
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 

 
Barclay, Elaine (2004) Characterisation of palmitoylation in alpha₂_A 
adrenoceptor and 5-HT₁_A serotonin receptor-G₀₁± G protein fusion 
proteins. PhD thesis 
 
http://theses.gla.ac.uk/4998/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



Characterisation of Palmitoylation in Alpha-;
Adrenoceptor and 5-HT1A Serotonin Receptor-

Go1a G Protein Fusion Proteins

A thesis presented for the degree of
Doctor of Philosophy

by

Elaine Barclay

Division of Biochemistry and Molecular Biology
Institute of Biomedical and Life Sciences

University of Glasgow

September 2004

© Elaine Barclay, 2004



Acknowledgements I

Abbreviations II

List of Contents VIII

List of Figures XII

List of Tables XVIII

Abstract XXI



Acknowledgements

I would like to start by thanking my supervisor, Professor Graeme Milligan, for his

encouragement and support throughout my PhD. It has been my pleasure to work

amongst a lab of such terrific people and I thank each and every person for their

friendship and assistance over the past few years. I also thank the BBSRC and Pfizer for

their generous funding, which made this research possible. At Pfizer, I would

particularly like to thank Dr Mark O'Reilly for his positive contributions as my

industrial supervisor.

Next I want to thank my friends and family. I'm really grateful for everything you have

all done for me; lending an ear and cheering me up when things were rough and

celebrating with me when things went well. I am very lucky to have such wonderful

people in my life.

Finally Craig. You have been my rock throughout. I love you so much and I thank you

from the bottom of my heart for everything.

I dedicate this thesis to my Mum, Dad and Wee Dodna. I did it! Yipee!

All my love

Lainey xx



Abbreviations

a alpha

U2A-AR alpha-; adrenoceptor

u2A-adrenoceptor-GoluC351I alpha2Aadrenoceptor fused to the pertussis toxin-resistant

GOlaCys351Ilemutant

ADP adenosine-5' -diphosphate

AGS

Ala

AMP

AMPA

accelerator of G protein signalling

alanine

adenosine-5' -monophosphate

(S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)

propionic acid

argmme

asparagine

aspartate

adenosine-5' -triphosphate

beta

beta adrenoceptor

complex formed between the beta and gamma subunits of

heterotrimeric G proteins

bicinchoninic acid

total number of binding sites (maximum expression level)

bovine serum albumin

adenosine-3',5' -monophosphate

CC-chemokine receptor 5

complementary deoxyribonucleic acid

cyclic guanosine-3',5' -monophosphate

phosphodiesterase-y

Curie

Cercopithecus aethiops (monkey, African green) cells

central nervous system

counts per minute

corticotropin-releasing factor

Arg

Asn

Asp

ATP

~

~-AR

~y-dimer

BCA

BSA

cAMP

CCR5

cDNA

cGMP PDEy

Ci

COS cells

CNS

cpm

CRF

II



C terminallCOOH

Cys

C417S

carboxyl terminal

cysteine

5-HTIA-receptor-GolaCys351IIe fusion with mutated l"

GPCR palmitoylation site

5-HTIA-receptor-GolaCys351IIe fusion with mutated 2nd

GPCR palmitoylation site

a2A-adrenoceptor-G, 1aCys351lIe fusion with mutated

GPCR palmitoylation site

5-HTIA-receptor-GolaCys351IIe fusion with both the

GPCR palmitoylation sites mutated

a2A-adrenoceptor-GolaCys351Ile or 5-HTIA-receptor-

GolaCys351IIe fusion with mutated G protein

5-HTIA-receptor-GolaCys351Ile fusion with both the 1st

GPCR site and the G protein palmitoylation site mutated

5-HTIA-receptor-GolaCys351Ile fusion with both the 2nd

GPCR site and the G protein palmitoylation site mutated

a2A-adrenoceptor-GolaCys351IIe fusion with both the

GPCR and G protein palmitoylation sites mutated

5-HTIA-receptor-GolaCys351IIe fusion with both GPCR

palmitoylation sites and the G protein palmitoylation site

mutated

Dalton

detergent insoluble glycolipid-enriched regions

Dulbecco's modified Eagle's medium

dimethyl sulphoxide

deoxyribonucleic acid

deoxynucleotide triphosphates

disintegrations per minute

Asp-Arg-Tyr

dithiothreitol

enhanced autoradiography wax

extracellular loops

Da

DIG regions

DMEM

DMSO

DNA

dNTPs

dpm

DRY

DTT

EAwax

EC loops

III



GFP

GIP

GLP-I

Glu

Gly

GnRH

GPCR

effective concentration 50% (concentration of agonist

producing half maximal response)

enhanced chemiluminescence

ethylene diamine tetra-acetic acid

endothelial nitric oxide synthase

endoplasmic reticulum

femtomole

gamma

guanine nucleotide binding protein

GTPase activating protein

Growth-associated protein-43

guanosine-5' -diphosphate

G protein alpha subunit

G protein heterotrimer

G protein alpha subunit with GDP bound

G protein alpha subunit with GTP bound

G protein beta gamma subunit

alpha subunit of G protein originally characterised by its

ability to inhibit adenylyl cyclase activity

alpha subunit of Go protein

alpha subunit of Go protein incorporating a cysteine to

isoleucine mutation at amino acid residue 351

alpha subunit ofG protein originally characterised by its

ability to stimulate adenylyl cyclase activity

class of G proteins responsible for inhibition of adenylyl

cyclase

green fluorescent protein

glucose-dependent insulinotropic peptide

Glucagon-like peptide 1

glutamine

glycine

Gonadotropin releasing hormone

G protein coupled receptor

EC50

ECL
EDTA

eNOS

ER

finoI

t

G protein

GAP

GAP-43

GDP

Ga

GaPr
Ga-GDP

Ga-GTP

Gl3r

Gola

GolaCys351Ile

IV



GRK

Gs class

GRKs

GST

GTP

GTPyS
3H
HA

HEK293T cells

HEPES

HRP

8-0H-DPAT

5-HT

5-HT1A-receptor

5-HT1A-receptor-GoluC351I

IC loops

IC50

IgG

Ile (1)

IPTG

kDa

Kt

L

LB
Leu

LHlhCG

Jlg

G protein-coupled receptor kinase

class of G proteins responsible for stimulation of adenylyl

cyclase

G protein-coupled receptor kinases

glutathione-S-transferase

guanosine-5' -triphosphate

guanosine 5' -O-(3-thiotriphosphate)

Tritium radionuc1ide

haemagglutinin

human embryonic kidney 293 large T antigen cells

N-2-hydroxyethylpiperazine-N' -2-ethanesulphonic acid

horseradish peroxidase

8-hydroxy-2-( di-n-propylamino )tetralin

5-hydroxytryptamine

5-hydroxytryptaminelA receptor

5-HT1A-receptor fused to the pertussis toxin-resistant

GOIaCys351Ilemutant

intracellular loops

concentration of inhibitor molecule required to produce

half maximal response

Immunoglobulin-G

isoleucine

isopropylthio-beta- D-galactoside

kiloDalton

dissociation constant (concentration of ligand that will

bind to half the receptors at equilibrium)

affinity of the receptors for a competing drug

affinity of an enzyme for substrate

litre

L-broth

leucine

luteinizing hormone/human chorionic gonadotropin

micrograms

v



j.!l

j.!M

M

MAPK

microlitres

micromolar

Met

molar

mitogen-activated protein kinase

methionine

mg

M-Glu-R

milligrams

metabotropic glutamate receptor

minutesmm
. -1mm per minute

millilitres

millimetres

millimolar

4-morpholinepropanesulfonic acid

messenger ribonucleic acid

nicotinamide adenine dinucleotide

new born calf serum

ml

mm

mM

MOPS
mRNA

NAD

NBCS
ng nanograms

nanometresnm

nM

NMR

NO

nanomolar

N-terminal1NH2

nuclear magnetic resonance

nitric oxide

amino terminal

OD
32p

optical density

phosphorus-32 radionuclide

Pituitary adenylate cyclase activating polypeptide

polyacrylamide gel electrophoresis

phosphate buffered saline

phosphate buffered saline containing 0.2% Tween-20

polymerase chain reaction

phosphodiesterase

inorganic phosphate

protein kinase A

protein kinase C

PACAP
PAGE
PBS
PBS-T

PCR
PDE

PKA

PKC

VI



e5S]

SDS

S.E.M

phospholipase C-~

picomolar

picomoles

proline

post synaptic density protein-95

parathyroid hormone

pertussis toxin

polyvinylidenfluoride

regulator of G protein signalling

(8a R,12aS,13a-S)-5,8,8a,9,10,11, I2,12a, 13,13a-

decahydro-3-methoxy-12-( ethylsulphonyl)-6H-

isoquino[2,I-g] [1,6] naphthyridine

Sulphur-35 radionuclide

sodium dodecylsulphate

standard error of the mean

PLC-~

pM

pmol

Pro

PSD-95

PTH

ptox

PVDF

RGS

RS-79948-I97

Ser senne

S (nM)

TAE

TE

TEM

Thr

TM

TRH

VIP

Val

substrate concentration (nM)

tris-acetate- EDTA

tris-EDTA

tris-EDTA-magnesium

threonine

transmembrane

thyrotropin releasing hormone

vasoactive intestinal polypeptide

valine

Vmax maximum reaction rate

(w/v)

volume per volume

N-[2-[ 4-(2-methoxyphenyl)-1-piperazinyl[ ethyl]-N-2-

pyridinyl-cyclohexane-carboxamide

wild type u2A-adrenoceptor-GoluCys351Ile or 5-HT1A-

receptor-GoluCys351Ile fusion protein with all

palmitoylation sites as normal

weight per volume

(v/v)

WAYI00635

WT

VII



Chapter 1: Introduction 1

1.1 Introduction 1

1.1.1 Cell Signalling 1

1.1.2 History of GPCRs and G proteins 1

1.1.3 The Adrenergic Receptors: A Brief Introduction 3

1.1.4 The Serotonin Receptors: A Brief Introduction 6

1.1.5 The GolU G protein: A Brief Introduction 9

1.2 G protein Coupled Receptors 10

1.2.1 Introduction 10

1.2.2 The Structure of GPCRs 14

1.2.3 Further Important Features of GPCRs 18

1.3 G Proteins 22

1.3.1 Introduction 22

1.3.2 Overview of GPCR-G Protein Signalling 24

1.3.3 Alpha Subunits 24

1.3.4 Beta and Gamma Subunits 25

1.3.5 Structural Features of G Proteins 26

1.3.6 Other Molecules Acting at Sites Within the GTPase Cycle 29

1.4 GPCR-G Protein Fusion Proteins 31

1.5 Palmitoylation 33

1.5.1 Introduction 33

1.5.2 Role of Palmitoylation 34

1.5.3 Palmitoylation and Caveolae 35

1.5.4 Palmitoylation and py Subunits 36

1.5.5 Cycles of Palmitoylation 37

1.5.6 Experimental Methods for the Study ofPalmitoylation 41

1.5.7 GPCR Palmitoylation 44

VIII



1.5.8 G Protein Palmitoylation 50

1.6 Research Aims 53

Chapter 2: Materials and Methods 55

2.1 Materials 55

2.2 General Buffers 58

2.3 General Molecular Biology 59
2.3.1 Preparation of LB Ampicillin Agar Plates 59
2.3.2 Preparation of XLI Blue Competent Bacteria Cells 59
2.3.3 Transformation of competent XLI Blue Bacterial Cells with

Plasmid DNA 60
2.3.4 Preparation of Plasmid DNA 60
2.3.5 Quantification of DNA 60
2.3.6 Digestion of DNA with Restriction Endonucleases 61
2.3.7 DNA Gel Electrophoresis 61
2.3.8 DNA Purification from Agarose Gels 61
2.3.9 Alkaline Phosphatase Treatment of Plasmid Vectors 61
2.3.10 DNA Ligations 62

2.4 Mutation of GPCR-G Protein Fusions to Produce

Palmitoylation Deficient Variants 62
2.4.1 Polymerase Chain Reaction 62
2.4.2 Construction of a2A-adrenoceptor-GolaCys351Ile

Palmitoylation- Variant Constructs 64
2.4.3 Construction of 5-HT IA-receptor-Go IaCys351Ile

Palmitoylation- Variant Constructs 66

IX



2.5 Cell Culture 68
2.5.1 Cell Growth 68
2.5.2 Passage of Cells 68
2.5.3 Coating Plates with Poly-D-Lysine 68
2.5.4 LipofectAMINE-Based Transient Transfections for

Cell Harvesting 69
2.5.5 LipofectAMINE- Based Transient Transfections for

Palmitoylation Assay 69
2.5.6 LipofectAMINE-Based Transient Transfections for

Receptor Internalisation Assay 69
2.5.7 Cell Harvesting 70

2.6 Protein Biochemistry 70
2.6.1 BCA Assay to Determine Protein Concentration 70
2.6.2 Preparation of Cell Membranes 70
2.6.3 Sodium Dodecyl Sulphide Polyacrylamide Gel Electrophoresis 71
2.6.4 Semi-Dry Protein Transfer & Autoradiography

(For Palmitoylation Assay) 71
2.6.5 Western Blotting 71
2.6.6 GST Fusion Protein Preparation 72

2.7 Assays 73
2.7.1 Radioligand Binding Assays: One Near-Saturating

Concentration of Radioligand 73
2.7.2 Radioligand Binding Assays: Various Concentrations

of Radioligand 73
2.7.3 Competition Radioligand Binding Assays 74
2.7.4 In Vivo Palmitoylation Assays 74
2.7.5 High Affinity GTPase Assays 75
2.7.6 esS] GTPyS Binding Assays 75
2.7.7 Receptor Internalisation Assay 76

x



Chapter 3: Regulation of palmitoylation in

aZA -adrenoeeptor-Ca aCys35tlie fusion proteins 77

3.1 Introduction 77

3.2 Results 80
3.3 Discussion 106

Chapter 4: Functional consequences of palmitoylation in

aZA -adrenoceptor-Oa aCys35tlie fusion proteins 114

4.1 Introduction 114

4.2 Results 117

4.3 Discussion 147

Chapter 5: Regulation of palmitoylation in

5-HTtA-receptor-GotaCys351Ile fusion proteins 156

5.1 Introduction 156
5.2 Results 159
5.3 Discussion 189

Chapter 6: Functional consequences of palmitoylation in

5-HTIA-receptor-GotaCys3S1Ile fusion proteins 198

6.1 Introduction 198
6.2 Results 200
6.3 Discussion 211

Chapter 7: Final Discussion

Chapter 8: Appendix

Chapter 9: References

215
223
242

XI



List of Figures

Figure 1.1 Structure of u2A-adrenoceptor-interacting molecules

used in this study S

Figure 1.2 Structure of serotonin and the S-HT1A-receptor-interacting

molecules used in this study 8

Figure 1.3 The main structural characteristics of the rhodopsin-like

family of G protein-coupled receptors l3

Figure 1.4 General features of G protein signalling and the GTPase cycle 23

Figure 1.S The structure of GPCR-G protein fusion proteins 32

Figure 1.6 Cycles of palmitoylation 39

Figure 2.1 PCR method used in this study 63

Figure 3.1 Analysis of expression levels of an U2A-adrenoceptor-

GoluCys351Ile fusion protein after sub-culture into multiple

duplicate culture plates (determined from binding of a SnM

concentration of [3H]_RS-79948-197 to membranes expressing

the u2A-adrenoceptor-GoluCys35IIle fusion protein) 89

Figure 3.2 Incorporation of eH] palmitate into the palmitoylation-variant

u2A-adrenoceptor-GoluCys35IIle fusion proteins in the presence

and absence of adrenaline 90

Figure 3.3 Incorporation of eH] palmitate into the u2A-adrenoceptor-

GoluCys351Ile (WT) fusion protein in the presence and absence

of adrenaline 92

Figure 3.4 Incorporation of eH] palmitate into the U2ACys442Ala-

adrenoceptor-GoluCys35lIle (C442A)fusion protein in the

presence and absence of adrenaline 93

Figure 3.S Incorporation of [3H] palmitate into the U2A-adrenoceptor-

Go1u CysSer, Cys351Ile(C3S) fusion protein in the presence

and absence of adrenaline 94

Figure 3.6 Comparison of incorporation of eH] palmitate into the U2A-

adrenoceptor-Gauf.ys'P'Ile (WT), U2ACys442Ala-adrenoceptor-

GoluCys351Ile (C442A) and the u2A-adrenoceptor-Go1u Cys'Ser,

XII



Cys35IlIe (C3S) fusion proteins in the presence and absence

of adrenaline 95

Figure 3.7 Basal and adrenaline-stimulated de-palmitoylation of an a2A-

adrenoceptor-GolaCys35IlIe (WT) fusion protein 96

Figure 3.8 Basal and adrenaline-stimulated de-palmitoylation of an

a2ACys442Ala-adrenoceptor-Gg.of'ys't'Ile (C442A) fusion

protein 97

Figure 3.9 Basal and adrenaline-stimulated de-palmitoylation of an a2A-

adrenoceptor-Gx,u Cys'Ser, Cys35IIle (C3S) fusion protein 98

Figure 3.10 Concentration-response of adrenaline regulated incorporation

of [3H] palmitate into the a2A-adrenoceptor-GolaCys351Ile (WT)

fusion protein 100

Figure 3.11 Competitive inhibition of antagonist radio ligand binding by the

agonist adrenaline to membranes expressing the a2A-adrenoceptor-

GOIaCys351Ile (WT) fusion protein 101

Figure 3.12 Lack of ability of a2A-adrenoceptor-Gsi aCys351lIe fusion proteins

to bind [35S]GTPyS upon mutation of residue Gly04 of the Gola

protein 102

Figure 3.13 Lack of ability of adrenaline to regulate the palmitoylation of a2A-

adrenoceptor-GolaCys35llIe fusion proteins upon mutation of

residue Gly04 of the Go1a protein 103

Figure 3.14 Incorporation of eH] palmitate into endogenously expressed

Gola protein in the presence and absence of adrenaline 104

Figure 3.15 Repalmitoylation of the a2ACys442Ala-adrenoceptor-

GOIaCys351lIe(C442A) fusion protein 105

Figure 4.1 Western blot analysis of membranes transiently transfected with

the a2A-adrenoceptor-GolaCys35IIle fusion proteins 124

Figure 4.2 Analysis of expression levels of a2A-adrenoceptor-

GOIaCys351lIe fusion proteins: determined from binding of a

5nM concentration of [3H]_RS- 79948-197 to membranes

expressing the fusion proteins 125

Figure 4.3 Analysis of expression levels of a2A-adrenoceptor-

XIII



G01aCys3S1Ile fusion proteins by eH]-RS-79948-197 saturation

binding analysis to membranes expressing the fusion proteins 126

Figure 4.4 Competitive inhibition by the agonist adrenaline of

eH]-RS-79948-197 binding to membranes expressing the

a2A-adrenoceptor-G; 1aCys3S1Ile fusion proteins 127

Figure 4.5 Analysing levels of esS] GTPyS binding to various quantities of

a2A-adrenoceptor-G, 1aCys351Ile fusion proteins 128

Figure 4.6 Analysing the time course of esS] GTPyS binding to

a2A-adrenoceptor-Gj, aCys351Ile fusion proteins 129

Figure 4.7 Analysing levels of esS] GTPyS binding to a2A-adrenoceptor-

G C 351n f . .. .01a ys e usion protems m response to vanous

concentrations of adrenaline 130

Figure 4.8 Analysis of the e5S] GTPyS binding of all four palmitoylation-

variant a2A-adrenoceptor-GolaCys351ne fusion proteins 131

Figure 4.9 Testing various membrane amounts and incubation lengths for

basal and adrenaline-stimulated high affinity GTPase activity in

membranes expressing the a2A-adrenoceptor-GolaCys3S1Ile (WT)

fusion protein 132

Figure 4.10 Testing various membrane amounts and incubation lengths for

basal and adrenaline-stimulated high affinity GTPase activity in

membranes expressing the a2ACys442Ala-adrenoceptor-

GolaCys3Ser, Cys351Ile (Cys442Ala, Cys'Ser) fusion protein 133

Figure 4.11 Adrenaline concentration-response curves for activation of high

affinity GTPase activity in a2A-adrenoceptor-Go1 aCys3S1Ue

fusion proteins 134

Figure 4.12 Analysis of the basal and adrenaline stimulated high affinity

GTPase activity of all four palmitoylation-variant

a2A-adrenoceptor-G, 1aCys351ne fusion proteins 135

Figure 4.13 Coomassie Blue staining for purified RGS 16-GST following

protein purification using Glutathione Sepharose 4B gel 136

Figure 4.14 Analysis of the basal, adrenaline-stimulated, RGS 16-stimulated

And RGS 16 in the presence of adrenaline-stimulated high affinity

GTPase activity of all four palmitoylation-variant

XIV



a2A -adrenoceptor-G, 1aCys351 lIe fusion proteins

Figure 4.15 Basal and adrenaline-stimulated high affinity GTPase activity of

membranes expressing the a2A-adrenoceptor-GolaCys351IIe (WT)

fusion protein in the presence and absence ofRGS16-GST 138

137

Figure 4.16 Basal and adrenaline-stimulated high affinity GTPase activity of

membranes expressing the a2ACys442Ala-adrenoceptor-

GOIaCys351Ile (C442A) fusion protein in the presence and

absence ofRGS16-GST

Figure 4.17 Basal and adrenaline-stimulated high affinity GTPase activity of

membranes expressing the a2A-adrenoceptor-GolaCys3Ser,

Cys351Ile (C3S) fusion protein in the presence and absence ofRGS16-

139

GST 140

Figure 4.18 Basal and adrenaline-stimulated high affinity GTPase activity of

membranes expressing the a2ACys442Ala-adrenoceptor-

GolaCys3Ser, Cys351Ile (C442A, C3S) fusion protein in the presence and

absence of RGS 16-GST 141

Figure 4.19 Biotin labelling of all four palmitoylation-variant

a2A-adrenoceptor-GolaCys351IIe fusion proteins

Figure 4.20 Lack of adrenaline-stimulated internalisation of the

u2A-adrenoceptor-GoluCys351IIe (WT) and U2ACys442Ala-

adrenoceptor-GO!uCys3Ser, Cys351Ile (C442A, C3S)

fusion proteins

144

145

Figure 4.21 Internalisation of adrenaline-stimulated U2A-adrenoceptor alone

but not the u2A-adrenoceptor-GoluCys351IIe (WT) fusion protein 146

Figure 5.1

Figure 5.2

Analysis of expression levels of a 5-HTIA-receptor-

GOluCys351lIefusion protein after sub-culture into multiple

duplicate culture plates (determined from binding of a near-

saturating concentration (~5nM) ofeH]-WAYlO0635 to

membranes expressing the 5-HTIA-receptor-GO!aCys351Ile

fusion protein) 170

Incorporation of eH] palmitate into the palmitoylation-variant

5-HTIA-receptor-GoluCys351Ile fusion proteins in the presence

and absence of8-0H-DPAT 171

xv



Figure 5.3 Incorporation of [3H] palmitate into the 5-HT IA-receptor-

GolaCys351Ile (WT) fusion protein in the presence and absence

of8-0H-DPAT 173

Figure 5.4 Incorporation 0 f [3H] palmi tate into the 5-HT I ACys417Ser,

Cys420Ser-receptor-GolaCys35IIle (C417S,C420S)fusion protein

in the presence and absence of8-0H-DPAT 174

Figure 5.5 Incorporation ofeH] palmitate into the 5-HTIA-receptor-

GolaCys3Ser, Cys351Ile (C3S) fusion protein in the presence and

absence of8-0H-DPAT 175

Figure 5.6 Incorporation of CH] palmitate into the 5-HTIACys420Ser-

receptor-Gaof.ys'Ser, Cys351Ile (C420S,C3S) fusion protein in

the presence and absence of8-0H-DPAT 176

Figure 5.7 Basal and 8-0H-DPAT-stimulated de-palmitoylation of a

5-HTIA-receptor-GolaCys35IIle (WT) fusion protein 178

Figure 5.8 Basal and 8-0H-DPAT-stimulated de-palmitoylation ofa

5-HTIACys417Ser, Cys420Ser-receptor-GolaCys35IIle

(C417S C420S)f . . 179, uston protem

Figure 5.9 Lack of basal and 8-0H-DPAT-stimulated de-palmitoylation of

a 5-HTIA-receptor-GolaCys3Ser,Cys35IIle (C3S) fusion protein 180

Figure 5.10 Lack of basal and 8-0H-DPAT-stimulated de-palmitoylation of

a 5-HTIACys420Ser-receptor-GolaCys3Ser,Cys35IIle (C420S,C3S)

fusion protein 181

Figure 5.11 Concentration-response of 8-0H-DPAT regulated incorporation

ofCH] palmitate into the 5-HTIA-receptor-GolaCys35IIle

(WT) fusion protein 183

Figure 5.12 Concentration-response of 8-0H -DPAT regulated incorporation

of CH] palmitate into the 5-HTIACys417Ser, Cys420Ser-receptor-

GOlaCys351Ile (C417S,C420S)fusion protein 184

Figure 5.13 Concentration response of8-0H-DPAT regulated incorporation

of eH] palmitate into the 5-HTIACys420Ser-receptor-GolaCys3Ser,

Cys351Ile(C420S,C3S) fusion protein 185

Figure 5.14 Incorporation of eH] palmitate into endogenously expressed

Gola protein in the presence and absence of 8-0H-DPAT 187

XVI



Figure 5.15 Repalmitoylation of the 5-HTIACys417Ser, Cys420Ser-receptor-

GoluCys351lIe (C417S,C420S)fusion protein 188

Figure 6.1 Western blot analysis of membranes transiently transfected with

the 5-HT 1A-receptor-G, 1UCys351Ile fusion proteins 204

Figure 6.2 Analysis of expression levels of 5-HTIA-receptor-GoluCys3S1lIe

fusion proteins determined from binding of a near saturating

(~5nM) concentration ofeH]-WAY100635 to membranes

expressing the fusion proteins 205

Figure 6.3 Analysis of expression levels of 5-HT 1A-receptor-G, 1uCys3S1Ile

fusion proteins by eH]- WAY100635 saturation binding analysis

to membranes expressing the fusion proteins 206

Figure 6.4 Analysing levels of e5S] GTPyS binding to various quantities of

5-HTIA-receptor-GoluCys351lIe fusion proteins 207

Figure 6.5 Analysing the time course ofesS] GTPyS binding to 5-HT1A-

receptor-GoluCys3S1lIe fusion proteins 208

Figure 6.6 Analysis of the esS] GTPyS binding of four palmitoylation-

variant 5-HTIA-receptor-GoluCys351lIe fusion proteins 209

Figure 6.7 Analysing the effect of spiperone on basal esS] GTPyS binding to

the 5-HTIA-receptor-GoluCys3S1lIe (WT) fusion protein 210

XVII



List of Tables

Table 1.1 The main classes of G protein-coupled receptor 12

Table 1.2 The effects of mutating various GPCR palmitoylation sites 45

Table 3.1 Comparison of the incorporation of eH] palmitate into all four

palmitoylation-variant fusion proteins in the presence and

absence of adrenaline 91

Table 3.2 Comparison of incorporation ofeH] palmitate into the a2A-

adrenoceptor-Gacrfys+Tle (WT), a2ACys442Ala-adrenoceptor-

GolaCys351Ile (C442A) and the a2A-adrenoceptor-Go1a Cys'Ser,

Cys351Ile (C3S) fusion proteins in the presence and absence

of adrenaline 95

Table 3.3 Comparison of depalmitoylation for the three selected

palmitoylation-variant a2A-adrenoceptor-G, IaCys351Ile fusion

proteins in the presence and absence of adrenaline 99

Table 4.1 Comparison of expression levels of a2A-adrenoceptor-

GOlaCys351Ile fusion proteins determined from binding of a 5nM

concentration of eH]-RS-79948-197 to membranes expressing the

fusion proteins 125

Table 4.2 C . f 351I fu . .ompanson 0 a2A-adrenoceptor-Go1aCys Ile fusion protem

expression levels and K, for eH]-RS-79948-197 binding to a2A-

adrenoceptor-GolaCys351Ile fusion proteins: determined by

saturation binding analysis to membranes expressing the fusion

proteins 126

Table 4.3 Comparison of competitive inhibition by the agonist adrenaline

of eH]-RS-79948-197 binding to membranes expressing the

a2A-adrenoceptor-GolaCys351Ile fusion proteins 127

Table 4.4 Comparison oflevels of e5S] GTPyS binding to a2A-adrenoceptor-

GolaCys351Ile fusion proteins in response to various concentrations

of adrenaline 130

Table 4.5 Comparison of adrenaline-stimulated e5S] GTPyS binding of all

four palmitoylation-variant a2A-adrenoceptor-Gj. UCys351Ile

XVIII



Table 4.6

Table 4.7

Table 4.8

Table 4.9

Table 4.10

Table 4.11

Table 5.1

Table 5.2

Table 5.3

fusion proteins

Comparison of the potency of adrenaline to activate high affinity

GTPase activity in U2A-adrenoceptor-Gx, UCys351lIe fusion proteins 134

131

Comparison of basal and adrenaline-stimulated high affinity

GTPase activity of all four palmitoylation-variant

u2A-adrenoceptor-GoluCys35IIle fusion proteins

Comparison of basal, adrenaline-stimulated, RGS 16-stimulated

and RGS 16 in the presence of adrenaline-stimulated high affinity

GTPase activity of all four palmitoylation-variant

u2A-adrenoceptor-GoluCys35IIIe fusion proteins

Comparison of basal and adrenaline-stimulated high affinity

GTPase activity Vmax of membranes expressing the

u2A-adrenoceptor-GoluCys35IIle fusion proteins in the presence

and absence ofRGSI6-GST

Comparison of basal and adrenaline-stimulated Km for GTP

hydrolysis of membranes expressing the u2A-adrenoceptor-

GOluCys351Ile fusion proteins in the presence and absence of

RGS16-GST

l35

l37

142

142

Comparison of basal and adrenaline-stimulated turnover numbers

for GTP hydrolysis of membranes expressing the u2A-adrenoceptor-

GOluCys351IIefusion proteins in the presence and absence of

RGSI6-GST 143

Comparison of the incorporation of [3H] palmitate into all eight

palmitoylation-variant fusion proteins in the presence and

absence of8-0H-DPAT

Comparison of the incorporation of [3H] palmitate results from

Figure 5.3-5.6 for the four selected palmitoylation-variant fusion

proteins (Figure 5.3: WT, Figure 5.4: C417S,C420S,Figure 5.5: C3S

and Figure 5.6: C420S,C3S) in the presence and absence of

8-0H-DPAT

Comparison of the depalmitoylation results from Figure 5.7-5.10

for the four selected palmitoylation-variant fusion proteins

(Figure 5.7: WT, Figure 5.8: C417S,C420S,Figure 5.9: C3S, and

172

177

XIX



Figure 5.10: C420S,C3S) in the presence and absence of

8-0H-DPAT 182

Table 5.4 Comparison of 8-0H -DPAT concentration-response regulated

incorporation of eH] palmitate into three palmitoylation-variant

fusion proteins (for Figure 5.11: WT, for Figure 5.12: C417S, C420S

and for Figure 5.13: C420S,C3S) 186

Table 6.1 Comparison of expression levels of 5-HT 1A-receptor-

GoluCys3S1Ue fusion proteins determined from binding of near

saturating (-5nM) concentration ofeH]-WAYI00635 to

membranes expressing the fusion proteins 205

Table 6.2 Comparison of 5-HTIA-receptor-GoluCys3S1Ue fusion protein

expression levels and KI for eH]-WAYI00635 binding to

5-HTIA-receptor-GoluCys3S1Ue fusion proteins, determined by

saturation binding analysis to membranes expressing the

fusion proteins 206

Table 6.3 Comparison of basal and 8-0H-DPAT-stimulated [3SS]GTPyS

binding of four palmitoylation-variant 5-HT lA-receptor-

Go!uCys3SIUe fusion proteins 209

Table 6.4 Comparison of basal, basal in the presence of spiperone and

100~M 8-0H-DPAT-stimulated esS] GTPyS binding to the

5-HTIA-receptor-GO!uCys3S1Ue (WT) fusion protein 210

xx



Abstract

Palmitoylation variant GPCR-G protein fusion proteins were created between the

porcine u2A-adrenoceptor or the human 5-HT1A-serotonin receptor and the pertussis

toxin resistant, Cys35lIle, form of the rat Go1u protein. These palmitoylation-variant

fusions were transiently expressed in HEK293T cells prior to analysis of the regulation

of palmitoylation and the functional consequences of palmitoylation for both the GPCR

and G protein parts of the fusions.

When the regulation of palmitoylation was studied for u2A-adrenoceptor-GoluCys35IIle

fusion proteins, dynamic palmitoylation and depalmitoylation of both the Cys442residue

of the u2A-adrenoceptor and the Cys ' residue of the GoluCys351Ile protein were found to

occur. However, only the GOluCys351Ileprotein part of the fusion was found to undergo

adrenaline-stimulated regulation of palmitoylation and the effect of adrenaline required

G protein activation. Adrenaline regulation proceeded in a concentration-dependent

manner correlating with agonist occupancy of the u2A-adrenoceptor. Such agonist

effects were found to be, at least in part, due to agonist-stimulation of GOluCys351Ile

protein depalmitoylation.

The requirements for palmitoylation of the u2A-adrenoceptor and GoluCys351Ile protein

elements of the u2A-adrenoceptor-GoluCys35IUe fusion proteins were subsequently

assessed for various functional properties. Palmitoylation of neither the U2A-

adrenoceptor nor the GoluCys351Ile protein parts of the fusion determined fusion protein

expression levels, affinity for the agonist adrenaline, affinity for the antagonist RS-

79948-197, ability to bind or to hydrolyse GTP or their ability to influence the

efficiency of RGS 16 protein to accelerate the GTPase reaction.

In regulation of palmitoylation studies for 5-HTIA-receptor-GoluCys35IIle fusion

proteins, dynamic palmitoylation of the Cys' residue of the GoluCys351Ue protein and

the Cys417 residue of the 5-HTIA-receptor was observed as well as a lack of

incorporation of palmitate into Cys420 of the 5-HT1A-receptor. Dynamic

depalmitoylation was only observed for the Cys' residue of the GoluCys351Ile protein,
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not for the 5-HT1A-receptor. In the latter case, palmitate once incorporated appeared to

remain stably attached. Both the 5-HT1A-receptor and the GoluCys351Ile protein parts of

the fusion were found to undergo 8-0H-DPAT-stimulated regulation ofpalmitoylation.

8-0H-DPAT was able to regulate palmitoylation levels of both proteins in a

concentration-dependent manner. For the regulation of GoluCys351Ile protein

palmitoylation such agonist effects were found likely to be, at least in part, due to an

agonist-stimulated rate of depalmitoylation. For the regulation of 5-HT1A-receptor

palmitoylation such agonist-stimulated increases in observed palmitoylation levels were

only attributable to the addition of palmitate, given that no depalmitoylation of the 5-

HT1A-receptor could be detected.

The requirements for palmitoylation of the 5-HT1A-receptor and GoluCys351Ile protein

elements of the 5-HT1A-receptor-GoluCys351Ile fusion proteins were also assessed for a

selection of functional properties. Similar to the results obtained with Go1uCys351Ile

protein constrained to the uZA-adrenoceptor, the palmitoylation of the GoluCys351Ile

protein did not determine fusion protein expression levels, their affinity for the

antagonist WAYI00635, or their ability to bind GTP. Palmitoylation of 5-HT1A-

receptor did not alter fusion protein expression levels or their affinity for the antagonist

WAYI00635. However, in contrast, it did cause enhanced levels of GTP binding to the

5-HT1A-receptor-GoluCys351Ile fusion proteins.

The results of this investigation suggest that there are different requirements for

regulation of GPCR and G protein palmitoylation dependent on the GPCR-G protein

fusion in question. These requirements may be responsible for the specific functional

properties displayed by such fusions. The current study also demonstrates that GPCR-G

protein fusion proteins can be successfully used as tools to study both the regulation of

palmitoylation and the functional consequences of this modification.
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Chapter 1

Introduction



1.1 Introduction

1.1.1 Cell Signalling

Cell signalling is the communication of individual cells with their environmental

surroundings and other cells. This communication is a fundamental aspect of co-

ordinating responses in multicellular organisms and it depends upon an efficient

network for signal transduction across the lipid bilayer. Cells receive a multitude of

signals at their extracellular surface via molecules such as hormones, neurotransmitters

and the like. The majority of these signals, which do not enter the cell, must be

transmitted to the interior of the cell through membrane-bound receptor systems. Some

of these receptor systems function as ion channels, enzymes or sites for diffusion of

lipid soluble ligands across the membrane into cells. However, the most abundant type

of membrane-bound receptors are the G protein-coupled receptor (GPCR) family, which

transduce signals to intracellular enzymes and ion channels via guanine nucleotide

binding proteins (G proteins). This superfamily of GPCRs accounts for about 1000 of

the ~30,000 genes encoding specific proteins in humans, making it one of the largest

protein families in nature.

1.1.2 History of GPCRs and G proteins

The existence of a hormone-linked G protein signalling system began to be realised in

1957 upon the elucidation of cAMP as a second messenger for adrenaline and glucagon

and the first description of this messengers synthesis by a membrane-associated enzyme

now known as adenylyl cyclase (Berthet et al., 1957; Sutherland and RaIl, 1958). At

this time, and for around a decade afterwards, it was thought that hormone acted directly

on this enzyme causing allosteric activation of an intrinsic catalytic subunit. It was then

discovered that hormone receptors and adenylyl cyclase were actually separate entities

(Bimbaumer and Rodbell, 1969; Bimbaumer et al., 1969). Shortly after this, in 1971,

Rodbell et al. made the key observation that GTP was vital for effective hormonal

stimulation of adenylyl cyclase enzyme complex. The discovery that guanine-

nucleotide-sensitive adenylyl cyclase actually consisted of two components, a GTP-



sensitive protein (Gs) and a catalytic moiety (Pfeufer and Helmreich, 1975; Ross and

Gilman, 1977), paved the way for the purification and characterisation of the GTP-

binding protein, Gs (Northup et al., 1980).

Around the same time, the first GPCRs, the P2-adrenergic and the rhodopsin receptors,

were being purified and characterised (Shorr et al., 1981 and Nathans and Hogness,

1983).Much of our understanding of G protein-linked receptors is based on information

derived from studies on rhodopsin, the receptor responsible for mediation of vision in

dim light. This GPCR constitutes more than 90% of membrane protein in bovine retina,

making its purification and sequencing a relatively easy task. In 1986, Dixon et al.

cloned the gene and cDNA for the mammalian p-adrenergic receptor and assessed its

homology to rhodopsin. It was found to have a very similar structure, containing seven

hydrophobic segments predicted to form transmembrane (TM) regions of the protein.

This seven TM (7TM) motif had been identified previously in the bacterial light-

sensitive protein, bacteriorhodopsin. This protein is a proton pump and it does not

interact with G proteins, however, it helped in providing a good insight into the

predicted structure of GPCRs because this analogous seven-times-transmembrane-

spannmg protein had already been subject to electron crystallography and 3-D

reconstruction (Henderson and Unwin, 1975;Henderson et al., 1990).

As work continued in the GPCR-G protein signalling area it became apparent that the

binding of many ligands, of various structural classes, was sensitive to guanine

nucleotides. As a result, throughout the 80s and 90s with the advent of cDNA cloning

techniques, a variety of new G proteins and GPCRs were discovered. They were found

to function in a wide spectrum of biological areas such as sensory transduction (e.g.

olfaction), hormonal signalling and cell growth. It was also found that besides adenylyl

cyclase, a number of amplifiers and effector systems like phospholipases and

phosphodiesterases, as well as ion channels, are regulated by the G protein subunits

(Bimbaumer et al., 1990).
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1.1.3 The Adrenergic Receptors: A Brief Introduction

Adrenaline is a catecholamine hormone synthesised in chromaffin cells of the adrenal

gland. It is released into the plasma at times of stress or increased energy need and

stimulates glycogenolysis in the liver and exerts potent actions on the cardiovascular

system. Adrenaline is also present, to a limited extent, in neurons in the central nervous

system (CNS). In the periphery, the adrenergic system has an essential role in the

regulation of the cardiovascular system. Increased sympathetic discharge to the heart

leads to an increased rate and force of contraction mediated through PI-adrenoceptors.

Circulating adrenaline also acts on cardiac tissue but, in addition, acts on a 1-

adrenoceptors in arterial smooth muscle stimulating vasoconstriction and on P2-

adrenoceptors in vascular beds of skeletal muscle stimulating vasodilation leading to

increased blood flow (Summers and McMartin, 1993).

A large number of clinically important drugs exert their actions through adrenoceptors.

P2-selective agonists, e.g. salbutamol, are used in the acute treatment of asthma while

a-agonists prolong the action of local anaesthetics and act as nasal decongestants.

Clonidine, an a2-selective agonist, is used to treat hypertension through a central action.

a I-antagonists, e.g. prazosin, are also used to treat hypertension but have only limited

theraputic application. p-antagonists, e.g. propanolol or atenolol, are the agents of

choice in the treatment of hypertension and a number of other cardiovascular disorders,

e.g. angina, certain cardiac dysrhythmias and cardiac infarction; they are also used in

the treatment of anxiety and glaucoma (Insel, 1996).

Adrenoceptors can be divided into three main types based on sequence information,

receptor pharmacology and signalling mechanisms (http://www.gpcr.org). These types

are the aI, a2 and p-adrenoceptors. Further subdivisions exist within each class: a 1A,

alB, aID (members of the al type), a2A12D. a2B. a2C (members of the a2 type). PI, P2.

P3 and P4 (members of the P type). A large number of agonists and antagonists are

available which distinguish between the three main classes of adrenoceptor. However,

only relatively small differences in affinity for agonists and antagonists exist within

each class, especially within the al-adrenoceptor and a2-adrenoceptor families.
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The adrenoceptor used in this study is the u2A-adrenoceptor.The intronless gene for this

receptor is found on chromosome lOin man and encodes a 450 amino acid protein of

49kDa. The predominant effector pathways for this receptor are the inhibition of

adenylyl cyclase and L-type Ca2+ channels, and activation of K+ channels through

pertussis-toxin-sensitive G proteins of the G/Go class. Several analyses have

demonstrated wide distribution of mRNA for the u2A-adrenoceptor, with high levels in

rat CNS, e.g. brainstem, cerebral cortex, hippocampus, pituitary gland and cerebellum,

and in peripheral tissues, e.g. kidney, aorta, skeletal muscle, spleen and lung (Lanier et

a!., 1991;McCune et al., 1993; Stemweis and Robishaw, 1984).

Adrenaline, being the natural ligand for adrenoceptors, is widely used in its study. It

does not show any significant selectivity for particular types or sub-types of these

receptors. UK14304 is an u2-selective agonist which can be employed when it is not

necessary to distinguish between U2 subtypes (Pipili, 1986). Some agonists do exist

which allow selectivity between the subtypes, e.g. the weak partial agonist,

oxymetazoline, which is 50-100 times more selective for U2Arelative to U2Band U2C-

adrenoceptors (Godfraind et al., 1982).

For the purposes of this study the natural ligand adrenaline (Figure 1.1 part a) was used

to stimulate the receptor. The tritiated antagonist eH]-RS-79948-197 (Figure 1.1 part

b) was used in receptor binding studies to calculate expression level of the U2A-

adrenoceptor-GoluCys35lIle constructs, as well as affinity of the radioligand for the

receptor portion of the constructs (Wise et al., 1997c). In receptor binding studies the

u2-selective antagonist idazoxan (Figure 1.1 part c) was also used to allow calculation

of non-specific binding (Langer and Hicks, 1984).
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Figure 1.1

Structure of u2A-adrenoceptor-interacting molecules used in this study

a) Adrenaline

b) RS- 79948-197

c) Idazoxan
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1.1.4 The Serotonin Receptors: A Brief Introduction

The name serotonin was originally given to an unknown vasoconstrictor substance

found in the serum after blood has clotted. It was identified chemically as 5-

hydroxytyptamine (5-HT) in 1948 (Rapport et al., 1948a and 1948b). It is now known

to be synthesised from the amino acid tryptophan, via 5-hydroxytryptophan, and it has a

widespread distribution in plants and animals. It is an important neurotransmitter and

local hormone in the eNS and intestine, and is implicated in a vast array of

physiological and pathophysiological pathways (Houston and Vanhouette, 1986). In the

periphery, 5-HT contracts a number of smooth muscles including the large blood

vessels, the intestine and the uterus. It also induces endothelium-dependent vasodilation

through release of nitric oxide from endothelial cells. 5-HT stimulates sensory nerve

endings and is also a mediator of peristalsis. It is thought that in addition it may be

involved in platelet aggregation, haemostasis, inflammatory mediation and

microvascular control. In the eNS also, 5-HT is thought to be involved in a wide range

of functions: including control of appetite, mood, anxiety, hallucinations, sleep,

vomiting and pain perception. 5-HT receptor ligands have found clinical use in the

treatment of depression, migraine and post-operative vomiting, and there is a strong

potential for their use in other conditions (Lundberg, 1996).

5-HT is present in its highest concentrations in three regions in the body. About 90% of

5-HT is present in chromaffin cells in the wall of the intestine with a small amount in

the nerve cells of the myenteric plexus. 5-HT is also found in blood, in high

concentration in platelets: since it is important for platelet aggregation. In the eNS, 5-

HT neurons originate primarily in the raphe nuclei of the brainstem and project to most

areas of the brain.

5-HT receptors can be divided into seven main types based on sequence information,

receptor pharmacology and signalling mechanisms (Hoyer et al., 1994 and

http://www.gpcr.org). These types are the 5-HTJ, 5-HT2, 5-HT3, 5-HT4,

5-HT 5,5-HT 6 and 5-HT 7 receptors. Further subdivisions exist within the 5-HT 1

(5-HTJA, 5-HTJ8, 5-HTJC, 5-HTJD, 5-HTJE, 5-HTJF), the 5-HT2 (5-HT2A' 5-HT28,

5-HT2c) and 5-HTs (5-HTsA, 5-HT58) types.
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The 5-HT receptor used in this study is the 5-HT1Areceptor. The intronless gene for this

receptor is found on chromosome 5 in man and encodes a 421 amino acid protein of

46kDa (Kobilka et al., 1987 and Chanda et al., 1993). The predominant effector

pathways for this receptor are the inhibition of adenylyl cyclase and activation of K+

channels through pertussis-toxin-sensitive G proteins of the G/Go class. The 5-HT1A

receptor is found presynaptically and postsynaptically in neurons in the CNS, e.g. dorsal

raphe, hippocampus, medulla and cerebral cortex, and in the periphery, e.g. ileum. It is

also abundant in foetal lymphatic tissue, particularly lymph nodes, spleen and thymus

(Emerit et al., 1991). Clinically, 5-HTlA receptor ligands represent potential anxiolytic

(Tunnicliff, 1991) and anti-hypertensive agents (Lundberg, 1996).

In terms of pharmacology, 5-HT (Figure 1.2 part a), the natural ligand for serotonin

receptors, induces activation of the 5-HTlA receptor in nanomolar concentrations.

However, it does not show any significant selectivity for particular types or sub-types of

these receptors. Many potent agonists, selective for the 5-HTIA receptor, are also

available, such as 8-0H-DPAT (Figure 1.2 part b), which has a selectivity of more than

lOO-foldfor this subtype (Hjorth et al., 1982). For the purposes of this study the 5-HTIA

selective agonist, 8-0H-DPAT, was used to stimulate the receptor. The tritiated

antagonist [3H]-WAYI00635 (Figure 1.2 part c) was used in receptor binding studies to

calculate expression level of the 5-HTlA-Golu constructs as well as affinity of the

radioligand for the receptor portion of the constructs (Fletcher et al., 1996). In receptor

binding studies non-radiolabelled WAYlO0635 was used to allow calculation of non-

specific binding. The 5-HTIA selective inverse agonist spiperone (Figure 1.2 part d)

was also used in e5S] GTPySbinding assays to reduce constitutive binding in the assay

(Newman-Tancredi et al., 1997).
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Figure 1.2

Structure of serotonin and the 5-HT lA receptor-interacting molecules used in this

study

a) Serotonin

b) 8-0H-DPAT

c) WAYI00635

d) Spiperone
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1.1.5 The Gola G protein: A Brief Introduction

Go is a member of the Gi family of G proteins, responsible for the inhibition of adenylyl

cyclase. However, this specific G protein's main function seems to be inhibition of

neuronal calcium channel activity (Heschler et al., 1987). Go is expressed

predominantly in CNS and heart, with high levels in various regions of the brain (Neer

et al., 1984; Sternweis and Robishaw, 1984); where it accounts for around 1% of the

total membrane protein. High Go levels are also found in neuronal growth cones where

activation of this G protein may be promoted by interaction with another major growth

cone protein, GAP-43 (Strittmatter et al., 1990), and also amyloid precursor protein

(Nishimoto et al., 1993).

Two variant forms (Gola and Goza) of the 40kDa Go protein a-subunit, both with 354

residues, result from differential RNA splicing of a single Goa gene, with the C-

terminal 113 residues encoded by alternative use of duplicated exons 7 and 8

(Tsukamoto et al., 1991; Kaziro et al., 1991). Goa splice variants are regulated

selectively during neuronal development, with Gola predominating in differentiated

neurons (Asano et al., 1992). Goa splice variants show selective interaction with

different receptors and different 13 and y-subunits (Kleuss et al., 1991).

For the purposes of this study the GoiaCys351Ile G protein was fused with either the

aZA-adrenergic or 5-HTlA serotonin receptors. Use was made of antisera (Mullaney and

Milligan, 1989) capable of recognising various regions of the Gola protein. These

antisera were ON1 (against residues 1-16 of the G protein) and OC2 (against residues

345-354 of the G protein).

One further feature of the Goa protein, advantageous in this study, is the site for

pertussis toxin-mediated ADP-ribosylation at the amino acid Cys351 (Jones and Reed,

1987; Lochrie and Simon, 1988), four amino acids from the C-terminus of the protein.

Pertussis toxin works by catalysing the transfer of an ADP-ribose group from NAD onto

this cysteine residue. This bulky group renders the Goa protein inactive, since it
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prevents productive contacts between the GPCR and the G protein. This is because

amino acid 351 is located within a key contact region for GPCRs. A number of studies

have assessed the importance of this residue for signalling (Carr et al., 1998; Jackson et

al., 1999; Bahia et al., 1998). In the work by Bahia et al., using a2A-adrenoceptor-

Gia fusions, the toxin-sensitive residue was mutated to every other possible amino acid.

They found that there was a central role for hydrophobicity in defining productive

GPCR-G protein interactions, such that the wild-type Cys351 residue did not result in

maximal stimulation by agonist, but that certain branched chain aliphatic or aromatic

amino acids did. Nevertheless, although the mutation of this key residue may alter the

pharmacology of the GPCR response, it is still an invaluable tool to confer toxin

resistance to G proteins and therefore to ensure agonist function reflects only the G

protein of interest in an experimental system. It has been previously shown (Burt et al.,

1998) that if toxin is not used to inactivate the endogenous G proteins, they too can be

activated by the receptor part of the fusion protein. For this reason, all GPCR-G protein

fusion constructs studied herein were Cys351Ile mutants and the human embryonic

kidney cells (HEK293T) used to express them were pertussis toxin treated prior to

experiments, to inactivate endogenous Gia/Goa G protein.

1.2 G Protein Coupled Receptors

1.2.1 Introduction

Since the cloning of the first GPCRs, nearly 2000 new family members have been

reported. This has resulted in the classification of the superfamily into over 100

subfamilies according to sequence homology, receptor function, and ligand structure.

However, virtually all GPCRs can be grouped into one of three main classes, based on

sequence similarity (Table 1.1): the rhodopsin-like family, the glucagonIVIP/calcitonin

family and the metabotropic glutamate/chemosensor family (Gether, 2000).

Initially the classification of a GPCR as belonging to a particular subfamily was based

on the high affinity binding of the natural ligand to that receptor. However, it was soon

discovered that distinct members of these subfamilies existed which had differences in

their structure, expression pattern and/or different reactions with synthetic agonists and
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antagonists. In some cases the functional significance of receptor subtypes is rather

obvious; giving the transmitter or hormone the opportunity to couple through different

G proteins and thereby activate different effector systems. However in many cases the

functional significance of receptor subtypes is found to be more subtle; for example

where subtypes only display slight differences in desensitisation properties or in their

extent of constitutive activity (Hoyer et al., 1994).

Techniques for detecting protein-protein interactions such as yeast two-hybrid, phage

display and fusion protein overlays have also revealed associations of heptahelical

receptors with a variety of intracellular partners other than G proteins (Milligan and

White, 2001). This is perhaps not surprising considering that with ~1500 heptahelical

receptors there are only ~20 different heterotrimeric G proteins. Therefore, it is thought

that each receptor may activate its own relatively specific set of intracellular signalling

pathways by both G protein-dependent and G protein-independent mechanisms.

However, the roles of GPCRs relevant for this work will only concern G protein-

dependent mechanisms.

All GPCRs share a common structural homology characterised by amino acid sequences

containing an extracellular N-terminal segment, seven transmembrane spanning

domains linked by three extracellular and three intracellular loops, and an intracellular

C-terminal segment. Between each of the main classes, this may be the only homology

to exist, whereas within each class the homology also extends to some conserved amino

acid residues and motifs (Gether, 2000).

GPCR signalling is initiated by the binding of a specific ligand to the extracellular side

of the receptor. These ligands can be hormones, neurotransmitters, small peptides,

proteins, lipids, ions, odorants, pheromones and photons (Hur and Kim, 2002). This

activates the receptor, and causes it to undergo a conformational change allowing the

GPCR, at its intracellular side, to interact with a specific G protein. The sheer diversity

of ligands involved in GPCR-G protein signalling, as well as the degree of homology

between GPCRs that bind extremely different ligands, is testament to the importance of

this family and demonstrates that the structure of these receptors has been highly

conserved through evolution.
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Table 1.1

The main classes of G protein-coupled receptor

The table gives the main classes plus examples of each class. Note that both the U2A-

adrenoceptor and the 5-HT1A-receptor used in this study bind monoamine ligands and

therefore belong to the rhodopsin-like family of GPCRs.



Table 1.1

Rhodopsin-like family GlucagonNIP/ Metabotropic
calcitonin family Glutamate &

Chemosensor family
Opsins Glucagon & GLP-1 mGLU-R 1-7
Odorant Calcitonin & PTH calcium sensors
Monoamine Secretin & GIP
Lipid messengers PACAP& VIP
Nucleotide GHRH&CRF
Neuropeptides - most
Peptide hormones - many
Glycoprotein hormones
Chemokines - some
Protease receptors



Figure 1.3

The main structural characteristics of the rhodopsin-like family of G protein-

coupled receptors

The diagram shows the main structural features of the rhodopsin-like family of GPCRs.

Residues located in the transmembrane (TM) helices are highlighted by enclosure in

cylinders. G proteins are believed to interact mainly with residues located in the

segments shaded dark grey. The key fingerprint residues (common to most rhodopsin-

like GPCRs) are highlighted.

Shown are:

a) N-terminal domain: Site for glycosylation

b) Conserved TM residues (Helix number is denoted by roman numerals and

the relative residue number within that helix is indicated after the colon):

Conserved polar residues (AsnI:18, AsnYII:16 and AspU:IO).

Totally conserved residue ArgIII:26, part of DRY motif.

Conserved proline residues (ProY:16, ProYI: 15 and ProYII: 17).

c) Extracellular (EC) loops:

Two conserved cysteine residues (which form a disulphide bond in most family

members)

Potential sites for N-linked glycosylation in the first and second EC loops.

d) Intracellular (IC) loops:

Second and third IC loops are often involved in G protein interaction. Third IC

loop is frequently targeted for phosphorylation by various kinases.

e) The C-terminal domain:

Potential site for palmitoylation; creates a fourth IC loop. Residues here are also

believed to be important for interaction with G proteins. This is a

serine/threonine rich region (potential for phosphorylation).

Adapted from Figure 2.4, Textbook of Receptor Pharmacology. 1996. Foreman, J.c.
and Johansen, T. (Editors). CRC Press, New York.
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1.2.2 The Structure of GPCRs

Characterising the three-dimensional structure of GPCRs has proved problematic by

traditional means such as x-ray crystallography or NMR. This is largely because they

are complicated membrane proteins, which presents two main problems. They are

difficult to produce in sufficiently large quantities and when they can be produced, they

seldom form useful crystals. However, over the years a number of attempts have been

made to elucidate the crystal structure of rhodopsin, as a model for other GPCRs. In the

beginning, very low-resolution cryoelectron micrograph studies of two-dimensional

crystals crudely indicated tilts and orientations of rhodopsin's transmembrane helices

(Schertler et al., 1993). To assign the densities to specific helices and to locate specific

residues in each helix, modellers depended entirely on inference from the effects of

many GPCR mutations and from comparing primary structures of hundreds of other

GPCRs (Baldwin et al., 1997). It was not until the first atomic-resolution experimental

three-dimensional structure of rhodopsin was published (Pa1czewski et al., 2000) that it

was realised that Baldwin et al.'s model of the seven-helix bundle superimposed

reasonably well on the actual crystal structure.

GPCRs have many structural features that contribute to function. From their

characteristic serpentine structure, to the many motifs, domains and modifications (such

as glycosylation, phosphorylation, and palmitoylation), the GPCRs are complicated

structures. A summary of these features, for the rhodopsin-like family of GPCRs (which

includes the u2A-adrenoceptor and 5-HT1A-serotonin receptors), is given in Figure 1.3

as well as in the following paragraphs.

The N-Terminal Domain

The N-terminal segment of GPCRs varies in length from 7-595 amino acids (Ji et al.,

1998). Most exhibit at least one consensus sequence (Asn-X-Ser/Thr, where X is any

amino acid except proline or aspartate) for N-linked glycosylation. Inmany experiments

the molecular mass of GPCRs is found to be greater than predicted from amino acid

structures, suggesting glycosylation. Direct evidence for glycosylation has been

obtained for a number of GPCRs, where endoglycosidase treatment results in a decrease

in molecular mass (Rands et al., 1990). Glycosylation is proposed to be functionally

important for correct folding and cell surface expression of GPCRs (George et al.,
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1986). For some receptors there may also be predicted glycosylation sites in the first

and second extracellular loops. Note that in the other two families of GPCR (the

glucagonIVIP/calcitonin family and the metabotropic glutamate/chemosensor family),

the relatively larger N-terminus is also thought to be involved in ligand binding (Strader

et al., 1995; Takahashi et al., 1993) and receptor activation (Takahashi et al., 1993;

metabotropic glutamate receptor).

Transmembrane Domains

Sequence analysis and hydrophobicity plots suggest that all GPCRs contain seven

domains of 20-25 predominantly hydrophobic amino acids. By extrapolation from the

structure of rhodopsin these stretches are predicted to form a-helical membrane

spanning domains of unequal length, which can extend beyond the lipid bilayer (Unger

et al., 1997). It is thought the domains are arranged in a barrel shape (Baldwin et al.,

1997), orientated roughly perpendicular to the plane of the membrane in an anti-

clockwise arrangement, imposing specificity on a ligand's entry into and binding to the

TM core. Therefore, important residues in the transmembrane domains are involved in

forming this dynamic structure, which allow conformational changes upon agonist

binding. It was shown by Sealfon et al. (1997) that the core primarily contains the

extremely hydrophobic TMs II, III, V, and VI with the more hydrophilic TMs I, IV, and

VII having greater exposure to the bilayer. Most of the well-conserved residues are

involved in forming the structure of the core. Proline residues (e.g. ProV: 16, ProVI: 15

and ProVII:17; conserved in most rhodopsin-like GPCRs) are thought to be important

because their structure can cause a kink in the helix backbone by 26°, and the angle of

the helices influences how they interact with each other and with ligand molecules (Ji et

al., 1998). A hydrogen bond network (formed by Asnl:18, AsnVII:16 and AspII:I0) and

salt bridges between residues of the same TM region as well as other TM regions, are

critical for maintaining a tightly packed core (Pebay-Peyroula et al., 1997).

The core structure forms the ligand-binding pocket for small molecular weight ligands

such as adrenaline; where the carboxylate group on the conserved aspartate in TM III

acts as a counter-ion for the catecholamine nitrogen, and two conserved serines in TM

V interact with the meta- and para-hydroxyls on the catechol ring (Strader et al., 1989).

Note that serotonin is believed to bind in a similar fashion to adrenaline, via
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corresponding residues in its receptor. Mutations at some specific residues (Asp82Asn,

Aspl16Asn, Ser199Ala and Thr20oAla) in TM regions of the 5-HTIA serotonin receptor,

have been shown to decrease the affinity for the natural ligand, 5-HT (Ho et al., 1992).

Many antagonists for monoamine receptors also bind to the same site as the

corresponding agonists (classic competitive antagonists which are structurally very

similar to the agonist molecules). However, several antagonists have been shown to

have interaction points not shared with agonists or to bind completely different sites

(Kobilka, 1992). For larger stimuli, such as glycoprotein hormones, the extracellular

region of the receptor is also involved in the binding ofligands (Reichart et al., 1991).

At the boundary between TM III and Ie loop 2, there is a DRY motif (aspartate-

arginine-tyrosine), which is highly conserved in all rhodopsin-like GPeRs but not in the

other families. This motif is assumed to be crucial for the signal transduction process. It

contains an arginine residue (ArgIII:26 in Figure 1.3) which is believed to be

constrained in a hydrophilic pocket formed by conserved polar residues in TM I, II and

VII. It is suggested that upon receptor activation, protonation of this Arg causes it to

shift out of the pocket and leads to exposure of previously hidden sequences in Ie loops

2 and 3 on the cytoplasmic face (Scheer et al., 1996;Wess, 1997).

Intracellular Loops

The intracellular loops vary in length between 10 and 40 amino acids in length, with the

notable exception of the third intracellular loop, which can be more than 150 residues

long. Obviously, the whole intracellular region affects the three-dimensional structure of

the cytoplasmic side of GPeRs and it is this overall structure, which is important for G

protein coupling. However, as outlined in Figure 1.3, the highly conserved second

(Wess, 1998), the third intracellular loop (Cotecchia et al., 1992), and the Csterminal

tail (O'Dowd et al., 1988) have been reported to be particularly important for this

function. Furthermore, it has now been suggested that some of these regions may be

responsible for particular aspects of receptor-G protein coupling. Regions of Ie loop 2

as well as about 8 amino acids at the amino terminal portion of Ie loop 3 may be

responsible for determining the selective binding of particular types of G proteins

(Wess, 1998). It is also believed that a region of about 12 positively charged amino

acids residues, at the carboxyl terminal portion of Ie loop 3 may be involved in the
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induction of the high affinity conformation of the receptors. Mutations in this region

(just below TM VI) can lead to constitutive activity of the GPCR (Cotecchia et al.,

1992). For the 5-HTIA serotonin receptor, synthetic peptides of the entire IC loop 2
133 153· . 331 347 336(Asp -Arg ) and of regions of IC loop 3 (residues Ala -Leu ,but not Ala -

Va1344)were shown to be important for G protein interaction (Verrault et al., 1994).

The intracellular region of GPCRs also has other important functions, since the third

intracellular loop is also a known target for phosphorylation by G protein receptor

kinases (GRKs) and second messenger activated kinases (Benovic et al., 1985). As a

result, this region is thought to be involved in phosphorylation and desensitisation

events. In the 5-HTlA serotonin receptor, there are a number of PKC phosphorylation

sites in le loop 2 (Thr149) and le loop 3 (Thr229, Se/53, Thr343) which have been

discovered to be important for signalling specificity and desensitisation (Lembo et al.,

1995 and 1997). The roles of phosphorylation and desensitisation are discussed in more

detail in section 1.2.3.

Extracellular Loops

The majority of rhodopsin-like GPCRs contain two conserved cysteine residues in

extracellular loops 1 and 2. In bovine rhodopsin and some other GPCRs these amino

acids are known to be linked by a disulphide bond. This linkage is thought to constrain

the loops and receptor, maintaining the tertiary structure for ligand binding (Kamik and

Khorana, 1990; Ji and Ji, 1995). Substitution of these cysteine residues in the first and

second extracellular loops of the ~2-AR receptor (Cys106 and Cys184) induced

destabilisation of the tertiary structure and alterations in ligand binding properties

(Dohlman et al., 1990).

The C Terminal Domain

All GPCRs except the mammalian GnRH receptor (which completely lacks an

intracellular e-terminal domain (Sealfon et al., 1997» have an intracellular C-terminal

tail. This varies considerably in length from -12-359 amino acids. This region of the

GPCR is usually rich in serine and threonine residues, present in consensus sequences

for phosphorylation by GRKs and second messenger kinases. Like the intracellular

loops, the C-terminal domain is thought to be important for receptor desensitisation
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(Freedman and Lefkowitz, 1996). Most GPCRs also contain cysteine residues 15-20

residues C-terminal to TM VII, which have been shown to bind palmitate via a thioester

linkage. It is believed that the palmitic acid residues become intercalated into the

membrane bilayer, thereby creating a fourth IC loop (Ganter et al., 1992) and possibly

affecting G protein interaction (Milligan et al., 1995). The process of palmitoylation

appears to be dynamically regulated by receptor occupancy (Qanbar and Bouvier, 2003)

however, the function of this modification is not yet fully understood and may vary

dependent upon the individual receptor. There are some suggestions that the processes

of palmitoylation and phosphorylation may be connected, in that the conformational

constraints induced by palmitoylation may alter the accessibility of adjacent

phosphorylation sites (Moffett et al., 1996). The roles of palmitoylation will be fully

discussed in section 1.5.

1.2.3 Further Important Features of GPCRs

GPCR Phosphorylation and Desensitisation

The functional consequences of phosphorylation vary considerably among receptors and

can also be dependent upon which type of G protein is involved in the coupling process.

The main recognised consequence of phosphorylation is desensitisation or down-

regulation of the receptor (Hausdorff et al., 1990). Desensitisation of GPCRs is the

decrease in responsiveness to agonist after repeated or continuous stimulation

(Ferguson, 2001). This is obviously an important mechanism to prevent acute or chronic

receptor stimulation. The level of desensitisation can vary from complete termination of

receptor signalling to the reduction in agonist potency and maximal responsiveness.

The process of desensitisation has many steps, which may not be the same for every

receptor. In general the receptor must be uncoupled from the G protein, causing

attenuation of signalling before sequestration into an intracellular compartment

(internalisation) and then down-regulation if the stimulation is present chronically.

These desensitisation processes occur over a range of time periods (phosphorylation in

seconds, endocytosis within minutes and down-regulation within hours). As mentioned

previously, the mammalian GnRH receptor lacks a C-terminal tail. This GPCR is

therefore resistant to agonist-dependent phosphorylation and consequent desensitisation

(Willars et al., 1999). Deletions or mutations in cytoplasmic phosphorylation sites in
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GPCRs (including the u2A-adrenoceptor) have also been shown to reduce

desensitisation, due to loss of phosphorylation (Liggett et al., 1992).

Two types of desensitisation exist, homologous (receptor-specific) desensitisation and

heterologous (cross-) desensitisation. Homologous desensitisation results in only the

activated GPCR being desensitised. In this case the kinases involved are linked

specifically to a particular receptor (e.g. the ~-adrenergic receptor kinase, GRK2). In

heterologous desensitisation, activation of one GPCR leads to the desensitisation of

other GPCRs. This occurs via relatively promiscuous kinases such as protein kinase A

and protein kinase C (Chuang et al., 1996). The methods of protein kinase-mediated

desensitisation have not been studied nearly as much as those of GRK-mediated

desensitisation, perhaps since the latter is specific for GPCRs. Therefore it is unclear

how similar desensitisation is in each case. It has been suggested that GRK

phosphorylation is not absolutely necessary for desensitisation (Dickers et al., 1999 and

Bouvier et al., 1998) but that it might enhance interaction with adaptor proteins

involved in promoting the process, such as arrestins (Bouvier and Rousseau, 1998 and

Zhang et al., 1996). In support of this, Lohse et al. (1992) have shown that arrestins

preferentially bind to agonist activated and GRK-phosphorylated GPCRs as opposed to

second messenger protein kinase-phosphorylated or non-phosphorylated receptors.

In general, the processes of phosphorylation and desensitisation proceed with the

following sequence of events (Ferguson and Caron, 1998). After phosphorylation of

GPCRs by either specific G protein receptor kinases (GRKs) or second messenger

kinases the GPCR-G protein interactions are reduced. For GRK-mediated

phosphorylation this uncoupling is markedly promoted by the translocation and binding

of adaptor proteins, called ~-arrestins, to the receptor. This enhanced GPCR-G protein

uncoupling results because of steric hindrance, since the regions of the receptors that

arrestins bind to, generally IC loop 3 and the membrane-proximal portion of the C-

terminal tail, are also the regions for G protein interaction (Law et al., 2000). After

uncoupling, the ~-arrestin-bound receptors are targeted for internalisation into c1athrin-

coated vesicles (CCVs) (Zhang et al., 1996 and Goodman et al., 1996) and the system

can then undergo resensitisation or down-regulation (Koenig and Edwardson, 1997).
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GPCR resensitisation and down-regulation

GPCR resensitisation is achieved by the dephosphorylation of internalised receptors, by

a receptor phosphatase, and subsequent recycling of receptors back to the cell surface

(Pitcher et al., 1995). During prolonged agonist exposure, sequestered receptors are

instead retained intracellularly and are then targeted for down-regulation in lysosomes.

Down-regulation involves a loss in receptor number due to reduction of mRNA and

protein synthesis as well as degradation of the existing receptor protein (Bohm et al.,

1997). After down-regulation has occurred, resensitisation must proceed to allow

recovery of the signalling system. In this case, resensitisation involves mobilisation of

an intracellular pool of naive receptors and/or de novo receptor synthesis (Shapiro and

Coughlin, 1998).

Alternative pathways for GPCR internalisation

It is now recognised that not all GPCRs internalise VIa a p-arrestin and clathrin

dependent route (Zhang et al., 1996; Vogler et al., 1999). Internalisation of GPCRs in

non-coated vesicles has also been reported as an alternative pathway for endocytosis;

this process can be dynamin-dependent (via caveolae) (Raposo et al., 1989) or dynamin-

independent (exact mechanisms as yet unknown) (Claing et al., 2000). Dynamin-

dependent internalisation is believed to proceed via small microdomains of plasma

membrane rich in cholesterol, glycosphingolipids and caveolin proteins, known as

caveolae. Potocytosis is the method by which caveolae can concentrate or move

molecules into the cell (Simionescu, 1983). Molecules internalised by this method can

then travel to the cytoplasm, the endoplasmic reticulum, the opposite cell surface or

caveolae-derived tubular/vesicular compartment (Anderson, 1998). A wide variety of

cell signalling molecules, including GPCRs, G proteins and effectors, have been shown

to associate with caveolae (Anderson, 1998). It is proposed that the function of caveolae

is to sequester/cluster molecules and act as a scaffold for the formation of signalling

complexes. This localised concentration and specificity of signalling components would

presumably lead to highly efficient signal transduction. Caveolae are highly enriched in

detergent-insoluble glycolipid-enriched (DIG) regions of the plasma membrane known

as rafts (Sargiacomo et al., 1993). Electron microscopy of A431 cells showed that P2-
ARs could internalise via microdomains with the caveolae marker protein, caveolin-I

(Raposo et al., 1989).
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Specificity of GPCR Signalling

GPCRs can couple to more than one Ga subunit and can hence activate multiple

effectors. In order for specificity of GPCR signalling to be maintained there is

separation of the various receptors and Ga subunits involved in the signalling process

(e.g. compartmentalisation via differential tissue expression, or by association with

signalling complexes; which control the available molecules at any given time).

Signal Integration

With so many different signalling molecules in one location, caveolae are a logical

place to look for signal integration. These organised structures may be able to account

for the rapid and specific coupling of signalling molecules to more than one effector

system, concentrating the required molecules within close proximity for interaction

(Anderson, 1998).

Ligand-Receptor Binding and Receptor Activation

Ligand binding to GPCRs encompasses two main properties, affinity and efficacy. The

affinity of a ligand for its GPCR is how tightly it associates with the receptor. The

efficacy of a ligand at a GPCR is defined as the degree of activation produced upon

binding. A GPCR agonist is defined as an agent, endogenous or synthetic, whose

binding to the receptor results in activation of the G protein and the effector system.

Three types of agonists exist; full (100% efficacy), partial (exerts limited effector

responses) and inverse (that decrease the basal level of receptor modulation of

effectors). An antagonist is an agent whose binding does not result in activation (zero

efficacy).

The general mechanism of receptor activation can be summarised as follows (from the

allosteric ternary complex model of Lefkowitz et al., 1993). The GPCR can be thought

of as a dynamic membrane protein, existing naturally in equilibrium between active and

inactive conformations (Gether and Kobilka, 1998). Agonist molecules stimulate the

receptor by stabilising an active conformation. They will therefore have significantly

lower affinity for the G protein-uncoupled form of the receptor than the G protein-

coupled form. Antagonist molecules bind the receptor G protein-independently and

stabilise the inactive conformation of the receptor. Therefore, agonists and antagonists
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bind preferentially to distinct conformational populations of their common receptor

target (Kobilka, 1992).

A certain proportion of GPCRs can bind G protein and initiate signalling without any

agonist present, a feature known as constitutive activity. In some cases, constitutive

activity arises due to mutations in the GPCR, stabilising the active form of the receptor

(Cotecchia et al., 1992). Constitutively active receptors have been shown to account for

some diseased states (e.g. mutations in the luteinising hormone receptor resulting in

precocious puberty; Kawate et al., 1995). Inverse agonists can be used to reduce

constitutive activity in GPCRs, by inhibiting the unstimulated functioning of the

receptor. An example of one such inverse agonist is spiperone, which can reduce the

constitutive activity exhibited by some 5-HT receptor subtypes (Newman-Tancredi et

al., 1997).

1.3 G proteins

1.3.1 Introduction

After the purification and characterisation of the first GTP-binding protein, Gs, in 1980

(Northup et al.) and with the advent of cDNA cloning techniques, more than 20 other

GTP-binding proteins were discovered, including Gj, Go and transducin (Spiegel, 1987),

the Gq/11 family (Strathrnann and Simon, 1990) and the GJ2/l3 family (Hooley et al.,

1996). Further research showed that Ga proteins (39-46kDa) formed complexes with

two other proteins, the j3-subunit (35-36 kDa) and the y-subunit (6-10 kDa). It was

found that j3 and y-subunits tightly associate and function as a j3y-dimer. Initially it was

thought that the role of the j3y-subunit was just to keep the a-subunits in check and to

help with membrane anchorage. However, j3y-dimers have since been shown to be

involved in the activation of signalling pathways, independently of the Ga subunit

(Clapham and Neer, 1997).

22



Figure 1.4

General features of G protein signalling and the GTPase cycle

Diagram outlining the general features of G protein signalling and the GTPase cycle.

The agonist (which can be a neurotransmitter, olfactory molecule, or glycoprotein

hormone) binds to and stimulates the seven-times transmembrane spanning GPCR to

undergo conformational changes triggering GPCR-G protein interactions. These

interactions reduce the affinity of the heterotrimeric form of the G protein for bound

GOP, promoting the exchange of GTP in place of bound GOP at a site within the a

subunit. Once GTP is bound, both the receptor and the py dimer no longer have high

affinity for the a subunit, causing dissociation of the complex. Both the a and the py
units are then free to interact with and modulate effector systems, leading to metabolic

or ionic changes within the cell. The cycle is terminated upon the hydrolysis of Ga

bound-GTP to GOP by the intrinsic GTPase activity of the a subunit; a process

accelerated by RGS proteins. The high-affinity binding of py is thus restored, promoting

re-association of the heterotrimeric G protein with the receptor for another round of

signalling.
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1.3.2 Overview of GPCR-G Protein Signalling

In work done in 1978 by Cassel and Selinger, GTPase activity of Gs was reported when

adrenaline was used to stimulate adenylyl cyclase activity. They provided the first

suggestion of a GTPase cycle, postulating that interaction of hormone-activated receptor

with Gs triggered release of bound GDP and subsequent GTP binding (activation of the

cycle) and that hydrolysis of bound GTP back to GDP led to Gs inactivation and

completion of the cycle. They also made the observation that GTPase activity could be

inhibited by cholera toxin-catalysed ADP-ribosylation of Gs, resulting in constitutive

activation of adenylyl cyclase. These important findings led to the elucidation of the

currently accepted model of the GTPase cycle of G protein activation (summarised in

Figure 1.4). The GTPase activity of G proteins is of great importance, as it acts as a

rate-limiting off-switch for signalling (Hamm, 1998). It ensures unidirectionality of the

signalling system and also allows signal amplification before deactivation of the system.

GTPase activity is found to vary enormously between G proteins (Vaughan, 1998),

leading to very different rates of GTP hydrolysis.

1.3.3 Alpha Subunits

On the basis of amino acid homology of the a-subunits, G proteins can be classified

into 4 major classes, namely, Gs, Gi/o, Gq/l hand G12I13 (Simon et al., 1991). In general,

the Gs family is responsible for the activation of adenylyl cyclase, whilst the Gi family is

responsible for the inhibition of adenylyl cyclase. Additional members of the Gi family,

with some alternative functions, have also been characterised. These additional

members are the Gt proteins, which stimulate cGMP phosphodiesterase, the Goproteins,

which are involved in Ca2+ ion channel closure (Hsu et al., 1990) and the Ggust and Gz

proteins. Ggust is expressed in the taste buds and is thought to couple to cGMP

phosphodiesterase. Gz is expressed in neuronal cells where it inhibits adenylyl cyclase

(Taussig and Gilman, 1985). The Gqlll family predominantly couples to

phosphoinositide turnover (Strathmann and Simon, 1990). The last G protein family, the

Gl21I3 family, is ubiquitously expressed and has been shown to be involved in both the

regulation of Na+/H+ ion exchange in cells (Hooley et al., 1996) and the maintenance of
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the cell cytoskeleton through the activation of the small GTPase Rho (Klages et al.,

1999).

Another important feature of G protein a-subunits is their susceptibility to be ADP-

ribosylated by toxins. It has already been explained in section 1.1.5 how GoIa, a

member of the G, class of G proteins, can act as a substrate for pertussis toxin-catalysed

ADP-ribosylation. This toxin (from Bordetella pertussis) can also mediate ADP-

ribosylation of the other members of the Gi class, apart from Gz. Cholera toxin (from

Vibrio cholerae) is a toxin, which catalyses the ADP-ribosylation of the Gs family of G

proteins, Ggust and Gt. Both of these toxins are A-B toxins (containing a similar A-B

subunit structure). The B subunits bind to a cell surface receptor, which permits the

internalisation of the whole toxin by the cell. Once inside the cell the disulphide bridge

holding the subunits together is broken to release the A subunit. It is this A subunit

which then catalyses ADP-ribosylation of the target protein.

1.3.4 Beta and Gamma Subunits

Several crucial roles have been assigned to the ~y-dimer including promoted association

of GDP-bound a-subunits with ligand-activated receptors. This function presents the

heterotrimeric G protein, ready for receptor-dependent G protein activation (Birnbaumer

et al., 1990). The ~y-subunits show preferential binding of Ga-GDP over Ga-GTP and

it has been shown experimentally that they stabilise the GOP-bound form of Ga~ since

GDP dissociates from Ga~y more slowly than from Ga alone (Higashijima et al.,

1987). Taken together these facts can explain why, in terms of affinity, a and ~y-

subunits dissociate from activated receptors.

G~y-subunits have also been implicated in the mediation of signal transduction by

interaction with various effector molecules. Some of the effectors regulated by the ~y-

subunit are; adenylyl cyclase (Tang and Gilman, 1991), phospholipase C ~ (PLC ~)

(Camps et al., 1992), inwardly rectifying G protein-gated K+ channels (Logothetis et

al., 1987), voltage-sensitive calcium channels, phosphoinositol-3-kinase (PI3K) and

molecules in the mitogen activated protein kinase (MAPK) pathway (Crespo et al.,
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1994). Just as is the case for Gee-subunits, multiple J3and y-subunits exist. To date, 6 J3-

subunits and 12 y-subunits have been cloned and identified. This multiplicity of

subunits means there are many possible combinations (not all exist). It is thought that

each of these combinations has a unique role. Specificity of different J3and y-subunits

have been investigated in some systems (Garcia et aI., 1998), but many more

combinations exist which have still to be investigated.

1.3.5 Structural features of G proteins

General structural features

X-ray crystallography of a number of a-subunits, including Gta (Noel et al., 1993) and

Gila (Coleman et al., 1994), show that in general, the structure of the G protein

superfamily is highly conserved; reflecting the common mechanism of action. All Ga

subunits contain two domains. One domain is organised around a core structure,

involved in the binding and hydrolysis ofGTP. This domain is structurally homologous

to the GTPases of monomeric G proteins and elongation factors. The other domain is a

unique a-helical domain which masks the guanine-nucleotide binding site from the

surrounding solvent by burying bound GTP or GDP deep in the protein core (Bourne et

al., 1991). An equilibrium is thought to exist between a "closed" conformation

(containing the buried nucleotide) and an "open" conformation (leading to GDP

dissociation and subsequent GTP binding); with activated receptor presumably

stabilising the "open" conformation.

The GTP-binding domain of the core consists of 5 a-helices surrounded by 6 J3-strands,

and also contains a binding site for Mg2+ ions (found to be essential for catalysis

(Sprang, 1997)). The J3-subunit of heterotrimeric G proteins comprise of an N-terminal

helix followed by a 7 membered B-propeller structure (containing seven WD-40 repeats

(Sondek et al., 1996)). The y-subunit contains two helices but no inherent tertiary

structure. J3y interactions are maintained via an N-terminal coiled-coil and the J3-

propeller (Sondek et al., 1996). The interaction of Ga with GJ3y involves binding of the

Ga N-terminal helical domain to the propeller structure of the J3-subunit. Upon receptor
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activation, conformational changes in Ga cause a reduction in helical content, which

leads to dissociation of the GPy dimer away from Go (Lambright et al., 1996).

Insight into the structural mechanism of GTP hydrolysis was derived from the structure

ofGa subunits activated by AIF4- (Coleman et al., 1994). This complex occupies the y-

phosphoryl binding site and, together with GDP, mimics the action of GTP. These

studies reveal a planar transition state for GTP hydrolysis containing a conserved Arg

residue (Arg178 in Gila) interacting with fluoride atoms, and also a conserved Glu

residue (Glu204 in Gila) interacting with a fluoride atom and the axial water molecule

required for hydrolysis. Substantial rearrangement of three regions of the a-subunit

occurs upon GTP hydrolysis. These are designated switch I, switch II and switch III

(Lambright et al., 1994). When GTP is bound, basic residues in Switch II form ionic

interactions with residues in Switch III. Upon GTP hydrolysis, these linkages are

broken as Switch II and III collapse. Switches II and III are proposed effector-binding

regions in activated Gsa (Sprang, 1997).

The two terminii of Ga proteins are thought to be important for different functions. The

N-terminus has been implicated in membrane anchorage, since this is the site for

palmitoylation and/or myristoylation (see following paragraphs and section 1.5), and

tryptic removal of this region has been shown to result in cytosolic, soluble Ga subunits

(Eide et al., 1987). The other important role of the N-terminus is thought to be

interaction with the py-subunit. Support for this hypothesis comes from the results of

several studies, which observe that py binding is lost upon mutation of (Denker et al.,

1992), removal of (Navon and Fung, 1987), or direction of monoclonal antibodies to

(Mazzoni and Hamm, 1989) the N-tenninal 20-21 residues of the G protein.

The C-terminus of the G protein is the region thought to be important for receptor and

effector interaction; perhaps why this region of Ga proteins is found to contain most of

the class specific sequence variation and why this region has been successfully used to

produce G protein-specific polyclonal antipeptide antisera (Mullaney and Millgan,

1989). There are many examples of studies providing proof of the importance of the C-

terminus in receptor and effector coupling. The uncoupling of Gi/oa interaction with the
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receptor was shown to result from ADP-ribosylation of Cys351, close to the C-terminus

(West et al., 1985). In addition, it has been shown that antibodies directed against the

extreme C-terminus of the a-subunits are capable of inhibiting receptor-mediated

activation of G proteins (Simonds et al., 1989). A proline to arginine mutation, at the

sixth amino acid from the C-terminus of Gsa, has been shown to abolish adenylyl

cyclase activation upon receptor stimulation (Sullivan et al., 1987); supporting the role

of the C-terminus in receptor-coupling. The development of chimeric G proteins also

provided insight into the role of the C-terminus. Creation of a chimera where the C-

terminus of Gqa was replaced with the corresponding residues of Gja resulted in

stimulation of phospholipase C by receptors otherwise coupled exclusively to G,

(Conklin et al., 1993), indicating the role of this region in specific receptor interactions.

Lipid modifications of G proteins

Every G protein contains some form of lipid modification. These can be of three types:

isoprenylation, myristoylation and palmitoylation. All G protein ~y-dimers become

isoprenylated on the cysteine residue of a CAAX motif (Cys residue followed by any

two aliphatic residues then any other residue), located at the C-terrninal end of the y-

subunit. After attachment of the isoprenyl group (through a stable thioether linkage), a

protease then cleaves the AAX residues and the Cys residue becomes

carboxymethylated (Higgins and Casey, 1994). Different Gy subunits undergo

modification with different isoprenyl groups: either famesyl (a IS-carbon moiety) or

geranylgeranyl (a 20-carbon moeity) (Wedegaertner et al., 1995). Removal of the

isoprenylated Cys residue results in G~y not being properly targeted to the plasma

membrane and being found in the cytosol (Spiegel et al., 1991).

Lipid modifications are also present on G protein a.-subunits. G,« subunits undergo co-

translational addition of a 14-carbon myristate group onto an N-terrninal glycine

residue. This glycine is at codon 2 of the Gja subunit and is part of a general MGXXXS

consensus sequence (Met, then Gly, then any three residues, followed by Ser). After

cleavage of the N-terrninal Met residue, attachment of myristate (via an amide bond) is

catalysed by N-myristol CoA transferase. Mutation of this glycine residue has been

shown to result in unmyristoylated Ga subunits, located predominantly in the cytosol.
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However, this lipid modification does not account in full for G protein membrane

location, since Gsa does not undergo myristoylation but is still membrane associated

(Jones et al., 1990). Therefore, for some a-subunits other lipid modifications and/or

protein domains are thought to mediate membrane anchorage. Another Go.modification

reported to promote membrane association is palmitoylation. In general terms

palmitoylation involves the attachment of palmitate, a 16-carbon fatty acid, to a

substrate. In terms of Go. subunit palmitoylation, the fatty acid is sometimes attached

post-translationally to an N-terminal cysteine residue, through a labile thioester linkage.

However, the attachment of palmitate to other residues, not via a thioester bond, has

also been observed. Due to the nature of the thioester bond this modification is

reversible, suggesting that changes in palmitoylation status can lead to variations in Go.

membrane affinity and modulation of signalling (Parenti et al., 1993). Increased

turnover of palmitate on Go. subunits has been observed upon activation for Gsa

(Wedegaertner and Bourne, 1994) and Gja (Chen and Manning, 2000). Non-

palmitoylated mutants of Gsa have been reported to exhibit a markedly decreased

capacity to associate with the membrane (Wedegaertner et al., 1993). In terms of the

relative contributions of myristoylation and palmitoylation to membrane association of

Go. subunits, it has been found that myristoylation alone is insuffient for membrane

localisation (Peitzsch and McLaughlin, 1993) but that it is a prerequisite for

palmitoylation for most G proteins (Mumby et al., 1994; Galbiati et al., 1994). The

kinetic bilayer-trapping hypothesis (Shahinian and Silvius, 1995) suggests that proteins

with a single lipophilic group (such as myristoylation) can interact transiently with

intracellular membranes, facilitating rapid palmitoylation by a plasma-membrane-bound

palmitoyl transferase. The protein is then proposed to remain stably attached, due to the

strong hydrophobicity and slow kinetic off rate of the dual fatty acid anchor. The roles

ofpalmitoylation will be discussed in more detail in section 1.5.

1.3.6 Other molecules acting at sites within the GTPase cycle

Although it has been known for some time that the G protein a-subunits possess an

intrinsic GTPase activity it was found that many G protein-mediated physiological

responses turned off much more rapidly than in vitro for pure Go. subunits. This
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discrepancy was explained by the discovery of proteins called GTPase activating

proteins (GAPs) that accelerate the GTPase activity of the a subunits. Two classes of

GAPs for trimeric G proteins have been reported. One class includes G protein effectors

such as PLC~1 (Mukhopadhyay and Ross, 1999; Montell, 2000) and cGMP PDE y-

subunit (Slepak et al., 1995),which stimulate GTP hydrolysis by aq and at respectively.

The second class is a family of regulators of G protein signalling (RGS proteins), which

also stimulate the rate of a-subunit GTP hydrolysis. To date more than 20 RGS proteins

have been described, all possessing a conserved domain of about 115 amino acids

known as the RGS box (Ross and Wilkie, 2000). By studying the crystal structure of

RGS4 bound to Gila-GDP-AIF4- it was found that the active core of the RGS box forms

a four-helix bundle. This bundle stabilises the transition state for hydrolysis of Ga-

bound GTP (resulting in an increase in kcat for GTP hydrolysis) by interacting with the

three flexible switch regions of Ga, regions whose conformation is dependent on the

identity of the bound guanine nucleotide (Tesmer et aI., 1997). The family of RGS

proteins have been shown, using the yeast 2 hybrid system, in vitro binding, and co-

immunoprecipitation assays, to have a range of selectivities for the various Go subunits.

At present, these in vitro studies with mammalian RGS proteins seem to indicate most,

if not all, act selectively as GAPs for Ga proteins in the ai family (cq, ao, az and at)

and/or Gq/ll but do not appear to interact with, or affect, as or a 12113 classes (Ross and

Wilkie, 2000). It is also now known that certain adaptor proteins can interact with

regulators of G protein signalling and modulate their activity (e.g. 14-3-3 proteins have

been shown to bind to RGS7 and inhibit its GAP function (Benzing et al., 2000)).

It has now been suggested that as well as RGS proteins, which accelerate the GTPase

activity of G proteins (terminating GPCR-G protein signalling), AGS proteins

(accelerators of G protein signalling) also exist. Although each AGS protein activates

G-protein signaling, they do so by different mechanisms within the context of the G-

protein activation/deactivation cycle. The role of these proteins will, however, not be

discussed further for the purposes of this study, for a recent review the reader is referred

to Cismowski et al. (2001).
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1.4 GPCR-G Protein Fusion Proteins

The construction and analysis of GPCR-G protein fusion proteins has been the work of

various groups (Bertin et al., 1994; Wise and Milligan, 1997; Seifert et al., 1998; Guo et

al., 2001). In these fusion proteins the N terminus of the desired Gee subunit is directly

attached to the C-tenninus of a GPCR. These constructs have proved useful tools to

study the enzymatic capacity of G proteins, to measure ligand efficacy, and to evaluate

receptor-coupling specificities of related G proteins (reviewed by Seifert at al., 1999;

Milligan, 2000). The very nature of the fusion is advantageous for these purposes, as it

defines the stoichiometry of expression of the two entities as 1:1 and also ensures their

co-localisation following expression. In most of these studies, toxin-resistant G proteins

(the reasons for which have been previously discussed in section 1.1.5) have been used.

In the present study, the N-tenninus ofpalmitoylation variant GoIU proteins are directly

linked to the C-tenninus of palmitoylation-variant versions of either the U2A-

adrenoceptor or the 5-HTIA-serotonin receptor. The structure of these fusions is

outlined in Figure 1.5 and Appendices 8.1-8.4.

Some may consider fusion protein systems not to be a worthwhile area of research,

believing the artificially constrained nature means they cannot be physiologically

relevant. This is true to a certain degree since events downstream of GPCR-G protein

interaction, such as internalisation and desensitisation may be different for fusions as

opposed to the native proteins (Loisel et al., 1999). Therefore, results obtained from

using this system must be interpreted with an air of caution. However, for certain areas

of study, without fusion-protein investigations, advancement in our understanding

would not have been possible.
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Figure 1.5

The structure of GPCR-G protein fusion proteins.

The diagram shows the general structure of GPCR-G protein fusions in terms of:

a) linear arrangement in a fusion protein:

This diagram depicts the general linear structure of both types of fusion proteiJ:a.

used in this study. It shows the Cys35Ilie mutation, present in all these

constructs, and indicates the presence of palmitate in each part of the fusioll

protein. Note that in the case of 5HT I A-receptor-G, I«Cys" I lie fusions th~

would be two palmitoylstion sites in the GPCR portion.

b) 2-dimensional representation of a fusion protein expressed in a cell:

The 2-D diagram depicts the general arrangement of the GPCR and Ga proteiQ

parts of the fusion protein when expressed in a cell. It shows the insertion of"
palmitate, attached to each protein, into the lipid bilayer. The diagram alSO

shows the insertion ofmyristate, attached to the Go1a protein, into the bilayer.
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Figure 1.5
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The usefulness of fusion-proteins is perhaps best illustrated in the study of GTPase

activity of various G proteins. Before the use of GPCR-G protein fusions there was a

lack of information on the absolute levels of GPCRs and their cognate G proteins. Their

localisation in relation to one another in cells and at the plasma membrane was also

unclear. Therefore, these studies often resulted in an estimation of GTPase activity too

low to account for the physiologically observed rapid kinetics of ligand-induced

activation.

In the present study, involving the use of a palmitoylation deficient G protein, targeting

of the G protein to the plasma membrane for efficient coupling and signalling could

have been a problem if a non-fusion approach was taken (by inference from a previous

study using acylation-deficient mutants of the Gila). It has previously been shown that

independent co-expression of the a2A-adrenoceptor and G, 1a in COS cells allowed

functional interactions between the receptor and the G protein (Wise et al., 1997a). No

functional contacts could be measured however, following co-expression of the a2A-

adrenoceptor and acylation-deficient mutants of G; 1a (Wise et al., 1997b). It was also

shown that the rescue of agonist-induced signal transduction to the acylation-deficient

mutants of Gi1a could be achieved by the expression of this G protein as part of a fusion

construct with the receptor (Wise and Milligan, 1997). Similar observations have been

made for the Gsa protein. In this study, partial rescue of functional interactions of a

non-palmitoylated mutant of Gsa was observed by fusion of the Gsa subunit to the ~-

adrenergic receptor (Ugur et al., 2003).

1.5 Palmitoylation

1.5.1 Introduction

The first report of covalent attachment of lipids to proteins was made in 1951 (Folch

and Lees). It was not, however, until about 30 years later that the first descriptions of

the three main classes of lipid modification were given. In 1979 the characterisation of

palmitoylation was reported (Schmidt and Schlesinger, 1979), followed in 1982 by the
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description of myristoylation (Carr et al., 1992) and in 1989 by the characterisation of

prenylation (Casey et al., 1989). These three lipid modifications have been shown to be

present on many types of proteins and are thought to playa role in a variety of functions

(Resh, 1999). However, the focus of the present study will concern only the role of the

first of these lipid modifications, palmitate. This lipid modification will be studied in

terms of its regulation and the role that it plays in signalling of GPCRs and G proteins.

1.5.2 Role of Palmitoylation

Initially, the 16-carbon fatty acid nature of the palmitate moiety, lead to the suggestion

that it might enhance various hydrophobic interactions (Wedegaertner et al., 1995).

These were thought to be interactions such as allowing the protein to interact with the

lipid membrane or another protein (via contact between hydrophobic regions). Whilst

there is evidence for the role of palmitoylation in both of these cases (see Dunphy and

Linder, 1998, for a review), it is now assumed that hydrophobic interactions are not the

only functional consequence of attachment of palmitate. This view arose upon

appreciation of the nature of the thioester bond through which palmitate is attached to

some proteins. The lability of the thioester linkage means that palmitate attached via

this bond can be readily removed (Magee et al., 1987) and thus the reaction has the

potential to be regulated. In addition, there has been an increasing body of evidence to

support a role for palmitoy1ation in targeting of proteins to specialised regions of the

cell, known as rafts (regions of the cell thought to be important for signal complex

formation) (Anderson, 1998).

Palmitoylation status has been implicated to affect a vast array of signalling interactions

and processes. Some examples are GPCR-G protein interactions, RGS-G protein

interactions, GPCR phosphorylation, GPCR desensitisation and down-regulation, as

well as caveolar targeting and membrane localisation of many proteins. The reversibility

of thioester-attached palmitate is thought to be critically important for these interactions,

because regulation would offer co-ordinated control of the membrane binding and/or

protein-protein interactions of these proteins (Milligan et al., 1995; Wedegaertner et al.,

1995).
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Many suggestions for the role for palmitoylation in GPeRs and G proteins have derived

initially from the study of other cellular proteins capable of undergoing palmitoylation.

This lipid modification has been shown to be particularly prevalent for proteins

involved in processes such as cell adhesion, cell growth and signal transduction,

providing further support that palmitoylation may playa more important role than just

hydrophobic interactions. Some examples of other cell proteins known to be

palmitoylated include GAP-43 (Ami et al., 1998), endothethial nitric oxide synthase

(eNOS) (Garcia-Cardena et al., 1996), several tyrosine kinases (Shenoy-Scaria et al.,

1994), post-synaptic density protein (PSD-95) (El-Husseini et al., 2002), RGS proteins

(Tu et al., 1999), and GRKs (Premont et al., 1996). To summarise, the role of

palmitoylation for many (e.g.GAP-43, TKs, eNOS) seems to be in targeting to caveolae,

whereas, the role for others (GRKs and RGS proteins) appears to be in promoting

hydrophobic interactions (e.g. protein-membrane or protein-protein interactions).

However, the role of palmitoylation for one of these proteins, PSD-95, seems to be in

functional regulation. The AMP A-type glutamate receptors are involved in the control

of synaptic strength and PSD-95 is a protein involved in the regulation of this process.

Palmitate turnover on PSD-95 is regulated by the activity of the glutamate receptor and

blocking palmitoylation is found to disperse synaptic clusters of PSD-95, causing a

selective loss of synaptic AMP A receptors. It has also been shown that rapid glutamate-

mediated AMP A receptor internalisation requires depalmitoylation of PSD-95 (EI-

Husseini et al., 2002).

1.5.3 Palmitoylation and caveolae

Caveolae are subdomains of glycolipid rafts. Structurally, they are small invaginations

of the plasma membrane and they can be found in various cells. The major components

of caveolae are cholesterol, sphingolipids and structural proteins named caveolins.

Three caveolin isoforms are known: caveolin-l, caveolin-2 and caveolin-3. Caveolin

has been shown to co-purify with many lipid modified signalling molecules, including

GPeRs, G proteins, H-Ras, eNOS, and Src family tyrosine kinases (Song et al., 1996).

It has been suggested that protein-protein interactions with caveolin protein may drive

fatty acylated proteins into caveolae. The e-terminal domain of caveolin-l undergoes
. . 133 143 156.

palmitoylation on three residues, Cys ,eys ,and Cys (DIetzen et al., 1995).
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Palmitoylation of caveolin is not required for its localisation to caveolae but appears to

facilitate its interaction with Gia (Galbiati et al., 1999) and is required for cholesterol

binding, chaperone complex formation and rapid transport of cholesterol to caveolae

(Uittenbogaard and Smart, 2000).

A role for palmitoylation in directing signalling proteins to caveolae is suggested by

mutagenesis (Robinson and Michel, 1995), fractionation and immunofluorescence

experiments (Garci-Cardena et al., 1996). This has been shown for a number of Go.

subunits, including Gila (Galbiati et al., 1999; Moffett et al., 2000) and Gola (Guzzi et

al., 2001). In further support of this hypothesis, myristoylation (GIl Ala) and

palmitoylation (Cys 'Ser) mutants of Gila were poorly targeted to caveolae-enriched

membrane fractions (Song et al., 1997). Mutational or pharmacological activation of

Gsa has also been shown to prevent its cofractionation with caveolin (Li et a!., 1995).

These authors proposed a mechanism whereby palmitoylation is necessary for initial

targeting to caveolae and subsequent interaction with the other molecules required for

signal transduction. Upon agonist activation, the ensuing depalmitoylation of the G

protein observed by many groups (Iiri et al., 1996) is thought to allow the deacylated

protein to leave the caveolar membrane (Li et al., 1995) and localise to either the

cytoplasm (Wedegaertner et al., 1996) or non-caveolar membrane (Huang et al., 1999).

GPCRs have also been reported to associate with caveolae (Moffett et al., 2000). Some

GPCRs have been shown to localise to caveolae in response to receptor agonist but not

to antagonists (Feron et al., 1997; Raposo and Benedetti, 1994), suggesting that

clustering or receptor activation by ligand binding is sufficient to promote regulated

translocation into caveolae membranes.

1.5.4 Palmitoylation and J3y Subunits

It has been observed in a number of studies that the J3y-subunits of G proteins are

important for various aspects of GPCR-G protein signalling. It is thought that a further

aspect of the regulation by J3y-subunits involves the palmitoylation of G protein 0.-

subunits. It has previously been shown that reciprocal regulation of Gsa can occur by

palmitate and the J3y-dimer (Iiri et al., 1996). These authors suggested that
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palmitoylation of Ga as well as binding of py to a-subunits promotes Gsa membrane

attachment. Subsequent hormonal activation of Gsa is then proposed to promote

dissociation of Gsa-GTP away from the py-dimer, accelerating depalmitoylation of the

a subunit and ultimately triggering release of some of the Gsa to the cytosol. However,

more recent studies have provided evidence that the py-subunit is not the only moiety

involved in regulation of palmitoylation on Ga subunits. In these studies a role for N-

myristoylation, as a pre-requisite for palmitoylation, was highlighted (Wang et al.,

1999). This work used mutants of Goa unable to bind py but able to be N-myristoylated.

It was found that these G proteins could still undergo palmitoylation. However, if N-

myristoylation was removed from these proteins the py-subunit then became necessary

for subsequent palmitoylation to occur. In light of this work, these authors suggested an

(at least partly) overlapping role for N-myristoylation and py-subunits exists in the

regulation of palmitoylation of Ga subunits. This is thought to be the reason that GPy

has been observed to be so important for membrane targeting and palmitoylation of Ga-

subunits such as Gsa and Gqa which do not undergo myristoylation. When the py

binding regions in these a-subunits were mutated the Ga no longer localised to plasma

membranes and also exhibited reduced palmitoylation (Evanko et al., 2000). It has since

been shown that the effects of these mutations can be overcome upon overexpression of

specific GPy subunits, indicating the importance of the dimer in proper membrane

localisation and subsequent palmitoylation (Evanko et al., 2001).

1.5.5 Cyclesof Palmitoylation

In 1985, it was realised that the thioester bond, through which palmitate was attached to

some proteins, was one of its most important and distinctive features. The chemical

reactivity of the thioester linkage was already known to make it sensitive to various

treatments, such as mild alkali (Schmidt et al., 1979), nucleophilic agents (Schlesinger

et al., 1980) and thiol reagents (O'Brien et al., 1987). The knowledge of this chemical

reactivity led to the now widely accepted proposal that protein palmitoylation, via a

thioester bond, is a reversible modification with the potential to undergo dynamic

regulation (Mumby, 1997). To date, turnover of covalently attached palmitate has been

reported for several proteins such as PSD-95 (see section 1.5.2), GPCRs (Mouillac et
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al., 1992) and G proteins (Wedegaertner and Bourne, 1994). In addition it is now

known that this process can be affected by external stimuli (James and Olsen, 1989;

Chen and Manning, 2000).

Several studies have shown that agonist stimulation can selectively modulate the

palmitoylation state of GPCRs (Ng et al., 1994; Mouillac et al., 1992) by promoting an

increase in the turnover rate of receptor-bound palmitate (Loisel et al., 1996). Similar

effects have been observed for palmitate attached to Gsa following G protein activation

by direct stimulation (Mumby et al., 1994; Degtyarev et al., 1993) as well as by cholera

toxin treatment (Degtyarev et aI., 1993). These results indicated that palmitoylation-

depalmitoylation cycles might occur at the cell surface where the receptor is accessible

to agonists. It was suggested that the role of such a cycle might be to co-ordinate

regulation of signalling, by determining either the location of proteins or their

propensity to interact with other molecules (Mumby, 1997). Some investigators have

attempted quantitative analyses of the stoichiometry of G protein palmitoylation. For

Gsa, it was found that the overall percentage of the protein palmitoylated before and

after receptor activation did not change (Jones et al., 1997). This makes the important

point that it may be alteration in turnover rate of palmitate on the protein, not

necessarily alterations in absolute levels of palmitoylation which may prove to be

important.

It is now generally accepted that palmitoylation-depalmitoylation cycles do occur,

presumably facilitated by enzymes which catalyse palmitate addition (palmitoyl

transferase) and removal (palmitoyl thioesterase) (Figure 1.6). However, the exact

molecular mechanisms of palmitate regulation are still partially shrouded in mystery

since, despite rigorous efforts, there has been no definitive characterisation of an

appropriate palmitoyltransferase enzyme (Qanbar and Bouvier, 2003), and in addition,

the two proposed classes of palmitoylthioesterases, APT-1 and PPT-1, still require

further characterisation (Linder and Deschenes, 2003).
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Figure 1.6

Cycles of Palmitoylation

The diagram depicts the proposed regulation of palmitoylation status at various stages

of the G protein activation cycle. It also depicts the role played by the enzymes thought

to be involved In catalysis of these changes (palmitoyltransferase and

palmitoylthioesterase) and palmitoyl CoA, the proposed palmitate donor for the

acylation reactions. Thioesterification by palmitate is represented by the jagged line

appended to either the GPCR or the Ga subunit. Gaps within the membrane serve to

separate the different steps of the cycle. A triangle surrounding the letter A represents

ligand.

In the basal state (top) and during ligand-binding (right), the receptor and G protein are

palmitoylated. In the activated state (bottom), receptor and Ga-GTP (dissociated from

GPy) become depalmitoylated either non-enzymatically or by a thioesterase. Acylated

or deacylated Ga can modulate effector, although in this example only palmitoylated

Ga is shown to interact with effector. Depalmitoylated Ga may partition out of the

plasma membrane subdomain that is enriched in receptor and effector (the light-density

caveolar-like subdomain, represented by the two solid parallel lines) into another

subdomain (represented by the two dotted parallel lines) and/or into the cytoplasm

(partitioning into the cytoplasm is represented by the reversible arrow symbol).

Hydrolysis of GTP by the intrinsic GTPase activity of Go triggers the conformational

change in this subunit and Ga-GDP rebinds to membrane-associated GPy. The

heterotrimer is the preferred reactant in either the enzyme-catalysed palmitoylation or

the autopalmitoylation of Ga. The repalmitoylated protein may partition back to the

receptor- and effector- rich subdomain of the plasma membrane.

Mumby,S.M. 1997. Current Opinion in Cell Biology. 9(2), 148-154.
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Figure 1.6
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The lack of clarity over the mechanisms of palmitate addition has proved the biggest

problem. Currently there are two distinct views of how protein palmitoylation may

occur. One view is continued support for the existence of a palmitoyltransferase, whilst

the other challenges the existence of this enzyme, believing that palmitoylation occurs

spontaneously in cells (autopalmitoylation). At present, it is unclear which of these two

situations is most likely, or indeed, whether both mechanisms may play some role.

Regardless of which scenario is unveiled, the idea of a regulated cycle of palmitoylation

is still feasible. Theoretically, it would suffice to regulate one step of the reversible

reaction in order to achieve cycling of the overall process. The evidence supporting each

of these suggested mechanisms of palmitate regulation has been recently reviewed

(Qanbar and Bouvier, 2003; Linder and Deschenes, 2003).

The search for a palmitoyltransferase enzyme has resulted in numerous reports of

palmitoyltransferase activity, carried out by many proteins in many different regions of

the cell (reviewed in Qanbar and Bouvier, 2003). Perhaps in light of the diverse array of

proteins to which this fatty acid is attached, this is not surprising. It may be somewhat

narve to expect one ubiquitously expressed enzyme could be responsible for all

palmitate additions. Searching for this enzyme has been made difficult by two main

problems. The first problem is the inherent instability of palmitoyltransferase activity.

Some studies have reported the need for detergent to solubilise the activity (Berthiaume

and Resh, 1995) whilst other studies report loss of activity during purification attempts

(Dunphy et al., 2000). The second problem in searching for a specific

palmitoyltransferase enzyme comes from the distracting observation of

palmitoyltransferase activity by many enzymes that have a primary role in lipid

metabolism. To date, the most promising demonstrations of palmitoyltransferase

activity are by proteins such as the yeast protein complex Erf2p-Erp4p (Bartels et al.,

1999), required for the ER to plasma membrane localisation of yeast Ras proteins.

However, further work is obviously required to find proteins capable of performing this

role at or near the plasma membrane.

The phenomenon of autopalmitoylation has been observed for a number of types of

protein such as rhodopsin (O'Brien et al., 1987), Ga subunits (Duncan and Gilman,
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1996) and RGS4 and RGS10 (Tu et al., 1999). This autopalmitoylation does not appear

to occur randomly on any cysteine residue, with some reports suggesting a degree of

sequence specificity for the process (Belanger et al., 2001). In some cases, the sites for

autopalmitoylation are the same as those demonstrated in vivo (Ross and Braun, 1988)

but this is not always the case (Scholich et al., 2000). The physiological relevance of

autopalmitoylation is also cause for controversy, since kinetic calculations have

predicted that autopalmitoylation would probably be too slow under physiological

conditions (Leventis et aI., 1997).

In contrast to the debated existence of palmitoyltransferases there seems to be no

question of the existence of palmitoyIthioesterases. The first reports of this activity were

made in 1986 (Berger and Schmidt, 1986), before subsequent purification of the first

palmitoylthioesterase, PPT-1 (Camp and Hofmann, 1993) and a related protein, PPT-2

(Soyombo and Hofmann, 1997). It was later discovered that these two proteins were

actually lysosomal enzymes, with primary function in the degradation of acylated

peptides not the turnover of palmitate on proteins. Another enzyme, APT-1, was then

discovered which was a thioesterase for palmitoylated proteins such as Gsa (Duncan

and Gilman, 1998) and eNOS (Yeh et al., 1999). The subsequent resolution of the

crystal structure of APT-l (Devedjiev et al., 2000), as well as data from other functional

studies, led to the realisation that structurally it belonged to the a/j3 hydrolase family

(which includes lipases, esterases, dehalogenases and thioesterases). When coupled to

the knowledge that the most recently purified palmitoylthioesterases were also lipid-

modifying enzymes (Liu et al., 1996; Ueno, 2000), a hypothesis for the existence of

dual activity for these enzymes was proposed. However, this hypothesis still requires

further research.

1.5.6 Experimental Methods for the Study of Palmitoylation

Palmitoylation of proteins is notoriously tricky to study and this has been responsible

for the comparatively slow progress in this area of GPCR-G protein signalling. A

variety of technical limitations make the study of this lipid modification difficult.

Firstly, the instability of this modification, arising from the thioester bond, renders it

susceptible to cleavage in the presence of various chemicals, e.g. the reducing agent
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dithiothreitol (DTT) (O'Brien et al., 1987). Another problem arising from the thioester

bond is the inherent reversibility of the modification. Whilst this is presumed to be an

invaluable feature for proteins in vivo, it can make things difficult when studying the

stoichiometry of palmitate on proteins. The standard approach for studying

palmitoylation is by incubation of cells with high levels of radiolabelled palmitate, and

monitoring subsequent incorporation/removal of the radiolabelled lipid from proteins

(Mouillac et al., 1992). However, there are two main limitations to this metabolic

labelling approach. Firstly, palmitic acid is a major fatty acid of cellular lipids, therefore

the majority (>99.5%) of the radioactivity is incorporated into lipids, leaving only a tiny

amount remaining for labelling of proteins (i.e. isotopic dilution) (Grange et al., 1995).

As a result, the protein of interest must be fairly abundant in the cell type analysed to

detect palmitoylation successfully. The second limitation is the nature of the

radiolabelled palmitic acid. At the moment, the best available form for this metabolic

labelling is [9, 10 (n)_3H]palmitic acid. Therefore, the poor penetrance of eH] as an

emitter means that it often takes weeks to months for exposure of SDS-PAGE

fluorograms or western blots, hampering the rate of the investigative progress.

The early studies of palmitoylation (McIlhinney et al., 1985; Magee et al., 1987)

established the nature of this lipid modification as dynamic and post-translational. This

was achieved by two experimental approaches. The first approach was the metabolic

labelling of cells with radioactive palmitate in the presence of cycloheximide, an

inhibitor of protein synthesis (since palmitate labelling in the absence of protein

synthesis is indicative of a post-translational, dynamic process). The second approach

was to compare the rate of turnover for the palmitate moiety with the rate of turnover

for the protein itself (where a faster turnover rate for palmitate is indicative of a

dynamic process). Since then, most studies have focused on either the functional

consequences of palmitate exclusion, or the regulation of palmitate turnover for the

various GPCRs and G proteins.

A very important point has arisen with respect to the methods by which the functional

consequences of palmitoylation are assessed. To date, many studies have involved the

mutational exclusion of palmitate. However, it has to be taken into consideration that

loss of the cysteine residues, rather than lack of palmitate, could contribute to the
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observed effects. There are some other methods to remove palmitate from proteins in

vitro, such as hydroxylamine treatment or deacylating enzymes, which have been

successfully used by a number of groups (Morrison et al., 1991; Camp et al., 1994;

Hepler et al., 1996). However, use of these alternative approaches are not amenable to

every type of study, leaving site-directed mutagenesis of cysteine as one of the only

other options. Concern has arisen because the cysteine sulphydryl group itself may be

required for some aspects of protein structure or function. Palmitoylation of cysteine

temporarily blocks these free sulphydryl groups, but depalmitoylation makes them re-

available for interaction. Mutational exclusion of cysteine would consequently abolish

all roles played by this residue. Therefore, appropriate caution must be taken before

interpreting results from mutational studies (Hepler et al., 1996). The importance of this

caution has been well illustrated by the study of Gq<lprotein. Mutational exclusion of

the Cys9 and Cys 10 residues gave rise to different experimental results than those for the

wild type protein depalmitoylated with a thioesterase in vitro (Hepler et al., 1996).

To study the regulation of palmitate turnover in GPCRs and G proteins a type of

metabolic labelling assay (an in vivo palmitoylation assay) is carried out. The relatively

low in vivo expression of molecules such as GPCRs would make it very difficult to

assess palmitoylation in this context. This is why a system is necessary, where the

protein can be overexpressed to reach much more easily detectable levels by use of a

heterologous expression system. As already explained, a huge amount of the

incorporated palmitate is present in cellular lipids and a substantial fraction also as

palmitoyl-coenzyme A (the acyl donor for palmitoylation; formed from palmitic acid,

after penetration into cells and transformation by ATP-driven esterification, with extra-

mitochondrial CoA-SH, to yield palmitoyl-CoA). In light of this it is therefore

necessary to purify the target protein in isolation from the various other palmitoylated

proteins present in cell lysates. In order to do this an immunoprecipitation step with a

protein-specific antibody is incorporated into the palmitoylation assay (Stevens et al.,

2001).

Two main types of palmitoylation assay have been routinely carried out; pulse-labelling

and pulse-chase. The distinctions between the two assays and the processes they

represent must be understood before results from each can be properly interpreted.

43



Pulse-labelling involves the incubation of cells with radiolabelled palmitate and

measuring the incorporation of the radio label over a certain period of time. This can be

done in the presence or absence of agonist. In this assay the observed incorporation of

palmitate reflects a combination of the effects of both the palmitoylation and

depalmitoylation reactions. In contrast, the other type of palmitoylation assay, a pulse-

chase assay, allows an estimation of kinetics for the rate of depalmitoylation

irrespective of the rate of repalmitoylation. In this assay, after an initial pulse period to

achieve steady-state labelling of palmitate attached to the protein of interest,

depalmitoylation can be observed by incubating the cells with non-radioactive

palmitate, and monitoring the decrease in attached 3H palmitate with increased chase

time. The time taken for half the palmitoylated proteins to undergo fatty acid cleavage

(t1/2 depalmitoylation) can then be estimated from these experiments (Magee et al.,

1987).

I.S.7 GPCR palmitoylation

Palmitoylation of GPCRs was first demonstrated on two conserved cysteine residues

(Cys322 and Cys323) of the visual receptor rhodopsin (O'Brien and Zatz, 1984;

Ovchinnikov et al., 1988). Subsequent to this, by primary sequence comparison,

similarly conserved cysteine residues were revealed to be present in the C-terminal tail

of a number of GPCRs. This has ultimately led to the physical demonstration of

palmitoylation on many GPCRs, including the <X.2A-adrenoceptor (Kennedy and

Limbird, 1994) and the 5-HTIA-serotonin receptor (Ng et al., 1993; Papoucheva et al.,

2004) used in this study. The reason for palmitoylation of integral membrane proteins,

such as GPCRs, is considered somewhat enigmatic, given that the modification would

presumably be unnecessary for stable membrane attachment or intracellular targeting

(Veit et al., 1991). It has therefore been suggested that palmitoylation may play an

important role in the functioning of GPCRs.

To date, a number of very different responses have been observed upon mutation of

GPCR palmitoylation sites (the details of which, for a selection of GPCRs, are outlined

in Table 1.2), raising the possibility that a shared functional role may not exist.
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Table 1.2

The effects of mutating various GPCR palmitoylation sites

Outlined in the table are a selection of GPCRs. The observed effects of mutating

palmitoylation sites in these receptors is noted.
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Table 1.2

GPCR Fuctional Effects of Mutating Palmitoylation Sites

Rhodopsin No effect on ligand binding or Ga activation
receptor Cys323mutant showed reduced light-dependent phoshorylation

by rhodopsin kinase
(Karnik et al., 1993)

~radrenoceptor Decreased adenylyl cyclase stimulation
Increased basal phosphorylation of receptor
Decreased agonist-mediated phosphorylation of receptor
(O'Dowdetal., 1989; Moffettetal., 1996,2001)

a2A-adrenoceptor No effect on coupling to G/Go proteins
No effect on receptor phosphorylation
No agonist-promoted down-regulation
(Kennedy and Limbird, 1993, 1994; Eason and Liggett, 1992,
1993; Eason et al., 1994)

m2muscanmc Still activates G protein but not to same extent as wild type.
receptor (Hayashi and Haga, 1997)
TRH receptor Membrane expression level, high affinity agonist binding, Gs

coupling, homologous desensitisation and agonist-promoted
internalisation not affected by mutation.
Decreased rate of intracellular trafficking (delayed but not
trapped).
(Tanaka et al.,1998).

Decreased agonist-promoted internalisation
(Groarke et al., 2001)

LHlhCG receptor Normal trafficking
Normal cAMP production
Increased agonist-promoted internalisation and down-regulation
(Kawate et al., 1997; Kawate and Menon, 1994; Munshi et al. ,
2001)

Decreased cell surface expression
(Zhu et al., 1995)

5-HT4A receptor Triple mutants:
Still interacts with Gs
Still stimulate Adenylyl Cyclase activity
Still activate cyclic nucleotide-sensitive cation channels

328 329Double mutants (Cys Ser, Cys Ser):
Increased capacity to be constitutively active
(Ponimaskin et al., 2002)

Vasopressin V la Decreased basal and agonist-stimulated phosphorylation

receptor Increased sequestration rate
No effect on ligand binding
No apparent effect on intracellular signalling
(Hawtin et al., 2001)



Vasopressin V2 Decreased expression at cell surface with double mutant
receptor Still get normal Adenylyl Cyclase stimulation

Still get nonnalligand binding
(Schulein et al., 1996; Sadeghi et al., 1997)

Reduced rate of agonist-promoted internalization/sequestration
(Schulein et al.,1996; Charest and Bouvier, 2003)

Significantly decreased agonist-promoted ERK1/2 activation
(Charest and Bouvier, 2003)

Dopamine Dl Still get normal Adenylyl Cyclase stimulation
receptor Still get high affinity agonist binding

(Jin et al., 1997)
A I adenosine Little difference in receptor-effector coupling, agonist-promoted
receptor internalisation and down-regulation

Enhanced proteolysis of mutants
(Gao et al., 1999)

A3 adenosine Appearance of agonist-independent basal phosphorylation of
receptor mutants (Palmer and Stiles, 2000)

Histamine H2 Enhanced down-regulation of mutants
receptor
5-HT lA receptor Decreased G, coupling and inhibition of Adenylyl Cyclase

.. b If' divid I C 417 C 420activity y rep acement 0 In IVI ua ys or ys

Abolished G, coupling and inhibition of Adenylyl Cyclase
activity by double mutant

Decrease in receptor-dependent activation of ERK
(Papoucheva et al., 2004)

CCRs receptor Shorter protein half-life
Decreased membrane expression
No effect on ci+mobilisation
No effect on inhibition of Adenylyl Cyclase
(Percherancier et al., 2001)

Impaired trafficking
(Percherancier et al., 2001 ; Blanpain et al., 2001)

May affect duration of functional response
May decrease G protein activation (from GTPyS binding
studies)
(Blanpain et al., 2001)

Profoundly reduces PMA-induced receptor phosphorylation,
homologous desensitisation and internalization.
(Kraft et al., 2001).



Roles for GPCR palmitoylation have been suggested in the creation of a fourth

intracellular loop, cell surface expression, sub-domain targeting, agonist regulation of

receptor function, G protein interactions, phosphorylation and desensitisation,

sequestration and internalisation, as well as down-regulation. The importance of

palmitoylation in each of these processes is discussed in the following paragraphs.

Creation of a Fourth Intracellular Loop

The position of the palmitoylated cysteine residues (15-20 residues from the proposed

membrane-cytosol border) of many GPCRs, led to the hypothesis that a fourth

intracellular loop could be created if the palmitate moiety were to be inserted in the

bilayer (Ovchinnikov et al., 1988). The first demonstrations of palmitate insertion into

the membrane (Moench et al., 1994) and the existence of the fourth loop (Ganter et aI.,

1992) were then shown for rhodopsin. Further evidence for the existence of a fourth

intracellular loop arose from the X-ray crystallographic structure of inactive bovine

rhodopsin (Pa1czewski et al., 2000). This high-resolution three-dimensional structural

information indicated an eighth helix in addition to the expected bundle of seven TM

helices. This eighth helix is thought to have arisen by palmitate insertion into the

bilayer. Several studies have suggested a role for this region in G protein activation

(Altenbach et al., 2001; Krishna et al., 2002; Okuno et al., 2003). For some GPCRs,

regions of the fourth intracellular loop are thought to be involved in GPCR-G protein

interactions. In one study (Konig et al., 1989), a synthetic peptide from the fourth

intracellular loop of rhodopsin was capable of interacting with transducin.

Cell Surface Expression

Receptor intracellular trapping has been reported upon mutation of palmitoylation sites

in the LHlhCG receptor (Zhu et al., 1995), the CCRs receptor (Percherancier et al.,

2001), and the vasopressin V2 receptor (Schulein et al., 1996; Sadeghi et al., 1997).

Therefore for these proteins, palmitoylated cyteines appear to playa role in the normal

processing of GPCRs.

Sub-Domain Targeting

It has been reported for the m2 muscarinic receptor that palmitoylation may be

important for the targeting of this GPCR to specialised subdomains of the plasma
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membrane, known as caveolae (Feron et al., 1997). This targeting is believed to

promote interaction of the GPCR with signalling complexes located in these

subdomains, thereby promoting signal transduction.

Agonist Regulation of Receptor Function

Altered, usually increased, incorporation of 3H palmitate into various GPCRs has been

observed upon agonist stimulation (Mouillac et al., 1992; Loisel et al., 1996;

Ponimaskin et al., 2001). Later, this effect was attributed to an increased turnover rate

of the receptor-bound palmitate upon receptor activation (Loisel et al., 1996, 1999).

This increased turnover rate of palmitate on GPCRs was observed for the ~2 and U2A-

adrenergic receptors (Loisel et al., 1996; Kennedy and Limbird, 1994). In addition

agonist-stimulated incorporation of palmitate has been reported for the muscarinic m2

receptor (Hayashi et al., 1997) and the 5-hydroxytryptamine4Areceptor (Ponimaskin et

al., 2001). However, increased palmitate incorporation upon agonist stimulation is not

always observed. In the work by Loisel et al. (1996), the agonist stimulated increase in

3H palmitate incorporation was found to only occur transiently and after prolonged

agonist stimulation of the ~2ARa decrease in incorporation of3H palmitate was actually

observed. In this study, reduction of the incorporation of 3H palmitate in response to

agonist pre-treatment was also observed. These findings led the authors to suggest that

upon prolonged agonist stimulation receptor repalmitoylation was inhibited, possibly

implying a role for palmitoylation status in desensitisation. There are also GPCRs for

which no change in incorporation of 3H palmitate is observed upon agonist stimulation,

such as the adenosine Al receptor (Gao et al., 1999). As well as other GPCRs, which

exhibit slight decreases in incorporation of 3H palmitate upon stimulation, such as the

vasopressin V2 receptor (Sadeghi et al., 1997). It is important to re-emphasise at this

point that results obtained by pulse-labelling studies are not necessarily reflective of an

overall difference in palmitoylation state, they are the combined effect of the rates of

both palmitoylation and depalmitoylation. Thereby, an agonist-promoted increase in

palmitate turnover could give rise to either a decrease or an increase in palmitate

incorporation, depending on the kinetics and experimental conditions. Receptor agonist

is not the only moiety shown to be able to regulate palmitoylation. Adam et al. (1999)

have reported that nitric oxide (NO) could suppress the incorporation of 3H palmitate
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into the P2-adrenoceptor, both in the basal and activated states. They also reported that

NO could reduce agonist stimulated adenylyl cyclase activity by this receptor and

therefore proposed that these effects may be a consequence of depalmitoylation of the

receptor.

G Protein Interactions

Mutation of palmitoylation sites in the P2-adrenoceptor was reported to reduce the

efficiency of receptor-G protein interaction since this mutation resulted in decreased

adenylyl cyclase activity (O'Dowd et al., 1989). Later, it was realised this abrogation of

GPCR-G protein interactions was indirectly brought about by the increased basal

phosphorylation of palmitoylation-site mutants (Moffet et al., 1996). Effects on

signalling by mutating palmitoylated cysteines have not been observed for all GPCRs

tested. In fact, there seem to be rather more examples of receptors that can still signal

successfully despite palmitoylation-site mutations. This has been observed for the a2A-

adrenoceptor (Kennedy and Limbird, 1994), the LHlhCG receptor (Kawate and Menon,

1994; Kawate et al., 1997), the dopamine DJ receptor (Jin et al., 1997), the AI

adenosine receptor (Gao et al., 1999) and the TRH receptor (Tanaka et al., 1998).

Phosphorylation and Desensitisation

Phosphorylation by a number of kinases, including PKA and GRKs, initiates events

leading to receptor desensitisation. Palmitoylation is now believed to playa role in these

events. This view has resulted from a number of studies. Firstly, as outlined previously,

the P2-adrenoceptor undergoes increased basal phosphorylation upon mutation of

palmitoylation sites (Moffett et al., 1996), a phenomenon also reported for the

adenosine A3 receptor (Palmer and Stiles, 2000). The work by Moffett et al. (1996)

involved the creation of palmitoylation-deficient mutants (Cys34IGly) also containing

mutations in two phosphorylation sites (Ser345Ala and Ser346Ala). Triple mutants were

observed to have normal phosphorylation and receptor coupling. From this work and the

results of further studies by Moffett et al. (2001), it was therefore concluded that

palmitoylation restrained the access of various kinases to the GPCR phosphorylation

sites. These studies would appear to suggest that in order for phosphorylation,

functional uncoupling and desensitisation of the P2AR to occur, this GPCR must first
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undergo depalmitoylation. There are also examples where palmitoylation deficient

mutants exhibited decreased agonist-stimulated phosphorylation (V 1a vasopressin

receptor, Hawtin et al., 2001), and reduced internalisation and desensitisation (CCRs

chemokine receptor, Kraft et al., 2001).

Sequestration and Internalisation

For many receptors internalisation occurs closely after phosphorylation. Internalisation

has been implicated in both desensitisation and resensitisation events (Ferguson and

Caron, 1998). In addition to the CCRs chemokine receptor already discussed, the

internalisation properties of other GPCRs are also affected by the ability of the receptor

to undergo palmitoylation. This has been reported for the vasopressin V2 (Schulein et

al., 1996) and TRH (Groarke et al., 2001) receptors. In these two receptors, as for the

CCR5 receptor, mutating palmitoylation sites leads to decreased internalisation

properties. The decreased agonist-promoted internalisation of the TRH receptor was

shown to be as a result of decreased interaction of this GPCR with arrestin. Therefore, it

is thought that palmitoylation may play a regulatory role in this interaction (Groarke et

al., 2001). A contrasting example for the role of GPCR palmitoylation in internalisation

is that of the LHlhCG receptor. Studies of this receptor showed that mutation of

palmitoylation sites resulted in double the rate of internalisation for the mutants

compared with the wild type (Kawate and Menon, 1994). These authors also noted

some link between palmitoylation and arrestin, whereby the internalisation rate of both

the wild type and mutant receptor were enhanced by arrestin overexpression, but this

phenomenon was especially pronounced for the palmitoylation-mutant receptor.

Down-regulation

In addition to the role of palmitoylation in phosphorylation and internalisation events, it

has also been implicated in the process of desensitisation. The mutation of the

palmitoylation sites in the LHlhCG receptor, which were observed to result in increased

internalisation of the receptor, were additionally found to enhance the down-regulation

of this receptor (Kawate et al., 1997). An enhanced down-regulation of palmitoylation

mutants was also observed for the histamine H2 receptor (Fukushima et al., 2001). The

opposite effect was however observed for the a.2A -adrenoceptor. In this case, no down-

regulation was observed for a palmitoylation-mutant receptor. Interestingly, the
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phenotype in-terms of down-regulation for this particular a.2A-adrenoceptor mutation

(Cys 442phe), correlates with that of the a.2c-adrenoceptor. The a.2C-adrenoceptor lacks a

palmitoylation site (having a phenylalanine residue naturally at the corresponding

position in its sequence), and fails to undergo agonist-induced down-regulation (Eason

and Liggett, 1992; 1993).

In summary, if it is taken into consideration that various aspects of protein structure and

function can be influenced by palmitoylation, then it is perhaps not surprising that such

a diverse array of functional effects are observed. GPCR-specific roles for

palmitoylation may therefore reflect the unique nature of each GPCR and the specific

processes it regulates. Therefore, a considerable amount of further research is required

before any definite conclusions can be drawn concerning the exact role(s) of

palmitoylation for the GPCR family.

1.5.8 G Protein Palmitoylation

Many Ga. proteins, such as Gsa. (Degtyarev et al., 1993), Gqa. (Hepler et al., 1996) and

Go1a. (Grassie et al., 1994), have been shown to undergo palmitoylation near their N-

terminus. This lipid modification has been implicated in various aspects of G protein

function such as membrane association, subdomain localisation, efficient protein-

protein interactions, signalling efficiency and agonist regulated G protein activation.

The current evidence supporting each of these roles is outlined in the following

paragraphs.

Membrane Association
G protein heterotrimers are peripheral membrane proteins which require access to the

inner surface of the plasma membrane to perform their function. These proteins gain

this access via a number of strategies such as lipid modifications and protein-protein

interactions (Chen and Manning, 2001). The presence of palmitate on G proteins seems

to be required for membrane anchoring, although other hydrophobic modifications

(such as myristoylation and prenylation) are also involved (Resh, 1994). In support of

this anchorage role various studies indicate mutations in palmitoylation sites result in

more soluble or mislocalised Ga. subunits (Wedegaertner et al., 1993; Grassie et al.,
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1994). Furthermore, Gs activation and depalmitoylation led to its redistribution to the

cytosol (Wedegaertner and Bourne, 1994). However, such a cytosolic shift has not been

observed in all cases. An interesting, contradictory observation concerning the

consequences of Gs depalmitoylation has been reported (Huang et al., 1999), where

direct enzymatic depalmitoylation failed to modify membrane attachment of this Ga

protein. Although some relationship between membrane association of the Ga proteins

and palmitoylation has been suggested, the reason for this requirement is still

speculative. It is thought that membrane association may target the protein to a region

where the enzymes of the palmitoylation cycle and/or an abundant supply of palmitate

donor may reside, promoting palmitate cycling (Qanbar and Bouvier, 2003).

Subdomain Localisation

Palmitoylation can contribute to targeting of Ga subunits to specific subcellular

compartments such as the Golgi complex, the plasma membrane or caveolae (Mumby,

1997). The specific subcellular distribution of Green Fluorescent Protein (GFP)-fused

constructs was shown to be affected by palmitoylation status (McCabe and Berthiaume,

1999). A number of G proteins have now been shown to localise to the special

membrane invaginations known as caveolae. One such example is GiIa, whose

partitioning into this subdomain increased four-fold upon palmitoylation of an already

myristoylated a subunit (Song et al., 1997).

Protein-Protein Interactions

The presence of palmitate on Ga subunits has been shown to affect its

association/interaction with a number of proteins. In one study, it was shown that

palmitoylated Ga associated more tightly with G~y than depalmitoylated Ga (Iiri et al.,

1996). Palmitoylation status also plays a regulatory role in the functional interactions

between Go subunits and RGS proteins (Tu et al., 1997). Mutations in either the Ga

protein or the RGS protein palmitoylation sites (present in the RGS box, containing the

GTPase activating domain) can result in altered ability of the GAP protein to accelerate

the GTPase reaction (Chen and Manning, 2001).
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Signalling Efficiency

For most Ga subunits, loss of palmitoylation leads to loss of ability to signal

effectively. This has been shown for Gsa (Wedegaertner et al., 1993) and Gqu

(Edgerton et al., 1994). Also, a constitutively active mutant of GI2U was found to lose

its transforming activity if its palmitoylation site was mutated (Jones and Gutkind,

1998). However, in some cases, an apparent loss of ability to signal has been attributed

to absence of membrane localisation, and was recovered upon fusion of the Ga subunit

to a receptor. This has been reported for both the Gil a protein (Wise and Milligan,

1997) and Gsu (Ugur et al., 2003).

Agonist Regulated G Protein Palmitoylation

Agonist regulation of G protein palmitoylation, already briefly discussed, indicates that

this modification is indeed important for G protein function. This phenomenon has been

observed for a number of G proteins including, Gs via the ~2AR (Wedegaertner and

Bourne, 1994) and Gi via the 5-HTIA receptor (Chen and Manning, 2000). The effects

of 3H palmitate incorporation (from metabolic labelling studies) were found to vary,

dependent on the duration of stimulation. Most studies (Wedegaertner and Bourne,

1994; Chen and Manning, 2000; Stanislaus et al., 1997; Bhamre et al., 1998) observed

an increase in the incorporation of 3H palmitate in response to transient agonist

stimulation; thought to reflect an increase in turnover of palmitate attached to GTP-

bound Go (Loisel et al., 1999). In support of this, pulse chase palmitoylation assays

often show a slightly more rapid depalmitoylation of Ga in response to agonist (Mumby

et al., 1994). However, upon long-term agonist treatment, decreases in incorporation of

3H palmitate are often observed (Ammer and Schulz, 1997; Seassholtz et al., 1997).

These responses to chronic stimulation, are thought to be linked to desensitisation

mechanisms (Ammer and Schulz, 1997).

In summary, as for the GPCRs, there are a number of proposed functional roles for G

protein palmitoylation. However, unlike GPCRs, there seem to be more shared

functional roles, such as membrane association and protein-protein interactions, for

palmitoylation of the heterotrimeric G proteins. Nevertheless, just as is the case for
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GPCRs, there is still a lot of work to be done before a clear understanding of the role(s)

of this modification are fully appreciated.

1.6 Research Aims

With the implication of the role of palmitoylation in various processes, as well as the

demonstration that for some receptors palmitoylation is a dynamic process, the stage has

been set for further study of palmitoylation. The regulation of this post-translational

modification, and the role it plays is studied herein for two particular types of GPCR-G

protein fusion proteins. The a2A-adrenoceptor and the 5-HTIA-receptor are both GPCRs

belonging to the rhodopsin-like family. These receptors are not markedly different

structurally and both are thought to bind their small monoamine ligands by a similar

mechanism. In addition, these two receptors both bind to the Gilo class of Go proteins,

producing some similar downstream effects. Therefore it was decided to study various

features of palmitoylation by the use of fusion proteins between the GoiaCys351Ile

protein and each of these two receptors. The presence of potential palmitoylation sites in

the GPCRs and in the G protein meant that a variety of different fusion constructs were

created, each with varying ability to be palmitoylated. The a2A-adrenoceptor-

GolaCys351Ile fusion construct has 2 potential palmitoylation sites, one in the receptor

and one in the G protein, therefore four palmitoylation variant a2A-adrenoceptor-

GolaCys351Ile constructs were created. The 5-HTIA-receptor-GolaCys35IIle fusion

construct has 3 potential palmitoylation sites, two in the receptor and one in the G

protein, therefore eight palmitoylation variant 5-HTIA-receptor-GolaCys351Ile

constructs were created for this fusion. A fusion protein approach was employed in the

current study in order that we could profit from a number of the beneficial features these

constructs offer. Firstly, GPCR-G protein fusion proteins have been demonstrated to

function as agonist activated GTPases with Michaelis-Menten kinetics (Wise et al.,

1997c), a beneficial feature for functional assays. Secondly, expression of the

palmitoylation deficient GoiaCys351Ile protein at the plasma membrane (allowing

interaction with GPCRs) should be ensured upon fusion to a GPCR (Wise and Milligan,

1997). Thirdly, in most cell systems there is a large quantitative excess of G protein
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over receptor, meaning agonist regulation of receptor would presumably only regulate a

small fraction of the G protein population (Milligan, 2000). By studying palmitoylation

in a fusion protein system we should be able to immunoprecipitate both the receptor and

the interacting G protein partner, away from the endogenous G protein, avoiding any

potential "dilution" of observed effects by non-activated G proteins. These advantages

of fusion proteins offer an attractive approach by which to address the role(s) of

palmitoylation on GPCRs and G proteins.

The aim of this work was to investigate two main features of palmitoylation of GPCRs

and G proteins. The first area explored was the dynamic regulation of palmitoylation in

the fused GPCRs and G proteins and the second area involved a study of the functional

implications of palmitoylation status in these fusion proteins. In order to do this, the

following four specific objectives were set for this study.

1. To analyse the palmitoylation status of defined GPCR-G protein pairs

2. To understand how post-translational acylation of either partner is regulated by

agonist ligands.

3. To monitor the function and efficiency of interaction between the protein

partners of these fusion constructs using agonist stimulation of high affinity

GTPase activity and GTPySbinding.

4. To determine the importance of receptor and G protein palmitoylation for the

effectiveness of the regulator ofG protein signalling, RGS16.
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Chapter 2

Materials and Methods



2.1 Materials

The materials used were obtained from the following suppliers:

American Tissue Culture Collection, Rockville, USA
Human embryonic kidney large T antigen (HEK293T) cells.

Amersham Pharmacia Biotech UK Ltd., Buckinghamshire, UK
eH]-WAYI00635, eH]-RS-79948-197, [9,10(n)-3H] Palmitic Acid, Glutathione
Sepharose 4B, full range Rainbow ™ molecular weight marker, anti rabbit IgG-
horseradish peroxidase linked antibody (from Donkey), Hyperfilm ™ MP
autoradiography film, ECL "Plus western blotting detection system.

BDH, Lutterworth, Leicestershire, UK
Glacial acetic acid, orthophosphoric acid, methanol, isopropanol, ethanol,
trichloroacetic acid

Becton Dickinson UKLtd, Oxford, UK
BD Plastipak™ lrnl sterile syringes, Microiance™3 25GA5

/
8 and 26GA3/8 needles,

Falcon 60mm dishes

Bibby Sterilin Ltd, Staffs, UK
30ml sterilins, 50ml sterilins

BloWhittaker Molecular Applications, Rockland, ME, USA
SeaKem LE Agarose

CN Biosciences, Nottingham, UK
Calbiochem Pansorbin cells

Costar, Cambridge, MA, USA
Cryovials, 5, 10, and 25ml graduated sterile tissue culture plastic pipettes, cell scrapers.

Duchefa, Haarlem, The Netherlands
Tryptone, yeast extract, micro-agar

Eppendorf, Hamburg, Germany
96 well Deepwell plates, Filtertips 100JlI

Fisher scientific, Loughborough, Leicestershire, UK
HEPES, EDTA, DMSO, concentrated HCI, pyrex borosilicate glass binding tubes,
Glycine, SDS, Ammonium sulphate, sucrose, potassium acetate, potassium di-hydrogen
orthophosphate, calcium chloride, sodium bicarbonate, manganese chloride.

GIBeD BRL Life Technologies, Paisley, UK
Lipofectamine™ transfection reagent, OPTIMEM-I, L-glutamine, NBCS, DMEM,
competent cells.
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Greiner Bio-One Ltd., Gloucestershire, UK
7ml bijous

Helena Biosciences (Distributor for MBI Fermentas), Tyne & Wear, UK
Restriction enzymes

ICN Biomedicals Inc, Aurora, OH
Linbro plate sealer with adhesive back

Invitrogen B V, Groningen, Netherlands
NuPage® Novex high-performance pre-cast Bis- Tris gels, NuP AGE™ MOPS SDS
Running Buffer (20x), XCell Surelock™ mini-cell gel tank, XCell IJTMblot module

Iwaki, Scitecb Division, Asahi, Japan
75cm2 and 150cm2 tissue culture flasks, 60mm and lOOmm tissue culture dishes, 96
well/flat bottom Elisa plates

Konica Europe, Hohenbrunn, Germany
X-ray film

Meljord Laboratories, Suffolk, UK
DTT, IPTG

Millipore Cf[f0ration, Bedford, MA
Immobilion -P PVDF

NEN Life Science Products Inc., Boston, USA
[y32P]-Guanosine 5'-triphosphate, 250~Ci (6000Ci/mMole)

Novagen, Madison, WI, USA

Benzonase Nuclease, bugbuster™ protein extraction reagent

Pierce, Perbio Science UKLtd., Tattenhall, Cheshire, UK
EZ-LinkTMBiotin-LC-Hydrazide, Streptavidin-HRP conjugate.

Promega UKLtd., Southampton, UK
Restriction endonucleases, pfu polymerase, calf intestinal alkaline phosphatase, DNA
purification kits: Wizard™ Plus SV Minipreps and Wizard™ Plus SV Maxipreps
systems.

Packard Instruments BV, Netherlands
Ultima Gold XR liquid scintillation cocktail, Optiplate™ 96 well plates,
microscint™20, Unifilter-96 GF/C, TopSeaI™-A: 96well microplates

Premier Brands UKLtd., Merseyside, UK
Marvel
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Qiagen, Crawley, West Sussex, UK
Qiagen plasmid maxiprep kit, QIAquick Gel Extraction Kit, QIAquick PCR Purification
Kit

Roche Diagnostics Ltd., Lewes, East Sussex, UK
12CA5 monoclonal mouse IgG (binds to haemagglutinin (HA) epitope-tagged proteins).
Complete™ (Mini/EDTA free) protease inhibitor cocktail tablets, T4 DNA ligase,
bovine serum albumin (fraction V), App[NH]p, creatine phosphate, creatine kinase,
GTP, DNA molecular weight marker X (0.07-12.2kbp), restriction enzymes

Robinson Healthcare, Chesterfield, UK

Cotton wool

Sigma-Aldrich Company Ltd., Poole, Dorset, UK
RbCh, Na2H2P207, NaH2P04, NaH2P04.2H20, KOH, KCI, NaCI, MgCh, CaCI2,
MnCh, NaCl, NaOH, C2H302Na, C2H302K, DTT, EDTA, ATP, BSA (essentially
globulin-free), MOPS, DMSO, glycerol, Triton X-lOO, Tween 20, bromophenol blue,
ethylene glycol, ampicillin, agarose, ethidium bromide, Protein G-Sepharose, Protein A-
Sepharose, mineral oil, sodium m-periodate, DMEM, 0.25% Trypsin-EDTA, Poly-D-
Lysine, NBCS, 5-HT, WAY 100635, oubain, pertussis toxin, coomassie blue, activated
charcoal, ascorbic acid, glutathione, bicinchoninic acid, trizma base, pyruvic acid
(sodium salt), palmitic acid (sodium salt)

Sarstedt, Numbrecht, Germany
1.5ml tubes, 0.5ml tubes, yellow and blue tips

Schleicher and Schuell, Dassel, Germany
Protran nitrocellulose transfer membrane

Thermo Hybaid Interactiva Division, Ulm, Germany
Oligonucleotides for PCR reactions.

ThermoLabsystems, Thermo Life Sciences, Basingstoke, UK
Finntip 250 universal

Thistle Scientific Ltd, Glasgow, UK
EAwax

Tocris, Bristol, UK
8-0H-DPAT hydrochloride, 8-0H-DPAT hydrobromide

Whatman International Ltd., Maidstone, UK
3MM chromatography paper, 3MM filter paper, GF/C Glass fibre filters

ONI antibody was generated against a synthetic peptide corresponding to Goa amino
acids 1-16 of the mature polypeptide (Mullaney and Milligan, 1989).
OC2 antibody was generated against a synthetic peptide corresponding to Goa amino
acids 345-354 of the mature polypeptide (Mullaney and Milligan, 1989)
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2.2 General Buffers

Phosphate Buffered Saline (lOx)

137mM NaCI, 2.7mM KCI, I.S mM KH2P04, 10.2mM Na2HP04, pH 704

Diluted 1 in 10 to make a 1x stock (stored at 4°C).

Tris-EDTA (TE) buffer for membranes

10mM Tris, O.lmM EDTA, pH 7.S

Stored at 4°C.

Tris-EDTA (TE) buffer for radioligand binding assay

7SmM Tris, SmM EDTA, pH 7.S

Stored at 4°C.

Tris-EDTA-Magnesium (TEM) buffer for radioligand binding assay

7SmM Tris, SmM EDTA, 12.SmM MgClz, pH 7.S

Stored at 4°C.

Laemmli buffer (2x)
OAM DTT, 0.17M SDS, SOmM Tris, SM Urea, 0.01%(w/v) Bromophenol Blue.

Stored in aliquots at -20°C.

TAE buffer (SOx)
40mM Tris-acetate, ImM EDTA, glacial acetic acid pH 8.0

Diluted 1 in SOprior to use.

DNA loading buffer (6x)
0.25% bromophenol blue, 0.2S% xylene cyanol FF and 15% FicoU (type 400:

Pharmacia).

Store at room temperature.

Liquid Broth (LB)
1% (w/v) bactotryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCI, pH 7
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Autoclave sterilised at 126°C, stored at room temperature.

BCA assay buffers

BCA reagent A:

1% (w/v) BCA, 2% (w/c) Na2C03, 0.16% (w/v) sodium tartrate, 0.4% NaOH, 0.95%

NaHC03, pH 11.25

BCA reagent B:

4%CUS04

The two reagents are mixed A:B in a 49: 1 ratio prior to use.

Competent cell buffers

Competent cell buffer 1:

0.03M C2H302K, O.IM RbCh, O.OIM CaCb, 0.05M MnCh, 15% glycerol, pH 5.8 with

acetic acid, filter sterilised and stored at 4°C

Competent cell buffer 2:

lOmM MOPS pH 6.5, 0.075M CaCh, O.OIM RbCb, 15% glycerol, pH 6.5 with

concentrated HCI, filter sterilised and stored at 4°C

2.3 General Molecular Biology

2.3.1 Preparation of LB Ampicillin Agar Plates

LB agar (1% (w/v) bactotryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, and 1.5%

(w/v) agar) was autoclaved and allowed to cool before the addition of ampicillin

(50Jlg/ml). The liquid LB agar was decanted into 100mm Petri dishes and allowed to

solidify prior to storage at 4°C until required.

2.3.2 Preparation of XLI Blue Competent Bacterial Cells

An overnight culture of XLI Blue bacteria was grown in 5ml of LB broth. The

following day the culture was used to inoculate 100ml of LB broth that was grown with

aeration until the optical density at 550nm reached 0.48. The culture was chilled on ice

for 10 minutes then spun at 3K for 10 minutes at 4°C in sterile 2 x 50ml disposable
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plastic tubes. The supernatant was removed and the cells resuspended in 20ml of

competent cell buffer 1. The suspension was chilled on ice for 5 minutes then spun at

3K for 10 minutes at 4°C. Following removal of supernatant cell pellets were

resuspended in 2ml of competent cell buffer 2. After incubation on ice for 15 minutes

the samples were aliquoted and stored at -80°C until required.

2.3.3 Transformation of Competent XLI Blue Bacterial Cells with Plasmid DNA

To an aliquot of 50JlI competent bacteria that had been allowed to thaw on ice, lOng of

DNA was added, and incubated on ice for 15 minutes. Cells were then incubated at

42°C for 90 seconds and returned to ice for 2 minutes. 450JlI of LB broth was added to

the reaction before incubation at 37°C for 45 minutes in a shaking incubator. 200Jll of

the reaction was spread onto LB ampicillin agar plates and incubated inverted overnight

at 37°C. Transformed colonies were selected the following day.

2.3.4 Preparation of Plasmid DNA

Colonies transformed using XLI Blue bacteria were picked and grown overnight in 5ml

of LB broth containing ampicillin (50Jlg/ml). Plasmid DNA was prepared using the

Promega ™ Wizard Plus SV Miniprep purification system, as per manufacturers

instructions, to obtain a typical yield of 100JlI of 0.05-0.4Jlg/JlI plasmid DNA.

Preparation of larger quantities of DNA was accomplished by transferring the 5ml

overnight culture into 500ml of LB broth containing ampicillin (50Jlg/ml) and allowing

a further overnight period of growth. The DNA was purified using the Promega ™
Wizard Maxiprep purification system, as per the manufacturer's instructions, to obtain a

typical yield of lrnl of 0.5-2Jlg/JlI plasmid DNA.

2.3.5 Quantification of DNA

The concentration of plasmid DNA generated from maxipreps and mmipreps was

determined by measurement of the absorbance at 260nm of a 1:50 dilution of the DNA

sample. An A260 value of 1 unit was assumed to be equivalent to 50Jlg/ml of double

stranded DNA. The A2so value of the solution was also measured to assess the purity of
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the DNA solution. A DNA solution with an A26olA28o ratio of between 1.7 and 2.0 was

considered pure enough for use.

2.3.6 Digestion of DNA with Restriction Endonucleases

Using the appropriate restriction enzymes (1-2 units) and buffer, l ug of DNA was

digested in a l Oul volume for a minimum of 2 hours at 37°C (or as per manufacturers

instructions) .

2.3.7 DNA Gel Electrophoresis

Digested DNA fragments between 0.25 and 6kb were diluted 1 in 6 with 6x loading

buffer and separated on 1% (w/v) agarose gels containing TAE buffer and 2.Smg/ml

ethidium bromide. The gels were run, immersed in 1 x TAE buffer, at 100 volts for 20-

30 minutes in horizontal gel tanks. Ultraviolet light was used to analyse the separated

DNA fragments on the gels. The size of each DNA fragment was calculated by

comparison with a lkb ladder.

2.3.8 DNA Purification from Agarose Gels

After excision of DNA fragments from the gel using a sterile razorblade, purification of

DNA fragments from agarose gels was carried out using the Quiagen QIAquick gel

extraction kit as per the manufacturer's instructions. DNA was eluted from the

purification column using 30fll sterile water.

2.3.9 Alkaline Phosphatase Treatment of Plasmid Vectors

This treatment of digested plasmid vectors minimised re-ligation of the vector to itself.

The 5' phosphate group was removed by incubation of 200ng of digested vector with 2

units of alkaline phosphatase for 2 hours at 37°C. The treated plasmid was then isolated

from the reaction mixture by agarose gel electrophoresis and gel extraction as described

previously.
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2.3.10 DNA Ligations

Ligations of eDNA inserts into vector DNAs were performed using a vector to insert

ratio of 1:3. Reactions were performed at 4°C for 16 hours in a total volume of 10~1:

containing 1 unit of T4 ligase in the appropriate buffer. Ligation products were then

transformed as described in 2.3.3.

2.4 Mutation of GPCR-G Protein Fusions to

Palmitoylation- Deficient Variants

Produce

GPCR-G protein fusion constructs in pcDNA3 vector were used as DNA templates for a

series of PCR reactions. These reactions introduced mutations, which remove potential

palmitoylation sites from these constructs. The presence of multiple potential

palmitoylation sites in the fusions meant that all possible constructs had to be created,

each with different ability to be palmitoylated. The fusion proteins utilised in this study

were between the rat GoluCys351I1e protein and either the porcine u2A-adrenoceptor or

the human 5-HTIA-serotonin receptor. The u2A-adrenoceptor- GoluCys351Ile fusion

construct has 2 potential palmitoylation sites, one in the receptor and one in the G

protein, therefore four palmitoylation variant constructs are possible. The 5-HT IA-

receptor-GoluCys351I1e fusion construct has 3 potential palmitoylation sites, two in the

receptor and one in the G protein, therefore eight palmitoylation variant constructs are

possible for this fusion. Regardless of which fusion construct was used as the template

DNA, the general PCR method was the same. This method is detailed in Figure 2.1.

2.4.1 Polymerase Chain Reaction

PCR reactions were carried out on a Hybaid Omnigene thermal cycler in a total volume

of lOOf.l1containing 100ng of DNA template, O.25mM dNTPs (dATP, dCTP, dGTP,

dTTP), 5Opmol of sense and anti-sense oligonucleotide primers, Ix Piu thermophilic

buffer, and 2.5 units of Piu polymerase. In all reactions Piu enzyme was added after the

first denaturation step.
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Figure 2.1

peR method used in this study

This method of introducing mutations into constructs used a set of central "mutation"

primers (sense and anti-sense) to incorporate the desired mutation, as well as a set of

"extreme" primers (sense and anti-sense). Itwas necessary to identify restriction sites

for isolation of the mutated region. To create the mutation required a series of three

peR reactions.

a) The first peR reaction used the original DNA template, the "extreme" sense

primer and the "mutation" anti-sense primer. The product of this reaction was

peR fragment A.

b) The second peR reaction used the original DNA template, the "extreme" anti-

sense primer and the "mutation" sense primer. The product of this reaction was

rca fragment B.

c) The third peR reaction used the peR products A and B as templates and both

"extreme" primers, sense and anti-sense, to create the final peR product. The

final peR product was then digested with restriction endonucleases 1 and 2

before ligation into the original DNA template (previously digested with the

same two endonucleases).
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Figure 2.1
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For PCR reactions using a single DNA template, the following general protocol was

used:

Denaturation Annealing Extension Cycles

95°C, 5 min

95°C, 1min 50-60°C, 1min

1

30

72°C, 10min 1

For PCR reactions using two DNA templates (ie, two products from previous PCR

reactions to be used in a third PCR reaction) the protocol was modified slightly as

follows (in these reactions the primers are not added until the 5 minute extension

period):

Denaturation Annealing Extension Cycles

1

10

95°C, 5 min

95°C, 1min 40°C, 1min

72°C, 5 min 1

95°C, 5 min 1

95°C, 1min 50-60°C, 1min 30

72°C, 10min 1

For all PCR reactions the annealing temperatures were empirically determined.

2.4.2 Construction of a2A-adrenoceptor-GOlaCys351I1e palmitoylation variant

constructs

The "extreme" primers for construction of all o,zA-adrenoceptor-GO!o,Cys351Ile

palmitoylation variant constructs were:

Sense 5' GCT ACC CGT CCA GCT CAA CGG TGC C 3'

Anti-sense 5' CGT CAC ACA CCA TCT TGG AGT CTG C 3'

For insertion of final PCR products into the original fusion construct DNA both were

first digested with Sfi I and Pflm I restriction endonucleases as detailed in section 2.3.6.
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The digestion products were then ligated together as outlined in section 2.3.7 to produce

constructs containing the desired mutations.

Construction of U2A-adrenoceptor-Cys 442Ala-Go 1uCys351lIe CC442A)

The "mutation" primers for construction of U2A-adrenoceptor-Cys 442Aia-Gol uCys351Ile

were:

Sense 5' GCC TTC AAG AAG ATC CTC GCA CGT GGG GAC AGG AAA

CGG3'

5' CCG TTT CCT GTC CCC ACG TGC GAG GAT CTT CTT GAA

GGC3'

Anti-sense

The mutated residues are shown in bold italics in the above sequences and the position

of a newly created restriction site, Eeo72!, is underlined.

Construction of u2A-adrenoceptor-GoluCys3Ser. Cys351IIeCC3S)

The "mutation" primers for construction of U2A-adrenoceptor-G, IuCys3Ser, Cys351Ile

were:

Sense 5' GGA AAC GGA TCG CCA TGG GAA GTA CTC TGA GCG CAG

AGGAGAGA 3'

5' TCT CTC CTC TGC GCT CAG AGT ACT TCC CAT GGC GAT

CCGTTTCC 3'

Anti-sense

The mutated residue is shown in bold italics in the above sequences and the position of

a newly created restriction site, Sea!, is underlined.

. 442 3 C 351 442 3ConstructIon of u2A-adrenoceptor-Cys Ala-GoluCys Ser. ys lIe CC A. C S)
442 3 351To create u2A-adrenoceptor-Cys Ala-GoluCys Ser, Cys lIe, the u2A-adrenoceptor-

Cys442Ala-Go IuCys351IIe construct was used as the DNA template. The primers used to

3 351I hcreate u2A-adrenoceptor-GoluCys Ser, Cys Ie were t en employed as before to

incorporate the second mutation. Mutant contains both Eeo72!, and Sea!.
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2.4.3 Construction of 5-HTIA-receptor-GolaCys351IIe palmitoylation variant

constructs

The "extreme" pnmers for construction of all 5-HTIA-receptor-GolaCys351Ile

palmitoylation variant constructs were:

Sense 5' CGA GAG AGG AAG ACA GTG AAG ACG C 3'

5' GCA CAA TGG CTG CCA GAG ACT GGA TGG 3'Anti-sense

For insertion of PCR products into the original fusion construct DNA both were first

digested with Mlu I and Pflm I restriction endonucleases as detailed in section 2.3.6.

The digestion products were then ligated together as outlined in sections 2.3.7 and 2.3.9

to produce constructs containing the desired mutations.

Construction of 5-HT lA-receptor Cys417Ser_GolaCys351Ile (C417S)

The "mutation" primers for construction of 5-HTIA-receptor Cys417Ser-GO!aCys351Ile

were:

Sense 5' GAA GAT CAT TAA GTCTAA GTT CTG CCG C 3'

5' GCG GCAGAA CTT AGACTT AATGATCTTC3'Anti-sense

The mutated residue is shown in bold italics in the above sequences.

Construction of5-HTIA-receptor Cys417Ser-GolaCys3Ser, Cys351Ile (C417S.C3S)

The "mutation" primers for construction of 5-HTIA-receptor Cys417Ser-GOlaCys3Ser,

Cys351Ilewere:

Sense 5' GAA GAT CAT TAA GTC TAA GTT CTG CCG CCA GGG ATC

TAT GGG AAG TAC TCT GAG CGC AGA G 3'

5' CTC TGC GCT CAG AGT AGA TCC CAT AGA TCC CTG GCGAnti-sense

GCA GAA CTT ACT CTT AAT GAT CTT C 3'

The mutated residues are shown in bold italics in the above sequences.

Construction of5-HTIA-receptor Cys420Ser-GO!aCys35IIle (C420S)

The "mutation" primers for construction of 5-HT lA-receptor Cys 420Ser_GolaCys351Ile

were:
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Sense 5' CAT TAA GTG TAA GTT CTC CCG CCA GGG ATC TAT G 3'

Anti-sense 5' CAT AGA TCC CTG GCG GGA GAA CTT ACA CTT AAT G 3'

The mutated residue is shown in bold italics in the above sequences.

Construction of 5-HT lA-receptor Cys420Ser_GOIuCys3Ser, Cys351Ile (C420S, C3S)

The "mutation" primers for construction of 5-HTlA-receptor Cys420Ser-GoluCys3Ser,

Cys35lIle were:

Sense 5' CAT TAA GTG TAA GTT CTC CCG CCA GGG ATC TAT GGG

AAG TAC TCT GAG CGC AGA G 3'

Anti-sense 5' CTC TGC GCT eAG AGT ACT TCC eAT AGA rcc eTG GCG

GGA GAA CTT ACA CTT AAT G 3'

The mutated residues are shown in bold italics in the above sequences.

Construction of5-HTlA-receptor Cys4I 7Ser, Cys420Ser-GoluCys351Ile (C417S, C420S)

The "mutation" primers for construction of 5-HTIA-receptor Cys417Ser, Cys420Ser_

GoluCys35lIle were:

Sense 5' GAA GAT CAT TAA GTe TAA GTT CTC CCG CCA GGG ATe

TATG3'

Anti-sense 5' CAT AGA TCC CTG GCG GGA GAA CTT AGA eTT AAT GAT

CTTC3'

The mutated residues are shown in bold italics in the above sequences

Construction of5-HTIA-receptor-GoluCys3Ser, Cys35lIle (C3S)

The "mutation" primers for construction of 5-HT 1A-receptor-G, 1uCys3 Ser, Cys351Ile

were:

Sense 5' GGA TCT ATG GGAAGT ACT CTG AGC GCA GAG 3'

Anti-sense 5' CTC TGC GCT CAG AGT ACTTCC CAT AGA TCC 3'

The mutated residue is shown in bold italics in the above sequences
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Construction of 5-HTIA-receptor Cys417Ser, Cys420Ser-GoluCys3Ser, Cys351Ile (C41'S,

C420S, C3S)

The "mutation" primers for construction of 5-HTIA-receptor Cys417Ser, Cys420Ser_

GO!uCys3Ser, Cys351Ile were:

Sense 5' GAA GAT CAT TAA GTC TAA GTT CTC CCG CCA GGG ATC

TAT GGG AAG TAC TCT GAG CGC AGA G 3'

5' CTC TGC GCT CAG AGT ACT TCC CAT AGA TCC CTG GCG

GGA GAA CTT AGA CTT AAT GAT CTT C 3'

Anti-sense

The mutated residues are shown in bold italics in the above sequences

2.5 Cell Culture

2.5.1 Cell Growth

HEK293T cells were grown in DMEM supplemented with 10% NBCS and 1% L-

glutamine in a 37°C humidified 5% C02 atmosphere.

2.5.2 Passage of Cells

Confluent 75cm2 flasks of cells were passaged by the addition of 2ml of sterile 0.25%

trypsin-EDT A solution to cells after removal of growth media. After detachment, cells

were resuspended using a further 8ml of fresh media. This suspension was split into

flasks and dishes as required (1: 10 for routine passage).

2.5.3 Coating Plates with Poly-D-Lysine

50mg of poly-D-Iysine was diluted with 50ml of sterile water to make a lmg/ml stock

solution. Tissue culture plates and coverslips were coated with a 1:10 dilution of the

stock solution for 30 minutes before removal of the solution and air-drying.
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2.5.4 LipofectAMINE-Based Transient Transfections for Cell Harvesting

HEK293T cells were transiently transfected at approximately 70-80% confluency in

lOcm dishes. 4-6f.lg of DNA and 25f.ll of LipofectAMINE reagent were mixed gently

with enough OptiMEM to give a total volume of 1200f.ll. This mix was then incubated

for 30 minutes at room temperature. During this period, the cells were washed with

OptiMEM. Next, 4800f.ll of OptiMEM was added to the DNA-LipofectAMINE mix

before drop-wise addition of the full 6000f.ll to each dish. Cells were incubated at 37°C

in 5% C02 for 4 hours, before replacement of the transfection media with fresh growth

media. Cells were routinely harvested after 24-48 hours following 16 hours incubation

with pertussis toxin (50ng/ml) to inactivate endogenous G; class G proteins.

2.5.5 LipofectAMINE-Based Transient Transfections for Palmitoylation Assay

HEK293T cells were transiently transfected at approximately 70-80% confluency in

150cm2 flasks. 8-12f.lg of DNA and 50f.l1of LipofectAMINE reagent were mixed gently

with enough OptiMEM to give a total volume of 4800f.ll. This mix was then incubated

for 30 minutes at room temperature. During this period, the cells were washed with

OptiMEM. Next, 15200f.ll of OptiMEM was added to the DNA-LipofectAMINE mix

before addition of the full 20ml to each flask. Cells were incubated at 37°C in 5% CO2

for 4 hours, before replacement of the transfection media with fresh growth media. 24

hours later each 150cm2 flask of cells was split into the appropriate number (assay

dependent) of 6cm dishes; to ensure equal expression level for the construct in each 6cm

dish. Cells were then incubated at 37°C in 5% CO2 for a further 24 hours prior to

commencement of the palmitoylation assay. Note that radio ligand binding assays

ensured equalised construct expression of multiple constructs used in parallel.

2.5.6 LipofectAMINE-Based

Internalisation Assay

Transient Transfections for Receptor

HEK293T cells were transiently transfected at approximately 70-80% confluency in a

10cm dish as described in 2.5.4 except that after 24 hours, each IOcm dish of cells was

split as appropriate into a 6 well plate; to ensure equal expression level in each well.
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Cells were then incubated at 37°C in 5% CO2 for a further 24 hours prior to

commencement of the receptor internalisation assay. Note that for the purposes of this

study, equalised expression across constructs is not required, only equalised expression

for duplicate wells of each construct is necessary.

2.5.7 Cell Harvesting

Cells were grown to confluency in 75cm2 or 150cm2 flasks and the media discarded

before harvesting by scraping using disposable cell scrapers. Cells were washed using 2

x 10ml of ice cold PBS and centrifuged for 5 minutes at 1811 x g in a refrigerated

centrifuge. After discarding the supernatant, the pellet can be frozen at -BO°C until

required.

2.6 Protein Biochemistry

2.6.1 BCA Assay to Determine Protein Concentration

Protein concentration was determined using a BCA assay. The principles behind this

assay are herein described. Two solutions, BCA reagent A (which contains

Bicinchoninic Acid) and BCA reagent B (copper sulphate) are mixed in a 49:1 ratio and

200~1 is added to 1Oul of protein sample/standard in a 96 well plate. After incubation at

37°C for 30 min, the absorbance at 492nm is read. In this assay proteins reduce Cu2+

ions to Cu 1+ in a concentration-dependent manner and BCA forms a complex with Cu 1+

ions to form a purple coloured solution with absorbance at 492nm. The ~92 value of the

solution is therefore directly proportional to the protein concentration and is determined

by comparison to a BSA standard curve (0.2-2mglml).

2.6.2 Preparation of Cell Membranes

Harvested cell pellets were thawed and resuspended in lml of TE buffer before cell

rupture by 30 strokes of a chilled glass-on-glass Dounce homogeniser and 20 passages

through a 2S-gauge syringe needle. After a 10 minute, 199 x g centrifugation at 4°C; to

remove unbroken cells and nuclei; the supernatant was collected and ultracentrifuged at
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50K for 30 minutes in a Beckman Optima TLX Ultracentrifuge (Palo Alto, CA) with a

TLA 100.2 rotor. The resulting pellet was resuspended in 300~1 of TE buffer and,

following determination of protein concentration, diluted to lug/ul, aliquoted and stored

at -80°C until required.

2.6.3 Sodium Dodecyl Sulphide Polyacrylamide Gel Electrophoresis

Samples were boiled at 100°C for five minutes and loaded onto precast NuPage@ Novex

Bis-Tris 4-12% gradient gels alongside full range Rainbow''" molecular weight

markers. NuPage® MOPS SDS buffer was used to run gels at 200 volts constant in the

XCell Surelock™ mini-cell gel tank (Invitrogen BV) until the dye front reached the foot

of the gel. Subsequent Coomassie Blue staining, semi-dry transfer or standard western

blotting was then carried out.

2.6.4 Semi-Dry Protein Transfer & Autoradiography (For Palmitoylation Assay)

Following sample separation as In section 2.6.3, proteins were electrophoretically

transferred onto PVDF membrane. A semi-dry transfer procedure was carried out using

Novablot transfer apparatus. The assembly was constructed as follows, from base to lid;

6 pieces of filter paper, the PVDF, the gel, then 6 pieces of filter paper. Before use the

PVDF was pre-wet with methanol and all pieces of the assembly were pre-soaked in

transfer buffer (0.2M glycine, 25mM tris, and 20% (v/v) methanol). Gels were

transferred for 2 hours by a constant current of 75mA. After transfer the membrane was

washed in distilled water, air-dried, coated with EA wax then placed at -80°C to

undergo autoradiography for a typical period of 4 weeks.

2.6.5 Western Blotting

Following sample separation as in section 2.6.3, proteins were electrophoretically

transferred onto nitrocellulose using the XCell IITM blot module (Invitrogen BV). Gels

were transferred at 30V, -140mA, for I hour in transfer buffer (0.2M glycine, 25mM

tris, and 20% (v/v) methanol). The nitrocellulose was blocked in 5%(w/v) Marvel in

PBS/O.I %(v/v) Tween 20, for 1 hour at room temperature and washed 3 times with
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PBS/~. I% Tween 20, over a 30 minute period. Incubation with the primary antibody

was in I% Marvel prepared in PBS/~. I% Tween 20, for 1 hour at room temperature,

followed by 5 washes in PBS/~. I% Tween 20, over a 3D-minute period. Incubation with

secondary antibody was then done in 1% Marvel-PBS/D. I% Tween 20, for 1 hour at

room temperature, once again followed by 5 washes over 30 minutes with PBS/~. I%

Tween 20. The nitrocellulose was incubated with a 50:50 (v/v) mixture of EeL reagents

for 2 minutes prior to exposure to and development of X-ray film.

For Western blot analysis the following antibody incubations were used:

1:2000

1:2000

2° Antibody

Anti-rabbit IgG

Anti-rabbit IgG

Dilution1° Antibody

aNI

OCI

Dilution

1:10000

1:10000

2.6.6 GST Fusion Protein Preparation

Colonies transformed using XLI Blue bacteria were picked and grown overnight in

IOmI ofLB broth containing ampicillin (50~g/ml). The following morning, this culture

was added to 500ml of LB broth containing ampicillin (50J.l.glml) and grown with

aeration until an OD6oo of 0.2 was reached. 500~1 of 1M IPTG was added and the

culture grown for a further 4 hours with aeration after which the sample was cooled on

ice for 10 minutes. The large culture was centrifuged for 15 minutes at 5524 x g to

pellet the cells and the supernatant was discarded. The pellet was resuspended in

bugbuster™ protein extraction reagent (5ml per gram of wet pellet) then 2-4J.1.1of

benzonase nuclease enzyme was added. The resuspended pellet was then left on ice for

1 hour, sonicated 2 x 30 seconds at 60kHz using a probe sonicator then centrifuged at

20817 x g for 30 minutes. The supernatant was then transferred to a sterile SOml tube

containing 300J.l.Iof glutathione sepharose 4B gel (pre-washed 2 x 1ml with sterile

PBS). One protease inhibitor tablet as well as OTT, to a final concentration of SmM,

was added and the sample was placed on a rotary wheel overnight at 4°C. Next day the

mixture was centrifuged for 5 minutes at 500 x g before removal of the supernatant
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(stored at -80°C) and washing of the glutathione sepharose 4B gel twice with Sml

sterile PBS. The pellet was resuspended in 300J.lIof 10mM glutathione, mixed by gentle

inversion and left on ice for S minutes. The sample was then centrifuged for 3 minutes

at 500 x g before the supernatant was removed and kept on ice. The addition of

glutathione and its removal was repeated five times. Samples for SDS PAGE were

collected throughout the procedure.

2.7 Assays

2.7.1 Radioligand-Binding Assays: One Near-Saturating Concentration of

Radioligand

Radioligand-binding assays using one near-saturating concentration of radioligand were

performed in order to give an estimation of the expression level of receptor-G protein

fusion constructs. This approach was used in preliminary studies, as well as during

palmitoylation assays involving multiple constructs. Triplicate reaction mixtures were

set up containing O.SJ.lgof protein and -5nM radioligand (final), with non-specific

binding being determined by the inclusion of 100J.lMidazoxan. The samples were

incubated at 30°C for 4S minutes and subsequently passed through a Brandel GF/C

glassfibre filter using a Brandel cell harvester in TE buffer (7SmM Tris, SmM EDTA

pH 7.S). Filters were washed to remove unbound radioligand from the membrane and

were then inserted into vials containing 5ml liquid scintillant. Vials were counted in a

Beckman LS6500 scintillation counter, using the eH] counting channel. Specific

binding was determined by the subtraction of non-specific counts from the total counts.

Expression level (fmol/mg) was calculated from these results by using the known

specific activity of the radioligand and the amount of membranes added in each

reaction. An example of this calculation can be found in the Appendix (section 8.5).

2.7.2 Radioligand-Binding Assays: Various Concentrations of Radioligand

A more accurate determination of the receptor expression level was obtained by

performing a radioligand-binding assay using a range of concentrations of radioligand

(-D.02nM to -SnM). The procedure is essentially identical to that for a one-point
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radioligand-binding assay, with only the concentration of radioligand differing. Using

the data analysis package Graphpad Prism (San Diego, CA), saturation-binding data

were fitted to non-linear regression curves to determine total receptor expression (Bmax)

and the equilibrium dissociation constant (Kd) ofthe ligands for the binding sites.

2.7.3 Competition Radioligand Binding Assays

Radioligand binding was also assayed in competitive binding experiments. In these

experiments increasing concentrations of non-radioactive ligand are used to compete for

binding with a single concentration of a tritiated radioligand. Triplicate reaction

mixtures were set up containing 0.5Jlg of protein, radioligand at a concentration

equivalent to the Kd for the receptor (~0.32nM), and a range of concentrations of

competing non-radioactive ligand; usually from 10-12- 10-3M. Again, non-specific

binding was determined by the inclusion of 100JlM idazoxan. The samples were

incubated at 30°C for 45 minutes prior to filtration as in 2.7.1. Using the data analysis

package Graphpad Prism (San Diego, CA), competition-binding data was plotted as %

of radioligand binding against log non-radioactive ligand concentration and an IC50

value was determined using nonlinear regression. The equilibrium dissociation constant

for the binding of the competing "cold" drug (Ki) was calculated using the Cheng-

Prusoff equation (Cheng and Prusoff, 1973). See appendix (Section 8.6).

2.7.4 In vivoPalmitoylation Assays

Cells were labelled with 0.5mCi/ml [9,10(n)-3H]palmitic acid in DMEM supplemented

with 2mM L-glutamine, 5% (v/v) dialysed NBCS, O.lmM ascorbic acid, and 5mM

pyruvic acid at 37°C in a 5% C02 humidified atmosphere. After incubation for the

appropriate time in the presence or absence of agonist, reactions were terminated by the

addition of 200JlI of 1% (w/v) SDS. Proteins were denatured by passage through a 25-

gauge needle followed by 5-min incubation at 100°C. After chilling to 4°C, 800JlI of

Kahn solubilisation buffer (1%(v/v) Triton X-lOO, 10mM EDTA, 100mM NaH2P04,

10mM NaF, 50mM HEPES (PH 7.2» was added, and the samples were pre-cleared by

incubation at 4°C for lh with 100JlI of Pansorbin. The pre-cleared supernatants were

then incubated at 4°C for 16h with protein A-sepharose and 10JlI of antiserum aNI.
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Immune complexes were isolated by centrifugation, washed three times with Kahn

immunoprecipitation wash buffer (l%(v/v) Triton X-lOO, 100mM NaCl, 50mM

NaH2P04, 100mM NaF, 50mM HEPES (PH 7.2) plus 0.5% SDS), and eluted from the

protein A-sepharose by addition of electrophoresis buffer containing 20mM DTT and

heating to 80°C for 3min. Analysis was by SDS-PAGE as described in 2.6.3, followed

by transfer and autoradiography as described in 2.6.4.

2.7.5 High Affinity GTPase Assays

High affinity GTPase assays were performed as per Wise at al. (1997a,b,c) with

modifications for 96 well plate use. Each reaction was performed in triplicate using

1.5Jlg of protein in a 100JlI total volume. An incubation period of 40 minutes at 37°C

preceded reaction termination by the addition of 900JlI activated charcoal slurry (5g

activated charcoal, 10ml of 100mM orthophosphoric acid per 100ml). The reaction

mixture volume of 100JlI contained 20mM creatine phosphate, 0.1 u/ul creatine kinase,

0.2mM App[NH]p, 2mM ATP, 2mM oubain, 200mM NaCI, 10mM MgCI2, 4mM DTT,

0.2mM EDTA, SOmM TrislHCI and [y32p]_GTP for 50,000cpm per reaction. Following

centrifugation at 3220 x g for 10 minutes a 300JlI sample of supernatant was counted

using a Packard Topcount NXT™ microplate scintillation counter.

High affinity GTPase activity was determined over a range of GTP concentrations (25-

3000nM) to allow calculation of Vmax for GTP hydrolysis and the Km for GTP. This

was measured in the absence and presence of agonist (lOOJlM) and IJlM RGS protein.

The data was analysed and plotted using Graphpad Prism as V (pmol/mg/min) against

[GTP] and also as V (pmol/mg/min) against VIS. An example of these calculations can

be found in the Appendix (section S.7).

2.7.6 [35S] GTPyS Binding Assays

esS] GTPyS binding experiments were initiated by the addition of membranes

expressing l Ofmol of fusion construct to an assay buffer (20mM HEPES (pH 7.4), 3mM
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MgC}z, 100nM NaCl, 111Mguanosine 5'-diphosphate, 0.2mM ascorbic acid, 50nCi of

esS] GTPyS) containing IOOIlM agonist. Non-specific binding was determined in the

same conditions but in the presence of IOOIlMGTPyS. Reactions were incubated for 2.5

minutes at 30°C and were terminated by the addition of 0.5ml of ice-cold GTPyS stop

buffer (20mM HEPES (PH 7.4), 3mM MgCh and 100mM NaCI). The samples were

centrifuged at 16,000 x g for 15 minutes at 4°C, and the resulting pellets were

resuspended in solubilisation buffer (100mM Tris, 200mM NaCI, ImM EDTA, 1.25%

Nonidet P-40) plus 0.2% SDS. Samples were pre-cleared with Pansorbin, followed by

immunoprecipitation with aNI antiserum. Finally, the immunocomplexes were washed

twice with solubilisation buffer, and bound esS] GTPyS was estimated by liquid-

scintillation spectrometry.

2.7.7 Receptor Internalisation Assay

HEK293T cells expressing the construct of interest were plated onto 6 well plates at a

density of ~I06 cells/well. The next day the cells were washed, and Imllwell medium

was applied. Cells were treated with agonist for the appropriate time-points ranging

from 0 to 90 min. The reactions were terminated by the placing of plates on ice then

washing the cells 3 times with ice cold PBS. The alcohol groups on the cell-surface

glycoproteins were oxidised to aldehydes by 30 min incubation with 10mM sodium m-

periodate. After the removal of periodate, cells were washed once with PBS and twice

with O.IM sodium acetate, pH 5.5, and incubated in the same buffer supplemented with

ImM biotin-LC-hydrazide. This reacts with the newly formed aldehyde groups, thereby

labelling all cell surface glycoproteins with biotin. Labelling was terminated by removal

of the biotin solution and washing the cells three times with PBS. Cells were then

solubilised prior to immunoprecipitation with 12CA5 antibody (lug/sample). This

antibody recognises the N-tenninal haemagglutinin (HA) tag present on all the fusion

constructs used in this study. After SDS-PAGE and the transfer of the proteins onto

nitrocellulose membranes, cell surface biotin-labelled receptors were identified by

incubation of the membranes with l ug/ml HRP-conjugated streptavidin in 5% (w/v)

non-fat milklPBS-T for 1 hour at room temperature. After several washes with PBS-T,

reactive proteins were visualised by enhanced chemiluminescence. Agonist-mediated

loss of cell surface receptors was quantified by densitometric scanning of blots.
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Chapter 3

Regulation of palmitoylation in

a2A-adrenoceptor-Ga aCys351 lIe fusion proteins



3.1 Introduction

The a2A-adrenoceptor used in this study is one member of the vast G protein coupled

receptor (GPCR) family. These GPCRs are responsible for signal transduction across

the plasma membrane via interaction with members of the G protein family of

signalling proteins. The natural ligands for the a2A-adrenoceptor are adrenaline and

noradrenaline: catecholamine hormones released into the plasma at times of stress or

increased energy need. Upon stimulation, this a2A-adrenoceptor interacts with pertussis-

toxin-sensitive members of the G/Go class of heterotrimeric G proteins, leading to

inhibition of adenylyl cyclase and L-type Ca2+ channels and activation of K+channels.

The particular G protein used in this study is the Gol G protein, whose main function is

thought to be inhibition of neuronal calcium channel activity (Heschler et aI., 1987).

This study concerns the attachment of palmitate, a 16-carbon saturated fatty acid

moiety, to both the aZA-adrenoceptorand the Gola protein. A wide variety of cellular

proteins are known to undergo palmitoylation: a modification usually but not

exclusively (Kleuss and Krause, 2003) attached via thioester linkage to cysteine

residues. Since thioester bonds are known to be labile (Magee et al., 1987), such

thioacylation by palmitate has the potential to be both dynamic and regulated (Mumby,

1997; Qanbar and Bouvier, 2003). Agonist-dependent regulation of palmitoylation

status has been shown to occur for both GPCRs (Ponimaskin et al., 2001; Ng et aI.,

1994; Mouillac et al., 1992) and G proteins (Wedegartner and Bourne, 1994; Chen and

Manning,2000).

GPCR and G protein palmitoylation has been implicated in the modulation of a number

of functional properties such as GPCR-G protein interactions, RGS-G protein

interactions, GPCR phosphorylation, GPCR desensitisation and down-regulation, as

well as caveolar targeting and membrane localisation of many proteins. The observation

that agonist can regulate this modification of these two protein classes (Mumby et al.,

1994, Wedegaertner and Bourne, 1994, Loisel et al., 1999, Stevens et al., 2001) is

therefore very interesting indeed. It would be very informative to ascertain whether
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regulation of GPCR and G protein acylation is co-ordinated and if acylation of one

partner is able to modulate palmitoylation of the other.

One efficient way to study the interactions between GPCRs and G proteins is to make

use of fusion proteins in which the two polypeptides are expressed from a single open

reading frame (Milligan, 2000). These fusion proteins have proved very useful in a

number of studies of GPCR-G protein interactions (Bertin et al., 1994; Wise and

Milligan, 1997; Seifert et al., 1998; Guo et al., 2001). In addition, preservation of basic

features and regulation of interactions between GPCRs, G protein a-subunits and their

interacting proteins (e.g. the G protein ~y-complex) have also been demonstrated for

these fusion proteins (Bertaso et al., 2003; Wise and Milligan, 1997; Cavalli et al.,

2000).

A fusion protein approach offers a number of specific advantages when studying

palmitoylation in GPCRs and G proteins. The nature of the fusion protein means that

there is defined stoichiometry of expression of the two substituent entities as 1:1 and

also ensures their co-localisation following expression. One advantage of co-

localisation is the ability to isolate only the interacting (i.e. activated) G protein.

Another advantage is ensured membrane expression (and subsequent receptor

interaction) of acylation-deficient G proteins. One further advantage of the GPCR-G

protein fusion protein approach in the study of palmitoylation is in the

immunoprecipitation of proteins. The fusion protein approach means the same antibody

can be used to immunoprecipitate all possible acylation-variant fusion proteins within

one study. Fusion protein approaches to studying palmitoylation have already been used

successfully by a number of groups (Loisel et al., 1999; Stevens et al., 2001).

Both the a2A-adrenoceptor (Kennedy and Limbird, 1993) and the GO)a protein (Grassie

et al., 1994) used in this study have previously been shown to undergo palmitoylation.

In the work of Kennedy and Limbird (1993, 1994) the measured half-life of eH]

palmitate on this GPCR was many hours and was not substantially different than the

half-life of the protein. In addition, although the presence of agonist was reported to

enhance turnover of palmitate, the effect was modest and de-acylation remained a slow

process. These observations for the a2A-adrenoceptor appear in contrast to those for
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many other protein targets for thio-acylation where rapid cycles of palmitoylation and

depalmitoylation are thought to occur (Qanbar and Bouvier, 2003). Given that these

limited studies of palmitoylation of the a,2A-adrenoceptor were performed in excess of

ten years ago and also that no study of the dynamics of Go1a palmitoylation have been

performed, we considered these proteins well suited for the current investigation. With

the advent of the usefulness of fusion proteins as a tool for the study of palmitoylation

of GPCRs and G proteins, it was thought appropriate to re-address the study of

palmitoylation in the a2A-adrenoceptor and the GOI protein a-subunit by the use of

fusions, in an attempt to see whether regulated acylation is co-ordinated in these two

proteins.

Herein, the four possible palmitoylation-variant a2A-adrenoceptor-G, IaCys35I lIe fusion

proteins (a2A-adrenoceptor-Gs, aCys351Ile (WT), a2ACys442Ala-adrenoceptor-

GolaCys351Ile (C442A), a2A-adrenoceptor-GolaCys3Ser,Cys35IIle (C3S) or

a2ACys442Ala-adrenoceptor-GolaCys3Ser, Cys351Ile(C442A, C3S» were created and

subjected to a series of palmitoylation assays. The specific objective for the work

contained in this chapter was to investigate the regulation of palmitate attached to the

GPCR and G protein parts of these fusions.
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3.2 Results

Construction and expression of a2A-adrenoceptor-GolaCys3S1Ue fusion proteins

PCR was used to mutate a previously existing a2A-adrenoceptor-GO!aCys35IIle fusion

protein, available in-house, in order to remove the predicted palmitoylation sites from

the GPCR (Kennedy and Limbird, 1993) or the G protein (Grassie et al., 1994) or both

parts of the fusion protein. These cDNA constructs were transiently transfected into

HEK293T cells and a number of palmitoylation assays were performed to investigate

the regulation of GPCR and G protein acylation in the fusion proteins. In order to assure

equal construct expression levels in all 6cm dishes used within one palmitoylation

assay, it was necessary to transfect one initial plate ofHEK 293T cells with each desired

fusion construct DNA, then to split these transfected cells into multiple duplicate 6cm

dishes to be used in the palmitoylation assay. In Figure 3.1 it is shown that such an

approach led to equal expression levels of the wild type (WT) a2A-adrenoceptor-

GoiaCys351Ile construct. In this and in subsequent experiments, the expression levels of

a2A-adrenoceptor-GolaCys351Ile constructs were determined by performing receptor

binding studies using the tritiated antagonist eH]-RS-79948-197 (Wise et al., 1997c). In

these receptor binding studies the a2-selective antagonist idazoxan was also used to

allow calculation of non-specific binding (Langer and Hicks, 1984).

Confirmation of the Cys442 site on the GPCR and the Cys3 site on the G protein as

the sites for incorporation of eH] palmitic acid in the a2A-adrenoceptor-

GolaCys3S1Ilefusion proteins

The first objective for the current study was to validate the Cys442 site on the GPCR and

the Cys3 site on the G protein as the sites for incorporation of palmitate. In order to do

this a one time-point, pulse labelling palmitoylation assay was performed for all four

palmitoylation-variant fusion proteins plus pcDNA3 control. The constructs were

expressed transiently in HEK293T cells. [9,10(n»)H] palmitic acid was added to the

cells in the presence or absence of 100JlM adrenaline for 30 min. Following labelling

of cells, immunoprecipitation using an antiserum (ONl) that identifies the N-terminal
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region of Gola (Mullaney and Milligan, 1989), SDS-PAGE and autoradiography, the

incorporation of [3H] palmitate into bands with apparent molecular mass of some 89

kDa (corresponding to a2A-adrenoceptor-GolaCys35IIle fusions) was assessed. The a2A-

adrenoceptor -GoIaCys351Ile (WT), a2ACys442Ala-adrenoceptor-G, IaCys351He (C442 A)

and a2A-adrenoceptor-GolaCys3Ser,Cys35IIle (C3S) fusions but not the pcDNA3 control

or a2ACys442Ala-adrenoceptor-Gs. aCys3Ser, Cys351He (C442 A, C3S) form of the fusion

protein incorporated eH] palmitate (Figure 3.2 a, upper panel). The lack of

incorporation of [3H] palmitate into a2ACys442Ala-adrenoceptor-Gj, oCys'Ser,

Cys351He(C442A, C3S) confirmed that all the detected dynamic thio-acylation reflected

modification at these two locations.

It was very interesting to note with the same period of exposure to eH] palmitate that

the extent of incorporation of radioactivity into the WT, C442 A and C3S constructs was

not equal (Figure 3.2 b, Table 3.1), despite parallel immunoblots confirming that the

loading of the individual constructs was the same (Figure 3.2 a, lower panel).

Incorporation of eH] palmitate into the unstimulated a2A-adrenoceptor-

GolaCys3Ser,Cys35lIle (C3S) fusion protein was substantially lower (34.6 +/- 4.2%,

mean +/- SEM, n=3) than for either the unstimulated a2A-adrenoceptor-

GoiaCys351Ile (WT) fusion protein (set as 100%, p<0.05) or the unstimulated

a2ACys442Ala-adrenoceptor-GolaCys351Ile (C442A) fusion (96.7 +/- 9.6%, mean +1-

SEM, n=3, p<0.05). The level of incorporation of eH] palmitate into the unstimulated

a2A-adrenoceptor-GolaCys351Ile (WT) and the unstimulated a2ACys442Ala-

adrenoceptor-Go1 aCys351He (C442 A) were not significantly different (p>0.05) in three

similar experiments (Figure 3.2 b).

It was also noted that the presence of adrenaline substantially reduced incorporation of

eH] palmitate into both the a2A-adrenoceptor-GO!aCys351He (WT) (p<0.05) and the

a2ACys442Ala-adrenoceptor-Gsr aCys351Ile (C442 A) (p<0.05) fusion proteins but did not

do so for the a2A-adrenoceptor-GO!aCys3Ser,Cys351Ile (C3S) fusion protein (p>0.05)

(Figure 3.2 b). The extent of inhibition of eH] palmitoylation of the a2ACys442Ala-

adrenoceptor-GO!aCys
351Ile (C442A) fusion protein produced by adrenaline (66.0 +/-

5.5%, mean +/- SEM, n = 3) was significantly greater (p<0.05) than for the a2A-
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adrenoceptor-GoluCys35lI1e (WT) fusion protein (30.8 +/- 12.1% mean +/- SEM, n =

3). To explore all these differences further, time courses of the incorporation of eH]

palmitate into the u2A-adrenoceptor-GoluCys35IIle (WT), U2ACys442Ala-adrenoceptor-

GoluCys351Ile (C442A) and u2A-adrenoceptor-GoluCys3Ser,Cys35IIle (C3S) fusion

proteins were performed.

Analysis of the time courses of incorporation of eH] palmitic acid in the U2A-

adrenoeeptor-Gsi uCys351lie fusion proteins

The u2A-adrenoceptor-GoluCys35II1e (WT) fusion protein was expressed transiently in

HEK293T cells. eH] palmitic acid was added to the cells in the presence or absence of

the adrenoceptor agonist adrenaline (100f..tM) for times varying between 5-120 min.

After cell lysate generation, immunoprecipitation, SDS-PAGE and autoradiography, in

the absence of adrenaline, radioactivity was incorporated into a band with apparent

molecular mass of approximately 89 kDa (Figure 3.3 a, upper panel). This occurred in

a time-dependent manner with maximal incorporation being achieved between 60-120

min. In the presence of adrenaline, incorporation of eH] palmitate into the fusion

protein was substantially reduced (p<0.05) over this time scale (Figure 3.3 a, upper

panel, Figure 3.3 b). This effect was not attributable to unequal amounts of the fusion

protein in each sample since, in parallel with these studies, samples of the cell lysates

were resolved directly by SDS-PAGE and immunoblotted with antiserum ONI (Figure

3.3 a, lower panel).

The time course of the incorporation of eH] palmitate into the u2ACys442Ala-

adrenoceptor-GoluCys35lI1e (C442A) fusion protein was also monitored and showed a

similar pattern to that observed for the <l2A-adrenoceptor-Gol<lCys35IIle (WT)

construct. For <l2ACys442Ala-adrenoceptor-Gol<lCys35IIle (C442A), radioactivity was

again incorporated into a band with apparent molecular mass of approximately 89 kDa

(Figure 3.4 a, upper panel). In the absence of adrenaline, this occurred in a time-

dependent manner with maximal incorporation being achieved closer to 30 min. In the

presence of adrenaline, incorporation of eH] palmitate into the fusion protein was

substantially reduced (p<0.05) over this time scale (Figure 3.4 a, upper panel, Figure

3.4 b). Again this effect was not attributable to unequal amounts of the fusion protein in
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each sample since, in parallel with these studies, samples of the cell lysates were

resolved directly by SDS-PAGE and immunoblotted with antiserum ONI (Figure 3.4 a,

lower panel).

Upon analysis of the time course of incorporation of eH] palmitate into the aZA-

adrenoceptor-Gsiccys'Ser.Cys'I'Ile (C3S), the pattern observed was different to those

for the other two aZA-adrenoceptor-GolaCys35IIle constructs. Again radioactivity was

incorporated into a band with apparent molecular mass of approximately 89 kDa

(Figure 3.5 a, upper panel). Incorporation occurred in a time-dependent manner with

maximal incorporation not being achieved within the two-hour timescale used for the

other two aZA-adrenoceptor-GolaCys35II1e fusion proteins. In the presence or absence

of adrenaline, incorporation of eH] palmitate into the fusion protein was not

significantly different (p>0.05) (Figure 3.5 a, upper panel, Figure 3.5 b). Immunoblots

carried out in parallel once again ensured equal amounts of the fusion protein were

present in each sample (Figure 3.5 a, lower panel).

It is useful, for clarity, to take the results of the time courses of the incorporation of eH]

palmitate into the aZA-adrenoceptor-GolaCys35IIle (WT), aZACys44Z Ala-adrenoceptor-

Gol<xCys35lI1e (C
442 A) and the <X2A-adrenoceptor-Gol<xCys3Ser,Cys35II1e(C3S) fusion

proteins together for interpretation (Figure 3.6, Table 3.2).

It can be seen that radio-labelling of the G protein element of the fusion (by use of the

C442 A construct; tYz = 8.2 +/- 1.3 min, mean +/- SEM, n = 3) occurred significantly

(p<0.05) more rapidly than incorporation of eH] palmitate into the receptor segment of

the fusion (by use of the C3S construct; tYz = 27.4 +/- 2.9 min, mean +/- SEM, n = 3).

In accord with the data of Figures 3.2 a and b, adrenaline did not alter the amount or

rate (tYz = 22. 3 +/- 1.1 min, mean +/- SEM, n = 3, p>0.05) of eH] palmitate

incorporation into the <X2A-adrenoceptor-GO)<xCys3Ser,Cys351Ile(C3S) fusion protein and

although the amount of incorporation of eH] palmitate into the <x2ACys442Ala-

adrenoceptor-Gol<xCys
35IIle (C442 A) fusion was significantly reduced at all times points

measured, the presence of adrenaline did not alter the rate (tYz = 8.3 +/- 2.0 min, mean

+/_ SEM, n = 3, p>0.05) oflabelling (Figure 3.6).
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When the results of the u2A-adrenoceptor-GoluCys351Ile (WT) fusion are compared to

those of the other two fusions it is seen that the agonist-dependent differences in

incorporation of palmitate for the WT are akin to those for the U2ACys442Ala-

adrenoceptor-GoluCys351Ile (C442A) construct. However, the kinetics of incorporation

for u2A-adrenoceptor-GoluCys351Ile (WT) were more like those observed for U2A-

adrenoceptor-GoluCys3Ser,Cys351Ile (C3S) (where tV; WT plus agonist = 31.4 +/- 4.4

min, mean +/- SEM, n = 3 and tYl WT minus agonist = 26.8 +/- 2.2 min, mean +/-

SEM, n = 3). Unfortunately, data for the wild type fusion protein was not of sufficient

quality to estimate whether distinct rapid and less rapid phases were present that might

correspond to incorporation into the G protein and receptor elements. It is therefore

concluded that it is much clearer, particularly when studying kinetics of GPCR or G

protein palmitoylation, to study the GPCR or G protein parts in isolation. This can be

achieved by use of the two separate u2ACys442Ala-adrenoceptor-GoluCys351Ile (C442A)

and u2A-adrenoceptor-GoluCys3Ser,Cys351Ile (C3S) constructs.

These studies indicated clear differences in the characteristics ofpalmitoylation (and the

effects of adrenaline on this) in the GPCR and G protein elements of the fusion proteins.

These results for the effects of adrenaline, obtained by pulse-labelling experiments,

could potentially represent altered rates of palmitoylation or de-palmitoylation of the G

protein. In order to investigate this, the dynamics of de-palmitoylation of GPCR-G

protein fusions were studied in experiments performed in pulse-chase format.

Analysis of the depalmitoylation rates of the u2A-adrenoceptor-GOluCys351Ue

fusion proteins

Following transfection of HEK293T cells with the u2A-adrenoceptor-GoluCys351Ile

(WT) fusion protein and labelling of the cells with eH] palmitate for 30 min, the

radio label was removed and replaced with non-radioactive palmitate. Samples were

taken for analysis at times up to 180 min. eH] palmitate was removed from the

immunoprecipitated fusion protein with tV;= 34.8 +/- 9.2 min (mean +/- SEM, n = 3)

(Figure 3.7 a and b). When the chase was conducted in the presence of adrenaline

removal of eH] palmitate from the fusion protein was substantially more rapid, with tY2
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= 20.0 +/- 3.3 min (mean +/- SEM, n = 3, p<0.05), demonstrating that agonist enhanced

de-palmitoylation of the fusion protein.

To assess the contribution of the G protein to these effects, HEK293T cells were

transfected to express the u2ACys442Ala-adrenoceptor-GoluCys35IIle (C44zA) fusion

protein in which only the G protein element is a target for thio-acylation. Using the

same protocol the rate of disappearance of eH] palmitate from immunoprecipitated

samples was again rapid (t12= 37.0 +/- 4.9 min, mean +/- SEM, n = 3) and accelerated

(t\12 = 17.1 +/- 2.1 min, mean +/- SEM, n = 3, p<0.05) by the presence of agonist

(Figure 3.8 a and b). In both sets of experiments, parallel immunoblots of cell lysates

confirmed equal loading of the gel lanes.

Equivalent experiments were then performed with the u2A-adrenoceptor-

GoluCys3Ser,Cys35lIle (e3S) fusion protein in which only the GPCR element can be a

target for palmitoylation. Again, a time-dependent reduction in the presence of eH]

palmitate was observed, indicating dynamic de-palmitoylation of the receptor with a

similar half-life (t12= 27.3 +/- 4.1 min, mean +/- SEM, n = 3) as noted for the G protein

but by contrast, this was not altered (t12 = 28.9 +/- 2.0 min, mean +/- SEM, n = 3,

p>0.05) by the presence of adrenaline (Figure 3.9 a and b). The depalmitoylation data

for all three u2A-adrenoceptor-GoluCys35IIle constructs are summarised in Table 3.3.

Analysis of concentration-dependent effects of adrenaline on palmitoylation of the

uZA-adrenoceptor-GolaCys351Ile fusion protein

When labelling of the u2A-adrenoceptor-GoluCys35IIle (WT) fusion protein with eH]

palmitate was allowed to proceed for 30 min in the presence of varying concentrations

of adrenaline, it was found that the effects of adrenaline on palmitate incorporation were

concentration-dependent. Half-maximal reduction in incorporation of eH] palmitate

into the immunoprecipitated fusion protein was obtained with 1.4 +/- 0.2 x 10,8 M

adrenaline (mean +/- SEM, n = 3) (Figure 3.10 a and b). As the calculated affinity

(corrected IC50 = 2.6 +/- 0.6 x 10'8 M, mean +/- SEM, n = 3) of adrenaline to bind to the

u2A-adrenoceptor-(Cys351I1e)Guol fusion protein (Figure 3.11) was similar it suggests

85



that binding of the agonist to the receptor was directly responsible for the regulation of

CH] palmitoylation.

Analysis of requirement for G protein to be activated in order to produce agonist-

regulation of G protein palmitoylation

The a2A-adrenoceptor-GolaCys351Ile (WT) and a2ACys442Ala-adrenoceptor-

GoluCys351lle (C442A) fusion proteins were further modified to encode a Gly204A1a

mutation within the G protein element of the constructs. This Gly is totally conserved

in the u subunit of heterotrimeric G proteins. Such Gly to Ala mutations prevent

effective exchange of GTP for GDP and hence the G protein is unable to adopt the

active conformation. As anticipated, addition of adrenaline was unable to cause binding

of C5S] GTPyS to the pcDNA3 control, the u2A-adrenoceptor-Go1uGly04 AiaCys35 Ilie

(Gly204Ala) and U2ACys442Ala-adrenoceptor-Gs. aGly04 AlaCys35 Ilie (Cys442Ala,

Gly204Ala) constructs. C5S] GTPyS binding in response to adrenaline was observed

however, for the a2A-adrenoceptor-Gol UCys35'ne (WT) and U2ACys442Ala-

adrenoceptor-GoluCys351Ile (Cys442Ala) constructs (Figure 3.12). We therefore used

these forms of the fusions to assess if activation was required to produce agonist-

regulation of G protein palmitoylation. Incorporation of CH] palmitate into an 89kDa

band was observed for the a2A-adrenoceptor-GoluGly04AlaCys351Ile (Gly204Ala) and

a2ACys 442Ala-adrenoceptor-G; 1uGly04 AlaCys351lie (Cys 442Ala, Gly204Ala) constructs

in addition to the WT and Cys442Ala fusion proteins (already shown previously in

Figure 3.2). However, unlike for the a2A-adrenoceptor-GoluCys351Ile (WT) and

a2ACys442Ala-adrenoceptor-Gsicf'ys'fIle (Cys442Ala) fusion proteins, there was no

effect of adrenaline on the palmitoylation status of the two Gly204A1a fusions (Figure

3.13 a and b), indicating that G protein activation is required to produce agonist

regulation of G protein palmitoylation.
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Analysis of the incorporation of [3H] palmitic acid into endogenously expressed

Go1a proteins

In order to assess how agonist-regulated G protein palmitoylation results obtained using

the a2ACys442Ala-adrenoceptor-Gsi aCys351ne (C442A) fusion protein compared with

those for the non-fused G protein, we examined the effects of adrenaline on the

palmitoylation status of the small amount of Gola that is expressed endogenously in

HEK293 cells. It has previously been noted that when expressed at high levels the a2A-

adrenoceptor element of GPCR-G protein fusions can activate endogenous G proteins as

well as the G protein fused to it (Burt et al., 1998). HEK293T cells were transfected

with the a2A-adrenoceptor-GolaCys35IIle (WT) fusion protein and incubated with eH]

palmitate in the absence or presence of adrenaline. After cell lysate production,

immunoprecipitation with antiserum ONl, SDS-PAGE and autoradiography, the

incorporation of eH] palmitate into a band with apparent molecular mass of some 40

kDa (corresponding to endogenous GOla) was assessed (Figure 3.14, upper panel).

Expression levels of endogenous Gola were also assessed by parallel immunoblots with

antiserum ONI (Figure 3.14, lower panel). The endogenous Gola incorporated eH]

palmitate in a time-dependent manner but in contrast to the fused Gola, the presence of

adrenaline enhanced labelling, suggesting some inherent difference for the receptor-

linked G protein.

Analysis of the ability of the a2ACys442Ala-adrenoceptor-Go1aCys351lie (C442A)

fusion protein to be repalmitoylated

When the agonist-promoted regulation of palmitoylation is compared for GPCR-G

protein fusion proteins and their non-fused components some differences have been

observed (current study and Loisel et al., 1999). In the work of Loisel et al. (1999), the

differences in agonist-promoted palmitate regulation observed for the ~2-adrenoceptor-

Gsa fusion protein as opposed to the non-fused GPCR and G protein were thought to be

as a result of the inability of the fusion protein to be repalmitoylated. For comparison

with the findings of Loisel et al. (1999), the ability of the a2ACys442Ala-adrenoceptor-

GOIaCys35lIle (C442A) fusion protein to be repalmitoylated was assessed. HEK293T
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· 442 351 442cells were transfected with the U2ACyS Ala-adrenoceptor-Ggjrzfjys lIe (C A)

fusion protein and incubated for 30 min with eH] palmitate in the absence of agonist (to

allow approximately steady-state levels of eH] palmitate incorporation to be reached).

Subsequent to this, cells were incubated with eH] palmitate in the absence or presence

of adrenaline. After cell lysate production, immunoprecipitation with antiserum ONl,

SDS-PAGE and autoradiography, the incorporation of [3H] palmitate into a band of

some 89kDa was monitored (Figure 3.15 a and b). In the absence of agonist the levels

of eH] palmitate incorporated into the U2ACys442Ala-adrenoceptor-Gg.cx.ys+'Ile

(C442A) fusion protein remained relatively unchanged (Figure 3.15 a lanes 1,2 and 4).

In contrast, in the presence of adrenaline (Figure 3.15 a lanes 3 and 5) the levels of eH]

palmitate incorporated into the U2ACyS442Ala-adrenoceptor-Gx.cf.ysP'Ile (C442A)

fusion protein were markedly reduced (p<0.05). These results show that in the presence

of adrenaline, depalmitoylation of the U2ACys442Ala-adrenoceptor-Gj.uf.ys'P'He

(C442A) fusion occurs and that subsequent repalmitoylation of this fusion is inhibited

(as reflected by the decrease in overall eH] palmitate incorporated into this protein).
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Figure 3.1

Analysis of expression levels of an u2A-adrenoceptor-GoluCys351Ile fusion protein

after sub-culture into multiple duplicate culture plates (determined from binding

of a SnM concentration of eH]-RS-79948-197 to membranes expressing the U2A-

adrenoceptor-GoluCys351Ile fusion protein)

HEK293T cells were transfected to express u2A-adrenoceptor-GO!uCys351Ile fusion

protein. Membranes were prepared and binding of a SnM concentration of [3H]_ RS-

79948-197 to membranes expressing the u2A-adrenoceptor-GoluCys351Ile fusion protein

was assessed for multiple duplicate culture plates (labelled 1-6). Results are from

triplicate determinations. Analysis is representative of three similar experiments.
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Figure 3.2

Incorporation of eH] palmitate into the palmitoylation-variant aZA-adrenoceptor-

GOlaCys35tIle fusion proteins in the presence and absence of adrenaline.

HEK293T cells were transfected with empty vector (pcDNA3) or to express a2A-

adrenoceptor-G, IaCys351 Ile (WT), a2ACys442Ala-adrenoceptor-G, IaCys351Ile (C442 A),

a2A-adrenoceptor-GolaCys3Ser, Cys351Ile(C3S) or a2ACys442 Ala -adrenoceptor-

GOlaCys3Ser, Cys351Ile (C442A, C3S) fusion proteins. Cells were incubated with eH]

palmitate for 30min in the absence (-) or presence (+) of IOOIlM adrenaline. Samples

were harvested and cell lysates produced. These were either immunoprecipitated with

antiserum ONI prior to SDS-PAGE and autoradiography for I month (a, upper panel)

or resolved directly by SDS-PAGE and immunoblotted with antiserum ONI (a, lower

panel). Figure 3.2 (a) shows one representative palmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. pcDNA3=black bars, WT=blue bars, C442 A=green bars,

C3S=purple bars and C442 A, C3S=brown bars. Results for three separate experiments

were quantified and data is shown as mean +/- S.E.M., n= 3. In order to compare levels

of incorporation from separate experiments it was necessary to express the levels of

incorporation for each sample as a percentage of the incorporation observed for the

unstimulated WT construct.
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Table 3.1

Comparison of the incorporation of eH] palmitate into all four palmitoylation-

variant fusion proteins in the presence and absence of adrenaline

The results from Figures 3.2 were presented in a tabular form for clarity of comparison

between the constructs. Incorporation level into each u2A-adrenoceptor -GotUCys351Ue

fusion protein in the presence and absence of adrenaline is given as a percentage (mean

+/- SEM, n=3) of the incorporation observed for the unstimulated WT construct.
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Table 3.1

Construct Potential Site of Incorporation of Incorporation of
(lUI Palmitate (lUI Palmitate in (lUI Palmitate in
Incorporation Absence of Presence of

Adrenaline (%) Adrenaline (%)

a2A-adrenoceptor- GPCR Cys442and G 100 69.2 +/- 12.1
GOlaCys351I1e(WT) protein Cys' residue

a2ACys442Ala- G protein Cysj 96.7 +/- 9.6 34.0 +/- 5.5
adrenoceptor-Gan Cys351I1e residue

(C442A)
a2A-adrenoceptor- GPCR Cys442 34.6 +/- 4.2 31.1 +/- 5.2

GOIClCysJSer,CysJ51I1e residue
(C3S)

a2ACys442Ala-adrenoceptor- None None None
GOlaCys3Ser, Cys351I1e

(C442A, ClS)



Figure 3.3

Incorporation of eH] palmitate into the u2A-adrenoceptor-GoluCys35IIle (WT)

fusion protein in the presence and absence of adrenaline.

An u2A-adrenoceptor-GoluCys35IIle fusion protein was expressed in HEK293T cells.

Cells were incubated with eH] palmitate for the indicated times in the absence (left

panels) or presence (right panels) of lOOJlM adrenaline. Samples were harvested and

celllysates produced. These were either immunoprecipitated with antiserum ONI prior

to SDS-PAGE and autoradiography for I month (a, upper panels) or resolved directly

by SDS-PAGE and immunoblotted with antiserum ONI (a, lower panels). Figure 3.3

(a) shows one representative palmitoylation experiment with corresponding western

blot analysis. Similar results were obtained for three separate experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of

adrenaline. Results for three separate experiments were quantified and data is shown as

mean +1- S.E.M., n= 3. In order to compare levels of incorporation from separate

experiments it was necessary to express the levels of incorporation for each sample as a

percentage of the maximal incorporation level observed (60 min time-point of

unstimulated construct).
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Figure 3.3
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Figure 3.4

Incorporation of eH] palmitate into the U2ACYS442Ala-adrenoceptor-GotuCys351Ue

(C442 A) fusion protein in the presence and absence of adrenaline.

An 442 351 I fusi d .UZACys Ala-adrenoceptor-Gj.cf.ys Ie USlOn protem was expresse ID

HEK293T cells. Cells were incubated with eH] palmitate for the indicated times in the

absence (left panels) or presence (right panels) of 100~M adrenaline. Samples were

harvested and cell lysates produced. These were either immunoprecipitated with

antiserum ONI prior to SDS-PAGE and autoradiography for I month (a, upper panels)

or resolved directly by SDS-PAGE and immunoblotted with antiserum ONI (a, lower

panels). Figure 3.4 (a) shows one representative palmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of

adrenaline. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare levels of incorporation from separate

experiments it was necessary to express the levels of incorporation for each sample as a

percentage of the maximal incorporation level observed (60 min time-point of

unstimulated construct).
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Figure 3.5

Incorporation of eH] palmitate into the u2A-adrenoceptor-Go1u Cys3Ser, Cys351Ue

(C3S) fusion protein in the presence and absence of adrenaline.

An u2A-adrenoceptor-Go1u CysSer, Cys351Ile fusion protein was expressed in

HEK293T cells. Cells were incubated with eH] palmitate for the indicated times in the

absence (left panels) or presence (right panels) of 100JlM adrenaline. Samples were

harvested and cell lysates produced. These were either immunoprecipitated with

antiserum ON! prior to SDS-PAGE and autoradiography for Imonth (a, upper panels)

or resolved directly by SDS-PAGE and immunoblotted with antiserum ON! (a, lower

panels). Figure 3.5 (a) shows one representative palmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of

adrenaline. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare levels of incorporation from separate

experiments it was necessary to express the levels of incorporation for each sample as a

percentage of the maximal incorporation level observed (60 min time-point of

unstimulated construct).
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Figure 3.5
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Figure 3.6

Comparison of incorporation of eH] palmitate into the u2A-adrenoceptor-

GOluCys351IIe (WT), U2ACyS442Ala-adrenoceptor-GoluCys35II1e (C442A) and the

u2A-adrenoceptor-Go1u Cys3Ser, Cys351IIe (C3S) fusion proteins in the presence

and absence of adrenaline

The autoradiographs quantitated in Figures 3.3 b, 3.4 band 3.5 b are analysed in

parallel for clarity. Open circles with dashed lines = absence of adrenaline, filled circles
442 3 •with solid lines = presence of adrenaline. WT=black, C A=red and C S=blue. Data IS

shown as mean +/- S.E.M., n= 3.

Table 3.2

Comparison of incorporation of eH] palmitate into the u2A-adrenoceptor-

GOluCys351Ile (WT), U2ACyS442Ala-adrenoceptor-GoluCys35II1e (C442A) and the

u2A-adrenoceptor-Go1u Cys3Ser, Cys351IIe (C3S) fusion proteins in the presence

and absence of adrenaline

The results from Figures 3.3-3.5 were presented in a tabular form for clarity of

comparison between the constructs. Non-linear regression analysis was used to

determine the maximal incorporation level of [3H] palmitate and the t1l2 (min) for

incorporation into each u2A-adrenoceptor-GoluCys35IIle fusion protein in the presence

and absence of adrenaline.
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Figure 3.6

Table 3.2

150

150

Time (min)

Construct Potential Site Max t1/2 Max tl/2
ofeH] Palmitate Palmitate Palmitate Palmitate

Palmitate Incorp. Incorp. Incorp. Incorp.
Incorp. -Adrenaline -Adrenaline +Adrenaline +Adrenaline

(%) (min) (%) (min)

WT GPCRCys44L 131 +/- 12 31.4 +/- 4.4 56 +/- 9 26.8 +/- 2.2
residue and G
protein Cys3

residue
Cqq'A G protein Cysj 98 +/- 12 8.2 +/- 1.3 42 +/- 7 8.3 +/- 2.0

residue

CIS GPCRCys44L 146 +/- 12 27.4 +/- 2.9 148+/-12 22.3 +/- J.1
residue



Figure 3.7

Basal and adrenaline-stimulated de-palmitoylation of an u2A-adrenoceptor-

GotUCys35tIle (WT) fusion protein

HEK293T cells were transfected to express an uZA-adrenoceptor-GO]uCys351Ile fusion

protein. Cells were incubated with eH] palmitate for 30 min, washed and then excess

non-radioactive palmitate was added in the absence (a, left panels) or presence (a, right

panels) of adrenaline (100~M). Samples were harvested at varying times and cell

lysates produced that were either immunoprecipitated with antiserum ONI prior to

SDS-PAGE and autoradiography for I month (a, upper panels) or resolved directly by

SDS-PAGE and immunoblotted with antiserum aNI (a, lower panels). Figure 3.7 (a)

shows one representative depalmitoylation experiment with corresponding western blot

analysis. Similar results were obtained for three separate experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. Open symbols = absence of adrenaline, filled symbols =

presence of adrenaline. Results for three separate experiments were quantified and data

is shown as mean +/- S.E.M., n= 3. In order to compare remaining levels of eH]

palmitate from separate experiments it was necessary to express the remaining levels of

[3H] palmitate for each sample as a percentage of the maximal level observed (0 min

chase time).
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Figure 3.7
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Figure 3.8

Basal and adrenaline-stimulated de-palmitoylation of an

adrenoceptor-GOluCys351Ile (C442 A) fusion protein

442HEK293T cells were transfected to express an U2ACyS Ala-adrenoceptor-

GoluCys35lIle fusion protein. Cells were incubated with eH] palmitate for 30 min,

washed and then excess non-radioactive palmitate was added in the absence (a, left

panels) or presence (a, right panels) of adrenaline (IOOIlM). Samples were harvested at

varying times and cell lysates produced that were either immunoprecipitated with

antiserum aNI prior to SDS-PAGE and autoradiography for 1 month (a, upper panels)

or resolved directly by SDS-PAGE and immunoblotted with antiserum aNI (a, lower

panels). Figure 3.8 (a) shows one representative depalmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. Open symbols = absence of adrenaline, filled symbols =

presence of adrenaline. Results for three separate experiments were quantified and data

is shown as mean +/- S.E.M., n= 3. In order to compare remaining levels of eH]

palmitate from separate experiments it was necessary to express the remaining levels of

[3H] palmitate for each sample as a percentage of the maximal level observed (0 min

chase time).
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Figure 3.8
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Figure 3.9

Basal and adrenaline-stimulated de-palmitoylation of an u2A-adrenoceptor-Gola

Cys3Ser, Cys351I1e (C3S) fusion protein

3HEK293T cells were transfected to express an u2A-adrenoceptor-Go1u Cys Ser,

Cys351Ile fusion protein. Cells were incubated with eH] palmitate for 30 min, washed

and then excess non-radioactive palmitate was added in the absence (a, left panels) or

presence (a, right panels) of adrenaline (IOOJ.l.M).Samples were harvested at varying

times and cell lysates produced that were either immunoprecipitated with antiserum

ONI prior to SDS-PAGE and autoradiography for 1month (a, upper panels) or resolved

directly by SDS-PAGE and immunoblotted with antiserum ONI (a, lower panels).

Figure 3.9 (a) shows one representative depalmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate
experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. Open symbols = absence of adrenaline, filled symbols ==

presence of adrenaline. Results for three separate experiments were quantified and data

is shown as mean +/- S.E.M., n= 3. In order to compare remaining levels of eH]

palmitate from separate experiments it was necessary to express the remaining levels of

eH] palmitate for each sample as a percentage of the maximal level observed (0 min

chase time).
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Figure 3.9
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Table 3.3

Comparison of depalmitoylation for the three selected palmitoylation-variant O,2A-

adrenoceptor-Gx.o.Cys'P'He fusion proteins in the presence and absence of

adrenaline

The results from Figures 3.7-3.9 were presented in a tabular form for clarity of

comparison between the constructs. Non-linear regression analysis was used to

determine the tl/2 (min) for depalmitoylation of u2A-adrenoceptor-GoluCys35IIle fusion

proteins in the presence and absence of adrenaline.
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Table 3.3

Construct Potential Site of r'HI tlf2 (min) till (min)
Palmitate Depalmitoylation Depalmitoylation

Incorporation ( - Adrenaline) ( + Adrenaline)

a2A-adrenoceptor- GPCR Cys44Land G 34.8 +/- 9.2 20.0 +/- 3.3
GOIUC351J(WT) protein Cys' residues

a2AC442A G protein Cys'' residue 37.0 +/- 4.9 17.1 +/-2.1
adrenoceptor-
GOlaC351J
(Cys442Ala)

a2A-adrenoceptor- GPCR Cys442 residue 27.3 +/- 4.1 28.9 +/- 2.0

Go1UC3S, C351J
(Cys3Ser)



Figure 3.10

Concentration-response of adrenaline regulated incorporation of eH] palmitate

into the ulA-adrenoceptor-GoluCys351Ile (WT) fusion protein

An uZA-adrenoceptor-GoluCys35IIle fusion protein was expressed in HEK293T cells.

Cells were incubated with eH] palmitate for 30 min in the presence of varying

concentrations of adrenaline. Samples were harvested and cell lysates produced. These

were either immunoprecipitated with antiserum ONt prior to SDS-PAGE and

autoradiography for I month (a, upper panel) or resolved directly by SDS-PAGE and

immunoblotted with antiserum ONI (a, lower panel). Figure 3.10 (a) shows one

representative concentration-response palmitoylation experiment with corresponding

western blot analysis. Similar results were obtained for three separate experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in
the area of the film shown. The effect of adrenaline was quantified for three separate

experiments and data is shown as mean +/- S.E.M., n= 3. In order to compare levels of

incorporation from separate experiments it was necessary to express the levels of

incorporation for each sample as a percentage of the maximal incorporation level

observed (unstimulated construct).
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Figure 3.10
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Figure 3.11

Competitive inhibition of antagonist radioligand binding by the agonist adrenaline

to membranes expressing the u2A-adrenoceptor-GotuCys35tIle (WT) fusion protein

HEK293T cells were transfected to express u2A-adrenoceptor-GoluCys35IIle (WT)

fusion protein. Membranes were prepared and the ability of adrenaline to compete with

eH]-RS-79948-197 for binding to the u2A-adrenoceptor-GoluCys35IIle fusion protein

was assessed. This allowed calculation of the binding affinity of adrenaline for the U2A-

adrenoceptor-GoluCys35lIle fusion protein. Results are from triplicate determinations.

Analysis is representative of three similar experiments. Data is shown as mean +1-

S.E.M., n= 3
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Figure 3.11
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Figure 3.12

Lack of ability of a2A-adrenoceptor-GolaCys3SIIIe fusion proteins to bind esS]

GTPyS upon mutation of residue Gly204of the Gola protein.

HEK293T cells were transfected with empty vector (pcDNA3) or to express either a2A-

adrenoceptor-G; IaCys351Ile (WT), a2ACys442Ala-adrenoceptor-Gs, aCys351 ne
(Cys442Ala), a2A-adrenoceptor-Go1aGI!04Ala, Cys351Ile (Gly204Ala) or a2ACys442Ala _

adrenoceptor-Go1aGly04Ala, Cys351Ile (Cys442Ala, Gly204Ala) fusion proteins.

Membranes were prepared from these cells and samples containing IOfmol of eH]-RS-

79948-197 binding sites were used to measure basal (open bars) and 100 J.lM
adrenaline-stimulated (filled bars) binding of e5S] GTPyS to the various fusion proteins.

Results are from triplicate determinations. Analysis is representative of three similar

experiments. Data is shown as mean +/- S.E.M., n= 3
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Figure 3.12



Figure 3.13

Lack of ability of adrenaline to regulate the palmitoylation of a2A-adrenoceptor-

GOlaCys351I1e fusion proteins upon mutation of residue Gly204of the Gola protein

HEK293T cells were transfected with empty vector (pcDNA3, 1) or to express either

a2A-adrenoceptor-GolaCys351Ile (WT, 2), a2ACys442Ala-adrenoceptor-Gaex'ys'I'Ile

(Cys442Ala, 3), a2A-adrenoceptor-Go1uGl!04Ala, Cys351Ile (Gly204Ala, 4) or

a2ACys442Ala-adrenoceptor-Gj. aGly04Ala, Cys351lIe (Cys442Ala, Gly204Ala, 5) fusion

proteins. Cells were incubated with eH] palmitate for 30 min in the absence (left

panels) or presence (right panels) of 100flM adrenaline. Samples were harvested and

celllysates produced. These were either immunoprecipitated with antiserum ONI prior

to SDS-PAGE and autoradiography for 1 month (upper panels) or resolved directly by

SDS-PAGE and immunoblotted with antiserum ONI (lower panels). Figure 3.13 (a)

shows one representative palmitoylation experiment with corresponding western blot

analysis. Similar results were obtained for three separate experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. Open bars = absence, filled bars = presence of adrenaline.

Results for three separate experiments were quantified and data is shown as mean +1-

S.E.M., n= 3. In order to compare levels of incorporation from separate experiments it

was necessary to express the levels of incorporation for each sample as a percentage of

the incorporation observed for the unstimulated WT construct.
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Figure 3.14

Incorporation of eH] palmitate into endogenously expressed Gola protein in the

presence and absence of adrenaline.

An a2A-adrenoceptor-GolaCys35IIle (WT) fusion protein was expressed in HEK293T

cells. Cells were incubated with eH] palmitate for the indicated times in the absence (-)

or presence (+) of IOO~M adrenaline. Samples were harvested and cell lysates

produced. These were either immunoprecipitated with antiserum ONI prior to SDS-

PAGE and autoradiography for 1 month (upper panel) or resolved directly by SDS-

PAGE and immunoblotted with antiserum ONI (lower panel). Rather than the fusion

protein, labelling and expression of endogenous Gaol is shown. Figure 3.14 shows one

representative palmitoylation experiment with corresponding western blot analysis.

Similar results were obtained for three separate experiments.
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Figure 3.15

Repalmitoylation of the a2ACys 442Ala-adrenoceptor-GolaCys3SIIIe (C442 A) fusion

protein

An C 442 I d 351 .a2A ys A a-a renoceptor-Gj.nflys lie fusion protem was expressed in

HEK293T cells. Cells were incubated with eH] palmitate for 30 min in the absence of

agonist to allow approximately steady-state levels of eH] palmitate incorporation to be

reached. After the 30 min incubation, cells were then incubated with eH] palmitate for

the indicated times in the absence (-) or presence (+) of 100~M adrenaline. Samples

were harvested and cell lysates produced. These were either immunoprecipitated with

antiserum aNI prior to SDS-PAGE and autoradiography for 1month (upper panel) or

resolved directly by SDS-PAGE and immunoblotted with antiserum aNI (lower panel).

Figure 3.15 (a) shows one representative repalmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in
the area of the film shown. Open circles = absence, filled squares = presence of

adrenaline. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare levels of incorporated eH] palmitate from

separate experiments it was necessary to express the levels of [3H] palmitate for each

sample as a percentage of the maximal level observed (0 min post-steady-state

incubation).
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Figure 3.15
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3.3 Discussion

The a2A-adrenoceptor and the Gola protein used in this study have both been shown to

undergo post translational-palmitoylation. Mutation of Cys442 in the C-tenninal tail of

the a2A-adrenoceptor (Kennedy and Limbird, 1993) and Cys'' at the N-tenninus of the

Gola protein (Grassie et al., 1994) were found to abolish incorporation of [3H] palmitate

into these two proteins. Reversible attachment of lipid modifications to signalling

proteins is assumed to be very important for the possibility of dynamic regulation of

these proteins (Mumby, 1997). Therefore, attachment of l6-carbon palmitate to GPCRs

and G proteins through a labile thioester bond has been the subject of a number of

investigations to date (Mouillac et al., 1992; Loisel et al., 1996; Ponimaskin et al.,

2001; Wedegaertner and Bourne, 1994; Chen and Manning, 2000; Stanislaus et al.,

1997; Bhamre et al., 1998). For some of these investigations, focus is specifically

placed on the dynamic regulation of palmitoylation of GPCRs and G proteins (Loisel et

al., 1996, Kennedy and Limbird, 1994; Chen and Manning, 2000). However, the

available data is limited, since the very nature of thioester-attached palmitate (assumed

to impart these desirable qualities) also makes this modification difficult to study

(Qanbar and Bouvier, 2003).

Although the incorporation of eH] palmitate into the Cys'' residue of Gola protein has

already been shown (Grassie et al., 1994), as yet there have been no studies in which the

regulation ofpalmitoylation on the Gola protein have been studied in detail. Similarly,

although the porcine a2A-adrenoceptor was one of the first GPCRs demonstrated to be a

target for post-translational palmitoylation (Kennedy and Limbird, 1993, 1994), it has

been some 10 years since the limited studies of regulation of palmitoylation were

performed for this receptor. With these facts in mind and given that in recent years there

have been a number of improvements in the means to monitor regulated palmitoylation,

we considered these two proteins to be suitable subjects for further investigation.

In the current study it was decided to use fusion proteins in which the N-tenninus of the

Gol protein a subunit is linked in-frame to the C-tenninal tail of the a2A-adrenoceptor.

A number of other groups have routinely used similar fusion proteins to explore many

aspects of receptor and G protein interaction and function (Bertin et al., 1994; Wise and
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Milligan, 1997; Seifert et al., 1998; Guo et al., 2001). The GPCR-G protein fusion

protein system, as a tool for studying cell-signalling mechanisms, provides the user with

a number of advantages. Indeed, fusion proteins have already been shown to provide an

efficient system for studying the regulation of palmitoylation on GPCRs and G proteins

(Loisel et al., 1999; Stevens et al., 2001). The specific advantages to using a fusion

protein approach for the current study were two-fold. Firstly, anti-Gj,« antisera was

available (Georgoussi et al., 1993) which had the capacity to quantitatively

immunoprecipitate Go1<Xprotein (and by extention GPCR-G protein fusion proteins

containing this G protein). Secondly, given that the fused G protein is in close physical

proximity to the receptor, the fusion allows us to look at activated G protein (Wise and

Milligan, 1997; Ugur et al., 2003) in isolation. This is important in order to overcome

any potential dilution of agonist effects arising from immunoprecipitation of non-

activated G protein (possible in a non-fused system).

Four palmitoylation-variant fusion constructs were used in this study. Firstly, the <X2A-

adrenoceptor-Gol<xCys351IIe (WT) construct which has the ability to undergo

palmitoylation on two sites, one site in the GPCR and one site in the G protein.

Secondly, the <X2ACys442Ala-adrenoceptor-Gol<xCys351IIe(C442A) construct which has

the ability to undergo palmitoylation only in the G protein. Thirdly, the <X2A-

adrenoceptor-Gol<xCys3Ser,Cys351IIe (C3S) construct which has the ability to undergo

palmitoylation only in the GPCR. Lastly, the U2ACys442Ala-adrenoceptor-Gj, «Cys'Ser,

Cys35IlIe (C442A, C3S) construct which has had both potential palmitoylation sites

removed. All constructs contained a Cys351Ile mutation in the C-terminal tail of the

GoIU protein. This mutation was desirable for our fusion proteins in order to do

functional studies of our constructs (Chapter 4) without interference from endogenous

G proteins (Jones and Reed, 1987; Lochrie and Simon, 1988; Burt et al., 1998).

Mutation of this Cys351residue, renders the G protein resistant to ADP-ribosylation by

pertussis toxin. Practically, this allows the endogenous Go1u proteins to be inactivated

by the toxin such that any Go1u protein signalling remaining will be through the fused

GoluCys351Ile protein only. In previous studies on the related G protein, Gil. the

effectiveness of activation by the u2A-adrenoceptor was correlated highly with

hydrophobicity of the amino acid at this site (Bahia et al., 1998). As a result many
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groups now use the He containing versions of Gi-family G proteins routinely (Jeong and

Ikeda, 2000; Benians et al., 2003).

Before performing a variety of experiments to assess the regulation of palmitoylation in

the GPCR and G protein parts of a2A-adrenoceptor-GolaCys35IHefusion proteins, it was

necessary to confirm the Cys442site on the GPCR and the Cys'' site on the G protein as

the sites for incorporation of eH] palmitic acid into these fusions. When the four

palmitoylation-variant a2A-adrenoceptor-Gsi aCys351Ile fusion proteins were pulse-

labelled with eH] palmitate for 30 min, the fusion containing both the Cys442Ala and

the Cys'Ser mutations did not incorporate eH] palmitate, confirming these sites as the

only ones for dynamic post-translational acylation in these constructs. Similar

experiments have been performed routinely for a number of GPCRs and G proteins

(Mouillac et al., 1992; Ponimaskin et al., 2001; Chen and Manning, 2000). Both the

Cys442Alaa2-adrenoceptor-GoIa and the a2-adrenoceptor-Cys3SerGoIa fusion proteins

did incorporate eH] palmitate, demonstrating that both the receptor and G protein

elements are targets for dynamic acylation. Interestingly and unexpectedly, they were

not equivalent. Using equal amounts of the two fusions, the a2-adrenoceptor-

Cys'SerGoIa fusion (in which only the single site in the GPCR can be modified)

incorporated significantly less eH] palmitate within a 30 min period than the

Cys442Alaa2-adrenoceptor-Gola fusion in which only the G protein can be the target.

These observations suggested that acylation of the GPCR segment is slower than that of

the G protein. In order to address this hypothesis, the kinetics of GPCR and G protein

palmitoylation were assessed. This was done by observation of the time courses of

incorporation of eH] palmitic acid into the palmitoylation-variant a2A-adrenoceptor-

GolaCys351Ile fusion proteins. Following expression of the a2A-adrenoceptor-

GolaCys
351Ile(WT) fusion protein in HEK293T cells, this construct incorporated eH]

palmitate in a time-dependent manner. This incorporation was substantially lower when

the a2A-adrenoceptor agonist adrenaline was present during the labelling period. A

similar effect of agonist was observed for palmitoylation of a ~2-adrenoceptor-

Gsa fusion protein (Loisel et al., 1999). In contrast, a distinct effect of agonist was

observed for an a Ib-adrenoceptor-GIIa fusion protein. In the latter case, agonist

enhanced the kinetics of palmitoylation (Stevens et al., 2001). Given that the

incorporation of eH] palmitic acid into the a2A-adrenoceptor-GolaCys35IIle (WT)
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fusion protein represented a combination of incorporation into both the GPCR and G

protein elements of the fusion, the a2ACys442Ala-adrenoceptor-Gj.o.Cys'P'Ile (C442 A)

and a2A-adrenoceptor-GoluCys3Ser,Cys35IIle (C3S) fusions were used to obtain the

kinetic data for palmitoylation of the GPCR and G protein. From this data, the half-time

of eH] palmitate incorporation into the receptor was observed to be some 3 times

slower than into the G protein. It is important to note here that experiments on the extent

and dynamics of acylation must always consider the reversibility of the process (Qanbar

and Bouvier, 2003). This point is especially important when pulse-labelling studies are

employed. In pulse-labelling assays the levels of incorporation of eH] palmitate

observed are the net result of palmitoylation and depalmitoylation reactions. Thus,

variations in the observed changes in eH] palmitate incorporation may not reflect true

differences in the palmitate dynamics. In fact, an agonist-promoted increase in the

palmitate turnover rate could potentially give rise to either a decrease or an increase in

labelled palmitate incorporation, dependent on the kinetics and experimental conditions.

These type of pulse-labelling assays are the normal type of palmitoylation assay carried

out for most GPCRs and G proteins (Mouillac et al., 1992; Ponimaskin et al., 2001;

Chen and Manning, 2000), however, data from pulse-chase format palmitoylation

experiments generally proves far more valuable.

De-palmitoylation studies have been carried out for a number of GPCRs, including the

~2-adrenoceptor (Loisel et al., 1996, 1999) and the a2A-adrenoceptor (Kennedy and

Limbird, 1994). In the work of Kennedy and Limbird (1994) it was reported that the

half-life of eH] palmitate on the GPCR was in the region of 10 hours and was similar to

the half-life of the protein. In addition, these authors reported only a very slight agonist

stimulation of de-palmitoylation rate for the a2A-adrenoceptor. These results suggest the

role of palmitoylation for the a2A-adrenoceptor may be distinct from many other protein

targets, including other GPCRs, for which the fatty acid is turned over rapidly, allowing

proteins to undergo many cycles of acylation and de-acylation during their lifetime

(Loisel et aI., 1996; Qanbar and Bouvier, 2003; Bijlmakers and Marsh, 2003). In the

present de-palmitoylation studies, adrenaline accelerated removal of palmitate from the

G protein but not from the receptor. This indicated that the acylation cycle of the G

protein is regulated by agonist whereas that of the GPCR is not. As previously

mentioned, a very slight agonist effect was observed for the acylation cycle of the non-
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fused <X2A-adrenoceptor(Kennedy and Limbird, 1993, 1994), results in contrast to the

current study with the fusion protein. The current results are also in contrast to studies

with an <Xlb-adrenoceptor-GIl<Xfusion protein where agonist enhanced labelling of both

the GPCR and G protein elements (Stevens et al., 2001). The other major difference in

the results of the current study and the previously published work for the <X2A-

adrenoceptor (Kennedy and Limbird, 1994) is in the half-life of palmitate attached to

this receptor. Although the previous study decribed a half-life in the region of 10 hours

for palmitate attached to the <X2A-adrenoceptor,in our hands (and via the use of a <X2A-

adrenoceptor-Gacf.ys'Ser.Cys'Ylle (C3S) fusion protein) this half-life was found to be

in the region of 30 min. This much shorter, more dynamic turnover of palmitate

attached to the <X2A-adrenoceptor(observed in the current studies) would seem to be

much more in keeping with the suggested role of palmitoylation on other signalling

proteins, including GPCRs (Loisel et al., 1996) and G proteins (Chen and Manning,

2000).

Activation of G proteins is often associated with alterations in palmitoylation (Chen and

Manning, 2001; Wedegaertner, 1998). In order to test this directly we made use of

fusion proteins incorporating a form of GoI<xCys351Ilethat is unable to exchange GDP

for GTP (Gly204Ala mutant). These G1y204Ala mutant forms are unable to attain the

activated state. Although dynamic in that this form of the G protein did incorporate

eH] palmitate, acylation of this form of the G protein was not regulated by agonist. This

allowed us to conclude that activation of the G protein was required for the agonist-

stimulated regulation of palmitoylation of the <X2A-adrenoceptor-G; I<xCys35IlIe fusion

proteins.

Given that dynamic regulation of G protein palmitoylation in response to agonist had

already been observed for Gil protein following agonist-stimulation of the 5-HTIA

receptor (Chen and Manning, 2000), it was deemed important to assess whether the

adrenaline-promoted regulation of G protein palmitoylation in <X2A-adrenoceptor-

Gol<xCys
351Ilefusion proteins was concentration-dependent. Like for the Gil protein, the

agonist-regulation of palmitate on the G01<xCys351Ileelement of the fusion occurred in a

concentration-dependent manner. In addition, this occurred at a concentration
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correlating with agonist occupancy of the receptor for the a2A-adrenoceptor-

GOIaCys351Ile fusion protein.

A number of other studies have suggested that activation of a G protein can regulate

palmitoylation. Loisel et al., (1999) also demonstrated agonist block of incorporation of

eH] palmitate into a fusion protein, in this case between the Jh-adrenoceptor and Gsa

(although they raised the prospect of this reflecting decreased re-palmitoylation

following de-palmitoylation). These authors had also noted that in pulse-chase

experiments the agonist caused more rapid removal of the eH] palmitate. This

combination of events was taken to reflect an inability of the ~2-adrenoceptor-

Gsa fusion protein to be re-palmitoylated in the presence of agonist. Loisel et al., (1999)

did, however, observe re-palmitoylation when the studies were performed with the

isolated ~2-adrenoceptor and concluded that desensitization or other tum-off processes

might be required for re-palmitoylation, Similar results were obtained in the current

study, whereby the pattern of agonist-stimulated incorporation of eH] palmitate into the

small amount of Gola that is expressed endogenously in HEK293 cells appeared to be

opposite to that obtained for the G protein element of the fusion protein. When the

ability of the a2ACys442Ala-adrenoceptor-Gacx.ysI'Ile (C442A) fusion protein to be

repalmitoylated was assessed, it was found to show the same characteristics as the ~2-

adrenoceptor-G,« fusion protein (Loisel et al., 1999), thus supporting the hypothesis

that some limitation of re-palmitoylation of fused proteins may occur.

The differences in results for the regulation of GPCR and G protein palmitoylation in

the a2A-adrenoceptor-GolaCys351Ile fusion proteins compared with the non-fused a2A-

adrenoceptor and the Gola protein are, for some aspects, difficult to ascertain. In the

case of the GolfJ.protein, the apparently opposite pattern of eH] palmitate incorporation

into the non-fused protein compared with the Gola protein constrained within the fJ.2A-

adrenoceptor-GolfJ.Cys351ne fusion, is the perfect example of how results obtained from

pulse-labelling assays can vary dependent on the experimental conditions. We have

been able to show that this difference may be due to the inability of the G protein (as

assessed by use of the fJ.2ACys442Ala-adrenoceptor-GolaCys351Ile (Cys442Ala) construct)

to undergo agonist-stimulated repalmitoylation (a phenomena previously observed for a
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~2-adrenoceptor-Gsu fusion protein (Loisel et al., 1999». However, the fact that the G

protein part of the fusion protein is exhibiting the opposite pattern of eH] palmitate

incorporation to the non-fused G protein in the pulse-labelling study may not

necessarily indicate that the fusion system is unsuitable for palmitoylation studies. As

already discussed, the results from pulse-labelling studies do not give us definitive

descriptions of changes in palmitoylation, since it represents both the palmitoylation

and depalmitoylation reactions. As a result, the only real conclusion which can be

drawn from the pulse-labelling of the endogenous Go1u, is that the eH] palmitate

incorporation in the protein can be regulated by agonist. It is the very same conclusion

that can be drawn from studies of the eH] palmitate incorporation into the G protein

part of the fusion protein. The most useful information concerning palmitoylation

studies comes from experiments in pulse-chase format, because these assays represent

only the rate of de-palmitoylation of the target protein. We assume, by inference from

previous studies (Loisel et al., 1999), that the nature of the target protein (fused or non-

fused) will not affect the rate of depalmitoylation observed, although this has not been

directly tested herein. For the same reasons, the difference in depalmitoylation rate of

the fused u2A-adrenoceptor and the non-fused protein are difficult to comprehend. In

order to address this difference we attempted to perform palmitoylation studies for the

non-fused u2A-adrenoceptor. In these assays we made use of a HA-tag, present on the

N-terminus of the protein, for immunoprecipitation. Unfortunately, the extent of

immunoprecipitation achieved using anti-HA antibodies was relatively poor, resulting

in no detectable signal for incorporation of eH] palmitate with exposure times of up to

one month. As a result the differences could not be addressed in the present study.

Concerning the study of endogenous Go1u protein palmitoylation, there is one very

important point to note in relation to the very reasons we decided to use a fusion-based

approach for the current study. The very fact that there will not be a 1: 1 stoichiometry

of GPCR to G protein and that not all G protein will become activated by GPCR, means

that no real kinetic analyses can be performed for these experiments. The results

observed will always reflect some "interference" from non-activated G protein. This

fact is illustrated in the pulse-labelling study of eH] palmitate incorporation into the

endogenous GolU protein (Figure 3.14), in which the incorporation levels do not

display saturation over the time-course. In conclusion, like with any experimental
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system, there are advantages and disadvantages. In terms of studying palmitoylation, I

believe the advantages of the fusion system outweigh the disadvantages. So long as the

results are taken in context and some effort is made to address how the results might

relate to the situation in non-fused proteins, then the data is very useful. With this in

mind it is important to reflect that fusion-proteins are already an accepted model-system

for the study of many features of GPCR-G protein signalling. In support of this, the

intrinsic GTPase activity of the G protein functions to deactivate this construct are as

expected (Wise and Milligan, 1997) and Regulators ofG protein Signalling are effective

GTPase activating proteins for this construct (Cavalli et al., 2000). Furthermore, the G

protein ~y-complex interacts effectively and can be co-immunoprecipitated with a2A-

adrenoceptor-Gsicc fusion proteins (Bertaso et al., 2003). Therefore, basic features and

regulation of interactions between the a2A-adrenoceptor, the G protein a-subunit and its

interacting proteins are preserved in the fusion proteins.

In summary, the current data provides rather different conclusions on the kinetics of

acylation and its regulation by agonist than previous work on the a2A-adrenoceptor. It

demonstrates that agonist occupancy and activation of an a2A-adrenoceptor-Go1a

fusion protein regulates the palmitoylation status of the G protein but not the receptor.

This effect is produced, at least partially, via agonist-induced enhancement of G protein

de-palmitoylation. Given the differences in results obtained with related experiments for

both the ~2- and alb-adrenoceptors, simple and universal rules on the regulation of thio-

acylation may be difficult to define, even for closely related receptors. This implies that

in future studies regulation of GPCR palmitoylation will probably have to be analysed

on a case-by-case basis.

In order to interpret the results of regulation of GPCR and G protein palmitoylation

from the current study in terms of functional consequences, the palmitoylation-variant

fusions were subsequently used in a variety of functional assays (detailed in Chapter

4).
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Chapter 4

Functional consequences of palmitoylation in

a2A-adrenoceptor-GolaCys351Ile fusion proteins



4.1 Introduction

Reversible attachment of palmitate to some GPCRs and G proteins is one example of a

dynamic modification thought to modulate cell signalling. Agonist-dependent regulation

of palmitoylation status has been shown to occur for both GPCRs (Ponimaskin et al.,

2001; Ng et al., 1994; Mouillac et al., 1992) and G proteins (Wedegartner and Bourne,

1994; Chen and Manning, 2000). The observation of agonist-regulation of

palmitoylation is suggestive of some important functional role for this modification.

Consequently a number of studies of GPCR and G protein palmitoylation have been

performed (Ponimaskin et al., 2001; Chen and Manning, 2000; Papoucheva et al., 2004)

and a wide variety of functional consequences have been reported (Qanbar and Bouvier,

2003; Hawtin et al., 2001: Ponimaskin et al., 2002; Miggin et al., 2003).

For G protein a-subunits two main roles of palmitoylation have been suggested. The

first is the regulation of the efficiency of interactions between RGS proteins and the Ga

protein. Ga subunit palmitoylation has been reported to cause decreased efficiency of

the RGS protein to stimulate GAP activity (Tu et al., 1997). This has been shown for a

number of Ga and RGS protein pairs and the extent of inhibition has been observed to

correlate with how well the two proteins interact (Ross and Wilkie, 2000). The second

role of palmitoylation is thought to be in targeting and anchoring the soluble Ga

polypeptides to the membrane (Wedegaertner, 1998; Dunphy and Linder, 1998) and

specialised sub-domains of the membrane such as lipid rafts (Mumby, 1997; Song et al.,

1997). Mutation of palmitoylation sites of some G protein a-subunits has also been

reported to decrease the efficiency of signalling. This has been shown for

Gsa (Wedegaertner et al., 1993) and Gqa (Edgerton et al., 1994). However, the

apparent alterations in efficiency of signalling may be attributable to absence of

membrane localisation. This was shown to be the case for the G, protein a-subunit

(Ugur et al., 2003), whereby normal signalling efficiency was recovered upon fusion of

the Ga subunit to the Ih-adrenoceptor.

It is assumed that the reason for attachment of palmitate to many rhodopsin-like GPCRs

must be for something other than membrane association, given that they are integral
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membrane proteins spanning the membrane seven times. It has therefore been suggested

that palmitoylation may play an important role in the functioning of GPCRs. For most

but not all (Chen et al., 1998, Hawtin et al., 2001) rhodopsin-like GPCRs, attachment of

palmitate occurs at one or more cysteine residues within the C-tenninal tail. For

rhodopsin it was shown that this palmitate was able to insert into the bilayer and thereby

create a 'fourth intracellular loop' (Ganter et al., 1992; Moench et al., 1994). From the

high-resolution three-dimensional structural information obtained by X-ray

crystallography of inactive bovine rhodopsin (Palczewski et al., 2000), the existence of

an eighth helix was reported. This helix is thought to have arisen by palmitate insertion

into the bilayer and several studies have suggested a role for this region in G protein

activation (Altenbach et al., 2001; Krishna et al., 2002; Okuno et al., 2003). The

conservation of sequence and structure across the family of rhodopsin-like GPCRs

suggests this will likely be the case for other family members. The downstream

consequences of GPCR palmitoylation have been studied for a significant number of

GPCRs and a number of very different responses have been observed. In some cases

mutations of the sites of palmitoylation have been shown to alter downstream signalling

or the regulation of receptors (O'Dowd et al., 1989, Kennedy and Limbird, 1993, 1994,

Loisel et al., 1996, Chen et al., 1998, Hawtin et al., 2001, Ponimaskin et al., 2002,

Miggin et al., 2003). In contrast, there are a number of other cases where mutations of

the sites of palmitoylation have been shown not to have any effect on the downstream

signalling (Eason et al., 1994) or the regulation of the receptor (Jin et al., 1997).

In this study the functional consequences of palmitoylation of the a2A-adrenoceptor and

the Gola protein are studied for the same palmitoylation-variant a2A-adrenoceptor-Go1a

fusion proteins used in Chapter 3. At present the data is limited concerning the

functional consequences of Gola protein (Grassie et al., 1994) and a2A-adrenoceptor

(Kennedy and Limbird, 1993) palmitoylation. The ability of the a2A-adrenoceptor to be

palmitoylated was shown to have no apparent affect on functional properties such as

coupling to G/Go proteins or receptor phosphorylation (Kennedy and Limbird, 1993;

1994). However in one study the removal of the palmitoylation site (by removal of a

portion of the C-terminal tail) of the a2A-adrenoceptor resulted in altered desensitisation

properties for this receptor (Eason et al., 1994). Given this limited breadth of

knowledge for the a2A-adrenoceptor and the Gola protein, it was decided to use the
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palmitoylation-variant uZA-adrenoceptor-Go1u fusion proteins in a range of functional

assays such as radioligand binding assays, GTPyS binding assays, GTPase assays and

receptor internalisation assays in order to assess the importance of protein

palmitoylation for this selection of functional properties.

116



4.2 Results

Expression of Ct2A-adrenoceptor-GolCtCys3S1Ile fusion proteins and determination

of their affinity for the agonist adrenaline and the Ct2-adrenoceptor antagonist

[3H]-RS-79948-197

The palmitoylation variant Ct2A-adrenoceptor-GoICtCys35IIle fusion proteins already

created and studied in terms of regulation of palmitoylation (Chapter 3) were

transiently transfected into HEK293T cells. After transfection, cells were harvested and

cell membranes were prepared for analysis. Ct2A-adrenoceptor-GoICtCys351Ile fusion

protein expression level was initially investigated by Western blot analysis. Immuno

detection of the GolCtprotein N terminus (via ONI antiserum) or the C terminus (via

OC2 antiserum) confirmed expression of the fusion proteins post transfection (Figure

4.1). Immunoblotting of transiently transfected membranes with both the ONI and OC2

antisera detected immuno-reactive bands of molecular mass -7S-IOOkDa (predicted

molecular weight 89kDa) which were not present in mock transfected membranes. In

addition, the immunodetection levels of the Ct2A-adrenoceptor-GoICtCys3Ser, Cys351Ile

(C3S) and Ct2A-adrenoceptor Cys442Ala-GoICtCys3Ser, Cys351Ile (C442A, C3S) fusion

proteins were similar to the levels of the other constructs when immunoblotting was

carried out with either the ONI or the OC2 antisera. This confirmed that the presence of

the CysSer mutation on the GolCtprotein did not affect the ability of the ONI antiserum

to recognise this region of the GolCtprotein.

The expression of the Ct2A-adrenoceptor-GoICtCys351Ile fusion proteins was further

assessed by the binding of a near saturating concentration (-SnM) of the tritiated

antagonist eH]-RS-79948-197 (Milligan et al., 1997). From these experiments the

transient membrane expression of each construct was estimated to be in the region of

6.5 pmol/mg (Figure 4.2, Table 4.1).

In order to obtain a more accurate measurement of each a2A-adrenoceptor-

GoiaCys351Ile fusion protein expression level, saturation binding assays were performed

using various concentrations of tritiated antagonist eH]-RS-79948-197 (ranging from
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0.05 to SnM). From these experiments the expression level (Bmax) and the affinity for

the antagonist (KI) for each construct was obtained (Figure 4.3, Table 4.2). Again, the

expression levels of all u2A-adrenoceptor-GoluCys35IIle fusion protein constructs were

in the region of 6.5 pmol/mg. The affinity for eH]-RS-79948-197 for all four

palmitoylation variant fusion proteins was approximately 0.32nM. Neither the values

for Bmax nor KI were significantly different (p>O.OS) for each of the u2A-adrenoceptor-

GoluCys351Ile fusion protein constructs.

Next the affinity for the natural ligand adrenaline was calculated by assessing its ability

to compete with eH]-RS-79948-197 for binding to the u2A-adrenoceptor-GoluCys35IIle

fusion protein constructs (Figure 4.4, Table 4.3). From these experiments is was

apparent that the presence of adrenaline caused a competitive biphasic inhibition of

eH]-RS-79948-197 binding to the u2A-adrenoceptor-GoluCys35IIle fusion protein

constructs with ICso values in the region of 20nM and 2.2J.lM (corresponding to high

and low affinity binding sites) for all four palmitoylation variant constructs. From these

IC50 values the K for adrenaline was calculated (see Table 4.3) for each construct and

were not found to be statistically different (p>O.OS).

Assessment of the ability of the u2A-adrenoceptor-GOluCys351Ile fusion proteins to

activate signalling

The ability of the u2A-adrenoceptor-GoluCys351Ile fusion proteins to activate signalling

was assessed in terms of two properties, the ability to bind GTP (assessed via a GTPyS

binding assay) and the ability to hydrolyse GTP (assessed via a high affinity GTPase

assay).

In order to compare the GTPyS binding of all palmitoylation variant u2A-adrenoceptor-

G
O
luCys351Ile fusion proteins a number of control experiments had to be performed in

order to establish appropriate experimental conditions. These control experiments were

not performed on all four palmitoylation variant constructs but instead were carried out

for the u2A-adrenoceptor-GoluCys35IHe (WT) and the u2A-adrenoceptor Cys442Ala-

3 351 (c442A C3S) fu . .GolUCyS Ser, Cys He , sion protems only. The effects of increasing the
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amount of fusion protein used in the assay and increasing incubation times were

assessed in Figure 4.5 and Figure 4.6 respectively. From Figure 4.5 increasing [35S]

GTPyS binding was observed with increasing quantities of fusion protein. e5S] GTPyS
binding was saturated with quantities of fusion protein of 50 finol and above. For this

reason it was decided to use IOfmol fusion protein/tube in subsequent assays.

From Figure 4.6 increasing e5S] GTPyS binding was observed with increasing lengths

of incubation. Saturation of esS] GTPyS binding was observed after -5 min. For this

reason it was decided to use a 2.5 min incubation length in subsequent assays. Therefore

in all subsequent assays an incubation time of 2.5 min was used to assess GTPyS

binding to 10 finol/tube of each u2A-adrenoceptor-GoluCys3SIIle fusion protein.

Next a concentration-response experiment was performed in order to establish an

appropriate concentration of adrenaline to be used in subsequent assays (Figure 4.7,

Table 4.4). Figure 4.7 showed a concentration dependent increase in esS] GTPyS

binding for both fusion proteins. The concentration-response curves and resultant ECso

determination for GTPyS binding to the two u2A-adrenoceptor-GoluCys3SIIle fusion

proteins was found not to be statistically different (p>0.05) with the ECso value for both

in the region of 10nM.

Once the appropriate experimental conditions had been established, GTPyS binding for

all constructs were compared within one assay (Figure 4.8, Table 4.5). In the presence

of the maximally effective concentration of adrenaline (10-4M) GTPyS binding was

significantly stimulated over basal levels (p<O.05) for all u2A-adrenoceptor-

GoluCys351Ile fusion constructs. However upon comparison of the levels of adrenaline

stimulated GTPyS binding for each u2A-adrenoceptor-GoluCys35IIle fusion construct

they were found not to be statistically different (p>0.05).

In order to assess the ability ofthe four u2A-adrenoceptor-GoluCys3SIIle fusion proteins

to hydrolyse GTP, it was necessary to perform a number of control experiments to

establish appropriate experimental conditions for subsequent assays. The effects of

different incubation lengths and amounts of fusion protein used in the assay were

assessed in Figure 4.9 (for WT) and Figure 4.10 (for C442A, C3S). From these
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experiments it was concluded that no significant difference in either basal or IOOJlM

adrenaline-stimulated GTPase activity was found for the incubation periods of 10, 20,

30 or 40 min or at four different protein amounts (O.5Jlg, 1.5Jlg, 3.0Jlg and 6.0Jlg) for

either fusion protein. Itwas therefore decided that an incubation time of 40 min (as used

in Hoffinan et aI., 2001) would be used to assess high affinity GTPase activity of

1.5Jlgltube of membranes expressing each u2A-adrenoceptor-GoluCys35IIle fusion

protein.

Next a concentration-response experiment was performed in order to establish an

appropriate concentration of adrenaline to be used in subsequent assays (Figure 4.11,

Table 4.6). Figure 4.11 showed a concentration dependent increase in high affinity

GTPase activity for both fusion proteins. The concentration-response curves and

resultant ECso determination for high affinity GTPase activity for the two U2A-

adrenoceptor-GoluCys3s1I1e fusion proteins (WT and C442A, C3S) was found not to be

statistically different (p>0.05) with the ECso value for each in region of 65nM.

Once the appropriate experimental conditions had been established, high affinity

GTPase activities for all constructs were compared within one assay (Figure 4.12,

Table 4.7). In the presence of the maximally effective concentration of adrenaline (Iu

4M), high affinity GTPase activity was significantly stimulated (p<0.05) -3-4-fold

compared with basal levels for all u2A-adrenoceptor-GoluCys3SIIle fusion constructs.

However upon comparison of the levels of adrenaline stimulated high affinity GTPase

activity for each u2A-adrenoceptor-GoluCys35IIIe fusion construct they were found not

to be statistically different (p>0.05).

High affinity GTPase activities for all constructs were also compared in the presence of

GST purified (Figure 4.13) RGSI6 protein (both in the presence and absence of the

maximally effective concentration of adrenaline (IO-4M). In this experiment, high

affinity GTPase activity was significantly stimulated -3-fold compared with basal levels

(p<0.05) for all u2A-adrenoceptor-GoluCys35IIle fusion constructs in the presence of

adrenaline and was significantly stimulated -II-fold compared with basal levels

(p<O.05) for all u2Kadrenoceptor-GoluCys35lIle fusion constructs in the presence of

adrenaline plus RGS 16 protein (Figure 4.14, Table 4.8). Interestingly and
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unexpectedly, there was also a very small but nevertheless significant (p=0.042)

stimulation of RGSl6-stimulated high GTPase activity of -1.3-fold compared with

basal levels. This is suggestive of a modest effect of RGSI6 on rates of basal GTPase

activity. Once again, upon comparison of the levels of adrenaline stimulated high

affinity GTPase activity (p>0.05), adrenaline plus RGS 16 stimulated high affinity

GTPase activity (p>0.05) or RGSl6-stimulated high GTPase activity (p>0.05) for each

individual {X,2A-adrenoceptor-Gol{X,Cys35II1efusion construct they were found not to be

statistically different.

In order to obtain a more accurate comparison ofthe high affinity GTPase activity of all

four {X,2A-adrenoceptor-GolaCys35II1efusion constructs it was necessary to perform high

affinity GTPase assays in the presence of various concentrations of GTP (substrate)

(Figures 4.15a-4.18a). This allowed conversion of the generated data to Eadie-Hofstee

plots for ease of visualisation of the effects on Vmax and on Km for GTP hydrolysis

(Figures 4.15b-4.18b, Tables 4.9 and 4.10).

In these experiments the abilities of the four a2A-adrenoceptor-GolaCys35IIle fusion

constructs to hydrolyse GTP in the basal state, in the presence of adrenaline, as well as

in the presence of adrenaline plus RGS16 protein were assessed. The basal high affinity

GTPase activity for each was found to be in the region of 22 pmollmg/min, whereas the

adrenaline-stimulated high affinity GTPase activity for each was found to be in the

region of 44 pmollmg/min, a ~2-fold stimulation compared with basal (p<0.05). The

high affinity GTPase activity in the presence of RGS 16 and adrenaline for each was

found to be in the region of 340 pmollmg/min, a -I5-fold stimulation compared with

basal (p<0.05).

Given the slight differences in expression levels for each construct the data was

recalculated to give turnover numbers for GTPase activity (Table 4.11). The turnover

numbers have been calculated for basal (~3.6 min-I), adrenaline-stimulated (-6.7 min-I)

and RGSl6 (-60 min-I) in the presence of adrenaline-stimulated GTPase activity. Once

again, the results from the GTPase experiments show that there was no difference in the

basal (p>0.05), adrenaline-stimulated (p>0.05) or RGS 16 in the presence of adrenaline-

121



stimulated (p>0.05) turnover of GTP when each condition is compared for the four

palmitoylation-variant fusion proteins.

Analysis of the ability of the a2A-adrenoceptor-GolaCys351Ile fusion proteins to

internalise in response to adrenaline

After following the procedure of cell labelling, immunoprecipitation, SOS PAGE,

western transfer and immunoblotting as detailed in section 2.7.7 all four palmitoylation-

variant aZA-adrenoceptor-GolaCys351Ile fusion proteins were found to be biotin labelled

(Figure 4.19). Immunoblotting detected imrnuno-reactive bands of molecular mass

~ 1OOkDa (predicted molecular weight for unglycosylated fusion protein is 89kDa). In

addition, bands of molecular mass ~200-250kDa and relatively faint bands of -40-

50kDa were detected. The higher molecular weight bands may correspond to dimers of

the fusion protein and the lower molecular weight bands may correspond to the aZA-

adrenoceptor (as a breakdown product of the fusion protein). Next, a time-course format

receptor internalisation assay was performed for the aZA-adrenoceptor-GolaCys35IIIe

(WT) and aZA-adrenoceptor Cys44ZAla-GolaCys3Ser, Cys351Ile (C442A, C3S) fusion

proteins (Figure 4.20). Cells were treated with vehicle or 100).1Madrenaline for times

between 5-90 min prior to the rest of the protocol as detailed in section 2.7.7.

Imrnunoblotting once again detected imrnuno-reactive bands of molecular mass

~100kDa (corresponding to the fusion protein) and -200-2S0kDa (thought to be fusion

protein dimers). This time, the relatively faint bands of -40-50kDa were not detected,

supporting the hypothesis that these bands may have arisen by fusion protein

breakdown. Upon stimulation by 100).1M adrenaline neither the aZA-adrenoceptor-

GoiaCys351I1e (WT) nor the aZA-adrenoceptor Cys44ZAla-GolaCys3Ser, Cys351IIe

(C442A, C3S) fusion proteins were found to internalise after 90 min stimulation. As a

control, it was decided to assess the extent of intern ali sat ion of the aZA-adrenoceptor for

comparison with the aZA-adrenoceptor-GolaCys351Ile fusion protein. In Figure 4.21,

cells expressing the aZA-adrenoceptor alone (a) or the aZA-adrenoceptor-GolaCys351Ile

(WT) fusion protein (b) were treated with vehicle or 100).1Madrenaline for either 15 or

45 min prior to the rest of the protocol as detailed in section 2.7.7. Immunoblotting of

aZA_adrenoceptor-GolaCys351Ile (WT) revealed the same pattern as already observed in

Figure 4.20 (a). When imrnunoblotting of aZA-adrenoceptor was performed, immuno-
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reactive bands of molecular mass ~50kDa corresponding to the a2A-adrenoceptor were

observed (the predicted molecular weight for the unglycosylated receptor is 40kDa). In

addition, bands of molecular mass between 105 and 250kDa were detected. These high

molecular weight bands may correspond to multimers of the a2A-adrenoceptor. In

support of this hypothesis, agonist-stimulated internalisation is observed for both the

50kDa a2A-adrenoceptor band and for the high molecular weight band. Taken together

these results demonstrate that the a2A-adrenoceptor can undergo adrenaline-stimulated

internalisation but the a2A-adrenoceptor-GolaCys35IIle fusion proteins cannot.
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Figure 4.1

Western blot analysis of membranes transiently transfeeted with the UlA-

adrenoceptor-Cj, aCys351lie fusion proteins

31lg of membrane preparations from HEK293T cells transiently transfected with the

empty vector (peDNA3, 1), a2A-adrenoceptor-GolaCys351Ile (WT, 2), a2ACys442Ala-

adrenoceptor-GOlaCys351Ile (C442A, 3), a2A-adrenoceptor-GolaCys3Ser, Cys351Ile(e3S,

4) or a2ACys442Ala-adrenoceptor-Gg.oflys/Ser, Cys351lIe (C442 A, C3S, 5) fusion

proteins were resolved on SDS-PAGE gels then transferred onto nitrocellulose

membranes. Immunoblotting was carried out with a) ONI and b) oe2 antisera. Two

further experiments produced similar results.
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Figure 4.1
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Figure 4.2

Analysis of expression levels of uZA-adrenoceptor-GoluCys351IIe fusion proteins:

determined from binding of a SnM concentration of eH]-RS-79948-197 to

membranes expressing the fusion proteins

HEK293T cells were transfected to express the u2A-adrenoceptor-GoluCys351Ile fusion

proteins. Membranes expressing the fusion proteins were prepared and binding of 5nM

of eH]-RS-79948-197 to O.5~g of each membrane sample was assessed. In this figure

the bar corresponding to u2A-adrenoceptor-GoluCys35II1e (WT) is shown in blue, the

bar corresponding to u2A-adrenoceptor Cys442Ala-GoluCys35lI1e (C44zA) is shown in

green, the bar corresponding to u2A-adrenoceptor-GoluCys3Ser, Cys351Ile (C3S) is

shown in purple and the bar corresponding to u2A-adrenoceptor Cys442Ala-

GOluCys3Ser, Cys351Ile (C44zA, C3S) is shown in brown. Results are from triplicate

determinations. Analysis is representative of three similar experiments.

Table 4.1

Comparison of expression levels of ulA-adrenoceptor-Gol uCys351lIe fusion proteins

determined from binding of a SnM concentration of eH]-RS-79948-197 to

membranes expressing the fusion proteins

The results from Figure 4.2 were presented in a tabular form for clarity of comparison

between the constructs.
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Figure 4.2

Table 4.1

8000

Construct Expression Level
(fmoVJI!g)

a2A-adrenoce.gtor-Go1 aCys35I Ile (WT) 6515 +/- 325
a2ACys442Ala-adrenoceptor- 6203 +/- 641
GolaCys351Ile (C442A)
a2A-adrenoceptor- 6875 +/- 411
GolaCys3Ser,Cys351Ile (C3S)

442 1 3 7015 +/- 495azACys A a-adrenoceptor-Gx.o.Cys Ser,
Cys351Ile (C442A, C3S)



Figure 4.3

Analysis of expression levels of <X2A-adrenoceptor-Gol<xCys35IUe fusion proteins by

eH]-RS-79948-197 saturation binding analysis to membranes expressing the fusion

proteins

HEK293T cells were transfected to express the <X2A-adrenoceptor-Gol<xCys351Ilefusion

proteins. Membranes expressing the fusion proteins were prepared and saturation

binding of eH]-RS-79948-197 (using O.05-5nM radioligand) to O.5J.lg of each

membrane sample was assessed. In this figure the line corresponding to a.2A-

adrenoceptor-Gol<xCys351Ile (WT) is shown in blue, the line corresponding to <X2A-

adrenoceptor Cys442Ala-Gol<xCys351Ile (C442A) is shown in green, the line

corresponding to <X2A-adrenoceptor-Gol<xCys3Ser,Cys351Ile (C3S) is shown in purple

and the line corresponding to <X2A-adrenoceptor Cys442Ala-Gol<xCys3Ser, Cys351ne

(C442A, C3S) is shown in brown. Results are from triplicate determinations. Analysis is

representative of three similar experiments.

Table 4.2

Comparison of <X2A-adrenoceptor-Gol<xCys35II1e fusion protein expression levels

and ~ for eH]-RS-79948-197 binding to <X2A-adrenoceptor-Gol<xCys35II1e fusioD

proteins: determined by saturation binding analysis to membranes expressing the

fusion proteins

The results from Figure 4.3 were presented in a tabular form for clarity of comparison

between the constructs. Non-linear regression analysis was used to determine the

maximal expression level (pmollmg) and the equilibrium dissociation constant, K<t (nM)

for radioligand binding to each <X2A-adrenoceptor-Gol<xCys351Ile fusion protein.
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Figure 4.3
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Table 4.2

Construct Expression Level l(](nM) for
(fmollm2) r3H] RS-79948-197

a2A -adrenoceptor- 6715 +/- 199 0.30 +/- 0.03
GO]aCys351Ile (WT)

442 1 dr 5998 +/- 214 0.34 +/- 0.03a2ACys A a-a enoceptor-
GoiaCys35lIle (C442A)
a2A-adrenoceptor- 6950 +/- 220 0.32 +/- 0.03
GOlaCys3Ser,Cys35I Ile (C3S)

442Al d 6175 +/- 131 0.32 +/- 0.02a2ACys a-a renoceptor-
Go]aCys3Ser,
Cys351Ile (C442A, C3S)



Figure 4.4

Competitive inhibition by the agonist adrenaline of [3H)-RS-79948-197 binding to

membranes expressing the u2A-adrenoceptor-GotuCys35tIle fusion proteins

HEK293T cells were transfected to express u2A-adrenoceptor-GoluCys35IIle fusion

proteins. Membranes were prepared and the ability of adrenaline to compete with [3H]_

RS-79948-197 for binding to the u2A-adrenoceptor-GoluCys35IIle fusion proteins was

assessed. All results are presented as a percentage of the specific eH]-RS-79948-197

binding (in the absence of adrenaline: set as 100%). Results were fitted to a two-site

curve using Graphpad Prism program. In this figure the line corresponding to U2A-

adrenoceptor-GoluCys35lIle (WT) is shown in blue, the line corresponding to Cl2A-

adrenoceptor Cys442Ala_GoluCys35IIle (C442A) is shown in green, the line

corresponding to u2A-adrenoceptor-GoluCys3Ser, Cys351Ile (C3S) is shown in purple

and the line corresponding to u2A-adrenoceptor Cys442Ala-Go IuCys3Ser, Cys351ne

(C442A, C3S) is shown in brown. Results are from triplicate determinations. Analysis is

representative of three similar experiments.

Table 4.3

Comparison of competitive inhibition by the agonist adrenaline of eH]-RS-79948-

197 binding to membranes expressing the u2A-adrenoceptor-GotuCys3S1Ile fusion

proteins

Non-linear regression analysis on the results from Figure 4.4 determined the ICso

values (mean +/- SEM) for adrenaline for each u2A-adrenoceptor-GolaCys35IIle fusion

protein. Subsequently, from these IC50 values the K; for adrenaline was calculated. The

results are presented in a tabular form for clarity of comparison between the constructs.

Note that the two IC50 and K; values correspond to the low and high affinity binding

sites.
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Figure 4.4

Table 4.3
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Log [Adrenaline] (M)

Construct ICso 1 (nM) ICso 2 (JlM) s, 1 (nM) s, 2 (JlM)
for for for for

adrenaline adrenaline adrenaline adrenaline
(WT) 28.7+/-13.1 2.4 +/- 1.1 3.6 +/- 1.6 0.29 +/- 0.14
(c"'I":A) 14.3 +/- 24.3 2.0 +/- 2.1 1.8 +/- 3.0 0.25 +/- 0.26
(C3S) 13.4+/-11.3 2.3 +/- 1.1 1.7 +/- 1.4 0.28 +/- 0.14
(C44Z A, e'S) 21.0+/-15.4 2.1 +/- 1.5 2.6 +/- 1.9 0.26 +/- 0.19



Figure 4.5

Analysing levels of [35S]GTPyS binding to various quantities of a2A-adrenoceptor-

GOIaCys351Ile fusion proteins

HEK293T cells were transfected with a2A-adrenoceptor-GolaCys351 lIe (WT, blue line)

or a2ACys442Ala-adrenoceptor-GolaCys3Ser, Cys3S1lie (C442A, C3S, brown line) fusion

proteins. Membranes were prepared from these cells and samples containing various

quantities (10-100 fmol) of eH]-RS-79948-197 binding sites were used to measure

100!-lMadrenaline-stimulated binding of esS] GTPyS to the two fusion proteins during

a 2.5 min incubation. Results are from triplicate determinations. Analysis is

representative of three similar experiments.
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Figure 4.6

Analysing the time course of (35S) GTPyS binding to u2A-adrenoceptor-

GOluCys351I1efusion proteins

HEK293T cells were transfected with uZA-adrenoceptor-GoluCys35IIle (WT, blue line)

or UZACys442Ala-adrenoceptor-Gg.uf'ys''Ser, Cys351lie (C442 A, C3S, brown line) fusion

proteins. Membranes were prepared from these cells and samples containing 10 finol of

[3H]-RS-79948-197 binding sites were used to measure 100J-lM adrenaline-stimulated

binding of e5S] GTPyS to the two fusion proteins over a range of incubation lengths

(0.5-20 min). Results are from triplicate determinations. Analysis is representative of

three similar experiments.
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Figure 4.7

Analysing levels of esS] GTPyS binding to u2A-adrenoceptor-GoluCys351Ile fusion

proteins in response to various concentrations of adrenaline

HEK293T cells were transfected with u2A-adrenoceptor-GoluCys3SIIle (WT, blue line)

or U2ACys442Ala-adrenoceptor-Gx.cx'ys'Ser, Cys3SIIle (C442A, C3S, brown line) fusion

proteins. Membranes were prepared from these cells and samples containing 10 finol of

eH]-RS-79948-197 binding sites were used to measure (1O-11_1O-3M) adrenaline-

stimulated binding of esS] GTPyS to the two fusion proteins. esS] GTPyS binding was

expressed as a percentage of the maximal esS] GTPyS binding levels for each construct

(- 3000-4000 dpm). This allowed accurate comparison of ECso values for the two

constructs. Results are from triplicate determinations. Analysis is representative of three

similar experiments.

Table 4.4

Comparison of levels of esS] GTPyS binding to u2A-adrenoceptor-GoluCys351Ile

fusion proteins in response to various concentrations of adrenaline

Non-linear regression analysis on the results from Figure 4.7 allowed calculation of the

ECso values (mean +/- SEM) for adrenaline-stimulated esS] GTPyS binding to each

u2A-adrenoceptor-GoluCys3SIIle fusion protein. These results are presented in a tabular

form for clarity of comparison between the constructs.
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Figure 4.7
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Table 4.4

Log [Adrenaline] (M)

Construct ECso (nM) for
adrenaline stimulation
of GTPyS binding

u2A-adrenoceptor-GoluCys35IIle (WT) 7.7 +/- 4.1
442 1 dr 3 15.1 +/- 6.2U2ACyS A a-a enoceptor-Gj.uf.ys Ser,

Cys35 Ine (C442 A, C3S)



Figure 4.8

Analysis of the e5S] GTPyS binding of all four palmitoylation-variant a2A-

adrenoceptor-Cg, aCys351lie fusion proteins

HEK293T cells were transfected with empty vector (pcDNA3, black bars) or to express

either aZA-adrenoceptor-GolaCys351Ile (WT, blue bars), a2ACys442 Ala-adrenoceptor-

GOIaCys351Ile (C442A, green bars), a2A-adrenoceptor-GolaCys3Ser, Cys351Ile (C3S,

purple bars) or a2ACys442 Ala-adrcnoceptor-Gx.uf'ys'Ser, Cys351Ile (C442A, C3S, brown

bars) fusion proteins. Membranes were prepared from these cells and samples

containing lOfmol of eH]-RS-79948-l97 binding sites were used to measure basal

(open bars) and 100 IlM adrenaline-stimulated (filled bars) binding of e5S] GTPyS to

the various fusion proteins during a 2.S min incubation. Results are from triplicate

determinations. Analysis is representative of three similar experiments.

Table 4.5

Comparison of basal and adrenaline-stimulated [35S] GTPyS binding of all four

palmitoylation-variant a2A-adrenoceptor-GolaCys351Ile fusion proteins

The results from Figure 4.8 were presented in a tabular form for clarity of comparison

between the constructs. Results are presented as a mean +/- SEM for basal and

adrenaline-stimulated esS] GTPyS binding to each aZA-adrenoceptor-GolaCys3S1Ile

fusion protein.
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Figure 4.8

Table 4.5

Basal Adrenaline

Construct Basal esS] GTPyS Adrenaline-
binding stimulated esS]
(dpm) GTPyS binding

(dpm)
peDNA3 32 +/- 2 41 +/- 5

a2A -adrenoceptor- 390 +/- 31 6378 +/- 290
GOlaCys351Ile (WT)

a2ACys 442Ala-adrenoceptor- 333 +/- 51 6412 +/- 300
GolaCys351Ile (C442A)
a2A-adrenoceptor- 445 +/- 52 6446 +/- 188

GOlaCys3Ser,Cys35lne (C3S)
a2ACys 442Ala-adrenoceptor- 392 +/- 23 5971 +/- 313

GOIcsCysSer,
Cys351Ile (C442A, C3S)



Figure 4.9

Testing various membrane amounts and incubation lengths for basal and

adrenaline-stimulated high affinity GTPase activity in membranes expressing the

u2A-adrenoceptor-GoluCys35IIle (WT) fusion protein.

HEK293T cells were transfected with u2A-adrenoceptor-GoluCys35IIle (WT) fusion

protein. Membranes were prepared from these cells and samples containing various

quantities (0.5Jlg, 1.5Jlg, 3Jlg, 6Jlg) of membranes for 10 min (blue), 20min (green),

30min (purple) or 40min (brown) were used to measure basal (a) or IOOJlMadrenaline-

stimulated (b) high affinity GTPase activity to the fusion protein. Results are from

triplicate determinations. Analysis is representative of three similar experiments.
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Figure 4.10

Testing various membrane amounts and incubation lengths for basal and

adrenaline-stimulated high affinity GTPase activity in membranes expressing the

a2ACys442 Ala-adrenoceptor-Gsi aCys3Ser, Cys3S1lie (C442A, C3S) fusion protein.

HEK293T cells were transfected with a2ACys442 Ala-adrenoceptor-Gsj aCys3Ser,

Cys351Ile (C442A, C3S) fusion protein. Membranes were prepared from these cells and

samples containing various quantities (O.5~g, 1.5~g, Jug, 6~g) of membranes for 10

min (blue), 20min (green), 30min (purple) or 40min (brown) were used to measure

basal (a) or 100~M adrenaline-stimulated (b) high affinity GTPase activity to the fusion

protein. Results are from triplicate determinations. Analysis is representative of three

similar experiments.
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Figure 4.11

Adrenaline concentration-response curves for activation of high affinity GTPase

activity in u2A-adrenoceptor-GoluCys3S1Ile fusion proteins.

HEK293T cells were transfected with u2A-adrenoceptor-GoluCys351Ile (WT, blue) or

U2ACys442Ala-adrenoceptor-Gj.ofjys''Ser, Cys351Ile (C442A, C3S, brown) fusion

proteins. Membranes were prepared from these cells and the potency of adrenaline to

stimulate high affinity GTPase activity in the u2A-adrenoceptor-GoluCys35IIle fusion

proteins was examined. Results are from triplicate determinations. Analysis is

representative of three similar experiments.

Table 4.6

Comparison of the potency of adrenaline to activate high affinity GTPase activity

in u2A-adrenoceptor-GoluCys3S1Ile fusion proteins

Non-linear regression analysis on the results from Figure 4.11 allowed calculation of

the EC50 values (mean +/- SEM) for adrenaline-stimulated high affinity GTPase activity

for each u2A-adrenoceptor-GoluCys351Ile fusion protein. These results are presented in a

tabular form for clarity of comparison between the constructs.
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Figure 4.11
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Table 4.6

Construct ECso (nM) for
adrenaline stimulation
of high affinity GTPase

activity
351 1 ) 58.4 +/- 38.6a,2A-adrenoceptor-GoI «Cys I e (WT

a,2ACys 442Ala-adrenoceptor-G, IoCys'' Ser, 74.5 +/- 37.5
Cys351Ile (C442A, C3S)



Figure 4.12

Analysis of the basal and adrenaline-stimulated high affinity GTPase activity of all

four palmitoylation-variant a2A-adrenoceptor-GolaCys3S1Ile fusion proteins

HEK293T cells were transfected with empty vector (pcDNA3, black) or to express

either a2A-adrenoceptor-Gj, aCys351lIe (WT, blue), a2ACys442Ala-adrenoceptor-

GOlaCys351lIe (C442A, green), a2A-adrenoceptor-GolaCys3Ser, Cys351lIe (C3S, purple)

or a2ACys442Ala-adrenoceptor-GolaCys3Ser, Cys351Ile (C442A, C3S, brown) fusion

proteins. Membranes were prepared from these cells and samples containing 1.5J.1gof

membranes were used to measure basal and 100 J.1Madrenaline-stimulated high affinity

GTPase activity of all four palmitoylation-variant a2A-adrenoceptor-GolaCys351ne
fusion proteins. Results are from triplicate determinations. Analysis is representative of

three similar experiments.

Table 4.7

Comparison of basal and adrenaline-stimulated high affinity GTPase activity of aU

four palmitoylation-variant a2A-adrenoceptor-GolaCys351I1e fusion proteins

The results from Figure 4.12 were presented in a tabular form for clarity of comparison

between the constructs. Results are presented as a mean +/- SEM for adrenaline-

stimulated high affinity GTPase activity of all four palmitoylation-variant a2A-

adrenoceptor-GolaCys351lIe fusion proteins.
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Figure 4.12

a)

Table 4.7

Basal Adrenaline

Construct Basal high affinity Adrenaline-
GTPase activity stimulated high
(pmollmglmin) affinity GTPase

activity
(pmollmg/min)

pcDNA3 1.0 +/- 0.9 1.2 +/- 1.0

a2A -adrenoceptor- 9.6 +/- 1.2 33.5 +/- 4.0
GolaCys351Ue (WT)
a2ACys 442Ala-adrenoceptor- 11.52 +/- 1.5 35.3 +/- 3.5
GolaCys351Ile (C442A)
a2A -adrenoceptor- 9.2 +/- 1.4 34.9 +/- 2.7
GolaCys3Ser,Cys351Ile (C3S)
a2ACys 442Ala-adrenoceptor- 8.9 +/- 1.7 35.9 +/- 2.9
GOIaCys3Ser, Cys351De (C442A, C3S)



Figure 4.13

Coommassie Blue staining for purified RGSI6-GST following protein purification

using Glutathione Sepharose 4B gel

Protein was stained for with Coommassie Blue following electrophoresis of purified

protein and crude bacterial extracts using NuPAGE 4-12% Bis-Tris pre-cast gels.

Protein of an apparent Mr of approximately 50kDa was detected, consistent with the

calculated mass of the RGS16-GST fusion protein. Rainbow markers are marked M,

lane 1 contains bacterial sample prior to IPTG induction, lane 2 contains bacterial

sample at 4 hours post IPTG induction, lanes 3-9 contain samples of purified RGS16-

GST protein. The protein at approximately 24-26kDa corresponds to degraded RGSI6-
GST.
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Figure 4.14

Analysis of the basal, adrenaline-stimulated, RGSl6-stimulated and RGS16 in the

presence of adrenaline-stimulated high affinity GTPase activity of all four

palmitoylation-variant u2A-adrenoceptor-GoluCys35II1e fusion proteins

HEK293T cells were transfected with empty vector (pcDNA3, black) or to express

either u2A-adrenoceptor-Gol UCys35IlIe (WT, blue), a2ACys442Ala-adrenoceptor-

GoluCys35lIle (C442A, green), a2A-adrenoceptor-GoluCys3Ser, Cys35lIle (C3S, purple)

or u2ACys442Ala-adrenoceptor-GoluCys3Ser, Cys35lIle (C442A, C3S, brown) fusion

proteins. Membranes were prepared from these cells and samples containing 1.5J..lgof

membranes were used to measure basal, 100J..lMadrenaline-stimulated, 1J..lMRGS 16-

stimulated as well as 1J..lMRGS 16 in the presence of 100J..lMadrenaline-stimulated high

affinity GTPase activity. This was done for all four palmitoylation-variant U2A-

adrenoceptor-GolaCys351Ile fusion proteins. Results are from triplicate determinations.

Analysis is representative ofthree similar experiments.

Table 4.8

Comparison of basal, adrenaline-stimulated, RGSl6-stimulated and RGS16 in the

presence of adrenaline-stimulated high affinity GTPase activity of all four

palmitoylation-variant <x'2A-adrenoceptor-Got<X.Cys35II1efusion proteins

The results from Figure 4.14 were presented in a tabular form for clarity of comparison

between the constructs. Results are presented as a mean +/- SEM for basal, adrenaline-

stimulated, RGS 16-stimulated and RGS 16 in the presence of adrenaline-stimulated high

affinity GTPase activity of all four palmitoylation-variant <X.2A-adrenoceptor-

GoluCys351Ile fusion proteins.
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Figure 4.14

a)
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Table 4.8

Construct Basal high Adrenaline- RGS16 high RGS16+
affinity GTPase stimulated high affinity GTPase Adrenaline-

activity affinity GTPase activity stimulated high
(pmollmg/min) activity (pmollmg/min) affinity GTPase

(pmollmg/min) activity
(pmol/mg/min)

peDNA3 2.1 +/- 0.9 1.1 +/- 0.6 2.6 +/- 1.0 3.1 +/- 0.8

a2A- 32.l +/- 1.7 93.7 +/- 4.0 44.1 +/- 4.0 389.8 +/- 10.3
adrenoceptor-

351nGolaCys e
(WT)

442 1 32.2 +/- 6.9 91.8 +/- 7.1 41.3 +/- 2.6 359.6 +/- 15.1a2ACys A a-
adrenoceptor-

35tnGolaCys e
(C442A)
a2A- 27.1 +/- 3.4 99.8 +/- 4.6 40.0 +/- 3.2 368.2 +/- 9.9
adrenoceptor-
GolaCys3Ser,
Cys3S1ne (C3S)

442 1 36.8 +/- 5.2 92.5 +/- 5.8 44.3 +/- 7.0 341.7 +/- 16.1a2ACys A a-
adrenoceptor-

3GolaCys Ser,
Cys351ne
(C442A, C3S)



Figure 4.15

Basal and adrenaline-stimulated high affinity GTPase activity of membranes

expressing the u2A-adrenoceptor-GoluCys3SIIIe (WT) fusion protein in the presence

and absence of RGS16-GST

High affinity GTPase activity of membranes expressing the u2A-adrenoceptor-

GoluCys351I1e(WT) fusion protein was assessed for three conditions: basal (black line),

lOO)lM adrenaline-stimulated (red line) and l)lM RGS16 in the presence of lOOJ.lM

adrenaline-stimulated (blue line). The rate of GTP hydrolysis, V (pmol/mg/min) was

assessed for increasing concentrations of GTP as substrate (a). The data generated were

converted to Eadie-Hofstee plots to analyse effects on Km for GTP hydrolysis and Vmax
(b). Results are from triplicate determinations. Analysis is representative of three similar

experiments.
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Figure 4.15
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Figure 4.16

Basal and adrenaline-stimulated high affinity GTPase activity of membranes

expressing the a2ACys442Ala-adrenoceptor-GotaCys3St lie (C442A) fusion protein in

the presence and absence ofRGSI6-GST

High affinity GTPase activity of membranes expressing the a2A Cys442Ala-adrenoceptor-

GoluCys351Ue (C442A) fusion protein was assessed for three conditions: basal (black

line), lOOIlM adrenaline-stimulated (red line) and lllM RGS 16 in the presence of

IOOIlMadrenaline-stimulated (blue line). The rate of GTP hydrolysis, V (pmollmglmin)

was assessed for increasing concentrations of GTP as substrate (a). The data generated

were converted to Eadie-Hofstee plots to analyse effects on Km for GTP hydrolysis and

Vmax (b). Results are from triplicate determinations. Analysis is representative of three

similar experiments.
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Figure 4.17

Basal and adrenaline-stimulated high affinity GTPase activity of membranes

expressing the a2A-adrenoceptor-GolaCys3Ser, Cys351Ue (C3S) fusion protein in the

presence and absence of RGS16-GST

High affinity GTPase activity of membranes expressing the a2A-adrenoceptor-

GolaCys3Ser, Cys351Ile (C3S) fusion protein was assessed for three conditions: basal

(black line), lOOIlM adrenaline-stimulated (red line) and 111MRGS 16 in the presence of

IOOIlM adrenaline-stimulated (blue line). The rate of GTP hydrolysis, V (pmol/mg/min)

was assessed for increasing concentrations of GTP as substrate (a). The data generated

were converted to Eadie-Hofstee plots to analyse effects on Km for GTP hydrolysis and

Vmax (b). Results are from triplicate determinations. Analysis is representative of three

similar experiments.
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Figure 4.18

Basal and adrenaline-stimulated high affinity GTPase activity of membranes

expressing the a2ACys442Ala-adrenoceptor-GotaCys3Ser, Cys35tIle (C442A, ClS)

fusion protein in the presence and absence of RGS16-GST

High affinity GTPase activity of membranes expressing the a2ACys442Ala-adrenoceptor-

GoluCys3Ser, Cys351Ile (C442A, C3S) fusion protein was assessed for three conditions:

basal (black line), 100~M adrenaline-stimulated (red line) and I~M RGS16 in the

presence of IOO~M adrenaline-stimulated (blue line). The rate of GTP hydrolysis, V

(pmol/mg/min) was assessed for increasing concentrations of GTP as substrate (a). The

data generated were converted to Eadie-Hofstee plots to analyse effects on Km for GTP

hydrolysis and Vmax (b). Results are from triplicate determinations. Analysis is

representative of three similar experiments.
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Table 4.9

Comparison of basal and adrenaline-stimulated high affinity GTPase activity Vmu

of membranes expressing the u2A-adrenoceptor-GotuCys35tIle fusion proteins in

the presence and absence ofRGSI6-GST

The results from Figure 4.15-4.18 were presented in a tabular form for clarity of

comparison between the constructs. Results are presented as a mean +/- SEM for basal,

adrenaline-stimulated and RGS 16 in the presence of adrenaline-stimulated high affinity

GTPase activity, Vmax, of all four palmitoylation-variant u2A-adrenoceptof-

GoluCys351Ile fusion proteins.

Table 4.10

Comparison of basal and adrenaline-stimulated Km for GTP hydrolysis of

membranes expressing the u2A-adrenoceptor-GotuCys351Ile fusion proteins in the

presence and absence of RGSI6-GST

The results from Figure 4.15-4.18 were presented in a tabular form for clarity of

comparison between the constructs. Results are presented as a mean +/- SEM for basal,

adrenaline-stimulated and RGS 16 in the presence of adrenaline-stimulated Km for GTP

hydrolysis of all four palmitoylation-variant u2A-adrenoceptor-GoluCys35IIle fusion

proteins.
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Table 4.9
Construct Basal Vmax Adrenaline- RGS16+

(pmollmglmin) stimulated Vmax Adrenaline-
(pmollmglmin) stimulated

Vmax
(pmollmglmin)

a2A -adrenoceptor- 21.3 +/- 2.5 45.2 +/- 2.2 358.9 +/- 19.7
GoiaCys351Ile (WT)

a2ACys442Ala- 18.8 +/- 1.9 38.8 +/- 4.6 293.7 +/- 25.6
adrenoceptor-
GOiaCys351Ile

(C442A)
a2A -adrenoceptor- 24.1 +/- 2.6 47.0 +/- 4.1 390.0 +/- 48.7

GOIaCys3Ser,
Cys351Ile (ClS)

442 1 22.2 +/- 1.5 43.6 +/- 4.7 321.8 +/- 21.8a.2ACyS A a-
adrenoceptor-
GOlaCys3Ser,

C s351Ile
(C4:hA, ClS)

Table 4.10
Construct BasalKm GTP Adrenaline- RGS16+

(nM) stimulated Km Adrenaline-
GTP (nM) stimulated Km

GTP (nM)
a2A-adrenoceptor- 252.0 +/- 25.4 275.2 +/- 30.9 1353 +/- 100

GoiaCys351Ile (WT)
a.2ACys442Ala- 235.9 +/- 24.4 277.4 +/- 21.9 1217 +/- 146.5
adrenoceptor-
GOlaC~l51Ile

(C4lA)
a2A-adrenoceptor- 271.2 +/- 23.4 277.6 +/- 20.9 1202 +/- 109.2

GolaCys3Ser,
Cy_s35lne(ClS)
a2ACys442Ala- 261.0 +/- 28.6 297.0 +/- 36.7 1240 +/- 115.2
adrenoceptor-
GoIaClss3Ser,

~s Sine
(C 2A, ClS)



Table 4.11

Comparison of basal and adrenaline-stimulated turnover numbers for GTP

hydrolysis of membranes expressing the u2A-adrenoceptor-GoluCys351I1e fusion

proteins in the presence and absence of RGS 16-GST

The results from Figure 4.15-4.18 were adjusted to take into account the construct

expression levels. This resulted in the calculation of turnover numbers (mean +/- SEM)

for basal, adrenaline-stimulated and RGS 16 in the presence of adrenaline-stimulated

GTP hydrolysis of all four palmitoylation-variant u2A-adrenoceptor-GoluCys351ne

fusion proteins (presented in a tabular form for clarity of comparison between the

constructs).
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Table 4.11

Construct Basal Adrenaline- RGS16 +
Turnover Stimulated Adrenaline-
Number Turnover stimulated

(min-I) Number Turnover
(min-I) Number

(min-I)
a2A-adrenoceptor- 3.2 +/- 0.4 6.8 +/- 0.3 53.6 +/- 2.9
Gola,Cys35lIle (WT)

a,2ACys442Ala- 3.1 +/- 0.3 6.5 +/- 0.8 49.0 +/- 4.3
adrenoceptor-
GOlaCys35 IlIe

(c442A)
a2A-adrenoceptor- 3.4 +/- 0.4 6.7 +/- 0.6 55.7 +/- 7.0

GOlaCys3Ser,
Cys351Ile (Cls)

442 1 3.6 +/- 0.3 7.0 +/- 0.8 51.9 +/- 3.5a2ACys A a-
adrenoceptor-

3GolaCys Ser,
~s351Ile

(C 2A, ClS)



Figure 4.19

Biotin labelling of all four palmitoylation-variant uZA-adrenoceptor-

GOluCys351IIe fusion proteins

HEK293T cells were transiently transfected to express the four palmitoylation-variant

u2A-adrenoceptor-GoluCys35IIle fusion proteins. Cell surface glycoproteins were

labelled with biotin and the receptors were immunoprecipitated and visualised as

detailed in section 2.7.7. In this figure u2A-adrenoceptor-GoluCys35IIle (WT) is in lane

1, u2A-adrenoceptor Cys442Ala-GoluCys35IIle (C442A) is in lane 2, u2A-adrenoceptor-

GOluCys3Ser, Cys35IIle (C3S) IS In lane 3 and u2A-adrenoceptor Cys442Ala_

GOluCys3Ser, Cys35IIle (C442A, C3S) IS in lane 4. A representative blot from three

individual experiments is shown.
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Figure 4.19
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Figure 4.20

Lack of adrenaline-stimulated internalisation of the u2A-adrenoceptor-

GOluCys351Ile (WT) and u2ACys442Ala-adrenoceptor-GoluCys3Ser, Cys351Ue (C442A,

C3S) fusion proteins

HEK293T cells were transiently transfected to express the u2A-adrenoceptor-

GoluCys351Ile (WT, a) or u2ACys442Ala-adrenoceptor-GoluCys3Ser, Cys351ne (C442A,

C3S, b) fusion proteins. The cells were either treated with vehicle or 100flM adrenaline

for the indicated times (min). Cell surface glycoproteins were labelled with biotin and

the receptors were imrnunoprecipitated and visualised as detailed in section 2.7.5. A

representative blot from three individual experiments is shown.
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Figure 4.20
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Figure 4.21

Internalisation of adrenaline-stimulated u2A-adrenoceptor alone but not the alA-

adrenoceptor-GoluCys3S1Ile (WT) fusion protein

HEK293T cells were transiently transfected to express the u2A-adrenoceptor alone (a)

or the u2A-adrenoceptor-GoluCys351Ile (WT, b) fusion protein. The cells were either

treated with vehicle or lOOflM adrenaline for the indicated times (min). Cell surface

glycoproteins were labelled with biotin and the receptors were immunoprecipitated and

visualised as detailed in section 2.7.5. A representative blot from three individual

experiments is shown.
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Figure 4.21
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4.3 Discussion

Dynamic regulation of palmitoylation of some GPCRs and G proteins can occur in

response to stimulation by agonist (Ponimaskin et al., 2001; Ng et al., 1994; Mouillac et

al., 1992; Wedegartner and Bourne, 1994; Chen and Manning, 2000). Such

observations of agonist regulation of palmitoylation have led to many investigations in

which the functional consequences of GPCR and G protein palmitoylation have been

studied (Moffett et al., 2001; Groarke et al., 2001; Papoucheva et al., 2004). There are

reports of roles for GPCR and G protein palmitoylation in many functional properties.

Examples of such functional properties are GPCR-G protein interactions, RGS-G

protein interactions, GPCR phosphorylation, GPCR desensitisation and down-

regulation, as well as caveolar targeting and membrane localisation (Qanbar and

Bouvier,2003).

Incorporation of eH] palmitate into the Cys ' residue of GOla protein has previously

been shown (Grassie et al., 1994), however, studies are lacking in which the functional

consequences of palmitoylation of the Gola protein have been studied. In addition,

although the porcine a2A-adrenoceptor was one of the first GPCRs demonstrated to be a

target for post-translational palmitoylation (Kennedy and Limbird, 1993, 1994), the

studies of the functional consequences of palmitoylation for this receptor are limited

and have been performed in excess often years ago (Kennedy and Limbird, 1993, 1994;

Eason and Liggett, 1992; Eason et al., 1994).

The current study made use of fusion proteins in which the N-terminus of the GOl

protein a subunit was linked in-frame to the C-terminal tail of the a2A-adrenoceptor.

This type of approach is now routinely used in a number of labs (Bertin et al., 1994;

Wise and Milligan, 1997; Seifert et al., 1998; Guo et al., 2001) on account of the many

advantageous features afforded by fusion proteins (previously discussed in Chapter 3).

A number of these advantages were also useful for the current study. In addition to the

ensured 1:1 stoichiometry of GPCR to G protein and co-localisation of the two proteins

our fusion protein approach (in which the fused Ga protein is a pertussis-toxin resistant

version, GolaCys
35lIle) allowed us to inactivate the endogenous Gi class of G proteins

and hence ensure all functional signal observed reflected only that arising from the
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fused Ga protein (Loisel et al., 1999; Stevens et al., 2001; Jones and Reed, 1987;

Lochrie and Simon, 1988; Burt et al., 1998). This feature was of particular importance

for the current study when GTPyS binding and high affinity GTPase activity were

assessed.

All four possible palmitoylation-variant a2A-adrenoceptor-GolaCys351Ile fusion

constructs were used herein to assess the importance of a2A-adrenoceptor and

GOIaCys351Ileprotein palmitoylation for a selection of functional properties. These were

the a2A-adrenoceptor-GolaCys351Ile(WT) construct (which has the ability to undergo

palmitoylation on two sites, one site in the GPCR and one site in the G protein), the

a2ACys442Ala-adrenoceptor-Gauf'ys''Vlle (C442A) construct (which has the ability to

undergo palmitoylation only in the G protein), the a2A-adrenoceptor-

GolaCys3Ser,Cys351Ile(C3S) construct (which has the ability to undergo palmitoylation

only in the GPCR) and the a2ACys442Ala-adrenoceptor-GolaCys3Ser,Cys351Ile(C442A,

C3S) construct (which has no potential palmitoylation sites). In the current study, the

role of palmitoylation in fusion protein expression levels, affinity for antagonist and

agonist molecules, the ability to bind and also to hydrolyse GTP, as well as the ability

of the proteins to internalise were all studied.

The first functional property to be studied was the expression levels of the four

palmitoylation-variant fusion proteins. Some previous studies had suggested a possible

role for GPCR palmitoylation in determining receptor expression levels. For the

LHlhCG receptor (Zhu et al., 1995), the vasopressin V2receptor (Schulein et al., 1996)

and the CCRs receptor (Percherancier et al., 2001) reduced expression levels were

reported when receptors were mutated to remove palmitoylation sites. In the current

study, fusion protein expression levels were assessed both by Western blot analysis and

antagonist binding studies of membranes expressing the fusion proteins. Western blot

analysis by use of either ONI antiserum (against residues 1-16 of Gs:o) or OC2

antiserum (against residues 345-354 of Go1a) revealed similar expression levels for all

four palmitoylation-variant a2A-adrenoceptor-GolaCys351Ile fusion proteins. This

observation was supported by the results from binding of a near-saturating (-5nM)

concentration ofeH]-RS-79948-197, as well as by saturation binding analyses (ofO.05-

5nM) of the same radioligand to the fusions. From the antagonist binding studies, the
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expression levels of all four palmitoylation-variant fusion proteins were found to be in

the region of 6.5 pmol/mg. This observation, although in contrast to the results for the

LHlhCG receptor, the vasopressin V2 receptor and the CCRs receptor, is similar to the

findings for the TRH receptor (Tanaka et al., 1998). For this receptor, expression levels

were unaffected by the ability to be palmitoylated.

The next functional property to be studied for the four palmitoylation-variant fusion

proteins was the affinity for antagonist and agonist molecules. A number of reports

published to date have assessed the ligand binding capacity for palmitoylation-deficient

mutant receptors for comparison with the wild type versions. For the rhodopsin receptor

(Karnik et al., 1993), the TRH receptor (Tanaka et al., 1998), the vasopressin Via

receptor (Hawtin et al., 2001), the vasopressin V2 receptor (Schulein et al., 1996) and

the dopamine DI receptor (Jin et al., 1997) the ability to become palmitoylated did not

affect ligand binding. In agreement with these findings, the current study demonstrated

that neither the affinity for the agonist adrenaline (K1=2nM and 0.25IlM: high and low

affinity binding) nor the antagonist [3H]-RS-79948-197 (KrO.32nM) was different for

the four palmitoylation-variant U2A-adrenoceptor-Gs. UCys3S1 He fusion proteins.

Another functional property studied in the current investigation was the importance of

GPCR and G protein palmitylation for the activation of signalling. This was assessed in

terms of two properties, the ability to bind GTP (from GTPyS binding studies) and the

ability to hydrolyse GTP (from high affinity GTPase assays). For all four fusion

proteins, GTPyS binding (using 10fmol per fusion, 2.5 min incubation and using 10-4M

adrenaline where appropriate) was stimulated approximately 16-fold over basal levels in

the presence of the agonist adrenaline. However, neither the levels of basal nor

adrenaline-stimulated GTPyS binding were found to be significantly different when

compared between the four palmitoylation-variant fusion proteins. Similarly, high

affinity GTPase activity (using 1.51lg of membranes expressing the fusions, 40 min

incubation and using 10-4M adrenaline where appropriate) was stimulated

approximately 3-fold over basal levels in the presence of the agonist adrenaline. Once

again, neither the levels of basal nor adrenaline-stimulated high affinity GTPase activity

were found to be significantly different when compared for the four palmitoylation-

variant fusion proteins. It is therefore concluded that the ability for the u2A-adrenoceptor
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and the GolaCys351Ile protein parts of the a2A-adrenoceptor-GolaCys35IIIe fusion

protein to be palmitoylated has no bearing on the ability of this fusion protein to signal

effecti vely.

Currently in the literature there are many varied reports of the relative importance of

GPCR and G protein palmitoylation for signalling. Most studies have concerned GPCR

palmitoylation rather than G protein palmitoylation. Nevertheless, there have been a few

studies focusing on the functional effects of mutating Ga protein palmitoylation sites. In

one such study, mutating the palmitoylation site of Gsa seemed to decrease the

efficiency of signalling via this G protein (Wedegaertner et al., 1993). However, later

reports suggested that the apparent alterations in efficiency of signalling were due to

absence of membrane localisation of the palmitoylation-deficient G protein a-subunit

(and subsequent inability to be activated), given that normal signalling efficiency was

recovered upon fusion of the Ga subunit to the ~2-adrenoceptor (Ugur et al., 2003). In

terms of GPCR palmitoylation, the current observation about the importance of

palmitoylation for signalling via the fused a2A-adrenoceptor is consistent with a

previous observation for the non-fused a2A-adrenoceptor (Kennedy and Limbird, 1993,

1994). In both cases, mutating potential palmitoylation sites had no effect on coupling

to Gi/G, proteins. Similar observations have also been made for a number of other

GPCRs, including the rhodopsin receptor (Kamik et al., 1993), the LHIhCG receptor

(Kawate et al., 1997), the vasopressin VIa receptor (Hawtin et al., 2001) and the

dopamine DI receptor (Jin et al., 1997). Interestingly, there have also been a number of

contrasting results, where the ability of the GPCR to be palmitoylated was reported to

affect the efficiency of signalling. For the ~2-adrenoceptor (O'Dowd et al., 1989;

Moffett et al., 1996, 2001) and the m2 muscarinic receptor (Hayashi and Haga, 1997),

mutating palmitoylation sites led to a reduced ability to signal.

There have also been some reports in the literature that palmitoylation of Ga proteins

may affect the ability ofRGS proteins to accelerate the GTPase activity of activated Ga

proteins (Ross and Wilkie, 2000). In light of this, we decided to use our a2A-

adrenoceptor-GolaCys35lIle fusion proteins to assess the importance of both GPCR and

G protein palmitoylation for this functional property. This was done by analysis of the
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basal and agonist-stimulated high affinity GTPase activities in the presence of GST

purified RGS16protein.

In an initial experiment, levels of adrenaline-stimulated high affinity GTPase activity

were stimulated approximately 3-fold compared with basal levels whereas the levels of

adrenaline-stimulated high affinity GTPase activity in the presence of RGS16 were

stimulated approximately It-fold compared with basal levels. In addition, a very small

(approximately ~1.3-fold) stimulation of basal GTPase activity in the presence of

RGS16 was also observed. For all conditions tested similar levels were obtained for the

four uZA-adrenoceptor-GoluCys351nefusion constructs.

However, in order to accurately compare the results for all four palmitoylation-variant

constructs and determine whether palmitoylation on either the GPCR or G protein parts

of the fusion affected the ability of RGS16 to accelerate the GTPase activity, an

alternative approach was required. The high affinity GTPase activity for each fusion

protein was re-determined in the presence of various concentrations ofGTP (substrate).

This allowed conversion of the generated data to Eadie-Hofstee plots for easier

visualisation of GTPase activity (Vmax) and the Km for GTP hydrolysis.

This time, levels of adrenaline-stimulated high affinity GTPase activity (~44

pmol/mg/min) were approximately 2-fold greater than basal levels (~22 pmol/mglmin)

whereas the levels of adrenaline-stimulated high affinity GTPase activity in the

presence of RGS16 (~34Opmollmglmin)were approximately 15-fold higher than basal

levels. Such values for GTPase activity were similar to those previously reported in a

study with RGS16 and the uZA-adrenoceptor-GoluCys35IIle (WT) fusion protein

(Hoffinan et al., 2001) and once again for all conditions tested, similar levels were

obtained for the four uZA-adrenoceptor-GoluCys35IIlefusion constructs.

Before the effect of GPCR and G protein palmitoylation on RGS-accelarated GTPase

activity could be determined it was necessary to take into account the slight differences

in expression levels for each construct. This was done by calculation of the turnover

number for GTP (min-I). Calculation of essentially equal turnover numbers for basal

(-3.6 min-I), adrenaline-stimulated (-6.7 min-I) and adrenaline plus RGS16-stimulated
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(--60 min-I) GTPase activity for all four palmitoylation-variant fusions, determined that

the ability of the RGS 16 protein to accelerate the GTPase activity of u2A-adrenoceptor-

GoluCys351I1e fusion proteins was not affected by the ability of either the GPCR or the

G protein parts of the fusion to be palmitoylated.

The final functional property tested in the current study was the ability of the

palmitoylation-variant u2A-adrenoceptor-GoluCys35IIle fusion proteins to internalise in

response to adrenaline. This property was tested for comparision with the results of

internalisation studies for other GPCRs (Schulein et al., 1996; Kawate et al., 1997; Gao

et al., 1999; Groarke et al., 2001; Charest and Bouvier, 2003) and another GPCR-G

protein fusion (Loisel et al., 1999). The ability of a number of GPCRs to be

palmitoylated has been shown to affect their internalisation properties. Mutating the

palmitoylation sites of the vasopressin V2 receptor (Schulein et al., 1996; Charest and

Bouvier, 2003), the CCR5 receptor (Kraft et al., 2001) and the TRH receptor (Groarke et

al., 2001) were all shown to result in decreased internalisation of these receptors in

response to agonist. In contrast, mutating the palmitoylation site of the LHIhCG

receptor (Kawate et al., 1997) resulted in increased levels of agonist-promoted

internalisation. There are also some GPCRs, such as the Al adenosine receptor (Gao et

al., 1999), for which there is no difference in internalisation properties upon mutation of

palmitoylation sites. In the current study, it was uncertain whether any internalisation

would be observed for the u2A-adrenoceptor-GoluCys35IIle fusion proteins, since the

fusion of an entire GOIUCys351Ile-subunit could, very likely, disrupt the normal

internalisation properties of the u2A-adrenoceptor (Olli-Lahdesmaki et al., 2003). Such

disruption had previously been suggested from the internalisation studies of a P2-

adrenoceptor-G,c fusion protein compared with the P2-adrenoceptor alone (Loisel et aI.,

1999). In this study it was found that unlike the receptor alone, the fusion protein could

not internalise, a restriction found to coincide with alterations in the patterns of

incorporation of eH] palmitate into the two constituent parts of the fusion protein. The

results from the current study using u2A-adrenoceptor-GoluCys35IIle fusion proteins

were therefore expected to be useful in terms of internalisation properties and for further

insight into the regulation of palmitoylation results.
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After an initial test to check that all a2A-adrenoceptor-GolaCys351I1e fusion proteins

could be biotin labelled and successfully detected the a2A-adrenoceptor-GolaCys351ne

(WT) and a2ACys442Ala-adrenoceptor-Gj.uf.ysSer, Cys351I1e (C442 A, C3S) fusion

proteins were assessed in terms of internalisation. Akin to the results with the Jh-
adrenoceptor-G,« fusion protein, neither palmitoylation variant a2A -adrenoceptor-

GolaCys351Ile fusion protein was able to internalise over the 90 min incubation period.

In contrast, the a2A-adrenoceptor alone was found capable of internalisation (just as for

the P2-adrenoceptor alone). Taken together these results demonstrate that the

adrenaline-stimulated internalisation properties of the a2A -adrenoceptor appear to be

lost upon constraint of the receptor in the a2A-adrenoceptor-GolaCys351ne fusion

protein. One possible explanation for this observation may be that upon fusion of the G-

protein to the receptor, the binding of important molecules for internalisation, such as p-
arrestins, may be abolished. Consequently, if the effect of a2A-adrenoceptor

palmitoylation on internalisation properties is to be assessed in future studies, this will

have to be done with the non-fused receptor.

These observations led us to consider a few points concerning the advantages and

disadvantages of GPCR-G protein fusion proteins in the current study. In terms of

advantages, aside from the general benefits already discussed, fusions had previously

been used successfully to study not only the regulation ofpalmitoylation (Stevens et al.,

2001) but also to study many of the functional properties which were tested in the

current investigation. A number of groups had previously shown that the agonist and

antagonist binding properties, the intrinsic GTPase activity (Wise and Milligan, 1997;

Hoffman et al., 2001) and the ability of RGS proteins to act as GTPase activating

proteins (Cavalli et al., 2000) were all as expected for the fusion proteins. Therefore a

fusion-based approach to the current study was deemed appropriate. However, there are

a few possible limitations for the use of GPCR-G protein fusion proteins, one of which

was directly highlighted in the current study. The study of receptor internalisation

properties was not possible within the fusion protein context, since none of the fusion

proteins were able to internalise unlike the receptor alone. Another possible limitation

of fusions must be considered. We have observed from the current results that although

Go subunit palmitoylation is regulated by agonist (Chapter 3) this palmitoylation does

not seem to affect any of the functional properties tested here in Chapter 4. From the
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literature, palmitoylation was suggested to play a role either in the regulation of the

ability of RGS proteins to accelerate the GTPase reaction or in determining the

membrane localisation/targeting of the Ga subunits. Our results show that for the

GolaCys35I Ile portion of the a2A-adrenoceptor-GolaCys35IIle fusion proteins,

palmitoylation has no effect on the ability of RGS 16 to accelerate the GTPase reaction.

This leaves the possibility that palmitoylation may be important for the membrane

localisation of the GolaCys351Ile protein. It had previously been observed for the Gsa

protein that lack/loss of palmitoylation resulted in a translocation of the a-subunit from

the membrane to the cytosol (Wedegaertner et al., 1993). Such an observation made for

Gsa may have arisen because palmitoylation is the only lipid modification present on

this Ga protein and may not occur for G proteins such as GOIaCys351Ile which also have

a 14 carbon myristate group attached. However, if the role of dynamic palmitoylation of

the GOlaCys351Ile protein is in determining the degree of physical separateness of the

GPCR and G protein, then the fusion proteins where the two proteins are constrained

together may cause altered signalling. This point must be addressed in future work by

use of non-fused GPCRs and G proteins. It is important however, to note that such non-

fusion studies may also entail problems/limitations of their own. In conclusion, there are

advantages and disadvantages associated with any experimental system. The results of

this investigation have shown that GPCR-G protein fusion proteins can be successfully

used to study a number of aspects of GPCR and G protein signalling. Simultaneously

they have highlighted that other functional properties are better suited to non-fusion

studies.

To summarise, the current study aimed to assess the importance of GPCR and G protein

palmitoylation for a variety of functional properties. Previous studies had suggested

roles for Ga protein palmitolyation in the efficiency of signalling and in regulating the

ability of RGS proteins to accelerate the GTPase reaction. Previous studies had also

suggested roles for GPCR palmitoylation in regulating receptor expression levels, the

affinity for agonist and antagonist molecules, and the efficiency of signalling. Herein,

the effect of the a2A-adrenoceptor and the GOlaCys351Ile portions of the a2A-

adrenoceptor-GolaCys351Ile fusion protein were assessed in terms of all these functional

properties. It has been observed that, at least in the fusion protein context, neither the

palmitoylation of the a2A-adrenoceptor nor of the GOlaCys351Ile portions of the a2A-
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adrenoceptor-Gsrcf'ysI'Ile fusion protein seem to have any effect on protein

expression levels, the affinity for agonist and antagonist molecules, the efficiency of

signalling, or the efficiency of RGS proteins to accelerate the GTPase reaction. Given

the lack of previous information regarding the functional importance of palmitoylation

for the u2A-adrenoceptor and the GOluCys351Ileprotein, the current results were

compared to information gathered from studies on other GPCRs and G proteins.

However, such was the variety of information for other GPCRs and G proteins, that the

main conclusion which can be drawn from the current study is that in general, the roles

of GPCR and G protein palmitoylation appear to be different dependent on the GPCR

and G protein in question. Perhaps this is not altogether surprising given the variety of

signalling effects observed with different GPCR and G protein pairs. Altogether these

results highlight the need for further investigation into a variety of other functional

consequences before a clearer picture of the role(s) of palmityoIation can be obtained.
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Chapter 5

Regulation of palmitoylation in

5-HTIA-receptor-GOluCys351Ile fusion proteins



5.1 Introduction

The 5-HTIA-receptor used in this study is responsible for signal transduction across the

plasma membrane via interaction with G/Go class of heterotrimeric G proteins, leading

to inhibition of adenylyl cyclase and L-type Ca2+ channels and activation of K+

channels. The natural ligand for the 5-HTIA-receptor is serotonin: an important

neurotransmitter and local hormone in the CNS and intestine. Clinically, 5-HTIA

receptor ligands represent potential anxiolytic (Tunnicliff, 1991) and anti-hypertensive

agents (Lundberg, 1996).

This study concerned the attachment of the 16-carbon fatty acid moiety, palmitate, to

both the 5-HTIA-receptor and the Gol G protein. As previously described in Chapter 3,

a wide variety of cellular proteins including GPCRs and G proteins undergo

palmitoylation via a labile thioester linkage to cysteine residues (Mumby, 1997). Given

that the lability of the thioester bond allows the attachment of palmitate to be both

dynamic and regulated (Mumby, 1997; Qanbar and Bouvier, 2003), the study of the

regulation of palmitoylation is expected to give some indication of the functional

significance of the role ofpalmitoylation in the protein.

Both the 5-HTIA-receptor (Papoucheva et al., 2004) and the Go)o'(Grassie et al., 1994)

protein used in this study have previously been shown to undergo post-translational

palmitoylation. In the work of Papoucheva et al. (2004) palmitate attached to the 5-

HTlA-receptor was not regulated by the agonist serotonin. In addition, these authors

reported that cycloheximide treatment of cells expressing the 5-HTIA-receptor led to

abolished incorporation of eH] palmitate into the receptor, indicating no significant

turnover of receptor-bound palmitate. This result was supported by their observation

from pulse-chase experiments that the lifetime ofeH] palmitate attached to the 5-HTIA-

receptor corresponded with the lifetime of the receptor itself (Papoucheva et al., 2004).

Such observations for 5-HTIA-receptQr palmitoylation appear similar to those

previously reported for the 0'2A-adrenoceptor,whereby palmitate was relatively stably

attached to this GPCR and (in the case of the 0'2A-adrenoceptor)agonist did not have a
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very dramatic effect on the regulation of this modification (Kennedy and Limbird,

1994). However they are in distinct contrast to the observations for many other protein

targets for thio-acylation where rapid cycles of palmitoylation and depalmitoylation are

thought to occur (Qanbar and Bouvier, 2003).

In the current study, regulation of 5-HTIA and GolU G protein palmitoylation were

assessed by use of palmitoylation-variant 5-HTIA-receptor-GoluCys35IIle fusion

proteins. As in the study of regulation of U2A-adrenoceptor and GoluG protein

palmitoylation by use of u2A-adrenoceptor-GoluCys351Ile fusion proteins (Chapter 3),

there were clear reasons for employing a fusion-protein approach in this work. To

recapitulate, a fusion-based approach provided the advantages of defined stoichiometry

of expression of the two substituent entities as 1: 1 and also ensured co-localisation

following expression. In terms of palmitoylation studies these features ensured every

copy of the GoluCys351Ile protein had the potential to be activated upon agonist

stimulation of the 5-HTIA receptor.

Previous studies had identified the Cys417 and Cys420 residues of the 5-HTIA-receptor

(Papoucheva et al., 2004) and the Cys" residue of the Goluprotein (Grassie et al., 1994)

to be the sites for incorporation of palmitate. Therefore in this study, the eight possible

palmitoylation-variant 5-HT 1A-receptor-Gsi UCys351Ile fusion proteins (5-HT 1A-

receptor-GO!<xCys351Ile (WT), 5-HTIACys417Ser-receptor-Gol<xCys351Ile (C417S), 5-

HTIACys417Ser-receptor-GoluCys3Ser, Cys351Ile (C417S, C3S), 5-HTIACys420Ser-

receptor-GoluCys35lIle (C420S), 5-HTI ACys420Ser-receptor-Gol ceCys'Ser,

Cys351I1e(C420S, C3S), 5-HTIACys417Ser, Cys420Ser-receptor-Gol<xCys35IIle

(C417S, C420S), 5-HTIA-receptor-GoluCys3Ser, Cys35!Ile (C3S), and 5-HTIACys417Ser,

Cys420Ser-receptor-GO!<xCys3Ser, Cys35!Ile (C417S,C420S, C3S) were created and

subjected to a series of palmitoylation assays. The specific objective for the work

contained in this chapter was to investigate the regulation of palmitate attached to the

GPCR and G protein parts of these fusions and to ascertain whether regulation of

acylation was co-ordinated in these two proteins.
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It is necessary at this stage to provide the reader with a cautionary note that interpreting

the regulation of palmitoylation data from the 5-HTIA-receptor-Golo,Cys35IIle fusions

will not be as easy as for the o,2A-adrenoceptor-Golo,Cys35IIle fusion proteins. This is

largely due to the presence of three potential palmitoylation sites on these fusions (in

contrast to only two in the u2A-adrenoceptor-GoluCys35IIle constructs), meaning eight

palmitoylation-variant fusions are possible. With so many constructs it is therefore

diffult to keep in mind exactly which sites are being studied when each mutation is

studied. In relation to this, it may be of use for the reader to refer to Table 5.1 when

interpreting each result. This table gives the abbreviated name for each construct

(corresponding to the mutated residue) and the resultant potential palmitoylation sites

which are left unaltered.
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5.2 Results

Construction and expression of 5-HT lA-receptor-GolaCys351Ile fusion proteins

PCR was used to mutate a previously existing 5-HTIA-receptor-GolaCys351Ilefusion

protein, available in-house, in order to remove the predicted palmitoylation sites from

the GPCR (Papoueheva et al., 2004) or the G protein (Grassie et al., 1994) or both parts

of the fusion protein. These eDNA constructs were transiently transfected into

HEK293T cells and a number of palmitoylation assays were performed to investigate

the regulation of GPCR and G protein acylation in the fusion proteins. Inorder to assure

equal construct expression level in all 6cm dishes used within one palmitoylation assay,

it was necessary to transfect one initial plate of HEK 293T cells with each desired

fusion construct DNA, then to split these transfected cells into multiple duplicate 6cm

dishes to be used in the palmitoylation assay. In Figure 5.1 it is shown that such an

approach led to equal expression level of the wild type (WT) 5-HTIA-receptor-

GOIaCys351Ileconstruct. In this and in subsequent experiments, the expression levels of

5-HTlA-receptor-GolaCys351Ile constructs were determined by performing receptor

binding studies using the tritiated antagonist eH]-WAYI00635 (Fletcher et al., 1996).

In these receptor binding studies non-radiolabelled WAYI00635 was used to allow

calculation of non-specific binding (Langer and Hicks, 1984).

Confirmation of the Cys417 site on the GPCR and the Cys3 site on the G protein as

sites for incorporation of [3H] palmitic acid in the 5-HTIA-receptor-GolaCys35IUe

fusion proteins

The first objective for the current study was to confirm whether the Cys417and Cys420

sites on the GPCR and the Cys3 site on the G protein were the sites for incorporation of

palmitate. In order to do this a one time-point, pulse-labelling palmitoylation assay was

performed for all eight palmitoylation-variant fusion proteins plus pcDNA3 control. The

constructs were expressed transiently in HEK293T cells. [9,10(n)-3H] palmitic acid was

added to the cells in the presence or absence of 100J.lM8-0H-DPAT for 30 min.

Following labelling of cells, immunoprecipitation using an antiserum (ONI) that
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identifies the N-tenuinal region of Go1a (Mullaney and Milligan, 1990), SDS-PAGE

and autoradiography, the incorporation of eH] palmitate into a band with apparent

molecular mass of some 85 kDa (corresponding to 5-HTIA-receptor-GolaCys35II1e

fusions) was assessed. The WT, the C417S, the C420S, the C420S, C3S, the C417S, C420S

and the C3S fusions but not the pcDNA3 control, the C417S, C420S, C3S fusion or,

surprisingly, the C417S, C3S forms of the fusion protein incorporated [3H] palmitate

(Figure 5.2 a, upper panels). The lack of incorporation of eH] palmitate into the

C417S, C420S, C3S and the C417S, C3S forms of the fusion protein confirmed that the

Cys417site on the GPCR and the Cys3 site on the G protein are the only two sites for

dynamic incorporation of eH] palmitic acid into the 5-HTIA-receptor-Go1aCys351lie

fusion proteins.

Itwas very interesting to note that in the absence of agonist and with the same period of

exposure to eH] palmitate, the extent of incorporation of radioactivity into the fusions

did not appear to be equal (Figure 5.2 b, Table 5.1). In addition, the presence of 8-0H-

DPAT had a variety of effects on the incorporation of eH] palmitate into the different

5-HTIA-receptor-GolaCys351Ilefusions (Figure 5.2, Table 5.1). The observed effects

were not attributable to unequal amounts of the fusion protein in each sample since, in

parallel with these studies, samples of the cell lysates were resolved directly by SDS-

PAGE and immunoblotted with antiserum ONI (Figure 5.2 a, lower panels).

When the data from Figure 5.2 was analysed, three seemingly distinct patterns of

palmitoylation were observed. Firstly, statistically similar patterns (for both

unstimulated and stimulated, p>0.05) were observed for the WT and the C420S fusions,

wherein 8-0H-DPAT-stimulation led to approximately 20% higher levels of

incorporation of eH] palmitate than for the basal levels (p<0.05).

Secondly, a contrasting pattern was observed for both the C417S and the C417S, C420S

fusions. Once again the two fusions were assessed to be statistically similar (for both

unstimulated and stimulated, p>0.05). For these two fusions, 8-0H-DPAT led to

approximately half the amount of [3H] palmitate incorporation as for the basal levels

(p<O.05).
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The third pattern was observed for the C3S and the C420S, C3S fusions. These two

fusions were also assessed to be statistically similar (for both unstimulated and

stimulated, p>0.05) and 8-0H-DPAT stimulation of these fusions led to approximately

50% higher levels of incorporation of eH] palmitate than for basal levels (p<0.05).

The first and third patterns however, were assessed not to be statistically significant. As

a result, only two real (and opposing) patterns of palmitoylation could be concluded.

Firstly, the pattern observed for both the C417S and the C417S, C420S fusions, where

agonist led to a decrease in palmitate incorporation and secondly, the pattern observed

for the other four fusions, where agonist led to increased levels of incorporated

palmitate.

Given the observation that palmitate did not become dynamically incorporated into the

C420 residue of our 5-HT lA-receptor-GolaCys351ne fusion proteins (as assessed by use

of the C417S, C3S fusion protein) it is perhaps not surprising that pairs of fusions have

been observed to display similar palmitoylation characteristics. If the palmitate

contribution of the C420 site is zero then the study of such "pairs" effectively should

involve analysis of the same site{s).

To explore the different patterns of palmitoylation further, time course palmitoylations

were performed for of the incorporation of eH] palmitate into some of the constructs.

The WT fusion (to explore all sites together), the C417S, C420S fusion (to explore the G

protein site only), the C3S fusion (to explore both receptor sites) and the C420S, C3S

fusion (to explore only the C417 site of the receptor) were all selected for these studies.
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Analysis of the time courses of incorporation of [3H] palmitic acid into the 5-HT1A-

receptor-Go IaCys351lie fusion proteins

The 5-HTIA-receptor-GolaCys351Ile (WT) fusion protein was expressed transiently in

HEK293T cells. eH] palmitic acid was added to the cells in the presence or absence of

the 5-HTIA-receptor agonist 8-0H-DPAT (lOOf.lM) for times varying between 5-120

mm, After cell lysate generation, immunoprecipitation, SDS-P AGE and

autoradiography, in the absence of 8-0H-DPAT, radioactivity was incorporated into

bands with apparent molecular mass of approximately 85 kDa (Figure 5.3 a, upper

panels). This occurred in a time-dependent manner with maximal incorporation being

achieved between 60-120 min. In the presence of 8-0H-DPAT, incorporation of eH]

palmitate into the fusion protein was substantially increased (p<0.05) over this time

scale (Figure 5.3 a, upper panels, Figure 5.3 b) and once again, maximal incorporation

was achieved in a similar timescale, between 60-120 min (p>0.05). The effects observed

were not attributable to unequal amounts of the fusion protein in each sample since, in

parallel with these studies, samples of the cell lysates were resolved directly by SDS-

PAGE and immunoblotted with antiserum ONI (Figure 5.3 a, lower panels).

The time course of incorporation of eH] palmitate into the GOlaCys351Ile protein was

then assessed by use of the 5-HTIACys417Ser, Cys420Ser-receptor-GolaCys351Ile

(C417S, C420S) fusion protein. After labelling, cell lysate generation,

immunoprecipitation, SDS-P AGE and autoradiography, radioactivity was again

incorporated into bands with apparent molecular mass of approximately 85 kDa (Figure

5.4 a, upper panels). In the absence of8-0H-DPAT, this occurred in a time-dependent

manner with maximal incorporation being achieved between 30-60 min. In the

presence of 8-0H-DPAT, incorporation of eH] palmitate into the fusion protein was

substantially reduced (p<0.05) over this time scale (Figure 5.4 a, upper panels, Figure

5.4 b). In addition, maximal incorporation of eH] palmitate in the presence of the

agonist occurred at a similar rate (p>0.05). Once again the amounts of the fusion protein

in each sample were confirmed in Western blots performed in parallel with these studies

(Figure 5.4 a, lower panels).
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Upon analysis of the time course of incorporation of eH] palmitate into the two

potential 5-HTIA receptor palmitoylation sites (by use of the 5-HT1A-receptor-

GOluCys3Ser, Cys351Ile(C3S) construct), a similar pattern of eH] palmitate

incorporation was observed as for the 5-HTIA-receptor-GoluCys35IIle(WT) fusion.

Once more radioactivity was incorporated into bands with apparent molecular mass of

approximately 85 kDa (Figure 5.5 a, upper panels). In the absence of 8-0H-DPAT,

incorporation occurred in a time-dependent manner with maximal incorporation not

being reached within the 120 min time-course. Similarly, in the presence of 8-0H-

DPAT, maximal incorporation was again not achieved within the 120 min time-course

and the rate of labelling for the two conditions was not different (p>0.05). However the

overall level of incorporation of eH] palmitate into the fusion protein was substantially

increased (p<0.05) (Figure 5.5 a, upper panels, Figure 5.5 b). Immunoblots carried out

in parallel once again ensured equal amounts of the fusion protein were present in each

sample (Figure 5.5 a, lower panels).

When the time course of incorporation of eH] palmitate into only the Cys417residue of

the 5-HTIA receptor (by use of the 5-HTIACys420Ser-receptor-GoluCys3Ser,

Cys351I1e(C420S,C3S) construct} is analysed, a pattern of eH] palmitate incorporation

was observed which was not significantly different (p>0.05) from that observed for the

5-HTIA-receptor-GoluCys3Ser, Cys351Ile(C3S) fusion protein. Once again in the

absence of 8-0H-DPAT, eH] palmitate incorporation into bands with apparent

molecular mass of approximately 85 kDa (Figure 5.6 a, upper panels) occurred in a

time-dependent manner with maximal incorporation not being reached within the 120

min time-course. In the presence of 8-0H-DPAT, maximal incorporation was again not

achieved within the 120min time-course and the rate of labelling for the two conditions

was not different (p>0.05). However, the overall level of incorporation of eH] palmitate

into the fusion protein was substantially increased (p<0.05) (Figure 5.6 a, upper panels,

Figure 5.6 b). Immunoblots carried out in parallel ensured equal amounts of the fusion

protein were present in each sample (Figure 5.6 a, lower panels).

It is useful, for clarity, to take all these results together for interpretation (Table S.2). In

order to compare the results obtained with different constructs, the incorporation levels

of eH] palmitate into each construct were expressed as a percentage of the value
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obtained for that construct's 60 min unstimulated incubation. For the GoluCys351Ile

protein (as assessed by use of the C417S, C420S fusion), stimulation by 8-0H-DPAT was

found to lead to reduced levels of incorporated palmitate into this fusion. In contrast, an

alternative pattern was observed for the incorporation of palmitate into the receptor part

of the fusions (as assessed by use of C3S; representing incorporation into both receptor

sites together, or by use ofC42oS, C3S; representing incorporation into the receptor C417

site alone). For these two constructs, stimulation by 8-0H-DPAT led to increased levels

of incorporated palmitate into the fusions. These results were in support of the findings

from Figure 5.2, suggesting different regulation of palmitate attached to the GPCR and

the G protein parts of our fusions. Interestingly the observed levels of incorporation of

palmitate into all three potential palmitoylation sites (as assessed by use of the WT

fusion) was found to exhibit a similar pattern to those of the C3S and C420S, C3S fusions

(once again in agreement with the results from Figure 5.2). This result was somewhat

unexpected given the two opposing pattern of palmitoylation. Instead, one might have

expected similar levels of incorporation of palmitate in the presence and absence of

agonist with this WT fusion. However, an influence of the two opposing patterns can be

observed upon analysis of the kinetic data generated by these results.

Non-linear regression analysis allowed the calculation of tl/2(min) for incorporation of

palmitate, as well as the maximal incorporation level, Bmax (%) for each construct. Upon

analysis of Bmax in the absence of 8-0H-DPAT, we can see that the levels of

incorporation into the WT, the C3S and the C420S, C3S fusions were not significantly

different (p>0.05). However, the Bmax for all three were significantly different from that

of the C417S, C420S fusion (p<0.05). When the Bmax in the presence of8-0H-DPAT was

compared for all four constructs, only the values for the C3S and the C420S, C3S fusions

~were not significantly different (p>0.05). Once again the Bmax for these two fusions

were significantly different from that of the C417S, C420S construct (p<0.05). In the

presence of agonist the Bmax for WT was found to be significantly lower than for the

C3S and the C420S, C3S fusions as well as significantly higher than for the C417S, C420S

fusion (p<0.05 in both cases).

When the tl/2 for incorporation of palmitate was compared for all four fusions, the

results mirrored those obtained for the Bmax levels. In the absence of 8-0H-DP AT the
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t1l2 for incorporation into the WT, the C3S and the C420S, C3S fusions were not

significantly different (p>0.05). In addition the t1l2values for all three were significantly

higher than the tl/2 for incorporation for the C417S, C420S fusion (p<O.05). Similarly,

upon comparison of the 8-0H-DPAT-stimulated t1l2for incorporation values only the

values for the C3S and the C420S, C3S fusions were not significantly different (p>O.05).

Once again the t1l2values for these two fusions were significantly different from that of

the C417S, C420S construct (p<0.05). In the presence of agonist the t1/2 for incorporation

for WT was found to be significantly lower than for the C3S and the C420S, C3S fusions

as well as significantly higher than for the C417S, C420S fusion (p<0.05 in both cases).

In summary, these studies indicated clear differences in the levels and kinetics of

palmitoylation (and the effects of8-0H-DPAT on these properties) in the GPCR and G

protein elements of the fusion proteins. 8-0H-DPAT resulted in increased levels of

palmitate incorporation into the receptor portion of our fusion proteins, whilst it led to

decreased levels of incorporation into the G protein. It was also noted that incorporation

of palmitate into the G protein was significantly faster than the rate of incorporation into

the GPCR. In light of the fact that pulse-labelling results for the effects of 8-0H-DPAT

could potentially represent altered rates of palmitoylation or de-palmitoylation of the G

protein, the dynamics of de-palmitoylation of GPCR-G protein fusions were

subsequently studied in pulse-chase format experiments.

Analysis of the depalmitoylation rates of the 5-HT lA-receptor-Go1aCys351lie fusion

proteins

Following transfection of HEK293T cells with the 5-HTIA-receptor-

G01aCys351Ile (WT) fusion construct and labelling of the cells with eH] palmitate for

30 min, the radiolabel was removed and replaced with non-radioactive palmitate.

Samples were taken for analysis at times up to 180 min and parallel immunoblots of cell

lysates confirmed equal loading of the gel lanes. eH] palmitate was found to be

removed from the immunoprecipitated (85kOa) fusion protein with tYz = 45.5 +/- 15.6

min (mean +/- SEM, n = 3) (Figure 5.7 a and b). When the chase was conducted in the

presence of8-0H-DPAT removal ofeH] palmitate from the fusion appeared to occur at

a similar rate, with tYz = 48.4 +/- 23.5 min (mean +/- SEM, n = 3, p>O.05).
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To assess the contribution of the G protein to these effects, HEK293 T cells were

transfected to express the 5-HTIACys417Ser, Cys420Ser-receptor-GolUCys35'lIe

(C417S, C420S) fusion protein, in which only the G protein element is a target for thio-

acylation. Using the same protocol, the rate of disappearance of eH] palmitate from

irnrnunoprecipitated samples was rapid (t~ = 15.3 +/- 6.5 min, mean +/- SEM, n = 3)

and appeared to be accelerated somewhat by the presence of agonist (tYz = 6.3 +/- 2.4

min, mean +/- SEM, n = 3) (Figure 5.8 a and b). However, in both experiments the

errors were relatively large, meaning that the effect of agonist in each case was not

assessed to be statistically significant (p>O.05). In contrast, the data was of sufficient

quality to assess that both the unstimulated (p<O.05) and the 8-0H-DPAT-stimulated

(p<O.05) rates of GOluCys351Ue depalrnitoylation (as assessed by the use of

C417S, C420S) were significantly faster than the rates observed for the WT fusion

(reflecting all three potential palmitoylation sites).

To assess the contribution of the 5-HTIA receptor to these effects, HEK293T cells were

transfected to express the 5-HTIA-receptor-GoluCys3Ser,Cys351Ile (C3S) fusion protein.

These results would provide a reflection of the combined depalmitoylation effects of the

two receptor residues, C417 and C420
• In such experiments (Figure 5.9 a and b)

following labelling then chase, it was found that eH] palmitate, whilst effectively

incorporated, was not removed at all from the irnmunoprecipitated fusion protein during

a three-hour chase period. The same observation was made whether the chase was

conducted in the presence or absence of 8-0H-DPAT. These results therefore indicate

that palmitate, once incorporated into this fusion, remains stably attached.

One further depalmitoylation experiment was then performed with the 5-

HTIACys420Ser-receptor-GoluCys3Ser, Cys3SIne (C420S, cJS) fusion protein in which

only the C417 residue could be a potential target for palmitoylation. In this experiment

(Figure 5.10 a and b), the results were essentially identical to those from the previous

study with the C3S fusion and once again no depalmitoylation was observed.

The depalmitoylation data for all four experiments have been presented together in

Table 5.3 for clarity of comparison between constructs. In summary, we can conclude
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that only the GoluCys351Ile protein part of our 5-HTIA-receptor-GoluCys35II1e fusion

proteins can undergo dynamic depalmitoylation and that this process may (currently

unclear from the present results) be stimulated by the presence of the agonist, 8-0H-

DPAT. The current investigation also suggests that palmitate, once incorporated into the

5-HT lA-receptor portion of our 5-HT IA-receptor-Go1UCys35IIle fusion proteins, is stably

attached, regardless of the presence or absence of agonist.

Analysis of concentration-dependent effects of 8-0H-DPAT on palmitoylation of 5-

HTIA-receptor-GotuCys3StIle fusion proteins

The next set of palmitoylation experiments aimed to assess whether agonist-stimulated

regulation of palmitoylation was concentration-dependent.

When labelling of the 5-HTIA-receptor-GoluCys35IIle (WT) fusion protein with eH]

palmitate was allowed to proceed for 30 min in the presence of varying concentrations

of 8-0H-DPAT, it was found that a half-maximal increase in incorporation of eH]

palmitate into the immunoprecipitated 85kDa fusion protein was observed with 63 +/-

48 oM 8-0H-DPAT (mean +/- SEM, n = 3) (Figure 5.11 a and b, Table 5.4).

In contrast, when labelling of the 5-HTIACys417Ser, Cys420Ser-receptor-GoluCys35II1e

(C4t7S, C420S)fusion protein was carried out using the same protocol, the agonist 8-0H-

DPAT caused a half-maximal reduction in levels of eH] palmitate incorporated into the

immunoprecipitated fusion protein with 14 +/- 8 oM 8-0H-DPAT (mean +/- SEM, n =

3) (Figure 5.12 a and b, Table 5.4).

When labelling of the 5-HTIACys420Ser-receptor-GoluCys3Ser, Cys351Ile (C420S, C3S)

fusion protein fusion protein was carried out using the same protocol, the agonist 8-0H-

DPAT caused a half-maximal increase in levels of eH] palmitate incorporated into the

immunoprecipitated fusion protein with 12 +/- 7 oM 8-0H-DPAT (mean +/- SEM, n =

3) (Figure 5.13 a and b, Table 5.4).
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We can therefore conclude that 8-0H-DPAT was capable of producing concentration-

dependent regulation of palmitoylation of both the GPCR and G protein parts of the 5-

HTIA-receptor-GoluCys3S1Ilefusion proteins with a statistically similar (p>0.05) ECso

of -10-60nM.

Analysis of the incorporation of [3HJ palmitic acid into endogenously expressed

GolUproteins

In order to assess how agonist-regulated G protein palmitoylation results obtained using

the 5-HTIACys417Ser,Cys420Ser-receptor-GoluCys3S1Ile(C417S, C410S) fusion protein

compared with those for the non-fused G protein, we examined the effects of 8-0H-

DPAT on the palmitoylation status of the small amount of Go1uthat is expressed

endogenously in HEK293 cells. It has previously been noted that when expressed at

high levels the receptor element of GPCR-G protein fusions can activate endogenous G

proteins as well as the G protein fused to it (Burt et al., 1998). HEK293T cells were

transfected with the 5-HTIA-receptor-GoluCys3S1Ile(WT) fusion protein and incubated

with eH] palmitate in the absence or presence of 8-0H-DPAT. After cell lysate

production, immunoprecipitation with antiserum aNI, SDS-PAGE and

autoradiography, the incorporation of eH] palmitate into a band with apparent

molecular mass of some 40 kDa (corresponding to endogenous Go1u) was assessed

(Figure 5.14, upper panel). Expression levels of endogenous Go1a were also assessed

by parallel immunoblots with antiserum aNI (Figure 5.14, lower panel). The

endogenous GolU incorporated eH] palmitate in a time-dependent manner but in

contrast to the fused Gola, the presence of 100J.1M8-0H-DPAT enhanced labelling

(Figure 5.14, upper panel), suggesting some inherent difference for the receptor-linked

G protein.
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Analysis of the ability of the 5-HTIACys417Ser, Cys420Ser-receptor-GoluCys35II1e

(C417S, C420S) fusion protein to be repalmitoylated

When the agonist-promoted regulation of palmitoylation is compared for GPCR-G

protein fusion proteins and their non-fused components some differences have been

observed (current study and Loisel et al., 1999). As explained previously, in the work of

Loisel et al. (1999), the differences in agonist-promoted palmitate regulation observed

for the !32-adrenoceptor-Gsu fusion protein as opposed to the non-fused GPCR and G

protein were thought to be as a result of the inability of the fusion protein to be

repalmitoylated. For comparison with the findings of Loisel et al. (1999), the ability of

the 5_HTIACys417Ser, Cys420Ser-receptor-GoluCys351Ile (C417S, C420S) fusion protein to

be repalmitoylated was assessed. HEK293T cells were transfected with the 5-

HTIACys417Ser, Cys420Ser-receptor-GoluCys351Ile (C417S,C420S) fusion protein and

incubated for 30 min with eH] palmitate in the absence of agonist (to allow

approximately steady-state levels of nn palmitate incorporation to be reached).

Subsequent to this, cells were incubated with eH] palmitate in the absence or presence

of 100llM 8-0H-DPAT. After cell lysate production, immunoprecipitation with

antiserum ONl, SDS-PAGE and autoradiography, the incorporation of eH] palmitate

into a band of some 85kDa was monitored (Figure 5.15 a and b). In the absence of

agonist the levels of eH] palmitate incorporated into the 5-HTIACys417Ser,Cys420Ser_

receptor-GoluCys351Ile (C417S,C420S) fusion protein did not decrease with increasing

time (Figure 5.15 a lanes 1, 2 and 4). In contrast, in the presence of IOOIlM 8-0H-

DPAT (Figure 5.15 a lanes 3 and 5) the levels ofeH] palmitate incorporated into the 5-

HTIACys417Ser, Cys420Ser-receptor-GoluCys351Ile (C417S, C420S) fusion protein were

markedly reduced (p<O.05). These results are interpreted as follows. In the presence of

8-0H-DPAT, depalmitoylation of the 5-HTIACys417Ser, Cys420Ser-receptor-

G
O
luCys351Ile (C417S,C420S) fusion occurs (as previously observed from our

depalmitoylation studies) and subsequent repalmitoylation of this fusion is inhibited (as

reflected by the decrease in overall eH] palmitate incorporated into this protein).
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Figure 5.1

Analysis of expression levels of as-HT IA-receptor-GoluCys3SI lie fusion protein

after sub-culture into multiple duplicate culture plates (determined from binding

of a near-saturating concentration (-SnM) of ,3HI-WAYI00635 to membranes

expressing the S-HTI A-receptor-GoluCys3SI lie fusion protein)

HEK293T cells were transfected to express 5-HTIA-receptor-GoluCys35IIle fusion

protein. Membranes were prepared and binding of a near-saturating concentration

(-5nM) of eH]-WA YI00635 to membranes expressing the 5-HTIA-receptor-

GoluCys351Ile fusion protein was assessed for multiple duplicate culture plates (labelled

1-6). Results are from triplicate determinations. Analysis is representative of three

similar experiments.
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Figure 5.2

Incorporation of eH] palmitate into the palmitoylation-variant 5-HT IA-receptor-

GoluCys351Ile fusion proteins in the presence and absence ofS-OH-DPAT.

HEK293T cells were transfected with empty vector (pcDNA3, lanes 1 and 10) or to

express 5-HTIA-receptor-GoluCys35IIle (WT, lanes 2 and 11), 5-HTIACys417Ser-

receptor-Go IUCys351Ile (C417S, lanes 3 and 12), 5-HTIACys417Ser-receptor-

GoluCys3Ser,Cys35lIle (C417S, C3S, lanes 4 and 13), 5-HTIACys420Ser-receptor-

GOIuCys351Ile lanes 5 and 14), 5-HT 1ACys420Ser-receptor-

GOluCys3Ser,Cys35lIle (C420S, C3S, lanes 6 and 15), 5-HTIACys417Ser, Cys420Ser-

receptor-GOIUCys351Ile (C417S,C420S, lanes 7 and 16), 5-HTIA-receptor-

GolaCys3Ser,Cys35lIle (C3S, lanes 8 and 17), and 5-HTIACys417Ser, Cys420Ser-receptor-

GOlaCys3Ser,Cys35lIle (C417S,C420S,C3S, lanes 9 and IS) fusion proteins. Cells were

incubated with eH] palmitate for 30 min in the absence (lanes 1-9) or presence (lanes

10-IS) of 100J,.lM8-0H-DPAT. Samples were harvested and cell lysates produced.

These were either immunoprecipitated with antiserum ONI prior to SDS-PAGE and

autoradiography for 1 month (a, upper panels) or resolved directly by SDS-PAGE and

immunoblotted with antiserum ONI (a, lower panels). Figure 5.2 (a) shows one

representative palmitoylation experiment with corresponding western blot analysis.

Similar results were obtained for three separate experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Bars 1-9 = absence, bars 10-18= presence of8-0H-DPAT.

WT = turquoise bars, C417S= green bars, C417S,C3S = purple bars, C420S= brown bars,

C420S, C3S = red bars, C417S,C420S= yellow bars, C3S = blue bars and C417S,C420S,

C3S = pink bars. Results for three separate experiments were quantified and data is

shown as mean +/- S.E.M., n= 3. In order to compare levels of incorporation from

separate experiments it was necessary to express the levels of incorporation for each

sample as a percentage of the incorporation observed for the unstimulated WT

construct.
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Figure 5.2
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Table 5.1

Comparison of the incorporation of eH] palmitate into all eight palmitoylation-

variant fusion proteins in the presence and absence of 8-0H-DPAT

The results from Figures 5.2 are presented in a tabular form for clarity of comparison

between the constructs. Incorporation level into each 5-HTIA-receptor-GoluCys35IIle

fusion protein in the presence and absence of 8-0H-DPAT is given as a percentage

(mean +/- SEM, n=3) of the incorporation observed for the unstimulated WT construct.
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Table 5.1

Construct Potential Site of Incorporation of Incorporation of
[3H) Palmitate eH) Palmitate in [3H) Palmitate in
Incorporation Absence of 8- Presence of 8-

OH-DPAT(%) OH-DPAT(%)
5-HT lA-receptor- GPCR 100 118 +/- 5.3

GoluCys351l1e (WT) C s417and
Cys~Oresidues
and G protein
Cys' residue

5-HTIACys417Ser- GPCR Cys4.lU 114.5 +/- 5.9 61.0 +/- 4.1
receptor-Golu Cys351Ile residue and G

(C417S) protein Cys"
residue

5_HT1ACys41'Ser- GPCRCys4:lU None None
3 residuereceptor-GoluCys Ser,

C s351l1e
(Cl7S, C3S)

5_HTIACys42USer- GPCR Cys4lf 99.6 +/- 3.8 124 +/- 6.7
receptor-Golu Cys35111e residue and G

(C42OS) protein Cys"
residue

5-HT 1ACys4:lUSer_ GPCRCys417 93.2 +/- 5.4 134.0 +/- 6.6
receptor-GoluCys3Ser, residue

C s351Ile
(C4~OS,C3S)

5-HT1ACySIDSer, G protein Cys' 111.2 +/- 2.6 50.9 +/- 8.2
Cys420Ser-receptor- residue

GoluCys351Ile
(C417S,C42OS)

5-HTIA-receptor - GPCR 85.8 +/- 2.6 135.1 +/- 3.5
3 C 35111 C S417andGolUCyS Ser, ys e

Cys~Oresidues(Cys3Ser)
5-HT1ACys4IISer, None None None
Cys420Ser-receptor-

GolU Crs3Ser,
Cys3 'ne

(CI7S C420S,clS)



Figure 5.3

Incorporation of eH] palmitate into the 5-HT lA-receptor-GolaCys35II1e (WT)

fusion protein in the presence and absence ofS-OH-DPAT.

A 5-HTIA-receptor-GolaCys351Ile (WT) fusion protein was expressed in HEK293T

cells. Cells were incubated with eH] palmitate for the indicated times in the absence

(left panels) or presence (right panels) of 100flM 8-0H-DPAT. Samples were harvested

and cell lysates produced. These were either immunoprecipitated with antiserum ONI

prior to SDS-PAGE and autoradiography for I month (a, upper panels) or resolved

directly by SDS-PAGE and immunoblotted with antiserum ONI (a, lower panels).

Figure 5.3 (a) shows one representative palmitoylation experiment with corresponding

western blot analysis. Similar results were obtained for three separate experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of 8-0H-

DPAT. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare levels of incorporation from separate

experiments it was necessary to express the levels of incorporation for each sample as a

percentage of the, near maximal, level of incorporation for one specific timepoint (as in

Chapter 3 pulse-labelling studies, this was consistently taken as the 60 min time-point

of the unstimulated construct).
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Figure 5.4

Incorporation of eH] palmitate into the 5-HTIACys417Ser, Cys420Ser-receptor-

GoluCys3S1I1e (C417S,C420S) fusion protein in the presence and absence of 8-0H-

DPAT.

A 5-HTIACys417Ser, Cys420Ser-receptor-GoluCys351Ile (C417S, C420S) fusion protein

was expressed in HEK293T cells. Cells were incubated with eH] palmitate for the

indicated times in the absence (left panels) or presence (right panels) of 100flM 8-0H-

DPAT. Samples were harvested and cell lysates produced. These were either

immunoprecipitated with antiserum aNI prior to SDS-PAGE and autoradiography for 1

month (a, upper panels) or resolved directly by SDS-PAGE and immunoblotted with

antiserum ONI (a, lower panels). Figure 5.4 (a) shows one representative

palmitoylation experiment with corresponding western blot analysis. Similar results

were obtained for three separate experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of 8-0H-

DPAT. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare levels of incorporation from separate

experiments it was necessary to express the levels of incorporation for each sample as a

percentage of the, near maximal, level of incorporation for one specific timepoint (as in

Chapter 3 pulse-labelling studies, this was consistently taken as the 60 min time-point

of the unstimulated construct).
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Figure 5.5

Incorporation of eH] palmitate into the 5-HTIA-receptor-GolaCys3Ser,

Cys351IIe (C3S) fusion protein in the presence and absence of 8-0H-DPAT.

A 5-HT IA-receptor-Go1 aCys3Ser,Cys35 I lIe (C3S) fusion protein was expressed in

HEK293T cells. Cells were incubated with eH] palmitate for the indicated times in the

absence (left panels) or presence (right panels) of IOOJ.lM 8-0H-DPAT. Samples were

harvested and cell lysates produced. These were either immunoprecipitated with

antiserum ONI prior to SDS-PAGE and autoradiography for I month (a, upper panels)

or resolved directly by SDS-PAGE and immunoblotted with antiserum ONI (a, lower

panels). Figure 5.5 (a) shows one representative palmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of 8-0H-

DPAT. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare levels of incorporation from separate

experiments it was necessary to express the levels of incorporation for each sample as a

percentage of the, near maximal, level of incorporation for one specific timepoint (as in

Chapter 3 pulse-labelling studies, this was consistently taken as the 60 min time-point

of the unstimulated construet).
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Figure 5.6

Incorporation of (3H) palmitate into the 5-HT1ACys420Ser-receptor-GO)uCys3Ser,

Cys3S1lie (C420S,C3S) fusion protein in the presence and absence of 8-0H-DPAT.

A 5-HTIACys420Ser-receptor-GoluCys3Ser, Cys351Ile (C420S, C3S) fusion protein was

expressed in HEK293T cells. Cells were incubated with [3H] palmitate for the indicated

times in the absence (left panels) or presence (right panels) of IOO).lM8-0H-DPAT.

Samples were harvested and cell lysates produced. These were either

immunoprecipitated with antiserum ONI prior to SOS-PAGE and autoradiography for 1

month (a, upper panels) or resolved directly by SOS-PAGE and immunoblotted with

antiserum ONI (a, lower panels). Figure 5.6 (a) shows one representative

palmitoylation experiment with corresponding western blot analysis. Similar results

were obtained for three separate experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of 8-0H-

DPA T. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare levels of incorporation from separate

experiments it was necessary to express the levels of incorporation for each sample as a

percentage of the, near maximal, level of incorporation for one specific timepoint (as in

Chapter 3 pulse-labelling studies, this was consistently taken as the 60 min time-point

of the unstimulated construct).
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Table 5.2

Comparison of the incorporation of eH] palmitate results from Figure 5.3-5.6 for

the four selected palmitoylation-variant fusion proteins (Figure 5.3: WT, Figure

5.4: C417S, C420S, Figure 5.5: C3S, and Figure 5.6: C420S, C3S) in the presence and

absence ofS-OH-DPAT

The results from Figures 5.3-5.6 were presented in a tabular form for clarity of

companson between the constructs. Non-linear regression analysis was used to

determine the maximal incorporation level of [3H] palmitate and the t1l2 (min) for

incorporation into each 5-HTIA-receptor-GoluCys35IIlefusion protein in the presence

and absence of8-0H-DPAT.
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Table 5.2

Construct Potential Max tll2 Max tll2

Site of eH) Palmitate Palmitate Palmitate Palmitate
Palmitate Incorp. Incorp. Incorp. Incorp.
Incorp. - 8-0H- - 8-0H- +8-0H- +8-0H-

DPAT DPAT DPAT DPAT
(%) (min) (Ofc.) (min)

WT GPCR 184.2 +/- 37.8 +/- 236.7 +/- 26.9 +/-
Cys417and 20.6 10.5 20.6 6.5
Cys420

residues and
G protein

Cys3
residue

C417S, G protein 100.8 +/- 11.3 +/- 4.6 14.6 +/- 3.6 4.4 +/- 5.6
C420S Cys3 10.6

residue
C'S GPCR 206.4 +/- 59.2 +/- 345.5 +/- 75.8 +/-

C s417and 23.7 14.4 54.4 23.2
Y 420Cys
residues

C410S, c's GPCR 179.5 +/- 50.9 +/- 374.1 +/- 67.8 +/-
Cys417 22.5 14.1 79.9 29.2
residue



Figure 5.7

Basal and 8-0H-DPAT -stimulated de-palmitoylation of as-HT lA-receptor-

GOl aCys351 lie (WT) fusion protein

HEK293T cells were transfected to express a 5-HTIA-receptor-GolaCys351Ile (WT)

fusion protein. Cells were incubated with eH] palmitate for 30 min, washed and then

excess non-radioactive palmitate was added in the absence (a, left panels) or presence

(a, right panels) of 8-0H-DPAT (lOOIlM). Samples were harvested at varying times

and cell lysates produced that were either immunoprecipitated with antiserum ONI

prior to SDS-PAGE and autoradiography for 1 month (a, upper panels) or resolved

directly by SDS-PAGE and immunoblotted with antiserum ONt (a, lower panels).

Figure 5.7 (a) shows one representative depalmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of 8-0H-

DPAT. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare remaining levels of eH] palmitate from

separate experiments it was necessary to express the remaining levels of eH] palmitate

for each sample as a percentage of the maximal level observed (0 min chase time).
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Figure 5.8

Basal and 8-0H-DPAT-stimulated de-palmitoylation of a 5-HTIACys417Ser,

Cys420Ser-receptor-GoluCys351I1e (C417S,C420S)fusion protein

HEK293T cells were transfected to express a S-HT1ACys417Ser, Cys420Ser-receptor-

GoluCys351Ile (C417S,C420S) fusion protein. Cells were incubated with eH] palmitate

for 30 min, washed and then excess non-radioactive palmitate was added in the absence

(a, left panels) or presence (a, right panels) of 8-0H-DPAT (IOOflM). Samples were

harvested at varying times and cell lysates produced that were either

immunoprecipitated with antiserum ONI prior to SDS-PAGE and autoradiography for 1

month (a, upper panels) or resolved directly by SDS-PAGE and immunoblotted with

antiserum aNI (a, lower panels). Figure 5.8 (a) shows one representative

depalmitoylation experiment with corresponding western blot analysis. Similar results

were obtained for three separate experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of 8-0H-

DPAT. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare remaining levels of eH] palmitate from

separate experiments it was necessary to express the remaining levels of eH] palmitate

for each sample as a percentage of the maximal level observed (0 min chase time).
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Figure 5.9

Lack of basal and 8-0H-DPAT-stimulated de-palmitoylation of a 5-HT1A-

receptor-GoluCysJSer,eys35II1e (e3S) fusion protein

HEK293T cells were transfected to express a 5-HTIA-receptor-

GOluCys3Ser,Cys35lIle (e3S) fusion protein. Cells were incubated with eH] palmitate

for 30 min, washed and then excess non-radioactive palmitate was added in the absence

(a, left panels) or presence (a, right panels) of 8-0H-DPAT (lOO~M). Samples were

harvested at varying times and cell lysates produced that were either

immunoprecipitated with antiserum ONI prior to SOS-PAGE and autoradiography for 1

month (a, upper panels) or resolved directly by SOS-PAGE and immunoblotted with

antiserum ONI (a, lower panels). Figure 5.9 (a) shows one representative

depalmitoylation experiment with corresponding western blot analysis. Similar results

were obtained for three separate experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of 8-0H-

DPAT. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare remaining levels of eH] palmitate from

separate experiments it was necessary to express the remaining levels of eH] palmitate

for each sample as a percentage of the maximal level observed (0 min chase time).
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Figure 5.10

Lack of basal and 8-0H-DPAT-stimulated de-palmitoylation of a 5-

HT lA Cys420Ser-receptor-Gol aCys3Ser,Cys351l1e (C420S,C3S) fusion protein

E fi d C 420SH K293T cells were trans ecte to express a 5-HT1A ys er-receptor-

GOlaCys3Ser,Cys351I1e(C420S, C3S) fusion protein. Cells were incubated with eH]

palmitate for 30 min, washed and then excess non-radioactive palmitate was added in

the absence (a, left panels) or presence (a, right panels) of 8-0H-DPAT (100J,tM).

Samples were harvested at varying times and cell Iysates produced that were either

immunoprecipitated with antiserum ONI prior to SOS-PAGE and autoradiography for 1

month (a, upper panels) or resolved directly by SOS-PAGE and immunoblotted with

antiserum ONI (a, lower panels). Figure 5.10 (a) shows one representative

depalmitoylation experiment with corresponding western blot analysis. Similar results

were obtained for three separate experiments.

Autoradiographs as in the upper panels of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled circles = presence of 8-0H-

DPAT. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare remaining levels of eH] palmitate from

separate experiments it was necessary to express the remaining levels of [3H] palmitate

for each sample as a percentage ofthe maximal level observed (0 min chase time).
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Table 5.3

Comparison of tbe depalmitoylation results from Figure 5.7-5.10 for the four

selected palmitoylation-variant fusion proteins (Figure 5.7: WT, Figure 5.8:

C417S C420. 3 420 3, S, Figure 5.9: C S, and Figure 5.10: C S, C S) in tbe presence and

absence of 8-0H-DPA T

The results from Figures 5.7-5.10 were presented in a tabular form for clarity of

companson between the constructs. Non-linear regression analysis was used to

determine the tl/2 (min) for depalmitoylation of 5-HTIA-receptor-GotuCys351Ile fusion

proteins (where depalmitoylation occurred) in the presence and absence of 8-0H-

DPAT.
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Table 5.3

Construct Potential Site of tll2 (min) tll2 (min)
(3H] Palmitate Depalmitoylation Depalmitoylation
Incorporation ( - 8-0H-DP AT) (+ 8-0H-DPAT)

WT GPCR Cys'" 'and 45.5 +/- 15.6 48.4 +/- 23.5
Cys420residues and
G protein Cys'

residue
CII 7S, C4ZUS G protein Cys'' 15.3 +/- 6.5 6.3 +/- 2.4

residue
cots GPCR Cys41/and No No

Cys420residues depalmitoylation depalmitoylation
C4"mS,cots GPCR Cys411 No No

residue depalmitoylation depalmitoylation



Figure 5.11

Concentration-response of 8-0H-DPAT regulated incorporation of eH] palmitate

into the 5-HTIA-receptor-GoluCys35II1e (WT) fusion protein

A 5-HTIA-receptor-GoluCys351Ile (WT) fusion protein was expressed m HEK293T

cells. Cells were incubated with eH] palmitate for 30 min in the presence of varying

concentrations of 8-0H-DPAT. Samples were harvested and cell lysates produced.

These were either immunoprecipitated with antiserum ONI prior to SDS-PAGE and

autoradiography for I month (a, upper panel) or resolved directly by SDS-PAGE and

immunoblotted with antiserum ONI (a, lower panel). Figure 5.11 (a) shows one

representative concentration-response palmitoylation experiment with corresponding

western blot analysis. Similar results were obtained for three separate experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. The effect of 8-0H-DPAT was quantified for three separate

experiments and data is shown as mean +/- S.E.M., n= 3. In order to compare levels of

incorporation from separate experiments it was necessary to express the levels of

incorporation for each sample as a percentage of the incorporation level observed for

the unstimulated construct.
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Figure 5.11
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Figure 5.12

Concentration-response of 8-0H-DPA T regulated incorporation of [3H] palmitate

into the S-HT1ACys4I7Ser, Cys420Ser-receptor-GoluCys35II1e (C417S,C420S) fusion

protein

A 5-HTIACys417Ser, Cys420Ser-receptor-GoluCys351 lIe (C417S, C420S) fusion protein

was expressed in HEK293T cells. Cells were incubated with eH] palmitate for 30 min

in the presence of varying concentrations of 8-0H-OPAT. Samples were harvested and

cell lysates produced. These were either immunoprecipitated with antiserum ONI prior

to SOS-PAGE and autoradiography for 1 month (a, upper panel) or resolved directly by

SOS-PAGE and immunoblotted with antiserum ONt (a, lower panel). Figure 5.12 (a)

shows one representative concentration-response palmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. The effect ofS-OH-OPAT was quantified for three separate

experiments and data is shown as mean +/- S.E.M., n= 3. In order to compare levels of

incorporation from separate experiments it was necessary to express the levels of

incorporation for each sample as a percentage of the incorporation level observed for

the unstimulated construct.
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Figure 5.12
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Figure 5.13

Concentration-response of 8-0H-DPA T regulated incorporation of eH] palmitate

into the 5-HT1 ACys420Ser-receptor-Got uCys3Ser, Cys35tIle (C420S, C3S) fusion

protein

A 5-HTIACys420Ser-receptor-GoluCys3Ser, Cys351I1e(C420S, C3S) fusion protein was

expressed in HEK293T cells. Cells were incubated with CH] palmitate for 30 min in

the presence of varying concentrations of 8-0H-DPAT. Samples were harvested and

cell lysates produced. These were either immunoprecipitated with antiserum ONI prior

to SDS-PAGE and autoradiography for 1 month (a, upper panel) or resolved directly by

SDS-PAGE and immunoblotted with antiserum ONI (a, lower panel). Figure 5.13 (a)

shows one representative concentration-response palmitoylation experiment with

corresponding western blot analysis. Similar results were obtained for three separate

experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. The effect of 8-0H-DPAT was quantified for three separate

experiments and data is shown as mean +/- S.E.M., n= 3. In order to compare levels of

incorporation from separate experiments it was necessary to express the levels of

incorporation for each sample as a percentage of the incorporation level observed for

the unstimulated construct.
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Table 5.4

Comparison of 8-0H-DPAT concentration-response regulated incorporation of

rrn palmitate into three palmitoylation-variant fusion proteins (for Figure 5.11:

WT, for Figure 5.12: C417S, C420S and for Figure 5.13: C420S, C3S)

The results from Figures 5.11-5.13 were presented in a tabular form for clarity of

comparison between the constructs. Non-linear regression analysis was used to

determine the ECso for 8-0H-DPAT regulated incorporation of eH] palmitate into the

three selected 5-HTIA-receptor -GoluCys351Ile fusion proteins (mean +/- SEM, n=3).
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Table 5.4

Construct ECso(nM) for 8-08-
DPAT-stimulated [38]

palmitate
incorporation

5-HTlA-receptor-GoluCys35IIle (WT) 63 +/- 48
5-HTIA-receptor Cys4I 7Ser, Cys'J2USer- 14 +/- 8

GoluCys35lne (C417S, C42OS)
5-HT lA-receptor Cys 420Ser-Gol uCys3Ser, 12 +/- 7

Cys35lne (C420S, C3S)



Figure 5.14

Incorporation of eH] palmitate into endogenously expressed Gola protein in the

presence and absence ofS-OH-DPAT

A 5-HTIA-receptor-Go,aCys35IIle (WT) fusion protein was expressed in HEK293T

cells. Cells were incubated with eH] palmitate for the indicated times in the absence (-)

or presence (+) of IOOIlM 8-0H-DPAT. Samples were harvested and cell lysates

produced. These were either immunoprecipitated with antiserum ONI prior to SDS-

PAGE and autoradiography for 1 month (upper panel) or resolved directly by SDS-

PAGE and immunoblotted with antiserum aNI (lower panel). Rather than the fusion

protein, labelling and expression of endogenous Go1a is shown. Figure 5.14 shows one

representative palmitoylation experiment with corresponding western blot analysis.

Similar results were obtained for three separate experiments.
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Figure 5.15

Repalmitoylation of the 4175-HTIACyS Ser, Cys 420Ser-receptor-Go IaCys351lie

A 5-HTIACys417Ser, Cys420Ser-receptor-GolaCys351Ile (C417S, C420S) fusion protein

was expressed in HEK293T cells. Cells were incubated with eH] palmitate for 30 min

in the absence of agonist. After the 30 min incubation, cells were incubated with eH]

palmitate for the indicated times in the absence (-) or presence (+) of 100J.1M8-0H-

DPAT. Samples were harvested and cell lysates produced. These were either

immunoprecipitated with antiserum aNI prior to SOS-PAGE and autoradiography for 1

month (a, upper panel) or resolved directly by SOS-PAGE and immunoblotted with

antiserum ON 1 (a, lower panel). Figure 5.15 (a) shows one representative

repalmitoylation experiment with corresponding western blot analysis. Similar results

were obtained for three separate experiments.

Autoradiographs as in the upper panel of a were scanned and signals quantitated (b) in

the area of the film shown. Open circles = absence, filled squares = presence of 8-0H-

OPAT. Results for three separate experiments were quantified and data is shown as

mean +/- S.E.M., n= 3. In order to compare levels of incorporated [3H] palmitate from

separate experiments it was necessary to express the levels of eH] palmitate for each

sample as a percentage of the level observed for the 0 min (post-steady-state incubation)

sample.
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Figure 5.15
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5.3 Discussion

Around ten years ago, the Cys'' residue at the N-tenninus of the Gala protein (Grassie et

al., 1994) was first observed to undergo palmitoylation. Since that time, further

information regarding palmitoylation of this Ga protein, how it may be regulated and

how that regulation may affect the function of the protein, has been limited. At the

outset of the current study, there had also been no previous publications on the

regulation and function of palmitoylation for the 5-HTIA-receptor. Consequently, we

decided to investigate the regulation of palmitoylation for these two proteins. In order to

do this we made use of fusion proteins in which the N-tenninus of the GaiaCys351Ile

protein was linked in-frame to the C-tenninal tail of the 5-HTIA-receptor.

Once again, the reasons for employing fusion proteins in the current study were in order

to benefit from some of the advantageous features imparted by the nature of the fusion:

features such as close proximity of GPCR and G protein (allowing effective

interactions) and defined stoichiometry of the two proteins as I: 1. As already discussed,

fusion proteins have successfully been used for studying the regulation of

palmitoylation (Stevens et al., 2001) as well as many other aspects of GPCR and G

protein interaction and function (Bertin et al., 1994; Wise and Milligan, 1997; Seifert et

al., 1998; Guo et al., 2001).

Eight possible palmitoylation-variant forms of 5-HTIA-receptor-Ga]aCys35IIle fusion

proteins exist. Although all eight palmitoylation-variant constructs were used in an

initial palmitoylation study to assess which sites were capable of incorporating

palmitate, only a selection of these constructs were subsequently used to assess the

kinetics of palmitoylation and depalmitoylation reactions for the GPCR and the G

protein. This is largely because it is more useful to study each potential palmitoylation

site in isolation, rather than in combination with other sites.

During the progress of the current study a publication appeared documenting regulation

of the 5-HTIA-receptorpalmitoylation and its functional role (Papoucheva et al., 2004).

The findings from the Papoucheva et al. study showed some similarities to the results

obtained herein for the G protein-fused 5-HTIA-receptor. However, a number of very
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different observations were also made in the two studies. The results observed by

Papoucheva et al. will be described in full and compared to the results of the current

study after the regulation of palmitoylation is discussed for the GOla protein portion of

the 5-HTIA-receptor-GolaCys35IIle fusions.

The incorporation of eH] palmitate into the Gola protein segment of the 5-HTIA-

receptor-GolaCys35lIle fusion proteins was initially confirmed in a palmitoylation

experiment comparing levels of incorporation into all eight palmitoylation variant

fusions. Upon subsequent analysis of the 5-HTIACys417Ser, Cys420Ser-receptor-

GoiaCys351Ile (C417S,C420S) fusion protein (capable of incorporating palmitate only

into the G protein site) by pulse-labelling time-course experiments, 8-0H-DPAT-

stimulation was found to lead to decreased levels of eH] palmitate incorporation into

the fused Gola protein. A similar effect had already been observed in the current study

by the use of a2A-adrenoceptor-GolaCys35IIle fusions (Chapter 3). For the

GoiaCys
351Ile protein fused to the a2A-adrenoceptor, approximately 60% less

incorporation of eH] palmitate was observed in the presence of adrenaline compared

with basal levels. The current results, for the GOlaCys351Ile protein fused to the 5-HTIA-

receptor, appear to demonstrate even less incorporation of eH] palmitate into the G

protein in response to agonist (approximately 80% less for 8-0H-DPAT-stimulated

fusions than for unstimulated). There was also another similarity from pulse-labelling

studies of the two sets of fusion proteins. The tl/2 for incorporation of palmitate into the

fused G protein was, in both cases, unaltered by agonist-stimulation. In addition, the

actual t1l2 values for incorporation of CH] palmitate into the 5-HTIA-receptor-

GolaCys351Ile fusions (unstimulated = 11.3 +/- 4.6 min, stimulated = 4.4 +/- 5.6 min)

were very similar to the values for the a2A-adrenoceptor-Gola Cys351Ile fusions

(unstimulated = 8.2 +/- 1.3 min, stimulated = 8.3 +/- 2.0 min). An agonist stimulated

decrease in incorporation level of eH] palmitate had also previously been observed for

a ~2-adrenoceptor-Gsa fusion protein (Loisel et al., 1999). In contrast, a distinct effect

of agonist was observed for an alb-adrenoceptor-Glla fusion protein. In the latter case,

agonist enhanced the levels of palmitate incorporated into the fusion (Stevens et al.,

2001).
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As well as dynamic palmitoylation, the Gola protein portion of the 5-HTlA-receptor-

GoiaCys351Ile fusion proteins was also found to undergo dynamic depalmitoylation. In

pulse-chase format assays the Gola protein incorporated eH] palmitate during the pulse

period, then rapidly lost the palmitate during the chase period with tl/2 for

depalmitoylation assessed to be 15.3 +/- 6.5 min in the absence of8-0H-DPAT and 6.3

+/- 2.4 min in the presence of 8-0H-DPAT. Upon comparison with the results for the

{l2A-adrenoceptor-GolaCys35IIle fusions (t1/2 unstimulated = 37.0 +/- 5.0 min, tll2

stimulated = 17.0 +/- 2.0 min), some similarities and also some differences were

observed. Firstly, depalmitoylation of the 5-HTIA-receptor-fused Gola Cys35lIle protein

(basal and stimulated levels) appeared to be more rapid than for the a2A-adrenoceptor-

fused Gola Cys351Ile protein. Secondly, the rate of depalmitoylation of a2A-

adrenoceptor-fused Gola Cys351Ileprotein was significantly increased in the presence of

the agonist adrenaline. In contrast, statistical analysis of the basal and 8-0H-DPAT-

stimulated depalmitoylation rate for the 5-HTIA-receptor-fused GoiaCys35lIle protein

did not confirm such an increase. I expect this observation is a result of the relatively

large experimental errors for this assay and that upon further careful repeats, the errors

could be reduced and thus reveal the statistically significant effect of agonist that is

implied from the quantitation of Figure 5.4. A similar agonist-stimulated rate of Go.

protein depalmitoylation has been observed in a study with Gia (Chen and Manning,

2000). In this study, stimulation of the 5-HTlA-receptor by the agonist 8-0H-DPAT

increased the depalmitoylation rate of the Gia protein.

The ability of various concentrations of8-0H-DPAT to regulate 5-HTIA-receptor-fused

GoIClCys351IIe protein palmitoylation was then assessed. 8-0H-DPAT caused a

concentration-dependent reduction in levels of eH] palmitate incorporation into the

fused GoIClCys3SIIleprotein with an ECso of 14 +/- 8 nM. A very similar EC50 (-10 nM)

was also observed for 8-0H-DPAT regulated incorporation of eH] palmitate into the

Gin protein (Chen and Manning, 2000). However, in the latter case the agonist resulted

in increased levels of eH] palmitate incorporation upon agonist stimulation.

Given that my results, observed for 5-HT1A-receptor fused GOIaCys351Ile proteins,

displayed a seemingly opposite pattern of agonist-regulated incorporation of eH]

191



palmitate than for a number of other non-fused Go. proteins, including Gja (Chen and

Manning, 2000; Bharnre et a1.l998) and Gsa (Wedegaertner and Bourne, 1995) we

decided to investigate whether constraint of the Go. protein in a fusion could have

affected the observed levels of eH] palmitate incorporation. This was assessed by the

ability of the 5-HTIACys417Ser, Cys420Ser-receptor-GolaCys351Ile (C417S,C420S) fusion

protein to stimulate the endogenous Go1a protein. In this experiment, agonist regulation

of G protein palmitoylation was once again observed. However, in contrast to our

results with the fused GolaCys351Ile protein, 8-0H-DPAT led to an increase in

incorporation of eH] palmitate into the endogenous G protein, thus indicating that some

limitation of the fusion protein was responsible for the observation of an opposite

pattern of regulated palmityolation. Previously it had been reported that the ability of

agonist-stimulated fusion proteins to become repalmitoylated might be limited (Loisel

et al., 1999). Therefore, this was tested in a repalmitoylation assay using the 5-

HTIACys417Ser, Cys420Ser-receptor-GolaCys351Ile (C417S,C420S) fusion protein. Akin to

the results observed for the Pradrenoceptor-Gsa fusion protein (Loisel et al., 1999) and

the a2ACys442Ala-adrenoceptor-Gsi aCys351lIe (Cys442Ala) fusion protein (Chapter 3),

repalmitoylation of the 5-HTIACys417Ser, Cys420Ser-receptor-GolaCys351Ile fusion

protein was reduced in response to agonist. Therefore, the apparently opposite pattern of

agonist-regulated incorporation ofeH] palmitate into fused and non-fused Go1a protein,

may reflect some restriction of the fused protein to become repalmitoylated after

depalmitoylation events.

The fact that the fused G proteins exhibit opposite patterns of eH] palmitate

incorporation to non-fused G proteins in pulse-labelling studies does not necessarily

indicate that the fusion system is unsuitable for palmitoylation studies. As already

discussed, the results from pulse-labelling studies do not give us definitive descriptions

of changes in palmitoylation, since the results of such an assay represent both the

palmitoylation and depalmitoylation reactions. As a result, pulse-labelling assays only

tell us whether agonist is capable of producing an effect without detailed insight into

potential mechanisms. The same observation can still be made in the fused system,

meaning that even in light of some of the observations made in the current study,

fusions are still considered to be useful tools for the study of the regulation of

palmitoylation.
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Now that the regulation of GoluCys351Ile protein palmitoylation has been discussed in

full the regulation of 5-HTIA-receptor palmitoylation can be considered. In the study by

Papoucheva et al. (2004), the regulation of 5-HTIA-receptor palmitoylation and the

associated functional role of this modification were reported. These authors observed

incorporation of palmitate into both the Cys417and the Cys420 residues of the 5-HT1A-

receptor. However, rather than being a dynamically regulated post-translational

modification, they reported that palmitate was incorporated into this GPCR early after

receptor synthesis and once attached, was essentially irreversible. These authors also

reported that palmitoylation efficiency at this GPCR was not modulated by receptor

stimulation with agonists. Some of these results were similar to those obtained in the

current study by use of 5-HTIA-receptor-GoluCys351Ile fusion proteins but there were

also a number of contrasting results between the two studies. Herein, the results of the

current study will be addressed point-by-point for comparison with the results of the

Papoucheva et al. (2004) study.

Before performing a variety of experiments to assess the regulation of palmitoylation in

the GPCR and G protein parts of 5-HTIA-receptor-GoluCys351Ile fusion proteins, it was

necessary to confirm which sites in the fusion were responsible for incorporation of

palmitate. Surprisingly, when the ability of all eight palmitoylation-variant 5-HT1A-

receptor-GoluCys351Il~ constructs to incorporate eH] palmitic acid were assessed in

parallel, palmitate was found to incorporate into the first receptor palmitoylation site

(Cys417) but not into the second (Cys420) site of the 5-HT1A-receptor. The lack of

incorporation into the Cys420site of the 5-HT1A-receptor observed in these studies is in

direct contrast to the findings of Papoucheva et al. (2004). These authors convincingly

demonstrated the incorporation of palmitate into both sites of the 5-HT1A-receptor in

their study using a non-fused receptor. The reason for such a difference is difficult to

ascertain. Given that in the current study the identity of all mutant constructs were

checked by sequencing, one can only assume the contrasting results reflect some

difference( s) in the experimental system used.

It was also apparent from this study that the presence of the 5-HT1A-receptor agonist 8-

OH-DPAT led to altered levels of palmitate incorporation into the 5-HT1A-receptor.
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This was observed both in pulse-labelling studies and in 8-0H-DPAT-stimulated

concentration-response experiments.

In pulse labelling studies with the C420S, C3S fusion (reflecting only C417

palmitoylation), 8-0H-DPAT led to approximately twice the basal levels (374.1 +/-

79.9 % versus 179.5 +/- 22.5 %) of eH] palmitate incorporation into the first receptor

palmitoylation site. From these results we were also able to determine that such an

effect was not attributable to an increased rate of palmitoylation, since the observed tl/2

for palmitate incorporation was statistically the same (p>0.05) in the presence (67.8 +/-

29.2 min) and the absence (50.9 +/- 14.1 min) of 8-0H-DPAT. Furthermore we were

able to show that none of these results were significantly different (p>0.05) if the C3S

fusion (which reflects the palmitoylation of both potential receptor sites) was used. Thus

providing further support that dynamic palmitoylation of the C420site on the fused 5-

HT lA-receptor did not occur. When considering this result one must also bear in mind

the distinct possibility that non-radio labelled palmitate may already be irreversibly

incorporated at this site and thus eH] palmitate in this assay cannot replace it.

Concentration-response experiments performed on the C420S, C3S fusion further

demonstrated that 8-0H-DPAT stimulated an increase in eH] palmitate incorporation

into the first receptor palmitoylation site. Furthermore such regulation of receptor

palmitoylation was found to occur with essentially the same (p>0.05) ECso (12 +/- 7

nM) as for 8-0H-DPAT-stimulated incorporation of eH] palmitate into the fused

GolaCys3SlIle protein (14 +/- 8nM).

In contrast, Papoucheva et al. (2004) did not observe agonist-regulation of

palmitoylation in response to the 5-HTIA-receptor agonist serotonin (10OpM-10J.lM).

This is another balling difference observed for the two palmitoylation studies, which is

very difficult to explain. Even more difficult given that the agonist effects have been

convincingly shown for both studies. Once again, some difference(s) in the

experimental system used must be responsible for the contrasting observations. Such

lack of agonist-regulation of GPCR palmitoylation, observed by Papoucheva et al.

(2004), is not only in contrast to our findings but it is also different to observations

made for other GPCRs such as the 5-HT4A-receptor (Ponimaskin et al., 2002) and the
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f32-adrenoceptor (Loisel et al., 1996), therefore I find the lack of agonist-regulation

reported in the Papoucheva et al. (2004) paper rather surprising.

In the current study there was one observation made which was in agreement to the

findings of Pap ouch eva et al. (2004). Neither the C420S, C3S nor the C3S fusion proteins

were found to undergo depalmitoylation in pulse-chase palmitoylation assays. In these

assays palmitate was incorporated into the fusions but remained stably attached for the

entire three-hour chase period analysed. This result was in keeping with the results of

similar pulse-chase assays performed for the non-fused 5-HTIA-receptor.

By taking all of my observations for the receptor together I have interpreted my results

as follows:

1 Palmitate, once attached to the 5-HT1A-receptor Cys417 site, is stable and

cannot be removed (at least not within a 3 hour timescale).

2 Not all receptor palmitoylation sites already have palmitate attached after

expression of the 5-HTIA-receptor-Gola.Cys351Ue fusion proteins, hence

allowing us to incorporate rrn palmitate into our fusions during the

palmitoylation assays

3 8-0H-DPAT stimulates the incorporation of eH] palmitate into our fusions

without affecting the rate of palmitoylation. It perhaps promotes some fusion

conformation more favourable for the incorporation of palmitate.

However, one further observation made in the Papoucheva et al. (2004) study would

seem to be in disagreement with this hypothesis. These authors seemed to demonstrate

that palmitolyation of the S-HTrx-receptor happens immediately after protein synthesis.

They did this by monitoring in parallel, 5-HT1A receptor incorporation of esS]

methionine or eH] palmitate in the presence of cycloheximide (an inhibitor of protein

synthesis). They observed that blocking synthesis of protein (confirmed by no labelling

with CSS] methionine) also blocked the incorporation of eH] palmitate into the 5-HTIA-

receptor. The authors took these results in combination with their other findings to mean

that palmitoylation of the 5-HTIA-receptor occurs early after synthesis of this GPCR and

that once attached the palmitate is stable and not subject to dynamic regulation. The

implication of this result for the cycloheximide experiments was somewhat surprising to
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me. Given that Papoucheva et al. (2004) claim that all incorporation of eH] palmitate

represents incorporation into newly synthesised receptor, remarkably high levels of new

receptor synthesis must be occurring with their expression system. In their studies, over

a labelling time of only 30 minutes, there is substantial incorporation of eH] palmitate

(corresponding to substantial levels of new protein synthesis). I found this observation

quite surprising. Iwouldn't have expected such high levels of new protein synthesis to

occur over such a short time. Inmy studies Western blot analysis, performed in parallel

with palmitoylation assays, confirmed that no detectable difference in expression levels

of my fusion proteins occurred over the time-course of a typical assay. However, since I

have not performed any experiments on protein synthesis/degradation I cannot really

compare my results to these findings. It would be useful therefore, to perform such

assays and also to assess palmitoylation of the 5-HTIA-receptor-GolaCys35IIle fusion

proteins in the presence of cycloheximide for comparison with the studies of

Papoucheva et al. (2004).

In conclusion, it is very difficult to ascertain the reason(s) for the differences reported

between the study by Papoucheva et al. (2004) and the results of the current study.

However some aspect of the different experimental systems must be accountable. The

work of Papoucheva et al. (2004) was performed using the murine form of the non-

fused 5-HTIA-receptorexpressed in Sf.9 insect cells whereas the current study used the

human form of the 5-HTIA-receptorfused to the GoiaCys351Ileprotein and expressed in

HEK293T cells. I am very sceptical that such a variety of differences could be due to

the fusion context of my study, however, this possibility cannot be excluded. Such

differences confirm the need for a number of comparative experiments (e.g. analysis of

palmitoylation for the non-fused human 5-HT1A-receptorin HEK293T cells) before a

clear understanding of the regulation of 5-HT1A-receptor palmitoylation can be

obtained.

In summary, the data from this chapter provides similar conclusions for the regulation

of GoiaCys351Ileprotein palmitoylation fused to the 5-HT1A-receptor than previously

observed in Chapter 3 for the regulation of this same Ga protein fused to the a2A-

adrenoceptor. This is perhaps indicative of a more general role for Ga protein

palmitoylation. In contrast the results of the current chapter highlight very different
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patterns of regulation of GPCR palmitoylation for the 5-HT1A-receptor and the U2A-

adrenoceptor. This difference in regulation of palmitoylation may result in different

observations for the functional significance of palmitate attached to these two receptors.

Given that a functional analysis of the significance of palmitoylation has been

performed for the u2A-adrenoceptor-Golu fusions in Chapter 4, Ihave also performed

a similar analysis for the palmitoylation-variant 5-HTIA-receptor-GoluCys351Ile fusion

proteins in the last results chapter of this thesis (Chapter 6).
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Chapter 6

Functional consequences of palmitoylation in

5-HTIA-receptor-GOluCys3S1Ile fusion proteins



6.1 Introduction

Reversible attachment of palmitate to some GPCRs and G proteins via repeated cycles

of palmitoylation and depalmitoylation has been implicated in the modulation of a

number of signalling processes (Ross, 1995; Mumby 1997). For several GPCRs

(Hayashi and Haga, 1997; Hawtin et al., 2001; Ponimaskin et al., 2001) palmitoylation

can be modulated by agonist stimulation. In addition, agonist-stimulation of several

GPCRs has been shown to modulate palmitoylation of receptor-coupled G proteins

(Gurdal et al., 1997; Mumby and Muntz, 1995; Chen and Manning, 2000; Stevens et

al., 2001). As a result, a number of studies of GPCR and G protein palmitoylation have

been performed (Ponimaskin et al., 2001; Chen and Manning, 2000; Papoucheva et al.,

2004) and a wide variety of functional consequences have been reported (Qanbar and

Bouvier, 2003; Hawtin et al., 2001: Ponimaskin et al., 2002; Miggin et al., 2003).

As already outlined in Chapter 4, roles for Ga protein palmitoylation have been

suggested in RGS protein-Go protein interactions (Tu et al., 1997; Ross and Wilkie,

2000) and membrane localisation/targeting of the Ga protein (Wedegaertner, 1998;

Dunphy and Linder, 1998; Mumby, 1997; Song et al., 1997). GPCR palmitoylation

(also discussed in Chapter 4) has been implicated in the modulation of a number of

functional properties such as GPCR-G protein interactions (Hayashi and Raga, 1997),

GPCR phosphorylation and desensitisation (Moffett et al., 1993) and GPCR

downregulation (Kawate et al., 1997; Munshi et al., 2001).

In this study the functional consequences of palmitoylation of the 5-HT1A-receptor and

the GolaCys
351Ile protein are studied for the same palmitoylation-variant 5-HTIA-

receptor-Go1aCys351Ile fusion proteins used in Chapter 5. At present there is a lack of

data concerning the functional consequences of GolaCys351Ile protein palmitoylation. In

addition, at the time of commencement of the current study there were no publications

on 5-HTIA-receptor palmitoylation. More recently however, one study (Papoucheva et

al., 2004) has contained a number of findings on the functional consequences of

palmitoylation for this GPCR. These authors found palmitoylation of the 5-RTIA-

receptor to be important for coupling to Gia and G~y as well as for the inhibition of

forskolin-stimulated cAMP formation. In terms of the current study, it was decided to
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use the palmitoylation-variant 5-HT1A-receptor-GolaCys351Ile fusion proteins (already

studied for regulation of palmitoylation in Chapter 5) to assess the functional

importance of palmitoylation in the two fused proteins. This was largely due to the

previously reported success of GPCR-G protein fusions as a model system to study

various functional properties (Wise and Milligan, 1997; Cavalli et al., 2000; Stevens et

al., 2001; Ugur et al., 2003; Bertaso et al., 2003). Herein, the importance of GPCR and

G protein palmitoylation of the 5-HT1A-receptor-GolaCys351I1e fusion proteins were

assessed in terms of radioligand binding and GTPyS binding.
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6.2 Results

Expression of 5-HTIA-receptor-GolaCys3S1I1efusion proteins and determination of

their affinity for the agonist 8-0H-DPAT and the antagonist eHJ-WAYI00635

The palmitoylation variant 5-HTIA-receptor-GolaCys35IUe fusion proteins already

created and studied in terms of regulation of palmitoylation (Chapter 5) were

transiently transfected into HEK293T cells. After transfection, cells were harvested and

cell membranes prepared for analysis. 5-HTIA-receptor-GolaCys35IIle fusion protein

expression levels were investigated by Western blot analysis. Immunodetection of the

GolaCys351Ileprotein N terminus (via ONI antiserum) or the C terminus (via OC2

antiserum) confirmed expression of the fusion proteins post-transfection (Figure 6.1).

Immunoblotting of transiently transfected membranes with both the ONI and OC2

antisera detected immuno-reactive bands of molecular mass -75-IOOkDa (predicted

molecular weight 85kDa) which were not present in mock transfected membranes. In

addition, the immunodetected levels of the 5-HTIA-receptor-GolaCys3Ser, Cys351Ile

(C3S), the 5-HTIA-receptorCys417Ser-GolaCys3Ser,Cys351Ile(C417S,C3S), the 5-HT1A-

receptorCys420Ser-GolaCys3Ser, Cys351Ue (C420S, C3S) and the 5-HT1A-

receptorCys417Ser, Cys420Ser-GolaCys3Ser, Cys351Ile (C417S, C420S, C3S) fusion

proteins were similar to each other when immunoblotting was carried out with either the

ONI or the OC2 antisera. This confirmed that the presence of the Cys''Ser mutation on

the GOlaCys351Ileprotein did not affect the ability of the ONI antiserum to recognise

this region ofthe Gola protein.

The expression of the 5-HTIA-receptor-GolaCys35IIle fusion proteins was further

assessed by the binding of a near saturating concentration (-5nM) of the tritiated

antagonist eH]- WAYI 00635 (Fletcher et al., 1996). From these experiments the

transient membrane expression of each construct was estimated to be in the region of 10

pmol/mg (Figure 6.2, Table 6.1).

In order to obtain a more accurate measurement of each 5-HTIA-receptor-GotaCys351Ile

fusion protein expression level, saturation binding assays were performed using various
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concentrations of [3H]-WAYI00635 (ranging from 0.05 to 5nM). From these

experiments the expression level and the affinity for the antagonist (Kj) for each

construct was obtained (Figure 6.3, Table 6.2). The expression levels of all 5-HT1A-

receptor-GoluCys3S1I1e fusion protein constructs were in the region of 12 pmol/mg. The

affinity for eH]-WAY100635 for all eight palmitoylation variant fusion proteins was

approximately 0.33nM. Neither the values for expression level (p>0.05) nor "K<! (p>0.05)
were significantly different for each of the 5-HTIA-receptor-GoluCys351Ile fusion

protein constructs.

Assessment of the ability of the 5-HTIA-receptor-GoluCys351Ile fusion proteins to

activate signalling

The ability of the 5-HTIA-receptor-GoluCys351Ile fusion proteins to activate signalling

was assessed in terms of the ability to bind GTP (assessed via a GTPyS binding assay).

In order to compare the GTPyS binding of various palmitoylation variant 5-HT1A-

receptor-GoluCys3S1Ile fusion proteins within one assay, a number of control

experiments had to be performed in order to establish appropriate experimental

conditions. These control experiments were not performed on all palmitoylation variant

constructs but instead were carried out for the 5-HTIA-receptor-GoluCys351Ile (WT) and

the 5-HT1A-receptor Cys417Ser, Cys420Ser-GoluCys3Ser, Cys3S1Ile (C417S, C420S, C3S)

fusion proteins only. The effects of increasing incubation times and increasing the

amount of fusion protein used in the assay were assessed in Figure 6.4 and Figure 6.5

respectively.

From Figure 6.4 increased esS] GTPyS binding was observed with increasing

quantities of fusion protein. A non-linear rate of esS] GTPyS binding started to be

observed with quantities of fusion protein over ~25 fmol. For this reason it was decided

to use IOfmol fusion protein/tube in subsequent assays.

From Figure 6.5 increased esS] GTPyS binding was observed with increasing lengths

of incubation. Saturation of esS] GTPyS binding was observed after -5 min. For this

reason it was decided to use a 2.5 min incubation length in subsequent assays. Therefore
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in all subsequent assays an incubation time of 2.5 min was used to assess GTPyS

binding to 10 finol/tube of each 5-HTIA-receptor-GoluCys351Ile fusion protein. One

further point noted from Figures 6.4 and 6.5 was that the 5-HT1A-receptor Cys417Ser,

Cys420Ser-GoluCys3Ser, Cys351Ile (C417S, C420S, C3S) fusion protein bound more

GTPyS than the 5-HTIA-receptor-GoluCys351Ile (WT) fusion protein, perhaps indicating

a role for either GPCR or G protein palmitoylation (or both) in determining levels of

GTPyS binding.

This was then investigated for four of the palmitoylation-variant 5-HT1A-receptor-

GOluCys351Ile fusion proteins within one assay (Figure 6.6, Table 6.3). The four

selected constructs were the 5-HTIA-receptor-GoluCys351Ile (WT), the 5-HT1A-receptor

Cys417Ser, Cys420Ser-GoluCys351Ile (C417S, C420S), the 5-HTIA-receptor-GoluCys3Ser,

Cys351Ile (C3S) and the 5-HT1A-receptor Cys417Ser, Cys420Ser-Go1uCys3Ser, Cys351Ile

(C417S, C420S,C3S) fusion proteins.

In the presence of 104M 8-0H-DPAT, GTPyS binding was significantly stimulated

approximately 2-fold over basal levels (p<0.05) for all 5-HTIA-receptor-GoluCys351Ile

fusion proteins tested. Interestingly, the levels of basal (p<0.05) and 8-0H-DPAT-

stimulated (p<0.05) GTPyS binding for the four fusions were not all equal.

Instead, the basal (p>O.05) and agonist-stimulated (p>0.05) GTPyS binding levels for

the 5-HTIA-receptor-GoluCys351Ile (WT) and the 5-HTIA-receptor-GoluCys3Ser,

Cys351Ile (C3S) constructs were found to be essentially the same.

Similarly the basal (p>O.05) and agonist-stimulated (p>0.05) GTPyS binding levels for

the 5-HT1A-receptor Cys417Ser, Cys420Ser-GoluCys351Ile (C417S, C420S)and the 5-HTIA-

receptor Cys417Ser, Cys420Ser-GoluCys3Ser, Cys351Ile (C417S, C420S, C3S) constructs

were also found to be the same.

Basal and 8-0H-DPAT-stimulated GTPyS binding levels were found to be -1.5 times

higher for both the 5-HT1A-receptor Cys417Ser, Cys420Ser-GoluCys351Ile (C417S, C420S)

and the 5-HT1A-receptor Cys417Ser, Cys420Ser-GoluCys3Ser, Cys351Ile (C417S, C420S,
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C3S) constructs than for the 5-HTIA-receptor-GoluCys351Ile (WT) and the 5-HT1A-

receptor-Gs.c.Cya'Ser, Cys351Ile (C3S) constructs. Taken together, these results seem to

indicate a requirement for palmitoylation of the Cys417 and Cys420 residues of the 5-

HT1A-receptor portion of the 5-HTIA-receptor-GoluCys351Ile fusion proteins in levels of

constitutive activity.

The last experiment performed in the current study (Figure 6.7, Table 6.4) explored the

high levels of basal GTPyS binding observed for the 5-HTIA-receptor-GoluCys351Ile

fusion proteins. The inverse agonist spiperone (lOO)lM) was assessed in terms of its

ability to decrease the basal level of GTPyS binding to the 5-HT1A-receptor-

GoluCys351Ile (WT) fusion protein. As expected, a reduction in the level of basal

GTPyS binding from approximately one half (in the absence of spiperone) to

approximately one tenth (in the presence of spiperone) of the 8-0H-DPAT-stimulated

levels was observed.
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Figure 6.1

Western blot analysis of membranes transiently transfected with the 5-HT lA-

receptor-GolaCys351l1e fusion proteins

Jug of membrane preparations from HEK293T cells transiently transfected with the

empty vector (pcDNA3, lane 1), 5-HTIA-receptor-GllluCys151I1e (WT, lane 2), 5-

HTIACys417Ser-receptor-GlllaCysJ511Ie (CmS, lane 3), 5-HTIACys4I7Ser-receptor-

GolaCys3Ser, Cys351lie (C417S, C3S, lane 4), 5-HT IACys420Ser-receptor-GolaCys35IIle

(CnoS, lane 5), 5-HTIACys420Ser-rcceptor-GllluCyslSer, CysJ5111e (C420S, C3S, lane 6),

5-HTIACys417Ser, Cys420Ser-receptor-G",uCys'511Ie (C417S, C420S, lane 7), 5-HTIA-

receptor-Gj.rrCysSer, Cys.151l1e (C3S, lane 8), and 5-IfTIACys417Ser, Cys420Ser_

receptor-Gs.ct.ys'Ser, Cys351lie (C417S, C420S, C3S, lane 9) fusion proteins were

resolved on SOS-PAGE gels then transferred onto nitrocellulose membranes.

Immunoblotting was carried out with a) ON I and b) OC2 antisera. Two further

experiments produced similar results.
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Figure 6.1

a) Mr
(kDa) 1 2 3 4 5 6 7 8 9 5-HTIA-receptor-
1051 r-G01U fusion

proteins (8SkDa)

b) Mr
(kDa)

1 2 3 4 5 6 7 8 9 5-HT lA-receptor-rG.,u fusion1051 proteins (85kDa)



Figure 6.2

Analysis of expression levels of 5-HTIA-receptor-GolaCys351I1e fusion proteins:

determined from binding of a near saturating (-SnM) concentration of eH]-

WAYI00635 to membranes expressing the fusion proteins

HEK293T cells were transfected to express the 5-HT IA-receptor-G, IaCys351Ile fusion

proteins. Membranes expressing the fusion proteins were prepared and binding of a

near-saturating concentration (-5nM) of [3H]_WAY 100635 to 0.5 ug of each membrane

sample was assessed. The expression levels are shown for the 5-HT IA-receptor-

GOlaCys351Ile (WT, turquoise bars), 5-HTIACys417Ser-receptor-GolaCys35IIle (C417S,

green bars), 5-HTI ACys417Ser-receptor-GoloCys'Ser, Cys351ne (C417S, C3S, purple

bars), 5-HTIACys420Ser-receptor-GolaCys351Ile (C420S, brown bars), 5-HTIACys420Ser-

receptor-Gs.uf.ysSer, Cys35IlIe (C420S, C3S, red bars), 5-HTIACys417Ser, Cys420Ser-

receptor-GolaCys351Ile (C417S,C420S, yellow bars), 5-HTIA-receptor-GolaCys3Ser,

Cys351Ile(C3S, blue bars), and 5-HT IACys417Ser, Cys420Ser-receptor-GolaCys3Ser,

Cys351Ile (C417S,C420S, C3S, pink bars) fusion proteins. Results are from triplicate

determinations. Analysis is representative of three similar experiments.

Table 6.1

Comparison of expression levels of 5-HTIA-receptor-GolaCys351I1e fusion proteins

determined from binding of near saturating (-SnM) concentration of [3U]_

WAYI 00635 to membranes expressing the fusion proteins

The results from Figure 6.2 were presented in a tabular form for clarity of comparison

between the constructs. The expression level (pmollmg) of each fusion protein is given

as mean +/- SEM (n=3).
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Figure 6.2

Table 6.1

Construct Expression Level
ifrn 0III1!_g}_

5-HTIA-receptor-GolaCys35IIle (WT) 10877 +/- 375
T C 417S G C 351 10398 +/- 5625-H lA ys er-receptor- ola ys Ile

(C417S)
C 417 3 10611 +/-5-HTIA ys Ser-receptor-Gj.uf'ys Ser, 330

Cys351Ile (C417S, C3S)
C 420S G C 351 10545 +/- 2895-HTIA ys er-receptor- ola ys Ile

(C42OS)
5-HTIA Cys420Ser-receptor-GolaCys3Ser, 10162 +/- 405
Cys351Ile (C420S, C3S)
5-HTIA Cys'lI/Ser, Cys'l,wSer-receptor- 10721 +/- 467
GoiaCys351Ile (C417S, C42OS)
5-HT IA-receptor-G; I«CysSer, 10437 +/- 299
Cys351Jle (C3S)
5-HTIA Cys417Ser, Cys41USer-receptor_ 11045 +/- 489
GOlaCys3Ser, Cys351Ile (C417S, C420S
C3S)



Figure 6.3

Analysis of expression levels of 5-HTIA-receptor-GoluCys35II1e fusion proteins by

eH]- WAYI 00635 saturation binding analysis to membranes expressing the fusion

proteins

HEK293T cells were transfected to express the 5-HT IA-receptor-GoluCys351Ile fusion

proteins. Membranes expressing the fusion proteins were prepared and saturation

binding of [3H]_WAY I00635 (using 0.05-5nM radioligand) to 0.5~g of each membrane

sample was assessed. The saturation binding analyses are shown for the 5-HT IA-

receptor-Gx.c.Cys'P'Ile (WT, turquoise line), 5-HT IACys4I7Ser-receptor-GoluCys35IIle

(C417S, green line), 5-HTIACys417Ser-receptor-GoluCys3Ser, Cys351Ile (C417S, C3S,

purple line), 5-HT1 ACys420Ser-receptor-GoluCys35 I lie (C420S, brown line), 5-

HTIACys420Ser-receptor-GoluCys3Ser, Cys351Ile(C420S, C3S, red line), 5-

HTIACys417Ser, Cys420Ser-receptor-GoluCys35II1e (C417S,C420S, yellow line), 5-HTIA-

receptor-Gj.ox'ya'Ser, Cys351Ile(C3S, blue line), and 5-HTIACys417Ser, Cys420Ser-

receptor-Gs.cf.ys'Ser, Cys351Ile (C417S,C420S,C3S, pink line) fusion proteins. Results

are from triplicate determinations. Analysis is representative of three similar

experiments.

Table 6.2

Comparison of 5-HTIA-receptor-GoluCys35II1e fusion protein expression levels and

Ko for eH]-WAYI00635 binding to 5-HTIA-receptor-GoluCys351Ile fusion

proteins, determined by saturation binding analysis to membranes expressing the

fusion proteins

The results from Figure 6.3 were presented in a tabular form for clarity of comparison

between the constructs. Non-linear regression analysis was used to determine the

expression level (finol/mg) and the equilibrium dissociation constant, Kt (nM) for each

5-HT IA-receptor-GoluCys35IIle fusion protein.
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Figure 6.3
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Table 6.2

Construct Expression Level ~(nM) for
(fmollmg) r3HIW AYI00635

5-HT lA-receptor- 11985 +/- 352 0.30 +/- 0.03

GoIUCys
351Ile (WT)

5-HTIA Cys4I1Ser-receptor- 11561 +/- 179 0.30 +/- 0.02

GOluCys351Ile (C417S)
5-HTIA Cys41'Ser-receptor- 12661 +/- 391 0.32 +/- 0.03

GOluCys3Ser, Cys351Ile (C417S, C3S)
5-HTIA Cys4ZUSer-receptor- 12186 +/- 393 0.38 +/- 0.04

GoluCys
351Ile (C42OS)

5-HTIA Cys4ZUSer-receptor- 11931 +/- 639 0.35 +/- 0.06

GOIUcys3Ser, Cys351He (C420S,C3S)
5-HTIA Cys417Ser cy?Ser- 11863 +/- 329 0.31 +/- 0.03

rece~tor-Go IuCys351 He
(C41 S, C42OS) 3 12335 +/- 294 0.34 +/- 0.035_HT1Kreceptor-GoluCyS Ser,
Cys351Ile (CJS)
5-HTIA Cys417Ser, Cys4ZUSer- 12310+/-251 0.33 +/- 0.02

receptor-Go IuCys3Ser,
Cys35111e(C417S, C420S, C3S)



Figure 6.4

Analysing levels of [35S)GTPyS binding to various quantities of 5-HTIA-receptor-

G01uCys3S1lie fusion proteins

HEK293T cells were transfected with 5-HTIA-receptor-GoluCys35II1e (WT, turquoise

line) or 5-HTIACys~17Ser, Cys420Ser-receptor-GoluCysJSer, CysJSIIle (C417S, C420S,

C3S, pink line) fusion proteins. Membranes were prepared from these cells and samples

containing various quantities (5-100 fmol) of[3H]- WAYI 00635 binding sites were used

to measure 100JlM 8-0H-DPAT-stimulated binding of esS] GTPyS to the two fusion

proteins during a 2.5 min incubation. Results are from triplicate determinations.

Analysis is representative of three similar experiments.
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Figure 6.4
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Figure 6.S

Analysing the time course of (35S1 GTPyS binding to S-HT1A-receptor-

GoluCys3SIUe fusion proteins

HEK293T cells were transfected with 5-HTIA-receptor-G"luCys351Ile (WT, turquoise

line) or 5-HTIACys417Ser, Cys420Ser-receptor-GoluCysJScr, Cys3511le(C417S, C420S,

C3S, pink line) fusion proteins. Membranes were prepared from these cells and samples

containing 10 fmol of[3H]- WAYI 00635 binding sites were used to measure 100llM 8-

OH-DPAT-stimulated binding of[35S] GTPyS to the two fusion proteins over a range of

incubation lengths (0.5-20 min). Results are from triplicate determinations. Analysis is

representative of three similar experiments.
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Figure 6.6

Analysis of the esS] GTPyS binding of four palmitoylation-variant 5-HT lA-

receptor-GotuCys3StIle fusion proteins

HEK293T cells were transfected with empty vector (pcDNA3, black bars) or to express

either 5-HTIA-receptor-GoluCys3S1ne (WT, turquoise bars), 5-HTIACys417Ser,

Cys420Ser-receptor-Gol UCys3S1Ile yellow bars), 5-HT IA-receptor-

GOluCys3Ser, Cys3S1Ile(C3S, blue bars), and 5-HTIACys417Ser, Cys420Ser-receptor-

GoluCys3Ser, Cys3S1Ile(C4t7S, C420S,C3S, pink bars) fusion proteins. Membranes were

prepared from these cells and samples containing I Ofmol of [3H]_WAYI 00635 binding

sites were used to measure basal or 100J.lM 8-0H-DPAT-stimulated binding of esS]

GTPyS to the various fusion proteins during a 2.5 min incubation. Results are from

triplicate determinations. Analysis is representative of three similar experiments.

Table 6.3

Comparison of basal and 8-0H-DPAT-stimulated esS] GTPyS binding of four

palmitoylation-variant 5-HT lA-receptor-GotuCys35tIle fusion proteins

The results from Figure 6.6 were presented in a tabular form for clarity of comparison

between the constructs. The basal and 8-0H-DPAT-stimulated esS] GTPyS binding

(dpm) of each fusion protein is given as mean +/- SEM (n=3).
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Figure 6.6

3000

1000

Basal 8-0H-DPAT

Table 6.3

Construct Basal esS] GTPyS Adrenaline-
binding stimulated esS]
(dpm) GTPyS binding

(dpm)
5-HTIA-receptor- 839 +/- 71 1979 +/- 115

GoluCys
351Ile (WT)

S-HTIA Cys417Ser, Cys420Ser- 1519 +/- 167 2765 +/- 171
G 3511receptor- 01aC6:s I e

(C417S, C42 S)
5_HTIA-receptor-GoluCys3Ser, 949 +/- 67 2083 +/- 95

Cys3S1Ile (C3S)
5-HTIA Cys4I ISer, Cy?2USer- 1445 +/- 155 2730 +/- 91

receptor-GolaCys3Ser, Cys
3SI

Ue
(C417S, C420S, C3S)



Figure 6.7

Analysing the effect of spiperone on basal (35S1GTPyS binding to the 5-HTIA-

receptor-GoluCys35lI1e (WT) fusion protein

HEK293T cells were transfected with 5-HT IA-receptor-GoluCys3SI Ile (WT) fusion

protein. Membranes were prepared from these cells and samples containing lO fmol of

[3H]_WAY 100635 binding sites were used to measure levels of basal (blue bar) or basal

in the presence of lOOJ..lMspiperone (black bar) or lOOJ..lM8-0H-DPAT-stimulated (red

bar) binding of e5S] GTPyS to the fusion protein. Results are from triplicate

determinations. Analysis is representative of three similar experiments.

Table 6.4

Comparison of basal, basal in the presence of spiperone and 100J..lM8-0H-DPAT-

stimulated e5S] GTPyS binding to the 5-HTIA-receptor-GoluCys35II1e (WT) fusion

protein

The results from Figure 6.7 were presented in a tabular form for clarity of comparison

between the constructs. The binding of esS] GTPyS (dpm) to the fusion protein in all

three conditions is given as mean +/- SEM (n=3).
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Figure 6.7

Table 6.4

Sample GTPyS binding
(dpm)

Basal 862 +/- 41
Basal + Spiperone 211 +/- 24

8-0H-DPAT 2012 +/- 103



6.3 Discussion

The observation of dynamic regulation of GPCR and G protein palmitoylation in

response to agonist (Ponimaskin et al., 2001; Mouillac et al., 1992; Chen and Manning,

2000) has led to suggestions that GPCR and G protein palmitoylation may playa role in

the control of cell signalling. Such a role for palmitoylation was investigated in the

current work using the same 5-HTIA-receptor-GolaCys351Ile fusion proteins already

studied in terms of regulation of palmitoylation in Chapter S. Due to limitations of

time, the functional consequences of palmitoylation for the 5-HT1A-receptor-

GOIaCys351Ile fusion proteins could not be studied as extensively as for the a2A-

adrenoceptor-GolaCys35lIle fusion proteins in Chapter 4. However, it is clear from my

results that the role of palmitoylation for 5-HTIA-receptor-GolaCys351Ile fusion

constructs definitely merits some further investigation.

All eight palmitoylation-variant 5-HTIA-receptor-GolaCys351Ile fusion proteins were

assessed in terms of expression levels and antagonist binding affinity, however, just

four were selected to study activation of signalling via GTPyS binding studies. The four

selected constructs were the 5-HTIA-receptor-GolaCys351Ile (WT) construct (in which

all three potential palmitoylation sites; two sites in the GPCR and one site in the G

protein, are unaltered), the 5-HTIA-receptor Cys417Ser, Cys420Ser-GolaCys351Ile (C417S,

C420S) construct (which has the ability to undergo palmitoylation only in the G protein),

the 5-HTIA-receptor-GolaCys3Ser, Cys351Ile(C3S) construct (which has the potential to

undergo palmitoylation only in the GPCR) and the 5-HT1A-receptor Cys417Ser,

Cys420Ser-GolaCys3Ser, Cys351Ile(C417S, C420S, C3S) construct (which has no potential

palmitoylation sites).

The first functional property to be studied was the expression levels of the eight

palmitoylation-variant fusion proteins. Fusion protein expression levels were assessed

both by Western blot analysis and antagonist binding studies of membranes expressing

the fusion proteins. Western blot analysis by use of either ONI antiserum (against

residues 1-16 of GOla) or OC2 antiserum (against residues 345-354 of Go1a) revealed

similar expression levels for all eight palmitoylation-variant 5-HT1A-receptor-

GolaCys351Ile fusion proteins. This observation was supported by the results from the

211



binding of a near-saturating (-5nM) concentration of eH]-WAYI00635, as well as by

saturation binding analysis (of 0.05-5nM) of the same radioligand to the fusions. From

the antagonist binding studies, the expression levels of all eight palmitoylation-variant

fusion proteins were found to be in the region of 12 pmol/mg. Similar results, where

palmitoylation does not affect protein expression levels, have previously been observed

with the u2A-adrenoceptor-GoluCys3S1Ilefusions (Chapter 4) and for the TRH receptor

(Tanaka et al., 1998). There have also been a number of contrasting observations, where

lack of palmitoylation resulted in reduced expression levels. Such observations were

made for the LHlhCG receptor (Zhu et al., 1995), the vasopressin V2receptor (Schulein

et al., 1996) and the CCRs receptor (Percherancier et al., 2001).

The next functional property to be studied for the eight palmitoylation-variant 5-HT1A-

receptor-GoluCys3S1Ile fusion proteins was the affinity for the antagonist eH]-

WAYI00635. Once again, similar to the observations for the u2A-adrenoceptor-

GOluCys3S1Ilefusions (Chapter 4), the ability of neither the GPCR nor the Go protein

to be palmitoylated had any affect on the affinity of antagonist binding to the fusion

proteins. The KI for binding to all eight fusions was calculated to be approximately

O.33nM. Some similar studies have been performed for a number of GPCRs (Kamik et

al., 1993; Tanaka et al., 1998; Hawtin et al., 2001; Schulein et al., 1996; Jin et al.,

1997), although most have assessed affinity for agonist molecules rather than

antagonists. In general, it seems that replacement of palmitoylated cysteines does not

change this pharmacological property of GPCRs.

Next, the importance of GPCR and G protein palmitylation was assessed for the

activation of signalling. In the work of Papoucheva et al. (2004), the functional

consequences of palmitoylation for the non-fused 5-HT1A-receptor were explored.

These authors found that replacement of either Cys417or Cys420of the GPCR led to a

significantly reduced coupling of this GPCR to the Gi3Uprotein and that GPCR-G

protein communication was completely abolished in the double mutant receptor

(assessed by 5-HT-stimulated GTPyS binding studies). Furthermore, they found that

palmitoylation-deficient mutants were unable to inhibit forskolin-stimulated cAMP

formation and also reduced the receptor-dependent activation of extracellular signal-

regulated kinase. Taken together, their results suggested roles for 5-HT1A-receptor
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palmitoylation in signalling through the G~y pathway as well as signalling through the

Gi3a protein.

In the current study, after determination of appropriate experimental conditions of

10fmol fusion/assay and a 2.5 min incubation time, GTPyS binding was assessed in the

presence and absence of 104M 8-0H-DPAT for the four selected 5-HT1A-receptor-

GoiaCys351IIe fusion proteins. In the presence of 104M 8-0H-DPAT, GTPyS binding

was stimulated approximately 2-fold over the high basal levels for all 5-HT1A-receptor-

GOlaCys351Ile fusion proteins tested. However, approximately -1.5 times higher levels

of basal and 8-0H-DPAT-stimulated GTPyS binding were observed for the two fusions

with mutated 5HTIA-receptors (the C417S, C420S and the C417S, C420S, C3S fusions) than

for either the wild type fusion or the fusion in which only the Gola protein has been

mutated. This surprising result was in marked contrast to the results from the study by

Papoucheva et al. (2004). The reasons for such a difference are difficult to ascertain.

Perhaps one of the many differences in the experimental systems used for the two

studies can be held in account. In the current study, which suggests that loss of

palmitoylation of the 5-HTIA-receptor may lead to enhanced signalling, experiments

were performed with the 5-HTIA-receptor-GolaCys351IIe fusion protein, whereas

Papoucheva et al. performed their studies on the non-fused 5-HT1A-receptor signalling

through Gi3a (not Gola). In addition there are a number of other experimental

differences such as their use of Sf.9 insect cells whilst we have used HEK293T cells

and their use of the murine receptor where we have used the human receptor. It is clear

from these results that it will now be important to assess the role of palmitoylation of

the non-fused human 5-HT1A-receptor in HEK293T cells (still signalling through

GolaCys
351lIe), in order to ensure that the fusion protein itself is not producing results

differing from those obtained in a non-fused system.

In light of the high levels of basal GTPyS binding observed for all the 5-HT1A-receptor-

GoiaCys
351IIe fusion proteins used in the current study, we decided to perform one final

experiment. Constitutive activity had previously been reported for 5-HT IA-receptor-Goa

(Welsby et al., 2002) and 5-HT1A-receptor-Gia (Kellett et al., 1999) fusion proteins

containing the Cys351Ilemutation in the Ga protein. It had also previously been reported

that the inverse agonist spiperone (Newman-Tancredi et al., 1997) could be used to
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decrease the levels of constitutive activity for these fusions (Welsby et al., 2002). In this

study, the presence of 100).lM spiperone was found to reduce basal levels of GTPyS

binding to the 5-HTIA-receptor-GoluCys351Ile (WT) fusion protein to approximately

one tenth of the 8-0H-DPAT-stimulated levels (from approximately one half in the

absence of spiperone). Thus the current study provided further support for the role of

spiperone as an inverse agonist capable of reducing the constitutive activity of the 5-

HTIA-receptor-GoluCys351Ile fusion proteins.

If all the results obtained in this chapter are taken together we can see that

palmitoylation of the GOluCys351Ile protein part of the 5-HTIA-receptor-GoluCysJ51Ile

fusion protein does not appear to be required for determination of the fusion protein

expression levels, their affinity for the antagonist WAYI00635, or their ability to bind

GTP. Similarly, palmitoylation of the 5-HT1A-receptor part of the 5-HT1A-receptor-

GOluCys351Ile fusion proteins, was not required for determination of fusion protein

expression levels or their affinity for the antagonist eH]- WAYl 00635. In contrast, lack

of palmitoylation in the 5-HTIA-receptor part of the fusions did affect activation of

signalling. In specific, the 5-HTIA-receptor-GoluCys351Ile fusions, which were

palmitoylation-deficient in the receptor portions, displayed enhanced levels of

constitutive GTPyS binding.
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Chapter 7

Final Discussion



7.0 Final Discussion

The G protein-coupled receptor (GPCR) family is involved in transduction of a wide

variety of cell signals to intracellular enzymes and ion channels via guanine nucleotide

binding proteins (G proteins). GPCR signalling is initiated by the binding of a specific

ligand to the extracellular side of the receptor. Two such ligands for GPCRs are

adrenaline: a catecholamine hormone released into the plasma at times of stress or

increased energy need and serotonin: an important neurotransmitter and local hormone

in the CNS and intestine.

In the current study, use was made of GPCR-G protein fusion proteins between either

the a2A-adrenoceptor or the 5-HTIA serotonin receptor and the GolaCys35lIle G protein.

The Cys351Ile mutation in the C-tenninal tail of the fused Gola protein was desirable in

order to perform functional studies without interference from endogenous G proteins

(Jones and Reed, 1987; Lochrie and Simon, 1988; Burt et al., 1998). Mutation of the

Cys3S1 residue, renders the G protein resistant to ADP-ribosylation by pertussis toxin.

Practically, this allows the endogenous Gola proteins to be inactivated by the toxin such

that any remaining Gola protein signalling will be through the fused GOiaCys35lIle

protein only. Such fusion constructs have been useful tools to study the enzymatic

capacity of G proteins, to measure ligand efficacy, and to evaluate receptor-coupling

specificities of related G proteins (Seifert at al., 1999; Milligan, 2000). In addition,

these fusions have recently been used successfully to study the characteristics of GPCR

and G protein palmitoylation (Stevens et al., 2001).

Palmitate is a 16-carbon saturated fatty acid modification, attached to some (but not all)

GPCRs and Ga proteins via a labile thioester linkage (Magee et al., 1987). The lability

of the thioester linkage means that palmitate attached via this bond can be readily

removed and thus the reaction has the potential to be regulated (Mumby, 1997; Qanbar

and Bouvier, 2003). Such a property may co-ordinate regulation of signalling, by

determining either the location of proteins or their propensity to interact with other

molecules. In addition, dynamic regulation of palmitoylation of some GPCRs and G

proteins has been observed in response to stimulation by agonist (Ponimaskin et al.,

215



2001; Ng et al., 1994; Mouillac et al., 1992; Wedegartner and Bourne, 1994; Chen and

Manning, 2000).

The observation of such agonist-regulated alterations in palmitoylation led to

suggestions that GPCR and G protein palmitoylation may play important functional

roles. Roles for Gu protein palmitoylation have been suggested in RGS protein-Go

protein interactions (Tu et al., 1997; Ross and Wilkie, 2000) and membrane

localisation/targeting of the Go protein (Wedegaertner, 1998; Dunphy and Linder,

1998; Mumby, 1997; Song et al., 1997), whereas roles for GPCR palmitoylation have

mainly been implicated in the modulation of a number of functional properties such as

GPCR-G protein interactions (Hayashi and Haga, 1997), GPCR phosphorylation and

desensitisation (Moffett et al., 1993) and GPCR downregulation (Kawate et al., 1997;

Munshi et al., 2001).

For the purposes of this discussion, it is useful to summarise the regulation of

palmitoylation for the GoluCys35lIle protein (from both the u2A-adrenoceptor-

GoluCys35lIle and the 5-HTIA-receptor-GoluCys35IIlefusion studies) separately from

the results obtained for each GPCR.

When GOluCys351Ilewas fused to either the u2A-adrenoceptor or the 5-HT1A-receptor,

essentially the same patterns were observed for the regulation of its palmitoylation. In

both cases the G protein dynamically incorporated eH] palmitate in a time-dependent

manner and agonist-stimulation resulted in reduced levels of eH] palmitate

incorporation. These results were similar to those previously obtained for a Pr
adrenoceptor-Gsu fusion protein (Loisel et al., 1999).

The GOluCys351Ile part of both fusions proteins also displayed dynamic

depalmitoylation and in the case with the u2A-adrenoceptor-GoluCys3S1Ile fusion

protein, the rate of this depalmitoylation was significantly stimulated by agonist. In the

study using the 5-HTIA-receptor-GoluCys351Ilefusions, a similar effect was also

observed. However, the experimental errors observed in that study meant that the

implicated effect of agonist was not statistically significant. An 8-0H-DPAT -stimulated
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rate of Ga protein depalmitoylation has been observed in a study with Gja (Chen and

Manning, 2000).

Agonist regulation of GoiaCys3S1Ile protein palmitoylation was also observed to be

concentration-dependent in both studies. For the a2A-adrenoceptor-GoluCysJSIIIe

fusion, such regulation correlated with agonist occupancy of the receptor. Unfortunately

due to time constraints, competition-binding analyses for the 5-HT1A-receptor-

GoiaCys351Ile fusion proteins could not be performed. As a result, the degree of

correlation between agonist occupancy of the 5-HT1A-receptor and agonist regulation of

palmitoylation could not be determined in the current study. Interestingly though, a very

similar ECso (-10 nM) was observed for 8-0H-DPAT regulated incorporation of eH]

palmitate into the Gja protein (Chen and Manning, 2000) as was observed in the current

study with the 5-HTIA-receptor fused GoiaCys351Ue protein.

Another interesting observation made in the current study was that agonist regulation of

palmitoylation required activation of the G protein. This was directly demonstrated in

the current study by use of a Gly04Ala mutant of the Gola protein (which is incapable

of binding GTP). Palmitoylation studies were performed for a2A-adrenoceptor-

G
O
laCys351Ile proteins incorporating this mutation and although dynamic in that this

form of the G protein did incorporate eH] palmitate, acylation of this form of the G

protein was not regulated by agonist.

When the current regulation of palmitoylation results were compared with the results

from previously published studies for other non-fused Ga proteins, opposite patterns of

palmitate incorporation were observed for fused and non-fused Gn proteins. For a

number of non-fused Ga proteins, including Gia (Chen and Manning, 2000; Bhamre et

al.1998) and Gsa (Wedegaertner and Bourne, 1995), agonist-stimulation led to

increases in palmitate incorporation. This was in contrast to the decreases observed

herein with the fusion proteins. Given the similar observations made upon comparison

of eH] palmitate incorporation into fused and non-fused ~2-adrenoceptor and Gsa

proteins (Loisel et al., 1996, 1999), we decided to investigate whether constraint of the

Ga protein in a fusion could affect the observed levels of [3H] palmitate incorporation.

This was assessed by the ability of the fusion protein to stimulate the endogenous
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Gola protein. Agonist regulation of endogenous G protein palmitoylation was once

again observed (both with adrenaline and with 8-0H-DPAT). However, in contrast to

the results with the fused GolaCys351Ile protein, agonist led to an increase in

incorporation of eH] palmitate into the endogenous G protein, thus indicating that some

limitation of the fusion protein was responsible for the alternative pattern of regulated

palmitoylation. In the study by Loisel et al. (1999) it had been reported that the ability

of agonist-stimulated rh-adrenoceptor-Gsa fusion proteins to become repalmitoylated

was limited. In similar assays performed in the current study, the repalmitoylation of

a2A-adrenoceptor-GolaCys35IIle and 5-HTIA-receptor-GolaCys35IIle fusion proteins

were also reduced in response to agonist. Therefore, the apparently opposite pattern of

agonist-regulated incorporation of eH] palmitate into fused and non-fused Gola protein,

may reflect some restriction of the fused protein to become repalmitoylated after

depalmitoylation events. As already discussed, such a limitation does not necessarily

mean that fusion proteins are unsuitable for palmitoylation studies; since results from

pulse-labelling studies do not give us definitive descriptions of changes in

palmitoylation anyway. Pulse-labelling studies represent a combination of both the

palmitoylation and depalmitoylation reactions, meaning the only real conclusion to be

drawn from such studies is whether agonist can regulate the palmitoylation status. The

same conclusion is therefore still obtained by use of a fusion protein. Nevertheless it

would be useful to explore the characteristics of the non-fused G protein further, to

assess how well the findings of the current fusion study correlate with the regulation of

palmitoylation in the endogenous G protein.

The current study also produced a number of different observations with regard to the

regulation of GPCR palmitoylation. Firstly, the a2A-adrenoceptor had previously been

shown to incorporate palmitate into its Cys442 residue (Kennedy and Limbird, 1993,

1994). although it was reported that the half-life of eH] palmitate on the GPCR was in

the region of 10 hours and was similar to the half-life of the protein. In addition, these

authors reported only a very slight agonist stimulation of de-palmitoylation rate for the

Ct2A-adrenoceptor. In the current study however, a much shorter (t1l2~30min) half-life of

CH] palmitate on the GPCR was observed in addition to no effects of the agonist

adrenaline. To address these differences, I attempted a palmitoylation study with the

non-fused Ct2A-adrenoceptor. In the assay, a HA-tag present on the N-terminus of the
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protein was used for immunoprecipitation. Unfortunately, the extent of

imrnunoprecipitation achieved using the anti-HA antiserum was relatively poor in

comparison with the ON 1 antiserum used to immunoprecipitate the fusions. This

resulted in no detectable signal for incorporation of [3H] palmitate into the receptor

with exposure times of up to one month. Consequently, differences in regulation of

palmitoylation for fused and non-fused a,2A-adrenoceptor could not be addressed in the

present study.

The observation of stable attachment of palmitate to the a,2A-adrenoceptor (Kennedy

and Limbird, 1993, 1994) is similar to the scenario observed in a recent study of

palmitoylation of the 5-HT1A receptor (Papoucheva et al., 2004). These authors

reported incorporation of palmitate into both the Cys417and the Cys420 residues of the

5-HTIA-receptor. However, rather than being a dynamically regulated post-translational

modification, they reported that palmitate was incorporated into this GPCR early after

receptor synthesis and once attached, was essentially irreversible. These authors also

reported that palmitoylation efficiency at this GPCR was not modulated by receptor

stimulation with agonists. In the current study, when the ability of palmitoylation-

variant 5-HTIA-receptor-Gola,Cys35IIl~ constructs to incorporate eH] palmitic acid was

assessed, palmitate was found to incorporate into the first receptor palmitoylation site

(Cys417) but not into the second (Cys420) site of the 5-HT1A-receptor. The lack of

dynamic palmitate incorporation into the Cys420site of the 5-HT1A-receptor observed in

these studies is therefore in direct contrast to the findings of Pap ouch eva et al. (2004).

It was also apparent from my study that the presence of the 5-HT1A-receptor agonist 8-

OH-DPAT led to altered levels of palmitate incorporation into the 5-HT1A-receptor.

This was observed both in pulse-labelling studies and in 8-0H-DPAT-stimulated

concentration-response experiments, where 8-0H-DPAT stimulated incorporation of

palmitate into the receptor with an EC50 of -14nM. From my pulse labelling studies I

was able to confirm that whilst agonist enhanced the incorporation of palmitate, it did so

without affecting the rate of palmitoylation.

Finally, upon analysis of 5-HTIA-receptor-Gola,Cys35IIIe pulse-chase palmitoylation

assays, a lack of 5-HT1A-receptor depalmitoylation was observed over a three-hour
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chase period. These depalmitoylation results were in agreement with the findings of

Papoucheva et a/. (2004), who suggested that palmitate was stably attached to the 5-

HTIA-receptor.

Taking my results from Chapters 3 and 5 together Ican conclude that the regulation of

palmitoylation for the fused a2A-adrenoceptor, the fused 5-HTlA-receptor and the fused

Gola protein are all slightly different. The fused a2A-adrenoceptor is capable of

dynamic palmitoylation as well as dynamic depalmitoylation at its Cys442 residue and

neither processes are regulated by the adrenoceptor agonist adrenaline. In contrast, the

5-HTIA-receptor is capable only of dynamic palmitoylation, not dynamic

depalmitoylation. In addition, such dynamic palmitoylation only occurs at the Cys417

residue of this GPCR and can be regulated by the 5-HTlA-receptor agonist 8-0H-

DPAT. The Cys420residue of the 5-HT lA-receptor either does not incorporate palmitate

or already has non-radio labelled palmitate irreversibly attached to it prior to

palmitoylation assays. Lastly, the fused GoiaCys35lIle protein like the a2A-

adrenoceptor, can undergo dynamic palmitoylation as well as dynamic depalmitoylation

at its Cys3 residue. However, unlike the a2A-adrenoceptor and more like the 5-HTlA-

receptor, palmitoylation of the GolaCys351Ile protein can be regulated by the

adrenoceptor agonist adrenaline or the 5-HT lA-receptor agonist 8-0H-DPAT.

In Chapters 4 and 6, the requirements for GPCR and G protein palmitoylation of the

a2A-adrenoceptor-Gol aCys35111e and 5-HT lA-receptor-G; IaCys35I Ile fusion proteins

were assessed for various functional properties. Palmitoylation of neither parts of the

fusions were required to determine fusion protein expression levels or the affinity for

antagonist molecules. Similar observations have previously been made for the TRH

receptor (Tanaka et al., 1998) and the dopamine Dl receptor (Jin et al., 1997). In

addition for the fused a2A-adrenoceptor or the GoiaCys35lIle protein constrained to

either GPCR, palmitoylation was not required for the ability to bind or to hydrolyse

GTP or the ability to influence the efficiency of RGS 16 protein to accelerate the

GTPase reaction (latter two observations were only investigated for aZA -adrenoceptor-

GoiaCys
351Ile fusions). These results were in support of the previous observation

regarding the functional role of a2A-adrenoceptor palmitoylation (Kennedy and

Limbird, 1993) whereby mutation of palmitoylation sites did not alter GPCR function.
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Therefore the role of palmitate attached to this GPCR must be for some other purpose.

Similarly, the observation that agonist can regulate the palmitoylation of the

GoiaCysJ51lie protein would seem to suggest some important role for palmitoylation in

the functioning of this protein. Given that no such role has been determined in the

current study, this modification must play an alternative role. One possible alternative

role may be in membrane localisation/association. Agonist-promoted depalmitoylation

of G proteins has been observed by many groups (liri et al., 1996). It is thought that this

phenomenon may allow deacylated protein to leave the caveolar membrane (Li et al.,

1995) and localise to either the cytoplasm (Wedegaertner et al., 1996) or non-caveolar

membrane (Huang et al., 1999). It would therefore be interesting to test an

unstimulated, an agonist-stimulated and a palmitoylation-deficient Gola protein, in an

experiment such as a sucrose density gradient separation, to see if they localise to

different regions within the cell.

In contrast to the observation that a2A-adrenoceptor palmitoylation was not important

for signalling, 5-HTIA-receptor palmitoylation was found to be important for

determining levels of constitutive activity of the 5-HTIA-receptor-GolaCys351Ile fusion

proteins. In the current study, mutation of the receptor palmitoylation sites led to

enhanced levels of esS] GTPyS binding to the fusions. This observation was in contrast

to the loss of GPCR-G protein communication reported upon replacement of Cys417and

Cys420 of the non-fused 5-HTIA-receptor (papoucheva et al., 2004). Once again, the

reasons for such a di fTerence are tricky to explain and will require some further

investigation. Due to the time constraints of the PhD, only a limited set of these

functional experiments could be performed for the 5-HTIA-receptor-GolaCys351Ile

fusions. However, the demonstration of basal constitutive activity of the 5-HT1A-

receptor mutants is very interesting indeed and will undoubtedly be investigated further

by the Molecular Pharmacology group at Glasgow University.

By taking all the results from the functional studies for u2A-adrenoceptor-GoluCys351Ile

and 5_HTIA-receptor-GotaCys3S1ne fusion proteins together we can make a number of

conclusions. Firstly, we can exclude any importance of u2A-adrenoceptor and

GoiaCys
35tIle protein palmitoylation in determining protein expression levels, the

affinity for agonist or antagonist molecules, the ability to bind or to hydrolyse GTP or
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the ability affect the efficiency of RGS proteins to accelerate the GTPase reaction.

Similarly, we can exclude any importance of palmitate for 5-HTlA-receptor protein

expression levels or the affinity for the antagonist eH] WAYI00635. We have

however, identified a role for 5-HTlA-receptorpalmitoylation in determining levels of

constitutive activity of the 5-HTIA-receptor-GolaCys35IIlefusion proteins and hope to

continue this work in further studies.

During this study, the observation of different experimental results from studies using

non-fused a2A-adrenoceptor,5-HTlA-receptorand Gohas led to careful consideration of

the use of fusion proteins for palmitoylation studies. I am very sceptical that such a

variety of differences could be due solely to the fusion context of my study; given the

large number of other experimental differences between the fusion-based and the non-

fusion-based studies. However, this possibility cannot be excluded and will have to be

addressed by a number of comparative experiments. Firstly, pulse labelling and pulse

chase experiments with the non-fused receptors and Gola protein, would be very useful.

Such experiments would allow the direct determination of whether it is the fusion

protein which is responsible for the different results. Secondly, it may be beneficial to

determine the extent of palmitate labelling and e5S] methionine labelling in the

presence of cycloheximide for comparison with the Papoucheva et al. (2004) studies.

In summary, the data from this thesis shows that a great deal of useful information can

be obtained by the use of GPCR-G protein fusion proteins. They have been successfully

used in this study to investigate a number of aspects of GPCR and G protein

palmitoylation. As always, the results obtained from any model system must always be

taken in context and if possible an attempt must be made to assess the relevance of

those results to the situation in vivo. Although fusion proteins may have their limitations

for palmitoylation studies one must also bear in mind some of the limitations which can

be encountered studying palmitoylation in a non-fusion context. Perhaps in future

investigations, a co-ordinated study in which the characteristics of palmitoylation are

studied both in fused and non-fused proteins will be of use.
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Appendix



8.0 Appendix

8.1 cDNA sequences of u2A-adrenoceptor-GoluCys3SIIIe constructs

The cDNA sequence of each u2A-adrenoceptor-Go1uCys3S1Ilefusion construct is given

below. The GPCR portion is shown in red font. The G protein portion is shown in blue

font. Potential palmitoylation sites are shown in underlined black font.

IDA-adrenoceptor-GoluCys3S1Ile(WT)

GGTACCATGT ATCCTTACGA CGTTCCTGAC TACGCACTAG TTCCTCGTAT GGGCTCCCTG
CAGCCGGAAG CGGGCAACGC GAGCTGGAAT GGGACAGAGG CGCCGGGGGG CGGCGCCCGG
GCCACCCCCT ACTCCCTGCA GGTGACACTG ACGCTGGTGT GCCTGGCCGG CCTGCTCATG
CTGTTCACCG TGTTCGGCAA CGTGCTTGTC ATCATTGCCG TGTTCACAAG CCGCGCGCTC
AAGGCGCCCC AGAACCTCTT CCTGGTGTCT CTGGCCTCGG CTGACATCCT AGTGGCCACG
CTTGTCATCC CTTTCTCGCT GGCCAACGAG GTCATGGGCT ACTGGTACTT CGGCAAGGCG
TGGTGTGAGA TCTACCTGGC GCTCGACGTG CTCTTCTGCA CGTCGTCCAT CGTGCACCTG
TGTGCCATCA GCTTGGATCG TTACTGGTCC ATCACCCAGG CCATAGAGTA CAACCTGAAG
CGCACGCCAC GCCGCATCAA AGCAATCATC GTCACCGTGT GGGTCATCTC GG CGTCATC
TCCTTCCCGC CGCTCATCTC CATCGAGAAG AAGGCAGGCG GCGGTGGCCA GCAGCCGGC
GAACCGCGCT GCGAGATCAA CGACCAGAAG TGGTACGTCA TCTCGTCTTG CATCGGCTCC
TTCTTCGCGC CCTGCCTCAT CATGATCCTG GTCTATGTGC GCATCTATCA GATAGCCAAG
CGCCGCACCC GCGTGCCGCC CAGCCGCCGG GGTCCTGATG CGGCCGCCGC GCTGCCG GG
GGCGCCGAGC GCAGGCCCAA TGGCCTAGGC CCCGAGCGCG GCGTGGGTCG CGTGGGCGCC
GAGGCCGAGC CGCTACCCGT CCAGCTCAAC GGTGCCCCGG GGGAGCCCGC GCCCGCTGGG
CCCCGCGACG CTGACGGGCT GGACCTCGAG GAGAGCTCCT CGTCTGAGCA CGCCGAGC,G
CCCCCTGGGC CCCGCAGGTC CGAGCGCGGC CCTCGGGCCA AGAGCAAGGC T GGGCGAGC
CAGGTAAAGC CCGGGGACAG CCTGCCACGG CGCGGGCCGG GGGCGCCCGG GCCGGGGGC
CCCGCGACTG GGGCCGGGGA GGAGCGCGGC GGGGTCGCCA AGGCGTCGCG CTGGCGCGGA
AGGCAGAACC GCGAGAAGCG CTTCACTTTC GTGCTGGCGG TGGTCATAGG CGTGTTCGTG
GTCTGTTGGT TCCCCTTCTT CTTCACCTAT ACGCTCACGG CCGTAGGCTG CTCGGTG G
CCCACTCTCT TCAAGTTCTT CTTCTGGTTC GGCTACTGCA ACAGCTCGCT GAATC GGTT
ATCTACACCA TCTTCAATCA CGACTTCCGC CGCGCCTTCA AGAAGATCCT CTGCCGTGGG
GACAGGAAAC GGATCGCCAT GGGATGTACT CTGAGCGCAG AGGAGAGAGC CGCCCTCGAG
CGGAGCAAGG CGATTGAGAA AAATCTCAAA GAAGATGGCA TCAGCGCCGC CAAAGACGTG
AAATTACTCC TGCTGGGGGC TGGAGAATCA GGAAAAAGCA CCATTGTGAA GCAGATGAAG
ATCATCCATG AAGATGGCTT CTCTGGAGAA GACGTAAAGC AGTACAAGCC TGTCGTCTAC
AGCAACACCA TCCAGTCTCT GGCAGCCATT GTGCGGGCCA TGGATACTCT GGGCGTGGAG
TATGGTGACA AGGAGAGGAA GGCAGACTCC AAGATGGTGT GTGACGTGGT GAGTCGCATG
GAGGACACTG AACCATTCTC TGCAGAACTG CTTTCTGCCA TGATGCGACT CTGGGGCGAC
TCGGGGATCC AGGAGTGCTT CAACCGATCT CGGGAGTATC AGCTCAACGA CTCTGCCAAA
TACTACCTGG ACAGCTTGGA TCGGATTGGA GCCGCTGACT ACCAGCCCAC CGAGCAGGAC
ATCCTCCGAA CCAGGGTCAA AACAACTGGC ATCGTAGAAA CCCACTTCAC CTTCAAGAAC
CTCCACTTCA GGCTGTTTGA CGTTGGGGGC CAGCGATCTG AACGTAAGAA GTGGATCCAC
TGCTTCGAGG ATGTCACGGC CATCATCTTC TGTGTCGCAC TCAGCGGCTA TGACCAGGTG
CTCCACGAGG ACGAAACCAC GAACCGCATG CACGAGTCTC TCATGCTCTT CGACTCCATC
TGTAACAACA AGTTTTTCAT CGATACCTCC ATCATTCTCT TCCTCAACAA GAAAGACCTC
TTTGGCGAGA AGATTAAGAA GTCACCCTTG ACCATCTGCT TTCCTGAATA CCCAGGCTCC
AACACCTATG AAGACGCAGC TGCCTACATC CAAACACAGT TTGAAAGCAA AAACCGCTCA
CCCAACAAAG AAATTTACTG TCACATGACT TGTGCCACAG ACACGAATAA TATCCAGGTG
GTATTCGACG CCGTCACCGA CATCATCATT GCCAACAATC TCCGGGGCTG TGGCTTGTAC
TGACCTCTTG TCCTGTATAG CAACCTATTT GACTGCTTCA TGGACTCTTT GCTGTTGATG
TTGATCTCCT GGTAGCATGA CCTTTGGCCT TTGTAAGACA CACAGCCTTT CTGTACCAAG
CCCCTGTCTA ACCTACGACC CCAGAGTGAC TGACGGCTGT GTATTTCTGT AGAATGCTGT
AGAATACGGT TTTAGTTGAG TCTTTACATT TAGAACTTGA AAGGATTTAA AAAAAAAAAA
ACATTTCTCA TGTGCTTTGT AGCTTTAAAA AGGAAAACTC ACCATTTCAT CCATATTTC

223



IDACvs442Ala-adrenocegtor-GQl uCys351 He (c"2 A)

GGTAcr;..rrT CGTTCCTGAC TACGCACTAG TTCCTCGTAT GGGCTCCCTG
CAGCCGGA.::"G GAGCTGGAAT GGGACAGAGG CGCCGGGGGG CGGCGCCCGG
GCCACCCC' T GGTGACACTG ACGCTGGTGT GCCTGGCCGG CCTGCTCATG
CTGTTC.n.CG CGTGCTTGTC ATCATTGCCG TGTTCACAAG CCGCGCGCTC
AAGGCGCC~C CTGGTGT T CTGGCCTCGG CTGACATCCT AGTGGCCACG
CTTGTCATC GGCCAACGAG GTCATGGGCT ACTGGTACTT CGGCAAGGCG
TGGTGTGAGA GCTCGACGTG CTCTTCTGCA CGTCGTCCAT CGTGCACCTG
TGTGC ATCA TTACTGGTCC ATCACCCAGG CCATAGAGTA CAACCTGAAG
CGCACGCCA' AGCAATCATC GTCACCGTGT GGGTCATCTC GGCCGTCATC
TCCTTCCCG' CATCGAGAAG AAGGCAGGCG GCGGTGGCCA GCAGCCGGCC
GAACCGCGC'T CGACCAGAAG TGGTACGTCA TCTCGTCTTG CATCGGCTCC
TTCTTCGCGC CATGATCCTG GTCTATGTGC GCATCTATCA GATAGCCAAG
CGCCGCA C AGCCGCCGG GGTCCTGATG CGGCCGCCGC GCTGCCGGGG
GGCGCCGA TGGCCTAGGC CCCGAGCGCG GCGTGGGTCG CGTGGGCGCC
GAGGCCGAr; . CAGCTCAAC GGTGCCCCGG GGGAGCCCGC GCCCGCTGGG
CCCCGCGACI': GGACCTCGAG GAGAGCTCCT CGTCTGAGCA CGCCGAGCGG
CCCCCTG Gr GAGCGCGGC CCTCGGGCCA AGAGCAAGGC TCGGGCGAGC
CAGGTAAAGr CCGGGGACAG CCTGCCACGG CGCGGGCCGG GGGCGCCCGG GCCGGGGGCG
CCCGCGACTG GGG GGGGA GGAGCGCGGC GGGGTCGCCA AGGCGTCGCG CTGGCGCGGA
AGGCAGAACC GCGAGAAGCG CTTCACTTTC GTGCTGGCGG TGGTCATAGG CGTGTTCGTG
GTCTGTTGGT TCCCCTT TT CTTCACCTAT ACGCTCACGG CCGTAGGCTG CTCGGTGCCG
CCCACTCTCT TCAAGTTCTT CTTCTGGTTC GGCTACTGCA ACAGCTCGCT GAATCCGGTT
ATCTACACCA TCTTCAATCA CGACTTCCGC CGCGCCTTCA AGAAGATCCT CGCACGTGGG
GACAGGAAAr GGAT GC AT GGGATGTACT CTGAGCGCAG AGGAGAGAGC CGCCCTCGAG
CGGAGCAAGG CGATTGAGAA AAATCTCAAA GAAGATGGCA TCAGCGCCGC CAAAGACGTG
AAATTACTCC TG TGGGGGC TGGAGAATCA GGAAAAAGCA CCATTGTGAA GCAGATGAAG
ATCATCCATG AAGATGGCTT CTCTGGAGAA GACGTAAAGC AGTACAAGCC TGTCGTCTAC
AGCAACACCA TCCAGTCTCT GGCAGCCATT GTGCGGGCCA TGGATACTCT GGGCGTGGAG
TATGGTGACA AGGAGAGGAA GGCAGACTCC AAGATGGTGT GTGACGTGGT GAGTCGCATG
GAGGACACTG AACCATTCTC TGCAGAACTG CTTTCTGCCA TGATGCGACT CTGGGGCGAC
TCGGGGATCC AGGAGTGCTT CAACCGATCT CGGGAGTATC AGCTCAACGA CTCTGCCAAA
TACTACCTGG ACAGCTTGGA TCGGATTGGA GCCGCTGACT ACCAGCCCAC CGAGCAGGAC
ATCCTCCGAA CCAGGGTCAA AACAACTGGC ATCGTAGAAA CCCACTTCAC CTTCAAGAAC
CTCCACTTCA GGCTGTTTGA CGTTGGGGGC CAGCGATCTG AACGTAAGAA GTGGATCCAC
TGCTTCGAGG ATGTCACGGC CATCATCTTC TGTGTCGCAC TCAGCGGCTA TGACCAGGTG
CTCCACGAGG ACGAAACCAC GAACCGCATG CACGAGTCTC TCATGCTCTT CGACTCCATC
TGTAACAACA AGTTTTTCAT CGATACCTCC ATCATTCTCT TCCTCAACAA GAAAGACCTC
TTTGGCGAGA AGATTAAGAA GTCACCCTTG ACCATCTGCT TTCCTGAATA CCCAGGCTCC
AACACCTATG AAGACGCAGC TGCCTACATC CAAACACAGT TTGAAAGCAA AAACCGCTCA
CCCAACAAAG AAATTTACTG TCACATGACT TGTGCCACAG ACACGAATAA TATCCAGGTG
GTATTCGACG CCGTCACCGA CATCATCATT GCCAACAATC TCCGGGGCTG TGGCTTGTAC
TGACCTCTTG TCCTGTATAG CAACCTATTT GACTGCTTCA TGGACTCTTT GCTGTTGATG
TTGATCTCCT GGTAGCATGA CCTTTGGCCT TTGTAAGACA CACAGCCTTT CTGTACCAAG
CCCCTGTCTA ACCTACGACC CCAGAGTGAC TGACGGCTGT GTATTTCTGT AGAATGCTGT
AGAATACGGT TTTAGTTGAG TCTTTACATT TAGAACTTGA AAGGATTTAA AAAAAAAAAA

ACATTTCTCA TGTGCTTTGT AGCTTTAAAA AGGAAAACTC ACCATTTCAT CCATATTTC

224



~-adrenoceutor-GQj_aCys3Ser.Cys35II1e (CS)

GGTAC:ATGT AT CTTACGA CGTTCCTGAC TACGCACTAG TTCCTCGTAT GGGCTCCCTGCAGCCGGAAG GGGCAACGC GAGCTGGAAT GGGACAGAGG CGCCGGGGGG CGGCGCCCGG
GCCi\CTC T A TCCCTGCA GGTGACACTG ACGCTGGTGT GCCTGGCCGG CCTGCTCATGCTGTT A CG TGTTCGGCAA CGTGCTTGTC ATCATTGCCG TGTTCACAAG CCGCGCGCTCAAGGCGCCCC AGAACCTCTT CCTGGTGTCT CTGGCCTCGG CTGACATCCT AGTGGCCACGCTTGTCZ\TC CTTT TCGCT GGCCAACGAG GTCATGGGCT ACTGGTACTT CGGCAAGGCGTGGTGTGAGA T TA CTGGC G TCGACGTG CTCTTCTGCA CGTCGTCCAT CGTGCACCTG
TGTGCCATC.Z\ GCTTGGATCG TTACTGGTCC ATCACCCAGG CCATAGAGTA CAACCTGAAG
CGCACGCCA G CGCAT AA AGCAATCATC GTCACCGTGT GGGTCATCTC GGCCGTCATC
TCCTTCCCGC CGCTCATCTC CATCGAGAAG AAGGCAGGCG GCGGTGGCCA GCAGCCGGCC
GAACCGCGCT G GAGATCAA CGACCAGAAG TGGTACGTCA TCTCGTCTTG CATCGGCTCC
TTCTTCGCGC CCTGCCTCAT CATGATCCTG GTCTATGTGC GCATCTATCA GATAGCCAAG
CGCCGCACCC GCGTGCCGCC CAGCCGCCGG GGTCCTGATG CGGCCGCCGC GCTGCCGGGG
GGCGCCGAGC CAGGCCCAA TGGCCTAGGC CCCGAGCGCG GCGTGGGTCG CGTGGGCGCC
GAGGCCGAGC CGCTACCCGT CCAGCTCAAC GGTGCCCCGG GGGAGCCCGC GCCCGCTGGG
CCCCGCGA G CTGACGGGCT GGACCTCGAG GAGAGCTCCT CGTCTGAGCA CGCCGAGCGG
CCCCCTGGGC C CGCAGGTC GAGCGCGGC CCTCGGGCCA AGAGCAAGGC TCGGGCGAGC
CAGGTAAAGC CCGGGGACAG CCTGCCACGG CGCGGGCCGG GGGCGCCCGG GCCGGGGGCG
CCCGCGACTG GGGCCGGGGA GGAGCGCGGC GGGGTCGCCA AGGCGTCGCG CTGGCGCGGA
AGGCAGAA C GCGAGAAGCG CTTCACTTTC GTGCTGGCGG TGGTCATAGG CGTGTTCGTG
GTCTGTTGGT TCCCCTTCTT CTTCACCTAT ACGCTCACGG CCGTAGGCTG CTCGGTGCCG
CCCACTCTCT TCAAGTTCTT CTTCTGGTTC GGCTACTGCA ACAGCTCGCT GAATCCGGTT
ATCTACACCA TCTTCAATCA CGACTTCCGC CGCGCCTTCA AGAAGATCCT CTGCCGTGGG
GACAGGAAAC GGATCGCCAT GGGAAGTACT CTGAGCGCAG AGGAGAGAGC CGCCCTCGAG
CGGAGCAAGG CGATTGAGAA AAATCTCAAA GAAGATGGCA TCAGCGCCGC CAAAGACGTG
AAATTACTCC TGCTGGGGGC TGGAGAATCA GGAAAAAGCA CCATTGTGAA GCAGATGAAG
ATCATCCATG AAGATGGCTT CTCTGGAGAA GACGTAAAGC AGTACAAGCC TGTCGTCTAC
AGCAACACCA TCCAGTCTCT GGCAGCCATT GTGCGGGCCA TGGATACTCT GGGCGTGGAG
TATGGTGACA AGGAGAGGAA GGCAGACTCC AAGATGGTGT GTGACGTGGT GAGTCGCATG
GAGGACACTG AACCATTCTC TGCAGAACTG CTTTCTGCCA TGATGCGACT CTGGGGCGAC
TCGGGGATCC AGGAGTGCTT CAACCGATCT CGGGAGTATC AGCTCAACGA CTCTGCCAAA
TACTACCTGG ACAGCTTGGA TCGGATTGGA GCCGCTGACT ACCAGCCCAC CGAGCAGGAC
ATCCTCCGAA CAGGGTCAA AACAACTGGC ATCGTAGAAA CCCACTTCAC CTTCAAGAAC
CTCCACTTCA GGCTGTTTGA CGTTGGGGGC CAGCGATCTG AACGTAAGAA GTGGATCCAC
TGCTTCGAGG ATGTCACGGC CATCATCTTC TGTGTCGCAC TCAGCGGCTA TGACCAGGTG
CTCCACGAGG ACGAAACCAC GAACCGCATG CACGAGTCTC TCATGCTCTT CGACTCCATC
TGTAACAACA AGTTTTTCAT CGATACCTCC ATCATTCTCT TCCTCAACAA GAAAGACCTC
TTTGGCGAGA AGATTAAGAA GTCACCCTTG ACCATCTGCT TTCCTGAATA CCCAGGCTCC
AACACCTATG AAGACGCAGC TGCCTACATC CAAACACAGT TTGAAAGCAA AAACCGCTCA
CCCAACAAAG AAATTTACTG TCACATGACT TGTGCCACAG ACACGAATAA TATCCAGGTG
GTATTCGACG CCGTCACCGA CATCATCATT GCCAACAATC TCCGGGGCTG TGGCTTGTAC
TGACCTCTTG TCCTGTATAG CAACCTATTT GACTGCTTCA TGGACTCTTT GCTGTTGATG
TTGATCTCCT GGTAGCATGA CCTTTGGCCT TTGTAAGACA CACAGCCTTT CTGTACCAAG
CCCCTGTCTA ACCTACGACC CCAGAGTGAC TGACGGCTGT GTATTTCTGT AGAATGCTGT
AGAATACGGT TTTAGTTGAG TCTTTACATT TAGAACTTGA AAGGATTTAA AAAAAAAAAA
ACATTTCTCA TGTGCTTTGT AGCTTTAAAA AGGAAAACTC ACCATTTCAT CCATATTTC
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!!2AC}:S442 Ala-adrenoce~tor-GOlaC}:s3Ser2 Cys351Ile (C442
AI C3S)

GGTACCATGT .I\TCTTACGA CGTTCCTGAC TACGCACTAG TTCCTCGTAT GGGCTCCCTG
CAGCCGGAAG CGGGCAA GC GAGCTGGAAT GGGACAGAGG CGCCGGGGGG CGGCGCCCGG
GCCACCCCCT ACTCCCTGCA GGTGACACTG ACGCTGGTGT GCCTGGCCGG CCTGCTCATG
CTGTTCACCG TGTTCGGCAA CGTGCTTGTC ATCATTGCCG TGTTCACAAG CCGCGCGCTC
AAGGCGCCCC AGAACCT TT CCTGGTGTCT CTGGCCTCGG CTGACATCCT AGTGGCCACG
CTTGTCATCC CTTTCTCGCT GGCCAACGAG GTCATGGGCT ACTGGTACTT CGGCAAGGCG
TGGTGTGAGA TCTACCTGGC GCTCGACGTG CTCTTCTGCA CGTCGTCCAT CGTGCACCTG
TGTGCCATCA GCTTGGATCG TTACTGGTCC ATCACCCAGG CCATAGAGTA CAACCTGAAG
CGCACGCCAC GCCGCATCAA AGCAATCATC GTCACCGTGT GGGTCATCTC GGCCGTCATC
TCCTTCCCGC CGCTCATCTC CATCGAGAAG AAGGCAGGCG GCGGTGGCCA GCAGCCGGCC
GAACCGCGCT GCGAGATCAA CGACCAGAAG TGGTACGTCA TCTCGTCTTG CATCGGCTCC
TTCTTCGCGC CCTGCCTCAT CATGATCCTG GTCTATGTGC GCATCTATCA GATAGCCAAG
CGCCGCACCC GCGT CCGCC CAGCCGCCGG GGTCCTGATG CGGCCGCCGC GCTGCCGGGG
GGCGCCGAGC GCAGGCCCAA TGGCCTAGGC CCCGAGCGCG GCGTGGGTCG CGTGGGCGCC
GAGGCCGAGC CGCTACCCGT CCAGCTCAAC GGTGCCCCGG GGGAGCCCGC GCCCGCTGGG
CCCCGCGACG CTGACGGGCT GGACCTCGAG GAGAGCTCCT CGTCTGAGCA CGCCGAGCGG
CCCCCTGGGC CCCGCAGGTC CGAGCGCGGC CCTCGGGCCA AGAGCAAGGC TCGGGCGAGC
CAGGTAAAGC CCGGGGACAG CCTGCCACGG CGCGGGCCGG GGGCGCCCGG GCCGGGGGCG
CCCGCGACTG GGGCCGGGGA GGAGCGCGGC GGGGTCGCCA AGGCGTCGCG CTGGCGCGGA
AGGCAGAACC GCGAGAAGCG CTTCACTTTC GTGCTGGCGG TGGTCATAGG CGTGTTCGTG
GTCTGTTGGT TCCC TTCTT CTTCACCTAT ACGCTCACGG CCGTAGGCTG CTCGGTGCCG
CCCACTCTCT TCAAGTTCTT CTTCTGGTTC GGCTACTGCA ACAGCTCGCT GAATCCGGTT
ATCTACACCA TCTTCAATCA CGACTTCCGC CGCGCCTTCA AGAAGATCCT CGCACGTGGG
GACAGGAAAC GGATCGCCAT GGGAAGTACT CTGAGCGCAG AGGAGAGAGC CGCCCTCGAG
CGGAGCAAGG CGATTGAGAA AAATCTCAAA GAAGATGGCA TCAGCGCCGC CAAAGACGTG
AAATTACTCC TGCTGGGGGC TGGAGAATCA GGAAAAAGCA CCATTGTGAA GCAGATGAAG
ATCATCCATG AAGATGGCTT CTCTGGAGAA GACGTAAAGC AGTACAAGCC TGTCGTCTAC
AGCAACACCA TCCAGTCTCT GGCAGCCATT GTGCGGGCCA TGGATACTCT GGGCGTGGAG
TATGGTGACA AGGAGAGGAA GGCAGACTCC AAGATGGTGT GTGACGTGGT GAGTCGCATG
GAGGACACTG AACCATTCTC TGCAGAACTG CTTTCTGCCA TGATGCGACT CTGGGGCGAC
TCGGGGATCC AGGAGTGCTT CAACCGATCT CGGGAGTATC AGCTCAACGA CTCTGCCAAA
TACTACCTGG ACAGCTTGGA TCGGATTGGA GCCGCTGACT ACCAGCCCAC CGAGCAGGAC
ATCCTCCGAA CCAGGGTCAA AACAACTGGC ATCGTAGAAA CCCACTTCAC CTTCAAGAAC
CTCCACTTCA GGCTGTTTGA CGTTGGGGGC CAGCGATCTG AACGTAAGAA GTGGATCCAC
TGCTTCGAGG ATGTCACGGC CATCATCTTC TGTGTCGCAC TCAGCGGCTA TGACCAGGTG
CTCCACGAGG ACGAAACCAC GAACCGCATG CACGAGTCTC TCATGCTCTT CGACTCCATC
TGTAACAACA AGTTTTTCAT CGATACCTCC ATCATTCTCT TCCTCAACAA GAAAGACCTC
TTTGGCGAGA AGATTAAGAA GTCACCCTTG ACCATCTGCT TTCCTGAATA CCCAGGCTCC
AACACCTATG AAGACGCAGC TGCCTACATC CAAACACAGT TTGAAAGCAA AAACCGCTCA
CCCAACAAAG AAATTTACTG TCACATGACT TGTGCCACAG ACACGAATAA TATCCAGGTG
GTATTCGACG CCGTCACCGA CATCATCATT GCCAACAATC TCCGGGGCTG TGGCTTGTAC
TGACCTCTTG TCCTGTATAG CAACCTATTT GACTGCTTCA TGGACTCTTT GCTGTTGATG
TTGATCTCCT GGTAGCATGA CCTTTGGCCT TTGTAAGACA CACAGCCTTT CTGTACCAAG
CCCCTGTCTA ACCTACGACC CCAGAGTGAC TGACGGCTGT GTATTTCTGT AGAATGCTGT
AGAATACGGT TTTAGTTGAG TCTTTACATT TAGAACTTGA AAGGATTTAA AAAAAAAAAA

ACATTTCTCA TGTGCTTTGT AGCTTTAAAA AGGAAAACTC ACCATTTCAT CCATATTTC
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8.2 eDNA sequences of 5-HT lA-receptor-GoluCys351Ile constructs

The cDNA sequence of each 5HT1A-receptor-GoluCys351Ilefusion construct is given

below. The GPCR portion is shown in red font. The G protein portion is shown in blue

font. Linker region is shown in green font. Potential palmitoylation sites are shown in

underlined black font.

5-HT1A-receQtor-GolaCys351Ile(WT)

ATGGATGTGC Tf"'AG"'crTGGTCAGGGCAAC AACACCACAT CACCACCGGC TCCCTTTGAG
ACCGGCGGCA ACACTACTGG TATCTCCGAC GTGACCGTCA GCTACCAAGT GATCACCTCT
CTGCTGCTGG GCACGCTCAT CTTCTGCGCG GTGCTGGGCA ATGCGTGCGT GGTGGCTGCC
ATCGCCTTGG AGCGCTCCCT GCAGAACGTG GCCAATTATC TTATTGGCTC TTTGGCGGTC
ACCGACCTCA TSGTGTCGGT GTTGGTGCTG CCCATGGCCG CGCTGTATCA GGTGCTCAAC
AAGTGGACA(' TGGGCCAGGT AACCTGCGAC CTGTTCATCG CCCTCGACGT GCTGTGCTGC
ACCTCATCCA T"'TTGCACCT GTGCGCCATC GCGCTGGACA GGTACTGGGC CATCACGGAC
CCCATCGACT AC'GTGAACAA GAGGACGCCC CGGCGCGCCG CTGCGCTCAT CTCGCTCACT
TGGCTTATTG GCTTCCTCAT CTCTATCCCG CCCATGCTGG GCTGGCGCAC CCCGGAAGA
CGCTCGGACC '"'CGACGATG CACCATTAGC AAGGATCATG GCTACACTAT CTATTCCACC
TTTGGAGCTT TrTACATCCC GCTGCTGCTC ATGCTGGTTC TCTATGGGCG CATATTCCGA
GCTGCGCGCT TCCGCATCCG CAAGACGGTC AAAAAGGTGG AGAAGACCGG AGCGGACACC
CGCCATGGAG '"'ATCTCCGC CCCGCAGCCC AAGAAGAGTG TGAATGGAGA GTCGGGGAGC
AGGAACTGGA GGCTGGGCGT GGAGAGCAAG GCTGGGGGTG CTCTGTGCGC CAATGGCGCG
GTGAGGCAAG GTGACGATGG CGCCGCCCTG GAGGTGATCG AGGTGCACCG AGTGGGCAAC
TCCAAAGAGC ACTTGCCTCT GCCCAGCGAG GCTGGTCCTA CCCCTTGTGC CCCCGCCTCT
TTCGAGAGGA AAAATGAGCG CAACGCCGAG GCGAAGCGCA AGATGGCCCT GGCCCGAGAG
AGGAAGACAG TGAAGACGCT GGGCATCATC ATGGGCACCT TCATCCTCTG CTGGCTGCCC
TTCTTCATCG TGGCTCTTGT TCTGCCCTTC TGCGAGAGCA GCTGCCACAT GCCCACCCTG
TTGGGCGCCA TAATCAATTG GCTGGGCTAC TCCAACTCTC TGCTTAACCC CGTCATTTAC
GCATACTTCA ACAAGGACTT TCAAAACGCG TTTAAGAAGA TCATTAAGTG TAAGTTCTGC
CGCCAG' ;Ar TATGGGATG TACTCTGAGC GCAGAGGAGA GAGCCGCCCT CGAGCGGAGC
AAGGCGATTG AGAAAAATCT CAAAGAAGAT GGCATCAGCG CCGCCAAAGA CGTGAAATTA
CTCCTGCTGG GGGCTGGAGA ATCAGGAAAA AGCACCATTG TGAAGCAGAT GAAGATCATC
CATGAAGATG GCTTCTCTGG AGAAGACGTA AAGCAGTACA AGCCTGTCGT CTACAGCAAC
ACCATCCAGT CTCTGGCAGC CATTGTGCGG GCCATGGATA CTCTGGGCGT GGAGTATGGT
GACAAGGAGA GGAAGGCAGA CTCCAAGATG GTGTGTGACG TGGTGAGTCG CATGGAGGAC
ACTGAACCAT TCTCTGCAGA ACTGCTTTCT GCCATGATGC GACTCTGGGG CGACTCGGGG
ATCCAGGAGT GCTT AACCG ATCTCGGGAG TATCAGCTCA ACGACTCTGC CAAATACTAC
CTGGACAGCT TGGATCGGAT TGGAGCCGCT GACTACCAGC CCACCGAGCA GGACATCCTC
CGAACCAGGG TCAAAACAAC TGGCATCGTA GAAACCCACT TCACCTTCAA GAACCTCCAC
TTCAGGCTGT TTGACGTTGG GGGCCAGCGA TCTGAACGTA AGAAGTGGAT CCACTGCTTC
GAGGATGTCA CGGCCATCAT CTTCTGTGTC GCACTCAGCG GCTATGACCA GGTGCTCCAC
GAGGACGAAA CCACGAACCG CATGCACGAG TCTCTCATGC TCTTCGACTC CATCTGTAAC
AACAAGTTTT TCATCGATAC CTCCATCATT CTCTTCCTCA ACAAGAAAGA CCTCTTTGGC
GAGAAGATTA AGAAGTCACC CTTGACCATC TGCTTTCCTG AATACCCAGG CTCCAACACC
TATGAAGACG CAGCTGCCTA CATCCAAACA CAGTTTGAAA GCAAAAACCG CTCACCCAAC
AAAGAAATTT ACTGTCACAT GACTTGTGCC ACAGACACGA ATAATATCCA GGTGGTATTC
GACGCCGTCA CCGACATCAT CATTGCCAAC AATCTCCGGG GCTGTGGCTT GTACTGA
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5-HT IACys417Ser-receptor-GoluCys35IIle (C417S)
ATGGATGTGr T:.;l,Grc TGG TCAGGGCAAC AACACCACAT CACCACCGGC TCCCTTTGAG
ACCGGCGGCA ArA TA TGG TATCTCCGAC GTGACCGTCA GCTACCAAGT GATCACCTCT
CTGCTGCTGG GCAC TCAT CTTCTGCGCG GTGCTGGGCA ATGCGTGCGT GGTGGCTGCC
ATCGCCTTGG AGCG T CCT GCAGAACGTG GCCAATTATC TTATTGGCTC TTTGGCGGTC
ACCGACCTCA TGGTGTCGGT TTGGTGCTG CCCATGGCCG CGCTGTATCA GGTGCTCAAC
AAGTGGACAC TGGG CAGGT AACCTGCGAC CTGTTCATCG CCCTCGACGT GCTGTGCTGC
ACCTCATCCA TCTTGCAC T GTGCGCCATC GCGCTGGACA GGTACTGGGC CATCACGGAC
CCCATCGACT A TGAACAA GAGGACGCCC CGGCGCGCCG CTGCGCTCAT CTCGCTCACT
TGGCTTATTG G TTC TCAT CTCTATCCCG CCCATGCTGG GCTGGCGCAC CCCGGAAGAC
CGCTCGGACC CCGACGCATG CACCATTAGC AAGGATCATG GCTACACTAT CTATTCCACC
TTTGGAGCTT T TACATCCC GCTGCTGCTC ATGCTGGTTC TCTATGGGCG CATATTCCGA
GCTGCGCGCT T CG ATCCG CAAGACGGTC AAAAAGGTGG AGAAGACCGG AGCGGACACC
CGCCATGGAG CATCTC CGC CCCGCAGCCC AAGAAGAGTG TGAATGGAGA GTCGGGGAGC
AGGAACTGGA GGCTGGGCGT GGAGAGCAAG GCTGGGGGTG CTCTGTGCGC CAATGGCGCG
GTGAGGCAAG GTGACGATGG CGCCGCCCTG GAGGTGATCG AGGTGCACCG AGTGGGCAAC
TCCAAAGAGC ACTTGCCTCT GCCCAGCGAG GCTGGTCCTA CCCCTTGTGC CCCCGCCTCT
TTCGAGAGGA AAAATGAGCG CAACGCCGAG GCGAAGCGCA AGATGGCCCT GGCCCGAGAG
AGGAAGACAG TGAAGACGCT GGGCATCATC ATGGGCACCT TCATCCTCTG CTGGCTGCCC
TTCTTCATCG TGGCTCTTGT TCTGCCCTTC TGCGAGAGCA GCTGCCACAT GCCCACCCTG
TTGGGCGCCA TAATCAATTG GCTGGGCTAC TCCAACTCTC TGCTTAACCC CGTCATTTAC
GCATACTTCA ACAAGGACTT TCAAAACGCG TTTAAGAAGA TCATTAAGTC TAAGTTCTGC
CGCCAG,;AT ~.ATGGGATG TACTCTGAGC GCAGAGGAGA GAGCCGCCCT CGAGCGGAGC
AAGGCGATTG AGAAAAATCT CAAAGAAGAT GGCATCAGCG CCGCCAAAGA CGTGAAATTA
CTCCTGCTGG GGGCTGGAGA ATCAGGAAAA AGCACCATTG TGAAGCAGAT GAAGATCATC
CATGAAGATG GCTTCTCTGG AGAAGACGTA AAGCAGTACA AGCCTGTCGT CTACAGCAAC
ACCATCCAGT CTCTGGCAGC CATTGTGCGG GCCATGGATA CTCTGGGCGT GGAGTATGGT
GACAAGGAGA GGAAGGCAGA CTCCAAGATG GTGTGTGACG TGGTGAGTCG CATGGAGGAC
ACTGAACCAT TCTCTGCAGA ACTGCTTTCT GCCATGATGC GACTCTGGGG CGACTCGGGG
ATCCAGGAGT GCTTCAACCG ATCTCGGGAG TATCAGCTCA ACGACTCTGC CAAATACTAC
CTGGACAGCT TGGATCGGAT TGGAGCCGCT GACTACCAGC CCACCGAGCA GGACATCCTC
CGAACCAGGG TCAAAACAAC TGGCATCGTA GAAACCCACT TCACCTTCAA GAACCTCCAC
TTCAGGCTGT TTGACGTTGG GGGCCAGCGA TCTGAACGTA AGAAGTGGAT CCACTGCTTC
GAGGATGTCA CGGCCATCAT CTTCTGTGTC GCACTCAGCG GCTATGACCA GGTGCTCCAC
GAGGACGAAA CCACGAACCG CATGCACGAG TCTCTCATGC TCTTCGACTC CATCTGTAAC
AACAAGTTTT TCATCGATAC CTCCATCATT CTCTTCCTCA ACAAGAAAGA CCTCTTTGGC
GAGAAGATTA AGAAGTCACC CTTGACCATC TGCTTTCCTG AATACCCAGG CTCCAACACC
TATGAAGACG CAGCTGCCTA CATCCAAACA CAGTTTGAAA GCAAAAACCG CTCACCCAAC
AAAGAAATTT ACTGTCACAT GACTTGTGCC ACAGACACGA ATAATATCCA GGTGGTATTC
GACGCCGTCA CCGACATCAT CATTGCCAAC AATCTCCGGG GCTGTGGCTT GTACTGA
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AACACCACAT CACCACCGGC TCCCTTTGAG
GTGACCGTCA GCTACCAAGT GATCACCTCT
GTGCTGGGCA ATGCGTGCGT GGTGGCTGCC
GCCAATTATC TTATTGGCTC TTTGGCGGTC
CCCATGGCCG CGCTGTATCA GGTGCTCAAC
CTGTTCATCG CCCTCGACGT GCTGTGCTGC
GCGCTGGACA GGTACTGGGC CATCACGGAC
CGGCGCGCCG CTGCGCTCAT CTCGCTCACT
CCCATGCTGG GCTGGCGCAC CCCGGAAGAC
AAGGATCATG GCTACACTAT CTATTCCACC
ATGCTGGTTC TCTATGGGCG CATATTCCGA
AAAAAGGTGG AGAAGACCGG AGCGGACACC
AAGAAGAGTG TGAATGGAGA GTCGGGGAGC
GCTGGGGGTG CTCTGTGCGC CAATGGCGCG
GAGGTGATCG AGGTGCACCG AGTGGGCAAC
GCTGGTCCTA CCCCTTGTGC CCCCGCCTCT
GCGAAGCGCA AGATGGCCCT GGCCCGAGAG
ATGGGCACCT TCATCCTCTG CTGGCTGCCC
TGCGAGAGCA GCTGCCACAT GCCCACCCTG
TCCAACTCTC TGCTTAACCC CGTCATTTAC
TTTAAGAAGA TCATTAAGTC TAAGTTCTGC
GCAGAGGAGA GAGCCGCCCT CGAGCGGAGC
GGCATCAGCG CCGCCAAAGA CGTGAAATTA
AGCACCATTG TGAAGCAGAT GAAGATCATC
AAGCAGTACA AGCCTGTCGT CTACAGCAAC
GCCATGGATA CTCTGGGCGT GGAGTATGGT
GTGTGTGACG TGGTGAGTCG CATGGAGGAC
GCCATGATGC GACTCTGGGG CGACTCGGGG
TATCAGCTCA ACGACTCTGC CAAATACTAC
GACTACCAGC CCACCGAGCA GGACATCCTC
GAAACCCACT TCACCTTCAA GAACCTCCAC
TCTGAACGTA AGAAGTGGAT CCACTGCTTC
GCACTCAGCG GCTATGACCA GGTGCTCCAC
TCTCTCATGC TCTTCGACTC CATCTGTAAC
CTCTTCCTCA ACAAGAAAGA CCTCTTTGGC
TGCTTTCCTG AATACCCAGG CTCCAACACC
CAGTTTGAAA GCAAAAACCG CTCACCCAAC
ACAGACACGA ATAATATCCA GGTGGTATTC
AATCTCCGGG GCTGTGGCTT GTACTGA
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5-HT lACys 420Ser-receptor-Gol aCys351 Ile (C420S)
ATGGATGTGC T AGCCCTGG TCAGGGCAAC AACACCACAT CACCACCGGC TCCCTTTGAG
ACCGGCGGCA ACACTACTGG TATCTCCGAC GTGACCGTCA GCTACCAAGT GATCACCTCT
CTGCTGCTGG GCACGCTCAT CTTCTGCGCG GTGCTGGGCA ATGCGTGCGT GGTGG TGCC
ATCGCCTTGG AGCGCTCCCT GCAGAACGTG GCCAATTATC TTATTGGCTC TTTGGCGGTC
ACCGACCTCA TGGTGTCGGT GTTGGTGCTG CCCATGGCCG CGCTGTATCA GGTGCTCAAC
AAGTGGACAC TGGGCCAGGT AACCTGCGAC CTGTTCATCG CCCTCGACGT GCTGTGCTGC
ACCTCATCCA TCTTGCACCT GTGCGCCATC GCGCTGGACA GGTACTGGGC CATCACGGAC
CCCATCGACT ACGTGAACAA GAGGACGCCC CGGCGCGCCG CTGCGCTCAT CTCGCTCACT
TGGCTTATTG GCTTCCTCAT CTCTATCCCG CCCATGCTGG GCTGGCGCAC CCCGGAAGAC
CGCTCGGACC CCGACGCATG CACCATTAGC AAGGATCATG GCTACACTAT CTATTCCACC
TTTGGAGCTT TCTACATCCC GCTGCTGCTC ATGCTGGTTC TCTATGGGCG CATATTCCGA
GCTGCGCGCT TCCGCATCCG CAAGACGGTC AAAAAGGTGG AGAAGACCGG AGCGGACACC
CGCCATGGAG CATCTCCCGC CCCGCAGCCC AAGAAGAGTG TGAATGGAGA GTCGGGGAGC
AGGAACTGGA GGCTGGGCGT GGAGAGCAAG GCTGGGGGTG CTCTGTGCGC CAATGGCGCG
GTGAGGCAAG GTGACGATGG CGCCGCCCTG GAGGTGATCG AGGTGCACCG AGTGGGCAA
TCCAAAGAGC ACTTGCCTCT GCCCAGCGAG GCTGGTCCTA CCCCTTGTGC CCCCGCCTCT
TTCGAGAGGA AAAATGAGCG CAACGCCGAG GCGAAGCGCA AGATGGCCCT GGCCCGAGAG
AGGAAGACAG TGAAGACGCT GGGCATCATC ATGGGCACCT TCATCCTCTG CTGGCTGCCC
TTCTTCATCG TGGCTCTTGT TCTGCCCTTC TGCGAGAGCA GCTGCCACAT GCCCACCCTG
TTGGGCGCCA TAATCAATTG GCTGGGCTAC TCCAACTCTC TGCTTAACCC CGTCATTTAC
GCATACTTCA ACAAGGACTT TCAAAACGCG TTTAAGAAGA TCATTAAGTG TAAGTTCTCC
CGCCAGGGAT CTATGGGATG TACTCTGAGC GCAGAGGAGA GAGCCGCCCT CGAGCGGAGC
AAGGCGATTG AGAAAAATCT CAAAGAAGAT GGCATCAGCG CCGCCAAAGA CGTGAAATTA
CTCCTGCTGG GGGCTGGAGA ATCAGGAAAA AGCACCATTG TGAAGCAGAT GAAGATCATC
CATGAAGATG GCTTCTCTGG AGAAGACGTA AAGCAGTACA AGCCTGTCGT CTACAGCAAC
ACCATCCAGT CTCTGGCAGC CATTGTGCGG GCCATGGATA CTCTGGGCGT GGAGTATGGT
GACAAGGAGA GGAAGGCAGA CTCCAAGATG GTGTGTGACG TGGTGAGTCG CATGGAGGAC
ACTGAACCAT TCTCTGCAGA ACTGCTTTCT GCCATGATGC GACTCTGGGG CGACTCGGGG
ATCCAGGAGT GCTTCAACCG ATCTCGGGAG TATCAGCTCA ACGACTCTGC CAAATACTAC
CTGGACAGCT TGGATCGGAT TGGAGCCGCT GACTACCAGC CCACCGAGCA GGACATCCTC
CGAACCAGGG TCAAAACAAC TGGCATCGTA GAAACCCACT TCACCTTCAA GAACCTCCAC
TTCAGGCTGT TTGACGTTGG GGGCCAGCGA TCTGAACGTA AGAAGTGGAT CCACTGCTTC
GAGGATGTCA CGGCCATCAT CTTCTGTGTC GCACTCAGCG GCTATGACCA GGTGCTCCAC
GAGGACGAAA CCACGAACCG CATGCACGAG TCTCTCATGC TCTTCGACTC CATCTGTAAC
AACAAGTTTT TCATCGATAC CTCCATCATT CTCTTCCTCA ACAAGAAAGA CCTCTTTGGC
GAGAAGATTA AGAAGTCACC CTTGACCATC TGCTTTCCTG AATACCCAGG CTCCAACACC
TATGAAGACG CAGCTGCCTA CATCCAAACA CAGTTTGAAA GCAAAAACCG CTCACCCAAC
AAAGAAATTT ACTGTCACAT GACTTGTGCC ACAGACACGA ATAATATCCA GGTGGTATTC
GACGCCGTCA CCGACATCAT CATTGCCAAC AATCTCCGGG GCTGTGGCTT GTACTGA
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5-HTl_ACys420Ser-receptor-G.QluCys3Ser, Cys35JIle (C420S. C3S)
ATGGATGTG TCAG C TGG TCAGGGCAAC AACACCACAT CACCACCGGC TCCCTTTGAG
ACCGGCGGCA ACACTACTGG TATCTCCGAC GTGACCGTCA GCTACCAAGT GATCACCTCT
CTGCTGCTGG GCACGCTCAT CTTCTGCGCG GTGCTGGGCA ATGCGTGCGT GGTGGCTGCC
ATCGCCTTGG AGCGCTCC T GCAGAACGTG GCCAATTATC TTATTGGCTC TTTGGCGGTC
ACCGACCTCA TGGTGTCGGT GTTGGTGCTG CCCATGGCCG CGCTGTATCA GGTGCTCAAC
AAGTGGACAC TGGGCCAGGT AACCTGCGAC CTGTTCATCG CCCTCGACGT GCTGTGCTGC
ACCTCATCCA TCTTGCACCT GTGCGCCATC GCGCTGGACA GGTACTGGGC CATCACGGAC
CCCATCGACT ACGTGAACAA GAGGACGCCC CGGCGCGCCG CTGCGCTCAT CTCGCTCACT
TGGCTTATTG GCTTCCTCAT CTCTATCCCG CCCATGCTGG GCTGGCGCAC CCCGGAAGAC
CGCTCGGACC CCGACGCATG CACCATTAGC AAGGATCATG GCTACACTAT CTATTCCACC
TTTGGAGCTT TCTACATCCC GCTGCTGCTC ATGCTGGTTC TCTATGGGCG CATATTCCGA
GCTGCGCGCT TCCGCATCCG CAAGACGGTC AAAAAGGTGG AGAAGACCGG AGCGGACACC
CGCCATGGAG CATCTCCCGC CCCGCAGCCC AAGAAGAGTG TGAATGGAGA GTCGGGGAGC
AGGAACTGGA GGCTGGGCGT GGAGAGCAAG GCTGGGGGTG CTCTGTGCGC CAATGGCGCG
GTGAGGCAAG GT ACGATGG CGCCGCCCTG GAGGTGATCG AGGTGCACCG AGTGGGCAAC
TCCAAAGAGC ACTTGCCTCT GCCCAGCGAG GCTGGTCCTA CCCCTTGTGC CCCCGCCTCT
TTCGAGAGGA AAAATGAGCG CAACGCCGAG GCGAAGCGCA AGATGGCCCT GGCCCGAGAG
AGGAAGACAG TGAAGA GCT GGGCATCATC ATGGGCACCT TCATCCTCTG CTGGCTGCCC
TTCTTCATCG TGGCTCTTGT TCTGCCCTTC TGCGAGAGCA GCTGCCACAT GCCCACCCTG
TTGGGCGCCA TAATCAATTG GCTGGGCTAC TCCAACTCTC TGCTTAACCC CGTCATTTAC
GCATACTTCA ACAAGGACTT TCAAAACGCG TTTAAGAAGA TCATTAAGTG TAAGTTCTCC
CGCCAGGGAT ~TATGGG~ACTCTGAGC GCAGAGGAGA GAGCCGCCCT CGAGCGGAGC
AAGGCGATTG AGAAAAATCT CAAAGAAGAT GGCATCAGCG CCGCCAAAGA CGTGAAATTA
CTCCTGCTGG GGGCTGGAGA ATCAGGAAAA AGCACCATTG TGAAGCAGAT GAAGATCATC
CATGAAGATG GCTTCTCTGG AGAAGACGTA AAGCAGTACA AGCCTGTCGT CTACAGCAAC
ACCATCCAGT CTCTGGCAGC CATTGTGCGG GCCATGGATA CTCTGGGCGT GGAGTATGGT
GACAAGGAGA GGAAGGCAGA CTCCAAGATG GTGTGTGACG TGGTGAGTCG CATGGAGGAC
ACTGAACCAT TCTCTGCAGA ACTGCTTTCT GCCATGATGC GACTCTGGGG CGACTCGGGG
ATCCAGGAGT GCTTCAACCG ATCTCGGGAG TATCAGCTCA ACGACTCTGC CAAATACTAC
CTGGACAGCT TGGATCGGAT TGGAGCCGCT GACTACCAGC CCACCGAGCA GGACATCCTC
CGAACCAGGG TCAAAACAAC TGGCATCGTA GAAACCCACT TCACCTTCAA GAACCTCCAC
TTCAGGCTGT TTGACGTTGG GGGCCAGCGA TCTGAACGTA AGAAGTGGAT CCACTGCTTC
GAGGATGTCA CGGCCATCAT CTTCTGTGTC GCACTCAGCG GCTATGACCA GGTGCTCCAC
GAGGACGAAA CCACGAACCG CATGCACGAG TCTCTCATGC TCTTCGACTC CATCTGTAAC
AACAAGTTTT TCATCGATAC CTCCATCATT CTCTTCCTCA ACAAGAAAGA CCTCTTTGGC
GAGAAGATTA AGAAGTCACC CTTGACCATC TGCTTTCCTG AATACCCAGG CTCCAACACC
TATGAAGACG CAGCTGCCTA CATCCAAACA CAGTTTGAAA GCAAAAAcCG CTCACCCAAC
AAAGAAATTT ACTGTCACAT GACTTGTGCC ACAGACACGA ATAATATCCA GGTGGTATTC
GACGCCGTCA CCGACATCAT CATTGCCAAC AATCTCCGGG GCTGTGGCTT GTACTGA
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5_HT1ACys417Ser. Cys420Ser-recegtor-GOJUCys351Ile (C417S. C42OS)

ATGGATGTGC TCAGCCCTGG TCAGGGCAAC AACACCACAT CACCACCGGC TCCCTTTGAG
ACCGGCGGCA ACACTACTGG TATCTCCGAC GTGACCGTCA GCTACCAAGT GATCACCTCT
CTGCTGCTGG GCACGCTCAT CTTCTGCGCG GTGCTGGGCA ATGCGTGCGT GGTGGCTGCC
ATCGCCTTGG AGCGCTCCCT GCAGAACGTG GCCAATTATC TTATTGGCTC TTTGGCGGTC
ACCGACCTCA TGGTGTCGGT GTTGGTGCTG CCCATGGCCG CGCTGTATCA GGTGCTCAAC
AAGTGGACAC TGGGCCAGGT AACCTGCGAC CTGTTCATCG CCCTCGACGT GCTGTGCTGC
ACCTCATCCA TCTTGCACCT GTGCGCCATC GCGCTGGACA GGTACTGGGC CATCACGGAC
CCCATCGACT ACGTGAACAA GAGGACGCCC CGGCGCGCCG CTGCGCTCAT CTCGCTCACT
TGGCTTATTG GCTTCCTCAT CTCTATCCCG CCCATGCTGG GCTGGCGCAC CCCGGAAGAC
CGCTCGGACC CCGACGCATG CACCATTAGC AAGGATCATG GCTACACTAT CTATTCCACC
TTTGGAGCTT TCTACATCCC GCTGCTGCTC ATGCTGGTTC TCTATGGGCG CATATTCCGA
GCTGCGCGCT TCCGCATCCG CAAGACGGTC AAAAAGGTGG AGAAGACCGG AGCGGACACC
CGCCATGGAG CATCTCCCGC CCCGCAGCCC AAGAAGAGTG TGAATGGAGA GTCGGGGAGC
AGGAACTGGA GGCTGGGCGT GGAGAGCAAG GCTGGGGGTG CTCTGTGCGC CAATGGCGCG
GTGAGGCAAG GTGACGATGG CGCCGCCCTG GAGGTGATCG AGGTGCACCG AGTGGGCAAC
TCCAAAGAGC ACTTGCCTCT GCCCAGCGAG GCTGGTCCTA CCCCTTGTGC CCCCGCCTCT
TTCGAGAGGA AAAATGAGCG CAACGCCGAG GCGAAGCGCA AGATGGCCCT GGCCCGAGAG
AGGAAGACAG TGAAGACGCT GGGCATCATC ATGGGCACCT TCATCCTCTG CTGGCTGCCC
TTCTTCATCG TGGCTCTTGT TCTGCCCTTC TGCGAGAGCA GCTGCCACAT GCCCACCCTG
TTGGGCGCCA TAATCAATTG GCTGGGCTAC TCCAACTCTC TGCTTAACCC CGTCATTTAC
GCATACTTCA ACAAGGACTT TCAAAACGCG TTTAAGAAGA TCATTAAGTC TAAGTTCTCC
CGCCAGGGAT CTATGGGATG TACTCTGAGC GCAGAGGAGA GAGCCGCCCT CGAGCGGAGC
AAGGCGATTG AGAAAAATCT CAAAGAAGAT GGCATCAGCG CCGCCAAAGA CGTGAAATTA
CTCCTGCTGG GGGCTGGAGA ATCAGGAAAA AGCACCATTG TGAAGCAGAT GAAGATCATC
CATGAAGATG GCTTCTCTGG AGAAGACGTA AAGCAGTACA AGCCTGTCGT CTACAGCAAC
ACCATCCAGT CTCTGGCAGC CATTGTGCGG GCCATGGATA CTCTGGGCGT GGAGTATGGT
GACAAGGAGA GGAAGGCAGA CTCCAAGATG GTGTGTGACG TGGTGAGTCG CATGGAGGAC
ACTGAACCAT TCTCTGCAGA ACTGCTTTCT GCCATGATGC GACTCTGGGG CGACTCGGGG
ATCCAGGAGT GCTTCAACCG ATCTCGGGAG TATCAGCTCA ACGACTCTGC CAAATACTAC
CTGGACAGCT TGGATCGGAT TGGAGCCGCT GACTACCAGC CCACCGAGCA GGACATCCTC
CGAACCAGGG TCAAAACAAC TGGCATCGTA GAAACCCACT TCACCTTCAA GAACCTCCAC
TTCAGGCTGT TTGACGTTGG GGGCCAGCGA TCTGAACGTA AGAAGTGGAT CCACTGCTTC
GAGGATGTCA CGGCCATCAT CTTCTGTGTC GCACTCAGCG GCTATGACCA GGTGCTCCAC
GAGGACGAAA CCACGAACCG CATGCACGAG TCTCTCATGC TCTTCGACTC CATCTGTAAC
AACAAGTTTT TCATCGATAC CTCCATCATT CTCTTCCTCA ACAAGAAAGA CCTCTTTGGC
GAGAAGATTA AGAAGTCACC CTTGACCATC TGCTTTCCTG AATACCCAGG CTCCAACACC
TATGAAGACG CAGCTGCCTA CATCCAAACA CAGTTTGAAA GCAAAAACCG CTCACCCAAC
AAAGAAATTT ACTGTCACAT GACTTGTGCC ACAGACACGA ATAATATCCA GGTGGTATTC
GACGCCGTCA CCGACATCAT CATTGCCAAC AATCTCCGGG GCTGTGGCTT GTACTGA
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er) C~s351Ile eeJS)
TCAGGGCAAC AACACCACAT CACCACCGGC TCCCTTTGAG
TATCTCCGAC GTGACCGTCA GCTACCAAGT GATCACCTCT
CTTCTGCGCG GTGCTGGGCA ATGCGTGCGT GGTGGCTGCC
GCAGAACGTG GCCAATTATC TTATTGGCTC TTTGGCGGTC
TTGGTGCTG CCCATGGCCG CGCTGTATCA GGTGCTCAAC

AACCTGCGAC CTGTTCATCG CCCTCGACGT GCTGTGCTGC
GTG GC ATC GCGCTGGACA GGTACTGGGC CATCACGGAC
GAGGACGCCC CGGCGCGCCG CTGCGCTCAT CTCGCTCACT
CTCTATCCCG CCCATGCTGG GCTGGCGCAC CCCGGAAGAC
CACCATTAGC AAGGATCATG GCTACACTAT CTATTCCACC
GCTGCTGCTC ATGCTGGTTC TCTATGGGCG CATATTCCGA
CAAGACGGTC AAAAAGGTGG AGAAGACCGG AGCGGACACC
CCCGCAGCCC AAGAAGAGTG TGAATGGAGA GTCGGGGAGC
GGAGAGCAAG GCTGGGGGTG CTCTGTGCGC CAATGGCGCG
CGCCGCCCTG GAGGTGATCG AGGTGCACCG AGTGGGCAAC
GCCCAGCGAG GCTGGTCCTA CCCCTTGTGC CCCCGCCTCT
CAACGCCGAG GCGAAGCGCA AGATGGCCCT GGCCCGAGAG
GGGCATCATC ATGGGCACCT TCATCCTCTG CTGGCTGCCC

CTTGT TCTGCCCTTC TGCGAGAGCA GCTGCCACAT GCCCACCCTG
TAATCAATTG GCTGGGCTAC TCCAACTCTC TGCTTAACCC CGTCATTTAC

AA G..!l.CTTTCAAAACGCG TTTAAGAAGA TCATTAAGTG TAAGTTCTGC-- --
A G(;AAG TACTCTGAGC GCAGAGGAGA GAGCCGCCCT CGAGCGGAGC
AAAAATCT CAAAGAAGAT GGCATCAGCG CCGCCAAAGA CGTGAAATTA

G GCTGGAGA ATCAGGAAAA AGCACCATTG TGAAGCAGAT GAAGATCATC
GCTTCTCTGG AGAAGACGTA AAGCAGTACA AGCCTGTCGT CTACAGCAAC
C CTGGCAGC CATTGTGCGG GCCATGGATA CTCTGGGCGT GGAGTATGGT

AAGGCAGA CTCCAAGATG GTGTGTGACG TGGTGAGTCG CATGGAGGAC
TCT TG AGA ACTGCTTTCT GCCATGATGC GACTCTGGGG CGACTCGGGG

ATCCA G TTCAACCG ATCTCGGGAG TATCAGCTCA ACGACTCTGC CAAATACTAC
crG A rGGATCGGAT TGGAGCCGCT GACTACCAGC CCACCGAGCA GGACATCCTC
CGAAC T AAAACAAC TGGCATCGTA GAAACCCACT TCACCTTCAA GAACCTCCAC
TTCAGG TGT TTGACGTTGG GGGCCAGCGA TCTGAACGTA AGAAGTGGAT CCACTGCTTC
A GATGT A GG CATCAT CTTCTGTGTC GCACTCAGCG GCTATGACCA GGTGCTCCAC

GAGGACGAAA ACGAACCG CATGCACGAG TCTCTCATGC TCTTCGACTC CATCTGTAAC
AACAAGTTTT TCATCGATAC CTCCATCATT CTCTTCCTCA ACAAGAAAGA CCTCTTTGGC
GAGAA ATTA AGAAGTCACC CTTGACCATC TGCTTTCCTG AATACCCAGG CTCCAACACC
TATGAAGA G CAG TGCCTA CATCCAAACA CAGTTTGAAA GCAAAAACCG CTCACCCAAC
AAA AAATTT ACTGTCACAT GACTTGTGCC ACAGACACGA ATAATATCCA GGTGGTATTC
ACGCCGTCA CCGACATCAT CATTGCCAAC AATCTCCGGG GCTGTGGCTT GTACTGA
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5-HTMCys417Ser, Cys420Ser-receQtor-GOlaCys3Ser~ Cys351Ile (C417S, C420S2 ClS)

ATGGATGTGC TC.n.GC TGG TCAGGGCAAC AACACCACAT CACCACCGGC TCCCTTTGAG
ACCGGCGGCA ACACTACTGG TATCTCCGAC GTGACCGTCA GCTACCAAGT GATCACCTCT
CTGCTGCT G GCACGCTCAT CTTCTGCGCG GTGCTGGGCA ATGCGTGCGT GGTGGCTGCC
ATCGCCTTGG AGCGCTCCCT GCAGAACGTG GCCAATTATC TTATTGGCTC TTTGGCGGTC
ACCGACCT A TGGTGTCGGT GTTGGTGCTG CCCATGGCCG CGCTGTATCA GGTGCTCAAC
AAGTGGA A TGGGCCAGGT AACCTGCGAC CTGTTCATCG CCCTCGACGT GCTGTGCTGC
AC TCATCCA TCTTG ACCT GTGCGCCATC GCGCTGGACA GGTACTGGGC CATCACGGAC
CCCATCGACT ACGTGAACAA GAGGACGCCC CGGCGCGCCG CTGCGCTCAT CTCGCTCACT
TGGCTTATTG GCTT CT AT CTCTATCCCG CCCATGCTGG GCTGGCGCAC CCCGGAAGAC
CGCT GGAC CCGACGCATG CACCATTAGC AAGGATCATG GCTACACTAT CTATTCCACC
TTTGGAGCTT TCTACATCCC GCTGCTGCTC ATGCTGGTTC TCTATGGGCG CATATTCCGA
GCTGCGCGCT TCCGCATCCG CAAGACGGTC AAAAAGGTGG AGAAGACCGG AGCGGACACC
CGCCATGGAG CATCTCCCGC CCCGCAGCCC AAGAAGAGTG TGAATGGAGA GTCGGGGAGC
AGGAACTGGA GGCTGGGCGT GGAGAGCAAG GCTGGGGGTG CTCTGTGCGC CAATGGCGCG
GTGAGGCAAG GTGACGATGG CGCCGCCCTG GAGGTGATCG AGGTGCACCG AGTGGGCAAC
TCCAAAGAGC ACTTGCCTCT GCCCAGCGAG GCTGGTCCTA CCCCTTGTGC CCCCGCCTCT
TTCGAGAGGA AAAATGAGCG CAACGCCGAG GCGAAGCGCA AGATGGCCCT GGCCCGAGAG
AGGAAGACAG TGAAGACGCT GGGCATCATC ATGGGCACCT TCATCCTCTG CTGGCTGCCC
TTCTTCATCG TGGCTCTTGT TCTGCCCTTC TGCGAGAGCA GCTGCCACAT GCCCACCCTG
TTGGGCGCCA TAATCAATTG GCTGGGCTAC TCCAACTCTC TGCTTAACCC CGTCATTTAC
CATACTTCA ACAAGGACTT TCAAAACGCG TTTAAGAAGA TCATTAAGTC TAAGTTCTCC

CGCCAGGGAT CTATGGGAAG TACTCTGAGC GCAGAGGAGA GAGCCGCCCT CGAGCGGAGC
AAGGCGATTG AGAAAAATCT CAAAGAAGAT GGCATCAGCG CCGCCAAAGA CGTGAAATTA
CTCCTGCTGG GGGCTGGAGA ATCAGGAAAA AGCACCATTG TGAAGCAGAT GAAGATCATC
CATGAAGATG GCTTCTCTGG AGAAGACGTA AAGCAGTACA AGCCTGTCGT CTACAGCAAC
ACCATCCAGT CTCTGGCAGC CATTGTGCGG GCCATGGATA CTCTGGGCGT GGAGTATGGT
GACAAGGAGA GGAAGGCAGA CTCCAAGATG GTGTGTGACG TGGTGAGTCG CATGGAGGAC
ACTGAACCAT TCTCTGCAGA ACTGCTTTCT GCCATGATGC GACTCTGGGG CGACTCGGGG
ATCCAGGAGT GCTTCAACCG ATCTCGGGAG TATCAGCTCA ACGACTCTGC CAAATACTAC
CTGGACAGCT TGGATCGGAT TGGAGCCGCT GACTACCAGC CCACCGAGCA GGACATCCTC
CGAACCAGGG TCAAAACAAC TGGCATCGTA GAAACCCACT TCACCTTCAA GAACCTCCAC
TTCAGGCTGT TTGACGTTGG GGGCCAGCGA TCTGAACGTA AGAAGTGGAT CCACTGCTTC
GAGGATGTCA CGGCCATCAT CTTCTGTGTC GCACTCAGCG GCTATGACCA GGTGCTCCAC
GAGGACGAAA CCACGAACCG CATGCACGAG TCTCTCATGC TCTTCGACTC CATCTGTAAC
AACAAGTTTT TCATCGATAC CTCCATCATT CTCTTCCTCA ACAAGAAAGA CCTCTTTGGC
GAGAAGATTA AGAAGTCACC CTTGACCATC TGCTTTCCTG AATACCCAGG CTCCAACACC
TATGAAGACG CAGCTGCCTA CATCCAAACA CAGTTTGAAA GCAAAAACCG CTCACCCAAC
AAAGAAATTT ACTGTCACAT GACTTGTGCC ACAGACACGA ATAATATCCA GGTGGTATTC
GACGCCGTCA CCGACATCAT CATTGCCAAC AATCTCCGGG GCTGTGGCTT GTACTGA
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8.3 Amino acid sequences of a2A-adrenoceptor-GotaCys351Ile constructs

The amino acid sequence of each a2A-adrenoceptor-GolaCys35IIle fusion construct is

given below. The GPCR portion is shown in red font. The G protein portion is shown in

blue font. Potential palmitoylation sites are shown in underlined black font.

~A -adrenoceptor-Go 1aCys35I Ile (WT)

MGSLQPEAGNASWNGTEAPGGGARATPYSLQVTLTLVCLAGLLMLFTVFGNVLVIIAVF
TSRALKAPQNLFLVSLASADILVATLVIPFSLANEVMGYWYFGKAWCEIYLALDVLFCT
SSIVHLCAISLDRYWSITQAIEYNLKRTPRRIKAIIVTVWVISAVISFPPLISIEKKAG
GGGQQPAEPRCEINDQKWYVISSCIGSFFAPCLIMILVYVRIYQIAKRRTRVPPSRRGP
DAAAALPGGAERRPNGLGPERGVGRVGAEAEPLPVQLNGAPGEPAPAGPRDADGLDLEE
SSSSEHAERPPGPRRSERGPRAKSKARASQVKPGDSLPRRGPGAPGPGAPATGAGEERG
GVAKASRWRGRQNREKRFTFVLAVVIGVFVVCWFPFFFTYTLTAVGCSVPPTLFKFFFW
FGYCNSSLNPVIYTIFNHDFRRAFKKILCRGDRKRIVMGCTLSAEERAALERSKAIEKN

- -LKEDGISAAKDVKLLLLGAGESGKSTIVKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSL
AAIVRAMDTLGVEYGDKERKADSKMVCDVVSRMEDTEPFSAELLSAMMRLWGDSGIQEC
FNRSREYQLNDSAKYYLDSLDRIGAADYQPTEQDILRTRVKTTGIVETHFTFKNLHFRL
FDVGGQRSERKKWIHCFEDVTAIIFCVALSGYDQVLHEDETTNRMHESLMLFDSICNNK
FFIDTSIILFLNKKDLFGEKIKKSPLTICFPEYPGSNTYEDAAAYIQTQFESKNRSPNK
EIYCHMTCATDTNNIQVVFDAVTDIIIANNLRGCGLY

~A Cys442Ala-adrenoceptor-Go IaCys351 Ile (C442 A)

MGSLQPEAGNASWNGTEAPGGGARATPYSLQVTLTLVCLAGLLMLFTVFGNVLVIIAVF
TSRALKAPQNLFLVSLASADILVATLVIPFSLANEVMGYWYFGKAWCEIYLALDVLFCT
SSIVHLCAISLDRYWSITQAIEYNLKRTPRRIKAIIVTVWVISAVISFPPLISIEKKAG
GGGQQPAEPRCEINDQKWYVISSCIGSFFAPCLIMILVYVRIYQIAKRRTRVPPSRRGP
DAAAALPGGAERRPNGLGPERGVGRVGAEAEPLPVQLNGAPGEPAPAGPRDADGLDLEE
SSSSEHAERPPGPRRSERGPRAKSKARASQVKPGDSLPRRGPGAPGPGAPATGAGEERG
GVAKASRWRGRQNREKRFTFVLAVVIGVFVVCWFPFFFTYTLTAVGCSVPPTLFKFFFW
FGYCNSSLNPVIYTIFNHDFRRAFKKIL~RGDRKRIVMG~TLSAEERAALERSKAIEKN
LKEDGISAAKDVKLLLLGAGESGKSTIVKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSL
AAIVRAMDTLGVEYGDKERKADSKMVCDVVSRMEDTEPFSAELLSAMMRLWGDSGIQEC
FNRSREYQLNDSAKYYLDSLDRIGAADYQPTEQDILRTRVKTTGIVETHFTFKNLHFRL
FDVGGQRSERKKWIHCFEDVTAIIFCVALSGYDQVLHEDETTNRMHESLMLFDSICNNK
FFIDTSIILFLNKKDLFGEKIKKSPLTICFPEYPGSNTYEDAAAYIQTQFESKNRSPNK
EIYCHMTCATDTNNIQVVFDAVTDII IANNLRGCGLY
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!!2A-adrenoceptor-GoluCys3Ser,Cys351lIe ec3s)
MGSLQPEAGNASWNGTEAPGGGARATPYSLQVTLTLVCLAGLLMLFTVFGNVLVIIAVF
TSRALKAPQNLFLVSLASADILVATLVIPFSLANEVMGYWYFGKAWCEIYLALDVLFCT
SSIVHLCAISLDRYWSITQAIEYNLKRTPRRIKAIIVTVWVISAVISFPPLISIEKKAG
GGGQQPAEPRCEINDQKWYVISSCIGSFFAPCLIMILVYVRIYQIAKRRTRVPPSRRGP
DAAAALPGGAERRPNGLGPERGVGRVGAEAEPLPVQLNGAPGEPAPAGPRDADGLDLEE
SSSSEHAERPPGPRRSERGPRAKSKARASQVKPGDSLPRRGPGAPGPGAPATGAGEERG
GVAKASRWRGRQNREKRFTFVLAVVIGVFVVCWFPFFFTYTLTAVGCSVPPTLFKFFFW
FGYCNSSLNPVIYTIFNHDFRRAFKKILCRGDRKRIVMGSTLSAEERAALERSKAIEKN
LKEDGISAAKDVKLLLLGAGESGKSTIVKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSL
AAIVRAMDTLGVEYGDKERKADSKMVCDVVSRMEDTEPFSAELLSAMMRLWGDSGIQEC
FNRSREYQLNDSAKYYLDSLDRIGAADYQPTEQDILRTRVKTTGIVETHFTFKNLHFRL
FDVGGQRSERKKWIHCFEDVTAIIFCVALSGYDQVLHEDETTNRMHESLMLFDSICNNK
FFIDTSIILFLNKKDLFGEKIKKSPLTICFPEYPGSNTYEDAAAYIQTQFESKNRSPNK
EIYCHMTCATDTNNIQVVFDAVTDI IIANNLRGCGLY

!!2ACys442Ala-adrenoceptor-Go IuCys3Ser, Cys351lIe eC442 A, C3S)

MGSLQPEAGNASWNGTEAPGGGARATPYSLQVTLTLVCLAGLLMLFTVFGNVLVIIAVF
TSRALKAPQNLFLVSLASADILVATLVIPFSLANEVMGYWYFGKAWCEIYLALDVLFCT
SSIVHLCAISLDRYWSITQAIEYNLKRTPRRIKAIIVTVWVISAVISFPPLISIEKKAG
GGGQQPAEPRCEINDQKWYVISSCIGSFFAPCLIMILVYVRIYQIAKRRTRVPPSRRGP
DAAAALPGGAERRPNGLGPERGVGRVGAEAEPLPVQLNGAPGEPAPAGPRDADGLDLEE
SSSSEHAERPPGPRRSERGPRAKSKARASQVKPGDSLPRRGPGAPGPGAPATGAGEERG
GVAKASRWRGRQNREKRFTFVLAVVIGVFVVCWFPFFFTYTLTAVGCSVPPTLFKFFFW
FGYCNSSLNPVIYTIFNHDFRRAFKKIL~RGDRKRIVMG~TLSAEERAALERSKAIEKN
LKEDGISAAKDVKLLLLGAGESGKSTIVKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSL
AAIVRAMDTLGVEYGDKERKADSKMVCDVVSRMEDTEPFSAELLSAMMRLWGDSGIQEC
FNRSREYQLNDSAKYYLDSLDRIGAADYQPTEQDILRTRVKTTGIVETHFTFKNLHFRL
FDVGGQRSERKKWIHCFEDVTAIIFCVALSGYDQVLHEDETTNRMHESLMLFDSICNNK
FFIDTSIILFLNKKDLFGEKIKKSPLTICFPEYPGSNTYEDAAAYIQTQFESKNRSPNK
EIYCHMTCATDTNNIQVVFDAVTDIIIANNLRGCGLY

8.4 Amino acid sequences of S-HT IA-receptor-GotuCys3S1Ue constructs

The amino acid sequence of each 5-HTIA-receptor-GOluCys351Ue fusion construct is

given below. The GPCR portion is shown in red font. The G protein portion is shown in

blue font. Linker residues are shown in green font. Potential palmitoylation sites are

shown in underlined black font.
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5-HTIA-receptor-GolaCys35IIle (WT)

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVA
AIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRPRALISLTWLIGFLISIPPILGWRTP
EDRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTG
ADTRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTFI
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKI
IK~NF~RQGSMG~TLSAEERAALERSKAIEKNLKEDG1SAAKDVKLLLLGAGESGKSTI
VKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVC
DVVSRMEDTEPFSAELLSAMMRLWGDSGIQECFNRSREYQLNDSAKYYLDSLDRIGAAD
YQPTEQDILRTRVKTTGIVETHFTFKNLHFRLFDVGGQRSERKKWIHCFEDVTAIIFCV
ALSGYDQVLHEDETTNRMHESLMLFDSICNNKFFIDTSIILFLNKKDLFGEKIKKSPLT
ICFPEYPGSNTYEDAAAYIQTQFESKNRSPNKEIYCHMTCATDTNNIQVVFDAVTDIII
ANNLRGCGLY

5-HT lACys417Ser-receptor-GolaCys35IUe (C417S)

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVA
AIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRPRALISLTWLIGFLISIPPILGWRTP
EDRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTG
ADTRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTF1
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKK1
IK~NF~RQGSMG~TLSAEERAALERSKAIEKNLKEDGISAAKDVKLLLLGAGESGKSTI
VKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVC
DVVSRMEDTEPFSAELLSAMMRLWGDSGIQECFNRSREYQLNDSAKYYLDSLDR1GAAD
YQPTEQDILRTRVKTTGIVETHFTFKNLHFRLFDVGGQRSERKKWIHCFEDVTAIIFCV
ALSGYDQVLHEDETTNRMHESLMLFDSICNNKFFIDTSIILFLNKKDLFGEKIKKSPLT
ICFPEYPGSNTYEDAAAYIQTQFESKNRSPNKEIYCHMTCATDTNNIQVVFDAVTDIII
ANNLRGCGLY

5-HT IACys417Ser-receptor-GolaCys3Ser, Cys351Ue (C417S, C3S)

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVA
AIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRPRALISLTWLIGFLISIPPILGWRTP
EDRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTG
ADTRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTF1
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKI
IKSNFCRQGSMGSTLSAEERAALERSKAIEKNLKEDGISAAKDVKLLLLGAGESGKST1
VKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVC
DVVSRMEDTEPFSAELLSAMMRLWGDSGIQECFNRSREYQLNDSAKYYLDSLDRIGAAD
YQPTEQDILRTRVKTTGIVETHFTFKNLHFRLFDVGGQRSERKKWIHCFEDVTAIIFCV
ALSGYDQVLHEDETTNRMHESLMLFDSICNNKFFIDTSIILFLNKKDLFGEKIKKSPLT
ICFPEYPGSNTYEDAAAYIQTQFESKNRSPNKEIYCHMTCATDTNNIQVVFDAVTDIII
ANNLRGCGLY
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5- HT IACys 420Ser-receptor-GOI UCys351 lIe (C420S)

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVA
AIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRPRALISLTWLIGFLISIPPILGWRTP
EDRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTG
ADTRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTFI
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKI
IKCNFSRQGSMGCTLSAEERAALERSKAIEKNLKEDGISAAKDVKLLLLGAGESGKSTI
VKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVC
DVVSRMEDTEPFSAELLSAMMRLWGDSGIQECFNRSREYQLNDSAKYYLDSLDRIGAAD
YQPTEQDILRTRVKTTGIVETHFTFKNLHFRLFDVGGQRSERKKWIHCFEDVTAIIFCV
ALSGYDQVLHEDETTNRMHESLMLFDSICNNKFFIDTSIILFLNKKDLFGEKIKKSPLT
ICFPEYPGSNTYEDAAAYIQTQFESKNRSPNKEIYCHMTCATDTNNIQVVFDAVTDIII
ANNLRGCGLY

5-HT IACys420Ser-receptor-Go IuCys3Ser, Cys351lIe (C420S, C3S)

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVA
AIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRPRALISLTWLIGFLISIPPILGWRTP
EDRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTG
ADTRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTFI
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKI
IK~NF~RQGSMG~TLSAEERAALERSKAIEKNLKEDGISAAKDVKLLLLGAGESGKSTI
VKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVC
DVVSRMEDTEPFSAELLSAMMRLWGDSGIQECFNRSREYQLNDSAKYYLDSLDRIGAAD
YQPTEQDILRTRVKTTGIVETHFTFKNLHFRLFDVGGQRSERKKWIHCFEDVTAIIFCV
ALSGYDQVLHEDETTNRMHESLMLFDSICNNKFFIDTSIILFLNKKDLFGEKIKKSPLT
ICFPEYPGSNTYEDAAAYIQTQFESKNRSPNKEIYCHMTCATDTNNIQVVFDAVTDIII
ANNLRGCGLY

5-HTIACys417Ser, Cys420Ser-receptor-GoluCys35Ine (C417S, C420S)

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVA
AIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRPRALISLTWLIGFLISIPPILGWRTP
EDRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTG
ADTRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTFI
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKI
IK~NF~RQGSMG~TLSAEERAALERSKAIEKNLKEDGISAAKDVKLLLLGAGESGKSTI
VKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVC
DVVSRMEDTEPFSAELLSAMMRLWGDSGIQECFNRSREYQLNDSAKYYLDSLDRIGAAD
YQPTEQDILRTRVKTTGIVETHFTFKNLHFRLFDVGGQRSERKKWIHCFEDVTAIIFCV
ALSGYDQVLHEDETTNRMHESLMLFDSICNNKFFIDTSIILFLNKKDLFGEKIKKSPLT
ICFPEYPGSNTYEDAAAYIQTQFESKNRSPNKEIYCHMTCATDTNNIQVVFDAVTDIII
ANNLRGCGLY
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5-HT IA-receptor-GOluCys3Ser, Cys351Ile (C3S)

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVA
AIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRPRALISLTWLIGFLISIPPILGWRTP
EDRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTG
ADTRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTFI
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKI
IKCNFCRQGSMGSTLSAEERAALERSKAIEKNLKEDGISAAKDVKLLLLGAGESGKSTI- -VKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVC
DVVSRMEDTEPFSAELLSAMMRLWGDSGIQECFNRSREYQLNDSAKYYLDSLDRIGAAD
YQPTEQDILRTRVKTTGIVETHFTFKNLHFRLFDVGGQRSERKKWIHCFEDVTAIIFCV
ALSGYDQVLHEDETTNRMHESLMLFDSICNNKFFIDTSIILFLNKKDLFGEKIKKSPLT
ICFPEYPGSNTYEDAAAYIQTQFESKNRSPNKEIYCHMTCATDTNNIQVVFDAVTDIII
ANNLRGCGLY

5-HT IACys4I7Ser, Cys420Ser-receptor-GoluCys3Ser, Cys351Ile (C417S, C420S, C3S)

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVA
AIALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSILHLCAIALDRYWAITDPIDYVNKRTPRPRALISLTWLIGFLISIPPILGWRTP
EDRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTG
ADTRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTFI
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKKI
IK~NF~RQGSMG~TLSAEERAALERSKAIEKNLKEDGISAAKDVKLLLLGAGESGKSTI
VKQMKIIHEDGFSGEDVKQYKPVVYSNTIQSLAAIVRAMDTLGVEYGDKERKADSKMVC
DVVSRMEDTEPFSAELLSAMMRLWGDSGIQECFNRSREYQLNDSAKYYLDSLDRIGAAD
YQPTEQDILRTRVKTTGIVETHFTFKNLHFRLFDVGGQRSERKKWIHCFEDVTAIIFCV
ALSGYDQVLHEDETTNRMHESLMLFDSICNNKFFIDTSIILFLNKKDLFGEKIKKSPLT
ICFPEYPGSNTYEDAAAYIQTQFESKNRSPNKEIYCHMTCATDTNNIQVVFDAVTDIII
ANNLRGCGLY
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s.s Bmax calculation
The first step is the calculation of the concentration of the radioligand added to each

reaction from a vial that received only radioligand:

DPMlDPM per finol = fmol added per reaction

finol added/assay volume = concentration of radio ligand added (nM)

The second step is to calculate expression level using the specific counts per reaction

and correcting for that amount of protein added:

(specific binding counts (DPM)) I (DPMlfmol) x 1000/f.1gprotein added

= expression in finol/mg of protein

S.6 K; calculation
Calculation of K; uses a derivation of the Cheng-Prusoff equation (Cheng and Prusoff

1973):

Where L is the ligand concentration, Kd is the equilibrium dissociation constant, and the

ICso is the concentration of inhibitor required to inhibit half the specific binding.

S.7 GTPase Eadie Hofstee calculation
This analysis of high affinity GTPase activity data allows the calculation of both the

Vmax and the Km for the GTPase reaction. It requires the assay ofGTPase activity over a

range of GTP concentrations (25nM - 3000nM approximately).

For each assay the concentration of GTP in each triplicate reaction is first worked out.

The first triplicate reaction receives only GTP from the e2p]-GTP in the reaction

mixture. This varies and is defined by the half-life of32p of 14 days and is calculated for

each experiment. The second triplicate reaction receives a saturating concentration of

GTP that defines non-specific GTP hydrolysis. Further treatments range from the

addition of 25nM to 3000nM "cold" GTP.
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The CPM values from each reaction are meaned and the standard deviation calculated.

The non-specific GTPase activity defined by the "High GTP" treatment are subtracted

from the mean of each triplicate sample identifying the Specific CPM and the standard

deviation for these mean results.

The next step corrects for the ratio between the C2p]-GTP and the "cold" GTP:

Specific CPM x (total [GTP](nM)/C2P-GTP](nM)) = corrected CPM

Followed by calculating the concentration of GTP hydrolysed:

Corrected CPM/CPM per pmol = pmols

The V (rate/velocity) of the reaction was calculated as follows:

(lOOO/1.5~g protein) x (1I40minutes) x (lOOO/300~l) =V

Where l.5~g of protein was added to each reaction that was incubated for 40 minutes,

from which a final volume of300JlI was counted on the Topcount.

In order to calculate the Km using an Eadie Hofstee plot, VIS was calculated. This is

simply V (pmol/mg/min) divided by the total GTP concentration (nM) in the reaction.
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