
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Smith, Gary Douglas (2013) Measurements of spin asymmetries for 
deeply virtual compton scattering off the proton using the extended 
maximum likelihood method. PhD thesis. 
 
 
http://theses.gla.ac.uk/5042/ 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given. 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5042/


Measurements of Spin Asymmetries for Deeply Virtual

Compton Scattering off the Proton using the Extended

Maximum Likelihood Method

Gary Douglas Smith

Submitted in fulfilment of the requirements for the

degree of Doctor of Philosophy

Nuclear Physics Group

School of Physics and Astronomy

September 2013



Abstract

Generalised Parton Distributions (GPDs) provide a theoretical framework that promises

to deliver new information about proton structure. In the impact parameter interpretation,

they describe the substructure of the proton in terms of its quark (and gluon) constituents

in three dimensions: two transverse spacial dimensions and one longitudinal momentum

dimension. Through Ji’s sum rule, they offer a means by which to determine the total

angular momentum contribution of quarks to the proton’s spin of h̄/2. GPDs are directly

related to Compton Form Factors (CFFs), which are distributions that are measurable us-

ing Deep Exclusive Scattering (DES) processes such as deeply virtual Compton scattering

(DVCS). DVCS is characterised by the scattering of a single photon with large virtual-

ity off a single quark (or gluon) inside the proton, resulting in the production of a hard

photon: γ∗p→ γ p′. In this work, data recorded with the CLAS detector at Jefferson

Laboratory during the EG1DVCS experimental run were analysed. This experiment ran

for over 80 days with a longitudinally polarised electron beam and a solid NH3 target

containing longitudinally polarised protons. The resulting data set accommodated pre-

cise measurements of DVCS beam, target and double spin asymmetries, each of which

is sensitive to different combinations of CFFs. The final results presented here are fits

to these three asymmetries, which were performed using the Extended Maximum Like-

lihood method. It is intended that these results will be used in the future, along with

other DES asymmetry and cross-section measurements, to constrain CFFs and thus move

towards a more complete understanding of the structure of the proton.
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Preface

The proton is an essential constituent of every atomic nucleus and has been studied for

several decades. However, most of its properties can still not be described from first prin-

ciples. Over the last two decades, developments in theories relating to the partonic sub-

structure of protons and neutrons have motivated the experimental community to measure

exclusive lepton-nucleon scattering processes, such as deeply virtual Compton scattering

(DVCS). This is the subject of this work, which is arranged as follows:

The main properties of the proton are introduced in Chapter 1. To keep the discus-

sion brief there is inevitably some assumed knowledge and no attempt has been made to

arrange things chronologically. It is expected that readers will be familiar with most of

this content already. In addition to the references given, [1], [2], [3] and [4] are excellent

sources of further reading. This chapter aims to place this work in a global context and

point out some of the unresolved questions.

Chapter 2 discusses the theoretical background and historical developments of lepton-

nucleon scattering. Examples of previous experimental results are given. An overall

picture of nucleon structure is portrayed then the ideas most relevant to this work are

detailed. The last sections in this chapter are dedicated to the topic of DVCS. The level of

detail should be sufficient for the reader to understand the significance of the results and

become familiar with the terminology used whilst remaining informal enough to maintain

the interest of the non-specialist.

The experimental method is outlined in Chapter 3. Chapters 4, 5 and 6 describe the

analysis procedures and results. These chapters form the main body of original work.

GDS
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Chapter 1

Properties of the Proton

1.1 Charge

In 2011 the scientific community celebrated the centenary year of Ernest Rutherford and
the birth of nuclear physics. It is well known that the experiments that Geiger and Marsden
performed under his supervision, using thin sheets of gold foil, led to the discovery of the
atomic nucleus [5]. They later carried out experiments using targets consisting of various
gases. Rutherford made the following remark in the journal Philosophical Magazine a
century ago this year [6]:

The observations on the scattering of α-particles by matter in general af-
ford strong experimental evidence for the theory that the atom consists of a
positively charged nucleus of minute dimensions surrounded by a compen-
sating distribution of negative electrons. The charge on the nucleus for heavy
atoms is approximately 1

2Ae where A is the atomic weight and e the elec-
tronic charge. The experiments in this paper on the scattering of simple gases
indicate that the hydrogen atom has the simplest possible structure of a nu-
cleus with one unit charge, and helium comes next with a nucleus of two unit
charges. This simple structure for hydrogen and helium atoms has been as-
sumed by Bohr [7] in a recent interesting paper on the constitution of atoms,
and has been shown by him to yield very promising results.

Comparison of the relative scattering coefficients for α-particles on light nuclei led to the
conclusion that the hydrogen atom has a nucleus with charge +1. The name proton (Greek
for ‘first’) was coined by Rutherford 7 years later [8]. Table 1.1 lists some values of the
static properties of the proton and its isospin partner, the neutron, which was discovered
by Chadwick in 1932 [9].
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1.2. Isospin and the Nucleon 2

Proton Neutron
Charge (e) +1 0
Mass (MeV/c2) 938 940
Isospin component 1

2 −1
2

Spin (h̄) 1
2

1
2

Magnetic moment (µN) 2.79 -1.91
Charge radius ( f m) 0.877 n/a
Valence quark content uud udd

Table 1.1: Static properties of the nucleon [10].

1.2 Isospin and the Nucleon

The similarity between proton and neutron masses led Heisenberg to postulate that they
were two different charge states of the same particle, the nucleon [11]. The quantum
number isospin was introduced to explain this symmetry. Isospin takes its name from
the similarity its mathematical formalism has to that of spin. The isospin components
(I3) for a given isospin value (I) are enumerated in the same way as spin projections (ms)
are enumerated for a given spin angular momentum (s), but with no physical analogy.
The nucleon has an isospin of 1

2 , the proton and neutron have respectively +1
2 and −1

2

components. Isospin reflects the observation that the (charge-independent) nuclear force
has a similar effect on both protons and neutrons. In other words, the strong force is
sensitive only to the magnitude of isospin and not its ‘direction’.

1.3 Spin Crisis

Spin is a quantum number that accounts for the portion of angular momentum that a
particle has which does not arise from its orbital motion. It was first experimentally
observed by Gerlach and Stern in 1922 [12]. Protons are classified as fermions, half-
odd integer spin particles (1

2 ,
3
2 ,

4
2 , ... in units of h̄) that obey the Pauli exclusion principle.

Quarks are also fermions. This led to the naı̈ve assumption that the proton’s spin of
1
2 was the net result of the addition of the spins from two (spin 1

2 ) up quarks and one
(spin −1

2 ) down quark. The discovery by the European Muon Collaboration (EMC) that
the contribution to the proton’s spin from the combined spins of quarks (∆Σ) could only
account for a small fraction [13] led to the so-called spin crisis of nuclear physics. The
remainder of the proton’s spin may arise from the orbital angular momenta of quarks (Lq)
the orbital angular momenta of gluons (Lg), or gluon helicities (∆g)

1
2
=

1
2

∆Σ+Lq +∆g+Lg = Jq + Jg; (1.1)
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where Jq (Jg) is the total angular momentum contribution from quarks (gluons) and the
factor of 1

2 before the quark spin contribution is a historical convention. In 1996, Ji de-
scribed a means by which to access Jq using deeply virtual Compton scattering [14]. The
spin crisis is an open problem in hadron physics and one of the key motivations for un-
dertaking work such as this.

1.4 Wait a Magnetic Moment

The earliest indication that the proton was not an elementary particle came from the mea-
surement of its magnetic moment [15]. If the proton were a point-like Dirac particle, the
expected value would equal one nuclear magnetron (µN). Instead it is found to be 2.79 µN

and is thus given the name anomalous magnetic moment. Although it is now known to
be due to the underlying dynamic substructure of quarks, the discrepancy is still not well
understood.

1.5 Puzzling Radius

The size of the proton is usually quantified in terms of its root-mean-squared electric
charge radius. The official 2010 CODATA1 value uses a combination of results from
atomic spectroscopy and elastic electron scattering experiments [16]. Elastic scattering
will be discussed in more detail in the next chapter. Recently there has been some con-
troversy regarding the size of protons due to a precise result that was obtained using laser
spectroscopy on muonic hydrogen [17]. This result disagrees with the official 2010 CO-
DATA value by 7-σ .

Elastic electron scattering measurements on targets containing neutrons [18], and ex-
periments with slow neutron beams on the electron cloud of heavy atoms [19], have shown
that despite possessing no overall charge, neutrons also possess a charge distribution [20]
- a result that would clearly not be possible if neutrons were elementary.

1.6 Quark Model

The quark model developed out of the eightfold way of Gell-Mann and Ne’eman [21]: a
system of categorising hadrons according to isospin, charge and strangeness. Using this
system, only three fundamental particles are needed to account for the quantum numbers
of the lightest baryons: up, down and strange quarks. This scheme is illustrated for the

1The Committee on Data for Science and Technology
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eight spin-1/2 baryons in Figure 1.1. Many searches for free quarks were carried out but

Figure 1.1: The Baryon octet. Each particle is made up from three valence quarks and has a total
spin of 1

2 . Charge increases on the axis labelled Q, and the x and y axes correspond to increasing
strangeness (S) and isospin component (I3) respectively. It is a more common convention to assign
each strange quark with the value S =−1.

proved fruitless, which at the time brought into some question the validity of the model.
Successes such as the prediction and subsequent discovery of the spin-3

2 Ω− [22], how-
ever, provided strong evidence in support. Since the development of the parton model
of Feynman [23] and Bjorken [24], the existence of quarks has been generally accepted.
They were able to explain the results of deep inelastic scattering experiments by postu-
lating the existence of point-like sub-nucleonic particles, which they called partons. The
properties of partons were found to show consistency with those of quarks. Deep inelastic
scattering and the parton model will be discussed in the next chapter. The explanation for
the lack of observation of free quarks is now understood to be the result of the behaviour
of the strong force, which is explained in the theory of quantum chromodynamics (QCD).

1.7 Quantum Chromodynamics

The global properties of the proton have so far eluded any rigorous explanation from the
most advanced fundamental theories of the standard model of particle physics. The dif-
ficulties arise from the complexity of QCD at small energy-scales, where the strong cou-
pling constant (αs) is relatively large. Figure 1.2 shows a graph of the world data for the
strong coupling constant as a function of energy scale (Q). The magnitude of the coupling
constant for low-Q (soft) QCD processes means that it is an unreasonable approximation
to neglect higher order terms (∼ αn

s : n ∈ Z> 1). This prevents soft QCD processes from
being solved perturbatively. In contrast, for quantum electrodynamics (QED) a perturba-
tive approach is possible, because the fine structure constant is small (α−1 ≈ 137) and
does not vary by much depending on the energy-scale. Theoretical descriptions of soft
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hadronic processes are instead formulated using quark models, effective field theories,
sum rules and lattice QCD calculations. These approaches can only progress with the
feedback from precise experimental results.
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Figure 1.2: The Strong Coupling Constant. [25]

The behaviour of the strong force at small energy scales, or equivalently large distance-
scales, gives rise to the property known as confinement. Separating quarks by an increas-
ing amount requires more and more energy to be put into the system. Before enough
energy is provided to free a quark, the creation of a new quark-anti quark pair becomes
more probable. This means that quarks are never observed as free particles and exist only
in colour-neutral systems, hadrons.

Colour in the context of QCD represents the equivalent of charge in QED. It is the
property which is used to describe how strong-force interacting particles behave. There
are three colours (red, green and blue), and their anti-colours, that represent possible
allowed states according to the SU(3) symmetry group formalism on which QCD theory
is based.

The most striking difference to QED is that the force-carrying particles of QCD (glu-
ons) possess colour charge, whereas in QED the force carriers (photons) are neutral. This
gives rise to the phenomenon known as asymptotic freedom. At small distance-scales, the
colour potential is weak [4], which is caused by anti-screening [1]. Since gluons possess
colour charge, they do not only interact with quarks but also with other gluons: QCD is a
non-Abelian gauge theory. At short distances the ‘bare’ quark (current quark) colour-field
potential is reduced by the self-interacting gluon field around it. This means that the mu-
tual force that two quarks experience is negligible when they are close together, and they
act as though they are almost free.
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1.8 Summary

The purpose of this chapter was to review some of the defining properties of the proton
and introduce the notion that these properties must arise from a complex and dynamic
underlying substructure. The goal of hadron structure physics is to explain how the in-
terplay between quarks, and gluons in a bound colour-neutral system gives rise to these
properties.



Chapter 2

Proton Structure and Electron
Scattering

The majority of detailed information about nucleon structure that is already known has
been obtained in lepton-nucleon scattering experiments. This approach is complemented
by the use of real photon beams, which are also employed in the investigation of nucleon
resonances. The study of nucleon resonances provides an important means by which to
test quark-model predictions, and is a rich field of research in itself. However, the purpose
of this chapter is to explain the significance of a specific type of deep exclusive scattering
(DES) process called deeply virtual Compton scattering (DVCS). DVCS is a sub-process
of the exclusive leptoproduction of real photons and is accessible through lepton scatter-
ing reactions. To reflect the rest of the content in this thesis, electron scattering will be
focussed on here.

The discussion will be approached by introducing two types of reactions that are well
studied, and to which DVCS is related: elastic scattering and inclusive deep inelastic
scattering (DIS). Exclusive processes, such as DVCS and deeply virtual meson production
(DVMP) link the results of elastic scattering and DIS experiments by providing a means to
measure generalised parton distributions (GPDs). As their name suggests, GPDs provide a
more general picture about nucleon structure and the possibility to access new information
such as correlated distributions of the transverse positions and longitudinal momentum of
partons.

To begin with, a brief description of the most general type of parton distributions,
Wigner distributions, will be given. There is presently no known means by which to
measure these quantities directly, but by considering nucleon structure from this starting
point, it will be clearer to see how other types of distributions that are measurable are
related, and the limits to what information may be attained overall. The approach will
be largely descriptive with the goal of giving the reader an accurate overview of the field
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2.1. Wigner Distributions 8

without confusing the most important points with technical details.

2.1 Wigner Distributions

From a classical physics perspective, the state of a gas of particles can be completely de-
scribed using a phase space distribution f (~r,~p). At any instant of time, the position (~r)
and momentum (~p) vectors may in principle both be known exactly for each particle. By
extending this idea to include quantum mechanics, the precision with which these conju-
gate variables can be known simultaneously becomes limited according to the Heisenberg
uncertainty principle:

∆x∆px ≥ h̄/2, (2.1)

where ∆x is the uncertainty in one spacial coordinate and ∆px is the uncertainty in mo-
mentum for the same direction. A reminder is given that there is no such restriction for
components of position and momentum that are orthogonal.

A Wigner distribution is an example of a quantum mechanical equivalent of a clas-
sical phase-space distribution, and reduces to one in the classical limit [14, 26]. Figure
2.1 illustrates the relationship between nucleon Wigner distributions, and other nucleon
structure distributions. The complete measurement of generalised transverse momentum
distributions (GTMDs) would, via a Fourier transform in the variable that quantifies the
transfer of momentum to the nucleon (∆ = p′− p), give access to corresponding Wigner
distributions for partons in the proton in five dimensions (two position, three momentum)
and thus determine the most complete information on its state [27].

FF(∆ )

GTMD( x, kp , ∆ )

GPD(x, ∆ )TMD( x, kp )

PDF(x)TMSD(kp )

TMFF

Charge

∆ = 0

dx

d2kp

(kp, ∆ )

Wigner distributions
(x, kp , b p     )

Transverse charge
densities (      )

Impact-parameter
distributions ( x, b p)

2D Fourier transform 

           ( ∆ )   

b p

Figure 2.1: Nucleon Structure in the context of Wigner Distributions. Figure adapted from [27].
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In practice, in terms of position, only the transverse coordinates of partons can be
determined, which are defined in terms of impact parameter (~bp) space - where distance
is given relative to the centre of mass of the system. Exploration of the structure on the
distance scales required, necessitates that the interacting particle (probe) carries a large
negative squared four-momentum; this will be explained more in Section 2.3. The direc-
tion of propagation of the probe is used to define the longitudinal direction. Since the
longitudinal momentum is known with precision, this prevents the longitudinal position
from being resolved. The Heisenberg uncertainty relation imposes this restriction. The
information about nucleon structure that is attainable at present is limited to projections
of Wigner distributions. To the author’s knowledge there is currently no theoretical for-
malism that indicates how GTMDs may be measured directly [28].

Integrating GTMDs over the transverse momentum of partons (~kp) leads to GPDs,
probability amplitudes in longitudinal momentum space; x is the fraction of the nucleon’s
longitudinal momentum held by the parton. GPDs will be discussed in Section 2.4. Al-
ternatively GTMDs in the forward limit (∆ = 0) are transverse momentum distributions
(TMDs). TMDs are accessible through semi-inclusive DIS measurements (SIDIS) [29],
and experimental programs to measure them are ongoing [30–33]. In the lower half of
Figure 2.1 are various types of form factors, which correspond to the parton distributions
above them, with the longitudinal momentum dependence integrated out. Only standard
form factors (FFs), and their forward limit, charge, are mentioned here. For explanations
of transverse momentum form factors (TMFFs) and transverse momentum spin densities
(TMSDs) and a formal treatment of GTMDs the reader is referred to [27].

The first measurements made that correspond to projections of nucleon Wigner distri-
butions were charge, form factors (FFs), and parton distribution functions (PDF). These
quantities are also projections of GPDs which means that some information about GPDs
is already known. It will be shown in the following sections how these distributions are
used as a means to constrain GPD models.

2.2 Elastic Scattering

The elastic scattering of an electron (e) on a proton target (p) is defined:

e(e)+ p(p)→ e′(e′)+ p′(p′), (2.2)

where the arguments for each particle are the respective four-momenta. This type of
reaction has been used to investigate nucleon structure since the mid-1950s. Figure 2.2(a)
shows what was, at the time, a ground-breaking elastic electron-proton scattering result,
in which an experimentally-determined cross section is compared to theoretical curves.
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The theoretical cross section for a relativistic electron, scattering on a point-like particle
with charge eq, is given by the Mott cross section [2]:(

dσ

dΩ

)
Mott

=
α2

4E2 sin4 θ

2

E ′

E
cos2 θ

2
, (2.3)

where θ is the electron scattering angle, E (E ′) is the electron energy before (after) scat-
tering, dΩ is the solid angle into which the electron is scattered, and α = e2

q/(4π), is the
fine structure constant. The measured cross section in the figure deviates from the Mott
curve increasingly at large scattering angles. Other theoretical curves that modelled the
proton as a point-like object but included the proton’s magnetic moment and/or intrinsic
spin also failed to agree with the data [34]. This disagreement is understood to be due to
the proton having extended structure. Hofstadter’s work in this area of research led him
to win the Noble prize in 1961. See [35] for a comprehensive review by him.

2.2.1 Form Factors

The Rosenbluth formula [2]:

(
dσ

dΩ

)
exp.

=

(
dσ

dΩ

)
Mott

G2
E(Q

2)+ Q2

4M2 G2
M(Q2)

1+ Q2

4M2

+
Q2

2M2 G2
M(Q2) tan2 θ

2

 , (2.4)

where M is the nucleon mass, describes the elastic electron-nucleon cross section in terms
of the Mott cross-section and the electric (GE) and magnetic (GM) Sachs form factors,
which are functions of the negative squared four-momentum transfer:

Q2 =−q2, (2.5)

where q = (ν ,~q) = e−e′ is the difference in the electron four-momentum before and after
scattering. Since the process is elastic means that t ≡ ∆2 = (p′− p)2 = q2. Form factors
are sometimes stated as functions of t, or ∆, instead of Q2. Figure 2.3(a) is an illustration
representing elastic scattering of an electron off a proton through the exchange of a single
photon. In this representation, which is called the Born approximation, Q2 is the virtuality

of the exchanged photon. A full representation of the reaction would include higher order
diagrams including: the exchange of two photons, loops to account for the emission and
subsequent reabsorption of a photon, and the radiative emission of a photon. Corrections
are often carried out to remove any effect caused by the radiative emission of photons.
Calculations indicate that other higher order terms should be negligible [36].

In Equation 2.4, the second bracketed term on the right-hand-side is a semi-empirical
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parameterisation that accommodates for the target particle being spin 1/2 in nature, with
an anomalous magnetic moment and extended structure [2]. In the limit Q2 = 0, GE is the
charge of the nucleon and GM is its anomalous magnetic moment. Sachs form factors are
determined by comparing the experimentally measured cross-section to the Mott cross
section at fixed values of Q2 for various electron scattering angles, and performing a
Rosenbluth separation [37, 38]. Figure 2.2(b) shows graphs of Sachs form factors for
protons and neutrons using world data [39].

The interpretation of Sachs form factors at an arbitrary fixed value of Q2 is most easily
understood in the Breit frame. In this frame there is no energy transfer (ν = 0) and the
Fourier transform of GE (GM) is analogous to a classical charge distribution (magneti-
sation density) [2]. Similar to the way in which the Fourier transform of the diffraction
pattern of a light source returns the spacial dimensions of the object from which the light
was diffracted, the Fourier transform of a nucleon’s (or nucleus’) form factor provides
information on the spacial distributions of charges and currents, and thus its extended
structure.

In the last decade and a half there has been a revival of form factor measurements due
to improvements in the production of polarised beams and polarimeter technology. Pre-
cise results have been determined over a large range of Q2 using the polarisation transfer
technique (~ep→ e~p) [40–42]. A surprising discrepancy is observed when the ratio of
electric to magnetic form factors for unpolarised measurements and polarised measure-
ments are compared. For the unpolarised results, the ratio appears to be constant as a
function of Q2. This is known as form factor scaling. In contrast, there is a distinctive
drop-off when the polarised results are instead compared. This discrepancy is yet to be
resolved but one suggestion is that although the contribution from two-photon exchange
is expected to be small, it may still play a significant role [43]. Dedicated two-photon
exchange experiments have since been carried out [44, 45]. The results are yet to be
confirmed.
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(a) Elastic electron scattering cross section result
from SLAC, published in 1955. The deviation of
the experimental curve from the Mott cross sec-
tion is apparent [34].
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Figure 2.2: Results from elastic scattering measurements, which indicate that the nucleon has
extended structure.

e e’

p p’

q 

(a) Elastic scattering.

e e’

p

q 

X

(b) Deep inelastic scattering.

Figure 2.3: Illustrations of two types of electron-proton scattering reactions. Variables are defined
in the text.
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2.3 Deep Inelastic Scattering

Deep inelastic scattering (DIS) is a reaction that is used to investigate nucleon structure in
terms of parton distributions. The first DIS experiments were performed at the Stanford
Linear Accelerator (SLAC) in the late 1960s and early 1970s [46]. The electron beam
at SLAC was capable of reaching higher energies and luminosities than previous accel-
erators had been able to, opening up a new kinematic region in which protons could be
studied.

In general, for an experiment in which an electron is scattered off a proton, the invari-
ant mass of the virtual photon-proton system (or final-state hadronic system) is

W 2 = (p+q)2 = M2 +2Mν−Q2, (2.6)

where p (M) is the proton four-momentum (mass). For the elastic scattering case W 2 = M2,
and 2Mν = Q2. The deep inelastic regime corresponds to reactions in which W 2 is large
enough to reach beyond any individually distinguishable proton resonance, and Q2 and ν

are large enough so that the virtual photon wavelength:

λ ≥ h̄

2
√

Q2 +ν2
=

h̄
2|~p|

, (2.7)

is small enough to be capable of probing the proton’s substructure. Typical values that
are used in practice are: W > 2 GeV/c2, Q2 > 1 (GeV/c)2. Through Equation 2.6 these
conditions also impose a lower limit on ν .

In the most simple type of DIS experiment, the electron beam interacts with the proton
target and only the scattered electron is detected in the final state. All possible final states
involving the nucleon-virtual photon system are included in reconstructions, which is why
this type of measurement is termed inclusive. Figure 2.3(b) is an illustration of inclusive
DIS. In terms of particles and their respective four-momenta the reaction is

e(e)+ p(p)→ e′(e′)+X , (2.8)

where X is the (unknown) final state hadronic system.
The most immediately striking result from DIS experiments was the phenomenon

known as scaling. In the elastic scattering case, a dependence of the cross-section on Q2

indicated that the proton has extended structure. For DIS, it was found that the cross-
section was almost independent of Q2. This suggested that there is no form factor associ-
ated with the proton’s constituent particles, or in other words they appear to be point-like.
The theoretical formalism behind scaling is given in terms of the Parton Model. An out-
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line based on the treatment given in [2] will now be given.

2.3.1 Parton Model

For inelastic scattering, W 2 > M2 and 2Mν > Q2. One way to quantify the inelasticity of
the process is with the dimensionless variable:

xB =
Q2

2p ·q
=

Q2

2Mν
, (2.9)

which is known as x-Bjorken. In the parton model, x-Bjorken equates to the fraction of
the nucleon’s momentum held by the struck quark, as will now be explained.

A frame of reference ( f ) is chosen in which the momentum of the proton approaches
infinity in one direction, here taken as the longitudinal direction; this is known as an in-

finite momentum frame. The virtual photon momentum remains unchanged by applying
the conditions q2

f =−Q2 and p f ·q f = p ·q. These conditions allow the impulse approx-

imation to be applied, which is that the proton constituents must be non-interacting due
to time-dilation. In terms of the fraction of the nucleon’s longitudinal momentum held by
the active parton, x, the invariant mass of the parton-virtual photon system is

(xp f +q f )
2 = x2M2−Q2 +2xp f ·q f ; (2.10)

which must be approximately zero since the partons are non-interacting and must there-
fore be on-shell and thus adhere to Einstein’s energy equation. This implies that x = xB,
since x2M2 is much smaller than both Q2 and ν . The parton model is often said to be
valid in the Bjorken limit, which is Q2→ ∞ at fixed xB.

2.3.2 Structure Functions

The double differential cross-section for unpolarised inclusive DIS is given by

d2σ

dΩdE ′
=

α2

4E2 sin4 θ

2

(
W2(ν ,Q2)cos2 θ

2
+2W1(ν ,Q2)sin2 θ

2

)
, (2.11)

where W1 and W2 are structure functions that describe the response of the nucleon. It is in-
structive to define these hadronic elements in terms of dimensionless structure functions:

F1(x,Q2) = MW1(ν ,Q2), (2.12)

F2(x,Q2) = νW2(ν ,Q2). (2.13)
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Figure 2.4(b) shows a large selection of the world data for the structure function F2 for
the proton. At values of 0.08 < x < 0.4, F2 is relatively constant when plotted against Q2,
which is an exhibition of scaling. Deviations from this trend at smaller values of x are due
to the increased probability of interacting with quark anti-quark pairs that are created out
of the vacuum (sea quarks).

Interpreted within the Parton Model, these structure functions are simply related to a
sum over each quark type i, of the number densities of partons qi(x), weighted by their
charge eq

F1(x) =
1
2 ∑

i
e2

qqi(x). (2.14)

These number densities are the parton distribution functions (PDFs).
The Callan-Gross relation:

F2(x) = 2xF1(x) = x∑
i

e2
qqi(x); (2.15)

provides a direct connection between both structure functions. It assumes that partons
are spin-1/2 particles. Experimental confirmation of the Callan-Gross relation therefore
provided evidence that this property of partons is consistent with quarks.

Figure 2.4(a) shows a graph of proton PDFs for partons of different flavours, and
gluons. The up and down valence quarks (uv,dv) are seen to dominate at x ≈ 1/3, with
about twice the contribution coming from up quarks as down quarks. This agrees with the
quark model which states that the proton contains one down and two up valence quarks.
As x gets smaller, the increasingly large contribution from sea quarks (d,u,s,c) and gluons
(g) is evident.



2.3. Deep Inelastic Scattering 16

0

0.2

0.4

0.6

0.8

1

1.2

10
-4

10
-3

10
-2

10
-1

x
 f

(x
)

x 

MSTW2008 (NNLO)
μ = 10 GeV2

g/10

us

c

uv

dv

d

(a) Unpolarised parton distribution functions. (b) The proton structure function F p
2 measured

using lepton scattering on protons.

Figure 2.4: Results from DIS experiments relating to the parton structure of nucleons [10].
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2.4 GPDs and Deep Exclusive Scattering

In the previous sections it was shown that form factor and PDF measurements can be
used to provide complementary information about nucleon structure. Physical interpre-
tations of these one-dimensional parameterisations lead to one-dimensional ‘images’ of
the nucleon in terms of impact parameter space and longitudinal momentum space re-
spectively. In the case of form factors, a two-dimensional spacial representation can be
made by imposing rotational symmetry in the transverse plane. The concentration of the
discussion will now move towards the methods used to extend these ideas, and access a
more complete picture of nucleon structure by studying deep exclusive scattering (DES).

2.4.1 Initial developments

During the 1990s, Müller et al [47], Radyushkin [48] and Ji [14, 49], amongst others1,
made significant advancements to the theoretical framework surrounding parton distribu-
tions by suggesting a means to access non-forward non-local matrix elements through
DES processes [51]. Originally given the name off-forward parton distributions, gener-
alised parton distributions (GPDs) were shown to be accessible through deeply virtual
Compton scattering (DVCS) and deeply virtual meson production (DVMP) [52].

The off-forwardness of processes such as DVCS and DVMP arises from the fact that
the momentum of the nucleon is allowed to change whilst the scattering occurs; this will
be explained below in the section on GPD variables. The non-local property refers to
the fact that the position of the interacting quark is not restricted to one spacial location
during the scattering process. By comparison PDFs describe forward non-local processes
and FFs describe non-forward local processes [51].

In 2000, a method was found to interpret GPDs in terms of correlated transverse posi-
tions and longitudinal momenta of partons [53], and therefore provide a means by which
to describe nucleon structure in terms of the distribution of quarks (and gluons) in three
mixed momentum and space coordinates. This will be explained in more detail in Section
2.4.11.

This section is dedicated to some of the main aspects of GPDs including their inter-
pretation, and relationships to form factors and PDFs. Some GPD models will also be
mentioned. To follow the discussion it is necessary to first become familiar with some
important QCD concepts that arise in the GPD framework. For a recent review article
containing a more rigorous treatment of the ideas relevant to this work also see “GPDs in
the valence region from DVCS” [51].

1See, for example, [50] for an extensive description of GPDs, which includes references to many of the
most significant journals that contributed to their initial development.
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2.4.2 Factorisation

The benefit of using electromagnetic probes to study hadrons comes from the fact that
they are structureless in nature, accommodating precise calculations of the processes they
are involved in. With the correct formulation, the QED subprocesses in lepton-hadron
reactions can be separated from the QCD subprocesses. Where hard and soft QCD pro-
cesses contribute, they may also be separable. When this is the case, the only incalculable
quantities that remain are the soft QCD processes. These are parameterised using models
that are tested experimentally. In general the technique of separating out reaction subpro-
cesses into those that are calculable and those that are parameterised is called factorisa-

tion. Given the complexity of QCD at small energy-scales, factorisation is an essential
tool for the hadron structure physicist.

2.4.3 Universality

It can be the case for two (or more) types of hadronic reactions, that the calculable hard
processes are different, but the incalculable soft processes are identical. Universality is
the term used to describe the fact that such identical soft process distributions share the
same fundamental description. Universality can only be applied to a reaction when a
factorisation proof exists.

The use of models to describe complimentary processes is a means by which to cross-
check them. If a process is well known in one context, that knowledge is still valid in
another context. This means that when a known process mixes with an unknown process,
the information on the known process can be used to deduce information on the unknown
one. In Figure 2.5, leading order diagrams for the exclusive leptoproduction of photons
(2.5(a)) and mesons (2.5(b)) are given. The large red blobs in both represent the same
GPDs. The smaller light-blue blob in Figure 2.5(b) is known as a distribution amplitude

(DA). The relevant DAs for the meson in the reaction being studied can be determined
independently using hadron-hadron reactions.

2.4.4 Twist

Twist is formally defined as the dimension of the hadronic tensor minus its spin [54]. The
redefinition given in [55] relates more closely to phenomenology. Higher orders of twist
are suppressed by a power of M/

√
Q2. Leading order calculations correspond to those

involving twist-2 elements only. There are only four quark-helicity conserving GPDs at
the twist-2 level. These GPDs will be discussed below.
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(a) Deeply virtual Compton scattering.
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(b) Deeply virtual meson production.

Figure 2.5: Illustrations of deep exclusive processes. Variables are defined in the text.

2.4.5 GPD variables

The exclusive electroproduction of real photons is defined:

e(e)+ p(p)→ e′(e′)+ p′(p′)+ γ(q′), (2.16)

where γ is the produced photon, and other variables take the same meanings as before.
Virtual Compton Scattering (VCS) is a subprocess of this reaction, given by:

γ
∗(q)+ p(p)→ p′(p′)+ γ(q′), (2.17)

where γ∗ is the virtual photon probe with four-momentum q defined as before.
It is in the Bjorken limit that this reaction is given the name deeply virtual Compton

scattering (DVCS). DVCS is dominated by the twist-2 process shown in Figure 2.5(a).
This is known as the handbag approximation and corresponds to the virtual photon probe
interacting with a single quark. There are no gluon vertices in this diagram, making it
the simplest process with which GPDs can be studied. For this reason, in the context of
GPDs, DVCS is sometimes referred to as the “golden channel”.

The interpretation of GPDs is conveniently done in the light-front frame, with the
virtual photon and proton travelling at the speed of light along opposite longitudinal di-
rections; given by the 3rd (or z) component here2. This is another example of an infinite

2This refers to the directions of the virtual photon four-momentum and average of the proton four-
momentum before and after scattering.
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momentum frame. General vectors in light cone coordinates are defined:

v+ =
1√
2
(v0 + v3), v− =

1√
2
(v0− v3), v⊥ = (v1,v2). (2.18)

This system has the advantage that particles travelling along the (+ or −) z-direction at
the speed of light have only one (+ or−) light cone coordinate component, which greatly
simplifies calculations [54].

GPDs are given as functions of the variables x, t, and ξ . Various (equivalent) conven-
tions exist for these variables; the system used in [56] is adopted here. GPDs also have
a Q2 dependence, which is governed by the hard scattering part of the process. This can
be calculated using QCD evolution equations and is therefore usually omitted [51]. The
average fractional momentum of the struck quark x is defined by

k+ = xP+, (2.19)

where k is the average quark momentum and P = 1
2(p+ p′) is the average momentum of

the proton. This variable is not experimentally measurable using DVCS, which results in
complications in accessing GPDs. The skewness variable ξ is defined by

∆
+ =−2ξ P+, (2.20)

and equates to minus half the longitudinal momentum fraction transferred to the struck
quark. As shown in Figure 2.5(a), this means that prior to scattering the interacting quark
has momentum fraction x+ ξ , and after scattering it has x− ξ . The variable t takes the
same definition as for elastic scattering:

t = ∆
2 = (p′− p)2. (2.21)

Associated with t is a transverse momentum ‘kick’, ∆2
⊥, that the nucleon experiences

during the interaction. An additional constraint for the handbag approximation to be valid
is that t must be small [50]. The momentum transfer ξ is said to occur at the quark level
and ∆2

⊥ at the nucleon level [54].
It is important to note that GPDs are not interpreted in a framework where the frac-

tional momentum of the struck parton x is equal to the scaling variable xB, as was the case
for the Parton Model. In fact xB is more closely related to the skewness variable, which
may be written [57]:

ξ = xB
1+ t

2Q2

2− xB + xB
t

Q2

. (2.22)
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In the Bjorken limit with small t, giving Q2 >> |t|, this reduces to

ξ ≈ xB

2− xB
. (2.23)

Experimentally, only t and ξ are accessible for DVCS and DVMP. Double deeply virtual
Compton scattering can in principle be used to access x but the cross-section for this reac-
tion is expected to be over two orders of magnitude smaller than DVCS [58]. Extraction
of the x-dependence of GPDs in general relies on the application of model predictions,
with some exceptions: for example, the extraction of GPDs at the point x = ξ .

In principle x and ξ range between -1 and 1, but time reversal invariance prevents
ξ from taking negative values [51]. In the case x > ξ (x < −ξ ), GPDs represent the
probability amplitude of interacting with a quark (anti-quark). In the case−ξ < x < ξ the
virtual photon probe initially interacts with a quark (or anti-quark) which is then put back
into the nucleon as an anti-quark (quark). For this scenario GPDs represent the probability
to interact with a quark anti-quark pair in the nucleon [51].

2.4.6 Leading order GPDs

For nucleons there are four twist-2 quark-helicity conserving GPDs for each quark flavour
q = u,d,s. Hq and H̃q are nucleon helicity conserving, whilst Eq and Ẽq are nucleon
helicity flipping [14]. Since they do not depend on quark-helicity, Hq and Eq are called
unpolarised GPDs. H̃q and Ẽq are quark-helicity dependent and are thus called polarised
GPDs [54]. GPDs of higher twist and those for which quark helicity is not conserved also
exist, but descriptions of them are out of the scope of this work. The discussion here is
restricted to the four GPDs mentioned above, which are leading order in the perturbative
expansion of the scattering process.

2.4.7 Relation to FFs

The first x-moments of the leading order GPDs are the elastic scattering form factors ??:

∫ 1

−1
Hq(x,ξ , t)dx = F1(t),∫ 1

−1
H̃q(x,ξ , t)dx = F2(t),∫ 1

−1
Eq(x,ξ , t)dx = GA(t),∫ 1

−1
Ẽq(x,ξ , t)dx = GP(t).

(2.24)
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F1(t) and F2(t) are the Dirac and Pauli form factors3, which are related to the Sachs form
factors that were discussed in Section 2.2 by

GE(Q2) = F1(Q2)− Q2

4M2 F2(Q2)

GM(Q2) = F1(Q2)+F2(Q2);
(2.25)

GA(t) and GP(t) are the axial and pseudo-scalar form factors, which are accessible using
weak interaction mechanisms [2].

2.4.8 Relation to PDFs

In the forward limit (t = ξ = 0), the leading-order nucleon helicity conserving GPDs
reduce to PDFs:

H(x,0,0) = q(x),

H̃(x,0,0) = ∆q(x);
(2.26)

where q(x) is the PDF that was introduced in the previous section and ∆q(x) represents a
polarised PDF. In both cases a unique PDF exists for each quark flavour. Polarised PDFs
are accessible in experiments where the beam and target are both polarised [59]. Existing
measurements of PDFs and elastic form factors are used as constraints in GPD models.

2.4.9 Polynomiality

Another constraint for GPDs comes from the relation between their x-moments and the ξ

variable. This is called the polynomiality condition and is given by [51]:

∫ 1

−1
xnHq(x,ξ , t)dx = a0 +a2ξ

2 +a4ξ
4 + ...+anξ

n (n even)∫ 1

−1
xnHq(x,ξ , t)dx = a0 +a2ξ

2 +a4ξ
4 + ...+an+1ξ

n+1 (n odd)
(2.27)

for the GPD H. Polynomiality is especially important given that the variable x is inac-
cessible in DVCS and DVMP measurements. Similar conditions exist for all four leading
order GPDs with the following variations: the maximum power of ξ for the GPDs H̃ and
Ẽ is (n−1), the an+1 coefficient for GPD E has the opposite sign to the same coefficient
for the GPD H.

3Not to be confused with the structure functions F1(x) and F2(x)
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2.4.10 Ji’s sum rule

One important result that GPDs can potentially provide is the contribution from the or-
bital angular momentum of quarks (Lq), to the nucleon’s spin of 1/2 through Ji’s sum
rule. This result corresponds to a specific example of the polynomiality condition and
offers the potential to provide a new insight into the spin crisis that was mentioned in the
introduction.

The total angular momentum of quarks in the nucleon may only come from the addi-
tion of their orbital angular momentum and spin:

Jq =
1
2

Σ+Lq. (2.28)

Ji’s sum rule [14] states that the first x-moment of the unpolarised leading order GPDs in
the limit t = 0 is the total quark angular momentum contribution:

Jq =
1
2

∫ 1

−1
x[Hq(x,ξ , t = 0)+Eq(x,ξ , t = 0)]dx. (2.29)

Since the spin contribution is already known to be somewhere around the 25% level [51],
the measurement of Ji’s sum rule would reveal the contribution from Lq.

2.4.11 Impact parameter interpretation

It was mentioned previously that GPDs can be interpreted as longitudinal momentum
distributions of partons in the transverse spacial plane. Now that the GPD variables have
been introduced it is possible to describe how this is achieved. Similar to the interpretation
of FFs, a Fourier transform of GPDs in ∆, in the light-front frame with ξ = 0, returns a
mixed momentum and position distribution [53]:

Hq(x,b⊥) =
∫ d2∆∆∆⊥

(2π)2 e−ib⊥·∆∆∆⊥Hq(x,0,−∆∆∆
2
⊥). (2.30)

Difficulties in producing such distributions arise from the complexity of interpolating
GPDs to ξ = 0 from the values that are accessible at in measurements.

2.4.12 Compton Form Factors

GPDs appear in the description of DVCS as a convolution with a hard-scattering process.
This convolution is known as a Compton form factor (CFF). CFFs can be constrained
using a combination of DVCS cross section and spin asymmetry observables. There are 4
complex CFFs at the leading order. The real and imaginary parts of each are sensitive to
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different DVCS observables. In [51] the real and imaginary parts of these four CFFs are
formulated as:

ℜe{H(ξ , t)}= PV
∫ 1

0
dx[H(x,ξ , t)−H(−x,ξ , t)]C+(x,ξ ), (2.31a)

ℜe{E(ξ , t)}= PV
∫ 1

0
dx[E(x,ξ , t)−E(−x,ξ , t)]C+(x,ξ ), (2.31b)

ℜe{H̃(ξ , t)}= PV
∫ 1

0
dx[H̃(x,ξ , t)+ H̃(−x,ξ , t)]C−(x,ξ ), (2.31c)

ℜe{Ẽ(ξ , t)}= PV
∫ 1

0
dx[Ẽ(x,ξ , t)+ Ẽ(−x,ξ , t)]C−(x,ξ ), (2.31d)

ℑm{H(ξ , t)}= H(x,ξ , t)−H(−x,ξ , t), (2.31e)

ℑm{E(ξ , t)}= E(x,ξ , t)−E(−x,ξ , t) (2.31f)

ℑm{H̃(ξ , t)}= H̃(x,ξ , t)+ H̃(−x,ξ , t), (2.31g)

ℑm{Ẽ(ξ , t)}= Ẽ(x,ξ , t)+ Ẽ(−x,ξ , t), (2.31h)

where PV means the Cauchy Principle Value, and

C± =
1

x−ξ
± 1

x+ξ
(2.32)

are called coefficient functions, which arise from the hard scattering part of the interaction.
Using this convention the CFFH, for example, is

H(ξ , t)≡ℜe{H(ξ , t)}+ iπℑm{H(ξ , t)}. (2.33)

Similar relationships exist for the other leading order GPDs.
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2.5 GPD models

A number of different GPD models have been proposed since it was discovered that the
off-forward properties of partons could be accessed using DVCS and DVMP processes
[14, 48, 49]. There is a continual evolution in this area of research, which is driven by
the feedback from experimental results, and with the development of methods that allow
higher order perturbative QCD and higher order twist terms to be included [51,60,61]. In
this section, a brief description of some of the recent GPD models will be given; including
the BMK model which this analysis is largely based around. It should be noted that
although access to certain CFFs has been achieved [62,63], finding the optimal means by
which to use them to constrain GPDs is an ongoing process. Perhaps the main hurdle is
the number of free parameters entering into the models, which makes it difficult to not
rely heavily on theoretical assumptions. The hope is that this issue will be overcome by
maximising the amount of information extracted from existing results, and with the input
of results from future experiments at COMPASS [64] and Jefferson Lab [65, 66], which
promise to expand the kinematic ranges and statistical precision of empirical data. The
intention here is to neither be authoritative nor extensive, but rather to give a flavour of
some of the main ideas implemented.

2.5.1 VGG model

The Vanderhaeghen, Guichon, and Guidal (VGG) model [56] is based around double
distributions (DDs), which were first introduced as spectral functions by Mueller [47] then
later in their present form by Radyushkin [67]. DDs provide a means of parameterising
GPDs in terms of independent variables (typically called α and β ), without compromising
the polynomiality condition. The change of variables (x,ξ )→ (α,β ) is made, which has
the effect of de-correlating the momentum transfer from the proton’s initial momentum. In
this new reference frame, the initial (final) quark momentum becomes βP+− 1

2(1+α)∆+

(βP+− 1
2(1−α)∆+) [51]. The connection between the GPD (G) and the DD is:

Gq(x,ξ ) =
∫ 1

−1
dβ

∫ 1−|β |

−1+|β |
dαδ (x−β −ξ α)DD(α,β ), (2.34)

which imposes a linear relationship between x and ξ : x = β +αξ .
Prior to the introduction of DDs, the VGG model took a much simpler form, in which

the nucleon helicity-conserving GPDs were parameterised simply as a PDF multiplied by
a form factor [68]. This parameterisation ignored any ξ -dependence.

In the limiting case P = 0 (which is not accessible in the original frame of reference
since the average proton is by definition on the light-cone), DDs represents the probability
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to interact with a quark anti-quark pair in the nucleon, and are therefore similar to distri-
bution amplitudes (DA). As already discussed, in the forward limit (∆ = 0), the nucleon
helicity-conserving GPDs correspond to PDFs. The double distribution is therefore given
the form:

DD(α,β ) = h(β ,α)q(β ), (2.35)

in which the DA, h(β ,α), is formulated so that a smooth transition can be made between
both limiting cases. The strength of the ξ -dependence in the GPD is controlled by a free
parameter in the DA [67].

A subtlety of this formalism is that the highest power of ξ in the polynomiality con-
dition (n+1) cannot be included using the double distributions. An additional term, called
the D-term, was introduced to fulfil this requirement [69].

In the most recent versions of the VGG model the t-dependence has been based on
Regge-theory. This method accommodates the extrapolation of PDFs into unmeasurable
small x regions. The details of this concept and the implications for the parameterisation
of each of the leading order GPDs can be found in [51].

2.5.2 GK model

The Goloskokov and Kroll (GK) model is also based on DDs [60] but unlike the VGG
model, it utilises DVMP measurements to constrain GPD parameters. The GK model also
has some differences in terms of the x- and t-dependences of GPDs compared to the VGG
model; the interested reader is referred to [51] for an explanation.

Recently the GK model was used to predict DVCS amplitudes [70]. Given that there
is input to the model from DVMP results, this is an example of how the universality
property of GPDs can be utilised in practice. The authors reported that the agreement
between predictions and actual DVCS measurements from the H1, ZEUS and HERMES
experiments were found to be better than for measurements taken at Jefferson Lab. At
Jefferson lab the xB values available are in general larger than at the other facilities listed.
Suggestions given for the discrepancies observed included the omission of a non-zero
D-term in the version of the model used, and because the kinematic regions available at
larger xB values for DVMP and DVCS data were not as well matched as for the small-xB

data.

2.5.3 BMK model

The Belitsky, Müller and Kirchner (BMK) model is a framework which focusses on pro-
viding a means to access GPDs through DVCS observables [57]. The authors describe
how the DVCS cross-section can be de-convolved into a finite Fourier series in terms of
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the azimuthal angle between the lepton plane and the hadron plane (φ ); the recoil proton
also lies in the hadron plane. Figure 2.6 is an illustration of how this angle is formed
using four-momenta for the electron before and after scattering, the virtual photon, and
the produced photon. The production plane is given the name hadronic plane because the
convention used was originally developed to describe SIDIS reactions. The relationships
between these Fourier terms and CFFs will be central to the discussion in the next section
on accessing CFFs using DVCS.

y

z

x

hadron plane

lepton plane

k’

q’

φ

k
q

Figure 2.6: The DVCS φ angle. Figure adapted from [71].

The relationship between DVCS spin-observables and CFFs are given in terms of
twist-2 and twist-3 terms. The GPD ansätze are formulated at the twist-2 level and as
with the VGG and GK models are based around the use of DDs. Parameterisations for
gluonic GPDs are also formulated. In 2010, the treatment of ideas laid out in the original
2002 paper [57] was extended to include higher twist terms, and suggestions were given
as to their connection to measurable kinematic variable dependencies [61].
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2.6 Accessing CFFs using DVCS

The purpose of this section is to explain how CFFs relate to DVCS. The approach will
be largely based on the formalism given in [57]. Since the connection between CFFs
and GPDs has already been described, this will provide the final link between DVCS
observables and proton structure.

2.6.1 The Bethe-Heitler process

A complexity in the analysis of DVCS is that on an event-by-event basis it is indistinguish-
able from another reaction, called the Bethe-Heitler (BH) process. As Figure 2.7 shows,
virtual Compton scattering and the Bethe-Heitler process have identical initial (ep) and
final (epγ) states. In the later, instead of a photon being produced from the nucleon, it ra-

VCS BH

+ +

Figure 2.7: Feynman-type diagrams that contribute to the amplitude of the reaction ep→ epγ:
VCS (left) and BH (centre and right).

diates from the electron either before or after scattering. This means that in order to make
DVCS spacial measurements, the BH contribution must be determined independently and
deconvolved. The spacial for BH depends only on calculable quantities and the Dirac and
Pauli form factors, which are well known in the Born approximation.

2.6.2 Cross section

The five-fold differential cross section for the reaction ep→ epγ can be written [57]

dσ

dxBdyd|∆2|dφdϕ
= K0 |T |2 , (2.36)

with kinematic coefficient

K0 =
α3xBy

16π2Q2
√

1+ ε2
∣∣e3

q
∣∣2 , (2.37)
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in which y = p.q
p.e is the lepton energy fraction, ε ≡ 2xB

M
Q , ϕ is a second azimuthal angle

relevant to transversely polarised nucleon targets, eq is the charge of the electron and other
variables take the same meanings as before. The amplitudes that contribute are

|T |2 = |TBH |2 + |TDVCS|2 +I. (2.38)

The last term, which arises from the interference of DVCS with BH is

I = TDVCST ∗BH +T ∗DVCSTBH . (2.39)

In [57] the authors show how each of these amplitudes can be de-convolved into a finite

Fourier series in terms of the azimuthal angle φ . The pure BH amplitude is

|TBH |2 = KBH

{
2

∑
n=0

cBH
n cos(nφ)+ sBH

1 sin(φ)

}
, (2.40)

with

KBH =
e6

q

x2
By2(1+ ε2)2∆2P1(φ)P2(φ)

, (2.41)

in which P1 and P2 are called BH propagators; see [57] for an explanation. The interfer-
ence term is

I = KI

{
3

∑
n=0

[
cIn cos(nφ)+ sIn sin(nφ)

]}
, (2.42)

with

KI =
±e6

q

xBy3∆2P1(φ)P2(φ)
, (2.43)

where the plus (minus) sign refers to a negative (positive) beam charge. Since only elec-
tron beams are considered in this work, the negative sign can be ignored. The pure DVCS
amplitude is

|TDVCS|2 = KDVCS

{
2

∑
n=0

[
cDVCS

n cos(nφ)+ sDVCS
n sin(nφ)

]}
, (2.44)

with

KDVCS =
e6

q

y2Q2 . (2.45)

Access to CFFs can be achieved by determining the magnitudes of the Fourier coeffi-
cients. At the values of Q2 accessible at Jefferson Lab, the cross section for the exclusive
electroproduction of photon is dominated by the BH amplitude. This makes DVCS cross
section measurements rather difficult to achieve. The most common approach used to
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access CFFs is to measure spin asymmetries, which are experimentally simpler. The re-
mainder of this chapter will concentrate on the discussion of three types of asymmetries
that are measurable in double polarised experiments: beam and target single spin asym-
metries and the double spin asymmetry4.

2.6.3 Fourier coefficients from spin asymmetries

The key advantage of using single spin asymmetries is that they provide a means of ac-
cessing interference Fourier coefficient terms, which are linearly dependent on CFFs.
Single spin asymmetry numerators depend only on odd sin(nφ) Fourier coefficient terms
because they depend on either the beam helicity or the target helicity and thus give access
to the imaginary part of CFFs. Even cos(nφ) Fourier coefficient terms depend either on
the product of the beam helicity and the target helicity or have no dependence on the beam
or target helicity at all, and thus give access to the real part of CFFs. Pure Bethe-Heitler
(BH) terms have only cosine dependencies which means that for single spin asymmetries
they do not appear in the numerator. For this reason single spin asymmetries provide the
most direct method of accessing CFFs.

2.6.3.1 Beam Spin Asymmetry

The beam spin asymmetry (BSA) is defined

ALU =
dσ→−dσ←

dσ→+dσ←
, (2.46)

where the arrows indicate the sign of the (longitudinal) beam helicity: parallel or anti-
parallel to the virtual photon propagation direction. In the denominator, terms that depend
on the beam helicity cancel in the sum, which means that only cosine terms remain. In
terms of Fourier coefficients and only including twist-2 terms, the BSA can be expressed
as:

ALU =
KIsI1,U sin(φ)

KBH ∑
2
n=0[c

BH
n,U cos(nφ)]+KI ∑

1
n=0[c

I
n,U cos(nφ)]+KDVCScDVCS

0,U
. (2.47)

Each Fourier coefficient depends on a function of CFFs (denoted F here), called a C-
function; and measurable kinematic variable pre-factors. The single Fourier coefficient

4This discussion is restricted to longitudinally polarised targets and does not include transverse target
spin asymmetries.
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Figure 2.8: CLAS DVCS beam spin asymmetry results [72]. The large red dashed lines are fits
to the data (black dots). The other curves correspond to theoretical predictions.

appearing in the numerator above is

sI1,U = 8Kλy(2− y)ℑmCIU(F). (2.48)

where the subscript U refers to an unpolarised target, K is a kinematic factor that includes
only measurable variables; see [57] for the expansion, λ is the beam helicity, and

CIU(F) = F1H+
xB

2− xB
(F1 +F2)H̃−

∆2

4M2 F2E (2.49)

is the C-function in which F1 and F2 are the Dirac and Pauli FFs. The CFFs H̃ and E are
kinematically suppressed, which means that the BSA mainly gives access to the imaginary
part of the CFFH.

Figure 2.8 shows the beam spin asymmetry results from a CLAS publication from
2008 [72]. These results are from a high statistics unpolarised target experiment that was
dedicated to the study of DVCS. A large kinematic range was covered which allowed
various model predictions to be tested.
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Figure 2.9: DVCS target spin asymmetry results. In both cases theoretical predictions were based
on the model described in [56].

2.6.3.2 Target Spin Asymmetry

The target spin asymmetry (TSA) is defined

AUL =
dσ⇒−dσ⇐

dσ⇒+dσ⇐
, (2.50)

where the double arrows refer to the sign of the (longitudinal) target polarisation. In terms
of twist-2 Fourier coefficients it can be written:

AUL =
KIsI1,LPsin(φ)

KBH ∑
2
n=0[c

BH
n,U cos(nφ)]+KI ∑

1
n=0[c

I
n,U cos(nφ)]+KDVCScDVCS

0,U
, (2.51)

in which the only difference to the beam spin asymmetry is that the numerator contains
the Fourier coefficient for longitudinal polarisation:

sI1,LP = 8ΛK(2−2y+ y2)ℑmCILP(F), (2.52)

where Λ is the target helicity. The C-function appearing here given in terms of CFFs is:

CILP(F) =
xB

2− xB
(F1 +F2)(H+

xB

2
E)+F1H̃−

xB

2− xB

(
xB

2
F1 +

∆2

4M2 F2

)
E . (2.53)

The term including the CFF H̃ is the least kinematically suppressed. Polarised distribu-
tions are expected to be smaller than unpolarised distributions [75], but with constraints
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placed on H from the beam spin asymmetry, the target spin asymmetry is primarily of
importance in imposing constraints on H̃.

Figure 2.9 shows TSA results from CLAS and HERMES. The CLAS result was pro-
duced using a subset of data from an experiment that was not dedicated to DVCS stud-
ies [76]. The TSA could only be measured in three kinematic bins. The HERMES result
is from an experiment in which a positron beam was used [74]. Final state protons were
not detected, which resulted in contamination from resonance production.

2.6.3.3 Double spin asymmetry

The double spin asymmetry (DSA) is defined

ALL =
dσ→⇒+dσ←⇐−dσ←⇒−dσ→⇐

dσ→⇒+dσ←⇐+dσ←⇒+dσ→⇐
. (2.54)

In terms of only twist-2 terms it can be expressed as:

ALL =
KBH ∑

1
n=0[c

BH
n,LPcos(nφ)]+KI ∑

1
n=0[c

I
n,LPcos(nφ)]+KDVCScDVCS

0,LP

KBH ∑
2
n=0[c

BH
n,U cos(nφ)]+KI ∑

1
n=0[c

I
n,U cos(nφ)]+KDVCScDVCS

0,U
. (2.55)

The double spin asymmetry contains depends only on the real parts of CFFs and therefore
contains only even (cosine) terms. These results may be included with cross section mea-
surements as a means to constrain the real parts of CFFs. Figure 2.10 shows a HERMES
DSA result, which is from the same experiment as the results from Figure 2.9.
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Figure 2.10: Double spin asymmetry results from the HERMES collaboration.
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2.7 Summary

This chapter concentrated on some of the main methods available to gain knowledge
about the structure of protons from electron scattering experiments. To begin with, an
overarching view of proton substructure was given from the point of view of Wigner
distributions, which describe the maximum amount of information available theoretically.

Wigner distributions are connected to generalised transverse momentum distributions,
which belong to a global network of nucleon structure distributions. Out of the distri-
butions in this network, form factors and parton distribution functions are already well
studied. In the near future, more efforts will be made to measure transverse momentum
distributions and generalised parton distributions through semi-inclusive deep inelastic
scattering and deep exclusive scattering processes respectively.

The remainder of this work will discuss the procedure used to determine spin asym-
metry amplitudes from a specific deeply virtual Compton scattering experiment. These
amplitudes may be used, alongside existing results, as inputs to calculations that are used
to constrain Compton form factors. Compton form factors provide a means to determine
generalised parton distributions and thus new information about proton structure includ-
ing the correlated transverse position and longitudinal momentum of quarks and gluons
and their respective contributions to the proton’s spin of h̄/2.



Chapter 3

Experimental Facility

The analysis presented in this work was performed using data that were recorded in the
EG1DVCS experiment, which was carried out at the Thomas Jefferson National Accel-
erator Facility (JLab), in Virginia, USA. This chapter begins by discussing some general
aspects of JLab including the electron accelerator, then focusses on the main detector
systems in Hall B where the experiment took place. Details of the specific setup for
EG1DVCS will be highlighted. In particular, the equipment used to identify final state
particles in the reactions ep→ e′p′γ and ep→ e′p′π0 will be explained. The chapter con-
cludes by giving details of configurations for different run periods and the main objectives
of EG1DVCS.

3.1 The Facility

The scientific program at JLab concentrates on the study of strongly interacting particles
using electromagnetic probes. At the heart of operations is the superconducting radio-
frequency Continuous Electron Beam Accelerator Facility (CEBAF) [77]. Figure 3.1(a)
is an illustration of the CEBAF, which is a large current (up to 300µA), 100% duty cycle
electron accelerator with a maximum energy of 6 GeV. Experiments are performed in
Halls A, B and C where both electron and photon beams can be used. Photon beams
are produced by directing the electron beam through a bremsstrahlung radiator. Since this
work relates to an electron scattering experiment, the details of this procedure are omitted.

3.2 The Accelerator

Production of the electron beam begins in the injector. Laser light is sent through a linear
polariser before traversing a Pockel cell, which converts the light’s polarisation state from
linear to circular. This device allows the helicity to be flipped at a rate of up to 60 Hz. A

35
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half-wave plate can be inserted prior to the Pockel cell to change the phase by 180◦, which
is periodically done to minimise the production of false systematic asymmetries. This
circularly polarised laser light is directed onto a strained Gallium Arsenide photocathode
inside an ultra-high vacuum system [78]. Straining the semiconductor material is achieved
by adding a thin coating which results in a suppression of energy bands that limit the
maximum degree of polarisation achievable.

The electrons exit the Gallium Arsenide photocathode at around 100 keV and pass
through a Wien filter, which is used to keep them on axis and rotate their spins to the
desired orientation. A high degree of (typically longitudinal) polarisation is maintained
through constant tuning of the Wien filter during operation. Using radio-frequency (RF)
cavities1, a pulsed beam is created by accelerating or decelerating electrons at different
locations along the beam. The resulting electron bunches are accelerated and sent to the
North linac (linear accelerator) where they enter at a few tens of MeV.

Acceleration is carried out in the linacs using a series of superconducting niobium
RF cavities (cryomodules), which are driven by 5 kW klystrons. Figure 3.1(b) is a pho-
tograph of a pair of cryomodules being prepared at JLab. At the end of each linac the
electron bunches reach recirculation arcs, which contain steering magnets; Figure 3.1(c)
shows some of them. They are used to direct the electrons around a curved trajectory that
meets the opposite anti-parallel linac. The electrons are passed around the accelerator
racetrack up to five times, in order to reach the energy required by the experiments being
undertaken. Each pass increases the beam energy by around 1.2 GeV. Once the desired
energy has been reached, the beam is sent to the experimental halls at the end of the South
linac. Using an RF separator, the beam is split, allowing all three halls to be operated
simultaneously, each with a different beam current. Hall B experiments typically run at a
few nA, whereas in Halls A and C currents of up to 100 µA are used routinely.

3.3 Hall B

Hall B contains an experimental setup that is suited to measuring reactions with multi-
particle final states. Figure 3.2 is a scale drawing of the hall showing the locations of
most of the equipment. The detector system surrounding the target location covers almost
the full 4π solid angle and is split into six similar independent sectors: details of this
setup are discussed in section 3.4. The large acceptance available means that high trigger
rates are achievable in experiments that must be run at a relatively low beam luminosity.
This feature is utilised in photon experiments, which are limited by the rate of accidentals

1In reality ground hogs are used to shoo the electrons around the racetrack but nobody will believe this
unless they see it, so for the purposes of this discussion an approximation has been made.
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(a) The Continuous Electron Beam Accelerator Facility.

(b) Photograph of cryomodules. (c) Photograph of recirculation arcs.

Figure 3.1: Images of the CEBAF and its subsystems: (a) schematic diagram of the accelerator
and the location of the experimental halls, blown-up images are clockwise from top-left: a linac
module, steering-magnets, and a section of the RF separator; (b) scientists working on a pair of
cryomodules in a clean room at JLab; (c) the four recirculation arc layers at the end station side of
the CEBAF.
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in the photon tagging system; and polarised solid-state target experiments, in which the
target material must be kept at cryogenic temperatures.

3.3.1 Beam-line apparatus

Upon entering the hall, the electron beam is monitored using beam-line apparatus. Beam
polarisation is precisely measured in dedicated runs using a Møller polarimeter. The Hall
B Møller polarimeter is a two-quadrupole magnet spectrometer with a polarised target
that measures in coincidence scattered and recoil electrons. Two 25 µm thick Permendur
foils are orientated at±20◦ vertically with respect to the beam direction. The longitudinal
beam polarisation is determined, to an accuracy of typically better than 2%, by subtracting
the asymmetry arising from the vertical component of the beam polarisation [79]. Harp
scan runs are carried out after any changes to beam conditions, to accurately check that
the beam position and width stay within pre-defined limits. There are 3 harps, located
at 36.7, 22.1 and 15.5 m upstream of the centre of the detector system, which consist of
sets of thin tungsten and iron wires orientated in two orthogonal directions perpendicular
to the beam direction. The harps are scanned across the beam at 45◦ with respect to the
horizontal axis using stepper motors. A fraction of the beam electrons scatter off the
wires and are detected in photomultiplier tubes (PMTs) via the emission of Cherenkov
light in the PMT windows [80]. Figure 3.3 is an example of results from a typical harp
scan, which gives the relative electron count across the beam profile. During data-taking,
various parameters are checked using scaler measurements including: the transverse beam
position at two different locations upstream of the target; the target polarisation, which
is monitored using the method of Nuclear Magnetic Resonance (NMR); and the torus
current. The Faraday cup is located at the beam terminus and is used to accurately record
the beam current. This information is used to determine the integrated beam luminosity
for each run period. To prevent targets from becoming damaged by heating, a raster can
be applied, which scans the beam over the surface of the target insert.

3.4 The CLAS Detector System

The CEBAF Large Acceptance Spectrometer (CLAS) is a multi-layered and multi-segmented
detector system arranged inside a toroidal magnetic field [80] (see below). Figure 3.4(a)
is a photograph of the inside of Hall B during a maintenance period showing the CLAS
detector in an open configuration. CLAS apparatus includes: drift chambers (DC) for
reconstruction of particle tracks; time of flight (or scintillation) counters (SC) for parti-
cle identification; Cherenkov counters (CC) for the separation of electrons from negative
pions; and electromagnetic calorimeters (EC), which are used to identify electrons, pions
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Figure 3.2: A scale drawing of a cross section of Hall B showing the positions of some of the
main equipment including: beam line apparatus, the photon tagging spectrometer, the CLAS torus,
drift chambers, the Cherenkov counters, the electromagnetic calorimeter and the Faraday cup.
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Figure 3.3: The results of a harp scan carried out during the EG1DVCS experiment.

and neutral particles. Figure 3.4(b), is a photo of the EC showing its six similar sectors.
These independent sectors are a common feature of each of the sub-detector systems. In
combination they give CLAS an azimuthal coverage of up to 80%: see Figures 3.4(c) and
3.4(d) for the laboratory coordinate system.

3.4.1 The Torus

A core function of the CLAS detector is the reconstruction of charged particle trajectories
and momenta. This is made possible due to the presence of an azimuthal magnetic field,
which is created by a novel six-coil superconducting torus magnet system [80]. Figure
3.5 shows some images of the torus magnet, which during operation is positioned sym-
metrically around the beam-line. The coils are kidney-shaped, which results in a larger
field integral in the forward direction (∼ 2.5 Tm at 3860 A), where particle momenta tend
to be large, than at large scattering angles (∼ 0.6 Tm at θ = 90◦ at 3860 A) [80]. At the
centre of the system is a field-free region, which accommodates the use of polarised tar-
gets. The polarity of the magnet current is selected so that electrons are either in-bending

or out-bending, depending on which configuration provides the best acceptance for the
experiment being undertaken.

3.4.2 Drift Chambers

The CLAS drift chambers (DC) consist of three regions which cover approximately 132◦

in the polar angle [81]. Figures 3.4(d) and 3.4(c) show the locations of each DC sector and
layer in the CLAS detector system. Within each segment are sublayers containing anode
(sense) wires and cathode wires arranged in a honeycomb configuration. Each wire in a
sublayer is aligned parallel to the adjacent wires. The sense wire is positioned at the cen-
tre of a hexagon, whose vertices are the cathode wires. Wires in adjacent super-layers are
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(a) Photograph of the CLAS detector. (b) Photograph of the EC.
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Figure 3.4: Images of the CLAS detector system: (a) Hall B during a maintenance period with
the scintillation counters on the left and the region 3 drift chambers on the right, (b) the six sectors
of the forward angle electromagnetic calorimeters, (c) output of the online event display showing
an in-bending electron candidate track and an out-bending track from a positive particle. (d) scale
diagram of the six sectors of CLAS showing the relative locations of sub-detectors and the torus
coils. The sector numbering scheme is indicated.
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(a) Photograph of the torus in Hall B. (b) Diagram of the torus.

Figure 3.5: Images of the CLAS superconducting torus magnet.

Figure 3.6: Diagram of the CLAS region 3 drift chambers showing a reconstructed particle track.

similarly arranged but offset by a small stereo angle, to accommodate a good resolution
in both polar coordinates. The wires are held in a gaseous volume in which the traversing
particles collide with the gas molecules creating electron-ion pairs. The presence of a po-
tential difference between the sense and cathode wires causes the electrons to accelerate
towards the sense wire, creating an avalanche of electrons. This movement of charge in-
duces a current in the sense wire which, if larger than the threshold setting, is sent through
a pre-amplifier before being read out. Figure 3.6 is a diagram of the reconstruction of a
charged particle track in both super-layers of region 3.

The magnetic field created by the CLAS torus is approximately uniform in the az-
imuthal (φ ) direction. This means that the azimuthal angle of traversing charged particles
is preserved. The polar angle (θ ) of charged particles is affected by the magnetic field
in a manner that depends upon the particle’s electric charge and momentum. This causes
the tracks of charged particles to become curved. When a particle passes through the
drift chambers the direction of motion is recorded in all three regions. The magnetic field
distribution is known very accurately, which allows the trajectory of the particle from its
origin to be reconstructed. The drift chambers are used in this way to determine particle
charge and momentum; and the z-coordinate position at the target location.
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(a) Diagram of one SC sector. (b) Photograph of the SC in Hall B.

Figure 3.7: Images of the CLAS scintillation counters.

3.4.3 Scintillation Counters

The CLAS scintillation counters are primarily used to provide accurate timing informa-
tion. They consist of long rectangular bars of plastic scintillator material with photo-
multiplier tubes (PMTs) at either end [82]. Figure 3.7 shows images of the scintillation
counters. When a particle traverses a bar it deposits energy, which is absorbed and then
re-emitted through the processes of fluorescence and phosphorescence. These processes
have the dual function of converting the deposited energy into light, and shifting the wave-
length of this light into a range that can be detected by the PMTs. Output signals from
the PMTs, above a threshold set by discriminators, are sent to charge-to-digital convertors
and time-to-digital convertors. Measurements of time and charge are used to determine
the time and position of the interaction. In electron-scattering experiments the start time
of each event is calculated as:

tStart = tSC−
dSC

c
, (3.1)

where tSC is the time of electron interaction in the SC and dSC is the path length from the
target location to the interaction position in the SC. The start time is used as a reference for
the timing of other particles in the same event, providing a means with which to determine
their velocities. By combining time of flight information with the momentum measured
using the drift chambers, it is possible to determine the mass of charged particles and
therefore their identity.

3.4.4 Electromagnetic Calorimeters

Identification of electrons, photons, and neutral pions (via their primary decay mode to
two photons) was achieved using the forward-angle electromagnetic calorimeters (EC)
[83]. Figure 3.4(b) is a photograph of the EC. Figure 3.8 shows diagrams of the EC
layers and readout system. The EC sectors are sampling fraction calorimeters containing
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(a) Expanded view of the EC layers. (b) EC light readout system.

Figure 3.8: Schematic diagrams of the electromagnetic calorimeter system.

13 alternating layers of lead and scintillator material. Electrons decelerate in the field
of the high-Z lead nuclei and as a result emit bremsstrahlung photons. Photons tend to
produce particle-antiparticle pairs. In both cases the produced particles re-interact causing
a chain effect that results in an electromagnetic shower of (mostly) electrons, photons and
positrons. The showering particles then deposit energy in the scintillator layers via atomic
collisions. The atoms de-excite by emitting visible light, which can be detected using
PMTs. In total about 1/3 of the energy of the incident electron or photon is collected.
To identify electrons, the energy deposited is compared to the momentum recorded in the
drift chambers; a constant fraction is expected. The position and time of interaction is also
recorded. In the case of photons, the interaction positions in the EC are used to determine
particle trajectories from the target cell, and their momentum. The lead/scintillator layers
are further grouped into inner and outer stacks, to provide longitudinal sampling. This aids
the identification of heavier particles, which mainly deposit energy through ionisation.
Energy loss through ionisation depends on the thickness of material traversed and not
the momentum of the particle. In particular this provides a means to separate events
containing high-energy (> 2.5 GeV) negative pions which cannot be distinguished from
electrons using the Cherenkov counters.

3.4.5 Cherenkov Counters

The CLAS Cherenkov threshold gas detector is used to identify charged particles includ-
ing electrons, low-energy pions and positrons. The signal recorded by the Cherenkov
detector is used to determine the number of photoelectrons created by each traversing
particle. For this reason it is referred to as the Cherenkov counter (CC).

Each of the 216 optical modules in the CC contains: 3 adjustable mirrors, a Win-
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Figure 3.9: Schematic diagrams of the CLAS Cherenkov counter system. In (b) an electron track
with corresponding light emission is represented.

ston light collecting cone, and a 5-inch photomultiplier tube enclosed within bespoke
magnetic-shielding [84]. The combined geometry of the modules matches the coverage
of the forward angle calorimeters. Figure 3.4(c) shows the position of the CC in respect
to other CLAS sub-detector systems. Figure 3.9 shows diagrams of the CC layout.

Cherenkov radiation is emitted by a particle when its speed is faster than the speed
of light in the medium through which it is travelling. The threshold momentum for
Cherenkov radiation therefore depends on particle mass. Pions are more massive than
electrons, which means that they have a larger threshold momentum. In the CC, per-
fluorobutane (C4F10) is used as the radiator gas, due to its large refractive index of n
= 1.00153. The threshold momentum for pions in C4F10 is pπ ≈ 2.5 GeV/c, whereas
the threshold for electrons is pe ≈ 9.0 MeV/c. When the momentum of a negatively
charged particle is measured with the drift chambers to be less than 2.5 GeV/c and there
is Cherenkov emission in the CC, this is a strong indication that the particle is an electron
and not a pion.

Timing and position signals are also recorded in the CC. These signals can be com-
pared to timing and position hits in other sub-detector systems to assist in the identification
of particles and rejection of badly recorded events.

3.4.6 Inner Calorimeter

A recent addition to the CLAS detector setup is a small total-energy calorimeter that can
be placed inside the region 1 drift chambers: the inner calorimeter (IC). The IC is used in
experiments that specifically require the detection of photons at smaller polar angles than
the EC covers. The IC was also used by itself or in combination with the EC to reconstruct
neutral pions from their primary decay into two photons. Figure 3.10 shows images of the
IC, which consists of a matrix of 424 tapered lead-tungstate crystals coupled to avalanche
photodiodes. In the EG1DVCS experiment the IC was placed less than 70 cm downstream
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(a) Photograph of the IC. (b) Simulation of IC and target.

Figure 3.10: Images of the Inner Calorimeter. In (b) the output from a Monte Carlo simulation
of the CLAS detector system is shown. In the centre is the IC and on the left is the target system,
both are contained within the region 1 drift chambers. The red tracks represent Møller electrons
originating from the target cell, which have been forward-focussed due the presence of the target
field.

of the target cell2.

3.5 Dynamically Polarised Target

A longitudinally polarised proton target was one of the experimental specifications of the
EG1DVCS experiment. Solid-state ammonia (14NH3) was chosen as the target material
because previous investigations have shown that it can be highly polarised (> 90%) using
the method of Dynamic Nuclear Polarisation (DNP), and it is resilient against radiation
damage [85].

3.5.0.1 Dynamic Nuclear Polarisation of NH3

In the case of ammonia, DNP works by continuously transferring polarisation from elec-
trons in (mainly) 14NH2 paramagnetic radicals to the 14NH3 nuclei using tuned microwaves.
The paramagnetic radicals are introduced to the 14NH3 sample prior to the experiment3.
The 14NH2 molecules contain unpaired electrons which become polarised when placed
in a magnetic field. A polarisation of unpaired electrons nearing unity can be achieved
by cooling the material to ∼1 K and placing it in a strong magnetic field (> 5 T/K) [86].
Nuclear polarisation is achieved by inducing transitions that flip the spins of both the free-
electrons and nearby nuclei using microwaves. The nuclear polarisation helicity direction
is selected using the frequency of the microwave. This means that both polarisation states

257.95cm in Part A, 67.97 cm in Part B.
3In the case of EG1DVCS this was achieved by irradiating the sample at a small electron accelerator

facility at NIST in Gaithersburg, Maryland.
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(parallel and anti-parallel to the field direction) can be created without the need to flip the
sign of the magnetic field. Electron spin relaxation times are much shorter (∼ 10−3) than
nuclear spin relaxation times (∼ 103). The same free-electrons can therefore be re-used to
polarise nuclei. Nuclear spins are transferred between nuclei directly, which results in the
bulk material becoming polarised. Over time the net polarisation of the nuclei increases
and can reach over 90% [85].

3.5.1 The CLAS polarised NH3 target

The target system used for EG1DVCS was developed specifically for electron scattering
experiments at CLAS [86], utilising the DNP method discussed in the previous section.
The design accommodates the measurement of exclusive processes, which require a large
detector acceptance.

Target material is located in cells mounted on an insert that can be moved up and down
remotely using a stepper motor. Figure 3.11 shows images of the target insert and the
target system in CLAS. In parts A and B (C) of the experiment the top two cells contained
14NH3 ( 14ND3). Amorphous Carbon was contained in the cell below the 14NH3 cells
and the bottom target was left empty. These two additional targets were included for the
purpose of background studies. The Carbon target was used to represent the molecular
part of 14NH3. This system provided a method of alternating the target material during
operation without the need to physically enter the hall. The magnetic field was created
using superconducting Helmholtz coils. These coils are shaped to provide an opening
aperture of 50◦. Figure 3.10(b) is an output from a simulation showing the target magnet,
which doubled up as a shield against Møller electrons.

3.6 Trigger System

The CLAS data acquisition system (DAQ) is operated by a two-tiered trigger [80]. In
electron experiments, the Level-1 trigger is activated when there is both energy deposited
in the electromagnetic calorimeters4 and a signal above threshold in the Cherenkov coun-
ters. With these conditions fulfilled, all PMT signals arriving promptly are processed
and used to gate PMT time-to-digital convertors and analogue-to-digital convertors. The
Level-2 trigger is activated when suitable tracks in the drift chambers are found. If this
condition is not met then the events satisfying the Level-1 trigger are cleared. This whole
process takes only a few micro-seconds. If the Level-2 trigger is satisfied then signal digi-
tisation occurs. The time taken to determine that the trigger condition is false, or true plus

4The EC threshold was set to 500 MeV for EG1DVCS.
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(a) Photograph of insert.
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Figure 3.11: Images of the CLAS NH3 target system. In (a) the top target cells contain NH3.
The Kapton window has been removed in the second cell from the top revealing the irradiated
ammonia beads, which are blue. The target insert sits in a Helium bath, which is used to cool it to
cryogenic temperatures.
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Figure 3.12: The data flow schematic for CLAS including: readout controllers (ROCs), the
CLAS online acquisition computer CLON10, event builder (EB), event transporters (ETs), and
event recorder (ER).

the time to undertake digitisation, contributes to dead-time: the time during which the
detector cannot accept more triggers. Data readout is controlled by the trigger supervisor

which can be programmed to accept either Level-1 or Level-2 triggers. Readout occurs
independently of the triggering process and therefore does not contribute to dead-time.

3.7 Data Acquisition

The CLAS DAQ uses a UNIX operating system. The flow of data is represented in fig-
ure 3.12. Data are digitised in 24 VME crates then sent to matching readout controllers
(ROCs) where they are organised in tables corresponding to active detector components.
The resulting data arrays are then sent to the CLAS online acquisition system (CLON)
which is used to process the event prior to permanent storage and live monitoring as fol-
lows.

The Event Builder (EB) combines the data arrays into banks, which contain complete
events arranged in tables that can be easily linked. Each event is assigned: a unique
event number, an event type, trigger information, and a run number. Each run number
corresponds to the portion of data that was accumulated over a period between which
the operator started and ended the DAQ system. During EG1DVCS a typical run was
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ended once 40 M events were recorded. The event transporters (ET1, ET2, ET3) are
used to provide shared access to data between various live monitoring processes and final
processing by the event recorder (ER). The ER writes the data to a local RAID array then
sends it to a remote tape silo.
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3.8 The EG1DVCS Experiment

The primary goal of the EG1DVCS experiment was [75]:

To study the target single spin asymmetries (SSA) in deeply virtual Compton scat-
tering (DVCS) using the CEBAF 6 GeV polarised electron beam, a polarised solid
state 14NH3 target, and the CEBAF Large Acceptance Spectrometer together with
the newly built Inner Calorimeter.

This was the first dedicated DVCS target spin asymmetry experiment to be carried out at
Jefferson Lab. The proton DVCS target spin asymmetry was previously measured in Hall
B at Jefferson Lab using the EG1b experiment data set [76] and has also been measured
by the HERMES collaboration [74].

In EG1b, only a fraction of the data were taken with a high enough beam energy for
reactions to fall within the Bjorken scaling regime, and photon detection was limited to
relatively large polar angles (θγ > 8◦) [73]. DVCS analyses were not the main objective of
EG1b and thus the statistics were only sufficient to extract the dominant sin(φ) amplitude
in three kinematic bins.

The HERMES collaboration obtained results for the proton target spin asymmetry
and double spin asymmetry using a polarised (≈ 50.0%) positron beam on a polarised
(≈ 80.0%) gaseous hydrogen target. Final state protons were not detected in this ex-
periment, which resulted in the final sample being contaminated by events from: semi-
inclusive DIS, resonance production and π0 production. The magnitude of contamination
was quantified using Monte Carlo simulations.

During EG1DVCS operation, almost the maximum energy (6 GeV) electron beam
available at Jefferson Lab was utilised for most of the run period. Table 3.1 lists some
key figures on EG1DVCS running, including beam energies and start and end dates of
each part of the experiment. The experiment ran for a combined total of 127 days at
twice the (final state) luminosity of any previous electron scattering experiments in Hall B
(1.4×1034 Z/A nucleons cm−2s−1 5). This high rate was possible due to the effectiveness
of the polarised target’s Helmholtz magnets at screening against Møller electrons [75].
The addition of the inner calorimeter to the standard CLAS configuration gave access to
a phase-space region where, according to simulations, the DVCS spacial is larger [73].
The combination of these experimental benefits of EG1DVCS mean that there is over
an order of magnitude more statistics in the final DVCS sample (≈73,911) than either
the EG1b experiment (1,793) [75] or the HERMES result (2,824) [87] had. In addition
to the measurement of DVCS target single spin asymmetries on protons, a number of

5Units give Hydrogen target equivalent luminosity.
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part target z primary run beam torus dates
position target numbers energy current [start,end]

(cm) (GeV) (A) (D M Y)
A -57.95 14NH3 58708 - 59161 5.887 2250.0 [04 02 09,

59161 - 59220 4.730 16 03 09]
B -67.97 14NH3 59221 - 59978 5.954 2250.0 [23 04 09,

59978 - 60004 -2200.0
60005 - 60223 2250.0 14 06 09]

C -68.18 14ND3 60223 - 60648 5.752 2250.0 [21 08 09,
60648 22 09 09]

Table 3.1: Run information for the EG1DVCS experiment

other studies are being undertaken with the EG1DVCS data set. As Table 3.1 indicates,
a Deuterated Ammonia target was used for part of the assigned beam time to allow for
studies requiring a Neutron target. Analyses that are undergoing include:

• Proton DVCS double spin asymmetries.

• Neutron DVCS beam and target spin asymmetries.

• Semi-inclusive deep-inelastic scattering (SIDIS) single and double spin asymme-
tries for pions on protons [31] and neutrons.

• Inclusive polarised structure functions on protons and deuterons.

• Deeply virtual meson production (DVMP); exclusive neutral pion production.

• Di-hadron asymmetries.

• Nuclear single spin asymmetries.

3.9 Summary

In combination, the stable CEBAF electron beam, multi-functional CLAS detector sys-
tem, highly polarised target and robust data acquisition system provided an experimen-
tal setup that was well suited to the measurement of the exclusive electroproduction of
photons. In the following chapters the analysis procedure used to extract DVCS spin
asymmetries from the data recorded during EG1DVCS will be discussed.



Chapter 4

Analysis 1 - Event Selection

This chapter explains the procedure used to select the sample of events that the asymmetry
analysis was carried out with. This involved firstly identifying the three final state particles
in the exclusive electroproduction of photons reaction: e+ p→ e′+ p′+ γ . After the
particles were individually identified, the reaction as a whole was isolated using exclusive
variable distributions. Exclusive variables will be discussed in Section 4.8.

A second analysis was undertaken to identify events corresponding to the exclusive
electroproduction of neutral pions: e+ p→ e′+ p′+π0→ e′+ p′+γγ . This was necessary
because it was not possible to completely eliminate neutral pion production events from
the exclusive electroproduction of photons sample. The main decay mode for neutral
pions is into two photons. Events in which one of the two decay photons was detected,
and the other escaped detection, contributed to the photon production event sample as a
source of background. The amount of contamination was quantified using Monte Carlo
simulated data. The procedure used will be described in the next chapter. The particle
identification and exclusive cuts used to identify this reaction will be described in this
chapter.

Before the event selection methods are discussed, the data processing procedures that
were carried out prior to them will now be outlined.

4.1 Calibrations, Cooking and Skimming

In Hall B experiments, the raw data take the form of values recorded in time-to-digital
convertors (TDCs) and charge-to-digital convertors (QDCs), which are arranged in banks;
this was already mentioned in Chapter 3. In CLAS terminology, the process by which the
raw data are converted into useful analysis variables – such as the positions of hits in the
detectors, deposited energy, and particle momenta – is called cooking.

To identify any effects that the specific experimental setup for the EG1DVCS exper-

53
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iment had on the data compared to previous CLAS experiments, and also to account for
changes to the experimental configurations for different run periods, calibration studies
for each sub-detector system were carried out using the cooked data. These studies were
performed by experienced members of the EG1DVCS analysis group and included: DC
hit position and timing alignments, EC and CC pulse height corrections, SC timing cor-
rections and IC energy and timing calibrations. Once the calibrations were optimised, the
data were corrected by re-cooking them using results from the calibration studies as input.
The final data form, which was used in this analysis, is referred to as pass-1 data. This
data consisted of around 60,000 files in total, which were grouped by run number, with
each run containing about 85 files.

Events in which the DAQ system was not triggered by an electron or positron were
removed from the sample of data. This is an example of what is known in CLAS termi-
nology as data-skimming. The method used to identify electrons as the triggering particle
will be discussed below. Events containing positrons were not included in this work. The
resulting file type was a PAW (physics analysis workstation) [88] format called Ntuple-10.
A further data-skim was carried out to minimise the data size by an order of magnitude
by removing unessential variables and applying bit compression. The resulting format
is known as Ntuple-22. The Ntuple-22 files were converted to a format called ROOT-
22, to accommodate analyses within the ROOT data analysis framework [89]. New data
versions were made when modifications or additions to the included variable types were
made. The final data form that was used as the starting point for this analysis was: pass-1,

version-3, ROOT-22.

4.2 Data Quality and File Rejection

Prior to the event-by-event analysis, the data were checked on a file-by-file basis. The
files used in this analysis were selected following the procedures outlined in a run group
technical note [90]. Files in run periods with similar experimental configurations were
arranged into 65 groups and the electron rate distributions for each sector within each
group were compared. Anomalous electron rates indicate that there was a temporary
problem with a vital detector component. Files with electron rates that fell outwith 5-σ of
the mean rate of the group they were part of were rejected. Files were also rejected if they
had: missing or incorrect Faraday cup information, zero target polarisation, or a missing
data structure.

A further check of the election rates was performed once the electron identification
procedures of this analysis were finalised. Electron identification will be explained in
Section 4.5.1. It was discovered that for three run numbers, there were files with very
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(a) Part A, prior to file rejection.

run number
59500 59550 59600 59650 59700 59750 59800 59850 59900

n
o

rm
al

is
ed

 i
n

cl
u

si
v

e 
el

ec
tr

o
n

 r
at

e

0.0015

0.002

0.0025

0.003

0.0035

0.004
target settings

top  / pos

top  / neg

bot. / pos

bot. / neg

(b) Part B, prior to file rejection.
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(c) Part A, after file rejection.
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(d) Part B, after file rejection.

Figure 4.1: Electron rates per file for both NH3 target cells, normalised to the beam charge
collected for events triggering the DAQ (integrated faraday cup current). In (a) and (c) all files
were included. In (b) and (d) only good files (see text) were included. The step features are a
result of changes in configuration. In (a) and (c) the high rates of the run numbers around 59200
are due to a change in beam energy from 5.9 GeV to 4.7 GeV. Small step variations result from
the slightly different radiation lengths of the top and bottom targets.

low electron rates: 59714, 59844 and 59845. A check of the electronic experimental log-
books confirmed that there had been a problem with a major detector component during
these runs. During run 59714 the SC crate crashed and a high voltage board had to be
replaced. During runs 59844 and 59845, there was a problem with the EC TDCs, which
was resolved by rebooting them.

A study of the stability of neutral pion masses [91] highlighted that during runs 58813
and 58814 a problem occurred with the Inner Calorimeter.

Instabilities in the transverse beam position caused the beam to hit the target cell
wall during some runs. A study of the extent of this effect was written up as a technical
note [92] and found to affect only a few runs.

Files that failed any of these additional checks were rejected from this analysis. Figure
4.1 shows inclusive electron rates (summed over all sectors) per file as a function of run
number before and after bad file rejection for data taken on both top and bottom NH3

targets. Data taken with the Carbon and Empty targets were treated in a similar manner.
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Figure 4.2: Beam energy calculated from elastic electron-proton scattering before (dashed line)
and after (solid line) a correction to the direction cosines of charged particles. Results for part C
data are shown here.

4.3 Data Corrections

4.3.1 Charged particle vertices and direction cosines

The standard CLAS method of determining the direction-cosine vector of a charged par-
ticle at the interaction vertex involves extrapolating it backwards through the DC super-
layers to the position that intersects a plane perpendicular to the sector it traversed. To
improve the accuracy of the vertex position, the (x,y) position of the beam was calculated
using the raster ADC values. The z-coordinate and direction-cosines were then deter-
mined by extrapolating the charged particles back through the target magnetic field from
DC layer 1 to this position. These procedures were adopted from run group technical
notes [93, 94]. Figure 4.2 shows, sector-by-sector, the effect this correction had on the
beam energy as reconstructed using elastic electron-proton scattering. Both the peak-
energy sector-dependence and energy-widths were improved.

4.3.2 EC energy

Slow gain-drifts were observed for the EC after periods where the EC PMT high voltages
had been switched off. The source of these drifts was never found. A run-by-run, sector-
by-sector correction factor to EC energy values was applied, which was considered to be
sufficient since the gain drifts were correlated in time [91]. Figure 4.3 shows the effect of
this correction on the detected energy relative to the detected momentum for electrons.
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(a) Before correction.
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(b) After correction.

Figure 4.3: Ratio of energy deposited in the EC to momentum (sampling fraction) for electrons
before and after the application of EC gain correction factors. Files corresponding to the outlying
data points were not included in this analysis.

4.4 Event Selection

The cuts used in the data skimming process had the function of removing events that
were of no potential interest to any EG1DVCS analysis. Events with potential electron
candidates were identified by applying the following conditions:

• DC charge = -1 e. Particle charge was used as the primary means of particle identi-
fication. Negative particles were identified using the curvature of trajectories in the
drift chambers.

• DC momentum > 0.5 GeV/c. The EC energy threshold set in the DAQ trigger was
taken as the minimum acceptable momentum value.

• EC timing > 0.00 ns and SC timing > 0.00 ns. Only time-based drift cham-
ber tracks were included in the pass-1 data sample. DC tracks with only hit-based
information were discarded by ensuring that timing information was utilised. Time-
based tracks benefit from improved positional resolution, which is achieved by cor-
recting the DC hit positions using SC timing information [73].

• EC sector number = CC sector number = DC sector number. Equating the
sector numbers of sub-detector systems imposed an element of positional matching,
which had the effect of reducing contributions from random coincidences.

• CC geometrical matching variable < 0.15. The angle between the SC and CC (in
radians-squared) was used as a means by which to match electron candidate tracks.
The value taken corresponded to an agreement of the hit position in a CC chamber
to within 4 paddles (scintillator bars) of the SC. A study written up as a technical
note [95] showed that the majority of electron candidates fell within 2 SC paddles.
Negative pions below the minimm threshold required to produce Cherenkov light in
the CC can knock-out electrons at large angles. Random coincidences can occur in
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the SC and CC. Contributions to the signal background from both of these scenarios
were reduced by applying this condition.

• EC deposited energy/DC momentum > 0.12 c. At large momentum values (>2.5
GeV/c) it is not possible to separate pion events from electron events using the CC,
because both particles create Cherenkov light in the CC gas volume. The energy
recorded in the EC is almost independent of momentum for pions. This condition
provided a means with which to suppress the contribution from pion events that did
have a corresponding signal in the CC.

The events of interest to this analysis require the presence of an electron in the final
state. These data-skim cuts were used as a preliminary method of identifying electrons.
Events without at least one particle fulfilling all of these conditions were removed from
the sample used in the following procedures.

4.5 Particle Identification

The final state particles of the reactions ep→ epγ and ep→ epπ0 were identified by
applying further data cuts to the sample containing at least one preliminary identified
electron. This section explains in turn the procedure used to identify each particle.

Some of the standard particle identification data cuts that are needed for inclusive or
semi-inclusive processes can be loosened or even omitted when all final state particles are
identified. For inclusive DIS processes a strict electron identification procedure is required
as there is no other means by which to adequately minimise the background contribution
from reactions containing other negative particles (mainly pions) instead of electrons. For
SIDIS processes, and exclusive reactions in which one of the final state particles is iden-
tified using the missing mass method, strict particle identification cuts are also required
in order to suppress the background contributions caused by particle misidentification.
When all final state particles of the reaction being studied are identified, the misidentifi-
cation of particles is further suppressed at the stage of reaction identification, where events
are selected based on quantities that utilise complete information on the initial and final
states. In this work some of the particle identification cuts were therefore relaxed com-
pared to those used in inclusive [96] and semi-inclusive [31] analyses that were carried
out with the same EG1DVCS data.
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4.5.1 Electron identification

The identification of events with one and only one good electron was carried out before
identifying other particles. Electron identification cuts had the combined function of:
reducing the combined noise background, rejecting events containing negative pions and
rejecting events from regions where the detector efficiency was poor. The preliminary
electron ID cuts that were outlined in the previous section were first applied to every
particle in every event. Particles fulfilling all of the these conditions were then subjected
to the following constraints:

1. DC momentum > 0.8 GeV/c. Electron candidates with momenta below 0.8 GeV/c
were removed. In this region the CC suffers from low efficiency and radiative events
contribute a significant source of background. Figure 4.4 shows distributions of
electron events after the application of all electron ID cuts apart from this cut.
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Figure 4.4: Electron ID data cut 1. The red lines shows the position of the cut applied and the
arrows indicates the discarded region.

2. Inner EC deposited energy > 0.06 GeV. Moderately high energy (2.9 GeV <

Eπ− < 6.0 GeV) pions mainly deposit energy through the process of ionisation. The
amount of energy deposited by ionising particles depends on the thickness of the
material through which they travel and is almost independent of their momentum.
Figure 4.5 show distributions of the energy deposited in the inner part of the EC for
electron candidates after all cuts apart from the cut on this variable. In 4.5(b) this
variable has been plotted against (10×) the number of photoelectrons detected in
the CC. Below 0.06 GeV and the two photoelectron level is a peak of negative pion
events which were removed by applying this cut.

3. |z-vertex - target centre| < 3.0 cm. Interactions that occurred outside of the target
material were not of interest to this analysis. Contributions from interactions that
occurred in the target cell windows and other material through which the electrons
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Figure 4.5: Electron ID data cut 2. The red lines shows the position of the cut applied.

traversed were minimised by applying this cut. Figure 4.6 shows the z-vertex after
all other electrons ID cuts apart from this one.
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Figure 4.6: Electron ID data cut 3. Note that a log-scale has been used in (a). The red lines shows
the positions of the cut applied.

4. |CC time - start time| < 2.0 ns. Electron candidates travelling from the target
traverse the CC before the SC. The time difference between interactions in these
two sub-detector systems depends on particle velocity. At the same momentum,
pions travel slower than electrons which means that the time taken to travel from
the CC to the SC is longer. This cut was used to remove the contribution from
negative pions and random coincidences. Figure 4.7 shows the time difference after
all other electrons ID cuts apart from this one.

5. Standard EC fiducial cut. The detection efficiency at the edges of the EC is poor
because when particles interact there the electromagnetic shower is not completely
contained within the detection volume. It is a common procedure in many CLAS
analyses to apply what are know as standard fiducial cuts (FCs), which limit re-
tained events to regions that have been identified as having good detection efficien-
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Figure 4.7: Electron ID data cut 4. CC time was corrected for the travel time from the target to
the interaction in the CC. Note that in (b) a logarithmic scale has been used. The red lines shows
the positions of the cut applied.

cies . Figure 4.8 shows EC hit positions for electron candidates in terms of lab (x,y)
and EC (U,V,W) coordinate systems; see the previous chapter for an explanation of
these coordinate systems.

6. IC shadow fiducial cut. The position of the IC within the centre of the CLAS de-
tector system caused the paths for particles at small scattering angles to be blocked.
Some small angle scattering particles were detected after interacting with the sup-
port structure surrounding the IC. The position and energy of these events was
not well reconstructed. To eliminate badly reconstructed events a charge- and
momentum-dependent fiducial cut [97] was applied to electron candidate events.
Figure 4.9 shows angular positions of electron candidates after all other electron
identification cuts and those that were rejected by this cut.
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(d) EC hit positions after all cuts.
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(e) Events rejected by this cut.

Figure 4.8: Electron ID data cut 5. The distributions in (a)-(c) are plotted after all electron ID cuts
apart from this one. The red lines show the positions of the cuts applied. In (d) the positions of
good electron candidates are plotted in terms EC positions in lab-coordinates. The events rejected
by this cut after all other cuts were applied are shown in (e).
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(a) Angular positions of good events.
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(b) Angular positions of rejected events.

Figure 4.9: Electron ID data cut 6. In (a) the electron candidates remaining after all electron cuts
have been applied are shown. In (b) the events removed by this cut after all other electron ID cuts
are shown. Note the log scale in the z-direction.
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4.5.2 Proton identification

The identification of protons was achieved using the sample of events containing one and
only one fully identified electron per event. The following conditions were used to reject
events with positive tracks that corresponded to: random coincidences, positive pions,
positive kaons, deuterons, and other heavier ions.

1. |z-vertex - target centre| < 4.0 cm. For proton candidates, as with electron can-
didates, only interactions that occurred in the target material were of interest. The
vertex-resolution is not as good as for electrons. The cut applied was therefore
made slightly wider for protons. Figure 4.10 shows plots of the z-vertex for proton
candidates after all other proton ID cuts apart from this one.
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Figure 4.10: Proton ID data cut 1. The red lines show the positions of the cut applied.

2. Momentum-dependent β cut. The primary means to distinguish protons from
other positively charged particles involved using a combination of DC momen-
tum and SC timing information. The velocity relative to the speed of light β =

dSC/(ctSC) was calculated using the distance travelled from the target to the inter-
action point in the SC (dSC) and the time taken to travel that distance (tSC): the time
recorded minus the start time. Figure 4.11(a) shows β plotted against momentum
after all proton ID cuts apart from the cut on this variable. Figure 4.11(b) shows
the same plot after this cut. Figure 4.11(c) shows the difference in time calcu-
lated using the SC timing and DC momentum ∆tpr = tSC−dSC(p2+m2)1/2/(pc) =

tSC−dSC/(βpc) after all proton ID cuts apart from the cut on this variable. Figure
4.11(d) shows the same plot after this cut. At larger momentum values the timing
resolution is better. This meant that the cut width could be made more narrow at
higher momentum values where the β values for positive pions are closer to those
of protons.
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(a) β vs momentum. (b) β vs momentum.
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Figure 4.11: Proton ID data cut 2. In (a) and (c) regions which contain events from protons, pions,
kaons and deuterons can be distinguished; (b) and (d) show the effect of the momentum-dependent
β cut.

3. IC shadow fiducial cut. Proton candidate events were subjected to a positively-
charged particle version of the same IC shadow fiducial cut as electrons [97]. Figure
4.12 shows the positions of proton candidates in terms of the lab coordinates (φ ,θ)
and the events rejected by this cut after all other proton ID cuts were applied.

4.5.3 EC photon identification

Photon identification was split into two categories corresponding to the two different
photon-detectors: EC and IC. This section details the procedures used to identify photons
that were detected in the EC. EC photon cuts were applied to the set of events containing
one and only one fully identified electron and one and only one fully identified proton.
Particles that were detected in the EC with no corresponding charged track in the DC were
assigned neutral charge. In order to identify photons, neutral EC particles were subjected
to the following conditions:

1. β > 0.92 c. Neutral particles that are detected in the EC include neutrons and
photons. To eliminate neutrons from the sample a fixed cut was applied to β =

dEC/(ctEC), where tEC is the time recorded minus the event start time and dEC is
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(a) Angular positions of good events.
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(b) Angular positions of events.

Figure 4.12: Proton ID data cut 3. These plots are equivalent to those in Figure 4.9 except here
proton candidates are shown.

the distance travelled from the target to the EC. Figure 4.13 shows β distributions
after all EC photon cuts apart from the cut on this variable.
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Figure 4.13: EC Photon ID data cut 1. The red lines show the position of the cut applied.

2. Energy > 300 MeV. The minimum energy value for EC photons in the data skim
was 250 MeV. Below this energy the efficiency of the EC is poor which means that
energies, timing and positions are not well reconstructed. The selection of events
corresponding to the exclusive electroproduction of photons and the exclusive elec-
troproduction of neutral pions, both required photons to be identified. Neutral pions
were reconstructed from their primary decay mode into two photons. In the pho-
ton production case it was found that it was not possible to distinguish good events
from the combined background for photon energies below 1 GeV. This additional
cut was applied along with kinematic cuts which are discussed in Section 4.7. In
the neutral pion production case the minimum energy for EC photons at which the
signal to background ratio for neutral pion masses was found to be maximal was at
300 MeV [98]. Figure 4.14 shows the EC energy for photon candidate events after
all EC photon cuts apart from the cut on this variable.
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Figure 4.14: EC Photon ID data cut 2. The red (blue) line shows the position of the cut applied
to EC neutral particles in photon (neutral pion) production candidate events.

3. Standard EC fiducial cut. The same EC standard fiducial cut that was applied to
electrons was applied to EC photon candidate particles. Figure 4.14 shows the same
plots as in Figure 4.8 but for photons candidates instead of electrons.
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(e) Events rejected by this cut.

Figure 4.15: EC Photon ID data cut 3. The red lines show the positions of the cuts applied.

4. IC shadow fiducial cut. A neutral particle version of the fiducial cut [97] that was
applied electron and proton candidate events was applied to photon candidates. In
this case there was no momentum-dependence included in the conditions because
neutral particles travel in a straight line. Figure 4.16 shows the positions of EC pho-
ton candidates that were rejected by this cut, and the scattering angle distribution
for good events.



4.5. Particle Identification 67

0

2000

4000

6000

8000

10000000

120000

1400000

1600000000

180000

X (cm)
-400 -300 -200 -100 0 100 200 300 400

Y
 (

c
m

)

-400

-300

-200

-100

0

100

200

300

400

(a) Events rejected by this cut.
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(b) θ after all EC photon ID cuts.

Figure 4.16: EC Photon ID data cut 4.

4.5.4 IC photon identification

IC particles were presumed to be neutral in charge. The particle identification and reaction
cuts were relied upon to eliminate the contributions from other particles.

1. Energy > 300 MeV. The same minimum energy values used for EC photons were
set for IC photons. As was the case for the EC, the IC was used to detect single
photon events and events in which two photons were used to reconstruct neutral
pions. Figure 4.17 shows the IC energy for photon candidate events after all IC
photon cuts apart from the cut on this variable.
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Figure 4.17: IC Photon ID data cut 1. The red (blue) lines shows the position of the cut applied
for photon (neutral pion) production candidate events.

2. Fiducial cut. The energy and position reconstruction of events in the IC was
achieved using a clustering algorithm that performed a weighted sum of hits in
neighbouring crystals. Photons that interacted at the edges of the IC (< 3/4 of the
width of a crystal from the edge) are not reconstructed well and were therefore re-
moved from the event sample. Figure 4.18 shows the hit positions in the IC after all
other IC photon ID cuts apart from this one.
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Figure 4.18: IC Photon ID data cut 2. Hit positions in the IC after all other IC photon ID cuts.
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Figure 4.19: IC Photon ID data cut 3. In (b) the distribution at 8 degrees is due to a malfunctioning
pixel. The red lines show the position of the cut applied.

3. |t|< 5 ns. The IC central region is positioned close to the beam line. A significant
background signal from the electron beam was detected in the IC at low angles.
These events were not synchronised in time with the event start time and the ma-
jority of them were removed from the sample by applying this timing cut. Figure
4.19 shows timing distributions for IC particles after all IC photon cuts apart from
the cut on this variable.

4.5.5 Neutral pion identification

There were two photon detectors which means that there were three detector combinations
that could be used to detect neutral pions: two photons detected in the IC, two photons
detected in the EC, or one photon detected in each. The background reaction of interest
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(ep→ epπ0) required the identification of an electron and a proton in the final state.
The identification of events containing a neutral pion was therefore carried out using
the sample of events containing one and only one electron and one and only one proton.
Neutral pion candidates were identified by cycling through every combination of two good
photons in each event and selecting good events based on the value of the reconstructed
pion mass, Mγγ , compared to the particle data group (PDG) value, Mπ0

PDG.
Three different mass cuts were used to identify events containing neutral pion candi-

dates depending on the photon detection topology. The reconstructed-mass distribution
widths varied due to the different resolutions of the EC and IC. The cuts used coincide
with the optimal widths found for semi-inclusive processes, which are explained in a run
group technical note [98]. The values used were: |Mγγ −Mπ0

PDG| < 0.030 GeV/c2 for IC-
IC events, |Mγγ −Mπ0

PDG| < 0.035 GeV/c2 for EC-EC events, and |Mγγ −Mπ0

PDG| < 0.035
GeV/c2 for IC-EC events. Figure 4.20 shows mass distributions for the three possible
cases.
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Figure 4.20: Neutral pion data cut. The red lines show the positions of the cuts applied.

Events containing one and only one good neutral pion were retained for the purposes
of determining the background contribution from neutral pions in the exclusive electro-
production of photons data sample.

4.5.6 Event numbers

Table 4.1 lists the numbers of events remaining after successive particle ID cuts were
applied. The cut numbers correspond to those of the particle in the corresponding row.
Events in which multiples of the same particle passed the cuts were counted more than
once. Proton numbers are given for events in which there was one and only one good
electron. Photon numbers are quoted for events in which there was one and only one
good electron, and one and only one good proton. For example in the column labelled
cut 2 in the row for protons the value quoted is the number of particles that passed proton
cuts one and two, for events containing one and only one particle passing all electron
identification cuts.
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Cut 1 2 3 4 5 6
Electron 1260 1180 1030 724 624 615
Proton 381 162 157 - - -
EC photon 56.0 46.7 38.2 34.2 - -
IC photon 98.3 62.4 39.3 - - -

Table 4.1: Event numbers after successive particle ID cuts. Numbers quoted are in mil-
lions.

4.6 Exclusive Electroproduction of Hard Photons

The methods used to identify events corresponding to the exclusive electroproduction of
hard photons will now be described. The sample of data used contained events with one
and only one electron, one and only one proton and at least one photon with energy above
300 MeV. Events in which one or more neutral pions were identified were rejected from
this part of the study. Events containing more than one photon were not discarded from the
sample that the reaction identification cuts were applied to. This approach was motivated
by the fact that there were few photon identification cuts which meant that some some
photon candidate particles corresponded to random coincidences and removing events
containing these particles would have resulted in a loss of many of the good events. The
highest energy photon in each event was chosen as the reaction product. Reactions in
which more than one photon was genuinely produced were rejected along with other
background reactions using exclusive cuts.

4.7 Kinematic Cuts

Prior to applying exclusivity cuts, the following kinematic cuts were imposed:

1. Q2 > 1 (GeV/c)2 and Q2 >−t. The first condition removed events that were not
within the Bjorken scaling regime. The handbag approximation is valid for Q2 >>

−t. The second condition was imposed to minimise the contributions from higher
twist effects, which are interesting in themselves but it was not the goal of this
analysis to investigate them.

2. W > 2 GeV. There are strong contributions to the cross section from elastic scat-
tering and scattering from proton resonances for events with W < 2 GeV. In this
analysis only photon production on the proton ground state was of interest so this
low-W region was rejected.
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3. Eγ > 1 GeV. This condition was applied to reduce the size of the data set at this
stage of the analysis. It is shown in the next section that it had no effect on the
final sample. The top left panels of Figures 4.31 and 4.32 show photon energy
distributions before and after the reaction identification cuts were applied. Events
containing photons with energies less than 1 GeV would also have been removed
by the reaction identification cuts.

4.7.1 Event numbers

Table 4.2 lists the numbers of events after successive kinematic cuts were applied to the
sample of data remaining after all particle ID cuts were applied. In each event the highest
energy photon was selected as the photon in the reaction of interest, which was either
detected by the EC or the IC.

Cut 1 2 3
γEC 19.1 16.1 5.01
γ IC 23.1 21.4 9.27

Table 4.2: Event numbers after successive kinematic cuts. Numbers are given in millions and
quoted for events in which there was one and only one electron, one and only one proton and at
least one photon with energy above 300 MeV and no neutral pions. Numbers in different rows
correspond to events in which the highest energy photon was in either the EC (top) or the IC
(bottom).

4.8 Exclusive Variables

This section explains how the exclusive variables were calculated from measured vari-
ables. The energy-momentum four-vectors for particles in hard photon reactions, Pbeam+

Ptarget → Pe +Pp +Pγ , were defined:

Pbeam = (0,0,Ebeam,Ebeam), (electron beam);
Ptarget = (0,0,0,Mp), (proton target);
Pe = (ce

x.pe,ce
y.pe,ce

z.pe, pe), (scattered electron);
Pp = (cp

x .pp,c
p
y .pp,c

p
z .pp,(p2

p +M2
p)

1/2), (recoil proton);
Pγ = (cγ

x.Eγ ,c
γ
y.Eγ ,c

γ
z .Eγ ,Eγ), (produced photon);

(4.1)

where Ei (pi) is the measured energy (momentum) of particle i, ci
j is the corresponding

particle direction cosine in the j direction, and Mp is the PDG value for proton mass.
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Other four-vectors that were used were:

Pγ∗ = Pbeam−Pe, (virtual photon);
Pepγ

X = Pbeam +Ptarget− (Pe +Pp +Pγ), (reaction);
Pep

X = Pbeam +Ptarget− (Pe +Pp), (reconstructed photon);
Peγ

X = Pbeam +Ptarget− (Pe +Pγ), (reconstructed proton);

(4.2)

which were used to calculate missing masses:

MM2
X(epγ) = (Pepγ

X )2,

MM2
X(ep) = (Pep

X )2,

MM2
X(eγ) = (Peγ

X )2.

(4.3)

The elements of
Pepγ

X = (pX
x , pX

y , pX
z ,E

X); (4.4)

are the missing momenta in three directions and the missing energy.
The total angle between the detected photon and the reconstructed photon was defined:

θγX = cos−1

(
~Pγ .~P

ep
X

|~Pγ ||~Pep
X |

)
. (4.5)

The hadron production plane contains the virtual photon, produced photon and recoil
proton and can therefore be calculated in three unique ways:

~H1 = (~Pp×~Pγ∗);
~H2 = (~Pp×~Pγ);
~H3 = (~Pγ∗×~Pγ);

(4.6)

from which the difference in the cross section φ angle can be calculated in three unique
ways. The most narrow distribution was used, which was found to be:

∆φ = cos−1
(

~H1.~H2
|~H1||~H2|

)
for ~H1.~Pγ ≥ 0.0;

∆φ = −cos−1
(

~H1.~H2
|~H1||~H2|

)
for ~H1.~Pγ < 0.0.

(4.7)

4.9 Exclusive Event Selection

After the application of the particle identification and kinematic cuts, there were already
clear peaks in some of the exclusive variable distributions which corresponded to the
reaction of interest. Figures 4.21 and 4.22 show MM2

X (ep) distributions at this stage of
the analysis for parts A and B of the experiment respectively. In the top panels of both
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figures, these distributions are shown on a wide scale so that the full ranges can be seen.
The pure NH3 sample consists of a combination of events on Nitrogen, and various other
reactions that occurred on Hydrogen. The events that occurred on the Nitrogen part of
the NH3 target are represented by data acquired using a Carbon target, which have been
scaled using relative integrated luminosities. After the subtraction of the scaled Carbon
distributions it is evident that various other reactions still contribute to the sample. These
reactions include the exclusive electroproduction of neutral pions, etas and rhos, which
have squared-masses: M2

π0 = 0.0182 (GeV/c2)2, M2
η0 = 0.300 (GeV/c2)2 M2

ρ = 0.601
(GeV/c2)2.

The neutral pion and photon production peaks are overlapping. This caused difficul-
ties in determining the peak widths for exclusive variable distributions for photon events.
Monte Carlo (MC) simulated exclusive electroproduction of photon events were used to
help guide the choice of cut widths for the reaction identification part of the analysis.
Details of the method used to produce Monte Carlo data are given in Section 4.12.
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Figure 4.21: MM2
X (ep) for part A events. IC and EC photon event distributions are shown sepa-

rately. The black (red) histograms are of data taken on NH3 (Carbon) target. Carbon histograms
were scaled using the relative integrated beam lumonisities. The blue histograms are of the NH3
data minus the Carbon data. The bottom two plots are of Monte Carlo DVCS generated data. The
x-axes for data and MC in the middle and bottom plots have not been plotted over the same ranges.
Data distributions were plotted over a wider range to show the reaction background at either side
of the peaks and wider function range used.
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4.9.1 Missing mass cut

All other exclusive cut widths were determined after applying a cut to MM2
X (ep). Data

from different experimental configurations were treated independently to investigate vari-
ations in the resolutions of exclusive variable peaks. Exclusive variables for some exper-
imental configurations did not always have visible peaks until after applying the MM2

X

(ep) cut. The cut widths were determined using MC simulated DVCS and BH events as a
guide. Simulated events were subjected to the same analysis procedures as the data. This
method allowed a consistent approach to be used for each subset of data, which was found
to not be possible in all cases by basing the cuts on fits to the data.

In Figures 4.21 and 4.22 the middle panel plots are the same as the top panels but are
shown over a more narrow range so that the region of interest can be seen clearly. These
distributions have been fitted with a Gaussian distribution, with mean µ and width σ ,
plus a first order polynomial. Parameters representing coefficients for terms of increasing
order in polynomial fits are given by increasing letters of the alphabet starting at a, which
is the zeroth order coefficient (constant term). The Gaussian fits aim to represent the
widths of exclusive electroproduction of photons reactions but are broader than the MC
data. This may be due to the contribution from neutral pion production events and/or
because detector noise contributions were not fully represented in the MC simulation.
The first order polynomial part of the fits aim to represent the combined background.
Other Gaussian plus higher order polynomial fits were attempted on the experimental
data, but no improvement was found for the goodness of fit parameter: χ2/ν , where ν is
the number of degrees of freedom - see Chapter 5 for a definition of the goodness of fit
parameter.

The bottom panels in the same figures show MC data which has been fitted with a
Gaussian plus second order polynomial. The fit range has been reduced for these distri-
butions in order to obtain a good measure of the peak width but still covers more than
3-σ either side of the mean, which in general was taken as the minimum acceptable fit
range. For these distributions, it was necessary to include a second-order polynomial to
represent the tails of the main distributions well, which were found to fall off less sharply
than a Gaussian. This suggests that they are caused by radiative effects, which may also
be the reason for the peaks not being centred exactly on zero. The cut width applied
was taken as a fixed value, |MM2

X |< 0.12 (GeV/c2)2, for all experimental configurations.
This is slightly larger than the 3-σ value from the simulated data fits but since the data
were found in general to have wider distributions this was considered to be reasonable,
and was also consistent with the width used in the previous CLAS target spin asymmetry
analysis [76]. The aim of the reaction identification cuts was to maximise the number of
photon production events and minimise the contributions from the neutral pion produc-
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Figure 4.22: MM2
X (ep) for part B events. IC and EC photon event distributions are shown sepa-

rately. The black (red) histograms are of data taken on NH3 (Carbon) target. Carbon histograms
were scaled using the relative integrated beam lumonisities. The blue histograms are of the NH3
data minus the Carbon data. The bottom two plots are of Monte Carlo DVCS generated data. The
x-axes for data and MC in the middle and bottom plots have not been plotted over the same ranges.
Data distributions were plotted over a wider range to show the reaction background at either side
of the peaks and wider function range used.
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tion channel and events on the nitrogen part of the target. It was not to deemed possible
to obtain a sample of pure photon production events.

4.9.2 Hadron production plane matching cut

For good photon production events, the ∆φ angle is expected to be sharply peaked around
zero because the produced photon must lie in the same plane as the virtual photon and re-
coil proton. For events in which other particles were produced and a photon was detected
from their decay, this photon need not lie in the same plane as the virtual photon and pro-
ton. This means that the ∆φ angle may take larger values for other reactions. Figures 4.23
and 4.24 show ∆φ distributions after particle ID, kinematic cuts and the cut on MM2

X (ep).
The width for IC photon events for part B events is most similar to the MC distribution.
The Part B IC data set has the largest number of events. The EC event data distribution
fit widths are around four times larger than the MC data. This is likely due to there being
a larger background contribution for EC events, although there may be some contribution
from the simulation not representing the EC resolutions well. As a conservative approach,
the philosophy adopted here was to base the EC cut closer to the more narrow MC distri-
butions. A fixed value of |∆φ | < 1.2◦ was used, which is consistent with approximately
4-σ for both parts of the experiment and EC and IC events for the MC data.
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Figure 4.23: ∆φ for part A events. The plots are laid out in the same way as Figure 4.21 but
(c)-(f) are plotted after the cut on MM2

X (ep). Note the wider x-axis range in (d) compared to (c).
For plots with fits, the ranges covered on the x-axes indicate the range used for the fit function.
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Figure 4.24: ∆φ for part B events. The plots are laid out in the same way as Figure 4.23. For
plots with fits, the ranges covered on the x-axes indicate the range used for the fit function.
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4.9.3 Photon angular matching cut

The four-vectors of the electron and proton from before and after the reaction were used
to reconstruct the expected trajectory of the produced photon. The total angle between the
true photon and the reconstructed photon directions should ideally be zero. In the case
where some other reaction occurred, this angle can take large values. Figures 4.25 and
4.26 show histograms of this angle plotted after particle ID and kinematic cuts and the
cut on MM2

X (ep). The distributions drop towards zero as θγX → 0, which is a result of the
fact that the solid angular coverage for each θγX bin reduces with θγX . In the same figure
there are plots of these same distributions that have been weighted by the relative solid
angle per bin. In this case the data and MC distributions peak at zero. The fit function
used for the weighted histograms was a half-Gaussian plus a first-order polynomial. The
widths for IC and EC MC data differ by around 25 %, which is not unexpected as the
resolutions of the IC and EC are not the same. Two different cut values were therefore
adopted, which approximate to 5-σ from the MC fits: θ IC

γX < 1.0◦ and θ EC
γX < 1.25◦.
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Figure 4.25: θγX for part A events. The top (bottom) four plots were made before (after) the cut
on MM2

X(ep). The number of counts per bin falls off at small values of θγX in (a) and (b) due to
the solid angle coverage per bin reducing with θγX . The distributions in (c)-(f) were weighted by
the relative solid angle per bin, which has resulted in a reasonably flat background from Nitrogen
events and a strong peak for photon production events. Plots (c), (d), (g) and (h) are of Monte
Carlo generated data. For plots with fits, the ranges covered on the x-axes indicate the range used
for the fit function.
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Figure 4.26: θγX for part B events. The plots are are laid out in the same way as in Figure 4.25.
For plots with fits, the ranges covered on the x-axes indicate the range used for the fit function.
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4.9.4 Missing perpendicular momentum cut

The components of the reaction four-vector are the missing momenta in three directions
and the missing energy, which should each be distributed around zero for well recon-
structed photon production events. The strategy adopted here was to develop cuts based
on the missing perpendicular momentum components pX

x and pX
y and check the other

components after all the other cuts. Figures 4.27, 4.28, 4.29 and 4.30 show histograms
of these missing perpendicular momentum components after the particle ID, kinematic
and missing mass cuts. Different cuts were used for IC and EC events to reflect the
different resolutions. These cuts were imposed on the total perpendicular missing mo-
mentum p⊥ =

√
(pX

x )
2 +(pX

y )
2, and are consistent with approximately 4-σ from the MC

fits: pIC
⊥ < 0.06, pEC

⊥ < 0.14
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Figure 4.27: Missing perpendicular momenta: pX
x (LHS) and pX

y (RHS) for part A IC photon
events. The black (red) histogram is of data taken on NH3 (Carbon) target. Carbon histograms
were scaled using the relative integrated beam luminosities. The blue histograms are of the NH3
data minus the Carbon data. The bottom two plots are of Monte Carlo DVCS generated data. For
plots with fits, the ranges covered on the x-axes indicate the range used for the fit function.
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Figure 4.28: Missing perpendicular momenta: pX
x (LHS) and pX

y (RHS) for part B IC photon
events. Plots are laid out in the same way as in Figure 4.27. For plots with fits, the ranges covered
on the x-axes indicate the range used for the fit function.
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Figure 4.29: Missing perpendicular momenta: pX
x (LHS) and pX

y (RHS) for part A EC photon
events. Plots are laid out in the same way as in Figure 4.27. For plots with fits, the ranges covered
on the x-axes indicate the range used for the fit function.
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Figure 4.30: Missing perpendicular momenta: pX
x (LHS) and pX

y (RHS) for part B EC photon
events. Plots are laid out in the same way as in Figure 4.27. For plots with fits, the ranges covered
on the x-axes indicate the range used for the fit function.
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4.9.5 Other exclusive variables

The effects of the exclusive cuts described above on other exclusive variable distributions
are shown in Figures 4.31 and 4.32. Only part B data distributions are shown. The dis-
tributions for part A were very similar. The top panel plots show that the distribution of
events with small photon energies were dominated by events with large missing energy
values. This illustrates that minimum photon energy cut at 1 GeV mainly removed back-
ground events. Table 4.3 lists all of the reaction identification cuts for photon production
events.

cut variable condition units
1 |MM2

X(ep)| < 0.12 (GeV/c2)2

2 ∆φ < 1.2 (deg)
3 θ

IC,EC
γX < 1.0,1.25 (deg)

4 pIC,EC
⊥ < 0.06, 0.14 (GeV/c)

Table 4.3: Cut widths for exclusive variables for photon production events.
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Figure 4.31: Distributions of other exclusive variables before (LHS) and after (RHS) the appli-
cation of exclusive cuts for part B IC photon events. No data cuts were applied to these variables
in the event selection process.
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Figure 4.32: Distributions of other exclusive variables before (LHS) and after (RHS) the appli-
cation of exclusive cuts for part B EC photon events.
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4.10 Exclusive Electroproduction of Neutral Pions

The selection of exclusive electroproduction of neutral pion events followed similar meth-
ods as the selection of exclusive electroproduction of photon events. Exclusive variables
for pion production events were created using the same construction of four-vectors ex-
cept that the photon four-vector was replaced by a four-vector for the pion, which was
recontructed using the two detected photons:

Pπ0 = Pγ1 +Pγ2. (4.8)

The cuts used to identify exclusive electroproduction of neutral pion reactions are given
in Table 4.4. Figure 4.33 shows exclusive variable distributions for pion events before and
after these cuts were applied.

variable condition units
|MM2

X(ep)−M2
π0| < 0.12 (GeV/c2)2

θπ0X < 1.5 (deg)
p⊥ < 0.1 (GeV/c2)
∆φ < 1.2 (deg)

Table 4.4: Cut widths for exclusive variables for all pion production events.
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Figure 4.33: Distributions of other exclusive variables before (LHS) and after (RHS) the appli-
cation of exclusive cuts for all pion production events.
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4.11 Kinematic Coverages

The distributions of the final event samples in terms of the kinematic variables Q2, xB, −t

and φ for photon production and pion production events are shown in Figure 4.34. Table
4.5 lists the average values for the variables Q2, xB and −t.

photons pions
<−t > (GeV/c)2 0.49 0.64
< Q2 > (GeV/c)2 2.41 2.44
< xB > 0.31 0.33

Table 4.5: Average kinematics for the final data sets for photon (LHS) and pion (RHS) production
events.

4.11.1 Event numbers

Table 4.6 lists the number of events remaining after successive reaction ID cuts were
applied. There were over two and a half times as many photon production events than
neutral pion production events.

Cut 1 2 3 4
Photons 548 148 97 74
Pions 201 48 36 27

Table 4.6: Event numbers after successive reaction ID cuts. Numbers quoted are in thousands.
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Figure 4.34: Kinematic coverages for the final data sets for photon (LHS) and pion (RHS) pro-
duction events. In plots (a), (b), (c) and (d) the white lines indicate the edges of the bins used for
the asymmetry analysis.
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4.12 Monte Carlo Simulation

Monte Carlo (MC) simulations were used in this analysis for the purposes of: optimising
exclusive variable cut widths, performing angular and momentum corrections for elec-
trons and protons, and quantifying the level of neutral pion production contamination. As
already mentioned, the procedure used for quantifying the level of neutral pion production
contamination will be explained in the next Chapter. Angular and momentum corrections
were adopted from the work in [99]. Two MC generators were used:

1. Exclusive electroproduction of photons: DVCS and BH events were generated us-
ing a code called dvcsgen [100], which is based on code written by V. Kortkov [101]
and follows the formalism in [57].

2. Exclusive electroproduction of neutral pions: epπ0 events were generated using a
code called aoo rad [102], which was modified to match the experimental cross
section measurements in [103].

The outputs from these generators were fed into a GEANT3 [104] simulation of the CLAS
detector system. The standard version of this simulation, called GSIM, was modified by
S. Niccolai [105] to account for the specific EG1DVCS experimental setup. Two config-
uration files were used to represent the different target locations and shielding variations
of parts A and B of the experiment. The outputs from these versions of GSIM were sent
through a program called GPP, which was used to simulate the Drift Chamber efficien-
cies and smear the data according to the Drift Chamber resolutions. The MC data were
then treated in the same way as the experimental data. Figure 4.35 shows plots of the main
kinematic variable distributions for real and MC data for the final photon production event
sample.
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Figure 4.35: Comparison of MC data to real data for the kinematic variables xB, −t, Q2 and φ

for IC photon events after all data cuts were applied. MC data distributions were scaled to the data
using the relative values in the bins containing the maximum number of counts.
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4.13 Summary

In this chapter the methods used to select DVCS candidate events from data recorded dur-
ing the EG1DVCS experiment were described. On an event-by-event basis this reaction
could not be completely isolated from the exclusive electroproduction of neutral pions
reaction for the case in which only one photon from the neutral pion decay was detected.
This background reaction was also therefore identified for the purposes of background
subtraction, by selecting a sample of events in which the exclusive electroproduction of
neutral pions was identified. The next chapter deals with how these two event samples are
used to extract results that can be used to obtain information about proton structure.



Chapter 5

Analysis 2 - Proton Spin Asymmetries

In Chapter 2 it was shown that Compton form factors are experimentally observable quan-
tities and relate directly to Generalised Parton Distributions. The connection between
them and the φ -harmonic amplitudes of spin asymmetries for the exclusive electropro-
duction of photons was also explained. This chapter is dedicated to discussing the means
by which the final asymmetry amplitudes of this analysis were determined, which in-
volved performing fits to the samples of data that were selected by the methods described
in the previous chapter.

Two different methods of fitting were carried out. To begin with the Least-Squares
fitting method will be discussed. This is perhaps the most common method of parame-
ter determination and will likely be known to the reader. Describing the Least-Squares
method first is intended to provide a familiar starting point from which to move on to a dis-
cussion of the perhaps less-well-known but more widely applicable Maximum Likelihood
(ML) method. The ML method was used to determine the final asymmetry amplitudes in
this work.

5.1 Least-Squares Fitting

The purpose of parameter determination is to test data against a hypothesis. A series of
data (xi,yi±σyi) is fitted with a theoretical curve y(sn), with n fit parameters sn, yielding
a prediction for y at every xi [106]. This method can be used for example to fit a finite
Fourier series,

f (sn) =
nmax

∑
nmin

sn sin(nφ), (5.1)

to a spin asymmetry:

A(φi) =
N→i −N←i
N→i +N←i

; (5.2)

98
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where N→i (N←i ) is the number of counts with positive (negative) helicity in φ -bin i. A
feature of the Least-Squares method is that the errors, σyi , must be normally distributed
[107]. In counting experiments, errors are Poisson-distributed and calculated using the
number of counts in each bin: σNi =

√
Ni. Conveniently, for the situation where the

number of counts is large, a Poisson distribution is equivalent to a Normal distribution
with mean Ni and sigma

√
Ni [106]. This means that for φ -bins in which a large number

of measurements are made, the errors are properly calculated. On the other hand, when
only a few measurements are made in a given bin, the error on the number of counts
follows the wrong probability density function for the use of the Least-Squares fitting
method. In [106] the number is 5 is suggested as being sufficiently large.

Propagation of the errors on the number of counts yields:

σAi ≡ σi = 2
(N→i N←i )1/2

(N→i +N←i )3/2 (5.3)

as the error on A(φi); assuming that the errors are uncorrelated. Keep in mind that σi is
the error on the asymmetry value in bin-i and not on the number of counts. When the
errors are known, as in the example given, the weighted sum of squares,

S =
M

∑
i

(
f (sn)i−A(φi)

σi

)2

, (5.4)

where M is the number of data points (or bins), is usually preferred over the un-weighted
sum of squares case; which is the same formula as above but with σi = 1. The weighted
sum of squares is minimised by finding the turning points with respect to the parameters:

∂S
∂ sn

=
∂

∂ sn

(
M

∑
i

(
f (sn)i−A(φi)

σi

)2
)

= 0. (5.5)

Taking as an example the simple case in which the hypothesis predicts that there is only a
sin(φ) harmonic, the condition:

1
2

∂S
∂ s1

=
M

∑
i

(
s1sin2(φi)−A(φi)sin(φi)

σ2
i

)
= 0, (5.6)

gives the best estimate of the single parameter s1. Solving for s1 yields:

s1 =
[A(φ)sin(φ)]
[sin2(φ)]

; (5.7)
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where the notation:

[ f ] =
M

∑
i

fi

σ2
i
, (5.8)

has been used to make the equation compact. It is worth noting that using the Least-
Squares approach requires that only the errors on A(φi) are used, and it has been necessary
to assume that the φi values are known without error [106].

5.1.1 Goodness of fit

A convenient feature of using the Least-Squares approach is that there is an easy method
of quantifying the ‘goodness’ of the fit result. Inserting the values for the parameters into
weighted sum of squares formula gives:

χ
2 = Smin =

M

∑
i

(
f (smin

n )i−A(φi)

σi

)2

. (5.9)

This quantity can be used to test how good the fit results are. It is most instructive to
divide χ2 by the number of degrees of freedom:

nd f =−n+
M

∑
i

1 = M−n. (5.10)

Values of χ2/nd f close to unity suggest that the fit has been successful. Values much
smaller than unity indicate that the errors are too large. Large values indicate that the
hypothesis is incorrect [106].

5.2 Raw Asymmetries

The Least-Squares method was used to perform fits to beam, target and double asymme-
tries using the full samples of photon-production and pion-production data. Figure 5.1
shows the results. These asymmetries are raw in the sense that the magnitudes of beam
and target polarisation were not taken into account, and the photon-production asymme-
tries were not corrected for pion contamination. These corrections are discussed below.
Each of the asymmetries were formed using 12 equally spaced φ -bins. Respectively the
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beam, target, and double spin asymmetries were constructed as follows:

ALU(φi) =
N→i −N←i
N→i +N←i

,

AUL(φi) =
N⇒i −N⇐i
N⇒i +N⇐i

,

ALL(φi) =
N→⇒i +N←⇐i −N←⇒i −N⇐→i
N→⇒i +N←⇐i +N←⇒i +N⇐→i

;

(5.11)

where the right (left) arrows refer to a positive (negative) polarisation state, and the single
(double) arrows refer to beam (target) polarisation. The numbers of counts in each polar-
isation state were weighted by the beam luminosity for that state, integrated over the full
beam time. For example in the double spin asymmetry the numbers of counts in positive-
beam negative-target state bins were given by: N→⇐i → N→⇐i /L→⇐; and similarly for
the other polarisation states. This ensured that the numbers of counts in each state were
relatively proportional to the differential cross section. The average kinematic values for
−t, xB and Q2 correspond to the values given in Table 4.5.

The fit functions used were:

ALU = ALU
1 sin(φ)+ALU

2 sin(2φ),

AUL = AUL
1 sin(φ)+AUL

2 sin(2φ),

ALL = ALL
0 cos(0φ)+ALL

1 cos(φ)+ALL
2 cos(2φ).

(5.12)

All four single spin asymmetries are dominated by their sin(φ) terms. For photon-
production data, a dominant sin(φ) term is expected for single spin asymmetries when
the handbag approximation for DVCS is valid. Non-zero higher order parameters may be
the result of contributions from: higher-twist CFF terms, cosine terms in the asymmetry
denominator, or the Bethe-Heitler propagators. No attempt is made here to distinguish
their relative contributions. The double spin asymmetries have significant cos(0φ) (con-
stant) terms. In the photon production case this is expected mainly because of the contri-
bution from the Bethe-Heitler process, which as discussed previously, is not cancelled in
the asymmetry numerator. The theoretical background behind harmonic contributions for
pion-production data is not discussed here.

The χ2/nd f values for the fits are all between 0.5 and 2. The primary motivation for
performing fits to pion data was to correct the asymmetry parameters for the photon pro-
duction case. The fit functions were therefore kept the same for each type of asymmetry
throughout.
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Figure 5.1: Raw asymmetries using all data after the event selection cuts were applied. Left-
hand-side (right-hand-side) plots are for photon (pion) production.
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5.3 Beam Polarisation

It was mentioned in Chapter 3 that beam polarisation was measured in dedicated runs
using a Møller polarimeter. These measured values were assigned to every event in the
standard data taking runs that were recorded after the Møller measurement was carried
out. A single overall value for beam polarisation was used for the asymmetry analysis,
which was the average of the magnitude of all events for both positive and negative states
for the full photon production data set. This value was:

PB ≡< |PB|>= 0.85. (5.13)

The beam polarisation sign was recorded on an event-by-event basis and was used to
assign the correct state to each event for the purposes of constructing asymmetries. The
error on the beam polarisation was consistently less than 2% [31] and was neglected in
the asymmetry calculations.

5.4 Target Polarisation

The target polarisation was monitored using NMR during experimental operations. This
method is known to give an inaccurate measure since the values recorded are biased to-
wards the degree of polarisation at the edges of the target material, and therefore do not
properly account for the centre of the target where heating caused by the beam can cause
depolarisation to occur. NMR measurements for the target polarisation were therefore not
used in the asymmetry analysis. The value of the target polarisation that was used, was
taken from a study in which the beam polarisation multiplied by the target polarisation
(PBPT ) was extracted using a study of elastic electron-proton scattering [99]. The mag-
nitude of the target polarisation was determined by dividing out the value of the average
beam polarisation. The value used in this work was the average of the values for positive
and negative states for parts A and B:

PT ≡< |PT |>= 0.76 (5.14)

The error on this value was around 3 % and was neglected in the asymmetry calculations.
The target polarisation sign was flipped after groups of runs were recorded: Figure 4.1
gives an indication of how frequently the target polarisation sign was flipped as a function
of run number. Each event in these groups were assigned the corresponding sign for the
purposes of constructing asymmetries.
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5.5 Dilution Factor

For some of the events remaining in the final samples, the reaction occurred on nucleons
in the target which were not polarised. This was not taken into account in the method
used to determine the target polarisation. The magnitude of dilution was quantified using
a dilution factor, d f . The value for the dilution factor used in the asymmetry analysis was
the average of the results given in the same internal analysis note as mentioned above.
This value was:

d f = 0.91. (5.15)

The dilution factor was calculated separately for exclusive electroproduction of photon
and pion events but these values were very similar so only one value was used in the
asymmetry analysis. Taking the differences into account the error on d f was approxi-
mately 3 % and was neglected in the asymmetry calculations.

5.6 Maximum Likelihood Fitting

The principle of maximum likelihood (ML) provides a more general method of parameter
estimation than Least-Squares fitting. The best estimates of parameters are found by
maximising the likelihood function [107]:

L(φi;sn) =
N

∏
i=1

p(φi,sn), (5.16)

where p(φi,sn) is a probability density function (pdf). The likelihood function represents
the joint probability for all N measurements. In the case where it is appropriate to use
a normally-distributed pdf, maximising L(φi;sn) is equivalent to minimising the sum of
squares [108]. This will now be demonstrated using again the simple example of fitting
an asymmetry with a single Fourier harmonic. Inserting the normally distributed pdf,

p(φi,sn) =
1

σi
√

2π
e−(A(φi)−s1 sin(φi))

2/(2σ2
i ), (5.17)

into the likelihood function and taking the natural logarithm yields:

lnL =−
M

∑
i

(
ln(σi

√
2π)+(A(φi)− s1 sin(φi))

2/(2σ
2
i )
)
. (5.18)
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Minimising the negative of this quantity is equivalent to maximising L and is done by
taking its derivative with respect to the parameter and setting it equal to zero:

d(− lnL)
ds1

=
M

∑
i

(
s1 sin2(φi)−A(φi)sin(φi)

σ2
i

)
= 0. (5.19)

This is the same as the result that was obtained using the Least-Squares approach. The
same equivalence applies in general to any fit function.

Both the Least-Squares method and this example using ML required that the data were
binned in order to form the asymmetries. Using these methods means that information
on the precise value of φ for each event is lost, thus introducing a systematic error. By
implementing an un-binned fitting procedure using the likelihood formalism, this loss of
information is overcome. The method adopted in this work was a variation of the standard
Maximum Likelihood method called Extended Maximum Likelihood (EML).

5.6.1 Extended Maximum Likelihood

In both the previous examples a normal distribution was used as the pdf, which has the
property of being normalised to unity. In the case whereby an arbitrary pdf, f (φi,sn), is
chosen, it can be normalised to unity by dividing by its integral:

p(φi,sn) = f (φi,sn)/
∫

φ2

φ1

f (φi,sn)≡ f (φi,sn)/F ; (5.20)

where the integral limits correspond to the limits of the range over which it applies:
[φ1,φ2]. By normalising, the area of the distribution has been removed.

In some cases, such as in this work, the area of the distribution may be important. In
experiments that run for a fixed period of time rather than until a fixed number of events
are recorded, the total expected number of counts may provide a better estimate of the
true value than the total observed number of counts [109]. As will be shown below, the
area under the pdf used in this work corresponds to the expected number of counts.

In the EML method a Poisson distribution is included in the likelihood function,

L(φi;sn) =
F(sn)

Ne−F(sn)

N!

N

∏
i

f (φi,sn)

F(sn)
, (5.21)

to account for the probability of observing the total number of counts, N; given the ex-
pected number of counts, F(sn). In this case, the negative of the logarithm of the likeli-
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hood is

− lnL(φi;sn) =−N lnF(sn)+F(sn)+ lnN!−
N

∑
i

ln f (φi,sn)+
N

∑
i

lnF(sn). (5.22)

On the right-hand-side of this equation the first and last terms cancel and the middle term
is not dependent upon the parameters which means it will vanish when the parameters are
minimised and can therefore be neglected. The function that is minimised to determine
the best estimates of the parameters is:

− lnL(φi;sn) = F(sn)−
N

∑
i

ln f (φi,sn); (5.23)

where f (φi,sn) is called the extended (or un-normalised) pdf and F(sn) is referred to as
the normalisation.

5.7 EML and Spin Asymmetries

EML has already been shown to be an effective method of fitting polarised asymmetries
by the HERMES collaboration. They found it to out-perform the standard ML [110] and
Least-Squares [111] methods. This section explains the procedures used in this work
which are consistent with those used in [87].

For an experiment in which the beam and target are both longitudinally polarised, the
reaction rate is:

f (φi,sn) = L(t)ησUU(φ)[1+PBALU +PBPT ALL +PT AUL] (5.24)

where L(t) is the luminosity per unit time, PB (PT ) is the beam (target) polarisation, η

is the detector efficiency, and σUU is the unpolarised cross section for exclusive events.
Integrated over the duration of the experiment and all phase-space, this quantity gives
the expected number of counts. Taking the detector efficiency to be unity, the expected
number of counts is:

F(φi,sn) =
∫

[F→⇐(φ ;sn)+F→⇒(φ ;sn)+F←⇐(φ ;sn)+F←⇒(φ ;sn)]dx

≈
N

∑
i

1
4L↔⇔

[mUU +mLU ALU +mLLALL +mULAUL] ,
(5.25)

where L↔⇔ is either: L→⇒, L←⇒, L→⇐, or L←⇐ depending on the polarisation state
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relevant to the event; and the other factors are:

mUU = L→⇒+L→⇐+L←⇒+L←⇐

mUL = (L→⇒−L→⇐+L←⇒−L←⇐)PT

mLU = (L→⇒+L→⇐−L←⇒−L←⇐)PB

mLL = (L→⇒−L→⇐−L←⇒+L←⇐)PBPT .

(5.26)

The resulting likelihood function to be minimised is:

− lnL =−
N

∑
i=0

ln[1+PBALU +PT AUL +PBPT ALL]+F(φi,sn); (5.27)

where F(φi,sn) from Equation 5.25, and the asymmetries from Equation 5.12 were used;
without the cos(2φ) terms.

The target and double spin asymmetries were corrected for the dilution factor by di-
viding the amplitudes and errors of the fit parameters by the value of d f quoted previously.

5.8 EML and Least-Squares Comparison

Fits to the photon and pion production data were carried out using both the EML and
Least-Squares methods. This time the Least-Squares asymmetries were corrected for the
dilution factor and beam and target polarisations, which was done by scaling Equations
5.11 as follows:

ALU →
ALU

PB

AUL→
AUL

PT d f

ALL→
ALL

PBPT d f
.

(5.28)

Further to this, the data were split into five kinematic bins. Five bins for −t and xB were
used separately. The binning schemes adopted are given in Table 5.1. Tables 5.2 and
5.3 give the average values for the kinematic variables −t, xB and Q2 in these bins for
photon and pion production data respectively. Figures 5.2 and 5.3 show the results for the
primary fit parameters for photon and pion production data in five−t bins and five xB bins
respectively. Figures 5.4 and 5.5 show the same for the secondary fit parameters.

These results show a good level of consistency between both fitting methods for all
three types of asymmetries in both binning schemes and for both the photon-production
and pion-production data sets. This indicates that the results obtained are almost indepen-
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dent of the fitting method used. Small differences in the results between the two fitting
methods that are observed could be assigned as a source of systematic uncertainty, how-
ever the difference is in general far smaller than the random uncertainties and does not ap-
pear to result in the best estimates of the parameters taking consistently larger or smaller
values for one method rather than the other. At close inspection some of the parame-
ters determined using the EML method have smaller errors than for the Least-Squares
method. This is perhaps most evident for the double spin asymmetry primary coefficient
results binned in −t: see the bottom left plot of Figure 5.2 for example. The reason for
this is likely due to the EML method being performed on and event-by-event basis, which
utilises the exact values for φ .



5.8. EML and Least-Squares Comparison 109

 
2

 ­t (GeV/c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 )
φ

s
in

(

U
L

 A

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a) TSA sin(φ)

 
2

 ­t (GeV/c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 )
φ

s
in

(

U
L

 A

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) TSA sin(φ)

2
 ­t (GeV/c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

)
φ

s
in

(

L
U

 A

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c) BSA sin(φ)

2
 ­t (GeV/c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

)
φ

s
in

(

L
U

 A

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(d) BSA sin(φ)

2
 ­t (GeV/c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 )
φ

c
o
s
(0

L
L

 A

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(e) DSA cos(0φ)

2
 ­t (GeV/c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 )
φ

c
o
s
(0

L
L

 A

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(f) DSA cos(0φ)

Figure 5.2: −t progression of the primary DVCS (LHS) and DVMP (RHS) spin asymmetry
coefficients. Data points are plotted at the average values of the kinematic variable being binned.
The results for the Least-Squares (EML) fits are shown in black (red) and have been offset in the
x coordinate by +0.017 (−0.017) to avoid them being obscured.
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Figure 5.3: xB progression of the primary DVCS (LHS) and DVMP (RHS) spin asymmetry
coefficients. Data points are plotted at the average values of the kinematic variable being binned.
The results for the Least-Squares (EML) fits are shown in black (red) and have been offset in the
x coordinate by +0.005 (−0.005) to avoid them being obscured.
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Figure 5.4: −t progression of the secondary DVCS (LHS) and DVMP (RHS) spin asymmetry
coefficients. Data points are plotted at the average values of the kinematic variable being binned.
The results for the Least-Squares (EML) fits are shown in black (red) and have been offset in the
x coordinate by +0.017 (−0.017) to avoid them being obscured.
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Figure 5.5: xB progression of the secondary DVCS (LHS) and DVMP (RHS) spin asymmetry
coefficients. Data points are plotted at the average values of the kinematic variable being binned.
The results for the Least-Squares (EML) fits are shown in black (red) and have been offset in the
x coordinate by +0.005 (−0.005) to avoid them being obscured.
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bin 1 2 3 4 5
−t bin width [0.00,0.21) [0.20,0.39) [0.39,0.72) [0.72,1.20) [1.20,2.00)

yield (γ) 22988 18212 13894 9714 7690
yield (π0) 4411 6538 7770 6664 4455

xB bin width [0.10,0.20) [0.20,0.25) [0.25,0.30) [0.30,0.42) [0.42,0.60)
yield (γ) 4996 13389 18073 28813 7227

yield (π0) 1725 4512 6232 12634 4735

Table 5.1: Binning schemes for the variables−t and xB and yields per bin. These systems
were used for both the photon-production and pion-production data-sets.

data-set −t bin 1 2 3 4 5
γ <−t > (GeV/c)2 0.15 0.29 0.53 0.93 1.51
π0 <−t > (GeV/c)2 0.16 0.30 0.54 0.94 1.50
γ < xB > 0.25 0.31 0.35 0.36 0.35
π0 < xB > 0.25 0.31 0.35 0.36 0.36
γ < Q2 > (GeV/c)2 2.06 2.47 2.70 2.63 2.50
π0 < Q2 > (GeV/c)2 1.95 2.36 2.60 2.60 2.59

Table 5.2: Average kinematics in −t bins for photon and pion production data-sets.

xB bin 1 2 3 4 5
γ <−t > (GeV/c)2 0.33 0.32 0.40 0.63 1.03
π0 <−t > (GeV/c)2 0.45 0.50 0.57 0.73 1.07
γ < xB > 0.18 0.23 0.27 0.35 0.46
π0 < xB > 0.18 0.23 0.28 0.35 0.47
γ < Q2 > (GeV/c)2 1.52 1.90 2.22 2.66 3.45
π0 < Q2 > (GeV/c)2 1.52 1.84 2.12 2.55 3.46

Table 5.3: Average kinematics in xB bins for photon and pion production events.
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5.9 Neutral Pion Contamination

The contribution from neutral pion contamination to the DVCS spin asymmetry coeffi-
cients was calculated using a combination of the exclusive pion production asymmetry
coefficients and the Monte Carlo simulated data for neutral pion production.

The ratio of acceptances for the CLAS detector for neutral pion production in which
one and two photons were detected was estimated using the relative number of neu-
tral pion generated MC events passing all the DVCS

(
Nepπ0(γ)

MC

)
and neutral pion cuts(

Nepπ0(γγ)
MC

)
. This acceptance ratio was calculated as:

AR =
Nepπ0(γ)

MC

Nepπ0(γγ)
MC

. (5.29)

The acceptance ratio was used to determine the number of events in the DVCS data sample
corresponding to pion production as follows:

Nepπ0(γ) = ARNepπ0(γγ); (5.30)

where Nepπ0(γγ) is the number of events in the neutral pion data sample. The fraction of
events in the DVCS sample coming from neutral pion contamination was then calculated
to be:

f π0
=

Nepπ0(γ)

Nepγ
. (5.31)

The measured DVCS asymmetries came from a combination of DVCS and neutral pion
production:

ADVCS
measured = (1− f π0

)ADVCS
true + f π0

Aepπ0
. (5.32)

The true values for the asymmetries were determined by rearranging the equation above:

ADVCS
true =

ADVCS
measured− f π0

Aepπ0

1− f π0 . (5.33)

The standard error on this quantity is:

σtrue =

(
σ2

measured +( f π0
σπ0)2

) 1
2

1− f π0 . (5.34)

Contamination fractions were calculated for all the bins given in Table 5.1. The resulting
values are given in Table 5.4. These values were used along with the last two equations
to correct the EML fit parameters. The contamination-corrected asymmetry fit parameter
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results are presented in Chapter 6.

bin 1 2 3 4 5
−t 0.076 0.168 0.302 0.413 0.369
xB 0.168 0.161 0.173 0.246 0.375

Table 5.4: Pion-contamination fractions for −t and xB bins.

5.10 Systematic Uncertainties

The quantities that are expected to contribute a source systematic error on the final asym-
metry results are listed in Table 5.5. These results are quoted from an internal CLAS
analysis note [99] to which this author contributed. It should be noted that since the anal-
ysis methods used in this work were carried out independently1, these results only serve
as an approximation of the systematic uncertainties. The calculations for these quantities
were performed as follows:

• Exclusivity cuts. The exclusivity cuts were varied to observe what effect they had
on the resulting φ -binned DVCS target spin asymmetries. Three different cut widths
were used: 2.5-σ , 3-σ and 3.5-σ . The deviation of the asymmetry data points from
the value found when 3-σ cuts were used, were averaged to arrive at the quoted
result. It should be noted that for the analysis used in this part of the systematic
study, 3-σ values were used as standard for exclusive variable cut widths, which as
explained in Chapter 4 was not the case for this work.

• PBPT . The target spin asymmetry was re-calculated using two additional values
for PT . These values were the extreme values for PT found when the maximum
and minimum for PBPT was used, as calculated by including the minimum and
maximum random errors: (PBPT )

max = PBPT +σPBPT ,(PBPT )
min = PBPT −σPBPT .

The result quoted was the average deviation of the asymmetries for the two extreme
cases.

• Dilution factor. The target spin asymmetry was re-calculated using two additional
values for d f . In the same manner as the systematic error for PT was determined,
minimum and maximum values for d f were calculated using the maximum and

1The author is grateful for collaborative discussions with the analysis note co-authors and EG1DVCS
run group in regards to event selection procedures. These discussions led to a largely consistent particle
identification procedure for independent DVCS and pion analyses and some consistency in the reaction
identification and background subtraction procedures.
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minimum random errors: dmax
f = d f +σd f ,d

min
f = d f −σd f . The result quoted was

the average deviation of the asymmetries for the two extreme cases.

• π0 background subtraction. All three types of spin asymmetries were re-calculated
using varied acceptance ratio values (AR). The values used were: Amax

R = 1.3 ·AR,
Amin

R = 0.7 · AR. The results quoted were the average deviations of each of the
asymmetries for the two extreme cases.

• Analysis technique. The exclusivity cut widths for analyses carried out by two of
the analysis note co-authors [99] (E. Seder and S. Pisano) were developed using
slightly different fitting techniques: the exclusive variable fit ranges, fit functions
and binning were not common to both analyses. This resulted in different sets of
exclusivity cut widths. Furthermore the analysis codes were written independently.
Whilst some contribution from these differences was already taken into account by
altering the exclusivity cut widths, it was considered that these differing techniques
may indicate an additional systematic uncertainty. The value quoted corresponds
to half the relative difference in the results obtained for the target spin asymmetries
for these two analyses. In the future an additional check could be performed using
the exclusivity cuts procedure developed in this work.

• Radiative corrections. The theoretical formalism that was used to extract the asym-
metry results was based on the leading order processes for DVCS and BH. The
radiative emission of a photon has a probability to occur during these processes
and was not taken into account in the analysis method. However, calculations
have shown that the contribution in the CLAS kinematic range is expected to be
small [112]. This discrepancy is therefore included as a source of systematic error.

Source Systematic uncertainty
Exclusivity cuts 2.5%

PBPt 2.6%
Dilution factor 1.4%

π0 Background subtraction 0.75% (TSA), 4.0% (BSA), 0.9% (DSA)
Analysis technique 1.9%

Radiative corrections 0.1%
Total (sum in quadrature) 4.4% (TSA), 5.9% (BSA), 4.4% (DSA)

Table 5.5: Summary table of all the kinds of systematic uncertainties studied. Table
adapted from [99].
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5.11 Summary

In this chapter, two methods of parameter estimation were compared: Least-Squares fit-
ting and the Extended Maximum Likelihood method. These methods were both shown to
provide a suitable framework for fitting sinusoidal functions to beam, target and double
spin asymmetries for photon and pion production reactions. In the next and final chap-
ter, results will be shown for pion contamination corrected DVCS asymmetries using the
EML results.



Chapter 6

Results, Conclusions and Outlook

In this chapter final results are presented and compared to model predictions. The doc-
ument concludes by summarising this work and briefly discussing the future for nucleon
structure physics experiments in Hall B at Jefferson Lab.

6.1 Final Results

The DVCS target, beam and double spin asymmetry fit parameters were corrected for
neutral pion contamination using the procedures discussed in Chapter 5. The parameters
obtained using the EML fitting method were used and have been plotted alongside VGG
model predictions. These predictions were calculated for this work specifically using the
VGG code [113]. The inputs to the code are explained in Appendix A.

6.1.1 Target Spin Asymmetry

Figures 6.1 and 6.2 show target spin asymmetry fit parameters as a function of the vari-
ables xB and −t for data (red points), and VGG model predictions in which the contribu-
tion from the GPD H̃ was (blue points) and was not (black points) included.

In Figure 6.1(a) it is clear that the model in general underestimates the magnitudes of
the asymmetries when H̃ is not included. This agrees with the expectation that the target
spin asymmetry is a result of significant contributions from both of the GPDs H and H̃,
and highlights the importance of performing experiments with a polarised target: beam
spin asymmetry measurements are mostly sensistive to H only. The progression of the
data in xB follows a similar trend to the VGG model points, and for all but one point, the
magnitudes of the asymmetries are consistent, within experimental error, to all the VGG
points when H̃ was included. These results appear to show consistency with the previous
CLAS target spin asymmetry analysis [76] and significantly increases the total data-set
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available. The experimental error bars for these results are approximately half the size of
the previous result, the range over xB covered is larger, and there are five bins instead of
three.

It is worth noting that due to the acceptance of the CLAS detector, increasing bins
in xB also tend to have increasingly large values of Q2. This was taken into account in
the model points, which were calculated using the same average kinematic values as the
photon-production data. One source of discrepancy is the difference in kinematic averages
between the photon- and pion-production data. These differences can be seen in Table 5.3.
The pion production data has relatively more events at larger −t and xB values - as shown
in Figure 4.34. The main differences are for −t in the xB-bins: the pion production data
has in general larger average values for −t than the photon-production data. A potential
improvement to the results could be made by extrapolating between the pion asymmetry
points to the position at which the average kinematics have the best agreement with the
photon-production data.

In Figure 6.1(b) the sin(2φ) coefficients are small and in three bins they are consistent
with zero within experimental error. The model predictions in general overestimate these
parameters. This could be due to higher-order twist processes contributing to the data
which are not included in the model.

Figure 6.2(a) shows the −t progression of the target spin asymmetry sin(φ) coeffi-
cient. The agreement between the data and model predictions are not as good as for the
xB progression results. In the two smallest−t-bins, the version of model without H̃ agrees
better with the data. The data and model predictions are both seen to peak but at quite
different values of −t.

It is not clear why the sin(2φ) coefficients in Figure 6.2(b) agree better with the model
predictions than the those in Figure 6.1(b).
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Figure 6.1: xB progression of proton DVCS target spin asymmetry (TSA) coefficients. The red
points are EML fit results with the contribution from neutral pion production subtracted. The
blue and black points are the results from χ2 fits to the output from VGG-code, calculated at the
average kinematics of the data points. The contribution from H̃ was omitted for the black points.
Lines that join the model points are there to help guide the eye.
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Figure 6.2: −t progression of proton DVCS target spin asymmetry (TSA) coefficients. Data and
model points have the same convention as in Figure 6.1.
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6.1.2 Beam Spin Asymmetry

Figures 6.3 and 6.4 show beam spin asymmetry (BSA) fit parameters as a function of
the variables xB and −t. The similarity between the two model versions highlights that
the relative contribution from H̃ compared to H is expected to be less for the beam spin
asymmetry than for the target spin asymmetry.

Figure 6.3(a) shows the xB progression of the sin(φ ) coefficient. The asymmetries
take quite constant values which are larger than the same coefficient for the target spin
asymmetry. The model points tend to overestimate the data.

Similar differences between the data and the model predictions can be seen for the
sin(2φ) parameters in Figure 6.3(b) as for the same parameters for the target spin asym-
metry: the models generally appear to overestimate the data except in the largest xB bin
where the model point lies close to the lower limits of the experimental error.

The−t progression of the beam spin asymmetry sin(φ) coefficient is shown in Figure
6.3(a). The agreement with the model is better at large values of−t. In the lowest−t bins
the model overestimates the results. This observation shows consistency with the main
previous CLAS beam spin asymmetry results [72] - as shown in Figure 2.8. In general
the magnitudes of the sin(2φ) parameters in Figure 6.3(b) agree reasonably well with the
model points; as was the case for the same parameters for the target spin asymmetry.
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Figure 6.3: xB progression of proton DVCS beam spin asymmetry (BSA) coefficients.
Data points have the same convention as in Figure 6.1.
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Figure 6.4: t progression of proton DVCS beam spin asymmetry (BSA) coefficients. Data
points have the same convention as in Figure 6.1.
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6.1.3 Double Spin Asymmetry

Figures 6.5 and 6.6 show the final results for the double spin asymmetry fit parameters. In
Figure 6.5(a) there is a poorer agreement between the data and the model predictions than
in Figure 6.6(a). It is not clear why all of the model points underestimate the data when it
is binned in xB but not when it is binned in −t. This could be because the differences in
the average kinematics for the pion data compared to the photon data are more significant
for the xB binning scheme, or because deficiancies in the model are more pronounced for
the double spin asymmetry at the average kinematics of the xB bins. The double spin
asymmetry dependends on the amplitudes for the BH process, DVCS and the interference
term and therefore has a rather complicated dependence on CFFs and therefore also GPDs.
The GPD E was not included in the version of the model used and could for example play
a significant role.



6.1. Final Results 126

 
B

 x

0.1 0.2 0.3 0.4 0.5 0.6

 )
φ

c
o

s
(0

L
L

 A

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(a) DVCS DSA cos(0φ ) coefficients.

 
B

 x

0.1 0.2 0.3 0.4 0.5 0.6

 )
φ

c
o

s
(

L
L

 A

­0.2

­0.15

­0.1

­0.05

0

0.05

0.1

0.15

0.2

(b) DVCS DSA cos(φ ) coefficients.

Figure 6.5: xB progression of proton DVCS double spin asymmetry (DSA) coefficients.
Data points have the same convention as in Figure 6.1.
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Figure 6.6: −t progression of proton DVCS double spin asymmetry (DSA) coefficients.
Data points have the same convention as in Figure 6.5.
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6.2 Summary, Conclusions and Outlook

This thesis presented measurements of spin asymmetries for deeply virtual Compton scat-
tering off the proton using the Extended Maximum Likelihood method. The primary mo-
tivation for undertaking this study was to investigate the dependencies of the target spin
asymmetry on the variables xB and −t. These results were shown in this chapter along
with results for beam and double spin asymmetries. Varying levels of agreement were
found when the results were compared to model predictions using the VGG framework.

The data used were recorded with the CLAS detector system at Jefferson Laboratory
in a dedicated polarised target experiment. Starting with a sample of over a billion events
containing all kinds of different electron scattering processes, reactions corresponding to
the exclusive electroproduction of photons were carefully selected. This was achieved
by identifying the reaction final-state particles, and rejecting background processes by
imposing conditions based on the reaction kinematics and exclusivity of the process.

The theoretical background for proton structure physics was reviewed in the first two
chapters. Generalised parton distributions (GPDs) were introduced via their relation to
Wigner distributions, form factors and parton distribution functions. The connection
between GPDs and deeply virtual Compton spin asymmetry amplitudes was described.
Compton form factors were shown to provide the link between these experimental ob-
servables and GPDs.

This analysis offers a new source of input to the deep exclusive processes global data
set and thus an important additional constraint to apply to GPD models. It is foreseen that
such constraints will lead to a more thorough understanding of the structure of protons,
and help to explain how the underlying distributions of quarks and gluons inside it, give
rise to the global properties by which it is defined.

The electron accelerator at Jefferson Laboratory is in the process of being upgraded.
The maximum beam energy available will be 12 GeV, twice the maximum energy avail-
able previously. A new detector system has been designed for Hall B called CLAS12,
which will be able to operate at an order of magnitude higher luminosity than CLAS.
Figure 6.7 is an illustration of CLAS12, which has a more forward-focussed design than
CLAS to reflect the higher beam energy. This will enable a wide experimental program of
high precision measurements in a large region of unexplored phase phase, taking future
investigations into nucleon structure to an even deeper level.
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Figure 6.7: Illustration of the CLAS12 detector system.



Appendix A

VGG Code

The VGG code has many input options, which allows the user to pick which version of
the model they require and what they want to calculate with it. For this work the code
was used to calculate the φ -dependance of 2-body doubly-polarised cross-sections for
DVCS using a polarised lepton beam and a polarised target. Two different model versions
were utilised. They were the same in all respects except that the contribution from H̃ was
excluded in one.

The code was executed once for each xB and −t bin. The average values of the kine-
matics of the photon production data for xB, Q2 and−t for each bin were used. The output
contained values for the differential cross section for each of the four possible polarisa-
tion states at 12 φ values corresponding to the centre of the φ bins used for the data in the
Least-Squares fitting method. This data was used to construct target, beam and double
spin asymmetries using the same procedures as the data, which were then fitted using the
Least-Squares method. The following section lists the inputs to the code used.
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A.1 VGG code inputs

• 4 : 2-body DOUBLY POLARISED cross sections for (D)DVCS polarised electron,
polarised target

• 3 : Bethe-Heitler + DVCS contribution

• 1 = proton

• 35 : xi dependent parametrisation with MRST02 NNLO distribution at µ2 = 1 GeV2

• 1 (Give the value for the power b in the profile function for the valence contribution
to H)

• 1 (Give the value for the power b in the profile function for the sea contribution to
H)

• 8 = R2 Regge ansatz model (t-dep in DDs)

• 1.08 (Enter slope alphap (GeV-2))

• 2 = No (Do you want to evaluate the D-term contribution to the GPD H?)

• 3 = No, E = 0 (Do you want to evaluate the GPD E?)

• 2 = No (Do you want to evaluate the pi0 pole contribution (i.e. SPD Etilde)?)

• 1: Do not include twist-3 corrections for L photon, but include the minimal correc-
tions to restore gauge invariance for T photon

• 1 = Yes; 2 = No (With (1) or without (2) Htilde ?

• 3 : proton polarised along z-axis (along the virtual photon direction)

• 1 : negatively charged lepton (JLab)

• 5.95 (Ebeam)

• < Q2 >

• < xB >

• Q
′
= 0

• <−t >

• 3 : As a function of Phi
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• 15

• 30

• 345



Bibliography

[1] F. Halzen and A. D. Martin. Quarks and Leptons. John Wiley and sons, 1884.

[2] A. W. Thomas and W. Weise. The Structure of the Nucleon. Wiley-VCH, 2001.

[3] S. Bass. The Spin Structure of the Proton. World Scientific, 2008.

[4] R. Eisberg and R.. Resnick. Quantum Physics of Atoms, Molecules, Solids, Nuclei,

and Particles. John Wiley and sons, 1985.

[5] E. Rutherford. The Scattering of α and β Particles by Matter and the Structure of
the Atom. Philosophical Magazine Series 6, 21(125):669–688, 1911.

[6] E. Rutherford and J.M. Nuttall. Scattering of α Particles by Gases. Philosophical

Magazine Series 6, 26(154):702–712, 1913.

[7] N. Bohr. On the Constitution of Atoms and Molecules. Philosophical Magazine

Series 6, 26(151):1–25, 1913.

[8] Editor. Physics at the British Association. Nature, 106(2663):357, November 1920.

[9] J. Chadwick. Possible Existence of a Neutron. Nature, 129:312, 1932.

[10] J. Beringer et al. Review of Particle Physics. Physical Review D, 86:010001, Jul
2012.
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