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Abstract 

The golf stroke was computationally modelled using finite element analysis. Results for 

the impact between the club head and the ball compared well with previous research, both 

practical and theoretical. The results imply that for thick face club heads, such as irons, 

club head performance is independent of material stiffness but highly dependent on the 

friction of the interface and the clubhead geometry. The three ball flight predictors 

(speed, trajectory and spin rate) as a function of clubhead parameters are shown to be 

non-trivial. Acceptable models of impact could be achieved using rigid faces for thick 

face clubheads with the centre of mass and clubhead inertia accurately described. 

Results on ball construction effects imply that both the stiffness and mass distribution 

throughout the ball affect performance. The large deformations of the ball mean that 

classic rigid body mechanics cannot suffice in golf impact predictions. 

A model of the golf swing based on a double pendulum was constructed and shaft 

performance examined for various styles of golf swing. Shaft parameters thought to 

affect performance were quantitatively evaluated and results compared well with 

previous research. Increased club head speeds at impact were achieved with shafts of 

lighter weight or reduced bending stiffness for all styles of golf swing examined. The 

cause of bending forward of the shaft at impact was identified to occur from the large 

centrifugal forces acting on the head and the increased bending stiffness of the shaft also 

due to centrifugal force. On a detailed level shaft behaviour was affected by vibrations 

which appeared chaotic due to the changing stiffness of the system. This is expected to 

be less of an effect in an actual golf shot due to the damping provided by the human 

participant. 

Key words: golf, club head, shaft, swing, impact, sports engineering, finite 

element analysis 
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Preface 

The current work encompasses research carried out between 1995 and 1999 in the 

Ballistics and Impact Group, Department of Mechanical Engineering, The University of 

Glasgow. 

The work begins in chapter 1 with a necessarily extensive review of relevant previous 

work on golf science. The large amount of published literature available has, I hope, 

been identified. This base of knowledge continues to grow, almost exponentially. 

Conferences planned for 2000 include the 3rd Sports Engineering Conference in Sydney 

10th - 12th June, and no less than three separate conferences on golf research. Updating 

the work to include all relevant material threatened to make the research a never ending 

task. It was necessary to draw a line somewhere and all published proceedings have 

been included up to the date of submission with the exception of the 3rd International 

World Scientific Congress on Golf. 

An introduction to the stress analysis techniques used is given in chapter 2 before the 

analysis of the golf stroke continues using a two track approach; 

• modelling of the impact between the clubhead and ball (chapters 3 and 4) 

• modelling of the golf swing and shaft behaviour (chapters 5, 6 and 7) 

Final discussions on how the work can be continued is given in chapter 8 before a full 

list of references is given. A bibliography of all published golf information sourced is 

not included as it would have required numerous additional volumes. Requests are 

welcome from those interested in golf science who require directions to additional 

publications beyond those given in the references. 

Tim Lucas 

25th March 1999 
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"Anyone who hopes to reduce putting or 
any other department of golf to an exact 
science is in for serious disappointment 
and will only suffer from the attempt. " 

Bobby Jones * 

Comtesy of GolfWeb SpOltsline USA. 
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1.0 Introduction 

In the late 20th century, sport has seen massive growth both in terms of participation and 

in economic worth. Taylor (1998) reports that the General Household Survey shows 

the number of UK adults 'regularly' taking part in sport (ie any sport played within the 

four weeks prior to the survey) increasing from 39% in 1977 to 65% by 1990. The 

figures also suggest that the level of participation has now plateaued with all active 

adults wishing to take part in sport doing so. Sport however continues to grow, over 

the last decade major increases have been seen in the participants frequency of activity 

and a shift is observed to less-competitive, individual, 'leisure sports' such as swimming, 

walking and cycling (Taylor 1998), possibly as a result of changing employment patterns. 

This growth has led to an expansion not only in the more obvious sports and leisure 

industries such as equipment and clothing manufacture but also in facilities provision and 

in less obvious areas such as media coverage. This growth is expected to continue well 

into the next century, as people work fewer hours and so have more leisure time, and as 

increased life expectancy allows more time in retirement, often with greater disposable 

income (Easterling 1993). Sport and exercise are also seen as an issue of private 

lifestyle and of public health, to be encouraged in a world which is increasingly 

hazardous in many other respects. 

The sports equipment industry is currently estimated to be worth £3,282 million in the 

UK alone, accounting for 32% of the total consumer spending on sports (Taylor 1998). 

While manufacturers design equipment with profit in mind, they must meet the demands 

of the buyers. These are two fold: improved performance and improved safety. To 

fulfil this demand, the production of modern sports equipment relies on a 

multidisciplinary approach drawing on conceptual product design, mechanical 

engineering, materials engineering, biomechanics and medicine amongst others. It must 

be noted here that the purchasers requirements of improved performance are not 

necessarily provided by the equipment suppliers in a tangible form, successful sales of 

equipment can be achieved on the basis of hype alone. Frank Thomas (1994), Technical 

Director of the United States Golf Association (USGA) explained how hype can lead to 

improved player performance perceived from better performing equipment by an 

alteration and relaxation ofthe players mind. The study of such effects is beyond the 
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current work, mention is made as an acceptance of the role human behaviour plays in the 

perception and evaluation of sports equipment, reinforcing the need for a thorough 

scientific understanding of the performance of sports equipment systems. The current 

work focuses on the mechanical engineering aspect, modelling the forces and 

deformations generated in one example of an equipment' system', that of golf. 

1.1 Scope of work 

Golf is an ancient game. It was first recorded in 1457 (Lewis 1995) but little is known 

about it prior to 1554. The time over which the game has been played has allowed the 

equipment to evolve. Clubs were originally made from the cheapest and most abundant 

material of the time, wood. Lewis even reports admittedly flimsy evidence from the 1 i h 

century that balls were also constructed from wood. There is however stronger 

evidence that balls of that time were manufactured from leather. Over the years other 

materials have been used and presently, with the demand for higher performance 

equipment, participants can choose from what is almost an overabundance of equipment 

specifications. Each is reputed to offer advantages to the golfer; softer feel, harder feel, 

higher or lower trajectory of flight, straighter shots and increased initial ball speed, the 

latter often portrayed as most important to golfers insofar as it increases 'carry'. Each 

claim (and often its opposite) is used in the marketing of clubs with golfers, often with 

higher than average disposable income, being amongst the most enthusiastic sportsmen 

to adopt the 'latest' equipment. Many claims of improved performance are based on the 

mechanics of impact but these are often just suggestions with little supporting evidence, 

whether experimental or theoretical. 

The complexity of a thorough and rigorous test programme for clubs has led to largely 

unsubstantiated claims and counter-claims being made about club and ball properties. 

The variables that influence a shot are numerous and many of these, eg air humidity, 

temperature and windspeed, cannot be directly controlled in the open. Experimental 

research is then expensive. In addition, properties may be interconnected in a way that 

makes isolating individual properties not possible. Furthermore, repeating the initial 

impact conditions exactly is not possible for a human golfer and expensive, often 

complex machines are required to give reproducible impact conditions. Practical 
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research is thus problematic and costly. It is the aim of the current work to utilise 

modern computational methods of engineering analysis to model aspects of the golf shot, 

with a view to quantifying club and ball properties in a way which may not even be 

possible in practical testing. 

1.2 The rules of golf 

The rules of golf were formally drawn up in 1774 with equipment rules appearing for the 

first time in an appendix in the 1920's, only little changes have been necessary over the 

last 220 years (Thomas 1994). Prior to the 1920's the only reference to clubs was the 

clause "clubs shall be of the traditional and custommy form and make and shall 

contain no contrivances such as springs.!J The rules are a joint publication of the Royal 

and Ancient (R&A 1997) and the USGA coming in a surprisingly small booklet that is 

updated every four years. Few public libraries (and probably few golfers) have a copy 

but they often own much larger books that try to interpret the rules for golfers. The 

rules include restrictions on equipment and its design which are simply laid out and 

stated in a way that designers would find difficult to misunderstand or deliberately flaunt. 

Specific rules on design are discussed in subsequent sections, along with current trends in 

equipment. 

The rules of golf exist to protect the integrity of the game and there is much popular 

discussion on how equipment may be altering the sport. The current work may be seen 

as posing a threat to this traditional nature, and it is therefore worth considering the 

evidence. Thomas (1994) concluded that driving distances between 1968 to 1993 

increased no more than 12 yards while the average winning score in professional 

tournaments improved at the rate of one stroke per 21 years, lower down the field this 

improvement was greater, one stroke per 14.5 years for the 25th place man. This 

indicates a narrowing of the field commensurate with other spectator sports (see below). 

More recent figures presented by Uihlein (1998) gave the average driving figures for the 

top ten longest hitters on the USPGA tour in 1997 as 286 yards, a 15 yard increase over 

the yardage for 1980. While this average figure was raised by the likes of long hitters 

such as John Daly and Tiger Woods, the average driving distance of all players on the 

tour increased by only 10 yards during the last 17 years. Hale (1995) demonstrated how 
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the use of such statistics can be misleading in predicting performance increases but these 

figures readily address the woes of the critics who believe the modern equipment to 

allow the ball to be hit too far. Such percentage increases in the players drives and 

scores is comparable to that seen in other sports during a similar time period, for 

example in throwing events in the Olympics performance increases between 3 Yz% and 

6% per ten years are seen depending on the event (Cochran 1990). With the increase in 

financial incentives in golf attracting sportspersons from other activities much credit must 

be attributed to improved fitness, diet, training and mental attitude. In the amateur 

game advances in equipment have undoubtedly made the game easier to play for higher­

handicappers who find game improvement clubs easier to hit. For these players the 

game has become more enjoyable and this can only have helped in the growth of golf, 

however over the period between 1981 and 1998 the US national average handicap has 

dropped form only 16.8 to 16.6 (Associated Press 1998). For the professional player 

the ability to endorse new equipment (fees can greatly exceed likely winnings) leads to 

less requirement to perform well in competition and less stress in what is for them often a 

profession of luck. Changing equipment for a professional who has just won a major 

tournament would not seem a sensible decision, Johnson (1997) however gives examples 

of players who chose the endorsement route with a subsequent deterioration of their 

game. Such players under contract are unable to blame their equipment, and concoct 

excuses that are not confirmed by the statisticians examining their play. 

Lockwood (1992) described how sports that attract big audiences are those where the 

winning margin is small and the victor not necessarily the better player. He considered 

the exciting finish to the 1989 Tour de France which after 3,284 km was won by only 8 

seconds and the Oxbridge boat race, which ends in the better boat winning. These 

examples might be considered alongside a major golf tournament result where the 

winning margin is typically one shot. Equipment improvements that would increase the 

results margin would probably be to the expense of the game as a spectator sport. 

Readers must draw their own conclusions on whether improving the chances of the 

better player/team winning would be to the detriment of their chosen sport but the rules 

of golf, particularly on equipment design, are such as to preserve the nature of the game 

for participants and spectators while allowing enough scope not to inhibit the golf 
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equipment industry. The rules are biannually discussed by a joint committee of the 

USGA and R&A and are redrafted every four years to meet these ends. 

1.3 Clubs 

23 

Clubs come in a variety of shapes, weights and materials and a golfer's bag can contain a 

maximum of 14 different clubs (Rules - Section 4-4), each with the intended purpose of 

effecting a different ball flight. Each club consists of a grip, a shaft and a club head. 

The head is the most obvious difference between clubs and this leads to the general 

division of clubs into 'woods' and 'irons' (and a 'putter', used for shots on the green). 

1.3.1 Wood c1ubheads 

Woods are' drivers', used by golfers to achieve long distances and are typically played 

'off the tee'. They are characterised by having a larger volume of head than 'irons', 

with the centre of gravity further behind the clubface, and typically have a longer shaft. 

Woods traditionally had a head which was actually made of a wood such as persimmon 

or laminated maple but now, confusingly, they are predominately made of metal. The 

advantage of wood in the traditional, solid-headed driver was the use of a lower density 

material which allowed a larger volume of club head for a given mass and hence a higher 

rotational inertia. This led to a more forgiving club head which the player needed to be 

less precise in hitting, which in turn allows for a longer shaft length leading to higher 

clubhead speeds during the golf swing. Metal 'woods' are made from denser material 

(eg steel) but modern manufacturing processes allow the production of structurally stiff, 

hollow heads with even greater volume and rotational inertia than traditional wooden 

drivers. The current trend is to use exotic metals such as titanium to produce larger 

heads for a given mass and retain structural rigidity. 

A modern wood is shown in figure 1.1. This has a volume of 250 cm3 and a mass of 

198 g. The oversized head is perceived as being even more forgiving on off-centre shots 

as the rotational inertia is increased. The face of a wood is slightly curved to reduce 

what is known as the' gear effect' . In this, if the ball is hit off-centre to the left or right, 

spin is imparted about a vertical axis and the resultant aerodynamic forces tend to bring 
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the mishit shot back towards the intended target. The curved face is chosen so that the 

ball does not overcorrect and the radius of curvature across the face is known as the 

'bulge' . Curvature is also applied vertically, from top to bottom on the face which, in 

golf phraseology, is 'roll'. The gear effect occurs in all clubs but is more noticeable in 

woods, as the centre of mass is further behind the hitting face. This is discussed further 

in section 1.6.1.2. 

Hollow metal woods were originally filled with a structural foam the sole purpose of 

which was to reduce 'ringing' and give a pleasant 'solid' sound on impact. As 

acceptance of metal designs has increased, a unique metal sound is now desired by 

golfers and foam is not included. The metal shell is usually constructed from two 

castings of the same material. The face is strengthened internally with a number of 

vertical ribs cast behind the clubface. Figure 1.2 shows a sectioned half of a metal 

'wood', clearly indicating the foam. Figure 1.3 shows the other half with the foam 

removed to display the strengthening ribs. A second type of wood is shown in figure 

1.4. This incorporates an insert in the clubface which is reputed to affect ball flight. 

The insert is generally made of a very hard material and the score mark shown in the 

figure is the result of a failed attempt to cut through the insert. This, incidentally, ended 

in breakage of the sawblade. 

Modern casting and fabrication methods admit mechanisation and the use of semi-skilled 

labour in the manufacture of metal woods. In contrast, traditional wooden heads are 

created by craftspersons in a labour intensive process, described by Wood and Wood 

(1995). The hitting area in these traditional clubs must also be covered with a polymer 

to protect the clubface while the sole is reinforced with a wear-resistant metal plate 

which also lowers the centre of mass. Each of these processes adds to the cost. 

Traditional heads can be given an increased, ie 'improved', moment of inertia by creating 

a hollow area within the head and filling with a low density material such as cork. A 

similar method was used unsuccessfully and illegally by the baseball player Billy Hatcher, 

whose bat broke, spraying the infield with cork, in 1987 (Bahill and Karnavas 1991). 

The use of wood as a material of construction is diminishing as more modern and exotic 

materials such as titanium alloys, ceramics and fibre-reinforced composites become 

increasingly popular. 
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Woods are usually used for long shots and as such have low angles of loft (a definition of 

loft is given later in section 1.6.1.2). Table 1.1 gives typical values for a set of clubs and 

shows the woods having lofts between 10° and 21 0, although a current resurgence in the 

use of fairway woods is increasing this loft range (Achenbach 1997). The hitting area is 

grooved, usually with horizontal lines and punch marks although alternative patterns 

have been used. The rules of golf (Rules - Appendix II, Section 4-1 e) specify the 

geometry and dimensions acceptable for both the head and face markings. 

Club Loft 
Driver 10° 
3 wood 15° 
5 wood 21° 

3 22° 
4 26° 
5 30° 
6 34° 
7 38° 
8 42° 
9 46° 

Pitching wedge 50° 
Sand wedge 56° 

Table 1.1 Typical loft angles of golf club heads (Dorling Kindersley 1998). 

1.3.2 Iron clubheads 

'Irons' make up the majority of clubs within a golfers bag. They are used for shots 

varying from long (220 yds) to short chips and so come in a variety of lofts, as given in 

table 1.1, and a variety of shaft lengths to create different clubhead speeds at impact. 

Although there have been some attempts to use other materials, eg woven carbon fibre, 

'iron' heads tend to be made of metal. 

The rules of golf (Rules - Appendix II, 4-1 e) restrict the geometry of iron heads and 

include the caveat for all clubs that the ''face shall not have the effect at impact of a 

spring" Iron heads are normally constructed from one homogenous material but 

changes introduced in 1992 allow them to be constructed from more than one material. 

However "the impact area must be of a single material' This has led to the use of 
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inserts placed in the hitting area to reputedly affect the ball's flight. Modern casting 

techniques also admit the design of cavity backed irons which have a void in the back 

directly behind the hitting face, as shown in figure 1.5. As with woods this leads to 

increased rotational inertia for a given mass and so makes the club more forgiving on off­

centre hits. The emergence of such cavity backed 'game-improvement' clubs has led to 

the original, usually forged, clubs becoming known as 'blades'. Irons also have grooves 

upon their faces and the design of these is also governed by the rules of golf (Rules -

Appendix II, 4-1 e). It is worth mentioning here the incident of the 1980' s when a club 

manufacturer, Karsten Manufacturing, took the USGA and the PGA tour of America to 

court over a ruling on grooves which caused their clubs to be deemed non-conforming 

and illegal with the respective authorities. It is the experience of the author that while 

many people are aware of the ruling there is wide confusion over the exact issues. An 

excellent reference article (Tutleman 1994) is available for those seeking more 

information. 

1.3.3 Shafts 

Shafts, like clubheads, were traditionally also made of wood but these were eventually 

replaced by steel. This remained the norm until the 1980's when, after a decline in the 

defence industry, new materials and manufacturing processes were declassified. 

Nowadays shafts come in a variety of materials and geometric shapes, with formerly 

exotic materials such as carbon fibre composites being used to lower the mass of the 

shaft while retaining other, desirable, characteristics such as stiffness. Lighter shafts 

lead to various benefits: either a decrease in the overall club mass leading to a higher 

swing speed for the same applied force or, if the whole club mass remains constant, 

increased head weighting leading to faster initial ball speed for the same clubhead 

velocity and a possible greater moment of inertia for the clubhead. Changing the mass 

of the shaft also affects the swing weight, a measure of the turning moment of the club 

about a position 14 inches from the butt of the shaft, (see section 1.6.2.2) 

From 1980 to 1994 the number of companies worldwide producing golf shafts increased 

from fewer than five to more than a hundred (Wishon 1995). This lead to an 

overabundance of golf shafts available, each with unique properties. However although 
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there is widespread awareness of the essential role played by the shaft, a lack of 

understanding of the effect of different shaft characteristics has led to mystery and indeed 

some mystique surrounding the effects of different shafts. 

1.3.3.1 Wooden 

During the early stages of the game of golf, shafts were constructed of hickory but these 

wooden shafts were very flexible and weathered quickly. Their consistency and 

durability was therefore questionable, with frequent breakage on the course, often with a 

loss of the clubhead along with the shaft. This led to other materials being investigated 

and at present the use of wooden shafts in golf clubs is limited to a few traditionalists. 

1.3.3.2 Steel 

By far the majority of shafts have been constructed from tapered steel tubing. Original 

steel shafts were made from welded tubular steel which was extruded in a step wise 

fashion to produce a stepped taper (a more modern development is the smooth tapered 

shaft). The properties of the shaft are inherently dependent on the material used and the 

geometric shape. Shafts with elliptical cross sections have been used to reduce out of 

swing-plane bending but these are now prohibited under the rules of golf (Rules -

Appendix II, 4-1 b) which states that the shaft shall" bend in such a way that the 

deflection is the same regardless of how the shaft is rotated about its longitudinal axis" 

and shall "twist the same amount in both directions". There must obviously be a 

tolerance in such a rule but this is unstated and it is, for example, unknown to what 

extent the weld affects the axisymmetry. 

1.3.3.3 Composite 

Composite shafts have the benefit of being able to retain some of the desirable properties 

of steel, such as high stiffness, but with reduced mass. The material is usually in the 

form of an epoxy resin matrix with reinforcing fibres such as glass, boron or carbon. 

Carbon-fibre is usually known by the American term' graphite' in golf and this has been 

the most successful of the modern composite materials. 
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Graphite shafts are made from a variety of processes including the laminated sheet 

process, filament winding and resin transfer moulding (RTM). The laminated sheet 

process is the most widely used and, perhaps surprisingly, produces shafts of the best 

quality. This is because the process most readily lends itself to the production of an 

anisotropic material in which longitudinal fibres are used to give the shaft the correct 

bending stiffness while fibres laid at other angles, typically ±45° to the shaft axis give the 

shaft the desired torsional properties. Other than anisotropy, the main advantage of 

composites is a reduction in mass, with shafts of 50 g being possible, a saving of up to 90 

g over traditional steel shafts. High modulus fibres are also used to give increased 

stiffness for less mass, albeit at increased cost. 

The introduction of composite shafts was not a smooth one. Early shafts had the 

reinforcement fibres running only parallel to the axis of the shaft and this led to poor 

torsional stiffness. This was important as the centre of gravity of the head is offset from 

the shaft axis and during the swing inertial forces can lead to the head becoming 

misaligned at impact. This was corrected for by the ±45 0 fibres, however poor 

manufacturing quality led to the need to sort shafts into categories of bending stiffness 

and torsional stiffness (discussed in section 1.6.2) and allowed for the marketing of shafts 

to golfers based on these properties. The need to grade the shafts led to each 

manufacturer constructing unique test methods and no standard test procedure is 

available. This has led to the abnormality that shafts labeled a specific 'flex' by one 

manufacturer can be designated a different flex by another (Horwood 1995). These 

issues along with the variability from shaft to shaft in a post-sorted batch compared to 

steel reduced the uptake of graphite shafts by professional players who need to depend 

on consistency. Amateur players more readily took to graphite for the benefits of 

reduced mass and increased damping which reduces harmful vibrations from mishit shots 

(Proctor 1995). As the quality of graphite shaft production has increased professional 

players have moved to graphite in their 'woods' where less accuracy is needed while 

retaining steel shafts for their more precision shots played with 'irons' (Proctor 1995). 

While the trend is for graphite to make its way into the irons of professional players as 

quality improves, the current work has revealed no hard scientific evidence to justify this 

trend. The effects of hype and marketing and business strategy of the equipment 

manufacturers should not be discounted. 



CHAPTER 1 Introduction 29 

1.3.3.4 Other materials 

Materials other than steel have been used for shafts, with aluminum and titanium being 

the most successful in terms of sales. However these suffer from some ofthe drawbacks 

of steel, being (almost) isotropic and having similar specific stiffnesses (ie stiffness to 

mass) and yet are more expensive. This makes them less marketable than either steel or 

composite shafts. 

1.3.4 Grips 

The sole purpose of the grip is to provide a secure, non-slip connection between the 

golfer and the club, especially during the stages just prior to impact when the centripetal 

forces are about 320 N, (Daish 1972). The biomechanics of the human wrist is such that 

its movement is more restricted the tighter the hand grips, a statement the reader can 

confirm easily. High friction between club and hands is thus essential in promoting wrist 

flexibility. Cochran (1995) stated that the grip may be the most important part of the 

club to get right and yet is the part most taken for granted. This view is supported by 

the lack of published research into the effect of the grip and by the large number of 

different grips available to players. Aldridge (1995) accepted that this was due to 

individual club manufacturers requiring uniquely patterned grips for their products, a 

purely cosmetic requirement. Lancaster (1995) categorised grips by material: buffed 

and un-buffed rubber, plastic or cord composites, and by design features that owe more 

to road vehicle tyre technology than to golf. He concluded that the variance in 

performance from different grips was attributable to an effect on the golfer both in terms 

of confidence and control. However, one of the aims of the current work is to remove 

the subjectivity of the golfer and so the role of the grip is beyond the scope of the current 

work. It's pivotal role and the possibilities for future research are however accepted. 
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1.4 Balls 

There are numerous designs of golf ball available. All are and must be spherical (in 

contrast to, say, rugby balls). They have an exterior pattern of dimples to roughen the 

face and shift the transition to turbulent air flow, to reduce drag and create lift when the 

ball backspins. The science of the effects of dimples is an area of current interest, with 

researchers using such sophisticated techniques as computational fluid dynamics (CFD) 

to model these aerodynamic effects (Shaw 1995). The balls' specification is governed 

by the rules of golf (Rules - Appendix III) which, to allow for variations in design, 

stipulate: 

• Weight (maximum - 45.93 g) 

• Diameter (minimum - 42.67 mm) 

• Spherical symmetry 

• Initial velocity (maximum - 76.2 ms"\ under a 'standard hit'*) 

• Overall distance (maximum - 256 m, under a 'standard hit'*) 

Some evidence (Lewis 1995) suggests that balls were originally manufactured from hard 

wood, with inevitable damage to the hitting face (a pleasing idea for modern 

manufacturers of golf equipment). However even if these existed, they were soon 

replaced by softer balls such as the 'feathery'. This had a leather casing stuffed full of 

goose feathers. It was expensive and not noted for its durability, especially on mishit 

shots. At a time of greatest growth in the game of golf, around 1700, a ball called the 

'guttie' began to be played (Golf Museum, St. Andrews 1998). These were 

manufactured from a natural rubber compound, gutta percha, obtained from South 

America. They were cheaper than the feathery and this, along with the growth in public 

and private transport and other social changes, helped in the growth of the game. The 

relatively poor performance of the then existing balls became the subject of research and 

the coefficient of restitution was improved by Haskey who used strands of rubber, 

* Footnote 

Details of the standard hits involve hitting the ball with a rotating fly wheel for the initial velocity test 

and a mechanical golfer for the overall distance standard. Both these test are due to be replaced by 

'virtual flight testing' in 1999 (USGA 1998). 
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wound under tension around a dense core and covered with balata, a natural rubber 

which was again not very durable (Lewis 1995). Such balls are still in use today, more 

so by tour professionals, with current' club' golfers tending to prefer a more modern 

durable two-piece ball which retains many of the properties of the wound ball but is 

easier to manufacture and is therefore cheaper. A typical two-piece ball construction is 

shown in figure l.6. This ball consists of a solid rubber core covered by a thermoplastic 

synthetic cover. It is the most popular ball in the present market (Proctor 1995) and 

different combinations of core and cover stiffness are available, each of which is claimed 

to give different playing characteristics. At the bottom end of the market there is the 

one-piece ball, which is even easier to manufacture and has found use as a practice ball 

and on driving ranges. 

1.5 Golf research - a historical perspective 

The history of golf and golfing science have their own fascination and might be the 

subject of an academic or popular publication in their own right. Here a brief review is 

appropriate before the current state of the art is examined. 

Some of the first published scientific work on golf and other ball sports was conducted 

by Peter Guthrie Tait, Professor of Natural Philosophy at the University of Edinburgh 

from 1860 to 1901 (McKirdy 1990). Tait's first written comment on golf was in 1887 

in a letter to Lord Kelvin in Glasgow and to James Maxwell. Subsequent letters 

between the physicists discussed the merits of the spin imparted to the ball and Tait is to 

be credited with establishing its significance. His experiments on golf impact at the time 

were rudimentary by the scientific standards of today and relied on ingenuity to study the 

complexity of the shot. McKirdy (1990) describes in detail his apparatus for measuring 

contact times of shot. However, many of his predictions on the limits of golfing 

performance were often broken by his son Freddie Tait, a professional golfer and, 

perhaps, his chief assistant. Tait himself was an avid golfer and his biography (Knott 

1911) gives a humorous account of an attempt at night-time golf using phosphorescent 

balls, played along with Crum-Brown, the Professor of Chemistry at Edinburgh. Their 

play was abruptly halted when Crum-Brown set his glove on fire and burnt his hand. 
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Early work on golf and ball sports was often conducted by world-renowned scientists 

and Daish (1972) uses these examples to dismiss those critics who believe the application 

of science to such matters to be frivolous and, at worst, a prostitution of their subject. 

Such work includes Gaspard Gustave de Coriolis's 1835 paper on the mathematical 

theories of billiards. Nobel prize winners are represented by Lord Ralyeigh who 

published an 1870 paper on 'The irregular flight of a tennis ball' and Sir II Thomson 

who published 'The dynamics of a golf ball' in 1910. More recently contributions to 

the subject include a paper by the aircraft designer Barnes Wallis on the flight of a golf 

ball and by R.A. Lyttleton on the swing of sports balls. 

Many of these early works relied on the application of new mathematical theories to ball 

behaviour but the first real systematic practical examination of the golf shot was 

conducted by The Scientific Golf Society of Great Britain (S. G. S. G.B) whose findings 

are recorded in 'A search for the pelfect swing' (Cochran and Stobbs 1968). This 

documents what was then known about the golf swing as a dynamic event and how a 

double pendulum model of the swing could be used to represent the human effort. The 

publication also included tests on the impact of clubs with the ball, a summary of the then 

current knowledge of ballistics as applied to golf and comparisons with practical tests. 

A more lengthy treatise on the impact between club head and ball, giving both theory and 

practical results, was also published by a member of the S.G.S.G.B. in his book 'The 

physics of ball games' (Daish 1972). Both of these modelled the head as a free body 

impacting the ball, also regarded as a free body. The simplification inherent in this 

model was recognised but the relative flexibility of the shaft compared to the head means 

that it is a reasonable approximation and practical tests with a head that could disconnect 

from the shaft on impact confirmed its validity. It continues to be used in much of the 

current work. 

A follow-on research programme based on the 1968 work of the S.G.S.G.B. summarised 

in A search for the pelfect swing, was intended but never executed. Research on the 

science of golf was then continued mainly by commercial companies with financial 

resources but with a sales-driven agenda. However, towards the end of the eighties and 

with the changing social patterns already discussed, scientific papers on sports 

technologies again started appearing and 1990 saw the 1 st World Scientific Congress on 
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Golfin St. Andrews. This was organised by the successor to the S.G.S.G.B. and 

brought together an international audience of industrial researchers, academics and 

others interested in the science of golf. The conference was an unexpected success with 

the call for papers being greatly oversubscribed (Farrally 1990). 59 papers were 

published, in four main areas: 

• human factors 

• performance statistics 

• technology and equipment 

• golf course management and the environment 

The 2nd World Scientific Congress on Golf was held in 1994 with 92 papers in three main 

areas: 

• the golfer 

• the equipment 

• the course and the game 

The success of the 2nd congress led to a spin off scientific publication 'Golf the scientific 

way' (Cochran 1995). This contained rewrites from the congress and additional material 

on golf research, 48 papers in total, together with the inevitable advertisements. Seven 

main areas are covered in the publication: 

• clubs 

• shafts 

• golf balls 

• equipment & golf wear 

• the human element 

• statistics and performance 

• the golf course 

The 3rd World Scientific Congress was held in July 1998. 
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In addition to the World Congresses on Golf, a more general forum for sports research, 

the Internatiorial Sports Engineering Association (ISEA) was created in 1995. This held 

its inaugural conference in Sheffield in 1996 and the proceedings list 6 papers on golf. 

The second conference was held in July 1998 and the ISEA Sports Engineering Journal 

was launched in September 1998. 

Other relevant publications include 'The physics of golf', (Jorgensen 1994), which uses 

practical experiments and theories to examine the game. Also available are number of 

journal papers, numerous popular monthly magazines and thousands of patent 

applications on golf equipment now partly available through the Internet, and general 

golf science discussed through other media. 

1.6 Golf research - the state of the art 

A full simulation of the golf stroke must include the player, their equipment, their 

environment and the interactions between all of these. However the current work 

focuses on engineering design aspects of the equipment and so the psychology of the 

player and of the uncontrollable environment must be regarded as secondary. In this 

spirit, as shown in figure 1.7, the player is replaced by boundary conditions at the grip on 

the shaft and a two-track approach is adopted to modelling the equipment subsystem: 

• analysis of the club head, regarded as an extended body detached from the shaft and 

with an initial velocity, impacting the ball, also an extended body, in a time scale of 

the order of milliseconds 

• analysis of the shaft during the downswing with the club head modelled as a point 

mass. 

To reduce the influence of random factors, experimental work on clubheads is often 

carried out using mechanical golfers. Based on the double pendulum design, these are 

capable of producing more consistent hitting conditions than human golfers. The 

complexity of the machines varies enormously from the pneumatic but expensive Iron 

Byron (USGA 1998) to the University of Glasgow's Sports Engineering Group's 

spring-driven Dai Laughing, described later in chapter 6. 
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To provide a starting point for this work, it is then appropriate to summarise the results 

from the existing scientific literature in a structured way looking first at the club head, 

then the shaft and finally the ball. 

1.6.1 Clubheads 

As noted in section 1.5, the Cochran and Stobbs (1968) model in which the clubhead is 

considered as a free body impacting a free-body ball has been the basis of much of the 

subsequent research into those properties of clubheads that affect ball flight, whether 

material properties, geometric shape or dynamic parameters at impact. It is then 

appropriate to initially adopt such a model and to review the known engineering factors 

which influence the results. 

1.6.1.1 Material 

Golf equipment is often marketed by begging the question of whether clubhead material 

properties have an influence on the shot produced (Pedler 1997). However the 

engineering properties which might influence a shot are relatively few and include 

stiffness, friction coefficient, density and hardness. Unfortunately these strictly-defined 

engineering terms are used in the popular golf literature in a manner not always in accord 

with their scientific meaning. Golfwriters, for example (Pedler 1997), will attest to the 

different shot-making ability of soft and hard faces but, for reasons outlined in 

subsequent sections, the property of influence is more likely to be stiffness. Practical 

tests on the influence of individual material properties are however inherently difficult 

since a change of material, to effect a change in one property, will usually lead to a 

change in another property. Computational analysis is of benefit here in allowing for 

direct control over each property in isolation. 

Stiffness 

Stiffness is often regarded as affecting the ball velocity after impact. The popular view, 

albeit marketing led (see, for example advertisements in Golf World, (Various 1997)), is 

that a more rigid clubhead allows for more energy transfer to the ball. This is predicated 

on the idea that stiffer materials strain less for a given stress, that the work done is 
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smaller and so less energy is used up in club deformation. Such is the justification on 

which ceramic club heads and stiff, ceramic inserts are currently marketed. However 

practical tests on the effect of the stiffness of club heads are rare. Wood and Wood 

(1995) described a statistical survey in the 1980s by Yamaha, using drivers made of 

wood, graphite and metal. No effect on distance or accuracy was recorded and in fact, 

participants could only identify the different clubs by their sound on impact. Wood (the 

material) was, incidentally, the preferred choice, producing a note near middle C, a 

pleasant sound similar to that of a human voice. 

Take (1995) reports on tests carried out by Daiwa, in which a ball impacted a static plate 

containing steel and carbon fibre reinforced plastic (CFRP) inserts. They concluded that 

CFRP can reduce spin rates at higher 10ft angles but their results are confused by the 

different impact speeds at different lofts and their inability to isolate the varying 

mechanical properties of friction and density 

Stiffer materials or, more accurately, materials with a higher stiffuess to mass ratio, do 

allow club designers to produce club heads of greater volume for a given mass. This is 

the main basis on which titanium headed drivers are sold. There is however current 

concern from the regulatory bodies that such thin faced metal woods can create a 'spring 

back effect' also sometimes known as 'trampolining' which may enhance initial ball 

velocity off the clubface. November 1998, saw the Executive committee of the USGA 

approve a controversial new test for Enhanced Rebound Velocity (Rules - Appendix II, 

4-1 e). This is discussed in more detail in section 4.3 along with test results from the 

current work. 

Finally, the stiffness of the material also affects the velocity of the stress waves travelling 

through the club head. This does not appear to have been addressed at all in the 

literature and is discussed in more detail below. 
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Friction 

The effects of clubface friction on the ball flight have been reported to a greater extent 

than stiffness, probably due to widespread recognition of the importance ofbackspin* in 

the flight of the ball. Contrary to many reports in the popular sporting press, including 

some by professional golfers (Anon, New Scientist 1989), all well-hit golf strokes impart 

backspin to the ball (Jorgenson 1994). The effect of this is to induce lift on the ball and 

the possible consequences are shown in figure 1.8 for two different types of golf shot. 

In the low launch-angle shot with a high translational velocity, typically a drive, spin­

induced lift prolongs the flight path significantly. Cochran and Stobbs (1968) estimated 

the spin to increase carry by '100 yards' on a well-hit shot. At the higher launch-angles 

played with a more lofted club, backspin still induces lift but its main effect on the shot is 

to reduce the forward velocity of the ball, which appears to hang back in the air and land 

more vertically, often with sufficient backspin to cause it to return some distance back 

towards the striker after bouncing (Haake 1989). 

Initial efforts to understand the role of friction in generating backspin were carried out by 

Cochran and Stobbs (1968) in a series of tests using two 5-irons with differing 

coefficients of friction. The results were not conclusive, as the friction coefficients were 

not known quantitatively, but they did tend to imply that backspin was independent of 

friction coefficient. Daish (1972) used the elementary dynamics of rigid bodies to 

hypothesise how spin might be imparted to a golf ball in a manner not dissimilar to that 

of a snooker ball, ie sliding followed by rolling. Jorgensen (1994) also used the sliding­

rolling theory to explain the spin imparted to a ball and included a simple home 

experiment for readers to perform. In all these sources, different spin rates are 

mentioned for different lofts of club but there is little theoretical basis on which to 

predict actual values. The generalised rigid body mechanics of the shot is shown in 

figure 1.9, where the velocity of the clubhead is considered as two perpendicular vectors, 

V n - normal to the clubface and Vt - tangential to the face. This diagram is used in much 

literature to explain how as the loft of the club increases the tangential velocity increases 

causing more backspin on the ball. Gobush (1990) described an experiment using force 

* Footnote 

Spin may also be applied about any other axis and cause corresponding deviations in flight. For 

conciseness only backspin is referred to. 
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transducers to measure the normal and tangential forces caused by an impacting ball on a 

static plate and calculated the spin from the tangential force and the initial radius of the 

ball. The results were in accord with values measured by stroboscopic photography. 

A recreation of Gobush' s results are given in figure 1.10 for a wound ball traveling at 29 

ms-1 striking the plate at 20° and an impact contact time of approximately 450 

microseconds. The steps in the normal force curve are common to balls with air spaces 

such as a wound ball. It is to be noted that the tangential force measured from the plate 

force transducers changes direction 2/3 through impact. Liebermann (1990) also 

reported the effects of the frictional conditions at impact on spin-rate, again using the 

experimental procedure of firing a ball at an oblique static block. He reproduced the 

unusual finding from a USGA 1987 (Lieberman 1990) study, that impacts in damp, 

grassy conditions likely to result in reduced friction, can produce increased spin rates at 

certain loft angles. More recently, Gobush (1995), using the same experimental 

procedure, reported spin rates generated from different loft angles under various 

unknown friction coefficients. He then used a rigid-body/spring theory to explain the 

spins generated. In this, the ball is regarded as having layers, like an onion, linked by 

springs which store strain energy due to tangential forces (figure 1. 11). This energy is 

released after impact, causing backspin. Gobush (1996) also used Maw's equation for 

elastic oblique impact (Maw 1975) to infer friction coefficients from measuring pre- and 

post- impact ball trajectories and compared these with values obtained from force 

transducers on the club head. 

In summary the current view is that spin is generated by sliding of the ball up the 

clubface followed by a friction-induced rolling action which may be calculated by 

measuring the tangential forces present during impact. However such calculations are 

based on rigid body mechanics and take no account of the finite deformation of the ball. 

Density 

The effect of club head material density on the total mass of the club head is discussed in 

section 1.6.1.2. A second effect of density is to alter the velocity of the stress waves 

traveling through the material. This is considered in more detail below. 
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Hardness 

In engineering, 'hardness' is measured by a test such as the Vickers Hardness Test in 

which a material such as diamond makes a permanent indentation in the specimen (Ashby 

1996). The size of this indentation is then (inversely) expressed as the 'hardness' of the 

test-piece. Hardness is thus a composite measure of the evolution of the yield stress in a 

material, from its initial value, as plastic deformation occurs. Hardness has been 

mentioned in the golf literature (Cochran 1995) as being an important material property 

in the performance of both the ball and the club head but if engineering hardness is 

important, it can only be indirectly. It is most likely that such reports have confused 

hardness with stiffness. 

Stress Wave Velocity 

The stress wave velocity (v) is a function (Macaulay 1987) of both stiffness (E) and 

density (p), thus: 

v=~ 

The effect of stress wave velocity on golf club performance does not appear to have been 

researched but, if stress waves could be reflected back towards the impact area at a 

precise time, they might have a beneficial effect on the ball in terms of increasing initial 

ball velocity. The computational approach used in the current work may be useful in 

this respect. 

1.6.1.2 Geometry 

The geometry of a clubhead is widely accepted to affect the shot played and so is strictly 

governed by the rules of golf (Rules - Appendix II). Cochran (1995) regarded the work 

of Chou et al (1995) as being perhaps the most comprehensive series of club tests ever 

reported. This included the results of several years of testing into the effect of head 

geometry in five different areas: head size, mass distribution, 10ft, offset and mishits. 

Their results were mainly from robot hitting tests and were subject to the limitations of 

practical experimentation. For example in investigating the effect of' elu bhead face 
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size' using different designs of clubhead, they claim there is a natural shift in the position 

of the centre of gravity of the head up and away from the shaft. If the ball impact 

position remains the same this will affect rotation of the clubhead during impact. Also, 

in using robot testing the effect of the new position of the centre of gravity of the head is 

such as to change the bending of the shaft during the swing such that the club head 

position and velocity pre impact are varied. This demonstrates the many problems 

associated with practical testing. Their results from attempting to isolate a property 

such as clubhead face size are unique to the designs they used, the shaft properties and 

the robot hitter's specific golf swing. 

Mass 

Theoretically the mass of the clubhead can be shown to have a direct effect on the flight 

of the ball through both the conservation of momentum and the coefficient of restitution 

( e) equations. The latter is assumed to be independent of clubhead mass. Considering 

mass (M) and velocity (V), conservation of momentum gives 

Mc~O + Mb~O MC~l + Mb~l 

where subscript b refers to the ball and c to the clubhead and superscript 0 pre-impact 

velocity and 1 post-impact. The coefficient of restitution (e) is defined as the ratio of 

the incident and separation relative velocities, thus: 

velocity of separation v,I _ VI 
b c 

e= 
velocity of approach VO - v,0 

c b 

Macaulay (1987) stated that while 'e' was originally thought to be a constant property, it 

can vary significantly with velocity, mass and other impact conditions. However over 

the range of speeds found in golf, it is acceptable to assume a constant value. In the 

particular instance where the ball is initially stationary these equations can be combined 

to give. 
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v,l 
b 

Mc~O(l+e) 

Mc+Mb 

F or a constant initial club head velocity, the initial velocity of the ball is directly 

proportional to the mass fraction, 

Me 

Me+Mb 
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This increases towards unity as the club head mass increases, but higher masses are more 

difficult for human muscles to accelerate during the downswing and an optimum mass of 

clubhead is chosen, typically about 225 g. Cochran and Stobbs (1968) have shown 

experimental evidence using real players that small deviations from the 'typical' mass 

have little effect on distance. In terms of energy transfer the maximum efficiency of 

delivery of kinetic energy from club to ball occurs when the two have the same mass but 

to generate the maximum kinetic energy during the swing a golfer requires a club head 

which is much heavier than the ball. Again the ideal lies between the two extremes. 

Bahill and Karnavas (1991) observed baseball players swinging bats of various masses 

and determined the mass to give the maximum ball speed. Their results showed that the 

batted ball speed was constant for bats above a certain mass and the ideal bat weight was 

chosen to give 1 % less than this maximum speed (definition ideal bat weight the 

lightest bat possible that gives 99% of maximum batted ball speed). Their results 

highlighted the difference between the ideal bat weight and that used by most players, 

especially juniors. On their recommendations the San Francisco Giants adopted new 

bats and subsequently finished top of their league. 

There appears to be only limited similar practical work (Daish 1972) on the optimum 

club mass for a golfer but then the golfswing is complicated by the relative flexibility of 

the shaft during the downswing, by centrifugal stiffening (Mather and Jowett 1998) and 

by the changing inertia of the club due to these effects. Even though a redistribution of 

mass is the justification for lightweight composite shafts, a reduction in total club mass 
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may be less advantageous in golf than in baseball, in which bat maneuverability is also a 

factor. 

Loft 

Loft is often defined as the angle the clubface makes to the shaft (Chou et al 1995) yet 

this simple definition is clearly not sufficient for curved clubfaces such as in a 'wood'. 

Other definitions are available, yet there is no industry standard and rather than refer to 

10ft angles equipment manufacturers prefer to use a non proportional numeric system, 

with an increase in the numerical scale representing a weakening 10ft (increasing 10ft 

angle). Typical 10ft angles and their numeric scale equivalent were given in table 1.1. 

A term commonly used is 'dynamic 10ft' which refers to the 10ft the clubface makes to 

the vertical at the instant before impact. This is controlled largely by the individual 

golfers swing technique and the bending behaviour of the shaft (see section 1.6.2). 

Winfield and Tan (1994) used a numerical optimisation algorithm to calculate clubhead 

10ft and club head elevation at impact to maximise the flight distance from a drive. Their 

model was based on rigid body impact and utilised an aerodynamic algorithm to calculate 

flight distances. Their results gave the ideal 10ft as 2.74° at a swing elevation of27.44° 

and, while they stated that this 10ft was not supplied by equipment manufacturers, they 

admitted such an elevation angle would require a 10 inch tee! Reducing the 

optimisation to a single parameter problem, they calculated tables of ideal 10ft for given 

swing elevation angles and vice-versa. It is to be noted that their results are specific to 

the aerodynamic model used, which would vary for other ball constructions. Other than 

Winfield and Tan (1994) there is little published information relating to 10ft as a 

parameter. However it is often varied as a matter of course in other investigations and 

for example, Gobush (1990) used force transducers in a ballirigid plate experiment with 

plate angles of 20° and 40°. 

Mass distribution 

This refers not only to the moments of inertia of golf club heads but also the positioning 

of the centre of gravity within the head. The wide understanding is that peripherally 

weighted heads with larger inertia are more forgiving on off-centre-hits (Cochran 1990). 

Cochran mentioned this as one of the advances in golf equipment to corne from theory 

rather than evolution and is the basis upon which Ping putters became so successful in 
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the 1970's (Karsten 1998). Figure l.12 shows the plan view situation ofa 10 mm mishit 

towards the toe of the club. Values are guessed for demonstration purposes and show 

the cavity back design maintaining better direction towards the target, with less reduction 

in velocity and less sidespin. Although the hypothesis of improved performance has 

been confirmed by many experimenters including Olsavsky (1994) and Chou et al (1995) 

using robot and human hitting tests, their results are complicated by the use of curved 

clubfaces in the drivers tested (see below) and the positioning of the centre of gravity, 

which undoubtedly varies between club head designs. In this respect computational 

methods will be advantageous in examining the effect of moment of inertia while holding 

other parameters constant. Such a procedure was attempted by Iwatsubo et al (1998) 

using a 3-D finite element model of a clubhead and ball. The material properties are 

linear elastic and a coulomb friction model of coefficient 0.05 is used for contact. Nine 

club head models with geometric alterations were investigated, but direct control over the 

centre of mass and moments of inertia was not possible, although absolute values were 

known. Their results confirmed the relationship between moment of inertia and 

improved performance and they also claimed indications that lowering the centre of mass 

of the clubhead has a similar effect, but this latter correlation is not clear from their 

results. Their means of measuring post impact ball velocity and spin was similar to the 

method used in the current work and is discussed in more detail in section 4.2.5. In 

both the experimental cases mentioned above, Olsavsky and Chou et aI, the moments of 

inertia of the clubhead are only given relatively. An experimental procedure for 

measuring the inertia matrix for an irregular ellipsoidal rigid body such as a golf club 

head has been proposed by Johnson (1994). However knowledge of existing club head 

inertias is scant, and current methods of production utilising CAD could be of benefit 

here. Whittaker et al (1990) used idealised clubhead shapes approximate to a five iron 

to investigate increases in moments of inertia for a cavity backed head compared to a 

blade. They reported increases of 70%, 29.7% and 16.3% for the moments of inertia 

about three orthogonal axis. Hartzell and Nesbit (1996) described a method for 

calculating possible geometries of a club head given the desired inertia matrix and basic 

initial shape parameters such as face profile. An adaptive random search optimisation 

algorithm is used to calculate the back weighting, while an operator may also apply 

geometric influence. 
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The effect of the positioning of the centre of mass of the club head was also addressed in 

the experiments of Chou et al (1995). Their results agree with accepted theory that 

lowering the position of the centre of gravity within the head promotes increased 

backspin and higher initial trajectory. This is due to rotation of the head during impact 

in a similar manner to that shown in figure 1.12, higher inertia clubheads being less 

affected by the positioning of the centre of mass. Chou et al results are again 

complicated by the curvature of the clubface in the drivers used (in this instance roll 

rather than bulge) and the position of the centre of mass of the head affecting the bending 

of the shaft and therefore the dynamic loft and swing elevation at impact. 

Grooves 

There is currently little published research work on the effect of grooves other than the 

Cochran and Stobbs (1968) finding that there was no significant difference between a s­
iron smooth or grooved clubface. It is not known under what conditions the experiment 

took place, or iflubricating the face was investigated. Woods and Mase (1990) 

reported an experiment using fibre optics to measure the deformation ofbalata and 

Surlyn covered balls into a grooved plate under static loading. The intensity of light 

traveling along the groove was reduced as the ball was compressed. They confirmed 

that the more compliant material, balata, deformed to a greater extent into the grooves 

and stated that the material build up in the grooves occurred in a non-linear relationship 

with load applied. Their experiment was not calibrated and results are only qualitative. 

Grooves are present on nearly all clubs with the exception of a driver by Cubic Balance 

(Cubic Balance 1998). Incidentally this manufacturer claims that the absence of grooves 

will reduce backspin and therefore promote a longer straighter drive. The origin of the 

existence of grooves is not known and if they have any added benefit it has been found 

only be evolution rather than theory. The importance (and indeed mystique) of grooves 

was convinced upon golfers from the high profile case of Karsten versus USGA and 

PGA of America in the 1980's (Tutleman 1998). It is important to note that while the 

USGA deemed the clubs non-conforming on the basis of a measurement of distance 

between grooves, the PGA of America conspicuously never presented any evidence 

showing that grooves affected ball flight. 
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Clubface curvature 

Curving the face has been used for a long time in clubhead design and no individual has 

been attributed with the invention. Even clubs from the 17th Century in the Golf 

Museum, St. Andrews clearly show degrees of curvature, or 'bulge' and 'roll' in golf 

terminology. Roll is the vertical curvature and bulge the horizontal. Shaping of the 

face is carried out to reduce the' gear effect', which is so known as it resembles the 

meshing of two gears.(Mahaffey and Melvin 1995). Figure 1.12 showed how for a 

mishit shot off the toe of the club, the club rotates during impact and the opening out of 

the clubhead leads to clockwise (slice) spin and an error in trajectory away from the 

intended target line. When the centre of mass of the club head is significantly behind the 

clubface, as in figure 1.13, rotation of the head also applies a tangential force to the ball 

creating anti-clockwise (hook) spin, this is the gear effect. The ball's resultant spin after 

impact comes from the summation of the two opposing elements. Fora wood with a 

flat face the centre of mass is sufficiently behind the clubface that the gear effect is 

predominant and the ball would set off right of the target but during flight the spin will 

bring the ball back across the target line to land on the left. As is shown for the flat 

surface in figure 1.13. Creating a curved face reduces the gear effect element and 

attempts to lessen the ball flight's over correction. It is to be noted that all clubs create 

a gear effect, it is only when the centre of mass of the head is sufficiently behind the face 

that the gear effect becomes predominant and over correction can occur, in iron clubs 

where the centre of mass is close to the face the gear effect is less and helps reduce side 

spin generated by a mishit. It is clear from the above explanation that obtaining the 

correct bulge and roll for any club head design is a difficult task. Traditionally it has 

been determined by the eye of the craftsperson and with simple tools. Such a traditional 

clubmaker, Maltbie (1986), states that the bulge should have a circular radius of 8-11 

inches and the roll 11 inches. Current methods of production most likely use an 

empirical design and test approach, as there is little research into clubface curvature with 

the exception of Winfield and Tan (1996) and Iwatsubo et al (1998). Iwatsubo (in the 

same experiment as mentioned above under the heading mass distribution) merely 

confirmed that as mishits move away from the point of no club head rotation, spin 

increased and then decreased due to the curvature of their finite element club head face, 

which was not specified. Winfield and Tan carried out an optimisation algorithm, 

similar to the procedure they used above in optimising 10ft. They optimised the club head 



CHAPTER 1 Introduction 46 

curvature radius to provide minimum dispersion from the intended target line but again 

their model was based on rigid body impact and utilised an aerodynamic algorithm to 

predict ball landing positions. They calculated optimum values of bulge and roll as 17 

and 24 inches respectively. These values are specific to the ball properties used in the 

aerodynamic calculation, the velocity of the club head (110 mph) and 10ft angle. Their 

model did not include additional factors such as clubhead trajectory, friction of impact 

materials, ball material properties, etc. The significant difference between their result 

and that which has been found by evolution is to be noted. 

1.6.1.3 Dynamics 

As the golf stroke is a dynamic event it is necessary to consider appropriate velocity 

components of the clubhead which may affect the subsequent ball flight. As the impact 

time is of short duration, typically lh millisecond (Scheie 1990) the current work 

considers the clubhead approaching the ball with a constant velocity. This is an 

approximation but the change in elevation and acceleration of the clubhead caused by the 

golfer during the final moments of the downswing is negligible compared to that caused 

by impact. The size of this approximation error can be shown to be negligible by a 

simple example. Consider a clubhead approaching a ball traveling at 44.69 ms-1 (100 

mph) and rotating about a fixed pivot l.0 metre (40 inches) away. This radius is shorter 

than a standard driver and the 'fixed pivot' is not strictly the case as the hands continue 

to move during the swing. However both approximations lead to an over estimation of 

the error. The difference in swing elevation angle or the clubhead trajectory vector 

during 0.0005 seconds is calculated as l.28°. In addition it is possible to calculate any 

likely change in speed due to club head acceleration. If an average acceleration of 223 .5 

ms-2 is taken, based on accelerating the clubhead from stationary to 44.69 ms-1 in 0.2 

second, (the downswing of an amateur golfer is typically 0.38 seconds, senior PGA tour 

- 0.28 and US PGA tour - 0.29 (McTeigue and Lamb 1995), so this is a safe 

overestimation), the change in speed during 0.0005 seconds is 0.11 ms-1 and change in 

velocity, both elevation and speed, is thus minimal compared to any that occurs due to 

contact with the ball. The calculations also demonstrate the error in the commonly held 

idea that accelerating the club head through impact will benefit ball flight. Any 

acceleration of the club head occurring through impact is negligible and could have been 
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more usefully used pre-impact. This is not to deny that the intention of accelerating the 

clubhead through the ball is not a good one for the golfer or that during acceleration the 

club head is less likely to be moved off line. Indeed a survey of 9 professional golfers 

showed that they all accelerated their putter head through impact with the ball. (Daish 

1972). 

Velocity 

The velocity of the club head at impact is a vector describing the speed at which it is 

traveling and the elevation. With the exception of Winfield and Tan's (1994) 10ft 

optimisation results for specified clubhead elevations, most golf literature only makes use 

of the conservation of momentum and coefficient of restitution (e) definition (see section 

1.6.1.2) to predict a linear relationship between clubhead velocity and initial ball speed. 

Although it is to be expected that e will reduce at high velocities due to the damping of 

the materials, specifically the ball, the range of possible club head velocities suggests that 

any change in e is negligible. The clubhead speed at impact is often measured for 

golfers of all abilities, in an effort to match the shaft stiffuess to the power of the swing, 

while clubhead speeds also vary as the club length changes. One of the current long 

hitters on the professional tour, Tiger Woods has been recorded as having a clubhead 

speed of 130 mph. This must be considered near the upper limit and in the current work 

a velocity of 50 ms-1 (112 mph) is used in most analyses to simplify presentation of the 

results. 

1.6.2 Golf swing and shafts 

The current work aims to predict the performance of the golf club under the forces 

generated during the golf swing. Unfortunately and obvious as it may appear to the 

reader the golf swing is carried out by human beings. So not only does the equipment 

deform and react to the human's output but, conversely, the human reacts to the 

equipment's behaviour. The current work then approaches the task on two tracks: 

modelling of existing shafts and modelling of the golf swing. In its broadest sense, the 

second approach is a very large area of study and has been addressed by numerous 

researchers, each expert in their own field. It includes, for example, psychological 

studies. However, no attempt is made to review such a wide body of knowledge and 
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only those issues relating to the modelling of the swing within the current context are 

included. Interested readers are directed to the sources given in section 1.5 for further 

information on the mechanics of the swing. 

Investigations into the performance of shafts followed on from successes that the 

equipment industry achieved with its research into club head designs. Many of these 

studies aimed to identify shaft properties that effect the swing performance of the club 

but care must be taken interpreting the published studies as they are often from industry 

related sources and highlight properties or results more in accordance with a marketing 

strategy that with objective science. The parameters affecting performance of the shaft 

must relate to the engineering properties of the material and the geometric design. 

However the terms used in golf research derive from measurements taken from the 

finished product and it is appropriate in the current work to relate shaft performance 

within these terms. It is believed (Horwood 1995), (Butler and Winfield 1995), 

(Wishon 1995) that five key properties determine the shaft's behavior during the swing: 

flex, torque, bend point, damping and weight. These golf terms must be defined in 

unambiguous engineering terminology before any attempt to review the state of the art in 

golf shaft research. 

1.6.2.1 Shaft properties 

Flex 

Flex perhaps best exemplifies the problem in specifying shaft properties. It is measured 

as the bending deflection of the shaft under an applied load. However neither the 

boundary conditions of the shaft, nor the load position nor its magnitude are 

standardised. One common industry procedure is to clamp the butt and apply 2.72 kg (6 

lbs) at the tip (Horwood 1995). The tip deflection is measured from a 'tip deflection 

board' and shafts are then graded, typically into the letter-coded categories I, a, r, s, x, 

corresponding to a decrease in the tip deflection and referring respectively to ladies, 

amateurs, regular, stiff and extra stiff. The engineering property of the shaft being 

investigated in such a test is the bending stiffness but flex will be used in the current text 

in accordance with other golf literature. The lack of a test standard can lead to any 

specific shaft appearing under different grades from different manufacturers. Indeed, 
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Wishon (1995) carried out tests on over 1000 shafts and showed the difference in flex 

between shafts of the same letter code was often greater than the mean flex difference 

between grades. 
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Frequency measurement is also used in the assessment of flex. The shaft is clamped at 

the butt and the tip deflected by hand and released to oscillate freely. The frequency is 

then recorded and expressed in cycles per minute (cpm). This natural frequency is 

related to the system stiffness, and hence to the flex, by the cantilever vibration equation: 

I{K 
In = 2:rr f;;; 

where fn 

K 

m 

= 

natural frequency of vibration 

system stiffness 

system mass 

The boundary conditions of the shaft are not specified. Nor is the presence or absence 

of a grip or clubhead. However, like the tip deflection method, frequency measurement 

allows quantitative grading of shafts into categories. The system may be used on raw 

shafts with a standard mass applied at the tip or on constructed clubs in an effort to 

'frequency match' a set (see section 1.6.2.2). 

Torque 

Torque is used to describe the angle by which the shaft twists about its longitudinal axis 

when a turning moment is applied axially. It is measured in degrees but again neither the 

boundary conditions, nor the load position nor its magnitude are specified. One 

common industry procedure is to clamp the butt and apply a 1.35 Nm moment arm at the 

tip (Horwood 1995). While the torque was fixed by the material and geometry in 

homogenous steel shafts, the advent of composites has allowed a greater variability and, 

whether a deliberate design feature or merely a by-product of manufacture, shafts are 

now marketed with varying torques. The engineering property of the shaft measured in 

this manner is the torsional stiffness and the golfing term 'torque' is a misnomer. It is 

however used in the current text. 
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Bend point 

The bend point of the shaft is also known as the kick point or flex point but again an 

agreed definition does not currently exist. It is a single measure that makes an attempt 

to quantify the bending profile of a shaft. In the current work it will be used to refer to 

the position on the bent shaft furthest from a chord drawn from butt to tip. Shaft 

bending is created in various ways: by applying a bending force, compressive force or 

end bending moment (Horwood 1995) as in figure 1.14. The bend point is recorded as 

the distance from the tip to the point of maximum transverse deformation. Horwood 

(1995) gives a system in use in the Far East, where the ratio ofthe deflection in a 

standard flex test to one where the tip is constrained and the butt loaded is used to 

estimate the bend point. This system has the advantage of not requiring measurements 

from a curved surface. Horwood (1995) also states that ifthe bend point is within 25 

mm of the geometric mid-point of the shaft it is labelled mid bend point. Outside this 

range it is classified as high or low. The theory behind the positioning of the bend point 

is shown in figure 1.15 and appears sound. Shafts with lower bend points lead to higher 

dynamic 10ft at impact, as the radius of curvature towards the tip is smaller, assuming the 

shaft is bent forward at impact. It is possible that this value was introduced due to 

criticism of the flex measurement that allows two shafts of identical flex to have different 

bending profiles and thus different performances. 

Damping 

Damping is a property of the shaft normally discussed in golf literature only qualitatively. 

It is claimed that the increased damping of composite shafts over stee11eads to reduced 

'feel' of the golf shot while also possibly reducing the incidence of ailments caused by 

post impact shaft vibration, especially after contact with the ground. A modern 

development in composite shafts is the use of thermoplastic epoxies rather than 

thermosets, the advantages claimed (in excess of the ubiquitous improved distance and 

accuracy) being increased damping (Jordan Golf 1998). No standard tests are available 

for measuring the damping of golf shafts and manufacturers make no quantitative claims. 
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Weight 

Weight is (thankfully) a property over which there is no disagreement on measurement 

technique, even if the units still vary. The actual mass of the shaft is often quoted and in 

terms of performance the axiom is that lighter shafts lead to increased clubhead speeds at 

impact. Butler and Winfield (1995) state an expectation of increased clubhead speed of 

1.3 ms-1 following a reduction in shaft mass from 120 g to 60 g as would typically derive 

from moving from a steel to a composite shaft. Frank Thomas (Tutleman 1998), 

Technical Director to the United States Golf Association, has stated that a shaft of 

reduced mass 56.7 g (2 oz) leads to increased velocity of 0.91 ms-1 (3 fps) and increased 

distances of 4.57 m (5 yds). Mass tolerances from manufacture can lead to variations in 

the other shaft properties previously mentioned and Horwood (1995) states tolerances of 

± 7 g and ± 2 g for budget and high quality shafts respectively. Tighter tolerances may 

be achieved by sorting of shafts post production but this has limited value if the position 

of the centre of mass is not included. For high quality shafts a centre of mass tolerance 

of ± 3 mm is typical. 

1.6.2.2 Club matching 

Attempts have been made to match the 'feel' of clubs across a set, to improve golfers' 

performance in their swing. The methods used do not relate directly to the performance 

of any individual shaft but mention is made here since they are important in the marketing 

of golf clubs. 

Swing weight 

In an attempt to match all clubs across a set each club may be designed to have the same 

swing weight. This is a value given to a completed golf club consisting of shaft, head 

and grip. The swing weight is measured as the turning moment of the club mass about a 

pivot 14 inches from the butt. The value in inch-ounces is converted to an alphanumeric 

scale in which each swing weight point represents a 2 inch-ounce difference. DO is 240 

inch-ounces, C9 is 238 inch-ounces and El is 262 inch-ounces. This 'lorythmic' scale 

dates back to its inventor, Robert Adams, who, in the 1920's, used it to match both 

Bobby Jones' and Frances Oimet's clubs (Tutleman 1998). While much debate has 

raged over its relevance (Cochran and Stobbs 1968), (Jorgensen 1994), (Cochran 1990), 
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it can be generally accepted that the method is an attempt to condense the heft factors of 

1 st and 2nd moments of inertia into a single numerical value. While neither of these is 

ever constant through a set of variable length clubs, matching of swing weight allows at 

least a reasonable match in 2nd moment of inertia. Various club manufacturers have at 

times produced clubs matched on 2nd moments of inertia but this method has not been 

widely accepted. 

Frequency matching 

In addition to the heft factors of the club, efforts have been made to match the flexibility 

across a set (Sato 1995), again to give each club a similar feel during swing. It is not 

possible to match the frequencies as the club length gets shorter and the system stiffness 

increases (even though the mass of the heads increases) and so a constant gradient of 

frequency against club length is used. This, like swing weight matching, attempts to 

provide a constant variation between clubs. A typical frequency gradient is given by 

Sato (1995), as a linear relationship between club length and frequency, from 255 cpm at 

43 inches (a driver) up to 325 cpm at 35 inches (a pitching wedge). 

1.6.2.3 Double pendulum 

In any review of the behavior of the shaft during the swing one touches upon much wider 

research on the golf swing, the early work of which was carried out by the Golf Society 

of Great Britain (Cochran and Stobbs 1968). In this, a double pendulum model of the 

swing is built up from theory and with empirical results from photographic evidence of 

top golfers. Figure 1.16 shows the' Cochran and Stobbs' double pendulum. The rigid 

top link represents the arms of a golfer and the rigid lower link represents the golf club. 

A torque can be applied to the model at the fixed pivot 0 to represent the major force 

input from the golfers legs and torso. Another torque can be applied at the variable 

pivot (or hinge) connecting the two links, to represent the wrists. A stop is included at 

the hinge to prevent closure of the wrist angle during the early part of the downswing, 

although in practice the human wrist does not allow radial deviation of the joint to more 

than approximately 100°. The forces can be varied to model various golfers' swings and 

the authors suggest that the golfer tries to follow the planar swing as simply as possible. 

However if the golfer's wrist is to perform as in the model, limb joints within the human 
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body necessitate rotation of the left arm about its longitudinal axis (with a corresponding 

rotation of the golf club). The bending behavior ofthe shaft in a real golf swing is thus 

much more complicated than in the two dimensional model. The limitations of the 2-D 

model were well-appreciated by Cochran and Stobbs (1968) but its use has been 

extended over the years and it is used in a modified form in the current work. Cochran 

and Stobbs (1968) used it to show that the effect of gravity in powering the swing is 

negligible and that wrist timing is essential in achieving a good golf swing. The wrist 

must apply a torque during the early stages of the swing to prevent closure of the wrist 

angle, an inherent property of the human wrist. In a well timed swing the wrist may also 

apply a restraining torque to prevent premature opening-out of the club, then an assisting 

torque once opening-out becomes desirable. Cochran and Stobbs included various 

'time-lapse' double pendulum simulation diagrams to demonstrate the applications of 

wrist torque at different times during the swing. Such a diagram is included in figure 

1.16 along with their original caption. Of course, they did not have the luxury of 

modern computing and little actual quantitative data is presented. For example, neither 

the masses nor the moments of inertia of the links nor the forces applied are given. 

They advised the continuing study of the pendulum model by other researchers with 

more resources and another member of the Golf Society of Great Britain (Daish 1972) 

derived the equations of motion for the double pendulum using a Lagrangian approach 

but again only gave qualitative results. In contrast, Lampsa (1975) used the equations 

and optimal control theory quantitatively to search for optimum torques to obtain 

maximum club head velocity at impact. 

Mention must be given here to earlier work by Williams (1967) who matched a 

mathematical double pendulum to a classic stroboscopic photograph of Bobby Jones, 

showing clear similarities. Williams applied a constant torque to the upper lever, until 

opening out of the wrist angle, and then zero torque. No torque was applied at the wrist 

and only rigid links were used for the pendulum. 

Jorgensen (1994) used a computer program to solve the differential equations of motion 

of the double pendulum and attempted, via iterative changes in the force inputs, to match 

the model swing to stroboscopic photographic evidence of a professional golfer. Little 

quantitative details of the model swing are given other than results from varying the 
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initial wrist cock angle. The force profiles, mass and moments of inertia of the model 

are not given. Only rigid links were used for the double pendulum model but an attempt 

was made to include shaft flexibility. 

More recent quantitative work by Pickering (1998), using the double pendulum, has 

investigated the effect of the release angle. He used a mathematical two link rigid model 

in which the arms at the start of the downswing were rotated back 1800 from the address 

position and the wrist cock was 90. The release angle was then defined as the angle by 

which the upper link rotated during the downswing before the wrist was released. 

Solutions to the equations were obtained by a Runge-Kutta method and showed the 

effect of the release angle on the velocity, trajectory and position of the clubhead at the 

point of the swing when the head reaches maximum velocity, the hinge position was also 

noted. Results showed a minimum club head velocity at the release angle that occurs 

naturally if no constraint is applied to opening out of the lower lever. Maximum 

velocity occurred at a release angle of 90, when the upper lever was horizontal, but 

results did not continue above a release angle of 90. Computations were repeated for 

three types of club, viz 3, 6, and 9 iron which showed a vertical shift in the trend line. In 

each case, increasing the release angle beyond the natural opening point led to increased: 

velocity, displacement of the ball ahead of the swing axis and positive gradient of 

clubhead trajectory. Pickering also compared the behavior of the model to accepted 

golf swing practices. For example, the model predicted the position of the point of 

maximum club head velocity, for the same release angle, to move back towards the swing 

axis as the club length shortened. The corresponding view in golf practice is that the 

ball is moved back in the stance as the shorter clubs are used. He also repeated the 

computations to obtain the parameters of the swing when the ball impact was made 

directly below the swing axis. In all the simulations a constant torque was applied to the 

upper lever throughout the downswing, while the wrist torque was such as to maintain a 

90 wrist cock until the release angle. Neither the mass of the upper lever nor the 

magnitude of the forces applied were given. 
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Golf machines 

The need for manufacturers to carry out quantitative testing on the performance of clubs 

has led to a number of ( often expensive) machines designed to carry out the golf swing in 

a more repeatable manner than with humans. Their use has been limited in published 

research and their utility in the design of equipment for players has been questioned 

(Mather 1995). However their continual use by the United States Golf Association in 

the testing of golf balls for conformance to the Overall Distance Standard (ODS) over 

the last 22 years warrants their inclusion in the current discussion, if only for historical 

interest since the machine is soon to be replaced by more sophisticated technology 

involving 'virtual flight testing' (USGA 1998). Levin (1998) reviewed the history of the 

most famous golf swing machine 'Iron Byron' as used by the USGA and shown in figure 

1.17. Designed by engineers from True Temper in 1965 the swing machine is based on 

the swing of the 1940's golf professional Byron Nelson, who was observed using high 

speed photography at 10,000 frames/second. Iron Byron is powered by compressed air 

and in USGA ODS test achieves a clubhead speed of 109 mph. The machine 

incorporates a cam that matches Byron's (the golfer's) swing. This controls the rate of 

closure of the head to make it square at impact. Suzuki and Inooka (1998) point out the 

limitations of the machine, such as that the wrist angle is a function of the arm position 

and that the machine does not respond to changes in equipment. However there are 

currently thirty eight copies of the machine worldwide, in use by manufacturers for 

testing shafts, club heads and balls. 

1.6.2.4 Experimental tests 

A general study of how the shaft properties affected the performance of the swing was 

done by Van Gheluwe et al (1990). They compared 51 male and female golfers playing 

with graphite fibre reinforced plastic (GFRP, or Igraphitel
) composite and metal shafts. 

The subjects hit balls in a golf simulator and were recorded with a high speed video 

camera to record swing attributes such as wrist cock angle and angular displacement of 

the arms. A statistical analysis showed no significant advantages of either type of shaft 

in terms of the ball flight as predicted by the simulator or significant differences in the 

swing kinematics measured using the camera. It is not stated whether the golfers or the 
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experimenters knew which shaft was being used (ie a double blind test), nor were any of 

the properties of the shafts given. 

In a another practical examination Pelz (1990) carried out a 'blind' test on golfers 

performing with steel and graphite shafts, in the sense that the golfers were blinded as to 

where their shots had landed. Three USPGA Tour professionals hit at least thirty shots 

each with various clubs with different shafts but with the same head. While the results 

were not tested for statistical significance, the graphite shafts, which were 30 g lighter, 

hit longer. The stiffer shafts, both in steel and graphite, gave less dispersion, with the 

graphite having greater dispersion at all stiffnesses. The pre-shot routine of the golfers 

was not noted and it must be assumed that they were able to waggle and test the club 

before taking a shot. 

Chou and Roberts (1994) tested the role that the bend point plays in altering the ball 

trajectory. Various bend point measurement methods, for both steel and graphite shafts, 

were compared to the results of actual testing. They expected that bend point values 

would have an effect on the initial trajectory of the ball, measured from the peak 

trajectory height. Both human and machine golfers were used but little correlation was 

noted. While accepting that their test was far from thorough, they gave indications that 

the balance point (centre of mass) and torque of the shaft may be more highly correlated 

with the ball flight trajectory than is the bend point. 

Wrist torque 

The influence of the wrist torque is clear from the research on the double pendulum. 

The swing is however successful if the wrist only hinders jackknifing, possibly offering 

resistance to premature opening-out but creating no torque to assist opening out. This 

was demonstrated by Cochran and Stobbs (1968) who showed photographic evidence 

ofthe swing of Alec Wilmot who was able to hit the ball 283 yards, a prodigious 

distance for that time, and by a one-armed golfer! The photographic evidence showed a 

late hit, indicating that the wrist hindered opening out of the wrist cock. Only minimal 

torque could be applied to assist opening out of the wrist due to the absence of a right 

hand push. 
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Much debate has continued into the behaviour of the wrist torques applied. Budney and 

Bellow (1990) used force transducers to measure the grip force under various locations 

of the two hands during a full golf swing, including takeaway, backswing, downswing 

and follow through. Results for golfers of various ski11levels showed levels of grip were 

dangerously small at impact This coincides with the fact that low levels of grip promote 

a free hinge action at the wrist (see section 1.3.4). The plots for the various golfers are 

comparable and indicate the right hand applying force just before impact. The 

transducers were however under the three fingers of the right hand and any force applied 

here would retard the club if supination of the left arm back to the club head being square 

to the swing line had not occurred. It is difficult to draw firm conclusions from their 

results as the grip force may not correlate with the forces applied to the wrist cock angle. 

Other research such as that by Robinson (1994) has indicated the importance of the 

kinematics of the wrist cock angle. These studies are discussed in more detail in the 

following section on motion analysis. A fuller review of other research into the 

behaviour of the wrist hinge in the golf swing was given by Dillman and Lange (1994). 

Motion analysis 

Much research on the golf swing has followed advances in motion analysis. Woods and 

Mase (1990) reviewed high speed analysis systems available for studying the motion of a 

downswing, less than 0.3 s for USPGA tour professionals (McTeigue and Lamb 1995). 

Other figures for amateurs and Senior tour players are given in table 1.2. These times 

mean that normal video cameras running at 25 frames/s are capable of capturing only 8 

frames during the downswing. Incidentally the fact that the human eye sees such a 

frame rate as a continually moving image casts doubts on the observational claims made 

by non-technology-assisted analysers of the golf swing. 

backswing downswing whole swing 

(seconds) (seconds) (seconds) 

U.S. PGA Tour 0.80 0.29 1.09 

Senior PGA Tour 0.28 0.28 1.03 

Amateur 0.38 0.38 1.29 

Table 1.2 Golf swing times, various golfing ability (McTeigue and Lamb 1995). 
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Motion analysis systems vary in their complexity from the high speed video camera 

systems currently being employed to analyse the swing by the USGA in their ongoing 

'Motion Analysis System' (Logan 1997) to the stroboscobic photographs of Bobby 

Jones used by Williams (1967). The USGA system uses 5 video cameras running at 240 

frames/s while the golfer wears a special suit with markers attached at critical body 

positions. Logan (1997) states that the raw data is analysed by Nesbit who recreates the 

golfers swing with the use of computer software of a robotic golfer. The forces and 

stresses are calculated and passed to the American Sports Medicine Institute in 

Birmingham, Alabama. Logan however quotes Frank Thomas, Technical Director to 

the USGA as saying he is 'not sure where the research is going or when any results will 

become available'. Nesbit et al (1994) discussed an android golfer developed with 

ADAMSI ANDROID software and driven by the data obtained from high speed video 

analysis of a human golfer. The static properties of the golf club head were obtained 

from finite element solid modelling. Problems with the android included making sure 

the feet remained in contact with the ground during the swing. They concluded with 

remarks to how the model could be used in conjunction with a systematic variation of 

club parameters to study the effect of equipment on the golfer. It was not made clear 

whether a flexible or rigid shaft was used. 

Both Robinson (1994) and McLaughlin and Best (1994) carried out statistical analysis on 

the swings of golfers measured using the PEAK Three Dimensional Motion Analysis 

System, Version 5. Robinson carried out a multiple regression analysis technique to 

identifY swing characteristics that best correlated with the clubhead velocity at impact 

and utilised force plates within the events measured. He listed, in order of significance, 

the events which lead to a high clubhead velocity. Top of the list was the wrist cock 

angle at the point in the downswing when the left arm was horizontal. The coefficient of 

significance was negative, indicating that smaller angles gave greater club head speed. 

This confirmed Cochran and Stobbs's work (1968) showing that the key to a powerful 

swing is the prevention of the premature opening out of the wrist cock angle in the 

downswing. However this may also indicate the need for an assistance shortly after 

opening out if correct timing of the swing is to be achieved. McLaughlin and Best used 

a one way analysis of variance to distinguish between the golfers of varying ability. 

They produced a list of events which showed a high degree of significance, amongst 
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these was the wrist cock angle at the position in the downswing when the left arm was 

horizontal. They noted that prevention of opening out ofthe wrist cock at this phase 

was a trait of the low-handicap golfer. Burden et al (1998) studied the golfer as distinct 

from the equipment, using two genlocked video recorders running at 50 fields per 

second. They were able to obtain shoulder and hip rotation angles during the swing and 

concluded that 75 % of their sample of eight golfers continued rotating the shoulders 

away from the target as the hips began turning back to initiate the downswing. 

Cooper and Mather (1994) described a procedure using a stroboscope and a pair of 

normal photographic cameras to calculate the positions of the golf club during the swing 

of golfers of various ability. The spatial coordinates were calculated using an iterative 

linear transformation algorithm (ITL) and differentiated twice to obtain velocities and 

accelerations. This was necessarily followed by a smoothing procedure. They 

demonstrated how the velocity profiles of the club for different levels of golf expertise 

could be classified and made suggestions that the golfers of low skill levels would be 

better served by equipment that placed different forces upon their bodies. They also 

concluded that poor golfers had little ability to maintain the wrist cock angle for a 

sufficient time and that this allowed the club to swing out across the swing plane, with 

consequences for their shot quality. Mather and Cooper (1994) also made use of a finite 

element model to predict the forces involved in the swing and the bending behavior of 

the shaft. They stated that 

"An important conclusion therefore is that the head deflection does not depend only 

on the speed of the clubhead but also on the time hist01Y of the input accelerations. " 

The importance of maintaining the wrist cock angle under the increasing centrifugal force 

was discussed and they made a further suggestion that the poorer golfer could be helped 

in achieving the correct timing by the use of clubs of reduced head mass. 

In similar work, Miura and Naruo (1998) recorded the clubhead and wrist velocity of 

various levels of golfers using synchronised CCD cameras and a video recorder. The 3-

dimensional spatial coordinates were transformed into a best fit swing plane before 

differentiation was used to obtain the velocities and accelerations. Results were given 
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for various categories of golfer including professional, low-handicap amateur, mid-high 

handicap amateur, senior and lady. These showed quite distinct differences particularly 

in the wrist acceleration. Miura and Naruo attempted to model the swing using 

commercially available software, using rigid links for the pendulum and omitting a wrist 

stop. Forces were not applied but rather an acceleration profile was given to the upper 

lever. In the case of constant acceleration, severe jackknifing occurred and the model 

did not replicate a golf swing. A sinusoidal acceleration, actually specifying the negative 

acceleration of the wrist, gave a 'decent' golf swing. While their approach was contrary 

to the normal double pendulum model in which wrist deceleration occurs only due to 

momentum transfer, it does give rise to the concept that the golfer may deliberately 

decelerate the wrist hinge. Indeed in certain cases, where the equipment is poorly 

matched to the upper body inertia, a forced deceleration may be necessary to achieve an 

acceptable golf shot. Their wrist hinge velocity charts confirm the categorisation of 

golfer scheme taken by Mather (1995). The acceleration charts for the lady golfer 

showed a low constant level of acceleration, possibly because any higher acceleration 

would have prohibited the wrist uncocking as her upper body mass was lower than that 

matched to her clubs. 

Strain gauging 

Horwood (1994), in a review of the properties of the shaft that affect performance, gave 

results from strain gauging of the shaft during the swing. No technical details of the 

experiment were given such as the position of the gauges, the sampling frequency and 

whether the results are from a human or machine golfer. A bending moment versus time 

plot was shown and it was stated that it was for in-swing plane bending. 

Butler and Winfield (1994) also gave results from strain gauging of the swing and 

claimed that after hundreds of tests trials most golfers were found to fit into one of three 

categories by the way the shaft was loaded. They gave the shaft deflection versus time 

plots for each category; deflection in the head toe up/down, head forward/back and 

torsional displacement. A strange anomaly of their results is the long downswing times 

of two ofthe categories, in excess of 0.5 seconds, much greater than those given by 

McTeigue and Lamb (1995) in table 1.2. This may have been due to the awkward 

nature of swinging an instrumented golf club but claims are made that the clubhead speed 
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at impact was 103 mph in each instance. They drew up a list of key attributes 

distinguishing each swing and advised that knowledge of these variables is important in 

the matching of specific shafts to individual swings. They included the important facts 

that it would be necessary to measure the variability between swings of the same golfer 

and include the mean and standard deviations in any matching and that a golfer's swing 

may be affected by the equipment being swung. 

Strain gauging of the shaft was also carried out by Masuda and Kokima (1994) who 

noted the behaviour of the shaft under impact. Their work is referred to in more detail 

in Chapter 4, as an issue of impact. 

1.6.2.5 Modelling the swing and shafts 

Advancing upon the seminal work achieved with the double pendulum model of Cochran 

and Stobbs (1968), Milne and Davis (1992) used a mathematical approach to modelling 

the swing based on the double pendulum and using ramped forces at the shoulder and 

wrist pivots. The equations of motion were solved using a Runge-Kutta scheme. The 

2-dimensional model incorporated shaft flexibility to predict the bending moments and 

deformed shape of the shaft during the swing, however an important essential feature of 

their model was that the stiffness of the shaft was inferred from a standard cantilever 

bending test. They admitted that this was erroneous due to the large centrifugal forces 

near impact which puts the shaft under considerable tension and affects its stiffness. 

They also state that the shaft bending frequency when held by the hands is not that of a 

clamped beam and is more appropriately modelled as pinned. They gave typical natural 

frequency values for a clamped shaft as 4.5 Hz whereas the pinned shaft was 25 - 30 Hz 

increasing to 35 - 40 Hz under the centrifugal force experienced near impact. Torques 

applied to the model were estimated from golfers swings where strain gauges were 

placed at three stations along the length of the shaft. Their results concluded that the 

bending properties of the shaft were not important in the dynamics of the swing and only 

altered the deformed state of the shaft near impact under the quasi-static situation of the 

offset mass of the club head and the large centrifugal force. Bending moment versus 

time plots from the strain gauges were displayed but the sampling rate was 200 Hz and 

multiple swings were needed to obtain complete data from all strain gauge stations. A 
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simple smoothing routine was also needed due to variations between swings and to 

minimise sampling errors. The results indicate that the shaft bends back during the first 

part of the downswing and then bends forwards just before impact. The largest bending 

moments occurred at the butt during the first half of the downswing. Milne and Davis 

(1992) also state that: 

"(their model) could be used as a design tool to explore in detail the interaction 

between a range of shafts and 'golfers' as represented by their input torques. No 

attempt is made to do this here" 

They concluded their research by testing a number of golfers in their ability to predict the 

flex of the shaft by taking shots without a pre-shot waggle. Neither the amateur nor 

professional golfers could do so, giving, if asked, a random selection of responses. The 

professionals had limited success with the woods. 

Brylawski (1994) continued mathematical modelling of the shaft during the downswing 

using discretised elements to approximate the tapered shaft in three dimensions. The 

equations of motion were solved using a numerical integrator for each section along the 

shaft, however hardly any results were given. She drew the same conclusion of Milne 

and Davis (1992) that a quasi-static state leads to the deformation of the shaft at impact. 

Mather (1995) claimed his own research also substantiated Milne and Davis's (1992) 

advice that, due to the lack of dynamic effect of shaft flex, the stiffest shafts possible 

should be used, with a compensation for a lack of increase in dynamic loft by bending 

being undertaken in the clubhead. Mather took the theory of centrifugal stiffening 

further by predicting the natural frequencies for static shafts clamped at the butt and 

graphically showing how shorter clubs have higher frequencies. He continued, showing 

how these frequencies would change under centrifugal stiffening. The higher velocities 

for the longer clubs leads to a sign change of the frequency gradient and the longer clubs 

now have a higher frequency than the shorter clubs and that therefore the stiffness of any 

individual shaft changes during the swing. 
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In later research Mather and Jowett (1998) examined the effect of centrifugal stiffening 

on the bend profiles of shafts. They compared the bend shapes in static and dynamic 

tests, using both a mechanical whirl rig and a human golfer for the dynamic tests. The 

shaft profiles were characterised with charts of radius of curvature against distance along 

the length of the shaft. Where necessary data was obtained from dynamic tests using 

stoboscobic photogrammetry. The theoretical prediction is made that, under centrifugal 

stiffening, the difference between the lowest natural frequencies of different shafts is 

reduced. In whirl rig tests two different shafts were clamped at their butt and rotated 

about an axis through the clamp. The rig was rotated up to and through first resonance 

to calculate the natural frequency and the bend profile of the shaft was recorded. 

Unfortunately it was not possible to represent the clubhead with a mass offset from the 

shaft axis as oscillations created were beyond the space allowed by the machine. 

Instead, mass was placed symmetrically around the tip. Emphasis was also laid on the 

care needed due to the lack of damping in the shaft which could lead to large amplitude 

oscillations and shaft breakage. Results from the whirl rig showed minimum radius of 

curvature occurring at the butt for both shafts. While one shaft varied by less than 2 m 

radius of curvature over its length, the other shaft varied by 15 m. The results from the 

human tests compared the static bend profiles of the shafts to those obtained just pre­

impact. While static tests had the bend point roughly in the middle of the shaft (between 

450 and 550 from tip), the swing results indicate the bend point much close to the tip 

(less than 240 mm). The results also showed the shaft with the lower bend point in the 

static case having the higher bend point in the dynamic case. Mather and Jowett 

conclude that there is no simple transfer function between the bend profile of the shaft in 

the static tests and its shape during the swing. 

In a further recent study Suzuki and Inooka (1998) included shaft elasticity in the double 

pendulum model. A mathematical approach was taken for the equations of motion by 

applying Hamilton's principle and solved using a Runge-Kutta method. Torque was 

applied to the upper lever while the wrist was either fixed at 90° or free. The club 

displacement (flexibility) is approximated from the eigenfunction equation of a cantilever 

that has a mass at the tip with no damping. They used the model driven by an initial 

shoulder torque of 100 Nm for 50 ms to investigate the effect of releasing the wrist at 

different times in the downswing. Plots showed the head velocity as a function of time, 
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with high frequency vibration occurring after the shaft boundary condition changed from 

fixed to free. No mention is made of the stiffness of the shaft changing due to 

centrifugal force, as discussed by Mather (1995) and Mather and Jowett (1998). In 

comparing club head velocity at impact a maximum was predicted for the instance when 

the wrist release coincided with the displacement of the shaft vibration crossing in the 

positive direction for the first time. Suzuki and Inooka (1998) continued, using the 

model to study the effect of shaft flexibility. A trapezoidal function (positive, zero, then 

negative gradient) for the upper lever torque was used to investigate the effect of 

changing the shaft stiffness. For three different stiffnesses the model was analysed, 

changing the magnitude and duration of the torque function, to satisfy a prescribed 

impact position of upper and lower lever. The method used to obtain the torque 

function is not described. The head velocity was plotted against the torque magnitude 

over a range possible for the specific shaft stiffness. Their results indicated higher 

stiffness shafts are required for higher club head speeds if the prescribed position of the 

model is to be met. They concluded that their model could be expanded to include 

torsional effects. 

1.6.2.6 Further advances in modelling shafts 

Advances in computational techniques has led to attempts to model the shaft flexibility 

during the swing. Swider and Ferraris (1994) proposed an experimental method for 

analysing the dynamic behavior, frequencies and mode shapes for a golf club using 

displacement sensors. They compared results with a finite element model, constructed 

from shell elements to cater for the anisotropy of composite shafts. Their results were 

comparable and they concluded that the model could be used in future studies involving 

the large displacements of the golf swing. 

Whittaker (1996) used a number of approaches to investigate the difference between 

rigid, flexible and absent shafts in a simulated clubhead/ball impact. The flexible shaft is 

modelled as a uniform beam using lumped masses and in validating the model Whittaker 

stated that little difference between the first 10 mode frequencies is observed with a 

minimum of 6 elements for the shaft. Higher modes are to be expected to be important 

post-impact but these low order modes are predominant in the large dynamic 
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displacement of the golf swing. Whittaker (1996) used a double pendulum model for 

the downswing where the shoulder and wrist torques were obtained by trial and error to 

obtain a swing such that the upper pivot, wrists and club head where aligned at impact. 

Friswell et al (1998) confirmed Whittaker's (1996) view that the low frequency modes 

dominate during the downswing. They modeled an existing golf club with finite 

elements and used a model updating procedure to improve the dynamics of the model as 

matched to Experimental Modal Analysis (EMA). Friswell et al chose beam elements 

for modelling, allowing for axial, bending and torsional strain. Shear strain was 

expected to be negligible. The clubhead was modelled as a point mass with an 

appropriate inertia matrix which was originally guessed. Model updating was carried 

out for the parameters describing the inertia matrix and the shaft stiffness. Discretisation 

errors were overcome by using a suitable number of elements (26 elements). They 

concluded that the model updating procedure was successful and that the validated 

model may be used to obtain more accurate estimates of the club response during the 

swmg. 

1.6.3 Balls 

Current golfball sales stand at $1.1 billion (American dollars) per year worldwide 

(Johnson 1999). Sales take place within a fiercely competitive market that rewards 

innovation with market share (Sullivan and Melvin 1995). As with other types of golf 

equipment, a plethora of designs exists. The beginnings of 1999 saw two major golf 

equipment manufacturers join the ball market, Taylor Made (now part of the adidas­

Salomon group) and Nike. Later in the year, Callaway Golf hope to launch their ball 

range (Yasuda 1999). Many of the new designs use exotic materials such as Titanium, 

that have seen success in clubheads and shafts. However Statz' (1990) view, that little 

published data on the effect of ball construction on performance exists outside of patents, 

still remains. Incidentally the number of patents is not small, with 5000 between 1900 

and 1995 (Sullivan and Melvin 1995). While the initial objectives of the current work 

were focused on the club head and shaft rather than the ball, the finite element model 

opened up further possibilities and some preliminary results on ball performance are 

included. It is therefore appropriate to briefly review previous work in this area. 
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1.6.3.1 Aerodynamics 

Much of the work on golfball performance is based on the flight aerodynamics well after 

impact and is beyond the scope of the current work. A study of the way in which ball 

improvements, of which there have been many, have changed the game is given by 

Aoyama (1995). He compared a modern wound ball, used by the majority of 

professional players, to its counterpart of25 years previously. Using virtual flight 

testing, a computer simulation of the ball flight based on aerodynamic data, the playing 

differences between the two balls was identified. Neither ball gave a consistently longer 

and straighter shot under the full range of initial conditions of spin, launch angle and 

speed. However for 'typical' conditions, the modern ball was superior but only by a 

small amount, 10 yards at the most. Tomita and Chikaraishi (1995) discussed the effect 

of dimple patterns on golf ball performance and gave a frequency chart of the number of 

brands using different dimple numbers. An enlightening chart for those who doubt the 

competitiveness of the golfball market, 46 different patterns appear for 935 brands! 

Shaw (1995) discussed the dimple arrangements further and demonstrated how 

computational fluid dynamics (CFD) and laser doppler anemometry may be used to study 

air flow around golf balls in flight. Many other publications are available on the 

aerodynamics of the golfball and interested readers are directed to the sources given in 

section 1.5 for further information. 

1.6.3.2 Experimental tests 

Hale et al (1994) conducted rare tests on the playing performance of different ball 

designs. The work was 'rare' in the sense that it was not conducted by manufacturers 

with a marketing driven agenda, of which they give numerous examples. Eighteen 

golfers of three different playing abilities (low, medium and high handicap) were 

statistically analysed for both distance and accuracy playing six different ball designs. A 

significance difference between the balls was found for distance with the low handicap 

group. A specific 'unnamed' manufacturer's design gave more distance than its 

competitors. However, the results were reversed for the high handicap group. They 

concluded there was little significant difference between the ball performances they 

measured and the claims made by manufacturers. 
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1.6.3.3 Impact studies 

Many of the impact studies discussed in section 1.6.1 where not primarily concerned 

with ball construction but with other impact parameters. However as a matter of course 

they often included results for different golfball constructions. For example, Gobush 

(1995 and 1996) in examining the effect of friction, fired balls from an air cannon onto a 

static plate. He used wound and two-piece balls and claimed that the wound balls gave 

a higher spin rate. In another example Johnson and Liebermann (1996) constructed a 

mathematical model for normal (perpendicular) ball-barrier impact. They matched 

experimental results to their model for both two-piece and wound balls. 

Sullivan and Melvin (1995) give the singularly relevant work on performance due to ball 

construction. They discuss the relationship between the ball cover hardness and overall 

ball compression and spin rate. They do not give details of the experiments conducted 

to obtain their results. This work is discussed further in section 4.5. 

1.6.3.4 Temperature 

The effect of ball temperature on behaviour is not to be underestimated. Cochran and 

Stobbs (1968) calculated values that distance improvements from a heated ball were 

significant implying an increase of 15 yards when warming the ball from 0 to 21°C. 

Indeed, this advantage may be greater than those obtainable from other equipment 

technologies and, of course, comes at less cost! Yamada (1995) carried out practical 

tests on the effect of temperature for a variety of designs and gave results for the ball 

dynamic parameters: speed, launch and spin. Results imply that each parameter is 

dependent on the temperature but in a different way. He concluded that, with better 

understanding, balls could be constructed to be less affected by temperature or even 

designed to perform well at specific temperatures. 

For the golfer wishing to benefit from warmer balls, it must be remembered that rubber is 

a poor conductor of heat and several hours are necessary to warm the ball all the way 

through. It also loses heat slowly and the advice given by Cochran and Stobbs (1968) is 
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to warm the balls overnight and use an alternate ball for each hole, keeping the ball not in 

play in a warm pocket. 



Figure 1.1 A modern metal 'wood'. 



Figure 1.2 A cut through of a modern metal 'wood', showing foam. 

H 
::::; 
rt 
1-\ 
o 
0.. 
~ 
(l 
rt 
1-'­
o 
::::; 

-..J 
o 



Figure 1.3 A cut through of a modern metal 'wood', showing reinforcement ribs. 



Figure 1.4 A modern metal 'wood', with insert of hard material. 
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Figure 1.5 Rear of a 5-iron cavity back clubhead. 



Figure 1.6 Two-piece ball construction. 
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Boundary conditions 

Ball 

Clubhead 

Figure 1.7 The golf equipment system. 
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Figure 1.8 Possible effects of varying initial ball flight parameters. 
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Figure 1.9 Tangential (Vt) and normal (Vn) velocity components of clubhead. 
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Figure 1.10 Tangential and normal force on clubhead, Gobush (1990). 



Figure 1.11 Onion layer model of golf ball, Gobush (1995). 
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Figure 1.12 Improved performance for increased inertia club head. Cavity back design - top, blade design - bottom. 
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Figure 1.13 Reduced 'gear effect' for curved clubfaces. 
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Figure 1.14 Bend point measurement techniques. 
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Bend Point, why it may make a difference. 

While the deflection of shaft A and B are of equal 
magnitude, their bending profiles are different. 

Shaft B is stiffer in the butt and more flexible in the 
tip, leading to a smaller radius of curvature at the shaft 
tip. 

Tangents to the shafts at the tip show shaft B has a 
greater increase in dynamic 10ft due to bending. 

Shaft B would be thought to have a lower bend point 
than shaft A. 

(a = Increase in dynamic 10ft.) 

Figure 1.15 Bend point, why it may make a difference. 
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Fixed pivot 

Upper lever 

Stop ---~ +~--- Hinge 

+------- Lower lever 

Figure 1.16 Cochran and Stobbs (1968) double pendulum model. 

"By holding position X until Y, 
and then applying the strong 
hinge action, the hinge still opens 
out rapidly, but maximum 
c1ubhead speed occurs once again 
near impact, and is even greater 
than the free-hinging speed at 
impact." 

Cochran and Stobbs (1968) 
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Figure 1.17 'Iron Byron' courtesy of True Temper, USA. 
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2.0 Computational stress analysis 

One aim of the current work is to provide a scientific rationale for many of the well 

known features of golf club performance. The principal tool in this is engineering stress 

analysis and finite element analysis in particular. However these concepts may be 

unfamiliar to sports scientists far less sportspersons with a non-scientific background to 

whom the current work may be relevant. It is then appropriate to give a brief 

introduction to the subject. 

2.1 Basic concepts 

The strength and stiffness of a component are related through the constitutive equation. 

This cannot be determined purely theoretically but requires empirical results from a test 

such as a uniaxial tensile test used to determine the force-extension relation for a 1-

dimensional component. In this test the component is clamped at one end and SUbjected 

to an increasing tensile force F at the other end in a tensile testing machine such as that 

shown in figure 2.1. 

F is measured by a load cell, while the extension e is measured by an extensometer. 

Results from the test allow the generation of a Fie graph, (force versus extension 

curve), shown in figure 2.2 for a mild steel specimen up to failure (Shames 1989). 

For small displacements, where e and F are not too large, the Fie graph approaches a 

straight line. The relationship is known as linear and if the test specimen returns to its 

original shape when the load is removed the behaviour is known as linear elastic. Such 

behaviour can be described by the spring equation, where k is known as the stiffness: 

F = k * e 

Known as Hooke's Law, this equation can be applied to most engineering systems, 

provided F and e are not too large. In any system k depends on the material and its 

shape and a separate test is required for each design modification. As an example in 

modeling the golf impact, deformations of the clubhead are small and the club head 
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returns to its original shape after impact. Such material behaviour can be thought of as 

linear elastic. In contrast, the golf ball, although returning to its original shape is elastic, 

cannot be assumed to be linear as the deformation of the ball is not small. Such 

behaviour is known as non-linear elastic and Hooke's Law does not hold. 

2.2 Stress and strain 

In comparing the strength of various materials it is necessary to compare specimens of 

the same dimensions. This is however not always practical, for example in measuring a 

wooden specimen a large component is required to average out the effect of individual 

grains, while a metal component of the same dimensions would be cumbersome. 

From uniaxial tensile tests it is found that, provided the deformation which precedes 

fracture is small, the maximum force the specimen can withstand does not depend on its 

length L nor its shape or the cross-section but only on its cross-sectional area A. For 

different specimens of the same material: 

FMAX oc A 

FMAXI A=UTS 

where UTS is a constant called the ultimate tensile stress. UTS is a material constant, ie 

it is different for different materials and is a characteristic of the material. 

Defining stress and the fracture stress as (J and (JMAX respectively: 

(J=F/A 

(JMAX = FMAXI A 

Stress thus has the same units as pressure and has SI units of Pascal (Pa), where: 

1 Pa = 1 Nm-2 
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typically stress values are many Pascals and it is more convenient to give engineering 

stresses as MPa or GPa. 

88 

Stresses may be tensile (pulling), compressive (pushing) or shearing (sliding) as in figure 

2.3. Tensile or compressive stresses are known as normal or direct stresses. Shear 

stress, denoted 't, is also FI A, but care must be taken in choosing the correct area. 

In mechanical engineering tensile stresses are taken as positive and compressive stresses 

as negative. 

As with a simple spring a uniaxial specimen will extend from its initial length °L to L 

under an applied load F but the stretch ratio A = L I °L is not a good measure of 

deformation since, while elastomers can deform to values of 3 or 4, the limit for 

structural metals is about 1.001. All the actions then take place in the fourth significant 

figure. Strain denoted c and defined as c = 0 in the undeformed state is thus used to 

measure the deformation of the material 

The simplest strain measure is 

c = A-I 

= L I °L - 1 

= (L - °L) I °L 

= e/oL 

== elL 

Provided the deformation is small, e for a linear elastic specimen is observed to depend 

not only on F but also A and L, such that: 

e ex:: (F * L) I A 

hence 

F/Aex::e/L 
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0" ex: c 

0" =E*c 

where E is a material constant called the elastic modulus or Young's modulus. 

Shear stresses produce shear strains, denoted y, and defined as the angle in radians by 

which the material is deformed, such that: 

't ex: y 

't =G*y 

where G is also a material constant called the shear modulus. 

2.3 Multi axial stress and strain states 

89 

With most materials, extension in one direction leads to contraction in the other direction 

and a tensile stress in the I-direction (x-direction), denoted 0"11, produces a tensile strain 

Ell in the I-direction and compressive strain C22 and C33 in the 2- and 3 -directions 

respectively (the y- and z-directions). The ratio of these compressive strains to the 

tensile strain in the loaded direction is Poisson's ratio (v), ie 

v = -C22 / C11 = -C33 / C11 

where the negative sign is inserted to give a positive value for v. This definition is for 

an isotropic material, defined as having the same properties in every direction, v is the 

same no matter what two directions are chosen for its definition. Hence a stress 0"11 

produces three strains. 

C11= 0"11 / E 



CHAPTER 2 Computational stress analysis 90 

E22= - V * 0'11 IE 

E33= - V * 0'11 IE 

If now the material is subjected to triaxial loading in which all three stresses are applied 

simultaneously, the three strains will be: 

E 11 = a 11 I E - v * a 22 I E - v * a 33 I E 

E 22 = a 22 I E - v * a 33 I E - v * a 11 I E 

E 33 = a 33 I E - v * a 11 I E - v * a 22 I E 

=> & 11 = 1 I E * (a 11 - V * (a 22 + a 33)) 

=> E 22 = 1 I E * (a 22 - v* (a 33 + a 11)) 

=> &33= lIE*(a33-v*(a11+a22)) 

These three expressions and the corresponding three shear expressions may be 

conveniently written in matrix notation as: 

Ell liE -vi E - vi E 0 0 0 

E22 -vi E liE -vi E 0 0 0 

E33 -vi E -vi E II E 0 0 0 
= * 

E12 0 0 0 11 (2* G) 0 0 

E13 0 0 0 0 11 (2* G) 0 

E23 0 0 0 0 0 11 (2* G) 

all 
a 22 
a 33 

a 12 

a 13 

a 23 

where the so called tensor shear strains 8ij are defined as lh of the engineering strains. 

This matrix is re-written more concisely as: 

[8] = [C]*[O'] 

where [8] is the matrix of strains given fully above, [0'] is the stress matrix and [C] is the 

compliance matrix of the material. 
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E, v and G are all elastic constants and for an isotropic material only two of these are 

independent and anyone of them is expressible in terms of the other two via the relation: 

E =2*G*(1+v). 

The 3 -dimensional linear elastic constitutive equations may then be expressed in a 

number of alternative but equivalent forms. In particular they may be inverted to give: 

[0'] = [E]* [e] 

where [E] = [Cr1 

and is known as the stiffness matrix. 

2.4 Tensors 

In general, an engineering system comprises a 3-D body subject to external boundary 

conditions giving rise to an internal stress state in the body. Taking a small cube of the 

body it is apparent that the stress acting on each of the six faces will be a vector. For 

the cube to be held in equilibrium in 3 dimensions, only three of these six vectors are 

independent and so the stress state has three component vectors. A quantity that has a 

component vector in each (independent) direction is called a tensor. We may resolve 

the stress tensor into its three component vectors; 

lQ: I-direction J 
(5 = Q: 2-directlOn 

Q: 3-directzon 

However each vector has three 'scalar' components. So the stress tensor 0' has nine 

scalar components and may be written as: 
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lO"11 

[0"]= 0"21 

0"31 

or 

0"12 

0"22 

0"32 

0" = [0"] = 0" .. = I] 

Computational stress analysis 

O"13

J 
0"23 

0"33 
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in symbolic, matrix, and subscript notations respectively. The off-diagonal terms are the 

shear stresses previously denoted 't. 

Static equilibrium of the cube requires that: 

O"ij = O"ji 

This means that the stress tensor is symmetric, with only six independent components. 

Indeed it is often convenient to write the stress tensor as a column matrix, thus: 

0"11 

0"22 

0"33 
[0"]=10" 

12 

0"13 

0"23 

It is possible to locate a 'principal basis' in which there are no shear components, ie a 

plane across which the vector has no shear component. Since there is no shear in the 

principal basis the principal stress tensor is: 

r 0"1 

[(TJ~l~ 
o 

0"2 

o :J 
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By subtracting the rigid body translation and rotation from the displacement of a small 

line segment of material in 3-D, what is left is: 

[

tat tdx 
] ] 

1/ *(tat tdx +ta, tOx ) /2 2 ] ] 2 

h *ca'3 tdx] +ta,] tdx3) 

Yz * Cat] tdx2 +ta'2 tdx ]) 

t01l2 tdx2 

Yz *ca'3/ tdx2 +ta'2 tdx3) 

1/ *(tal tdx +ta, tdx )] /2 ] 3 3 ] 

h *caI2tdx3+ta'3/ldxJ 

tat /'dx 
3 3 
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This is the part of the total displacement that is responsible for the stress in the body. It 

is then the strain tensor and is also symmetric. The shear strain terms are off the 

diagonal. Apart from the Yz, these components are the same as the elementary definition 

of engineering shear strain y. Furthermore on the leading diagonal the terms reduce to: 

8ii =ta'i tdxi 

which in 1 dimensions reduces further, to: 

8 = du / dx 

ie the familiar strain-displacement equation. 

2.5 Finite element analysis 

Finite element analysis (FEA) is a well known - almost ubiquitous - computational stress 

analysis technique and is the principal analysis technique used in the current work. In 

stress analysis, the aim is to calculate the stresses in the component and hence determine 

how it will deform or break. Stress is defined as the force acting on a component 

divided by the area over which the force acts but this simple calculation is not always 

possible. However stress can also be obtained, via strain, from displacement u. This 

can be done by integrating a differential equation, such as: 

E*A*(d2u/dx2
) = 0 
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for a uniaxial component. This particular equation is easy to integrate analytically but 

this is not generally so and we must use a computer -aided numerical method such as 

FEA. 
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FEA has been called the most powerful analysis technique ever made available to 

engineers. Fundamentally it is a technique for solving partial differential equations 

whose domains are geometrically too complicated to admit analytical solutions. The 

domain is divided into sub domains small enough for the field variable to be approximated 

by a simple function of position. In this way a component is regarded as an assembly 

('mesh') of small building bricks ('finite elements') connected at the corners ('nodes') 

and in each of which the field variable (eg displacement u) varies in a much simpler way 

than it does through the whole component. This principle is illustrated by the 

development of a uniaxial finite element. 

At each end of the bar (1) and (2) there are forces FI and F2 and displacements UI and U2, 

two of which will be known while two are unknown. We assume that u can be linearly 

interpolated between the nodal values. Algebraically this means that: 

u = U(l) + (x-X(l))/(X(2) - X(l))*(U(2)-U(I)) 

where x is a coordinate whose origin is not necessarily at the left end ofthe bar. In fact 

what is important in determining Ux is not the absolute value of x rather the relative 

position of the point within the bar, eg halfway along. This is better indicated by a 

normalised or parametric coordinate basis ~ in which 

~1=-1 and 

~2 = +1 

and so the middle of the bar is always at ~ = o. 

The coordinates x and ~ of any point can be related by; 

x = liz * (1 - ~) * Xl + liz * (1 + ~)*X2 
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and in matrix form 

x = [ liz * (1-~) liz *(1 +~)] * [Xl X2]T 

= [NI N2] * [Xl x2f 

= [N]T * [X(i)] 

Where the vectors are assumed to be columns. Replacing X by~, the displacement 

interpolation can be rewritten as: 

u = liz * (1-~) * UCI) + liz * (1+~) * U(2) 

== [N]T * [UCi)] 
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and this can be put into the differential equation. The equation can be then integrated, 

eg using the Principle of Virtual Displacements, and the boundary conditions inserted to 

get the constants of integration. When this is done the result is; 

[Fel)] = E * A [1 -1] * [UCI)] 
F(2) L - 1 1 u(2 ) 

[ l\i) ] = [k ] * [UU) ] 

where [k] is the stiffness matrix. Once the stiffness matrix has been calculated for an 

element it is only necessary to insert the boundary conditions to determine its response. 

2.5.1 Computational Analysis 

In building a finite element model it is necessary to divide the complex geometry to be 

studied into simpler smaller individual domains, the elements. Such a process is known 

as meshing and the resulting computer file describes the domains by specifying nodal 

positions, infinitesimal points within a coordinate system. These nodes are then 

connected to make up individual elements. In 1 dimension only one coordinate is 

necessary to position a node, while in fully 3 dimensions an orthogonal, spherical or 
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cylindrical coordinate system must be used. The process of meshing may be carried out 

semi-automatically by a pre-processor package or manually The type of element chosen 

is the analysts prerogative and is one of the most critical steps in an analysis, both in 

terms of performance and cost. 

The 2 noded uniaxial bar described in the previous section is the simplest finite element 

to conceive. Figure 2.4 shows the bar diagrammatically along with other elements. 

The 3-dimensional equivalent of the bar is called a truss and while a truss element can 

move in 3-D, it can only sustain tensile or compressive forces. If transverse forces 

which cause bending are required, eg as in a golf shaft, it is possible to use a beam 

element. 

For full 2-D and 3-D continuum analysis, the equivalent ofthe bar is the plane element. 

There are 3-noded triangular plane elements but these can be unreliable and 4-noded 

quad elements are more robust. Plane elements contain only the in-plane degrees of 

freedom and do not admit bending. The continuum equivalent of a beam is a plate 

element and to include stretching as well there are shell elements. 

In analysing more complex solid 3-D geometric entities, such as the golf clubhead, it is 

necessary to use full 3-D solid elements. There are 4-noded tetrahedral elements but as 

with triangles these are not reliable and a better choice is a hexahedral such as an 8-

noded brick. This allows displacement in all three directions at each corner node. Solid 

elements do not generally include rotational degrees of freedom and so the calculation of 

rotational velocities is a problem. This is addressed later. 

Finally, there are special purpose elements which do specific tasks. For example, a rigid 

element might be used to represent a stiff connection between parts of a structure. 



Figure 2.1 Uniaxial testing machine. 
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Figure 2.2 ForcelExtension for a mild steel specimen up to failure (Shames 1989). 
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3.0 Reverse engineering of a golf clubhead 

Club head designs, are normally created by craftspersons working for golf club 

manufacturers. Their original sculptured designs are carved in wax and then sent to a 

production facility, normally in an overseas country, which produce moulds and 

prototypes for testing. This process leads to a lack of engineering information on the 

geometric shape of the club head, and a subsequent difficulty in building computer models 

for existing designs. To successfully model present clubhead designs and evaluate their 

performance there is need for a reverse engineering process, which is able to analyse 

clubheads and describe their shape. For a Finite Element model to be created it is 

necessary to have suitable information about the geometry, such that a CAD model can 

be created. Mitchell (1996) described such a feature based approach for golf club heads. 

Such procedures are also becoming increasingly important for other pre-CAD existing 

objects, which require to be modeled to allow for design upgrades. 

3.1 Manual method 

A manual slicing method was used to find the geometry of an existing club head, and to 

subsequently build a model in the solid geometry CAD package, Catia (Dassault 

Systemes, version 4). Complicated shapes may be built up in CAD by specifying the 

cross-sectional profiles, at various planes through the object. To achieve these profiles 

the club head was sliced into nine segments, and is shown in figure 3.1. Before slicing, a 

hole was drilled along the heel/toe axis, (a line from the toe to the heel of the club), to 

provide a reference for each segment relative to each other. Individual segments yielded 

a cross-sectional profile which was recorded using graph paper. The coordinates of 

points lying on the circumference of each profile were used to build up the model in 

Catia. The points were selected approximately every five millimetres, forty points being 

needed for the biggest cross-section. The thickness of the cutting blade was used to 

give each profile the correct volume, before a solid model incorporating all the profiles 

was generated, shown in figures 3.2 and 3.3. A finite element mesh was created for the 

solid and analysed using Abaqus (Hibbert, Karlsson & Sorensen Inc. version 5.5). 
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3.1.1 Model evaluation 

The finite element model of the club head was achieved, validating the route taken to 

model the club head. However the model is lacking in a number of ways which 

prohibited its practical use in any further studies. On close inspection, the hitting 

surface of the head was heavily undulated, due to the nodes not being present in a 

consistent smooth surface, this is a common occurrence when using automatic and semi 

automatic meshing techniques within CAD packages. The uneven surface would lead to 

spurious results if the head was used for club head-ball impact analysis as the resultant 

flight of the ball is largely dependent upon the normal of the striking surface relevant to 

the motion of the club. It is possible to move the nodes into a single plane, by a 

transformation, but this would only be relevant for c1ubfaces with a flat surface, such as 

the iron clubs. Drivers have a degree of curvature on the hitting surface and this affects 

the flight of the ball. In mishit shots the curvature causes side spin which corrects for 

the ball's initial error in flight trajectory away from the target. To increase the accuracy 

of the model it may be possible to take more slices leading to more cross-sectional 

profiles, but due to the hardness of the c1ubhead material, and the thickness of the blade 

needed to slice it, a limit is placed on the number of segments possible. Other areas by 

which the correctness of the model may be improved are to take more points on the 

circumference of the individual segment profiles. However this was already at a high 

level and it was felt the accuracy was limited more by the number of slices possible. 

Due to the above factors, the destructiveness of the test, and the labour intensity of the 

procedure, along with the proneness of human errors that could occur, another method 

of analysing the c1ubhead was investigated. 

3.2 Stereo Photography 

This method uses a pair of cameras to generate two slightly differing images of a single 

object, a software package is then used to construct a 3-D model of the objects surface. 

This route is currently being investigated by the Turing Institute, Glasgow, who in 1997 

released a version of their software C3D, to be used by police forces in analyzing 3-D 

surfaces of human faces. The process and the C3D software, pre-release, were used to 

obtain a surface description of a golf club head, from which a finite element model was 



CHAPTER 3 Reverse engineering of a golf clubhead 103 

created. The C3D software is a GUI-based computer program that converts the implicit 

3-D information contained within the stereo image pairs into an explicit 3-D surface 

model in a standard CAD file format. Figure 3.4 outlines the complete C3D processing 

chain. 

3.2.1 Procedure 

The C3D processing chain ends with the production of a standard CAD file format, 

DXF file. The file contains the coordinates of each triangulation point contained on the 

surface and the order of their connectivity. For the clubhead two files are produced 

giving the lower and upper (sole and crown) surfaces. A certain amount of overlap 

occurs, such that parts of the club head appear in both surfaces. To capture the images 

of the clubhead and calibrate the object space, it was necessary to provide a calibration 

device of a similar object volume, and a turntable and mounting with which to hold the 

club head. Appendix A, gives the technical drawings of the devices designed and 

constructed. Figure 3.5 shows the metal driver that was examined using the C3D 

process. Holes drilled through the clubhead were used to securely attach the club head 

to the turntable mountings. 

3.2.2 File formats 

The two files from the C3D process chain, are written in DXF (Auto CAD Drawing 

E~change format). This may be imported into Microstation (Bentley Systems, version 

5) or AutoCAD (Auto desk, version 12), the latter allowing for image adjustment and for 

the two halves to be joined together in a single file. In moving forward from this file 

format towards a finite element model it is necessary to export the file in the IGES 

(International Graphics Exchange ,Specification) format. This file is readable by Patran 

(MacNeal-Schwendler Corporation, version 7.0), from which a solid model can be 

generated. It is important to note that the size of the files increases along the chain, 

from the 2KB disk space needed for the DXF file, to 2MB when in IGES format and 

increasing thereafter. Other software packages were investigated to find a suitable and 

efficient path. A flow chart is given in figure 3.6 showing all routes investigated. 
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3.2.3 Model evaluation 

Because of the complexity of the surfaces, it was not possible to join the two halves of 

the club head together and form a single surface, some areas on the clubhead had been 

neglected, while others were mapped twice. The two surfaces are shown in figures 3.7, 

as they were seen when imported into AutoCAD, and figures 3.8 shows the crown 

surface in Microstation with rendering having been applied. The smoothness of the 

object surface is of a much higher degree than that generated by the manual method and 

this is clearly seen, even though analysis of the club head was carried out using the 

minimum of triangulation points possible to keep the file size small and to ease in 

understanding the process. The C3D process is capable of a much higher degree of 

resolution, but this was not felt necessary at this investigative stage. It was possible to 

create finite element models from Patran of the club head surfaces, so confirming the path 

taken. However problems occurred when matching the two surfaces together. This 

could possibly be avoided using small notches in the areas where the club head appears in 

both images, but first the obstacle of obtaining a full object surface mapping needs to be 

cleared. Taking more images of the clubhead in different orientations could be of 

benefit, but a new turntable, able to hold the club head in a variety of positions, would 

need to be manufactured. The lighting necessary for the C3D process to work would 

also restrict the orientations possible. 

3.3 Discussion of results 

Both methods were capable of producing finite element models of the club head. The 

manual method relies largely on the time available and the accuracy required, it is of 

limited value in attempting to precisely model complex curved surfaces. The stereo 

photography method allowed curved surfaces to be modeled more accurately, but is still 

at a prototype stage when trying to model full object surfaces. However, uncertainties 

still occur over how to model hollow club heads, as the centre of mass, and moments of 

inertia rely firmly on the thickness of material used to form the club head. Examination 

of existing clubheads shows there to be thicker material at the hitting surface than 

elsewhere on the club. Uniformity of thickness elsewhere is not a certainty, and left to 

the manufacture to decide. The inclusion of stiffening bars and welds adds to the 
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problem of producing a finite element model of a hollow c1ubhead, even when the 

surface geometry is known. A combination of the two processes may result in a method 

at present to model existing c1ubhead designs. However while reverse engineering 

would have enabled interesting comparisons of actual products, and does appear to be 

possible, it was regarded as a secondary objective compared to the need to understand 

the mechanics of the golf stroke. Further development of the reverse engineering route 

was therefore abandoned and attention focused on simplified models of solid iron 

c1ubheads. 
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Figure 3.1 Ceramic clubhead, sliced into nine sections. 
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Figure 3.2 Catia CAD solid model of clubhead. 
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Figure 3.3 Catia CAD solid model of clubhead. 

w 

I-' 
o 
co 



Stereo 
Cameras 

r--

~ 

Wire Frame 

Stereo 
Frame-Grabber 

I 

Stereo Matcher 

~ 

• 

XYZ 

3D Map Space Intersection 

Figure 3.4 Complete C3D processing chain. 
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Figure 3.5 Metal driver used in C3D stereo photography process. 
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Figure 3.6 Flow chart of routes investigated. 
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Figure 3.8 Microstation representation of crown surface. 
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4.0 The finite element impact model 

4.1 Construction of model 

To analyse the impact between clubhead and ball it is obviously important to have a 

model that mimics the behaviour of a real golf club. However, as noted in chapter 3, 

automated reverse engineering from an existing product through to computational stress 

analysis is not yet a practical option. This is inconvenient but not serious in the current 

work since fine geometric details, such as the fillet radius at the hosel, are less important 

than parameters such as loft angle which undoubtedly have a significant influence on 

performance and which must be open to systematic change if their quantitative effect is 

to be studied (indeed it is a common fault of inexperienced finite element analysts to 

concentrate too much on fine geometric details while giving insufficient attention to such 

matters as material models and boundary conditions). For the current work it is then 

appropriate to analyse a geometrically simplified clubhead. 

4.1.1 The club head 

Finite element meshes were partly created using Patran 3, an industry-standard 

commercial pre-processor package. Such pre-processors are capable of automatically 

generating a complete input file for the analysis package, in this case Abaqus 5.7, but this 

is really only practical for straightforward "production" runs. Here, as in much research 

work, it was found to be more efficient to generate only a partial analysis file containing 

nodal positions and element connectivity and to manually edit in such data as material 

properties and initial conditions. 

Solid element model 

Following Cochran and Stobbs (1968), it is assumed that the clubhead behaves as a free 

body during impact. A solid model of a club head was therefore generated as in figure 

4.1. This contains 385 nodes and 240 8-noded linear solid elements, giving a total of 

1155 degrees offreedom. The model was analysed using AbaquslExplicit with C3D8R 

reduced-integration elements (Hibbitt, Karlsson and Sorensen 1997). Only linear 

elements are currently available in AbaquslExplicit, that part of the Abaqus suite which is 
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specifically tailored for the analysis of impact and contact problems. The club face was 

planar and smooth, with no grooves, but with the option to include friction. The loft 

angle was initially chosen as 30°. The back of the club was also flat, ie. with no cavity­

back, and so the model represents a mid-range blade such as a 5 or 6 iron. The position 

of the centre of mass of such a club he ad is within the material and this, together with the 

moments of inertia, can be ascertained at the pre-processing stage of an Abaqus static 

analysis. These inertias are given in figure 4.2 along with a schematic of the clubhead 

and dimensions. 

Rigid element model 

Dynamic analyses of full solid models are computationally expensive and, since one of 

the objectives of the current work is to point towards an economic tool for club 

designers, an alternative mesh was constructed from rigid elements. By definition, such 

a mesh does not allow any deformation, in particular at the clubface, but it reduces the 

analysis time and, when assigned appropriate masses and inertias, allows the effect of 

different loft and rotational inertias to be quickly and cheaply evaluated. 

The rigid clubhead model is shown in figure 4.3. This uses a single AbaquslExplicit 

R3D4 rigid element, (Hibbitt, Karlsson and Sorensen 1997) which requires a "reference 

node" at which mass and rotational inertias are located. This can be seen behind the 

hitting face. The reference node remains in a fixed position relative to the rigid surface 

element and, while the mass and rotational inertia may be freely assigned by the analyst, 

values equal to those of the whole solid-element model were initially used. 

4.1.2 The ball 

As with the club head, it is less important that the finite element model should mimic any 

particular ball than that it should be representative of a typical modern ball. One such 

type is the popular 'two-piece' variety, which comprises a resilient, reasonably stiff, solid 

core covered by a wear-resistant, dimpled, cover of a different material. 

A finite element mesh was again generated with Patran, version 3, using 8-noded solid 

elements (Abaqus type - C3D8R). The whole model was generated by replicating an 
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1/8 octant, to give a model which was almost spherically symmetrical. A cut away 

drawing (figure 4.4) shows the separate core and cover elements, and the steps taken to 

avoid the undesirable effects of a focused mesh at the ball centre. 

The core, which is expected to undergo large strains during the impact, is given the 

properties of a hyperelastic material. Such a material is nonlinear, perfectly elastic and is 

characterised by a strain energy function cD. The Cauchy stress cr is obtained as the 

derivative of cD with respect to the deformation gradient Vx , thus: 

cr = 8cD/8(Vx). 

The strain energy function for such materials is a function of the principal stretches and 

cannot be inferred from a single set of tests such as uniaxial tensile or compression tests. 

Data for such materials are therefore difficult to obtain and test data for vulcanised 

rubber, which is similar in composition to a typical two-piece ball core material, was 

taken initially from the AbaquslExplicit example problems manual (Hibbitt, Karlsson and 

Sorensen 1997). This was entered as test results into the input file, from which Abaqus 

calculates the constant coefficients which best fit a polynomial model of a strain energy 

function defined as 

N ( ) i ( ) j N 1 ( J 2i 
U = i~l Cu J 1 - 3 J 2 - 3 + ~ D; pi - 1 

where 

U 
N 
Cij and Di 

- -

11 and 12 

is the strain energy per unit reference volume. 
is a material parameter. 
are temperature dependent material parameters. 

are 1 st and 2nd deviatoric strain invariants defined as 
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- - - -
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and 
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(-2) (-2) (-2) 
- - -

12 == Al + ...1,2 + ...1,3 

1 

where the deviatoric stretches Ai = J 3 Ai 

J is the total volume ratio . 
.r1 is the elastic volume ratio for thermal expansion. 
Ai are the principal stretches. 

The Initial shear modulus is given by 

J-lo = 2( CIa + Cal) 

The Initial bulk modulus is given by 

2 
ko = D

J 

The constants calculated by Abaqus to best fit this model are given in table 4.1. 

Hyperelastic material coefficients 
Dl D2 COl ClO C ll C O2 

~2xlO-9 -4.43xlO-8 3.48x104 1. 16x105 -1779.0 2269.0 

Table 4.1 Hyperelastic material coefficients calculated for test data by 
AbaquslExplicit. 

117 

C20 

85.0 
~--

This core material gave a ball which was rather too compliant in compression compared 

to modern balls (Mather and Immohr 1996) and is discussed in more detail in section 4.5. 

However it allowed the effects of changing the constants in the material model to be 

observed in a computational experiment and this suggested possible changes in core 

material properties which could be achieved without deviating from the hyperelastic 

shape of the stress/strain curve, shown in figure 4.5, for the original test data of 

vulcanised rubber. Material density was taken as 1100 kgm-3
, consistent with actual ball 

core materials measured. 

The cover material, although undergoing large displacements (rotational and 

translational) was not expected to undergo large strains. A linear elastic material 

response was therefore assumed to be reasonable and properties appropriate to DuPont 

'Surlyn', a popular thermoplastic cover material manufactured by DuPont was used. 
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Statz (1990) gives an elastic modulus of such material at 0.34 GPa and this value was 

confirmed by experiments on tensile specimens made from reconstituted granules of the 

material, as supplied by the manufacturer. Material density was measured and taken as 

950 kgm-3
. 

4.1.3 Computing facilities 

As noted in section 4.1 the FE analyses were performed using Abaqus, an industry­

standard commercial package from Hibbitt, Karlsson and Sorensen, Inc. Particular use 

was made of the Abaqus/Explicit module, which is designed specifically for the analysis 

of non-linear, large-displacement, contact problems. The present work spans some 

three years and several upgrades of the software were used, from version 5.4 through to 

5.7. Abaqus operates in batch mode, reading from an input file which contains the 

'model' and 'history' data, the latter describing the loading history. Appendix B-1 gives 

the input file for a typical analysis. The input file may reference other user-defined files 

for specific blocks of data, such as the mesh definition or material properties, thus 

allowing clearer structuring of whole input and allowing such files to be shared by 

different analyses. The analysis module generates a number of output files, such as 

tables of numerical results some of which are suitable for inspection by the user. Other 

results files are in binary format and require additional post-processing, by Abaqus/Post 

for example, which allows generation of graphical output such as undeformed and 

deformed plots, animation sequences, contour plots, hard-copy output and graphs. 

Over the three years of the current work, the analysis was carried out on a variety of 

workstations from IBM RS6000s to a Sun sparcstation-20. Analysis times vary 

depending on the machine, the time to be simulated and the complexity of the model but 

a typical clubhead/ball impact analysis on the Sun took 1 hour of processing time for a 5 

millisecond dynamic simulation. 
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4.1.4 Additional input data 

The initial position of the solid clubhead relative to the ball is shown in figure 4.6. For 

most analyses the clubhead was given an initial velocity in the global 3-direction, ie 

directly towards the ball, and the mechanical properties of steel (Ashby 1996). 

Particular attention is drawn to the coordinate system the model is constructed in as 

reference is made to this throughout the text. The 2-direction is vertical and the 3-

direction is horizontal along the intended direction for a straight hit. The I-axis is 

perpendicular to the target line such that for a right-handed golfer the positive 1-

direction goes left of target, a hook. A negative I-direction goes right, a sliced shot. 

In Abaqus the interface between impacting surfaces may be assigned a coefficient of 

friction (IJ.). A coulomb friction model is used, with no distinction made between 

limiting static friction and dynamic friction. The initial separation of club and ball was 

such that impact occurs after 0.035 milliseconds, when the clubhead was given an initial 

velocity of 50ms- l
. The analysis was set to record the behaviour of the model for 5 

milliseconds. The club head did not have any constraints or boundary conditions except 

its initial velocity and is free to move in any degree of freedom on impact with the ball. 

Elastic clubhead Ball 

Mass (kg) 0.322 0.039 

Centre of Mass X -7.542x10-3 -2.391 xlO- 1O 

(metres from origin Y -5.708x10-3 -8.551 xlO- 1O 

of coordinate system) Z -3.060x10-2 -2.117 xlO- IO 

Moments of Inertia XX 7.496xlO-5 6.972 xlO-6 

(kgm about centre of yy 1.526x10-4 6.972 xlO-6 

mass) ZZ 1. 897x1 0-4 6.973 xlO-6 

Table 4.2 Initial centres of mass and inertias of the clubhead and the ball. 

The mass of the head and ball, the initial positions of the centre of mass and the 

rotational inertia are given in table 4.2 which indicates that the vector joining the ball and 



CHAPTER 4 The finite element impact model 120 

club head centres of mass does not point in the direction of motion. It is thus expected 

that a rotation of the club head during impact will occur with a hooking effect on the ball. 

This model with minor amendments was used for all the solid clubhead analyses; the 

input file is given in appendix B-1. The rigid clubhead analyses uses a simplified input 

file (appendix B-2) which calls separate files containing the ball node and element 

definitions. The rigid clubhead loft can be modified by a rotation of the nodes about a 

given axis, followed by a translation such that the clubhead and ball have the same initial 

separation. However, the contact position on the ball depends on the loft of the head 

and the initial conditions for each loft are given in appendix B-3. 

4.2 Impact results 

The following sections describe, in detail, features which are common to most of the 

impact analyses performed. Results are for a 30° lofted solid clubhead, with the 

properties of steel (Ashby 1996), initially traveling at 50ms-1 along a vector coincident 

with the positive 3 axis. The analysis simulates 5 ms of real time and a coefficient of 

friction 0.6 is used. 

4.2.1 Deformed plots 

Figure 4.7 shows an Abaqus/Post plot of the model clubhead and ball 0.150 ms into the 

analysis and 0.110 ms after initial contact. These times differ as the club head travels a 

small but finite distance before impact. For brevity, timings given hereafter are analysis 

times; the time from initial impact is 0.040 ms less. Hidden lines have been removed to 

give a clearer view of the ball deformation. From figure 4.7, it can be seen that the ball 

has started to deform on the impact side while the free surface has not yet moved. This 

in itself illustrates the need for a full 3 -D mesh of the ball, rather than a cheaper 

axisymmetric model, if the impact is to be properly simulated. 

Figure 4.8 shows the ball near its maximum deformation at 0.270 ms. The club head has 

slowed to 44.4 ms-1 and twisted l.2° about the 2-axis. At 0.470 ms, separation occurs 

and elastic recovery of the ball causes an increase in velocity. The ball leaves the 

clubhead as a deformed sphere (figure 4.9) with backspin induced by the oblique impact 
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of the lofted club on the spherical underside of the ball. The club head velocity has been 

reduced further by the impact and the head has rotated about its centre of mass, as a 

result of the off-centre impact, the cover of the ball being slightly obscured by the head. 

Rotation of the c1ubhead about a horizontal axis also results from the position at which it 

strikes the ball. 

At the end of the analysis, at 5 ms, the ball is 0.347 m away from its initial starting 

position and 0.204 m away from the clubhead which, being unconstrained by a shaft, 

continues with a rather unrealistic constant velocity after impact. The ball has recovered 

its spherical shape but, since material damping was not specified (some damping is 

assigned by Abaqus for numerical stability), this must be due to multiple reflections of 

the stress waves within the core. 

This sequence of post-processed results can be run as an animation file (clearly not 

reproducible here) and rotated by the user to give a clearer view of the impact. Figure 

4.10 shows nine snapshots of the impact from time = 0.0 ms to time = 0.8 ms. 

4.2.2 Stress and strain plots 

Figure 4.11 is a sectional view of the core, showing G33, the direct logarithmic strain in 

the 3-direction, near the time of greatest deformation of the ball. The maximum strain 

appears in an element close to the face and has a (compressive) value of -0.258. This is 

quite reasonable for the hyperelastic rubber core and produces an increased stiffness 

which would not be shown by a linear elastic material. 

Figure 4.12 shows G33 at the end of the analysis, at 5 ms, when the ball has nearly 

recovered its spherical shape. The maximum compressive strain within the core material 

has reduced to -2.75x10-3
, while the cover shows a tensile strain of3.02x10-3

. 

Figure 4.13 shows 0'33 in the clubhead at 0.270 ms. The maximum stress value is 35.9 

MPa, well below the yield stress of steel (Ashby 1996). This is reassuring as permanent 

deformation of the clubface on impact is neither a desired or observed phenomenon. It 
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also, incidentally, means that engineering 'hardness' is not an appropriate parameter with 

which to describe golf clubs. 

4.2.3 Variable-variable graphs 

Abaqus/Post allows the analyst to produce, both on-screen and in hard copy, a wide 

variety of variable-variable graphs, such as stress-strain plots, to aid interpretation of the 

results. These can also be expressed in tabular form suitable for manipulation by other 

third-party software such as Microsoft Excel. 

Figure 4.14 plots the development of speed of the club head and ball. These were 

measured as the speed of nodes 433 and 1661 respectively, which are closest to the 

centres of mass of the ball and the clubhead. The graph shows the club head traveling at 

50 ms- I prior to impact during the course of which it falls to 42.0 ms- I
. The ball is 

initially static and its central node (433) begins to move slightly after initial impact. 

After separation the ball attains a maximum velocity of77 ms- I
. Fluctuations in the 

velocity of the ball after impact are due to multiple reflections of the stress waves and the 

non-spherical shape of the ball leading to corresponding small variations in the 

instantaneous velocity of node 433. The clubhead speed after impact is slightly higher 

than would be experienced in an actual golf shot as the head mass was 322 grams, 

somewhat greater than 255 grams which is typical of a 5-iron (and confirmed by 

measuring a number of heads). 

4.2.4 Post processing of numerical output 

Abaqus/Post is also capable of producing user-readable files for further post-processing. 

This method is used in the next sections to obtain further information on the behaviour of 

the ball after impact. The large number of restarts generated by AbaquslExplicit can 

make direct manipulation of the output within the Abaqus/Post environment, a tedious 

business. Performance can then be improved by the use of macros contained in journal 

files (with extension .jnl). 
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4.2.5 Derivation of ball flight predictors 

The critical performance indicator in golf is the flight of the ball and a method is required 

to admit the calculation of the initial ball flight descriptors. Only by a comparison of 

these dynamic variables can the effect of differing clubhead or impact conditions be 

evaluated. The key variables are the initial translational velocity of the ball, ie both 

speed and trajectory, and its spin rate about some principal axis. Various methods were 

developed to determine these from Abaqus output and amendments were continually 

made to improve the accuracy of the results obtained. The following sections give the 

final procedures used, with the occasional note as to problems encountered with previous 

methods. 

4.2.5.1 Speed 

The speed of the ball is best estimated from the behavior of the node closest to its centre 

of mass and, from figure 4. 14, it is seen that this fluctuates after impact. An' average' 

speed is then of more practical use. From a knowledge of the position of the centre of 

mass at various instants after the ball has left the club head, the average speed could be 

obtained within any particular time interval. Figure 4.15 shows the average speeds 

returned for the ball after impact. The clubhead is the solid 30° loft model and the 

friction coefficient of the interface was varied from 0.0 to 1.0. The effect of the 

coefficient of friction is discussed later and here it is the integrating period which is to be 

considered. The legend indicates the period over which the displacement of node 433 is 

averaged and the intervals are chosen from 1 ms after the start of the analysis so as not 

to include the acceleration phase of the ball as this will vary for different impact 

conditions. An average taken over alms interval starting 1ms after initial impact was 

originally used since the analysis was originally only run for a (simulated) time of2 ms. 

However, later experience with longer runs showed that the calculated speed was too 

high. This arises because the instantaneous centre of mass of the deformed ball is not 

coincident with the (initially) central node shortly after impact and the backspin causes 

the central node to translate more than the instantaneous centre of mass. A velocity 

estimate averaged over a longer period, such as the 4 ms period starting 1 ms after initial 

impact, should give a more reliable result but this includes the 1-to-2 ms interval and so 
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was rejected. A later period, say a 1 ms interval starting 4 ms after impact allows for the 

ball to recover an almost spherical shape but the shorter duration of this period leads to 

less reliable results. After much trial and error, the period from 2-5 ms was adopted. 

Although this technique is open to discussion and may be improved it is superior to the 

method oflwatsubo et al (1998), who calculated post-impact ball velocities by taking an 

average of all the instantaneous nodal velocities within the ball, a method also originally 

used in the current work. After impact node velocities can be shown to fluctuate widely 

between computational iterations and a less noisy solution is obtained from nodal 

displacements over many iterations. 

4.2.5.2 Direction 

To admit comparison of different ball flights, it is appropriate to resolve the trajectory 

vector into two angular components, vis launch angle and dispersion. Launch angle is 

defined as the angle the trajectory vector makes with the ground while dispersion is 

defined as the angle away from the intended target line (the 3-axis in most of the 

analyses). 

The launch angle of the ball is best calculated from its displacement during a period after 

the ball has left the clubhead, and may be expressed as a vector. However each impact 

condition results in a different position at which the ball and club head separate and the 

vectors for different impacts can not be compared directly This problem is 

demonstrated in Figure 4.16 which shows the initial position of the ball, and two 

exaggerated, different ball position vectors a and b, recording their trajectories for a 5 

ms analysis. An approximation uses the initial position of the ball, in this way the 

vectors caused by different impact conditions can be compared. 

The displacement vector is best estimated at an instant as far away from impact as 

possible such that the error in approximating this by the vector from the original starting 

position is minimised. Figure 4.17 shows how the error is diminished for an instant 

further away from impact, for the ball trajectory b. The origin vectors to the 2 and 5 ms 

instant are shown as dashed lines. Using the central node of the ball in calculating the 
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coordinates of the ball, figure 4.18 shows the launch angle calculated for the steel 

club head, with varying coefficients of friction. 
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The legend gives the instant from which the launch angle is calculated. Showing that at 

2 ms the launch angle is underestimated whereas by 4 or 5 ms the calculation converges 

to a constant value. The position of the ball at 5 ms after the analysis is therefore used 

to describe the launch conditions. Mishit shots, which exhibit greater dispersion, suffer 

from the same approximation error and again the 5 ms position is used to describe the 

dispersion angle. 

4.2.5.3 Spin rate 

Spin on the ball is a key performance variable and its measurement needs to include not 

only backspin but also sidespin. Initial backspin rates were calculated by measuring the 

angle through which the ball rotates over a given time period, based on measurements 

from plots of the displaced mesh. This method was both manually intensive and was 

prone to human error. A numerical method was then devised, using the velocities of 

antipodal nodes on the surface of the ball, perpendicular to the axis of backspin. This 

method shows large fluctuations due to the stress waves traveling within the ball. 

Averaging the spin estimates over time gave a reasonably constant value but the method 

does not allow for the spin calculation other than backspin. To overcome this problem, 

a method was developed based on mapping a visible hemispherical surface of the ball 

onto a plane grid. In this method all the instantaneous nodal coordinates on one 

hemisphere of the ball are noted and vectors from the instantaneous centre of the ball to 

these nodes are calculated. The angle through which these vectors turned in a fixed 

period was then calculated. Figure 4.19 shows a view of one side of the ball with node 

numbering and figure 4.20 a 2 dimensional mapping of these nodes onto a plane grid. 

The vector which rotates the least is closest to the axis of spin, and the rotation of the 

vectors perpendicular to this vector gives the spin rate about this axis. These can be 

averaged to remove the fluctuations due to the stress waves. Figure 4.21 shows the spin 

rates generated for a steel club head, with varying friction. The legend shows the period 

over which the vectors are calculated. The spin rates nearly agree, with the exceptions 



CHAPTER 4 The finite element impact model 126 

of the estimates between 1-5 ms, 1-4 ms and 2-5 ms. This is due to the integrating 

period being too great and the vector rotating through an angle 8 > 1800
. The angle 

between the vectors was then taken as 360 - 8 by the automatic solution algorithm and 

inversion of the graph occurs. This is common in the analysis of highly lofted clubs 

which produce higher spin rates. Corrections for this error are included in subsequent 

calculations. Amongst the other curves, closer examination revealed the 1-2 ms interval 

to overestimate the spin rate, due to the deformation of the ball. With an increasing 

fraction of the later period of the analysis, convergence is seen towards the values of the 

spin calculated between 4-5 ms. A larger period however is beneficial in smoothing out 

any fluctuations and the period 2-5 milliseconds is used in the current work. 

4.3 Clubhead properties, straight hit 

For an investigation of clubhead effects on impact it is first necessary to precisely 

categorise the shots possible in golf. This is best done in the current work by separation 

into two distinct categories using the terms, straight hit and mishit. These terms 

familiar in golfing phraseology are chosen to simplify an approach to the results and 

should not be confused with their common usage in describing ball flight A straight hit 

is defined as a shot in which no rotation of the clubhead occurs during impact, this is an 

erroneous concept in a real situation as explained in section 4.4 but is an acceptable 

approximation for analysis. For straight hit impact studies the clubhead may therefore 

be constrained about the necessary degrees of freedom to restrict rotation of the 

clubhead or if this is not convenient for the analysis a clubhead rotation of less that 10 

may be considered as a straight hit. This definition of a straight hit therefore includes 

shots with open and closed clubfaces, clubhead trajectories at impact up or down, in to 

out and out to in. 

By comparison a mishit is a shot in which the clubhead rotates during impact, such 

analyses require a free body clubhead, fully unconstrained. Mishit shots are covered in 

section 4.4. 



CHAPTER 4 The finite element impact model 127 

It is important to note that the term straight hit or mishit is not connected with the 

flight of the ball but rather the clubhead approach velocity and position. It is 

totally possible that a mishit shot hit above and to the left of the sweets pot off a 

closed club, of reduced loft, hit down on the ball will fly perfectly straight. 

4.3.1 Material 

As mentioned in chapter 1 there are many references in golf literature to the effect 

clubhead materials may play in a golf shot. A change in the rules in 1992 allowed for 

the use of insert materials in all clubs and much speculation over the relevance of insert 

material properties still abound. The number of material properties that can affect the 

mechanical study of impact are however limited. The following sections use the 

computational model to investigate and quantifY in isolation, the role each material 

property plays. 

4.3.1.1 Stiffness 

As club heads are durable products, with no permanent deformation occurring after 

impact with a golf ball (in normal use) any deformation is elastic and the elastic modulus 

of the club head is therefore a key parameter to be investigated. 

A finite element analysis of impact was carried out using a range of elastic moduli, from 

a low value of 0.01 GPa typical of polyvinyl chloride (PVC) or a foamed polymer, 

through 0.1 GPa representative of low density polyethylene (LDPE) to 1000.0 GPa, that 

of diamond. This large range was chosen to ensure that any effects over the range of 

materials currently or possibly used for head manufacture could be well covered by the 

extremes. The friction coefficient and density were held constant at 0.6 and 7800.0 

kgm-3 respectively, the former being thought at the time to be typical of a steel clubhead, 

(see results on friction). The results are given in terms of the subsequent ball flight in 

figures 4.22 to 4.25. 

Figure 4.22 shows over the whole range of modulus the dispersion of the ball is between 

+0.3° and + 1.3° (sign convention given in section 4.1.4). This is caused by rotation of 
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the clubhead during impact as a result of the ball being slightly offset relative to the 

centre of mass of the head. To simulate an absolutely straight hit, the club nodes could 

be constrained in the relevant degrees of freedom or the club translated to a new position 

prior to impact. The former is not an option as such boundary conditions would lead to 

spurious deformations of the clubhead. However, it was felt that < 1.5° dispersion of 

the ball and the < 1.0° rotation of the clubhead was representative of a 'real' shot a 

player may consider straight and no change in the model was necessary. Over the range 

of realistic moduli possible for club heads the dispersion changed by a negligible 0.1 ° and 

it is concluded that elastic modulus has no effect on the dispersion for an approximately 

straight hit. 

Elastic modulus was observed to have a greater effect on ball speed (figure 4.23) and, 

contrary to the perceived wisdom that a stiffer club head produces increased speed, the 

results show that increasing the stiffness beyond that of current materials causes reduced 

ball speed. The result shows a peak of73.2 ms- l for a modulus of 10.0 GPa, typical of 

soft woods and epoxy, and a slightly lower 72.7 ms- l for 200.0 GPa, typical of steel, 

indicating that decreasing the modulus from current materials would increase ball speed, 

although only slightly. Below 10 GPa the ball speed drops rapidly as the deformation of 

the club head leads to energy loss and less energy being stored in the more efficient ball 

deformation. 

The spin rate (figure 4.25) also appears to follow in accord with the speed of the ball 

varying little over a range of modulus suitable for club head manufacture. The spin 

peaks at 181 revs/sec, at 0.1 GPa, and is relatively constant over the higher modulus 

values, showing less than 1 revs/sec variation between 100.0 and 1000.0 GPa. Below 1 

GPa the spin behaviour of the ball becomes unpredictable due to the large club head 

deformations and the coarseness of the finite element mesh. If such modulus club heads 

need to be analysed more accurately a refined mesh is advisable. Results for the launch 

angle (figure 4.24) are in accordance with the other results showing little variation over 

higher modulus values. 

It is possible that the slight increase in speed with reduction in modulus results from 

additional force produced by elastic recovery of the club head as the ball leaves the face. 
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The deliberate use of such an effect is specifically banned under the rules of golf (R & A 

1997), but they admit it will inevitably occur to a greater or lesser degree with any 

material chosen (Fay 1998). An examination of the stress and strain in the clubhead at 

the maximum deformation of the ball, gives maximum values of, -4.1x107 Pa I -2.2x10-3 

for the 10.0 GPa clubhead and -4.3x107 Pa I -2.2x10-5 for 1000.0 GPa. 

Another explanation for the slight increase in speed may be that stress waves from the 

impact are reflected around the model geometry such that they are focused at the 

clubface in a manner coincident with the balls recovery phase. The stress wave velocity 

is dependent only on the modulus and the density and this is examined in more detail 

using further analysis in section 4.3.1.5. Indeed if stress wave reflection is a genuine 

effect, the modulus results given here may be unique for this geometry of clubhead alone. 

Of course a deformed clubhead will also lead to a change in the pattern of reflection of 

the stress waves, but this is to be considered a second order effect. 

Another likely cause of the observed modulus effect is the increased contact time which 

would be expected with a more compliant clubface. Greater deformation will lead to a 

longer ball/clubhead contact time and the ball being present for longer during the 

clubhead's elastic recovery phase. Contact times from the finite element analysis can be 

slightly misleading as the automatic increment time steps are chosen based on the 

deformation wave speed, in turn based on the material stiffness and density. Close 

examination of the model revealed an acceptable accuracy of±2.5 ~s could be achieved 

in studying contact times. The 10 GPa model gives an impact time of 440 ~s, and for 

1000 GPa 435 ~s. The maximum energy transfer to the ball thus occurs at a modulus 

where the contact time and elastic recovery of clubhead face are optimised such that 

effects of damping are minimised. However, the exact modulus to impart maximum 

energy to the ball must also depend on the ball properties as they affect contact time. 

Results in the current work are therefore particular to the ball material properties 

prescribed and care must be taken in drawing firm conclusions. 

Cochran & Stobbs (1968) reported the contact time of impact as being reasonably 

invariant for most golf shots, for the limitations of the test equipment they used. The 

computational model shows differences in contact time with modulus and more so with 
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clubhead approach velocity, (see later section). However the significance of these 

differences « 5 /.ls) is not likely to be perceivable to human golfers. 
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This elastic recovery of the hitting surface during impact is more clearly demonstrated 

with an analogy to a tennis shot where the ball remains on the racquet strings for a longer 

period, approximately 5 ms (Brody 1995). A tennis ball has a much lower coefficient of 

restitution than a golfball and is designed to lose energy on deformation, the 

specification for tournament quality is that the ball rebounds to between 53 and 58 inches 

when dropped from 100 inches onto a concrete floor (International Tennis Federation, 

(ITF) 1998). The ball is thus designed to dissipate approximately half of its energy 

during impact with a rigid surface, and racquets are constructed to reduce ball 

deformation and store the kinetic energy of the traveling ball as elastic potential energy in 

the strings. The recovery of this potential energy during impact imparts speed and spin 

to the ball. Less stiff stringed racquets allow for longer contact times and corresponding 

reduced ball deformation, but at the expense of greater energy loss due to friction 

between the elastic strings (Brody 1995) and possibly less energy return to the ball as the 

strings do not fully recover before the impact ceases. An optimum between the two 

effects is desired for maximum power. The fact that more power may be obtained from 

less stiff stringed racquets can appear as a revelation to the average player (Brancazio 

1988). Incidentally, when a tennis shot is required to impart speed to a reasonably 

stationary ball, as in a serve (cf. to golf), the professional players are seen to hit of a part 

of the racquet known as the dead spot (Knight 1997). At this point near the tip, most of 

the energy of the racquet is transferred to the ball, and in an opposite experiment a ball 

dropped on the racquet at this point stops dead, the strings return none of the elastic 

energy. The same theory is applied in golf to give the axiom that stiffer clubfaces impart 

more energy to the ball, as less energy is lost in club deformation (though it is noted that 

the tennis player may use a point close to the tip of the racquet as it will be travelling 

faster). However, it would appear from modulus results here that, as the golfball 

deforms and impact lasts a finite time, a slightly longer contact time allows for more 

elastic recovery of the face. The current brouhaha about the spring-back effect, and the 

new Enhanced Rebound Velocity Test Protocol (USGA 1998) concerns measuring any 

advantage the elasticity of the clubface may offer. In the test a maximum coefficient of 

restitution of 0.822 for ball/ club head impact has been defined from that of a standard 

titanium plate. The modulus results here indicate that no significant advantage is to be 
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had from a change in the elastic modulus, at least for a reasonably solid club head such as 

an iron. However, the overall stiffness of the clubface can also be changed by an 

alteration of the geometry, for example in a modern driver a thin face may allow greater 

deformation. This indeed is the concern of the ruling bodies as the new test procedure 

applies only to metal 'woods' with 10ft ofless that 10°. 

Irrespective of the mechanism, the theory that increased performance results from stiffer 

clubfaces is shown to be in doubt (at least for irons) and current results predict slight 

improved performance by reducing the modulus. However this may lead to an 

infringement of the rules of golf, which prohibit the deliberate use of the elasticity of the 

clubface to aid the ball flight, even though it may already playa part unintentionally in 

club head designs. It must be remembered however that the observed effects of 

changing the elasticity of the club head are small, particularly over the range of materials 

currently used and likely to figure in future club head designs. Of greater interest is the 

relative lack of effect that stiffness has on the ball behavior. This is not in accord with 

practical experimentation using different real materials but there it is not possible to alter 

the stiffness alone. Other material properties must then be examined and a return to the 

elasticity question will be made later, during an examination of the role of friction. 

The lack of effect of a change in modulus allows analyses to be performed with a 

computationally cheaper rigid club head model, (section 4.1.1), without great deviation 

from the results of using the expensive solid model. The validation for using the rigid 

clubhead is based on its performance against the solid club head, such a verification is 

given after the effect of friction is examined using the solid model. 

4.3.1.2 Friction 

Given the results of section 4.3.1.1, further FE analyses were carried out using the solid 

club head model, with all the properties of steel held constant other than friction 

coefficient (11). The Abaqus version used, has a coulomb friction model that does not 

distinguish between the coefficient of static friction and dynamic friction. Values of 11 

were first varied at equal intervals from 0.0 to 1.0 but on inspection of the results, further 

attention was given to the lower friction range. Again no boundary conditions were 
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applied to the club head and an approximate straight hit was made. This was expected to 

show slight dispersion of the ball no greater than 1.3 0, due to the rotation of the 

club head caused by the ball being offset from the sweetspot. 

Figure 4.26 shows the effect of friction on launch angle. For Il = 0.0 the ball leaves the 

clubhead with nearly the loft of the club i.e. almost normal to the face. This is in accord 

with classical rigid body theory (Gobush 1995) as no tangential force is present to reduce 

the trajectory below the loft angle. The ball trajectory is not quite 30° as the impact 

force is directed below the centre of mass of the head and rotation occurs to reduce the 

loft of the club during impact. This effect is considered in section 4.4 as a mishit. For 

Il = 0.0 the deformed ball slides freely up the clubface during impact then as friction is 

increased to Il = 0.3, sliding is reduced along with the launch angle. For Il > 0.3 the ball 

has stopped sliding and the ball/clubhead interface remains stationary throughout impact 

while the launch angle is seen to increase asymptotically to 23.8° by Il = 1.0. 

Figure 4.27 shows how friction changes the speed in a inverse manner to that of the 

launch angle. As the ball slides up the face, with Il = 0.0, its final velocity is reduced as 

ball compression is reduced. As friction is increased to 0.3 and sliding stops, the ball 

increases in velocity to a 72.8 ms· l
. At Il> 0.3 the ball speed drops to approach a 

constant value of72.5 ms· l
. Both speed and launch angle results show little effect in 

increasing friction above the level at which the ball/clubhead interface remains stationary. 

The appearance of this stationary interface contradicts the results based on rigid body 

theories exemplified in many work including Jorgensen (1994), that sliding and rolling 

initiate spin. The current results however support the experimental work by Mather and 

Immohr (1996), who report surprise that impact interface shapes showed only small 

variations from a circle. 

Interestingly, figure 4.28 shows the current model also runs counter to classical spin 

theory in its prediction of spin rates at zero friction, indicating that Il = 0.0 produces 10 

rev/s and that this rate increases rapidly to 178 rev/s at Il = 0.3. Beyond this, the rate 

decreases to 135 rev/s. Indicating that higher friction does not always playa role in 

increasing spin rates, this does conform to rigid body theory that once maximum spin 

(rolling) is achieved, further contact - or higher friction leads to a reduction in the spin 
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rate due to rolling friction. However this cannot be the cause here as the interface is 

static. This and the fact of spin at !l = 0.0 leads to a re-examination of the model. 
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To confirm that, at zero friction, the ball was indeed sliding up the clubface, the 

coordinates of a ball node lying within the interface were plotted. If the club moves at 

constant velocity, such a node's displacement against time in the 2-direction would 

appear to be linear. The coordinates of the node were also recorded for !l = 0.2 which, 

showing near maximum spin rate, should indicate no movement in the 2-direction during 

contact. Figure 4.29 gives the coordinates of the node during a 0.5 ms analysis, 

confirming that the ball is sliding up the clubface at !l = 0.0 and remaining stationary for 

!l = 0.2. The small fluctuations ofthe displacement of the node when sliding up the face 

under zero friction can be explained by the deceleration of the club, head deformation 

and the reflection of stress waves within the ball. 

The spin induced at !l = 0.0 cannot be explained by current theory, due to the absence of 

a tangential force. At!l = 0.2, the spin rate of 178 revs/sec, cannot be attributed to 

rolling of the ball, nor to a tangential turning force which is less than the limiting static 

friction, as the ball is stationary. Other forces must account for the spin rate generated 

in the model. The prediction of spin at zero friction confirms one of the initiators of spin 

must be a turning moment about the centre of mass due to the deformed shape of the ball 

model. Although this may be due to the approximation of a sphere by finite elements 

leading to slippage of the ball during the first stages of impact (see section 4.3.2.2), it is 

also to be expected that a turning moment will be present at non-zero friction values due 

to the non-symmetrical deformation of the ball. 

The normal force, rather than acting at a point in rigid body theory, is distributed over 

the interface such that its resultant effect is a turning moment about the centre of mass of 

the ball, which is no longer in a perpendicular direction from the centre of the interface. 

Rather than consider the normal force distribution, the resultant force can be thought to 

occur at the centre of the interface and is shown in figure 4.30 for !l = 0.0. The turning 

moment is a product of the resultant normal force (F n) and its perpendicular distance 

from the centre of mass (A). As friction is increased, the ball does not slide as much and 

deforms up the clubface as shown in figure 4.30 for !l> 0.0. Such deformation leads to 
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an increase in the turning moment arm (AI) and an increase in spin. For friction values 

sufficient to stop sliding the deformation is greatest and the line A I attains its maximum 

value. 

The turning moment about the centre of mass is not the sole cause of spin. As impact 

occurs strain energy is stored in the deformed ball and, during the latter stages of impact, 

this elastic energy is recovered and converted into rotational kinetic energy. An onion 

model for the way this occurs has been proposed by Gobush (1995) as discussed in 

section 1.6.1.1. U sing the same model it can be hypothesized that the outer layers are 

rotated due to the initial deformation, and energy is stored in the springs. As the contact 

time is very short and the deformation wave travels at a finite rate, the first period of 

contact causes an energy gradient across the layers, and the core layers of the ball remain 

relatively stationary. The outer layers have a higher moment of inertia and are held in 

place by the high frictional contact force, the springs thus rotate the core layers anti­

clockwise, and reduce the tangential force the outer layer exerts on the clubhead. This 

was shown in figure 1.10, a reproduction of Gobush's results (1990). During the latter 

stages of impact the deformation strain energy is nearly all recovered and the core over 

rotates and the ball begins to exert a negative tangential force on the clubhead in the 

opposite direction to that at the start of impact. The ball tries to backspin as it leaves 

the clubhead and, with the normal force dropping to zero (at the break of contact), there 

must be a period when the ball slips against the face. 

Figure 4.31 confirms the notations used in describing the forces applied to the clubhead 

by the ball. The normal force perpendicular to the face Fn and the tangential force Ft 

acting upwards along the plane of the face. 

As the maximum frictional force at contact is given as: 

maxF == ~ * f.1 



CHAPTER 4 The finite element impact model 135 

movement will occur if 

F;>~*JL 

F 
=> I-t I> JL 
~ 

where a -ve FtIFn merely represents a tangential force down the face of the clubhead. 

Figure 4.32 shows the variation ofFtlFn during contact calculated from Gobush's (1990) 

result from an experiment with a plate at 20°. The scale is chosen for clarity of the 

results, the portion of the graph missing reaches a minimum of -26.6 at 450 IlS. 

Movement of the ball on the clubface only occurs if -Il > FtIFn > Il. If Il > 0.2 movement 

only occurs in this instance during the latter stages of impact when the ball is trying to 

backspin against the clubhead. This means that reducing the friction coefficient to 0.2 

will have the effect of increasing backspin, a counter intuitive idea. While increasing 

friction above 0.2 will reduce the backspin. These calculations from Gobush's results 

and the finite element model are confirmed by Leiberman (1990) and the USGA 

experimental finding that lower friction can increase spin rates for certain lofts. The 

optimum friction coefficient is calculated computationally for other lofts in section 

4.3.2.2. 

The results show that for 30° loft greater values of friction only slightly decrease the spin 

rate, and this would be statistically difficult to observe in practical examination without 

sophisticated equipment such as available to Leiberman (1990) and the USGA. This 

explains Cochran and Stobbs (1968) early finding that reducing the friction did not affect 

spin rate; their manufactured smooth club may not have reduced the friction sufficiently. 

Returning to the question of elastic modulus, it is apparent that less stiff material will 

deform and increase the effective friction, holding the ball in place and allowing more 
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deformation, leading to an increase in the spin rate and velocity. Modulus analyses 

similar to those described in section 4.3.1.1 were repeated with zero friction. The 

results for ball spin are shown in figure 4.33 (other ball flight properties are given in 

appendix B-4). The results indicate that decreasing the modulus from 5.5 GPa leads to 

higher spin all in the absence of frictional tangential forces. Speed however is reduced 

as less stiff materials deform too much, the ball compression is reduced and a longer time 

is needed for the elastic recovery of the face. It is unlikely therefore that deformation of 

the club head at friction values high enough to sustain a static interface will result directly 

in any improved ball flight, and modulus effects are again seen to be negligible. 

Rigid model verification 

The lack of importance of the modulus allows the use of a rigid model that can predict 

other clubhead effects. Such a model does not behave totally in the manner of the solid 

model as it does not deform to any extent and quantitative differences are to be noted. 

Figures 4.34 to 4.37 show the differences between the rigid and solid clubhead with 

varying friction. For all ball flight properties the discrepancies between the two types of 

clubhead model can be observed to be reasonably small. Speed varies consistently by 

1.5 ms-\ with the rigid clubhead generating a higher ball speed as no energy is used in 

club head deformation. Launch angles for the rigid club head are approximately 10 

greater for all friction values sufficient to promote a static interface. Dispersion results 

are in accordance although the magnitude differs by O. 10. S pin results appear similar 

but, due to the steep gradient of parts of the curve, the range can vary by up to 10 revs/so 

Other verification models based on simplified regular geometries, with varying mesh 

densities and different loft angles confirmed the results given here. 

4.3.1.3 Density 

Changing the density of a homogenous material used in a club head has the direct effect 

of altering the mass and the moment of inertia. The mass is important in a golf shot as a 

higher mass imparts more velocity to the club head However the relationship is 

nonlinear. Theory based on the conservation of momentum and the coefficient of 

restitution can be used to predict club and ball speeds before and after impact and is 

proved and discussed in section 1.6.1.2, results from a computational study of mass 
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effects is given in section 4.3.2.1. The rotational inertia of the club head is only 

important when turning moments are applied to the club head as in a mishit shot These 

are considered in section 4.4. 

Both density and elastic modulus affect the stress wave velocity through the material. 

As already mentioned this may affect the impact and be noticeable in the ball's flight 

descriptors. Stress wave velocity is examined in further detail in section 4.3.1.5. 

4.3.1.4 Hardness 

In engineering, 'hardness' is measured by a test, such as Vickers (Ashby 1996), in which 

a material such as diamond makes a permanent indentation in the test-piece. The size of 

this indentation is then (inversely) expressed as the 'hardness' of the test-piece. 

Hardness is then a composite measure of the evolution of the yield stress in a material, 

from its initial value, as plastic deformation occurs. Hardness has been mentioned in 

some golfliterature (Cochran 1995) as being an important material property in the 

construction of both the ball and the clubhead but if engineering hardness is important, it 

can only be indirectly. It is most likely that such reports have confused hardness with 

stiffness. The maximum stresses in the head that the FE model predict (4.3x107 Pa) 

show that plastic strains are unlikely to occur and hardness is not a parameter concerning 

clubhead/ball impact. 

Although hardness may be an issue in club design and manufacture, it is not a desirable 

property for golfers to consider unless they wish to permanently deform their club heads ! 

4.3.1.5 Stress waves 

The modulus results indicate that the velocity of the stress waves in the model may playa 

role in the ball flight. It may be possible that increased ball speed occurs when the 

clubface is on the outward phase of a stress pulse. The degree to which they can have 

an effect is investigated here. 
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A finite element analysis was carried out varying the density of the club head such that the 

model mass was varied from 0.025 to 0.5 kg. Using this range of mass it is to be 

expected that the subsequent ball velocity will be affected to a large enough extent to be 

noticeable. This led to densities with a range from 0.6 to 12.1 Mgm-3 (low density 

plastics and heavy metals respectively), increasing the density further will not lead to 

higher ball speeds, as the mass fraction is approaching unity (see section 4.3.2.1). The 

clubhead stiffness was held constant at 200.0 GPa to give a range of stress wave 

velocities from 4,000 to 18,000 ms- i
. Although only one of these combinations of 

density and stiffness exists, ie in steel, it allows for stress wave velocity effects to be 

evaluated. To indicate the magnitude of the wave speed, 5000 ms- i (typical of steel) 

would take 1.0 Ilsec to move through 0.5 cm of steel, approximately 1/400 th of the time of 

impact. The results of the analysis are shown in figure 4.38 along with the analytical 

solution, where the coefficient of restitution was calculated from the 0.300 kg clubhead 

computational result. Figure 4.38 does imply speed is dependent on stress wave 

velocity, but this is only as stress wave velocity is dependent on the density and in turn 

this affects the clubhead mass. 

The velocity of the ball from the finite element analysis is close to the analytical solution, 

the curves appear to diverge to a small degree as the wave speed is increased. This is 

due to the coefficient of restitution not being held constant within the computational 

analysis as it is with the analytical solution. But the small difference remains constant 

and is not of consequence. The results indicate that altering the wave velocity does not 

have any significant effect on the final velocity of the ball. 

The analysis used the solid 5-iron clubhead shown in figure 4.1. From contour plots, the 

stress at impact is seen to focus on the base of the club, figure 4.39, and it may be that 

this geometry of clubhead does not reflect stress waves back to the impact area but 

rather concentrates them at the base of the club. To elucidate to what extent geometry 

may increase any stress wave effect, 3 different clubhead meshes were used, each with a 

different geometry but identical, volume, density and centre of mass (except in the 3-

direction). Each clubhead had the same shape, except for the rear, behind the hitting 

face and had zero loft. Figures 4.40 to 4.42 show the design of each clubhead back, A­

flat, B-raised cross, C-indented cross. 
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The results of the analyses are compared in table 4.3, and show little effect between 

clubheads. Differences are most likely due to the mesh designs and the increment 

stepping used in the AbaquslExplicit procedure. Higher quality mesh designs including 

angled geometry club heads are needed to examine further to what degree stress waves 

may affect the ball flight. While better material models of the ball could also be used to 

examine the effect of stress waves within the ball. 

Clubhead 
A-blade B-raised C-indent 

Speed (ms-l) 89.03 88.87 88.93 

Spin (rev/s) 3.23 2.37 1.92 

Launch e) 0.09 -0.05 -0.06 

Dispersion (0) -0.12 0.02 -0.05 

Coefficient. of restitution 0.905 0.901 0.903 
--~ 

Table 4.3 Behaviour of different clubhead designs. 

4.3.2 Geometry 

4.3.2.1 Mass 

One of the simplest physical differences between club head designs is the total mass of the 

head. It has already been stated that the head mass currently used in golf clubs has been 

found by evolution and, as the loft increases and the club length gets shorter, a swing 

weight matched set of clubs requires that the heads become heavier. The effect of the 

club head mass on the impact, when the ball and head are considered as separate bodies 

has typically utilised the analytical solution: 

Vzl 
b 

Mc~O(l+e) 

Mc+Mb 

A computational analysis was carried out using a rigid body clubhead of 30° loft, as 

verified in section 4.3.1.2. The clubhead mass was varied from 0.025 kg to 0.5 kg with 

an initial velocity towards the ball at 50 ms- l and friction coefficient of 0.6. The 
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clubhead had the same inertia properties as the solid model, although the centre of mass 

was moved horizontally to be in line with the ball such that the club head would rotate a 

negligible amount during contact and minimal ball dispersion would occur. The 

computational model allows the total mass of the club head to be changed without a 

corresponding change in the rotational inertia, clearly not a practical achievement. 

However to simplify and speed up the computational time needed for analysis, 

constraints were applied to the clubhead to prevent translation in any direction other than 

that of its initial motion. These boundary conditions were observed to have a minimal 

effect on the results, as the centre of mass was in line with the ball at impact. 

Figure 4.43 shows how clubhead mass affects the initial ball velocity, and confirms the 

relationship shown in the analytical solution that as the club head mass is increased it has 

a diminishing effect on the ball velocity. In the extreme, with a clubhead of 0.5 kg the 

ball velocity was 78.8 ms"\ an increase of 6.5 % over 74.0 ms"! at 0.25 kg, and it must be 

remembered that a heavier clubhead could not be swung by a golfer at the same velocity. 

The launch angle for the ball at varying clubhead masses (figure 4.44) is below the loft of 

the club, due to friction and ball compression. At low mass the launch is reduced further 

as the compression of the ball is reduced and the ball moves away with less spin. The 

relationship between the spin and the club mass is comparable with the launch results and 

is not included for conciseness. Nor is the dispersion of the ball which, due to the 

clubhead boundary conditions shows dispersion no greater than ± 0.02°. From the 

results for ball velocity and launch it is possible to calculate the velocity component for 

the ball in the 30° direction, that initially normal to the clubhead. Figure 4.45 gives the 

normalised ball velocity and that for the analytical solution, where the coefficient of 

restitution was 0.971 and was calculated from the Abaqus result at club head mass of 0.2 

kg. The clubhead velocity used in the analytical solution is the normal component of 

velocity. The two curves are in close agreement, with the only differences being 

attributable to the changing coefficient of restitution used in the computational model, an 

estimate of this value may be obtained using: 
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e= 
v,1 

b 

Me 
M *Vo 

e +Mb e 

-1 

Where Vb! represent the Abaqus calculated ball velocity in the normalised direction, and 

Veo the initial club velocity in the normalised direction. 

Figure 4.46 shows this estimate for the value of e used in the Abaqus computation, and 

indicates that e decreases at higher mass. The values, although only estimates due to the 

boundary conditions, are close to unity indicating that the collision is near perfectly 

elastic. This is to be expected as there is no specified damping present within the ball 

other than by default for numerical stability. Actual values of e for the ball/clubhead 

impact have been rarely published. Cochran and Stobbs (1968) quote values of 0.68 -

0.70 for top class balls, although this is expected to have changed over the last 20 years. 

The rules of golf have indirectly specified the maximum coefficient via the initial velocity 

test (Rules - Appendix III). The possible amendment to the rules of golf (Rules -

Appendix II, Enhanced Rebound Velocity) specifies a maximum value from a 

standardised titanium plate of 0.8222. The computation model does not calculate the 

coefficient but rather relies on a specification of the damping within the material models, 

in this case the ball. If the model is to accurately represent any ball construction it 

would be important that these properties were accurately represented. Unfortunately 

knowledge on such engineering properties of materials is scant. 

4.3.2.2 Loft 

Another of the most striking geometrical differences between club head designs is the 10ft 

angle of the club and typical values were given in section 1.3.1. Computational analyses 

were carried out on lofts on a greater range, from 00 to 800 at intervals of 100
. This 

larger range was chosen to ensure that any effects over the normal range would be well 

covered by the extremes. In reality the shorter shafts used for higher lofts mean 

club head speed at impact is an indirect function ofloft. However a constant initial 

velocity of 50 ms·! for all 10ft analyses was chosen to simplify an examination of the 

results. The importance of friction has already been discussed and it was considered 
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necessary that a full range of coefficients of friction be considered for each loft. A rigid 

element model was used to keep construction of the clubhead as simple as possible and 

remove the need to create separate mesh designs. To achieve the desired loft the rigid 

element was rotated about a specific axis and then translated such that the distance to 

impact was the same in all analyses. The distance to impact is a function ofthe loft and 

the circumference of the ball Appendix B-3 gives the values calculated to rotate and 

translate a 00° loft clubhead to a starting position 14.23 mm horizontally from the ball. 

As only loft was being examined the club head was constrained for translation in all 

directions other than that with which it is initially traveling. The error in using this 

boundary condition over a non-constrained club head was examined and found to be 

minimal in the context of the results presented here. 

00° Loft 

Figure 4.47 shows the ball speed after impact with a 00° loft clubhead, extremes of value 

range from 85.00 ms-I at 11=0.00 to 84.67 ms-I at 11 = 0.14. The first downward trend of 

the graph confirms expectation that as friction is increased, less compression of the ball is 

allowed, the material in contact with the face would be under tension and resistance to 

elongation would reduce overall ball compression. This phenomenon would be a 

negligible effect in terms of a golf shot and a variation in value less that 0.5 ms-I confirms 

this. The graph shows abrupt changes and this is due to the mesh design, the sensitivity 

of the mesh is also shown in figures 4.48 and 4.49 for launch and spin. The launch angle 

variation is less than ±0.000025° and the spin less than ±0.5 revs-I. No negative values 

of spin (or forward spin) are recorded as the automatic method calculated the absolute 

value of rotation and not the direction. This is not a problem as in all analysis the 

direction of spin is clearly seen from post-processing unless the spin rate is negligible. 

Dispersion of the ball is not shown as the club is constrained not to rotate and only 

minimal dispersion was seen, values for dispersion are comparable to those of launch. 

The values given here for 00° loft are important as they indicate the computational errors 

to be considered in other analyses. 
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10° Loft 

Results for speed, launch, and spin are given in figures 4.50 to 4.52. Over the range of 

friction speed varied by less than 1 ms-1 and can not be considered significant in view of 

the previous results for 00° loft. This in itself is significant as it implies that speed is 

independent of friction for low loft clubheads. The launch of the ball drops from the loft 

of the club at!..l = 0.0 to a minimum of7.5° around!..l = 0.1 before slowly rising to 8°. 

At !..l = 0.0 the 10° launch is due to the absence of any tangential forces from the 

club head, as the friction and tangential force increases the ball launch is reduced to a 

minimum at which the spin would also be expected to be a maximum. This is confirmed 

by the spin curve showing a maximum spin rate of 55 revs -1 at !..l = O. 1. Increasing 

friction beyond this value causes an increase in launch and reduction in spin as the 

club head is able to resist rotation of the ball and apply an upward tangential force for 

longer during the last Ih of impact (see section 4.3.1.2). 

20° Loft 

At 20° ofloft, results (figures 4.53 to 4.55) for speed, launch and spin follow the same 

pattern for 10° with different absolute vales. Speed has reduced 3 to 4 ms-1 over the 

previous loft due to a reduction in the velocity component normal to the clubface. The 

range of speed values for the varying friction is below 1 ms-1 and ball speed can still be 

considered independent of friction. Launch of the ball is reduced from the loft of the 

club at !..l = 0.0 to 15.9° at !..l = 0.14 before slowly rising to 17.5° at high friction. Again 

the trend of the spin curve is an inversion of the launch, with a maximum spin of 122 

revs-I at !..l = 0.14 and 77 revs-1 at higher friction. The initiation of spin, 24 revs-I, at !..l = 

0.0 is clearly shown in the results. 

30° Loft 

The results of the analysis for a 30° lofted clubhead have already been given in section 

4.3.1.2, where a solid model of a club head was used and a rigid model verified. Those 

results differ from the results presented here as the previous club heads had no 

translational or rotational constraints. In the loft analysis here, such constraints are used 

and results for a 30° lofted club head are given in figures 4.56 to 4.58. Speed is still 

shown to be independent of friction with a range of values less than 0.5 ms-I. Launch 

and spin curves are inversions of each other, showing minimum launch and maximum 



CHAPTER 4 The finite element impact model 144 

spin at Il = 0.2, with respective values of 22.1 ° and 163 revs-i. The initiation of spin at 

Il = 0.0 is lower than the previous loft at 5 revs-\ this is examined later after a 

presentation of results for all loft angles. 

40° Loft 

Results for speed, launch, and spin are given in figures 4.59 to 4.61. Speed is still 

independent of friction, with a range of values less than 1 ms-i. Launch and spin results 

are in accordance with each other, respective minimum and maximum occurring at Il = 

0.3. 

50° Loft, 60° Loft, 70° Loft and 80° Loft 

F or conciseness the results for the remaining loft angles are included on the same graphs. 

Figure 4.62 gives the speed of the ball for each loft angle at varying friction. For 50° 

the speed is independent of Il, but at increased loft the speed is seen to increase slightly 

with an increase in Il. This is of little significance in golf, as lofts greater than 60° are 

not common. It is thus concluded that for shots positioned on the clubface that cause 

no rotation of the head during contact, the initial speed of the ball is independent of 

friction. Figure 4.63 shows the result for launch. All launch angles are identical to the 

specific loft at Il = 0.0. As Il increases the launch angles decrease to approximately 40° 

for all club head lofts but at differing values of friction. For 50° of loft the launch 

approaches 36° at Il = 0.3, at 60° ofloft launch approaches 40° at Il = 0.4 and at 70° of 

loft launch reaches 41° at Il = 0.6. For 80° the relationship between friction coefficient 

and launch appears approximately linear, with a launch value of 36° at Il = 1.0. Figure 

4.64 shows the complex relationship between the spin on the ball, the loft and the 

coefficient of friction. For example at Il = 0.3, the lower the loft the higher the spin 

rate, with 50° loft - 250 revs-I, 60° loft - 238 revs-\ 70° loft - 163 revs-I and 80° loft - 90 

revs-I. While for all lofts (other than 80°) an optimum friction coefficient is shown, 

about which increasing or decreasing the friction leads to a reduction in spin. 

It is possible to present the results for loft and friction effect with loft on the abscissa, 

with each curve representing a friction coefficient. This is done in figures 4.65 - 4.67 

for speed, launch and spin. 
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It is clear that the relationship between the loft, friction, launch and spin is not trivial. 

The results in the previous analyses use a club head with specific boundary conditions 

such that the clubhead can only translate in the direction of its original motion. For truly 

free body club heads, lower friction causes the ball to slide up the clubface and rotation of 

the head is likely to occur to increase the loft. This mayor may not increase backspin, 

depending on the friction coefficient. While the turning of the club head - gear effect -

during impact will also have a gear effect promoting forward spin, or at least reducing 

the increase in backspin. Computational models that allow the club head to rotate on 

impact are considered under the term mishits in the current work and are considered in 

section 4.4 where a 30° free body clubhead is compared to the results from here. 

The results for loft given above, all show how spin is induced at Il = 0.0. This has been 

explained in section 4.3.1.2 as being due to the deformation shape of the model ball and 

the presence of a turning moment. However figure 4.67 shows the relationship between 

spin and loft is unpredictable at low values of Il. Further computational analyses over 

the range of lofts was made at 2° loft increments. From graphical post processing it was 

noted that at certain lofts, notably 28° and 62° for Il = 0.0 the ball model exhibited 

forward spin (topspin). Recalculation of the results to include the direction of spin, with 

positive spin representing backspin and negative spin topspin yields figure 4.68 and 

implies that the mesh density of the ball at low friction has an effect on the direction of 

spin. At Il = 0.0 spin direction is dependent upon the position on the ball contact is first 

made, for example below 10°, the node first in contact with the clubface slips up the face 

and causes local elastic deformation. When recovered this energy creates forward spin 

on the ball. At other loft angles and as other nodes are involved in first contact backspin 

may be enhanced for example at 16°. This variation in spin due to the finite element 

mesh is unfortunate but as friction increases it is less noticeable. For Il 0.1 node 

slippage reduces spin at 30° but for other loft angles if increments of 10° are considered 

the specific wave form of the ball spin prediction leads to minimal error. Improved 

results could be achieved by the use of a more dense mesh for the ball model (indeed this 

would be advisable for further analysis beyond the current work). This would lead to 

more expensive computation and it was felt that the current mesh design could still 

provide useful predictions if only care is taken in comparing spin between lofts of Il < 
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O. 1. In addition as ball mesh slippage is consistent for any specific 10ft angle the trend of 

the results presented earlier in this section is not affected. 

4.3.2.3 Mass distribution 

The mass distribution of the club head is characterised by the moment of inertia of the 

head as a free body and the position of the centre of mass. In the instance of a 'straight 

hit' where the impact is such as to cause minimal rotation to the head, the centre of mass 

of the head must be in line with the reaction force of impact and moments of inertia must 

be insignificant as rotation does not occur. Obviously this is not the case in a 'mishit' 

shot where clubhead rotation by definition does occur. Results for the effect of mass 

distribution only on clubhead performance are therefore covered in section 4.4. 

4.3.2.4 Grooves 

The effect of grooves on head performance has not been analysed computationally in the 

current work. This is most partly due to the constraints of time both in terms of man 

and computer-hours. A consideration of the performance of the grooves would require 

a different finite element model to the one used in the current work. A highly refined, 

intense and expensive mesh would be required to model ball deformation into the 

grooves. In addition any third party material taking part in impact, such as water, grass 

or grease would also need to be considered. This would add significant complexity to 

the finite element mesh and possibly put the analysis beyond currently available computer 

hardware. 

However, the analysis of the effect of groove geometry is not essential in the current 

work. The model predicts the behaviour between the club head and ball and does not 

include any third party material. It is a reasonable assumption and has been shown by 

experiment (Woods and Mase 1990) that the ball deforms into the grooves 

proportionally to the applied normal force. The effect of grooves is thus comparable to 

increased friction. Thus in the current work grooves are considered to increase effective 

friction above that present due to the material of the head and the ball. 
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4.3.2.5 Curvature 

It was mentioned in section 1.6. 1.2 that clubheads with the centre of mass a significant 

distance behind the face have a curved face to reduce the gear effect and reduce the error 

on a mishit shot. The gear effect is only noticeable when the club head rotates during 

impact and is thus considered in greater detail in section 4.4 as a 'mishit'. 

Analyses were carried out using analytical curved surfaces (available only in Abaqus 

versions 5.7 onwards) constrained to prevent rotation and permit translation only in the 

initial direction of travel. All of the surface models had the mass properties of the rigid 

clubhead used in loft analyses. The roll or vertical curvature was varied from a radius of 

50 mm to 450 mm, values chosen about the typical roll radius of curvature 279 mm 

(Maltbie 1986). Initial clubhead positions were such that the point of impact occurred 

in each analysis at the same point on the ball and the tangent to the curved surface was 

30°. This is shown in figure 4.69. For a clubhead with a radius of curvature of279 mm 

a 30° tangent indicates a mishit 140 mm above the position of tangent 0°, obviously such 

a point does not occur in a normal club head but this extreme value is taken to facilitate 

an examination of the effect of curvature. The face was positioned such that the 

distance to impact was the same in each analysis, 14.23 mm and the head given an initial 

velocity of 50 ms- I
. 

Figures 4.70 to 4.72 give the results for speed, launch and spin for a varying radius of 

curvature at two different friction values, I..l = 0.06 and I..l = 0.6 and include the results for 

the rigid planar loft analyses at 30°. As expected ball flight predictors approach the 

planar results as the radius of curvature is increased. Deviations from the planar results 

are increased by a reduction in friction, as the ball slides further around the curved face 

and effective loft is increased. This is seen most clearly at a radius of 50 mm, where the 

spin rate was increased 5.5% at I..l = 0.6 and 34% at I..l = 0.06. 

The results show that for a radius of curvature greater than 250 mm, there is only little 

deviation from the results predicted by the tangent to the surface. At this radius using 

the worst case scenario oflow friction (I..l = 0.06), speed is reduced by 0.7% (76.3 to 

75.8 ms- I
), launch increased 3.8% (26.6° to 27.6°) and spin increased 3.7% (67.7 to 70.2 



CHAPTER 4 The finite element impact model 148 

revs-i). This indicates for surface tangents ofless than 30° and radius of curvature 

greater than 250 mm (ie all current clubhead designs), for impact causing negligible 

club head rotation the effective loft is approximate to the tangent at the point of initial 

contact. 

4.3.2.6 Geometrical stiffness 

The effect of the stiffness of the clubhead material as a solid mass, as in an iron club head, 

has already been covered in section 4.3.1.1. During the latter stages of the current work 

a large amount of discussion arose, within the golf community, about the merits of a 

'spring-back' effect from driver clubheads with thin faces. The discussions reached a 

peak in November 1998 with the formal adoption of a new clubhead test for 'Enhanced 

Rebound Velocity' by the USGA executive committee (USGA 1998). The finite 

element procedures used in the current work are ideal for a thorough examination of the 

effect. Unfortunately the restrictions of time have prevented the inclusion of any such 

investigations. Hopefully such further work will be published separately. 

4.3.2.7 Open/Closed 

In all previous analyses the clubface leading edge has been perpendicular to the line of 

travel, which in turn has been coincident with a vector along the 3-axis (the target line). 

If the leading edge of the club head is not perpendicular to the line of motion the club head 

is known as open or closed, depending on which part of the head is closest to the ball 

pre-impact, heel closest - open, toe closest - closed. Such misalignment causes initial 

ball flight away from the target line towards the perpendicular of the face at impact and 

with sidespin. Due to spin the ball continues to deviate sideways during flight caused by 

the forces associated with spin. These forces have been discussed previously in 

connection with backspin, however sidespin on the ball can create a more dramatic flight 

as the spin is not counteracted by another force. For conciseness the term open is used 

to refer to both open and closed situations as their effects are symmetric about the line of 

clubhead travel. 
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The results for open faces can be gleaned from the loft results (section 4.3.2.2) via a 

rotation of the model coordinate system. In this way backspin represents sidespin and 

launch the dispersion angle, for a zero lofted club head. Finite element club heads can be 

created to represent lofted open or closed situations, but the presentation of data from 

such impacts is difficult and not covered in the current work. 

The degree to which the face may be open at impact is expected to be smaller than the 

loft angles examined, and possibly no greater than 20°. While results over this range can 

be inferred from the loft data presented, a closer examination of the spin yields a highly 

interesting effect. Figure 4.73 gives a more detailed examination of spin generated from 

open club heads between 0° and 20° for varying friction. Analyses used a club head 

constrained to prevent rotation and translation about any direction other than initial 

travel. It is clearly shown for all angles, that for friction coefficients greater than 0.2, 

higher friction leads to reduced spin. This counter intuitive fact occurs at 20°, as the 

friction to create maximum spin is 0.14 (see section 4.3.2.2) and increasing friction 

above this value inhibits the spin of the ball as it leaves the clubface. This indicates that 

if the friction coefficient between the ball and clubhead is at least 0.14, creating higher 

effective friction (by the use of vertical grooves maybe) will reduce sidespin. This value 

of 0.14 is for a 20° open face, for less open faces the critical friction is less and increased 

friction above this value more effective in reducing sidespin. 

It is worth noting that these results use a club head that can not translate during contact 

(other than the direction of travel), and this reduces the predicted value of the spin 

compared to a free body club head, with which analyses were also carried out to confirm 

the trend of the result. 

4.3.3 Dynamics 

4.3.3.1 Speed 

The analytical solution (see section 4.3.2.1) predicts a linear relationship between 

club head velocity and initial ball velocity but does not make predictions about the effect 

on spin or launch. Finite element models were created varying the club head velocity 
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from 5 ms-I to 70 ms-\ a 30° rigid clubhead (!l=0.6) was used, constrained not to rotate 

and translate only in the initial direction of travel. Figure 4.74 shows model results for 

initial ball speed, confirming the analytical solution of a linear relationship. Figures 4.75 

and 4.76 give the launch and spin. Over a range of typical clubhead speeds (25 to 50 

ms-I) launch appears to decrease by only 1 ° as the tangential velocity of the clubhead 

increases. Spin shows a clear linear relationship and between 25 and 50 ms-I nearly 

doubles from 71 revs-I to 134 revs-I. 

Making use of the analytical solution, the effective coefficient of restitution ( e) used in 

the finite element model can be calculated. Velocities used for the clubhead and ball are 

normalised to a vector perpendicular to the clubface. Figure 4.77 shows estimates for e, 

decreasing at higher velocity. Values are close to unity (the perfect elastic collision) as 

there is no specified damping within the ball, other than that present by default to aid 

computation. Typical values for e in the golf impact were discussed in section 4.3.2.1. 

4.3.3.2 Trajectory 

The trajectory of the clubhead in all previous analyses has been along a vector coincident 

with the 3-axis. A term often used in golf is 'hitting down on the ball', in this manner 

the club head elevation is inclined below the horizontal and the known effect of which is 

increased backspin. Figure 4.78 shows diagramaticaly how a 30° lofted clubhead with a 

swing elevation -10° (ie inclined below the horizontal) can be considered as motion along 

a vector ZI in a coordinate system yIZI. Results for a 40° lofted clubhead moving 

along ZI can be calculated from the loft data (see section 4.3.2.2). Launch results are 

transformed to the YZ coordinate system via the subtraction of 10°, while speed and spin 

remain the same. This is demonstrated in table 4.4, which gives the ball flight predictors 

for horizontal hits at 30° and 40°, and those predicted by the transformation method for 

10° below the horizontal for a 30° lofted clubhead. A computational analysis with the 

clubhead velocity initially 10° below the horizontal shows close correlation to the 

predicted values. Also included is the predicted and Abaqus value for a 20° lofted 

club head hit down at 10°. 
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One of the problems for the non expert golfer attempting to hit down on the ball is the 

likelyhood that they will reduce the 10ft of the club head at impact. In the worst 

expected case hitting down at 10° with a 30° lofted clubhead may lead to the dynamic 

10ft at impact being reduced to 20°. Table 4.4 shows that such a shot leads to the same 

speed and spin being achieved to a normal 30° clubhead shot but at much reduced 

launch. The effects of which would cause a reduced angle of incidence for the ball 

landing and an increased run after pitch. (These results explained why the authors 

attempts at applying extra spin to a golf ball by hitting down normally only end in extra 

run !) 

The same transformation method may be used for open or closed clubfaces that are 

swung 'in to out', or 'out to in' . A finite element model can be constructed to show all 

these dynamic clubhead elements concurrently in a single analysis, and the ball flight 

predictors can be calculated including the spin rate about a specific axis. A structured 

presentation of such results is difficult to achieve and thus the current work has studied 

each clubhead property in isolation. 

4.4 Mishits 

Mishits are described in the current work as impacts that cause club head rotation. It has 

already been mentioned in a previous section that due to 10ft all impacts between 

club head and ball lead to rotation of the club head This is examined later in section 

4.4.2. Firstly the most obvious type ofmishit giving rise to clubhead rotation, that of 

hitting to the left, right, above or below the sweetspot is considered. 

4.4.1 Off-sweets pot impacts 

The sweetspot is a ubiquitous ball sports term used in the marketing of equipment. 

Manufacturers often make claims about improved size of sweetspot for various 

equipment designs. There are two definitions for the term sweetspot. It may be the 

contact position that leads to minimum discomfort to the player from the sudden 

deceleration of impact (otherwise known as the centre of percussion), or the contact 

position that leads to minimal equipment rotation and the preferred ball flight trajectory. 
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The current work uses the latter definition for the term sweetspot. Section 1.6.1.2 

described how off-sweetspot impact positions lead to club head rotation and that 

increased clubhead rotational inertia (achieved by peripheral weighting) has been shown 

to reduce rotation leading to less deleterious effects from mishits. 

To investigate mishits a series of computational analyses were carried out. These 

utilised the rigid club head model set at a 10ft angle of zero degrees, 11 = 0.6, initial 

velocity of 50ms·! and no boundary conditions. Vertical mishits above the clubhead 

centre of mass were made at 2 mm increments from zero to 40 mm. From theory 

discussed in section 1.6. 1.2 it is to be expected that such mishits will lead to increased 

launch and backspin for iron clubs where the centre of mass is close to the face. Again, 

as in a previous section involving open or closed clubfaces, via looking at the model from 

a different perspective the mishits could be considered horizontal with the spin 

representing sidespin and launch representing dispersion. Results presented here will 

consistently use the terms launch and spin. The mass and inertia of the rigid club head 

was the same as the solid model described earlier in this chapter. Rotation of the 

club head model occurs about the global I-axis and, when studying improved inertia, the 

rotational inertia about the I-axis was doubled in accordance with Whittaker et al 

(1990). It was expected that the positioning of the centre of mass behind the face would 

have an effect on the results, so firstly a series of analyses are presented where the centre 

of mass of the head was in plane with the face, ie at 0 mm behind. The mass was then 

placed at 5 mm behind the face and finally 30 mm behind, typical of a modern wood. 

Centre of mass 0 mm behind face 

Figure 4.79 shows how the initial speed of the ball reduces with the severity of mishit, an 

approximately linear decrease in the ball speed is seen from 15 to 40 mm. Speed 

reduction is due to clubhead rotation and reduced compression on the ball. For the 

double inertia clubhead (di-head) less rotation occurs and speed is less reduced. The 

advantage of the double inertia is increasingly significant for mishits greater than 5 mm 

and as the degree of mishit increases, the di-head approximately halves the reduction in 

speed caused by clubhead rotation. For example; a mishit at 20 mm causes a reduction 

in speed of 13.6 ms·! (from 84.9 ms·! to 71.3 ms·!) for the normal club head and only 7.5 

ms·! for the di-head. Figure 4.80 shows the launch of the ball and the interesting fact 
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that the model predicts for mishits greater than 20 mm the launch angle decreases. This 

is explained by the fact that as the face rotates the tangential component of the club head 

velocity applies a force on the ball of sufficient magnitude to reduce the ball launch 

below that due to the normal force. The model predicts a maximum error in initial ball 

flight trajectory ofless than 1°, indicating that the large error in the trajectory of the ball 

flight, to be expected from a mishit, must come from the sidespin induced. For the di­

head, rotation is less and, as the point at which maximum launch occurs corresponds to a 

mishit of 26 mm, the relationship between the two head inertias is clearly non trivial. 

Indeed at very large mishits, greater than 34 mm, the normal head shows smaller launch 

angles. The mishit which causes maximum launch is dependent on the friction 

coefficient, with a reduction in friction shifting the peak to greater mishits. It is to be 

noted that a 20 mm mishit is significant and for most club heads would lead to the ball 

wrapping around the edge of the club, a situation not considered in the current work. 

For reduced inertia clubheads however the peak will occur below 20 mm and the strange 

fact that increased mishits may lead to less of an error in launch. These facts are not 

likely to have a significant effect on club head design since, as already mentioned, the 

main error in ball flight trajectory must be caused by spin. Figure 4.81 shows how spin 

is induced on the ball and predicts an approximately linear relationship. The di-head 

shows clear reductions in spin over the normal head and closer examination of the data 

reveals the di-head to approximately halve the spin generated. There appears to be 

nothing significant at 20 mm, where a peak in the launch data was noted. 

Centre of mass 5 mm behind face 

With the centre of mass of the club head 5 mm behind the face the effect of mishits on 

speed reduction is identical to that at 0 mm behind the face and is shown in figure 4.82. 

However major differences in launch and spin from previous results are to be noted and 

these are shown in figures 4.83 and 4.84. The launch of the ball is greater than the 

previous results and still tends to imply a maximum launch at a specific mishit. For this 

club head design the mishit would need to be in excess of 40 mm before the launch 

reduces and in a real golf shot this size of error would most certainly lead to the ball 

wrapping around the side of the club, if not the ball being missed altogether! The di­

head shows clear improvements in reducing the launch, approximately halving the launch 

of the normal head. For the range ofmishits the ball spin is no greater than 7 revs-1 and 
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shows clearly the gear effect negating any spin the ball would acquire from the oblique 

blow. Indeed below 15 mm mishits the spin rate is negative, indicating topspin, and the 

gear effect must be predominant. The value is however less than 1 revs· l and must be 

considered negligible, considering the spin prediction method. For greater mishits the 

di-head approximately halves the spin generated. 

The results show clearly the advantage in mishit shots of having the centre of mass 

behind the clubface. However as the mass is moved further behind the face the gear 

effect becomes predominant and the spin on the ball can be over-correcting (see section 

1.6. 1.2). To investigate this effect mishits were carried out with the centre of mass 30 

mm behind the face, as might be the case with a 'wood' clubhead. 

Centre of mass 30 mm behind face 

Figure 4.85 shows the speed diminishes for increased mishits, as predicted with the 

centre of mass in other positions. The actual reduction in speed is approximately 2 ms· l 

less than at the other positions (0 and 5 mm) and can thus be considered as one of the 

benefits of using a 'wood' clubhead to achieve longer distances. Again the di-head 

approximately halves the speed reduction. The launch results given in figure 4.86 are of 

more than with the other clubhead designs, while the di-head confirms the inertia 

relationship emerging by halving the launch. Figure 4.87 gives the spin results, which 

are all negative (ie topspin) and caused by the predominant gear effect. The spin is of 

such magnitude that it would be over correcting during ball flight, as shown in figure 

1. 13 . With the centre of mass so far behind the face it is clearly necessary to use a 

curved surface to reduce the gear effect and send the ball off with an increased launch 

and reduced corrective spin. 

Curved surface model 

A curved analytical surface clubhead model with the same mass and normal inertia 

properties was analysed. The radius of curvature was taken as 279 mm (11 inches), a 

typical value (Maltbie 1986). Figures 4.88 to 4.90 show the results for the curved and 

planar models with various centres of mass. All models have the normal inertia values. 

Figure 4.88 shows that for mishits, the reduction in ball speed decreases as the centre of 

mass is further behind the face and decreases even further when a curved clubface is 
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used. In figure 4.88 the 0 mm results are not clearly shown as they are almost 

coincident with the 5 mm results. The launch of the ball is increased by moving the 

centre of mass behind the face and, as anticipated, is increased by a curved surface. This 

increased launch helps reduce the over-correction caused by spin generated by the gear­

effect. Figure 4.90 shows how the spin on the ball moves from +ve (backspin) to -ve 

(topspin) as the centre of mass moves further behind the clubface. The 5 mm result 

would appear as the clear ideal as the two spin inducers cancel each other out. The 

curved surface reduces the spin generated for a centre of mass at 30 mm. This can be 

explained in two ways by the surface tangent promoting backspin, or the curved effect 

reducing the gear -effect. 

The computational methods used here would be of significant advantage in prototype 

clubhead design. If the centre of mass, inertias and clubface geometry are known, direct 

comparisons for different severity of mishits can be compared. The results presented 

here are also dependent on friction, the effects of which can be inferred from the results 

presented in section 4.3.1.2. 

4.4.2 Clubhead rotation due to loft. 

From a lofted clubhead there is no position of impact that does not cause clubhead 

rotation. This was the reason that previous results on loft used a constrained clubhead. 

It is not that a constrained clubhead gives different ball flight to an unconstrained head 

but rather a time consuming process is necessary to predict the position of the centre of 

mass such that minimum rotation occurs. 

Analyses were carried out using a 30° rigid clubhead, Il = 0.6, initial velocity 50 ms-1 and 

fully unconstrained. Mass and inertia properties were taken from the solid club head 

model. The centre of mass was positioned on the face and the rotational displacement 

of the rigid body reference node noted at time = 0.5 ms, just after the break of contact. 

An iterative procedure, linearly interpolating between results, was used to predict the 

centre of mass position that gave a negligible rotational displacement (less than 1.0 x 10-3 

radians (57.3° x10-3
)). The positions of the centre of mass on the face were calculated 

for varying values of friction and are shown in table 4.5. 
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The vertical positions are higher for lower friction, as the ball slides up the face and the 

centre of mass needs to be higher up the face to be in a position at which the average 

reaction force acts. At higher friction, 0.5 < Il < 1.0, the difference between the position 

of the desired centre of mass is almost constant. Remaining small differences could be 

calculated if a higher tolerance on club head rotation is required. 

Global coordinates (m) 

Friction Y Z 

0.0 -0.00669 -0.02191 

0.1 -0.00702 -0.02172 

0.2 -0.00742 -0.02149 

0.3 -0.00764 -0.02136 

0.4 -0.00779 -0.02128 

0.5 -0.00800 -0.02115 

1.0 -0.00800 -0.02115 

Table 4.5 Coordinates for minimal clubhead rotation. 

U sing the same procedure, the position of the centre of mass behind the face can be 

found to give minimal rotation and this was done for Il = 0.1 and Il = 0.6. At each 

friction coefficient the desired positions form a line which represents the average reaction 

force vector (RfA). Figure 4.91 shows the two vectors, separated by 1 mm vertically on 

the face and intersecting approximately 10 mm behind. The reaction force vectors are 

5.7° and 10.4° from the normal to the clubface for Il = 0.1 and Il = 0.6 respectively, and 

show a similar trend to the launch of the ball (given in section 4.3.2.2),24.7° and 23.8° 

for each friction coefficient. 

Examining the Il = 0.6 impact further, the rotation can be plotted for the clubhead that 

shows minimal rotation after impact. Figure 4.92 shows the rotation ofthe rigid body 

clubhead's reference node during 500 IlS. Positive rotation is clockwise for the 

clubhead shown in figure 4.91. During impact the rotation of the club head is positive 

and then negative indicating that the ball at first applies a force on the club head below 

the RF A and then towards the end of impact a force above the RF A, This is due to the 
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ball applying a distributed force on the clubhead, that not only changes magnitude during 

impact but also its distribution. This is ideal, as positive rotation increases the speed of 

the top of the club head where the shaft tip is attached. At impact, as the club head 

decelerates, the shaft tip is deflected and vibrational modes are set up in the shaft. 

These are felt by the player as the 'shot'. The excitation of the shaft can be reduced if 

the shaft tip deceleration is reduced by a positive rotating club head. As the centre of 

mass is moved further behind the face, the rotation of the club head during impact 

changes and becomes initially negative and then positive. This is shown in figure 4.93 

which gives the rotation during contact for the centre of mass at varying positions behind 

the face from 0 mm to 30 mm. The results indicate the early and late reaction forces 

intersect between 5 and 10 mm behind the face and that moving the centre of mass 

forward promotes an increased initial positive club head rotation. This may be the 

reason for the popularity of off-set iron clubheads. These are typically for beginners and 

have the leading edge significantly behind the hosel of the head. The hosel brings the 

centre of mass forward and may even bring it in front of the face. To further 

demonstrate the possible effect of clubhead rotation on shaft tip velocity figure 4.94 

gives the velocity of nodes at the top of the rigid club head, which was remodeled to have 

the face size of a more typical iron (ie vertical height - 60 mm). For clubhead designs 

with the centre of mass further behind the face, the initial deceleration of impact is 

greater and would lead to greater shaft tip deflection. Different designs end up at 

various speeds as the clubhead continues to rotate after impact, and the rotational speed 

and direction affects the nodal velocity. 

The phenomenon that the club head rotates positive and then negative for a shot off the 

sweetspot, confirms the results of Masuda and Kojima (1994). Their work, utilising 

high frequency strain gauging, showed that the club head could rotate as given by the 

finite element model. However they believed that the cause of such an effect was shaft 

vibration. This can obviously not be the case in the current work, as the club head is a 

separate body. The results presented here, imply that what they measured was not due 

to shaft vibration but due to ball clubhead impact. 

The results also imply that reduced shaft excitation may be achieved by moving the 

centre of mass forward in the clubhead. However the mishit performance for such clubs 
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have been shown in the previous section to be poorer, than when the centre of mass is 5 

mm behind the face. Hedrick and Twigg (1995) attempted analysis of how the complex 

shaft vibrations excited by impact transfer into feel of the shot. They concluded that the 

shaft vibrations are too complex to make practical analysis near impossible. The results 

presented here on how the club head may rotate during impact is imperative if attempting 

to predict the post impact shaft behavior. 

The patterns of club head rotation previously shown are for hits off the face, where 

minimal clubhead rotation occurs during impact. For hits only slightly offset from this 

position the club head rotates as predicted in section 4.4.1. Analyses were carried out 

with the impact above and below the sweetspot by 1 mm, for the 30° lofted clubhead 

with /l = 0.6. While no difference was discernible in the ball flight predictors, the 

club head rotation is shown in figure 4.95 for a shot off the sweetspot and 1 mm above 

and below. Also included are shots of a clubhead with double rotational inertia (post 

script - di). For such a small error in mishit the clubhead rotations are large compared 

to the rotations experienced from the sweetspot and cast doubt on the advantage to be 

had from positive head rotation from shots from the sweetspot. As anticipated the 

double inertia club heads reduced the nodal rotation. This indicates the benefit for 

experienced players of playing reduced inertia clubheads (such as blades) if they are to 

receive feedback on the accuracy of their shots. As the ± 1 mm mishit showed no 

change in ball flight prediction the procedure was repeated for ± 5 mm. Table 4.6 

shows the ball flight predictors for the mishits. The club head rotation pattern was 

similar to the 1 mm mishits with maximum rotation reaching 8° at 500 /lS. Figure 4.96 

shows the predicted shaft tip velocity through impact, with the 5 mm mishit below 

greatly reducing the tip deceleration. While such reductions in the deceleration are 

noticeable, the difference between the ball flight predictors is still only small. These 

results imply that the preferred hitting position on the club head would therefore be below 

the sweetspot, where ball flight remains near ideal and shaft excitation is minimised. 
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Speed (ms-l) Launch (degrees) Spin (revs-I) 

above 73.3 23.1 154 

sweetspot 74.9 22.9 150 

below 74.3 22.3 150 

Table 4.6 Ball flight predictors for mishits ± 5 mm from sweetspot, 30° loft clubhead. 

4.5 Ball properties 

A large number of different types of golf ball are allowed under the rules of golf, each 

with a different construction and offering different playing characteristics. The 

constructions of the various balls has been discussed in chapter 1 but there is little 

published work, with the exception of patents, on how the performance of balls is 

affected by their design (Statz 1990). Most of the small number of published articles 

have been written by chemists, who are more interested in producing new ball cover 

materials that have high durability and other beneficial non-mechanical properties rather 

than engineering properties such as stiffness. In the current work, the finite element 

model of the ball was not primarily designed to show the behaviour of balls of different 

constructions but rather to elicit the effect of the impact of different club designs on a 

'typical' ball. As the work progressed however, it became apparent that it was 

necessary to investigate the role of ball construction on performance, currently based on 

largely untested beliefs about the merits of the cover and the core. 

Sullivan & Melvin (1995) report the relationship between the 'hardness' of the cover 

material and the spin rate of the ball. Their experiment used balls with the same core 

material but different cover 'hardness'. They observed a decreasing spin rate with 

increasing cover 'hardness'. However, as with clubheads, plastic deformation of the ball 

is undesirable and engineering hardness can not be a property which directly affects spin 

rate. It is of course possible that hardness was chosen as a ball parameter simply 

because it is easily measured and clarification as to whether the cover material has other 

constant properties, such as elastic modulus or surface friction, is not given. Sullivan & 

Melvin (1994) report on the effect which compression of the ball has on spin rate, which 

decreases with a more compressive ball, but they state that the covers used have the 
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same 'hardness'. Again there is no mention of whether other material properties remain 

constant. In their work, the compression on the ball is measured as the displacement 

when subjected to a compressive load of 200 lbf and expressed in hundredths of an inch, 

ie as a Reihle compression value, so named after the device used to squeeze the ball. 

They give an approximate conversion to the standard PGA compression test, for balls 

with the standard diameter as: 

160 - Reihle compression = PGA compression. 

Unfortunately, the measured Reihle compression is of little practical use as it does not 

admit the large displacements experienced by the ball during impact. Indeed these 

compression values were only introduced as a quality control measure to sort out as­

manufactured wound balls resulting from inconsistent production methods. Modern 

methods of manufacture do not require such sorting ofthe balls but Reihle compression 

values are still used to indicate their stiffness. Sullivan & Melvin (1995) state that such 

compression values have little effect on the ball flight, only influencing the sound of the 

shot and the players perception of feel. 

4.5.1 Compression tests 

In accordance with the compression tests of Sullivan and Melvin (1995), a finite element 

half-model was constructed with a flat rigid element to make contact with the ball (figure 

4.97). A half model was used as it is computationally cheaper and can be constrained so 

that the ball does not slip under compression. It is necessary to apply the correct 

symmetry boundary conditions to the planar cut through the ball so that it represents a 

whole ball under compression. The middle of the ball is pinned while all other nodes on 

the midplane are constrained in only the vertical direction, in the line of action of the 

force. Practical compression tests on half ball models as carried out by other 

researchers are not representative of the behaviour of a whole ball, as the cut edge is 

subject to friction and the material can not move horizontally as in a real whole ball. 
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A static analysis was carried out using Abaqus/ Standard, initially ignoring dynamic 

effects. A Reihle value of 17.3 was calculated, giving a 'PGA compression' of 142, 

much higher than the values found in existing golf balls (PGA 60 - 120). 

161 

Given the reservations about the Reihle compression of the golf ball, it is more important 

to model the compression of the ball under higher loading. Mather and Immohr (1996) 

carried out tests in which a 10 mm compression was applied to golf balls at rates of 10 

mm min-I and 50 mm min-I. Force-displacement curves at different strain rates were 

thus obtained. Comparison with the initial finite element results showed the FE ball, 

based on the hyperelastic material data for vulcanised rubber, to be too compliant. 

Compression tests alone are not sufficient to generate hyperelastic material constants 

(this is discussed more fully in 4.4.3) but, given the original experimental data, Abaqus 

returned values for these constants and these were adjusted and input directly in order to 

match Mather and Immohr's compression test data. A good fit was obtained when the 

C 1 0 constant in the polynomial equation describing the core material was multiplied to 

120 times its original value. 

Figure 4.98 shows the force-displacement of the model along with those of Mather and 

Immohr, who tested two typical two-piece balls and a wound ball. The finite element 

model shows good agreement, with a 10 mm compression of the ball requiring 8 kN 

force. The current finite element model does not include strain rate effects, which were 

regarded by Mather and Immohr as significant under the loading in a golf shot. 

4.5.2 Cover stiffness 

The cover stiffness of the FE ball model was normally chosen as 0.34 GPa, to mimic the 

DuPont Surlyn material mentioned in section 4.1.2. Other cover materials such as 

Balata have a reduced stiffness of 0.23 GPa and give a lower PGA compression value 

and higher spin rates (Statz 1990). Analysis was carried out using covers with a range 

of stiffness from 0.12 to 0.45 GPa, while the core material was held constant at 120 x 

C 1 0 and friction = 0.6. These four types of ball give different ReihlelPGA compression 

values (table 4.7) and different 10 mm compression curves (figure 4.99). Figures 4.100 
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to 4.102 show the effect of the cover stiffness on the ball flight when different lofts are 

used. 

Figure 4. 100 shows the speed of the ball is not greatly affected by the stiffness of the 

cover. The largest discrepancy between covers is at 60° loft, where the speed increases 

from 49.9 to 51.4 ms-1 as the cover stiffness is decreased. This inverse relationship 

remains at all lofts but the absolute difference in speed is reduced. For example at 20° 

loft, the difference in speed is only 0.2 ms-1
. It is to be noted that although increases in 

speed are possible, the low-stiffness covered ball would be less durable. It is also to be 

noted that damping in the FE ball is only present by default and the observation of 

increased speed may not be applicable to real materials. 

The effect of cover stiffness on launch angle is greater, as shown in figure 4.101, with a 

higher launch angle for an increased modulus of elasticity cover. The maximum 

difference in launch angle increases with loft, to 3.5° at 60° loft. The difference between 

the Surlyn and balata covers is approximately 1/3 of this and the effects of the cover 

stiffness in current balls can be considered negligible in terms of speed and launch. The 

same is not true for the spin rate differences as shown in figure 4.102, where a lower 

stiffness cover is observed to generate more backspin. This is in accord with prevalent 

golf knowledge that balata covered balls spin more than those with Surlyn. The 

relationship between the stiffness and the spin rate is linear at any given loft and the 

magnitude of the difference is likely to be significant in a golf shot. At 10° loft the 

change is from 28 to 57 revs-\ and at 50° from 240 to 300 revs-I. Although the 

variation between balata and Surlyn are approximately only 1/3 of these values, such 

differences would still be demonstrable in a golf shot. 

4.5.3 Core stiffness for a two-piece ball 

It was regarded as essential for the current work that the elastic properties of the core 

are accurately described within the finite element analysis by a suitable constitutive 

model. Such a model is that of a hyperelastic material, for which there exists a strain 

energy function by which the stresses may be obtained as the derivatives of the strains. 

The material constants appear in a polynomial equation of the strain energy function, as 
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described in 4.1.2. However obtaining these constants is not trivial and typically 

requires a combination of uniaxial tension, compression and biaxial shear tests before 

sufficient data are available. The simple uniaxial compression test used by Mather and 

Immohr (1996) is not sufficient to generate the strain energy function but more 

sophisticated tests were beyond the capabilities of the available test equipment. The 

core material was therefore initially modelled using test data for vulcanised rubber, taken 

from the AbaquslExplicit Example problems manual (Hibbitt, Karlsson and Sorensen 

1997). The effects of changing the constants in the material model were observed in a 

computational experiment and this suggested possible changes in core material properties 

which would match Mather and Immohr (1996) while retaining the generic shape of the 

hyperelastic stress/strain curve. Figure 4.103 shows the effect of changing the constant 

ClO in the polynomial form of the hyperelastic strain energy function to 90, 120 and 150 

times its initial value. These three different material models were used to examine ball 

core effects. Figure 4.104 gives corresponding results for the 10 mm compression test 

of the half ball model while the ReihlelPGA compression values are given in table 4.7. 

The results of using these three different stiffness properties for the core are given in 

figures 4.105 to 4.107, which show the final effects of core stiffness on the flight 

properties of the ball .. 

Figure 4.105, shows how the initial speed of the ball varies for a "standard" impact with 

the c1ubhead traveling at 50 ms-I. Over the total range oflofts the difference in core 

stiffness has only a small effect and the largest difference is observed at low 10ft angles. 

At 10° 10ft the ball speed varies from 83.2 ms-I with the flexible ball to 84.6 ms-I for the 

stiffer core. This slight difference in speed is likely due to the greater deformation of the 

ball with the less stiff core and to the numerical damping present within the material 

model. 

The launch angle is affected to a similar degree, with only a slight variation occurring 

over the range ofloft angles. 

The spin of the ball is affected to a greater extent by the core stiffness as shown in figure 

4. 107, and is observable over the full range ofloft with the stiffer ball showing a 30% 

increase in spin at 10° 10ft, from 30 to 40 revs-I. This variation is reduced to 17% by 
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30° ofloft and to 13.5% by 50°. This difference in spin is not negligible and would have 

a discernible effect on a golf shot. The results here confirm the experimental evidence of 

Sullivan and Melvin (1995), that more flexible cores give lower spin rates when balls of 

the same cover thickness and 'hardness' are used. 

Of great interest is the clear distinction between the effects of cover and core, with the 

cover stiffness having an inverse effect on spin while the stiffer core results in increased 

spin. This implies that the overall stiffness (or compression) of the ball cannot be used 

as a property in predicting behavior. The relative properties of the core and cover are 

important, as suggested by Sullivan & Melvin (1995), and the properties of concern must 

be density and stiffness. These are examined in further detail in the next sections. 

4.5.4 Stiffness distribution 

Three-piece wound balls have a dual stiffness to their core, the inner core being stiffer 

than the stretched elastomer windings. Also available in the current market are solid 

core balls that boast dual stiffness properties (see advertisements in Golf World (Various 

1997)), either by having dual core materials or double covers. The FE model was 

therefore changed to examine the effects of dual stiffness, keeping the mass distribution 

constant (not a simple matter in a physical test). The inner core and the outer core 

material properties were amended to be both stiffer (C10x150) and less stiff (C10x90) 

than normal, by varying the polynomial coefficient described in section 4.5.3. The 

models are compared to the 'normal' two-piece ball with a homogenous core. Figure 

4.108 shows the three types of ball analysed and figure 4.109 gives the 10 mm ball 

compression confirming (as expected) that the balls differ less in compression to the core 

stiffness models of section 4.5.3. PGA and Reihle values are given in table 4.7. 

Figures 4.110 and 4.111 shows how the stiffness configuration affect speed and launch 

respectively. The trend is similar to the findings in section 4.5.3 that less stiff cores 

(higher compressibility) give lower speeds and higher launch angles. The low inner ball 

having a reduced speed and a greater compressibility. 
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Figure 4.112 shows how the spin is affected by the stiffness distribution. Initial findings 

are that the overall compressibility of the balls affects the spin rate as in section 4.5.3, 

with the stiffer balls giving increased spin. However, the variation in spin rates is 

greater at all lofts than when a single core effect alone were studied, even though the 

variation in ball compressibility is less. This confirms that the spin is not solely a result 

of compression of the core. The high inner dual stiffness ball exhibits higher spin rates 

than the stiffer single core ball even though the overall compression is less. This 

indicates the predominant mode of spin generation in the ball and is discussed more in 

the next section. 

4.5.5 Mass distribution 

In constructing a model of the ball it is also important to represent the mass distribution 

correctly. For two-piece, homogeneous core balls this is not difficult as the maximum 

weight of the ball under the rules of golf dictate the inertia of the ball. For more 

complex designs of ball, such as a three-piece or wound ball, the inertia of the ball can be 

varied by using different densities of material in the inner and outer core. The finite 

element model of the ball was amended to allow for density variation without an 

accompanying variation in stiffness (again not a simple practical achievement). The 

inertia models are shown in figure 4.113. The density of the inner core in the low inertia 

ball was chosen as 1700 kgm"3, as given by Mather and Immohr (1996) for a wound ball 

core. The outer core was given a density of762 kgm"3 to maintain the overall mass of 

the ball at the legal value. A ball of increased inertia was then created by reducing the 

density of the inner core to 500 kgm"3, with a suitable change in the outer core density. 

The results for impact with the rigid clubhead, with 1l=0.6 and at varying lofts, are 

compared to the normal two-piece ball, with a homogenous density of 1100 kgm"3 in 

figures 4.114 to 4.116 

Figure 4.114 shows the effect of the inertia on the speed of the ball to be minimal, with 

the greatest variation occurring at 60° loft but still less than 1 ms"I. These variations are 

due to differences in the deformation of the ball and in the damping in the material 

model. Greater variations in launch angle are seen in figure 4.115 which indicate that a 

decrease in the inertia results in a higher angle. 



CHAPTER 4 The finite element impact model 166 

Interestingly the results for spin generation, shown in figure 4.116 indicate that an 

increase in the inertia leads to an increase in the spin rate. This runs counter to the idea 

that a turning moment arm is the predominant spin generator, as suggested in section 

4.3.1.2. Indeed, a cross-over point is observed at 50° loft, after which lower inertia 

balls achieve higher spin. Further investigation with other finite element ball models, 

shows that the cross-over point is not particularly dependent on club head velocity or ball 

stiffness, but is most dependent on friction. This indicates that the predominant cause of 

spin below the cross-over is the shear stiffness of the ball and the strain energy stored 

within the ball during deformation. The onion layered model of spin generation, 

discussed by Gobush (1995), predicts that a lower inertia core will spin more, when the 

strain energy from impact is recovered. Such a model will also spin more as the inner 

core is stiffened to reduce its deformation from a sphere which would lead to increases in 

rotational inertia. It would therefore appear that the wound ball properties with a 

denser and stiffer core, partly cancel each other out. The stiffer core leads to higher spin 

but the denser core reduces the spin. This however only refers to the impact of the ball 

and does not include effects which appear as the ball flight continues. 

During flight the balls spin rate will reduce due to air resistance. A "spin rate decay 

constant" resulting from the properties of the ball (Winfield and Tan 1996) describes the 

rate of spin reduction. The decay constant is increased by a reduction in the inertia of 

the ball and a balls spin reduces at a greater rate. A wound ball construction therefore 

would lose its spin quicker than a "normal" ball but not significantly during the time of a 

short iron shot. 

The results indicate that it would be possible by a combination of stiffness and density to 

produce a ball with reduced spin on impact and increased spin rate decay. Such a ball 

would have advantages for particular golfers and it is difficult to imagine why 

manufacturers have not already constructed a ball with such properties, especially 

considering the number of combinations of ball properties which have been tried 

empirically. The role and importance of FE analysis in the rational design of balls is 

clear but more accurate material properties, including strain rate and energy dissipation 

characteristics are needed to advance the model. These areas are currently being 

researched. 



CHAPTER 4 The finite element impact model 167 

The results here use a club head that is constrained for rotation about all three axes and 

translation in all direction other than that with which the clubhead originally moves. 

This leads to erroneous results and analyses using unconstrained clubheads were 

examined and showed little change from the results presented here. For example as the 

ball inertia is increased the spin will not continue increasing as a point will be reached 

where the club head twists during impact. This is only a minor effect here as the 

clubhead inertia is very much greater than that of the ball. 



Loft 30° 40° 30° 30° 20° 

Trajectory horizontal horizontal _10° -10 -10° 

Method computation computation predicted computation predicted 

Speed (ms-l) 74.9 67.6 67.6 67.1 74.9 

Launch C) 22.9 29.1 19.1 19.2 12.9 

Spin (revs-I) 150 208 208 217 150 

Table 4.4 Effects of trajectory on ball flight predictors. 
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Ball construction Reihle PGA 
120 MPa 74.7 85.3 

cover 230MPa 72.1 87.9 
340MPa 7l.2 88.8 
450 MPa 70.9 89.1 
CI0 x 90 78.0 82.0 

core CI0 x 120 7l.2 88.8 
CI0 x 150 66.7 93.3 
low inner 7l.0 89.0 

dual stiffness normal 7l.2 88.8 
high inner 72.9 87.1 

Table 4.7 Static compression values based on 200 lbf compression test (Sullivan and Melvin 1990). 
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Figure 4.2 Drawing of solid model clubhead (dimensions in mm). Rotational inertias about centre of mass (density = 7800 kgm-3
). 
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Figure 4.4 Mesh of ball model, with cut away to show inner elements of core and cover. 
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Figure 4.8 Defomed plot of the model, at 0.270 nts. 
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Figure 4.9 Deformed plot of the model, at 0.470 ms. 
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Figure 4.13 (J33 contour plot for c1ubhead face, 0.150 ms after impact. 



80 

70 

60 

50 

30 

20 

10 

o 
o 

i 

-+ 
i 

I 
I 

I I 
1-/ 

I 
I ----~ 

I 
I 

I 

r' I 
I 

I 

J''/ I 

I ./1 

0.1 0.2 0.3 

/' 

j~"I--'~/--"· /- .. ",.. - '" 
"'- - ""'--... 

I i'~ 

i 
I 

I 
I 

0.4 0.5 

Time (ms) 

i 

.. 

0.6 

I 
I 

---

--

0.7 0.8 0.9 1 

Figure 4.14 Ball and club head speed over a period of 1 ms analysis. 

i- -ball 
I I 
1--c1ubhead I 

f-' 
0) 

w 



n 

72.8 

72.6 

72.4 

71.8 

73 
I 

I 
! 

i 
, 

I 

... , f?' .............. ~ .... "'-4~ .......:: ~ ~~ ---". .. r-:. .. ----- ........... t.-

~ Ii-'~ -~---~""1~ I - ......... .... I I i 

--~" ...... ".,~=.. I 1 -
fj} , ' , , ,"" '--4~-=-- ---" .. -. - ----I"---... - •• -f1! ....... ~ 

~1{ 
I - "'-- - - - t .. ----

, 

1-
l~f ---+ .. . I· .. ,j·f, --!J.' I 

" 
I 

~ 

72 

~ 
~ 
hj 
>-3 
M 
7J 

~ 

>-3 
::r 
(J) 

t-h 
1-" 
:::J 
1-" 
It 
(J) 

I 
(J) 

• 1-2 ms I 
f-' 
(J) 

--2-4msl ~ 
(J) 

:::J - .. - 2-5 ms It 

-x- 4-5 ms 1-" 
~ 

'D 
--0- 1-5 ms PJ 

n 
It 

~ 
I 

, 
0 

71.6 I I 
(::L 
(J) 
f-' 

71.4 I 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Friction coefficient 

Figure 4.15 Effect of friction on ball speed, averaged over various integrating periods. 
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Figure 4.16 Two exaggerated ball trajectories for varying impact conditions. 
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Figure 4.17 Approximating the position vector to the origin vector. 
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Figure 4.18 Effect of friction on launch angle. Calculated at various instants. 
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Figure 4.19 3-dimensional mesh of ball showing node numbers. 
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Figure 4.21 Effect of friction on ball spin, averaged over various integrating periods. 
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Figure 4.23 Effect of modulus on ball speed. 
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Figure 4.24 Effect of modulus on ball launch. 
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Figure 4.25 Effect of modulus on ball spin. 
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Figure 4.26 Effect of friction on ball launch. 
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Figure 4.27 Effect of friction on ball speed. 
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Figure 4.28 Effect of friction on ball spin. 
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Figure 4.31 Positive tangential (Ft) and normal (Fn) force components on clubhead. 
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Figure 4.33 Efffect of modulus on ball spin, zero friction. 
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CHAPTER 5 Reverse engineering of a golf shaft 286 

5.0 Reverse engineering of a golf shaft 

There is currently a plethora of shafts available to golfers, with each shaft purporting to 

offer advantages for different swings. One of the aims of the current work was to model 

the shaft during a golf swing and quantify the mechanical properties that affect 

performance. It is first appropriate therefore to examine current golf shafts. 

5.1 Existing shafts 

A number of shafts, all composite graphite reinforced were obtained courtesy ofUnifiber 

Europe. The geometric details of the shafts, their mass, length, internal and external 

diameters at the butt and tip, were recorded. The wall thickness at the ends was 

calculated from the diameters. The volume and density were calculated by assuming a 

linear variation of geometry along the shaft length and the shaft modelled using ten finite 

elements, each of constant cross section but with a variation from element to element. 

Data for the shafts is given in appendix C-1. Obtaining more esoteric properties of the 

shafts was attempted via procedures similar to those described in section 1.6.2.1. 

Difficulties were encountered in reproducing the tests but, as with club head modelling 

(chapter 3), it was felt that a generic model of a golf shaft open to systematic change was 

more relevant than attempting to model any individual shaft. A knife edge bending test 

was carried out on a randomly selected shaft to obtain a ballpark figure for the material 

stiffness. 

5.1.2 Knife edge tests 

A Unifiber T30 Senior was selected at random. The shaft was placed horizontally on 

two knife edges (figure 5.1) protruding 89.2 mm at each end and a mass of2.72 kg was 

placed on another knife edge centrally. Deflections of the shaft were recorded at 89.2 

mm intervals between the supports, these positions on the shaft were marked prior to any 

deformation. Table 5.1 gives the deflections for four orientations of the shaft about its 

longitudinal axis. A repetition of the test procedure involving a complete re-setup of the 

equipment and using a different operator to take deflection readings yielded the same 

results. Variation of the shaft displacement with rotation is in contravention of the rules 
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of golf (Rules - Section 4-1 b). These state that the shaft shall be straight with the same 

bending properties in any direction. A manufacturing tolerance must be included but is 

not stated explicitly in the published rules. A recent ruling by the USGA Implements 

and ball committee (February 1999) has allowed for the conformance of clubs where the 

shaft has been inserted specifically to reduce any effect due to shaft spine (Achenbach 

1999). They however also stated that orientating to make use of the spine remains a 

contravention of rule 4-1 b. 

A similar procedure was carried out on a further variety of shafts. Results indicated the 

range between deflections at specific points through rotations varied between shaft 

manufacturers. The range given in table 5.1 was the lowest observed. Products from 

another major shaft manufacturer showed ranges four times greater while a shaft 

manufactured using a modern processing technique, gas injection moulding, had an even 

higher range of asymmetry. 

5.2 Shaft model 

A finite element model of the Unifiber T30 shaft was constructed using 2 noded linear 

beams (Abaqus type B21, Hibbitt, Karlsson and Sorensen 1997) and analysed using 

Abaqus/Standard (Hibbitt, Karlsson and Sorensen 1997). The model was discritised as 

thirteen elements so that nodes would occur at the knife edges and the deflection 

measurement positions. It was not felt necessary to cut the shaft and measure each 

section, as was done by Friswell et al (1998), and a linear variation of the geometric 

properties was assumed along the length of the shaft. The density of the shaft was taken 

from the approximation method mentioned in section 5.1 as 1300 kgm-3
. The material 

was modelled as homogenous linear elastic. The model shaft was loaded at the node 

closest to the centre and the deflections recorded. The stiffness of the material was 

altered to obtain the closest match, this occurred at a stiffness of 50 x 109 Pa. The 

model geometry data is given in appendix C-2. The deflections along with the mean 

deflection results from the practical experiment are given in table 5.1. 
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5.3 Discussion 

Technical difficulties were encountered in reproducing the industrial test procedures used 

in measuring shaft properties. While overcoming the problems by the construction of 

appropriate equipment was possible it was felt that a more general approach to shaft 

modelling was of more immediate importance. It was also foreseen that difficulties 

would be encountered in attempting to model composite shafts with complex anisotropic 

stiffnesses (by virtue of the reinforcement fibre lay-up) and this idea was discounted in 

favour of modelling a steel shaft, were its bending and torsional stiffness is a product of 

only the geometric shape and homogenous material. Ballpark figures were obtained for 

the stiffness of a shaft taken at random. It is to be noted the shaft measured was the 

least stiff of all samples. It was concluded that the shaft modelling should continue 

using finite element beam elements as used by Friswell et al (1998) and with each beam 

of specific wall thickness and radius so as to approximate the shaft geometry. A fuller 

discussion of the model and its validation is given more appropriately in chapter 7. 



Disl!lacement {mm} at l!osition given 

Orientation a b c d e f g 

0° 3.6 7.1 10.1 12.6 14.4 15.0 14.2 

90° 3.6 7.1 10.0 12.5 14.1 14.8 14.1 

180° 3.7 7.1 10.1 12.7 14.3 14.9 14.1 

270° 3.6 7.1 10.0 12.4 14.1 14.8 14.1 

Disl!lacement {mm} at l!osition given 

a b c d e f g 

Model 3.6 7.0 10.1 12.6 14.2 14.6 13.8 

Experiment 3.6 7.1 10.1 12.6 14.2 14.9 14.1 
(mean) 
Percentage 0.0 1.4 0.0 0.0 0.0 2.0 2.1 
difference 

Table 5.1 Knife edge experiment and model results. 
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6.0 Reverse engineering of a golf swing 

Williams (1968) in his seminal paper on the mechanics of the swing, starts by stating 

"To investigate the dynamics of the golf Slving is to tackle a problem that is rather 

different from the run of dynamical problems. What is usually required in such 

problems is to determine the motion of a system under appliedforces that are specified 

In the golf swing on the contrary, it is the motion of the club as photographically 

observed, that is specified and the problem is to find out what forces must have been 

applied to it to produce that motion. " 

Various researchers have continued investigating motion of the swing and made various 

attempts to estimate the forces involved (see section 1.6.2). Early on in the current 

work it was felt that a study of the swing in practical terms was necessary for the basis of 

building a model. This chapter describes, in brief, attempts to examine the golf swing. 

6.1 Mechanical golfer 

Golf machines capable of swinging a golf club have been around since Iron Byron's 

conception in 1965 (see section 1.6.2.3). On a smaller budget the Department of 

Mechanical Engineering, University of Glasgow created a swing machine in the late 

1980's based on a double pendulum nicknamed 'Dai Laughing' (figure 6.1). The hub of 

the upper lever is powered by two springs, of adjustable tension, such that the force 

profile can be considered ramped linearly to zero as the arms return to their 'at rest' 

position. The lower lever is free to pivot about the upper lever with a stop included to 

prevent jackknifing. Design of the rig was based on double pendulum simulations and 

was discussed more fully by Whittaker et al (1990). 

6.1.1 Practical tests 

The mechanical golfer was fired 10 times with a cardboard target placed a known 

distance away. Figure 6.2. gives the relevant distances from the tee to a reference point 

on the target (marked X). The golfclub used was a John Letter's Forged Master Model 
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MKV 5-iron, Apollo steel stepped shaft and a Golf Pride grip. A two piece professional 

golf ball, 1 Pinnacle Gold, was placed on a small rubber washer which in turn was placed 

upon a grid attached to the leg of the 'Dai Laughing', this allowed for ease of replacing 

the ball in the same position for each shot. As the rig vibrates and moves after each shot 

it was necessary to mark the floor with respect to the position of the legs such that it 

could be returned to its previous position for a repeat shot. Before releasing the 

downswing it was important to remove small club vibrations Also, after each shot the 

target underwent disturbance and it was important to be repositioned, this was easily 

achieved by allowing the target to swing freely before replacing the safety netting. 

From the ten shots fired all ten struck the target. The first shot was slightly below and 

to the left of the others, this may have been due to the release mechanism which was 

human controlled, and a certain amount of unease was felt on the first shot as to where 

the ball would end up! The following 3 shots ended up in the same position with such 

accuracy and force to eventually punch a hole in the cardboard. The remaining 6 shots 

passed through the hole and ended up the other side of the target. Damage to the target 

had a thick black line drawn around it, photocopied and shown in figure 6.3. 

6.1.2 Discussion 

The vertical ball dispersion was greater than horizontal. This was most likely caused by 

the angle at which the ball hit the target, calculated as 26°. If it was necessary to 

achieve more accurate ball dispersion results then a more durable surface may have been 

used such as high density foam, whilst deformed the position of impact could be 

recorded. Another suggested method was to use carbon paper such that the impact 

leaves a mark on a recorder sheet. This may be possible with foam but is not advisable 

with a target more rigid than cardboard due to the danger of the rebounding ball. 

A high degree of repeatability of 'Dai Laughing' was noted when proper precautions 

were made in repeating each trial shot. These included; repositioning the legs of the rig, 

minimal club vibration at the top of the downswing, accurate ball repositioning and a 

similar operator manner in releasing the downswing. Assuming impact needed to be 

within half a ball diameter of each other to pass through the hole, a maximum flight 
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dispersion of 0.7° was calculated. This compares well with the USGA test protocol for 

Iron Byron of 0.8°, calculated from figures given by Levin (1998). Various safety 

concerns were raised during testing including the possibility of a mishit and the 

rebounding of the ball within the small laboratory which contained a significant amount 

of glass. Further practical tests were put on hold until safety issues were met. 

6.2 Human golfers 

It was also possible for human golfers to take part in swing studies, however the same 

safety issues were raised when real golf balls were used. Lindsay's (1995) finding that 

swings without a ball present were very different from actual shots, notably the clubhead 

was typically open, meant practice balls must be used in any further swing studies. 

6.3 High speed video 

The purchase of a high speed video camera in 1997 meant that the swing studies could 

be taken further by analysing the swings ofDai Laughing and human golfers. The 

Kodak MotionCorder Analyzer, Modell 000 (Kodak Eastman) has a maximum possible 

frame rate of 600 frames per second (fps) and stores the images digitally in a continuous 

loop, overwriting previous images when the memory is full. Triggering the camera 

stops recording and allows access to all stored images. Via a frame grabber the images 

can be converted and stored as computer files. Image analyse software was available to 

calibrate the images and track moving objects providing coordinates and velocities. 

6.3.1 Mechanical golfer 

High speed video analysis of the mechanical golfer was carried out. Figure 6.4 shows a 

snapshot of the recording for a point in the downswing where the upper lever was 

approximately horizontal. While calibration of the image was possible to allow for lens 

distortion only a linear calibration was initially carried out. A lens with a wider field of 

view to include the club head motion would have been beneficial but was not easily 

obtainable and only the position of the wrist hinge during the downswing was recorded. 

With the camera running at 240 fps (a suitable speed to obtain full size images) the 
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downswing lasted 0.32 seconds and 76 images were available for analysis. A wider 

range of images were taken though to include the bounds. Figure 6.5 shows the velocity 

of the wrist hinge during the swing as calculated using the image analysis software. Five 

repeats of the swing were taken and results did not differ significantly. By repositioning 

the camera and running at 600 fps, in the impact zone, it was possible to establish the 

clubhead speed at impact. Five runs gave the mean speed at impact of 19.10 ms- I
, the 

range of values was 0.23 ms- I
. 

6.3.2 Human golfers 

A number of golfers were recorded with the high speed video. Figure 6.6 shows a 

'rabbit' golfer (who requested anonymity) midway through the downswing. The camera 

was approximately perpendicular to the swing plane, calculated from prior observations 

behind the golfer. The downswing took 69 frames and lasted 0.29 seconds. Figure 6.7 

shows the hinge velocity during the downswing. The deceleration phase of the wrist 

(Miura and Naruo 1998) is not noted. This should be caused by momentum transfer, 

however the golfer's poor timing does not allow for this swing attribute. 

6.4 Discussion of results 

While the results from the analysis with the high speed digital video were useful they 

were not in any greater detail than from other researchers for example Mather and 

Cooper (1994), Mather (1995) and Mather and Jowett (1998) using the method of 

photogrammetry. In addition further expense would be needed to build the system into 

3-dimensions and accepting the view of Horwood (1994) that 

"It appears that the computer technology now available to record and measure the 

swing is far in advance of the ability to analyse and deduce from this information what 

characteristics of the club best suit an individual golfer" 

and with others still continuing in the field of motion analysis, such as the USGA (Logan 

1997), it was felt more appropriate to pursue swing modelling and accept standard force 

input profiles for the upper lever of the double pendulum. An approach was taken to 
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model the swing incorporating 3-dimensions, variable force-acceleration profiles and 

wrist modelling such that when further information comes to light, from other sources, it 

could be included. 



Figure 6.1 University of Glasgow's mechanical golfer, 'Dai Laughing'. 
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Figure 6.2 Position of target and tee in mechanical golfers tests. 
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Figure 6.4 Snapshot from high speed recording of 'Dai Laughing'. 
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Figure 6.6 Snapshot from high speed recording of an amateur golfer. w 
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7.0 The finite element swing and shaft model 

7.1 Construction of model 

Great emphasis is placed on the role the shaft plays in the golf swing. If shaft 

parameters are to be investigated it is desirable that a finite element model of the swing 

should include a shaft, subject to forces and undergoing translations similar to those in a 

real golf swing. Producing such a realistic swing model is a gradual process, and more 

sophisticated features can be added as research filters through to software upgrades. 

However any project must have a definite cutoff and, for the current work, this was 

AbaquslExplicit, Version 5.7 (Hibbitt, Karlsson and Sorensen 1997). Further 

information on the finite element analysis software and hardware is given in section 

4.1.3. This section describes the construction of the finite element model. This was 

designed to facilitate extension to full 3 -dimensional analyses, beyond the scope of the 

current work, in which a less numerically-intensive 2-dimensional analysis is used to 

evaluate performance parameters for the golf shaft. 

7.1.1 The swing 

The finite element model of the swing was based on the double pendulum, as described 

in section 1.6.2.3. The upper lever (or arm) was pinned, with the lower lever (or shaft) 

connected to the arm by a 'multi-point constraint' (MPC). This constrains the 

coincident nodes of arm and shaft to have the same translations but admits independent 

rotations and so provides a pin joint at the hinge (or wrist), even when beam elements (as 

opposed to trusses) are used. To reduce computational costs further, the upper lever 

could be modeled as a rigid element with the appropriate mass and inertia. However, 

rigid elements were not available for use in 3-dimensions and, more importantly, an MPC 

could not be applied at their nodes. The upper lever was therefore modelled as a system 

of beam elements. To allow for the correct slowing of the upper lever due to 

momentum transfer during wrist uncocking, the mass and inertia of the upper body of the 

human golfer was approximated by the use of three circular-section beam elements. 

Their construction and dimensions are shown in figure 7.1. The mass density and 

dimensions of the beams are estimates based on a 'typical' human body. As in much of 
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the current work, the precise values of such data are less important than the ability of the 

model to simulate the golf swing in general. These values may be changed to allow 

simulation of particular cases. Deformation of the upper lever is not relevant to the 

current swing studies and an artificially high stiffness of 100 GPa was chosen for the 

beam elements. The pivot point was adjusted within the upper lever structure until it 

was near the hub position of a human golfer's swing, which lies within the body frame. 

A drawback of using such stiffbeam elements for the upper lever is that the automatic 

incrementation procedure used by the explicit integration scheme in AbaquslExplicit then 

selects very small steps, and hence a very large number of them, during analysis. This is 

because the deformation wave speed, which cannot be allowed to exceed a particular 

tolerance, is proportional to -V(E/p). (E = stiffness, p = density). A common method 

used to increase the increment size and so reduce the analysis cost is to alter the density. 

However this would alter the inertia within what is an essentially dynamic model and so, 

in this instance, the small time steps and large processing time was unavoidable. 

7.1.1.2 Force-time profiles 

The model was driven by applying a follower force, whose angle to the lever remains 

constant as the lever rotates, concentrated at a node within the upper lever structure (see 

figure 7. 1). This was considered acceptable since the high stiffness of the elements here 

prevents significant bending. The magnitude of the force was varied throughout the 

swing, following an amplitude/time profile defined by the analyst as a sequence of points, 

between which the software performs a linear interpolation. The imposition of a non­

linear, time varying torque is thought to be a novel feature of the current model but no 

actual data is yet available for typical real golf swings. A variety of force-time profiles 

(FTPs) were therefore generated, as shown in figure 7.2. These are denoted: 

• Constant 

• Stepped 

• Ramped 

• Non-linear! 

• Non-linear2 
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The non-linear profiles were designed to include some of the complexities that may occur 

in a typical golfer's swing. They contain the same area underneath the curves. All 

graphs were normalised to have a maximum force value of 1 unit. The absolute value is 

fixed by a scale factor. 

7.1.1.3 The wrist 

The importance of the wrist during the golf-swing has been emphasized by many 

researchers (section 1.6.2). In the current work, the wrist was modeled by the MPC. 

To prevent jackknifing at the top of the swing, a stop must be included. This was 

achieved by adding a spring between the upper lever and a suitable node on the golf 

shaft. Like the FTP, nonlinear spring stiffness may be defined using a curve of internal 

spring force versus relative displacement. The simplest of these is similar to a rigid stop, 

in which the spring does not compress but offers no resistance to expansion. A problem 

with such a spring is that any external compressive impulse leads immediately to a high 

internal spring force and subsequent premature opening out of the wrist on the rebound. 

A more controlled compression is needed, such that any external forces can be matched 

by the internal spring force. An exponential curve, shown in figure 7.3 satisfies this and 

keeps compressive strain to a minimum. This wrist behaviour is known as the passive 

wrist and was used in most of the swing analyses. 

Other wrist behaviours can be modelled by the non-linear spring. The prevention of 

'early opening out' of the wrist under centrifugal force has been shown to be important 

in first class golf swings (section 1.6.2) and is achieved by a pull with the right hand (for 

a right handed golfer). This behaviour can be included by a hump in the positive spring 

displacement and is shown as the restrictive wrist in figure 7.3. This restricts 

compression whilst offering resistance to extension until a specific force is reached, after 

which the wrist opens out freely. 

Researchers have also laid claim to the importance of applying another torque to the 

wrist to assist, this time, in 'opening out' during the final parts of the downswing. This 

most probably occurs from a push with the right hand. The non-linear spring can also 

include this, via an addition to the curve of a dip just prior to the particular spring 
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displacement at which the shaft is fully opened out. This is shown as the active wrist in 

figure 7.3. Other functions can obviously be included via the non-linear spring. In the 

current work however, the primary aim was to produce a model to investigate shaft 

performance and a full investigation of how these three wrist functions affect the swing is 

for future work. 

7.1.1.4 Topswing positions 

To cater for different 'top of swing' positions the finite element mesh was initially set-up 

in the address position. Two rotational transformations are then applied, on sets of 

nodes about specific axes, repositioning the undeformed mesh to give any desired 

starting position for the downswing. This start position is known as the 'topswing' and 

figure 7.4 shows the transformation sequence for a 90°-135° topswing: 

• the address position 

• transformation 1-90° wrist cock 

• transformation 2-135° arm rotation about pivot point. 

The wrist spring is included in the final transformation. To obtain the forces needed for 

each FTP and each start position was a non-trivial matter. A lengthy trial and error 

method was used to arrive at values that gave similarity to a real golf swing. Those 

chosen are given in table 7.1. 

constant stepped Ramped Non- Non-

linearl linear2 

90°-135° 707N 1768 N 2121 N 2616N 2616N 

topswing zero@0.15s zero@0.30s 

90°-180° 1200N 2250N 2500N 4500N 4500N 

topswing zero@0.20s zero@0.30s 

Table 7.1 Forces and times for FTPs and topswings. 
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7.1.2 The shaft model 

The shaft model was constructed from a number of beam elements, each of pipe cross­

section which varies from element to element as described in section 5.2. For the 

current 2-dimensional study, it was sufficient to use 2-noded linear elements, Abaqus 

type B21 (Hibbitt, Karlsson and Sorensen 1997), which allow axial and bending strain. 

B31 elements are available for 3-dimensions, allowing out of swing plane bending and 

torsion. The finite element code calculates a bending stiffness based on the initial 

geometry. No elbowing or change in bending stiffness, such as might occur if the cross­

section ovals, is admitted. 

7.1.2.1 Club head mass 

The clubhead mass was modelled as a point mass of 0.2 kg connected to the shaft by two 

rigid elements. These can be changed to stiff beam elements of negligible weight if3-

dimensional model analysis is to be performed. If the mass is at the tip of the shaft and 

not offset its initial distance from the butt is the length of the undeformed shaft. The 

two rigid elements were connected from the point mass, one to a node at the shaft tip 

and the second to a node approximately 140 mm above. In this way the offset of the 

mass from the shaft can be altered. In the current work, two arrangements were 

frequently used, viz an offset of zero, representing a mass on the shaft tip, and an offset 

of 40 mm, typical of a driver. Figure 7.5 is a 90° -135° topswing plot of the finite 

element model. The force vectors which drive the arm are shown as hollow headed 

arrows while the two solid triangles below and to the right indicate the pivot point. The 

wrist spring is clearly shown as are the rigid links. The offset clubhead mass is shown as 

a square. 

7.1.2.2 Frequency verification 

Shaft models with 2,4, 8, 16, 32 and 64 elements were analysed for their natural 

frequencies. Nodes were equally spaced along the length of the shaft and, for each 

shaft, the end elements had the properties of the tip and butt, as appropriate, of the 

Unifiber T30 shaft, investigated in chapter 5. Geometric properties of the intervening 
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elements were linearly interpolated between these values. Homogenous isotropic 

material properties were assigned, the density being 1300 kgm-3 and the elastic stiffness 

50 GPa. Both a tip mass and 40 mm offset mass were analysed. Each shaft was 

constrained at the butt node against both rotation and translation. This differs from the 

frequency test most commonly carried out in practice (section 1.6.2.1), in which a finite 

length of butt is clamped. This was not done in the model since the location of the 

nodes, at which the clamping force must be applied, varied according to the number of 

elements in the model. In any case, the aim here was simply to identify the number of 

elements needed for convergence. Results for the frequencies and mode shapes for the 

offset mass are given in table 7.2. 

Mode (Hz) 

Number of 1 ~ 2~ ~ 4 f".. 
Elements \...J '-J-'--"'" 

2 3.31 38.5 X X 

4 3.69 41.9 122. 259. 

8 3.7 42.5 115. 237. 

16 3.68 42.4 106. 210. 

32 3.67 42.2 101. 196. 

64 3.66 42.2 98. 191. 

Table 7.2 Results of frequency verification, offset mass 40mm. 

For the low order mode shapes, that are expected to predominate during the downswing 

(Whittaker (1996), (Friswell et al (1998» satisfactory convergence is achieved with 8 

elements. The frequency of the first mode (3.70 Hz) is lower than the Friswell's 

prediction of 4.53 Hz but this is due to the longer length of the shaft used here. The 

analysis gave a frequency of 4.20 Hz when the 8-element model was constrained at the 

first two nodes at the butt, similar to the practical test. This is still somewhat lower than 

Friswell et aI, but confirms that the stiffness of the shaft model in the current work is 

approximately correct. Further verification of the shaft using models of varying degrees 

of mesh refinement is given in section 7.2, were the behaviour of the shaft during the 

swing is first considered. 
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7.1.3 Analysis procedure 

The downswing analysis was carried out for a simulated time interval sufficient to 

include the passage of the head mass (hereafter called the club head) through the impact 

zone. Impact is considered to occur when the club head passed a vertical line passing 

through the upper lever pivot point, this time interval is about 0.3 s. During the 

analysis, model data was written to a file at a frequency of 500 Hz (analysis time). It 

was found that sufficient details on the dynamic behaviour of the tip at impact could not 

be obtained at this frequency. After the full downswing analysis was performed, the 

analysis was therefore restarted from the last available checkpoint before impact. This 

second stage analysis wrote model data at 50,000 Hz, over a time interval sufficient to 

include the club head's passage through impact. This was a lengthy technique for each 

swing since a change in any parameter, for example, shaft stiffness, leads to different time 

to impact. However it was necessary to produce consistent results and to minimise 

errors. Appendix D-1 gives the Abaqus input file for a typical analysis which is 

discussed in the next section. 

7.2 Swing results 

The following sections describe, in some detail, features common to most of the swing 

analyses performed. Detailed information on post-processing is given in section 4.2 and 

here results are presented for an 8-element shaft with a material stiffness of 50 GPa. 

The topswing was a 90°-135° transformation, ie 90° wrist cock and 135° arm turn and 

the FTP was ramped from 2121 N, at the start of the downswing, to zero, after 0.30 s. 

The analysis was continued for a simulated time of 0.40 s and the clubhead was observed 

passing through impact just after 0.302 s. The more accurate, second stage analysis was 

set to run from 0.302 to 0.304 s and showed the clubhead passing through the impact 

zone between 0.30376 and 0.30378 s. 

7.2.1 Deformed plots 

Figure 7.6 shows 9 AbaquslPost plots of the deformed model, from the start position to 

just after impact. The time between frames is 0.04 s. Of course, the model club 
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continues through the impact zone with the no abrupt change in speed, as there is no ball 

impact in this case. A higher-frequency sequence of post-processed results can be run 

as an animation file (clearly not reproducible here) to give the user a clearer view of the 

swmg. 

Nodal coordinates can be obtained for the shaft at any instant and the relative 

displacements magnified to show the deformed shape more clearly as an x-y plot. 

Figure 7.7 shows such a plot of the shaft at impact. Any tendency of the shaft to be 

bent forward is masked by the butt being ahead of the tip by 110 mm overall. The 

coordinate basis could of course be transformed to give one axis coincident with most of 

the shaft but this is awkward to automate as each analysis requires a different local basis. 

An approach taken by Mather (1998) in practical experiments was to record the radius of 

curvature over the length of the shaft. In the current work, this may be done for each 

element and is shown in table 7.3 and figure 7.8. The shaft element at the tip is not 

included as it is held straight by the rigid structure forming the offset mass. 

Element number radius of curvature (m) 

I butt 4 + 12464.48 

5 - 28316.6 

6 - 428.78 

7 -81.116 

8 - 25.604 

9 - 10.322 

10 - 4.5025 

I tip RIGID RIGID 

Table 7.3 Radius of curvature in each element at impact, offset 40mm. 

Negative values for the radius of curvature correspond to forward bending of the shaft. 

The large positive value towards the butt implies that the shaft is bent backward but only 

slightly. This 8-element model does not yield the detailed deformed shape and, when 

shaft shapes were to be compared, 32 element models were used (in fact, the difference 

between the 8 and 32 element model predictions was minimal, as discussed in section 

7.2.5.) 
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7.2.2 Stress and strain plots 

Contour plots over the model were available for most element variables. Figure 7.9 

shows a contour plot of curvature (the inverse of the radius of curvature) for the 

elements. The original colour contours do not reproduce in monochrome and so 

tickmarks are attached. The largest changes can be seen to occur towards the tip of the 

shaft. 

7.2.3 Variable-variable graphs 

Figure 7.10 shows the speed of the wrist and club head during the downswing. The 

clubhead reaches a speed of33.8 ms·1 at impact, 1% less than the maximum speed, which 

occurs 0.026 s later. The wrist speed is 6.37 ms·1 at impact, 9 % less than its speed 

0.082 s earlier. This is due to momentum transfer during wrist uncocking. 

Figure 7.11 shows how bending moments develop in the shaft during the downswing. 

The two elements chosen were the penultimate elements at each end of the shaft, to 

minimise distortions caused by the rigid structure at the tip and by the spring attached to 

the butt. These elements are just below the grip and just above the clubhead, and are 

labelled as such. The corresponding strain diagram, shown as change in curvature, is 

given in figure 7.12. The largest bending moments occur at the butt during the first part 

of the downswing, as the club inertia attempts to cause jackknifing but is resisted by the 

wrist spring. The positive moment confirms the forces cause backwards bending. As 

the wrist opens, the shaft boundary condition changes to only a pivot and accordingly the 

frequency of vibration rises. This is shown from halfway through the downswing on 

both the moment and curvature plots. The natural frequency of vibration of the shaft is 

also raised by centrifugal stiffening that increases both as the speed increases and as the 

moment-arm from clubhead to shoulder-pivot increases, due to wrist uncocking. The 

effect of such vibrations make the actual club head trajectory and its phase-plane diagram 

(ie velocity v position) almost chaotic, highly sensitive to small changes in timing or 

address position. It is then almost impossible to exactly reproduce a particular 

trajectory in detail, even computationally. Of course, such small changes are inevitable 

in practice. 
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Clubs with increased structural damping (the analysis only includes a small amount of 

damping for numerical stability) would benefit the golfer by reducing the amplitude of 

vibration but for the mere seven cycles as shown, the effect of material damping would 

be negligible compared to the damping from the golfer's hands and grip. No attempt 

has been made to model such damping here but it would be an important feature of 

further work. 

The shaft bending moments and the curvature at the club head become negative after 

wrist uncocking, indicating that the shaft is bent forward. Golfing lore says that this is 

caused by the recovery of the shaft but most backwards bending during the early part of 

the downswing occurred near the grip and forward bending occurs near the clubhead. 

The main cause of the forward bending is more likely to be the offset mass and the 

resultant centrifugal force. This is confirmed by a similar analysis with a mass located at 

the tip, which shows the bending moment and curvature near the clubhead vibrating 

about a mean value of zero. The bending moment and curvature change plots for a tip 

mass model are given in appendix D-2. 

7.2.4 Derivation of shaft performance predictors 

The critical performance indicators of the shaft derive from the dynamic behaviour of the 

clubhead through the impact zone. Only by a comparison of the dynamic variables can 

the effect of differing shafts or swings be evaluated. The key variables are the 

translational velocity of the tip, both speed and direction (given as elevation), and the 

dynamic loft of the tip section. Various methods were developed to determine these 

from Abaqus output and these methods were continually improved to increase the 

accuracy of the results. The following sections give the final procedures used, with the 

occasional note as to the problems encountered with earlier methods. 

7.2.4.1 Speed 

The speed of the tip can be calculated from the displacement of the end node over a time 

period in the second stage analysis. This however gives an underestimate of the speed 

as it approximates the arc of travel by a straight chord. An alternative method was to 
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take the average of the speeds for the tip node for two instances in the second stage 

analysis, ie pre- and post-impact. The magnitude of the difference between the averaged 

values was never greater than 0.01 ms- I
. 

7.2.4.2 Elevation 

Like speed, the elevation was best calculated as the average from the pre- and post­

impact velocities in the second stage analysis. Again the small time increment gave 

reasonable accuracy and differences were never greater than 0.05°. 

7.2.4.3 Loft 

The actual loft at impact is the summation of the static head loft and the shaft attitude at 

impact, the latter being a dynamic function of shaft bending and the position of the grip 

in relation to the clubhead (grip ahead of the club head leads to a reduction in loft). By 

default, the term 'loft' in the current chapter is taken as 'dynamic loft increment', a value 

indicating any change over the static loft. Loft was measured as the angle that a line, 

joining the shaft nodes attached to the rigid body at the head, made with the vertical. 

The average of the attitude before and after impact was calculated and differences were 

not greater than 0.05°. 

7.2.5 Mesh density convergence 

Validation of the shaft element mesh density has already been done for the vibration 

study in section 7.1.2.2 but it is prudent to also examine the convergence for a typical 

swing analysis, were the FTP or wrist spring may have an additional effect. Shafts of 

2,4,8,16,32 elements were analysed for a 90°-135° topswing, ramped profile. Table 7.4 

shows the effect of the element numbers on the shaft performance predictors; speed, 

elevation and loft. 
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Number of Speed (ms- I
) Elevation e) Loft e) 

elements 
2 32.51 -2.37 -5.42 

4 32.76 -2.25 -5.08 

8 34.31 -2.83 -5.81 

16 34.34 -2.82 -5.81 

32 34.38 -2.80 -5.81 

Table 7.4 Shaft performance indicators for varying mesh densities. 

For each predictor the 8-element model is satisfactorily close to the 16-element model 

and so the former was used in most analysis. 

7.3 Shaft properties 

It is believed that five key properties affect shaft performance (section 1.6.2). The finite 

element model allowed a quantitative examination of how these properties affect the 

dynamic behaviour ofthe shaft and thus the attitude of the clubhead at impact. Of 

course, the 8-element (unless otherwise stated), 2-dimensional model used here simplifies 

the real golf swing. However it may be readily extended to 3-dimensional and will 

facilitate benchmarking, beyond the scope of the current work, of the overall 

computational approach against practical experiments, whether using real or mechanical 

golfers. 

7.3.1 Flex 

Flex is a measure ofthe shaft bending stiffness and was discussed in section 1.6.2.1. A 

50-flex shaft is taken here to mean that it is made of material with a modulus of 50 GPa. 

This value, obtained from simply-supported bending tests (section 5.1.2) on a randomly 

chosen shaft, was used in the current work. One of the aims of the current work is to 

elucidate any flex effect and a range of stiffness is needed to cover the extremes of 

current shaft designs. This range of stiffness was initially estimated and adjusted by 

comparing the frequency response to known results. 
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7.3.1.1 Frequency analysis 

Frequency analyses in the range 40-60-flex was carried out by constraining the shaft at 

the butt over a distance of 138 mm, similar to the constraint used in practical tests, and 

calculating the low mode frequencies. Figure 7.13 shows a linear relationship between 

the stiffness and frequency for mode 1. Results for modes 1, 2 and 3 (shapes given in 

table 7.2) are given in table 7.5. The range of calculated frequencies was similar to 

clubs of the model length, given by Sato (1995) and Tutleman (1998). Tutleman's 

results for nominal flex grades are given in table 7.6, in which frequencies have been 

converted from cycles per minute. The range of flex chosen adequately encompasses 

the typical values and was used in 2 GPa increments for swing analysis. For the 50-flex 

model the shaft frequency was 4.2 Hz and is a typical R (regular). The shaft measured 

in section 5.1.2 was a low stiffness version of the manufacturer's range and, assuming 

Tutleman's values to be typical, the shaft range examined in chapter 5 can therefore be 

considered stiffer than other manufacturers'. 

Flex Mode 1 Mode 2 Mode 3 ! 

40 3.75 45.4 124 
I 

42 3.85 46.5 127 I 

44 3.94 47.6 130 

46 4.03 48.7 133 

48 4.11 49.7 135 

50 4.2 50.8 138 

52 4.28 51.8 141 

54 4.36 52.7 144 

56 4.44 53.7 146 

58 4.52 54.7 149 

60 4.6 55.6 151 

Table 7.5 Effect of shaft stiffness on modal frequencies. 
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Nominal Grade Frequency (Hz) 

L 3.92 

A 4.08 

R 4.25 

S 4.42 

X 4.58 

Table 7.6 Graded shaft frequencies for a typical driver (Tutleman 1998). 

7.3.1.2 Swing analyses 

An extensive list of analyses was performed for the full range of flexes, all FTPs, 

topswings 90°-135° and 90°-180° and for both clubs with zero and 40 mm mass offset. 

Only the passive wrist was modelled. Clearly the reproduction of results for all 

configurations is not a practical option and a very condensed summary is necessary. 

A common effect of altering the shaft flex is shown in Figure 7. 14. This shows the 

speed of the wrist and club head for both extremes of flex during the swing. The analysis 

used the ramped FTP, 90°-135° topswing and offset mass 40 mm. Impact occurred 

after approximately 0.304 seconds. At impact the 40-flex head speed was 33.92 ms- I 

and the 60-flex was 33.31 ms-r, a difference of 0.61 ms- I
. The speeds achieved with a 

90° -180° topswing and ramped FTP were larger and the difference was correspondingly 

so, at 39.84ms-I for 40-flex and 38.69ms- I for 60-flex. These increases in speed can be 

compared to the advantages claimed by Butler and Winfield (1995) and Thomas 

(Tutleman 1998) for lighter shafts, as given in section l.6.2.l. This speed increase 

would give 3-6 yards extra distance. The reason for the difference due to flex is that, at 

the start of the downswing, 40-flex bends back more than the 60-flex, the rotational 

inertia of the whole system is less and the angular acceleration is greater. During 

opening out of the wrists, the 40-flex catches up with the 60-flex and overtakes it. This 

is confirmed by figure 7.15, which is a bending strain plot, taken as change in curvature, 

for elements near the grip and clubhead. It shows that the 40-flex bends further and 

remains bent back longer, due to its lower natural frequency, giving a greater angular 

velocity of the whole structure before opening out of the wrist. The curvature change 

plot also shows shaft vibration during the second part of the downswing, after wrist 
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uncocking. This causes fluctuations in the club head speed but is not seen in the speed 

plot as the variation is very much smaller than the absolute magnitude. A change of 

scale allows the vibration to be observed. It affects the speed by ± 0.1 ms- I
. Figure 

7.16 shows the clubhead speed at impact as a function of the flex. The general tendency 

for lower flex shafts to have higher impact speed is shown but the relationship is non­

linear, due to shaft vibration. 

The effect of the stiffness on the change in dynamic 10ft is not constant for each FTP. 

Figure 7.17 shows the relationship for the ramped profile, with 90°_135° topswing. The 

shaft vibrations cause fluctuations of the 10ft within a range of2.5°and the 10ft 

continually changes as the shaft moves through the impact zone. The values are 

negative, indicating a reduction in 10ft. This is a result of the summation of two 

opposing swing and shaft parameters. First, the grip is ahead of the club head and this 

reduces 10ft. Second, the offset mass leads to bending forward of the shaft, which 

increases 10ft. Examination of all other swings confirmed that the unpredictability due 

to vibration was never more 2.5°. For a more 'gentle' FTP such as the 'constant', the 

range was smaller, within 1.5°. The effect of the 10ft change due solely to the offset 

mass could be estimated from a comparison between zero and 40 mm offset clubs, using 

the same FTP and topswing. This showed that shaft bending due to the offset mass 

caused an increase in dynamic 10ft of about 2.5°, found by comparing the range in 10ft 

change due to vibration for a variety of flexes for each FTP. In summary the 40 mm 

offset mass leads to increased dynamic 10ft of2.5°. This increase would be expected to 

change with flex, as is confirmed by comparing the radius of curvature in the penultimate 

element of the shaft for the extremes offlex. For 40-flex the radius of curvature was 

3.48 m and for 60-flex was 5.94 m. However the radius of curvature for other flex 

(table 7.7) does not change linearly between these bounds, again due to vibration of the 

shaft. The change in 10ft of2.5° is not as great as would be expected by such a large 

inertial force on the offset head and this can only be explained by the centrifugal force 

adding to the stiffness of the shaft. 
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Flex Radius of curvature (m) 

40 -3.48 

42 -4.05 

44 -4.85 

46 -6.37 

48 -5.82 

50 -4.50 

52 -4.51 

54 -4.07 

56 -4.30 

58 -4.88 

60 -5.94 
-- -- --

Table 7.7 Radius of curvature for shaft tip for various flex. 

Figure 7.18 shows another common result from all analyses, viz the effect of the shaft 

flex on the elevation of the head at impact. A clear relationship exists with lower flex 

reducing the elevation angle further below the horizontal. The negative value is due to 

the wrist being ahead of the clubhead and the shaft motion being mainly a rotation about 

the wrist. The club head travels in an arc and, at impact, its elevation is inclined below 

the horizon. Lower flex prolongs wrist cock and reduces rotational inertia, with the 

result the hands are further ahead of the clubhead at impact, pushing the elevation further 

below the horizontal. 

7.3.1.3 Offset mass 

The effect of the offset mass merits further investigation. Analyses used a 32 element 

shaft to give a clearer view of the shape and a 90°_135° ramped FTP. Offsets of 0, 10, 

20, 30 and 40 mm were used. Figure 7.19 shows the speed of the clubhead varied by 

only 0.1 ms· I
. The nonlinear variation is due to the effect of the offset on vibration 

frequency but the trend is that more offset increases the speed - albeit slightly. Clubhead 

elevation (figure 7.20) showed similar fluctuations within a range of 0.1 0. Again there is 

a slight trend, that more offset reduces the elevation. Both speed and elevation 

relationships are due to the offset club being bent more, club inertia reduced, a greater 

angular velocity achieved and the wrists being further ahead of the club head at impact. 
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Figure 7.21 shows the clear relationship of the effect of offset on the 10ft of the club at 

impact. More offset increases the 10ft, from -7.5° at zero offset to -4.5° at 30 mm, due 

to the effect of centrifugal force on the head causing shaft bending. The true increase in 

10ft due to offset would be slightly greater but the effect of the reducing elevation (noted 

above) counteracts this. Again, the 10ft relationship shows evidence of shaft vibration 

but in this instance it is less clear as the 10ft difference due to offset is greater that that 

due to vibration. Figure 7.22 demonstrates the shaft shapes, showing the radius of 

curvature of elements towards the tip, before the rigid structure is attached. More offset 

promotes a smaller radius of curvature. The mass offset of 10 mm gave strange results, 

possibly as a result of excitation of a mode shape but possibly a user error such as a 

particularly stiff element in the shaft. No error was however found. For zero offset, 

the radius of curvature of any element over the whole length of the shaft was not less 

than 28 m and was positive, indicating that the shaft was bent back. This confirms that 

forward bending of the shaft at impact is not due to shaft loading during the swing but to 

the centrifugal force on the offset mass. 

The effect of shaft stiffness on the swing can be predicted by the model and confirms 

much of the previous research, detailed in section 1.6.2. The relationships are complex 

and depend on the vibration of the shaft about the pivot point during the latter part of the 

swing and, to a lesser degree, the more constrained situation earlier in the swing. 

Imposing the correct boundary conditions for the club is therefore essential, especially in 

any future work modelling a real, 3-dimensional, golf swing. Rotation of the shaft about 

the wrist causes centrifugal force that changes flex and frequency throughout. These 

effects are real and are included in the model. It appears that the relationships between 

flex and dynamic shaft parameters at impact remain the same for very different FIPs. 

The effect of the flex on the 10ft of the club at impact, when the mass is offset, is as 

predicted by Milne (1992). However the difference over a typical range offlexes is very 

small and due, no doubt, to the centrifugal stiffening effect discussed by Mather (1994, 

1995 and 1998). An improvement in clubhead speed can be achieved by lower flex, 

since the bending of the shaft reduces the rotational inertia of the system during the early 

part of the swing and the lower frequency prolongs wrist cock. However such 

improvements are small. The use of stiffer shafts reduces the amplitude of vibrations 

and makes for more repeatable shots. Vibration may have a harmful effect in shot 
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quality with, for example, professionals to whom accuracy is more important than 

distance. Then stiffer shafts may hold the balance in lowering scores. For golfers who 

have a poor repeatability in their swing, much greater than the variation due to vibration, 

the use of low flex shafts may be beneficial in promoting distance. 

7.3.2 Torque 

As the model was only used in 2-dimensions in the current work no attempt was made at 

investigations involving torque. 

7.3.3 Bend point 

Analyses were carried out using 32 element shaft models for three different bend profiles. 

The stiffness of the individual elements was altered such that the shafts gave the same 

static deflection in a flex test when the butt was clamped and a concentrated force of 27 

N applied at the tip. Figure 7.23 shows the three shaft shapes in deflection. The mid­

bend point shaft had a constant material stiffness for elements along the shaft length of 

50 GPa. The low bend-point was stiffer in the butt and weaker in the tip, the high bend 

point the converse. Actual values for each element are tabulated in appendix D-3. The 

shafts were analysed using seven out the possible ten selections ofFTPs and topswings. 

Table 7.8 gives the clubhead dynamic properties for each swing. The highest value in 

each column is highlighted, to indicate any trend, along with the maximum difference 

between the three shafts given. The bend point has little effect on speed, except for 

topswings 90°-180° ramped and 90°-180° nonlinearl. These accelerations are more 

'aggressive' and promote larger shaft vibrations. No clear relationship is seen and the 

'fastest' shaft appears to vary randomly. With the exception of the two swings 

mentioned, little difference is found in the change in elevation angle. While the results 

indicate that a high bend-point gives increased elevation, the effect is insignificant. The 

10ft results are more conclusive. The low bend-point shaft gives the greatest 10ft in all 

cases and the high bend-point the smallest 10ft in most and for the one exception a 

negligible difference between the mid and high. These results confirm the predictions 

based on theory presented in section 1.6.2.1. The results for speed and elevation 
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highlight the unpredictability of the model due to shaft vibration and emphasize the need 

for correct damping if it is to be used in future work. 

7.3.4 Damping 

Abaqus includes a small amount of damping for numerical stability but this has a 

negligible structural effect. Significant material damping would have the effect of 

reducing the amplitude of vibration over a number of cycles. However, the frequency of 

the vibration modes that dominate the golf swing are low and only about 7 cycles occur 

in the swing. Material damping is not then expected to be a significant parameter in 

shaft design, particularly when compared to the much greater structural damping 

provided by the golfer's hands and grip. The claim that improved material damping 

reduces inaccuracies due to vibration is valid in theory but further work is needed in this 

area to determine the degree to which shaft damping would have a discernible effect. 

7.3.5 Weight 

That shaft weight is a performance parameter is clear, with lighter shafts leading to 

higher club head speeds. This is the basis for modern composite shafts. The effect of 

weight, over the range found in real shafts, is desired. This range is about 50 to 150 g 

and was studied in 10 g increments. The model swing was repeated with only the shaft 

density altered between runs. The material stiffness was kept at 50 GPa. Only the 

ramped FTP, from a 90°-135° topswing with the passive wrist was used. 

Figure 7.24 shows the speed of the clubhead and wrist during the downswing for the 

extremes of the weight range. The lighter shaft attains a higher speed at impact, 33.88 

ms- I
, compared to 33.31 ms- I for the 150 g shaft. The difference, 0.57 ms-\ is smaller 

than stated by Butler and Winfield (1995) and Thomas (Tutleman 1998) but the values 

are for a 90°_135° topswing. A bigger topswing (ie 90°-180°) would attain a higher 

clubhead speed and would be expected to show comparable values. For the 50 g shaft 

the reduced inertia of the system means greater acceleration during the FTP and 

consequently higher final clubhead speeds. The lighter shaft also has higher vibrational 

frequency and this might be expected to cause wrist uncocking sooner. However the 
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greater acceleration compensates and uncocking occurs at approximately the same time 

for both shafts. The effect of speed over the range of weights is shown in figure 7.25 

and the general trend is confirmed, although vibration produces an anomaly at 80 g. 

The curve appears asymptotic above 120 g. Future work might confirm this. 

Figures 7.26 and 7.27 show the effect of the shaft weight on the change in dynamic loft 

and club head elevation respectively. Previous results have shown these two effects to 

be related. The change in loft is susceptible to shaft vibration but a general trend can be 

seen, with heavier shafts producing greater dynamic loft. This is due to the wrist not 

being as far ahead of the clubhead at impact, for the heavier shafts. Indeed a linear 

relationship appears between the position of the wrist ahead of the clubhead and the shaft 

weight. The wrist is 117 and 91 mm ahead of the club head for the 50 and 150 g shafts 

respectively. This occurs because the time to impact is also linearly related to the shaft 

weight, heavier shafts taking longer. Figure 7.28 shows the position of the two swings 

(not to scale) at impact, along with the downswing times, the change in loft and the 

effect of shaft weight on elevation. The further that the wrist is ahead of the club head at 

impact, the lower is the elevation below the horizontal. 

7.4 Wrist modelling 

The model has been designed so that different FTPs and wrist functions could be 

modelled. It was found that with wrist functions other than the passive model large 

shaft vibrations during the swing were created. These caused results to be unpredictable 

and confirmed the importance of correct damping if the model is to replicate a real golf 

swing. Further work on wrist modelling was therefore abandoned until suitable 

damping was included in the model. This has not yet been attempted. 



SPEED 135 135 135 180 180 180 
constant ramped nonlinearl constant stepped ramped 

low 26.688 34.322 25.690 39.347 50.850 40.722 
mid 26.707 34.412 25.740 39.564 50.950 40.247 
high 26.667 34.427 25.580 39.400 51.010 40.282 
MAXDIFF 0.040 0.105 0.160 0.217 0.160 0.476 

ELEVATION 135 135 135 180 180 180 
constant ramped nonlinearl constant stepped ramped 

low -4.090 -3.453 -0.084 -1.697 0.092 -2.713 
mid -4.073 -3.446 -0.041 -1.516 0.091 1.642 
high -4.073 -3.302 -0.031 -1.582 0.191 2.282 
MAXDIFF 0.017 0.151 0.052 0.181 0.100 4.995 

LOFT 135 135 135 180 180 180 
constant ramped nonlinearl constant stepped ramped 

low -9.917 -2.181 3.136 -0.375 7.556 9.163 
mid -10.776 -4.238 1.860 -1.318 4.894 7.583 
high -11.485 -4.140 1.479 -2.162 3.562 6.035 
MAXDIFF 1.568 2.057 1.657 1.787 3.993 3.128 

Table 7.8 Dynamic impact parameters for bend point swing analysis. 
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Figure 7.1 Swing model dimensions and 8 element shaft model. 
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Figure 7.3 Wrist spring 'force-displacement' characteristics. 
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Figure 7.4 Transformation from address to 90°-135° topswing. 

Cfl 
~ 
Pl 
HJ 
n-

!3 o 
0.. 
(I) 

f-' 

W 
N 
-...J 



Ll 

Figure 7.5 Finite element model of 90°-135° topswing. 

n 
:r:: 
~ 
'-cI 
t-3 
M 
~ 

-J 

t-3 
:::r 
(J) 

H1 
f-'. 
~ 
f-'. 
rT 
(J) 

(J) 

f-' 
(J) 

S 
(J) 

~ 
rT 

(fj 

::s 
f-'. 
~ 

lQ 

p.J 
~ 
0... 

(fj 

:::r 
p.J 
H1 
rT 

S 
0 
0... 
(J) 

f-' 

W 
N 
<Xl 



Time = 0.00 s Time = 0.04 s Time = 0.08 s 
(1 

~ 
~ 
hj 
f-j 

M 
~ 

--.J 

L, f-j 

L ::r-
L (D 

H1 
1-" 
::J 

Time = 0.12 s Time = 0.16 s Time = 0.20 s 1-" 
rt 
(D 

(D 

f--' 
(D 

S 
(D 

::J 
rt 

CJl 

~ L, L :s 
L 1-" 

::J 
lQ 

Time = 0.24 s Time = 0.28 s Time = 0.32 s 
PJ 
::J 
P.. 

CJl 
::r-
PJ 

j 
H1 
rt 

S 
0 
P.. 
(D 

fa"" f--' 

L L 
L 

Figure 7.6 Snapshots of model downswing. w 
N 
'0 



-0.5 ~-----------------------------------------------------------------------------------, 

-0.7 

-0.9 

~ .... -1.1 -= = .... 
"'C ... 
0 
0 
Col -1.3 
~ 

-1.5 

-1.7 

-1.9 +-----------,----------,-----------,-----------,----------~----------~--------~ 

-0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 

X coordinate 

Figure 7.7 Shaft shape at impact, X-V plot. 
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8.0 Conclusions and recommendations 

Computational modelling of the golf stroke was successful with results comparing well 

with previous practical research. 

8.1 Impact modelling 

The club head was modelled as a free body impacting another free body, the ball. The 

effect of the shaft was ignored as it has been in much other previous research. While 

this is not the true practical case of a golf stroke it provided a means for verification of 

the model with other published studies. It is hoped that future computational modelling 

will include the shaft effect but this would be only prudent after further verification of the 

results presented in the current work. 

While the specific impact results presented in the current work are particular to the ball 

and club head properties modelled, general conclusions can be drawn on club head and 

ball performance parameters. 

The club head was first modelled as elastic and capable of undergoing deformations. The 

club head modulus at which maximum initial ball speed occurred was dependent on the 

ball material and construction. Clubheads with higher modulus do not necessarily 

produce higher ball speeds. For 'thick walled' clubheads showing only small strains 

during impact, and over the range of materials currently used in club head design, the 

effect of modulus on ball speed, launch and spin was negligible. For such clubheads 

adequate models of impact can be constructed from rigid elements if the correct mass 

and rotational inertia about the centre of mass are specified. A recent feature of rigid 

models is the creation of analytical curved surfaces. These are not susceptible to the 

discontinuities present in modelling curved surfaces with discrete elements. Such finite 

element models have been shown to be of use in evaluating the effect of bulge and roll 

curvatures on ball spin generation. 
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Geometric data on competing club head designs can be obtained from existing clubheads 

via reverse engineering techniques but these are difficult and costly. For clubheads 

created using computer aided design (CAD) such data would be easily obtainable. 

Impact causes stress waves within the club head and these can be studied by the finite 

element technique using solid elements. Stress pulses timed to coincide with impact 

may increase ball speed leaving the face but preliminary tests have shown the effect may 

only be small. 

For thin face clubheads such as a driver, where the face may be expected to deform 

appreciably during impact, rigid surfaces cannot suffice. Solid models with high mesh 

density to approximate the curved surfaces can be created but these are computationally 

expensive. However such models could be used to study further the existence of 

'spring-back' effect. 

The friction of the impact interface was shown to have a large effect on ball flight, 

affecting ball speed, launch and spin. The current work used a Coulomb friction model 

with no distinction between static and sliding friction. For any given loft a specific 

minimum friction coefficient exists that prevents sliding of the ball during impact. 

Maximum ball spin occurs at this value. Above this value the impact interface remains 

stationary and the spin rate decreases, contrary to popular theoretical ideas. Also 

running contrary is the relationship between friction and spin at low loft angles. 

For the ball a non-linear elastic material model was utilised. While impact predictions 

compared well with previous practical published research the model showed 

discrepancies against classical mechanical studies of impact based on rigid bodies. In 

particular the model refutes the popular idea that increasing ball inertia leads to 

decreased initial spin rates. The model also shows the initiation of spin on the ball from 

a lofted impact interface with zero friction. This was caused by a pressure distribution 

on the interface not acting through the centre of mass of the ball, which deforms to a 

large extent during impact. Also, increasing the ball cover stiffness decreases ball spin 

whereas increasing the core stiffness increases ball spin. These effects are not included 

in classical mathematical models of impact and could be investigated further by the finite 
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element model. These results, that both the stiffness and mass density distribution 

throughout the ball affect performance, prove the need to model the ball as an elastic 

structure capable of large deformations if impact studies are to have relevance to the 

practical golf shot. 

354 

Finite element modelling could be improved further if additional engineering material 

data is available. Currently, little is known of the engineering properties of hyperelastic 

compounds. Practical experiments need to be devised to obtain such properties. It is 

to be expected that this area of material modelling will grow in future years. 

More accurate results could be achieved by finer meshing of the clubhead, as would be 

needed in thin face drivers, but the improvement would be minimal compared to the 

advantages of finer meshing of the ball. However both increase the analysis time and 

cost and require larger amounts of computer and disk space. Considering the current 

growth rate in computer power, these problems are likely to disappear in the near future. 

Finally, the hardness test often used to describe the materials used in golf equipment is 

concerned with permanent deformation. Whilst hardness is thus of issue to clubhead 

designer and manufacturers, it is not an appropriate parameter related to golf equipment 

performance, where permanent deformation is not desired. 

8.2 Swing modelling 

A swing model was created that allows shaft performance to be examined for various 

styles of golf swing. The model has only been used in 2-dimensions but can be readily 

expanded to 3-dimensions to include, for example torsion effects and out-of-plane 

bending and vibration. The model allows for a non-linear input torque as its main power 

source and non-linear variability of wrist torque with displacement. While the current 

work demonstrates the former, only a single simplified wrist torque function was used. 

It is to be expected that other researchers studying the human golf swing will be able to 

supply data, relevant to the model input variables, in the near future. The model analysis 

has remained in 2-dimensions, simulating the golf swing of the University of Glasgow 
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mechanical golfer, 'Dai-Laughing', so as to allow verification of the model. This is seen 

as the essential next step before the model is used in 3-dimensions. 

The model causes the shaft to vibrate during the swing but the lack of structural damping 

in the model makes some of the results unrealistic. Shaft material damping can be 

included but this would be negligible compared to the damping provided by the golfer's 

grip and hands. Comparison of the model with practical experiments is necessary to 

establish how damping is best included and again the importance of verification is 

emphasised as the next step in continuing the current work. 
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Appendices 

A-I Calibration plate used for calibration of C3D process. Plate constructed from 

IOmm perspex and posts from aluminum. Middle section replaceable with 

mounted club head. 

A-2 Dimensions and coordinates of posts. Tolerances on posts ±O.OOI mm. 

A-3 Original design of mount for clubhead, not constructed due to current 

limitations of the C3D process. 

B-1 Abaqus input file for solid club head analysis. 

B-2 Abaqus input file for rigid clubhead analysis. 

B-3 Rotation and translation for rigid lofted club heads. 

B-4 Ball flight properties, varying modulus and zero friction. 

C-l Measured properties of selection of graphite composite shafts. 

C-2 Finite element shaft model data, used in knife edge tests. 

D-l Abaqus input file for swing and shaft analysis. 

D-2 Bending moment and curvature plots during downswing for zero offset mass. 

D-3 Element stiffness values for bend point analysis. 
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Post X Y Height Diameter 
number (mm) (mm) (mm) (mm) 

1 0.000 0.000 30.074 8.052 

2 13.970 42.545 30.074 12.802 
3 51.689 69.672 15.037 12.802 

4 76.581 99.949 15.164 12.802 
5 96.774 69.240 29.845 8.026 
6 133.401 41.910 20.142 12.802 
7 145.720 -2.032 25.019 12.802 

8 167.386 -32.766 15.138 12.802 
9 130.988 -44.323 10.287 12.802 
10 94.818 -69.596 40.183 12.802 
11 49.987 -69.672 35.179 12.802 
12 13.513 -35.052 5.207 12.802 

13 -22.606 -28.626 15.614 12.802 

14 29.210 11.728 10.185 12.802 
15 61.189 43.688 20.244 12.827 

16 103.937 33.147 35.179 12.802 

17 116.992 -10.744 25.044 12.802 
18 85.522 -43.180 30.099 12.827 

19 40.818 -31.902 15.138 12.827 

20 72.822 0.000 5.080 12.802 

Table A-2(l) Dimensions and coordinates of posts. Tolerances on posts ±O.OOI mm. 
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Figure A-3(1) Original design of mount for clubhead, not constructed due to limitations of the C3D process, sheet 1. 
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* ** * * * *** **** ********* *** * * *** * ** *** ***** * * * **** * ** ** * * START OF DATA 
** 
*HEADING, UNSYMM 
3-D HYPERELASTIC GOLF BALL IMPACTING LINEAR ELASTIC CLUB HEAD 
*PREPRINT, ECHO=YES, MODEL=YES, HISTORY=YES 
** 
* ***** * * ** ** * ***** *** *** ** ***** ********** ******* ****** * *** BALL NODES 
** 
*NODE, NSET=BALLN 
1, 0.179999992E-01, O.OOOOOOOOOE+OO, O.OOOOOOOOOE+OO 
2, 0.199999996E-01, O.OOOOOOOOOE+OO, O.OOOOOOOOOE+OO 
3, 0.166298300E-01, O.OOOOOOOOOE+OO, 0.688830297E-02 
4, 0.184775908E-01, O.OOOOOOOOOE+OO, 0.765366852E-02 
5, 0.127279200E-01, O.OOOOOOOOOE+OO, 0.127279228E-01 

1 Data omitted for conciseness 

1486, -0.778589863E-02, -0.746710366E-02, -0. 180262309E-01 
1488, -0.647215964E-02, -0.141306296E-01, -0. 141306240E-01 
1504, -0.746710086E-02, -0. 180262309E-01, -0.778589677E-02 
** 
** ******* ****** * *** **** ************ *** *** * * ***** * ** ** * ** * CLUB NODES 
** 
*NODE, NSET=CLUBN 
1505, -0.359999985E-01, -0.229903813E-01, -0. 125000002E-01 
1506, -0.359999985E-01, -0.228677858E-01, -0. 197876580E-01 
1507, -0.359999985E-01, -0.227451902E-01, -0.270753186E-01 
1508, -0.359999985E-01, -0.226225965E-01, -0.343629755E-01 
1509, -0.359999985E-01, -0.225000009E-01, -OA16506343E-01 

1 Data omittedfor conciseness 

1887, 0.399999991E-01, -0.558576547E-02, -0.280143376E-01 
1888, OA19999957E-01, -0.118916808E-01, -0.271065030E-01 
1889, OA39999998E-01, -0.181975979E-01, -0.261986684E-01 
** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * BALL ELEMENTS 
** 
* ELEMENT , TYPE=C3D8R,ELSET=BALLE 
1, 1, 3, 4, 2, 7, 9, 10, 8 
2, 3, 5, 6, 4, 9,11,12,10 
3, 7, 9, 10, 8, 13, 15, 16, 14 
4, 9, 11, 12, 10, 15, 17, 18, 16 
5, 2, 4, 22, 20, 8, 10, 28, 26 

1 Data omittedfor conciseness 

350, 575, 576, 639, 636, 255, 257, 1060, 1072 
351, 529, 636, 645, 538, 151,1072,1038, 113 
352, 636, 639, 648, 645, 1072, 1060, 1044, 1038 
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** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * CLUB ELEMENT S 
** 
* ELEMENT , TYPE=C3D8R,ELSET=CLUBE 
353, 1505, 1506, 1511, 1510, 1540, 1541, 1546, 1545 
354, 1506, 1507, 1512, 1511, 1541, 1542, 1547, 1546 
355, 1507, 1508, 1513, 1512, 1542, 1543, 1548, 1547 
356, 1508, 1509, 1514, 1513, 1543, 1544, 1549, 1548 
357, 1510, 1511, 1516, 1515, 1545, 1546, 1551, 1550 
587, 1842, 1843, 1848, 1847, 1877, 1878, 1883, 1882 

1 Data omitted for conciseness 

590, 1846, 1847, 1852, 1851, 1881, 1882, 1887, 1886 
591, 1847, 1848, 1853, 1852, 1882, 1883, 1888, 1887 
592, 1848, 1849, 1854, 1853, 1883, 1884, 1889, 1888 
** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * CLUB PROPERTIES 
** 
*SOLID SECTION, ELSET=CLUBE, MATERIAL=STEEL 
*MATERIAL, NAME=STEEL 
*ELASTIC 
210.E9, 0.3 
*DENSITY 
7800. 
*MATERIAL, NAME=AL 
*ELASTIC 

80.E9, 0.3 
* * ONLY THE MODULUS IS CHANGED FROM THAT OF STEEL, TO ALLOW 
** INVESTIGATION OF THE EFFECT OF ELASTICITY ON BALL FLIGHT 
*DENSITY 
7800. 
*MATERIAL, NAME=NYLON 
*ELASTIC 

3.E9, 0.3 
** ONLY THE MODULUS IS CHANGED FROM THAT OF STEEL, TO ALLOW 
* * INVESTIGATION OF THE EFFECT OF ELASTICITY ON BALL FLIGHT 
*DENSITY 
7800. 
*MATERIAL, NAME=LDPE 
*ELASTIC 

0.2E9, 0.3 
** ONLY THE MODULUS IS CHANGED FROM THAT OF STEEL, TO ALLOW 
** INVESTIGATION OF THE EFFECT OF ELASTICITY ON BALL FLIGHT 
*DENSITY 
7800. 

** 
** * ** ****** *** * ********************** ** ** * **** * * * ** * BALL PROPERTIES 
** 
*ELSET,ELSET=COVERE, GENERATE 
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5, 8 
17, 24 
49, 52 
61, 68 
93, 96 

1 
281,288 
313,316 
325, 332 

B-1 

Data omitted for conciseness 

*ELSET,ELSET=COREE, GENERATE 
1, 4 
9, 16 

25, 48 
53, 60 
69, 92 

1 Data omitted for conciseness 

289,312 
317, 324 
333, 352 
*SOLID SECTION, ELSET=COVERE, MATERIAL=SURL YN 
*MATERIAL, NAME=SURL YN 
*ELASTIC 
750.E6, 0.25 
*DENSITY 
950. 
*SOLID SECTION, ELSET=COREE, MATERIAL=RUBBER 
** THE CORE SHOULD REALLY BE HD FOAM BUT DATA IS SCARCE 
** THE FOLLOWING DATA IS FOR A VULCANISED RUBBER MATERIAL 

375 

* * THE SOURCE IS THE NOTES FROM THE EXPLICIT SAMPLE PROBLEMS 
*MATERIAL, NAME=RUBBER 
*HYPERELASTIC, N=2, TEST DATA INPUT 
*UNIAXIAL TEST DATA 
1.5506E5, 0.1338 
2.4367E5, 0.2675 
3.1013E5, 0.3567 
4.2089E5, 0.6242 
5.3165E5, 0.8917 

1 Data omitted for conciseness 

53.1646E5, 6.4650 
56.9304E5, 6.5541 
64.2405E5, 6.6433 
*BIAXIAL TEST DATA 
0.9384E5, 0.0200 
1.5900E5, 0.0600 
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2.4087E5,0.1100 
2.6220E5,0.1400 
3.3240E5, 0.2000 

1 Data omitted for conciseness 

20.1058E5,3.0700 
22.4502E5,3.2600 
24.6530E5,3.4500 
*PLANAR TEST DATA 
0.6000E5, 0.0690 
1.6000E5,0.1034 
2.4000E5,0.1724 
3.3600E5,0.2828 
4.2000E5, 0.4276 

1 Data omitted for conciseness 

14.8800E5,3.4483 
16.5800E5,3.7793 
18.2000E5,4.0621 
*VOLUMETRIC TEST DATA 
60.E5, 0.9703 
118.2E5,0.9412 
175.2E5,0.9127 
231.1E5,0.8847 
*DENSITY 
1100. 

** 

376 

******************************** DEFINE FIXED BOUNDARY CONDITIONS 
** 
*INITIAL CONDITIONS, TYPE=VELOCITY 
CLUBN, 3, 50. 

*RESTART, WRITE, NUMBER INTERV AL=10 
*STEP 
*DYNAMIC, EXPLICIT 
,0.002 
*ELSET,ELSET=BALLS1 
49, 50, 51, 52, 61, 62, 63, 64, 65, 66, 67, 68, 

313,314,315,316,325,326,327,328,329,330,331,332 
*ELSET,ELSET=BALLS2 
137, 138, 139, 140, 149, 150, 151, 152, 153, 154, 155, 156, 
225,226,227,228,237,238,239,240,241,242,243,244, 
* SURF ACE DEFINITION, NAME=BALLS 
BALLS1, S4 
BALLS2, S5 
*ELSET,ELSET=CLUBS 
353, 357, 361, 365, 369, 373, 377, 381, 385, 389, 393, 397, 
401,405,409,413,417,421,425,429,433,437,441,445, 
449,453,457,461,465,469,473,477,481,485,489,493, 
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497, 501, 505, 509, 513, 517, 521, 525, 529, 533, 537, 541, 
545, 549, 553, 557, 561, 565, 569, 573, 577, 581, 585, 589 
* SURFACE DEFINITION, NAME=CLUBS 
CLUBS, S6 
*CONTACT PAIR, INTERACTION=CLUBF 
BALLS, CLUBS 
* SURF ACE INTERACTION, NAME=CLUBF 
*FRICTION 
0.6 
*END STEP 
** 

377 

********************************************************* END OF DATA 
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*** **** * ******* * ********** ******* *** ***** ********** ****ST ART OF DATA 
** 
*HEADING 
RIGID 
*PREPRINT,ECHO=YES, HISTORY=YES, MODEL=YES 
*RESTART, WRITE, NUMBER INTERV AL=10 
** 
* * *** * ** **** * ******* **** **** * * * ****** * ******* ******** ***** BALL NODES 
** 
*NODE,NSET=BALLN,INPUT=BALLN 
** 
* * **** * * **** * ******** * ** *** * * * * ****** ********* ***** ****** CLUB NODES 
** 
*NODE, NSET=CLUBN 
2001, -3.6000E-02, 0.13094, -3.0000E-02 
2002, 3.6000E-02, 0.13094, -3.0000E-02 
2003, 3. 6000E-02, -1. OOOOE-O 1, -3. 0000E-02 
2004, -3.6000E-02, -1.0000E-01, -3.0000E-02 
*NODE, NSET=MASSN 
2005, 0000000000, 0.00000000, -0.04 
*NCOPY, CHANGE NUMBER=1000, OLDSET=CLUBN, SHIFT, NEWSET=ROTN 

4.00E-02, -1.00E-01, -3.00E-02, -4.00E-02, -1.00E-01, -3.00E-02, 30.0 
*NCOPY, CHANGE NUMBER=1000, OLDSET=ROTN, SHIFT, NEWSET=TRANN 
0.000, 0.000,0.061965 

** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * BALL ELEMENTS 
** 
* ELEMENT, TYPE=C3D8R,ELSET=BALLE,INPUT=BALLE 
** 
****************************************************** CLUB ELEMENTS 
** 
*ELEMENT, TYPE=R3D4,ELSET=CLUBE 
2001,4001,4002,4003,4004 
*RIGID BODY, ELSET=CLUBE, REF NODE=2005 
*ELEMENT, TYPE=ROT ARYl, ELSET=ROTA 
2002,2005 
*ROT AR Y INERTIA, ELSET=ROTA 
7.496E-05, 1.526E-04, 1.897E-04 
* ELEMENT , TYPE=MASS, ELSET=MASS 
2003,2005 
*MASS, ELSET=MASS 
0.32179 
** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * BALL PROPERTIES 
** 
*ELSET,ELSET=COVERE, GENERATE 

5, 8 
17, 24 
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49, 52 
61, 68 
93, 96 

1 
281,288 
313,316 

B-2 

Data omitted for conciseness 

325, 332 
*ELSET,ELSET=LAYER3,GENERATE 

1, 4 
9, 16 

45, 48 
53, 60 
89, 92 

1 Data omittedfor conciseness 

273, 280 
309,312 
317,324 
*ELSET,ELSET=LAYER2,GENERATE 
33, 44 
77, 88 
121, 132 
165,176 
209,220 
253,264 
297, 308 
341, 352 
*ELSET,ELSET=LAYERl,GENERATE 
26, 32 
70, 76 
114, 120 
158, 164 
202,208 
246,252 
290,296 
334, 340 
*ELSET,ELSET=COREE 
25 
69 
113 
157 
201 
245 
289 
333 
*SOLID SECTION, ELSET=COVERE, MATERIAL=SURL YN 
*SOLID SECTION, ELSET=LAYER3, MATERIAL=NORMAL 

379 
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*SOLID SECTION, ELSET=LAYERl, MATERIAL=NORMAL 
*SOLID SECTION, ELSET=LAYER1, MATERIAL=NORMAL 
* SOLID SECTION, ELSET=COREE, MATERIAL=NORMAL 
*MATERIAL, NAME=SURLYN 
*ELASTIC 
340.E6,0.25 

*DENSITY 
950. 
*MATERIAL, NAME=NORMAL 
*HYPERELASTIC, N=2 
13.896E6, 0.3475E5, 2269.0, -1779.0, 85.25, 0.9923E-8, -0.4433E-7 
*DENSITY 
1100.0 

*MATERIAL, NAME=OTHER 
*HYPERELASTIC, N=2 
13.896E6, 0.3475E5, 2269.0, -1779.0,85.25, 0.9923E-8, -0.4433E-7 
*DENSITY 
1700. 

** 

380 

******************************** DEFINE FIXED BOUNDARY CONDITIONS 
** 
*INITIAL CONDITIONS, TYPE=VELOCITY 
2005, 3, 50.0 
*BOUNDARY 
2005,1,2 
2005,4,6 
* STEP 
*DYNAMIC, EXPLICIT 
,0.005 
*ELSET,ELSET=BALLS1 
49, 50, 51, 52, 61, 62, 63, 64, 65, 66, 67, 68, 
313,314,315,316,325,326,327,328,329,330,331,332 
*ELSET,ELSET=BALLS2 
137, 138, 139, 140, 149, 150, 151, 152, 153, 154, 155, 156, 
225,226,227,228,237,238,239,240,241,242,243,244, 
* SURF ACE DEFINITION, NAME=BALLS 
BALLS1, S4 
BALLS2, S5 
*ELSET,ELSET=CLUBS1 
2001 
* SURFACE DEFINITION, NAME=CLUBS 
CLUBS1, SNEG 
*CONTACT PAIR, INTERACTION=CLUBF 
BALLS, CLUBS 
* SURF ACE INTERACTION, NAME=CLUBF 
*FRICTION 
0.6 
*END STEP 
** 
********************************************************* END OF DATA 



ball contact point top coord club contact point seperation translation centre of face position pOSe of mass element 

loft x y x y x y z 
0 -0.021000 0 0.100000 -0.030000 0 0.009000 0.007479 -0.022521 0 -0.036751 
5 -0.0209201 -0.001830 0.100764 -0.038589 -0.001830 0.017669 0.016148 -0.022601 0 -0.036831 

10 -0.0206811 -0.003647 0.103085 -0.046990 -0.003647 0.026309 0.024788 -0.022845 0 -0.037075 
-- -

15 -0.020284 -0.005435 0.107055 -0.055339 1 -0.005435 0.035054 0.033533 -0.023262 0 -0.037492 
.-

20 -0.019734 -0.007182 0.112836 -0.063783 -0.007182 0.044049 0.042528 -0.023869 0 -0.038099 
25 -0.019032 -0.008875 0.120676 -0.072492 -0.008875 0.053460 0.051939 -0.024692 0 -0.038922 
30 -0.018187 -0.010500 0.130940 -0.081673 -0.010500 0.063486 0.061965 -0.025770 0 -0.040000 
35 -0.017202 -0.012045 0.144155 -0.091587 -0.012045 0.074384 0.072863 -0.027157 0 -0.041387 
40 -0.016087 -0.013499 0.161081 -0.102583 -0.013499 0.086496 0.084975 -0.028935 0 -0.043165 
45 -0.014849 -0.014849 0.182843 -0.115151 -0.014849 0.100302 0.098780 -0.031220 0 -0.045450 
50 -0.013499 -0.016087 0.211145 -0.130004 -0.016087 0.116505 0.114984 -0.034191 0 -0.048421 

--

55 -0.012045 -0.017202 0.248689 -0.148248 -0.017202 0.136202 0.134681 -0.038133 0 -0.052363 
~-

60 -0.010500 -0.018187 0.300000 -0.171705 -0.018187 0.161205 0.159684 -0.043521 0 -0.057751 

65 -0.008875 1 -0.019032 0.373240 -0.203635 -0.019032 0.194760 0.193239 -0.051211 0 -0.065441 
70 -0.007182 -0.019734 0.484761 -0.250530 -0.019734 0.243348 0.241827 -0.062921 0 -0.077151 
75 -0.005435 -0.020284 0.672741 -0.327503 -0.020284 0.322067 0.320546 -0.082659 0 -0.096889 

80 -0.003647 -0.020681 1.051754 -0.4798411 -0.020681 0.476194 0.474673 -0.122455 0 -0.136685 

85 -0.001830 -0.020920 2.194743 -0.933888 -0.020920 0.932057 0.930536 -0.242469 0 -0.256699 
89 -0.000367 -0.020997 11.359738 -4.556090 -0.020997 4.555724 4.554203 -l.2047941 0 -1.219024 

Notes 
Mass element lies 0.01423 metres horizontally behind clubface, at same vertical height as centre of mass of ball. 
Clubhead is translated after rotation such that distance to impact is l.S2E-03 metres. Based on a analytical spherical ball. 
The upper coordinate ofthe club head is calculated so that the clubhead appears O.lm above and the centre of the ball. 

Table B-3(1) Rotation and translation for rigid body lofted club heads. 
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Figure B-4(1) Effect of clubhead modulus on ball speed, zero friction. 

100 1000 

t:d 
I 

,j::, 

w 
co 
N 



.c 
(.J 

34 

32 --, 

30 I 
I 

I = 26 = eo: 
~ 

24 II '( 

22 --, 

20 

0.01 

... I , 
_. __ ._, 

\1/ ~ 
i 

""'-. 

-_.0. 

! 

I , 

I 

i 
I 

0.1 1 10 

Modulus of Elasticity 

Figure B-4(2) Effect of club head modulus on ball launch, zero friction. 
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Figure B-4(3) Effect of club head modulus on ball dispersion, zero friction. 
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butt tip 

Model of Length mass (g) external wall external wall volume 
shaft (mm) diameter thickness diameter thickness (m3

) 

(mm) (mm) (mm) (mm) 

GIM 1120. 113. 15.3 2.8 8.4 2.5 8.60x10-3 

X, 2.5, high 1120. 96. 14.4 1.0 8.4 2.1 5.09x10-3 

R, 3.0, low 990. 82. 15.2 1.5 9.3 2.5 6.03x10-3 

S, 3.0, low 1120. 82. 15.2 1.5 9.3 2.3 6.64x10-3 

R, 3.5, mid 1141. 86. 15.4 1.7 8.5 2.2 6.85x10-3 

S, 3.5, high 1145. 90. 15.2 1.5 8.5 2.1 6.26x10-3 

R, 3.7, low 990. 85. 15.1 1.4 9.3 2.6 6.00x10-3 

L, 5.0, low 1160. 84. 15.3 1.5 8.4 2.1 6.43x10-3 

X 1142. 121. 15.1 1.6 8.5 2.6 6.89x10-3 

Notes: Model of shaft refers to manufacturer specifications of flex rating, torque and bend point, where given. 
GIM refers to gas injection moulded shaft. 

Table C-l(l) Measured properties of selection of graphite composite shafts. 
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Node X coordinate Element External thickness 
(mm) radius (mm) (mm) 

1 0.0 1 7.65 1.50 
2 89.2 2 7.36 1.55 
3 178.5 3 7.08 1.60 
4 267.7 4 6.79 1.65 
5 356.9 5 6.50 1.70 
6 446.2 6 6.21 1.75 
7 353.4 7 5.93 1.80 
8 624.6 8 5.64 1.85 
9 713.8 9 5.35 1.90 
10 803.1 10 5.06 1.95 
11 892.3 11 4.78 2.00 

12 981.5 12 4.49 2.05 

13 1070.8 13 4.20 2.10 

14 1160.0 

Notes Nodes 2, 13 are pinned in the Finite Element model. 
External radius and thickness are assumed to vary linearly between the bounds. 

Table C-2(1) Finite element shaft model data, used in knife edge tests. 
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**** *** * * * ********* ***** **** ********* ***** ** ********** *ST ART OF DATA 
**START OF PROGRAM 
* HEADING 
EIGHT ELEMENT SHAFT MODEL 50-FLEX 
**** ** *** ******* *** ***** * *********** * ******* * **** ** **NODE DEFINITION 
*NODE 
1, 0.000, 0.125, 0.000 
2,0.000, 0.000, 0.000 
3, 0.000, -0.125, 0.000 
4, 0.000, -0.625, 0.000 
5, 0.000, -0.625, 0.000 
13, 0.000, -1.725, 0.000 
14,-0.040, -1.725, 0.000 
15,-0.040, -1.725, 0.000 
*NGEN 
5, 13, 1 

*** ** ** ************* **** * *** **** **** * *** ******* * ***TRANSFORMATION 1 
*NSET,NSET=OLDSHAFT,GENERATE 
6, 15, 1 
*NCOPY, CHANGE NUMBER=100, OLDSET=OLDSHAFT, 
NEWSET=NEWSHAFT, SHIFT 

0.0,-0.625,1.0,0.0,-0.625, -1.0,90.0 
***** ** ********* *** ** ***************** * ** * *********TRANSFORMATION 2 
*NSET,NSET=OLDALL 
1,3,4,5,NEWSHAFT 
*NCOPY, CHANGENUMBER=100, OLDSET=OLDALL, NEWSET=NEWALL, 
SHIFT 

0.0,0.0,1.0,0.0,0.0,-1.0,135.0 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *ELEMENT DEFINITION 
* ELEMENT, TYPE=B21,ELSET=CHEST 
1, 101, 2 
2,2, 103 
* ELEMENT, TYPE=B21,ELSET=ARM 
3, 103, 104 
*ELEMENT, TYPE=B21,ELSET=SHAFT1 
4,105,206 
*ELEMENT, TYPE=B21,ELSET=SHAFT2 
5,206,207 

* ELEMENT, TYPE=B21,ELSET=SHAFT3 
6,207,208 
*ELEMENT, TYPE=B21,ELSET=SHAFT4 
7,208,209 
*ELEMENT, TYPE=B21,ELSET=SHAFT5 
8,209,210 

*ELEMENT, TYPE=B21, ELSET=SHAFT6 
9,210,211 
*ELEMENT, TYPE=B21,ELSET=SHAFT7 
10,211,212 
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*ELE11ENT, TYPE=B21,ELSET=SHAFT8 
11,212,213 
*ELE11ENT, TYPE=1iASS,ELSET=CLUB1iASS 
12,214 
*ELE11ENT, TYPE=SPRINGA,ELSET=~ST 
13, 103,206 
*ELE11ENT, TYPE=R2D2, ELSET=HEAD 
14,213,214 
15,212,214 
*BEAMSECTION, SECTION=CIRC, ELSET=CHEST, MATERIAL=HUMAN 
0.20 
*BEAMSECTION, SECTION=CIRC, ELSET=ARM, MATERIAL=HUMAN 
0.07 
*BEAMSECTION, ELSET=SHAFT1, SECTION=PIPE, MATERIAL=SHAFTM 
7.650E-03, 1.500E-03 
*BEAMSECTION, ELSET=SHAFT2, SECTION=PIPE, MATERIAL=SHAFTM 
7.157E-03, 1. 586E-03 
*BEAMSECTION, ELSET=SHAFT3, SECTION=PIPE, MATERIAL=SHAFTM 
6.664E-03, 1.671E-03 
*BEAMSECTION, ELSET=SHAFT4, SECTION=PIPE, MATERIAL=SHAFTM 
6.171E-03, 1.757E-03 
*BEAMSECTION, ELSET=SHAFT5, SECTION=PIPE, 1iATERIAL=SHAFTM 
5.679E-03, 1.843E-03 
*BEAMSECTION, ELSET=SHAFT6, SECTION=PIPE, MATERIAL=SHAFTM 
5 . 186E-03 , 1.929E-03 
*BEAMSECTION, ELSET=SHAFT7, SECTION=PIPE, MATERIAL=SHAFTM 
4.693E-03,2.014E-03 
*BEAMSECTION, ELSET=SHAFT8, SECTION=PIPE, MATERIAL=SHAFTM 
4.200E-03,2.100E-03 
*RIGID BODY, ELSET=HEAD, REF NODE=215 

388 

*********************************************************VVRlST SPRING 
*SPRING,NONL~AR,ELSET=~ST 

-1600, -0.040 
-1225, -0.035 
-900., -0.030 
-625., -0.025 
-400., -0.020 
-225., -0.015 
-100., -0.010 
-25.0, -0.005 
0.00, 0.000 
0.00, 0.005 
0.00, 0.010 
0.00, 0.015 
0.00, 0.020 
0.00, 0.025 
0.00, 0.030 
0.00, 0.035 
0.00, 0.040 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *MULITI POINT CONSTRAINT 
*MPC 
PIN, 104, 105 
*MASS, ELSET=CLUBMASS 
0.200 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *MATERIAL DEFINITION 
*MATERIAL, NAME=HUMAN 
*ELASTIC 
100.0E9, 0.25 
*DENSITY 
1000.0 
*MATERIAL, NAME=SHAFTM 
*ELASTIC 
50.0E9, 0.25 
*DENSITY 
1300.0 
*BOUNDARY 
2, PINNED 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *FORCE ACCELERATION PROFILE 
* AMPLITUDE, NAME=NLINEAR, INPUT=ramped.pro 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *DOWNSWING ANALYSIS 
* STEP 
*DYNAMIC, EXPLICIT 
,0.40 
*RE S TART , WRITE,NUMBERINTERV AL=200,TIMEMARKS=YES 
*CLOAD, FOLLOWER, AMPLITUDE=NLINEAR 
103, 1, -1500.0 
103,2, -1500.0 
*END STEP 
* *END OF PROGRAM 
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Figure D-2(1) Bending moments in shaft during downswing, zero offset mass. 
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Element No. LowBP MidBP High BP 

1 70.00 70.00 30.31 

2 70.00 70.00 30.63 

3 70.00 70.00 31.25 

4 69.98 69.98 32.50 

5 69.96 69.96 35.00 

6 69.92 69.92 40.00 

7 69.84 69.84 50.00 

8 69.69 69.69 60.00 

9 69.38 69.38 65.00 

10 68.75 68.75 67.50 

11 67.50 67.50 68.75 

12 65.00 65.00 69.38 

13 60.00 60.00 69.69 

14 50.00 50.00 69.84 

15 40.00 40.00 69.92 

16 35.00 35.00 69.96 

17 32.50 32.50 69.98 

18 31.25 31.25 70.00 

19 30.63 30.63 70.00 

20 30.31 30.31 70.00 

21 30.16 30.16 70.00 

22 30.08 30.08 70.00 

23 30.04 30.04 70.00 

24 30.02 30.02 70.00 

25 30.00 30.00 70.00 

26 30.00 30.00 70.00 

27 30.00 30.00 70.00 

28 30.00 30.00 70.00 

29 30.00 30.00 70.00 

30 30.00 30.00 70.00 

31 30.00 30.00 70.00 

32 30.00 30.00 70.00 

~, 
~ 

Table D-3(1) Element stiffness values for bend point analysis. 
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