution (see Section 2.5.1). Cell debris was pelleted at 250g for 15 min in 

15mL conical centrifuge tubes and then supernatants were pipetted into a clean 1.5mL 

eppendorf tube and centrifuged at 10000g for 15 min at 4°C. The supernatant containing 

total cell solublised extract was collected and its protein concentration estimated using the 

Bradford assay (Bradford 1976), as reported in Section 2.5.9. The prepared total cell 

solubilised extracts were utilised either after being freshly prepared or after having been 

frozen and stored at -80°C for at least 24 hours to establish whether competitive binding 

activity would be retained after freezing. Use of frozen total cell solubilised extracts would 

avoid the necessity for fresh extracts to be prepared for every adhesion assay. 

Testing of controls for specificity of adhesion of JAR spheroids and RL95-2 monolayers 

were carried out following a previously reported protocol (Hans-Peter et al. 2000). In brief, 

JAR spheroids and RL95-2 monolayers were preincubated separately in a 0.2mg/mL (final 
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concentration) of solubilised cell extract for 1 hour in a culture medium (containing 10% 

FBS). Then, the same solubilised extract was added to a final concentration of 0.1mg/mL 

during the binding assay time point. Each solubilised cell extract was obtained from 

growing confluent JAR cells or RL95-2 cells in culture flasks. In the current study, JAR 

spheroids were preincubated for 1 hour in a culture medium containing a 0.2mg/mL final 

concentration of solublised extract prepared from confluent JAR cells added either freshly 

prepared or frozen. JAR spheroids were then washed in serum-free media before being 

placed in the medium with the same solubilised extract at a final concentration of 

0.1mg/mL during the binding assay which took 48 hours at 37°C in a 5% CO2 and 95% 

air. In a similar fashion, JAR spheroids were preincubated with solubilised extract from 

confluent RL95-2 cells either freshly prepared or frozen in a medium containing a 

0.2mg/mL of final concentration for 1 hour. The JAR spheroids were washed and the 

same solubilised extract added in a 0.1mg/mL of final concentration of medium during 

binding assay. The spheroids binding to the RL95-2 monolayers were then quantitated as 

described above (Section 2.5.5). 

It was established that the JAR cell solubilised extract at 0.2mg/mL with preincubation for 

1 hour, with the further addition of 0.1mg/mL prior to the binding assay for 24 hours, 

maximally inhibited JAR spheroid-RL95-2 monolayer binding, whether freshly prepared or 

frozen. For convenience, the frozen JAR solubilised extract was selected as a positive 

control for inhibition of binding. A concentration range of frozen JAR cell solublised 

extracts at a concentration of 0.0002 to 200.0µg/mL were preincubated for 1 hour, 

followed by a wash in serum-free medium and the further addition of 0.0001 to 

100.0µg/mL solubilised cell extracts during the binding assay, and then tested to assess 

the concentration-dependence of inhibition of binding in this cell culture model of 

implantation. 

2.5.7 Concentration-dependence of insulin effects on JAR 
spheroid-RL95-2 monolayer binding 

Human recombinant (rhuman) insulin Actrapid 100 IU/mL (Novo Nordisk A/S) was used to 

explore the effect of insulin on adhesion of JAR spheroids to RL95-2 monolayers. As there 

are no available data for localised embryo insulin concentration at implantation, circulating 

plasma levels of insulin in women (approximately 24mU/L (0.14nM)), and in the umbilical 

venous cord blood (~0.05nM) of healthy pregnancies, were used as a guide for selecting 

insulin concentration for experiments. Insulin concentration was based on the report of the 

correct conversion factor of 1mU/L (µU/mL) = 6pmol/L (Heinemann 2010). A 

concentration range of added insulin (0.03, 0.06, 0.12, 0.18 and 0.24nM) was used in the 

experiment. FBS preparations will contain some insulin, usually about 0.04nM insulin in 
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5% FBS. In my experiments 10% FBS (containing ~0.08nM insulin) were utilised in the 

current adhesion assay studies. In later experiments, rhuman insulin was added to the 

binding assay at low concentration (0.03nM) and at high concentration (0.24nM). The 

effect of insulin on cell morphology was assessed under an inverted microscope, as 

described above (Section 2.5.5).  

2.5.8 RNA preparation and primer design for PCR 

Culture flasks containing actively dividing JAR and RL95-2 cells were washed in sterile 

Dulbecco's PBS containing Ca2+/Mg2+ and cells were harvested as described above. Cells 

were resuspended in 1mL TRIzol LS reagent (Life Technologies) and incubated at RT for 

5 min to permit complete dissociation of nucleoprotein complexes. Chloroform (0.2mL) 

was added to the suspension, which was mixed vigorously and left to incubate at RT for 3 

min. The upper aqueous phase was transferred to a clean sterile tube before 0.5mL 

isopropyl alcohol was added, followed by incubation at RT for 10 min and then 

centrifugation at 4700g for 10 min at 4°C. The supernatant was decanted and pellets 

washed in 1mL of 75% alcohol with gentle vortexing followed by centrifugation (250g, 5 

min) at 4°C. The pelleted RNA was air dried and then resuspended in 40μL DH2O and 

incubated at 65°C for 10 min. Total RNA concentrations were measured 

spectrophotometrically using a NanoDrop® ND-1000 spectrophotometer. RNA purity was 

assessed by using this A260/A280 ratio, which was 1.96 (1.88-2.03) for RNA prepared 

from JAR cells and 2.01 (2.00-2.03), for RNA prepared from RL95-2 cells. The JAR and 

RL95-2 cell RNA (0.1-1.0µg per reaction) was DNase treated using a DNA freeTM kit 

(Ambion) according to the manufacturer’s instructions. Briefly, 1µL DNase-1 was mixed 

with 5μL of (up to 5μg) RNA, 2.5µL 10X DNase buffer and 16.5µL DEPC. The mixture was 

vortexed gently and then incubated at 37°C for 30 min in an OMN-E thermalcycler. DNase 

inactivation reagent (2.5µL) was added, the tube mixed by flicking and then centrifuged 

(4700g) for 1 min. Aliquots of pre-treated RNA were collected and stored at -80°C until 

analysis. 

DNase RNA was reverse transcribed using a High Capacity cDNA Archive Kit (Applied 

Biosystem). Complementary DNA was prepared by adding pre-treated RNA (5μL) and a 

cDNA reaction mix (5μL) made up of 1μL 10X reverse transcriptase buffer, 0.4μL 25X 

dNTPs, 1μL 10X random primers, 0.5μL multiscribe reverse transcriptase and 0.5μL 

Rnase inhibitor (superasein) 1U/μL dissolved in 1.6μL DEPC. A no multiscribe reverse 

transcriptase (NoRT) negative control was also prepared with the omission of multiscribe 

reverse transcriptase. The resulting mixture was incubated for 10 min at 25°C followed by 

120 min at 37°C.  
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The presence of human trophinin, CD44, laminin α1, FBLN-1, FBLN-2 and insulin receptor 

mRNA in JAR and RL95-2 cells was investigated using specific PCR primers. β-Actin was 

employed as a control gene for gel loading. The sequences of the primers were designed 

using BLAST: Basic Local Alignment Search Tool, Pubmed. The sequences were as 

follows: trophinin (detects variants 2, 3 and 6) forward 5’-TCC-CTC-CAG-ATA-TAC-AGA-

CTG-AGA-CCA-C-3’ and reverse 5’-AGG-TAA-AGC-CTG-GCT-GAT-CTG-GGT-AAT-G-

3’, producing a 278-bp product; CD44 (detects variants 1, 2, 3, 4 and 5) forward 5’-ATT-

GCA-GTC-AAC-AGT-CGA-AGA-AGG-TGT-G-3’ and reverse 5’-ACG-GTT-GTT-TCT-

TTC-CAA-GAT-AAT-GGT-G-3’, producing a 262-bp product; laminin α1 forward 5’-TGC-

CAT-TCT-CAA-TCT-TGC-CAG-3’ and reverse 5’-TAA-GTC-CAG-AGT-GAT-TGT-GAC-3’, 

producing a 265-bp product; FBLN-1 forward 5’-TGT-GAG-AGT-GGT-ATT-CAT-AAC-

TGC-CTC-3’ and reverse 5’-ACA-GCG-CGT-TCC-CTC-CTC-GTT-GAG-ATG-3’, 

producing a 267-bp product; FBLN-2 (detects variants 1, 2 and 3) forward 5’-TCT-TCC-

TAT-CCA-GGA-GGA-GAG-GGC-AGA-AG-3’ and reverse 5’-AGA-ACT-TGC-GGC-TTC-

CTG-GGC-ACT-TCT-CG-3’, producing a 288-bp product; insulin receptor (detects 

variants 1 and 2) forward 5’-TTC-AGG-GTA-TCT-AAA-AAT-CCG-CCG-ATC-3’ and 

reverse 5’-TTG-GTC-TTC-AGG-GCA-ATG TCG-TTT-CTC-3’, producing a 294-bp 

product; and β-Actin forward 5’-TGT-GAT-GGT-GGG-AAT-GGG-TCA-G-3’ and reverse 

5’-TTT-GAT-GTG-ACG-CAC-GAT-TTC-C-3’, producing a 514-bp product. 

First Choice® human kidney total RNA served as a positive control for all the target 

genes. In the qualitative PCR assay, 1µg of cDNA was used as a template for PCR 

amplification in a total volume of 10μL PCR mix (5µL of 1X MegaMix~Double, 0.5μL 10μM 

forward and reverse primers and 4µL DEPC), making a final primer concentration of 1μM 

per assay. PCR was carried out as follows: denaturation at 94°C for 3 min x 1 cycle 

amplification at 94°C for 30 sec and 60°C for 30 sec, annealing at 57°C (trophinin, CD44, 

laminin α1 and β-Actin) and 56°C (FBLN-1, FBLN-2 and insulin receptor) for 1 min x 35 

cycles, and extension at 72°C for 4 min x 1 cycle. 

A sample loading buffer (1µL) was added to the PCR product which was then subjected to 

agarose gel electrophoresis on a 1.5% agarose gel in TBE (1X) pH 8.3 [100mL of 5X 

stock in a 400mL of DH2O with a final concentration of 1µg/mL ethidium bromide]. A 0.1-

10.0kb DNA ladder at 0.1µg/µL was also loaded. Electrophoresis was carried out for 1.20 

hours at 100V. Bands were visualised using a UV transilluminator and the gel was 

photographed with a DS34 Polaroid-direct screen instant camera containing Polaroid 

black-and-white print film type 667 (Sigma). 
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2.5.9 Protein quantitation 

Actively dividing cells were washed in sterile Dulbecco's PBS (Ca2+/Mg2+), scraped from 

the growth on the surface of the flask and pelleted at 250g for 10 min at 4°C. The 

supernatant was discarded and 2.5mL CelLyticTM MT mammalian tissue lysis reagent 

containing dissolved protease inhibitor cocktail (Roche) was added to the cell pellet and 

incubated on wet ice for 15 min. The suspension was centrifuged (5000g, 10 min) at 4°C 

and the supernatant pipetted into a clean sterile 1.5mL tube (10000g, 10 min). Protein 

lysate concentration of JAR cells, and the JAR and RL95-2 solubilised cell extracts 

(positive control) were measured using a Bradford assay. A 10µL aliquot (1:100 dilutions) 

of each cell homogenate was used for protein determination. A standard concentration 

curve of 0.1-1.4mg/mL was made using BSA as a standard protein. The Bradford reagent 

was left to reach RT. The Bradford reagent (1mL, Sigma) was added to the homogenate 

aliquot with mixing. Resulting suspensions were incubated at RT for 15 min before 

measuring absorbance on spectrometer at 595nM wavelength on a spectrometer. A 

standard curve of absorbance versus the protein concentration was prepared and the 

unknown protein concentration determined from the curve. The estimated concentration of 

the original sample was corrected for volume and dilution factor. 

2.5.10 SDS electrophoresis and Western blotting 

The JAR protein (70-130µg/µL) was then subjected to SDS-PAGE electrophoresis. The 

JAR protein was loaded onto gels in a 30µL final volume containing a 15µL protein 

loading sample buffer (Section 2.5.1). Proteins were separated using NUPAGE® Novex 4-

12% Bis-Tris gels on an XCell Surelock™ Mini-Cell system (Life Technologies), according 

to the manufacturer’s instructions. HiMark™ pre-stained high molecular weight protein 

standard (28-420kDa; LC5699, on a NuPAGE® 4-12% Bis-Tris/MOPS, Life Technologies) 

was used as a size marker. The inner chamber of the tank was filled with 200mL of 1% 

NuPAGE® MOPS SDS running buffer to which 100μL of 1mM dithiothreitol reagent had 

been added. Electrophoresis was carried out at 120V, 180mA and 40W for 4 hours. 

Separated proteins were electroblotted from the gel onto a nitrocellulose membrane filter 

at 25V, 180mA and 60W for 2 hours on an XCell™ blot Module (Life Technologies) 

according to the manufacturer's instructions. The transfer buffer was made by mixing 

50mL 20X NuPAGE® Transfer buffer and 100mL 20% methanol to a final volume of 1L 

DH2O. 

Electroblotted membranes were blocked in a blocking solution (Section 2.5.1) for 1 hour at 

RT and then incubated with a primary antibody (1:600 anti-human laminin α1 antibody 

goat polyclonal; AF4187, R&D System) in 5% non-fat milk in a 0.05% PBSTween-20 (pH 
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7.3) buffer. Membranes were incubated overnight (16-18 hours) with mild agitation at 4°C. 

Membranes were washed in the 0.05% PBSTween-20 (pH 7.3) buffer for 5 x 10 min 

before incubating with the secondary antibody (1:1000 donkey anti-goat HRP IgG: SC-

2020, Santa Cruz) made up in 5% non-fat milk in 0.05% PBSTween-20 containing 

1:10000 β-Actin (C4) HRP mouse monoclonal antibody (SC-47778, Santa Cruz) at RT for 

1 hour. The blot was washed stringently in 0.05% PBSTween-20 (pH 7.3) buffer for 5 x 10 

min and the signal detected with 1:1 reagent A and B SuperSignal® West Pico Trial Kit 

(an enhancer chemiluminescent substrate for detection of HRP) (Thermo Scientific) after 

5 min incubation at RT. Bands were detected by exposing the blots on an x-ray film (Fuji) 

and then developing on a Kodak OMAT 1000 Processor (Eastman Kodak, United States) 

according to the manufacturer's instructions. Laminin α1 molecular weight was measured 

by determining migration distance relative to dye front. Detected bands on the film were 

scanned as a pictorial record (Epson perfect 3200). 

2.5.11 Immunocytochemistry 

Cells were collected during the log growth phase and washed in sterile Dulbecco's PBS 

(Ca2+/Mg2+) (pH 7.6). Cells were resuspended in PBS before depositing on a Super-Frost 

Plus glass slide using a cytospin at 600g for 5 min, and cells were then fixed in 70% cold 

acetone for 10 min at RT. Acetone, like alcohol, is an organic solvent which fixes samples, 

removing lipids and dehydrating the cell as it precipitates the proteins on the cellular 

architecture. A standard Avidin Biotin Complex (ABC) method was utilised for cell staining 

as reported (Hsu et al. 1981). Paraffin-embedded positive control slides (breast tumour 

tissue) were heated to 60°C for 35 min and dewaxed in xylene for 2 x 10 min, rehydrated 

in an alcohol series (2 x 5 min at absolute (100%), 2 x 5 min at 95%, 1 x 5 min at 70%) 

and washed for 2 x 5 min in PBS. Peroxidase activity was quenched by immersing the 

slides in freshly prepared 0.5% H2O2 (5mL H2O2 and 300mL methanol) for 30 min. After 2 

x 10 min PBS washes, retrieval of antigens in paraffin-embedded slides was performed by 

microwaving sections in a pressure cooker for 5 min in a 0.01M citrate buffer (Section 

2.5.1). Paraffin slides were rinsed for 5 min in DH2O and then 2 x 5 min in PBS pH 7.6, 

while acetone-fixed cell slides were rinsed for 5 min in PBS pH 7.6. A non-immune 

blocking reagent was added (20% rabbit serum and 20% human serum) in PBS pH 7.6, 

and incubated at RT for 30 min to block non-specific antibody binding. Slides were 

washed in DH2O for 5 min, twice in PBS pH 7.6 for 10 min and then incubated with anti-

human laminin α1 antibody of 2µg/mL concentration (AF4187, R&D System) overnight at 

4°C in a humidified box. After two washes in PBS pH 7.6 for 5 min, the slides were 

incubated in biotinylated IgG H+L (30 min, 1:200, RT) (BA-5000, Vector laboratories). The 

1° and 2° antibodies were diluted in 2% rabbit serum and 5% human serum in PBS pH 

7.6. A negative control, which only contained 2% rabbit serum and 5% human serum was 



CC ONYIAODIKE, 2014                                                                                              Chapter 2-66 

used. After incubation with the 2° antibody, slides were washed twice in PBS (pH 7.6) for 

5 min and incubated for 30 min at RT in Vectastain® standard ABC Kit Elite [two drops of 

reagent A and reagent B diluted in 5mL PBS, pH 7.6]. Staining was detected using 

1mg/mL DAB solution (see Section 2.5.1) after 10 min incubation. Slides were washed in 

PBS (1 x 5 min) and then in DH2O for 5 min before counterstaining in Harris stain for 15 

sec. The paraffin slides were dehydrated in a series of alcohol concentrations and all 

slides were mounted in DPX for microscopy. Digital image capture was by Image-Pro Plus 

(version 6.2 MediaCybernetics) on a BX50 F-3 microscope (Olympus) equipped with X4, 

X10, X20, X40 and X100 lenses connected to a 3-CCD colour camera. ImageJ, a Java-

based image processor (National Institute of Health Bethesda, Maryland, USA), was used 

for image processing. 

2.5.12 Blocking of binding in laminin‎α1‎JAR spheroid-RL95-2 
monolayer adhesion assay 

An adhesion assay was set up to investigate the effects of anti-human laminin α1 antibody 

(AF4187, R&D System) incubated with either JAR spheroids only or also with a JAR 

spheroid-RL95-2 monolayer on binding. In initial studies, JAR spheroids were 

preincubated (37°C for 1 hour) with anti-human laminin α1 antibody at final concentrations 

of 0.1, 0.2 and 0.4µg/mL and then the JAR cells were used in a JAR spheroid-RL95-2 

monolayer binding assay. In another experiment, anti-human laminin α1 antibodies were 

added at final concentrations of 0.2, 1.0 and 4.0µg/mL to culture wells containing a co-

culture of JAR spheroids with a RL95-2 monolayers and then incubated for 24 hours in 

5% CO2 and 95% air. All experiments were also repeated, as described above, but with 

replacing anti-human laminin α1 antibody with anti-GRP-78 (N-20) (SC-1050, Santa Cruz) 

as an irrelevant antibody (control). Replicate n=3 independent experiments were carried 

out. 

2.5.13 Statistics 

GraphPad Prism® 5 software (GraphPad, Inc; San Diego USA) was utilised for data 

analysis and presentation. 
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2.6 Results 

2.6.1 Testing cell line growth rates to identify the optimal time 
period for experimental studies 

Cultures of JAR and RL95-2 cell lines grew well up to the 7th passage, and there was no 

observable transformational change from the original population. JAR and RL95-2 cells 

were able to grow successfully on a plastic surface and completely dispersed to a single 

cell suspension, as expected, with 0.25% trypsin-EDTA as visualised under a microscope. 

Growth rates of JAR and RL95-2 cells were determined by initial seeding at a density of 4  

x 105 cells per 2cm2 well of a 24-well plate following growth over 7 days and 8 days 

respectively. Cell growth rates were assessed by daily cell counting. JAR and RL95-2 

cells had a doubling time of 1.5 and 2.0 days respectively (Figure 2-2A and B). The 

maximal number of JAR cell was observed at day 4 and maximal growth rate appears to 

be between days 3 and 4 (Figure 2-2A). RL95-2 cell maximal number was observed at 

day 6 (Figure 2-2B) and maximal growth rate appears to be between days 4 and 5 (Figure 

2-2B). Therefore, experiments were carried out after collecting JAR cells at day 4 and 

RL95-2 cells at day 6, approximately. 

Cell surface morphology was assessed under a microscope in cells plated at a density of 

5 x 106 cells per 75cm2 culture flask. After 48 hours in culture, JAR cells appeared 

sparingly dispersed (Figure 2-2C) compared to RL95-2 cells, which showed a dense and 

clustered appearance (Figure 2-2D). 
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Figure ‎2-2: Human choriocarcinoma JAR cell and human endometrial epithelium RL95-2 
cell growth profiles and appearance in culture. Cell proliferation was assessed by cell 
counting. Mean (SE) of n=3 independent experiments is presented. A) JAR and B) RL95-2 
cells had a doubling time of 1.5 and 2 days respectively. The morphology of approximately 5 x 
10

6
 C) JAR cells and D) RL95-2 cells after 48 hours of incubation at X10 magnification (scale 

bar; 20µm). 
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B A 

2.6.2 JAR spheroid and RL95-2 monolayer preparations 

In order to establish an adhesion assay, appropriate preparations of JAR spheroids and 

RL95-2 monolayers representing blastocysts and the endometrial epithelium, respectively, 

were made. Initial optimisation of the spheroid and RL95-2 monolayer interaction in cell 

culture was carried out. Preparations of multi-cellular spheroids appeared irregular in 

shape with rough edges, but were uniform in size (Figure 2-3A), a feature that was 

consistent throughout the experiments. Test cultures (n=21) of RL95-2 monolayers on 

coverslips confirmed that the monolayer stayed attached to the glass coverslips and 

remained intact during culture (Figure 2-3B). 

 

 

 

  

 

 

Figure ‎2-3: JAR spheroids and a RL95-2 monolayer preparations used in the adhesion 
assay. A) JAR spheroids at X10 magnification (20µm) (under phase contrast microscope). B) 
RL95-2 monolayer on glass coverslips after 96 hours (scale bar; 20µm). 
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It was important to ensure that the number of spheroids made in each preparation was 

reproducible. Spheroid preparations (50μL) were viewed under a phase contrast light 

microscope and the number of spheroids was quantitated. The number of spheroids 

achieved in six independent preparations is shown in Table 2-1. A mean of 20.5 (SD, 1.3) 

spheroids per 50μL preparation was recovered. The coefficient of variation (CV) for 

number of spheroids per preparation was 6.3%. 

Table ‎2-1:  Reproducibility of spheroid number per preparation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preparation 
 

 

№ of spheroids 
 

 

Mean per prep 
 

A1 22 21.0 
A2 20  
B1 18 18.5 
B2 19  
C1 19 19.5 
C2 20  
D1 23 22.0 
D2 21  
E1 22 20.5 
E2 19  
F1 21 21.5 
F2 22  

         

                   Mean (SD) 
 

        20.5 (1.3) 
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2.6.3 Adhesion assay-time dependence 

In order to determine the time dependence of JAR spheroid adhesion to the RL95-2 

monolayer, the number of spheroids attached over 48 hours was assessed. Initial 

experiments showed that spheroids appear to detach after 24 hours (Figure 2-4A). In a 

shorter time course (Figure 2-4B), it was confirmed that maximal adhesion of around 98% 

was achieved by 24 hours. Thus, a 24 hour time point was selected for the adhesion 

assay. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure ‎2-4: Time course of adhesion of JAR spheroids onto RL95-2 monolayers. A) 48 
hour time course and B) 24 hour time course. n=3 independent experiments are presented. 
Mean (SD) shown. 
 



CC ONYIAODIKE, 2014                                                                                              Chapter 2-72 

2.6.4 Specificity of JAR spheroid adhesion to the RL95-2 
monolayer 

In order to determine whether adhesion between JAR spheroids and the RL95-2 

monolayer was specific, solubilised protein extracts were prepared from each cell line, 

and their ability to block adhesion between JAR spheroid and RL95-2 monolayer was 

examined. The inhibition of adhesion between JAR spheroids and RL95-2 monolayers by 

these cell extracts was assessed in a time- and concentration-dependent fashion. In 

addition, the blocking activity of fresh and frozen preparations of solubilised total cell 

extracts was assessed in order to confirm whether frozen preparations might be 

conveniently used as a positive control in each of the binding assays. The experimental 

design for testing the inhibitory ability of solubilised JAR or RL95-2 cell extracts is shown 

in Figure 2-5. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure ‎2-5: Experimental design for testing inhibitory effects of JAR and RL95-2 cell 
solubilised extracts on the adhesion assay. 
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Both fresh and freeze-thawed solubilised extracts at (0.2mg/mL) from either JAR or RL95-

2 cells were exposed to JAR spheroids for a 1 hour preincubation period prior to initiating 

a binding assay. Incubation was then supplemented with further fresh and frozen-thawed 

solubilised extracts from either JAR or RL95-2 cells at 0.1mg/mL concentration 

immediately prior to the binding assay, according to previously established protocol 

(Hans-Peter et al. 2000). The binding assay incubation was for up to 48 hours (Figure 2-

6). RL95-2 solubilised extracts fully inhibited the interaction between JAR spheroids and 

RL95-2 monolayers by 48 hours (Figure 2-6). A JAR cell solubilised extract showed 

maximal inhibition on spheroid binding by 24 hours. Therefore, it was selected as a 

positive control for the 24 hour adhesion assay. There was no difference between using 

frozen or fresh JAR solubilised extracts (Figure 2-6) so, for convenience; the frozen 

extract was used for adhesion assays as a positive control. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2-6: Time course of inhibition of spheroid adhesion up to 48 hours by fresh and 
frozen JAR or RL95-2 cell solubilised extracts (n=1). 

0 10 20 30 40 50
0

9

18

27

36

45
Fresh JAR solubilised extract

Frozen JAR solubilised extract

Fresh RL95-2 solubilsed extract

Frozen RL95-2 solubilised extract

Time  (hours)

%
 s

p
h
e
ro

id
 b

o
u
n
d



CC ONYIAODIKE, 2014                                                                                              Chapter 2-74 

A concentration range of frozen JAR cell solublised extracts was used to identify the 

optimal concentration of extract for inhibition (Figure 2-7A). Maximal inhibition of adhesion 

was reached after preincubating the JAR spheroid(s) for 1 hour at 0.2mg/mL with 

0.1mg/mL in the binding assay. Replicate experiments (n=5) were carried out to assess 

the reproducibility of inhibition by the positive control in the binding assay. JAR spheroid-

RL95-2 monolayer binding was 99.2% of mean (SD, 2.9) (Figure 2-7B). In the presence of 

fresh JAR solubilised extracts, binding was 1.0% (2.2) and 0% (0) in the presence of 

frozen JAR extract. In the presence of fresh RL95-2 solubilised extracts, binding was 

17.2% (6.8); and 21% (12.9) for frozen (Figure 2-7B). 
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Figure ‎2-7: Specificity of JAR-RL95-2 binding in the in vitro adhesion assay. A) A 
concentration curve for frozen JAR solubilised extract 0.0002, 0.002, 0.02, 0.2, 2.0 and 
200.0µg/mL for 1 hour preincubation, and 0.0001, 0.001, 0.01, 0.1, 1.0 and 100µg/mL 
respectively, for incubation in a 24 hour adhesion assay (n=3). B) Replicate adhesion assay 
experiments (n=5) carried out for assessment of maximal adhesion inhibition using 0.2mg/mL 
cell extract in a 1 hour preincubation and then 0.1mg/mL cell extract for a 24 hour incubation. 
The control was an assay carried out in the absence of cell solubilised extracts. Mean (SD) 
shown. 
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2.6.5 Insulin effects on JAR-RL952 monolayer adhesion assay 

To examine the potential effects of insulin on the binding of JAR spheroids to RL95-2 

monolayers, adhesion assays were carried out in the absence and presence of differing 

concentrations of added insulin (0-0.24nM) for 24 hours. Spheroid binding in the absence 

of insulin was defined as 100%. The effects of different concentrations of insulin on 

spheroid binding are shown in Figure 2-8A. It is interesting to note that in the absence of 

insulin there was 100% binding (by definition); however, low insulin concentrations 

(0.03nM) showed high inhibition, with only 26% binding, while high insulin levels (0.24nM) 

had low inhibition, with 91% binding (Figure 2-8A). These data do not support a 

concentration dependence of insulin inhibition of binding. This could be explained by 

experimental artefact, or potentially by activation of independent signalling pathways by 

low and high insulin loading to opposite effects on cell adhesion. 

The assessment of the JAR spheroid-RL95-2 monolayer binding structural appearance 

(which includes the outward appearance, in a particular shape, size and pattern) was 

examined under a microscope. In the absence of insulin (Figure 2-8B), JAR spheroids 

showed no observable change, whereas at 0.24nM the JAR spheroids that bound to the 

RL95-2 monolayer appeared to grow bigger (Figure 2-8C). The increased size of these 

JAR spheroids may be due to increased division of cells constituted in the JAR spheroid 

aggregates. 
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Figure ‎2-8: Insulin effect on JAR spheroid adhesion to RL95-2 monolayer. A) A 
concentration range of insulin varying from 0-0.24nM was added to the binding assay. n=9 
independent experiments presented. A low dose (0.03nM) showed high inhibition (low binding), 
while a high dose (0.24nM) revealed low inhibition (high binding). B) Absence of insulin doses 
showed no morphological changes of the size of JAR spheroids adhering to the RL95-2 
monolayer, while C) the presence of insulin 0.24nM shows the spheroid to increase in size at 
X4 magnification (scale bar; 50µM). Mean (SE) shown. 
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2.6.6 Effects of low and high doses of insulin on JAR 
spheroid-RL95-2 monolayer binding 

Due to the contrasting effects of low (0.03nM) and high (0.24nM) added insulin doses 

(Section 2.6.5) on JAR spheroid-RL95-2 monolayer binding, both insulin concentrations 

were selected for further studies. Adhesion assays were carried out where JAR spheroids 

only, RL95-2 monolayers only or both JAR spheroids and RL95-2 monolayers were 

exposed to low (0.03nM) or high (0.24nM) concentrations of insulin during the 

preincubation period but not during the binding assay, as illustrated below (Figure 2-9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2-9: Design for testing the effect of preincubation with low (0.03nM) and high 
(0.24nM) concentrations of insulin on JAR spheroid-RL95-2 monolayer binding. 
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Consistent with previous experiments (Section 2.6.5), additional experiments where 0nM, 

0.03nM (low) and 0.24nM (high) added insulin doses were present during a 24 hour 

binding assay with no insulin preincubation showed JAR spheroids binding to RL95-2 

monolayers of 98%, 36% and 88% of spheroids adhered respectively (Figures 2-10A, B 

and C).  

In Figure 2-10A, preincubating JAR spheroids only with 0.03nM insulin for 1 hour prior to 

binding assay resulted in 33% of the spheroids bound. At the fifth hour, 47% binding was 

observed after JAR spheroids were preincubated with 0.03nM insulin. Preincubating JAR 

spheroids with 0.03nM insulin resulted in 2% of spheroids bound after 24 hours prior to 

binding assay. However, the preincubation of JAR spheroids with 0.24nM after 1 hour 

resulted in 78% binding. The binding reached 46% after JAR spheroids were preincubated 

for 5 hours with 0.24nM insulin. After 24 hours preincubation with 0.24nM insulin, JAR 

spheroid binding reached 1%. 

In Figure 2-10B, there was 38% adhesion after preincubating RL95-2 monolayer only with 

0.03nM for 1 hour. Also, binding of 44% was reached on treatment of RL95-2 monolayer 

with 0.03nM insulin after 5 hours and 34% binding was reached after 24 hours 

preincubation of RL95-2 monolayer. However, the preincubation of RL95-2 monolayer 

with 0.24nM after 1 hour resulted in 62% binding. Preincubation of RL95-2 monolayer with 

0.24nM insulin resulted in 61% of spheroids bound after 5 hours. By 24 hours 

preincubation of RL95-2 monolayer with 0.24nM insulin, 29% spheroid binding was noted. 

In Figure 2-10C, after 1 hour, 40% binding was observed when both JAR spheroids and 

RL95-2 monolayers were preincubated with 0.03nM insulin separately before the binding 

assay. A binding rate of 26% was reached when both JAR spheroids and RL95-2 

monolayers were preincubated with 0.03nM insulin after 5 hours. At 24 hours, 9% binding 

occurred in the presence of 0.03nM insulin preincubation of both JAR spheroids and 

RL95-2 monolayers. On the other hand the preincubation of both JAR spheroids and the 

RL95-2 monolayers with 0.24nM after 1 hour resulted in 71% binding. When both JAR 

spheroids and RL95-2 monolayers were exposed to 0.24nM insulin preincubation, by the 

fifth hour 50% spheroids binding was reached. In the presence of 0.24nM insulin 

preincubation of both JAR spheroids and the RL95-5 monolayer, there was 9% binding 

reported after 24 hours preincubation.  

The observation of inhibition of binding at both doses of added insulin with long-term 

incubation, especially on JAR spheroid only, suggests that the transcriptional effect as 

protein synthesis or genomic response of insulin supposedly take a long time. 
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Figure ‎2-10: Effect of preincubation in low and high doses of insulin. A) JAR spheroids 
only, B) RL95-2 monolayers only or C) both together in the presence of 0.03nM and 0.24nM. 
The percentage of adhesion was assessed after 0 (no preincubation), 1, 5, and 24 hours 
preincubation in insulin, before a 24 hour JAR spheroid-RL95-2 monolayer binding. The 
absence of insulin (control) and JAR solubilised extract (negative control) are presented (in A, 
B and C). n=5 independent (duplicated) experiments presented. Mean (SE) shown. 
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2.6.7 Identifying molecules involved in JAR spheroid-RL95-2 
monolayer binding 

Potential adhesion molecules that may be involved in the binding of JAR spheroids and 

RL95-2 monolayers in the culture model were investigated. Several adhesion molecules 

previously found to be involved in blastocyst adhesion onto the uterine wall were 

assessed. First, it was tested whether JAR and RL95-2 cells expressed the adhesion 

molecules trophinin, CD44 and laminin α1. Expression of trophinin was not detected in 

JAR or RL95-2 cells (Figure 2-11A). CD44 mRNA expression was not detectable in JAR 

cells, but was present in RL95-2 cells, with a predicted product fragment of 262-bp (Figure 

2-11B). Laminin α1 was expressed in JAR cells but not in RL95-2 cells, with a predicted 

fragment of 265-bp, as shown in Figure 2-11C. In these assays β-Actin was used as a 

loading control and kidney mRNA served as a positive control. 

Laminin α1 was selected for further investigation to determine if it might be involved in the 

binding between JAR spheroids and the RL95-2 monolayer in the experimental model. 

 

 

 

 

 

 

 

 

 

Figure ‎2-11: Reverse transcription PCR assay of adhesion molecule mRNA expression. 
A) Trophinin (variants 2, 3 and 6) isoforms, B) CD44 (variants 1, 2, 3, 4 and 5) isoforms and 
C) laminin α1 products were detected by ethidium bromide staining in an agarose gel. 
Messenger RNA loading was assessed using D) β-Actin as a control gene. Wells contained 
ladder (DNA ladder); A, kidney (positive control); B, negative control; C-D, JAR cells RNA; E, 

negative control and RL95-2 cells RNA; F-G. 
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2.6.8 Laminin α1 interacting protein and insulin receptor 
messenger RNA expression in JAR and RL95-2 cells 

Since laminin α1 is proposed to play a role in mediating adhesion during blastocyst 

implantation, it was hypothesised that laminin α1 must interact with its interacting protein 

in order for adhesion to take place; thus, such protein would be expressed on the uterine 

epithelium during the receptive period. In the experimental adhesion model used in this 

chapter of the thesis, the presence of such molecules in JAR and RL95-2 cells was tested 

for. FBLN-1 was expressed in both JAR (lanes C-D) and RL95-2 cells (lanes F-G), with a 

predicted product fragment of 267-bp (Figure 2-12A). In contrast, FBLN-2 was only 

expressed in JAR cells (lanes C-D), with a predicted product of 288-bp, as seen in Figure 

2-12B. Expression of an insulin receptor was also determined as insulin regulates cell 

adhesion between JAR and RL95-2 cells as it is proposed that insulin, perhaps regulate 

cell adhesion molecules. The semi-quantitative PCR studies indicated that insulin receptor 

mRNA was detected in both JAR (lanes C-D) and RL95-2 cells (lanes F-G), with a 

predicted product of 294-bp (Figure 2-12C). The mRNA gel loading was verified for JAR 

and RL95-2 cells using β-Actin primers producing a 514-bp product (Figure 2-12D). 

 

 

 

 

 

 

 

 

Figure ‎2-12: Laminin‎α1 interacting molecule FBLN-1 & -2 and insulin receptor mRNA 
expressions. RT-PCR product detected by ethidium bromide staining in agarose gel A) 
FBLN-1, B) FBLN-2 and C) insulin receptor. D) β-Actin was used as a loading control. Lane A, 
kidney (positive control); B, negative control; C-D, JAR cells; E, negative control, and F-G, 
RL95-2 cells. 
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2.6.9 Detection of‎laminin‎α1‎protein expression on JAR cells 

In order to validate protein expression of laminin α1 in the JAR cells, SDS-PAGE and 

Western blotting were carried out (Figure 2-13A). Laminin α1 protein expression was 

detected in JAR protein lysates of different concentrations (70-130μg/μL). Western blot 

analysis demonstrated the expression of laminin α1 detectable as a band of 400kDa.  This 

confirms previous reports demonstrating laminin α1 expression in JAR cells (Tiger et al. 

1997). 

Immunohistochemistry (IHC) was performed to localise laminin α1 protein expression in 

JAR cells. Laminin α1 was localised in the intima but absent in the fibrinoid (Fib) areas of 

breast tumour tissue, which was the positive control tissue (Figure 2-13B). No detectable 

staining was observed in the negative control, as shown in Figure 2-13C. Intense laminin 

α1 staining was seen within the extracellular matrix of the basement membrane of JAR 

cells (Figure 2-13D). There was no laminin α1 expression in the negative control (Figure 

2-13E). 
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Figure ‎2-13: Laminin‎α1 protein detections in JAR cells. A) JAR protein lysates were loaded 
at 70, 90, 110 and 130μg/μL in each well, and laminin α1 (400kDa) was detected using (1:600 
anti-human laminin α1 antibody goat polyclonal; AF4187, R&D System). β-Actin (40kDa) was 
used as a loading control. B) Immunohistochemistry indicates laminin α1 staining in intima with 
no staining in the fibrinoid (Fib) in the positive control tissue (breast tumour) (scale bar 10µm) 
with 20X magnification and C) negative control (10μm). D) Laminin α1 staining of JAR cells 
within the extracellular matrix (ECM) (2μm). E) Negative control (2μm) with 100X magnification. 



CC ONYIAODIKE, 2014                                                                                              Chapter 2-85 

2.6.10 Blocking laminin‎α1‎on JAR cells using a specific anti-
laminin‎α1 antibody 

Having detected laminin α1 protein expression in JAR cells, further studies were 

undertaken to determine whether the anti-laminin α1 antibody could block binding of JAR 

spheroids to RL95-2 monolayers. The laminin α1 antibody concentration titre was 

determined after assessing its effect on JAR spheroid-RL95-2 monolayer binding after 24 

hours. An irrelevant antibody, anti-GRP-78 (N-20) against GRP-78, a highly conserved 

protein, was used as a positive control. A series of laminin α1 antibody concentrations 

were incubated with JAR cells in a preincubation to allow the antibody to block any cell 

surface laminin α1 on JAR spheroids. JAR spheroids were preincubated with anti-laminin 

α1 (0.1, 0.2 and 0.4µg/mL) for 1 hour, and then a 24 hour JAR spheroid-RL95-2 

monolayer binding assay was carried out (Figure 2-14A). In the absence of anti-laminin α1 

or anti-GRP-78, there was 98.7% binding, while the addition of JAR solubilised extract 

showed 0% binding, as expected. After inclusion of 0.1, 0.2 and 0.4µg/mL anti-laminin α1 

in the JAR spheroid preincubation, there was 18%, 34% and 43% binding, respectively, in 

the JAR spheroid-RL95-2 monolayer binding assay. In contrast, JAR spheroid binding 

after 1 hour preincubation with 0.1, 0.2 and 0.4µg/mL of irrelevant antibody anti-GRP-78, 

followed by a 24 hour JAR spheroid-RL95-2 monolayer binding assay, had a consistently 

higher percentage adhesion, at 63%, 62% and 56%, respectively. These data imply that 

anti-GRP-78 failed to provide complete inhibition of JAR spheroid adhesion. 

When anti-laminin α1 (0.2, 1 and 4µg/mL) was included in the JAR spheroid-RL95-2 

binding assay, spheroid binding was 27%, 46% and 55%, respectively (Figure 2-14B). 

Addition of an irrelevant antibody, anti-GRP-78, to the binding, using 0.2, 1 and 4µg/mL, 

showed binding of 63%, 61% and 63% respectively (Figure 2-14B). In the absence of 

antibodies, adhesion reached 98.7%, while in the presence of frozen JAR solubilised 

extract there was 0% binding of spheroids (Figure 2-14B). However, inhibition of the JAR 

spheroid adhesion induced by anti-laminin α1 and anti-GRP-78 lacked concentration-

dependent response and specificity. 
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Figure ‎2-14: Anti-laminin‎α1 effect on JAR spheroid-RL95-2 monolayer binding assay. A) 
JAR spheroid preincubation for 1 hour with 0.1, 0.2 and 0.4µg/mL anti-laminin α1 and anti-
GRP-78, followed by 24 hours JAR spheroid-RL95-2 monolayer binding assay. B) JAR 
spheroid-RL95-2 monolayer coincubation in a 24 hour binding with 0.2, 1 and 4µg/mL anti-
laminin α1 or anti-GRP. All assays were carried out in duplicates with n=3 independent 
experiments; anti-laminin α1, represents anti-human laminin α1 antibody goat polyclonal; 
AF4187, R&D System. Mean (SE) shown. 
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2.7 Discussion 

In many women, blastocyst/embryo-uterine adhesion and implantation does not happen, 

and this is a major cause of infertility. The aim of the present chapter is to explore the 

effect of insulin and adhesion molecules in the blastocyst-uterine wall interaction, using 

spheroids adhering to the RL95-2 monolayer as a cell culture model of implantation. In 

this model, trophoblast JAR spheroids binding to human uterine RL95-2 monolayers 

reached 98% by 24 hours. This is consistent with John et al. (John et al. 1993) while 

Hans-Peter et al. reported approximately 100% adhesion by 5 hours (Hans-Peter et al. 

2000). This chapter has explored the effect of insulin in the cell adhesion model and found 

that added low insulin concentrations (0.03nM) inhibited spheroid binding by 74%, 

whereas high insulin (0.24nM) only inhibited it by 9%. The lack of a standard dose-

response for insulin and anti-laminin α1 was difficult to interpret and is inconclusive at this 

stage of experimentation. However, these results suggest that insulin is important as a 

metabolic parameter, and laminin α1 may be an interesting candidate for an adhesion 

molecule, in the study of embryo adhesion during in vitro implantation.  

The cell model of implantation has advantages and disadvantages. Human 

blastocyst/embryo implantation onto the maternal endometrial epithelium cannot be 

studied in vivo and is difficult to study ex vivo. Access to donated embryos for research 

purposes is limited to a few laboratories across the globe. The uniqueness of the human 

implantation process means that no other mammal provides an appropriate animal model 

(Bischof and Campana 2000). Ethical concerns regarding experimentation with primary 

human tissues during this period of life necessitate using in vitro models employing 

trophoblast and uterine cell lines. In this thesis the model used represents an important 

step of implantation (i.e. adhesion) and uses JAR spheroid-RL95-2 monolayer binding to 

provide a means to examine events during implantation in detail. It is difficult to assess 

how good this is at representing in vivo tissue. JAR cells derived from human 

choriocarcinoma (trophoblastic cells) (Pattillo RA et al. 1971; Rohde and Carson 1993) 

and RL95-2 cells from human endometrial epithelium (adeno-squamous carcinoma) (Way 

et al. 1983) provided at least the closest possible alternative to in vivo tissue. In order to 

provide robust data using this model, certain control experiments were undertaken. These 

included checking spheroid numbers for reproducibility, use of controls, keeping cell 

passage numbers the same and time-dependent assessment.  

Embryo implantation requires the participation of various cytokines, growth factors and 

hormones. The effect of insulin during this process in humans has not been studied. 

Insulin is a pleiotropic hormone, capable of activating various intracellular pathways that 

lead to a cascade of multiple responses, including DNA synthesis, mRNA turnover, 
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protein synthesis and degradation, and cell division. Studies have demonstrated that 

insulin enhances blastocyst proliferation in mouse, rat and rabbit models (Harvey and 

Kaye 1990; De Hertogh et al. 1991; Herrler et al. 1998). In mouse models particularly, 

insulin enhances embryo cleavage (Gardner and Kaye 1991) and stimulates an increase 

in the number of blastocyst cells due to an increase in inner cell mass cell numbers 

(Harvey and Kaye 1990). As stated above, this suggests that insulin may have a direct 

role in the regulation of preimplantation embryo development. In a clinical situation of 

obesity, PCOS and diabetes women, which are usually associated with higher insulin level 

are likely to miscarry. This is an indication of the negative effect of high insulin on the 

blastocyst/embryo stage at preimplantation (Cardozo et al. 2011). In the experiment in this 

chapter, insulin receptor expression in both JAR cells and RL95-2 cells was detected. 

Results may imply a potential role for insulin signalling in the interaction of JAR spheroids 

and the RL95-2 monolayer.   

Human pregnancy is characterised by a gestational increase in insulin resistance 

especially after mid-gestation. A report, utilising an oral glucose tolerance test and 

hyperinsulinaemic-euglycaemic clamps observed insulin levels of approximately 6µU/mL 

(0.04nM) prior to conception, 0.03nM at 12-14 and ~0.06nM at 34-36 weeks' gestation in 

healthy pregnant non-obese women (Catalano et al. 1993). This increased insulin 

hormone secretion, leading to a gestational increase in insulin resistance, occurs in order 

to maintain glucose tolerance. Another group reported a cord insulin level of 0.02nM at 

birth of healthy control mothers (Nelson et al. 2009). In the current experiments, it 

appeared that insulin may not affect binding (implantation), as previously proposed; an 

inconsistent dose response relationship between insulin and binding made these data 

hard to interpret. This observation, that insulin at low dosage inhibits spheroid binding 

more than insulin at high dosage, was unexpected, as it seemed reasonable that the 

higher dose would produce a more significant response. This unexpected result raises the 

possibility that the data obtained is due to an experimental artefact, possibly as a result of 

a number of limiting factors. The problem of unavailable data for localised embryo insulin 

concentration at implantation led to using circulating maternal and cord plasma levels of 

insulin in normal pregnancy as a guide for selecting insulin concentration for the 

experiment. John et al. also indicate that manipulation of the coverslip introduces shear 

forces, and that the centrifugal force based system of removing unbound spheroids may 

be problematic (John et al. 1993). There is a possibility of inadvertently detaching already 

bound spheroids. Also, bias may have contributed a false positive result due to the 

irregular edges of prepared JAR spheroids. As in previous studies (John et al. 1993; 

Grümmer et al. 1994; Hans-Peter et al. 2000), 25mL Erlenmeyer flasks were utilised in 

preparing JAR spheroids on a shaker. In all these observations, JAR cells formed multi-

cellular spheroids which were harvested after 72 hours. Aboussahoud et al. prepare multi-
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cellular spheroids from JAR cells using tissue culture Petri dishes (Aboussahoud et al. 

2010). They observe spheroid formation, similar in size to human blastocysts, occurring 

after 24 hours of culturing of JAR cells on a shaker. A recent report by Wang et al., used 

an agarose-coated Petri dishes (cultured for 5 days) to transform a single JAR cells 

suspension into small spheroids, which were later transferred into an Erlenmeyer flask 

(cultured for a minimum of 5 days on a shaker) (Wang et al. 2012). Taking all these 

factors into account, there is the possibility that experimental artefact may perhaps have 

influenced the current data, even though the absence of comparable studies makes this 

only a possibility.  

There is a possibility that added insulin have a toxic effect and may lead to cells beginning 

to die during the binding assay. Cell death would cause the breakdown of cell 

membranes, which may result in nonspecific binding of JAR spheroids to the RL95-2 

monolayer, or merging of their cell membranes. Experiments to test cell toxicity after 

treatment with a range of insulin concentrations at both ends may help clarify the data. A 

number of parameters, including vital staining, cell growth, cytosolic enzyme release and 

cloning efficiency, may each be used as an end-point to measure toxicity. In the context of 

this experiment, viable JAR cell staining (using trypan blue) may have helped determine 

whether JAR cells die after exposure to low or high doses of insulin in culture well plates. 

In the absence of such staining, it was impossible to eliminate the factor of the death of 

JAR cells from the result. Therefore, this unexpected result (of increased binding with 

increased insulin) requires further elucidation. Rhee et al. find that when human-derived 

neuron stem cells are exposed to a high dose (4.3µM or 4300nM) compared to low dose 

(0.22µM or 220nM) of insulin, the result is severe cell death (Rhee et al. 2013). 

Nevertheless, both concentrations are outside the range of doses used in this present 

experiment. In spite of several factors that have perhaps contributed to the unexpected 

data, observations of both low and high insulin doses preincubation after 24 hours, before 

the 24 hour binding assay (Figure 2-10A), suggest a time-dependent response. Thus, it 

appears that inhibition of binding at both concentrations may occur with long incubation. It 

may be that the insulin was removed, i.e washed away too early from the preincubating 

system, and might require longer incubation. 

An alternative explanation for this unusual data is that, in this system, insulin has different 

biological effects at different concentrations. At low doses, activation of the insulin 

receptor may be sufficient to trigger a definable pathway that leads to binding inhibition. 

Higher levels may involve activation of other pathways which counteract the initial 

inhibition and on balance lead to net relief of inhibition or activating an independent 

pathway that has the opposite effect. Consequently, low concentrations of insulin led to 
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poor adhesion of the spheroids, whereas high concentrations of insulin resulted in no or 

least inhibition (i.e. due to high spheroids binding).  

The insulin receptor consists of two subunits: the α- and β-subunit. The signals are 

transferred after binding of insulin to the α-subunit, inducing a conformational change in 

the receptor to allow the β-subunit to become phosphorylated by adenosine triphosphate 

(ATP) binding (Hubbard et al. 1994). The phosphorylated β-subunit of the insulin receptor 

enhances autophosphorylation of a cytoplasmic protein tyrosine kinase (Murakami and 

Rosen 1991). After tyrosine phosphorylation, many downstream proteins, such as insulin 

receptor substrates 1-6 (IRS-1 to 6) (Hotamisligil 2006; Wang et al. 2009), are 

phosphorylated on the tyrosine residue. Puscheck et al. found that IRS-1 mRNA and 

protein were upregulated by insulin: in mouse peri-implantation embryos; in embryonic cell 

lines; and in cultured blastocysts (Puscheck et al. 1998). Phosphorylated IRS protein 

binds Src homology-2 domain (SH2) protein (Pronk et al. 1993). SH2 regulates enzymes 

such as p85 regulatory subunits including phosphatidylinositide 3-kinase (PI3-K) (Wilcox 

2005). PI3-K controls gene and protein expression of enzymes involved in lipid and 

glycogen synthesis, glucose transport and cell division. Also, PI3-K activation leads to 

protein kinase B (Akt) phosphorylation, which regulates other molecules – particularly 

those that have proapoptotic and antiproliferative activities. Similar to the PI3-K pathway, 

the signalling of insulin activates the mitogen-activated protein kinase (MAPK), also called 

the extracellular signal-regulated kinase (ERK), pathway involved in intracellular insulin 

signal transduction (Kyriakis and Avruch 2001; White 2013).  

The data obtained from this experiment is that low insulin levels (0.03nM) had a higher 

inhibitory effect on spheroid binding than high insulin levels (0.24nM), and that this 

difference could be explained by differences in the insulin pathway activation. Lathi et al. 

observe, in human decidualised endometrial stromal cells studies, that low insulin levels 

(0.1ng/mL or 0.02nM) cause activation of the PI3-K pathway and high insulin levels 

(1000ng/mL or 172nM) affect the MAPK pathway (Lathi et al. 2005), although 172nM 

levels were more extreme than those in this experiment. In the study of Lathi et al., the 

activation of the PI3-K and the MAPK pathways was assessed by the detection of 

phosphorylated Akt and ERK using Western blotting. Inhibitor studies of IGFBP-1 mRNA 

and protein expression revealed that at 0.02nM insulin acts through the PI3-K pathway, 

while at 172nM levels it activates the MAPK pathway in the inhibition of IGFBP-1 (Lathi et 

al. 2005). Lathi et al. find human endometrium to be a target for insulin activity (0.01-

0.02nM) in regulation of IGFBP-1. These reports led to stipulation in this current 

experimental study that a low dose (0.03nM) of insulin may perhaps activate the PI3-K 

pathway, whereas a high dose (0.24nM) takes place via the MAPK pathway. The 

representative pathways suggested to be influenced by insulin doses, as proposed (Myers 
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et al. 1994; White 2003; Knight et al. 2006; White 2013) and recommended for future 

studies, is shown in Figure 2-15. 

 

 

 

 

 

 

 

 

 

 

 

 

Long-term transcriptional regulation effect is another potential effect of insulin in the in 

vitro model of implantation. The JAR spheroids exposed to high (0.24nM) levels of insulin 

appeared to approximately double in size (although this was not directly measured) 

compared to those that were not exposed to insulin. This is interesting as it suggests that 

the protein synthesis or genomic effect of insulin is perhaps a possibility. There may be an 

increase in JAR cell division in response to a high concentration of insulin, leading to 

increased cell numbers. Insulin was shown to increase the number of cells per embryo in 

mouse models (Gardner and Kaye 1991). The data from this current experimental study 

show that preincubation of insulin prior to binding assay, suggests a time-dependence 

relationship due to inhibition of binding at both concentrations with long incubation. Insulin 

Figure ‎2-15: Insulin response via the PI3-K and MAPK pathways. Modified from White 
(White 2013).  



CC ONYIAODIKE, 2014                                                                                              Chapter 2-92 

at different concentrations, becoming active in long incubation, may regulate gene 

expression of adhesion molecules. There is the possibility that such transcription 

regulation possibly occurs via different signalling pathways (see Figure 2-15).  

Adhesion molecules are involved in the stability and migration of cells (Parsons et al. 

2010). For most cells in most environments, movement starts by protrusion of the cell 

membrane and continues by the formation of new adhesion at the cell front that links the 

actin cytoskeleton to the substratum. This produces a traction force that moves the cell 

forwards and disassembles of adhesion at the rear of the cell. This adherence formation 

and disassembly is stimulated by Rho GTPase and drives the migration cycle (Parsons et 

al. 2010). The enzyme then regulates actin polymerisation and myosin activity and thus 

adhesion dynamics. Extracellular matrix and integrin subunits were involved in trophoblast 

cell adhesion to the endometrium (Nagaoka et al. 2003). In order to ascertain which 

adhesion molecules may be responsible for binding of JAR spheroids to RL95-2 

monolayers, both cell types were assessed for expression of adhesion molecules and 

their interacting proteins. Trophinin was not detected in either JAR or RL95-2 cells, which 

suggested that trophinin is unlikely to be involved in the adhesion of the two cells. 

Trophinin has been detected in primary human endometrial epithelial cells, human 

embryonic carcinoma HT-H cells and human endometrial adenocarcinoma SNG-M cells 

(Fukuda et al. 1995; Fukuda and Sugihara 2007; Sugihara et al. 2008). Expression of 

CD44, a ubiquitously expressed hyaluronic acid receptor, was detected in RL95-2 cells 

but not in JAR cells. This suggests that CD44 is absent in the intercellular binding 

between both cells. CD44 expression has been reported in the preimplantation human 

embryo (Campbell et al. 1995). The expression of CD44 in RL95-2 cells alone perhaps 

indicates that RL95-2 monolayers interacts with JAR spheroids via hyaluronate, which 

allows binding of both types of cell to extracellular matrix ligands (Aruffo et al. 1990). 

Laminin α1 mRNA and protein were found in JAR cells. Laminin α1 protein has previously 

been detected in JAR cells (Tiger et al. 1997). Laminin α1 was also localised in the 

extracellular matrix of JAR cells. Immunofluorescence, immunoprecipitation, SDS-PAGE 

and immunoblotting method would all be useful in characterising the extracellular matrix 

(Langhofer et al. 1993). Laminin α1, a subunit of laminin-1 (also called laminin-111, an 

isoform of the laminin family of extracellular matrix proteins), is commonly present in 

basement membranes (Patarroyo et al. 2002). There is a possibility that other subunits of 

the laminin-1 (laminin β1 and laminin 1ץ) chain compete for laminin α1 binding sites on 

JAR spheroids in adhering to RL95-2 monolayers. This study is unclear as to whether 

insulin supports synthesis of laminin α1, which influences binding. An in vitro model study 

showed a time-dependent insulin mediated increase in a laminin α2, laminin β1 and 

laminin 1ץ chain protein (but not mRNA), likely identified as laminin-211 (Dekkers et al. 
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2009). Laminin α1 interacts with extracellular matrix molecules FBLN-1 and -2 (Utani et al. 

1997). Both molecules were detected in JAR cells, while FBLN-1 was observed in RL95-2 

cells only. In view of this, JAR spheroids have the potential to bind the RL95-2 monolayer 

via FBLN-1, which might be implicated in vivo. Data from this experiment where there was 

no specific block binding of spheroids to RL95-2 monolayers using a laminin α1 antibody, 

are difficult to interpret, as the non-relevant antibody (anti-GRP 78) also caused partial 

inhibition of binding. Absence of anti-laminin α1 antibody effect with increased 

concentrations may be suggestive of the ability of this antibody to activate other adhesion 

molecule(s) that otherwise may not have been active. Thus, this activation allows a higher 

number of JAR spheroids to bind on RL95-2 monolayers. A proposal of some important 

adhesion molecules, with or without insulin regulatory effect, is shown in Figure 2-16. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2-16: Adhesion molecules during JAR spheroid-RL95-2 monolayer in cell culture 
model of implantation with or without insulin. INR represents insulin receptor; ECM, 
extracellular matrix. 



CC ONYIAODIKE, 2014                                                                                              Chapter 2-94 

As well as the above proposal, there is also the possibility that other molecules may be 

implicated in JAR spheroid-RL95-2 monolayer binding. Since the N-terminal domain of 

laminin 1 is made of laminin α1, laminin β1 and laminin γ1 chains, there is the potential for 

cross binding in any of these chains to interact with common receptors as suggested 

above. There are also several G-domains, located in the COOH-domain of laminin 1, 

known to adhere with integrins and cellular adhesion molecule laminin α1 (Nomizu et al. 

1995). Heparin sulfate proteoglycans (Rohde and Carson 1993) and integrins may also be 

involved (Fukuda et al. 1995; Wang and Dey 2006). Also, Rho GTPase protein regulator 

is found to enhance binding between JAR and RL95-2 cells (Heneweer et al. 2002). The 

anchorage of trophoblast cells (JAR cells) onto the maternal decidual RL95-2 cells during 

implantation has also been reported to be facilitated by fucosyltransferase VII (Zhang et 

al. 2009). Other anchoring molecules, such as integrin, including alpha v beta (3) and 

alpha (4) beta (1) (Quenby et al. 2007), cadherin and selectin, help facilitate adhesiveness 

between the embryo and endometrial epithelium. These data suggest a general 

consensus that these adhesion molecules may support binding of JAR spheroids to the 

RL95-2 monolayer.  

A major limitation of the current study is that the implantation cell culture model lacks in 

vivo authenticity and does not fully represent the blastocyst-uterine interaction during 

implantation. The time-frame of adhesion interactions over a 24 hour time-frame only is 

much shorter than day 6 to 10 post ovulation, LH+7 to LH+11 and/or day 20 to 24 post 

LMP time windows in vivo (Aplin 1996; Wilcox et al. 1999; Lessey et al. 2000; van Mourik 

et al. 2009). Handling of coverslips has been reported as proving difficult and challenging 

for beginners and even for experienced hands, which may introduce an uncontrollable 

shear force however carefully they are handled (John et al. 1993; Li et al. 2002). There is 

the issue of the number of spheroids utilised in vitro being far more than the number in 

vivo (Aboussahoud et al. 2010). Also, because there is no available data on localised 

embryo-uterine insulin levels, this has led to the use of insulin data on circulating maternal 

and cord plasma levels at term as a guide; however, these levels may be quite different. 

Even when appropriate in utero insulin levels are identified, the pulsatile pattern of insulin 

secretion is likely to be affected sharply between meals in vivo (Polonsky et al. 1988). This 

suggests that insulin levels may not be the best metabolic parameter to be tested using 

the blastocyst-uterine in vitro model or that the current model requires further modification. 

Ethical concerns with regard to experimentation with human tissue during the implantation 

period have necessitated the search for an in vitro model for elucidating the basic 

mechanisms involved during this period. This in vitro model may facilitate research into 

elucidating pregnancy complications in early pregnancy: pregnancy loss, PE, IUGR and 

gestational diabetes (Cha et al. 2012; Gauster et al. 2012). In this chapter, I found no 
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evidence that insulin played a role in binding, but insulin and adhesion molecule laminin 

α1 expression could be of importance during implantation, although the data analysis is at 

too early at a stage to draw firm conclusions. If low insulin can be shown conclusively to 

prevent spheroid adhesion, this finding might represent a difference between in vitro and 

in vivo studies as observed in women suffering from obesity, PCOS and diabetes, which 

are associated with hyperinsulinaemia and a likelihood of miscarriage (Penney et al. 2003; 

Dokras et al. 2006; Jungheim et al. 2009; Beauharnais et al. 2012; Chang et al. 2013). 

Even at this stage, these preliminary findings may suggest that there is a fundamentally 

different mechanism between in vitro and in vivo situations in terms of implantation.  

It is recommended that future studies make improvements of this current model. It may be 

beneficial to use a different technique for preparing JAR spheroids. The use of tissue 

culture Petri dishes instead of only Erlenmeyer flasks must be explored (Aboussahoud et 

al. 2010). The use of Petri dishes may reduce spheroid preparation time from 72 hours to 

only 24 hours. It is recommended that other human choriocarcinoma cell lines (BeWo and 

Jeg-3), which can also be transform into spheroids (Grümmer et al. 1994) be investigated. 

As Grümmer et al. report, all these cell lines (JAR, BeWo and Jeg-3) spheroids were all 

proven to adhere human endometrial epithelium; each was invasive in a general invasion 

assay using embryonic chick heart fragment. Insulin doses ranges (assessments of 

toxicity) at high and low concentration are recommended. Also, a longer time 

(approximately 24 hours) for preincubation assay maybe advisable, as this resulted in 

noticeably greater effects. It appears that the insulin had begun to take effect by the 24th 

hour, as reported above. Investigation of the specific downstream signalling pathways' 

response to insulin dose, during JAR spheroids binding to the RL95-2 monolayer, can be 

explored through the PI3-K and MAPK pathways. Testing this model will require an 

approach which distinguishes the adhered JAR spheroids-RL95-2 monolayer. For 

instance, after counting the number of bound spheroids, 0.25% trypsin-EDTA can be 

added into the well containing bound spheroids and RL95-2 monolayers to disintegrate 

the cells and collect samples for further studies. This may require additional cell dispersal 

of JAR spheroids only and RL95-2 monolayer only as control samples. Methods, including 

immunofluorescence, immunoprecipitation, SDS-PAGE and immunoblotting, may all be 

useful in characterising the extracellular matrix involved in adhesion (Langhofer et al. 

1993). Protein along the activated insulin response pathways (White 2013) can now be 

investigated. These methods may be useful to study other important mechanisms, such 

as those involved in the interaction between FBLN-1 and laminin α1 during in vitro 

implantation. Gene cloning procedures (Zhang et al. 2009) would also be useful to 

generate monoclonal anti-laminin α1 specific to laminin α1 in binding assay, if necessary.  
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In conclusion, difficulties in studying human embryo implantation in vivo have led to the 

continued search for an optimal in vitro cell culture model system due to the enormous 

problem of the uniqueness of human implantation and poor accessibility to experimental 

tissue and human embryos for research. This chapter proposes a cell culture model of 

implantation and also provides data on insulin effects on cell interaction and the role of 

laminin α1 in cell binding, which may be of interest to future research. Future studies into 

understanding human implantation and the effect of metabolic and inflammatory pathways 

are important. An optimal experimental model will assist in understanding the signalling 

pathways and transcriptional effects governing adhesion during implantation, and will 

provide future opportunities to design and implement interventions that may improve 

pregnancy success in natural and spontaneous or assisted conception. 
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3 Early pregnancy changes in parameters of 
metabolic status and inflammatory mediators 

3.1 Introduction 

Predicting pregnancy success for those undergoing assisted conception remains 

problematic in spite of the advances in the field. A major problem is selecting the type of 

hormone and/or amount administered for optimal ovarian follicle growth. Maternal age 

remains a key determinant of the protocol employed per person. An example is the report 

by Nelson et al., where women of <36 years were given 225IU FSH and those >36 years 

received 300IU per day (Nelson et al. 2007). La Marca et al. observed that anti-Müllerian 

hormone levels can predict live birth rates, and measurement of this hormone may 

facilitate individualisation of therapy prior to first ART cycle (La Marca et al. 2011). The 

degree to which obesity influences early pregnancy metabolic and inflammatory 

parameters, and how this may impact on pregnancy success, is yet unclear. Obesity is a 

significant risk factor for altering metabolic metabolites and inflammatory mediators 

throughout gestation (Stewart et al. 2007). Maternal body fat may affect metabolites 

(including lipid and carbohydrate metabolism) and inflammatory mediators, as well as 

hormones (such as insulin and leptin) early in pregnancy. Increase in these parameters, 

exacerbate maternal insulin resistance and lipid stores in pregnancy. Whether these 

changes may predetermine pregnancy success because of their links with changes in the 

metabolic and inflammatory parameters was unknown until now. 

Usually, early first trimester pregnancy is referred to as the anabolic period; this is when 

the mother accumulates excess nutrients for preparation of the uterus for optimal 

implantation (Mattos et al. 2000). The anabolic state switches to the catabolic state in late 

gestation to provide fuel for fetal growth and development (Huda et al. 2009). This 

adaptation is characterised by a series of metabolic changes, such as those promoting 

adipose tissue accretion in early gestation and those leading to the development of insulin 

resistance in late pregnancy. The insulin resistance part of the adaptive response allows 

preferential diversion of glucose and lipids to the developing fetus (Aronne and Segal 

2002). This response is thought to result from the combined effects of hPL, oestrogen, 

progesterone and cortisol, which act as counter-regulatory hormones to insulin (Wilcox 

2005; Newbern and Freemark 2011). After fertilisation and over the course of a normal 

pregnancy, the mother must undergo these periods of hormonal, metabolic and 

inflammatory adaptation (Mor and Cardenas 2010; Newbern and Freemark 2011). In early 

gestation, insulin secretion increases while insulin sensitivity is unchanged, decreased or 

may even increase (Catalano et al. 1993; Catalano et al. 1999; Huda et al. 2009).  
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Overall, there are profound anatomical, physiological and biochemical adjustments in the 

mother (Torgersen and Curran 2006), which lead to several hemodynamic changes. 

There is increased cardiac output, reduced systemic vascular resistance by increased 

renal blood flow and raised glomerular infiltration rate by 6 weeks’ gestation (Chapman et 

al. 1998). These physiological changes result in high sodium and water re-absorption and 

blood volume expansion. Enhanced storage of maternal nutrients, together with fetal 

nutrient demand, leads to accumulating body fat in mothers (Villar et al. 1992; Herrera 

2000). 

By late gestation, the maternal adipose tissue deposits decrease, while postprandial 

NEFA levels increase and insulin-mediated glucose disposal worsens by 40-60% 

compared with the prepregnancy period (Catalano et al. 1999). The ability of insulin to 

suppress whole-body lipolysis is also reduced during late pregnancy. Barbour et al. 

proposed that placental growth hormone may play an important role in accelerating the 

transition from lipid storage to lipolysis and insulin resistance during pregnancy (Barbour 

et al. 2007). This transition is accelerated in obese women, making them more insulin 

resistant, and is due to an increase in maternal hormones (e.g. hPL sensitivity). This 

increase results either from a reprogramming of maternal physiology to meet fetal needs 

or from a synergy with other obesity- or pregnancy-related factors. In any case, insulin 

resistance is often severe and disrupts the intrauterine milieu. As the natural interface 

between the mother and fetus, the placenta is the obligatory target of such disruption and 

is readily affected.  

To date, there exist no robust reports of early metabolic and inflammatory pathway 

events, and their link to pregnancy success or implantation, whether with natural or 

assisted conception, is unclear. Most metabolic and inflammatory parameter changes 

have been studied in late gestation. Some data suggest that a number of parameters that 

lead to complicated perinatal outcome may be determined in the first trimester. This is 

because by the time adverse outcomes are evident during gestation, a number of 

metabolic and inflammatory parameters are detectable. It widely accepted that poor 

embryonic quality, implantation failure and aberrant placentation predetermine 

complications of pregnancy (Torry et al. 2004). These adverse states could have occurred 

before obstetric monitoring began. Examples of adverse outcomes include pregnancy loss 

whether early/late or stillbirth, PE, IUGR and gestational diabetes (Cha et al. 2012; 

Gauster et al. 2012). 

The impact of metabolic and inflammatory adaptation is thought to occur at a defined 

period of gestation, resulting in complications of pregnancy. Welch et al. noted a 

correlation between placental perfusion and maternal serum PIGF levels evident as early 
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as 14 weeks' gestation (Welch et al. 2006). In another study, increased maternal CRP 

early in pregnancy is identified as a risk factor for preterm birth (Pitiphat et al. 2005). 

Women who suffered PE by 34 weeks' gestation were shown to have elevated sFlt-1 

levels by 6-10 weeks (Chaiworapongsa et al. 2005). It has been found that those who 

develop PE had early (13 weeks' gestation) plasma changes in plasma lipid levels (10.4% 

and 13.6% higher LDL-C and TG) compared to normotensive women (Enquobahrie et al. 

2004). It has also been shown that higher levels of circulating maternal placental proteins, 

such as pregnancy-associated plasma protein-A (PAPP-A) by the first 10 weeks of 

gestation, are associated with low birth weight at term (Smith et al. 2002). PAPP-A is a 

protease that binds IGFs (Laursen et al. 2001) to upregulate placental IGFs (Rutanen 

2000). Reduced levels of PAPP-A at 8-12 weeks' gestation are associated with poor 

placental and fetal growth, leading to low birth weight (Smith et al. 2002). Plasma CRP 

levels of women who had an IUGR baby compared to the control group were already 

higher at first antenatal visit between 10 and 14 weeks' gestation (Tjoa et al. 2003). 

Singleton pregnancy first-trimester fasting glucose levels in women with gestational 

diabetes increase from 1.0% in the lowest to 11.7% in the highest category (adjusted OR 

11.92 (5.39, 26.37)) (Riskin-Mashiah et al. 2009). 

There have been no comprehensive studies of changes in metabolic and inflammatory 

parameters in early gestation. Data using assisted conception populations have begun to 

provide new insight into these early changes. Sack et al. observed increased maternal 

CRP at 4 weeks’ gestation (Sacks et al. 2004). An increase in CRP levels was reported in 

women undergoing IVF as early as 14 days after embryo transfer (Almagor et al. 2004). 

This increase may be due to functional undertaking of such inflammatory mediators, which 

is paramount for implantation and placentation. Uterine cytokines and chemokines are 

known to modulate immune response during pregnancy, driving peripheral leukocytes into 

uterine tissue (Jabbour et al. 2009). Typically, since several cell types besides Th cells 

contribute to an overall Th1 or Th2 cytokine pattern, it was suggested that these response 

should instead be described as type 1 or type 2 (Raghupathy 2001). Also, as highlighted 

above (Section 1.4.1.3), a balance between these responses are paramount for 

successful pregnancy.  

As studies show increasing evidence that fetal outcome is determined by the end of the 

first trimester, it is imperative that early events are investigated. The earliest detection of 

parameters associated with adverse outcome will allow a means of identifying when 

things may go wrong. Understanding early metabolic status and inflammatory mediator 

changes, and their relationship to pregnancy success, may facilitate developing effective 

diagnostic tests and suggest acceptable intervention strategies for identifying pregnancy 

risks early. 
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3.2 Hypotheses 

In this chapter it is hypothesised that prepregnancy parameters of metabolic status and 

inflammatory mediators predict successful pregnancy; that there are detectable changes 

in plasma metabolic status and inflammatory mediators in the first 6 weeks of pregnancy. 

It is also hypothesised that obesity is associated with decreased pregnancy success, and 

increased parameters of metabolism and inflammation are evident over the first 6 weeks. 

3.3 Aim 

The aim of this chapter is to observe the changes in metabolic and inflammatory 

parameters in a longitudinal study of women undergoing natural cycle FET after detecting 

their LH surge over 6 weeks.  

3.4 Objectives 

1. To examine whether prepregnancy metabolic and inflammatory parameters predict 

pregnancy success in a population of women undergoing natural cycle FET. 

2. To assess maternal plasma changes in parameters of lipid and carbohydrate 

metabolism, and of inflammation, in early pregnancy (<7 weeks' gestation). 

3. To examine the impact of maternal obesity on metabolic and inflammatory parameter 

changes, using BMI and waist circumference. 
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3.5 Materials and Methods 

3.5.1 Subject selection and recruitment 

Women were recruited from the population of those attending the Assisted Conception 

Unit (ACU) at Glasgow Royal Infirmary (GRI), Scotland, after obtaining written informed 

consent. Ethical approval was granted in accordance with the guidelines of the Helsinki 

Declaration from the North Glasgow University Hospital Trust, National Health Service 

Greater Glasgow and Clyde Research Ethics Committee. Subjects were excluded if they 

had hepatitis, HIV, diabetes, chronic hypertension, connective tissue disorders or any 

long-term use of medication. None of the subjects were being treated with medications 

that interfere with metabolites of lipid and carbohydrate metabolism, inflammation or 

endothelial function.  

Women received subcutaneous administration of Menopur® highly purified Menotropin or 

Gonal 450IU/0.75mL, Follitropin alpha or Organon 150-375IU for ovulation induction. 

When a minimum of three matured follicles of approximately 17-18mm in diameter were 

detected using ultrasonography, 10000IU of hCG (booster) was administered before 

oocyte retrieval, approximately 36-40 hours later for IVF and/or ICSI under general 

anaesthetic. Oocytes were exposed to spermatozoa for insemination, and ICSI was used 

in cases involving male infertility, as reported previously (Zhou et al. 2008). Oocytes 

exhibiting two pronuclei were cultured for embryonic development in Quinn’s Advantage™ 

Sequential Culture Media, (Sega). At 18 hours post insemination, pronuclei were cultured 

in Quinn’s Advantage Fertilisation Medium, at 43-44 hours post insemination in Quinn’s 

Advantage Cleavage Medium and at 63-64 hours in Quinn’s Advantage Blastocyst 

Medium. After culturing in the specified medium, blastocysts or embryos were frozen 

using Quinn’s Advantage Embryo Freeze Kit. 

Women undergoing natural cycle FET procedure with a regular menstrual cycle, with 

optimal timing of replacement determined by daily hormone analyses (as per the current 

clinic protocol) were recruited to the study. In the clinic in Glasgow, the BMI range is 

greater than 18kg/m2 and lower than 30kg/m2. This BMI range is similar across the board 

in Scotland. This group of women undergoing IVF were selected to eliminate the effects of 

ovarian stimulation, thus providing the most physiologically representation of natural 

pregnancy. Women were informed of the study when notifying the clinical nurse about the 

date of their LMP with a view to booking for FET, and a study information sheet was given 

to them. At day 10 after LMP, the women attended the ACU to commence daily hormonal 

sampling to detect LH surge and time of embryo replacements. At this point the subjects 

provided written informed consent. Embryos were replaced approximately ±3 days after 
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the LH surge. A hundred and ninety-six (196) women that underwent IVF with or without 

ICSI, of 34 years median age and ranging from 24 to 43 years, were recruited from 

September 2007 to July 2010 (34 months). 

3.5.2 Sample and demographic data collection 

Blood samples (approximate 20mL) were taken at different time points (7 visits) in a 

comfortable position, either lying or seated, by venepuncture from the antecubital fossa. 

Fasting blood samples were collected from women at all time points, apart from the FET 

day, when non-fasted samples were taken. After the day 10 LMP, a basal blood samples 

(baseline) were taken at the next routine clinic visits (of LH surge sampling). The date of 

LH surge was identified and taken as day 0 of gestation. The baseline sample was used 

as the sample of the day 0 of gestation. Additional samples were taken on the day of FET 

(≥ day 3 LH). Thereafter, samples were collected at 7, 10, 18, 29 and 45 days. Women 

who were unable to attend the seven appointments provided samples only on the routine 

clinic visits. This includes baseline, FET and day 18 in pregnant and non-pregnant groups, 

with an additional sample collected at day 45 for the pregnant women. The 20mL blood 

samples were collected using different anti-coagulants, as follows: 1.8mg/mL ethylene 

diaminetetraacetic acid (EDTA) (2 x 4mL blood), 18IU/mL heparin (1 x 6mL blood), 

0.109mol/L citrate (1 x 3.5mL blood), and 2.5mg/mL fluoride oxalate (1 x 2mL blood) 

Vacuette® tubes (Greiner Bio-One), to accommodate all the required biochemistry 

analyses. Plasma was removed from the cell pellet by pipetting after being centrifuged 

(3000g for 10min). Each subject's plasma was split into 2mL cryo vial aliquots to avoid 

repeated freeze-thaw cycles, and were stored in a -80°C freezer within 2 hours. 

Age, ethnicity, treatment options and the systolic and diastolic blood pressure at the time 

of IVF treatment, with or without ICSI, were recorded from patient notes. Height, weight 

and waist circumference were obtained at baseline and also on day 45. Maternal obesity 

was estimated by BMI and waist circumference. BMI measures body fat, whereas waist 

circumference is the best simple measure for intra-abdominal fat mass (Park et al. 2009). 

Previous reports indicate that waist circumference (≥80cm) is equivalent to BMI ≥25kg/m2 

(Lean et al. 1995). BMI, calculated by dividing weight in kilograms (kg)/height in meters 

square (m2) (Keskin et al. 2005), at booking (baseline) as well as day 45 was categorised 

according to the WHO criteria with a BMI of ≥30kg/m2 defined as obesity, a BMI of 

>25kg/m2 defined as overweight, a BMI of 24.9-18.5kg/m2 defined as healthy 

(recommended), and a BMI of ≤17.5kg/m2 defined as underweight (lean). The waist 

circumference was measured at the narrowest part of the torso, located between the 

lower rib and the iliac crest, (while the participants were standing relaxed) at booking 

(baseline), and day 45 of gestation. The waist circumference measurement at the level of 



CC ONYIAODIKE, 2014                                                                                              Chapter 3-103 

the umbilicus was carried out twice to the nearest 0.5cm. If the difference between 

measurements was greater than 2cm, a third measurement was performed. 

Menstrual period length, cycle length, smoking habits, reason for undergoing FET 

(including chemotherapy, endometriosis, genetic factor, male factor, PCOS, pelvic 

adhesion, PGD, tubal and unexplained), number of embryos transferred, number of 

previous pregnancies greater than or equal to 24 weeks and those less than 24 weeks 

were recorded. Scotland Index Multiple Deprivation (SIMD) version 2 (2009) was explored 

using the participant's postcode at the time of FET. SIMD is a tool used by the local 

authorities, the Scottish Government, the NHS and other government bodies in Scotland 

(Russell and Lough 2010). This version of SIMD combines 37 indicators across seven 

domains, namely: current income, employment, health, education, skill and training, 

housing, geographic access and crime. In SIMD categories, one represents most affluent 

and five most deprived. 

3.5.3  Plasma lipids, glucose, CRP and NEFA assays 

Plasma sample vials were allowed to thaw and reach RT. Plasma TG, TC, HDL-C, 

glucose and CRP were measured in an automated Roche/Hitachi MODULAR P (Roche) 

analyser by the Department of Biochemistry, GRI, Scotland. Lipid assays were carried out 

using the Standard Lipid Research Clinic Program (NIH) protocol (LRCP 1975). Plasma 

TG was measured by the glycerol-3-phosphate oxidase/phenol aminophenazone 

(GPO/PAP) technique on the automated analyser. Similarly, TC, HDL-C, glucose and 

CRP were measured using a CHOD/PAP kit, HDL cholesterol plus 3rd generation kit, 

glucose oxidase/PAP kit and Tin-quant CRP (Latex) high sensitivity immunoturbidimetric 

assay kit, respectively, all supplied by Roche Diagnostic, following the manufacturer's 

instructions. Non-esterified fatty acid (NEFA) was measured using a NEFA C test kit 

(Wako, Neuss Germany), according to the manufacturer's instructions, and was read at a 

550nM wavelength. 

3.5.4 Assays of plasma insulin, IL-6, PAI-1 and PAI-2 

Human insulin, IL-6, PAI-1 and PAI-2 were quantitated by ELISA, according to the 

manufacturer’s instructions, using a plate reader (LKB Biochrom Pharmacia) at the 

specific wavelength. A standard curve of absorbance against the protein was carried out, 

and unknown protein determined from the curve before exporting to a new Microsoft Excel 

spreadsheet. Estimated concentration was calculated taking account of protein amount, 

volume and dilution factor. Plasma insulin (10-1113-01, Mercodia) was sensitive to 2mU/L 

and read at a 450nM wavelength. Homeostatic model assessment (HOMA) was 
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calculated using fasting insulin concentration (mU/L) x fasting glucose concentration 

(mmol/L) divided by 22.5, assuming the healthy subject had insulin resistance (Keskin et 

al. 2005).  

The plasma lL-6 (Quantikine HS, R&D Systems) had a sensitivity of 0.02pg/mL and was 

determined at a 490nM wavelength. PAI-1 (TriniLIZE PAI-1 Antigen REF: T6003, Trinity 

Biotech) had a detection limit of 0.5ng/mL and was detected at 492nM. The PAI-2 

(IMUBIND® PAI-2 ELISA; Stamford, USA) had a sensitivity of 50pg/mL and was read at 

450nM. 

3.5.5 Chemokine assays 

Plasma chemokines (CXCL8, CCL2, CCL3, CCL4 and CCL11) were measured by a 

BioPlex Suspension Array System (also known as Luminex xMAP®) according to the 

manufacturer’s instructions (Hannan et al. 2011). Plasma samples were thawed at RT and 

each assay determined using a MilliPlex® MAP kit (Bio-Rad). The multiplex assay has a 

broad sensitivity range of 0-32000pg/mL, which makes it feasible to eliminate the need for 

assay repeat measurement and sample dilutions. The plates were prewetted with a 200µL 

assay buffer (provided by the manufacturer) for 10 min and then aspirated using a 

vacuum manifold. The standards and plasma samples (25µL) were added to appropriate 

wells, followed by the addition of beads. Plates were incubated overnight (16-18 hours) 

with mild agitation at 4°C, the fluid removed by vacuum, and the wells washed twice with a 

wash buffer. Detection antibodies (25µL) were added to each well and incubated for 1 

hour at RT, the fluorescent conjugate streptavidin-phycoerythrin added to each well, and 

plates incubated for 30 min at RT. The supernatant was then removed by vacuum and the 

wells were washed twice.  

Data were collected and analysed using a BioPlex 200 instrument equipped with 

BioManager analysis software (Bio-Rad Hercules, CA). Test runs were performed before 

analyses of the full set of samples, to optimise the sample dilution such that each analyte 

was analysed within the functional range of its standard curve. 

3.5.6 Plasma hCG assay 

Human CG was measured on an IMMUNLITE®/IMMUNITE® 1000 system analyser 

(Siemens, USA), using a commercially available IMMUNLITE®/IMMUNITE® 1000 hCG kit 

(Siemens Medical Solution Diagnostic) according to the manufacturer's instructions. The 

hCG kit has a sensitivity of 1.1mIU/mL and levels were determined against quality control 

standards. 
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3.5.7 Statistical analysis 

Statistical analysis was carried out using Minitab Vs16.2.2, and data were tested for 

normal distribution using dotplots; subsequently, the Ryan-Joiner test was applied. Where 

data were not normally distributed, logarithm (log) transformation was performed. Analysis 

of stability of baseline measure of metabolic and inflammatory parameters was carried out 

with repeated analysis of variance (ANOVA), due to the impracticality of collecting blood 

samples for each participant on exactly the same baseline day. Two-sample t-test 

measure was used to test continuous variables (including maternal age, BMI and 

birthweight), and Pearson's Chi-Square test was used to test categorical variables of 

demographic characteristics between women who became pregnant and those who did 

not. Demographics and metabolic and inflammatory parameters were explored for 

association in terms of predicting pregnancy success using logistic univariate and 

multivariate regression analysis. The OR and 95% CI were determined. The area under 

the receiver operator characteristic curve (c-statistic) was computed in order to give the 

measure of prediction using [0.5 (1 + Somer's D)], where Somer's D measures association 

between the response variable and predicted probabilities. A repeated measure ANOVA 

with General Linear Model (GLM) was also used to identify parameters that changed over 

time, in pregnant women only, by testing for differences at specific time points using a 

post hoc Tukey test. Pearson's correlation coefficient was used to determine the 

association between maternal obesity measures (BMI or waist circumference) and the 

changes in metabolic and inflammatory parameters. The data are given as mean and 

standard deviation (SD) unless otherwise stated, and statistical significance was defined 

as a P-value of less than 0.05. 
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3.6 Results 

3.6.1 Recruitment of the natural cycle FET cohort 

A total of 196 IVF cycles were included in the study, of which 35 withdrew (3 women 

withdrew consent, 7 were lost to follow up and 25 cycles were cancelled or constructed). 

A total of 38 women only became clinically pregnant, confirmed by fetal heartbeat during 

ultrasound scan at day 45 of gestation. The changes in treatment protocol at the clinic, 

which resulted in fewer women undergoing FET there, may have contributed to the 

number of total successful pregnancies over time. The majority of women who found out 

that they failed to become pregnant at day 18 (understandably) withdrew from the study at 

that point and gave no additional samples. After 161 IVF cycles, a total of 36 (rather than 

38) clinically pregnant women at day 45 were compared with 106 (rather than 123) non-

pregnant women at day 18. These were women who provided a sample after a single 

attempt. The sampling flowchart is shown in Figure 3-1. 

 

Figure ‎3-1: A flow chart of blood collection of 196 IVF cycles. This includes participants 
who withdrew (n=35) and the rest of the 161 IVF cycles, among them those who are pregnant 
(n=36) who had positive fetal heartbeat by 45 days of gestation, and non-pregnant (n=106) 
women at the clinic at outcome day 18 after a single attempt. 
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3.6.2 Demographic of pregnant and non-pregnant women 

The clinical baseline features are shown in Table 3-1. Age and ethnicity were not different 

between pregnant and non-pregnant women. However, there is a trend toward higher 

ICSI vs IVF in women who became pregnant compared to the non-pregnant group 

(P=0.074). Systolic and diastolic blood pressure were measured during the time of 

treatment, and the values show no statistically significant difference between the pregnant 

women and those who failed to become pregnant. Height, weight, BMI, waist 

circumference, menstrual period length and cycle length were also not different among 

both groups of women. Smoking habits (including those who currently smoke, ex-smokers 

and those that never smoked) were not different between pregnant and non-pregnant 

women. There was no difference between the two groups in terms of women who were 

smoker. The reason for women undertaking FET, the number of embryos transferred, 

number of pregnancies greater than or equal to 24 weeks and those less than 24 weeks 

were not different between both groups. SIMD vs quintile, which measures socioeconomic 

deprivation or affluence in Scotland, was statistically not different. 
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Table ‎3-1: Demographic variables of the participants by pregnancy outcome at day 45. 

Features Pregnant (n=36) Non-pregnant (n=106) P-value 

Age (years) 34.2 (4.8) 34.2 (5.1) 0.96 

Ethnicity  [n,(%)]   0.41 

     Black African 0.0 (0.0) 1.0 (1.0)  
     Caucasian 36.0 (100.0) 100.0 (95.2)  
     South East Asia 0.0 (0.0) 4.0 (3.8)  

Treatment  [n,(%)]   0.074 

     IVF 13.0 (36.1) 54.0 (53.5)  
     ICSI 23.0 (63.9) 47.0 (46.5)  

Systolic blood pressure (mmHg) 116.0 (13.0) 115.0 (11.8) 0.59 

Diastolic blood pressure (mmHg) 65.0 (6.7) 66.0 (9.4) 0.36 

Height (m) 1.6 (0.1) 1.6 (0.1) 0.66 

Weight (kg) 71.2 (11.2) 68.5 (13.6) 0.24 

BMI (kg/m
2
) 26.5 (4.1) 25.6 (4.6) 0.31 

Waist (cm) 88.9 (10.5) 85.6 (11.7) 0.13 

Menstrual period length (days) 5.1 (1.5) 4.9 (0.9) 0.70 

Cycle length (days) 28.2 (1.4) 28.4 (2.4) 0.70 

Smoking  [n,(%)]   0.26 

     Smoker 4.0 (11.4) 23.0 (21.9)  
     Ex-smoker 0.0 (0.0) 2.0 (1.9)  
     Never 31.0 (88.6) 80.0 (76.2)  

Current smoker  [n,(%)]     0.17 

     Yes 4.0 (11.43) 23.0 (21.90)  
     No 31.0 (88.57) 82.0 (78.10)  

Reasons for FET  [n,(%)]   0.27 

     Chemotherapy 0.0 (0.0) 1.0 (1.0)  
     Endometriosis 3.0 (8.3)  5.0 (4.8)  
     Genetic factor 0.0 (0.0) 1.0 (1.0)  
     Male factor 19.0 (52.8) 45.0 (42.9)  
     PCOS 1.0 (2.8) 2.0 (1.9)  
     Pelvic adhesion 1.0 (2.8) 0.0 (0.0)  
     PGD 1.0 (2.8) 0.0 (0.0)  
     Tubal 6.0 (16.7) 32.0 (30.5)  
     Others/Unexplained 5.0 (13.9) 19.0 (18.1)  

№ of embryos transferred  [n,(%)]   0.23 

     1 6.0 (16.7) 20.0 (19.4)  
     2 29.0 (80.6) 83.0 (80.6)  
     3   1.0 (2.8) 0.0 (0.0)  

№ of pregnancies ≥ 24 weeks [n,(%)]   0.62 

     0 35.0 (97.2) 101.0 (98.1)  
     1 1.0 (2.8) 1.0 (1.0)  
     2 0.0 (0.0) 1.0 (1.0)  

№ of pregnancies < 24 weeks [n,(%)]   0.77 

     0 27.0 (75.0) 72.0 (69.9)  
     1 5.0 (13.9) 22.0 (21.4)  
     2 3.0 (8.3) 5.0 (4.9)  
     3 1.0 (2.8) 3.0 (2.9)  
     4 0.0 (0.0) 1.0 (1.0)  

SIMD 2009 vs quintiles [n,(%)]   0.64 

     1 5.0 (13.9) 21.0 (19.8)  
     2 9.0 (25.0) 20.0 (18.9)  
     3 8.0 (22.2) 32.0 (30.2)  
     4 5.0 (13.9) 15.0 (14.2)  
     5 9.0 (25.0) 18.0 (17.0)  

 

Mean (SD) and [n,(%)], P-value from two-sample and Pearson's Chi-Square tests respectively. 
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3.6.3 Analysis of stability of baseline measure  

It was considered impractical to collect blood samples for each participant on the exact 

day of LH surge (taken as day 0 of gestation) due to the difference in the time participants' 

hormone surged. However, it was imperative to examine the stability of the baseline 

measure of metabolic and inflammatory parameters. Thirteen (n=13) women selected at 

random provided additional blood samples between baseline and FET during their other 

subsequent clinic routine visits for the LH surge sampling. The data obtained are shown in 

Table 3-2. Plasma hCG, insulin, TG, TC, HDL-C, NEFA, glucose, HOMA, CRP, IL-6, 

CXCL8, CCL2, CCL3, CCL4 and CCL11 levels did not show a statistical difference from 

the blood sample collected on the day of the FET procedure, approximate day 3 after the 

LH surge from the baseline. The PAI-1 (P<0.001) and PAI-2 (P=0.039) nevertheless were 

significantly different from the baseline. Caution was taken with PAI-1 and PAI-2 data 

interpretation.  

Table ‎3-2:  Baseline measure stability analysis. 

Parameters P-value for day at baseline 

 

Hormone 
 

hCG  (mmol/L)  
- 

Insulin (mU/L) 0.22 

 

Metabolism 

 

TG  (mmol/L)  0.37 

TC  (mmol/L) 0.87 

HDL-C  (mmol/L) 0.90 

NEFA  (mmol/L) 0.25 

Glucose  (mmol/L) 0.10 

HOMA 0.21 

 

Inflammation 
 

CRP  (mg/L)  0.19 

IL-6  (pg/mL) 0.21 

CXCL8  (pg/mL)   0.45 

CCL2  (pg/mL) 0.88 

CCL3  (pg/mL) 0.51 

CCL4  (pg/mL) 0.37 

CCL11  (pg/mL) 0.45 

PAI-1  (ng/mL) <0.001 

PAI-2  (ng/mL) 0.039 

P-value from a repeated ANOVA measure. 



CC ONYIAODIKE, 2014                                                                                              Chapter 3-110 

3.6.4 Maternal predictors of pregnancy success after IVF 

In order to determine whether metabolic and inflammatory parameters at baseline could 

predict pregnancy success by day 45 of gestation, univariate and multivariate logistic 

regression analysis was carried out. The estimated OR for prediction of pregnancy 

success at 95% CI is shown in Table 3-3. None of the variables predicted pregnancy 

success by day 45 of gestation. Women treated with IVF were less likely to get pregnant 

than those treated with ICSI (OR 0.5 (95% CI 0.2, 1.1) P=0.076). There was a borderline 

difference of high IL-6 (1.6 (1.0, 2.6) P=0.074) by day 45 of gestation, a potential 

independent predictive feature of whether a woman became pregnant. Multivariate logistic 

regression for covariates with at least P=0.15 shows a trend toward lower IVF (0.4 (0.1, 

1.0) P=0.056) predictive of pregnancy success compared with ICSI. However, the waist 

measurements, IL-6 and PAI-1 failed to show a statistical difference. Although not part of 

the data presented in this thesis, the results in the investigation of the plasma and 

erythrocyte fat composition, which used the samples and dataset of this chapter, showed 

the percentage of saturated fatty acid in erythrocyte as independently predictive of 

whether a woman became pregnant (unpublished data). 
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Table ‎3-3:  Models for prediction of pregnancy success by day 45 at baseline.    

Demographic / Parameters Univariate Multivariate 

 OR (95% CI) P-value c-statistic OR (95% CI) P-value c-statistic 
 

Age (years) 1.0 (0.9, 1.1) 0.96 0.52   0.68 

Treatment (IVF vs ICSI) 0.5 (0.2, 1.1) 0.076 0.59 0.4 (0.1, 1.0) 0.056  

SBP (mmHg) 1.0 (1.0, 1.0) 0.57 0.53    

DBP (mmHg) 1.0 (0.9, 1.0) 0.43 0.54    

Height (m) 3.8 (1.0, 1.1) 0.65 0.53    

Weight (kg) 1.0 (1.0, 1.1) 0.28 0.57    

BMI (kg/m
2
) 1.0 (1.0, 1.1) 0.34 0.57    

Waist (cm) 1.0 (1.0, 1.1) 0.15 0.59 1.0 (1.0, 1.1) 0.20  

Menstrual period length (days) 1.1 (0.7, 1.9) 0.61 0.49    

Cycle length (days) 1.0 (0.7, 1.3) 0.79 0.52    

№ of pregnancies < 24 weeks 0.9 (0.6, 1.5) 0.75 0.52    

Current smoker (Yes vs No) 0.5 (0.2, 1.4) 0.18 0.55    

Embryos transferred (1 vs 2 or 3) 1.4 (0.5, 3.9) 0.48 0.53    

SIMD 1-Most  affluent vs 5-deprived 0.5 (0.1, 1.7) 0.25 0.59    

 

Hormone 
      

hCG (IU/L) 0.7 (0.1, 4.1) 0.69 0.51    

Insulin (mU/L)  1.0 (1.0, 1.1) 0.92 0.49    

 

Metabolism 
      

TG (mmol/L)  1.8 (0.80, 4.2) 0.16 0.59    

TC (mmol/L) 1.0 (0.6, 1.5) 0.74 0.54    

HDL-C (mmol/L) 0.6 (0.2, 1.5) 0.25 0.54    

NEFA (mmol/L) 0.6 (0.0, 24.4) 0.78 0.53    

Glucose (mmol/L) 1.1 (0.7, 2.0) 0.68 0.53    

HOMA 1.0 (0.8, 1.2) 0.93 0.49    

 

Inflammation 
      

CRP (mg/L) 1.0 (1.0, 1.1) 0.45 0.58    

IL-6 (pg/mL)  1.6 (1.0, 2.6) 0.074 0.63 1.2 (0.7, 2.3) 0.44  

CXCL8 (pg/mL)  1.0 (1.0, 1.0) 0.43 0.51    

CCL2 (pg/mL) 1.0 (1.0, 1.0) 0.78 0.47    

CCL3 (pg/mL) 1.0 (1.0, 1.0) 0.69 0.54    

CCL4 (pg/mL) 1.0 (1.0. 1.0) 0.86 0.49    

CCL11 (pg/mL) 1.0 (1.0, 1.0) 0.86 0.47    

PAI-1 (ng/mL) 1.0 (1.0, 1.1) 0.12 0.63 1.0 (1.0, 1.1) 0.18  

PAI-2 (ng/mL) 1.1 (0.8, 1.6) 0.61 0.65    

Univariate and multivariate individuals' data assessment. Univariates with at least P=0.15 were entered 
into a multivariate logistic regression model. OR (odds ratio) unit change, 95% CI associated with P-
value and c-statistic shown. 
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3.6.5 Early pregnancy metabolic and inflammatory changes 

The early changes of metabolic and inflammatory parameters in the pregnant women only 

were analysed and are presented as plasma concentrations in Table 3-4. As expected, 

hCG, which is specifically secreted by the implanting embryo and placenta, increased 

significantly over time. Plasma hCG increased from baseline (P=0.012) by day 29 and 

further (P<0.001) by day 45 of gestation (overall change P<0.001). The level of insulin 

increased significantly (654%, P=0.030) by day 45 of gestation, with an overall increment 

of log P=0.029. 

Plasma lipids were affected by day 45 of gestation, with TG level decreasing by 20% 

(P=0.001) by day 18 but recovering by day 45 (overall log P<0.001). The plasma TC level 

declined to 51% (P<0.001) by day 18 but began to recover to 51% (P<0.001) by day 45 of 

gestation (overall P<0.001). Plasma HDL-C also decreased (10%) by day 18 (P=0.002) 

and then started to recover by day 29 to 10% (P=0.05) from the baseline, and rebounded 

by day 45 (overall P=0.001). Thus, by day 45 of gestation, TG and HDL-C, but not TC, 

had recovered. There was no observable difference in NEFA and glucose levels by day 

45. HOMA measure increased up to 179% (P=0.012) at day 45, and significantly (log 

P=0.031) over time. 

For the inflammatory response mediators measured, plasma CRP was significantly higher 

(263%, P=0.019) from baseline by day 45, with log P<0.001 overall. The level of IL-6, 

CCL3 and CCL4 showed no changes by the first 45 days of pregnancy. Plasma CXCL8 

(256%, borderline; overall log P<0.031), CCL2 (6700%, P<0.001; overall P=0.001), 

CCL11 (2900%, P=0.002; overall P<0.001) and PAI-1 (1330%, P<0.001; overall P<0.001) 

were significantly reduced from baseline by day 45 in the pregnant women. PAI-2 

increased significantly (1680%, P<0.001) by day 45 of gestation, with an overall increment 

of P<0.00.1. 
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Table ‎3-4: Plasma concentrations of parameters over time from baseline to day 45 of 
gestation. 

Parameters Baseline 

(n=36) 

Day 10  

(n=21) 

Day 18  

(n=35) 

Day 29  

(n=30) 

Day 45  

(n=35) 

P-value 

 

Hormone 
      

hCG (IU/L) 0.03 (0.03) 8.11 (2.33)ᵟ 679.50 (91.20)ᵟ 21086 (2465)ᵟ 103026 (9846)ᵟ <0.001 

Insulin (mU/L) 8.76 (1.37) 7.55 (0.82) 11.21 (1.66) 10.05 (1.41) 15.30 (2.91)ᵟ 0.029* 

 

Metabolism 
      

TG (mmol/L)  1.10 (0.08) 0.90 (0.06) 0.88 (0.03)ᵟ 0.94 (0.07) 1.21 (0.07)ᵟ <0.001* 

TC (mmol/L) 4.77 (0.13) 4.43 (0.11) 4.26 (0.12)ᵟ 4.30 (0.11)ᵟ 4.26 (0.11)ᵟ <0.001 

HDL-C (mmol/L) 1.50 (0.05) 1.49 (0.06) 1.40 (0.04)ᵟ 1.41 (0.04) 1.45 (0.05) 0.001 

NEFA (mmol/L) 0.26 (0.03) 0.03 (0.04)ᵟ 0.08 (0.03)ᵟ 0.02 (0.03)ᵟ 0.03 (0.03)ᵟ 0.075 

Glucose (mmol/L) 4.84 (0.07) 4.86 (0.09)ᵟ 5.03 (0.11)ᵟ 4.75 (0.10)ᵟ 5.07 (0.11)ᵟ 0.16 

HOMA 1.90 (0.30) 1.64 (0.19) 2.60 (0.42) 2.14 (0.31) 3.69 (0.74)ᵟ 0.031*  

 

Inflammation 
      

CRP (mg/L) 2.48 (0.73) 2.60 (0.62) 3.34 (0.92) 2.68 (0.60) 5.12 (0.82)ᵟ <0.001* 

IL-6 (pg/mL) 1.42 (0.16) 2.03 (0.34)ᵟ 1.56 (0.26)ᵟ 1.28 (0.16)ᵟ 1.57 (0.15)ᵟ 0.09* 

CXCL8 (pg/mL) 40 (9) 36 (7)ᵟ 45 (12)ᵟ 47 (12)ᵟ 38 (7)ᵟ 0.031* 

CCL2 (pg/mL) 263 (18) 202 (14) 248 (22)ᵟ 222 (21) 196 (19)ᵟ 0.001 

CCL3 (pg/mL) 89 (17) 95 (21)ᵟ 97 (19)ᵟ 109 (21)ᵟ 91 (17)ᵟ 0.31 

CCL4 (pg/mL) 271 (65) 293 (101)ᵟ 248 (71)ᵟ 331 (83)ᵟ 285 (73)ᵟ 0.38 

CCL11 (pg/mL) 132 (14) 121 (14)ᵟ 130 (19)ᵟ 128 (21) 103 (14)ᵟ <0.001 

PAI-1 (ng/mL) 27.30 (4.23) 18.93 (1.80) 23.75 (1.78)ᵟ 18.91 (1.47) 14.03 (1.24)ᵟ 0.001 

PAI-2 (ng/mL) 1.30 (0.09) 1.10 (0.10)ᵟ 1.12 (0.07)ᵟ 1.34 (0.08)ᵟ 18.06 (1.67)ᵟ <0.001 

Mean (SE), P-value or (*) P-value of log transformed variable, is from repeated measure ANOVA with 
GLM. Adjusted difference using Post hoc Tukey test at baseline, day 10, 18, 29 and 45 from baseline 
represented as (ᵟ) is P<0.05. 
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A summary of the early changes of metabolic and inflammatory parameters over time in 

the women who became pregnant is provided in Figure 3-2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3-2: Timeline summary of metabolic and inflammatory parameter changes in 
early pregnancy. All the temporal changes were identified using repeated measure ANOVA, 
and those that were significantly different are shown. Significant changes between specific 
time points were investigated using post hoc Tukey test (P<0.05). 
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3.6.6 The impact of maternal obesity 

The role of maternal obesity in early pregnancy changes of metabolic and inflammatory 

parameters was investigated by correlating baseline and changes in BMI and waist 

circumference with the change in parameters over the course of the study. Data are 

shown in Table 3-5. Maternal plasma change in insulin (r=0.37, P=0.040) and HOMA 

(r=0.39, P=0.028) correlated positively with baseline waist measurements of the women 

by day 45 of gestation. Plasma HDL-C over the course of pregnancy strongly correlated 

with maternal baseline BMI (r=0.53, P=0.001) and waist circumference (r=0.51, P=0.003) 

(see Figure 3-3). The assessment of inflammatory mediators revealed a relationship of the 

decreased plasma CXCL8 levels over time to the baseline waist (r=-0.42, P=0.017) and 

change in waist (r=0.42, P=0.021) measurements. Although decreased levels of CCL3 

and CCL4 failed to become statistically significant from baseline up to day 45, the change 

in plasma CCL3 was associated with the baseline waist (r=-0.58, P=0.001) and change in 

waist (r=0.38, P=0.040) measurements. Over time, the change in plasma CCL4 related to 

baseline maternal waist circumference (r=-0.47, P=0.007). There was no observable 

association of maternal obesity measures (BMI or waist) with early changes in plasma TG, 

TC, glucose, CRP, IL-6, CCL2, CCL11, PAI-1 and PAI-2 levels in women that had 

pregnancy success. 
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Table ‎3-5:  Effect of obesity on metabolic and inflammatory parameters. 

Δ in parameters Baseline BMI Baseline Waist Δ  in BMI Δ in Waist 
 

Hormone  
    

Δ hCG  (IU/L) r=-0.07, P=0.70 r=0.06, P=0.75 r=-0.17, P=0.38  r=-0.10, P=0.60 

Δ Insulin  (mU/L)  r=0.14, P=0.42 r=0.37, P=0.040 r=0.35, P=0.062 r=-0.14, P=0.48 

 

Metabolism 
    

Δ TG  (mmol/L)  r=0.07, P=0.68 r=-0.16, P=0.39 r=0.06, P=0.76 r=-0.09, P=0.65 

Δ TC  (mmol/L) r=0.32, P=0.066  r=0.26, P=0.16 r=0.18, P=0.33 r=-0.10, P=0.59 

Δ HDL-C  (mmol/L) r=0.53, P=0.001 r=0.51, P=0.003 r=-0.08, P=0.67 r=0.16, P=0.40 

Δ NEFA  (mmol/L) r=0.38, P=0.078 r=0.30, P=0.18 r=-0.33, P=0.17 r=-0.37, P=0.11 

Δ Glucose  (mmol/L) r=-0.12, P=0.51 r=0.02, P=0.93 r=0.10, P=0.63 r=0.03, P=0.88 

Δ HOMA r=0.15, P=0.40 r=0.39, P=0.028 r=0.32, P=0.90 r=-0.12, P=0.55 

 

Inflammation 
    

Δ CRP  (mg/L)  r=0.27, P=0.12 r=0.18, P=0.32 r=0.05, P=0.79 r=-0.06, P=0.74 

Δ IL-6  (pg/mL) r=-0.17, P=0.35 r=0.08, P=0.68 r=0.27, P=0.15 r=-0.04, P=0.85 

Δ CXCL8  (pg/mL) r=-0.10, P=0.58 r=-0.42, P=0.017 r=0.09, P=0.64 r=0.42, P=0.021 

Δ CCL2  (pg/mL) r=-0.06, P=0.72 r=0.04, P=0.83 r=0.10, P=0.59 r=-0.07, P=0.71 

Δ CCL3  (pg/mL) r=-0.28, P=0.11 r=-0.58, P=0.001 r=0.08, P=0.70 r=0.38, P=0.040 

Δ CCL4  (pg/mL) r=-0.17, P=0.33 r=-0.47, P=0.007 r=0.12, P=0.52 r=0.27, P=0.14 

Δ CCL11  (pg/mL) r=-0.12, P=0.50 r=-0.21, P=0.24 r=0.01, P=0.95 r=0.10, P=0.63 

Δ PAI-1  (ng/mL) r=-0.15, P=0.41 r=-0.03, P=0.85 r=0.02, P=0.94 r=-0.03, P=0.87 

Δ PAI-2  (ng/mL) r=-0.21, P=0.24 r=-0.23, P=0.21 r=-0.10, P=0.64 r=0.04, P=0.84  

 

Δ represents change, r represents coefficient of correlation and P represents P-value. 
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Figure ‎3-3: Correlation of change in HDL-C level and baseline BMI (r=0.53, P=0.001) and 
waist (r=0.51, P=0.003) circumference in women with pregnancy success. 
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3.7 Discussion 

This cohort study is the first detailed report known to date of the very early changes in 

metabolic and inflammatory parameters in pregnant women. Use of the ICSI technique 

was a better predictor of pregnancy success than use of IVF, as shown by the univariate 

(OR 0.5 (CI 0.2, 1.1) P=0.076) and multivariate (0.4 (0.1, 1.0), P=0.056) analyses. 

However, none of the other measured parameters of metabolism, inflammation or obesity 

were associated with pregnancy success. Changes in many of the plasma parameters of 

metabolism and inflammation were observed in women who became pregnant. The 

plasma hCG level increased as expected. Overall, there was 654% higher insulin 

compared to baseline evident by day 45. Plasma lipids, including TG (20%) and HDL-C 

(10%), were significantly decreased by day 18 of gestation but had rebounded back to 

their former levels by day 45 of gestation. TC decreased by 51% by day 18 and remained 

at the lower levels by the end of the study period. HOMA, a measure of insulin resistance, 

showed increased by 179% by day 45. Plasma CRP (263%) and PAI-2 (1680%) levels 

were significantly higher, whereas CXCL8 (256%), CCL2 (6700%), CCL11 (2900%) and 

PAI-1 (1330%) levels were significantly lower by day 45. Baseline maternal obesity 

positively influenced the changes in plasma insulin, plasma HDL-C and HOMA while 

CXCL8, CCL3 and CCL4 levels were influenced negatively.  

A variety of the participants' demographics and metabolic and inflammatory parameters 

were tested for their ability to predict pregnancy success. The only treatment technique 

employed which predicted success was ICSI, which is commonly associated with male 

factor infertility. Previous comparisons of implantation rate, according to a fertilisation 

protocol, found no difference in implantation rate of IVF compared to ICSI (Walls et al. 

2012). The study detailed in this chapter showed that ICSI is predictive of pregnancy 

success at day 45 of gestation. ICSI has previously been shown to have higher 

fertilisation rates than IVF (Rosen et al. 2010; Fang et al. 2012). Lintsen et al. find that the 

most important predictors of pregnancy success rate in assisted conception are age and 

ICSI (Lintsen et al. 2007), supporting the findings of this current study. The ICSI treatment 

may increase the pregnancy rate by overcoming the difficulty of sperm penetrating the 

zona pellucida. In contrast, IVF women are more likely to have female factor infertility 

such as PCOS, inflammation, tubal blockage and endometriosis which will result in 

difficulties at additional stages of reproduction rather than just at fertilisation. However, 

caution is needed when interpreting these results, as ICSI may increase the risk (to an 

unknown extent) of genetic anomalies that otherwise would not have been transmitted. 

Thus in the current study, it seems feasible that male factor strongly predetermined 

pregnancy success.  
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Obesity is thought to be associated with decreased early pregnancy success. This is 

because women with a BMI higher than 36 kg/m2 (Thum et al. 2007) have an increased 

risk of recurrent miscarriage (Metwally et al. 2010). Vilarino et al. found that BMI was not a 

good parameter for predicting a successful IVF (Vilarino et al. 2011). In the current study, 

maternal obesity at baseline, measured either by BMI or waist circumference, failed to 

predict pregnancy success. The obesity measured by BMI and waist circumference in the 

pregnant group (26.5 (4.1) vs 25.6 (4.6) kg/m2, P=0.31) and (88.9 (10.5) vs 85.6 (11.7) 

cm, P=0.13) was not significant compared to that of the non-pregnant group. This is not 

surprising, as in the IVF clinic in Glasgow, the BMI range for women being treated is 

between greater than 18kg/m2 and lower than 30kg/m2. The lack of significance in the 

current study may perhaps indicate that the higher number of obese women may have 

been a better predictor. Thus, the issue that the sample size being under-powered may 

have affected the impact of the obesity measure on the results. There is also suggestion 

that the effect of obesity on pregnancy occurs after the first 45 days of gestation. 

Therefore, obesity failed to predict pregnancy success in early in gestation, despite 

influencing the early changes by increasing insulin, HDL-C and HOMA (insulin resistance) 

as well as significantly decreasing CXCL8, CCL3 and CCL4 levels. Overall, in this study, 

obesity does not influence pregnancy success. Nonetheless, it is important to highlight 

that this could be due to the study being under-powered and to the narrow BMI range of 

participants.  

In those women who became pregnant, the plasma hCG (which is specifically secreted by 

the placenta) increased over the course of the study, as would be expected, with levels 

significantly higher than baseline by day 45. Urinary hCG, detected by 2 weeks’ post 

implantation, reached a peak at around 8 weeks’ gestation (Picciano 2003). This early 

hCG detection is classically used as a pregnancy test. An increase in hCG is necessary in 

order to rescue the corpus luteum and continue maintenance of progesterone secretion 

(Baird et al. 2003) before that function is taken over by the placenta. hCG is also 

synthesised as early as day 7 of gestation by the blastocyst (Lopata and Hay 1989; 

Bansal et al. 2012).  

The increases in insulin, a hormone implicated in the metabolic milieu, and in HOMA (a 

measure of insulin resistance) that were evident by day 45 were of interest. Catalano et al. 

report insulin secretion increased from prepregnancy up to 12-14 weeks' gestation 

(Catalano et al. 1993). While increasing insulin was evident with advancing gestation, 

there was a subsequent decrease in insulin sensitivity (Catalano et al. 1991; Catalano et 

al. 1993). Results of the current study may indicate that the increase in insulin already 

evident by day 45 of gestation as part of the adaptive response early in gestation. The 

rising HOMA supports the view of increasing insulin resistance noticeable as early as day 
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45 of gestation. This occurrence at this very early (anabolic) stage of pregnancy is an 

indication that the maternal fat accumulation is supported by the action of insulin (Huda et 

al. 2009). The insulin resistance early in gestation may be due to changes in energy 

expenditure (Catalano et al. 1998). Therefore, considering the population of women 

studied here, it is clear that insulin resistance did not influence pregnancy success as 

anticipated, despite insulin resistance increasing with gestation.  

That the early changes in plasma TG concentrations decreased by day 18 and that TG 

concentration rebounded by day 45 of gestation is revealing. In previous observations, 

there is a gestational rise in TG as early as week 8 of gestation (Ordovas et al. 1984; Lippi 

et al. 2007). A novelty of the current data is the first decrease in TG as early as day 18 of 

gestation, before beginning to increase as pregnancy advances. This decline in TG 

plasma concentration may result from either increased utilisation and/or reduced rates of 

synthesis in the liver and small intestine (Grummer and Carroll 1988). Early mobilisation of 

TG by day 7 was found to be a requirement for supplying energy to the implanting embryo 

in animal models (Ferguson and Leese 2006). It is possible that, likewise in humans, 

energy requirements lead to increased utilisation of TG, leading to reduced plasma levels. 

Perhaps pregnancy adaptation in this study (at this early gestation) may involve increased 

oxidation of stored TG in the adipose tissue. Indirect calorimetry would perhaps be 

beneficial to determining early variations in energy expenditure in the population studied. 

Another possible explanation for reduced TG may be temporary changes of homeostatic 

balance from the non-pregnant to the pregnant state in the mother, as the systemic 

balance tries to be restored. Perhaps these temporary changes are due to the presence of 

the conceptus and the maternal nutrient needs. The metabolic status, in addition to 

pregnancy-related endocrine changes (including progesterone, oestrogen and cortisol), 

favours lipogenesis and TG deposition (Ryan and Enns 1988; Huda et al. 2009). Thus, to 

maintain the homeostatic balance, increased utilisation of TG is necessary in pregnant 

women, with the result of reduced plasma TG levels in the circulation. Stable isotope 

tracer studies, examining the earliest changes in TG levels, may help validate the anabolic 

and catabolic processes. Most women, however, may decline to take part in such 

procedures in view of the associated risk to the developing fetus.  

TC and HDL-C concentrations decreased by day 18, and HDL-C (but not TC levels) 

recovered by day 45 of gestation. There are reports of a gestational rise in TC and HDL-C 

as early as week 8 of gestation (Ordovas et al. 1984; Lippi et al. 2007). This rise also 

implies, as currently shown, that TC and HDL-C levels at first decreased as early as day 

18 of gestation, before beginning to increase as pregnancy advanced. That TC 

concentrations were observed to fail to completely recover highlights a role for lipoproteins 

in early pregnancy adaptation. The early decrease in TC and HDL-C concentrations in 
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early pregnancy may be due to increased utilisation for steroidogenesis and cell 

membrane formation (Guibourdenche et al. 2009; Hu et al. 2010). As stated above, the 

majority of blood cholesterol (e.g. LDL-C and HDL-C) is transported by LDL and HDL, 

depending on the animal species (Grummer and Carroll 1988). In the steroidogenic 

tissues (such as corpus luteum), cholesterol is moved from cholesterol-poor OMM into 

IMM, where it is converted to pregnenolone, the precursor of all steroid hormones. The 

progesterone secreted by the corpus luteum acts to maintain pregnancy, until the 

placenta, which takes over the hormone synthesis, develops and becomes functional as 

pregnancy advances. The role of progesterone is to downregulate excess immune 

responses during trophoblast invasion (Paria et al. 2002). Also, the cholesterol not needed 

for steroid hormone synthesis is transported and utilised for cellular membrane biogenesis 

(Lange et al. 2004). Cholesterol is extensively involved in neurone formation (Chen et al. 

2013; Yu and Lieberman 2013) and SHH signal activation and propagation, which is 

paramount for developing the central nervous system (Woollett 2005). Usually, the 

cholesterol used for cell membrane biosynthesis, play a role in the maintenance of fluidity 

in the circulatory system. Thus, the requirements of cholesterol for steroidogenesis and 

other functions (in the conceptus and mother) may explain the early decline of the TC and 

HDL-C parameters that begin to recover after day 18 gestation. 

The data on systemic inflammation early in gestation presented in this chapter 

complement other studies' results. The earlier data has not really been changed, but the 

current study certainly makes the whole picture more detailed. An increase in CRP, which 

was noticeable from day 10 and significant by day 45 of gestation, was observed. These 

data support the concept of the development of a low grade inflammatory response as 

part of healthy adaptation to pregnancy. Other research has observed raised plasma CRP 

levels of similar magnitude by day 5-7 of gestation (Almagor et al. 2004) or by 4 weeks’ 

gestation (Sacks et al. 2004) in successful pregnancies in women with assisted 

conception. This is a low grade inflammatory response, different from the acute phase 

response, as the CRP level remains below 5mg/L in the circulation (Pepys and Hirschfield 

2003). This response is likely to occur because of the presence of the foreign conceptus, 

and tissue remodelling of the endometrial epithelium and decidua during implantation, with 

subsequent trophoblast invasion. This presence elicits the active immune response, 

required in order to carry out uterine remodelling with removal of cellular debris. CRP has 

been shown to upregulate MMP-1 secretion and mRNA expression, but not to upregulate 

TIMP-1 in U937 cells and human monocyte-derived macrophages (Williams et al. 2004). 

This upregulation may suggest an active role for CRP in promoting matrix degradation of 

the uterine wall, as the embryo implants and throughout placentation. 
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The low phase of the antiinflammatory state is driven by the actions of peripheral blood 

lymphocytes that secrete Th2 cytokines (and, to a lesser extent, Th1 cytokines) in 

pregnancy and prevent pathologic pregnancies (Marzi et al. 1996). In the study of Marzi et 

al., IL-2 and INF-ץ decreased, accompanied by increased production of IL-4 and IL-10 in 

normal pregnancy compared to women with spontaneous abortion. This is an indication 

that the balance between pro- and antiinflammatory response is paramount and may have 

begun early in gestation. The trophoblast, the decidua, and the endometrium act as 

sources of Th2 cytokines, which are associated with suppression of cell-mediated 

immunity (Wegmann et al. 1993; Krasnow et al. 1996). It was observed that 

concentrations of CXCL8, CCL2 and CCL11 were significantly reduced by day 45 of 

gestation in the women that became pregnant. It is possible that these chemokines play 

an important part in chemotaxis of leukocytes to the uterine wall for tissue degeneration 

and remodelling. Consequently, chemotaxis of leukocytes (chemokine) contributes to the 

Th1/Th2 pathway switch, causing dampening of cell-mediated immune response. This is 

due to the higher expression of chemokines in the endometrium (Zhang et al. 2000; 

Ulukus et al. 2005). An additional factor leading to reduced levels of these chemokines is 

the need for dampening of the maternal inflammatory response, which possibly assists in 

preventing excessive embryo degradation. The reduced levels of these chemokines in 

turn reduce trophoblast invasion, which avoids compromised placenta and adverse 

outcomes. As widely reported, shallow and restricted trophoblast invasion may lead to PE 

and IUGR. In contrast, excessive trophoblast invasion may result in the placenta attaching 

on the myometrium (accreta) or into the myometrium (increta) or penetrating completely 

through the myometrium (percreta) (Brahma et al. 2007). Higher expression of CCL2 at 8-

10 weeks’ gestation in EVT (compared to that of the villous cytotrophoblast cells 

(Katsuhiko et al. 2010) in decidual endothelial cell culture of women that underwent 

elective pregnancy termination at 8-12 weeks of gestation), supports uterine NK cell 

recruitment in early gestation (Carlino et al. 2008). Madigan et al. find a strong expression 

of D6 in trophoblast-derived cells in human placenta, decidua and gestational membranes 

throughout pregnancy (Madigan et al. 2010). D6 binding to chemokines disrupts and 

prevents signalling transmission. In this report, Madigan et al. suggest that chemokine 

change probably happens to ensure fetal survival, by preventing fetal allograft rejection 

through suppressing excess immune response in maternal circulation. All these reports 

suggest that it is possible that the plasma CXCL8, CCL2 and CCL11 levels decreased 

due to their role for implantation success. Perhaps increased synthesis of these 

chemokines in uterine tissue is needed for the recruitment of uterine leukocytes, including 

neutrophils, monocytes (for tissue macrophages) and eosinophils possibly from the 

maternal circulation (Katsuhiko et al. 2010; Hannan et al. 2011; Chau et al. 2013). There 

is also a possibility that the action of D6 in uterine tissue results in its decreased level in 

the circulation. In spite of no observable change in plasma CCL3 and CCL4 by day 45, the 
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baseline change of obesity is associated with a decline in CXCL8, CCL3 and CCL4 levels. 

This suggests that downregulated activity of inflammation (systemic immune response) 

had begun to take effect by day 45, switching to the Th2 (type 2) cytokine productions at 

the maternal-fetal interface, in order to inhibit Th1 (type 1) and improve the chance of fetal 

survival (Wegmann et al. 1993; Madigan et al. 2010). This switch of the immune response 

from a Th1 type to a Th2 type allows the semi-allographic tissue of the placenta and fetus 

to be tolerated.  

There is evidence that plasminogen activation inhibitors are pivotal for optimal 

implantation. PAI-1 and -2 proteins also play a role in dampening excessive degradative 

activity of the trophectoderm as the embryo embeds into the uterine endometrium (Harvey 

et al. 1995; Ulisse et al. 2009). This action protects the embryo against the maternal 

immune response. In the current study, a progressive decline of PAI-1 up to day 45 of 

gestation was found. It is most likely that during early pregnancy PAI-1 is involved 

extensively in dampening of immune response control. This is supported by the 

observation that PAI-1 is a more efficient inhibitor of plasminogen activator than PAI-2 

(Jorgensen et al. 1987). Reith et al. highlight that by week 14 of gestation, PAI-1 levels 

are above the zero threshold (Reith et al. 1993). This implies that plasma PAI-1 

concentration has to decline very early in gestation before recovering as gestation 

advances. Although PAI-2 possibly plays a role in immune control, it seems that the 

elevated PAI-2 observed by day 28 of gestation is an indication of placental formation, 

and may be involved in the protection of the developing embryo. 

A summary of proposed very early changes of metabolic and inflammatory parameters by 

day 45 of gestation is shown in Figure 3-4. 
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The results presented in the current report have highlighted the need to have a fresh look 

at ways of improving pregnancy success with natural or assisted conception. Whether the 

changes are caused by simply being pregnant, diet or maternal obesity through fat deposit 

is difficult to deduce completely. It is most likely that a low-powered population could be 

blamed for the absence of prediction of pregnancy success by parameters or even by 

obesity. That ICSI was a predictor of pregnancy has been shown, and has been well 

established (Rosen et al. 2010; Komsky-Elbaz et al. 2013). However, the current data 

confirmed ICSI as a predictor of pregnancy success in assisted conception. Inevitably, not 

measuring the specific metabolic and inflammatory parameters which change early in 

gestation, and may perhaps predict pregnancy success, also adds to the weakness of the 

current data. Although not part of the data presented in this thesis, investigation results of 

Figure ‎3-4: Schematic representation of metabolic and inflammatory pathways involved 
in the very early changes of metabolic and inflammatory parameters in successful 
pregnancies 
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the plasma and erythrocyte fat composition using the same samples and dataset showed 

percentage of saturated fatty acid in erythrocyte as independently predictive of whether a 

woman became pregnant (unpublished data). 

Among the strengths of the study in this chapter is the use of a population which had a 

natural menstrual cycle close to the normal physiology of pregnancy. Data obtained may 

therefore represent that which may be found in a natural conception population. 

Nonetheless, results are not necessarily transferable to other races and ethnicities, as 

recruited participants were mainly of Caucasian origin. Missing data, unavoidable for 

retrospective and prospective studies, also adds to the study's weakness. Longitudinal 

studies that collect data on a set of subjects repeatedly over time are subject to attrition. 

Also, some subjects provided only clinic sample visits, and vital data were not recorded in 

the patient's hospital notes. It would have been useful to carry out measurement of 

pregnancy hormones such as oestrogen, progesterone and hPL to assess whether any of 

these hormones had a temporal relationship with the very early metabolite status and 

inflammatory mediator changes. It is recommended that future studies utilise the cryo 

samples under study (stored at -80°C) so that other important parameters can be assayed 

later, such as measurement of TNF-α, leptin and adiponectin, which are adipose-derived 

adipocytokines (Ouchi et al. 2011). The role of the endocrine hormone in the change in 

some metabolic and inflammatory parameters may also be ascertained in future. Indirect 

calorimetry may have helped quantitate maternal energy in the studied population. With 

respect to lipids, temporal loss of homeostatic balance in the mother (as systemic balance 

tries to be restored as pregnancy advances) can also be validated, using stable isotope 

tracer studies.  

In summary, the data show that ICSI was a better predictor of pregnancy success than 

other type of fertility treatment. This is usually because no other problems are associated 

with maternal environment when the cause is male factor. None of the measured 

parameters of metabolism, inflammation or obesity were associated with pregnancy 

success. However, very early changes were observed. These included higher hCG, 

insulin (654%) and HOMA (179%) by day 45; and decreased TG (20%), HDL-C (10%) 

and TC (51%) by day 18 of gestation. TG and HDL-C rebounded back to their former 

levels by day 45 but TC did not. Higher CRP (263%) and PAI-2 (1680%) levels were 

observed, whereas CXCL8 (256%), CCL2 (6700%), CCL11 (2900%) and PAI-1 (1330%) 

levels were lower by day 45. The baseline maternal obesity influenced the changes in 

plasma insulin, HDL-C and HOMA, as all of these increased, while CXCL8, CCL3 and 

CCL4 all decreased. Obesity and insulin resistance had no role in pregnancy success in 

this study. These data provide a new platform for future studies in understanding the 

importance of very early metabolic and inflammatory parameters in pregnancy. 
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4 Fetal cord metabolic and inflammatory 
parameters as a reflection of maternal parameters: 
a potential role of upregulated placental 
cholesterol transporters 

4.1 Introduction 

Fetal nutrient demand for growth and development contributes to the transfer of maternal 

metabolic and inflammatory parameters (Chandler-Laney et al. 2011). Assessing the 

metabolic and inflammatory pathways in utero remains problematic. This has contributed 

to the poor availability of data on the fetus; most data are obtained at term, where the 

offspring and adult differ profoundly. Data from normal pregnancy has shown umbilical 

cord blood lipid levels (including TG, cholesterol, LDL-C and HDL-C) and insulin levels to 

be lower than adult levels (Averna et al. 1991; Kaser et al. 2001; Tea et al. 2012). Tea et 

al. report that level of cord blood glucose exceeds that of the maternal plasma. Data about 

cord inflammatory mediators in gestation remain debatable. A study that used a sample of 

261 umbilical cords blood found no difference in the levels of CRP, TNF-α and IL-1β 

between those babies that developed early neonatal sepsis with positive blood culture and 

those with non-infectious perinatal diseases and randomly selected controls (Santana et 

al. 2001). In other reports, newborns born earlier (preterm) than term counterparts had 

comparatively elevated IL-4, IL-6, IL-10, CRP, TNF-α, CCL2, CCL3, CCL4 and CXCL8 

levels (Matoba et al. 2009; Mestan et al. 2009).  

The biochemical mechanisms involved in the transfer of maternal nutrients to the fetus 

include passive, facilitated and active diffusion (Economides et al. 1989), as well as 

endocytosis and exocytosis (Sibley et al. 1997). These mechanisms have been proposed 

to be involved in the transfer of maternal-fetal metabolites. Data highlight the relationship 

between maternal and fetal lipids, particularly cholesterol in pregnancy. In the fetus, HDL 

is the major cholesterol carrier (Nagasaka et al. 2002). In their studies, Rodie et al. 

showed that maternal TC (r=0.35, P=0.03) was associated with fetal HDL-C level in 

healthy pregnant groups (Rodie et al. 2004). A report by Napoli et al. shows enhanced 

fetal atherosclerotic plaque lesion formation, containing cholesterol, in the fetuses of 

mothers with hypercholesterolaemia during pregnancy (Napoli et al. 1997). In SLOS 

although fetuses have very low plasma cholesterol levels (Jenkins et al. 2008) due to 

defective 7-dehydrocholesterol reductase that reduced ability to convert 7-

dehydrocholesterol to cholesterol (Tint et al. 1994) they survive and thrive. This is 

because there is adequate cholesterol transport from the mother across the placenta. 

Jenkins et al. report increased placental cholesterol effluxed by HDL from SLOS patients 

in comparison to the unaffected controls (Jenkins et al. 2008). These data suggest a 
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significant route of cholesterol transport across the placenta to the fetal compartment, 

requiring the upregulation of important cholesterol transporters. 

Insulin sensitivity involves unique and complex biological phenomena that provide support 

for fetal growth and development. It is affected not only by change in the maternal 

physiology and metabolism in gestation but also by placental metabolism. An end product 

of altered metabolic and inflammatory parameters is insulin resistance, a pathological 

state where insulin action is impaired in the target tissue (Courten et al. 1997; Yadav et al. 

2013). Insulin resistance increases as pregnancy advances to term. Maternal-fetal 

medical research has catalogued the changes in metabolic and inflammatory parameters 

throughout gestation. In spite of this, much remains unknown about the implications for 

both maternal and, in particular, fetal health during pregnancy.  

It is well documented that normal pregnancy is associated with a maternal gestational rise 

in cholesterol (Ordovas et al. 1984; Lippi et al. 2007) and CRP (Sacks et al. 2004), and a 

late increase in TG and IL-6 (Ramsay et al. 2004). Synthesis of Th2 cytokines, such as IL-

4 and IL-10, is predominant in normal pregnancy via a shift in Th2/Th1 balance, and 

regulates homeostasis of the maternal immune response during pregnancy (Raghupathy 

1997). These changes are part of the adaptive response associated with pregnancy 

physiology. In pre-eclamptic pregnancy, a well-studied extreme pregnancy outcome, there 

are further alterations in these plasma parameters. Available data from these babies born 

of pre-eclamptic pregnancies shows that fetal lipids, including TC and TG (Rodie et al. 

2004; Catarino et al. 2008), are altered compared with controls. Bujold et al. report 

evidence of high numbers of umbilical cord blood NK cells in PE versus the control group 

(Bujold et al. 2003), whereas no difference in cord CRP level was observed in babies born 

of women suffering from PE compared to controls (Braekke et al. 2005). In pre-eclamptic 

mothers, there is markedly raised maternal cholesterolaemia, leptinaemia and systemic 

inflammatory mediators, and lower adiponectin (Sacks et al. 1998; Ramsay et al. 2004; 

Naruse et al. 2005). There is also evidence of activation of maternal plasma monocytes 

(Luppi and DeLoia 2006) and neutrophils (Sabatier et al. 2000), as well as elevated CRP 

(Tjoa et al. 2003; Deveci et al. 2009) and TNF-α (Johnson et al. 2002; Laskowska et al. 

2006) in PE. Lipoproteins (Sattar et al. 1997), lipid peroxides (Hubel et al. 1996; Poranen 

et al. 1996) and fatty acids (Endresen et al. 1994) have been proposed as contributing to 

the inflammatory response in PE and subsequent maternal endothelial cell damage 

(Davidge et al. 1996).   

With regards to cholesterol, it plays an important physiological role, especially as it is the 

starting substrate for steroidogenesis, membrane biosynthesis, cellular signalling and the 

maintenance of membrane fluidity (Hu et al. 2010). These roles highlight the importance 
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of cholesterol during gestation. Thus, for healthy pregnancy optimal transport mechanisms 

for cholesterol across the maternal-fetal interface, as illustrated in Figure 4-1, are 

required. 

 

Maternal cholesterol destined for the fetus must cross the placental villous trophoblast, 

stroma and fetal endothelial cells. LDL, the most abundant cholesterol-carrying lipoprotein 

in human plasma, interacts with LDLR on the cell membrane via the apo B-100 

component on LDL (Williams et al. 1992) and is internalised by receptor-mediated 

endocytosis (Brown and Goldstein 1986; Malassine et al. 1987). Often, but not always, the 

internalised LDL-LDLR complex is dissociated in endosomes where there is a low pH 

(Zhao and Michaely 2009), liberating LDL. This dissociation allows recycling of LDLR to 

the cell surface to bind more extracellular/maternal LDL to pass on to the fetus. The 

released LDL fuses with lysosomes, where the lipoprotein particle is degraded and 

cholesterol is salvaged for cellular use. Hydrolysis of free cholesterol is undertaken by 

lysosomal acid lipase (also called cholesteryl ester hydrolase and/or HSL) (Goldstein et al. 

1975). At this point, cytoplasmic cholesterol becomes incorporated into vesicles, forming a 

cellular pool vital for plasma membrane homeostasis. HSL catalyses the hydrolysis of 

cholesteryl esters in steroidogenic tissue (Holm 2003; Manna et al. 2013), supplying 

cholesterol for lipoprotein transport which can be delivered to the fetus. 

Figure ‎4-1: Schematic pathway of cholesterol transport at the maternal-fetal interface of 
the chorionic core of human placental tissue. LDL particle carrying LDL-C interacts initially 
with LDLR via receptor-mediated endocytosis on the syncytiotrophoblast. On entering 
LDL/LDLR complex dissociates in the endosome (a low pH) and free cholesterol is readily 
converted to cholesteryl ester by LCAT. Free cholesterol, by action of STAR-related lipid 
transfer domains mediators of intracellular lipid metabolism; is transferred cross the maternal-
fetal interface and passed on to the placental/fetal endothelial cells, where it is effluxed via 
ATP-binding cassette transporter A1 (ABCA1) and ABCG1 to lipid-poor apo A-I, apo E or HDL 
(Stefulj et al. 2009) in the fetal compartment. 
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An intracellular protein carrier identified by Epstein et al. (Epstein and Orme-Johnson 

1991) and purified by Clark et al. (Clark et al. 1994) was proposed to regulate intracellular 

cytosolic cholesterol homeostasis (Hao et al. 2002). STAR (Kallen et al. 1998), also called 

STARD1, is a hormone-sensitive 37kDa protein that contains an N-terminal mitochondrial 

signal sequence (Jefcoate 2002) which has a cholesterol transfer function (Artemenko et 

al. 2001). It has been demonstrated that STAR mediates cholesterol delivery to the inner 

mitochondrial membrane (Ferguson 1963; Garren et al. 1965; Strauss et al. 2003), the 

site of steroidogenesis within the cytochrome P450scc enzyme (Lin et al. 1995). This 

transfer of cholesterol, regardless of the source, from outer to inner mitochondria is the 

rate-limiting step in steroidogenesis (Jefcoate 2002). STARD1 protein is a member of a 

homologous protein family of 200 to 210 amino acid length proteins known as STAR-

related lipid transfer (START) domains (Ponting and Aravind 1999). Fifteen distinct 

START domain proteins (STARD1-STARD15) have been reported in the human genome 

(Soccio et al. 2002; Soccio and Breslow 2003; Alpy and Tomasetto 2005) and are 

implicated in non-vesicular lipid transport, cell signalling and lipid metabolism (Alpy and 

Tomasetto 2005). STARD1 (Kallen et al. 1998), STARD3 (metastatic lymph node 64-

MLN64) (Tomasetto et al. 1995), STARD4, STARD5 and STARD6 (Soccio et al. 2002) 

are specifically for intracellular cholesterol transfer. 

HDL, in addition to mobilising cholesterol across LDLR, is also extensively involved in the 

removal of free cholesterol from peripheral tissue. The cholesterol becomes esterified by 

lecithin:cholesterol acyltransferase (LCAT) as well as ACAT into cholesteryl ester (Spector 

and Haynes 2007). Spector and Haynes note that LCAT functions in the plasma and 

forms cholesteryl ester in HDL by transferring polyunsaturated fatty acid from 

phosphatidylcholine to cholesterol. The ACAT function intracellularly, using fatty acid from 

acyl-CoA and forming cholesteryl ester enriched in monounsaturated fatty acid (Spector 

and Haynes 2007). Cholesterol efflux from cells to HDL can occur through the interaction 

of HDL with SR-B1 (Acton et al. 1996), a membrane-bound receptor detected in the 

placenta (Woollett 2005). SR-B1 has high selective affinity of HDL, leading to mobilisation 

of cholesteryl ester to the liver. However, a candidate protein ABCA1, reported as 

malfunctioning in Tangier disease patients (Bodzioch et al. 1999), has been shown to play 

a role in cellular cholesterol efflux from the cytoplasm. ABCA1 binds HDL-C via apo A-1 

(Cavelier et al. 2006), a major protein constituent of HDL. In Tangier disease patients, 

nascent apo A-1 on HDL is unable to bind to the cell membrane and cholesterol efflux is 

inhibited (Young and Fielding 1999). This is due to a mutation in ABCA1 (Luciani et al. 

1994; Rust et al. 1998). Consequently, Tangier disease homozygotes have a low HDL 

(Asztalos et al. 2001). Heterozygotes, on the other hand, exhibit reduced large α-1 and α-

2 HDL particles (Brousseau et al. 2000; Asztalos et al. 2001) that result in only 50% 

normal cellular cholesterol efflux. Thus, mutation of ABCA1 results in accumulation of free 
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cholesterol and cholesteryl ester in various tissues, such as the reticuloendothelial system 

that clinically manifests as hepatosplenomegaly, hyperplastic orange tonsil, 

lymphadenopathy thymus and peripheral neuropathy.  

Fatty acid translocase (also known as CD36) and apo E are other lipid transporters 

thought to be implicated at the maternal-fetal interface. CD36 is a multigand membrane-

associated glycoprotein of 78 to 88kDa (Ge and Elghetany 2005; McDermott-Roe et al. 

2008). Ge and Elghetany detected CD36 expression in monocyte, skeletal muscle, 

adipose tissue, the small intestine, the endothelial capillary and platelets. A defective 

CD36 gene impairs fatty acid metabolism (Rac et al. 2007) and this impairment is 

associated with a developing dyslipidaemic state. The CD36 ligands include oxLDLs 

(McDermott-Roe et al. 2008), collagens, thrombospondin, long-chain fatty acids, 

plasmodium falciparum parasite infected erythrocytes (Fonager et al. 2012) and β-

amyloids. CD36 deficiency is linked to abnormal long-chain fatty acid uptake and 

metabolism (Yoshizumi et al. 2000). In CD36 -/- mice, there was reduced fatty acid and 

cholesterol uptake in the proximal but not the distal small intestine compared to wild-type 

(Nassir et al. 2007). Apo E plays a role in transport of lipoproteins via apo E receptor 

uptake (Kim et al. 1996). There is a suggestion that apo E plays a role in the maintenance 

of plasma cholesterol balance between mother and the developing fetus. A higher plasma 

apo E level was observed in the cord blood than that of normal adults (58.1 vs 

35.8mg/mL) (Blum et al. 1985); another study showed almost similar levels in cord and 

adult sera (Nagasaka et al. 2002) but the character and metabolism of HDL in the fetus, 

notably of apo E-rich HDL, was to a great extent different from those in adults.   

The transport of molecules, e.g. lipids such as cholesterol, across the maternal-fetal 

interface is driven by the transporting function of the placenta in addition to the fetal 

demand for optimal growth and development; the rate of this transport is driven by the 

activity of the regulatory proteins. ABCA1 is a recognised downstream target of the 

transcriptional regulation of liver x receptor-alpha (LXR-α). LXRs plays a major role in 

regulating the metabolism of cholesterol, as in the level of uptake and secretion with two 

LXR isoforms called LXR-α and LXR-β (Peet et al. 1998; Edwards et al. 2002). A 

physiological ligand of LXR is an oxysterol derivative of oxidised cholesterol from de novo 

synthesis and diet. On accumulation of cholesterol, LXR induces transcription of proteins 

involved in disposal of cholesterol from cells such as ABCA1 (Plosch et al. 2007). Studies 

in START domain proteins indicate that they are regulated by LXR targets. The 

expression of these proteins is stimulated by LXR reporter activity (Soccio et al. 2005), an 

indicator of the role of LXR in cholesterol transports. STAR genes are also found to be 

activated by LXR-α (Jefcoate 2006), and the stimulation of STAR expression by LXR-α 
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activation is explained by the identification of a new LXR-α response element in the STAR 

promoter (Cummins et al. 2006).  

Therefore, to gain insight into events of metabolic and inflammatory pathways in late 

gestation, it was imperative to at least explore offsprings' at birth, and mothers by the end 

of gestation; and the processes involved in cholesterol transport across the maternal-fetal 

interface.  
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4.2 Hypotheses 

In this chapter it is hypothesised that fetal cord metabolic and inflammatory parameters at 

birth reflect maternal parameters in the third trimester. It is also hypothesised that the 

reflected offspring hyperlipidaemia, in particular cholesterol, is due to upregulated 

placental cholesterol transporter gene expression involved in cholesterol transfer across 

the maternal-fetal interface. 

4.3 Aims 

This chapter aims to explore the relationship between offspring and maternal metabolic 

and inflammatory parameters at birth and at the end of the third trimester in mothers with 

healthy pregnancies and in extreme cases of PE. IUGR groups were used in order to 

determine the impact of poor placentation in the absence of hypertension and endothelial 

dysfunction, as seen in PE pregnancies. It also aims to gain insight into the effect of 

confounding factors of metabolic and inflammatory parameters, and to establish whether 

the reflected fetal lipidaemic state from the mother is due to lipid transfer molecules (in 

particular those involved in cholesterol transfer at the maternal-fetal interface). 

4.4 Objectives 

1. To examine the relationship between offspring and maternal metabolic and 

inflammatory parameters at birth and the end of the third trimester in healthy 

pregnancies and pregnancies complicated by PE, as an example of extreme 

metabolic and inflammatory perturbation. To do this we use an archival database of 

maternal third trimester and cord blood metabolic and inflammatory parameters in 

cases of PE (n=29) and IUGR (n=14), alongside BMI-matched controls (n=87 and 

n=42) respectively. 

2. To explore the effect of confounding factors, including maternal smoking status, 

labour, gestation and/or mode of delivery and gestation at sampling. 

3. To investigate protein and RNA detection and subsequent mRNA expression levels of 

molecules involved in the transport of maternal lipids across the maternal-fetal 

interface (placentae) of women with PE (n=20) and IUGR (n=9), alongside BMI-

matched controls (n=20 and n=9) respectively.  

4. To relate the metabolic and inflammatory parameters to placental gene expression of 

molecules involved in lipid transport in healthy pregnancy and PE.  
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4.5 Materials and Methods 

4.5.1 Subjects 

Subjects were recruited from a population of women receiving antenatal clinic care at the 

Princess Royal Maternity Unit, GRI, after receiving written informed consent. Ethical 

approval was granted in accordance with the guidelines of the Helsinki Declaration from 

the North Glasgow University Hospital Trust, National Health Service Glasgow and Clyde 

Research Ethic Committee, GRI, Scotland. Patients with suspected fetal anomalies likely 

to be contributory to reduced fetal growth were excluded from the study. None of the 

women were being treated with medication that interferes with parameters of lipid and 

carbohydrate metabolism, inflammation or endothelial function.   

In this cross-sectional study, healthy pregnancy, pregnancy complicated by PE and 

pregnancy complicated by IUGR were used to investigate the relationship between 

offspring metabolic and inflammatory parameters at birth and maternal third trimester. An 

archival dataset of metabolites of lipid and carbohydrate metabolism and inflammatory 

response mediators in third trimester mother-baby paired plasma was analysed. The 

dataset was collected for previous studies investigating lipoprotein metabolism and 

adipocyte function in healthy and complicated pregnancies using ethical approvals 

01OB007 and 06/S0704/14. PE was defined according to the criteria of the International 

Society for the Study of Hypertension in Pregnancy, as diastolic blood pressure greater 

than 110mmHg on one occasion, or exceeding 90mmHg on repeated readings, with 

proteinuria of ≥0.3g/24 hour, or 2+ proteinuria on dipstick testing, in the absence of renal 

disease or infection (Rodie et al. 2004). IUGR was identified as having an estimated fetal 

birthweight less than the fifth (<5th) percentile for gestation with associated 

oligohydramnios (amniotic fluid index <5) and/or abnormal umbilical artery blood flow on a 

Doppler ultrasound (Rodie et al. 2004).  

4.5.2 Study design and patients' demographics 

One woman who had PE was matched with three healthy pregnant women (controls), i.e. 

one (PE woman) to three (control women). Thus, the total population size of women with 

PE (n=29) and BMI-matched controls (n=87), and, in a similar fashion, all cases of IUGR 

(n=14) and BMI-matched controls (n=42), were also explored. The BMI-matching was to 

account for the influence of maternal obesity. IUGR groups were assessed in order to 

determine the impact of the placental pathology in the absence of hypertension and 

endothelial dysfunction, as present in the PE pregnancies. Age and BMI were calculated 

(Section 3.5.2), and number of previous pregnancies greater than or equal to 24 weeks, 
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smoking status and Carstair's score and its deprivation category (DEPCAT), a measure of 

socioeconomic deprivation or affluence in Scotland (Morris and Carstairs 1991), were 

recorded. Confounding factors (such as smoking status, labouring mothers, gestation at 

sampling, gestation and/or mode of delivery) were examined in order to determine their 

impact on the metabolic metabolites and inflammatory response mediators. Fetal sex, 

placental weight and birthweight centile were also retrieved. 

4.5.3 Blood and tissue collection 

Blood samples (approximately 50mL) were taken from women in the third trimester of 

pregnancy by venepuncture. At delivery, the cord venous blood was carefully obtained 

using a 20mL syringe after clamping both ends of the cord with forceps. The maternal and 

cord blood were collected into recommended vials, depending on the metabolic and 

inflammatory parameters to assay. Vacuette® evacuated collection tubes (Greiner Bio-

One) contained anticoagulants including 1.8mg/mL EDTA (8mL volume), 18IU/mL heparin 

(6mL volume), 0.109 mol/L citrate (3.5mL volume) and 2.5mg/mL fluoride oxalate (2mL 

volume). Blood samples were centrifuged at 3000g for 10 min, and the upper plasma layer 

was aliquoted into 2mL vials and stored at -80°C until assayed. 

Gene expression of molecules involved in lipids transport was assessed in the placentae 

of women with PE (n=20) and IUGR (n=9), together with BMI-matched controls (n=20 and 

n=9) respectively. At time of delivery, full thickness placental tissue biopsies 

(approximately 1.5g) were taken at four predetermined areas of placenta distinct from 

umbilical cord insertion. Portions of umbilical cord (2cm) were also obtained. Half of each 

placental biopsies and all the umbilical cord biopsy were fixed in 10% buffered formalin 

(Adams Healthcare, England), embedded in paraffin and stored at RT. The other half 

placenta biopsies were snap-frozen in liquid nitrogen and then stored at -80°C for RNA 

and protein isolation. 

A gestational series of paraffin-embedded placenta sections was available in the 

laboratory from an archival collection. The first trimester placentae (6-12 weeks’ gestation) 

(n=2) were obtained from women undergoing suction termination of pregnancy, whereas 

the second trimester placentae (13-26 weeks’ gestation) (n=2) were from those 

undergoing medical treatment related to their pregnancy. The third trimester placentae 

(27-40 weeks’ gestation) (n=6) were from subjects that had normal vaginal delivery and 

caesarean sections of healthy pregnancies and cases with extremes of plasma lipid levels 

(PE and IUGR). 
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4.5.4 Assays of lipids, glucose, CRP and NEFA 

Plasma TG, TC, HDL-C, glucose and CRP were measured in an automated 

Roche/Hitachi MODULAR P (Roche) analyser by the GRI Department of Biochemistry 

(see Section 3.5.3). As detailed above, lipid assays were carried out using the Standard 

Lipid Research Clinic Program (NIH) protocol at the GRI Department of Biochemistry, 

Centre for Disease Control and Prevention (Atlanta, GA) reference laboratory accredited 

by Clinical Pathology Accreditation UK (LRCP 1975). TG was measured by the glycerol-3-

phosphate oxidase/phenol aminophenazone (GPO/PAP) technique on an automated 

analyser. TC, HDL-C, glucose and CRP were measured using a CHOD/PAP kit, HDL 

cholesterol plus 3rd generation kit, glucose oxidase/PAP kit and Tin-quant CRP (Latex) 

high sensitive immunoturbidimetric assay kit, respectively, which were supplied by Roche 

Diagnostics. NEFA was also assessed using a NEFA C test kit (Wako, Neuss Germany), 

according to the manufacturer’s instructions, and was read at a 550nM wavelength. 

4.5.5 Adipokines, endothelial cell function markers and 
inflammatory mediators assays 

Human insulin, leptin, adiponectin, sICAM-1, sVCAM-1, IL-6, IL-10, TNF-α, PAI-1 and 

PAI-2 were quantitated by ELISA, according to manufacturer’s instructions. Insulin ELISA 

(10-1113-01 Mercodia) was sensitive to 2mU/L, and detection was at 450nM absorbance. 

HOMA was calculated as noted above (Section 3.5.4). Plasma leptin and adiponectin 

(Quantikine, R&D Systems) were utilised with a minimum detectable dose of less than 

7.8pg/mL and 0.08ng/mL, respectively. Soluble ICAM-1 and sVCAM-1 (R&D Systems) 

with less than 0.35ng/mL and less than 2.0ng/mL detection limits, respectively, were used 

for the quantitative determination of plasma sICAM-1 and sVCAM-1. The detection 

absorbance reading of products of leptin, adiponectin, sICAM-1 and sVCAM-1 was at 

450nM. IL-6, IL-10 and TNF-α (Quantikine HS, R&D Systems) have detection limit 

sensitivity to 0.02pg/mL, less than 0.5pg/mL and 0.04pg/mL, respectively, with all 

products detected at an absorbance of 490nM. TNF-α/IL-6 ratio was used as an index of 

the Th1/Th2 balance (Freeman et al. 2004). Plasma PAI-1 was assayed by ELISA 

(TriniLIZE PAI-1 Antigen REF: T6003; Trinity Biotech), with a detection limit of 0.5ng/mL, 

and plasma PAI-2 using a PAI-2 ELISA (IMUBIND® Stamford, USA) was sensitive to 

50pg/mL. PAI-1 and PAI-2 determination had an absorbance of 492nM and 450nM 

respectively. Placental function was assessed using PAI-1/PAI-2 ratio (Stewart et al. 

2007).  
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4.5.6 Immunohistochemistry (IHC) assay 

4.5.6.1 Processing of biopsies 

Biopsies of umbilical cord and placental block which had previously been embedded were 

used in IHC studies. Paraffin-embedded first, second and third trimester placentae and 

umbilical cord tissue biopsies were cut into sagittal sections of 5µm thickness using a 

Leica RM 2135 rotary microtome (Leica Biosystems) and mounted on slides for later use. 

4.5.6.2 ABC method 

A standard ABC method was used for tissue staining, as described above (see Section 

2.5.11). Briefly, the paraffin-embedded and positive control slides were incubated at 60°C 

for 35 min, dewaxed in xylene (2 x 10 min), rehydrated in alcohol series [absolute (2 x 10 

min), 95% ethanol (2 x 5 min), 70% ethanol (5 min)] and then washed for 2 x 5 min in 

PBS, pH 7.6. Peroxidase activity was quenched by immersing slides in freshly prepared 

0.5% H2O2 (5mL H2O2 in 300mL methanol) for 30 min. The rationale for choosing each 

positive control is because each tissue had been found to express the respective antigen 

during antibody staining optimisation. Antigenic retrieval procedures depended on the 

localising antibody and are detailed in Table 4-1. 
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Table ‎4-1:  Antibodies used for immunohistochemistry. 
 

Antigen 
1°Ab Cat №, (diluting sera) 

 

Antibody  
Type 

 

Antigen 
Retrieval 

 

Positive  
Control 

 

1°Ab 
dilution  

 
ABCA1 
 
ABC1 (Y-15): SC 5490,      
Santa Cruz  
(2% rabbit/5% human sera) 

 
Goat 
polyclonal 

 
0.01M citrate 
buffer pH 6.0 
(microwave) 

 
Liver tissue 

 
1:750 

 
ABCG1  
 
ABCG1 (E-20): SC 11150, 
Santa Cruz  
(2% rabbit/5% human sera) 

 
Goat 
polyclonal 
 

 
0.01M citrate 
buffer pH 6.0 
(microwave) 

 
Lung tissue 

 
1:1250 

 
LDLR 
 
LDLR (N-17): SC 11822,   
Santa Cruz  
(2% rabbit/5% human sera) 

 
Goat 
polyclonal 

 
None 

 
Liver tissue 

 
1:100 

 
STARD3 
 
MLN64 (D-20): SC 26062, 
Santa Cruz  
(2% rabbit/5% human sera) 

 
Goat 
polyclonal 
 

 
0.01M citrate 
buffer pH 6.0 
(microwave) 

 
Breast tissue 

 
1:100 

 
TNF-α  
 
TNF-α  AF 210 NA, 
R&D System  
(2% rabbit/5% human sera in 
0.1% Saponin) 

 
Goat 
polyclonal 
 

 
0.01M citrate 
buffer pH 6.0 
(microwave) 

 
Breast tissue 

 
1:50 
 
 
 
 
 
 
 
 

 

The detection of LDLR did not require antigen retrieval, whilst ABCA1, ABCG1, STARD3 

and TNF-α were pre-treated in a 0.01M citrate buffer, pH 6.0, using a microwavable 

pressure cooker for 8 min. Paraffin slides were then washed in DH2O for 5 min followed  

by washes of 2 x 10 min PBS, pH 7.6. A non-immune blocking reagent, 20% rabbit and 

20% human sera in PBS, pH 7.6, was added for 30 min to block non-specific antibody 

binding. Slides were washed in DH2O for 5 min, twice with PBS, pH 7.6, for 10 min and 

then incubated in a primary (1°) antibody overnight at 4°C (Table 4-1). After two washes in 

PBS, pH 7.6, for 5 min, slides were incubated in biotinylated anti-goat IgG H+L (30 min, 

1:200, RT) (BA-5000, Vector laboratories). The 1° and 2° antibodies were diluted in 2% 

rabbit serum and 5% human serum PBS, pH 7.6. A negative control containing 2% rabbit 

serum and 5% human serum only was used. After incubation with the 2° antibody, slides 

were washed (2 x PBS, pH 7.6) for 5 min and incubated for 30 min at RT in a Vectastain® 

standard ABC Kit Elite from Vector laboratories, using two drops of reagent A and reagent 

B diluted in 5mL of PBS, pH 7.6. The staining was detected by adding 1mg/mL DAB 

solution (made by dissolving 1 tablet of DAB and 12μL H2O2 in a final volume of 15mL of 
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50mM Tris HCl, pH 7.5) and incubating for 10 min. Slides were washed in PBS for 5 min 

and DH2O (5 min) before counterstaining in Harris stain for 15 sec. Paraffin-embedded 

slides were dehydrated via serial alcohol concentrations, and slides were mounted in DPX 

for microscopy. Digital image capture was by Image-Pro Plus (version 6.2 

MediaCybernetics) on a BX50 F-3 microscope (Oympus) equipped with X4, X10, X20, 

X40 and X100 lenses connected to a 3-CCD colour camera. ImageJ was used for image 

processing. 

4.5.7 Isolation of placental total RNA 

Approximately 65mg of frozen placental tissue was mechanically disrupted, using a 

ceramic mortar and pestle, and the tissue was mixed with 2.5mL of Nucleic Acid 

Purification Lysis Solution (Applied Biosystem, UK). Samples were homogenised using a 

Polytron-aggregate homogeniser (PT 10-35; Kinematica) for 30 sec and incubated on wet 

ice for 30 min. RNA was isolated from the homogenate using an ABI 6100 Nucleic Acid 

Prepstation. Following the manufacturer’s instructions, 600μL of homogenate was added 

to one well of the pre-filter tray and then pulled through the membrane for 180 sec at 80% 

vacuum. RNA Purification Wash Solution-1 (500μL) was added to the well and run for 180 

sec at 80% vacuum. Similarly, RNA Purification Wash Solution-2 (400μL) was added and 

run for 180 sec at 80% vacuum. Then, absolute RNA wash (50μL) was added and run for 

900 sec, followed by 600μL RNA Purification Solution-2, which was run for 600 sec. 

Samples were incubated for 120 sec and 300μL RNA Purification Wash Solution-2 was 

added and then the mixture was run for 120 sec at 60% vacuum, followed by an additional 

300 sec incubation and run at 90% vacuum. Nucleic Acid Purification Elution Solution 

(100µL) was added into each well to elute RNA after 120 sec at 40% vacuum. The eluted 

RNA obtained with the ABI 6100 method was already DNased after the addition of the 

Nucleic Acid purification solution. Aliquots of DNase RNA were collected and stored at -

80°C until analysis. 

4.5.8 Standard PCR for detection of STARD mRNA expression 

The DNase RNA was reverse transcribed with a High Capacity cDNA Archive Kit (Applied 

Biosystem), and cDNA was prepared as stated above (Section 2.5.8). Detection of 

placental mRNA expression of the 15 STARD proteins used PCR primers obtained from 

Eurogentec (S. A. Belgium). Primer sequences were generously provided as a gift by Dr 

Annette Graham, Vascular Biology Group, Department of Biological and Biomedical 

Science, Glasgow Caledonian University, Glasgow (Table 4-2). 
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Table ‎4-2: Primers used for STARD proteins detection. STARD proteins 1-15 forward (F) 
and reverse (R) primers. 
 

STARD 
 

Primer sequence 
 

 

PCR cycle programme  

 

STARD1 
 
F. 5'-ACT-CAG-AGG-CGA-AGC-TTG-AG-3' 
R. 5'-CAG-CCC-TCT-TGG-TTG-CTA-AG-3' 

 
94°C, 3 min x 1; 94°C, 30 sec; 60°C,       
30 sec; 59°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD2 
 
F. 5'-ATC-CGG-GTG-AAG-AAG-TAC-AA-3' 
R. 5'-CAC-CTC-AAA-TCC-CAG-CCT- AA-3' 

 
94°C, 3 min x 1; 72°C, 1 min; 60°C,         
30 sec; 56°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD3 
 
F. 5'-AGC-GAG-TGG-AAG-ACA-ACA-CC-3' 
R. 5'-AAA-CAT-CCA-CAG-GCC-AGA-CC-3' 

 
94°C, 3 min x 1; 72°C, 1 min; 60°C,         
30 sec; 58°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD4 
 
F. 5'-GGC-GAG-TTG-CTA-AGA-AAA-CG-3' 
R. 5'-AAA-GCT-GCA-GTG-AGC-TGT-GA-3' 

 
94°C, 3 min x 1; 72°C, 1 min; 60°C,         
30 sec; 56°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD5 
 
F. 5'-ACC-ATC-CTT-GTG-GTT-GCT-TC-3' 
R. 5'-AAC-AGG-CAG-ATG-GAG-TTT-GG-3' 

 
94°C, 3 min x 1; 72°C, 1 min; 60°C,         
30 sec; 54°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD6 
 
F. 5'-CAT-CAG-GCT-GGA-AAG-TGG-TT-3' 
R. 5'-TGA-AAT-CCA-CGT-CTT-GAT-GG-3' 

 
94°C, 3 min x 1; 72°C, 45 sec; 60°C,        
30 sec; 56°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD7 
 
F. 5'-GCC-TAC-TGG-GAG-TGC-TCT-TG-3' 
R. 5'-CTG-AGA-GCT-CCA-AGG-GAG-TG-3' 

 
94°C, 3 min x 1; 72°C, 30 sec; 60°C,        
30 sec; 58°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD8 
 
F. 5'-GGC-TGA-GGC-TGA-AGA-TGA-AG-3' 
R. 5'-AAC-TTG-GGC-ATT-GAC-CAG-AC-3' 

 
94°C, 3 min x 1; 72°C, 1 min; 60°C,        
30 sec; 55°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD9 
 
F. 5'-ACT-GGT-GTG-GGG-TTC-AGA-AG-3' 
R. 5'-AGA-AGT-TCC-CAA-GTC-GCT-CA-3' 

 
94°C, 3 min x 1; 72°C, 30 sec; 60°C,        
30 sec; 58°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD10 
 
F. 5'-GAA-AGA-CTT-GGT-CCG-AGC-TG-3' 
R. 5'-TTC-CAC-TCG-GGG-TAC-TTG-AG-3' 

 
94°C, 3 min x 1; 72°C, 30 sec; 60°C,        
30 sec; 59°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD11 
 
F. 5'-GGC-CAT-CTT-CAG-AAT-GGA-AA-3' 
R. 5'-AAC-CAG-TCA-CAG-CCA-AAA- CC-3' 

 
94°C, 3 min x 1; 72°C, 30 sec; 60°C,        
30 sec; 53°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD12 
 
F. 5'-CCC-TCA-CTC-TGG-AAG-CAC- TC-3' 
R. 5'-CAC-AGG-CTC-CTT-TGG-GTA-AA-3' 

 
94°C, 3 min x 1; 72°C, 1 min; 60°C,         
30 sec; 56°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD13 
 
F. 5'-CTG-TAT-GCC-AGC-ACA-GGA-GA-3' 
R. 5'-GAG-AGG-AAC-GCC-AAA-GAC-AG-3' 

 
94°C, 3 min x 1; 72°C, 1 min; 60°C,         
30 sec; 56°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD14 
 
F. 5'-TGA-CCA-GCT-TGT-GTC-TCT-GG-3' 
R. 5'-GGT-TCA-CCT-TGG-CCT-TGA-TA-3' 

 
94°C, 3 min x 1; 72°C, 30 sec; 60°C,        
30 sec; 55°C, 1 min x 35; 72°C, 7 min x 1 

 

STARD15 
 
F. 5'-TGC-AAA-CCA-TCA-CGG-AAA- TA-3' 
R. 5'-ACG-TGC-TTT-TCA-ACC-CAA- AC-3' 

 
94°C, 3 min x 1; 72°C, 1 min; 60°C,         
30 sec; 51°C, 1 min x 35; 72°C, 7 min x 1 
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First Choice™ PCR-Ready human liver cDNA was used as a positive control for STARD 

product detection in the placentae, with a supplied control primer mix (containing targets 

housekeeping gene; AM3323, Applied Biosytem). The quality of RNA was verified for the 

liver (positive control) and the placenta using 18S primer of forward 5'-CAA-GTC-TGG-

TGC-CAG-CAG-CCG-CGG-T-3’ and reverse 5’-TCA-CCT-CTA-GCG-GCG-CAA-TAC-

GAA-T-3’, producing a 359-bp product. In the qualitative PCR assay, 1μg of cDNA served 

as a template in a total volume of 10μL PCR mix The resulting reaction mixture contained 

5µL of 1X MegaMix~Double, 0.5μL each of 100μM STARD1-15 forward and reverse 

primer and 4μL DEPC. A sample loading buffer (10X) for PCR of 2μL was added before 

loading the PCR product onto an agarose gel (1.5%) along with 0.5µg/µL of 100bp DNA 

ladder (New England BioLab, UK), followed by electrophoresis for 1.20 hours at 100V 

(see Section 2.5.8). Bands were visualised using a UV transilluminator and the gel was 

photographed with a DS34 Polaroid direct screen instant camera containing Polaroid 

black-and-white print film type 667 (Sigma). 

4.5.9 Quantitative Real-Time of placental mRNA expression 

RT-PCR is the most sensitive technique for mRNA detection and quantitation currently 

available. RNA was reverse transcribed to cDNA using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Warrington, UK), following the manufacturer's 

instructions. A NoRT control was also prepared (Section 2.5.8).  

Placental mRNA expression was quantitated using RT-PCR on an ABI PRISM® 7900HT 

Sequence Detection System (Applied Biosystems) with commercially available primer 

probe sets (Table 4-3). Briefly, 1.25µL of 20 x target assay or control assay mix was 

added to 12.5µL of 2 x Mastermix (Applied Biosystems), 10.25µL deionised distilled water 

and 1µL cDNA. The thermal cycler conditions were 50°C for 2 min and 95°C for 10 min, 

then 40 x 95°C for 15 sec and 60°C for 1 min. Following the manufacturers’ instructions, 

quantitation of placental mRNA levels of each expressed gene target was carried out in 

duplicate. Data was analysed using the Sequence Detection system software, which 

calculates the threshold cycle (CT) values. The placental gene targets were normalised by 

subtracting the CT value of the endogenous control (18S rRNA) from the CT value of the 

relevant target assay. The fold increase relative to control was obtained by using the 

formula 2-ΔCT. 

 

 



CC ONYIAODIKE, 2014                                                                                              Chapter 4-141 

Table ‎4-3:  Commercial primer probe sets. 
 

Primer probe set 
 

 

Catalogue № 
 

 

ATP-binding cassette sub-family A (ABC1), member 1 

 

Hs00194045_m1 

ATP-binding cassette sub-family G (WHITE), member 1 Hs00245154_m1 

Apolipoprotein E (apo E) Hs00000000_m1 

CD36 molecule (thrombospondin receptor)  Hs00169627_m1 

Eukaryotic 18S rRNA endogenous control (VIC/TAMRA) PN 4310893E 

Keratin 7 Hs00818825_m1  

Platelet/Endothelial cell adhesion molecule (CD31 antigen) Hs01055279_m1 

Liver X receptor-alpha (LXR-α) Hs00172885_m1 

Low density lipoprotein receptor (LDLR) Hs00181192_m1 

Steroidogenic acute  regulator 1 (STARD1) Hs00264912_m1 

START domain containing 3 (STARD3) Hs00199052_m1 

START domain containing 4 (STARD4) Hs00287823_m1 

START domain containing 5 (STARD5) Hs00739050_m1 

Tumour necrosis factor-alpha 1 (TNF-α1) Hs00174128_m1 

 

4.5.10 Protein quantitation 

Placental protein was extracted from placenta tissue samples in order to confirm if mRNA 

expression resulted in changes of protein expression. Approximately 50mg of placental 

tissue was mechanically disrupted with a ceramic mortar and pestle, collected and 

resuspended with 2.5mg of 0.5mL lysis solution containing 1 tablet protease inhibitor 

cocktail (Roche) dissolved in a total volume of 10mL CelLyticMT MT mammalian tissue 

lysis/extraction reagent (Sigma-Aldrich). Samples were homogenised using a Polytron-

aggregate homogeniser for 30 sec and incubated on wet ice for 10 min. The placental 

tissue homogenates were centrifuged (5000g, 10 min) at 4°C. Then the supernatant was 

transferred into sterile 1.5mL tubes and centrifuged (10000g, 10 min) at 4°C. At this point 

aliquots of extracted proteins suspension were collected and stored at -80°C until 

analysis. 

Protein concentration of the extracted placental protein suspension was determined using 

the Bradford procedure (Section 2.5.9). In brief, a 10µL aliquot (1:100) of placentae 
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homogenate was used for protein estimation. A standard concentration curve of 0.1-

1.4mg/mL was made with BSA. The Bradford reagent (Sigma) was left to reach RT. One-

mL of it was then added to the protein aliquot by mixing and incubated at RT for 15 min 

before reading the absorbance at 595nM on a spectrometer. A standard curve of 

absorbance versus the protein was plotted in Microsoft Excel, and the unknown protein 

concentrations determined from the curve. Protein concentrations were corrected for 

dilution factor. 

4.5.11 SDS-PAGE and Western blots 

As mentioned above (Section 2.5.10), placental protein homogenate extracts (2.5-

10µg/µL) were subjected to SDS-PAGE electrophoresis. Placental proteins were loaded in 

a 30µL volume containing 50% (15µL) NuPAGE LDS sample buffer. Proteins were 

separated using NUPAGE® 4-12% Bio-Tris gels (Life Technology) on an XCell 

Surelock™ Mini-Cell system according to manufacturer’s instructions. Pre-stained High 

Range Markers (44-200kDa molecular weight; SC 2362, Santa Cruz) were used as size 

markers. The inner chamber of the tank that enclosed the separating gel was filled with 

200mL of 1% NuPAGE® MOP or MES SDS running buffer, with 100μL of 1mM 

dithiothreiol reagent added. Both LDLR and ABCA1 bands were detected after 

electrophoresis using a NuPAGE® MES SDS running buffer whereas STARD3 was 

detected after electrophoresis using a NuPAGE® MOP running buffer. Electrophoresis for 

LDLR and ABCA1 was performed at 100V, 170mA 40W for 1.40 hours, and for STARD3 

at 200V, 180mA 40W for 45 min. Separated proteins were electroblotted from gels onto a 

nitrocellulose membrane filter at 25V, 180mA 60W for 2, 3 and 1.20 hours for LDLR, 

ABCA1 and STARD3 respectively on an XCell™ Blot Module (Life Technology). The 

electroblotted membrane was blocked in a blocking solution (5%) prepared by dissolving 

5g non-fat milk in 100mL PBS (pH 7.3) for 1 hour, followed by incubation with a primary 

antibody overnight (12-18 hours) with mild agitation at 4°C (Table 4-4). 
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Table ‎4-4:  Primary and secondary antibodies' dilutions. 
 

Antigen  
(Catalogue №)  

 

Protein 
loaded 
(µg/µL) 

 

 

1°Ab dilution 
(ON) and 
diluents 

 

Washes 
 

2°Ab dilution 
factor  

 

ABCA1 
(Ab7360, Abcam) 

 

10.0 
 

1:2000             
3% non-fat milk 
(0.05% PBST)  

 

0.05% PBST 
(6x10 min) 

 

1:5000  
Goat polyclonal Rabbit IgG 
H&L (HRP):Ab6721 
 

    1:70000 
β-Actin (C4) HRP:SC 47778 
 

LDLR 
(Ab30532, Abcam) 

 2.5 1:10000                   
3% non-fat milk 
(PBS) 

0.05% PBST 
(6x10 min)  

1:6000  
Goat polyclonal Rabbit IgG 
H&L (HRP):Ab6721 
  

    1:17000 
β-Actin (C4) HRP:SC 47778 
 

STARD3 
(D-20: SC 26061, 
Santa Cruz) 

10.0 1:1000  
5% non-fat milk 
(0.1% PBST) 

0.1% PBST 
(6x10 min)  

1:1000 
Donkey anti-goat HRP 
IgG:SC 2020 
 

    1:70000  
β-Actin (C4) HRP:SC 47778 
 

PBST represents PBSTween-20; ON, overnight. 

 

The membranes were washed and incubated with a secondary antibody at RT for 1 hour 

(Table 4-4). Then blots were washed and signal detected (5 min incubation at RT) with 1:1 

reagents A and B from the Supersignal® West Pico Trial Kit (an enhancer 

chemiluminescent substrate for detection of HRP; Thermo Scientific). Bands were 

detected by exposing the blots on an x-ray film (Fuji), 3 min for LDLR and ABCA1, and 10 

min for STARD3, and then developed on the Kodak OMAT 1000 Processor (Eastman 

Kodak, USA) according to the manufacturer's instructions. LDLR, STARD3 and ABCA1 

molecular weights were estimated by assessing the migration distance relative to dye 

front using molecular weight of pre-stained high range markers to provide a standard 

curve. Also, the detected bands on the films were scanned as a pictorial record (Epson 

Perfect 3200). A profile pixel density system was used to determine the volume intensity 

of each band, which represents the quantitation of (each) protein level using Bio-Rad’s 

Quantity One version 4.6.2 I-D analysis software (Bio-Rad Laboratories) following the 

company's information manual. The volume intensity of LDLR, STARD3 and ABCA1 

relative to β-Actin was recorded and analysed.  
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4.5.12 Statistical analysis 

Data were tested for normal distribution before statistical analysis and, where data were 

not distributed normally, log transformation was performed, using Minitab Vs16.2.2 

Statistical software. GraphPad Prism® 5 software (GraphPad, Inc; San Diego USA) was 

utilised for graphical presentation where appropriate. Two-sample t-test and Pearson's 

Chi-square test were used to compare demographic features for the continuous and 

categorical variables between PE and IUGR cases and their BMI-matched control groups, 

respectively. Significant variables identified in univariate analyses were then subjected to 

multivariate analyses using the General Linear Model in order to account for the 

contribution of potential covariate confounders (such as maternal smoking status, 

labouring mother, gestation and/or mode of delivery and gestation at sampling). Linear 

correlation using Pearson's correlation was also used to test for association between 

variables. Data were presented untransformed or transformed as mean and standard 

deviation (SD). P-values less than 0.05 were considered statistically significant. 
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4.6 Results 

4.6.1 Subject characteristics 

The clinical characteristics of the participants are shown in Table 4-5. Women with PE and 

IUGR were matched for age and BMI with controls. The number of previous pregnancies 

greater than or equal to 24 weeks gestation in women with PE and IUGR compared with 

controls was not statistically significant. A higher number of women with IUGR than 

controls smoked, as expected. DEPCAT was not different between the groups. As 

expected, higher maternal systolic blood pressure [135 (25) vs 117 (13) mmHg, P=0.021] 

and elevated diastolic blood pressure [82 (12) vs 70 (9) mmHg, P=0.002] was observed in 

women with PE compared to controls. Women with IUGR when compared to their 

respective controls, exhibited no difference in systolic blood pressure and diastolic blood 

pressure. There was a lower gestation at sampling in women with both PE [36 (3) vs 38 

(2) weeks, P=0.001] and IUGR [36 (3) vs 38 (2) weeks, P=0.010] compared to their 

controls. 

The offspring of women with PE and IUGR were delivered earlier compared to their 

respective control groups. There were observable differences in the proportion of women 

with different modes of delivery: 14 (48%) PE women had an emergency caesarean 

section, compared to only 4 (5%) women with healthy pregnancies. Conversely, 9 (38%) 

participants with PE laboured during delivery compared to 9 (16%) controls. However, 5 

(36%) mothers with IUGR had an emergency caesarean section, compared to only 2 (5%) 

controls. In addition, 2 (14%) women with IUGR laboured during delivery, compared to 6 

(22%) women in the normal pregnant group. Fetal sex ratio was not different between 

complicated pregnancy groups and their respective control groups. Placental weight was 

significantly lower in women with PE [457 (157) vs 716 (170) g, P<0.001], relative to the 

matched control group. The birthweight centile of offspring was also lower in women with 

PE [22 (27) vs 55 (32) centile, P<0.001], compared to the matched healthy pregnancy 

women. There was a similar lower mean placental weight in women with IUGR [297 (72) 

vs 690 (148) g, P<0.001], compared to their matched controls. Also, the birthweight 

centile of the babies was lower in mothers with IUGR [1 (2) vs 45 (30) centile, P<0.001], 

relative to the matched normal pregnant group. 
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Table ‎4-5:  Features of preeclampsia and IUGR pregnancies and their matched controls. 

 

 

 

 

 

Features PE  
(n=29) 

Control 
(n=87) 

P-value IUGR  
(n=14) 

Control 
(n=42) 

P-value 

Age (years) 30.5 (6.3) 30.1 (5.3) 0.79 29.9 (4.8) 29.6 (5.1) 0.84 

BMI (kg/m
2
)  28.6 (6.7) 28.3 (6.4) 0.85 25.5 (5.3) 25.4 (4.9) 0.96 

№ of pregnancies ≥ 24 weeks [n,(%)]   0.057   0.65 

     0 18 (62) 36 (41)  6 (43) 17 (41)  
     1 5 (17) 36 (41)  4 (29) 17 (41)  
     2 6 (22) 15 (17)  4 (29) 8 (19)  

Smoking status [n,(%)]   0.68   0.012 

     Non smoker 22 (79) 65 (75)  6 (43) 33 (79)  
     Smoker 6 (21) 22 (25)  8 (57) 9 (21)  

DEPCAT [n, %]   0.47   0.51 

     Affluent (1-2) 1 (5) 10 (14)  1 (7) 5 (15)  
     Intermediate (3-5) 11 (50) 32 (46)  7 (50) 11 (33)  
     Deprived (6-7) 10 (46) 28 (40)  6 (43) 17 (52)  

Systolic BP (mmHg) 135 (25) 117 (13) 0.021 109 (10) 112 (13) 0.57 

Diastolic BP (mmHg) 82 (12) 70 (9) 0.002 69 (7) 68 (9) 0.75 

Gestation at sampling (weeks) 36 (3) 38 (2) 0.001 36 (3) 38 (2) 0.010 

Gestation at delivery (days) 251 (21) 275 (10) <0.001 253 (20) 276 (9) 0.001 

Delivery mode [n, %]   <0.001   0.018 

     Assisted 2 (7) 6 (7)  0 (0) 5 (12)  
     Elective caesarean section 7 (24) 55 (64)  7 (50) 24 (59)  
     Emergency caesarean section 14 (48) 4 (5)  5 (36) 2 (5)  
     Vaginal 6 (21) 21 (24)  2 (14) 10 (24)  

Labour [n, %]   0.035   0.54 

     Non-labour 15 (62.5) 47 (83.9)  12 (85.7) 21 (77.8)  
     Labour 9 (37.5) 9 (16.1)  2 (14.3)   6 (22.2)  

Fetal sex [n, %]   0.99   0.89 

     Female 14 (48) 41 (48)  6 (46) 18 (44)  
     Male 15 (52) 44 (52)  7 (54) 23 (56)  

Placental weight (g) 457 (157) 716 (170) <0.001 297 (72) 689 (148) <0.001 

Birth weight centile  22 (27) 55 (32) <0.001 1  (2) 45 (30) <0.001 
 

Mean (SD) and [n,(%)], P-value from two-sample and Pearson's Chi-Square tests respectively. 
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4.6.2 Fetal and maternal plasma metabolic and inflammatory 
parameters in pre-eclamptic women and controls 

Metabolic and inflammatory parameters in cord blood at delivery were measured in 

extreme cases of PE and in healthy pregnancies; the data are reported in Table 4-6. Cord 

plasma insulin levels were not different between women with PE and their healthy 

pregnancy counterparts. Fetal leptin was lower in cases of PE [6.5 (6.1) ng/mL] compared 

to controls from the healthy BMI-matched pregnancies [12.9 (14.1) ng/mL, log P=0.005]. 

Equally, cord adiponectin was lower in the PE group [23.1 (14.1) mg/mL] than in the 

control group [34.3 (14.9) mg/mL, log P=0.004]. Multivariate analysis was carried out to 

examine the impact of confounding factors, including maternal smoking status, labour, 

gestation and/or mode of delivery and gestation at sampling. The lower cord log leptin in 

PE was influenced by gestational age at delivery (P<0.001), [28.7% adjusted sum of 

square (r2), not significant]. In the same fashion, lower cord adiponectin in PE is 

dependent on labour (P=0.003) and gestation at delivery (P<0.001) but independent of 

smoking and mode of delivery (39.9%, unchanged). The cord plasma TG in PE was 

higher [0.6 (0.2) mmol/L] compared to control group cord plasma [0.5 (0.4) mmol/L, log 

P=0.001]. Higher cord log TG in the PE group was independent of gestation at delivery 

but influenced by maternal smoking status (P=0.033), mode of delivery (P=0.001) and 

labour (P=0.004), (37.4%, unchanged). In a similar fashion, PE was associated with 

significantly higher cord TC level [2.2 (0.6) mmol/L] compared to controls [1.6 (0.5) 

mmol/L, log P<0.001]. Higher cord log TC in PE cases was independent of maternal 

smoking status, labour, gestation and mode of delivery (18.7%, P=0.059). Cord HDL-C, 

NEFA, glucose and HOMA levels were not different between PE and control groups. 

There was a trend toward lower fetal blood CRP in the PE group [0.1 (0.1) mg/mL] 

compared to the healthy pregnant group [0.3 (1.0) mg/L, log P=0.08]. However, after 

adjustment for confounding factors (including maternal smoking, gestation at delivery and 

mode of delivery), cord log CRP blood differed significantly (13.7%, P=0.001) between the 

PE group and controls. The difference in cord log CRP between the PE group and 

controls is influenced by mode of delivery (P<0.001) and labour (P=0.012) but 

independent of maternal smoking and gestation at delivery. Cord IL-6 and IL-10 levels 

were not different between the PE group and controls. Fetal TNF-α was lower in the PE 

group [1.9 (0.6) pg/mL] compared to babies from women that had a healthy pregnancy 

[2.3 (1.3) pg/mL, log P=0.026]. The fetal log TNF-α difference was independent of 

maternal smoking and gestation at delivery but dependent on labour (P=0.004) and mode 

of delivery (P=0.013), (39%, P=0.010). Umbilical cord blood TNF-α/IL-6 ratio was also 

lower in the PE group [0.5 (0.4)] compared to the healthy controls [0.9 (0.7), log P=0.040]. 

There was no difference in fetal sICAM-1 and sVCAM-1 levels between groups. 
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Maternal insulin level was not different between the PE group and controls. Leptin was 

significantly higher in women with PE [64.2 (39.0) ng/mL] compared to women with a 

healthy pregnancy [40.6 (30.0) ng/mL, log P=0.006]. In contrast, there was no difference 

in adiponectin level between the groups. Higher maternal TG was observed in the PE 

group [3.2 (0.9) mmol/L] compared to controls [2.7 (0.8) mmol/L, log P=0.002]. The 

difference in maternal log TG level between women with PE and controls is influenced 

partially by maternal smoking status (P=0.08) but independent of labour and gestation at 

sampling (11%, P=0.003). Women with PE had a trend towards higher TC levels 

compared to controls [6.6 (1.2) vs 6.2 (1.0) mmol/L, P=0.053)]. Also, the difference in 

maternal TC between women with PE and controls depended on maternal smoking status 

(P=0.019) but was independent of labour and gestation at sampling (8.0%, P=0.013). 

Maternal HDL-C was not different between PE and control groups. However, NEFA level 

was elevated in the PE group [0.6 (0.3) mmol/L] compared to [0.4 (0.2) mmol/L), 

P<0.001)] in women with healthy pregnancies. The difference in NEFA between women 

with PE and controls was dependent on gestation at sampling (P=0.055) but independent 

of smoking and labour (20.9%, P=0.002). Maternal glucose levels were higher in women 

with PE [6.1 (2.3) mmol/L] than healthy controls [5.0 (0.8) mmol/L, P=0.015]. Gestation at 

sampling (P=0.019) influenced glucose levels between women with PE and controls, 

independent of maternal smoking and labour (12.6%, P=0.031). HOMA level was not 

different between the two groups. 

There were no noticeable differences in maternal inflammatory status (CRP and IL-6) in 

women with PE compared to controls. However, confounding factor assessment showed 

the difference in log IL-6 levels between women with PE and controls is influenced by 

labour (P=0.023) and gestation at sampling (P=0.008), (adjusted r2 18.5%, P=0.039). 

Maternal IL-10 levels were higher in women with PE [2.6 (2.3) pg/mL] compared to 

women with a healthy pregnancy [1.4 (0.8) pg/mL, log P=0.014], although caution was 

taken during analysis, considering only 40% of the PE group and 50% of the control data 

were available. Plasma TNF-α and TNF-α/IL-6 ratio were not different between PE and 

control mothers. Maternal plasma sICAM-1 and sVCAM-1 did not differ between PE and 

control mothers. Maternal plasma PAI-1 level was elevated in the PE group [124 (30) 

ng/mL] compared to the control group [90 (40) ng/mL, P=0.001]. In contrast, PAI-2 level 

was lower in mothers with PE [217 (145) ng/mL] than those with a healthy pregnancy [432 

(193) ng/mL, P<0.001]. An elevated PAI-1/PAI-2 ratio was observed in women with PE 

[1.8 (3.7)] compared to controls [0.3 (0.3), log P<0.001]. Caution was also taken with the 

results of PAI-1, PAI-2 and PAI-1/PAI-2, since approximately 50% of the data was 

unavailable. 
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Table ‎4-6: Maternal and cord plasma metabolic and inflammatory parameters. 

 

 

 

 

 

 

Parameters Cord blood Maternal blood 

Hormone  PE  (n=29) Control 
(n=87) 

P-value PE  (n=29) Control 
(n=87) 

P-value 

Insulin (mU/L) 9.2 (13.6) 8.3 (12.2) 0.90* 25.8 (34.3) 23.6 (31.8) 0.87* 

Leptin (ng/mL) 6.5 (6.1) 12.9 (14.1) 0.005* 64.2  (39.0) 40.6 (30.0) 0.006* 

Adiponectin (µg/mL) 23.1 (14.1) 34.3 (14.9) 0.004* 10.4 (4.4) 8.8 (3.4) 0.082 

 

Metabolism 
      

Triglyceride (mmol/L) 0.6 (0.2) 0.5 (0.4) 0.001* 3.2 (0.9) 2.7 (0.8) 0.002* 

TC (mmol/L) 2.2 (0.6) 1.6 (0.5) <0.001* 6.6 (1.2) 6.2 (1.0) 0.053 

HDL-C (mmol/L) 0.8 (0.3) 0.8 (0.3) 0.62 1.7 (0.4) 1.7 (0.4) 0.73 

NEFA (mmol/L) 0.1 (0.1) 0.1 (0.1) 0.85 0.6 (0.3) 0.4 (0.2) 0.001 

Glucose (mmol/L) 4.5 (1.1) 4.3 (1.2) 0.36 6.1 (2.3) 5.0 (0.8) 0.020 

HOMA 2.1 (3.1) 1.4 (1.6) 0.51* 10.0 (18.2) 6.0 (9.6) 0.52* 

 

Inflammation 
      

CRP (mg/L) 0.1 (0.1) 0.3 (1.0) 0.082* 9.0 (12.8) 5.1 (3.9) 0.12 

IL-6 (pg/mL) 6.1 (5.5) 6.3 (7.0) 0.30* 5.7 (6.4) 3.0 (1.9) 0.15* 

IL-10 (pg/mL) 1.3 (0.5) 2.1 (2.5) 0.12* 2.6 (2.3) 1.4 (0.8) 0.014* 

TNF-α (pg/mL) 1.9 (0.6)  2.3 (1.3) 0.026* 1.7 (0.8) 1.8 (1.0) 0.86 

TNF-α/IL-6 0.5 (0.4) 0.9 (0.7) 0.040* 0.7 (0.6) 0.6 (0.5) 0.89* 

sICAM-1 (ng/mL) 121 (44) 139 (41) 0.15 176 (29) 177 (47) 0.92 

sVCAM-1 (ng/mL) 883 (233) 842 (306) 0.47* 436 (143) 390 (84) 0.24 

PAI-1 (ng/mL) - - - 124 (30) 90 (40) 0.001 

PAI-2 (ng/mL) - - - 217 (145) 432 (193) <0.001 

PAI-1/PAI-2 - - -  
 

1.8 (3.7) 0.3 (0.3) <0.001* 

Mean (SD), P-value or (*) P-value of log transformed variable from two-sample t-test. 
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4.6.3 IUGR and healthy pregnancies 

Parameters of metabolism and inflammation were assessed in IUGR and control 

pregnancies. Data are reported in Table 4-7. IUGR babies' insulin levels were not 

significantly different from the controls. Cord plasma leptin was significantly lower in IUGR 

pregnancies [4.3 (6.1) ng/mL] compared to healthy pregnancies [9.5 (8.8) ng/mL, log 

P=0.018], whereas cord plasma levels of adiponectin in IUGR babies did not differ 

significantly from the controls. Cases of IUGR showed an elevated cord plasma TG [0.6 

(0.2) mmol/L] compared to healthy pregnancy controls [0.5 (0.3) mmol/L, log P=0.042]. A 

lower cord TC level was observed in the IUGR group [1.3 (0.4) mmol/L] compared to 

controls [1.6 (0.4) mmol/L, log P=0.011]. In addition, cord plasma HDL-C concentration 

was lower in the IUGR group [0.5 (0.2) mmol/L] than in the control group [0.8 (0.2) 

mmol/L, P=0.001]. Cord plasma levels of NEFA, glucose and HOMA in IUGR babies were 

not significantly different from the controls. Fetal plasma inflammatory mediators (CRP, IL-

6, IL-10, TNF-α and TNF-α/IL-6) did not differ between IUGR babies and their matched 

controls. Fetal sICAM-1 levels were lower in IUGR pregnancies [111 (28) ng/mL] 

compared to healthy pregnancies [137 (36) ng/mL, P=0.032], although approximately 30% 

of IUGR and 50% of control data were missing, so analysis was done with caution. After 

adjustments for confounding factors (such as mode of delivery, smoking and gestation at 

delivery), the lower sICAM-1 was found to be independent of confounding factors. There 

was no difference in the levels of fetal cord sVCAM-1 between the IUGR and healthy 

groups. 

Plasma insulin, leptin, adiponectin, TG, TC, HDL-C, NEFA, glucose and HOMA levels 

were not different between women who suffered from IUGR and healthy matched 

controls. Maternal plasma inflammatory mediators (CRP, IL-6, IL-10, TNF-α and TNF-α/IL-

6) did not differ between the IUGR group and their matched controls. There is a trend 

towards higher maternal sICAM-1 in IUGR pregnancies [223 (59) ng/mL] compared to 

control pregnancies [179 (34) ng/mL, P=0.052]. Multivariate analysis demonstrates that 

the higher sICAM-1 is partly dependent on maternal smoking status. There was no 

difference in sVCAM-1 between women who had IUGR and the control group. There was 

no difference in maternal PAI-1 between the IUGR and the control group. However, PAI-2 

levels were lower in the IUGR group [115 (78) ng/mL] than in the control group [432 (212) 

ng/mL, P<0.001]. Evidence of placental dysfunction was also given by the higher PAI-

1/PAI-2 in the IUGR group [1.1 (0.7)] compared to the healthy pregnant group [0.3 (0.3), 

log P<0.001]. Caution should be taken as 30% of IUGR and 50% of control group data 

were missing for sICAM-1, sVCAM-1, PAI-1, PAI-2 and PAI-1/PAI-2. 
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Table ‎4-7:  Metabolic and inflammatory parameters in controls and IUGR pregnancies. 

 

 

 

 

 

 

Parameters Cord blood Maternal blood 

Hormone  IUGR  (n=14) Control 
(n=42) 

P-value IUGR (n=14) Control 
(n=42) 

P-value 

Insulin (mU/L) 6.9 (10.4) 5.4 (4.3) 0.62 9.3 (4.4) 23.6 (38.7) 0.07* 

Leptin (ng/mL) 4.3 (6.1) 9.5 (8.8) 0.018* 34.0  (27.1) 33.6 (19.9) 0.58* 

Adiponectin (µg/mL) 33.6 (21.4) 35.9 (14.6) 0.74 8.5 (3.4) 9.2 (3.2) 0.51* 

 

Metabolism 
      

Triglyceride (mmol/L) 0.6 (0.2) 0.5 (0.3) 0.042* 2.5 (1.2) 2.6 (0.9) 0.51* 

TC (mmol/L) 1.3 (0.4) 1.6 (0.4) 0.011 6.0 (1.0) 6.4 (1.0) 0.14 

HDL-C (mmol/L) 0.5 (0.2) 0.8 (0.2) <0.001* 1.7 (0.5) 1.7 (0.4) 0.79 

NEFA (mmol/L) 0.1 (0.1) 0.1 (0.1) 0.99 0.6 (0.6) 0.4 (0.2) 0.11* 

Glucose (mmol/L) 4.5 (1.2) 4.3 (1.2) 0.68 5.3 (0.9) 5.0 (1.0) 0.27 

HOMA 1.4 (2.0) 1.3 (1.7) 0.45* 2.3 (1.4) 6.2 (11.5) 0.14* 

 

Inflammation 
      

CRP (mg/L) 0.1 (0.1) 0.4 (1.4) 0.34* 5.5 (4.4) 4.3 (3.0) 0.72* 

IL-6 (pg/mL) 6.6 (5.7) 6.4 (7.2) 0.64* 3.0 (2.0) 2.7 (1.8) 0.95* 

IL-10 (pg/mL) 1.2 (0.7) 2.8 (3.4) 0.071* 1.9 (2.0) 1.5 (1.0) 0.69* 

TNF-α (pg/mL) 2.4 (0.8)  2.3 (1.4) 0.53* 2.1 (1.4) 1.7 (0.9) 0.43* 

TNF-α/IL-6 0.8 (0.8) 0.7 (0.5) 0.90* 0.9 (0.5) 0.7 (0.6) 0.33* 

sICAM-1 (ng/mL) 111 (28) 137 (36) 0.031 223 (59) 179 (34) 0.052 

sVCAM-1 (ng/mL) 843 (229) 772 (155) 0.39 329 (82) 386 (79) 0.09 

PAI-1 (ng/mL) - - - 85 (300) 94 (38) 0.53 

PAI-2 (ng/mL) - - - 115 (78) 432 (212) <0.001 

PAI-1/PAI-2 -  - - 
 

1.1 (0.7) 0.3 (0.3) <0.001* 

Mean (SD), P-value or (*) P-value of log transformed variable from two-sample t-test. 
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4.6.4 Fetal TNF-α‎expression 

The significantly lower cord plasma TNF-α in the babies of women with PE was thought to 

have been due to either lower placental synthesis of TNF-α or lower fetal endothelial cells 

TNF-α. To explore this, further placenta TNF-α mRNA expression was measured in 

placentae of women with PE (n=24) and those with healthy (n=49) pregnancies. Placental 

TNF-α mRNA expression had a trend towards higher levels in the PE group [18 (24) PE 

vs 11 (18) control TNF-α/18S ratio x10-4, P=0.18]. Also, between women with IUGR 

(n=11) and controls (n=22), there was a trend towards higher placental TNF-α mRNA 

expression in the IUGR group compared to controls [13.2 (17.5) IUGR vs 9.2 (14.6) 

control; TNF-α/18S ratio x10-4, P=0.52], but this was not significant. 

Next, TNF-α protein expression in human umbilical cords from healthy and PE 

pregnancies were compared using IHC. The positive control, breast tumour tissue, 

showed TNF-α staining, whereas the no antibodies control (PBS only) showed no staining 

(Figure 4-2A and B). TNF-α was widely expressed in umbilical arterial endothelial cells 

(EC) and the SMC of the healthy pregnancies (Figure 4-2C). A similar distinct localisation 

was observed in the umbilical vein EC (as seen in Figure 4-2D). In the pre-eclamptic 

samples, TNF-α was also localised on the umbilical arterial EC, umbilical vein EC and 

SMC (Figure 4-2E and F). The comparison of TNF-α staining intensity implied that 

umbilical arterial EC, umbilical vein EC and SMC staining appears lower in pre-eclamptic 

samples compared to controls. 
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Figure ‎4-2:  Localisation of TNF-α‎in‎umbilical cord. A) Breast tumour (positive control), B) PBS (negative control), C) 
stained umbilical arterial and D) vein endothelial cells in healthy pregnancy, and E) stained umbilical arterial and F) vein in 
PE at X20 magnification (scale bar; 10µm). 



CC ONYIAODIKE, 2014                                                                                              Chapter 4-154 

4.6.5 Placental START domain proteins mRNA expression 

Since cord PE plasma TC levels were higher and IUGR TC and HDL-C levels were lower 

than controls, an analysis of cholesterol transporter expression in the placenta was carried 

out to establish whether changes in placental cholesterol transport systems may account 

for these differences. Emerging data has described a family of intracellular lipid 

transporters called the STAR-related lipid transfer domain. To identify which members of 

the START domain are expressed in the placenta, qualitative PCR assays were carried 

out in healthy term placentae. 

Placental START domains mRNA expression data are summarised in Table 4-8. With the 

exception of STARD6 and STARD15, all other START domain proteins were expressed in 

placental tissue. STARD2, STARD5, STARD9, STARD12 and STARD13 had the highest 

expression levels; STARD3, STARD4, STARD7, STARD8, STARD10, STARD11 and 

STARD14 showed moderate expression. STARD1 had low expression in placentae. 

Table ‎4-8: START domains mRNA expression level in healthy placentae. (●) represents 
faint expression, (●●) moderate and (●●●) strong; n=6 placentae studied. 
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STARD1 
 

59 
 

● 

 

STARD2 
 

56 
 

●●● 

 

STARD3 
 

58 
 

●● 

 

STARD4 
 

56 
 

●● 

 

STARD5 
 

54 
 

●●● 

 

STARD6 
 

56 
 

- 
 

STARD7 
 

58 
 

●● 

 

STARD8 
 

55 
 

●● 

 

STARD9 
 

58 
 

●●● 

 

  STARD10 
 

59 
 

●● 

 

  STARD11 
 

53 
 

●● 

 

  STARD12 
 

56 
 

●●● 

 

  STARD13 
 

56 
 

●●● 

 

  STARD14 
 

55 
 

●● 

  

  STARD15 
 

 

51 
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The START domain proteins which are responsible for intracellular cholesterol transport 

(including STARD1, STARD3, STARD4, STARD5 and STARD6) are presented in Figure 

4-3. The quality of liver tissue (positive control) was investigated by a supplied control 

primer mix (see Section 4.5.8) employed during this entire process separating agarose 

gels (lane A). STARD1 mRNA, a predicted 410-bp fragment, was observed in the liver 

tissue and placenta (Figure 4-3A). In addition, there was faint detection of STARD1 in the 

liver (lane B) and the placenta (lanes E-J). STARD3 mRNA was also expressed in the 

placenta, producing a fragment 605-bp product (Figure 4-3B). The liver (lane B) and 

placenta (lanes E-J) show high staining of the STARD3. STARD4 mRNA was also 

expressed in all placentae producing a 803-bp product. The STARD4 detected product in 

the liver (lane B) and the placenta (lanes E-J) is presented in Figure 4-3C. Similarly, the 

STARD5 mRNA producing a 423-bp product was also detected in the liver (lane B) and 

the placenta (lanes E-J) (Figure 4-3D). The STARD6 was detected in the positive control 

(primer mix) (lane A) but not found in the liver and the placenta (Figure 4-3E). The quality 

of RNA was verified for the liver (positive control) and the placenta, using 18S primers 

producing a 359-bp product (Figure 4-3F). 

 

 

 

 

Figure ‎4-3: Expression of START domain molecules in the placenta. A) STARD1 revealed 
a predicted product of 410-bp, B) STARD3 (605-bp), C) STARD4 (803-bp), D) STARD5 (423-
bp) and E) STARD6 (583-bp). Messenger RNA loading was assessed using F) 18S as a 
loading control gene. Lane A, supplied control primer mix (constitutive housekeeping genes); 
B, liver and START domain primer; C-D, negative control and E-J, placenta (n=6). 
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A B 

  

4.6.6 Immunolocalisation of LDLR, STARD3, ABCA1 and 
ABCG1 in healthy pregnancy, PE and IUGR placentae 

IHC was carried out to localise the expression of the key cholesterol transporter molecules 

in placentae that could potentially play a role in the cholesterol transport between mother 

and fetus. The transporters localised were LDLR, STARD3, ABCA1 and ABCG1, after 

determining optimal antibody dilutions for IHC staining assay. 

4.6.6.1 Localisation of LDLR in healthy, pre-eclamptic and IUGR 
placentae 

There was no positive staining observed when the antibody was substituted with PBS 

(negative control), whereas staining was detected in the LDLR positive control tissue 

(human liver) (Figure 4-4A and B). 

 

 

 

 

  

 

 

 

 

 

 

Figure ‎4-4: LDLR staining in A) liver tissue (positive control) and B) PBS (negative 
control) at 40X magnification (scale bar; 5µM). 
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IHC staining with anti-human LDLR polyclonal antibodies showed that the expression of 

LDLR in the healthy first and second trimester and term placentae was restricted to the 

syncytiotrophoblasts in the first and second trimester (Figure 4-5A and B) and in the 

syncytium at term (Figure 4-5C). Syncytiotrophoblast LDLR expression intensity 

progressively decreased between the first and second trimester. However, there appeared 

slightly reduced staining of LDLR on the syncytium of the third trimester/term healthy 

placental tissues (Figure 4-5C). LDLR was not localised in cytotrophoblast, stroma or fetal 

endothelial cells of the chorionic villi. In general, there was no staining observed in the 

stroma and fetal endothelial cells of the villi core. Staining was found in the fetal 

erythrocyte within the chorionic villi of the term placental tissue. 

In the placentae of women with PE, there was faint staining of LDLR on the syncytial layer 

compared to the placentae of women with IUGR, which showed strong staining of LDLR 

on the syncytium (see Figure 4-6A and B). There was prominent LDLR staining in healthy 

term placental tissue compared to pre-eclamptic placental tissue. Both healthy term and 

IUGR placentae had strong LDLR staining on the syncytium and less intense staining on 

the fetal erythrocyte within the fetal blood vessels. The pattern of LDLR staining in 

placenta samples was consistent in all of the slides. 
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Figure ‎4-5: LDLR staining in A) first trimester (scale bar 10µm) with B) insert (2µm), C) 
second trimester (10µm) and D) term (5µm) placentae. Images were obtained at 20X 
magnification (scale bar; 10µm), 40X (5µM) or 100X (oil immersion) (2µM). SyT represents 
the syncytiotrophoblast and CyT the cytotrophoblast.  
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Figure ‎4-6: LDLR staining in A) pre-eclamptic and B) IUGR placentae at X40 
magnification (scale bar; 5µM). 
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4.6.6.2 Localisation of STARD3 in healthy, pre-eclamptic and 
IUGR placentae   

There was no positive STARD3 staining noticed when the antibody was replaced with 

PBS (negative control), whereas staining was seen in the positive control tissue (breast 

tumour) (Figure 4-7A and B). 

 

 

 

 

 

 

 

Figure ‎4-7: STARD3 staining on A) breast tumour (positive control) and B) PBS (negative 
control) at 20X magnification (scale bar; 10µM). 
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The IHC, using the anti-human STARD3 (MLN64) polyclonal antibody, showed expression 

of STARD3 in the first and second trimester and term placentae. STARD3 was widely 

localised in the villous and extravillous layer of the syncytiotrophoblast and the 

cytotrophoblast of the first and second trimester placental tissue (Figure 4-8A and B). 

STARD3 staining intensity was higher in trimester 2 compared to trimester 1. In addition, 

there was no strong observable STARD3 expression on the stroma of the placenta by 

term, but there was in trimesters 1 and 2. In term placental tissue, STARD3 was localised 

in the syncytium, stroma and the fetal endothelial cell of the chronic villi (Figure 4-8C). The 

difference between trimesters 2 and 3 is that STARD3 localisation intensity is higher in 

second trimester fetal endothelial cells, stroma, syncytiotrophoblast and cytotrophoblast 

compared to term placentae. 

There was also STARD3 expression in PE and IUGR placentae. STARD3 staining was 

observed in the syncytial layer, stroma and fetal endothelial cells in pre-eclamptic samples 

(Figure 4-9A). STARD3 was expressed on the fetal erythrocyte. There was faint staining 

of STARD3 in the stroma. Similarly, IUGR placental tissue showed that STARD3 was 

localised in the syncytium, stroma and fetal endothelial cells in the chorionic villous 

(Figure 4-9B). Intensity of the STARD3 was also high in the syncytial layer and fetal 

endothelial cells compared to the expression in the stroma (as shown in Figure 4-9B). 

There appeared to be a greater intensity of STARD3 staining in the pre-eclamptic 

compared to the third trimester healthy placentae (Figures 4-9B and 4-8C). In the 

placentae of women with IUGR, there was STARD3 expression towards the stroma in the 

chorionic villous core compared to term placental tissue. STARD3 staining was higher in 

pregnancies complicated by IUGR compared to third trimester placenta samples. 

However, both PE and IUGR placenta STARD3 localisation revealed a slightly similar 

intensity of staining. There was a similar pattern of STARD3 staining in placenta samples 

that was consistent in all of the slides. 
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Figure ‎4-8: STARD3 staining in A) first trimester, B) second trimester and C) term 
placentae at 20X magnification (scale bar; 10µm). SyT represents the syncytiotrophoblast 
and CyT the cytotrophoblast. 
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Figure ‎4-9: STARD3 staining in A) pre-eclamptic and B) IUGR placentae at X20 
magnification (scale bar; 10µM). 
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4.6.6.3 Localisation of ABCA1 in healthy, pre-eclamptic and 
IUGR placentae 

No staining was observed in negative controls, but it was observable in the positive 

control (human liver) (Figure 4-10A and B). 

 

 

 

 

 

 

 

 

Figure ‎4-10: ABCA1 staining on A) liver tissue (positive control) and B) PBS (negative 
control) at 20X magnification (scale bar; 10µM). 
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The anti-human ABCA1 polyclonal antibody immunohistochemistry staining revealed that 

ABCA1 was expressed in the first and second trimester and term placental tissue (Figure 

4-11A, B and C). Staining of ABCA1 was localised in the villous cytotrophoblast cells and 

the syncytiotrophoblasts of the first and second trimesters (Figure 4-11A and B). The 

second trimester placental tissue cytotrophoblasts and syncytiotrophoblasts showed a 

higher intensity of ABCA1 (Figure 4-11B) compared to first trimester (Figure 4-11A) 

placentae. In the term placenta, syncytium (Figure 4-11C) showed a less intense ABCA1 

staining compared to the first and second trimester placental tissue (Figure 4-11A and B). 

A distinct staining was observed in the fetal endothelial cells of the chorionic villi, with no 

staining in the stroma of term placentae (as shown in Figure 4-11C). Essentially, there 

appeared to also be prominent ABCA1 staining in the fetal erythrocyte, as noticed in the 

fetal blood vessels of term placenta samples. 

ABCA1 was also expressed in the pre-eclamptic and IUGR placentae (Figure 4-12A and 

B). In cases of PE there was extensive ABCA1 staining, including on the syncytial layer, 

the fetal endothelial cell and faintly on the stroma (Figure 4-12A), whilst staining was 

restricted to the syncytial layer and fetal endothelial cells in the IUGR placental tissue 

(Figure 4-12B). The staining intensity of ABCA1 was slightly higher in all the cell types, 

syncytial (trophoblasts) and fetal endothelial cells of the placentae of PE, compared to 

those of healthy term placentae (Figures 4-12A and 4-11C). In contrast, expression of 

ABCA1 in IUGR and term placentae appeared fairly similar levels of staining intensity 

(Figure 4-12B and 4-11C). The pattern of ABCA1 staining in placenta samples was 

consistent in all of the slides. 
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Figure ‎4-11: ABCA1 staining in A) first (10µM), B) second (10µM) and C) third trimester 
(5µM) placentae. Images were obtained at 20X magnification (scale bar; 10µm) and 40X 
(5µM). SyT represents the syncytiotrophoblast and CyT the cytotrophoblast. 
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Figure ‎4-12: ABCA1 staining in A) pre-eclamptic and B) IUGR placentae at X20 

magnification (scale bar; 10µM). 
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4.6.6.4 Localisation of ABCG1 in healthy, pre-eclamptic and 
IUGR placentae 

There was also no positive staining seen when the antibody was replaced with PBS 

(negative control) compared to positive tissue (human lungs) (Figure 4-13A and B). 

 

 

 

 

 

 

 

 

Figure ‎4-13: ABCG1 staining on A) lung tissue (positive control) and B) PBS (negative 
control) at 20X magnification (scale bar; 10µM). 
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IHC staining with anti-human ABCG1 polyclonal antibodies demonstrated expression of 

ABCG1 in trimester 1 and 2 and term placentae. Staining showed that ABCG1 was widely 

expressed in the syncytiotrophoblasts and cytotrophoblasts of the first trimester and 

second trimester placentae (Figure 4-14A and B). In the term placental sample tissue, 

ABCG1 was localised in the syncytial layer and the fetal endothelial cells in the chorionic 

core (Figure 4-14C). The staining intensity progressively increased throughout gestation 

(Figure 4-14A, B and C). A distinct expression of ABCG1 was observed in the syncytium, 

fetal endothelial cell and fetal erythrocyte in the term placental tissue whereas the stroma 

stained faintly (Figure 4-14C).  

ABCG1 was expressed in PE and IUGR placentae (Figure 4-15A and B). In pre-eclamptic 

placentae, distinct ABCG1 staining was observed in the syncytium but less in the fetal 

endothelial cells (Figure 4-15A). Comparison between PE and term placentae showed 

slightly lower ABCG1 staining in stroma of the pre-eclamptic than in healthy term samples 

(Figures 4-15A and 4-14C). A similar ABCG1 staining of syncytial and fetal endothelial 

cells was observed in the IUGR placentae (Figure 4-15B). There was also no staining of 

the stroma with ABCG1 in the IUGR placentae (Figures 4-15A and B). Nevertheless, the 

intensity of ABCG1 staining was slightly higher in pre-eclamptic placentae compared to 

those of IUGR patients. Also, the pattern of ABCG1 staining in placenta samples was 

consistent in all of the slides. 
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Figure ‎4-14: ABCG1 staining in A) first (10µM), B) second (10µM) and C) third trimester 
(5µM) placentae. Images were obtained at 20X magnification (scale bar; 10µm) and 40X 
(5µM). SyT represents the syncytiotrophoblast and CyT the cytotrophoblast. 
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Figure ‎4-15: ABCG1 staining in A) pre-eclamptic and B) IUGR placentae at X20 

magnification (scale bar; 10µM). 
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4.6.6.5 Placental mRNA expression of LDLR, STARD1, 3, 4, 5, 
ABCA1, ABCG1, CD36 and apo E in pre-eclamptic, IUGR and 
healthy pregnancies 

Messenger RNA expression of a number of molecules potentially involved in placental 

cholesterol transport was assessed in healthy, PE and IUGR placentae. The lipid 

transporters assessed were LDLR, STARD1, STARD3, STARD4, STARD5, ABCA1, 

ABCG1, CD36 and apo E. The assay was performed in cases of PE (n=20) and BMI-

matched controls (n=20). Quantitative expression data are shown in Figure 4-16. The 

LDLR mRNA expression profile in the placenta was higher in the PE group compared to 

the healthy group [424 (558) PE vs 139 (123) control; LDLR/18S ratio x10-4, P=0.037]. 

The STARD3 mRNA expression was upregulated in the PE group [780 (516) PE vs 486 

(368) control; STARD3/18S ratio x10-4, P=0.046] compared to the control pregnancies. 

Placental expression of ABCA1 mRNA [354 (301) PE vs 107 (91) control; ABCA1/18S 

ratio x10-4, P=0.002] was significantly higher in the PE group compared to healthy 

pregnancies. There was no observable difference in the STARD1, 4, 5, ABCG1 and apo E 

expression between the PE and control groups. However, there is a trend toward higher 

CD36 [3467 (2423) PE vs 2206 (1727) control; CD36/18S ratio x10-4, P=0.067]. 

 

 

 

 

 

 

 

 

Figure ‎4-16: Placental mRNA expression levels relative to 18S in women with PE (n=20) 
and BMI-matched controls (n=20). Mean (SD) shown. 
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Quantitation of mRNA expression of these transporters was also carried out in women 

with IUGR (n=9) and BMI-matched controls (n=9). There were no differences in the mRNA 

expression in lipid transporters in the women with IUGR compared to the BMI-matched 

controls, including LDLR, STARD1, 3, 4, 5, ABCA1, ABCG1, CD36 and apo E (Figure 4-

17). However, there was the same pattern of higher LDLR, STARD3 and ABCA1 

expression in IUGR pregnancies compared to healthy pregnancies, which may be 

indicative of the under-powered number. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-17: Placental mRNA expression levels relative to 18S in IUGR pregnancies 
(n=9) and BMI-matched controls (n=9). Mean (SD) shown. 
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4.6.7 First and third trimester effect on placental levels 

The expression of lipid transporters was compared between first trimester (n=6) and term 

(n=20) placentae. There was no difference in LDLR mRNA expression between first 

trimester and term placentae. However, there was a trend to lower LDLR mRNA 

expression in the third trimester. Comparison of STARD3 mRNA expression between first 

trimester and term placentae showed higher mRNA expression levels at term [mean (SD) 

486 (368) term vs 252 (114) first trimester STARD3/18S ratio 10-4, P=0.021] (Figure 4-18). 

There was no difference in ABCA1 mRNA expression between first trimester and term 

placentae. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-18: Placental mRNA expression levels relative to 18S in first trimester (n=6) and 
third trimester placentae (n=20). Mean (SD) shown. 
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4.6.8 The role of fetal endothelial and trophoblast cells in 
placental transporters' expression level 

Measurement of the endothelial cell adhesion molecule (CD31) and cytokeratin-7 (KRT7) 

was used to ascertain the presence of endothelial and trophoblast cells, respectively. This 

was in order to get an indication as to whether it was the transporter expression levels in 

endothelial cells or in trophoblasts that changed, by expressing the transporters relative to 

CD31 or KRT7. LDLR mRNA expression relative to CD31 was higher in pre-eclamptic 

placentae compared to control placentae [58 (12) PE vs 31 (5) control; LDLR/CD31 ratio, 

P=0.046] (Figure 4-19A). There was no difference in STARD3 expression relative to CD31 

between PE and control groups. ABCA1 mRNA expression relative to CD31 was higher in 

the PE group compared to healthy pregnancies [61 (8) PE vs 22 (3) control ABCA1/CD31 

ratio, P<0.001]. 

In contrast, LDLR had a borderline higher mRNA expression in the IUGR group compared 

to controls [44 (28) IUGR vs 23 (11) control; LDLR/CD31 ratio, P=0.056] (Figure 4-19B). 

There was higher STARD3 mRNA expression in IUGR pregnancies compared to healthy 

pregnancies [134 (60) IUGR vs 75 (44) control; STARD3/CD31 ratio, P=0.032]. However, 

no difference in ABCA1 expression relative to CD31 was observed between the IUGR 

group and controls. 

These data would support the view that LDLR and ABCA1 expression located in 

endothelial cells is higher in PE samples than in controls. Similarly, STARD3 expression in 

endothelial cells may be higher in IUGR patients. 
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Figure ‎4-19: Placental transporter mRNA levels expressed relative to an endothelial cell 
marker. A) LDLR, STARD3 and ABCA1 mRNA expression relative to CD31 in PE cases 
(n=20) and BMI-matched controls (n=20); B) IUGR cases (n=9) and BMI-matched controls 
(n=9). Mean (SD) shown. 
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In order to ascertain whether it was the transporters' expression levels in trophoblasts that 

changed, expression of the transporters relative to KRT7 was carried out and showed that 

there was no difference in LDLR and STARD3 relative to KRT7 mRNA expression 

between PE cases and BMI-matched controls. In contrast, there was higher ABCA1 

mRNA expression relative to KRT7 in women with PE compared to controls [94 (81) PE 

vs 50 (21) control; ABCA1/KRT7 ratio, P=0.029] (Figure 4-20A). LDLR, STARD3 and 

ABCA1 mRNA expression relative to KRT7 was not different between IUGR cases and 

controls (Figure 4-20B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-20: Transporter expression expressed relative to a trophoblast marker. A) 
LDLR, STARD3 and ABCA1 mRNA level relative to KRT7 in PE cases (n=20) and BMI-
matched controls (n=20); B) IUGR cases (n=9) and BMI-matched controls (n=9). Mean (SD) 
shown. 
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4.6.9 ABCA1 relationship to maternal plasma cholesterol and 
potential ABCA1 and STARD proteins regulation by LXR-α 

There was a need to examine the relationship between key cholesterol transporters since 

umbilical cord TC reflected maternal levels, with a trend towards higher levels. We 

investigated whether certain regulatory proteins may affect the activity of lipid transporter 

gene regulation. As noted above, ABCA1 is a recognised downstream target of the 

transcriptional regulation of LXR-α. LXRs regulate cholesterol uptake and secretion with 

two LXR isoforms known as LXR-α and LXR-β (Peet et al. 1998; Edwards et al. 2002). 

LXR-α broadly limits cholesterol accumulation by regulating the expression of genes 

involved in cholesterol efflux. LXR-α induces transcription of proteins involved in the 

disposal of cholesterol from cells by ABCA1 (Plosch et al. 2007). 

Pearson correlation analysis showed a strong relationship between ABCA1 mRNA 

expression level and maternal plasma TC levels (r=0.58, P=0.012) in the PE group but not 

in the control group (Figure 4-21A). There was no difference in the placental LXR-α mRNA 

level [238 (214) PE vs 149 (137) control LXR-α/18S ratio x10-4, P=0.13]; however, there 

was reasonably close correlation between ABCA1 mRNA levels and LXR-α mRNA 

expression (r=0.44, P=0.055) in the PE group (Figure 4-21B).  
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Figure ‎4-21: ABCA1 mRNA level relationship to maternal cholesterol and LXR-α 
regulation. A) Placental ABCA1 mRNA correlation with maternal TC in PE mothers (r=0.58, 
P=0.012). B) Relationship between ABCA1 and LXR-α mRNA expression in the PE group 

(r=0.44, P=0.055). 
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Also, START domain proteins are thought to be regulated by LXR targets, as their 

expression stimulates LXR reporter activity (Soccio et al. 2005), indicative of the role of 

LXR targets in cholesterol transports. The STAR gene is activated by LXR-α (Jefcoate 

2006), and the stimulation of STAR expression by LXR-α activation is explained by the 

identification of a new LXR-α response element in the STAR promoter (Cummins et al. 

2006). In this context, it was examined whether LXR-α may influence placental START 

domain proteins. It was observed that LXR-α correlated to STARD3 (r=0.71, P<0.001) 

(Figure 4-22A) and STARD4 (r=0.89, P<0.001) (Figure 4-22B). 

Figure ‎4-22: Placental STARD3 and STARD4 mRNA level relationship to LXR-α 
regulation. A) Placental STARD3 and B) STARD4 mRNA correction with LXR-α expression 
(r=0.71, P<0.001) and (r=0.89, P<0.001) in PE, respectively. 
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4.6.10 LDLR, STARD3 and ABCA1 placental protein expression 

Having determined the placental mRNA expression levels of molecules involved in the 

cholesterol transport, it was necessary to test whether the differences in mRNA 

expression are reflected in differences in protein expression. Therefore, levels of placental 

protein expression were assessed for LDLR, STARD3 and ABCA1. Western blotting 

analysis was used to assess protein changes in placentae of pregnancies complicated by 

PE and BMI-matched control pregnancies. Similarly, protein expression of LDLR, 

STARD3 and ABCA1 was also assessed in IUGR placentae and BMI-matched controls.  

Initially, the placental protein extractions were prepared. Equal amounts of protein were 

added to each lane for gel electrophoresis. As expected, placental expression of LDLR, 

STARD3 and ABCA1 were detected in all PE, IUGR and controls samples. The predicted 

band size, according to the manufacturer's instructions for LDLR, was 95kDa, compared 

to the expected 160kDa molecular size (Figure 4-23A). In this experiment, the estimated 

vs expected molecular weights for LDLR, STARD3 and ABCA1 were 95kDA vs 160kDa 

(Figure 4-23A), 53kDa vs 50kDa (Figure 4-23B) and 220kDa vs 220kDa (Figure 4-23C), 

respectively. Interestingly, there were no significant differences in LDLR, STARD3 and 

ABCA1 placental protein expression relative to β-Actin between pre-eclamptic placentae 

and BMI-matched healthy placentae. The lack of difference in mRNA expression of LDLR, 

STARD3 and ABCA1 in cases of IUGR and BMI-matched controls was confirmed by the 

absence of difference in the protein expression. 
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Figure ‎4-23: Quantitation of placental protein levels by Western blot. A) LDLR, B) 
STARD3 and C) ABCA1 relative to β-Actin in cases of PE (n=20) and BMI-matched controls 
(n=20); cases of IUGR (n=9) and BMI-matched controls (n=9). LDLR was detected at 95kDa, 
STARD3 at 53kDa and ABCA1 at 220kDa. Mean (SD) shown. Typical gels are shown for 
three cases and three BMI-matched control samples, and summary graphs for the relative 
density of the transporter to β-Actin are also provided. 
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4.7 Discussion 

This chapter has aimed to explore the question of whether fetal cord metabolic and 

inflammatory parameters at birth reflected maternal parameters by the end of the third 

trimester. The offspring of pre-eclamptic mothers were associated with hyperlipidaemia, 

hypoleptinaemia, hypoadiponectinaemia, normoglycaemia and downregulated 

inflammatory response, independent of several confounding factors. There was 

dyslipidaemia, poor glucose control, hyperleptinaemia and proinflammatory status in PE 

mothers, compared to those who had a healthy pregnancy. Investigation of the molecules 

involved in lipid transfer (cholesterol) across the maternal-fetal interface highlights the role 

of LDLR, STARD3 and ABCA1, considering the detection of these molecules and their 

mRNA upregulation in the placentae of women with pre-eclamptic pregnancy. This 

detection and upregulation perhaps indicate that such placental lipid transporters may 

orchestrate the offspring's reflected maternal hyperlipidaemia at birth.  

In the cord blood of pre-eclamptic mothers, there was significantly higher TG and TC, and 

lower leptin and adiponectin. The raised cord TG level was dependent on maternal 

smoking, mode of delivery and labour, but these confounding factors did not affect the 

fetal TC level in PE. Gestation at sampling affected the lower leptin and adiponectin in the 

studied group. In previous studies, increased venous umbilical cord blood TG and TC 

were observed in cases of PE (Rodie et al. 2004; Catarino et al. 2008), whereas other 

studies have reported no difference of cord TG and TC between these groups (Ophir et al. 

2006). Leptin, unlike adiponectin, may have a role as a regulator of fetal growth and 

development during normal pregnancy (Hassink et al. 1997), as well as in pregnancies 

related to anomalous fetal growth (Tamura et al. 1998). Leptin and adiponectin are mostly 

produced by adipose tissue. The placenta is a target of leptin action as well as a source 

for leptin synthesis (Laivuori et al. 2006). Leptin is capable of stimulating placental amino 

acid transport (Jansson et al. 2003), which is beneficial to fetal growth. Unlike in the 

current study, Odegard et al. observe that umbilical cord leptin increased more strongly 

with gestational age in PE cases than in control subjects (Odegard et al. 2002). Although 

Odegard et al. had a larger sample size, they failed to consider an obesity measure (as 

was done in this current study), which perhaps may explain the discrepancies of the 

results. In the current study, lower cord blood leptin and adiponectin in the fetuses of 

mothers with PE suggests a fundamental compensatory ability in the fetus. Leptin 

contributes to insulin resistance and is thought to predispose fetal programming in the 

fetuses of obese mothers (Catalano et al. 2009). Thus, the reduced cord level of leptin in 

PE may suggest that the fetus is protected or existence of different pathway, unlike the 

fetuses of obese mothers. The cord blood adiponectin of cases of PE was noted to be 

lower than the controls; however, there is a reported initial trend towards lower levels, 
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which then rise with increasing gestational age, but not significantly different by term 

(Ogland et al. 2010). The fetal cord profiles of lower leptin and adiponectin may suggest a 

problem of placental insufficiency in cases of PE.  

Aaltonen et al. find that most cytokines (such as TNF-α, IL-1β and IL-6) do not cross the 

placenta (Aaltonen et al. 2005). There is no consensus in the field regarding this particular 

finding, but this may be why maternal inflammatory mediators perhaps do not influence 

the changes in fetal circulation during gestation. The lower cord blood TNF-α in newborns 

of mothers that suffered PE, compared to normotensive counterparts, was not expected. 

Others have previously reported declined cord TNF-α in PE (Schiff et al. 1994; Kupferminc 

et al. 1999). Another group have found elevated cord TNF-α in PE instead (Laskowska et 

al. 2006). In contrast, Catarino et al found no change in cord TNF-α concentrations in PE 

cases in comparison with controls (Catarino et al. 2012). Interestingly, the impact of 

maternal obesity measure by BMI, was not considered in all these reports. In the current 

study, the lower TNF-α in cases of PE depended on labour and mode of delivery, which 

are factors that supposedly increase the inflammatory response. TNF-α is a non-

glycosylated protein synthesised extensively by monocytes/resident macrophages, 

adipocyte and T cells (Weisberg et al. 2003; Cawthorn and Sethi 2008; Orsi and Tribe 

2008). The lower cord TNF-α levels in PE in the current study are thought to be due to 

poor placental synthesis. Consequently a placental mRNA expression assay was 

undertaken, and it was found that there was a trend to higher placental TNF-α mRNA level 

in cases of PE. IHC studies were also carried out, and a lower HUVEC TNF-α staining in 

PE was observed. TNF-α staining of a number of PE and control cord tissue samples 

would had been useful, to semi-quantitate the stained HUVEC after two independent 

scorers scored blind. Nonetheless, the low cord TNF-α is possibly due to the low number 

of cord monocytes, since a large number transmigrate into the subendothelium. This 

transmigration is the mechanism monocytes use to transform into resident macrophages 

in absence of injury. Catarino et al. note that the total number of leukocytes as well as 

monocytes is significantly lower in cord blood from PE pregnancies (Catarino et al. 2012). 

In the cord blood of women with PE, only the lipid profiles of TG and TC were reflective of 

the mothers' lipid profiles; other significant parameters (leptin, adiponectin and TNF-α) 

were observed to be lower. Also, after adjusting for the confounding factors, the borderline 

declined cord CRP level adjusted significantly, but was influenced by labour and mode of 

delivery. This observation (that, with the exception of lipid profiles in cord blood, most 

other profiles including inflammatory parameters decreased) is suggestive of a active 

metabolic pathway rather than inflammation in the fetuses of pre-eclamptic women. Thus, 

it hinted that downregulated inflammatory response perhaps resulted in the observed low 

inflammatory response. As a consequence, it was necessary to ascertain potential factors 
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which could have led to the declined cord blood inflammatory response of pre-eclamptic 

pregnancies. It is suggested that the reduction in cord inflammatory mediators is probably 

simply attributed to mothers suffering from pre-eclamptic disorder. In this context, pre-

eclamptic condition perhaps triggers upregulated production of immune suppressor 

molecules in the fetuses. This may be due to a physiological process that suppresses fetal 

inflammatory response in order to protect/counteract the hostile enhanced maternal 

inflammatory response of PE, often present throughout gestation (Sacks et al. 1998; 

Catarino et al. 2012). This implies that, in general, fetuses have a lower or suppressed 

immune response, than as expected, irrespective of events in their mothers. It appeared 

that, among the parameters measured, the maternal third trimester TG related to fetal 

cord blood TG, since its increase in mothers led to the increase in fetuses. The maternal 

trend towards higher TC levels in cases of PE, was significantly higher in previous reports 

(Rodie et al. 2004; Catarino et al. 2008); this higher level possibly reflects the fetal 

hyperlipidaemia (hypercholesterolaemia). The data in this Chapter failed to show an 

association of maternal TC with either fetal TC or fetal HDL in the extreme pregnancies 

cases of PE, which was also absent in the previous report (Rodie et al. 2004). 

Nevertheless, as Pecks et al. observed, there was unchanged level of TC in mothers of 

PE cases (Pecks et al. 2012); however, only prepregnancy obesity compared to term, was 

considered. An explanation of disturbed lipid levels in both fetuses and mothers, perhaps 

was affected by lower peripheral lipoprotein metabolism in cases of PE (Huda et al. 2009). 

There is a suggestion of the overrepresentation of common mutations in the LPL gene in 

women with PE (Zhang et al. 2006). These mutations are linked with a reduction in LPL 

activity and dyslipidaemia in non-pregnant population. Therefore, the current data that 

fetal cord lipids, particularly TG and TC, are reflective of maternal lipid (TG and TC) levels, 

whereas the inflammatory pathway is downregulated in pre-eclamptic fetuses, is 

revealing.  

Not surprisingly, perhaps, data of mothers with PE are consistent with the current 

literature (Catarino et al. 2008; Baker et al. 2009; Mackay et al. 2012). Maternal metabolic 

metabolites had higher TG, NEFA, glucose and leptin in cases of PE. Similar higher 

maternal levels of TG and NEFA (Mackay et al. 2012) and leptin  (Aydin et al. 2008) in PE 

have been well reported. Maternal hyperglycaemia is a risk factor in predicting PE (Yogev 

et al. 2010), and the current study showed raised maternal glucose levels in PE cases at 

the end of gestation. It is difficult to control for gestation at sampling, and most previous 

studies have not done this. Despite adjustment, the gestation at sampling did not have a 

significant effect on maternal TG but influenced the raised level of NEFA and glucose. 

Smoking partly affected fasting TG, as reported in non-pregnant and premenopausal 

women compared to non-smokers (Willett et al. 1983). Maternal inflammatory mediators in 

PE cases showed higher IL-10, PAI-1 and lower PAI-2. Increased IL-10 in PE is also 
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observed (Freeman et al. 2004). Another group also note higher PAI-1 (Reith et al. 1993; 

Catarino et al. 2008) and lower PAI-2 (Reith et al. 1993) in women who had PE compared 

to those with healthy pregnancies. There is no influence of the confounding factors on 

changes in the maternal IL-10, PAI-1 and PAI-2 levels. Nonetheless, these data indicate 

of consistent metabolic milieu in PE cases. 

Observations of cord blood pregnancies with IUGR showed higher TG when compared to 

controls. This result confirms a previous study (Rodie et al. 2004) which suggests that 

compromised lipid transport and fetal stress is to be blame. A significant decline in cord 

TC, HDL-C, leptin and sICAM-1 was also noticed in cases of IUGR. The confounding 

factors assessed did not play any role in the changes in the metabolic and inflammatory 

parameters in the IUGR group compared to controls. As anticipated, it was thought that 

reduction of these parameters occurred because of placental insufficiency (dysfunction) 

seen in cases of IUGR. Physiologically, there was no observed relationship between 

IUGR fetuses and mothers when compared to BMI-matched controls. As expected, in 

IUGR mothers, there were no changes in maternal metabolic or inflammatory parameters 

(except decreased PAI-2). Rodie et al. find no significant differences in the mean 

concentrations of maternal TG and TC between their IUGR and control groups (Rodie et 

al. 2004). The result is expected because, if anything, IUGR patients are mainly lean, 

having low BMI levels. Maternal plasma PAI-2 level decreased in the IUGR compared to 

the control group. A significant decrease in PAI-2 level was observed in the IUGR group, 

in comparison with women that had normal pregnancies (Gilabert et al. 1994). This result 

was also expected, as IUGR women have compromised placenta pathology, as the 

placenta is the primary source of PAI-2 (Harvey et al. 1995). Thus, the most significant 

difference between the babies and mothers of cases of IUGR was that fetal cord blood 

showed an increase in TG and a decrease in TC, HDL-C, leptin and sICAM-1. There was 

no change in metabolic and inflammatory parameters in the mothers except decreased 

PAI-2, suggestive of placental insufficiency. There was no observable impact of the 

confounding factors.  

Whether the elevated cord TC levels in cases of PE were due to the maternal rise of these 

parameters, (which was absent in IUGR cases, which had lower TC and HDL-C levels 

than controls) requires further investigation. In terms of the consistent expression of lipid 

transporters at the maternal-fetal interface, the previous study data has not really 

changed. The current study makes the whole picture more detailed. As maternal TC 

relates to fetal HDL in healthy pregnancies, but is absent in extreme cases of PE and 

IUGR (Rodie et al. 2004), this suggests that molecules involved in lipid transport – in 

particular, cholesterol may be affected in the extreme cases. LDLR is well known to be 

involved in recognising LDL and HDL, via receptor mediated endocytosis (Simpson et al. 
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1979; Brown and Goldstein 1986; Grummer and Carroll 1988). Intracellular proteins, 

STAR domain protein (Miller and Bose 2011) and efflux protein ABCA1 and ABCG1 

(Vaughan and Oram 2006; Adorni et al. 2007) were all investigated.  

LDLR on the outer membrane of the placental villi only constituting syncytiotrophoblasts 

was localised (Fuchs and Ellinger 2004). Other studies have reported LDLR localisation 

on the syncytiotrophoblast (Simpson et al. 1979). In the experiment presented in this 

chapter, LDLR was localised throughout gestation. There was a progressive decline in 

LDLR expression as gestation advanced, as seen in first and second trimester and term 

placentae. LDLR stains were not noticed in the stroma and fetal endothelial cells. These 

data confirm the physiological role of LDLR in the transport of cholesterol-rich lipoproteins 

across the maternal-fetal interface in healthy pregnancies and adverse cases. 

Investigation of 15 STARD intracellular transporters in placenta detected all except 

STARD6 and STARD15. Those proteins involved in cholesterol transport, including 

STARD1, STARD3, STARD4 and STARD5, were selected for further study. STARD3 was 

extensively localised in the villous and extravillous layer of syncytiotrophoblasts, 

cytotrophoblasts, the stroma and the fetal endothelial cells in term placentae. STARD3 

staining intensity increased by trimester 2 compared to trimester 1. By term, there was no 

strong observable expression on the stroma of the placenta, an indication of decline in 

staining. There was observable ABCA1 localisation on villous cytotrophoblast cells, 

confirming previous studies (Bhattacharjee et al. 2010), and on the syncytiotrophoblasts in 

the first and second trimester and syncytium. The second trimester placental tissue 

cytotrophoblasts and syncytiotrophoblasts showed greater intensity of ABCA1 compared 

to the first trimester, but became less intense in the term placenta and syncytium. This 

high staining in the second stage of pregnancy suggests that ABCA1 may have an 

important role in the transfer of cholesterol involved in the fetal steroidogenesis, cell 

membrane biosynthesis and neural system development (Lange et al. 2004; 

Guibourdenche et al. 2009; Chen et al. 2013). Another efflux protein, ABCG1 (Vaughan 

and Oram 2006), was demonstrated to be expressed in the trimester 1, trimester 2 and 

term placentae. ABCG1 was widely expressed in the syncytiotrophoblasts and 

cytotrophoblasts of the first trimester and second trimester placentae. ABCG1 was 

localised in the syncytial layer of the term placental sample tissue, and in the fetal 

endothelial cells in the chorionic core. Expression of ABCG1 staining was evident in the 

stroma of term placentae, and was prominent in the fetal erythrocyte; this staining was 

also observed in the fetal blood vessels of term placenta samples. Over time, ABCG1 

intensity progressively increased. This demonstrates that the activity of the transporter 

increased as pregnancy advanced.  
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Analysis of cholesterol transporter gene expression in placentae was carried out to 

establish whether changes in placental cholesterol transport systems may account for the 

fetal cord being reflective of the maternal hypercholesterolaemia. There were upregulated 

placental mRNA levels of LDLR, STARD3 and ABCA1 in PE cases, compared to controls, 

but the protein expression did not change. Albrecht et al. note no difference in ABCA1 

placental mRNA and protein expression between PE cases and controls (Albrecht et al. 

2007). A similar pattern of higher mRNA levels of LDLR, STARD3 and ABCA1 expression 

was observed in IUGR pregnancies, which failed to differ significantly from healthy 

pregnancies. This may possibly be due to this study being under-powered. Wadsack et al. 

observed lower placental LDLR mRNA levels in IUGR cases, which showed 

hemodynamic changes in fetuses compared to AGA (controls) with higher (1.8-fold) 

protein expression (Wadsack et al. 2007). Nonetheless, consistency in the cholesterol 

transporter expression was demonstrated at the maternal-fetal interface. LDLR was 

prominently stained on the syncytial layer in healthy term placentae, compared to PE 

placentae. Both healthy term and IUGR placentae had strong LDLR staining on the 

syncytium and less on the fetal erythrocyte within the fetal blood vessels. Higher intensity 

of STARD3 was noted in PE placentae compared to third trimester healthy placentae. In 

cases of IUGR, there was STARD3 expression towards the stroma in the chorionic villous 

core, compared to term placental tissues. STARD3 staining was higher in pregnancies 

complicated by IUGR, compared to third trimester placenta samples. The intensity of 

ABCA1 was slightly higher in the syncytial layer, fetal endothelial cells and the stroma and 

especially concentrated in the syncytial and fetal endothelial cells of the PE compared to 

term placental tissues. In contrast, the expression of ABCA1 in IUGR and term placentae 

showed fairly similar levels of staining intensity. These staining data are consistent with 

the literature and Chapter 4's objective of detecting molecules involved in lipid transport at 

the expected locations/sites of the placentae (maternal-fetal interface) (Plosch et al. 2007; 

Stefulj et al. 2009). The data pinpointing upregulation of placental mRNA level but not 

protein of LDLR, STARD3 and ABCA1 in PE in cases, in comparison with controls, was 

enlightening. The inability of protein expression to confirm mRNA is perhaps due to the 

need for energy conservation for other activities. It may also imply that protein 

expressions are allowed to be expressed only when required. Data have highlights some 

cholesterol transport proteins such as ABCA1, as a 'labile protein' i.e. protein that must be 

synthesised continuously because it is degraded continuously (Remaley 2007), which is 

also observed in STARD1 (Epstein and Orme-Johnson 1991; Manna et al. 2009), but no 

report on LDLR and STARD3. This may have resulted in the lack of difference in LDLR, 

STARD3 and ABCA1 protein expressions in cases of PE. In assessment of the first and 

third trimester placenta mRNA levels, it appeared that STARD3 is higher at term, whereas 

LDLR and ABCA1 declined over time. An important point is that intracellular lipid transfer, 

such as via STARD3, is necessary for steroidogenesis (Guibourdenche et al. 2009), which 



CC ONYIAODIKE, 2014                                                                                              Chapter 4-189 

is essential even towards the end of gestation. This is supported by the putative role of 

STARD3 in cholesterol transport from the endosome (Strauss et al. 2002).    

Transporters were expressed relative to 18S because 18S provides the best endogenous 

control, which allows for normalisation of placental gene expression. However, such 

endogenous control cannot distinguish between cell types. Thus, in order to determine 

whether it was the transporter expression levels in endothelial cells or in trophoblasts that 

changed, transporters were expressed relative to CD31 or KRT7, respectively. It was 

observed that in pre-eclamptic samples, the LDLR and ABCA1 mRNA were higher in the 

endothelial cells relative to CD31 compared to controls. In cases of IUGR, the LDLR and 

STARD3 were higher in endothelial cells relative to CD31 expression. In contrast, it was 

noted that a greater number of trophoblasts were involved in the ABCA1 expression 

relative to KRT7 in cases of PE, in comparison with the control group. Although the 

placental tissue transporters in women with IUGR were not significantly different; there 

was an observed trend of higher trophoblast involvement in ABCA1 mRNA levels relative 

to KRT7, compared to control placentae. These data implied that the upregulated 

transporters in the cases of PE, in particular LDLR and ABCA1 perhaps due to active 

involvement of trophoblasts and fetal endothelial cells. 

The next step in analysis of this experimental data was to determine whether there is 

association between the metabolic and inflammatory parameters and placental 

transporters. In PE, LDLR mRNA expression correlated positively with fetal TC, HDL-C 

and leptin whereas IL-10 was negatively associated. This highlights that upregulated 

LDLR perhaps transports cholesterol across syncytiotrophoblasts (Simpson et al. 1979; 

Fuchs and Ellinger 2004). STARD3 levels were noted to be linked to increase fetal HDL-C 

and leptin in cord blood. ABCA1 level related to increased insulin and HOMA and 

decreased IL-10 concentration in the cord blood of women with PE. In contrast, in mothers 

with PE, LDLR levels were found to relate to increased maternal TG levels of PE, whereas 

STARD3 expression was associated with TG increase, insulin and HOMA in mothers with 

PE. Upregulated ABCA1 levels were positively linked to maternal insulin and HOMA 

(insulin resistance). Also, among the upregulated placental transporters (LDLR, STARD3 

and ABCA1) mRNA levels in cases of PE, only that of ABCA1 related to the maternal TC 

in the plasma circulation. It was thought that a LXR-α expression may be responsible for 

upregulated ABCA1 mRNA expression in PE, compared to healthy controls. Thus, further 

analysis carried out, confirmed that the LXR-α mRNA was strongly positively related to the 

ABCA1 mRNA expression in the pre-eclamptic placentae. There was also unexpected 

positive correlation between LXR-α mRNA and the STARD3 mRNA level in placentae of 

women with PE. 
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These observations show that there is an association between the metabolic parameters 

and the placental transporters, particularly in the cholesterol transport pathway. It is 

suggested that these transporters may perhaps play a role in the transfer of maternal 

parameters to the fetus across the maternal-fetal interface. Consequently, this leads to the 

proposal that the fetal metabolic pathways are reflective of those in the mother. Rodie et 

al. suggest that fetal stress and compromised trophoblast invasion may been implicated, 

due to the observation of increased cord blood TC levels (Rodie et al. 2004). Overall, data 

from the current study highlights the concept that fetal lipid profiles (e.g. cholesterol) 

transported from the mother across the maternal-fetal interface perhaps occurs through 

the LDLR on syncytiotrophoblasts and/or syncytium, intracellularly transported via the 

STARD3 on stroma across to the fetal endothelial cells, where its effluxed into the fetal 

compartment by the ABCA1. This view is supported by report of Stefulj et al. that showed 

ABCA1 and ABCG1 efflux of lipid-poor apo A-I, in a term human placenta endothelial 

cells, with LXRs activators enhancing the cholesterol efflux to both acceptors (Stefulj et al. 

2009). 

PE is defined as a multisystem disorder of pregnancy diagnosed after 20 weeks of 

gestation, characterised by the onset of hypertension, proteinuria and oedema. To date, 

the definitive treatment of PE remains to expedite delivery. PE prevalence varies, affecting 

2-5% of pregnancies in the UK alone. Underlying cause(s) and pathogenesis remain 

poorly understood. Impaired trophoblast invasion of the placental spiral arteries is a 

recognisable feature of pre-eclamptic disorder (Brosens et al. 1972; Kadyrov et al. 2006) 

and implicative of abnormal placentation (Furuya et al. 2008). IUGR is a pathological 

condition of reduced growth velocity which compromises fetal well-being. IUGR shares a 

number of similarities with PE pathology, with the exception of generalised endothelial 

damage. Experimental data analysed in this chapter and in other studies have shown that 

increased fetal lipid levels are due to the levels in mothers, which suggests that a trans-

placental mechanism must be involved. In this study, IUGR was a useful control in 

determining factors involved in the transport of lipids, particularly cholesterol, across the 

maternal-fetal interface. This use of IUGR controls is an important strength of the current 

study. Use of paired data from the mother and baby means that much sampling bias is 

eliminated, and this allows assessment to be undertaken closest to the ongoing events 

between the mother and the fetus in pregnancy. There was broad BMI matching between 

the groups, i.e. BMI-matched controls. BMI-matched cases and controls help counteract 

bias posed by obesity, an identifiable risk factor that alters metabolic and inflammatory 

parameters. Very good measurement of parameters, including lipids, added to the 

strength of the assay. In contrast, weaknesses include an unreasonably small sample 

size, meaning that data may perhaps have been under-powered. The effect of smoking in 

IUGR cases may also have contributed to a false negative result that may otherwise not 
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have occurred. Differences in gestation at sampling possibly affected results, as it is 

impractical to collect blood, cord and placenta samples for all women on the same day of 

gestation. There is also the issue of mode of delivery employed, for instance caesarean 

section or emergency delivery. The many cell types in placentae present problems related 

to gene expression, whether mRNA or protein expression.  

It is recommended that further studies undertake a differential isolation of placental cell 

types, such as syncytiotrophoblasts, cytotrophoblasts and fetal endothelial cells. This 

differentiation of cells would help identify the cell types involved during transport of lipids, 

particularly TC, across the maternal-fetal interface. Nonetheless, there is an indication that 

trophoblasts (syncytiotrophoblasts and cytotrophoblasts) and fetal endothelial cells may 

play major roles in the expression of upregulated transporters. Also, exploring certain 

immune repressor molecules in the fetuses of pre-eclamptic mothers in future (including 

HDL-C and IL-10) may help elucidate the downregulated fetal inflammatory response. 

Data have shown that monocyte TNF-α synthesis is reduced by HDL-C (Murphy et al. 

2008) and IL-10 (de Waal Malefyt et al. 1991; Royle et al. 2009). However, it appears that 

the observed fetal downregulated inflammatory mediators are perhaps due to the changes 

in homeostatic balance by the action of the antiinflammatory pathway. This 

downregulation may serve to protect the fetus against a hostile environment of an extreme 

pregnancy outcome such as PE. The elucidation of mediators that suppresses 

inflammatory response in the offsprings of mothers with PE, a condition used as a model 

of an extreme pregnancy outcome, may perhaps be useful in understanding other 

inflammatory disorders affecting obstetric outcome. 

In summary, it has been shown that fetal cords reflected maternal parameters of 

metabolism and inflammation in cases of PE, particularly hyperlipidaemia. 

Normoglycaemia, hypoleptinaemia, hypoadiponectinaemia and downregulated 

inflammatory mediators (mediators due to lower cord TNF-α, independent of key 

confounding factors) were also evident in the cord blood. There were altered maternal 

parameters in cases of PE (including hyperlipidaemia, insulin resistance, poor glucose 

tolerance, hyperleptinaemia and systemic inflammation) that are consistent with previous 

studies. Upregulation of LDLR, STARD3 and ABCA1 mRNA, but not proteins, is possibly 

suggestive of energy conservation. During lipid transport, particularly of cholesterol across 

the maternal-fetal interface, the localisation and upregulation of the transporters is 

perhaps implicated in fetal parameters reflecting those of the mother. Whether these 

changes affect fetal vascular health is recommended to be further explored in in vivo and 

in vitro studies in order to ascertain the status of fetal endothelial cell function and 

dysfunction at birth, in particular in obese pregnant women and after an extreme case e.g. 

PE. 
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5 Human Umbilical Vein Endothelial Cell Gene 
Expression as an Index of Offspring Endothelial 
Function 

5.1 Introduction 

A switch from a quiescent to an activated endothelium is a recognisable feature of 

vascular pathology. Endothelial activation refers to a specific change in endothelial 

phenotype, a change most often characterised by an increase in endothelial/leukocyte 

interaction and permeability, pivotal for inflammatory response in both physiological and 

pathological settings (Hordijk 2006; Alom-Ruiz et al. 2008). The normal endothelial cell 

plays a role in the maintenance of vascular homeostatic balance. It controls vascular tone, 

inflammation, thrombolysis and leukocyte proliferation and maintains low environment 

oxidative stress. Studies have described the aetiology of vascular disorders as evolving 

gradually over decades, from early childhood to adult life. However, debate remains over 

the implication of the uterine environment, particularly for future cardiovascular disease. 

There are proposals that lipotoxicity during the in utero period has long-term adverse 

effects on offspring's vascular health (Freeman 2010; Jarvie et al. 2010).  

Data from non-human primates shows that both lean and obese mothers who chronically 

consume a high-fat diet present a three-fold increase in liver TGs in the fetal liver 

(McCurdy et al. 2009). Impaired tissue homeostasis attributed to changes in lipid 

utilisation or to lipid-induced change in intracellular signalling has been broadly termed 

lipotoxicity (Symons and Abel 2013). This lipotoxicity plays an important role in the 

pathogenesis of endothelial dysfunction and causes orchestration of altered inflammation 

and progression to atherosclerotic lesion. 

The developmental origins of adult disease have been intensely debated; however, since 

its initial proposal (three decades ago), definitive evidence for programming in humans is 

still lacking. The pregnancy environment may impose direct damage on the developing 

fetus that becomes deleterious later on in life. An example of this type of damage is 

impaired cellular morphology, which may lead to a change in the physiological setting of a 

response to certain stimuli (Lucas 1994). Such disturbances in early physiological 

'memory' could translate into a pathological state in adult life. This phenomenon is 

referred to as fetal programming, and its underlying mechanisms are yet to be fully 

established. Cooper et al. report that the susceptibility of offspring to future risk of 

developing PE is three-fold higher in those born of pre-eclamptic pregnancies compared 

to unexposed siblings (Cooper et al. 1988). Since both maternal and fetal dyslipidaemia 

are evident in PE (Rodie et al. 2004; Catarino et al. 2008), there is a high risk of lipid 
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peroxidation. This peroxidation generates free radical species, resulting in endothelial 

activation and subsequent high vascular leukocyte transmigration. Some data shows 

elevated malondialdehyde (a marker of lipid peroxidation) levels in the umbilical venous 

cord blood samples of pre-eclamptic pregnancies compared to normotensive pregnancy 

(Chamy et al. 2006; Negi et al. 2012). 

Generation of the condition of lipotoxicity involves a number of steps. A definable step is 

the storage of the TG droplet in non-adipose tissue, referred to as ectopic fat 

accumulation (Jarvie et al. 2010; Snel et al. 2012). It is not the TG per se but the 

accumulation of intermediates of lipid metabolism in organs (such as the skeletal muscle, 

liver, pancreas, heart and circulatory system) which seem to disrupt the metabolic process 

and impair organ function. The placenta is another likely site of ectopic fat deposition in 

pregnancy, e.g. obese women (if they have exceeded their finite lipid accumulation 

capacity because of a high-fat diet) may induce lipotoxicity in their fetus (McCurdy et al. 

2009). Palinski and Napoli find evidence from animal data suggesting that initiation of 

atherogenesis results from the uterine environment (Palinski and Napoli 2002).  

An influx of leukocytes from the circulation into the subendothelial space has long been 

characterised as a hallmark of acute inflammation. Their transmigration penetrating 

through the capillaries occurs through several steps, including chemo-attraction, rolling 

and tight adhesion (Luscinskas et al. 1994) and transmigration. The stimuli involved 

(including cytokines/chemokines and oxidative substances) result in neutrophil, monocyte 

(McEvoy et al. 1997) and lymphocyte adherence to vascular endothelial cells. This 

transmigration is the mechanism monocytes employ to transform into resident 

macrophages in the absence of infection or injury. Free radical production by endothelial 

cells is usually at a low level under normal conditions, due to anti-oxidant defence 

mechanisms including catalase, glutathione peroxidase and superoxide dismustase 

(Wang and Walsh 1996; Lin et al. 2007). Free radicals attack molecules (including 

lipoproteins, polyunsaturated fatty acids and lipoxygenase), thus generating highly 

reactive lipid peroxidation products and lipid peroxides (Spanbroek et al. 2003; Belkner et 

al. 2005). Oxidized LDL (or minimally modified LDL) also activates endothelial cells and 

triggers binding of monocytes (Watson et al. 1997). It is now also apparent that oxidation 

of LDL lipids and of apo B-100 renders LDL pro-atherogenic (Miller et al. 2010). Oxidative 

modification of LDL-C promotes inflammation and monocyte and macrophage recruitment, 

resulting in foam cell formation producing the atherogenesis on endothelial cells 

(Steinberg 2009). This modification results in the cytotoxic condition of endothelial cell 

culture in a serum-free medium and also induces a wide variety of proinflammatory 

cytokines in macrophages as well as nitric oxide-induced vasodilatation. In most 
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instances, all these products react with cellular proteins, DNA and lipids, rendering them 

toxic and causing mutagenesis. 

Studies in Chapter 4 showed that the fetal cord reflected maternal metabolic and 

inflammatory parameters, in particular TC of pre-eclamptic pregnancies. This was shown 

to be due to transporter molecules involved across the maternal-fetal interface in PE, as 

an example of an extreme pregnancy outcome in comparison with healthy pregnancy. It 

was suggested that perhaps uptake of lipids in the fetus may be implicated in abnormal 

vascular health at birth. When a target tissue is sampled, it is generally the case that 

different cell types in the tissue have different responses. The fundamental rationale for 

the use of microarray-based gene expression profiling to characterise biological samples 

is based in part on the principle that cells and tissues (and perturbation applied to them) 

can be characterised on the basis of their relative expression of genes and transcripts. 

The microarray, or ''gene chip'', technique measures relative expression levels of genes 

by determining the amount of messenger RNA present in one sample versus another, in 

order to identify the function of specific gene(s).  

The selection of the best endogenous control gene is paramount for relative gene 

expression studies. An ideal endogenous control gene is expected, under different 

experimental conditions, to have similar RNA transcription levels in a variety of different 

tissues and cell types. The most common constitutively-expressed internal housekeeping 

genes routinely used in research include those involved/located in the glycolytic pathway, 

glyceraldhyde 3-phosphate dehydrogenase (GAPDH); protein folding, peptidylprolyl 

isomerase A (PPIA); eukaryotic 18S ribosomal RNA, 18S; transcription initiator, TATA-box 

binding protein (TBP) and cytoplasmic, β-Actin (Murthi et al. 2008; Li et al. 2009; Kastl et 

al. 2010). 

Nevertheless, a number of potential future disorders, including obesity and cardiovascular 

disorder, have been proposed to arise after exposure of the fetus to an extreme uterine 

environment. That obesity is a significant risk factor in changes in metabolic and 

inflammatory parameters is well documented. It implies that the impact of obesity could 

contribute to a vicious cycle of the gestational metabolic and inflammatory pathways' 

effects, not only on the mother but, most importantly, on the developing fetus, perhaps 

becoming evident only in adult life. Understanding how such disturbances affect the fetus, 

in particular in terms of vascular health, should go a long way towards determining optimal 

intervention strategies for fetuses born of complicated pregnancies associated with altered 

metabolic and inflammatory parameters. 
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5.2 Hypotheses 

In this chapter it is hypothesised that preparation of a clean HUVEC can be obtained at 

birth using a density gradient separation technique. It is also hypothesised that the 

established procedure would be useful in selecting and setting up a model of assessing 

the impact on vascular health of disturbed offspring lipids, particularly TC in the 

pregnancies of obese women, and cases of extreme complications, such as PE, using 

HUVEC as an index of endothelial cell function. 

5.3  Aims   

The aim of this chapter is explore the implications of changes in cord blood lipid 

metabolites on the offspring's vascular health, using HUVEC gene expression to assess 

the index of fetal endothelial function after establishing the best HUVEC preparation 

methodology, selecting the endogenous control genes and analysing a pool of endothelial 

(dys)function gene expression markers and transcripts in HUVEC of obese mothers or 

those with PE,  in comparison with controls. 

5.4 Objectives 

1. To establish a simple and rapid methodology for the optimal isolation of fetal 

endothelial cells from umbilical cords at birth in normal pregnant women. 

2. To evaluate a panel of control genes in order to select an endogenous control in order 

to normalise mRNA expression profiles of endothelial cell genes for RT-PCR 

experimental studies with HUVEC in healthy pregnancies. 

3. To analyse the HUVEC subtracted libraries obtained from umbilical cords from 

healthy pregnancies, as well as those of obese mothers and women with PE, using 

microarray, in order to assess the effect of disturbed fetal metabolic parameters 

(particularly TC) on the expression of a wide range of endothelial (dys)function gene 

markers and transcripts. 
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5.5 Materials and Methods 

5.5.1 Media and buffers 

Solutions of crude collagenase (Clostridium histolyticum, type II, cat C6885, Sigma-

Aldrich) were prepared using PBS (see Section 2.5.1), frozen quickly to aliquots (of 

25mg/mL) and kept frozen at -20°C. Prior to usage, 24mL of PBS was added to 1mL of 

collagenase (25mg/mL) in order to produce a final concentration of 1mg/mL. 

Red cell lysis solution X1 was made up by dissolving 8.32g ammonium chloride in 100mL 

DH2O. 

A complementary DNA reaction mix (8µL) was prepared using 1μL 10X reverse 

transcriptase buffer, 0.4μL 25X dNTP, 1μL 10X random primer, 0.5μL multiscribe reverse 

transcriptase and 0.5 μL Rnase inhibitor 1U/μL, dissolved in 4.6μL DEPC.  

5.5.2 Recruitment and Study Design 

A total of 27 participants were recruited from the healthy population of women attending 

the Princess Royal Maternity Unit, GRI, to undergo elective caesarean delivery. Women 

gave their written informed consent. Ethical approval was granted in accordance with the 

guidelines of the Helsinki Declaration from the North Glasgow University Hospital Trust, 

National Health Service Glasgow and Clyde research ethic committee, GRI, Scotland. 

Subjects were excluded if patients had hepatitis, HIV, diabetes, chronic hypertension, 

connective tissue disorders or any long-term use of medicine. Also, none of the subjects 

were being treated with medication that interferes with lipid and carbohydrate metabolism, 

inflammation or endothelial function. 

5.5.3 Fresh umbilical cord collection 

A preliminary study of umbilical cord sections (n=8) from an archival collection was 

stained for a specific endothelial cell marker, CD31, and SMC marker, myosin, using IHC 

(see Section 5.5.5). Fresh healthy umbilical cords (n=7) obtained at delivery were used to 

optimise the HUVEC isolation protocol in the preliminary study. In the subsequent study, 

umbilical cords from twenty subjects with healthy pregnancies were collected in a sterile 

container. In order to determine whether HUVEC could be isolated from frozen umbilical 

cords, the twenty umbilical cords were divided into two groups for fresh (n=10) and frozen 

(n=10) HUVEC. The fresh HUVEC were from umbilical cords isolated soon after birth (less 

than 20 min). The frozen HUVEC were from umbilical cords collected, washed with PBS 

(pH 7.6) and frozen (> 48 hours) at -80°C. 
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5.5.4 Isolation of HUVEC 

The HUVEC isolation procedure was an adaptation of methods published previously 

(Maruyama 1963; Jaffe et al. 1973). A sterile technique was utilised in all manipulation of 

the cords. In all cases, the umbilical cord was handled with care to avoid too much 

bending during HUVEC isolation in order to minimise SMC contamination. The umbilical 

cord was inspected, its length was measured and then the cord vein was cannulated with 

20G polyurethane intravenous cannula (BD Plastipak™, Drogheda) inserted from the 

baby end with the needle secured by clamping with forceps. A 20mL syringe (BD 

Plastipak™ Drogheda) was filled with PBS (pH 7.6), and cord blood was flushed out until 

it drained clear at the other end, with no blood contamination. The placental end was 

clamped with forceps. A 1mg/mL pre-warmed collagenase (clostridium histolyticum, type 

II, Sigma) solution was added to the vessel until a slight resistance was felt, and the other 

end was then clamped. The cords were incubated at 37°C for 15 min. Removal of the 

endothelial cells was facilitated by a gentle rubbing and massage of the cord before 

collection in a 50mL sterile polypropylene tube. Cells were collected by centrifugation at 

250g for 1 min. 

5.5.5 Optimal HUVEC separation 

Isolated cells were stained in 1:1 of trypan blue concentration in order to determine the 

number and viability of untreated HUVEC on a haemocytometer, and then viewed under 

an Olympus Model CK2 inverted microscope (Olympus, Japan). A portion of untreated 

HUVEC (5 x 105 cells) was collected onto Super-Frost Plus slides in a cytospin (Thermo 

Shandon) at 120g for 6 min. Another portion of untreated HUVEC was preincubated with 

10mL red cell lysis solution (X1) for 5 min to eliminate red cells contaminants, followed by 

washing in PBS, pH 7.6 (250g in for 1 min), after the washing, 5 x 105 cells were collected 

onto Super-Frost Plus slides on a cytospin (Thermo Shandon) at 120g for 6 min. Another 

portion of untreated HUVEC was resuspended in 3mL of PBS (pH 7.6) after isolation and 

transferred into 3mL of histopaque®-1077 (Sigma) in 15mL tubes, and centrifuged (400g 

in for 30 min) at RT. Histopaque®-1077 reagent separates cells according to their density 

gradient; thus, such separation using the reagent is referred to as a density gradient 

technique. A central band was observed in the tube and cells on the band were gently 

collected and washed twice in PBS (pH 7.6). After the washes, 5 x 105 cells were also 

placed in the cytospin onto the slides (Super-Frost Plus) (120g for 6 min). Cytospin slides 

were stored at -80°C until used for IHC staining assay. 

After identifying histopaque as the best technique for isolating clean HUVEC samples 

from preliminary preparation, the histopaque method was utilised in the subsequent study 
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of fresh (n=10) and frozen (n=10) HUVEC samples. HUVEC aliquots from each 

preparation were briefly centrifuged (1000g for 30 sec), the supernatant was discarded 

and 1mL of TRIzol reagent (Invitrogen) was added to the cell pellet for RNA extraction. 

HUVECs in TRIzol were stored at -80°C until used for further study. 

5.5.6 Immunohistochemical analysis 

Paraffin-embedded healthy umbilical cord and/or isolated HUVEC (Sections 5.5.4 and 

5.5.5) were utilised in IHC staining studies. Initially, sagittal serial sections of umbilical 

cord tissue biopsies of 5µm thickness were cut using a Leica RM 2135 rotary microtome. 

The standard Avidin Biotin Complex (ABC) method was used for IHC (Hsu et al. 1981), as 

stated above (see Section 2.5.11). Slides of paraffin-embedded umbilical cord or positive 

control sections were rehydrated in an alcohol series. HUVEC slides were placed in 70% 

cold acetone (VWR International) and left for 10 min. Peroxidase activity was quenched 

by immersing slides in freshly prepared 0.5% H2O2 containing 5mL H2O2 and 300mL 

methanol for 30 min, followed by washing for 2 x 10 min in PBS. Antigen retrieval was 

carried out in a 0.01M citrate buffer (pH 6.0). Slides for staining with CD31 antibodies 

were placed in a solution of the citrate buffer in a microwavable pressure cooker and 

microwaved for 8 min. The slides for staining with anti-myosin antibodies were placed in a 

beaker containing a solution of the citrate buffer that was microwaved for 45 min. Paraffin 

slides were rinsed in DH2O for 5 min and washed for 2 x 5 min in PBS, pH 7.6, whereas 

acetone-fixed cell slides were rinsed for 5 min in PBS. A non-immune blocking reagent of 

PBS containing 20% horse and 20% human sera (Sigma) was added, and slides were 

incubated at RT for 30 min to block non-specific antibody binding. Slides were washed in 

DH2O for 5 min and 2 x PBS (pH 7.6) for 10 min before incubating with monoclonal mouse 

anti-human CD31 at 1:500 dilution (M0823, DAKO, USA) or mouse monoclonal anti-

myosin (mouse IgG1 isotype) at 1:250 dilution (M7786, Sigma-aldrich, USA) overnight at 

4°C. After further washes (2 x PBS, pH 7.6, for 5 min), the slides were incubated in 

biotinylated IgG H+L (30 min, 1:200, RT) (BA-2000, Vector laboratories). The 1° and 2° 

antibodies were diluted in PBS containing 2% horse and 5% human sera, while a negative 

control contained 2% horse serum and 5% human serum only. After incubation with the 2° 

antibody, slides were washed twice in PBS (pH 7.6) for 5 min and incubated for 30 min at 

RT in a Vectastain® standard ABC Kit Elite [two drops of reagent A and reagent B diluted 

in 5mL PBS (pH 7.6)]. Staining was developed using 1mg/mL of DAB solution (Section 

2.5.1) incubated for 10 min. The slides were washed in PBS for 5 min and then in 1 x 

DH2O for 5 min before Harris stain counterstaining for 15 sec. Paraffin slides were 

dehydrated, fixed in a series of alcohol concentrations and then mounted in DPX for 

microscopy. Digital image capture was with the image analysis program Image-Pro Plus 

(version 6.2,  MediaCybernetics) on a BX50 F-3 microscope (Olympus) equipped with X4, 
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X10, X20, X40 and X100 lenses connected to a 3-CCD colour camera, and images were 

processed using an ImageJ Java-based image processor (National Institute of Health 

Bethesda, Maryland, USA). 

5.5.7 Selecting the best RT-PCR endogenous control gene for 
HUVEC 

Isolated fresh and frozen HUVEC preparations that had been resuspended in 1mL TRIzol 

LS reagent (Life Technologies) (Section 5.5.5) were allowed to thaw and were then 

incubated at RT for 5 min to permit complete dissociation of nucleoprotein complexes. As 

mentioned above (see Section 2.5.8), chloroform (0.2mL) (VWR, International) was added 

to the suspension, which was mixed vigorously and left to incubate at RT for 3 min. The 

upper aqueous phase was transferred to a clean sterile tube before 0.5mL isopropyl 

alcohol was added; it was then incubated at RT for 10 min and then centrifuged (4700g for 

10 min) at 4°C. The supernatant was decanted and the pellet washed in 1mL of 75% 

alcohol with gentle vortexing followed by centrifugation (250g for 5 min) at 4°C. The 

pelleted RNA was air dried, resuspended in 40μL DH2O and incubated at 65°C for 10 min. 

Total RNA concentrations were measured spectrophotometrically on an I-NanoDrop® ND-

1000 spectrophotometer. RNA purity was explored by using this A260/A280 ratio, and the 

average was 1.95 (1.69-2.20) for RNA prepared from fresh HUVEC and 1.70 (1.12-2.27) 

for RNA prepared from frozen HUVEC. RNA (1µg per reaction) was DNase treated using 

a DNA free kit (Ambion), following the manufacturer’s instructions. DNase-1 (1µL) was 

mixed with 5µL of up to 5μg RNA, 2.5µL 10X DNase buffer and 16.5µL DEPC. The 

mixture was vortexed gently and then incubated at 37°C for 30 min. A DNase inactivation 

reagent (2.5µL) was added, and the tube was mixed by flicking and then centrifuged 

(4700g) for 1 min. Aliquots of DNase-treated RNA were collected and stored at -80°C until 

required. 

DNase-treated RNA was reverse transcribed using a High Capacity cDNA Archive Kit 

(Applied Biosystem) (Section 2.5.8). Complementary DNA was prepared by adding 

DNase-treated RNA (2µL) to the cDNA reaction mix (8µL) as described above (Section 

5.5.1). A 1µL [1µg per reaction of cDNA (as total input RNA)] sample was then amplified 

for quantitative RT-PCR. A NoRT negative control was also prepared (Section 2.5.8). The 

resulting suspension was incubated for 10 min at 25°C followed by 120 min at 37°C. 

Several endogenous controls and target genes associated with endothelial function were 

assessed using qRT-PCR on an ABI PRISM® 7900HT Sequence Detection System 

(Applied Biosystems) with commercially available primer probe sets (Table 5-1). 



CC ONYIAODIKE, 2014                                                                                              Chapter 5-200 

Table ‎5-1:  Commercial primer probe sets for selecting a best endogenous control gene. 

Primer probe set Catalogue № 
 

Endogenous control gene 
 

Beta Actin (β-Actin) 4310881E - 0605021 

Eukaryotic 18S rRNA endogenous control (VIC/TAMRA) PN 4310893E 

Glyceraldhyde 3-phosphate dehydrogenase (GAPDH) PN 4310884E 

Peptidylprolyl isomerase A (PPIA) Hs99999904_m1 

TATA-box binding protein (TBP) Hs99999910_m1 

 

Endothelial function gene 
 

Endothelial-1 (ET-1) Hs00174961_m1 

Hypoxia inducible factor-1 alpha (HIF-1α) Hs00153153_m1 

Intracellular adhesion molecule-1 (ICAM-1) Hs00277001_m1 

Vascular cell adhesion molecule-1 (VCAM-1) Hs00174239_m1 

Von Willebrand factor (vWF) Hs00169795_m1 
 

 

Following the manufacturers’ instructions, selected endogenous control and endothelial 

function target genes were quantitated in quadruplicate using RNA from fresh and frozen 

HUVEC. The average CT and standard deviation of CT for the human endogenous control 

genes was assessed. 

5.5.8 Statistics 

Minitab (Vs16.2.2) and GraphPad Prism® 5 (GraphPad, Inc; San Diego USA) were 

utilised for data analysis and graphical presentation, respectively. Data were assessed for 

normal distribution before statistical analysis. Difference testing, for continuous variables 

between the fresh and frozen HUVEC preparations, was carried out using two-sample t-

test. Pearson's correlation distribution was used to test for univariate associations 

between variables. Data is presented as mean (SD) unless otherwise stated, and P-

values less than 0.05 were considered statistically significant. 
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5.6 Results 

5.6.1 Identification of endothelial cells in human umbilical cord 

First, it was imperative to ensure that highly purified preparations of HUVEC could be 

produced with no contaminating cells. A preliminary study of umbilical cord sections (n=8), 

stained for a specific endothelial cell marker, CD31, demonstrated expression of CD31 on 

the fetal endothelial cell (FEC) of placenta villi (positive control) (Figure 5-1A). In the 

negative control, substitution of the anti-human CD31 monoclonal antibodies with PBS 

only showed no observable staining, as expected (Figure 5-1B). The CD31 monoclonal 

antibody was localised on the umbilical artery EC (Figure 5-1C) and umbilical vein EC 

(Figure 5-1D) of the umbilical cord tissue. 

Anti-human myosin monoclonal antibodies were employed to stain SMC in the umbilical 

cord tissue. Human myosin was detected on the positive control myometrium tissue 

(Figure 5-2A). When the anti-human myosin monoclonal antibody was substituted with 

PBS only (negative control), there was no staining in the myometrium (Figure 5-2B). 

Staining of SMC of the umbilical artery is shown in Figure 5-2C, and that of the umbilical 

vein is shown in Figure 5-2D.  
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Figure ‎5-1: Localisation of CD31 in healthy umbilical cord. A) Placenta (positive control), B) Placenta (negative control), C) umbilical artery and D) 
umbilical vein at 20X magnification (scale bar; 10µM). EC represents endothelial cell. 
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Figure ‎5-2: Localisation of myosin in healthy umbilical cord. A) Myometrium (positive control), B) Myometrium (negative control), C) umbilical 
artery and D) umbilical vein at 20X magnification (scale bar; 10µM). SMC represents smooth muscle cell. 
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5.6.2 Optimal separation protocol for HUVEC preparation 

Once the discrete endothelial cells lining of the umbilical cord arteries and veins were 

identified, the vein endothelial cells were isolated from the umbilical cords as described in 

Sections 5.5.4 and 5.5.5. Several separation protocols were tried, and resulting 

preparations were tested for purity of HUVEC, using immunostaining by CD31 antibodies. 

In untreated HUVEC, there was contamination of red cells (Figure 5-3A). Since the 

untreated sample of HUVEC was contaminated with red cells, the untreated sample was 

then treated with a red cell lysis reagent in order to eliminate red cells. This step showed 

that HUVEC was also affected by the red cell lysis reagent resulting in the HUVEC 

membrane lyses; therefore, this step was not included in the protocol (Figure 5-3B). In 

contrast, the histopaque density separation technique produced highly purified 

preparations of HUVEC, as confirmed by immunostaining using anti-human CD31 

monoclonal antibodies (Figure 5-3C). To verify whether the protocol produced a HUVEC 

preparation contaminated by SMC cells, myosin antibody staining was used to assess the 

purity of the HUVEC. When the histopaque separation protocol was employed, no SMC 

contamination was observed (Figure 5-3D). As expected, there was no observable 

staining when the CD31 or myosin antibody was substituted with PBS only as a negative 

control (Figure 5-3E). 

These data suggest that the histopaque separation technique provides higher purity in 

HUVEC preparation compared to untreated HUVEC. Therefore, the protocol incorporating 

histopaque separation was adopted for isolating clean HUVEC preparation for the HUVEC 

study. 
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Figure ‎5-3: Localisation of CD31 and myosin in healthy prepared HUVEC. A) Untreated cells (5µM) stained in CD31, B) lysed cells (5µM) stained 
in CD31, C) histopaque separated HUVEC (2µM) stained in CD31, D) in myosin and E) when antibodies was replaced with PBS only (10µM) at 20X 
magnification (scale bar; 10µM), 40X magnification (5µM) and 100X magnification or oil immersion (2µM). 
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P=0.035 

5.6.3 HUVEC RNA quantitation from fresh and frozen umbilical 
cord 

Next, I investigated whether freezing the umbilical cord, which would allow for more 

convenient isolation of HUVEC, would affect HUVEC isolation and RNA expression. 

Twenty umbilical cords were obtained at birth from healthy pregnant women. Ten of the 

umbilical cords were used to isolate HUVEC immediately after birth while the other cords 

(n=10) were frozen immediately (for at least 48 hours), and HUVEC isolated after thawing. 

HUVEC numbers per umbilical cord from fresh cord (n=10) [0.09 (0.04) cells106/cord (cm)] 

were less variable than HUVEC numbers isolated from frozen cord (n=10) [0.05 (0.07) 

cells106/cord (cm)], although there was no statistical difference in the average number of 

cells isolated from either cord (P=0.21) (Figure 5-4A). RNA isolation from HUVEC isolated 

from fresh or frozen cords showed lower RNA concentration in fresh [3.4 (2.1) μg/106 

cells] compared to frozen cord [39.5 (45.9) μg/106 cells, P=0.035] (Figure 5-4B).  

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-4: HUVEC isolation and RNA verification. A) Total cells per cord in fresh (n=10) 
and frozen (n=10) umbilical cords. B) Amount of RNA extracted from fresh and frozen 
samples, with less variation in fresh (P=0.035) compared to frozen umbilical cords. 
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5.6.4 Selection of a HUVEC endogenous control gene 

In order to determine the best endogenous control gene for normalisation of endothelial 

cell gene expression in HUVEC, RNA was extracted from HUVEC isolated from fresh 

umbilical cord and gene expression levels of a panel of control genes were quantitated in 

quadruplicate. The average CT for each endogenous control (Figure 5-5A) and endothelial 

function marker (Figure 5-5B) was determined and is shown below. Data revealed that the 

endogenous control 18S showed the highest expression, whilst the TBP had the lowest 

expression level in the fresh sample. 

 

 

 

 

 

 

 

 

Figure ‎5-5: Human endogenous control genes and endothelial function markers in fresh 
HUVEC. Each bar represents a measured CT value in an individual HUVEC preparation; error 
bars are inter-individual standard deviation and a H stands for HUVEC. 
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RNA expression of each endogenous control and endothelial function marker isolated 

from frozen (n=10) HUVEC samples were also quantitated in quadruplicate. The average 

CT for each endogenous control panel (Figure 5-6A) and endothelial function markers 

(Figure 5-6B) are shown. 

 

 

 

 

 

 

 

 

 

Figure ‎5-6: Human endogenous genes control and endothelial function markers 
expression in frozen HUVEC. Each bar represents individual measured CT value; error bars 
are inter-individual standard deviation and a H stands for HUVEC. 
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5.6.5 The best endogenous control gene 

Endogenous control gene targets were assessed for variability across the ten samples 

analysed. The best endogenous control gene is that showing the lowest inter-individual 

variability. The lowest standard deviation, and hence the least inter-individual variation, 

was for β-Actin (1.3), for TBP (1.4) and for PPIA (1.5). β-Actin appeared to be the best 

candidate to serve as the endogenous control gene in HUVEC under these conditions, as 

it had high expression and low inter-individual variability (Figure 5-7). Thus, β-Actin 

appeared as the best candidate for normalising gene expression studies involving 

HUVEC. The mRNA expression was extremely low from frozen preparations, and hence 

undetectable (CT or greater). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-7: Standard deviation CT value of human endogenous control gene mRNA 
expression in fresh HUVEC. 
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5.6.6 Endothelial cell marker expression relative‎to‎β-Actin 

Having identified β-Actin as the best endogenous control gene for HUVEC gene 

expression studies, expression of endothelial cell function markers was then assessed 

relative to β-Actin. This was to identify whether the standard deviation of the endogenous 

control gene is more variable than that of the actin itself, or was similar. Observed data is 

shown in Table 5-2. HIF-1α showed less variability, while vWF revealed a high variation in 

the sample investigated (Figure 5-8A and B). A similar observation from the ET-1 (Figure 

5-8C), ICAM-1 (Figure 5-8D) and VCAM-1 (Figure 5-8E) was apparent due to the variable 

expression on the HUVEC. 

Table ‎5-2: Standard deviation indicators of variability of endothelial function genes. 

 

 

 

 

 

 

 

 

 

Endothelial marker/β-Actin Mean (SD) 

HIF-α1 9.3 (2.7) 

vWF 446.6 (252.9) 

ET-1 36.3 (22.6) 

ICAM-1 7.3 (3.0) 

VCAM-1 0.6 (0.4) 
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Figure ‎5-8: HUVEC endothelial function marker gene expression in healthy pregnancies. 
A)  HIF-α, B) vWF, C) ET-1, D) ICAM-1 and E) VCAM-1 relative to β-Actin as an endogenous 
control in fresh HUVEC (n=10). 
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5.7 Discussion 

Since offspring of pre-eclamptic women had reflected the lipid levels of the mothers (as 

shown in Chapter 4), there is a significant risk of this raised level of lipids causing 

endothelial damage. This chapter set out to establish a model for assessing offspring 

endothelial gene expression, and has optimised a protocol for preparing endothelial cells 

from umbilical cords. It has also established that β-Actin was the best candidate 

endogenous control gene for undertaking studies of mRNA gene expression in HUVEC as 

an index of offspring endothelial cell function at birth. 

HUVEC preparation using the histopaque density gradient technique provided a relatively 

pure endothelial cell sample, as confirmed by immunohistochemical staining for CD31, a 

specific endothelial cell marker (van Beijnum et al. 2008). Lysing red blood cells during the 

isolation protocol is not recommended, as the lysis reagent also damaged the endothelial 

cells. Isolation of endothelial cells from fresh rather than frozen umbilical cord provided the 

best HUVEC and RNA preparations. Other studies have also found that optimal  

endothelial cell isolation is from fresh tissues (van Beijnum et al. 2008). Quantifying gene 

expression levels using RT-PCR has become standard for most laboratories. It is 

reasonably quick in quantitative analysis and has unparalleled sensitivity compared to 

traditional methods such as northern blot assay. Thus, it will be an invaluable tool in the 

study of offspring endothelial function at birth. In comparative CT data analysis 

(Schmittgen and Livak 2008), gene expression requires normalisation to maintain 

consistency of expression between and/or within different samples and patients. Under 

the same experimental conditions, by definition, the control gene expression should not 

change. The control gene also corrects for variability in reverse transcription efficiency 

and variations in RNA extraction through preparation and pipetting. 

β-Actin was found to be the most stable candidate internal control gene for assessing the 

mRNA level in HUVEC gene expression studies. In the experiments of this chapter, 

although 18S showed the lowest inter-individual variation across other endogenous 

control panels, β-Actin provided the least variability across n=10 analysed samples, 

determined by the lowest CT standard deviation. Actins are a family of highly conserved 

cyto-skeletal protein in mammals (Strair et al. 1977). According to Vandekerckhove and 

Weber, there are different types of actin: striated muscle [α-skeletal and α-cardiac]; 

smooth muscle [α- and γ-SMA]; and cytoplasmic [β- and γ-CYA] (Vandekerckhove and 

Weber 1978). β-Actin, as part of the actin protein family, has important roles in diverse 

cellular functions, including cell structure, integrity, motility, phagocytosis and survival. β-

Actin was also identified as the most stable endogenous gene with respect to other control 

genes in diabetic glomeruli and primary mesangial cells (Biederman et al. 2004). It is 
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notable that no one gene can serve completely as the best endogenous control under a 

given condition. For example, the membrane type 1-matrix metalloproteinase gene 

changed in response to matrigel stimulation, and there was also significant upregulation of 

β-Actin, whereas 18S demonstrated consistency and was not regulated by matrigel 

(Selvey et al. 2001). β-actin may not be the best candidate endogenous control for tissue 

undergoing morphological changes observed in different developmental stages. This is 

because developmental tissue changes over time due to concurrent change in muscular 

morphology. As HUVEC will be collected at birth, this is not a problem of any great 

magnitude. The endogenous gene of choice needs to be carefully monitored and selected 

based on specific experimental conditions, in order to provide the best relative comparison 

of the specific gene expression of a target gene. The current data also suggest that either 

TBP, PPIA or 18S could also serve as a good control gene for HUVEC due to their lower 

variability. 

Limitations of the present study include a small sample size of participants, although it 

was just a pilot. Nevertheless, the use of the healthy pregnancy group only provides the 

best starting point for elucidating offspring endothelial function at birth. It is fair to stipulate 

that since obtaining clean preparation of HUVEC from umbilical cord tissue is highly 

desirable for such studies, exposure to the gradient force (400g for 30 min, RT) during the 

histopaque procedure could possibly alter HUVEC RNA expression of some target genes. 

It is recommended that effort should be made to ensuring that the procedure is 

undertaken under optimal condition that will minimise risk of gene alterations during the 

preparation steps. The histopaque procedure preserved cell viability and intactness, 

removed other cell contaminants, prevented cell distortion and eliminated the need for 

cumbersome columns for separation. It is hoped that HUVEC prepared in this way may 

retain a physiology and integrity close to the in vivo situation. It is also worth remarking 

that although the numbers of control genes assayed were few, the selection of β-Actin as 

the best control gene (from among 18S, GAPDH, PPIA and TBP) is the commonly use 

housekeeping genes in research. It is recommended that future studies, having identified 

β-Actin as the best endogenous control for normalising HUVEC gene studies, investigate 

implications of early lipid disturbance (in utero and in vitro) on HUVEC by assessing 

specific endothelial cell gene targets in obese, pre-eclamptic and IUGR pregnancies 

compared to controls. After umbilical cord collection and isolation of the HUVEC and RNA, 

assessment of endothelial cell (dys)functional markers (including HIF-α1, vWF, ET-1, 

ICAM-1, VCAM-1, CD31 and endothelial nitric oxides synthase) should be investigated. 

This list is by no means exhaustive. Due to the factor of limited time, this additional step 

was not taken for this current study. Microarray-based gene expression profiling in 

HUVEC can now be used to identify genes whose expression changes in response to 
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complications of pregnancy possibly due to the implication of fetal hyperlipidaemia in 

utero. 

In summary, the present work demonstrates that high-quality HUVEC and RNA can be 

extracted from fresh umbilical cords at birth and a reliable control gene has been 

identified. Future studies using this methodology may be of use in elucidating potential 

physiologies and pathologies of early endothelial cells at birth. This could provide future 

insights into understanding the consequences of lipotoxicity in early offspring vascular 

health. 



ONYIAODIKE, 2014                                                                                                    Chapter 6-215 

 

6 General discussion 

The clinical context of the studies detailed in this thesis is that maternal obesity is a big 

problem. The obesity epidemic is one of the most important threats to reproductive 

success in the UK (Knight et al. 2010). As in many developed countries, the prevalence of 

obesity in the UK female population of reproductive age continues to increase significantly 

(Kanagalingam et al. 2005; Heslehurst et al. 2010). With this increasing trend in 

developed countries, it may be only a matter of time before this becomes evident in 

developing countries. There are numerous internal environmental impacts associated with 

this increasing trend, which looks set to affect female fertility worldwide. This problem, in 

addition to the trend (also most prevalent in developed countries, at this stage) of women 

delaying their first pregnancy is likely to result in an increased incidence of infertility. 

Crucially, maternal obesity in pregnancy poses a significantly high risk to the mother and 

has long-term adverse effects on her offspring's health whether in terms of infertility or 

subinfertility, or in various adverse pregnancy outcomes such as pregnancy loss 

(early/late or stillbirth), PE, IUGR or gestational diabetes (Jungheim et al. 2009; Mostello 

et al. 2010; Roman et al. 2011; Tennant et al. 2011). In the fetuses, obese pregnancy 

increases the pre- and antenatal risks. Examples include shoulder dystocia, stillbirth 

(Cedergren 2004; Roman et al. 2011), caesarean section (Bergholt et al. 2007) and 

congenital anomalies including neural tube defect (Shaw et al. 2000) and heart defects 

(Mills et al. 2010). There are consistent links between obese pregnant women and 

offspring high meconium aspiration, preterm birth, instrumental birth, fetal distress, LGA 

(macrosomia) and fetal death (Sebire et al. 2001; Cedergren 2004; Yogev and Langer 

2008; Chen et al. 2009). Also, Catalano conceptualises the long-term consequence of 

obesity in utero as fetal programming (Catalano 2003). 

As detailed in this thesis, maternal obesity affects the metabolic and inflammatory 

pathways by changing metabolic and inflammatory parameters throughout gestation 

(Stewart et al. 2007). There is exaggeration of such parameters in extreme pregnancies, 

which perhaps pinpoints the link between these altered parameters and the development 

of poor pregnancy outcomes that have been documented in this thesis. Also, data indicate 

that the changes of these parameters are similar to those of cardiovascular disorders, 

particularly in patients who suffer from coronary heart disease and heart failure (Belo et al. 

2008). Cardiovascular disease is a major cause of mortality in developed countries, and 

the disease is projected to be problematic in future, including in developing countries. To 

date, cardiovascular disorders remain a leading cause of death for women internationally 

(Jacobs and Eckel 2005; Ray et al. 2005). A retrospective cohort study in Ontario, 

Canada, of 1.03 million women that were free from cardiovascular disease before first 

documented delivery, showed that 75,380 (7%) had maternal placental syndrome (Ray et 
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al. 2005). In this cohort, the incidence of cardiovascular disease was 500 per million in 

women that had placenta syndrome (including PE, placental abruption and placental 

infarction), compared to 200 per million in those that did not. A major factor in 

cardiovascular disorders is the increased risk factor of obesity, which is rising at an 

alarming rate. This increase implies that the menace of cardiovascular disease will 

continue to rise worldwide. As well as the risk factors already known to have some 

predictive value for this disease, there is a major conceptualisation of the mechanism of 

the uterine origin of adult disease: fetal programming. This concept, proposed three 

decades ago, still lacks definable proof. This lack of proof notwithstanding, the findings of 

this thesis suggest a possible direct link between the metabolic and inflammatory 

parameters in pregnancy and those evident in cardiovascular disturbance; potentially 

contributing to fetal programming.  

In focussing on this link, this thesis has highlighted the difficulty (in most cases) in 

determining the precise timing of conception – a difficulty which may result in the loss of a 

viable fetus only being recognised some time after it has occurred. Worldwide, the onset 

of birth defects is rarely recognised, and fetal growth patterns are usually not measured 

through the course of pregnancy. When this information does become accessible, it is 

often incomplete with regard to timing and/or comprehensiveness. Several methodological 

practices have posed challenges and forced compromise in ascertaining the aetiology of 

mechanisms leading to adverse pregnancy outcomes, especially those that may have 

ramifications on offspring in adult life. This in part highlights the need to elucidate the 

metabolic and inflammatory pathways in pregnancy with the goal of gaining insight into 

offsprings' future disease. As a consequence, it was imperative to explore the importance 

of the metabolic and inflammatory parameters in all stages of pregnancy. 

This exploration was conducted by focussing on these parameters at the implantation, in 

Chapter 2, by day 45 of gestation, in Chapter 3 and finally in later pregnancy, in Chapter 

4. Prediction of pregnancy success was made feasible by use of the data presented in 

Chapter 3, which explored very early metabolic and inflammatory parameters by day 45 of 

gestation. It was noted that none of the parameters or obesity was predictive of pregnancy 

success, except for ICSI treatment technique, used predominately in cases of male factor 

infertility. In Chapter 2, a cell culture model of blastocyst/embryo-uterine wall adhesion 

during the implantation time period was developed. This was in order to ascertain whether 

insulin, an important metabolic parameter, affects adhesion of JAR spheroids 

(representing the blastocyst/embryo) onto an RL95-2 monolayer (representing the 

endometrial epithelium). Although the result is still inconclusive, findings support the view 

that insulin may be important in implantation. Laminin α1, an adhesion molecule useful at 

the basement membrane, was detected and is suggested to be important during JAR 
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spheroid-RL95-2 monolayer binding. Insulin may perhaps influence the regulation of 

adhesion molecule laminin α1, which possibly affects adhesion in the presence of insulin. 

In Chapter 3, the very early change in the metabolic and inflammatory parameters was 

assessed in women undergoing frozen embryo replacement in assisted conception. 

Women who participated were only those with a natural menstrual cycle. Observation that 

very early metabolic and inflammatory parameters changed over the course of the first 45 

days of gestation, revealing detectable changes after implantation, was unique and 

fascinating. Obesity influenced the change of some of the very early parameters studied. 

However, obesity and insulin resistance did not predict pregnancy success. Therefore the 

data of this study did not support the hypothesis that obesity and insulin resistance are 

imperative as indicators of pregnancy success.  

Chapter 4 investigated fetal cord metabolic and inflammatory parameters at birth, which 

were found to be reflective of the mother's parameters at the end of gestation. At this late 

stage of pregnancy, fetal TC was followed up after it was found that elevated fetal cord TC 

was correlated with an increased maternal TC level (Rodie et al. 2004). This reflected 

increase was proposed as possibly due to the upregulation of the key lipid transporters in 

the placenta of molecules involved in cholesterol transport. As a result, the gene 

expression of some key transporter molecules, particularly those involved in cholesterol 

transport, were examined and compared between groups. In the extreme cases of PE, 

upregulated placental mRNA levels of LDLR, STARD3 and ABCA1, but not the protein 

expression of the transporters was confirmed. There was a notable decrease in the cord 

blood TNF-α level in cases of PE, which is surprising in this well known maternal systemic 

inflammatory disorder (Sacks et al. 1998; Catarino et al. 2012). This decrease suggested 

a downregulated inflammatory response in the fetuses of the pre-eclamptic group. Further 

studies of placental mRNA expression, in order to determine whether it was due to poor 

placental TNF-α synthesis, were undertaken. The result showed a trend toward high 

mRNA TNF-α in pre-eclamptic placentae compared with controls. This finding resulted in 

the dismissal of poor placental synthesis as a factor for the reduced cord TNF-α level. It 

was also noted that there was a decline in the TNF-α localisation in the umbilical cord vein 

endothelial cells of the pre-eclamptic samples. Thus, it is evident that while there was 

elevated fetal hyperlipidaemia, (particularly cholesterolaemia, representing metabolic 

parameters), there were reduced cord TNF-α levels (representative of inflammatory 

parameters), indicative of downregulated inflammation in the fetuses of women with PE. 

To explore the effect of elevated cord lipidaemic (cholesterol) on fetal vascular health in 

vivo, there was a need to set up a useful model in Chapter 5, using HUVEC as an index of 

the endothelial function of the offspring at birth.  
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Therefore, overall, the studies presented in this thesis support the view that metabolic and 

inflammatory pathways are important in all stages of pregnancy, as shown in Figure 6-1. 

 

Chapter 2 notes that the aberration of implantation has remained an important problem in 

achieving optimal pregnancy, whether in natural and spontaneous or assisted conception. 

This problem has warranted the search for ways of predicting pregnancy success. In 

assisted conception particularly (IVF/ICSI practice), there is the observation that 

subfertility, as observed in populations attending for IVF, may be the factor leading to poor 

outcome after ART procedure (Thomson et al. 2005; Jaques et al. 2010). This is because 

(in the embryos that survive) there is a higher risk of pregnancy loss, either because of the 

underlying problem for which ART intervention was needed or because of the assisted 

conception procedure by which pregnancy was achieved. La Marca et al. observed that 

anti-Müllerian hormone levels were shown to predict live birth rates, and measurement of 

this hormone could facilitate individualisation of the therapy prior to the first ART cycle (La 

Marca et al. 2011). Also, maternal age is highlighted as a factor imperative in determining 

Figure ‎6-1: Overview of the importance of the metabolic and inflammatory pathways in 
all stages of pregnancy. 
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the assisted conception protocol employed. As stated above, in their clinic in Glasgow, 

Scotland, Nelson et al. note that women of <36 years are administered 225IU FSH and 

those >36 years receive 300IU per day for follicles stimulation (Nelson et al. 2007). This is 

paramount, as follicle growth determines optimal oocytes retrieval for IVF/ICSI practice. 

Prior to undertaking the study of this thesis, it was unclear whether very early changes of 

metabolic and inflammatory parameters may predict pregnancy success. Also, the role of 

obesity as a predictor of early pregnancy success was not completely clear. It was thought 

that maternal body fat affected the very early pregnancy change in metabolites of lipid and 

carbohydrate metabolism and inflammatory mediators, as well as hormones such as 

insulin and leptin. Prepregnancy obesity was considered to perhaps exacerbate the early 

changes of the parameters and, as a consequence, to perhaps play a role in 

predetermining the pathway resulting in maternal insulin resistance and lipid deposition 

occurrence as pregnancy advanced. 

However, this thesis indicated that none of the parameters measured, or obesity, 

predicted pregnancy success. Interestingly, assessment of erythrocytes and plasma 

saturated fatty acid, using the sample and dataset in Chapter 3, revealed that the 

percentage of saturated fatty acid in erythrocytes was independently predictive of whether 

a woman became pregnant or not (unpublished data). The failure of any of the parameters 

measured in this thesis to predict pregnancy success early in gestation was unexpected. 

This failure may suggest that early metabolic and inflammatory parameters become 

implicative of pregnancy success after the first trimester, and most noticeably in the 

second trimester. It is anticipated that by this time point (second trimester), for instance, 

accumulated TG (fat) essentially for energy oxidation has begun to be metabolised 

(Herrera 2000; Yadav et al. 2013). This period is the catabolic stage, important for 

subsequent active growth and development of the fetus. Whether prepregnancy obesity or 

accumulated fat early during the anabolic phase of pregnancy (Huda et al. 2009), 

predisposes women to these early changes in parameters is very difficult to ascertain at 

this point. Obesity may have been unable to predict pregnancy success because of the 

recommended BMI range (of greater than 18 kg/m2 but lower than 30kg/m2) in the IVF 

clinic at which treatment is performed at GRI, Glasgow, Scotland. This BMI range is 

similar across the board in Scotland. Nevertheless, BMI does not appear to be a good 

predictor of a successful IVF (Vilarino et al. 2011). Thum et al. highlighted that pregnancy 

losses are most prevalent in women with BMIs above 36 kg/m2 (Thum et al. 2007). This 

may perhaps mean that the ability of obesity to predict pregnancy success went 

undetected because this study was under-powered. Overall, obesity does not have a role 

in pregnancy success, at least in this study.   
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That ICSI is a predictor of pregnancy has been well reported (de Mouzon et al. 2009; 

Rosen et al. 2010; Komsky-Elbaz et al. 2013), and this thesis supports these previous 

findings. In ART, ICSI improves pregnancy success of assisted conception, with a 56.6% 

pregnancy rate compared to that of 47.6% for other procedures (in 2000), and rates 

recently reaching 75.9% in Latin America, and 92.4% in the Middle East by 2002 (de 

Mouzon et al. 2009). The ICSI-increased fertilisation rate was associated with an 

improved implantation rate (25.2% vs 17.8%); this rate remained significant compared to 

conventional insemination after adjustment for variables associated with implantation 

(Rosen et al. 2010). The observation that ICSI predicted pregnancy success in the 

present study was reassuring. However, there is uncertainty concerning the safety of ICSI. 

It is imperative that ICSI should be used cautiously and judiciously (Avendano and 

Oehninger 2011). Avendano and Oehninger noted that there are still unanswered 

questions regarding the safety of ICSI. Their report highlights the issue of DNA 

fragmentation apparent in infertile human spermatozoa, raising the probability that sperm 

with normal morphology with DNA fragmentation could be mistakenly selected to fertilise 

oocytes during the ICSI technique. Consequently this DNA fragmentation (chromosomal 

anomalies and/or DNA damage) may result in poor-quality embryos (Aitken and De Iuliis 

2007; Avendano and Oehninger 2011).  

ICSI treatment increases the pregnancy rate by overcoming the difficulty of sperm 

penetrating the zona pellucida. In this thesis, the data suggest that ICSI overwhelmingly 

predetermined whether there is pregnancy success (implantation). To a great extent this 

predetermination represents male factor infertility (possibly due to low sperm count and/or 

poor quality sperms), compared to female factor infertility (including PCOS, inflammation, 

tubal blockage and endometriosis), where women will be more likely to have other 

biological barriers to successful implantation, placentation and adaptation to pregnancy. 

However, caution is needed when interpreting these results, as there are potential 

downsides to ICSI which are presently unclear. This is because ICSI increases the risk (to 

an unknown extent) of genetic anomalies that otherwise would not have been transmitted.  

Therefore, the need to identify predictors of pregnancy success, particularly in assisted 

conception, warrants further assessment of very early changes in metabolic and 

inflammatory parameters not examined in this thesis. The lack of predictive ability of any 

of the parameters or obesity, and the problematic effects of ICSI, suggests the need to 

have a fresh look at other factors which may play a role as predictors of improved 

pregnancy success with natural or assisted conception. The search for a predictor of 

pregnancy success was a specific aim in the general scope of this thesis, which was to 

elucidate the effect of these parameters, and obesity, on the development of the fetus. 

Notwithstanding the lack of predictive precision in that specific objective, there remained 
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the need to clarify the importance of metabolic and inflammatory parameters at all stages 

of pregnancy. This clarification proceeded by focussing on implantation and then early 

and late pregnancy. 

Chapter 2 focussed on implantation, which has long been identified as an important stage 

of pregnancy. Until now, the effect of insulin during implantation remain unknown. In 

mouse models, insulin enhances embryo cleavages (Gardner and Kaye 1991) and 

stimulates the blastocyst cell number by increasing the inner cell mass cell numbers 

(Harvey and Kaye 1990) of preimplantation blastocysts. This implies that insulin may have 

a direct role in the regulation of preimplantation embryo development. In vivo, obese, 

PCOS and diabetic women are likely to miscarry (Mills et al. 1988; Penney et al. 2003; 

Cardozo et al. 2011; Beauharnais et al. 2012). These conditions are primarily associated 

with hyperinsulinaemia. In ART insulin resistance does not affect maturation, fertilisation, 

cleavage rates, or the number of good-quality embryos and blastocysts, but significantly 

decreases implantation and clinical pregnancy rate (Chang et al. 2013). Hertig et al. show 

in their classical work that improper adhesion of the embryo to the uterine wall results in 

recurrent pregnancy loss (Hertig et al. 1959), which is indicative of the necessity of 

adhesion molecules during the implantation window. The direct role of laminin α1 in the 

adhesion of the embryo to the endometrial epithelium was supported by the finding that 

higher levels of IgG anti-laminin-1 autoantibodies are observed in women with recurrent 

miscarriage than in healthy pregnant and healthy non-pregnant controls (Inagaki et al. 

2001; Inagaki et al. 2003). Difficulty in studying implantation means that a cell culture 

model of implantation had to be developed. As noted above, human blastocyst/embryo 

implantation onto the maternal uterine endometrial epithelium cannot be studied in vivo 

and is difficult to study ex vivo (Hannan et al. 2010). Access to donated embryos for 

research purposes is limited to a few laboratories across the globe. The uniqueness of the 

human implantation process means that no other mammal provides an appropriate animal 

model (Bischof and Campana 2000). There are ethical concerns regarding 

experimentation with primary human tissues during this period of life, which necessitates 

using in vitro models employing trophoblast and uterine cell lines (John et al. 1993; 

Grümmer et al. 1994; Hans-Peter et al. 2000; Aboussahoud et al. 2010).  

Data presented in this thesis indicated that in the absence of the insulin, the developed 

model appeared optimal for an in vitro implantation system. In the presence of insulin the 

model appeared to be less optimal than expected. However, the study of insulin's effect 

and the role of the laminin α1 adhesion molecule was suggestive of their importance; 

which is interesting even though the results obtained are at too early a stage to draw 

conclusions. It appears that insulin did not have observable consistent effect on the 

adhesion of JAR spheroids to RL95-2 monolayers. Nonetheless, whether insulin regulates 
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adhesion molecule expression of laminin α1 during the period of cell-culture model 

implantation is difficult to deduce at this point. This limitation of this study may be due to 

the technique performed, in particular the inability to determine the conclusive insulin level 

in the uterine implantation environment. It is recommended that for future studies this cell 

culture model of implantation should be improved. This is important, as an improved 

model may provide a valuable platform to study and understand the effects of other 

metabolic and inflammatory parameters during human embryonic implantation. On the 

other hand, it may be that assessment of other parameters than insulin may perhaps yield 

a better result. Also, investigation of other human choriocarcinoma cell lines (BeWo and 

Jeg-3) that can also be transform into spheroids, like as the JAR (Grümmer et al. 1994) is 

recommended. These views should be considered as part of the future recommendations 

with regards to the cell culture model of implantation. Overall, it appears that insulin may 

be important during implantation, possibly by affecting adhesion molecule regulation, e.g. 

laminin α1. Laminin α1 elastase-generated fragments stimulate macrophage uPA and 

MMP-9 expression (Khan et al. 2002), indicating the additional role of this expression for 

successful implantation. This model may perhaps facilitate the development of effective 

and acceptable intervention strategies to help improve pregnancy success. All things 

considered, results showed that metabolic and inflammatory parameters are important at 

the implantation stage of pregnancy. The clarification now proceeds with the early and late 

stages, in Chapter 3 and 4 respectively. 

As stated in Chapter 3, the lack of comprehensive robust reports of very early pregnancy 

metabolic and inflammatory pathways, and the increasing evidence that fetal outcome is 

determined by the end of the first trimester, led to the investigation of the early time point 

of gestation. It was generally assumed that the earliest detection of parameters 

associated with adverse outcome would allow a means of identifying pregnancies that 

were at risk early, by developing effective diagnostic tests.  

The data in Chapter 3 showed evidence of very early changes in metabolic and 

inflammatory parameters. Pregnant women that undertook a successful natural cycle FET 

showed a rebound in TG and HDL-C parameters; that did not include TC, as the TC level 

failed to recover by the first 45 days. Energy demand possibly accounted for the declined 

in the TG level. Perhaps progesterone critical at this early pregnancy time point may have 

played a vital role in the metabolism of TG (Mattos et al. 2000), as shown in animal 

models. Nevertheless, the decreased TC and HDL-C levels as early as day 18 of 

gestation probably suggested the utilisation of such parameters for steroidogenesis and 

cell membrane biogenesis (Grummer and Carroll 1988; Lange et al. 2004; Guibourdenche 

et al. 2009). There were also higher levels of some parameters (hCG, insulin, HOMA, 

CRP and PAI-2) and lower levels of others (CXCL8, CCL2, CCL11 and PAI-1) in those 
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who became pregnant in comparison with those that did not. The rise in insulin secretion 

stimulates lipogenesis and reduces fatty acid oxidation, as well as promoting maternal fat 

storage (Newbern and Freemark 2011). Data on CXCL8, CCL2 and CCL11 levels show a 

decrease at this time point, suggesting a role in the implantation success. This could be 

due to increased synthesis of these chemokines in uterine tissue as well as an increase 

need for the recruitment of uterine leukocytes, such as neutrophils, monocytes (for 

resident macrophages) and eosinophils possibly from the maternal circulation (Katsuhiko 

et al. 2010; Hannan et al. 2011; Chau et al. 2013). In another instance, the significant 

decrease in early pregnancy of PAI-1 levels by day 45, and the increase in PAI-2 over 

time, was surprising. At this early stage of gestation, it appears that the reduced PAI-1 

level was due to the need to inhibit excessive trophoblast invasion, whereas the increased 

PAI-2 resulted from it being synthesised from the developing embryo and newly-formed 

placenta. This surprising result contrasts late pregnancy PAI-1 and 2 parameters reported 

in Chapter 4. At this late gestation stage PAI-1 was found to be higher in extreme cases 

(PE) (Reith et al. 1993; Catarino et al. 2008), whilst PAI-2 was lower (Reith et al. 1993), 

compared to healthy pregnancy. In their report, Reith et al. implied that significantly higher 

PAI-1 in the PE cases, may be due to hypertension or renal damage which is not specific 

to pregnancy or a reflection of altered placental function, whereas the lower PAI-2 is 

probably a result of decreased placental mass or function by end of gestation. This 

observation helps define a fundamental difference between very early and late stages of 

gestation. It was of interest that none of the very early parameters assessed in this thesis, 

or obesity, were independently predictive of pregnancy success by the first 6 weeks of 

gestation, despite obesity playing a role in the early changes in some of the parameters. 

Overall, it was only the male factor infertility that predicted whether the study participants 

had pregnancy success or not, rather than obesity and insulin resistance as originally 

anticipated. 

Most importantly, in Chapter 3, it was not possible to use natural conception for 

assessment of very early pregnancy parameters. This is due to the impracticality of 

pinpointing exactly when women became pregnant. As a result, the parameters during 

very early pregnancy was explored using assisted conception patients as models. This 

provided the opportunity to monitor when women became pregnant. Participating women 

were those undergoing natural cycle FET. This use of women with a natural menstrual 

cycle allows for the maintenance of normal pregnancy physiology, similar to that of natural 

conception. The data obtained is from the first collected samples at this early period of 

pregnancy and the large amount of samples stored should provide a platform for many 

very early parameter studies in future. The study in this chapter is prospective and 

robustly designed; however, numerous difficulties were encountered; the most difficult 

being that this early pregnancy study took two and a half years. Recruitment for blood 
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collection from participants was undertaken prospectively over seven visits. The 

impracticality of participants having an LH surge on the exact same day meant that it was 

necessary to attend daily meetings where the individual blood hormonal samples were 

evaluated; and the LH surge was determined throughout the study. This means that the 

collection of such prospective data took considerable effort; an enormous amount of time 

was spent collecting samples, attending daily meetings and retrieving of data recorded in 

the patients' hospital notes. As it was a prospective study, the assayed values of some 

parameters may perhaps have been under- or overestimated for the women who took 

part. This is perhaps due to different emotional stress or dietary intake, even though most 

of the women fasted. There is also the issue of direct effect of the embryo, implanted 

conceptus and/or newly-forming placenta influencing the change of these parameters 

produced at the very early stage of gestation.  

In regard to the data obtained from this study in Chapter 3, there are several directions in 

which further studies may be beneficial in gaining insight into the metabolic and 

inflammatory pathways over the course of pregnancy. It is recommended that future 

studies utilise the cryo samples under study (stored at -80°C) so that other important 

parameters can be assayed later, including measurement of TNF-α, leptin and 

adiponectin, which are adipose-derived adipocytokines (Ouchi et al. 2011). The role of the 

endocrine hormone in the change in some metabolic and inflammatory parameters can 

also be ascertained in future. Examples of these endocrine hormones include hPL, 

progesterone, oestrogen and cortisol. Whether these hormones may relate to the very 

early changes in metabolic and inflammatory parameters will be of interest. These data 

showed that metabolic and inflammatory parameter changes are important in early 

pregnancy. The clarification now proceeds with the late stage, as reported in Chapter 4. 

In Chapter 4, healthy pregnancy was compared to pre-eclamptic pregnancy, which was 

used as a model of an extreme case for parameters assessment in the late stage of 

pregnancy. The studies are well documented (Redman and Sargent 2003; Thilaganathan 

et al. 2010); however, the most relevant for this thesis is the focus on evaluating effects in 

offspring in PE and control groups. IUGR groups were used as a control in order to 

determine the impact of poor placentation in the absence of hypertension and endothelial 

dysfunction, which are major characteristics of PE. A common feature of PE and IUGR 

pregnancies is the placental pathology, and the difference in their pathologies may be due 

to changes in the underlying metabolic and inflammatory parameters occurring only in PE.  

As reported in Chapter 4, it is observed that fetal cord hypercholesterolaemia is 

significantly reflective of maternal hypercholesterolaemia as previously reported (Rodie et 

al. 2004). As a consequence, it is suggested that placental transporters are implicated in 
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the transfer of cholesterol across the maternal-fetal interface. Molecules involved in lipid 

transport (cholesterol, in particular) showed LDLR, STARD3 and ABCA1 mRNA 

upregulation in the placentae of PE cases. There is consistency between these lipid data 

and that of previous research in terms of the concept of lipid (cholesterol) transporters and 

localisation of LDLR on syncytiotrophoblasts and syncytium, STARD3 on stroma and 

ABCA1 on fetal endothelial cells in cholesterol transport. LDLR is an important receptor 

recognising lipoprotein rich-cholesterol carriers LDL and HDL through their apo B and apo 

E recognition sites, as highlighted in this thesis. Thus, as LDLR is localised in the 

syncytiotrophoblasts, this implies that cholesterol carriers, on reaching the cells, interact 

with an intracellular protein called the STARDs protein (STARD3) (Guibourdenche et al. 

2009; Hu et al. 2010) – which may be involved in the intracellular transport of lipids, e.g. 

cholesterol. The STARD3 may help transport the cellular cholesterol toward the fetal 

compartment via the fetal endothelial cells, where the lipoprotein becomes effluxed into 

fetal circulation. Fetal endothelial cells contain acceptors proteins such as ABCA1 and 

ABCG1, as observed in the term human placental endothelial cells (Stefulj et al. 2009), 

effluxing cholesterol into fetal circulation. The efflux of cholesterol into the fetal 

compartment perhaps happens mainly as the HDL-C effluxed is accepted by the carrier 

HDL particle in fetal circulation. In this way, the maternal cholesterol is readily transported 

into the fetal cord, and subsequently fetal circulation, leading to the fetus reflecting the 

maternal level of this metabolic parameter (cholesterol). Observation between offspring 

and mothers (in extreme and healthy pregnancies) show evidence of fetal immuno-

protection in the offspring of mothers with PE, since the mother usually presented a varied 

array of inflammatory response; this response was also unexpected.  

For the study in this chapter, maternal samples were collected prior to the end of the third 

trimester in healthy and extreme cases for the assessment of metabolic and inflammatory 

parameters at late stages of gestation. However, samples could not be collected from the 

babies by conventional venepuncture procedure as carried out on the mothers. Thus, cord 

blood samples were collected and utilised instead. Also, even though the parameters of 

metabolic and inflammatory changes were BMI matched, the effect of under- or 

overnutrition cannot be overemphasised. Findings indicated that poor nutrient supply may 

have implicated the reduced parameters reaching the fetal circulation rather than 

overnutrition or obesity. Data from this study suggest that the placental pathologies of PE, 

in addition to fetal stress and need for nutrients for growth and development, possibly 

drive the upregulation of mRNA of LDLR, STARD3 and ABCA1, but not protein 

expression. This observation that upregulation of LDLR, STARD3 and ABCA1 mRNA 

levels failed to translate into protein possibly suggests that pharmacological targeting of 

such transporters in the metabolic pathway may not provide optimal protection of fetal 

vascular health (lipotoxicity) due to fetal hyperlipidaemia in pre-eclamptic cases. There 
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was also the problem of the inability to distinguish the extent to which the parameters are 

affected by early pregnancy or even by extreme pregnancy state (PE) at late gestation. 

Nonetheless, this study helped highlight directions in which further studies may be 

beneficial in gaining insight into the metabolic and inflammatory pathways over the course 

of pregnancy. The pathway involved in the transport of cholesterol across the maternal-

fetal interface was determined. Together, these data showed that metabolic and 

inflammatory parameter changes are important in the late stage, which concludes the 

clarification of their importance at all stages of pregnancy.  

To continue the exploration of the general scope of this thesis, the effect of metabolic and 

inflammatory parameter changes on the developing fetus, Chapter 5 focussed on fetal 

hyperlipidaemia (e.g. increased cholesterol) as a reflection of maternal lipid levels. 

Cholesterol accumulation, through sterol-laden macrophage 'foam cells' in the vascular 

wall, is a pivotal early event in the formation of atherosclerotic lesions. This is supported 

by Napoli et al., who observed enhancement of fetal atherosclerotic plaque lesion 

formation in the fetuses (6.2 ± 1.3 months) of mothers with hypercholesterolaemia (Napoli 

et al. 1997). Another report by Palinski and Napoli, find evidence from animal study 

suggesting that initiation of atherogenesis results from the uterine environment (Palinski 

and Napoli 2002).  

Data in Chapter 4, suggesting that some cholesterol transporters may be pivotal in the 

transfer of maternal cholesterol, imply a possible effect on fetal vascular health at least 

toward the end of gestation. Additional data in late gestation in extreme cases indicate 

that fetal cord blood cells may be a vital source of antiinflammatory mediators, which may 

lead to downregulation of fetal inflammatory parameters observed in PE but not in IUGR 

pregnancies. As discussed in Chapter 4, this finding about the fetuses of pre-eclamptic 

mothers is unexpected, as these mothers are associated with altered systemic 

inflammatory response (Sacks et al. 1998; Catarino et al. 2012). Fetal programming of 

adult disease advances in utero is increasingly being proposed to be influenced by 

maternal obesity, which increases the risk of fetal lipotoxicity (Freeman 2010; Jarvie et al. 

2010). This suggests that lipotoxicity in utero, as a potential cause of fetal programming, 

contributes to the early origin of future poor vascular health. Therefore, the studies 

presented in this thesis suggest that metabolic rather than inflammatory pathways are 

perhaps involved to play a key role in early programming of fetal vascular abnormality in 

the uterine environment. Notwithstanding this suggestion, these studies have reinforced 

the importance of the metabolic and inflammatory pathways in all stages of pregnancy. 

Specifically, elucidating the period of lipid switch from the useful (e.g. fetal membrane 

biosynthesis) to the harmful state (fetal plaque), towards an understanding of potential 

vascular risk, is now imperative. For the study reported in Chapter 5, studying fetal 
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vascular condition at birth, the umbilical cord was used to provide HUVEC samples, which 

could be explored as an index of fetal endothelial cell function at birth. A recommended 

direction for further studies may be gaining insight into the metabolic and inflammatory 

pathways over the course of pregnancy (especially at late gestation), by investigating the 

implication of fetal metabolic pathways on the fetus. How the metabolic parameters (lipids) 

may affect fetal vascular health is yet to be completely understood. Whether this abnormal 

state plays a role in fetal programming is a question that studies in fetal vascular 

endothelial (dys)function may provide further answers to in this exciting area of research: 

the impact of fetal metabolic pathway (lipids) in metabolic disorder of pregnancy. Although 

it is not completely clear to what extent, this thesis data suggest that there is a strong 

possibility that indication of fetal hyperlipidaemia (raised TC levels, by term in cases of 

PE) may provide insight into understanding the origin of offspring vascular disease. A 

preliminary in vitro study using HUVEC as an index of endothelial cell function, to assess 

the impact of fetal metabolic parameters (lipids, such as cholesterol), is recommended for 

future studies. Such study is necessary despite systemic review by Huxley et al. 

suggesting that impaired fetal growth does not have an effect on the blood cholesterol 

levels that would have an impact on vascular disorder risk (Huxley et al. 2004). However, 

Huxley et al. did not assess the direct blood cholesterol impact on epigenetic factors on 

the vascular system, as Chapter 5 proposed to explore. 

It is clear that this thesis has provided a platform for future investigations of the implication 

of fetal metabolic pathways on the cardiovascular system, a link to fetal programming. 

However, several questions remain unanswered. It would be valuable to have a better 

understanding of the underlying epigenetic predisposition, physiology and mechanisms 

linking maternal and feto-placental interaction, and how these affect fetal growth and 

development, in terms of the implication of parameters of metabolic and inflammatory 

pathways. These questions remain complex and controversial and are far from being 

completely understood. The absence of evidence of maternal obesity as a predictor of 

early pregnancy success, detailed in this thesis, may then warrant focus of future studies 

on late gestation. Overall, it appears that the metabolic pathway is explicitly more 

important than the inflammatory pathway, particularly with regard to the link with adversity 

in offsprings as pregnancy advances. The only major pitfall of inflammation is its harmful 

effect on the conceptus and developing fetus early in gestation, which may potentially lead 

to pregnancy loss; for example, the Th1 (type1) cytokine or response may damage the 

placenta directly or indirectly via the (abnormal) activation of cytokine cell types 

(Raghupathy 1997). In the same report, Raghupathy points out the possibility of fetal 

expulsion due to uterine contraction or necrosis of implanted embryos, or even the 

thrombosis of the blood vessels supplying the conceptus by TNF-α mediator effects.  
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Thus, as documented in the studies of this thesis, it appears that as pregnancy advances 

lipids (particularly cholesterol) are important for steroidogenesis, as shown in 

steroidogenic tissue (Grummer and Carroll 1988; Guibourdenche et al. 2009; Hu et al. 

2010). Also, cholesterol is involved in cell membrane biogenesis and neural system 

development (Lange et al. 2004; Chen et al. 2013). Together, these data indicate that 

cholesterol is vital during in utero development. Usually, fetal cholesterol sources include 

de novo synthesis and exogenous sources (Woollett 2001; Jenkins et al. 2008), which is 

necessary in order to meet these gestational cholesterol requirements. Nevertheless, it 

may be possible that as pregnancy advances, cholesterol becomes detrimental to the 

mother or developing fetus. Consequently, determining at what point the gestational 

increase in lipid mobilisation begins to adversely affect pregnancy is necessary. The effect 

on the placenta of ectopic lipid accumulation (lipotoxicity) and the loss of placental 

function caused by other factors are yet to be completely determined. Identifying 

molecular pathways involved in diverse mechanisms that control fetal vascular function, 

pathways supposedly evident in fetal endothelial cells (as an index of endothelial cell 

function in utero), has never been more urgent.  

The problem is that the trend of more and more women around the world continuing to put 

off childbearing to an advanced age will continue to have as its inevitable consequence, a 

rise in infertility, caused by their eggs dying off and those that survive being of poor quality 

(Janny and Menezo 1996; Silber and Barbey 2012). Female fertility and education remain 

major concerns, with the rising proportion of first births occurring at 30 years of age and 

older amongst women with the highest level of education, with education in itself and 

female career pursuit blamed for the delay of childbearing (Heck et al. 1997; Shevell et al. 

2005). Expectedly, this postponing of childbearing may increase the chance of 

complications of pregnancy, such as those linked to poor implantation, including 

compromised trophoblast invasion, whether through natural and spontaneous or assisted 

conception (Shevell et al. 2005; Daskalakis et al. 2008; Shih et al. 2008; Mostello et al. 

2010; Cha et al. 2012; Gauster et al. 2012). Examples include: PE, IUGR and gestational 

diabetes; all these conditions are now known to be linked to increased risk of 

cardiovascular disorder and diabetes in women (that suffer from these complicated 

pregnancies) after their childbearing years (Sattar and Greer 2002). In the offspring, the 

long-term consequences of being born with any of these complications have not been fully 

addressed. However, what is clear is that complications of PE, IUGR and gestational 

diabetes are associated with a variety of altered metabolic and inflammatory parameters. 

This thesis suggests the view that the metabolic pathway (lipids) in the fetuses born of 

extreme cases (PE) may play a key role in the fetal programming of poor fetal vascular 

health that may become evident in adult life.  
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The past decades have witnessed extensive studies on metabolic and inflammatory 

response in several pregnancy outcomes, particularly disorders associated with poor 

implantation and placental perfusion. Obesity remains a risk factor for metabolic and 

inflammatory parameters, and is rapidly rising at an alarming rate worldwide. It has never 

been as urgent as now for the implications of metabolic and inflammatory pathways to be 

addressed and understood. Devising effective policy and practice to combat childhood 

obesity is a major priority for many health professionals and governments. There is 

irrevocable evidence that departures from optimal growth in utero, whether from under- or 

overnutrition, increase the relative risk of adult obesity. This thesis essentially provides a 

basis for the fetal programming hypothesis and presents a challenge to elucidate the 

mechanisms by which gene-nutrient interaction during early life (embryo and fetal) 

development sets the stage for adult susceptibility to multiple metabolic and inflammatory 

abnormalities. 

In summary, this thesis has shown the potential importance of metabolic and inflammatory 

parameters in all stages of pregnancy. There is a need to continue the search for potential 

predictors of pregnancy success. Although there was an absence of a predictor (except 

from ICSI treatment) in the data from the studies in this thesis, changes of parameters 

were shown to often depend on obesity. Interestingly, obesity and insulin resistance did 

not play a role in the achieving pregnancy success. The in vitro model of implantation 

developed, may help determine whether genotypic and phenotypic composition of the 

embryo is affected by various metabolic and inflammatory parameters, and how this effect 

may play a part during the implantation window. The results emphasise the need for 

understanding ways of improving implantation, whether in natural and spontaneous or 

assisted conception, in order to have a better chance of live birth. Insulin failed to show an 

observable effect on binding, but may perhaps have an effect on enhancing adhesion of 

JAR spheroids to RL95-2 monolayers in the in vitro model of implantation, by regulating 

laminin α1 adhesion molecules during binding. These was evidence, through the 

observation of very early hyperinsulinaemia, insulin resistance, dyslipidaemia, 

normoglycaemia and inflammatory haemostatic balance (high and low inflammatory 

parameters), that each active pathway may promote pregnant success in women by day 

45 of gestation. Understanding the process of how early metabolic and inflammatory 

parameter changes may be implicated in the development of complications of pregnancy 

is exciting. The idea that embryo quality or presence, as well as diet and/or weight gain, 

may possibly be important factors during implantation and the early stages of maternal 

adaptation as pregnancy advances, is of great interest. At the late stage of gestation, fetal 

parameters, in particular of lipids (TC) in the PE model, were reflective of maternal 

parameters. Dyslipidaemia, poor glucose tolerance and inflammation present in pre-

eclamptic pregnant mothers are consistent with well-known facts. It appears that immuno-
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protective pathways are present in the offspring's circulation, possibly part of the blood 

cells, where they may serve an immune suppressive role. The localisation of key lipid 

transporters, especially cholesterol, at specific areas of placental villi confirms consistent 

pathways of cholesterol transfer across the maternal-fetal interface. The observed 

molecules involved in lipid transport (in particular, cholesterol) may have been responsible 

for fetal lipid profiles reflecting that of their mothers, despite the lack of change in the 

protein levels. This implicates the metabolic pathway as consequently providing a link to 

the orchestration of maternal lipotoxicity in the offspring which could be enhanced in the 

pregnancies of obese women and extreme cases such as PE. It is now paramount that 

the potential consequences for offspring vascular health are explored in future studies.  

Therefore, on the whole, these data highlight that metabolic and inflammatory pathways 

are of importance in all stages of pregnancy. Metabolic and inflammatory homeostasis 

throughout gestation is paramount for pregnancy success involving nutrition supply, fat 

accumulation, placental growth and fetal uptake and utilisation. These processes are in 

concert with each other in meeting the demand of the developing conceptus, fetus and 

mother in all stages of gestation. Dysregulation of these events at any one time may be 

detrimental, not only resulting in the possibility of adverse pregnancy outcome but also in 

the risk of fetal programming of future adult disease. In either case, the findings of this 

thesis pinpoint the importance of metabolic and inflammatory pathways in all stages of 

pregnancy in leading to pregnancy success, in terms of implantation, adaptation to 

pregnancy and potentially on fetal programming of offspring. 
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Appendix: 1 Suppliers 

Chemicals and reagents 

Most of the chemicals and reagents were obtained from Sigma-Aldrich UK and Life 

Technologies UK unless otherwise stated here or above. 

Chapter 2 

Agarose, aprotinin, Bradford reagent, bromophenol blue, celLyticTM MT (mammalian 

tissue lysis/extraction reagent), 3,3'-diaminobenzidine tetrahydrochloride (DAB), dimethyl 

sulfoxide, diethlpyrocarbonate (DEPC), ethidium bromide, glycerol, Harris stain, HEPES 

buffer, histopaque 1077, hydrogen peroxide (H2O2) and human serum were obtained 

from Sigma-Aldrich. Sigma-Aldrich also supplied insulin solution (human), Kodak® 

BioMax™ light film, lauryl sulfate (sodium dodecyl sulphate [SDS]), 2-mercaptoethanol, 

polaroid black-and-white print film, poly-D-lysine hydrobromide (molecular weight 70000-

150000), protein standard (micro standard: 1mg BSA/ml in 0.15M NaCl) and rabbit 

serum. Sodium bicarbonate (Na2CO3) solution (7.5%) by volume, tris-base, tris-HCl, 

0.25% trypsin-EDTA solution cell culture tested, trypan blue solution cell culture tested, 

trypsin, Triton X-100 and xylene cyanole ff were also from Sigma. Acetone, ammonium 

chloride (NH4Cl), boric acid, calcium chloride (CaCl2), citric acid, DPX mountant for 

microscopy, ethanol, ethylenediaminetetra-acetic acid (EDTA), glycine, hydrochloric acid 

(HCl), isopropanol, methanol, potassium chloride, sodium chloride (NaCl), sulphuric acid 

and xylene were supplied by VWR International. Fisher Scientific provided chloroform 

and sodium hydroxide (NaOH), while complete Mini protease inhibitor cocktail tablets 

were from Roche Diagnostics. Dithiothreiol was supplied by Melford, DNA free™ 

(Ambion) and 2-log DNA ladder 0.1-10.0 kb were from New England BioLabs. Human 

recombinant insulin Actrapid 100 IU/mL was obtained from Novo Nordisk A/S. GIBCO 

Invitrogen Life Technologies provided Dulbecco's modified Eagle medium 

(DMEM)/Ham’s F12, fetal bovine serum (FBS), HiMark™ pre-stained high molecular 

weight protein standard, NuPAGE® Novex 4-12% Bis-Tris gels, NUPAGE® MOPS SDS 

running buffer, NUPAGE® transfer buffer, Dulbecco's phosphate buffered saline (DPBS) 

Ca+/Mg+, (calcium/magnesium ion free DPBS) penicillin-streptomycin (P-S) and TRIzol 

reagent. DNA primers for trophinin, CD44, laminin α1, insulin receptor, FBLN1 and 

FBLN2 mRNA detection were from Life Technologies. First Choice® human kidney total 

RNA and nucleic acid purification lysis solution were obtained from Applied Biosystems. 

Formulated RPMI 1640 was supplied by the ATCC, Manassas, USA, while Laemmli 

sample buffer and Tween-20 were from Bio-Rad Laboratories. MegaMix~Double 

(2MMD-5) (Cambio, Cambridge, UK), sodium dihydrogen phosphate (NaH2PO4) (Merck, 

Chemical Germany) and SuperSignal® West Pico (an enhanced Chemiluminescent 
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Substrate for detection of horseradish peroxidase [HRP] were from Thermo Scientific. 

Vectastain® standard ABC Kit was supplied by Vector Laboratories. 

Chapter 3 

Glycerol-3-phosphate oxidase/phenol aminophenazone (GPO/PAP), CHOD/PAP kit, 

HDL cholesterol plus 3rd generation kit, glucose oxidase/PAP kit and Tin-quant CRP 

(Latex) high sensitivity immunoturbidimetric assay kit, all supplied by Roche Diagnostic. 

NEFA C test kit was from Wako, Neuss Germany. Human insulin (10-1113-01, 

Mercodia), Uppsala, Sweden whereas IL-6 (Quantikine HS, R&D Systems), PAI-1 

(TriniLIZE PAI-1 Antigen REF: T6003, Trinity Biotech) and PAI-2 (IMUBIND® PAI-2 

ELISA; Stamford, USA). Plasma chemokines (CXCL8, CCL2, CCL3, CCL4 and CCL11) 

were obtained from MilliPlex® MAP kit (Bio-Rad). Human CG was measured on an 

IMMUNLITE®/IMMUNITE® 1000 system analyser; Siemens, USA and 

IMMUNLITE®/IMMUNITE® 1000 hCG kit (Siemens Medical Solution Diagnostic). 

Chapter 4 

Bradford, ethidium bromide, celLytic MTTM mammalian tissue lysis reagent, glycerol, 

hydrogen peroxide (H2O2), trypan blue, EDTA, NaOH, isopropanol, Harris stain and SDS 

were obtained from Sigma-Aldrich. Dithiothreiol was from GIBCO Invitrogen. Acetone, 

chloroform, citric acid, ethanol, hydrochloric acid, methanol, potassium chloride, NaCl 

and xylene were from VWR International. Tween-20 was from Bio-Rad laboratories and 

100 bp DNA ladder was supplied by New England BioLab® Inc. ABI 6100 Nucleic Acid 

Prepstation, First Choice™ PCR-Ready human Liver cDNA and control primer mix 

(primer target is a constitutive housekeeping gene), Nucleic Acid Purification, Primer 

Probe Target Mix and Nucleic Acid Purification Elution Solution, universal Taqman mix 

and RNA Purification wash solution-1 and -2 were from Applied Biosystem. 10% 

Formalin buffered solution was obtained from Adams Healthcare, England. The primers 

sequence of 18S was from TAGN. 

Chapter 5 

Collagenase from Clostridium Histolyticum-type II, Histopaque 1077, haematoxylin, 

SDS, TRIzol reagent, H2O2, isopropanol and NaOH were supplied by Sigma-Aldrich. 

Acetone, chloroform, citric acid, ethanol, hydrochloric acid, methanol, potassium/NaCl 

and xylene were from VWR International. Universal Taqman Mix was from Applied 

Biosystem. Formalin buffered solution was from Adams healthcare, England. A platelet 

endothelial cell adhesion molecule (PECAM) CD31 antibody was obtained from DAKO 

and myosin antibodies from Sigma-Aldrich. 
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Appendix: 2 Consents 

 

 

 

 

 

Study Number: 
Patient Identification Number for this trial: 
 

CONSENT FORM 

Early pregnancy metabolic and inflammatory changes research study 
 
Name of Researcher:  Mr Christopher Onyiaodike 
                                       Research nurse 

Please initial box 

1. I confirm that I have read and understand the information sheet dated  
21st Sept 2007 (version 3) for the above study and have had the  
opportunity to ask questions. 

 
2. I understand that my participation is voluntary and that I am free to    
 withdraw at any time, without giving any reason, without my medical  
 care or legal rights being affected. 
 
3. I understand that sections of any of my medical notes may be looked    
 at by responsible individuals from the Department of Obstetrics and  
 Gynaecology, University of Glasgow or from regulatory authorities           

where it is relevant to my taking part in research. I give permission for      
these individuals to have access to my records. 

 
4. I agree for the Consultants in the ACS Unit to be informed that I am in          

the study. 
 
5. I agree that samples from this study will be stored in the Division of  
 Developmental Medicine for up to 20 years and may be used in other  
 related research pending ethical approval for its use. 
 
6.    I agree to take part in the above study.  
 
Name of Patient 
 

--------------------------------------------------- 

Date 
 

--------------------- 

Signature 
 

------------------------------------ 
Name of Person taking consent 
(if different from researcher) 
 

--------------------------------------------------- 

Date 
 

 

--------------------- 

Signature 
 

 

------------------------------------ 

Researcher 
 

--------------------------------------------------- 

Date 
 

--------------------- 

Signature 
 

------------------------------------ 
               

1 for patient; 1 for researcher; 1 to be kept with hospital notes 
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Centre Number: 
Study Number: 
Patient Identification Number for this trial: 
 

CONSENT FORM 

Title of Project: Factors which affect cardiovascular risk in pregnancy – 
Study 2 

 
Name of Researcher:          Mr Christopher Onyiaodike 
 

        Please initial box 

1. I confirm that I have read and understand the information sheet dated  
8th December 2006 (version 4) for the above study and have had the 
opportunity to ask questions. 

 
2. I understand that my participation is voluntary and that I am free to    
 withdraw at any time, without giving any reason, without my medical  
 care or legal rights being affected. 
 
3. I understand that sections of any of my medical notes may be looked    
 at by responsible individuals from the Department of Obstetrics and  
 Gynaecology, University of Glasgow or from regulatory authorities            

where it is relevant to my taking part in research.  I give permission               
for these individuals to have access to my records. 

 
4.    I agree to take part in the above study.     
  
 
 
Name of Patient 
 
--------------------------------------------------- 

Date 
 
--------------------- 

Signature 
 
------------------------------------ 

Name of Person taking consent 
(if different from researcher) 
 
--------------------------------------------------- 

Date 
 
 
--------------------- 

Signature 
 
 
------------------------------------ 

Researcher 
 
--------------------------------------------------- 

Date 
 
--------------------- 

Signature 
 
------------------------------------ 

 
1 for patient; 1 for researcher; 1 to be kept with hospital notes 
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